Science.gov

Sample records for serotonin uptake blockade

  1. Measuring the serotonin uptake site using (/sup 3/H)paroxetine--a new serotonin uptake inhibitor

    SciTech Connect

    Gleiter, C.H.; Nutt, D.J.

    1988-01-01

    Serotonin is an important neurotransmitter that may be involved in ethanol preference and dependence. It is possible to label the serotonin uptake site in brain using the tricyclic antidepressant imipramine, but this also binds to other sites. We have used the new high-affinity uptake blocker paroxetine to define binding to this site and report it to have advantages over imipramine as a ligand.

  2. Lung damage and pulmonary uptake of serotonin in intact dogs

    SciTech Connect

    Dawson, C.A.; Christensen, C.W.; Rickaby, D.A.; Linehan, J.H.; Johnston, M.R.

    1985-06-01

    The authors examined the influence of glass bead embolization and oleic acid, dextran, and imipramine infusion on the pulmonary uptake of trace doses of (/sup 3/H)serotonin and the extravascular volume accessible to (/sup 14/C)antipyrine in anesthetized dogs. Embolization and imipramine decreased serotonin uptake by 53 and 61%, respectively, but no change was observed with oleic acid or dextran infusion. The extravascular volume accessible to the antipyrine was reduced by 77% after embolization and increased by 177 and approximately 44% after oleic acid and dextran infusion, respectively. The results suggest that when the perfused endothelial surface is sufficiently reduced, as with embolization, the uptake of trace doses of serotonin will be depressed. In addition, decreases in serotonin uptake in response to imipramine in this study and in response to certain endothelial toxins in other studies suggest that serotonin uptake can reveal certain kinds of changes in endothelial function. However, the lack of a response to oleic acid-induced damage in the present study suggests that serotonin uptake is not sensitive to all forms of endothelial damage.

  3. Serotonin blockade delays learning performance in a cooperative fish.

    PubMed

    Soares, Marta C; Paula, José R; Bshary, Redouan

    2016-09-01

    Animals use learning and memorizing to gather information that will help them to make ecologically relevant decisions. Neuro-modulatory adjustments enable them to make associations between stimuli and appropriate behavior. A key candidate for the modulation of cooperative behavior is serotonin. Previous research has shown that modulation of the serotonergic system spontaneously affects the behavior of the cleaner wrasse Labroides dimidiatus during interactions with so-called 'client' reef fish. Here, we asked whether shifts in serotonin function affect the cleaners' associative learning abilities when faced with the task to distinguish two artificial clients that differ in their value as a food source. We found that the administration of serotonin 1A receptor antagonist significantly slowed learning speed in comparison with saline treated fish. As reduced serotonergic signaling typically enhances fear, we discuss the possibility that serotonin may affect how cleaners appraise, acquire information and respond to client-derived stimuli via manipulation of the perception of danger. PMID:27107861

  4. The role of adrenergic receptor blockade in serotonin-induced changes in the pulmonary circulation.

    PubMed Central

    Rapaport, E; Rolston, W A; Stern, S

    1977-01-01

    1. In dogs i.v. injection of serotonin caused a rise in pulmonary artery pressure and pulmonary arteriocapillary resistance that persisted even after alpha- and beta-adrenergic receptor blockade; pulmonary venous resistance also increased, but this was abolished by pretreatment with either propranolol or phenoxybenzamine. 2. The injection of serotonin into the ascending aorta produced an immediate rise in systemic, pulmonary arterial and pulmonary venous pressures and pulmonary venous resistance. After phenoxybenzmine, the rise in systemic and pulmonary arterial pressures remained unchanged, but previously observed increases in pulmonary venous pressure and resistance were blocked. In contrast, propranolol failed to abolish the rise in pulmonary venous resistance after serotonin injection into the ascending aorta. 3. These results confirm the observation that the vasoconstrictor effect attributed to intravenously injected serotonin on the arterial side of the pulmonary circulation is independent of the known sympathetic pathways. The data suggest that the pulmonary venoconstriction induced by intravenous serotonin is of reflex origin, abolished by alpha and beta receptor blockade, whereas the efferent arm of the reflex pulmonary venoconstriction following injection of serotonin into the ascending aorta is mediated via alpha-adrenergic receptors. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:599427

  5. Antihistamine effect on synaptosomal uptake of serotonin, norepinephrine and dopamine

    NASA Technical Reports Server (NTRS)

    Brown, P. A.; Vernikos, J.

    1980-01-01

    A study on the effects of five H1 and H2 antihistamines on the synaptosomal uptake of serotonin (5HT), norepinephrine (NE), and dopamine (DA) is presented. Brain homogenates from female rats were incubated in Krebs-Ringer phosphate buffer solution in the presence of one of three radioactive neurotransmitters, and one of the five antihistamines. Low concentrations of pyrilamine competitively inhibited 5HT uptake, had little effect on NE uptake, and no effect on DA uptake. Promethazine, diphenhydramine, metiamide, and cimetidine had no effect on 5HT or DA uptake at the same concentration. Diphenhydramine had a small inhibitory effect on NE uptake. It is concluded that pyrilamine is a selective and potent competitive inhibitor of 5HT uptake at concentrations between .05 and .5 micromolars.

  6. Myocardial serotonin exchange: negligible uptake by capillary endothelium

    SciTech Connect

    Moffett, T.C.; Chan, I.S.; Bassingthwaighte, J.B.

    1988-03-01

    The extraction of serotonin from the blood during transorgan passage through the heart was studied using Langendorff-perfused rabbit hearts. Outflow dilution curves of /sup 131/I- or /sup 125/I-labeled albumin, (/sup 14/C)sucrose, and (3H)serotonin injected simultaneously into the inflow were fitted with an axially distributed blood-tissue exchange model to examine the extraction process. The model fits of the albumin and sucrose outflow dilution curves were used to define flow heterogeneity, intravascular dispersion, capillary permeability, and the volume of the interstitial space, which reduced the degrees of freedom in fitting the model to the serotonin curves. Serotonin extractions, measured against albumin, during single transcapillary passage, ranged from 24 to 64%. The ratio of the capillary permeability-surface area products for serotonin and sucrose, based on the maximum instantaneous extraction, was 1.37 +/- 0.2 (n = 18), very close to the predicted value of 1.39, the ratio of free diffusion coefficients calculated from the molecular weights. This result shows that the observed uptake of serotonin can be accounted for solely on the basis of diffusion between endothelial cells into the interstitial space. Thus it appears that the permeability of the luminal surface of the endothelial cell is negligible in comparison to diffusion through the clefts between endothelial cells. In 18 sets of dilution curves, with and without receptor and transport blockers or competitors (ketanserin, desipramine, imipramine, serotonin), the extractions and estimates of the capillary permeability-surface area product were not reduced, nor were the volumes of distribution. The apparent absence of transporters and receptors in rabbit myocardial capillary endothelium contrasts with their known abundance in the pulmonary vasculature.

  7. Serotonin uptake in blood platelets of psychiatric patients

    SciTech Connect

    Meltzer, H.Y.; Arora, R.C.; Baber, R.; Tricou, B.J.

    1981-12-01

    Platelet serotonin (5-HT) uptake was determined in 72 newly admitted, unmedicated psychiatric patients. Decreased maximum velocity (Vmax) of 5-HT uptake was present in unipolar and bipolar depressed patients as well as schizoaffective depressed patients. The apparent Michaelis constant (km) of 5-HT uptake was normal in these groups, as was Vmax and Km in manic-depressive and chronic schizophrenic patients. Treatment of depressed patients with notriptyline hydrochloride or imipramine hydrochloride increased Km significantly. There was a trend for the increase in Km in the nortriptyline-treated patients to correlate with clinical improvement. Decreased 5-HT uptake in platelets provides additional evidence for the role of 5-HT in the pathophysiologic process of some forms of depression.

  8. Anorectic activities of serotonin uptake inhibitors: correlation with their potencies at inhibiting serotonin uptake in vivo and /sup 3/H-mazindol binding in vitro

    SciTech Connect

    Angel, I.; Taranger, M.A.; Claustre, Y.; Scatton, B.; Langer, S.Z.

    1988-01-01

    The mechanism of anorectic action of several serotonin uptake inhibitors was investigated by comparing their anorectic potencies with several biochemical and pharmacological properties and in reference to the novel compound SL 81.0385. The anorectic effect of the potent serotonin uptake inhibitor SL 81.0385 was potentiated by pretreatment with 5-hydroxytryptophan and blocked by the serotonin receptor antagonist metergoline. A good correlation was obtained between the ED/sub 50/ values of anorectic action and the ED/sub 50/ values of serotonin uptake inhibition in vivo (but not in vitro) for several specific serotonin uptake inhibitors. Most of the drugs tested displaced (/sup 3/H)-mazindol from its binding to the anorectic recognition site in the hypothalamus, except the pro-drug zimelidine which was inactive. Excluding zimelidine, a good correlation was obtained between the affinities of these drugs for (/sup 3/H)-mazindol binding and their anorectic action indicating that their anorectic activity may be associated with an effect mediated through this site. Taken together these results suggest that the anorectic action of serotonin uptake inhibitors is directly associated to their ability to inhibit serotonin uptake and thus increasing the synaptic levels of serotonin. The interactions of these drugs with the anorectic recognition site labelled with (/sup 3/H)-mazindol is discussed in connection with the serotonergic regulation of carbohydrate intake.

  9. Specific uptake of serotonin by murine lymphoid cells

    SciTech Connect

    Jackson, J.C.; Walker, R.F.; Brooks, W.H.; Roszman, T.L.

    1986-03-01

    Recently the authors confirmed and extended earlier observations that serotonin (5-hydroxytryptamine, 5HT) can influence immune function. Both 5HT and its precursor, 5-hydroxytryptophan inhibit the primary, in vivo antibody response to sheep red blood cells, in mice. Here, the authors report specific in vitro association of this amine with mouse splenocytes. Spleen cells from 6-8 week old CBA/J mice incorporated /sup 3/H-5HT(10/sup -8/ to 2.5 x 10/sup -6/M) in a saturable manner, at 37/sup 0/C. Specificity of uptake was indicated by competition with excess (10/sup -5/M) unlabelled 5HT and with 10/sup -5/M fluoxetine, a selective inhibitor of active 5HT reuptake in rat brain. The 5HT receptor antagonists, methysergide and cyproheptadine, also blocked 5HT uptake. Cell lysis and displacement studies revealed largely intracellular accumulation of /sup 3/H-5HT with little membrane association, in splenocytes. Hofstee analysis of uptake kinetics yielded an apparent Km of 0.82 +/- 0.22 x 10/sup -7/M and Vmax of 501 +/- 108 pM/3 x 10/sup 6/ cells/10 min. Spleen cells fractionated on Sephadex G10 showed virtually no specific 5HT uptake while peritoneal exudate cells from thioglycollate treated mice displayed 5HT uptake kinetics similar to those of splenocytes. The site of specific /sup 3/H-5HT incorporation within a population of spleen cells and the functional significance of this phenomenon to immunomodulation by 5HT remain to be elucidated.

  10. Characterization and regulation of (/sup 3/H)-serotonin uptake and release in rodent spinal

    SciTech Connect

    Stauderman, K.A.

    1986-01-01

    The uptake and release of (/sup 3/H)-serotonin were investigated in rat spinal cord synaptosomes. In the uptake experiments, sodium-dependent and sodium-independent (/sup 3/H)-serotonin accumulation processes were found. Sodium-dependent (/sup 3/H)-serotonin accumulation was: linear with sodium concentrations up to 180 mM; decreased by disruption of membrane integrity or ionic gradients; associated with purified synaptosomal fractions; and reduced after description of descending serotonergic neurons in the spinal cord. Of the uptake inhibitors tested, the most potent was fluoxetine (IC/sub 50/ 75 nM), followed by desipramine (IC/sub 50/ 430 nM) and nomifensine (IC/sub 50/ 950 nM). The sodium-independent (/sup 3/H)-serotonin accumulation process was insensitive to most treatments and probably represents nonspecific membrane binding. Thus, only sodium-dependent (/sup 3/H)-serotonin uptake represents the uptake process of serotonergic nerve terminals in rat spinal cord homogenates. In the release experiments, K/sup +/-induced release of previously accumulated (/sup 3/H)-serotonin was Ca/sup 2 +/-dependent, and originated from serotonergic synaptosomes. Exogenous serotonin and 5-methyoxy-N,N-dimethyltryptamine inhibited (/sup 3/H)-serotonin release in a concentration-dependent way. Of the antagonists tested, only methiothepin effectively blocked the effect of serotonin. These data support the existence of presynaptic serotonin autoreceptors on serotonergic nerve terminals in the rat spinal cord that act to inhibit a voltage and Ca/sup 2 +/-sensitive process linked to serotonin release. Alteration of spinai cord serotonergic function may therefore be possible by drugs acting on presynaptic serotonin autoreceptors in the spinal cord.

  11. Ethanol intake and sup 3 H-serotonin uptake I: A study in Fawn-Hooded rats

    SciTech Connect

    Daoust, M.; Compagnon, P.; Legrand, E.; Boucly, P. )

    1991-01-01

    Ethanol intake and synaptosomal {sup 3}H-serotonin uptake were studied in male Fawn-Hooded and Sprague-Dawley rats. Fawn-Hooded rats consumed more alcohol and more water than Sprague-Dawley rats. Plasma alcohol levels of Sprague-Dawley rats were not detectable but were about 5 mg/dl in Fawn-Hooded rats. Ethanol intake increased the Vmax of serotonin uptake in Fawn-Hooded rats in hippocampus and cortex, but not in thalamus. In Fawn-Hooded rats, serotonin uptake (Vmax) was higher than in Sprague-Dawley rats cortex. Ethanol intake reduced the Vmax of serotonin uptake in Fawn-Hooded rats in hippocampus and cortex. In cortex, the carrier affinity for serotonin was increased in alcoholized Fawn-Hooded rats. These results indicate that synaptosomal {sup 3}H-serotonin uptake is affected by ethanol intake. In Fawn-Hooded rats, high ethanol consumption is associated with high serotonin uptake. In rats presenting high serotonin uptake, alcoholization reduces {sup 3}H-serotonin internalization in synaptosomes, indicating a specific sensitivity to alcohol intake of serotonin uptake system.

  12. Uptake of (/sup 3/H)serotonin into plasma membrane vesicles from mouse cerebral cortex

    SciTech Connect

    O'Reilly, C.A.; Reith, M.E.A.

    1988-05-05

    Preparations of plasma membrane vesicles were used as a tool to study the properties of the serotonin transporter in the central nervous system. The vesicles were obtained after hypotonic shock of synaptosomes purified from mouse cerebral cortex. Uptake of (/sup 3/H)serotonin had a Na/sup +/-dependent and Na/sup +/-independent component. The Na/sup +/-dependent uptake was inhibited by classical blockers of serotonin uptake and had a K/sub m/ of 63-180 nM, and a V/sub max/ of 0.1-0.3 pmol mg/sup -1/ s/sup -1/ at 77 mM Na/sup +/. The uptake required the presence of external Na/sup +/ and internal K/sup +/. Replacement of Cl/sup -/ by other anions (NO/sub 2//sup -/, S/sub 2/O/sub 3//sup 2 -/) reduced uptake appreciably. Gramicidin prevented uptake. Although valinomycin increased uptake somewhat, the membrane potential per se could not drive uptake because no uptake was observed when a membrane potential was generated by the SCN/sup -/ ion in the absence of internal K/sup +/ and with equal (Na/sup +/) inside and outside. The increase of uptake as a function of (Na/sup +/) indicated a K/sub m/ for Na/sup +/ of 118 mM and a Hill number of 2.0, suggesting a requirement of two sodium ions for serotonin transport. The present results are accommodated very well by the model developed for porcine platelet serotonin transport except for the number of sodium ions that are required for transport.

  13. Serotonin uptake in cerebral cortex cultures: imipramine-like inhibition by N-isopropyl-p-iodoamphetamine

    SciTech Connect

    de Jong, B.M.; Feenstra, M.G.; Ruijter, J.M.; van Royen, E.A.

    1989-03-01

    In cultured rat neocortex, uptake of (/sup 3/H)serotonin (5-HT) and the SPECT radiopharmaceutical N-isopropyl-p-(/sup 123/I)iodoamphetamine (IMP) was demonstrated after 4 and 14 days in vitro. Both imipramine and cold IMP inhibited (/sup 3/H)5-HT uptake. Uptake of (/sup 123/I)IMP was inhibited by imipramine but not by cold 5-HT. The similarity in the behaviors of IMP and imipramine indicates that uptake of IMP might be related to a serotonergic uptake system in a way that is similar to that in which imipramine is related to such a system.

  14. Platelet uptake of serotonin (5-HT) during ethanol withdrawal in male alcoholics

    SciTech Connect

    Neiman, J.; Beving, H.; Malmgren, R.

    1987-06-15

    Changes in the kinetic variables of the platelet serotonin uptake, Km and Vmax, were studied in 7 male alcoholics, admitted for detoxification and in sex- and age-matched volunteers. On admission the alcoholics had lower Km values than reference subjects (p less than 0.05). During detoxification the Km values normalized. Vmax was normal throughout the study in spite of the changes in platelet count. The results of the study suggest that the affinity of serotonin to its uptake receptor is transiently increased after a period of heavy drinking.

  15. Autoradiographic localization of /sup 3/H-paroxetine-labeled serotonin uptake sites in rat brain

    SciTech Connect

    De Souza, E.B.; Kuyatt, B.L.

    1987-01-01

    Paroxetine is a potent and selective inhibitor of serotonin uptake into neurons. Serotonin uptake sites have been identified, localized, and quantified in rat brain by autoradiography with 3H-paroxetine; 3H-paroxetine binding in slide-mounted sections of rat forebrain was of high affinity (KD = 10 pM) and the inhibition affinity constant (Ki) values of various drugs in competing 3H-paroxetine binding significantly correlated with their reported potencies in inhibiting synaptosomal serotonin uptake. Serotonin uptake sites labeled by 3H-paroxetine were highly concentrated in the dorsal and median raphe nuclei, central gray, superficial layer of the superior colliculus, lateral septal nucleus, paraventricular nucleus of the thalamus, and the islands of Calleja. High concentrations of 3H-paroxetine binding sites were found in brainstem areas containing dopamine (substantia nigra and ventral tegmental area) and norepinephrine (locus coeruleus) cell bodies. Moderate concentrations of 3H-paroxetine binding sites were present in laminae I and IV of the frontal parietal cortex, primary olfactory cortex, olfactory tubercle, regions of the basal ganglia, septum, amygdala, thalamus, hypothalamus, hippocampus, and some brainstem areas including the interpeduncular, trigeminal, and parabrachial nuclei. Lower densities of 3H-paroxetine binding sites were found in other regions of the neocortex and very low to nonsignificant levels of binding were present in white matter tracts and in the cerebellum. Lesioning of serotonin neurons with 3,4-methylenedioxyamphetamine caused large decreases in 3H-paroxetine binding. The autoradiographic distribution of 3H-paroxetine binding sites in rat brain corresponds extremely well to the distribution of serotonin terminals and cell bodies as well as with the pharmacological sites of action of serotonin.

  16. Effects of 2-substituted-4-phenylquinolines on uptake of serotonin and norepinephrine by isolated brain synaptosomes

    SciTech Connect

    Alhaider, A.A.; Lein, E.J.; Ransom, R.W.; Bolger, M.B.

    1987-03-02

    In this present communication, the in vitro inhibition of the uptake of (/sup 3/H)-L-norepinephrine ((/sup 3/H) NE) and (/sup 3/H)-Serotonin ((/sup 3/H) 5-HT) by eleven synthesized 2-substituted-4-phenylquionlines were studied using rate brain synaptosomal preparations. Compounds with an open side chain were relatively weak inhibitors of the synaptosomal uptake of (/sup 3/H) NE and (/sup 3/H) 5HT. Compounds having a distance of three atoms between the terminal basic nitrogen of the side chain and the quinoline ring were better inhibitors of serotonin uptake than those compounds having a four-atom distance. The replacement of the side chain with a piperazine ring produced compounds which were more potent and selective inhibitors of the uptake of either (/sup 3/H) 5-HT or (/sup 3/H) NE. Further structure-activity relationships are also discussed. 13 references, 1 table.

  17. Ethanol intake and sup 3 H-serotonin uptake II: A study in alcoholic patients using platelets sup 3 H-paroxetine binding

    SciTech Connect

    Daoust, M.; Boucly, P. ); Ernouf, D. ); Breton, P. ); Lhuintre, J.P.

    1991-01-01

    The kinetic parameters of {sup 3}H-paroxetine binding and {sup 3}H-serotonin uptake were studied in platelets of alcoholic patients. There was no difference between alcoholic and non alcoholic subjects in {sup 3}H-paroxetine binding. When binding and {sup 3}H-serotonin uptake were studied, in the same plasma of the same subjects, the Vmax of serotonin uptake was increased in alcoholics. The data confirm the involvement of serotonin uptake system in alcohol dependance and suggest that serotonin uptake and paroxetine binding sites may be regulated independently in this pathology.

  18. Revisiting Serotonin Reuptake Inhibitors and the Therapeutic Potential of “Uptake-2” in Psychiatric Disorders

    PubMed Central

    2013-01-01

    Depression is among the most common psychiatric disorders, and in many patients a disorder for which available medications provide suboptimal or no symptom relief. The most commonly prescribed class of antidepressants, the selective serotonin reuptake inhibitors (SSRIs), are thought to act by increasing extracellular serotonin in brain by blocking its uptake via the high-affinity serotonin transporter (SERT). However, the relative lack of therapeutic efficacy of SSRIs has brought into question the utility of increasing extracellular serotonin for the treatment of depression. In this Viewpoint, we discuss why increasing extracellular serotonin should not be written off as a therapeutic strategy. We describe how “uptake-2” transporters may explain the relative lack of therapeutic efficacy of SSRIs, as well as why “uptake-2” transporters might be useful therapeutic targets. PMID:23336039

  19. The Design, Synthesis and Structure-Activity Relationship of Mixed Serotonin, Norepinephrine and Dopamine Uptake Inhibitors

    NASA Astrophysics Data System (ADS)

    Chen, Zhengming; Yang, Ji; Skolnick, Phil

    The evolution of antidepressants over the past four decades has involved the replacement of drugs with a multiplicity of effects (e.g., TCAs) by those with selective actions (i.e., SSRIs). This strategy was employed to reduce the adverse effects of TCAs, largely by eliminating interactions with certain neurotransmitters or receptors. Although these more selective compounds may be better tolerated by patients, selective drugs, specifically SSRIs, are not superior to older drugs in treating depressed patients as measured by response and remission rates. It may be an advantage to increase synaptic levels of both serotonin and norepinephrine, as in the case of dual uptake inhibitors like duloxetine and venlafaxine. An important recent development has been the emergence of the triple-uptake inhibitors (TUIs/SNDRIs), which inhibit the uptake of the three neurotransmitters most closely linked to depression: serotonin, norepinephrine, and dopamine. Preclinical studies and clinical trials indicate that a drug inhibiting the reuptake of all three of these neurotransmitters could produce more rapid onset of action and greater efficacy than traditional antidepressants. This review will detail the medicinal chemistry involved in the design, synthesis and discovery of mixed serotonin, norepinephrine and dopamine transporter uptake inhibitors.

  20. Imipramine treatment differentially affects platelet /sup 3/H-imipramine binding and serotonin uptake in depressed patients

    SciTech Connect

    Suranyi-Cadotte, B.E.; Quirion, R.; Nair, N.P.V.; Lafaille, F.; Schwartz, G.

    1985-02-25

    Uptake of serotonin and /sup 3/H-imipramine binding in platelets of depressed patients were investigated simultaneously with changes in clinical state. Both V/sub max/ for serotonin uptake and B/sub max/ for /sup 3/H-imipramine binding were significantly lower in unmedicated depressed patients with respect to normal subjects. Successful treatment with imipramine led to a significant increase in B/sub max/ for /sup 3/H-imipramine binding, without significant change in V/sub max/ for serotonin uptake. B/sub max/ values increased to the normal range following complete, rather than partial clinical improvement. These data indicate that successful antidepressant treatment may increase the density of /sup 3/H-imipramine binding sites on platelets by a process which is independent of the uptake of serotonin. 29 references, 1 table.

  1. Blockade of the stimulus properties of mescaline by a serotonin antagonist.

    PubMed

    Winter, J C

    1975-04-01

    It is known that the effects of mescaline (3, 4, 5-trimethoxyphenylethylamine), a hallucinogen, can function as a discriminative stimulus. The present investigation examined the ability of cinanserin, a serotinin antagonist, to block the stimulus properties of mescaline in the rat. After a reliable discrimination was established between the effects following the injection of mescaline (10 mg/kg) and those following administration of saline, subjects were pretreated with cinanserin HC1 (3 mg/kg) and then treated with mescaline. Such pretreatment was found to block discrimination, i.e., the response rate following the administration of mescaline plus cinanserin was appropriate for the saline condition. The present data suggest that antagonists of serotonin may be useful in furthering our understanding of phenethylamine hallucinogens.

  2. 5-HT1B Autoreceptors limit the effects of selective serotonin re-uptake inhibitors in mouse hippocampus and frontal cortex.

    PubMed

    Malagié, I; Trillat, A C; Bourin, M; Jacquot, C; Hen, R; Gardier, A M

    2001-02-01

    We used knockout mice and receptor antagonist strategies to investigate the contribution of the serotonin (5-hydroxytryptamine, 5-HT) 1B receptor subtype in mediating the effects of selective serotonin re-uptake inhibitors (SSRIs). Using in vivo intracerebral microdialysis in awake mice, we show that a single systemic administration of paroxetine (1 or 5 mg/kg, i.p.) increased extracellular serotonin levels [5-HT]ext in the ventral hippocampus and frontal cortex of wild-type and mutant mice. However, in the ventral hippocampus, paroxetine at the two doses studied induced a larger increase in [5-HT]ext in knockout than in wild-type mice. In the frontal cortex, the effect of paroxetine was larger in mutants than in wild-type mice at the 1 mg/kg, but not at 5 mg/kg. In addition, either the absence of the 5-HT1B receptor or its blockade with the mixed 5-HT1B/1D receptor antagonist, GR 127935, potentiated the effect of a single administration of paroxetine on extracellular 5-HT levels more in the ventral hippocampus than in the frontal cortex. These data suggest that 5-HT1B autoreceptors limit the effects of SSRIs on dialysate 5-HT levels at serotonergic nerve terminals.

  3. Blockade of corticosterone synthesis reduces serotonin turnover in the dorsal hippocampus of the rat as measured by microdialysis.

    PubMed

    Korte-Bouws, G A; Korte, S M; De Kloet, E R; Bohus, B

    1996-11-01

    The influence of plasma corticosterone concentration on serotonin (5-HT) turnover in the dorsal hippocampus was investigated. The experiments were performed in freely moving male Wistar rats in their home cage. Blood samples were taken via a permanent jugular vein catheter to determine plasma corticosterone levels. Extracellular levels of 5-HT and its metabolite 5-hydroxy-indole acetic acid (5-HIAA) were measured using in vivo microdialysis. The rats received an intravenous (i.v.) infusion of the steroid synthesis-inhibitor metyrapone (150 mg/kg/ml) in order to manipulate circulating corticosterone levels. Three hours later, the monoamine oxidase inhibitor pargyline (15 mg/kg/2 ml i.v.) was administered to produce an accumulation of extracellular 5-HT. Pargyline administration led to a four fold increase in 5-HT levels, while reducing 5-HIAA by 45%. Metyrapone pretreatment blocked the pargyline-induced rise in plasma corticosterone to baseline levels and diminished the pargyline-induced increase in 5-HT, without affecting 5-HIAA levels. Thus, the data suggest that a decrease in availability of corticosterone for its receptors by metyrapone diminished the 5-HT synthesis rate. Since plasma corticosterone levels during this blockade are still low, it is assumed that brain glucocorticoid receptor occupation is reduced, while mineralocorticoid receptors are still substantially occupied. Therefore the present results support the hypothesis that corticosterone through glucocorticoid receptor activation enhances 5-HT synthesis rate and release in the dorsal hippocampus. PMID:8933365

  4. Impaired Brain Dopamine and Serotonin Release and Uptake in Wistar Rats Following Treatment with Carboplatin.

    PubMed

    Kaplan, Sam V; Limbocker, Ryan A; Gehringer, Rachel C; Divis, Jenny L; Osterhaus, Gregory L; Newby, Maxwell D; Sofis, Michael J; Jarmolowicz, David P; Newman, Brooke D; Mathews, Tiffany A; Johnson, Michael A

    2016-06-15

    Chemotherapy-induced cognitive impairment, known also as "chemobrain", is a medical complication of cancer treatment that is characterized by a general decline in cognition affecting visual and verbal memory, attention, complex problem solving skills, and motor function. It is estimated that one-third of patients who undergo chemotherapy treatment will experience cognitive impairment. Alterations in the release and uptake of dopamine and serotonin, central nervous system neurotransmitters that play important roles in cognition, could potentially contribute to impaired intellectual performance in those impacted by chemobrain. To investigate how chemotherapy treatment affects these systems, fast-scan cyclic voltammetry (FSCV) at carbon-fiber microelectrodes was used to measure dopamine and serotonin release and uptake in coronal brain slices containing the striatum and dorsal raphe nucleus, respectively. Measurements were taken from rats treated weekly with selected doses of carboplatin and from control rats treated with saline. Modeling the stimulated dopamine release plots revealed an impairment of dopamine release per stimulus pulse (80% of saline control at 5 mg/kg and 58% at 20 mg/kg) after 4 weeks of carboplatin treatment. Moreover, Vmax, the maximum uptake rate of dopamine, was also decreased (55% of saline control at 5 mg/kg and 57% at 20 mg/kg). Nevertheless, overall dopamine content, measured in striatal brain lysates by high performance liquid chromatography, and reserve pool dopamine, measured by FSCV after pharmacological manipulation, did not significantly change, suggesting that chemotherapy treatment selectively impairs the dopamine release and uptake processes. Similarly, serotonin release upon electrical stimulation was impaired (45% of saline control at 20 mg/kg). Measurements of spatial learning discrimination were taken throughout the treatment period and carboplatin was found to alter cognition. These studies support the need for additional

  5. Impaired Brain Dopamine and Serotonin Release and Uptake in Wistar Rats Following Treatment with Carboplatin

    PubMed Central

    2016-01-01

    Chemotherapy-induced cognitive impairment, known also as “chemobrain”, is a medical complication of cancer treatment that is characterized by a general decline in cognition affecting visual and verbal memory, attention, complex problem solving skills, and motor function. It is estimated that one-third of patients who undergo chemotherapy treatment will experience cognitive impairment. Alterations in the release and uptake of dopamine and serotonin, central nervous system neurotransmitters that play important roles in cognition, could potentially contribute to impaired intellectual performance in those impacted by chemobrain. To investigate how chemotherapy treatment affects these systems, fast-scan cyclic voltammetry (FSCV) at carbon-fiber microelectrodes was used to measure dopamine and serotonin release and uptake in coronal brain slices containing the striatum and dorsal raphe nucleus, respectively. Measurements were taken from rats treated weekly with selected doses of carboplatin and from control rats treated with saline. Modeling the stimulated dopamine release plots revealed an impairment of dopamine release per stimulus pulse (80% of saline control at 5 mg/kg and 58% at 20 mg/kg) after 4 weeks of carboplatin treatment. Moreover, Vmax, the maximum uptake rate of dopamine, was also decreased (55% of saline control at 5 mg/kg and 57% at 20 mg/kg). Nevertheless, overall dopamine content, measured in striatal brain lysates by high performance liquid chromatography, and reserve pool dopamine, measured by FSCV after pharmacological manipulation, did not significantly change, suggesting that chemotherapy treatment selectively impairs the dopamine release and uptake processes. Similarly, serotonin release upon electrical stimulation was impaired (45% of saline control at 20 mg/kg). Measurements of spatial learning discrimination were taken throughout the treatment period and carboplatin was found to alter cognition. These studies support the need for additional

  6. Different components of /sup 3/H-imipramine binding in rat brain membranes: relation to serotonin uptake sites

    SciTech Connect

    Gobbi, M.; Taddei, C.; Mennini, T.

    1988-01-01

    In the present paper, the authors confirm and extend previous studies showing heterogeneous /sup 3/H-imipramine (/sup 3/H-IMI) binding sites. Inhibition curves of various drugs (serotonin, imipramine, desmethyl-imipramine, d-fenfluramine, d-norfenfluramine and indalpine, a potent serotonin uptake inhibitor) obtained using 2 nM /sup 3/H-IMI and in presence of 120 mM NaCl, confirmed the presence of at least three /sup 3/H-IMI binding sites: two of these were serotonin-insensitive while the third one was selectively inhibited by serotonin and indalpine with nanomolar affinities. Moreover this last component was found to be selectively modulated by chronic imipramine treatment thus suggesting a close relation to serontonin uptake mechanism. These data indicate that the use of a more selective inhibitors of the serotonin-sensitive component (like indalpine or serotonin itself) to define non specific /sup 3/H-IMI, may be of help in understanding its relation with serotonin uptake system. 22 references, 2 figures, 2 tables.

  7. Central serotonin(2B) receptor blockade inhibits cocaine-induced hyperlocomotion independently of changes of subcortical dopamine outflow.

    PubMed

    Devroye, Céline; Cathala, Adeline; Di Marco, Barbara; Caraci, Filippo; Drago, Filippo; Piazza, Pier Vincenzo; Spampinato, Umberto

    2015-10-01

    The central serotonin2B receptor (5-HT2BR) is currently considered as an interesting pharmacological target for improved treatment of drug addiction. In the present study, we assessed the effect of two selective 5-HT2BR antagonists, RS 127445 and LY 266097, on cocaine-induced hyperlocomotion and dopamine (DA) outflow in the nucleus accumbens (NAc) and the dorsal striatum of freely moving rats. The peripheral administration of RS 127445 (0.16 mg/kg, i.p.) or LY 266097 (0.63 mg/kg, i.p.) significantly reduced basal DA outflow in the NAc shell, but had no effect on cocaine (10 mg/kg, i.p.)-induced DA outflow in this brain region. Also, RS 127445 failed to modify both basal and cocaine-induced DA outflow in the NAc core and the dorsal striatum. Conversely, both 5-HT2BR antagonists reduced cocaine-induced hyperlocomotion. Furthermore, RS 127445 as well as the DA-R antagonist haloperidol (0.1 mg/kg, i.p.) reduced significantly the late-onset hyperlocomotion induced by the DA-R agonist quinpirole (0.5 mg/kg, s.c.). Altogether, these results demonstrate that 5-HT2BR blockade inhibits cocaine-induced hyperlocomotion independently of changes of subcortical DA outflow. This interaction takes place downstream to DA neurons and could involve an action at the level of dorsostriatal and/or NAc DA transmission, in keeping with the importance of these brain regions in the behavioural responses of cocaine. Overall, this study affords additional knowledge into the regulatory control exerted by the 5-HT2BR on ascending DA pathways, and provides additional support to the proposed role of 5-HT2BRs as a new pharmacological target in drug addiction. PMID:26116760

  8. Central serotonin(2B) receptor blockade inhibits cocaine-induced hyperlocomotion independently of changes of subcortical dopamine outflow.

    PubMed

    Devroye, Céline; Cathala, Adeline; Di Marco, Barbara; Caraci, Filippo; Drago, Filippo; Piazza, Pier Vincenzo; Spampinato, Umberto

    2015-10-01

    The central serotonin2B receptor (5-HT2BR) is currently considered as an interesting pharmacological target for improved treatment of drug addiction. In the present study, we assessed the effect of two selective 5-HT2BR antagonists, RS 127445 and LY 266097, on cocaine-induced hyperlocomotion and dopamine (DA) outflow in the nucleus accumbens (NAc) and the dorsal striatum of freely moving rats. The peripheral administration of RS 127445 (0.16 mg/kg, i.p.) or LY 266097 (0.63 mg/kg, i.p.) significantly reduced basal DA outflow in the NAc shell, but had no effect on cocaine (10 mg/kg, i.p.)-induced DA outflow in this brain region. Also, RS 127445 failed to modify both basal and cocaine-induced DA outflow in the NAc core and the dorsal striatum. Conversely, both 5-HT2BR antagonists reduced cocaine-induced hyperlocomotion. Furthermore, RS 127445 as well as the DA-R antagonist haloperidol (0.1 mg/kg, i.p.) reduced significantly the late-onset hyperlocomotion induced by the DA-R agonist quinpirole (0.5 mg/kg, s.c.). Altogether, these results demonstrate that 5-HT2BR blockade inhibits cocaine-induced hyperlocomotion independently of changes of subcortical DA outflow. This interaction takes place downstream to DA neurons and could involve an action at the level of dorsostriatal and/or NAc DA transmission, in keeping with the importance of these brain regions in the behavioural responses of cocaine. Overall, this study affords additional knowledge into the regulatory control exerted by the 5-HT2BR on ascending DA pathways, and provides additional support to the proposed role of 5-HT2BRs as a new pharmacological target in drug addiction.

  9. Isolation from bovine brain of substances inhibiting specific binding of imipramine and serotonin uptake

    SciTech Connect

    Mukhin, A.G.; Kladnitskii, A.V.; Kovaleva, E.S.; Kudryakova, T.B.

    1986-01-01

    The authors search for endogenous ligands of the ''imipramine receptor'' in brain tissue. Binding of tritium-imipramine with the fraction of unpruified bovine brain synaptic membranes was carried out by the method of Raisman et'al. Uptake of tritium-serotonin by synaptosomes of rat cerebral cortex was estimated. The results do not give a final anser to the question of the existence of an endogenous ligand of the ''imipramine receptor'' but they can serve as the basis for research aimed at purifying the active fractions already obtained and identifying the compounds containined in them.

  10. Selective serotonin re-uptake inhibitors (SSRIs) in the aquatic environment: an ecopharmacovigilance approach.

    PubMed

    Silva, Liliana J G; Lino, Celeste M; Meisel, Leonor M; Pena, Angelina

    2012-10-15

    Selective serotonin re-uptake inhibitors (SSRIs) antidepressants are among the most prescribed pharmaceutical active substances throughout the world. The occurrence of these widely used compounds in different environmental compartments (wastewaters, surface, ground and drinking waters, and sediments), justify the growing concern about these emerging environmental pollutants. Viewing an ecopharmacovigilance approach, a comprehensive discussion of the state of the art regarding different contamination sources, fate, degradation and occurrence is presented. Information on the current distribution levels and fate in different environmental matrices continues to be sparse and measures are imperative to improve awareness and encourage precautionary actions to minimize SSRIs' environmental impact. PMID:22940043

  11. Reviewing the serotonin reuptake inhibitors (SSRIs) footprint in the aquatic biota: uptake, bioaccumulation and ecotoxicology.

    PubMed

    Silva, Liliana J G; Pereira, André M P T; Meisel, Leonor M; Lino, Celeste M; Pena, Angelina

    2015-02-01

    Selective serotonin re-uptake inhibitors (SSRIs) antidepressants are amongst the most prescribed pharmaceutical active substances throughout the world. Their presence, already described in different environmental compartments such as wastewaters, surface, ground and drinking waters, and sediments, and their remarkable effects on non-target organisms justify the growing concern about these emerging environmental pollutants. A comprehensive review of the literature data with focus on their footprint in the aquatic biota, namely their uptake, bioaccumulation and both acute and chronic ecotoxicology is presented. Long-term multigenerational exposure studies, at environmental relevant concentrations and in mixtures of related compounds, such as oestrogenic endocrine disruptors, continue to be sparse and are imperative to better know their environmental impact.

  12. Modeling serotonin uptake in the lung shows endothelial transporters dominate over cleft permeation

    PubMed Central

    Bassingthwaighte, James B.

    2013-01-01

    A four-region (capillary plasma, endothelium, interstitial fluid, cell) multipath model was configured to describe the kinetics of blood-tissue exchange for small solutes in the lung, accounting for regional flow heterogeneity, permeation of cell membranes and through interendothelial clefts, and intracellular reactions. Serotonin uptake data from the Multiple indicator dilution “bolus sweep” experiments of Rickaby and coworkers (Rickaby DA, Linehan JH, Bronikowski TA, Dawson CA. J Appl Physiol 51: 405–414, 1981; Rickaby DA, Dawson CA, and Linehan JH. J Appl Physiol 56: 1170–1177, 1984) and Malcorps et al. (Malcorps CM, Dawson CA, Linehan JH, Bronikowski TA, Rickaby DA, Herman AG, Will JA. J Appl Physiol 57: 720–730, 1984) were analyzed to distinguish facilitated transport into the endothelial cells (EC) and the inhibition of tracer transport by nontracer serotonin in the bolus of injectate from the free uninhibited permeation through the clefts into the interstitial fluid space. The permeability-surface area products (PS) for serotonin via the inter-EC clefts were ∼0.3 ml·g−1·min−1, low compared with the transporter-mediated maximum PS of 13 ml·g−1·min−1 (with Km = ∼0.3 μM and Vmax = ∼4 nmol·g−1·min−1). The estimates of serotonin PS values for EC transporters from their multiple data sets were similar and were influenced only modestly by accounting for the cleft permeability in parallel. The cleft PS estimates in these Ringer-perfused lungs are less than half of those for anesthetized dogs (Yipintsoi T. Circ Res 39: 523–531, 1976) with normal hematocrits, but are compatible with passive noncarrier-mediated transport observed later in the same laboratory (Dawson CA, Linehan JH, Rickaby DA, Bronikowski TA. Ann Biomed Eng 15: 217–227, 1987; Peeters FAM, Bronikowski TA, Dawson CA, Linehan JH, Bult H, Herman AG. J Appl Physiol 66: 2328–2337, 1989) The identification and quantitation of the cleft pathway conductance from these

  13. Specific in vitro uptake of serotonin by cells in the anterior pituitary of the rat

    SciTech Connect

    Johns, M.A.; Azmitia, E.C.; Krieger, D.T.

    1982-03-01

    In vivo studies have suggested that serotonin (5HT) influences anterior pituitary function at the hypothalamic level. The present in vitro study investigated the possibility that 5HT may act directly on the anterior pituitary. The high affinity uptake of (3H)5HT into adult rat anterior pituitary tissue was examined in two types of experiments. 1) To test the specificity and saturability of uptake of 5HT in the anterior pituitary, pituitary tissue was incubated (37 C) with (3H)5HT (10(-8)-10(-6) M) in the presence and absence of excess (10(-5) M) unlabeled 5HT, norepinephrine, fluoxetine (FLUOX), metergoline, or cyproheptadine. A Hofstee analysis of the specific uptake of (3H)5HT gave an apparent Km value of 4.23 x 10(-7) M and a Vmax of 1576 pmol/g/10 min (3H)5HT. The total uptake of (3H)5HT was not altered by norepinephrine or metergoline, but was significantly reduced (P less than 0.01-0.001) by FLUOX and cyproheptadine. Uptake was shown to be temperature and sodium dependent and not directly dependent on energy derived from glycolysis or aerobic metabolism. 2) To study the site of uptake of 5 HT in the anterior pituitary, in concomitant radioautographic experiments, tissue was incubated with (3H)5HT with and without excess 5HT or FLUOX. Three patterns of silver grain distribution were observed: 1) nonrandom concentrations over select anterior pituitary cells near blood vessels, 2) heavy aggregates of silver grains usually associated with blood vessels, and 3) a seemingly random dispersal of grains over pituitary tissue. Tissue incubated with (3H)5HT alone contained 10% heavily labeled cells, 32% moderately labeled cells, and 58% weakly labeled cells. In contrast, no heavily labeled cells were seen when tissue was incubated with either excess 5HT or FLUOX in addition to (3H)5HT. Our findings of saturable and specific high affinity uptake of (3H)5HT into a subgroup of anterior pituitary cells suggest a direct pituitary action of 5HT.

  14. Effects of calcium antagonists on isolated bovine cerebral arteries: inhibition of constriction and calcium-45 uptake induced by potassium or serotonin

    SciTech Connect

    Wendling, W.W.; Harakal, C.

    1987-05-01

    The purpose of this study was to determine the mechanisms by which organic calcium channel blockers inhibit cerebral vasoconstriction. Isolated bovine middle cerebral arteries were cut into rings to measure contractility or into strips to measure radioactive calcium (/sup 45/Ca) influx and efflux. Calcium channel blockers (10(-5) M verapamil or 3.3 X 10(-7) M nifedipine) and calcium-deficient solutions all produced near-maximal inhibition of both potassium- and serotonin-induced constriction. In calcium-deficient solutions containing potassium or serotonin, verapamil and nifedipine each blocked subsequent calcium-induced constriction in a competitive manner. Potassium and serotonin significantly increased /sup 45/Ca uptake into cerebral artery strips during 5 minutes of /sup 45/Ca loading; for potassium /sup 45/Ca uptake increased from 62 to 188 nmol/g, and for serotonin from 65 to 102 nmol/g. Verapamil or nifedipine had no effect on basal /sup 45/Ca uptake but significantly blocked the increase in /sup 45/Ca uptake induced by potassium or serotonin. Potassium, and to a lesser extent serotonin, each induced a brief increase in the rate of /sup 45/Ca efflux into calcium-deficient solutions. Verapamil or nifedipine had no effect on basal or potassium-stimulated /sup 45/Ca efflux. The results demonstrate that verapamil and nifedipine block /sup 45/Ca uptake through both potential-operated (potassium) and receptor-operated (serotonin) channels in bovine middle cerebral arteries.

  15. Neuroprotective treatment strategies for poststroke mood disorders: A minireview on atypical neuroleptic drugs and selective serotonin re-uptake inhibitors.

    PubMed

    Yulug, Burak

    2009-09-28

    In our minireview we summarize the neuroprotective effect of atypical antipsychotic and selective serotonin re-uptake inhibitors after cerebral ischemia. In regard of increasing rate of poststroke mood disorders and current evidences indicating to an increased rate of cerebrovascular accidents after neuroleptic usage by the elderly population we also reviewed the clinical relevance of the neuroprotective and mood stabilizing effect of atypical antipsychotic agents in the light of basic pathophysiology of stroke.

  16. Serotonin uptake rates in platelets from angiotensin II-induced hypertensive mice.

    PubMed

    Singh, Preeti; Fletcher, Terry W; Li, Yicong; Rusch, Nancy J; Kilic, Fusun

    2013-03-01

    Angiotensin II (Ang II) is a critical component of the renin-angiotensin system that contributes to hypertension. Although platelets in blood from hypertensive subjects have an abnormal biological profile, it is unclear if circulating Ang II influences platelet aggregation or thrombus formation. One of the abnormalities presented to the platelets during hypertension is an elevated plasma concentration of serotonin (5-HT) caused by reduced 5-HT uptake secondary to loss of the 5-HT transporter (SERT) on the platelet plasma membrane. In the current study, we evaluated in vivo platelet function after 7 days of subcutaneous Ang II infusion to establish hypertension in mice and additionally assessed the biology of isolated platelets exposed to Ang II in vitro. The administration of Ang II elevated systolic blood pressure, but markers of platelet activation including P-selectin and (PE)Jon/A staining were not changed. However, the aggregation response to collagen was reduced in isolated platelets from Ang II-infused mice, which also showed reduced 5-HT uptake by SERT. In vitro exposure of isolated platelets to Ang II also resulted in a loss of surface SERT associated with a reduced aggregation response to collagen. These abnormalities were reversed by increasing concentrations of the Ang II receptor antagonist, valsartan. Interestingly, SERT KO mice failed to fully develop hypertension in response to Ang II infusion and isolated platelets from these animals were insensitive to the anti-aggregatory influence of Ang II. Thus, Ang II blunts the aggregation responses of platelets and the mechanism underlying this action may involve a loss of SERT on the platelet plasma membrane. The latter event depletes intracellular 5-HT in platelets, an event that is associated with reduced aggregation. The widespread use of antihypertensive drugs that target the renin-angiotensin system suggest the potential clinical utility of our findings and emphasize the importance of understanding

  17. Serotonin uptake rates in platelets from angiotensin II-induced hypertensive mice

    PubMed Central

    Singh, Preeti; Fletcher, Terry W.; Li, Yicong; Rusch, Nancy J.; Kilic, Fusun

    2013-01-01

    Angiotensin II (Ang II) is a critical component of the renin-angiotensin system that contributes to hypertension. Although platelets in blood from hypertensive subjects have an abnormal biological profile, it is unclear if circulating Ang II influences platelet aggregation or thrombus formation. One of the abnormalities presented to the platelets during hypertension is an elevated plasma concentration of serotonin (5-HT) caused by reduced 5-HT uptake secondary to loss of the 5-HT transporter (SERT) on the platelet plasma membrane. In the current study, we evaluated in vivo platelet function after 7 days of subcutaneous Ang II infusion to establish hypertension in mice and additionally assessed the biology of isolated platelets exposed to Ang II in vitro. The administration of Ang II elevated systolic blood pressure, but markers of platelet activation including P-selectin and PEJon/A staining were not changed. However, the aggregation response to collagen was reduced in isolated platelets from Ang II-infused mice, which also showed reduced 5-HT uptake by SERT. In vitro exposure of isolated platelets to Ang II also resulted in a loss of surface SERT associated with a reduced aggregation response to collagen. These abnormalities were reversed by increasing concentrations of the Ang II receptor antagonist, valsartan. Interestingly, SERT KO mice failed to fully develop hypertension in response to Ang II infusion and isolated platelets from these animals were insensitive to the anti-aggregatory influence of Ang II. Thus, Ang II blunts the aggregation responses of platelets and the mechanism underlying this action may involve a loss of SERT on the platelet plasma membrane. The latter event depletes intracellular 5-HT in platelets, an event that is associated with reduced aggregation. The widespread use of antihypertensive drugs that target the renin-angiotensin system suggest the potential clinical utility of our findings and emphasize the importance of understanding the

  18. Selective labeling of serotonin uptake sites in rat brain by (/sup 3/H)citalopram contrasted to labeling of multiple sites by (/sup 3/H)imipramine

    SciTech Connect

    D'Amato, R.J.; Largent, B.L.; Snowman, A.M.; Snyder, S.H.

    1987-07-01

    Citalopram is a potent and selective inhibitor of neuronal serotonin uptake. In rat brain membranes (/sup 3/H)citalopram demonstrates saturable and reversible binding with a KD of 0.8 nM and a maximal number of binding sites (Bmax) of 570 fmol/mg of protein. The drug specificity for (/sup 3/H)citalopram binding and synaptosomal serotonin uptake are closely correlated. Inhibition of (/sup 3/H)citalopram binding by both serotonin and imipramine is consistent with a competitive interaction in both equilibrium and kinetic analyses. The autoradiographic pattern of (/sup 3/H)citalopram binding sites closely resembles the distribution of serotonin. By contrast, detailed equilibrium-saturation analysis of (/sup 3/H)imipramine binding reveals two binding components, i.e., high affinity (KD = 9 nM, Bmax = 420 fmol/mg of protein) and low affinity (KD = 553 nM, Bmax = 8560 fmol/mg of protein) sites. Specific (/sup 3/H)imipramine binding, defined as the binding inhibited by 100 microM desipramine, is displaced only partially by serotonin. Various studies reveal that the serotonin-sensitive portion of binding corresponds to the high affinity sites of (/sup 3/H)imipramine binding whereas the serotonin-insensitive binding corresponds to the low affinity sites. Lesioning of serotonin neurons with p-chloroamphetamine causes a large decrease in (/sup 3/H)citalopram and serotonin-sensitive (/sup 3/H)imipramine binding with only a small effect on serotonin-insensitive (/sup 3/H)imipramine binding. The dissociation rate of (/sup 3/H)imipramine or (/sup 3/H)citalopram is not altered by citalopram, imipramine or serotonin up to concentrations of 10 microM. The regional distribution of serotonin sensitive (/sup 3/H)imipramine high affinity binding sites closely resembles that of (/sup 3/H)citalopram binding.

  19. Lifelong disturbance of serotonin transporter functioning results in fear learning deficits: Reversal by blockade of CRF1 receptors.

    PubMed

    Bijlsma, Elisabeth Y; Hendriksen, Hendrikus; Baas, Johanna M P; Millan, Mark J; Groenink, Lucianne

    2015-10-01

    The inability to associate aversive events with relevant cues (i.e. fear learning) may lead to maladaptive anxiety. To further study the role of the serotonin transporter (SERT) in fear learning, classical fear conditioning was studied in SERT knockout rats (SERT(-/-)) using fear potentiation of the startle reflex. Next, fear acquisition and concomitant development of contextual conditioned fear were monitored during training. To differentiate between developmental and direct effects of reduced SERT functioning, effects of acute and chronic SSRI treatment were studied in adult rats. Considering the known interactions between serotonin and corticotropin-releasing factor (CRF), we studied the effect of the CRFR1 antagonist CP154,526 on behavioral changes observed and determined CRF1 receptor levels in SERT(-/-) rats. SERT(-/-) showed blunted fear potentiation and enhanced contextual fear, which resulted from a deficit in fear acquisition. Paroxetine treatment did not affect acquisition or expression of fear-potentiated startle, suggesting that disturbed fear learning in SERT(-/-) results from developmental changes and not from reduced SERT functioning. Although CRF1 receptor levels did not differ significantly between genotypes, CP154,526 treatment normalized both cue- and contextual fear in SERT(-/-) during acquisition, but not expression of fear-potentiated startle. The disrupted fear acquisition and concomitant increase in contextual conditioned fear-potentiated startle fear in SERT(-/-) resembles the associative learning deficit seen in patients with panic disorder and suggests that normal SERT functioning is crucial for the development of an adequate fear neuro-circuitry. Moreover, the normalization of fear acquisition by CP154,526 suggests a role for central CRF signaling in the generalization of fear.

  20. Decreased Incentive Motivation Following Knockout or Acute Blockade of the Serotonin Transporter: Role of the 5-HT2C Receptor.

    PubMed

    Browne, Caleb J; Fletcher, Paul J

    2016-09-01

    Acute pharmacological elevation of serotonin (5-hydroxytryptamine; 5-HT) activity decreases operant responding for primary reinforcers, suggesting that 5-HT reduces incentive motivation. The mechanism by which 5-HT alters incentive motivation is unknown, but parallel evidence that 5-HT2C receptor agonists also reduce responding for primary reinforcers implicates this receptor as a potential candidate. These experiments examined whether chronic and acute disruptions of serotonin transporter (SERT) activity altered incentive motivation, and whether the 5-HT2C receptor mediated the effects of elevated 5-HT on behavior. To assess incentive motivation, we measured responding for three different reinforcers: a primary reinforcer (saccharin), a conditioned reinforcer (CRf), and an unconditioned sensory reinforcer (USRf). In the chronic condition, responding was compared between SERT knockout (SERT-KO) mice and their wild-type littermates. In the acute condition, responding was examined in wild-type mice following treatment with 10 or 20 mg/kg citalopram, or its vehicle. The ability of the selective 5-HT2C antagonist SB 242084 to prevent the effects of SERT-KO and citalopram on responding was subsequently examined. Both SERT-KO and citalopram reduced responding for saccharin, a CRf, and a USRf. Treatment with SB 242084 enhanced responding for a CRf and a USRf in SERT-KO mice and blocked the effects of citalopram on CRf and USRf responding. However, SB 242084 was unable to prevent the effects of SERT-KO or citalopram on responding for saccharin. These results support a powerful inhibitory function for 5-HT in the control of incentive motivation, and indicate that the 5-HT2C receptor mediates these effects of 5-HT in a reinforcer-dependent manner. PMID:27125304

  1. Selective serotonin re-uptake inhibitors potentiate gene blunting induced by repeated methylphenidate treatment: Zif268 versus Homer1a.

    PubMed

    Van Waes, Vincent; Vandrevala, Malcolm; Beverley, Joel; Steiner, Heinz

    2014-11-01

    There is a growing use of psychostimulants, such as methylphenidate (Ritalin; dopamine re-uptake inhibitor), for medical treatments and as cognitive enhancers in the healthy. Methylphenidate is known to produce some addiction-related gene regulation. Recent findings in animal models show that selective serotonin re-uptake inhibitors (SSRIs), including fluoxetine, can potentiate acute induction of gene expression by methylphenidate, thus indicating an acute facilitatory role for serotonin in dopamine-induced gene regulation. We investigated whether repeated exposure to fluoxetine, in conjunction with methylphenidate, in adolescent rats facilitated a gene regulation effect well established for repeated exposure to illicit psychostimulants such as cocaine-blunting (repression) of gene inducibility. We measured, by in situ hybridization histochemistry, the effects of a 5-day repeated treatment with methylphenidate (5 mg/kg), fluoxetine (5 mg/kg) or a combination on the inducibility (by cocaine) of neuroplasticity-related genes (Zif268, Homer1a) in the striatum. Repeated methylphenidate treatment alone produced minimal gene blunting, while fluoxetine alone had no effect. In contrast, fluoxetine added to methylphenidate robustly potentiated methylphenidate-induced blunting for both genes. This potentiation was widespread throughout the striatum, but was most robust in the lateral, sensorimotor striatum, thus mimicking cocaine effects. For illicit psychostimulants, blunting of gene expression is considered part of the molecular basis of addiction. Our results thus suggest that SSRIs, such as fluoxetine, may increase the addiction liability of methylphenidate.

  2. Activation and blockade of serotonin7 receptors in the prelimbic cortex regulate depressive-like behaviors in a 6-hydroxydopamine-induced Parkinson's disease rat model.

    PubMed

    Zhang, Q J; Du, C X; Tan, H H; Zhang, L; Li, L B; Zhang, J; Niu, X L; Liu, J

    2015-12-17

    The role of serotonin7 (5-HT7) receptors in the regulation of depression is poorly understood, particularly in Parkinson's disease-associated depression. Here we examined whether 5-HT7 receptors in the prelimbic (PrL) sub-region of the ventral medial prefrontal cortex (mPFC) involve in the regulation of depressive-like behaviors in sham-operated rats and rats with unilateral 6-hydroxydopamine lesions of the medial forebrain bundle. The lesion induced depressive-like responses as measured by the sucrose preference and forced swim tests when compared to sham-operated rats. Intra-PrL injection of 5-HT7 receptor agonist AS19 (0.5, 1 and 2 μg/rat) increased sucrose consumption, and decreased immobility time in sham-operated and the lesioned rats, indicating the induction of antidepressant-like effects. Further, intra-PrL injection of 5-HT7 receptor antagonist SB269970 (1.5, 3 and 6 μg/rat) decreased sucrose consumption, and increased immobility time, indicating the induction of depressive-like responses. However, the doses producing these effects in the lesioned rats were higher than those in sham-operated rats. Neurochemical results showed that intra-PrL injection of AS19 (2 μg/rat) increased dopamine, 5-hydroxytryptamine (5-HT) and noradrenaline (NA) levels in the mPFC, habenula and ventral hippocampus (vHip) in sham-operated and the lesioned rats; whereas SB269970 (6 μg/rat) decreased 5-HT levels in the habenula and vHip, and the levels of NA in the mPFC, habenula and vHip in the two groups of rats. The results suggest that 5-HT7 receptors in the PrL play an important role in the regulation of these behaviors, which attribute to changes in monoamine levels in the limbic and limbic-related brain regions after activation and blockade of 5-HT7 receptors.

  3. Binding of [(3)H]lysergic acid diethylamide to serotonin 5-HT(2A) receptors and of [(3)H]paroxetine to serotonin uptake sites in platelets from healthy children, adolescents and adults.

    PubMed

    Sigurdh, J; Spigset, O; Allard, P; Mjörndal, T; Hägglöf, B

    1999-11-01

    Possible age effects on binding of [(3)H]lysergic acid diethylamide ([(3)H]LSD) to serotonin 5-HT(2A) receptors and of [(3)H]paroxetine to serotonin uptake sites were studied in platelets from healthy children (11-12 years of age), adolescents (16-17 years of age) and adults. Significant overall age effects were found both for the number of binding sites (B(max)) for [(3)H]LSD binding (p < 0.001), the affinity constant (K(d)) for [(3)H]LSD binding (p < 0.001), B(max) for [(3)H]paroxetine binding (p < 0.001) and K(d) for [(3)H] paroxetine binding (p = 0.006). In general, there was a decrease in B(max) with increasing age, which predominantly occurred between the ages 11-12 years and 16-17 years for the 5-HT(2A) receptor, and after 16-17 years of age for the serotonin uptake site. These developmental changes might have an impact on the effect of treatment with serotonergic drugs in children and adolescents. When the platelet serotonin variables investigated are employed in studies in children or adolescents, age matching or, alternatively, introduction of age control in the statistical analysis should be performed.

  4. Uptake blockade of endocannabinoids in the NTS modulates baroreflex-evoked sympathoinhibition.

    PubMed

    Brozoski, Daniel T; Dean, Caron; Hopp, Francis A; Seagard, Jeanne L

    2005-10-19

    Previous studies supporting a possible physiological role for an endogenous cannabinoid, arachidonylethanolamide (AEA, anandamide), showed a significant increase in AEA content in the nucleus tractus solitarius (NTS) after an increase in blood pressure (BP) and prolonged baroreflex inhibition of renal sympathetic nerve activity (RSNA) after exogenous AEA microinjections into the NTS. These results, along with other studies, support the hypothesis that endogenous AEA can modulate the baroreflex through cannabinoid CB(1) receptor activation within the NTS. This study was performed to characterize the physiological role of endogenously released cannabinoids (endocannabinoids) in regulating baroreflex control of RSNA through actions in the NTS. Endocannabinoid effects were assessed by measuring the RSNA baroreflex response to increased pressure after bilateral microinjections of AM404, an endocannabinoid transport inhibitor, into the NTS of adult male Sprague Dawley rats. AM404 blocks uptake of endocannabinoids and enhances the effects of any endocannabinoids released [M. Beltramo, et al., Functional role of high-affinity anandamide transport, as revealed by selective inhibition, Science 277 (5329) (1997) 1094-1097.] into the NTS. Therefore, it was hypothesized that microinjections of AM404 should exhibit effects similar to microinjections of exogenous AEA. In this study, AM404 microinjections into the NTS were found to significantly prolong baroreflex inhibition of RSNA compared to control, similar to effects of exogenous AEA. This effect is thought to result from an increased endocannabinoid presence in the NTS, leading to prolonged CB(1) receptor activation. These results indicate that endocannabinoids released in the NTS have the potential to modulate baroreflex control at this site in the central baroreflex pathway.

  5. Understanding changes in uptake and release of serotonin from gastrointestinal tissue using a novel electroanalytical approach.

    PubMed

    Marcelli, Gianluca; Patel, Bhavik Anil

    2010-09-01

    Serotonin (5-HT) is well known to be a key neurotransmitter within the gastrointestinal (GI) tract, where it is responsible for influencing motility. Obtaining dynamic information about the neurotransmission process (specifically the release and reuptake of 5-HT) requires the development of new approaches to measure the extracellular 5-HT concentration profile. In this work constant-potential amperometry has been utilised at +650 mV vs. Ag|AgCl to measure in vitro the overflow of 5-HT. Steady-state levels of 5-HT have been observed, due to continuous mechanical stimulation of the tissue from the experimental protocol. Measurements are conducted at varying tissue-electrode distances in the range of 5 to 1100 microm. The difference in the current from the bulk media and that from each tissue-electrode distance is obtained, and the natural log of this current is plotted versus the tissue-electrode distance. The linear fit to the log of the current is derived, and its intercept, I(0), with the vertical axis and its slope are calculated. The reciprocal of the slope, indicated as slope(-1), is used as a marker of reuptake. The ratio between intercept, I(0), and the reciprocal of the slope, I(0)/slope(-1), is a measure of the flux at the tissue surface and it can be used as a marker for the 5-HT release rate. Current measurements for ileum and colon tissue indicated a significantly higher reuptake rate in the colon, showed by a lower slope(-1). In addition, the ratio, I(0)/slope(-1), indicated that the colon has a higher 5-HT flux compared to the ileum. Following the application of the serotonin selective reuptake inhibitor (SSRI), fluoxetine, both tissues showed a higher value of slope(-1), as the reuptake process is blocked preventing clearance of 5-HT. No differences were observed in the ratio, I(0)/slope(-1), in the ileum, but a decrease was observed in the colon. These results indicate that ileum and colon are characterised by different reuptake and release processes

  6. Human platelet dense granules: Improved isolation preliminary characterization of ( sup 3 H)-serotonin uptake and tetrabanazine-displaceable ( sup 3 H)-ketanserin binding

    SciTech Connect

    Chatterjee, D.; Anderson, G.M.; Chakraborty, M.; Cohen, D.J. )

    1990-01-01

    An improved method for the isolation of human platelet dense granules was developed. A good yield of highly enriched dense granules was obtained after mild sonication and Percoll gradient centrifugation. The method has facilitated characterization of the granule, permitting the first report of K{sub m} and V{sub max} values for ({sup 3}H)-serotonin uptake, as well as the first determination of K{sub d} and B{sub max} values for tetrabenazine-displaceable ({sup 3}H)-ketanserin binding, in the human platelet dense granule. The rates and affinities of ({sup 3}H)-serotonin uptake were similar to those previously reported for porcine dense granules. Tetrabenazine-displaceable ({sup 3}H)-ketanserin binding was observed with a K{sub d} similar to, and a B{sub max} approximately 10-fold lower than, that previously seen in bovine chromaffin granules.

  7. Involvement of Organic Cation Transporter-3 and Plasma Membrane Monoamine Transporter in Serotonin Uptake in Human Brain Vascular Smooth Muscle Cells

    PubMed Central

    Li, Rachel W. S.; Yang, Cui; Kwan, Y. W.; Chan, S. W.; Lee, Simon M. Y.; Leung, George P. H.

    2013-01-01

    The serotonin (5-HT) uptake system is supposed to play a crucial part in vascular functions by “fine-tuning” the local concentration of 5-HT in the vicinity of 5-HT2 receptors in vascular smooth muscle cells. In this study, the mechanism of 5-HT uptake in human brain vascular smooth muscle cells (HBVSMCs) was investigated. [3H]5-HT uptake in HBVSMCs was Na+-independent. Kinetic analyses of [3H]5-HT uptake in HBVSMCs revealed a Km of 50.36 ± 10.2 mM and a Vmax of 1033.61 ± 98.86 pmol/mg protein/min. The specific serotonin re-uptake transporter (SERT) inhibitor citalopram, the specific norepinephrine transporter (NET) inhibitor desipramine, and the dopamine transporter (DAT) inhibitor GBR12935 inhibited 5-HT uptake in HBVSMCs with IC50 values of 97.03 ± 40.10, 10.49 ± 5.98, and 2.80 ± 1.04 μM, respectively. These IC50 values were 100-fold higher than data reported by other authors, suggesting that those inhibitors were not blocking their corresponding transporters. Reverse transcription-polymerase chain reaction results demonstrated the presence of mRNA for organic cation transporter (OCT)-3 and plasma membrane monoamine transporter (PMAT), but the absence of OCT-1, OCT-2, SERT, NET, and DAT. siRNA knockdown of OCT-3 and PMAT specifically attenuated 5-HT uptake in HBVSMCs. It is concluded that 5-HT uptake in HBVSMCs was mediated predominantly by a low-affinity and Na+-independent mechanism. The most probable candidates are OCT-3 and PMAT, but not the SERT. PMID:23407616

  8. Blockade of uptake for dopamine, but not norepinephrine or 5-HT, increases selection of high effort instrumental activity: Implications for treatment of effort-related motivational symptoms in psychopathology.

    PubMed

    Yohn, Samantha E; Errante, Emily E; Rosenbloom-Snow, Aaron; Somerville, Matthew; Rowland, Margaret; Tokarski, Kristin; Zafar, Nadia; Correa, Merce; Salamone, John D

    2016-10-01

    Deficits in behavioral activation, exertion of effort, and other psychomotor/motivational symptoms are frequently seen in people with depression and other disorders. Depressed people show a decision bias towards selection of low effort activities, and animal tests of effort-related decision making are being used as models of motivational dysfunctions seen in psychopathology. The present studies investigated the ability of drugs that block dopamine transport (DAT), norepinephrine transport (NET), and serotonin transport (SERT) to modulate work output in rats responding on a test of effort-related decision making (i.e., a progressive ratio (PROG)/chow feeding choice task). With this task, rats choose between working for a preferred food (high carbohydrate pellets) by lever pressing on a PROG schedule vs. obtaining a less preferred lab chow that is freely available in the chamber. The present studies focused on the effects of the selective DAT inhibitor GBR12909, the selective SERT inhibitor fluoxetine, and the selective NET inhibitors desipramine and atomoxetine. Acute and repeated administration of GBR12909 shifted choice behavior, increasing measures of PROG lever pressing but decreasing chow intake. In contrast, fluoxetine, desipramine and atomoxetine failed to increase lever pressing output, and actually decreased it at higher doses. In the behaviorally effective dose range, GBR12909 elevated extracellular dopamine levels in accumbens core as measured by microdialysis, but fluoxetine, desipramine and atomoxetine decreased extracellular dopamine. Thus, blockade of DAT increases selection of the high effort instrumental activity, while inhibition of SERT or NET does not. These results have implications for the use of monoamine uptake inhibitors for the treatment of effort-related psychiatric symptoms in humans. PMID:27329556

  9. Blockade of uptake for dopamine, but not norepinephrine or 5-HT, increases selection of high effort instrumental activity: Implications for treatment of effort-related motivational symptoms in psychopathology.

    PubMed

    Yohn, Samantha E; Errante, Emily E; Rosenbloom-Snow, Aaron; Somerville, Matthew; Rowland, Margaret; Tokarski, Kristin; Zafar, Nadia; Correa, Merce; Salamone, John D

    2016-10-01

    Deficits in behavioral activation, exertion of effort, and other psychomotor/motivational symptoms are frequently seen in people with depression and other disorders. Depressed people show a decision bias towards selection of low effort activities, and animal tests of effort-related decision making are being used as models of motivational dysfunctions seen in psychopathology. The present studies investigated the ability of drugs that block dopamine transport (DAT), norepinephrine transport (NET), and serotonin transport (SERT) to modulate work output in rats responding on a test of effort-related decision making (i.e., a progressive ratio (PROG)/chow feeding choice task). With this task, rats choose between working for a preferred food (high carbohydrate pellets) by lever pressing on a PROG schedule vs. obtaining a less preferred lab chow that is freely available in the chamber. The present studies focused on the effects of the selective DAT inhibitor GBR12909, the selective SERT inhibitor fluoxetine, and the selective NET inhibitors desipramine and atomoxetine. Acute and repeated administration of GBR12909 shifted choice behavior, increasing measures of PROG lever pressing but decreasing chow intake. In contrast, fluoxetine, desipramine and atomoxetine failed to increase lever pressing output, and actually decreased it at higher doses. In the behaviorally effective dose range, GBR12909 elevated extracellular dopamine levels in accumbens core as measured by microdialysis, but fluoxetine, desipramine and atomoxetine decreased extracellular dopamine. Thus, blockade of DAT increases selection of the high effort instrumental activity, while inhibition of SERT or NET does not. These results have implications for the use of monoamine uptake inhibitors for the treatment of effort-related psychiatric symptoms in humans.

  10. 3,4-Methylenedioxymethamphetamine and 3,4-methylenedioxyamphetamine destroy serotonin terminals in rat brain: quantification of neurodegeneration by measurement of (/sup 3/H)paroxetine-labeled serotonin uptake sites

    SciTech Connect

    Battaglia, G.; Yeh, S.Y.; O'Hearn, E.; Molliver, M.E.; Kuhar, M.J.; De Souza, E.B.

    1987-09-01

    This study examines the effects of repeated systemic administration (20 mg/kg s.c., twice daily for 4 days) of 3,4-methylenedioxymethamphetamine (MDMA) and 3,4-methylenedioxyamphetamine (MDA) on levels of brain monoamines, their metabolites and on the density of monoamine uptake sites in various regions of rat brain. Marked reductions (30-60%) in the concentration of 5-hydroxyindoleacetic acid were observed in cerebral cortex, hippocampus, striatum, hypothalamus and midbrain at 2 weeks after a 4-day treatment regimen of MDMA or MDA; less consistent reductions in serotonin (5-HT) content were observed in these brain regions. In addition, both MDMA and MDA caused comparable and substantial reductions (50-75%) in the density of (/sup 3/H)paroxetine-labeled 5-HT uptake sites in all brain regions examined. In contrast, neither MDMA nor MDA caused any widespread or long-term changes in the content of the catecholaminergic markers (i.e., norepinephrine, dopamine, 3,4 dihydroxyphenylacetic acid and homovanillic acid) or in the number of (/sup 3/H)mazindol-labeled norepinephrine or dopamine uptake sites in the brain regions examined. These data demonstrate that MDMA and MDA cause long-lasting neurotoxic effects with respect to both the functional and structural integrity of serotonergic neurons in brain. Furthermore, our measurement of reductions in the density of 5-HT uptake sites provides a means for quantification of the neurodegenerative effects of MDMA and MDA on presynaptic 5-HT terminals.

  11. Basic advances in serotonin pharmacology.

    PubMed

    Fuller, R W

    1992-10-01

    Several advances in serotonin pharmacology have implications for psychiatry. The introduction of selective inhibitors of serotonin uptake into clinical use has established more firmly the relevance of brain serotonin neurons to depressive illness and is permitting an exploration of other therapeutic consequences of amplifying serotonergic function. A recent major advance in basic pharmacology has been the definition and characterization of multiple serotonin receptor subtypes in brain. Highly selective agonists and antagonists at these receptor subtypes are being developed as candidate drugs for therapy and as pharmacologic probes for assessing functionality of brain serotonin neurons in disease. Improved pharmacologic specificity will provide better tools for eliciting measurable responses mediated by brain serotonin receptors and for imaging key presynaptic and postsynaptic constituents of serotonin neuronal systems. Advances in serotonin pharmacology should therefore expand our understanding of serotonin's roles as a brain neurotransmitter in health and disease and lead to improved therapeutic agents.

  12. A requirement of serotonergic p38α mitogen-activated protein kinase for peripheral immune system activation of CNS serotonin uptake and serotonin-linked behaviors

    PubMed Central

    Baganz, N L; Lindler, K M; Zhu, C B; Smith, J T; Robson, M J; Iwamoto, H; Deneris, E S; Hewlett, W A; Blakely, R D

    2015-01-01

    Alterations in central serotonin (5-hydroxytryptamine, 5-HT) neurotransmission and peripheral immune activation have been linked to multiple neuropsychiatric disorders, including depression, schizophrenia and autism. The antidepressant-sensitive 5-HT transporter (SERT, SLC6A4), a critical determinant of synaptic 5-HT inactivation, can be regulated by pro-inflammatory cytokine signaling. Systemic innate immune system activation via intraperitoneal lipopolysaccharide (LPS) injection rapidly elevates brain SERT activity and 5-HT clearance. Moreover, the pro-inflammatory cytokine interleukin (IL)-1β rapidly stimulates SERT activity in raphe nerve terminal preparations ex vivo, effects that are attenuated by pharmacological p38 MAPK inhibition. To establish a role of serotonergic p38α MAPK signaling in LPS/IL-1β-induced SERT regulation and attendant behavioral responses, we pursued studies in mice that afford conditional elimination of p38α MAPK in 5-HT neurons (p38α5HT−). We found p38α5HT− and control (p38α5HT+) littermates to be indistinguishable in viability and growth and to express equivalent levels of SERT protein and synaptosomal 5-HT transport activity. Consistent with pharmacological studies, however, IL-1β fails to increase SERT activity in midbrain synaptosomes prepared from p38α5HT− animals. Moreover, although LPS elevated plasma corticosterone and central/peripheral pro-inflammatory cytokines in p38α5HT− animals, elevations in midbrain SERT activity were absent nor were changes in depressive and anxiety-like behaviors observed. Our studies support an obligate role of p38α MAPK signaling in 5-HT neurons for the translation of immune activation to SERT regulation and 5-HT-modulated behaviors. PMID:26529424

  13. cGMP-dependent protein kinase Iα associates with the antidepressant-sensitive serotonin transporter and dictates rapid modulation of serotonin uptake

    PubMed Central

    Steiner, Jennifer A; Carneiro, Ana Marin D; Wright, Jane; Matthies, Heinrich JG; Prasad, Harish C; Nicki, Christian K; Dostmann, Wolfgang R; Buchanan, Carrie C; Corbin, Jackie D; Francis, Sharron H; Blakely, Randy D

    2009-01-01

    Background The Na+/Cl--dependent serotonin (5-hydroxytryptamine, 5-HT) transporter (SERT) is a critical element in neuronal 5-HT signaling, being responsible for the efficient elimination of 5-HT after release. SERTs are not only targets for exogenous addictive and therapeutic agents but also can be modulated by endogenous, receptor-linked signaling pathways. We have shown that neuronal A3 adenosine receptor activation leads to enhanced presynaptic 5-HT transport in vitro and an increased rate of SERT-mediated 5-HT clearance in vivo. SERT stimulation by A3 adenosine receptors derives from an elevation of cGMP and subsequent activation of both cGMP-dependent protein kinase (PKG) and p38 mitogen-activated protein kinase. PKG activators such as 8-Br-cGMP are known to lead to transporter phosphorylation, though how this modification supports SERT regulation is unclear. Results In this report, we explore the kinase isoform specificity underlying the rapid stimulation of SERT activity by PKG activators. Using immortalized, rat serotonergic raphe neurons (RN46A) previously shown to support 8-Br-cGMP stimulation of SERT surface trafficking, we document expression of PKGI, and to a lower extent, PKGII. Quantitative analysis of staining profiles using permeabilized or nonpermeabilized conditions reveals that SERT colocalizes with PKGI in both intracellular and cell surface domains of RN46A cell bodies, and exhibits a more restricted, intracellular pattern of colocalization in neuritic processes. In the same cells, SERT demonstrates a lack of colocalization with PKGII in either intracellular or surface membranes. In keeping with the ability of the membrane permeant kinase inhibitor DT-2 to block 8-Br-cGMP stimulation of SERT, we found that DT-2 treatment eliminated cGMP-dependent kinase activity in PKGI-immunoreactive extracts resolved by liquid chromatography. Similarly, treatment of SERT-transfected HeLa cells with small interfering RNAs targeting endogenous PKGI eliminated

  14. 5-HT(2C) serotonin receptor blockade prevents tau protein hyperphosphorylation and corrects the defect in hippocampal synaptic plasticity caused by a combination of environmental stressors in mice.

    PubMed

    Busceti, Carla Letizia; Di Pietro, Paola; Riozzi, Barbara; Traficante, Anna; Biagioni, Francesca; Nisticò, Robert; Fornai, Francesco; Battaglia, Giuseppe; Nicoletti, Ferdinando; Bruno, Valeria

    2015-09-01

    Exposure to multimodal sensory stressors is an everyday occurrence and sometimes becomes very intense, such as during rave parties or other recreational events. A growing body of evidence suggests that strong environmental stressors might cause neuronal dysfunction on their own in addition to their synergistic action with illicit drugs. Mice were exposed to a combination of physical and sensory stressors that are reminiscent of those encountered in a rave party. However, this is not a model of rave because it lacks the rewarding properties of rave. A 14-h exposure to environmental stressors caused an impairment of hippocampal long-term potentiation (LTP) and spatial memory, and an enhanced phosphorylation of tau protein in the CA1 and CA3 regions. These effects were transient and critically depended on the activation of 5-HT2C serotonin receptors, which are highly expressed in the CA1 region. Acute systemic injection of the selective 5-HT2C antagonist, RS-102,221 (2 mg/kg, i.p., 2 min prior the onset of stress), prevented tau hyperphosphorylation and also corrected the defects in hippocampal LTP and spatial memory. These findings suggest that passive exposure to a combination of physical and sensory stressors causes a reversible hippocampal dysfunction, which might compromise mechanisms of synaptic plasticity and spatial memory for a few days. Drugs that block 5-HT2C receptors might protect the hippocampus against the detrimental effect of environmental stressors. PMID:26145279

  15. [C-11]{beta}CNT: A new monoamine uptake ligand for studying serotonin and dopamine transporter sites in the living brain with PET

    SciTech Connect

    Mulholland, G.K.; Zheng, Q.H.; Zhou, F.C.

    1996-05-01

    There is considerable interest in measuring serotonin (5HT) and dopamine (DA) function in the human brain. Altered levels of 5HT and DA are recognized in drug abuse, neurotoxicities, psychiatric disorders, and neurodegenerative conditions including Alzheimer`s and Parkinson`s disease. Several phenyltropane analogs of cocaine bind tightly to both DA and 5HT uptake proteins. We have made a new agent from this class called {beta}CNT, 2{beta}-carboxymethyl-3{beta}-(2-naphthyl)-tropane, the isosteric O-for-CH{sub 2} analog of a compound reported to have among the highest measured affinities for DA and 5HT transporters and studied its in vivo brain distributions in animals for the first time. Optically pure {beta}CNT was made from cocaine, and labeled at the O-methyl position by esterification of {beta}CNT-acid with [C-11]CH{sub 3}OTfl under conditions similar to Wilson`s. HPLC-purified (99+%) final products (15-50% eob yield from CO{sub 2}, 40 min synth) had specific activities 0.1-1.2 Ci/{mu}mol at the time of injection. Preliminary [C-11]{beta}{beta}CNT rodent distribution showed very high brain uptake (3% ID at 60 min) and localization (striat: fr cort: hypo: cer: blood, 11: 5: 4: 1: 06). {beta}CNT-PET studies in juvenile pigs (5-20 mCi, 20-35 kg) found rapid brain uptake, and prominent retention (85 min) in midbrain, anterior brainstem and striatum, followed by cortex and olfactory bulb. Paroxetine pretreatment (5HT uptake blocker, 2mg/kg), diminished retention in most brain areas; nomifensine (DA/NE uptake blocker, 6 mg/kg) reduced striatum selectively. Direct comparisons of [C-11]{beta}CNT with other PET transporter radioligands {beta}CFT, {beta}CIT, and {beta}CTT (RTI-32) in the same pig found {beta}CNT had highest overall brain uptake among the agents. These initial results suggest {beta}CNT has favorable properties for imaging both 5HT and DA transporters in vivo, and further evaluation of its potential as a human PET agent is warranted.

  16. Diphenyl diselenide elicits antidepressant-like activity in rats exposed to monosodium glutamate: A contribution of serotonin uptake and Na(+), K(+)-ATPase activity.

    PubMed

    Quines, Caroline B; Rosa, Suzan G; Velasquez, Daniela; Da Rocha, Juliana T; Neto, José S S; Nogueira, Cristina W

    2016-03-15

    Depression is a disorder with symptoms manifested at the psychological, behavioral and physiological levels. Monosodium glutamate (MSG) is the most widely used additive in the food industry; however, some adverse effects induced by this additive have been demonstrated in experimental animals and humans, including functional and behavioral alterations. The aim of this study was to investigate the possible antidepressant-like effect of diphenyl diselenide (PhSe)2, an organoselenium compound with pharmacological properties already documented, in the depressive-like behavior induced by MSG in rats. Male and female newborn Wistar rats were divided in control and MSG groups, which received, respectively, a daily subcutaneous injection of saline (0.9%) or MSG (4g/kg/day) from the 1st to 5th postnatal day. At 60th day of life, animals received (PhSe)2 (10mg/kg, intragastrically) 25min before spontaneous locomotor and forced swimming tests (FST). The cerebral cortices of rats were removed to determine [(3)H] serotonin (5-HT) uptake and Na(+), K(+)-ATPase activity. A single administration of (PhSe)2 was effective against locomotor hyperactivity caused by MSG in rats. (PhSe)2 treatment protected against the increase in the immobility time and a decrease in the latency for the first episode of immobility in the FST induced by MSG. Furthermore, (PhSe)2 reduced the [(3)H] 5-HT uptake and restored Na(+), K(+)-ATPase activity altered by MSG. In the present study a single administration of (PhSe)2 elicited an antidepressant-like effect and decrease the synaptosomal [(3)H] 5-HT uptake and an increase in the Na(+), K(+)-ATPase activity in MSG-treated rats.

  17. Fluoxetine, a selective inhibitor of serotonin uptake, potentiates morphine analgesia without altering its discriminative stimulus properties or affinity for opioid receptors

    SciTech Connect

    Hynes, M.D.; Lochner, M.A.; Bemis, K.G.; Hymson, D.L.

    1985-06-17

    The analgesic effect of morphine in the rat tail jerk assay was enhanced by the serotonin uptake inhibitor, fluoxetine. Tail jerk latency was not affected by fluoxetine alone. Morphine's affinity for opioid receptors labeled in vitro with /sup 3/H-naloxone or /sup 3/H-D-Ala/sup 2/-D-Leu/sup 5/-enkephalin was not altered by fluoxetine, which has no affinity for these sites at concentrations as high as 1000 nM. In rats trained to discriminate morphine from saline, fluoxetine at doses of 5 or 10 mg/kg were recognized as saline. Increasing the fluoxetine dose to 20 mg/kg did not result in generalization to either saline or morphine. The dose response curve for morphine generalization was not significantly altered by fluoxetine doses of 5 or 10 mg/kg. Those rats treated with the combination of morphine and 20 mg/kg of fluoxetine did not exhibit saline or morphine appropriate responding. Fluoxetine potentiates the analgesic properties of morphine without enhancing its affinity for opioid receptors or its discriminative stimulus properties. 30 references, 2 figures, 2 tables.

  18. Identification of cytochrome P450 isoform involved in the metabolism of YM992, a novel selective serotonin re-uptake inhibitor, in human liver microsomes.

    PubMed

    Noguchi, K; Mera, A; Watanabe, T; Higuchi, S; Chiba, K

    2000-05-01

    1. In vitro studies were conducted to identify the hepatic cytochrome P450 isoform involved in the metabolism of YM992, ((S)-2-[[(fluoro-4-indanyl)oxy]methyl]morpholine monohydrochloride), a novel serotonin re-uptake inhibitor, in human liver microsomes. 2. Microsomes prepared from yeast expressing CYP1A1, CYP1A2 and CYP2D6 effectively metabolized YM992. A significant correlation was observed between the rate of YM992 metabolism and 7-ethoxyresorufin O-deethylation, CYP1A1/2 specific activity, in liver microsomes from 16 individual donors (r2 = 0.628, p < 0.001). Alpha-naphtoflavone and isosafrole, CYP1A1/2 inhibitors, suppressed the metabolism of YM992 in human liver microsomes in a concentration-dependent manner. 3. The metabolism of YM992 in human liver microsomes was inhibited by approximately 95% by antibodies which recognize both CYP1A1 and CYP1A2 whereas antibodies specific for CYP1A1 did not show inhibitory effects. 4. The same major metabolites, M6 and M7, were generated from YM992 after incubation with human liver microsomes and recombinant human CYP1A2. 5. These results suggest that the metabolism of YM992 in human liver microsomes is mainly catalysed by CYP1A2, and that YM992 might increase plasma concentration of concomitant drugs metabolized by CYP1A2 due to competitive inhibition.

  19. [Serotonin and its immune and physiological effects].

    PubMed

    Sepiashvili, R I; Balmasova, I P; Staurina, L N

    2013-01-01

    Now that the neurotransmitter serotonin modulates the immune system cells, and its main sources for antigenpresenting cells and lymphocytes are enterochromaffin cells of the gut, peripheral nerves, platelets and mast cells in case of inflammation. Immune cells uptake serotonin because they express receptors for this monoamine and intracellular serotonin transporters. The dendritic cells have a mechanism to transfer serotonin to T lymphocytes during antigen presentation. The macrophages and T cells have the ability to serotonin synthesis. Serotonin can influence mobility and proliferation of lymphocytes, phagocytosis, cytolytic properties, synthesis of chemokines and cytokines. Diversity of immunomodulating effects of serotonin is determined by heterogeneity of serotoninergic receptors. Immunomodulating action of serotonin is evidence of the close relationship between nervous and immune systems.

  20. Use of selective serotonin re-uptake inhibitors and the heart rate corrected QT interval in a real-life setting: the population-based Rotterdam Study

    PubMed Central

    Maljuric, Nevena M; Noordam, Raymond; Aarts, Nikkie; Niemeijer, Maartje N; van den Berg, Marten E; Hofman, Albert; Kors, Jan A; Stricker, Bruno H; Visser, Loes E

    2015-01-01

    Aims Selective serotonin re-uptake inhibitors (SSRIs), specifically citalopram and escitalopram, are thought to cause QTc prolongation, although studies have shown contradictory results. Nevertheless, a maximum citalopram dosage of 20 mg in high risk patients (e.g. >60 years of age) is recommended. We aimed to investigate the association between use of (individual) SSRIs and QTc in a population-based study in older adults. Methods This study, which was part of the prospective Rotterdam Study (period 1991–2012), included participants with up to five electrocardiograms (ECGs). We used linear mixed models to compare QTcF (QT corrected according to Fridericia) measured during use of individual SSRIs with QTcF measured during non-use of any antidepressant. For citalopram, analyses were additionally restricted to a maximum dosage of 20 mg in participants aged 60 years and older. Results We included 12 589 participants with a total of 26 620 ECGs of which 436 ECGs were made during SSRI use. The mean QTcF was similar during use of any drugs from the SSRI class and during non-use. After stratifying to individual SSRIs, ECGs recorded during use of citalopram had the longest QTc compared with ECGs recorded during non-use (+12.8 ms, 90% CI 7.5, 18.2). This result remained similar in the analysis comprising participants aged 60 years and older with a maximum prescribed daily dosage of 20 mg citalopram. Conclusions Although no SSRI class effect was observed, use of citalopram was associated with a longer QTcF, even after considering the recommended restrictions. Other SSRIs may not give a clinically relevant QTcF prolongation. PMID:25966843

  1. Serotonin syndrome

    MedlinePlus

    ... Increased body temperature Loss of coordination Nausea Overactive reflexes Rapid changes in blood pressure Vomiting ... as confusion or hypomania Muscle spasms (myoclonus) Overactive reflexes ( ... Tremor Uncoordinated movements (ataxia) Serotonin syndrome ...

  2. Serotonin Syndrome

    PubMed Central

    Volpi-Abadie, Jacqueline; Kaye, Adam M.; Kaye, Alan David

    2013-01-01

    Background Serotonin syndrome is a potentially life-threatening syndrome that is precipitated by the use of serotonergic drugs and overactivation of both the peripheral and central postsynaptic 5HT-1A and, most notably, 5HT-2A receptors. This syndrome consists of a combination of mental status changes, neuromuscular hyperactivity, and autonomic hyperactivity. Serotonin syndrome can occur via the therapeutic use of serotonergic drugs alone, an intentional overdose of serotonergic drugs, or classically, as a result of a complex drug interaction between two serotonergic drugs that work by different mechanisms. A multitude of drug combinations can result in serotonin syndrome. Methods This review describes the presentation and management of serotonin syndrome and discusses the drugs and interactions that can precipitate this syndrome with the goal of making physicians more alert and aware of this potentially fatal yet preventable syndrome. Conclusion Many commonly used medications have proven to be the culprits of serotonin syndrome. Proper education and awareness about serotonin syndrome will improve the accuracy of diagnosis and promote the institution of the appropriate treatment that may prevent significant morbidity and mortality. PMID:24358002

  3. Serotonin modulates insect hemocyte phagocytosis via two different serotonin receptors.

    PubMed

    Qi, Yi-Xiang; Huang, Jia; Li, Meng-Qi; Wu, Ya-Su; Xia, Ren-Ying; Ye, Gong-Yin

    2016-01-01

    Serotonin (5-HT) modulates both neural and immune responses in vertebrates, but its role in insect immunity remains uncertain. We report that hemocytes in the caterpillar, Pieris rapae are able to synthesize 5-HT following activation by lipopolysaccharide. The inhibition of a serotonin-generating enzyme with either pharmacological blockade or RNAi knock-down impaired hemocyte phagocytosis. Biochemical and functional experiments showed that naive hemocytes primarily express 5-HT1B and 5-HT2B receptors. The blockade of 5-HT1B significantly reduced phagocytic ability; however, the blockade of 5-HT2B increased hemocyte phagocytosis. The 5-HT1B-null Drosophila melanogaster mutants showed higher mortality than controls when infected with bacteria, due to their decreased phagocytotic ability. Flies expressing 5-HT1B or 5-HT2B RNAi in hemocytes also showed similar sensitivity to infection. Combined, these data demonstrate that 5-HT mediates hemocyte phagocytosis through 5-HT1B and 5-HT2B receptors and serotonergic signaling performs critical modulatory functions in immune systems of animals separated by 500 million years of evolution. PMID:26974346

  4. Serotonin modulates insect hemocyte phagocytosis via two different serotonin receptors

    PubMed Central

    Qi, Yi-xiang; Huang, Jia; Li, Meng-qi; Wu, Ya-su; Xia, Ren-ying; Ye, Gong-yin

    2016-01-01

    Serotonin (5-HT) modulates both neural and immune responses in vertebrates, but its role in insect immunity remains uncertain. We report that hemocytes in the caterpillar, Pieris rapae are able to synthesize 5-HT following activation by lipopolysaccharide. The inhibition of a serotonin-generating enzyme with either pharmacological blockade or RNAi knock-down impaired hemocyte phagocytosis. Biochemical and functional experiments showed that naive hemocytes primarily express 5-HT1B and 5-HT2B receptors. The blockade of 5-HT1B significantly reduced phagocytic ability; however, the blockade of 5-HT2B increased hemocyte phagocytosis. The 5-HT1B-null Drosophila melanogaster mutants showed higher mortality than controls when infected with bacteria, due to their decreased phagocytotic ability. Flies expressing 5-HT1B or 5-HT2B RNAi in hemocytes also showed similar sensitivity to infection. Combined, these data demonstrate that 5-HT mediates hemocyte phagocytosis through 5-HT1B and 5-HT2B receptors and serotonergic signaling performs critical modulatory functions in immune systems of animals separated by 500 million years of evolution. DOI: http://dx.doi.org/10.7554/eLife.12241.001 PMID:26974346

  5. Binding of [3H]paroxetine to serotonin uptake sites and of [3H]lysergic acid diethylamide to 5-HT2A receptors in platelets from women with premenstrual dysphoric disorder during gonadotropin releasing hormone treatment.

    PubMed

    Bixo, M; Allard, P; Bäckström, T; Mjörndal, T; Nyberg, S; Spigset, O; Sundström-Poromaa, I

    2001-08-01

    Changes in serotonergic parameters have been reported in psychiatric conditions such as depression but also in the premenstrual dysphoric disorder (PMDD). In addition, hormonal effects on serotonergic activity have been established. In the present study, binding of [3H]paroxetine to platelet serotonin uptake sites and binding of [3H]lysergic acid diethylamide ([3H]LSD) to platelet serotonin (5-HT)2A receptors were studied in patients with PMDD treated with a low dose of a gonadotropin releasing hormone (GnRH) agonist (buserelin) or placebo and compared to controls. The PMDD patients were relieved of premenstrual symptoms like depression and irritability during buserelin treatment. The number of [3H]paroxetine binding sites (Bmax) were significantly higher in the follicular phase in untreated PMDD patients compared to controls. When treated with buserelin the difference disappeared. No differences in [3H]LSD binding between the three groups were shown. The present study demonstrated altered platelet [3H]paroxetine binding characteristics in women with PMDD compared to controls. Furthermore, [3H]paroxetine binding was affected by PMDD treatment with a low dose of buserelin. The results are consistent with the hypothesis that changes in serotonergic transmission could be a trait in the premenstrual dysphoric disorder.

  6. Further studies on conformationally constrained tricyclic tropane analogues and their uptake inhibition at monoamine transporter sites: synthesis of (Z)-9-(substituted arylmethylene)-7-azatricyclo[4.3.1.0(3,7)]decanes as a novel class of serotonin transporter inhibitors.

    PubMed

    Zhang, Ao; Zhou, Guochun; Hoepping, Alexander; Mukhopadhyaya, Jayanta; Johnson, Kenneth M; Zhang, Mei; Kozikowski, Alan P

    2002-04-25

    A novel series of conformationally constrained tricyclic tropane analogues, (Z)-9-(substituted arylmethylene)-7-azatricyclo[4.3.1.0(3,7)]decanes, were prepared, and their abilities to inhibit high-affinity uptake of dopamine (DA), serotonin (5-HT), and norepinephrine (NE) into rat brain nerve endings (synaptosomes) were evaluated. First, a systematic screening of a variety of different substituents on the phenyl ring indicated that the substitution pattern plays an important role in the monoamine transporter activity. Most compounds in this series possessed a very low activity at the DA transporter (DAT) but a good to excellent affinity for the 5-HT transporter (SERT). In the case of para-substituted phenyl analogues, the electronic character of the substituent did not affect uptake inhibition as dramatically as observed in some benztropine analogues. Among these compounds, the 4-bromophenyl and 4-isopropylphenyl analogues 8d and 8j exhibited the highest potency at the SERT with a K(i) value of 10 nM. In the 3,4-disubstituted phenyl series, even more potent and highly selective compounds were discovered. Compound 8o has a K(i) value of 2.3 nM for uptake inhibition at the SERT, a DAT/SERT uptake ratio of 2360, and a NET/SERT uptake ratio of 200. Compound 8p exhibited a K(i) value of 1.8 nM for uptake inhibition at the SERT, a DAT/SERT uptake ratio of 1740, and a NET/SERT uptake ratio of 151. These compounds are 3-4-fold more potent than the antidepressant medication fluoxetine, and the selectivities for SERT over DAT and NET are also better than those of fluoxetine. Second, a variety of functional modifications on the ester moiety were investigated. Substitution by other esters or amides as well as alkenes did not increase potency, while most of the acetates or benzoates (16-21, 23, and 24) and the ketone 28 exhibited significantly improved activity. A good hydrogen-bonding ability of the substituent is believed to be required for high activity. The most potent and

  7. Selective Serotonin-norepinephrine Re-uptake Inhibition Limits Renovas-cular-hypertension Induced Cognitive Impairment, Endothelial Dysfunction, and Oxidative Stress Injury.

    PubMed

    Singh, Prabhat; Sharma, Bhupesh

    2016-01-01

    Hypertension has been reported to induce cognitive decline and dementia of vascular origin. Serotonin- norepinephrine reuptake transporters take part in the control of inflammation, cognitive functions, motivational acts and deterioration of neurons. This study was carried out to examine the effect of venlafaxine; a specific serotonin-norepinephrine reuptake inhibitor (SNRI), in two-kidney-one-clip-2K1C (renovascular hypertension) provoked vascular dementia (VaD) in albino rats. 2K1C technique was performed to provoke renovascular-hypertension in adult male albino Wistar rats. Learning and memory were assessed by using the elevated plus maze and Morris water maze. Mean arterial blood pressure- MABP, as well as endothelial function, were assessed by means of BIOPAC system. Serum nitrosative stress (nitrite/ nitrate), aortic superoxide anion, brain oxidative stress, inflammation, cholinergic dysfunction and brain damage (2,3,5-triphenylterazolium chloride staining) were also assessed. 2K1C has increased MABP, endothelial dysfunction as well as learning and memory impairments. 2K1C method has increased serum nitrosative stress (reduced nitrite/nitrate level), oxidative stress (increased brain thiobarbituric acid reactive species and aortic superoxide anion content along with decreased levels of brain superoxide dismutase, glutathione, and catalase), brain inflammation (increased myeloperoxidase), cholinergic dysfunction (increased acetylcholinesterase activity) and brain damage. Treatment with venlafaxine considerably attenuated renovascular-hypertension induced cognition impairment, endothelial dysfunction, serum nitrosative stress, brain and aortic oxidative stress, cholinergic function, inflammation as well as cerebral damage. The finding of this study indicates that specific modulation of the serotonin-norepinephrine transporter perhaps regarded as potential interventions for the management of renovascular hypertension provoked VaD. PMID:26915517

  8. The influence of 5-hydroxytryptamine re-uptake blockade on CCK receptor antagonist effects in the rat elevated zero-maze.

    PubMed

    Bickerdike, M J; Marsden, C A; Dourish, C T; Fletcher, A

    1994-12-27

    In this study, the elevated zero-maze model of anxiety was used to investigate CCK receptor antagonist effects on the behaviour of male Lister-hooded rats and to demonstrate, by administering antagonists in the presence or absence of selective 5-hydroxytryptamine (5-HT) re-uptake inhibitors, the involvement of 5-HT in the mediation of these effects. Devazepide, a selective CCKA receptor antagonist, L-365,260 (3R(+)-N-2,3-dihydro-1-methyl-2-oxo-5-phenyl-1H-1,4-benzodiazepin- 3-yl-N1- (3-methyl-phenyl)urea) or CI-988 (4-([2-[[3-(1H-indol-3-yl)-2-methyl-1- oxo-2-[[(tricyclo[3.3.1.1.(3.7)]-dec-2-yloxy)-carbonyl]-amin o]- propyl]-amino]-1-phenylethyl]-amino)-4-oxo-[R-(R*,R*)]-butanoate- N-methyl-D-glucamine), both selective CCKB receptor antagonists, were administered 30 min prior to testing. Behavioural analysis during testing included measures of risk-assessment behaviours (e.g. stretched-attend posture) in addition to time spent on the open quadrants. Devazepide induced significant anxiolytic effects, whereas CI-988 produced inconsistent results and L-365,260 was ineffective. When administered simultaneously with the 5-HT re-uptake inhibitors zimelidine or Wy 27587 (N-[[[1-[(6- fluoro-2-naphthalenyl)methyl]-4-piperidinyl]amino] carbonyl]-3-pyridine carboxamide methyl sulphonate salt), the significant anxiolytic effect induced by devazepide was dose-dependently and significantly attenuated. Zimelidine and Wy27587 had little effect alone on zero-maze behaviour at the lower of two doses given. These data show that the elevated zero-maze, in conjunction with the analysis of 'risk-assessment' behaviours, is an anxiety model which is sensitive to the anxiolytic effects of CCK receptor antagonism.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Conjugation to the sigma-2 ligand SV119 overcomes uptake blockade and converts dm-Erastin into a potent pancreatic cancer therapeutic

    PubMed Central

    Vangveravong, Suwanna; Nywening, Timothy M.; Cullinan, Darren R.; Goedegebuure, S. Peter; Liu, Jingxia; Van Tine, Brian A.; Tiriac, Herve; Tuveson, David A.; DeNardo, David G.; Spitzer, Dirk; Mach, Robert H.; Hawkins, William G.

    2016-01-01

    Cancer-selective drug delivery is an important concept in improving treatment while minimizing off-site toxicities, and sigma-2 receptors, which are overexpressed in solid tumors, represent attractive pharmacologic targets. Select sigma-2 ligands have been shown to be rapidly internalized selectively into cancer cells while retaining the capacity to deliver small molecules as drug cargoes. We utilized the sigma-2-based drug delivery concept to convert Erastin, a clinically underperforming drug, into a potent pancreatic cancer therapeutic. The Erastin derivative des-methyl Erastin (dm-Erastin) was chemically linked to sigma-2 ligand SV119 to create SW V-49. Conjugation increased the killing capacity of dm-Erastin by nearly 35-fold in vitro and reduced the size of established tumors and doubled the median survival in syngeneic and patient-derived xenograft models when compared to non-targeted dm-Erastin. Mechanistic analyses demonstrated that cell death was associated with robust reactive oxygen species production and could be efficiently antagonized with antioxidants. Mass spectrometry was employed to demonstrate selective uptake into pancreatic cancer cells. Thus, targeted delivery of dm-Erastin via conjugation to the sigma-2 ligand SV119 produced efficient tumor control and prolonged animal survival with minimal off-target toxicities, and SW V-49 represents a promising new therapeutic with the potential to advance the fight against pancreatic cancer. PMID:27244881

  10. Serotonin-Labeled CdSe Nanocrystals: Applications for Neuroscience

    NASA Astrophysics Data System (ADS)

    Kippeny, Tadd; Adkins, Erika; Adams, Scott; Thomlinson, Ian; Schroeter, Sally; Defelice, Louis; Blakely, Randy; Rosenthal, Sandra

    2000-03-01

    Serotonin (5-hydroxytryptamine, 5-HT) is an important neurotransmitter which has been linked to the regulation of critical behaviors including sleep, appetite, and mood. The serotonin transporter (SERT) is a 12-transmembrane domain protein responsible for clearance of serotonin from extracellular spaces following release. In order to assess the potential for use of ligand-conjugated nanocrystals to target cell surface receptors, ion channels, and transporters we have measured the ability of serotonin-labeled CdSe nanocrystals (SNACs) to block the uptake of tritiated serotonin by the human and Drosophila serotonin transporters (hSERT and dSERT). Estimated Ki values, the SNAC concentration at which half of the serotonin transport activity is blocked, were determined by nonlinear regression to be Ki (hSERT ) = 74uM and Ki (dSERT ) = 29uM. These values and our inability to detect free serotonin indicate that SNACs selectively interact with the serotonin recognition site of the transporter. We have also exposed the SNACs to cells containing ionotropic serotonin receptors and have measured the electrical response of the cell using a two microelectrode voltage clamp. We find that serotonin receptors do respond to the SNACs and we measure currents similar to the free serotonin response. These results indicate that ligand-conjugated nanocrystals can be used to label both receptor and transporter proteins. Initial fluorescence labeling experiments will be discussed.

  11. Kinetics of 3H-serotonin uptake by platelets in infantile autism and developmental language disorder (including five pairs of twins)

    SciTech Connect

    Katsui, T.; Okuda, M.; Usuda, S.; Koizumi, T.

    1986-03-01

    The kinetics of 5-HT uptake by platelets was studied in cases of infantile autism and developmental language disorder (DLD) and normal subjects. Two patients of the autism group were twins, and the seven patients of the DLD group were members of four pairs of twins. The Vmax values (means +/- SD) for autism and DLD were 6.46 +/- .90 pmol 5-HT/10(7) cells/min and 4.85 +/- 1.50 pmol 5-HT/10(7) cells/min, respectively. These values were both significantly higher than that of 2.25 +/- .97 pmole 5-HT/10(7) cells/min for normal children. The Km values of the three groups were not significantly different. Data on the five pairs of twins examined suggested that the elevated Vmax of 5-HT uptake by platelets was determined genetically.

  12. Serotonin dependent masking of hippocampal sharp wave ripples.

    PubMed

    ul Haq, Rizwan; Anderson, Marlene L; Hollnagel, Jan-Oliver; Worschech, Franziska; Sherkheli, Muhammad Azahr; Behrens, Christoph J; Heinemann, Uwe

    2016-02-01

    Sharp wave ripples (SPW-Rs) are thought to play an important role in memory consolidation. By rapid replay of previously stored information during slow wave sleep and consummatory behavior, they result from the formation of neural ensembles during a learning period. Serotonin (5-HT), suggested to be able to modify SPW-Rs, can affect many neurons simultaneously by volume transmission and alter network functions in an orchestrated fashion. In acute slices from dorsal hippocampus, SPW-Rs can be induced by repeated high frequency stimulation that induces long-lasting LTP. We used this model to study SPW-R appearance and modulation by 5-HT. Although stimulation in presence of 5-HT permitted LTP induction, SPW-Rs were "masked"--but appeared after 5-HT wash-out. This SPW-R masking was dose dependent with 100 nM 5-HT being sufficient--if the 5-HT re-uptake inhibitor citalopram was present. Fenfluramine, a serotonin releaser, could also mask SPW-Rs. Masking was due to 5-HT1A and 5-HT2A/C receptor activation. Neither membrane potential nor membrane conductance changes in pyramidal cells caused SPW-R blockade since both remained unaffected by combining 5-HT and citalopram. Moreover, 10 and 30 μM 5-HT mediated SPW-R masking preceded neuronal hyperpolarization and involved reduced presynaptic transmitter release. 5-HT, as well as a 5-HT1A agonist, augmented paired pulse facilitation and affected the coefficient of variance. Spontaneous SPW-Rs in mice hippocampal slices were also masked by 5-HT and fenfluramine. While neuronal ensembles can acquire long lasting LTP during higher 5-HT levels, lower 5-HT levels enable neural ensembles to replay previously stored information and thereby permit memory consolidation memory. PMID:26409781

  13. Circulating serotonin in vertebrates.

    PubMed

    Maurer-Spurej, E

    2005-08-01

    The role of circulating serotonin is unclear and whether or not serotonin is present in the blood of non-mammalian species is not known. This study provides the first evidence for the presence of serotonin in thrombocytes of birds and three reptilian species, the endothermic leatherback sea turtle, the green sea turtle and the partially endothermic American alligator. Thrombocytes from a fresh water turtle, American bullfrog, Yellowfin tuna, and Chinook salmon did not contain serotonin. Serotonin is a vasoactive substance that regulates skin blood flow, a major mechanism for endothermic body temperature regulation, which could explain why circulating serotonin is present in warm-blooded species. The temperature sensitivity of human blood platelets with concomitant changes in serotonin content further supports a link between circulating serotonin and thermoregulation. Phylogenetic comparison of the presence of circulating serotonin indicated an evolutionary divergence within reptilian species that might coincide with the emergence of endothermy. PMID:16041566

  14. Molecular mechanisms of cocaine reward: Combined dopamine and serotonin transporter knockouts eliminate cocaine place preference

    PubMed Central

    Sora, Ichiro; Hall, F. Scott; Andrews, Anne M.; Itokawa, Masanari; Li, Xiao-Fei; Wei, Hong-Bing; Wichems, Christine; Lesch, Klaus-Peter; Murphy, Dennis L.; Uhl, George R.

    2001-01-01

    Cocaine blocks uptake by neuronal plasma membrane transporters for dopamine (DAT), serotonin (SERT), and norepinephrine (NET). Cocaine reward/reinforcement has been linked to actions at DAT or to blockade of SERT. However, knockouts of neither DAT, SERT, or NET reduce cocaine reward/reinforcement, leaving substantial uncertainty about cocaine's molecular mechanisms for reward. Conceivably, the molecular bases of cocaine reward might display sufficient redundancy that either DAT or SERT might be able to mediate cocaine reward in the other's absence. To test this hypothesis, we examined double knockout mice with deletions of one or both copies of both the DAT and SERT genes. These mice display viability, weight gain, histologic features, neurochemical parameters, and baseline behavioral features that allow tests of cocaine influences. Mice with even a single wild-type DAT gene copy and no SERT copies retain cocaine reward/reinforcement, as measured by conditioned place-preference testing. However, mice with no DAT and either no or one SERT gene copy display no preference for places where they have previously received cocaine. The serotonin dependence of cocaine reward in DAT knockout mice is thus confirmed by the elimination of cocaine place preference in DAT/SERT double knockout mice. These results provide insights into the brain molecular targets necessary for cocaine reward in knockout mice that develop in their absence and suggest novel strategies for anticocaine medication development. PMID:11320258

  15. Generation of serotonin neurons from human pluripotent stem cells.

    PubMed

    Lu, Jianfeng; Zhong, Xuefei; Liu, Huisheng; Hao, Ling; Huang, Cindy Tzu-Ling; Sherafat, Mohammad Amin; Jones, Jeffrey; Ayala, Melvin; Li, Lingjun; Zhang, Su-Chun

    2016-01-01

    Serotonin neurons located in the raphe nucleus of the hindbrain have crucial roles in regulating brain functions and have been implicated in various psychiatric disorders. Yet functional human serotonin neurons are not available for in vitro studies. Through manipulation of the WNT pathway, we demonstrate efficient differentiation of human pluripotent stem cells (hPSCs) to cells resembling central serotonin neurons, primarily those located in the rhombomeric segments 2-3 of the rostral raphe, which participate in high-order brain functions. The serotonin neurons express a series of molecules essential for serotonergic development, including tryptophan hydroxylase 2, exhibit typical electrophysiological properties and release serotonin in an activity-dependent manner. When treated with the FDA-approved drugs tramadol and escitalopram oxalate, they release or uptake serotonin in a dose- and time-dependent manner, suggesting the utility of these cells for the evaluation of drug candidates.

  16. The antimalarial drug quinine interferes with serotonin biosynthesis and action.

    PubMed

    Islahudin, Farida; Tindall, Sarah M; Mellor, Ian R; Swift, Karen; Christensen, Hans E M; Fone, Kevin C F; Pleass, Richard J; Ting, Kang-Nee; Avery, Simon V

    2014-01-01

    The major antimalarial drug quinine perturbs uptake of the essential amino acid tryptophan, and patients with low plasma tryptophan are predisposed to adverse quinine reactions; symptoms of which are similar to indications of tryptophan depletion. As tryptophan is a precursor of the neurotransmitter serotonin (5-HT), here we test the hypothesis that quinine disrupts serotonin function. Quinine inhibited serotonin-induced proliferation of yeast as well as human (SHSY5Y) cells. One possible cause of this effect is through inhibition of 5-HT receptor activation by quinine, as we observed here. Furthermore, cells exhibited marked decreases in serotonin production during incubation with quinine. By assaying activity and kinetics of the rate-limiting enzyme for serotonin biosynthesis, tryptophan hydroxylase (TPH2), we showed that quinine competitively inhibits TPH2 in the presence of the substrate tryptophan. The study shows that quinine disrupts both serotonin biosynthesis and function, giving important new insight to the action of quinine on mammalian cells.

  17. Generation of serotonin neurons from human pluripotent stem cells

    PubMed Central

    Lu, Jianfeng; Zhong, Xuefei; Liu, Huisheng; Hao, Ling; Huang, Cindy Tzu-Ling; Sherafat, Mohammad Amin; Jones, Jeffrey; Ayala, Melvin; Li, Lingjun; Zhang, Su-Chun

    2016-01-01

    Serotonin neurons located in the raphe nucleus of the hindbrain have crucial roles in regulating brain functions and have been implicated in various psychiatric disorders. Yet functional human serotonin neurons are not available for in vitro studies. Through manipulation of the WNT pathway, we demonstrate efficient differentiation of human pluripotent stem cells (hPSCs) to cells resembling central serotonin neurons, primarily those located in the rhombomeric segments 2–3 of the rostral raphe, which participate in high-order brain functions. The serotonin neurons express a series of molecules essential for serotonergic development, including tryptophan hydroxylase 2, exhibit typical electrophysiological properties and release serotonin in an activity-dependent manner. When treated with the FDA-approved drugs tramadol and escitalopram oxalate, they release or uptake serotonin in a dose- and time-dependent manner, suggesting the utility of these cells for the evaluation of drug candidates. PMID:26655496

  18. Effects of methiothepin on changes in brain serotonin release induced by repeated administration of high doses of anorectic serotoninergic drugs

    NASA Technical Reports Server (NTRS)

    Gardier, A. M.; Kaakkola, S.; Erfurth, A.; Wurtman, R. J.

    1992-01-01

    We previously observed, using in vivo microdialysis, that the potassium-evoked release of frontocortical serotonin (5-HT) is suppressed after rats receive high doses (30 mg/kg, i.p., daily for 3 days) of fluoxetine, a selective blocker of 5-HT reuptake. We now describe similar impairments in 5-HT release after repeated administration of two other 5-HT uptake blockers, zimelidine and sertraline (both at 20 mg/kg, i.p. for 3 days) as well as after dexfenfluramine (7.5 mg/kg, i.p. daily for 3 days), a drug which both releases 5-HT and blocks its reuptake. Doses of these indirect serotonin agonists were about 4-6 times the drug's ED50 in producing anorexia, a serotonin-related behavior. In addition, methiothepin (20 microM), a non-selective receptor antagonist, locally perfused through the dialysis probe 24 h after the last drug injection, enhanced K(+)-evoked release of 5-HT at serotoninergic nerve terminals markedly in control rats and slightly in rats treated with high doses of dexfenfluramine or fluoxetine. On the other hand, pretreatment with methiothepin (10 mg/kg, i.p.) one hour before each of the daily doses of fluoxetine or dexfenfluramine given for 3 days, totally prevented the decrease in basal and K(+)-evoked release of 5-HT. Finally, when methiothepin was injected systemically the day before the first of 3 daily injections of dexfenfluramine, it partially attenuated the long-term depletion of brain 5-HT and 5-HIAA levels induced by repeated administration of high doses of dexfenfluramine. These data suggest that drugs which bring about the prolonged blockade of 5-HT reuptake - such as dexfenfluramine and fluoxetine - can, by causing prolonged increases in intrasynaptic 5-HT levels as measured by in vivo microdialysis, produce receptor-mediated long-term changes in the processes controlling serotonin levels and dynamics.

  19. Noninvasive measurement of lung carbon-11-serotonin extraction in man

    SciTech Connect

    Coates, G.; Firnau, G.; Meyer, G.J.; Gratz, K.F. )

    1991-04-01

    The fraction of serotonin extracted on a single passage through the lungs is being used as an early indicator of lung endothelial damage but the existing techniques require multiple arterial blood samples. We have developed a noninvasive technique to measure lung serotonin uptake in man. We utilized the double indicator diffusion principle, a positron camera, {sup 11}C-serotonin as the substrate, and {sup 11}CO-erythrocytes as the vascular marker. From regions of interest around each lung, we recorded time-activity curves in 0.5-sec frames for 30 sec after a bolus injection of first the vascular marker {sup 11}CO-erythrocytes and 10 min later {sup 11}C-serotonin. A second uptake measurement was made after imipramine 25-35 mg was infused intravenously. In three normal volunteers, the single-pass uptake of {sup 11}C-serotonin was 63.9% +/- 3.6%. This decreased in all subjects to a mean of 53.6% +/- 1.4% after imipramine. The rate of lung washout of {sup 11}C was also significantly prolonged after imipramine. This noninvasive technique can be used to measure lung serotonin uptake to detect early changes in a variety of conditions that alter the integrity of the pulmonary endothelium.

  20. Striatal serotonin depletion facilitates rat egocentric learning via dopamine modulation.

    PubMed

    Anguiano-Rodríguez, Patricia B; Gaytán-Tocavén, Lorena; Olvera-Cortés, María Esther

    2007-02-01

    Egocentric spatial learning has been defined as the ability to navigate in an environment using only proprioceptive information, thereby performing a motor response based on one's own movement. This form of learning has been associated with the neural memory system, including the striatum body. Cerebral serotonin depletion induces better performance, both in tasks with strong egocentric components and in egocentric navigation in the Morris' maze. Based on this, we propose that the striatal serotonergic depletion must facilitate egocentric learning. Fifteen female Sprague Dawley rats weighing 250-350 g and maintained under standard conditions were chronically implanted with infusion cannulas for bilateral application of drugs into the striatum. The animals were evaluated for egocentric navigation using the Morris' maze, under different conditions: saline solution infusion, serotonin depletion by infusion of 5,7-Dihydroxytryptamine (25 microg of free base solved in 2.5 microl of ascorbic acid 1% in saline solution), infusion of mixed dopamine D(1) and D(2) receptor antagonists (0.5 microl/min during 5 min of mixed spiperone 20 microM and SCH23390 10 microM), or serotonin depletion and dopamine blockade simultaneously. Striatal serotonin depletion facilitated egocentric learning, which was demonstrated as shorter escape latencies and the display of a defined sequence of movements for reaching the platform. The facilitation was not observed under condition of simultaneous dopamine blockade. Striatal serotonin depletion produced a dopamine-dependent facilitation of egocentric learning. A role for serotonin in the inhibition of striatal-mediated learning strategies is proposed. PMID:17126827

  1. [Myocardial serotonin metabolism after local ischemia and ischemic precondition].

    PubMed

    Naumenko, S E; Latysheva, T V; Gilinskiĭ, M A

    2014-07-01

    To determine the effect of ischemic preconditioning upon myocardial serotonin and 5-hydroxyindolacetic acid (5-HIAA) dynamic in myocardial ischemia and reperfusion. 28 male Wistar rats anesthetized with urethane were randomly divided into 2 groups. In the control group (n = 13) rats were subjected to 30 min coronary occlusion and subsequent 120 min reperfusion. In the ex- perimental group (n = 15) ischemic preconditioning (3 x 3 min ischemia + 3 x 3 min reperfusion) before prolonged ischemia was used. Myocardial interstitial serotonin and 5-HIAA were measured using a microdialysis technique. Myocardial serotonin and 5-HIAA significantly increased af- ter ischemic preconditioning (p = 0.00298; p = 0.00187). In prolonged ischemia interstitial serotonin level was lower in the experimental group vs. control up to 20 min of ischemia (p < 0.05). We conclude that ischemic preconditioning increases interstitial myocardial serotonin, but inhibit serotonin increase in subsequent prolonged myocardial ischemia. After 20 minutes of reperfusion the lack of correlation between serotonin and 5-HIAA levels appeared which may be the evidence of serotonin uptake activation.

  2. Ultrasound for neuraxial blockade.

    PubMed

    Srinivasan, Karthikeyan Kallidaikurichi; Lee, Peter John; Iohom, Gabriella

    2014-12-01

    Neuraxial blockade is still largely performed as a blind procedure. Despite of developments in the type of needles used and drugs administered, the process of locating the epidural or intra-thecal space is still limited to identification of landmarks by palpation and reliance on tactile feedback of the operator. Ultrasound has provided the long needed "eye" to the procedure and has already shown promise of improving the safety and efficacy or neuraxial blocks. This review focuses on understanding the sonoanatomy of the neuraxial space, performing a systematic pre-procedural ultrasound scan, and reviewing the available evidence. PMID:25463890

  3. Repeated swim impairs serotonin clearance via a corticosterone-sensitive mechanism: organic cation transporter 3, the smoking gun.

    PubMed

    Baganz, Nicole; Horton, Rebecca; Martin, Kathryn; Holmes, Andrew; Daws, Lynette C

    2010-11-10

    Activation of the hypothalamic-pituitary-adrenal (HPA) axis is associated with increased extracellular serotonin (5-HT) in limbic brain regions. The mechanism through which this occurs remains unclear. One way could be via HPA axis-dependent impairment of serotonin transporter (SERT) function, the high-affinity uptake mechanism for 5-HT. Consistent with this idea, we found that 5-HT clearance rate in hippocampus was dramatically reduced in mice exposed to repeated swim, a stimulus known to activate the HPA axis. However, this phenomenon also occurred in mice lacking SERT, ruling out SERT as a mechanism. The organic cation transporter 3 (OCT3) is emerging as an important regulator of brain 5-HT. Moreover, corticosterone, which is released upon HPA axis activation, blocks 5-HT uptake by OCT3. Repeated swim produced a persistent elevation in plasma corticosterone, and, consistent with prolonged blockade by corticosterone, we found that OCT3 expression and function were reduced in these mice. Importantly, this effect of repeated swim to reduce 5-HT clearance rate was corticosterone dependent, as evidenced by its absence in adrenalectomized mice, in which plasma corticosterone levels were essentially undetectable. Behaviorally, mice subjected to repeated swim spent less time immobile in the tail suspension test than control mice, but responded similarly to SERT- and norepinephrine transporter-selective antidepressants. Together, these results show that reduced 5-HT clearance following HPA axis activation is likely mediated, at least in part, by the corticosterone-sensitive OCT3, and that drugs developed to selectively target OCT3 (unlike corticosterone) may be candidates for the development of novel antidepressant medications.

  4. Repeated swim impairs serotonin clearance via a corticosterone-sensitive mechanism: organic cation transporter 3, the smoking gun.

    PubMed

    Baganz, Nicole; Horton, Rebecca; Martin, Kathryn; Holmes, Andrew; Daws, Lynette C

    2010-11-10

    Activation of the hypothalamic-pituitary-adrenal (HPA) axis is associated with increased extracellular serotonin (5-HT) in limbic brain regions. The mechanism through which this occurs remains unclear. One way could be via HPA axis-dependent impairment of serotonin transporter (SERT) function, the high-affinity uptake mechanism for 5-HT. Consistent with this idea, we found that 5-HT clearance rate in hippocampus was dramatically reduced in mice exposed to repeated swim, a stimulus known to activate the HPA axis. However, this phenomenon also occurred in mice lacking SERT, ruling out SERT as a mechanism. The organic cation transporter 3 (OCT3) is emerging as an important regulator of brain 5-HT. Moreover, corticosterone, which is released upon HPA axis activation, blocks 5-HT uptake by OCT3. Repeated swim produced a persistent elevation in plasma corticosterone, and, consistent with prolonged blockade by corticosterone, we found that OCT3 expression and function were reduced in these mice. Importantly, this effect of repeated swim to reduce 5-HT clearance rate was corticosterone dependent, as evidenced by its absence in adrenalectomized mice, in which plasma corticosterone levels were essentially undetectable. Behaviorally, mice subjected to repeated swim spent less time immobile in the tail suspension test than control mice, but responded similarly to SERT- and norepinephrine transporter-selective antidepressants. Together, these results show that reduced 5-HT clearance following HPA axis activation is likely mediated, at least in part, by the corticosterone-sensitive OCT3, and that drugs developed to selectively target OCT3 (unlike corticosterone) may be candidates for the development of novel antidepressant medications. PMID:21068324

  5. Serotonin syndrome presenting as pulmonary edema

    PubMed Central

    Shah, Nilima Deepak; Jain, Ajay B.

    2016-01-01

    Serotonin syndrome (SS) is a potentially life-threatening condition resulting from excessive central and peripheral serotonergic activity. Clinically, it is a triad of mental-status changes, neuromuscular abnormalities, and autonomic disturbances. It can be caused by intentional self-poisoning, overdose, or inadvertent drug interactions. We report the case of a 58-year-old male with type 2 diabetes mellitus and obsessive compulsive disorder who developed pulmonary edema as a possible complication of SS. SS was caused by a combination of three specific serotonin re-uptake inhibitors (fluoxetine, fluvoxamine, and sertraline), linezolid, and fentanyl. The hospital course was further complicated by difficult weaning from the ventilator. SS was identified and successfully treated with cyproheptadine and lorazepam. The case highlights the importance of effective consultation-liaison and prompt recognition of SS as the presentation may be complex in the presence of co-morbid medical illness. PMID:26997733

  6. Origins of serotonin innervation of forebrain structures

    NASA Technical Reports Server (NTRS)

    Kellar, K. J.; Brown, P. A.; Madrid, J.; Bernstein, M.; Vernikos-Danellis, J.; Mehler, W. R.

    1977-01-01

    The tryptophan hydroxylase activity and high-affinity uptake of (3H) serotonin ((3H)5-HT) were measured in five discrete brain regions of rats following lesions of the dorsal or median raphe nuclei. Dorsal raphe lesions reduced enzyme and uptake activity in the striatum only. Median raphe lesions reduced activities in the hippocampus, septal area, frontal cortex, and, to a lesser extent, in the hypothalamus. These data are consistent with the suggestion that the dorsal and median raphe nuclei are the origins of two separate ascending serotonergic systems - one innervating striatal structures and the other mesolimbic structures, predominantly. In addition, the data suggest that measurements of high-affinity uptake of (3H)5-HT may be a more reliable index of innervation than either 5-HT content or tryptophan hydroxylase activity.

  7. Multiple receptor subtypes mediate the effects of serotonin on rat subfornical organ neurons

    NASA Technical Reports Server (NTRS)

    Scrogin, K. E.; Johnson, A. K.; Schmid, H. A.

    1998-01-01

    The subfornical organ (SFO) receives significant serotonergic innervation. However, few reports have examined the functional effects of serotonin on SFO neurons. This study characterized the effects of serotonin on spontaneously firing SFO neurons in the rat brain slice. Of 31 neurons tested, 80% responded to serotonin (1-100 microM) with either an increase (n = 15) or decrease (n = 10) in spontaneous activity. Responses to serotonin were dose dependent and persisted after synaptic blockade. Excitatory responses could also be mimicked by the 5-hydroxytryptamine (5-HT)2A/2C receptor agonist 2,5-dimethoxy-4-iodoamphetamine (DOI; 1-10 microM) and could be blocked by the 5-HT2A/2C-receptor antagonist LY-53,857 (10 microM). LY-53,857 unmasked inhibitory responses to serotonin in 56% of serotonin-excited cells tested. Serotonin-inhibited cells were also inhibited by the 5-HT1A-receptor agonist 8-hydroxy-2(di-n-propylamino)tetralin (8-OH-DPAT; 1-10 microM; n = 7). The data indicate that SFO neurons are responsive to serotonin via postsynaptic activation of multiple receptor subtypes. The results suggest that excitatory responses to serotonin are mediated by 5-HT2A or 5-HT2C receptors and that inhibitory responses may be mediated by 5-HT1A receptors. In addition, similar percentages of serotonin-excited and -inhibited cells were also sensitive to ANG II. As such the functional relationship between serotonin and ANG II in the SFO remains unclear.

  8. Platelet serotonin promotes the recruitment of neutrophils to sites of acute inflammation in mice.

    PubMed

    Duerschmied, Daniel; Suidan, Georgette L; Demers, Melanie; Herr, Nadine; Carbo, Carla; Brill, Alexander; Cifuni, Stephen M; Mauler, Maximilian; Cicko, Sanja; Bader, Michael; Idzko, Marco; Bode, Christoph; Wagner, Denisa D

    2013-02-01

    The majority of peripheral serotonin is stored in platelets, which secrete it on activation. Serotonin releases Weibel-Palade bodies (WPBs) and we asked whether absence of platelet serotonin affects neutrophil recruitment in inflammatory responses. Tryptophan hydroxylase (Tph)1–deficient mice, lacking non-neuronal serotonin, showed mild leukocytosis compared with wild-type (WT), primarily driven by an elevated neutrophil count. Despite this, 50% fewer leukocytes rolled on unstimulated mesenteric venous endothelium of Tph1(-/-) mice. The velocity of rolling leukocytes was higher in Tph1(-/-) mice, indicating fewer selectin-mediated interactions with endothelium. Stimulation of endothelium with histamine, a secretagogue of WPBs, or injection of serotonin normalized the rolling in Tph1(-/-) mice. Diminished rolling in Tph1(-/-) mice resulted in reduced firm adhesion of leukocytes after lipopolysaccharide treatment. Blocking platelet serotonin uptake with fluoxetine in WT mice reduced serum serotonin by > 80% and similarly reduced leukocyte rolling and adhesion. Four hours after inflammatory stimulation, neutrophil extravasation into lung, peritoneum, and skin wounds was reduced in Tph1(-/-) mice, whereas in vitro neutrophil chemotaxis was independent of serotonin. Survival of lipopolysaccharide-induced endotoxic shock was improved in Tph1(-/-) mice. In conclusion, platelet serotonin promotes the recruitment of neutrophils in acute inflammation, supporting an important role for platelet serotonin in innate immunity. PMID:23243271

  9. Oral branched-chain amino acid supplements that reduce brain serotonin during exercise in rats also lower brain catecholamines.

    PubMed

    Choi, Sujean; Disilvio, Briana; Fernstrom, Madelyn H; Fernstrom, John D

    2013-11-01

    Exercise raises brain serotonin release and is postulated to cause fatigue in athletes; ingestion of branched-chain amino acids (BCAA), by competitively inhibiting tryptophan transport into brain, lowers brain tryptophan uptake and serotonin synthesis and release in rats, and reputedly in humans prevents exercise-induced increases in serotonin and fatigue. This latter effect in humans is disputed. But BCAA also competitively inhibit tyrosine uptake into brain, and thus catecholamine synthesis and release. Since increasing brain catecholamines enhances physical performance, BCAA ingestion could lower catecholamines, reduce performance and thus negate any serotonin-linked benefit. We therefore examined in rats whether BCAA would reduce both brain tryptophan and tyrosine concentrations and serotonin and catecholamine synthesis. Sedentary and exercising rats received BCAA or vehicle orally; tryptophan and tyrosine concentrations and serotonin and catecholamine synthesis rates were measured 1 h later in brain. BCAA reduced brain tryptophan and tyrosine concentrations, and serotonin and catecholamine synthesis. These reductions in tyrosine concentrations and catecholamine synthesis, but not tryptophan or serotonin synthesis, could be prevented by co-administering tyrosine with BCAA. Complete essential amino acid mixtures, used to maintain or build muscle mass, were also studied, and produced different effects on brain tryptophan and tyrosine concentrations and serotonin and catecholamine synthesis. Since pharmacologically increasing brain catecholamine function improves physical performance, the finding that BCAA reduce catecholamine synthesis may explain why this treatment does not enhance physical performance in humans, despite reducing serotonin synthesis. If so, adding tyrosine to BCAA supplements might allow a positive action on performance to emerge.

  10. Optogenetic Control of Serotonin and Dopamine Release in Drosophila Larvae

    PubMed Central

    2014-01-01

    Optogenetic control of neurotransmitter release is an elegant method to investigate neurobiological mechanisms with millisecond precision and cell type-specific resolution. Channelrhodopsin-2 (ChR2) can be expressed in specific neurons, and blue light used to activate those neurons. Previously, in Drosophila, neurotransmitter release and uptake have been studied after continuous optical illumination. In this study, we investigated the effects of pulsed optical stimulation trains on serotonin or dopamine release in larval ventral nerve cords. In larvae with ChR2 expressed in serotonergic neurons, low-frequency stimulations produced a distinct, steady-state response while high-frequency patterns were peak shaped. Evoked serotonin release increased with increasing stimulation frequency and then plateaued. The steady-state response and the frequency dependence disappeared after administering the uptake inhibitor fluoxetine, indicating that uptake plays a significant role in regulating the extracellular serotonin concentration. Pulsed stimulations were also used to evoke dopamine release in flies expressing ChR2 in dopaminergic neurons and similar frequency dependence was observed. Release due to pulsed optical stimulations was modeled to determine the uptake kinetics. For serotonin, Vmax was 0.54 ± 0.07 μM/s and Km was 0.61 ± 0.04 μM; and for dopamine, Vmax was 0.12 ± 0.03 μM/s and Km was 0.45 ± 0.13 μM. The amount of serotonin released per stimulation pulse was 4.4 ± 1.0 nM, and the amount of dopamine was 1.6 ± 0.3 nM. Thus, pulsed optical stimulations can be used to mimic neuronal firing patterns and will allow Drosophila to be used as a model system for studying mechanisms underlying neurotransmission. PMID:24849718

  11. Optogenetic control of serotonin and dopamine release in Drosophila larvae.

    PubMed

    Xiao, Ning; Privman, Eve; Venton, B Jill

    2014-08-20

    Optogenetic control of neurotransmitter release is an elegant method to investigate neurobiological mechanisms with millisecond precision and cell type-specific resolution. Channelrhodopsin-2 (ChR2) can be expressed in specific neurons, and blue light used to activate those neurons. Previously, in Drosophila, neurotransmitter release and uptake have been studied after continuous optical illumination. In this study, we investigated the effects of pulsed optical stimulation trains on serotonin or dopamine release in larval ventral nerve cords. In larvae with ChR2 expressed in serotonergic neurons, low-frequency stimulations produced a distinct, steady-state response while high-frequency patterns were peak shaped. Evoked serotonin release increased with increasing stimulation frequency and then plateaued. The steady-state response and the frequency dependence disappeared after administering the uptake inhibitor fluoxetine, indicating that uptake plays a significant role in regulating the extracellular serotonin concentration. Pulsed stimulations were also used to evoke dopamine release in flies expressing ChR2 in dopaminergic neurons and similar frequency dependence was observed. Release due to pulsed optical stimulations was modeled to determine the uptake kinetics. For serotonin, Vmax was 0.54 ± 0.07 μM/s and Km was 0.61 ± 0.04 μM; and for dopamine, Vmax was 0.12 ± 0.03 μM/s and Km was 0.45 ± 0.13 μM. The amount of serotonin released per stimulation pulse was 4.4 ± 1.0 nM, and the amount of dopamine was 1.6 ± 0.3 nM. Thus, pulsed optical stimulations can be used to mimic neuronal firing patterns and will allow Drosophila to be used as a model system for studying mechanisms underlying neurotransmission.

  12. Neurochemical, behavioral and physiological effects of pharmacologically enhanced serotonin levels in serotonin transporter (SERT)-deficient mice

    PubMed Central

    Fox, Meredith A.; Jensen, Catherine L.; French, Helen T.; Stein, Alison R.; Huang, Su-Jan; Tolliver, Teresa J.; Murphy, Dennis L.

    2008-01-01

    Rationale Serotonin transporter (SERT) knockout (−/−) mice have an altered phenotype in adulthood, including high baseline anxiety and depressive-like behaviors, associated with increased baseline extracellular serotonin levels throughout life. Objectives To examine the effects of increases in serotonin following administration of the serotonin precursor 5-hydroxy-L-tryptophan (5-HTP) in SERT wildtype (+/+), heterozygous (+/−) and −/− mice. Results 5-HTP increased serotonin in all five brain areas examined, with ~2–5-fold increases in SERT +/+ and +/− mice, and greater 4.5–11.7-fold increases in SERT −/− mice. Behaviorally, 5-HTP induced exaggerated serotonin syndrome behaviors in SERT −/− mice, with similar effects in male and female mice. Studies suggest promiscuous serotonin uptake by the dopamine transporter (DAT) in SERT −/− mice, and here, the DAT blocker GBR 12909 enhanced 5-HTP-induced behaviors in SERT −/− mice. Physiologically, 5-HTP induced exaggerated temperature effects in SERT-deficient mice. The 5-HT1A antagonist WAY 100635 decreased 5-HTP-induced hypothermia in SERT +/+ and +/− mice, with no effect in SERT −/− mice, whereas the 5-HT7 antagonist SB 269970 decreased this exaggerated response in SERT −/− mice only. WAY 100635 and SB 269970 together completely blocked 5-HTP-induced hypothermia in SERT +/− and −/− mice. Conclusions These studies demonstrate that SERT −/− mice have exaggerated neurochemical, behavioral and physiological responses to further increases in serotonin, and provide the first evidence of intact 5-HT7 receptor function in SERT −/− mice, with interesting interactions between 5-HT1A and 5-HT7 receptors. As roles for 5-HT7 receptors in anxiety and depression were recently established, the current findings have implications for understanding the high anxiety and depressive-like phenotype of SERT-deficient mice. PMID:18712364

  13. [5-HT1B serotonin receptors and antidepressant effects of selective serotonin reuptake inhibitors ].

    PubMed

    Gardier, A M; Trillat, A C; Malagié, I; David, D; Hascoët, M; Colombel, M C; Jolliet, P; Jacquot, C; Hen, R; Bourin, M

    2001-05-01

    We used knockout mice and receptor antagonist strategies to investigate the contribution of the serotonin (5-hydroxytryptamine, 5-HT) 5-HT1B receptor subtype in mediating the effects of selective serotonin reuptake inhibitors (SSRIs). Using in vivo intracerebral microdialysis in awake mice, we show that a single systemic administration of paroxetine (1 or 5 mg/kg, i.p.) increased extracellular serotonin levels [5-HT]ext in the ventral hippocampus and frontal cortex of wild-type and mutant mice. However, in the ventral hippocampus, paroxetine at the two doses studied induced a larger increase in [5-HT]ext in knockout than in wild-type mice. In the frontal cortex, the effect of paroxetine was larger in mutants than in wild-type mice at the 1 mg/kg dose but not at 5 mg/kg. In addition, either the absence of the 5-HT1B receptor or its blockade with the mixed 5-HT1B/1D receptor antagonist, GR 127935, potentiates the effect of a single administration of paroxetine on [5-HT]ext more in the ventral hippocampus than in the frontal cortex. Furthermore, we demonstrate that SSRIs decrease immobility in the forced swimming test; this effect is absent in 5-HT1B knockout mice and blocked by GR 127935 in wild-type suggesting therefore that activation of 5-HT1B receptors mediate the antidepressant-like effects of SSRIs. Taken together these data demonstrate that 5-HT1B autoreceptors appear to limit the effects of SSRI on dialysate 5-HT levels particularly in the hippocampus while presynaptic 5-HT1B heteroreceptors are likely to be required for the antidepressant activity of SSRIs.

  14. Ionic Coulomb Blockade in Nanopores

    PubMed Central

    Krems, Matt; Di Ventra, Massimiliano

    2014-01-01

    Understanding the dynamics of ions in nanopores is essential for applications ranging from single-molecule detection to DNA sequencing. We show both analytically and by means of molecular dynamics simulations that under specific conditions ion-ion interactions in nanopores lead to the phenomenon of ionic Coulomb blockade, namely the build-up of ions inside a nanopore with specific capacitance impeding the flow of additional ions due to Coulomb repulsion. This is the counterpart of electronic Coulomb blockade observed in mesoscopic systems. We discuss the analogies and differences with the electronic case as well as experimental situations in which this phenomenon could be detected. PMID:23307655

  15. EFFECTOR CELL BLOCKADE

    PubMed Central

    Schrader, John W.; Nossal, G. J. V.

    1974-01-01

    of PFC. Consistent with this suggestion was the observation that the degree of inhibition of plaque formation could be increased by decreasing the sensitivity of the assay so that only AFC secreting at high rates were detected. A micromanipulation study, where single PFC were subjected to inhibition, and were then tested for the rate at which they could cause hemolysis, showed a 68% inhibition of mean secretory rate. Micromanipulation studies were performed to test the amount of cell surface-associated Ig on control and preinhibited PFC. For this, single PFC were held with [125I]antiglobulin and quantitative radioautography was performed. No significant difference emerged, suggesting that retention of secreted Ig on cell-attached antigen was not the cause of inhibition. The results are discussed in the framework of tolerance models and blocking effects at the T-cell level by antigen-antibody complexes. The name effector cell blockade is suggested in the belief that the phenomenon may be a general one applying to both T and B cells. PMID:4133616

  16. Unraveling the modulatory actions of serotonin on male rat sexual responses.

    PubMed

    Rubio-Casillas, A; Rodríguez-Quintero, C M; Rodríguez-Manzo, G; Fernández-Guasti, A

    2015-08-01

    Animal studies and clinical investigations reveal that serotonin plays a central role in the control of the ejaculatory threshold. The chronic use of selective serotonin reuptake inhibitors (SSRIs) frequently results in sexual dysfunction, inviting to analyze the modulatory actions of serotonin on male sexual function in depth. Even though the main effect of serotonin on male sexual responses is inhibitory, this neuromodulator also mediates brief important stimulatory actions. Serotonin (5-HT) can activate two intracellular signaling pathways: a lower-threshold facilitatory pathway, and a higher-threshold inhibitory pathway, leading to biphasic effects. We propose that these divergent actions are related to the stimulation or inhibition of glutamatergic and GABAergic interneurons. Experimental evidence suggests that low 5-HT concentrations produce stimulatory actions on male ejaculatory aspects that might be mediated by the blockade of the GABAergic neurotransmission in the MPOA and spinal cord, which in turn releases a tonic inhibition that allows other neurotransmitters such as glutamate, noradrenaline, oxytocin and dopamine to initiate a sequence of molecular events resulting in the expression of ejaculation. Similar serotonin actions, mediated via interneurons, have been proposed for the regulation of other processes and occur in many central nervous system areas, indicating that it is not an isolated phenomenon.

  17. Thyroid storm during beta blockade.

    PubMed

    Strube, P J

    1984-04-01

    A thyrotoxic patient who had received beta-adrenoceptor blockers pre-operatively suffered an episode of severe heart failure immediately following thyroidectomy and required artificial ventilation of the lungs for six hours. The possible causes are discussed and the likelihood of thyroid storm unmitigated by beta adrenergic blockade suggested.

  18. Serotonin in the inferior colliculus.

    PubMed

    Hurley, Laura M; Thompson, Ann M; Pollak, George D

    2002-06-01

    It has been recognized for some time that serotonin fibers originating in raphe nuclei are present in the inferior colliculi of all mammalian species studied. More recently, serotonin has been found to modulate the responses of single inferior colliculus neurons to many types of auditory stimuli, ranging from simple tone bursts to complex species-specific vocalizations. The effects of serotonin are often quite strong, and for some neurons are also highly specific. A dramatic illustration of this is that serotonin can change the selectivity of some neurons for sounds, including species-specific vocalizations. These results are discussed in light of several theories on the function of serotonin in the IC, and of outstanding issues that remain to be addressed. PMID:12117504

  19. Activation of serotonin receptors promotes microglial injury-induced motility but attenuates phagocytic activity.

    PubMed

    Krabbe, Grietje; Matyash, Vitali; Pannasch, Ulrike; Mamer, Lauren; Boddeke, Hendrikus W G M; Kettenmann, Helmut

    2012-03-01

    Microglia, the brain immune cell, express several neurotransmitter receptors which modulate microglial functions. In this project we studied the impact of serotonin receptor activation on distinct microglial properties as serotonin deficiency not only has been linked to a number of psychiatric disease like depression and anxiety but may also permeate from the periphery through blood-brain barrier openings seen in neurodegenerative disease. First, we tested the impact of serotonin on the microglial response to an insult caused by a laser lesion in the cortex of acute slices from Cx3Cr1-GFP-/+ mice. In the presence of serotonin the microglial processes moved more rapidly towards the laser lesion which is considered to be a chemotactic response to ATP. Similarly, the chemotactic response of cultured microglia to ATP was also enhanced by serotonin. Quantification of phagocytic activity by determining the uptake of microspheres showed that the amoeboid microglia in slices from early postnatal animals or microglia in culture respond to serotonin application with a decreased phagocytic activity whereas we could not detect any significant change in ramified microglia in situ. The presence of microglial serotonin receptors was confirmed by patch-clamp experiments in culture and amoeboid microglia and by qPCR analysis of RNA isolated from primary cultured and acutely isolated adult microglia. These data suggest that microglia express functional serotonin receptors linked to distinct microglial properties. PMID:22198120

  20. Epigenetic Mechanisms of Serotonin Signaling.

    PubMed

    Holloway, Terrell; González-Maeso, Javier

    2015-07-15

    Histone modifications and DNA methylation represent central dynamic and reversible processes that regulate gene expression and contribute to cellular phenotypes. These epigenetic marks have been shown to play fundamental roles in a diverse set of signaling and behavioral outcomes. Serotonin is a monoamine that regulates numerous physiological responses including those in the central nervous system. The cardinal signal transduction mechanisms via serotonin and its receptors are well established, but fundamental questions regarding complex interactions between the serotonin system and heritable epigenetic modifications that exert control on gene function remain a topic of intense research and debate. This review focuses on recent advances and contributions to our understanding of epigenetic mechanisms of serotonin receptor-dependent signaling, with focus on psychiatric disorders such as schizophrenia and depression.

  1. Epigenetic Mechanisms of Serotonin Signaling.

    PubMed

    Holloway, Terrell; González-Maeso, Javier

    2015-07-15

    Histone modifications and DNA methylation represent central dynamic and reversible processes that regulate gene expression and contribute to cellular phenotypes. These epigenetic marks have been shown to play fundamental roles in a diverse set of signaling and behavioral outcomes. Serotonin is a monoamine that regulates numerous physiological responses including those in the central nervous system. The cardinal signal transduction mechanisms via serotonin and its receptors are well established, but fundamental questions regarding complex interactions between the serotonin system and heritable epigenetic modifications that exert control on gene function remain a topic of intense research and debate. This review focuses on recent advances and contributions to our understanding of epigenetic mechanisms of serotonin receptor-dependent signaling, with focus on psychiatric disorders such as schizophrenia and depression. PMID:25734378

  2. Serotonin receptors in parasitic worms.

    PubMed

    Mansour, T E

    1984-01-01

    It is evident from the above review that during the last two decades a great deal of interest in investigating the action of serotonin in parasitic worms has been shown by parasitologists as well as by scientists from several other disciplines. What we have initially reported concerning the effect of serotonin on motility and carbohydrate metabolism of F. hepatica has been pursued on several other parasitic worms. The studies so far indicate that serotonin stimulates motility of every species tested among the phylum Platyhelminthes. The indoleamine also stimulates glycogenolysis in the few flatworm parasites that have been investigated. The information in nematodes is scanty and the role of serotonin in these parasites is still open for experimentation. Recent biochemical investigations on F. hepatica and S. mansoni demonstrated that serotonin and related compounds utilize a common class of receptors in plasma membrane particles which I designate as 'serotonin receptors'. These receptors are linked to an adenylate cyclase that catalyses the synthesis of the second messenger, cyclic 3',5'-AMP. Serotonin and its congeners increase the concentration of cyclic AMP in intact parasites whereas antagonists inhibit such an effect. Cyclic AMP stimulates glycogenolysis, glycolysis and some rate-limiting glycolytic enzymes. It activates a protein kinase that may be involved in activation of glycogen phosphorylase and phosphofructokinase. Serotonin-activated adenylate cyclase in S. mansoni is activated early in the life of the schistosomule. The possibility is discussed that the availability of cyclic AMP through serotonin activation in these parasites may be a prelude to the development processes that take place in the parasite. The different components of the serotonin-activated adenylate cyclase in the parasite are the same as those that have been previously described for the host. Binding characteristics of the receptors indicate that the receptors in F. hepatica appear to

  3. Serotonin as a facilitatory neurotransmitter in the anticonvulsant activity of methaqualone.

    PubMed

    Leadbetter, M I; Parmar, S S

    1989-07-01

    The neuromodulatory role of serotonin in the anticonvulsant activity of methaqualone was investigated. A dose-dependent increase in the ability of methaqualone to provide protection against pentylenetetrazol (90 mg/kg SC)-induced convulsions in mice was observed. The ED50 value for the anticonvulsant activity of methaqualone was calculated and found to be 60 mg/kg, IP. Pretreatment of mice with 5-hydroxytryptophan (100 mg/kg, IP, 2 hr) and p-chlorophenylalanine (300 mg/kg, IP, 2 hr), causing an increase in brain serotonin levels, resulted in a 60% and 80% increase, respectively, in the anticonvulsant activity of methaqualone. Similar pretreatment with p-chlorophenylalanine (300 mg/kg, IP, 48 hr), causing a lowering of brain serotonin, and methysergide (10 mg/kg, IP, 0.5 hr), causing blockade of brain serotonin receptors, resulted in a 40% and 20% decrease, respectively, in the ability of methaqualone to provide protection against pentylenetetrazol-induced convulsions. These results suggest a facilitatory role of serotonin in the anticonvulsant activity of methaqualone.

  4. The serotonin reuptake inhibitor citalopram suppresses activity in the neonatal rat barrel cortex in vivo.

    PubMed

    Akhmetshina, Dinara; Zakharov, Andrei; Vinokurova, Daria; Nasretdinov, Azat; Valeeva, Guzel; Khazipov, Roustem

    2016-06-01

    Inhibition of serotonin uptake, which causes an increase in extracellular serotonin levels, disrupts the development of thalamocortical barrel maps in neonatal rodents. Previous in vitro studies have suggested that the disruptive effect of excessive serotonin on barrel map formation involves a depression at thalamocortical synapses. However, the effects of serotonin uptake inhibitors on the early thalamocortical activity patterns in the developing barrel cortex in vivo remain largely unknown. Here, using extracellular recordings of the local field potentials and multiple unit activity (MUA) we explored the effects of the selective serotonin reuptake inhibitor (SSRI) citalopram (10-20mg/kg, intraperitoneally) on sensory evoked activity in the barrel cortex of neonatal (postnatal days P2-5) rats in vivo. We show that administration of citalopram suppresses the amplitude and prolongs the delay of the sensory evoked potentials, reduces the power and frequency of the early gamma oscillations, and suppresses sensory evoked and spontaneous neuronal firing. In the adolescent P21-29 animals, citalopram affected neither sensory evoked nor spontaneous activity in barrel cortex. We suggest that suppression of the early thalamocortical activity patterns contributes to the disruption of the barrel map development caused by SSRIs and other conditions elevating extracellular serotonin levels. PMID:27016034

  5. Ovarian steroid regulation of serotonin reuptake transporter (SERT) binding, distribution, and function in female macaques.

    PubMed

    Lu, N Z; Eshleman, A J; Janowsky, A; Bethea, C L

    2003-03-01

    The serotonin reuptake transporter (SERT) plays an important role in serotonin neurotransmission and in several psychopathological disorders such as depression and anxiety disorders. In this study, we investigated whether the ovarian steroids, estrogen (E) and progesterone (P) regulate SERT binding, intracellular distribution, and function using [(3)H]citalopram ligand binding with quantitative autoradiography, immunofluorescence histochemistry with confocal microscopy and [(3)H]serotonin uptake, respectively. Ovariectomized macaques received either placebo, E alone, P alone or E plus P for 28 days. In the raphe, E, P, and E+P treatments did not change SERT binding density. In several hypothalamic nuclei, [(3)H]citalopram binding was increased by E, P, and E+P. Immunofluorescent SERT in serotonin soma was intracellular and similar among treatments. In the hypothalamus, immunofluorescent SERT was located along the serotonergic axons and there was a significant proliferation of immunofluorescent fibers in hormone-treated animals. In addition, E and E+P treatment increased serotonin uptake in the basal ganglia. These findings suggest that ovarian hormones regulate SERT protein expression and distribution, perhaps via extracellular serotonin or mRNA stability, but not solely at the level of gene transcription. Further investigation on the possible action of ovarian steroids on the directionality of SERT transport is indicated. PMID:12660809

  6. 123I-ADAM SPECT imaging of serotonin transporter binding in patients with night eating syndrome: a preliminary report.

    PubMed

    Lundgren, Jennifer D; Newberg, Andrew B; Allison, Kelly C; Wintering, Nancy A; Ploessl, Karl; Stunkard, Albert J

    2008-04-15

    Night eating syndrome (NES) represents a delay in the circadian pattern of food intake, manifested by evening hyperphagia and/or nocturnal awakenings accompanied by ingestions of food. A neurobiological marker of NES has been implicated with the recently discovered therapeutic response to the selective serotonin reuptake inhibitor (SSRI) sertraline. This pilot SPECT (single photon emission computed tomography) study compared the serotonin transporter (SERT) uptake ratios of night eaters with those of healthy controls. Six night eaters underwent SPECT imaging using the radiopharmaceutical (123)I-ADAM. Uptake, compared with that of the cerebellum, was obtained for the midbrain, basal ganglia, and temporal lobes; uptake ratios in night eaters were compared with those of six healthy controls. Night eaters had significantly greater SERT uptake ratios in the midbrain than healthy controls. These findings, in conjunction with the therapeutic response of NES to sertraline, indicate that the serotonin system is involved in the pathophysiology of NES.

  7. 123I-ADAM SPECT imaging of serotonin transporter binding in patients with night eating syndrome: a preliminary report.

    PubMed

    Lundgren, Jennifer D; Newberg, Andrew B; Allison, Kelly C; Wintering, Nancy A; Ploessl, Karl; Stunkard, Albert J

    2008-04-15

    Night eating syndrome (NES) represents a delay in the circadian pattern of food intake, manifested by evening hyperphagia and/or nocturnal awakenings accompanied by ingestions of food. A neurobiological marker of NES has been implicated with the recently discovered therapeutic response to the selective serotonin reuptake inhibitor (SSRI) sertraline. This pilot SPECT (single photon emission computed tomography) study compared the serotonin transporter (SERT) uptake ratios of night eaters with those of healthy controls. Six night eaters underwent SPECT imaging using the radiopharmaceutical (123)I-ADAM. Uptake, compared with that of the cerebellum, was obtained for the midbrain, basal ganglia, and temporal lobes; uptake ratios in night eaters were compared with those of six healthy controls. Night eaters had significantly greater SERT uptake ratios in the midbrain than healthy controls. These findings, in conjunction with the therapeutic response of NES to sertraline, indicate that the serotonin system is involved in the pathophysiology of NES. PMID:18281200

  8. Regulation of serotonin transporter gene expression in human glial cells by growth factors.

    PubMed

    Kubota, N; Kiuchi, Y; Nemoto, M; Oyamada, H; Ohno, M; Funahashi, H; Shioda, S; Oguchi, K

    2001-04-01

    The aims of this study were to identify monoamine transporters expressed in human glial cells, and to examine the regulation of their expression by stress-related growth factors. The expression of serotonin transporter mRNA was detected by reverse transcriptase-polymerase chain reaction in normal human astrocytes, whereas the dopamine transporter (DAT) and the norepinephrine transporter (NET) were not detected. The cDNA sequence of the "glial" serotonin transporter in astrocytes was consistent with that reported for the "neuronal" serotonin transporter (SERT). Moreover, we also demonstrated SERT expression in glial fibrillary acidic protein-positive cells by immunocytochemical staining in normal human astrocytes. Serotonin transporter gene expression was also detected in glioma-derived cell lines (A172, KG-1-C and KGK). Addition of basic fibroblast growth factor (bFGF) or epidermal growth factor (EGF) for 2 days increased serotonin transporter gene expression in astrocytes and JAR (human choriocarcinoma cell line). Basic fibroblast growth factor, but not epidermal growth factor, increased specific [3H]serotonin uptake in astrocytes in a time (1-4 days)- and concentration (20-100 ng/ml)-dependent manner. The expression of genes for basic fibroblast growth factor and epidermal growth factor receptors was detected in astrocytes. These findings suggest that the expression of the serotonin transporter in human glial cells is positively regulated by basic fibroblast growth factor. PMID:11301061

  9. Platelet Serotonin Transporter Function Predicts Default-Mode Network Activity

    PubMed Central

    Kasess, Christian H.; Meyer, Bernhard M.; Hofmaier, Tina; Diers, Kersten; Bartova, Lucie; Pail, Gerald; Huf, Wolfgang; Uzelac, Zeljko; Hartinger, Beate; Kalcher, Klaudius; Perkmann, Thomas; Haslacher, Helmuth; Meyer-Lindenberg, Andreas; Kasper, Siegfried; Freissmuth, Michael; Windischberger, Christian; Willeit, Matthäus; Lanzenberger, Rupert; Esterbauer, Harald; Brocke, Burkhard; Moser, Ewald; Sitte, Harald H.; Pezawas, Lukas

    2014-01-01

    Background The serotonin transporter (5-HTT) is abundantly expressed in humans by the serotonin transporter gene SLC6A4 and removes serotonin (5-HT) from extracellular space. A blood-brain relationship between platelet and synaptosomal 5-HT reuptake has been suggested, but it is unknown today, if platelet 5-HT uptake can predict neural activation of human brain networks that are known to be under serotonergic influence. Methods A functional magnetic resonance study was performed in 48 healthy subjects and maximal 5-HT uptake velocity (Vmax) was assessed in blood platelets. We used a mixed-effects multilevel analysis technique (MEMA) to test for linear relationships between whole-brain, blood-oxygen-level dependent (BOLD) activity and platelet Vmax. Results The present study demonstrates that increases in platelet Vmax significantly predict default-mode network (DMN) suppression in healthy subjects independent of genetic variation within SLC6A4. Furthermore, functional connectivity analyses indicate that platelet Vmax is related to global DMN activation and not intrinsic DMN connectivity. Conclusion This study provides evidence that platelet Vmax predicts global DMN activation changes in healthy subjects. Given previous reports on platelet-synaptosomal Vmax coupling, results further suggest an important role of neuronal 5-HT reuptake in DMN regulation. PMID:24667541

  10. Plasmon blockade in nanostructured graphene.

    PubMed

    Manjavacas, Alejandro; Nordlander, Peter; García de Abajo, F Javier

    2012-02-28

    Among the many extraordinary properties of graphene, its optical response allows one to easily tune its interaction with nearby molecules via electrostatic doping. The large confinement displayed by plasmons in graphene nanodisks makes it possible to reach the strong-coupling regime with a nearby quantum emitter, such as a quantum dot or a molecule. In this limit, the quantum emitter can introduce a significant plasmon-plasmon interaction, which gives rise to a plasmon blockade effect. This produces, in turn, strongly nonlinear absorption cross sections and modified statistics of the bosonic plasmon mode. We characterize these phenomena by studying the equal-time second-order correlation function g((2))(0), which plunges below a value of 1, thus revealing the existence of nonclassical plasmon states. The plasmon-emitter coupling, and therefore the plasmon blockade, can be efficiently controlled by tuning the doping level of the graphene nanodisks. The proposed system emerges as a new promising platform to realize quantum plasmonic devices capable of commuting optical signals at the single-photon/plasmon level.

  11. Depressed patients have decreased binding of tritiated imipramine to platelet serotonin ''transporter''

    SciTech Connect

    Paul, S.M.; Rehavi, M.; Skolnick, P.; Ballenger, J.C.; Goodwin, F.K.

    1981-12-01

    The high-affinity tritiated (3H) imipramine binding sites are functionally (and perhaps structurally) associated with the presynaptic neuronal and platelet uptake sites for serotonin. Since there is an excellent correlation between the relative potencies of a series of antidepressants in displacing 3H-imipramine from binding sites in human brain and platelet, we have examined the binding of 3H-imipramine to platelets from 14 depressed patients and 28 age- and sex-matched controls. A highly significant decrease in the number of 3H-imipramine binding sites, with no significant change in the apparent affinity constants, was observed in platelets from the depressed patients compared with the controls. These results, coupled with previous studies showing a significant decrease in the maximal uptake of serotonin in platelets from depressed patients, suggest that an inherited or acquired deficiency of the serotonin transport protein or proteins may be involved in the pathogenesis of depression.

  12. Serotonin and cancer: what is the link?

    PubMed

    Sarrouilhe, D; Clarhaut, J; Defamie, N; Mesnil, M

    2015-01-01

    Serotonin (5-hydroxytryptamine, 5-HT) is a biogenic monoamine that acts as a neurotransmitter in the central nervous system, local mediator in the gut and vasoactive agent in the blood. Serotonin exerts its multiple, sometimes opposing actions through interaction with a multiplicity of receptors coupled to various signalling pathways. In addition to its well-known functions, serotonin has been shown to be a mitogenic factor for a wide range of normal and tumoral cells. Serotonin exhibits a growth stimulatory effect in aggressive cancers and carcinoids more often through 5- HT1 and 5-HT2 receptors. In contrast, low doses of serotonin can inhibit tumour growth via the decrease of blood supply to the tumour, suggesting that the role of serotonin on tumour growth is concentration-dependent. Data are also available on serotonin involvement in cancer cell migration, metastatic processes and as a mediator of angiogenesis. Moreover, the progression of some tumours is accompanied by a dysregulation of the pattern of serotonin receptor expressions. Serum serotonin level was found to be suitable for prognosis evaluation of urothelial carcinoma in the urinary bladder, adenocarcinoma of the prostate and renal cell carcinoma. In some cases, antagonists of serotonin receptors, inhibitors of selective serotonin transporter and of serotonin synthesis have been successfully used to prevent cancer cell growth. This review revaluates serotonin involvement in several types of cancer and at different stages of their progression. PMID:25601469

  13. The interaction of cocaine with serotonin dorsal raphe neurons. Single-unit extracellular recording studies.

    PubMed

    Cunningham, K A; Lakoski, J M

    1990-02-01

    Cocaine potently inhibits the spontaneous activity of dorsal raphe serotonin (5-hydroxytryptamine [5-HT] neurons which possess impulse-modulating receptors of the 5-HT1A subtype. In an investigation of the neuropharmacologic mechanisms underlying this electrophysiologic effect, we have compared cocaine with structurally and functionally similar compounds, attempted to reverse cocaine-induced suppression of 5-HT dorsal raphe nucleus (DRN) neuronal activity, and assessed the effects of 5-HT depletion on the response to cocaine. Extracellular recordings in chloral hydrate-anesthetized rats were obtained using single-unit recording techniques; drugs were infused intravenously IV) in a cumulative dose manner. The active isomer (-)-cocaine (ID50 = 0.5 +/- 0.15 mg/kg) and the phenyltropane analogue WIN 35428 (ID50 = 0.17 +/- 0.03 mg/kg) that share the ability of cocaine to block monoamine uptake also inhibit impulse activity in 5-HT neurons. In contrast, the inactive isomers (+)-cocaine, (+)-pseudococaine and the metabolite benzoylecgonine do not exhibit the same range of potency (maximal 20% to 30% inhibition at a cumulative dose of 8 to 16 mg/kg). A selective inhibitor of uptake for 5-HT (fluoxetine; ID50 = 1.8 +/- 0.5 mg/kg), but not norepinephrine (desipramine) or dopamine (GBR 12909), mimicked cocaine, as did the monoamine releaser amphetamine (ID50 = 2.86 +/- 0.46 mg/kg). The putative 5-HT1A autoreceptor antagonist spiperone reversed the cocaine-induced depression of firing rate in 64% of 5-HT neurons tested whereas receptor antagonists for dopamine D2 (haloperidol), 5-HT2 (ketanserin), gamma-aminobutyric acid (picrotoxin) and 5-HT1/beta-adrenergic (propranolol) were ineffective. Following treatment with the 5-HT synthesis inhibitor p-chlorophenylalanine (100 mg/kg/day of the base for 3 days), impulse depression induced by cocaine was significantly attenuated as compared to control, which suggests that the effects of cocaine may be dependent on endogenous 5-HT

  14. Oral branched-chain amino acid supplements that reduce brain serotonin during exercise in rats also lower brain catecholamines.

    PubMed

    Choi, Sujean; Disilvio, Briana; Fernstrom, Madelyn H; Fernstrom, John D

    2013-11-01

    Exercise raises brain serotonin release and is postulated to cause fatigue in athletes; ingestion of branched-chain amino acids (BCAA), by competitively inhibiting tryptophan transport into brain, lowers brain tryptophan uptake and serotonin synthesis and release in rats, and reputedly in humans prevents exercise-induced increases in serotonin and fatigue. This latter effect in humans is disputed. But BCAA also competitively inhibit tyrosine uptake into brain, and thus catecholamine synthesis and release. Since increasing brain catecholamines enhances physical performance, BCAA ingestion could lower catecholamines, reduce performance and thus negate any serotonin-linked benefit. We therefore examined in rats whether BCAA would reduce both brain tryptophan and tyrosine concentrations and serotonin and catecholamine synthesis. Sedentary and exercising rats received BCAA or vehicle orally; tryptophan and tyrosine concentrations and serotonin and catecholamine synthesis rates were measured 1 h later in brain. BCAA reduced brain tryptophan and tyrosine concentrations, and serotonin and catecholamine synthesis. These reductions in tyrosine concentrations and catecholamine synthesis, but not tryptophan or serotonin synthesis, could be prevented by co-administering tyrosine with BCAA. Complete essential amino acid mixtures, used to maintain or build muscle mass, were also studied, and produced different effects on brain tryptophan and tyrosine concentrations and serotonin and catecholamine synthesis. Since pharmacologically increasing brain catecholamine function improves physical performance, the finding that BCAA reduce catecholamine synthesis may explain why this treatment does not enhance physical performance in humans, despite reducing serotonin synthesis. If so, adding tyrosine to BCAA supplements might allow a positive action on performance to emerge. PMID:23904096

  15. Serotonin biosynthesis as a predictive marker of serotonin pharmacodynamics and disease-induced dysregulation

    PubMed Central

    Welford, Richard W. D.; Vercauteren, Magali; Trébaul, Annette; Cattaneo, Christophe; Eckert, Doriane; Garzotti, Marco; Sieber, Patrick; Segrestaa, Jérôme; Studer, Rolf; Groenen, Peter M. A.; Nayler, Oliver

    2016-01-01

    The biogenic amine serotonin (5-HT) is a multi-faceted hormone that is synthesized from dietary tryptophan with the rate limiting step being catalyzed by the enzyme tryptophan hydroxylase (TPH). The therapeutic potential of peripheral 5-HT synthesis inhibitors has been demonstrated in a number of clinical and pre-clinical studies in diseases including carcinoid syndrome, lung fibrosis, ulcerative colitis and obesity. Due to the long half-life of 5-HT in blood and lung, changes in steady-state levels are slow to manifest themselves. Here, the administration of stable isotope labeled tryptophan (heavy “h-Trp”) and resultant in vivo conversion to h-5-HT is used to monitor 5-HT synthesis in rats. Dose responses for the blockade of h-5-HT appearance in blood with the TPH inhibitors L-para-chlorophenylalanine (30 and 100 mg/kg) and telotristat etiprate (6, 20 and 60 mg/kg), demonstrated that the method enables robust quantification of pharmacodynamic effects on a short time-scale, opening the possibility for rapid screening of TPH1 inhibitors in vivo. In the bleomycin-induced lung fibrosis rat model, the mechanism of lung 5-HT increase was investigated using a combination of synthesis and steady state 5-HT measurement. Elevated 5-HT synthesis measured in the injured lungs was an early predictor of disease induced increases in total 5-HT. PMID:27444653

  16. Characterization of the effects of serotonin on the release of (/sup 3/H)dopamine from rat nucleus accumbens and striatal slices

    SciTech Connect

    Nurse, B.; Russell, V.A.; Taljaard, J.J.

    1988-05-01

    The effect of serotonin agonists on the depolarization (K+)-induced, calcium-dependent, release of (/sup 3/H)dopamine (DA) from rat nucleus accumbens and striatal slices was investigated. Serotonin enhanced basal /sup 3/H overflow and reduced K+-induced release of (/sup 3/H)DA from nucleus accumbens slices. The effect of serotonin on basal /sup 3/H overflow was not altered by the serotonin antagonist, methysergide, or the serotonin re-uptake blocker, chlorimipramine, but was reversed by the DA re-uptake carrier inhibitors nomifensine and benztropine. With the effect on basal overflow blocked, serotonin did not modulate K+-induced release of (/sup 3/H)DA in the nucleus accumbens or striatum. The serotonin agonists, quipazine (in the presence of nomifensine) and 5-methoxytryptamine, did not significantly affect K+-induced release of (/sup 3/H)DA in the nucleus accumbens. This study does not support suggestions that serotonin receptors inhibit the depolarization-induced release of dopamine in the nucleus accumbens or striatum of the rat brain. The present results do not preclude the possibility that serotonin may affect the mesolimbic reward system at a site which is post-synaptic to dopaminergic terminals in the nucleus accumbens.

  17. Association between serotonin transporter gene polymorphism and recurrent aphthous stomatitis

    PubMed Central

    Manchanda, Aastha; Iyengar, Asha R.; Patil, Seema

    2016-01-01

    Background: Anxiety-related traits have been attributed to sequence variability in the genes coding for serotonin transmission in  the brain. Two alleles, termed long (L) and short (S) differing by 44 base pairs, are found in a polymorphism identified in the promoter region of serotonin transporter gene. The presence of the short allele  and SS and LS genotypes is found to be associated with the reduced expression of this gene decreasing the uptake of serotonin in the brain leading to various anxiety-related traits. Recurrent aphthous stomatitis (RAS) is an oral mucosal disease with varied etiology including the presence of stress, anxiety, and genetic influences. The present study aimed to determine this serotonin transporter gene polymorphism in patients with RAS and compare it with normal individuals. Materials and Methods: This study included 20 subjects with various forms of RAS and 20 normal healthy age- and gender-matched individuals. Desquamated oral mucosal cells were collected for DNA extraction and subjected to polymerase chain reaction for studying insertion/deletion in the 5-HTT gene-linked polymorphic region. Cross tabulations followed by Chi-square tests were performed to compare the significance of findings, P < 0.05 was considered statistically significant. Results: The LS genotype was the most common genotype found in the subjects with aphthous stomatitis (60%) and controls (40%). The total percentage of LS and SS genotypes and the frequency of S allele were found to be higher in the subjects with aphthous stomatitis as compared to the control group although a statistically significant correlation could not be established, P = 0.144 and 0.371, respectively. Conclusion: Within the limitations of this study, occurrence of RAS was not found to be associated with polymorphic promoter region in serotonin transporter gene. PMID:27274339

  18. Relations between peripheral and brain serotonin measures and behavioural responses in a novelty test in pigs.

    PubMed

    Ursinus, Winanda W; Bolhuis, J Elizabeth; Zonderland, Johan J; Rodenburg, T Bas; de Souza, Adriana S; Koopmanschap, Rudie E; Kemp, Bas; Korte-Bouws, Gerdien A H; Korte, S Mechiel; van Reenen, Cornelis G

    2013-06-13

    Pigs differ in their behavioural responses towards environmental challenges. Individual variation in maladaptive responses such as tail biting, may partly originate from underlying biological characteristics related to (emotional) reactivity to challenges and serotonergic system functioning. Assessing relations between behavioural responses and brain and blood serotonin parameters may help in understanding susceptibility to the development of maladaptive responses. The objective of the current study was, therefore, to assess the relationship between the pigs' serotonergic parameters measured in both blood and brain, and the behaviour of pigs during a novelty test. Pigs (n=31) were subjected to a novelty test at 11weeks of age, consisting of 5-min novel environment exposure after which a novel object (a bucket) was introduced for 5min. Whole blood serotonin, platelet serotonin level, and platelet serotonin uptake were determined at 13weeks of age. Levels of serotonin, its metabolite and serotonin turnover were determined at 19weeks of age in the frontal cortex, hypothalamus and hippocampus. The behaviour of the pigs was different during exposure to a novel object compared to the novel environment only, with more fear-related behaviours exhibited during novel object exposure. Platelet serotonin level and brain serotonergic parameters in the hippocampus were interrelated. Notably, the time spent exploring the test arena was significantly correlated with both platelet serotonin level and right hippocampal serotonin activity (turnover and concentration). In conclusion, the existence of an underlying biological trait - possibly fearfulness - may be involved in the pig's behavioural responses toward environmental challenges, and this is also reflected in serotonergic parameters. PMID:23685231

  19. Blockade of tolerance to morphine analgesia by cocaine.

    PubMed

    Misra, A L; Pontani, R B; Vadlamani, N L

    1989-07-01

    Tolerance to morphine analgesia was induced in male Sprague-Dawley rats by s.c. implantation of a morphine base pellet (75 mg) on the first and second day and determining the magnitude of tolerance 72 h after the first implant by s.c. injection of a test dose of morphine (5 mg/kg). Implantation of a cocaine hydrochloride pellet (25 mg), concurrently with morphine pellets or of a cocaine hydrochloride (50 mg) pellet after the development of tolerance, blocked both the development and expression of morphine analgesic tolerance. In morphine-pelleted animals pretreatment for 3 days with desipramine or zimelidine or phenoxybenzamine but not haloperidol produced no significant morphine tolerance. Pretreatment with a combination of desipramine and zimelidine, however, was as effective as cocaine in blocking morphine tolerance. Alpha-Methyl-p-tyrosine methyl ester counteracted the effect of cocaine in blocking morphine tolerance and potentiated the tolerance development. Blockade of morphine tolerance by cocaine was reinforced and facilitated by pretreatment with fenfluramine or p-chlorophenylalanine ethyl ester and to a lesser extent by clonidine and haloperidol. Acute administration of fenfluramine or zimelidine or a combination of desipramine and zimelidine or alpha-methyl-p-tyrosine methyl ester or p-chlorophenylalanine ethyl ester did not significantly affect morphine analgesia. The study suggests an important role of the concomitant depletion of both central noradrenaline and serotonin in the blockade of morphine tolerance by cocaine and stresses the importance of the counter-balancing functional relationship between these two neurotransmitters in the central nervous system. PMID:2780065

  20. Role of serotonin in the discriminative stimulus properties of mescaline.

    PubMed

    Browne, R G; Ho, B T

    1975-01-01

    Rats were trained to discriminate intraperitoneally administered mescaline from saline in a two-lever operant chamber for food reinforcement. Reward was contingent upon responses made greater than 15 sec apart (DRL-15) on the appropriate lever paired with either drug or saline administration. Following the establishment of discriminative response control by mescaline, the animals were tested for stimulus generalization produced by mescaline after: (a) blockade of periphreral and central serotonin (5-HT) receptors with cinanserin, methysergide, or cyproheptadine; (b) blockade of peripheral 5-HT receptors with xylamidine tosylate; and (c) depletion of brain 5-HT with the tryptophan hydroxylase inhibitor p-chlorophenylalanine (PCPA). The results show that all three central 5-HT antagonists greatly reduced the discriminability of mescaline while the peripheral antagonist, xylamidine tosylate, was without effect. Furthermore, these agents at the doses employed did not effect the discriminability of saline. Depletion of 5-HT with PCPA potentiated the effects of a sub-threshold dose of mescaline and slightly reduced the discriminability of saline. The results indicate that mescaline produces its discriminative stimulus properties by directly stimulating central serotonergic receptors.

  1. Hindbrain serotonin and the rapid induction of sodium appetite

    NASA Technical Reports Server (NTRS)

    Menani, J. V.; De Luca, L. A. Jr; Thunhorst, R. L.; Johnson, A. K.

    2000-01-01

    Both systemically administered furosemide and isoproterenol produce water intake (i.e., thirst). Curiously, however, in light of the endocrine and hemodynamic effects produced by these treatments, they are remarkably ineffective in eliciting intake of hypertonic saline solutions (i.e., operationally defined as sodium appetite). Recent work indicates that bilateral injections of the serotonin receptor antagonist methysergide into the lateral parabrachial nuclei (LPBN) markedly enhance a preexisting sodium appetite. The present studies establish that a de novo sodium appetite can be induced with LPBN-methysergide treatment under experimental conditions in which only water is typically ingested. The effects of bilateral LPBN injections of methysergide were studied on the intake of water and 0. 3 M NaCl following acute (beginning 1 h after treatment) diuretic (furosemide)-induced sodium and water depletion and following subcutaneous isoproterenol treatment. With vehicle injected into the LPBN, furosemide treatment and isoproterenol injection both caused water drinking but essentially no intake of hypertonic saline. In contrast, bilateral treatment of the LPBN with methysergide induced the intake of 0.3 M NaCl after subcutaneous furosemide and isoproterenol. Water intake induced by subcutaneous furosemide or isoproterenol was not changed by LPBN-methysergide injections. The results indicate that blockade of LPBN-serotonin receptors produces a marked intake of hypertonic NaCl (i.e., a de novo sodium appetite) after furosemide treatment as well as subcutaneous isoproterenol.

  2. Lethal effect of the serotonin-xylocaineR association in ganglion-blocked rats.

    PubMed

    Valle, L B; Oliveira-Filho, R M; Armonia, P L; Saraceni, G; Nassif, M; De Lucia, R

    1976-12-01

    In rats anestetized with urethane and under ganglionic blockade by hexamethonium (20 mg/kg, i.v.), the i.v. injection of serotonin (60 mug/kg) determined apnea, ECG alterations and a brief hypotensive response which is similar to that as elicited when 5-HT is given to intact rats. During the hypertension which follows that initial response, apnea is still present along with more severe ECG changes. After that, blood pressure falls into a prolonged hypotension, which is invariably accompanied by death. Neither norepinephrine, nor respiratory analeptics (CoramineR, RemeflinF) were able to prevent the fatal outcome. Only artificial respiration was found to be useful in some instances. It was concluded that the association serotonin plus lidocaine becomes lethal when given to ganglion-blocked rate, and this toxic effect can be ascribed mainly to the respiratory depressor activity of the drugs.

  3. The evolution of violence in men: the function of central cholesterol and serotonin.

    PubMed

    Wallner, Bernard; Machatschke, Ivo H

    2009-04-30

    Numerous studies point to central serotonin as an important modulator of maladaptive behaviors. In men, for instance, low concentrations of this neurotransmitter are related to hostile aggression. A key player in serotonin metabolism seems to be central cholesterol. It plays a fundamental role in maintaining the soundness of neuron membranes, especially in the exocytosis transport of serotonin vesicles into the synaptic cleft. In this review, we attempt an evolutionary approach to the neurobiological basis of human male violence. Hominid evolution was shaped by periods of starvation but also by energy demands of an increasingly complex brain. A lack of food resources reduces uptake of glucose and results in a decreased energy-supply for autonomous brain cholesterol synthesis. Consequently, concentrations of neuromembrane cholesterol decrease, which lead to a failure of the presynaptic re-uptake mechanism of serotonin and ultimately to low central serotonin. We propose that starvation might have affected the larger male brains earlier than those of females. Furthermore, this neurophysiological process diminished the threshold for hostile aggression, which in effect represented a prerequisite for being a successful hunter or scavenger. In a Darwinian sense, the odds to acquire reliable energetic resources made those males to attractive spouses in terms of paternal care and mate support. To underpin these mechanisms, a hypothetical four-stage model of synaptic membrane destabilization effected by a prolonged shortage of high-energy, cholesterol-containing food is illustrated.

  4. Valley blockade quantum switching in Silicon nanostructures.

    PubMed

    Prati, Enrico

    2011-10-01

    In analogy to the Coulomb and the Pauli spin blockade, based on the electrostatic repulsion and the Pauli exclusion principle respectively, the concept of valley blockade in Silicon nanostructures is explored. The valley parity operator is defined. Valley blockade is determined by the parity conservation of valley composition eigenvectors in quantum transport. A Silicon quantum changeover switch based on a triple of donor quantum dots capable to separate electrons having opposite valley parity by virtue of the valley parity conservation is proposed. The quantum changeover switch represents a novel kind of hybrid quantum based classical logic device.

  5. Serotonin and Blood Pressure Regulation

    PubMed Central

    Morrison, Shaun F.; Davis, Robert Patrick; Barman, Susan M.

    2012-01-01

    5-Hydroxytryptamine (5-HT; serotonin) was discovered more than 60 years ago as a substance isolated from blood. The neural effects of 5-HT have been well investigated and understood, thanks in part to the pharmacological tools available to dissect the serotonergic system and the development of the frequently prescribed selective serotonin-reuptake inhibitors. By contrast, our understanding of the role of 5-HT in the control and modification of blood pressure pales in comparison. Here we focus on the role of 5-HT in systemic blood pressure control. This review provides an in-depth study of the function and pharmacology of 5-HT in those tissues that can modify blood pressure (blood, vasculature, heart, adrenal gland, kidney, brain), with a focus on the autonomic nervous system that includes mechanisms of action and pharmacology of 5-HT within each system. We compare the change in blood pressure produced in different species by short- and long-term administration of 5-HT or selective serotonin receptor agonists. To further our understanding of the mechanisms through which 5-HT modifies blood pressure, we also describe the blood pressure effects of commonly used drugs that modify the actions of 5-HT. The pharmacology and physiological actions of 5-HT in modifying blood pressure are important, given its involvement in circulatory shock, orthostatic hypotension, serotonin syndrome and hypertension. PMID:22407614

  6. Effect of plasma membrane fluidity on serotonin transport by endothelial cells

    SciTech Connect

    Block, E.R.; Edwards, D. )

    1987-11-01

    To evaluate the effect of plasma membrane fluidity of lung endothelial cells on serotonin transport, porcine pulmonary artery endothelial cells were incubated for 3 h with either 0.1 mM cholesterol hemisuccinate, 0.1 mM cis-vaccenic acid, or vehicle (control), after which plasma membrane fluidity and serotinin transport were measured. Fluorescence spectroscopy was used to measure fluidity in the plasma membrane. Serotonin uptake was calculated from the disappearance of ({sup 14}C)-serotonin from the culture medium. Cholesterol decreased fluidity in the subpolar head group and central and midacyl side-chain regions of the plasma membrane and decreased serotonin transport, whereas cis-vaccenic acid increased fluidity in the central and midacyl side-chain regions of the plasma membrane and also increased serotonin transport. Cis-vaccenic acid had no effect of fluidity in the subpolar head group region of the plasma membrane. These results provide evidence that the physical state of the central and midacyl chains within the pulmonary artery endothelial cell plasma membrane lipid bilayer modulates transmembrane transport of serotonin by these cells.

  7. Selective serotonin reuptake inhibitor exposure.

    PubMed

    Fitzgerald, Kevin T; Bronstein, Alvin C

    2013-02-01

    Many antidepressants inhibit serotonin or norepinephrine reuptake or both to achieve their clinical effect. The selective serotonin reuptake inhibitor class of antidepressants (SSRIs) includes citalopram, escitalopram (active enantiomer of citalopram), fluoxetine, fluvoxamine, paroxetine, and sertraline. The SSRIs are as effective as tricyclic antidepressants in treatment of major depression with less significant side effects. As a result, they have become the largest class of medications prescribed to humans for depression. They are also used to treat obsessive-compulsive disorder, panic disorders, alcoholism, obesity, migraines, and chronic pain. An SSRI (fluoxetine) has been approved for veterinary use in treatment of canine separation anxiety. SSRIs act specifically on synaptic serotonin concentrations by blocking its reuptake in the presynapse and increasing levels in the presynaptic membrane. Clinical signs of SSRI overdose result from excessive amounts of serotonin in the central nervous system. These signs include nausea, vomiting, mydriasis, hypersalivation, and hyperthermia. Clinical signs are dose dependent and higher dosages may result in the serotonin syndrome that manifests itself as ataxia, tremors, muscle rigidity, hyperthermia, diarrhea, and seizures. Current studies reveal no increase in appearance of any specific clinical signs of serotonin toxicity with regard to any SSRI medication. In people, citalopram has been reported to have an increased risk of electrocardiographic abnormalities. Diagnosis of SSRI poisoning is based on history, clinical signs, and response to therapy. No single clinical test is currently available to confirm SSRI toxicosis. The goals of treatment in this intoxication are to support the animal, prevent further absorption of the drug, support the central nervous system, control hyperthermia, and halt any seizure activity. The relative safety of the SSRIs in overdose despite the occurrence of serotonin syndrome makes them

  8. Selective serotonin reuptake inhibitor exposure.

    PubMed

    Fitzgerald, Kevin T; Bronstein, Alvin C

    2013-02-01

    Many antidepressants inhibit serotonin or norepinephrine reuptake or both to achieve their clinical effect. The selective serotonin reuptake inhibitor class of antidepressants (SSRIs) includes citalopram, escitalopram (active enantiomer of citalopram), fluoxetine, fluvoxamine, paroxetine, and sertraline. The SSRIs are as effective as tricyclic antidepressants in treatment of major depression with less significant side effects. As a result, they have become the largest class of medications prescribed to humans for depression. They are also used to treat obsessive-compulsive disorder, panic disorders, alcoholism, obesity, migraines, and chronic pain. An SSRI (fluoxetine) has been approved for veterinary use in treatment of canine separation anxiety. SSRIs act specifically on synaptic serotonin concentrations by blocking its reuptake in the presynapse and increasing levels in the presynaptic membrane. Clinical signs of SSRI overdose result from excessive amounts of serotonin in the central nervous system. These signs include nausea, vomiting, mydriasis, hypersalivation, and hyperthermia. Clinical signs are dose dependent and higher dosages may result in the serotonin syndrome that manifests itself as ataxia, tremors, muscle rigidity, hyperthermia, diarrhea, and seizures. Current studies reveal no increase in appearance of any specific clinical signs of serotonin toxicity with regard to any SSRI medication. In people, citalopram has been reported to have an increased risk of electrocardiographic abnormalities. Diagnosis of SSRI poisoning is based on history, clinical signs, and response to therapy. No single clinical test is currently available to confirm SSRI toxicosis. The goals of treatment in this intoxication are to support the animal, prevent further absorption of the drug, support the central nervous system, control hyperthermia, and halt any seizure activity. The relative safety of the SSRIs in overdose despite the occurrence of serotonin syndrome makes them

  9. Serotonin release varies with brain tryptophan levels

    NASA Technical Reports Server (NTRS)

    Schaechter, Judith D.; Wurtman, Richard J.

    1990-01-01

    This study examines directly the effects on serotonin release of varying brain tryptophan levels within the physiologic range. It also addresses possible interactions between tryptophan availability and the frequency of membrane depolarization in controlling serotonin release. We demonstrate that reducing tryptophan levels in rat hypothalamic slices (by superfusing them with medium supplemented with 100 microM leucine) decreases tissue serotonin levels as well as both the spontaneous and the electrically-evoked serotonin release. Conversely, elevating tissue tryptophan levels (by superfusing slices with medium supplemented with 2 microM tryptophan) increases both the tissue serotonin levels and the serotonin release. Serotonin release was found to be affected independently by the tryptophan availability and the frequency of electrical field-stimulation (1-5 Hz), since increasing both variables produced nearly additive increases in release. These observations demonstrate for the first time that both precursor-dependent elevations and reductions in brain serotonin levels produce proportionate changes in serotonin release, and that the magnitude of the tryptophan effect is unrelated to neuronal firing frequency. The data support the hypothesis that serotonin release is proportionate to intracellular serotonin levels.

  10. Role of serotonin in fish reproduction

    PubMed Central

    Prasad, Parvathy; Ogawa, Satoshi; Parhar, Ishwar S.

    2015-01-01

    The neuroendocrine mechanism regulates reproduction through the hypothalamo-pituitary-gonadal (HPG) axis which is evolutionarily conserved in vertebrates. The HPG axis is regulated by a variety of internal as well as external factors. Serotonin, a monoamine neurotransmitter, is involved in a wide range of reproductive functions. In mammals, serotonin regulates sexual behaviors, gonadotropin release and gonadotropin-release hormone (GnRH) secretion. However, the serotonin system in teleost may also play unique role in the control of reproduction as the mechanism of reproductive control in teleosts is not always the same as in the mammalian models. In fish, the serotonin system is also regulated by natural environmental factors as well as chemical substances. In particular, selective serotonin reuptake inhibitors (SSRIs) are commonly detected as pharmaceutical contaminants in the natural environment. Those factors may influence fish reproductive functions via the serotonin system. This review summarizes the functional significance of serotonin in the teleosts reproduction. PMID:26097446

  11. Imaging neurotransmitter uptake and depletion in astrocytes

    SciTech Connect

    Tan, W. |; Haydon, P.G.; Yeung, E.S.

    1997-08-01

    An ultraviolet (UV) laser-based optical microscope and charge-coupled device (CCD) detection system was used to obtain chemical images of biological cells. Subcellular structures can be easily seen in both optical and fluorescence images. Laser-induced native fluorescence detection provides high sensitivity and low limits of detection, and it does not require coupling to fluorescent dyes. We were able to quantitatively monitor serotonin that has been taken up into and released from individual astrocytes on the basis of its native fluorescence. Different regions of the cells took up different amounts of serotonin with a variety of uptake kinetics. Similarly, we observed different serotonin depletion dynamics in different astrocyte regions. There were also some astrocyte areas where no serotonin uptake or depletion was observed. Potential applications include the mapping of other biogenic species in cells as well as the ability to image their release from specific regions of cells in response to external stimuli. {copyright} {ital 1997} {ital Society for Applied Spectroscopy}

  12. Dopamine blockade and clinical response: Evidence for two biological subgroups of schizophrenia

    SciTech Connect

    Wolkin, A.; Barouche, F.; Wolf, A.P.; Rotrosen, J.; Fowler, J.S.; Shiue, C.Y.; Cooper, T.B.; Brodie, J.D. )

    1989-07-01

    Because CNS neuroleptic concentration cannot be directly measured in patients, the relation between clinical response and extent of dopamine receptor blockade is unknown. This relationship is critical in ascertaining whether nonresponse to neuroleptics is the result merely of inadequate CNS drug levels or of more basic biological differences in pathophysiology. Using ({sup 18}F)N-methylspiroperidol and positron emission tomography, the authors assessed dopamine receptor occupancy in 10 schizophrenic patients before and after treatment with haloperidol. Responders and nonresponders had virtually identical indices of ({sup 18}F)N-methylspiroperidol uptake after treatment, indicating that failure to respond clinically was not a function of neuroleptic uptake or binding in the CNS.

  13. Serotonin in fear conditioning processes.

    PubMed

    Bauer, Elizabeth P

    2015-01-15

    This review describes the latest developments in our understanding of how the serotonergic system modulates Pavlovian fear conditioning, fear expression and fear extinction. These different phases of classical fear conditioning involve coordinated interactions between the extended amygdala, hippocampus and prefrontal cortices. Here, I first define the different stages of learning involved in cued and context fear conditioning and describe the neural circuits underlying these processes. The serotonergic system can be manipulated by administering serotonin receptor agonists and antagonists, as well as selective serotonin reuptake inhibitors (SSRIs), and these can have significant effects on emotional learning and memory. Moreover, variations in serotonergic genes can influence fear conditioning and extinction processes, and can underlie differential responses to pharmacological manipulations. This research has considerable translational significance as imbalances in the serotonergic system have been linked to anxiety and depression, while abnormalities in the mechanisms of conditioned fear contribute to anxiety disorders.

  14. Dopamine and serotonin signaling during two sensitive developmental periods differentially impact adult aggressive and affective behaviors in mice

    PubMed Central

    Yu, Qinghui; Teixeira, Cátia M.; Mahadevia, Darshini; Huang, Yung-Yu; Balsam, Daniel; Mann, J John; Gingrich, Jay A; Ansorge, Mark S.

    2014-01-01

    Pharmacologic blockade of monoamine oxidase A (MAOA) or serotonin transporter (5-HTT) has antidepressant and anxiolytic efficacy in adulthood. Yet, genetically conferred MAOA or 5-HTT hypo-activity is associated with altered aggression and increased anxiety/depression. Here we test the hypothesis that increased monoamine signaling during development causes these paradoxical aggressive and affective phenotypes. We find that pharmacologic MAOA blockade during early postnatal development (P2-P21) but not during peri-adolescence (P22-41) increases anxiety- and depression-like behavior in adult (> P90) mice, mimicking the effect of P2-21 5-HTT inhibition. Moreover, MAOA blockade during peri-adolescence, but not P2-21 or P182-201, increases adult aggressive behavior, and 5-HTT blockade from P22-P41 reduced adult aggression. Blockade of the dopamine transporter, but not the norepinephrine transporter, during P22-41 also increases adult aggressive behavior. Thus, P2-21 is a sensitive period during which 5-HT modulates adult anxiety/depression-like behavior, and P22-41 is a sensitive period during which DA and 5-HT bi-directionally modulate adult aggression. Permanently altered DAergic function as a consequence of increased P22-P41 monoamine signaling might underlie altered aggression. In support of this hypothesis, we find altered aggression correlating positively with locomotor response to amphetamine challenge in adulthood. Proving that altered DA function and aggression are causally linked, we demonstrate that optogenetic activation of VTA DAergic neurons increases aggression. It therefore appears that genetic and pharmacologic factors impacting dopamine and serotonin signaling during sensitive developmental periods can modulate adult monoaminergic function and thereby alter risk for aggressive and emotional dysfunction. PMID:24589889

  15. Serotonin norepinephrine reuptake inhibitors: a pharmacological comparison.

    PubMed

    Sansone, Randy A; Sansone, Lori A

    2014-03-01

    The serotonin norepinephrine reuptake inhibitors are a family of antidepressants that inhibit the reuptake of both serotonin and norepinephrine. While these drugs are traditionally considered a group of inter-related antidepressants based upon reuptake inhibition, they generally display different chemical structures as well as different pharmacological properties. In this article, we discuss these and other differences among the serotonin norepinephrine reuptake inhibitors, including the year of approval by the United States Food and Drug Administration, generic availability, approved clinical indications, half-lives, metabolism and excretion, presence or not of active metabolites, dosing schedules, proportionate effects on serotonin and norepinephrine, and the timing of serotonin and norepinephrine reuptake (i.e., sequential or simultaneous). Again, while serotonin norepinephrine reuptake inhibitors are grouped as a family of antidepressants, they exhibit a surprising number of differences- differences that may ultimately relate to clinical nuances in patient care. PMID:24800132

  16. Central serotonin depletion modulates the behavioural, endocrine and physiological responses to repeated social stress and subsequent c-fos expression in the brains of male rats.

    PubMed

    Chung, K K; Martinez, M; Herbert, J

    1999-01-01

    Intraspecific confrontation has been used to study effect of depleting central serotonin on the adaptation of male rats to repeated social stress (social defeat). Four groups of adult male rats were used (serotonin depletion/sham: stressed; serotonin depletion/sham: non-stressed). Central serotonin was reduced (by 59-97%) by a single infusion of the neurotoxin 5,7-dihydroxtryptamine (150 microg) into the cerebral ventricles; levels of dopamine and noradrenaline were unaltered (rats received appropriate uptake blockers prior to neurotoxic infusions). Sham-operated animals received solute only. Rats were then either exposed daily for 10 days to a second larger aggressive male in the latter's home cage, or simply transferred to an empty cage (control procedure). Rats with reduced serotonin failed to show the increased freezing behaviour during the pre-defeat phase of the social interaction test characteristic of sham animals. There was no change in the residents' behaviour. Core temperature increased during aggressive interaction in sham rats, and this did not adapt with repeated stress. By contrast, stress-induced hyperthermia was accentuated in serotonin-reduced rats as the number of defeat sessions increased. Basal core temperature was unaffected by serotonin depletion. Heart rate increased during social defeat, but this did not adapt with repeated stress; serotonin depletion had no effect on this cardiovascular response. Basal corticosterone was increased in serotonin-depleted rats, but the progressive reduction in stress response over days was not altered. C-fos expression in the brain was not altered in control (non-stressed) rats by serotonin reduction in the areas examined, but there was increased expression after repeated social stress in the medial amygdala of 5-HT depleted rats. These experiments show that reduction of serotonin alters responses to repeated social stress in male rats, and suggests a role for serotonin in the adaptive process. PMID:10408610

  17. Central serotonin depletion modulates the behavioural, endocrine and physiological responses to repeated social stress and subsequent c-fos expression in the brains of male rats.

    PubMed

    Chung, K K; Martinez, M; Herbert, J

    1999-01-01

    Intraspecific confrontation has been used to study effect of depleting central serotonin on the adaptation of male rats to repeated social stress (social defeat). Four groups of adult male rats were used (serotonin depletion/sham: stressed; serotonin depletion/sham: non-stressed). Central serotonin was reduced (by 59-97%) by a single infusion of the neurotoxin 5,7-dihydroxtryptamine (150 microg) into the cerebral ventricles; levels of dopamine and noradrenaline were unaltered (rats received appropriate uptake blockers prior to neurotoxic infusions). Sham-operated animals received solute only. Rats were then either exposed daily for 10 days to a second larger aggressive male in the latter's home cage, or simply transferred to an empty cage (control procedure). Rats with reduced serotonin failed to show the increased freezing behaviour during the pre-defeat phase of the social interaction test characteristic of sham animals. There was no change in the residents' behaviour. Core temperature increased during aggressive interaction in sham rats, and this did not adapt with repeated stress. By contrast, stress-induced hyperthermia was accentuated in serotonin-reduced rats as the number of defeat sessions increased. Basal core temperature was unaffected by serotonin depletion. Heart rate increased during social defeat, but this did not adapt with repeated stress; serotonin depletion had no effect on this cardiovascular response. Basal corticosterone was increased in serotonin-depleted rats, but the progressive reduction in stress response over days was not altered. C-fos expression in the brain was not altered in control (non-stressed) rats by serotonin reduction in the areas examined, but there was increased expression after repeated social stress in the medial amygdala of 5-HT depleted rats. These experiments show that reduction of serotonin alters responses to repeated social stress in male rats, and suggests a role for serotonin in the adaptive process.

  18. Sugammadex: A Review of Neuromuscular Blockade Reversal.

    PubMed

    Keating, Gillian M

    2016-07-01

    Sugammadex (Bridion(®)) is a modified γ-cyclodextrin that reverses the effect of the steroidal nondepolarizing neuromuscular blocking agents rocuronium and vecuronium. Intravenous sugammadex resulted in rapid, predictable recovery from moderate and deep neuromuscular blockade in patients undergoing surgery who received rocuronium or vecuronium. Recovery from moderate neuromuscular blockade was significantly faster with sugammadex 2 mg/kg than with neostigmine, and recovery from deep neuromuscular blockade was significantly faster with sugammadex 4 mg/kg than with neostigmine or spontaneous recovery. In addition, recovery from neuromuscular blockade was significantly faster when sugammadex 16 mg/kg was administered 3 min after rocuronium than when patients spontaneously recovered from succinylcholine. Sugammadex also demonstrated efficacy in various special patient populations, including patients with pulmonary disease, cardiac disease, hepatic dysfunction or myasthenia gravis and morbidly obese patients. Intravenous sugammadex was generally well tolerated. In conclusion, sugammadex is an important option for the rapid reversal of rocuronium- or vecuronium-induced neuromuscular blockade. PMID:27324403

  19. Hypoxia directly increases serotonin transport by porcine pulmonary artery endothelial cell (PAEC) plasma membrane vesicles

    SciTech Connect

    Bhat, G.B.; Block, E.R. )

    1990-02-26

    Alterations in the physical state and composition of membrane lipids have been shown to interfere with a number of critical cellular and membrane functions including transmembrane transport. The authors have reported that hypoxia has profound effects upon the physical state and lipid composition of the PAEC plasma membrane bilayer and have suggested that this is responsible for increased serotonin uptake by these cells. In order to determine whether hypoxia has a direct effect on the plasma membrane transport of serotonin, they measured serotonin transport activity (1) in plasma membrane vesicles isolated from normoxic (20% O{sub 2}-5% CO{sub 2}) and hypoxic (0% O{sub 2}-5% CO{sub 2}) PAEC and (2) in PAEC plasma membrane vesicles that were exposed directly to normoxia or hypoxia. A 24-h exposure of PAEC to hypoxia resulted in a 40% increase in specific serotonin transport by plasma membrane vesicles derived from these cells. When plasma membrane vesicles were isolated and then directly exposed to normoxia or hypoxia for 1 h at 37C, a 31% increase in specific 5-HT transport was observed in hypoxic vesicles. Hypoxia did not alter the Km of serotonin transport (normoxia = 3.47 {mu}M versus hypoxia = 3.76 {mu}M) but markedly increased the maximal rate of transport (V{sup max}) (normoxia = 202.4 pmol/min/mg protein versus hypoxia = 317.9 pmol/min/mg protein). These results indicate that hypoxia increases serotonin transport in PAEC by a direct effect on the plasma membrane leading to an increase in the effective number of transporter molecules without alteration in transporter affinity for serotonin.

  20. Localization of serotonin in the nervous system of Biomphalaria glabrata, an intermediate host for schistosomiasis.

    PubMed

    Delgado, Nadia; Vallejo, Deborah; Miller, Mark W

    2012-10-01

    The digenetic trematode Schistosoma mansoni that causes the form of schistosomiasis found in the Western Hemisphere requires the freshwater snail Biomphalaria glabrata as its primary intermediate host. It has been proposed that the transition from the free-living S. mansoni miracidium to parasitic mother sporocyst depends on uptake of biogenic amines, e.g. serotonin, from the snail host. However, little is known about potential sources of serotonin in B. glabrata tissues. This investigation examined the localization of serotonin-like immunoreactivity (5HTli) in the central nervous system (CNS) and peripheral tissues of B. glabrata. Emphasis was placed on the cephalic and anterior pedal regions that are commonly the sites of S. mansoni miracidium penetration. The anterior foot and body wall were densely innervated by 5HTli fibers but no peripheral immunoreactive neuronal somata were detected. Within the CNS, clusters of 5HTli neurons were observed in the cerebral, pedal, left parietal, and visceral ganglia, suggesting that the peripheral serotonergic fibers originate from the CNS. Double-labeling experiments (biocytin backfill × serotonin immunoreactivity) of the tentacular nerve and the three major pedal nerves (Pd n. 10, Pd n. 11, and Pd n. 12) disclosed central neurons that project to the cephalopedal periphery. Overall, the central distribution of 5HTli neurons suggests that, as in other gastropods, serotonin regulates the locomotion, reproductive, and feeding systems of Biomphalaria. The projections to the foot and body wall indicate that serotonin may also participate in defensive, nociceptive, or inflammation responses. These observations identify potential sources of host-derived serotonin in this parasite-host system. Inc. PMID:22434538

  1. Listeria monocytogenes Inhibits Serotonin Transporter in Human Intestinal Caco-2 Cells.

    PubMed

    Latorre, E; Pradilla, A; Chueca, B; Pagán, R; Layunta, E; Alcalde, A I; Mesonero, J E

    2016-10-01

    Listeria monocytogenes is a Gram-positive bacterium that can cause a serious infection. Intestinal microorganisms have been demonstrated to contribute to intestinal physiology not only through immunological responses but also by modulating the intestinal serotonergic system. Serotonin (5-HT) is a neuromodulator that is synthesized in the intestinal epithelium and regulates the whole intestinal physiology. The serotonin transporter (SERT), located in enterocytes, controls intestinal 5-HT availability and therefore serotonin's effects. Infections caused by L. monocytogenes are well described as being due to the invasion of intestinal epithelial cells; however, the effect of L. monocytogenes on the intestinal epithelium remains unknown. The main aim of this work, therefore, was to study the effect of L. monocytogenes on SERT. Caco2/TC7 cell line was used as an enterocyte-like in vitro model, and SERT functional and molecular expression assays were performed. Our results demonstrate that living L. monocytogenes inhibits serotonin uptake by reducing SERT expression at the brush border membrane. However, neither inactivated L. monocytogenes nor soluble metabolites were able to affect SERT. The results also demonstrate that L. monocytogenes yields TLR2 and TLR10 transcriptional changes in intestinal epithelial cells and suggest that TLR10 is potentially involved in the inhibitory effect observed on SERT. Therefore, L. monocytogenes, through TLR10-mediated SERT inhibition, may induce increased intestinal serotonin availability and potentially contributing to intestinal physiological changes and the initiation of the inflammatory response.

  2. Listeria monocytogenes Inhibits Serotonin Transporter in Human Intestinal Caco-2 Cells.

    PubMed

    Latorre, E; Pradilla, A; Chueca, B; Pagán, R; Layunta, E; Alcalde, A I; Mesonero, J E

    2016-10-01

    Listeria monocytogenes is a Gram-positive bacterium that can cause a serious infection. Intestinal microorganisms have been demonstrated to contribute to intestinal physiology not only through immunological responses but also by modulating the intestinal serotonergic system. Serotonin (5-HT) is a neuromodulator that is synthesized in the intestinal epithelium and regulates the whole intestinal physiology. The serotonin transporter (SERT), located in enterocytes, controls intestinal 5-HT availability and therefore serotonin's effects. Infections caused by L. monocytogenes are well described as being due to the invasion of intestinal epithelial cells; however, the effect of L. monocytogenes on the intestinal epithelium remains unknown. The main aim of this work, therefore, was to study the effect of L. monocytogenes on SERT. Caco2/TC7 cell line was used as an enterocyte-like in vitro model, and SERT functional and molecular expression assays were performed. Our results demonstrate that living L. monocytogenes inhibits serotonin uptake by reducing SERT expression at the brush border membrane. However, neither inactivated L. monocytogenes nor soluble metabolites were able to affect SERT. The results also demonstrate that L. monocytogenes yields TLR2 and TLR10 transcriptional changes in intestinal epithelial cells and suggest that TLR10 is potentially involved in the inhibitory effect observed on SERT. Therefore, L. monocytogenes, through TLR10-mediated SERT inhibition, may induce increased intestinal serotonin availability and potentially contributing to intestinal physiological changes and the initiation of the inflammatory response. PMID:27488594

  3. Observation of ionic Coulomb blockade in nanopores

    NASA Astrophysics Data System (ADS)

    Feng, Jiandong; Liu, Ke; Graf, Michael; Dumcenco, Dumitru; Kis, Andras; di Ventra, Massimiliano; Radenovic, Aleksandra

    2016-08-01

    Emergent behaviour from electron-transport properties is routinely observed in systems with dimensions approaching the nanoscale. However, analogous mesoscopic behaviour resulting from ionic transport has so far not been observed, most probably because of bottlenecks in the controlled fabrication of subnanometre nanopores for use in nanofluidics. Here, we report measurements of ionic transport through a single subnanometre pore junction, and the observation of ionic Coulomb blockade: the ionic counterpart of the electronic Coulomb blockade observed for quantum dots. Our findings demonstrate that nanoscopic, atomically thin pores allow for the exploration of phenomena in ionic transport, and suggest that nanopores may also further our understanding of transport through biological ion channels.

  4. Atomic Fock state preparation using Rydberg blockade.

    PubMed

    Ebert, Matthew; Gill, Alexander; Gibbons, Michael; Zhang, Xianli; Saffman, Mark; Walker, Thad G

    2014-01-31

    We use coherent excitation of 3-16 atom ensembles to demonstrate collective Rabi flopping mediated by Rydberg blockade. Using calibrated atom number measurements, we quantitatively confirm the expected √N Rabi frequency enhancement to within 4%. The resulting atom number distributions are consistent with an essentially perfect blockade. We then use collective Rabi π pulses to produce N=1, 2 atom number Fock states with fidelities of 62% and 48%, respectively. The N=2 Fock state shows the collective Rabi frequency enhancement without corruption from atom number fluctuations.

  5. Serotonin: Modulator of a Drive to Withdraw

    ERIC Educational Resources Information Center

    Tops, Mattie; Russo, Sascha; Boksem, Maarten A. S.; Tucker, Don M.

    2009-01-01

    Serotonin is a fundamental neuromodulator in both vertebrate and invertebrate nervous systems, with a suspected role in many human mental disorders. Yet, because of the complexity of serotonergic function, researchers have been unable to agree on a general theory. One function suggested for serotonin systems is the avoidance of threat. We propose…

  6. How serotonin shapes moral judgment and behavior

    PubMed Central

    Siegel, Jenifer Z; Crockett, Molly J

    2013-01-01

    Neuroscientists are now discovering how hormones and brain chemicals shape social behavior, opening potential avenues for pharmacological manipulation of ethical values. Here, we review recent studies showing how altering brain chemistry can alter moral judgment and behavior, focusing in particular on the neuromodulator serotonin and its role in shaping values related to harm and fairness. We synthesize previous findings and consider the potential mechanisms through which serotonin could increase the aversion to harming others. We present a process model whereby serotonin influences social behavior by shifting social preferences in the positive direction, enhancing the value people place on others’ outcomes. This model may explain previous findings relating serotonin function to prosocial behavior, and makes new predictions regarding how serotonin may influence the neural computation of value in social contexts. PMID:25627116

  7. Rave drug (ecstasy) and selective serotonin reuptake inhibitor anti-depressants.

    PubMed

    Singh, A N; Catalan, J

    2000-04-01

    3, 4 Methylenedioxymethamphetamine (MDMA) also known as Ecstasy is a common recreational drug of abuse and reports of abuse of tricyclic antidepressants are also known. We report two cases of misuse of selective serotonin re-uptake inhibitors (SSRIs) antidepressants in combination with Ecstasy and their beneficial subjective effects experienced by misusers. We hypothesise the probable underlying pharmacological reasons and recommend its use in the treatment of neurotoxic effects of MDMA.

  8. Serotonin, neural markers, and memory

    PubMed Central

    Meneses, Alfredo

    2015-01-01

    Diverse neuropsychiatric disorders present dysfunctional memory and no effective treatment exits for them; likely as result of the absence of neural markers associated to memory. Neurotransmitter systems and signaling pathways have been implicated in memory and dysfunctional memory; however, their role is poorly understood. Hence, neural markers and cerebral functions and dysfunctions are revised. To our knowledge no previous systematic works have been published addressing these issues. The interactions among behavioral tasks, control groups and molecular changes and/or pharmacological effects are mentioned. Neurotransmitter receptors and signaling pathways, during normal and abnormally functioning memory with an emphasis on the behavioral aspects of memory are revised. With focus on serotonin, since as it is a well characterized neurotransmitter, with multiple pharmacological tools, and well characterized downstream signaling in mammals' species. 5-HT1A, 5-HT4, 5-HT5, 5-HT6, and 5-HT7 receptors as well as SERT (serotonin transporter) seem to be useful neural markers and/or therapeutic targets. Certainly, if the mentioned evidence is replicated, then the translatability from preclinical and clinical studies to neural changes might be confirmed. Hypothesis and theories might provide appropriate limits and perspectives of evidence. PMID:26257650

  9. Neuromuscular blockade in the elderly patient

    PubMed Central

    Lee, Luis A; Athanassoglou, Vassilis; Pandit, Jaideep J

    2016-01-01

    Neuromuscular blockade is a desirable or even essential component of general anesthesia for major surgical operations. As the population continues to age, and more operations are conducted in the elderly, due consideration must be given to neuromuscular blockade in these patients to avoid possible complications. This review considers the pharmacokinetics and pharmacodynamics of neuromuscular blockade that may be altered in the elderly. Compartment distribution, metabolism, and excretion of drugs may vary due to age-related changes in physiology, altering the duration of action with a need for reduced dosage (eg, aminosteroids). Other drugs (atracurium, cisatracurium) have more reliable duration of action and should perhaps be considered for use in the elderly. The range of interpatient variability that neuromuscular blocking drugs may exhibit is then considered and drugs with a narrower range, such as cisatracurium, may produce more predictable, and inherently safer, outcomes. Ultimately, appropriate neuromuscular monitoring should be used to guide the administration of muscle relaxants so that the risk of residual neuromuscular blockade postoperatively can be minimized. The reliability of various monitoring is considered. This paper concludes with a review of the various reversal agents, namely, anticholinesterase drugs and sugammadex, and the alterations in dosing of these that should be considered for the elderly patient. PMID:27382330

  10. Nonequilibrium dephasing in Coulomb blockaded quantum dots.

    PubMed

    Altland, Alexander; Egger, Reinhold

    2009-01-16

    We present a theory of zero-bias anomalies and dephasing rates for a Coulomb-blockaded quantum dot, driven out of equilibrium by coupling to voltage biased source and drain leads. We interpret our results in terms of the statistics of voltage fluctuations in the system.

  11. The norepinephrine reuptake inhibitor reboxetine is more potent in treating murine narcoleptic episodes than the serotonin reuptake inhibitor escitalopram.

    PubMed

    Schmidt, Christian; Leibiger, Judith; Fendt, Markus

    2016-07-15

    One of the major symptoms of narcolepsy is cataplexy, a sudden loss of muscle tone. Despite the advances in understanding the neuropathology of narcolepsy, cataplexy is still treated symptomatically with antidepressants. Here, we investigate in a murine narcolepsy model the hypothesis that the antidepressants specifically blocking norepinephrine reuptake are more potent in treating narcoleptic episodes than the antidepressants blocking of serotonin reuptake. Furthermore, we tested the effects of α1 receptor stimulation and blockade, respectively, on narcoleptic episodes. Orexin-deficient mice were treated with different doses of the norepinephrine reuptake inhibitor reboxetine, the serotonin reuptake inhibitor escitalopram, the α1 receptor agonist cirazoline or the α1 receptor antagonist prazosin. The effect of these treatments on narcoleptic episodes was tested. Additionally, potential treatment effects on locomotor activity in an open-field were tested. Reboxetine (doses ≥0.55mg/kg) as well as escitalopram (doses ≥3.0mg/kg) dose-dependently reduced the number of narcoleptic episodes in orexin-deficient mice. The ED50 for reboxetine (0.012mg/kg) was significantly lower than for escitalopram (0.44mg/kg). Cirazoline and prazosin did not affect narcoleptic episodes. Furthermore, cirazoline but not the other compounds reduced locomotor activity of the mice. The present study strongly supports the hypothesis that a specific blockade of norepinephrine reuptake is more potent in treating cataplexy than a specific blockade of serotonin reuptake. This argues for the development of more specific norepinephrine reuptake inhibitors for the treatment of narcolepsy. PMID:27118715

  12. Common Drugs Inhibit Human Organic Cation Transporter 1 (OCT1)-Mediated Neurotransmitter Uptake

    PubMed Central

    Boxberger, Kelli H.; Hagenbuch, Bruno

    2014-01-01

    The human organic cation transporter 1 (OCT1) is a polyspecific transporter involved in the uptake of positively charged and neutral small molecules in the liver. To date, few endogenous compounds have been identified as OCT1 substrates; more importantly, the effect of drugs on endogenous substrate transport has not been examined. In this study, we established monoamine neurotransmitters as substrates for OCT1, specifically characterizing serotonin transport in human embryonic kidney 293 cells. Kinetic analysis yielded a Km of 197 micomolar and a Vmax of 561 pmol/mg protein/minute for serotonin. Furthermore, we demonstrated that serotonin uptake was inhibited by diphenhydramine, fluoxetine, imatinib, and verapamil, with IC50 values in the low micromolar range. These results were recapitulated in primary human hepatocytes, suggesting that OCT1 plays a significant role in hepatic elimination of serotonin and that xenobiotics may alter the elimination of endogenous compounds as a result of interactions at the transporter level. PMID:24688079

  13. Immunohistochemical location of serotonin and serotonin 2B receptor in the small intestine of pigs.

    PubMed

    Zhang, Han; Zhang, Tao; Wang, Lei; Teng, Kedao

    2009-01-01

    The distribution of serotonin and serotonin 2B receptor in the small intestines of pigs newborn, 5, 15 and 100 days of age were examined qualitatively and quantitatively by immunohistochemical labeling, microscopic observation and image analysis. The results showed serotonin immunopositive cells distributed diffusely among the epithelial cells of the middle and more basal parts of villi and intestinal glands in all segments of all pigs examined. Serotonin 2B receptor was first localized in the duodenum of 15-day-old pigs, whereas in 100-day-old pigs, serotonin 2B receptor was immunolabeled abundantly in all segments. Serotonin 2B receptor was distributed in the connective tissue of the small intestinal mucosa, lamina propria and in some myenteric neurons. The density of serotonin 2B receptor immunopositive cells in the duodenum of 100-day-old pigs was higher than that of 15-day-old pigs. The density of serotonin 2B receptor immunopositive cells in the duodenum was the highest among the three segments of the 100-day-old pigs. The study indicates that the distribution of serotonin 2B receptor is species different in the pig small intestine and the intensity of serotonin 2B receptor becomes stronger as the small intestine matures.

  14. Serotonin shapes risky decision making in monkeys

    PubMed Central

    Kuhn, Cynthia M.; Platt, Michael L.

    2009-01-01

    Some people love taking risks, while others avoid gambles at all costs. The neural mechanisms underlying individual variation in preference for risky or certain outcomes, however, remain poorly understood. Although behavioral pathologies associated with compulsive gambling, addiction and other psychiatric disorders implicate deficient serotonin signaling in pathological decision making, there is little experimental evidence demonstrating a link between serotonin and risky decision making, in part due to the lack of a good animal model. We used dietary rapid tryptophan depletion (RTD) to acutely lower brain serotonin in three macaques performing a simple gambling task for fluid rewards. To confirm the efficacy of RTD experiments, we measured total plasma tryptophan using high-performance liquid chromatography (HPLC) with electrochemical detection. Reducing brain serotonin synthesis decreased preference for the safe option in a gambling task. Moreover, lowering brain serotonin function significantly decreased the premium required for monkeys to switch their preference to the risky option, suggesting that diminished serotonin signaling enhances the relative subjective value of the risky option. These results implicate serotonin in risk-sensitive decision making and, further, suggest pharmacological therapies for treating pathological risk preferences in disorders such as problem gambling and addiction. PMID:19553236

  15. On Disruption of Fear Memory by Reconsolidation Blockade: Evidence from Cannabidiol Treatment

    PubMed Central

    Stern, Cristina A J; Gazarini, Lucas; Takahashi, Reinaldo N; Guimarães, Francisco S; Bertoglio, Leandro J

    2012-01-01

    The search for reconsolidation blockers may uncover clinically relevant drugs for disrupting memories of significant stressful life experiences, such as those underlying the posttraumatic stress disorder. Considering the safety of systemically administered cannabidiol (CBD), the major non-psychotomimetic component of Cannabis sativa, to animals and humans, the present study sought to investigate whether and how this phytocannabinoid (3–30 mg/kg intraperitoneally; i.p.) could mitigate an established memory, by blockade of its reconsolidation, evaluated in a contextual fear-conditioning paradigm in rats. We report that CBD is able to disrupt 1- and 7-days-old memories when administered immediately, but not 6 h, after their retrieval for 3 min, with the dose of 10 mg/kg being the most effective. This effect persists in either case for at least 1 week, but is prevented when memory reactivation was omitted, or when the cannabinoid type-1 receptors were antagonized selectively with AM251 (1.0 mg/kg). Pretreatment with the serotonin type-1A receptor antagonist WAY100635, however, failed to block CBD effects. These results highlight that recent and older fear memories are equally vulnerable to disruption induced by CBD through reconsolidation blockade, with a consequent long-lasting relief in contextual fear-induced freezing. Importantly, this CBD effect is dependent on memory reactivation, restricted to time window of <6 h, and is possibly dependent on cannabinoid type-1 receptor-mediated signaling mechanisms. We also observed that the fear memories disrupted by CBD treatment do not show reinstatement or spontaneous recovery over 22 days. These findings support the view that reconsolidation blockade, rather than facilitated extinction, accounts for the aforementioned CBD results in our experimental conditions. PMID:22549120

  16. Serotonin in animal models of alcoholism.

    PubMed

    Compagnon, P; Ernouf, D; Narcisse, G; Daoust, M

    1993-01-01

    Ethanol naive alcohol preferring rodents have low serotonin transmission. Both pharmacological, biochemical and behavioral studies show that increased serotonin transmission influence reduces ethanol consumption in animals. This paper develops the role of serotonin in different lines of ethanol preferring rats and mice, and shows a regulation of 5-HT1A receptors in alcoholised dependent mice. Different sensitivities to ethanol observed between ethanol-preferring and non-preferring rats or mice seems to be at the root of the maintenance of alcohol intake.

  17. Human serotonin transporter availability predicts fear conditioning.

    PubMed

    Åhs, Fredrik; Frick, Andreas; Furmark, Tomas; Fredrikson, Mats

    2015-12-01

    Serotonin facilitates fear learning in animals. We therefore predicted that individual differences in the capacity to regulate serotonergic transmission in the human neural fear circuit would be inversely related to fear conditioning. The capacity to regulate serotonergic transmission was indexed by serotonin transporter availability measured with [(11)C]-DASB positron emission tomography. Results indicate that lower serotonin transporter availability in the amygdala, insula and dorsal anterior cingulate cortex predicts enhanced conditioned autonomic fear responses. Our finding supports serotonergic modulation of fear conditioning in humans and may aid in understanding susceptibility for developing anxiety conditions such as post-traumatic stress disorder. PMID:25498766

  18. Cognitive inflexibility after prefrontal serotonin depletion.

    PubMed

    Clarke, H F; Dalley, J W; Crofts, H S; Robbins, T W; Roberts, A C

    2004-05-01

    Serotonergic dysregulation within the prefrontal cortex (PFC) is implicated in many neuropsychiatric disorders, but the precise role of serotonin within the PFC is poorly understood. Using a serial discrimination reversal paradigm, we showed that upon reversal, selective serotonin depletion of the marmoset PFC produced perseverative responding to the previously rewarded stimulus without any significant effects on either retention of a discrimination learned preoperatively or acquisition of a novel discrimination postoperatively. These results highlight the importance of prefrontal serotonin in behavioral flexibility and are highly relevant to obsessive-compulsive disorder, schizophrenia, and the cognitive sequelae of drug abuse in which perseveration is prominent.

  19. Serotonin: A New Hope in Alzheimer's Disease?

    PubMed

    Claeysen, Sylvie; Bockaert, Joël; Giannoni, Patrizia

    2015-07-15

    Alzheimer's disease (AD) is the most common form of dementia affecting 35 million individuals worldwide. Current AD treatments provide only brief symptomatic relief. It is therefore urgent to replace this symptomatic approach with a curative one. Increasing serotonin signaling as well as developing molecules that enhance serotonin concentration in the synaptic cleft have been debated as possible therapeutic strategies to slow the progression of AD. In this Viewpoint, we discuss exciting new insights regarding the modulation of serotonin signaling for AD prevention and therapy.

  20. Human serotonin transporter availability predicts fear conditioning.

    PubMed

    Åhs, Fredrik; Frick, Andreas; Furmark, Tomas; Fredrikson, Mats

    2015-12-01

    Serotonin facilitates fear learning in animals. We therefore predicted that individual differences in the capacity to regulate serotonergic transmission in the human neural fear circuit would be inversely related to fear conditioning. The capacity to regulate serotonergic transmission was indexed by serotonin transporter availability measured with [(11)C]-DASB positron emission tomography. Results indicate that lower serotonin transporter availability in the amygdala, insula and dorsal anterior cingulate cortex predicts enhanced conditioned autonomic fear responses. Our finding supports serotonergic modulation of fear conditioning in humans and may aid in understanding susceptibility for developing anxiety conditions such as post-traumatic stress disorder.

  1. Serotonin syndrome: pills, thrills and shoulder aches.

    PubMed

    Proudfoot, Malcolm; Gormley, Joe

    2013-01-01

    This case demonstrates an acute presentation of unwitnessed seizure causing typical injuries. Progress in hospital was complicated by worsening autonomic disturbance and agitation, typical for serotonin syndrome, suspected in light of recent selective serotonin reuptake inhibitor antidepressant initiation. Supportive care required treatment in the intensive care unit setting but full recovery ensued. This case not only reminds clinicians of the potential pitfalls in assessing postictal injured patients, but also that serotonin syndrome requires a high-index of diagnostic suspicion given the range of presenting features. Management ranges from simple withdrawal of the offending agent to specific therapies such as a cyproheptadine. PMID:23429023

  2. Down-regulation of the serotonin transporter in hyperreactive platelets counteracts the pro-thrombotic effect of serotonin

    PubMed Central

    Ziu, Endrit; Mercado, Charles P.; Li, Yicong; Singh, Preeti; Ahmed, Billow A.; Freyaldenhoven, Samuel; Lensing, Shelly; Ware, Jerry; Kilic, Fusun

    2012-01-01

    An elevated plasma concentration of serotonin ([5-HT]) is a common feature of cardiovascular disease often associated with enhanced platelet activation and thrombosis. Whether elevated in vivo plasma 5-HT per se represents an independent risk factor for platelet hyperreactivity or only is an epiphenomenon of cardiovascular disease is poorly understood. We examined in vitro and in vivo platelet function following a 24 hr elevation of plasma [5-HT] in mice. In vivo administration of 5-HT using osmotic minipumps increased plasma [5-HT] in treated mice compared to control mice instrumented with saline loaded pumps. 5-HT infusion did not increase systolic blood pressure, but markers of platelet activation including P-selectin and PEJon/A staining were increased and these findings coincided with the enhanced aggregation of isolated platelets in response to type I fibrillar collagen. Tail bleeding times and the time to occlusion following chemical damage to the carotid artery were shortened in 5-HT-infused mice. 5-HT-infused mice were treated with paroxetine (Prx) to block 5-HT uptake via the serotonin transporter (SERT). Prx lowered platelet [5-HT] and attenuated platelet activation and aggregation. These results and our biochemical indices of enhanced 5-HT intracellular signaling in the platelets of 5-HT-infused mice reveal a mechanistic link between elevated plasma [5-HT], abnormal intracellular 5-HT signaling and accentuated platelet aggregation. Although a down-regulation of the serotonin transporter (SERT) on the platelet surface may counteract the pro-thrombotic influence of elevated plasma [5HT], this compensatory mechanism may fail to prevent the increased thrombotic risk caused by elevated plasma [5-HT]. PMID:22366712

  3. [Cancer immunotherapy by immuno-checkpoint blockade].

    PubMed

    Kawakami, Yutaka

    2015-10-01

    As cancer immunotherapies utilizing anti-tumor T-cell responses, immuno-checkpoint blockade and adoptive T-cell immunotherapy have recently achieved durable responses even in advanced cancer patients with metastases. Administration of antibodies on the T-cell surface, CTLA-4 and PD-1 (or PD-1 ligand PD-L1), resulted in tumor regression of not only melanoma and renal cell cancer which were known to be relatively sensitive to immunotherapy, but also various malignancies including lung, bladder, ovarian, gastric, and head and neck cancers, as well as hematological malignancies such as Hodgkin and B-cell malignant lymphomas. These findings have changed the status of immunotherapy in the development of cancer treatments. Currently, development of combinations employing cancer immunotherapy with immuno-checkpoint blockade, as well as personalized cancer immunotherapy based on the evaluation of pretreatment immune status, are in progress.

  4. Efficient Multiparticle Entanglement via Asymmetric Rydberg Blockade

    SciTech Connect

    Saffman, M.; Moelmer, K.

    2009-06-19

    We present an efficient method for producing N particle entangled states using Rydberg blockade interactions. Optical excitation of Rydberg states that interact weakly, yet have a strong coupling to a second control state is used to achieve state dependent qubit rotations in small ensembles. On the basis of quantitative calculations, we predict that an entangled quantum superposition state of eight atoms can be produced with a fidelity of 84% in cold Rb atoms.

  5. Decreased osteoclastogenesis in serotonin-deficient mice

    PubMed Central

    Chabbi-Achengli, Yasmine; Coudert, Amélie E.; Callebert, Jacques; Geoffroy, Valérie; Côté, Francine; Collet, Corinne; de Vernejoul, Marie-Christine

    2012-01-01

    Peripheral serotonin, synthesized by tryptophan hydroxylase-1 (TPH1), has been shown to play a key role in several physiological functions. Recently, controversy has emerged about whether peripheral serotonin has any effect on bone density and remodeling.We therefore decided to investigate in detail bone remodeling in growing and mature TPH1 knockout mice (TPH1−/−). Bone resorption in TPH1−/− mice, as assessed by biochemical markers and bone histomorphometry, was markedly decreased at both ages. Using bone marrow transplantation, we present evidence that the decrease in bone resorption in TPH1−/− mice is cell-autonomous. Cultures from TPH1−/− in the presence of macrophage colony-stimulating factor and receptor activator for NF-KB ligand (RANKL) displayed fewer osteoclasts, and the decreased differentiation could be rescued by adding serotonin. Our data also provide evidence that in the presence of RANKL, osteoclast precursors express TPH1 and synthesize serotonin. Furthermore, pharmacological inhibition of serotonin receptor 1B with SB224289, and of receptor 2A with ketanserin, also reduced the number of osteoclasts. Our findings reveal that serotonin has an important local action in bone, as it can amplify the effect of RANKL on osteoclastogenesis. PMID:22308416

  6. In vivo binding of /sup 3/H-N-methylspiperone to dopamine and serotonin receptors

    SciTech Connect

    Frost, J.J.; Smith, A.C.; Kuhar, M.J.; Dannals, R.F.; Wagner, H.N. Jr.

    1987-03-09

    /sup 3/H-N-methylspiperone (/sup 3/H-NMSP) was used to label dopamine-2 and serotonin-2 in vivo in the mouse. The striatum/cerebellum binding ratio reached a maximum of 80 eight hours after intravenous administration of /sup 3/H-NMSP. The frontal cortex/cerebellum ratio was 5 one hour after injection. The binding of /sup 3/H-NMSP was saturable in the frontal cortex and cerebellum between doses of 10 and 1000 ..mu..g/kg. Between 0.01 and 10 ..mu..g/kg the ratio total/nonspecific binding increased from 14 to 21. Inhibition of /sup 3/H-NMSP binding in the frontal cortex and striatum by ketanserin, a selective serotonin-2 antagonist, demonstrated that 20% of the total binding in the striatum was to serotonin-2 rectors and 91% of the total binding in the frontal cortex was to serotonin-2 receptors. Compared to /sup 3/H-spiperone, /sup 3/H-NMSP 1) results in a much higher specific/nonspecific binding ratio in the striatum and frontal cortex and 2) displays more than a two-fold higher brain uptake. 18 references, 4 figures.

  7. Transient Serotonin Syndrome Caused by Concurrent Use of Tramadol and Selective Serotonin Reuptake Inhibitor

    PubMed Central

    Shakoor, Muhammad Tariq; Ayub, Samia; Ahad, Abdul; Ayub, Zunaira

    2014-01-01

    Patient: Female, 44 Final Diagnosis: Serotonin syndrome Symptoms: Altered mental status • random spontaneous jerky movements in the extremities • generalized weakness • vomiting Medication: — Clinical Procedure: Holding SSRI and tramdol Specialty: Critical Care Medicine Objective: Rare disease Background: Serotonin syndrome is a potentially life-threatening adverse drug reaction that most commonly results from adverse interactions between drugs. Because serotonin syndrome can be fatal and is often difficult to diagnose, it is vital for health professionals to know about this reaction. We report a typical case of transient serotonin syndrome secondary to tramadol-Citalopram combination. This case report highlights the value of awareness of the early and subtle signs of serotonin syndrome. Case Report: A 44-year-old female with past medical history of chronic pancreatitis, back pain, and major depression was brought to the emergency room (ER) with altered mental status, jerky movements in extremities, generalized weakness, and vomiting. Conclusions: Most physicians are aware of serotonin syndrome secondary to antidepressants but do not think about other classes of medications such as analgesics. Clinicians should also be aware of the possibility of serotonin syndrome when encountering a patient taking serotonergic drugs who presents with characteristic symptoms of serotonin syndrome. PMID:25540831

  8. Immunomodulatory effects mediated by serotonin.

    PubMed

    Arreola, Rodrigo; Becerril-Villanueva, Enrique; Cruz-Fuentes, Carlos; Velasco-Velázquez, Marco Antonio; Garcés-Alvarez, María Eugenia; Hurtado-Alvarado, Gabriela; Quintero-Fabian, Saray; Pavón, Lenin

    2015-01-01

    Serotonin (5-HT) induces concentration-dependent metabolic effects in diverse cell types, including neurons, entherochromaffin cells, adipocytes, pancreatic beta-cells, fibroblasts, smooth muscle cells, epithelial cells, and leukocytes. Three classes of genes regulating 5-HT function are constitutively expressed or induced in these cells: (a) membrane proteins that regulate the response to 5-HT, such as SERT, 5HTR-GPCR, and the 5HT3-ion channels; (b) downstream signaling transduction proteins; and (c) enzymes controlling 5-HT metabolism, such as IDO and MAO, which can generate biologically active catabolites, including melatonin, kynurenines, and kynurenamines. This review covers the clinical and experimental mechanisms involved in 5-HT-induced immunomodulation. These mechanisms are cell-specific and depend on the expression of serotonergic components in immune cells. Consequently, 5-HT can modulate several immunological events, such as chemotaxis, leukocyte activation, proliferation, cytokine secretion, anergy, and apoptosis. The effects of 5-HT on immune cells may be relevant in the clinical outcome of pathologies with an inflammatory component. Major depression, fibromyalgia, Alzheimer disease, psoriasis, arthritis, allergies, and asthma are all associated with changes in the serotonergic system associated with leukocytes. Thus, pharmacological regulation of the serotonergic system may modulate immune function and provide therapeutic alternatives for these diseases.

  9. Immunomodulatory Effects Mediated by Serotonin

    PubMed Central

    Arreola, Rodrigo; Becerril-Villanueva, Enrique; Cruz-Fuentes, Carlos; Velasco-Velázquez, Marco Antonio; Garcés-Alvarez, María Eugenia; Hurtado-Alvarado, Gabriela; Quintero-Fabian, Saray; Pavón, Lenin

    2015-01-01

    Serotonin (5-HT) induces concentration-dependent metabolic effects in diverse cell types, including neurons, entherochromaffin cells, adipocytes, pancreatic beta-cells, fibroblasts, smooth muscle cells, epithelial cells, and leukocytes. Three classes of genes regulating 5-HT function are constitutively expressed or induced in these cells: (a) membrane proteins that regulate the response to 5-HT, such as SERT, 5HTR-GPCR, and the 5HT3-ion channels; (b) downstream signaling transduction proteins; and (c) enzymes controlling 5-HT metabolism, such as IDO and MAO, which can generate biologically active catabolites, including melatonin, kynurenines, and kynurenamines. This review covers the clinical and experimental mechanisms involved in 5-HT-induced immunomodulation. These mechanisms are cell-specific and depend on the expression of serotonergic components in immune cells. Consequently, 5-HT can modulate several immunological events, such as chemotaxis, leukocyte activation, proliferation, cytokine secretion, anergy, and apoptosis. The effects of 5-HT on immune cells may be relevant in the clinical outcome of pathologies with an inflammatory component. Major depression, fibromyalgia, Alzheimer disease, psoriasis, arthritis, allergies, and asthma are all associated with changes in the serotonergic system associated with leukocytes. Thus, pharmacological regulation of the serotonergic system may modulate immune function and provide therapeutic alternatives for these diseases. PMID:25961058

  10. Immunomodulatory effects mediated by serotonin.

    PubMed

    Arreola, Rodrigo; Becerril-Villanueva, Enrique; Cruz-Fuentes, Carlos; Velasco-Velázquez, Marco Antonio; Garcés-Alvarez, María Eugenia; Hurtado-Alvarado, Gabriela; Quintero-Fabian, Saray; Pavón, Lenin

    2015-01-01

    Serotonin (5-HT) induces concentration-dependent metabolic effects in diverse cell types, including neurons, entherochromaffin cells, adipocytes, pancreatic beta-cells, fibroblasts, smooth muscle cells, epithelial cells, and leukocytes. Three classes of genes regulating 5-HT function are constitutively expressed or induced in these cells: (a) membrane proteins that regulate the response to 5-HT, such as SERT, 5HTR-GPCR, and the 5HT3-ion channels; (b) downstream signaling transduction proteins; and (c) enzymes controlling 5-HT metabolism, such as IDO and MAO, which can generate biologically active catabolites, including melatonin, kynurenines, and kynurenamines. This review covers the clinical and experimental mechanisms involved in 5-HT-induced immunomodulation. These mechanisms are cell-specific and depend on the expression of serotonergic components in immune cells. Consequently, 5-HT can modulate several immunological events, such as chemotaxis, leukocyte activation, proliferation, cytokine secretion, anergy, and apoptosis. The effects of 5-HT on immune cells may be relevant in the clinical outcome of pathologies with an inflammatory component. Major depression, fibromyalgia, Alzheimer disease, psoriasis, arthritis, allergies, and asthma are all associated with changes in the serotonergic system associated with leukocytes. Thus, pharmacological regulation of the serotonergic system may modulate immune function and provide therapeutic alternatives for these diseases. PMID:25961058

  11. Neuroimmunomodulatory interactions of norepinephrine and serotonin.

    PubMed

    Walker, R F; Codd, E E

    1985-11-01

    Monoamine neuroleptics alter rodents responses to immunization, suggesting that norepinephrine (NE) and serotonin (5HT) are neuroimmunomodulatory in these animals. Although endocrine factors participate in their mechanism(s) of action, recent studies suggest that NE and 5HT also interact more directly with immunocompetent cells. This review provides an overview of evidence for a direct regulatory link between the nervous and immune systems and further speculates on the process by which NE and 5HT realize in part, their neuroimmunomodulatory potential. Anatomical data show that noradrenergic fibers of the sympathetic nervous system innervate lymphoid organs providing a channel of communication between neurons and lymphocytes. Presumably neural signals transmitted by NE are received by platelets that in turn, transduce them via 5HT into immunomodulatory messages. It is proposed that NE alters the capacity of platelets to sequester and/or catabolize 5HT, thus regulating its physiologically active pool in the plasma. Macrophages possess a 5HT uptake system, the kinetic properties of which make them sensitive to changes in plasma levels of the amine. Thus, through its ability to regulate plasma levels of 5HT, an immunosuppressive amine with access to macrophages, the nervous system can influence cells involved in antigen recognition. Support for this hypothetical immunomodulatory mechanism is gleaned from clinical and experimental studies. For example, individuals suffering emotional trauma are more susceptible than others to developing physical illness. It is of interest that platelet 5HT pharmacodynamics are often abnormal in patients with psychological disorders characterized by catecholamine deficits. Similar platelet changes have been achieved experimentally by treating rats with catecholamine antimetabolites. Additional support for the hypothesis derives from aging research since 'monoamine imbalance' and immune dysfunction are co-characteristics of senescence. In

  12. Spiperone: evidence for uptake into secretory granules.

    PubMed Central

    Dannies, P S; Rudnick, M S; Fishkes, H; Rudnick, G

    1984-01-01

    Spiperone, a dopamine antagonist widely used as a specific ligand for dopamine and serotonin receptors, is actively accumulated into the F4C1 strain of rat pituitary tumor cells. The accumulation of 10 nM [3H]spiperone was linear for 3 min and reached a steady state after 10 min. Spiperone accumulation was reduced 50% by preincubation with 5 microM reserpine, an inhibitor of biogenic amine transport into secretory granules, and was also blocked by monensin and ammonium chloride, both of which increase the pH of intracellular storage organelles. Uptake was not affected by replacing sodium in the buffer with lithium at equimolar concentrations. Spiperone at 1 microM inhibited by over 50% serotonin transport into membrane vesicles isolated from platelet dense granules; this concentration inhibited the Na+-dependent plasma membrane transport system less than 10%. The data indicate spiperone specifically interacts with the secretory granule amine transport system and suggest that this transport system is found in the F4C1 pituitary cell strain as well as in platelets and neurons. The data also suggest that experiments utilizing spiperone to measure dopamine and serotonin receptors be interpreted with caution. PMID:6584920

  13. Biaryls as potent, tunable dual neurokinin 1 receptor antagonists and serotonin transporter inhibitors.

    PubMed

    Degnan, Andrew P; Tora, George O; Han, Ying; Rajamani, Ramkumar; Bertekap, Robert; Krause, Rudolph; Davis, Carl D; Hu, Joanna; Morgan, Daniel; Taylor, Sarah J; Krause, Kelly; Li, Yu-Wen; Mattson, Gail; Cunningham, Melissa A; Taber, Matthew T; Lodge, Nicholas J; Bronson, Joanne J; Gillman, Kevin W; Macor, John E

    2015-08-01

    Depression is a serious illness that affects millions of patients. Current treatments are associated with a number of undesirable side effects. Neurokinin 1 receptor (NK1R) antagonists have recently been shown to potentiate the antidepressant effects of serotonin-selective reuptake inhibitors (SSRIs) in a number of animal models. Herein we describe the optimization of a biaryl chemotype to provide a series of potent dual NK1R antagonists/serotonin transporter (SERT) inhibitors. Through the choice of appropriate substituents, the SERT/NK1R ratio could be tuned to afford a range of target selectivity profiles. This effort culminated in the identification of an analog that demonstrated oral bioavailability, favorable brain uptake, and efficacy in the gerbil foot tap model. Ex vivo occupancy studies with compound 58 demonstrated the ability to maintain NK1 receptor saturation (>88% occupancy) while titrating the desired level of SERT occupancy (11-84%) via dose selection. PMID:26048800

  14. Photonic nonlinearities via quantum Zeno blockade.

    PubMed

    Sun, Yu-Zhu; Huang, Yu-Ping; Kumar, Prem

    2013-05-31

    Realizing optical-nonlinear effects at a single-photon level is a highly desirable but also extremely challenging task, because of both fundamental and practical difficulties. We present an avenue to surmounting these difficulties by exploiting quantum Zeno blockade in nonlinear optical systems. Considering specifically a lithium-niobate microresonator, we find that a deterministic phase gate can be realized between single photons with near-unity fidelity. Supported by established techniques for fabricating and operating such devices, our approach can provide an enabling tool for all-optical applications in both classical and quantum domains.

  15. Immune checkpoint blockade in lung cancer.

    PubMed

    Somasundaram, Aswin; Socinski, Mark A; Villaruz, Liza C

    2016-08-01

    Immunotherapy has revolutionized the therapeutic landscape of advanced lung cancer. The adaptive immune system has developed a sophisticated method of tumor growth control, but T-cell activation is regulated by various checkpoints. Blockade of the immune checkpoints with therapies targeting the PD-1 pathway, such as nivolumab and pembrolizumab, has been validated as a therapeutic approach in non-small cell lung cancer. Newer therapies and novel combinations are also being evaluated, and the use of biomarkers in conjunction with these drugs is an area of active investigation. This review summarizes the current evidence for the efficacy and safety of the above approaches in the treatment of lung cancer. PMID:27585231

  16. Synapsins differentially control dopamine and serotonin release.

    PubMed

    Kile, Brian M; Guillot, Thomas S; Venton, B Jill; Wetsel, William C; Augustine, George J; Wightman, R Mark

    2010-07-21

    Synapsins are a family of synaptic vesicle proteins that are important for neurotransmitter release. Here we have used triple knock-out (TKO) mice lacking all three synapsin genes to determine the roles of synapsins in the release of two monoamine neurotransmitters, dopamine and serotonin. Serotonin release evoked by electrical stimulation was identical in substantia nigra pars reticulata slices prepared from TKO and wild-type mice. In contrast, release of dopamine in response to electrical stimulation was approximately doubled in striatum of TKO mice, both in vivo and in striatal slices, in comparison to wild-type controls. This was due to loss of synapsin III, because deletion of synapsin III alone was sufficient to increase dopamine release. Deletion of synapsins also increased the sensitivity of dopamine release to extracellular calcium ions. Although cocaine did not affect the release of serotonin from nigral tissue, this drug did enhance dopamine release. Cocaine-induced facilitation of dopamine release was a function of external calcium, an effect that was reduced in TKO mice. We conclude that synapsins play different roles in the control of release of dopamine and serotonin, with release of dopamine being negatively regulated by synapsins, specifically synapsin III, while serotonin release appears to be relatively independent of synapsins. These results provide further support for the concept that synapsin function in presynaptic terminals varies according to the neurotransmitter being released. PMID:20660258

  17. FLUID AND ION SECRETION BY MALPIGHIAN TUBULES OF LARVAL CHIRONOMIDS, Chironomus riparius: EFFECTS OF REARING SALINITY, TRANSPORT INHIBITORS, AND SEROTONIN.

    PubMed

    Zadeh-Tahmasebi, Melika; Bui, Phuong; Donini, Andrew

    2016-10-01

    Larvae of Chironomus riparius respond to ion-poor and brackish water (IPW, BW) conditions by activating ion uptake mechanisms in the anal papillae and reducing ion absorption at the rectum, respectively. The role that the Malpighian tubules play in ion and osmoregulation under these conditions is not known in this species. This study examines rates of fluid secretion and major cation composition of secreted fluid from tubules of C. riparius reared in IPW, freshwater (FW) and BW. Fluid secretion of tubules from FW and BW larvae was similar but tubules from IPW larvae secrete fluid at higher rates, are more sensitive to serotonin stimulation, and the secreted fluid contains less Na(+) . Therefore in IPW, tubules work in concert with anal papillae to eliminate excess water while conserving Na(+) in the hemolymph. Tubules do not appear to play a significant role in ion/osmoregulation under BW. Serotonin immunoreactivity in the nervous system and gastrointestinal tract of larval C. riparius was similar to that seen in mosquito larvae with the exception that the hindgut was devoid of staining. Hemolymph serotonin titer was similar in FW and IPW; hence, serotonin is not responsible for the observed high rates of fluid secretion in IPW. Instead, it is suggested that serotonin may work in a synergistic manner with an unidentified hormonal factor in IPW. Ion transport mechanisms in the tubules of C. riparius are pharmacologically similar to those of other insects.

  18. Sepsis-induced elevation in plasma serotonin facilitates endothelial hyperpermeability

    PubMed Central

    Li, Yicong; Hadden, Coedy; Cooper, Anthonya; Ahmed, Asli; Wu, Hong; Lupashin, Vladimir V.; Mayeux, Philip R.; Kilic, Fusun

    2016-01-01

    Hyperpermeability of the endothelial barrier and resulting microvascular leakage are a hallmark of sepsis. Our studies describe the mechanism by which serotonin (5-HT) regulates the microvascular permeability during sepsis. The plasma 5-HT levels are significantly elevated in mice made septic by cecal ligation and puncture (CLP). 5-HT-induced permeability of endothelial cells was associated with the phosphorylation of p21 activating kinase (PAK1), PAK1-dependent phosphorylation of vimentin (P-vimentin) filaments, and a strong association between P-vimentin and ve-cadherin. These findings were in good agreement with the findings with the endothelial cells incubated in serum from CLP mice. In vivo, reducing the 5-HT uptake rates with the 5-HT transporter (SERT) inhibitor, paroxetine blocked renal microvascular leakage and the decline in microvascular perfusion. Importantly, mice that lack SERT showed significantly less microvascular dysfunction after CLP. Based on these data, we propose that the increased endothelial 5-HT uptake together with 5-HT signaling disrupts the endothelial barrier function in sepsis. Therefore, regulating intracellular 5-HT levels in endothelial cells represents a novel approach in improving sepsis-associated microvascular dysfunction and leakage. These new findings advance our understanding of the mechanisms underlying cellular responses to intracellular/extracellular 5-HT ratio in sepsis and refine current views of these signaling processes during sepsis. PMID:26956613

  19. Sepsis-induced elevation in plasma serotonin facilitates endothelial hyperpermeability.

    PubMed

    Li, Yicong; Hadden, Coedy; Cooper, Anthonya; Ahmed, Asli; Wu, Hong; Lupashin, Vladimir V; Mayeux, Philip R; Kilic, Fusun

    2016-01-01

    Hyperpermeability of the endothelial barrier and resulting microvascular leakage are a hallmark of sepsis. Our studies describe the mechanism by which serotonin (5-HT) regulates the microvascular permeability during sepsis. The plasma 5-HT levels are significantly elevated in mice made septic by cecal ligation and puncture (CLP). 5-HT-induced permeability of endothelial cells was associated with the phosphorylation of p21 activating kinase (PAK1), PAK1-dependent phosphorylation of vimentin (P-vimentin) filaments, and a strong association between P-vimentin and ve-cadherin. These findings were in good agreement with the findings with the endothelial cells incubated in serum from CLP mice. In vivo, reducing the 5-HT uptake rates with the 5-HT transporter (SERT) inhibitor, paroxetine blocked renal microvascular leakage and the decline in microvascular perfusion. Importantly, mice that lack SERT showed significantly less microvascular dysfunction after CLP. Based on these data, we propose that the increased endothelial 5-HT uptake together with 5-HT signaling disrupts the endothelial barrier function in sepsis. Therefore, regulating intracellular 5-HT levels in endothelial cells represents a novel approach in improving sepsis-associated microvascular dysfunction and leakage. These new findings advance our understanding of the mechanisms underlying cellular responses to intracellular/extracellular 5-HT ratio in sepsis and refine current views of these signaling processes during sepsis.

  20. Transient Gain Adjustment in the Inferior Colliculus is Serotonin- and Calcium-dependent

    PubMed Central

    Miko, Ilona J.; Sanes, Dan H.

    2009-01-01

    In the inferior colliculus (IC), a brief period of acoustic conditioning can transiently enhance evoked discharge rate. The cellular basis of this phenomenon was assessed with whole cell current-clamp recordings in a gerbil IC brain slice preparation. The current needed to elicit a single action potential was first established for each neuron. A 5s synaptic stimulus train was delivered to the lateral lemniscus (LL), and followed immediately by the initial current pulse to assess a change in postsynaptic gain. The majority of IC neurons (66%) displayed an increase in current-evoked action potentials (positive gain). Despite the blockade of ionotropic glutamate receptors, this effect was correlated with membrane depolarization that occurred during the synaptic train. The postsynaptic mechanism for positive gain was examined by selective blockade of specific neurotransmitter receptors. Gain in action potentials was enhanced by antagonists of metabotropic glutamate, acetylcholine, GABAA and glycine receptors. In contrast, the gain was blocked or reduced by an antagonist to ionotropic serotonin receptors (5-HT3R). Blocking voltage-activated calcium channels with verapamil also reduced the effect. These results suggest that 5-HT3R activation, coupled with increased intracellular calcium, can transiently alter postsynaptic excitability in IC neurons. PMID:19232535

  1. Dopaminergic agents: influence on serotonin in the molluscan nervous system.

    PubMed

    Stefano, G B; Catapane, E; Aiello, E

    1976-10-29

    Treatment of the mussel Mytilus edulis with 6-hydroxydopamine or with alpha-methyl-p-tyrosine decreased dopamine and increased serotonin in the nervous system. Treatment with dopamine decreased serotonin concentrations and prevented the effect of 6-hydroxydopamine. The serotonin concentration appears to be determined in part by the concentration of dopamine. PMID:973139

  2. Role of serotonin in seasonal affective disorder.

    PubMed

    Gupta, A; Sharma, P K; Garg, V K; Singh, A K; Mondal, S C

    2013-01-01

    This review was prepared with an aim to show role of serotonin in seasonal affective disorder. Seasonal affective disorder, which is also called as winter depression or winter blues, is mood disorder in which persons with normal mental health throughout most of the year will show depressive symptoms in the winter or, less commonly, in the summer. Serotonin is an important endogenous neurotransmitter which also acts as neuromodulator. The least invasive, natural, and researched treatment of seasonal affective disorder is natural or otherwise is light therapy. Negative air ionization, which acts by liberating charged particles on the sleep environment, has also become effective in treatment of seasonal affective disorder.  

  3. Desvenlafaxine succinate: A new serotonin and norepinephrine reuptake inhibitor.

    PubMed

    Deecher, Darlene C; Beyer, Chad E; Johnston, Grace; Bray, Jenifer; Shah, S; Abou-Gharbia, M; Andree, Terrance H

    2006-08-01

    The purpose of this study was to characterize a new chemical entity, desvenlafaxine succinate (DVS). DVS is a novel salt form of the isolated major active metabolite of venlafaxine. Competitive radioligand binding assays were performed using cells expressing either the human serotonin (5-HT) transporter (hSERT) or norepinephrine (NE) transporter (hNET) with K(i) values for DVS of 40.2 +/- 1.6 and 558.4 +/- 121.6 nM, respectively. DVS showed weak binding affinity (62% inhibition at 100 microM) at the human dopamine (DA) transporter. Inhibition of [3H]5-HT or [3H]NE uptake by DVS for the hSERT or hNET produced IC50 values of 47.3 +/- 19.4 and 531.3 +/- 113.0 nM, respectively. DVS (10 microM), examined at a large number of nontransporter targets, showed no significant activity. DVS (30 mg/kg orally) rapidly penetrated the male rat brain and hypothalamus. DVS (30 mg/kg orally) significantly increased extracellular NE levels compared with baseline in the male rat hypothalamus but had no effect on DA levels using microdialysis. To mimic chronic selective serotonin reuptake inhibitor treatment and to block the inhibitory 5-HT(1A) autoreceptors, a 5-HT(1A) antagonist, N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-2-pyridinylcyclo hexanecarboxamide maleate salt (WAY-100635) (0.3 mg/kg s.c.), was administered with DVS (30 mg/kg orally). 5-HT increased 78% compared with baseline with no additional increase in NE or DA levels. In conclusion, DVS is a new 5-HT and NE reuptake inhibitor in vitro and in vivo that demonstrates good brain-to-plasma ratios, suggesting utility in a variety of central nervous system-related disorders.

  4. Electromagnetically induced transparency and fluorescence in blockaded Rydberg atomic system

    SciTech Connect

    Li, Cheng; Zheng, Huaibin; Zhang, Zhaoyang; Yao, Xin; Zhang, Yunzhe; Zhang, Yiqi; Zhang, Yanpeng

    2013-10-28

    We investigate the interaction between dark states and Rydberg excitation blockade by using electromagnetically induced transparency (EIT), fluorescence, and four-wave mixing (FWM) signals both theoretically and experimentally. By scanning the frequency detunings of the probe and dressing fields, respectively, we first observe these signals (three coexisting EIT windows, two fluorescence signals, and two FWM signals) under Rydberg excitation blockade. Next, frequency detuning dependences of these signals are obtained, in which the modulated results are well explained by introducing the dressing effects (leading to the dark states) with the corrected factor of the Rydberg excitation blockade. In addition, the variations by changing the principal quantum number n of Rydberg state shown some interesting phenomena resulting from Rydberg blockade are observed. The unique nature of such blockaded signals can have potential application in the demonstration of quantum computing.

  5. Postsynaptic serotonergic blockade following chronic antidepressive treatment with trazodone in an animal model of depression.

    PubMed

    Hingtgen, J N; Hendrie, H C; Aprison, M H

    1984-03-01

    Acute pretreatment with clinically equivalent doses of antidepressive drugs has been observed to block D,L-5-hydroxytryptophan (5-HTP) induced behavioral depression in rats working on a food-reinforced operant schedule. Data from studies designed to distinguish presynaptic from postsynaptic events, indicated that the antidepressants were acting in part as blockers of postsynaptic serotonergic receptors. Using the same 5-HTP model of depression, we studied both the chronic and acute effects of a recently introduced antidepressant, triazolopyridine compound. Rats working for milk reinforcement and exhibiting behavioral depression following administration of 50 mg/kg 5-HTP were pretreated (one hr before 5-HTP) with 1, 2, or 4 mg/kg trazodone with resulting blockade of 5-HTP induced depression of 35, 62 and 70% respectively. Chronic administration of trazodone (2 mg/kg trazodone/day) also resulted in a significant blockade of the 5-HTP effect (75%). Neither 2 mg/kg or 4 mg/kg trazodone was found to potentiate the shorter period of depression following 25 mg/kg 5-HTP. Chronic treatment with the antidepressant drugs, amitriptyline or mianserin also blocked 5-HTP depression. Thus, as in our earlier studies, these data suggest an important postsynaptic mechanism associated with chronic administration of trazodone, amitriptyline and mianserin which could be implicated in the therapeutic effectiveness of these drugs. The potency of trazodone in relation to other antidepressant drugs in our behavioral model of depression paralleled their potency in displacing radioligand binding to 5-HT receptors, and gives additional support for the new hypersensitive postsynaptic serotonin receptor theory of depression.

  6. Combined unilateral blockade of cholinergic, peptidergic, and serotonergic receptors in the ventral respiratory column does not affect breathing in awake or sleeping goats

    PubMed Central

    Muere, Clarissa; Neumueller, Suzanne; Olesiak, Samantha; Miller, Justin; Langer, Thomas; Hodges, Matthew R.; Pan, Lawrence

    2015-01-01

    Previous work in intact awake and sleeping goats has found that unilateral blockade of excitatory inputs in the ventral respiratory column (VRC) elicits changes in the concentrations of multiple neurochemicals, including serotonin (5-HT), substance P, glycine, and GABA, while increasing or having no effect on breathing. These findings are consistent with the concept of interdependence between neuromodulators, whereby attenuation of one modulator elicits compensatory changes in other modulators to maintain breathing. Because there is a large degree of redundancy and multiplicity of excitatory inputs to the VRC, we herein tested the hypothesis that combined unilateral blockade of muscarinic acetylcholine (mACh), neurokinin-1 (NK1, the receptor for substance P), and 5-HT2A receptors would elicit changes in multiple neurochemicals, but would not change breathing. We unilaterally reverse-dialyzed a cocktail of antagonists targeting these receptors into the VRC of intact adult goats. Breathing was continuously monitored while effluent fluid from dialysis was collected for quantification of neurochemicals. We found that neither double blockade of mACh and NK1 receptors, nor triple blockade of mACh, NK1, and 5-HT2A receptors significantly affected breathing (P ≥ 0.05) in goats that were awake or in non-rapid eye movement (NREM) sleep. However, both double and triple blockade increased the effluent concentration of substance P (P < 0.001) and decreased GABA concentrations. These findings support our hypothesis and, together with past data, suggest that both in wakefulness and NREM sleep, multiple neuromodulator systems collaborate to stabilize breathing when a deficit in one or multiple excitatory neuromodulators exists. PMID:26023224

  7. Interaction of psychoactive tryptamines with biogenic amine transporters and serotonin receptor subtypes

    PubMed Central

    Blough, Bruce E.; Landavazo, Antonio; Decker, Ann M.; Partilla, John S.; Baumann, Michael H.; Rothman, Richard B.

    2014-01-01

    Rationale Synthetic hallucinogenic tryptamines, especially those originally described by Alexander Shulgin, continue to be abused in the United States. The range of subjective experiences produced by different tryptamines suggests that multiple neurochemical mechanisms are involved in their actions, in addition to the established role of agonist activity at serotonin-2A (5-HT2A) receptors. Objectives This study evaluated the interaction of a series of synthetic tryptamines with biogenic amine neurotransmitter transporters and with serotonin (5-HT) receptor subtypes implicated in psychedelic effects. Methods Neurotransmitter transporter activity was determined in rat brain synaptosomes. Receptor activity was determined using calcium mobilization and DiscoveRx PathHunter® assays in HEK293, Gα16-CHO, and CHOk1 cells transfected with human receptors. Results Twenty-one tryptamines were analyzed in transporter uptake and release assays, and 5-HT2A, serotonin 1A (5-HT1A), and 5-HT2A β-arrestin functional assays. Eight of the compounds were found to have 5-HT-releasing activity. Thirteen compounds were found to be 5-HT uptake inhibitors or were inactive. All tryptamines were 5-HT2A agonists with a range of potencies and efficacies, but only a few compounds were 5-HT1A agonists. Most tryptamines recruited β-arrestin through 5-HT2A activation. Conclusions All psychoactive tryptamines are 5-HT2A agonists, but 5-HT transporter (SERT) activity may contribute significantly to the pharmacology of certain compounds. The in vitro transporter data confirm structure-activity trends for releasers and uptake inhibitors whereby releasers tend to be structurally smaller compounds. Interestingly, two tertiary amines were found to be selective substrates at SERT, which dispels the notion that 5-HT-releasing activity is limited only to primary or secondary amines. PMID:24800892

  8. Serotonin in Autism and Pediatric Epilepsies

    ERIC Educational Resources Information Center

    Chugani, Diane C.

    2004-01-01

    Serotonergic abnormalities have been reported in both autism and epilepsy. This association may provide insights into underlying mechanisms of these disorders because serotonin plays an important neurotrophic role during brain development--and there is evidence for abnormal cortical development in both autism and some forms of epilepsy. This…

  9. A current view of serotonin transporters

    PubMed Central

    De Felice, Louis J.

    2016-01-01

    Serotonin transporters (SERTs) are largely recognized for one aspect of their function—to transport serotonin back into the presynaptic terminal after its release. Another aspect of their function, however, may be to generate currents large enough to have physiological consequences. The standard model for electrogenic transport is the alternating access model, in which serotonin is transported with a fixed ratio of co-transported ions resulting in net charge per cycle. The alternating access model, however, cannot account for all the observed currents through SERT or other monoamine transporters.  Furthermore, SERT agonists like ecstasy or antagonists like fluoxetine generate or suppress currents that the standard model cannot support.  Here we survey evidence for a channel mode of transport in which transmitters and ions move through a pore. Available structures for dopamine and serotonin transporters, however, provide no evidence for a pore conformation, raising questions of whether the proposed channel mode actually exists or whether the structural data are perhaps missing a transient open state. PMID:27540474

  10. A current view of serotonin transporters.

    PubMed

    De Felice, Louis J

    2016-01-01

    Serotonin transporters (SERTs) are largely recognized for one aspect of their function-to transport serotonin back into the presynaptic terminal after its release. Another aspect of their function, however, may be to generate currents large enough to have physiological consequences. The standard model for electrogenic transport is the alternating access model, in which serotonin is transported with a fixed ratio of co-transported ions resulting in net charge per cycle. The alternating access model, however, cannot account for all the observed currents through SERT or other monoamine transporters.  Furthermore, SERT agonists like ecstasy or antagonists like fluoxetine generate or suppress currents that the standard model cannot support.  Here we survey evidence for a channel mode of transport in which transmitters and ions move through a pore. Available structures for dopamine and serotonin transporters, however, provide no evidence for a pore conformation, raising questions of whether the proposed channel mode actually exists or whether the structural data are perhaps missing a transient open state. PMID:27540474

  11. Pauli spin blockade in double molecular magnets

    NASA Astrophysics Data System (ADS)

    Płomińska, Anna; Weymann, Ireneusz

    2016-07-01

    The Pauli spin blockade effect in transport through two, coupled in series, single molecular magnets weakly attached to external leads is considered theoretically. By using the real-time diagrammatic technique in the lowest-order perturbation theory with respect to the coupling strength, the behavior of the current and the shot noise is studied in the nonlinear response regime. It is shown that the current suppression occurs due to the occupation of highest-weight spin states of the system. Moreover, transport properties are found to strongly depend on parameters of the double molecular magnet, such as the magnitude of spin, internal exchange interaction and the hopping between the molecules. It is also demonstrated that the current suppression may be accompanied by negative differential conductance and a large super-Poissonian shot noise. The mechanisms leading to those effects are discussed.

  12. Novel drug development for neuromuscular blockade

    PubMed Central

    Prabhakar, Amit; Kaye, Alan D; Wyche, Melville Q; Salinas, Orlando J; Mancuso, Kenneth; Urman, Richard D

    2016-01-01

    Pharmacological advances in anesthesia in recent decades have resulted in safer practice and better outcomes. These advances include improvement in anesthesia drugs with regard to efficacy and safety profiles. Although neuromuscular blockers were first introduced over a half century ago, few new neuromuscular blockers and reversal agents have come to market and even fewer have remained as common clinically employed medications. In recent years, newer agents have been studied and are presented in this review. With regard to nondepolarizer neuromuscular blocker agents, the enantiomers Gantacurium and CW002, which are olefinic isoquinolinium diester fumarates, have shown potential for clinical application. Advantages include ultra rapid reversal of neuromuscular blockade via cysteine adduction and minimal systemic hemodynamic effects with administration. PMID:27625489

  13. Novel drug development for neuromuscular blockade

    PubMed Central

    Prabhakar, Amit; Kaye, Alan D; Wyche, Melville Q; Salinas, Orlando J; Mancuso, Kenneth; Urman, Richard D

    2016-01-01

    Pharmacological advances in anesthesia in recent decades have resulted in safer practice and better outcomes. These advances include improvement in anesthesia drugs with regard to efficacy and safety profiles. Although neuromuscular blockers were first introduced over a half century ago, few new neuromuscular blockers and reversal agents have come to market and even fewer have remained as common clinically employed medications. In recent years, newer agents have been studied and are presented in this review. With regard to nondepolarizer neuromuscular blocker agents, the enantiomers Gantacurium and CW002, which are olefinic isoquinolinium diester fumarates, have shown potential for clinical application. Advantages include ultra rapid reversal of neuromuscular blockade via cysteine adduction and minimal systemic hemodynamic effects with administration.

  14. Novel drug development for neuromuscular blockade.

    PubMed

    Prabhakar, Amit; Kaye, Alan D; Wyche, Melville Q; Salinas, Orlando J; Mancuso, Kenneth; Urman, Richard D

    2016-01-01

    Pharmacological advances in anesthesia in recent decades have resulted in safer practice and better outcomes. These advances include improvement in anesthesia drugs with regard to efficacy and safety profiles. Although neuromuscular blockers were first introduced over a half century ago, few new neuromuscular blockers and reversal agents have come to market and even fewer have remained as common clinically employed medications. In recent years, newer agents have been studied and are presented in this review. With regard to nondepolarizer neuromuscular blocker agents, the enantiomers Gantacurium and CW002, which are olefinic isoquinolinium diester fumarates, have shown potential for clinical application. Advantages include ultra rapid reversal of neuromuscular blockade via cysteine adduction and minimal systemic hemodynamic effects with administration. PMID:27625489

  15. Serotonin toxicity: a practical approach to diagnosis and treatment.

    PubMed

    Isbister, Geoffrey K; Buckley, Nicholas A; Whyte, Ian M

    2007-09-17

    Excess serotonin in the central nervous system leads to a condition commonly referred to as the serotonin syndrome, but better described as a spectrum of toxicity - serotonin toxicity. Serotonin toxicity is characterised by neuromuscular excitation (clonus, hyperreflexia, myoclonus, rigidity), autonomic stimulation (hyperthermia, tachycardia, diaphoresis, tremor, flushing) and changed mental state (anxiety, agitation, confusion). Serotonin toxicity can be: mild (serotonergic features that may or may not concern the patient); moderate (toxicity which causes significant distress and deserves treatment, but is not life-threatening); or severe (a medical emergency characterised by rapid onset of severe hyperthermia, muscle rigidity and multiple organ failure). Diagnosis of serotonin toxicity is often made on the basis of the presence of at least three of Sternbach's 10 clinical features. However, these features have very low specificity. The Hunter Serotonin Toxicity Criteria use a smaller, more specific set of clinical features for diagnosis, including clonus, which has been found to be more specific to serotonin toxicity. There are several drug mechanisms that cause excess serotonin, but severe serotonin toxicity only occurs with combinations of drugs acting at different sites, most commonly including a monoamine oxidase inhibitor and a serotonin reuptake inhibitor. Less severe toxicity occurs with other combinations, overdoses and even single-drug therapy in susceptible individuals. Treatment should focus on cessation of the serotonergic medication and supportive care. Some antiserotonergic agents have been used in clinical practice, but the preferred agent, dose and indications are not well defined.

  16. Intra- and Interhemispheric Propagation of Electrophysiological Synchronous Activity and Its Modulation by Serotonin in the Cingulate Cortex of Juvenile Mice.

    PubMed

    Rovira, Víctor; Geijo-Barrientos, Emilio

    2016-01-01

    Disinhibition of the cortex (e.g., by GABA -receptor blockade) generates synchronous and oscillatory electrophysiological activity that propagates along the cortex. We have studied, in brain slices of the cingulate cortex of mice (postnatal age 14-20 days), the propagation along layer 2/3 as well as the interhemispheric propagation through the corpus callosum of synchronous discharges recorded extracellularly and evoked in the presence of 10 μM bicuculline by electrical stimulation of layer 1. The latency of the responses obtained at the same distance from the stimulus electrode was longer in anterior cingulate cortex (ACC: 39.53 ± 2.83 ms, n = 7) than in retrosplenial cortex slices (RSC: 21.99 ± 2.75 ms, n = 5; p<0.05), which is equivalent to a lower propagation velocity in the dorso-ventral direction in ACC than in RSC slices (43.0 mm/s vs 72.9 mm/s). We studied the modulation of this propagation by serotonin. Serotonin significantly increased the latency of the intracortical synchronous discharges (18.9% in the ipsilateral hemisphere and 40.2% in the contralateral hemisphere), and also increased the interhemispheric propagation time by 86.4%. These actions of serotonin were mimicked by the activation of either 5-HT1B or 5-HT2A receptors, but not by the activation of the 5-HT1A subtype. These findings provide further knowledge about the propagation of synchronic electrical activity in the cerebral cortex, including its modulation by serotonin, and suggest the presence of deep differences between the ACC and RSC in the structure of the local cortical microcircuits underlying the propagation of synchronous discharges.

  17. Intra- and Interhemispheric Propagation of Electrophysiological Synchronous Activity and Its Modulation by Serotonin in the Cingulate Cortex of Juvenile Mice

    PubMed Central

    Rovira, Víctor; Geijo-Barrientos, Emilio

    2016-01-01

    Disinhibition of the cortex (e.g., by GABA -receptor blockade) generates synchronous and oscillatory electrophysiological activity that propagates along the cortex. We have studied, in brain slices of the cingulate cortex of mice (postnatal age 14–20 days), the propagation along layer 2/3 as well as the interhemispheric propagation through the corpus callosum of synchronous discharges recorded extracellularly and evoked in the presence of 10 μM bicuculline by electrical stimulation of layer 1. The latency of the responses obtained at the same distance from the stimulus electrode was longer in anterior cingulate cortex (ACC: 39.53 ± 2.83 ms, n = 7) than in retrosplenial cortex slices (RSC: 21.99 ± 2.75 ms, n = 5; p<0.05), which is equivalent to a lower propagation velocity in the dorso-ventral direction in ACC than in RSC slices (43.0 mm/s vs 72.9 mm/s). We studied the modulation of this propagation by serotonin. Serotonin significantly increased the latency of the intracortical synchronous discharges (18.9% in the ipsilateral hemisphere and 40.2% in the contralateral hemisphere), and also increased the interhemispheric propagation time by 86.4%. These actions of serotonin were mimicked by the activation of either 5-HT1B or 5-HT2A receptors, but not by the activation of the 5-HT1A subtype. These findings provide further knowledge about the propagation of synchronic electrical activity in the cerebral cortex, including its modulation by serotonin, and suggest the presence of deep differences between the ACC and RSC in the structure of the local cortical microcircuits underlying the propagation of synchronous discharges. PMID:26930051

  18. Intra- and Interhemispheric Propagation of Electrophysiological Synchronous Activity and Its Modulation by Serotonin in the Cingulate Cortex of Juvenile Mice.

    PubMed

    Rovira, Víctor; Geijo-Barrientos, Emilio

    2016-01-01

    Disinhibition of the cortex (e.g., by GABA -receptor blockade) generates synchronous and oscillatory electrophysiological activity that propagates along the cortex. We have studied, in brain slices of the cingulate cortex of mice (postnatal age 14-20 days), the propagation along layer 2/3 as well as the interhemispheric propagation through the corpus callosum of synchronous discharges recorded extracellularly and evoked in the presence of 10 μM bicuculline by electrical stimulation of layer 1. The latency of the responses obtained at the same distance from the stimulus electrode was longer in anterior cingulate cortex (ACC: 39.53 ± 2.83 ms, n = 7) than in retrosplenial cortex slices (RSC: 21.99 ± 2.75 ms, n = 5; p<0.05), which is equivalent to a lower propagation velocity in the dorso-ventral direction in ACC than in RSC slices (43.0 mm/s vs 72.9 mm/s). We studied the modulation of this propagation by serotonin. Serotonin significantly increased the latency of the intracortical synchronous discharges (18.9% in the ipsilateral hemisphere and 40.2% in the contralateral hemisphere), and also increased the interhemispheric propagation time by 86.4%. These actions of serotonin were mimicked by the activation of either 5-HT1B or 5-HT2A receptors, but not by the activation of the 5-HT1A subtype. These findings provide further knowledge about the propagation of synchronic electrical activity in the cerebral cortex, including its modulation by serotonin, and suggest the presence of deep differences between the ACC and RSC in the structure of the local cortical microcircuits underlying the propagation of synchronous discharges. PMID:26930051

  19. Consideration of allosterism and interacting proteins in the physiological functions of the serotonin transporter.

    PubMed

    Zhong, Huailing; Sánchez, Connie; Caron, Marc G

    2012-02-15

    The serotonin transporter (SERT) functions to transport serotonin (5-HT) from the extracellular space into neurons to maintain homeostatic control of 5-HT. It is the molecular target for selective serotonin reuptake inhibitor (SSRI) antidepressants. Preclinical research has shown that some SERT inhibitors can bind to two distinct binding sites on the SERT, a primary high affinity binding site and a low affinity allosteric binding site. Mutational studies of the SERT and computational modeling methods with escitalopram resulted in the identification of key amino acid residues important for the function of the allosteric binding site. While this allosteric binding site appears to influence the clinical efficacy of escitalopram under physiological conditions, the molecular mechanism of this effect is still poorly understood and may involve a large network of protein-protein interactions with the SERT. Dynamic interfaces between the SERT and the SERT interacting proteins (SIPs) potentially influence not only the SERT on its uptake function, its regulation, and trafficking, but also on known as well as yet to be identified non-canonical signaling pathways through SIPs. In this commentary, we outline approaches in the areas of selective small-molecule allosteric compound discovery, biochemistry, in vivo genetic knock-in mouse models, as well as computational and structural biology. These studies of the intra-molecular allosteric modulation of the SERT in the context of the myriad of potential inter-molecular signaling interactions with SIPs may help uncover unknown physiological functions of the SERT.

  20. Oligonucleotide-induced alternative splicing of serotonin 2C receptor reduces food intake.

    PubMed

    Zhang, Zhaiyi; Shen, Manli; Gresch, Paul J; Ghamari-Langroudi, Masoud; Rabchevsky, Alexander G; Emeson, Ronald B; Stamm, Stefan

    2016-01-01

    The serotonin 2C receptor regulates food uptake, and its activity is regulated by alternative pre-mRNA splicing. Alternative exon skipping is predicted to generate a truncated receptor protein isoform, whose existence was confirmed with a new antiserum. The truncated receptor sequesters the full-length receptor in intracellular membranes. We developed an oligonucleotide that promotes exon inclusion, which increases the ratio of the full-length to truncated receptor protein. Decreasing the amount of truncated receptor results in the accumulation of full-length, constitutively active receptor at the cell surface. After injection into the third ventricle of mice, the oligonucleotide accumulates in the arcuate nucleus, where it changes alternative splicing of the serotonin 2C receptor and increases pro-opiomelanocortin expression. Oligonucleotide injection reduced food intake in both wild-type and ob/ob mice. Unexpectedly, the oligonucleotide crossed the blood-brain barrier and its systemic delivery reduced food intake in wild-type mice. The physiological effect of the oligonucleotide suggests that a truncated splice variant regulates the activity of the serotonin 2C receptor, indicating that therapies aimed to change pre-mRNA processing could be useful to treat hyperphagia, characteristic for disorders like Prader-Willi syndrome. PMID:27406820

  1. Different subcellular localization of muscarinic and serotonin (S2) receptors in human, dog, and rat brain.

    PubMed

    Luabeya, M K; Maloteaux, J M; De Roe, C; Trouet, A; Laduron, P M

    1986-02-01

    Cortex from rat, dog, and human brain was submitted to subcellular fractionation using an analytical approach consisting of a two-step procedure. First, fractions were obtained by differential centrifugation and were analyzed for their content of serotonin S2 and muscarinic receptors, serotonin uptake, and marker enzymes. Second, the cytoplasmic extracts were subfractionated by equilibration in sucrose density gradient. In human brain, serotonin and muscarinic receptors were found associated mostly with mitochondrial fractions which contain synaptosomes, whereas in rat brain they were concentrated mainly in the microsomal fractions. Density gradient centrifugation confirmed a more marked synaptosomal localization of receptors in human than in rat brain, the dog displaying an intermediate profile. In human brain, indeed, more receptor sites were found to be associated with the second peak characterized in electron microscopy by the largest number of nerve terminals. In addition, synaptosomes from human brain are denser than those from rat brain and some marker enzymes reveal different subcellular distribution in the three species. These data indicate that more receptors are of synaptosomal nature in human brain than in other species and this finding is compatible with a larger amount of synaptic contacts in human brain. PMID:2934515

  2. Energy Gaps and Interaction Blockade in Confined Quantum Systems

    SciTech Connect

    Capelle, K.; Borgh, M.; Kaerkkaeinen, K.; Reimann, S. M.

    2007-07-06

    We investigate universal properties of strongly confined particles that turn out to be dramatically different from what is observed for electrons in atoms and molecules. For a large class of harmonically confined systems, such as small quantum dots and optically trapped atoms, many-body particle addition and removal energies, and energy gaps, are accurately obtained from single-particle eigenvalues. Transport blockade phenomena are related to the derivative discontinuity of the exchange-correlation functional. This implies that they occur very generally, with Coulomb blockade being a particular realization of a more general phenomenon. In particular, we predict a van der Waals blockade in cold atom gases in traps.

  3. Activity blockade and GABAA receptor blockade produce synaptic scaling through chloride accumulation in embryonic spinal motoneurons and interneurons.

    PubMed

    Lindsly, Casie; Gonzalez-Islas, Carlos; Wenner, Peter

    2014-01-01

    Synaptic scaling represents a process whereby the distribution of a cell's synaptic strengths are altered by a multiplicative scaling factor. Scaling is thought to be a compensatory response that homeostatically controls spiking activity levels in the cell or network. Previously, we observed GABAergic synaptic scaling in embryonic spinal motoneurons following in vivo blockade of either spiking activity or GABAA receptors (GABAARs). We had determined that activity blockade triggered upward GABAergic scaling through chloride accumulation, thus increasing the driving force for these currents. To determine whether chloride accumulation also underlies GABAergic scaling following GABAAR blockade we have developed a new technique. We expressed a genetically encoded chloride-indicator, Clomeleon, in the embryonic chick spinal cord, which provides a non-invasive fast measure of intracellular chloride. Using this technique we now show that chloride accumulation underlies GABAergic scaling following blockade of either spiking activity or the GABAAR. The finding that GABAAR blockade and activity blockade trigger scaling via a common mechanism supports our hypothesis that activity blockade reduces GABAAR activation, which triggers synaptic scaling. In addition, Clomeleon imaging demonstrated the time course and widespread nature of GABAergic scaling through chloride accumulation, as it was also observed in spinal interneurons. This suggests that homeostatic scaling via chloride accumulation is a common feature in many neuronal classes within the embryonic spinal cord and opens the possibility that this process may occur throughout the nervous system at early stages of development.

  4. Serotonin enhances solitariness in phase transition of the migratory locust

    PubMed Central

    Guo, Xiaojiao; Ma, Zongyuan; Kang, Le

    2013-01-01

    The behavioral plasticity of locusts is a striking trait presented during the reversible phase transition between solitary and gregarious individuals. However, the results of serotonin as a neurotransmitter from the migratory locust Locusta migratoria in phase transition showed an alternative profile compared to the results from the desert locust Schistocerca gregaria. In this study, we investigated the roles of serotonin in the brain during the phase change of the migratory locust. During the isolation of gregarious nymphs, the concentration of serotonin in the brain increased significantly, whereas serotonin receptors (i.e., 5-HT1, 5-HT2, and 5-HT7) we identified here showed invariable expression patterns. Pharmacological intervention showed that serotonin injection in the brain of gregarious nymphs did not induced the behavioral change toward solitariness, but injection of this chemical in isolated gregarious nymphs accelerated the behavioral change from gregarious to solitary phase. During the crowding of solitary nymphs, the concentration of serotonin in the brain remained unchanged, whereas 5-HT2 increased after 1 h of crowding and maintained stable expression level thereafter. Activation of serotonin-5-HT2 signaling with a pharmaceutical agonist inhibited the gregariousness of solitary nymphs in crowding treatment. These results indicate that the fluctuations of serotonin content and 5-HT2 expression are results of locust phase change. Overall, this study demonstrates that serotonin enhances the solitariness of the gregarious locusts. Serotonin may regulate the withdrawal-like behavioral pattern displayed during locust phase change and this mechanism is conserved in different locust species. PMID:24109441

  5. Tail biting in pigs: blood serotonin and fearfulness as pieces of the puzzle?

    PubMed

    Ursinus, Winanda W; Van Reenen, Cornelis G; Reimert, Inonge; Bolhuis, J Elizabeth

    2014-01-01

    Tail biting in pigs is a widespread problem in intensive pig farming. The tendency to develop this damaging behaviour has been suggested to relate to serotonergic functioning and personality characteristics of pigs. We investigated whether tail biting in pigs can be associated with blood serotonin and with their behavioural and physiological responses to novelty. Pigs (n = 480) were born in conventional farrowing pens and after weaning at four weeks of age they were either housed barren (B) or in straw-enriched (E) pens. Individual pigs were exposed to a back test and novel environment test before weaning, and after weaning to a novel object (i.e. bucket) test in an unfamiliar arena. A Principal Component Analysis on behaviours during the tests and salivary cortisol (novel object test only) revealed five factors for both housing systems, labeled 'Early life exploration', 'Near bucket', 'Cortisol', 'Vocalizations & standing alert', and 'Back test activity'. Blood samples were taken at 8, 9 and 22 weeks of age to determine blood platelet serotonin. In different phases of life, pigs were classified as tail biter/non-tail biter based on tail biting behaviour, and as victim/non-victim based on tail wounds. A combination of both classifications resulted in four pig types: biters, victims, biter/victims, and neutrals. Generally, only in phases of life during which pigs were classified as tail biters, they seemed to have lower blood platelet serotonin storage and higher blood platelet uptake velocities. Victims also seemed to have lower blood serotonin storage. Additionally, in B housing, tail biters seemed to consistently have lower scores of the factor 'Near bucket', possibly indicating a higher fearfulness in tail biters. Further research is needed to elucidate the nature of the relationship between peripheral 5-HT, fearfulness and tail biting, and to develop successful strategies and interventions to prevent and reduce tail biting. PMID:25188502

  6. Blockade involving high- n, n ~ 300 , strontium Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Yoshida, Shuhei; Burgdörfer, Joachim; Zhang, Xinyue; Dunning, F. Barry

    2016-05-01

    The blockade of high- n strontium n1F3 Rydberg states contained in a hot atomic beam is investigated both theoretically and experimentally. One difficulty in such experiments is that, once created, Rydberg atoms move out of the excitation volume reducing blockade effects. While the effects of such motion are apparent, the data provide strong evidence of blockade, consistent with theoretical predictions. Because of their relatively high angular momentum (L = 3) , a pair of n1F3 Rydberg atoms have many degenerate states whose degeneracy is removed by Rydberg-Rydberg interactions yielding a high density of states near the target energy. To evaluate the effect of blockade not only the energy shifts but also the modification of the oscillator strengths for excitation have to be taken into account. The n-scaling of the interactions and the importance of high-order multipoles will also be discussed. Research supported by the NSF and Robert A. Welch Foundation.

  7. Kupffer cell blockade prevents induction of portal venous tolerance in rat cardiac allograft transplantation

    SciTech Connect

    Kamei, T.; Callery, M.P.; Flye, M.W. )

    1990-05-01

    Pretransplant portal venous (pv) administration of donor antigen induces allospecific partial tolerance. Although the involved mechanism has not been defined, antigen presentation by Kupffer cells (KC) in the liver is considered to be critical. We evaluated the effect of KC blockade on this pv tolerance induction in Buffalo (RT1b) rats receiving Lewis (RT1(1)) cardiac heterotopic allografts. Control rats received no treatment, while experimental animals received 25 X 10(6) ultraviolet B-irradiated (12,000 J/m2) donor spleen cells via either the iv (systemic intravenous) or the pv routes 7 days before transplantation. Gadolinium chloride (GdCl3), a rare earth metal known to inhibit KC phagocytosis, was given (7 mg/kg) 1 and 2 days before pv preimmunization. Cardiac graft prolongation was obtained by pv (MST = 13.3 +/- 1.9 days, n = 6, vs control = 7.3 +/- 0.5 days, n = 6; P less than 0.001) but not by iv preimmunization (7.7 +/- 0.7 days, n = 6, NS vs control). KC blockade abolished the pv tolerance, as indicated by abrogation of graft prolongation (PV + GdCl3 = 8.0 +/- 0.8 days, n = 6, NS vs control). These findings suggest that effective alloantigen uptake by KC in the liver is essential for the induction of pv tolerance in rat cardiac transplantation.

  8. Duration of opioid receptor blockade determines biotherapeutic response.

    PubMed

    McLaughlin, Patricia J; Zagon, Ian S

    2015-10-01

    Historically, studies on endogenous and exogenous opioids and their receptors focused on the mediation of pain, with excess opiate consumption leading to addiction. Opioid antagonists such as naloxone and naltrexone blocked these interactions, and still are widely used to reverse drug and alcohol overdose. Although specific opioid antagonists have been designed for mu, delta, and kappa opioid receptors, the general antagonists remain the most effective. With the discovery of the opioid growth factor (OGF)-OGF receptor (OGFr) axis as a novel biological pathway involved in homeostasis of replicating cells and tissues, the role of opioid receptor antagonists was expanded. An intermittent OGFr blockade by low dosages of naltrexone resulted in depressed cell replication, whereas high (or sustained) dosages of naltrexone that conferred a continuous OGFr blockade resulted in enhanced growth. More than 3 decades of research have confirmed that the duration of opioid receptor blockade, not specifically the dosage, by general opioid antagonists determines the biotherapeutic outcome. Dysregulation of the OGF-OGFr pathway is apparent in a number of human disorders including diabetes, multiple sclerosis, and cancer, and thus opioid antagonist disruption of interaction prevails as a therapeutic intervention. We review evidence that the duration of opioid receptor blockade is correlated with the magnitude and direction of response, and discuss the potential therapeutic effectiveness of continuous receptor blockade for treatment of diabetic complications such as corneal defects and skin wounds, and of intermittent receptor blockade by low dosages of naltrexone for treatment of autoimmune diseases and cancer. PMID:26119823

  9. Valley-spin blockade and spin resonance in carbon nanotubes.

    PubMed

    Pei, Fei; Laird, Edward A; Steele, Gary A; Kouwenhoven, Leo P

    2012-10-01

    The manipulation and readout of spin qubits in quantum dots have been successfully achieved using Pauli blockade, which forbids transitions between spin-triplet and spin-singlet states. Compared with spin qubits realized in III-V materials, group IV materials such as silicon and carbon are attractive for this application because of their low decoherence rates (nuclei with zero spins). However, valley degeneracies in the electronic band structure of these materials combined with Coulomb interactions reduce the energy difference between the blocked and unblocked states, significantly weakening the selection rules for Pauli blockade. Recent demonstrations of spin qubits in silicon devices have required strain and spatial confinement to lift the valley degeneracy. In carbon nanotubes, Pauli blockade can be observed by lifting valley degeneracy through disorder, but this makes the confinement potential difficult to control. To achieve Pauli blockade in low-disorder nanotubes, quantum dots have to be made ultrasmall, which is incompatible with conventional fabrication methods. Here, we exploit the bandgap of low-disorder nanotubes to demonstrate robust Pauli blockade based on both valley and spin selection rules. We use a novel stamping technique to create a bent nanotube, in which single-electron spin resonance is detected using the blockade. Our results indicate the feasibility of valley-spin qubits in carbon nanotubes.

  10. Transport Through a Coulomb Blockaded Majorana Nanowire

    NASA Astrophysics Data System (ADS)

    Zazunov, Alex; Egger, Reinhold; Yeyati, Alfredo Levy; Hützen, Roland; Braunecker, Bernd

    In one-dimensional (1D) quantum wires with strong spin-orbit coupling and a Zeeman field, a superconducting substrate can induce zero-energy Majorana bound states located near the ends of the wire. We study electronic properties when such a wire is contacted by normal metallic or superconducting electrodes. A special attention is devoted to Coulomb blockade effects. We analyze the "Majorana single-charge transistor" (MSCT), i.e., a floating Majorana wire contacted by normal metallic source and drain contacts, where charging effects are important. We describe Coulomb oscillations in this system and predict that Majorana fermions could be unambiguously detected by the emergence of sideband peaks in the nonlinear differential conductance. We also study a superconducting variant of the MSCT setup with s-wave superconducting (instead of normal-conducting) leads. In the noninteracting case, we derive the exact current-phase relation (CPR) and find π-periodic behavior with negative critical current for weak tunnel couplings. Charging effects then cause the anomalous CPR I(\\varphi ) = Ic\\cos \\varphi, where the parity-sensitive critical current I c provides a signature for Majorana states.

  11. Interleukin-6 blockade in ocular inflammatory diseases

    PubMed Central

    Mesquida, M; Leszczynska, A; Llorenç, V; Adán, A

    2014-01-01

    Interleukin-6 (IL-6) is a key cytokine featuring redundancy and pleiotropic activity. It plays a central role in host defence against environmental stress such as infection and injury. Dysregulated, persistent interleukin (IL)-6 production has been implicated in the development of various autoimmune, chronic inflammatory diseases and even cancers. Significant elevation of IL-6 has been found in ocular fluids derived from refractory/chronic uveitis patients. In experimental autoimmune uveitis models with IL-6 knock-out mice, IL-6 has shown to be essential for inducing inflammation. IL-6 blockade can suppress acute T helper type 17 (Th17) responses via its differentiation and, importantly, can ameliorate chronic inflammation. Tocilizumab, a recombinant humanized anti-IL-6 receptor antibody, has been shown to be effective in several autoimmune diseases, including uveitis. Herein, we discuss the basic biology of IL-6 and its role in development of autoimmune conditions, focusing particularly on non-infectious uveitis. It also provides an overview of efficacy and safety of tocilizumab therapy for ocular inflammatory diseases. PMID:24528300

  12. Serotonin, atherosclerosis, and collateral vessel spasm

    NASA Technical Reports Server (NTRS)

    Hollenberg, N.

    1988-01-01

    Studies on animal models demonstrate that platelet products contribute to vascular spasm in ischemic syndromes and that this is reversible with administration of ketanserin and thromboxane synthesis inhibitors. Laboratory animals (dogs, rabbits, and rats) that had femoral artery ligations exhibited supersensitivity to serotonin within days in their collateral blood vessels. This supersensitivity lasted at least 6 months. The response to serotonin was reversed by ketanserin, but not by 5HT-1 antagonists. Supersensitivity does not extend to norepinephrine, and alpha blockers do not influence the response to serotonin. It appears that platelet activation by endothelial injury contributes to ischemia through blood vessel occlusion and vascular spasm. When platelet activation occurs in vivo, blood vessel occlusion and vascular spasm are reversible in part by using ketanserin or agents that block thromboxane synthesis or its action. Combining both classes of agents reverses spasm completely. These findings support existing evidence that platelet products contribute to vascular disease, and provide an approach to improved management with currently available pharmacologic agents.

  13. [Serotonin hypothesis and pulmonary artery hypertension].

    PubMed

    Kloza, Monika; Baranowska-Kuczko, Marta; Pędzińska-Betiuk, Anna; Jackowski, Konrad; Kozłowska, Hanna

    2014-06-06

    Pulmonary arterial hypertension (PAH) is a progressive, complex disease leading to the right ventricular failure and premature death. PAH is characterized by increased pulmonary arterial pressure, increased vascular resistance, pulmonary vascular remodeling and endothelial dysfunction. Pathomechanism of this disease is still unknown. It has been suggested, that endothelial dysfunction is caused by unbalance between vasodilators and vasoconstrictors e.g. serotonin (5-HT). Previously, serotonin hypothesis was linked to the anorexigens, derivatives of fenfluramine, which are serotonin transporter (SERT) substrates. Nowadays, it has been proved that all elements of serotonergic system within pulmonary circulation participate in the developement of PAH. The tryptophan hydroxylase 1 (Tph-1) catalyses synthesis of 5-HT from tryptophan in the pulmonary arterial endothelial cells. 5-HT mediates contraction of pulmonary vessels via 5-HT1B and 5-HT2A receptors. 5-HT is also transported into pulmonary arterial smooth muscle cells via SERT and through activation of reactive oxygen species and Rho-kinase may contribute to contraction or/and, via stimulation of transcription factors, lead to proliferation and remodelling. There is also increasing number of evidence about functional interaction between 5-HT1B receptor and SERT in modulation of vasoconstriction and proliferation in pulmonary arteries. This review discusses the role of 5-HT in the development of PAH and highlights possible therapeutic targets within serotonergic system.

  14. Serotonin metabolism in children with kwashiorkor.

    PubMed

    Teotia, M; Teotia, S P

    1975-11-01

    Intestinal fat absorption, serum 5-hydroxytryptamine (5-HT) and 24-hour urinary excretion of 5-hydroxyindoleacetic acid (5-HIAA) were studied in 13 children with kwashiorkor and 10 matched healthy controls. Eight out of 13 children with kwashiorkor who had steatorrhea also showed raised plasma serotonin levels in parallel with the high urinary excretion of 5-HIAA. In five children with kwashiorkor who showed normal intestinal fat absorption, the serum 5-HT and urinary 5-HIAA levels were comparable to controls. After therapy, concurrent with clinical and biochemical recovery, the intestinal absorption of fat improved, serum 5-HT concentration and the urinary excretion of 5-HIAA returned to normal range. This suggested that the deranged serotonin metabolism in our cases was secondary to the protein-calorie deficiency. The presence of defective metabolism of serotonin (5-HT) in children with kwashiorkor has been reported and its possible role in the etiopathogenesis of steatorrhea-diarrhea, skin lesions and psychomotor changes has been suggested for further work.

  15. Fatal serotonin syndrome precipitated by oxcarbazepine in a patient using an selective serotonin reuptake inhibitor.

    PubMed

    Dardis, Christopher; Omoregie, Eghosa; Ly, Vanthanh

    2012-07-01

    Oxcarbazepine, a metabolite of carbamazepine, is used as an antiepileptic, analgesic for neuropathic pain and in the treatment of affective disorders. It has been approved by the Food and Drug Administration for partial seizures in adults as both adjunctive and monotherapy, and as adjunctive therapy in children aged from 2 to 16 years (http://www.fda.gov/ohrms/dockets/ac/06/briefing/2006-4254b_07_05_KP%20OxcarbazepineFDAlabel102005.pdf). We present a case of serotonin syndrome, which was precipitated by this medicine in a patient who had been predisposed by long-term treatment with sertraline, a selective serotonin reuptake inhibitor. This is the first reported fatality due to this drug interaction and only the second case of serotonin syndrome reported with oxcarbazepine. Physicians should consider this risk when prescribing the above combination.

  16. Methylene Blue Causing Serotonin Syndrome Following Cystocele Repair.

    PubMed

    Kapadia, Kailash; Cheung, Felix; Lee, Wai; Thalappillil, Richard; Florence, F Barry; Kim, Jason

    2016-11-01

    Methylene blue is an intravenously administered agent that may potentiate serotonin syndrome. The usage of methylene blue to evaluate ureters for injuries and patency during urological surgeries is recognized as common practice. However, there is no mention of serotonin syndrome caused by methylene blue in urological literature or for urological surgery. We report the first urological case in order to raise awareness of the risk for serotonin toxicity with utilizing methylene blue. PMID:27617215

  17. Serotonin aggravates exercise-induced cardiac ischemia in the dog: effect of serotonin receptor antagonists.

    PubMed

    Guilbert, Frédérique; Lainée, Pierre; Dubreuil, Brigitte; McCort, Gary; O'Connor, Stephen E; Janiak, Philip; Herbert, Jean-Marc

    2004-08-16

    We investigated the effects of serotonin (5-HT), SL65.0472 (7-fluoro-2-oxo-4-[2-[4-thieno[3,2-c]pyridine-4-yl)piperazin-1-yl]ethyl]-1,2-dihydroquinoline-1-acetamide, a 5-HT(1B)/5-HT(2A) receptor antagonist) and ketanserin (a 5-HT(2A) receptor antagonist) during exercise-induced cardiac ischemia in conscious dogs. Dogs were administered a hypercholesterolemic diet and an inhibitor of nitric oxide synthetase to produce chronic endothelial dysfunction. Myocardial ischemia was induced by a treadmill exercise test associated with limitation of left anterior descending coronary blood flow. Infusion of serotonin during exercise produced dose-related cardiovascular changes (after 10 microg/kg/min; heart rate +27+/-6 bpm, systolic blood pressure +18+/-3 mm Hg, left circumflex coronary blood flow +64+/-8 ml/min, myocardial segment length shortening in the ischemic zone -5.9+/-1.9%, P<0.05). SL65.0472 blocked serotonin-induced increases in blood pressure, rate pressure product and circumflex coronary artery flow (100 microg/kg i.v., P<0.05) and reduced serotonin-induced ischemic myocardial segment length shortening (300 microg/kg i.v., P<0.05). Ketanserin (30-300 microg/kg i.v.) had no significant effect on any serotonin-induced changes during exercise. Thus, SL65.0472 opposes serotonin-induced myocardial dysfunction in a dog model of exercise-induced ischemia.

  18. Serotonin and conditioning: focus on Pavlovian psychostimulant drug conditioning.

    PubMed

    Carey, Robert J; Damianopoulos, Ernest N

    2015-04-01

    Serotonin containing neurons are located in nuclei deep in the brainstem and send axons throughout the central nervous system from the spinal cord to the cerebral cortex. The vast scope of these connections and interactions enable serotonin and serotonin analogs to have profound effects upon sensory/motor processes. In that conditioning represents a neuroplastic process that leads to new sensory/motor connections, it is apparent that the serotonin system has the potential for a critical role in conditioning. In this article we review the basics of conditioning as well as the serotonergic system and point up the number of non-associative ways in which manipulations of serotonin neurotransmission have an impact upon conditioning. We focus upon psychostimulant drug conditioning and review the contribution of drug stimuli in the use of serotonin drugs to investigate drug conditioning and the important impact drug stimuli can have on conditioning by introducing new sensory stimuli that can create or mask a CS. We also review the ways in which experimental manipulations of serotonin can disrupt conditioned behavioral effects but not the associative processes in conditioning. In addition, we propose the use of the recently developed memory re-consolidation model of conditioning as an approach to assess the possible role of serotonin in associative processes without the complexities of performance effects related to serotonin treatment induced alterations in sensory/motor systems.

  19. Serotonin modulates glutamatergic transmission to neurons in the lateral habenula

    PubMed Central

    Xie, Guiqin; Zuo, Wanhong; Wu, Liangzhi; Li, Wenting; Wu, Wei; Bekker, Alex; Ye, Jiang-Hong

    2016-01-01

    The lateral habenula (LHb) is bilaterally connected with serotoninergic raphe nuclei, and expresses high density of serotonin receptors. However, actions of serotonin on the excitatory synaptic transmission to LHb neurons have not been thoroughly investigated. The LHb contains two anatomically and functionally distinct regions: lateral (LHbl) and medial (LHbm) divisions. We compared serotonin’s effects on glutamatergic transmission across the LHb in rat brains. Serotonin bi-directionally and differentially modulated glutamatergic transmission. Serotonin inhibited glutamatergic transmission in higher percentage of LHbl neurons but potentiated in higher percentage of LHbm neurons. Magnitude of potentiation was greater in LHbm than in LHbl. Type 2 and 3 serotonin receptor antagonists attenuated serotonin’s potentiation. The serotonin reuptake blocker, and the type 2 and 3 receptor agonists facilitated glutamatergic transmission in both LHbl and LHbm neurons. Thus, serotonin via activating its type 2, 3 receptors, increased glutamate release at nerve terminals in some LHb neurons. Our data demonstrated that serotonin affects both LHbm and LHbl. Serotonin might play an important role in processing information between the LHb and its downstream-targeted structures during decision-making. It may also contribute to a homeostatic balance underlying the neural circuitry between the LHb and raphe nuclei. PMID:27033153

  20. Serotonin syndrome following levodopa treatment in diffuse Lewy body disease

    PubMed Central

    Kushwaha, Suman; Panda, Akhila Kumar; Malhotra, Hardeep Singh; Kaur, Manmeet

    2014-01-01

    Serotonin syndrome results from an acute hyperserotonergic state. It is a rare and potentially fatal complication of drugs that affect the central nervous system serotonin levels. It is characterised by a triad of clinical features comprising altered sensorium, autonomic instability and neuromuscular hyperexcitability, in different combinations. We present an atypical case of serotonin syndrome related to levodopa use in a patient of probable Lewy body dementia. This case highlights the difficulty in diagnosis and management of cases with serotonin syndrome in the absence of history of a known serotonergic drug and the fact that levodopa can contribute to its occurrence. PMID:25246451

  1. Serotonin control of thermotaxis memory behavior in nematode Caenorhabditis elegans.

    PubMed

    Li, Yinxia; Zhao, Yunli; Huang, Xu; Lin, Xingfeng; Guo, Yuling; Wang, Daoyong; Li, Chaojun; Wang, Dayong

    2013-01-01

    Caenorhabditis elegans is as an ideal model system for the study of mechanisms underlying learning and memory. In the present study, we employed C. elegans assay system of thermotaxis memory to investigate the possible role of serotonin neurotransmitter in memory control. Our data showed that both mutations of tph-1, bas-1, and cat-4 genes, required for serotonin synthesis, and mutations of mod-5 gene, encoding a serotonin reuptake transporter, resulted in deficits in thermotaxis memory behavior. Exogenous treatment with serotonin effectively recovered the deficits in thermotaxis memory of tph-1 and bas-1 mutants to the level of wild-type N2. Neuron-specific activity assay of TPH-1 suggests that serotonin might regulate the thermotaxis memory behavior by release from the ADF sensory neurons. Ablation of ADF sensory neurons by expressing a cell-death activator gene egl-1 decreased the thermotaxis memory, whereas activation of ADF neurons by expression of a constitutively active protein kinase C homologue (pkc-1(gf)) increased the thermotaxis memory and rescued the deficits in thermotaxis memory in tph-1 mutants. Moreover, serotonin released from the ADF sensory neurons might act through the G-protein-coupled serotonin receptors of SER-4 and SER-7 to regulate the thermotaxis memory behavior. Genetic analysis implies that serotonin might further target the insulin signaling pathway to regulate the thermotaxis memory behavior. Thus, our results suggest the possible crucial role of serotonin and ADF sensory neurons in thermotaxis memory control in C. elegans.

  2. Metabolomics Approach Reveals Integrated Metabolic Network Associated with Serotonin Deficiency

    PubMed Central

    Weng, Rui; Shen, Sensen; Tian, Yonglu; Burton, Casey; Xu, Xinyuan; Liu, Yi; Chang, Cuilan; Bai, Yu; Liu, Huwei

    2015-01-01

    Serotonin is an important neurotransmitter that broadly participates in various biological processes. While serotonin deficiency has been associated with multiple pathological conditions such as depression, schizophrenia, Alzheimer’s disease and Parkinson’s disease, the serotonin-dependent mechanisms remain poorly understood. This study therefore aimed to identify novel biomarkers and metabolic pathways perturbed by serotonin deficiency using metabolomics approach in order to gain new metabolic insights into the serotonin deficiency-related molecular mechanisms. Serotonin deficiency was achieved through pharmacological inhibition of tryptophan hydroxylase (Tph) using p-chlorophenylalanine (pCPA) or genetic knockout of the neuronal specific Tph2 isoform. This dual approach improved specificity for the serotonin deficiency-associated biomarkers while minimizing nonspecific effects of pCPA treatment or Tph2 knockout (Tph2-/-). Non-targeted metabolic profiling and a targeted pCPA dose-response study identified 21 biomarkers in the pCPA-treated mice while 17 metabolites in the Tph2-/- mice were found to be significantly altered compared with the control mice. These newly identified biomarkers were associated with amino acid, energy, purine, lipid and gut microflora metabolisms. Oxidative stress was also found to be significantly increased in the serotonin deficient mice. These new biomarkers and the overall metabolic pathways may provide new understanding for the serotonin deficiency-associated mechanisms under multiple pathological states. PMID:26154191

  3. Stimulation of aortic smooth muscle cell mitogenesis by serotonin

    SciTech Connect

    Nemecek, G.M.; Coughlin, S.R.; Handley, D.A.; Moskowitz, M.A.

    1986-02-01

    Bovine aortic smooth muscle cells in vitro responded to 1 nM to 10 ..mu..M serotonin with increased incorporation of (/sup 3/H)thymidine into DNA. The mitogenic effect of serotonin was half-maximal at 80 nM and maximal above 1 ..mu..M. At a concentration of 1 ..mu..M, serotonin stimulated smooth muscle cell mitogenesis to the same extent as human platelet-derived growth factor (PDGF) at 12 ng/ml. Tryptamine was approx. = 1/10th as potent as serotonin as a mitogen for smooth muscle cells. Other indoles that are structurally related to serotonin (D- and L-tryptophan, 5-hydroxy-L-tryptophan, N-acetyl-5-hydroxytryptamine, melatonin, 5-hydroxyindoleacetic acid, and 5-hydroxytryptophol) and quipazine were inactive. The stimulatory effect of serotonin on smooth muscle cell DNA synthesis required prolonged (20-24 hr) exposure to the agonist and was attenuated in the presence of serotonin D receptor antagonists. When smooth muscle cells were incubated with submaximal concentrations of serotonin and PDGF, synergistic rather than additive mitogenic responses were observed. These data indicate that serotonin has a significant mitogenic effect on smooth muscle cells in vitro, which appears to be mediated by specific plasma membrane receptors.

  4. Metabolomics Approach Reveals Integrated Metabolic Network Associated with Serotonin Deficiency

    NASA Astrophysics Data System (ADS)

    Weng, Rui; Shen, Sensen; Tian, Yonglu; Burton, Casey; Xu, Xinyuan; Liu, Yi; Chang, Cuilan; Bai, Yu; Liu, Huwei

    2015-07-01

    Serotonin is an important neurotransmitter that broadly participates in various biological processes. While serotonin deficiency has been associated with multiple pathological conditions such as depression, schizophrenia, Alzheimer’s disease and Parkinson’s disease, the serotonin-dependent mechanisms remain poorly understood. This study therefore aimed to identify novel biomarkers and metabolic pathways perturbed by serotonin deficiency using metabolomics approach in order to gain new metabolic insights into the serotonin deficiency-related molecular mechanisms. Serotonin deficiency was achieved through pharmacological inhibition of tryptophan hydroxylase (Tph) using p-chlorophenylalanine (pCPA) or genetic knockout of the neuronal specific Tph2 isoform. This dual approach improved specificity for the serotonin deficiency-associated biomarkers while minimizing nonspecific effects of pCPA treatment or Tph2 knockout (Tph2-/-). Non-targeted metabolic profiling and a targeted pCPA dose-response study identified 21 biomarkers in the pCPA-treated mice while 17 metabolites in the Tph2-/- mice were found to be significantly altered compared with the control mice. These newly identified biomarkers were associated with amino acid, energy, purine, lipid and gut microflora metabolisms. Oxidative stress was also found to be significantly increased in the serotonin deficient mice. These new biomarkers and the overall metabolic pathways may provide new understanding for the serotonin deficiency-associated mechanisms under multiple pathological states.

  5. Linezolid-induced serotonin toxicity in a patient not taking monoamine oxidase inhibitors or serotonin receptor antagonists

    PubMed Central

    Sutton, Jacob; Stroup, Jeff

    2016-01-01

    Linezolid is an oxazolidinone antibiotic with weak monoamine oxidase (MAO) type A and MAO type B inhibitory effects. Linezolid has been associated with serotonin toxicity when used concomitantly with multiple medications that are known to increase serotonin concentrations. We report the case of a 65-year-old woman with signs and symptoms of serotonin toxicity following administration of linezolid for treatment of methicillin-resistant Staphylococcus aureus pneumonia. PMID:27034576

  6. Reduced cocaine-induced serotonin, but not dopamine and noradrenaline, release in rats with a genetic deletion of serotonin transporters.

    PubMed

    Verheij, Michel M M; Karel, Peter; Cools, Alexander R; Homberg, Judith R

    2014-11-01

    It has recently been proposed that the increased reinforcing properties of cocaine and ecstasy observed in rats with a genetic deletion of serotonin transporters are the result of a reduction in the psychostimulant-induced release of serotonin. Here we provide the neurochemical evidence in favor of this hypothesis and show that changes in synaptic levels of dopamine or noradrenaline are not very likely to play an important role in the previously reported enhanced psychostimulant intake of these serotonin transporter knockout rats. The results may very well explain why human subjects displaying a reduced expression of serotonin transporters have an increased risk to develop addiction. PMID:25261262

  7. Generation of 2,000 breast cancer metabolic landscapes reveals a poor prognosis group with active serotonin production.

    PubMed

    Leoncikas, Vytautas; Wu, Huihai; Ward, Lara T; Kierzek, Andrzej M; Plant, Nick J

    2016-01-01

    A major roadblock in the effective treatment of cancers is their heterogeneity, whereby multiple molecular landscapes are classified as a single disease. To explore the contribution of cellular metabolism to cancer heterogeneity, we analyse the Metabric dataset, a landmark genomic and transcriptomic study of 2,000 individual breast tumours, in the context of the human genome-scale metabolic network. We create personalized metabolic landscapes for each tumour by exploring sets of active reactions that satisfy constraints derived from human biochemistry and maximize congruency with the Metabric transcriptome data. Classification of the personalized landscapes derived from 997 tumour samples within the Metabric discovery dataset reveals a novel poor prognosis cluster, reproducible in the 995-sample validation dataset. We experimentally follow mechanistic hypotheses resulting from the computational study and establish that active serotonin production is a major metabolic feature of the poor prognosis group. These data support the reconsideration of concomitant serotonin-specific uptake inhibitors treatment during breast cancer chemotherapy. PMID:26813959

  8. Generation of 2,000 breast cancer metabolic landscapes reveals a poor prognosis group with active serotonin production

    PubMed Central

    Leoncikas, Vytautas; Wu, Huihai; Ward, Lara T.; Kierzek, Andrzej M.; Plant, Nick J.

    2016-01-01

    A major roadblock in the effective treatment of cancers is their heterogeneity, whereby multiple molecular landscapes are classified as a single disease. To explore the contribution of cellular metabolism to cancer heterogeneity, we analyse the Metabric dataset, a landmark genomic and transcriptomic study of 2,000 individual breast tumours, in the context of the human genome-scale metabolic network. We create personalized metabolic landscapes for each tumour by exploring sets of active reactions that satisfy constraints derived from human biochemistry and maximize congruency with the Metabric transcriptome data. Classification of the personalized landscapes derived from 997 tumour samples within the Metabric discovery dataset reveals a novel poor prognosis cluster, reproducible in the 995-sample validation dataset. We experimentally follow mechanistic hypotheses resulting from the computational study and establish that active serotonin production is a major metabolic feature of the poor prognosis group. These data support the reconsideration of concomitant serotonin-specific uptake inhibitors treatment during breast cancer chemotherapy. PMID:26813959

  9. Effects of repeated doses of aspartame on serotonin and its metabolite in various regions of the mouse brain.

    PubMed

    Sharma, R P; Coulombe, R A

    1987-08-01

    Following a finding that single doses (approximating to average intakes and to potential 'over-use') of aspartame administered orally to mice caused significant increases in norepinephrine and dopamine concentrations in various brain regions, the effect of repeated exposure to aspartame was studied. Male CD-1 mice were given a daily oral dose of 0, 13, 133 or 650 mg/kg for 30 days and 1 day after the last dose the animals were decapitated and their brain regions were quickly isolated. Analyses of the different regions for catecholamine and indoleamine neurotransmitters and their major metabolites indicated that the increases in adrenergic chemicals observed shortly after a single exposure were not apparent after repeated dosing. In contrast, concentrations of serotonin and its metabolite, 5-hydroxyindoleacetic acid, were decreased in several regions. An increased supply of phenylalanine may be responsible for a decrease in tryptophan uptake by the brain tissue or for a depression in tryptophan conversion to serotonin.

  10. Regulation of serotonin release from enterochromaffin cells of rat cecum mucosa

    SciTech Connect

    Simon, C.; Ternaux, J.P. )

    1990-05-01

    The release of endogenous serotonin or previously taken up tritiated serotonin from isolated strips of rat cecum mucosa containing enterochromaffin cells was studied in vitro. Release of tritiated serotonin was increased by potassium depolarization and was decreased by tetrodotoxin, veratridine and the absence of calcium. Endogenous serotonin was released at a lower rate than tritiated serotonin; endogenous serotonin release was stimulated by potassium depolarization but was unaffected by tetrodotoxin, veratridine or the absence of calcium. Carbachol, norepinephrine, clonidine and isoproterenol decreased release of tritiated serotonin but had less or reverse effect on release of endogenous serotonin. The results suggest two different serotoninergic pools within the enterochromaffin cell population.

  11. Serotonin-S2 and dopamine-D2 receptors are the same size in membranes

    SciTech Connect

    Brann, M.R.

    1985-12-31

    Target size analysis was used to compare the sizes of serotonin-S2 and dopamine-D2 receptors in rat brain membranes. The sizes of these receptors were standardized by comparison with the muscarinic receptor, a receptor of known size. The number of serotonin-S2 receptors labeled with (3H)ketanserin or (3H)spiperone in frontal cortex decreased as an exponential function of radiation dose, and receptor affinity was not affected. The number of dopamine-D2 receptors labeled with (3H)spiperone in striatum also decreased as an exponential function of radiation dose, and D2 and S2 receptors were equally sensitive to radiation. In both striatum and frontal cortex, the number of muscarinic receptors labeled with (3H)QNB decreased as an exponential function of radiation dose, and were much less sensitive to radiation than S2 and D2 receptors. These data indicate that in rat brain membranes, S2 and D2 receptors are of similar size, and both molecules are much larger than the muscarinic receptor.

  12. Renin-angiotensin system blockade: Its contribution and controversy.

    PubMed

    Miyajima, Akira; Kosaka, Takeo; Kikuchi, Eiji; Oya, Mototsugu

    2015-08-01

    Angiotensin II is a key biological peptide in the renin-angiotensin system that regulates blood pressure and renal hemodynamics, and extensive experimental studies have shown that angiotensin II promotes diverse fibrotic changes and induces neovascularization in several inflammatory diseases. It is known that angiotensin II can be controlled using renin-angiotensin system blockade when angiotensin II is the main factor inducing a particular disease, and renin-angiotensin system blockade has assumed a central role in the treatment of inflammatory nephritis, cardiovascular disorders and retinopathy. In contrast, renin-angiotensin system blockade was found to have not only these effects but also other functions, such as inhibition of cancer growth, angiogenesis and metastasis. Numerous studies have sought to elucidate the mechanisms and support these antitumor effects. However, a recent meta-analysis showed that renin-angiotensin system blockade use might in fact increase the incidence of cancer, so renin-angiotensin system blockade use has become somewhat controversial. Although the renin-angiotensin system has most certainly made great contributions to experimental models and clinical practice, some issues still need to be resolved. The present review discusses the contribution and controversy surrounding the renin-angiotensin system up to the present time.

  13. Bioactive products of arginine in sepsis: tissue and plasma composition after LPS and iNOS blockade.

    PubMed

    Lortie, M J; Ishizuka, S; Schwartz, D; Blantz, R C

    2000-06-01

    Blockade or gene deletion of inducible nitric oxide synthase (iNOS) fails to fully abrogate all the sequelae leading to the high morbidity of septicemia. An increase in substrate uptake may be necessary for the increased production of nitric oxide (NO), but arginine is also a precursor for other bioactive products. Herein, we demonstrate an increase in alternate arginine products via arginine and ornithine decarboxylase in rats given lipopolysaccharide (LPS). The expression of iNOS mRNA in renal tissue was evident 60 but not 30 min post-LPS, yet a rapid decrease in blood pressure was obtained within 30 min that was completely inhibited by selective iNOS blockade. Plasma levels of arginine and ornithine decreased by at least 30% within 60 min of LPS administration, an effect not inhibited by the iNOS blocker L-N(6)(1-iminoethyl)lysine (L-NIL). Significant increases in plasma nitrates and citrulline occurred only 3-4 h post-LPS, an effect blocked by L-NIL pretreatment. The intracellular composition of organs harvested 6 h post-LPS reflected tissue-specific profiles of arginine and related metabolites. Tissue arginine concentration, normally an order of magnitude higher than in plasma, did not decrease after LPS. Pretreatment with L-NIL had a significant impact on the disposition of tissue arginine that was organ specific. These data demonstrate changes in arginine metabolism before and after de novo iNOS activity. Selective blockade of iNOS did not prevent uptake and can deregulate the production of other bioactive arginine metabolites.

  14. Endocannabinoids blunt the augmentation of synaptic transmission by serotonin 2A receptors in the nucleus tractus solitarii (nTS).

    PubMed

    Austgen, James R; Kline, David D

    2013-11-01

    Serotonin (5-Hydroxytryptamine, 5-HT) and the 5-HT2 receptor modulate cardiovascular and autonomic function in part through actions in the nTS, the primary termination and integration point for cardiorespiratory afferents in the brainstem. In other brain regions, 5-HT2 receptors (5-HT2R) modify synaptic transmission directly, as well as through 5-HT2AR-induced endocannabinoid release. This study examined the role of 5-HT2AR as well as their interaction with endocannabinoids on neurotransmission in the nucleus tractus solitarii (nTS). Excitatory postsynaptic currents (EPSCs) in monosynaptic nTS neurons were recorded in the horizontal brainstem slice during activation and blockade of 5-HT2ARs. 5-HT2AR activation augmented solitary tract (TS) evoked EPSC amplitude whereas 5-HT2AR blockade depressed TS-EPSC amplitude at low and high TS stimulation rates. The 5-HT2AR-induced increase in neurotransmission was reduced by endocannabinoid receptor block and increased endogenous endocannabinoids in the synaptic cleft during high frequency, but not low, TS stimulation. Endocannabinoids did not tonically modify EPSCs. These data suggest 5-HT acting through the 5-HT2AR is an excitatory neuromodulator in the nTS and its effects are modulated by the endocannabinoid system.

  15. Serotonin involvement in pituitary-adrenal function

    NASA Technical Reports Server (NTRS)

    Vernikos-Danellis, J.; Kellar, K. J.; Kent, D.; Gonzales, C.; Berger, P. A.; Barchas, J. D.

    1977-01-01

    Experiments clarifying the effects of serotonin (5-HT) in the regulation of the hypothalamic-pituitary-adrenocortical system are surveyed. Lesion experiments which seek to determine functional maps of serotonergic input to areas involved in regulation are reported. Investigations of the effects of 5-HT levels on the plasma ACTH response to stress and the diurnal variation in basal plasma corticosterone are summarized, and the question of whether serotonergic transmission is involved in the regulation of all aspects of pituitary-adrenal function is considered with attention to the stimulatory and inhibitory action of 5-HT.

  16. Brain serotonin and pituitary-adrenal functions

    NASA Technical Reports Server (NTRS)

    Vernikos-Danellis, J.; Berger, P.; Barchas, J. D.

    1973-01-01

    It had been concluded by Scapagnini et al. (1971) that brain serotonin (5-HT) was involved in the regulation of the diurnal rhythm of the pituitary-adrenal system but not in the stress response. A study was conducted to investigate these findings further by evaluating the effects of altering brain 5-HT levels on the daily fluctuation of plasma corticosterone and on the response of the pituitary-adrenal system to a stressful or noxious stimulus in the rat. In a number of experiments brain 5-HT synthesis was inhibited with parachlorophenylalanine. In other tests it was tried to raise the level of brain 5-HT with precursors.

  17. Genes Affecting Sensitivity to Serotonin in Caenorhabditis Elegans

    PubMed Central

    Schafer, W. R.; Sanchez, B. M.; Kenyon, C. J.

    1996-01-01

    Regulating the response of a postsynaptic cell to neurotransmitter is an important mechanism for controlling synaptic strength, a process critical to learning. We have begun to define and characterize genes that may control sensitivity to the neurotransmitter serotonin in the nematode Caenorhabditis elegans by identifying serotonin-hypersensitive mutants. We reported previously that mutations in the gene unc-2, which encodes a putative calcium channel subunit, result in hypersensitivity to serotonin. Here we report that mutants defective in the unc-36 gene, which encodes a homologue of a calcium channel auxiliary subunit, are also serotonin-hypersensitive. Moreover, the unc-36 gene appears to be required in the same cells as unc-2 for control of the same behaviors. Mutations in several other genes, including unc-8, unc-10, unc-20, unc-35, unc-75, unc-77, and snt-1 also result in hypersensitivity to serotonin. Several of these mutations have previously been shown to confer resistance to acetylcholinesterase inhibitors, suggesting that they may affect acetylcholine release. Moreover, we found that mutations that decrease acetylcholine synthesis cause defective egg-laying and serotonin hypersensitivity. Thus, acetylcholine appears to negatively regulate the response to serotonin and may participate in the process of serotonin desensitization. PMID:8807295

  18. Brain serotonin content - Increase following ingestion of carbohydrate diet.

    NASA Technical Reports Server (NTRS)

    Fernstrom, J. D.; Wurtman, R. J.

    1971-01-01

    In the rat, the injection of insulin or the consumption of carbohydrate causes sequential increases in the concentrations of tryptophan in the plasma and the brain and of serotonin in the brain. Serotonin-containing neurons may thus participate in systems whereby the rat brain integrates information about the metabolic state in its relation to control of homeostasis and behavior.

  19. Dietary Precursors of Serotonin and Newborn State Behavior.

    ERIC Educational Resources Information Center

    Yogman, Michael W.; Zeisel, Steven

    Although previous research with adult humans and nonhumans has suggested a relationship between sleep behavior and brain serotonin levels, no studies have been made of the relationship of normal children's or infants' sleep patterns to serotonin levels, tryptophan metabolism, or diet. This study investigates the relationship between dietary…

  20. The roles of peripheral serotonin in metabolic homeostasis.

    PubMed

    El-Merahbi, Rabih; Löffler, Mona; Mayer, Alexander; Sumara, Grzegorz

    2015-07-01

    Metabolic homeostasis in the organism is assured both by the nervous system and by hormones. Among a plethora of hormones regulating metabolism, serotonin presents a number of unique features. Unlike classical hormones serotonin is produced in different anatomical locations. In brain it acts as a neurotransmitter and in the periphery it can act as a hormone, auto- and/or paracrine factor, or intracellular signaling molecule. Serotonin does not cross the blood-brain barrier; therefore the two major pools of this bioamine remain separated. Although 95% of serotonin is produced in the periphery, its functions have been ignored until recently. Here we review the impact of the peripheral serotonin on the regulation of function of the organs involved in glucose and lipid homeostasis.

  1. Serotonin is necessary for place memory in Drosophila

    PubMed Central

    Sitaraman, Divya; Zars, Melissa; LaFerriere, Holly; Chen, Yin-Chieh; Sable-Smith, Alex; Kitamoto, Toshihiro; Rottinghaus, George E.; Zars, Troy

    2008-01-01

    Biogenic amines, such as serotonin and dopamine, can be important in reinforcing associative learning. This function is evident as changes in memory performance with manipulation of either of these signals. In the insects, evidence begins to argue for a common role of dopamine in negatively reinforced memory. In contrast, the role of the serotonergic system in reinforcing insect associative learning is either unclear or controversial. We investigated the role of both of these signals in operant place learning in Drosophila. By genetically altering serotonin and dopamine levels, manipulating the neurons that make serotonin and dopamine, and pharmacological treatments we provide clear evidence that serotonin, but not dopamine, is necessary for place memory. Thus, serotonin can be critical for memory formation in an insect, and dopamine is not a universal negatively reinforcing signal. PMID:18385379

  2. The effect of adrenergic blockade on blushing and facial flushing.

    PubMed

    Drummond, P D

    1997-03-01

    The effect of adrenergic blockade on vascular responses in the forehead was assessed during stressful mental arithmetic, singing, and moderate exercise in 21 frequent blushers and 21 infrequent blushers. Adrenergic antagonists were introduced into a small site on the forehead by iontophoresis, and vascular responses were monitored bilaterally with laser Doppler flowmetry. Beta blockade prevented increases in blood flow in infrequent blushers during mental arithmetic and partially inhibited vasodilatation during singing, indicating minor participation of beta-adrenoceptors in blushing. Alpha blockade did not affect blushing but augmented vasodilatation during exercise. Despite higher ratings of self-consciousness in frequent than in infrequent blushers, vascular responses were similar in both groups. Thus, blushing propensity does not appear to be related to the density of alpha- or beta-adrenoceptors in facial vessels and may have a psychological basis. PMID:9090265

  3. The platelet serotonin-release assay.

    PubMed

    Warkentin, Theodore E; Arnold, Donald M; Nazi, Ishac; Kelton, John G

    2015-06-01

    Few laboratory tests are as clinically useful as The platelet serotonin-release assay (SRA): a positive SRA in the appropriate clinical context is virtually diagnostic of heparin-induced thrombocytopenia (HIT), a life- and limb-threatening prothrombotic disorder caused by anti-platelet factor 4 (PF4)/heparin antibodies that activate platelets, thereby triggering serotonin-release. The SRA's performance characteristics include high sensitivity and specificity, although caveats include indeterminate reaction profiles (observed in ∼4% of test sera) and potential for false-positive reactions. As only a subset of anti-PF4/heparin antibodies detectable by enzyme-immunoassay (EIA) are additionally platelet-activating, the SRA has far greater diagnostic specificity than the EIA. However, requiring a positive EIA, either as an initial screening test or as an SRA adjunct, will reduce risk of a false-positive SRA (since a negative EIA in a patient with a "positive" SRA should prompt critical evaluation of the SRA reaction profile). The SRA also provides useful information on whether a HIT serum produces strong platelet activation even in the absence of heparin: such heparin-"independent" platelet activation is a marker of unusually severe HIT, including delayed-onset HIT and severe HIT complicated by consumptive coagulopathy with risk for microvascular thrombosis. PMID:25775976

  4. Serotonin in the sudden infant death syndrome.

    PubMed

    Waters, Karen

    2010-11-01

    It seems likely that some infants who die from sudden infant death syndrome (SIDS) have a brainstem abnormality of the serotonergic system. Evidence suggests that infants who died from SIDS had defective respiratory and/or autonomic responses that led to death instead of recovery after an acute insult. The serotonergic neuromodulator system has roles in the control of cardiac autonomic and respiratory function, as well as now being identified as abnormal in infants with SIDS. This manuscript reviews the multiple roles of serotonin with reference to the functional aspects of the relevant brain regions. Correlations with pre- or postnatal exposure to stressors, or an underlying genetic process are also reviewed. Together, these studies indicate that perturbed function of the serotonin system will have significant physiological impact during early development. Understanding the functional importance of these systems assists understanding of the pathogenesis of SIDS. In conclusion, whether an infant inherits serotonergic defects and is therefore "inherently vulnerable", or whether postnatal stressors can induce the abnormalities, any functional abnormalities of the serotonergic system that result are likely to be subclinical in the majority of cases and not easily detected with current medical tools. PMID:21152449

  5. Primary Thermometry in the Intermediate Coulomb Blockade Regime

    NASA Astrophysics Data System (ADS)

    Feshchenko, A. V.; Meschke, M.; Gunnarsson, D.; Prunnila, M.; Roschier, L.; Penttilä, J. S.; Pekola, J. P.

    2013-10-01

    We investigate Coulomb blockade thermometers (CBT) in an intermediate temperature regime, where measurements with enhanced accuracy are possible due to the increased magnitude of the differential conductance dip. Previous theoretical results show that corrections to the half width and to the depth of the measured conductance dip of a sensor are needed, when leaving the regime of weak Coulomb blockade towards lower temperatures. In the present work, we demonstrate experimentally that the temperature range of a CBT sensor can be extended by employing these corrections without compromising the primary nature or the accuracy of the thermometer.

  6. Mechanical vibrations induced resonant breakdown of the Coulomb blockade

    NASA Astrophysics Data System (ADS)

    Pogosov, A. G.; Budantsev, M. V.; Shevyrin, A. A.; Plotnikov, A. E.; Bakarov, A. K.; Toropov, A. I.

    2011-12-01

    Influence of forced mechanical vibrations of a suspended single-electron transistor on electron tunneling through the quantum dot limited by the Coulomb blockade is investigated. It is shown that mechanical oscillations of the quantum dot lead to the Coulomb blockade breakdown, shown in sharp resonant peaks in the transistor conductance dependence on the excitation frequency at values corresponding to the mechanical oscillations eigen modes. The observed effect is presumably connected with oscillations of the mutual electrical capacitances between the quantum dot and surrounding electrodes.

  7. Antiproliferative effects of the serotonin type 2 receptor antagonist, ketanserin, on smooth muscle cell growth in rats

    SciTech Connect

    Uehara, Y.; Nagata, T.; Matsuoka, H.; Numabe, A.; Hirawa, N.; Takada, S.; Ishimitsu, T.; Yagi, S.; Sugimoto, T. )

    1991-01-01

    The authors defined the role of a serotonin type 2 receptor antagonist, ketanserin, in the growth of aortic vascular smooth muscle cells (VSMCs) from Wistar rats, using cell culture and cell synchrony methods. Deoxyribonucleic acid (DNA) replication in the G0/G1- or G1/S-synchronized VSMCs was assessed by (3H)thymidine uptake into DNA. Ketanserin at 2 {times} 10(-5) M significantly decreased the thymidine uptake by 48% in the proliferating VSMCs, whereas methysergide, a nonspecific serotonin inhibitor, unaffected the thymidine uptake. Ketanserin at 10(-5) M did not influence the duration of the G1 resting period. However, this dose of ketanserin significantly lowered DNA replication in the DNA synthetic (S) period in a dose-dependent manner. Neither methysergide nor the alpha 1-adrenoceptor antagonist, prazosin, affected DNA synthesis in the S period. Ketanserin exhibits antiproliferative effects on rat VSMC growth probably through the suppression of DNA replication in the S phase. This property would also contribute to the vascular protective effects of ketanserin with its well-documented antihypertensive action.

  8. [Iprindole: a functional link between serotonin and noradrenaline systems?].

    PubMed

    Ganry, H; Bourin, M

    1994-01-01

    Iprindole is an active antidepressant in clinical practice but its mechanism of action has never been clearly defined. Serotoninergic regulation of noradrenergic neurons of locus coeruleus depends on 5-HT2 receptors. This regulatory action of the 5-HT system appears to facilitate the down-regulation of beta receptors. In behavioural tests involving the noradrenergic system, the role of iprindole, administered in subactive doses, was evaluated in the presence of subactive doses of fluvoxamine, a serotonin uptake inhibitor. Yohimbine is an alpha2 antagonist, inducing a dose-dependent toxicity. This test allows a rapid and selective screening of antidepressants with direct and indirect beta-agonist properties. Administration of iprindole displayed a toxicity of fluvoxamine in the presence of yohimbine. A 5-day pre-treatment of iprindole antagonized this potentiation unmasked after acute administration of iprindole. The down-regulation of beta receptors induced by a chronic treatment by iprindole could prevent the adrenergic expression of yohimbine's toxicity. But the down-regulation of 5-HT2 receptors also obtained with chronic treatment by iprindole, can explain this antagonism preventing fluvoxamine's action. Hypothermia induced by a high dose of apomorphine, depends on an activation of the noradrenergic system. During the interaction with fluvoxamine, iprindole unmasked an antagonism of this hypothermia due to apomorphine. The activity of a subactive dose of salbutamol, a direct beta-agonist, was evaluated in the presence of fluvoxamine on hypothermia induced by a high dose of apomorphine. The aim of this interaction was to define the beta-adrenergic property of iprindole more precisely.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Plasma anti-serotonin and serotonin anti-idiotypic antibodies are elevated in panic disorder.

    PubMed

    Coplan, J D; Tamir, H; Calaprice, D; DeJesus, M; de la Nuez, M; Pine, D; Papp, L A; Klein, D F; Gorman, J M

    1999-04-01

    The psychoneuroimmunology of panic disorder is relatively unexplored. Alterations within brain stress systems that secondarily influence the immune system have been documented. A recent report indicated elevations of serotonin (5-HT) and ganglioside antibodies in patients with primary fibromyalgia, a condition with documented associations with panic disorder. In line with our interest in dysregulated 5-HT systems in panic disorder (PD), we wished to assess if antibodies directed at the 5-HT system were elevated in patients with PD in comparison to healthy volunteers. Sixty-three patients with panic disorder and 26 healthy volunteers were diagnosed by the SCID. Employing ELISA, we measured anti-5-HT and 5-HT anti-idiotypic antibodies (which are directed at 5-HT receptors). To include all subjects in one experiment, three different batches were run during the ELISA. Plasma serotonin anti-idiotypic antibodies: there was a significant group effect [patients > controls (p = .007)] and batch effect but no interaction. The mean effect size for the three batches was .76. Following Z-score transformation of each separate batch and then combining all scores, patients demonstrated significantly elevated levels of plasma serotonin anti-idiotypic antibodies. Neither sex nor age as covariates affected the significance of the results. There was a strong correlation between anti-serotonin antibody and serotonin anti-idiotypic antibody measures. Plasma anti-serotonin antibodies: there was a significant diagnosis effect [patients > controls (p = .037)]. Mean effect size for the three batches was .52. Upon Z-score transformation, there was a diagnosis effect with antibody elevations in patients. Covaried for sex and age, the result falls below significance to trend levels. The data raise the possibility that psychoimmune dysfunction, specifically related to the 5-HT system, may be present in PD. Potential interruption of 5-HT neurotransmission through autoimmune mechanisms may be of

  10. Mice Lacking Serotonin 2C Receptors Have increased Affective Responses to Aversive Stimuli

    PubMed Central

    Bonasera, Stephen J.; Schenk, A. Katrin; Luxenberg, Evan J.; Wang, Xidao; Basbaum, Allan; Tecott, Laurence H.

    2015-01-01

    Although central serotonergic systems are known to influence responses to noxious stimuli, mechanisms underlying serotonergic modulation of pain responses are unclear. We proposed that serotonin 2C receptors (5-HT2CRs), which are expressed within brain regions implicated in sensory and affective responses to pain, contribute to the serotonergic modulation of pain responses. In mice constitutively lacking 5-HT2CRs (2CKO mice) we found normal baseline sensory responses to noxious thermal, mechanical and chemical stimuli. In contrast, 2CKO mice exhibited a selective enhancement of affect-related ultrasonic afterdischarge vocalizations in response to footshock. Enhanced affect-related responses to noxious stimuli were also exhibited by 2CKO mice in a fear-sensitized startle assay. The extent to which a brief series of unconditioned footshocks produced enhancement of acoustic startle responses was markedly increased in 2CKO mice. As mesolimbic dopamine pathways influence affective responses to noxious stimuli, and these pathways are disinhibited in 2CKO mice, we examined the sensitivity of footshock-induced enhancement of startle to dopamine receptor blockade. Systemic administration of the dopamine D2/D3 receptor antagonist raclopride selectively reduced footshock-induced enhancement of startle without influencing baseline acoustic startle responses. We propose that 5-HT2CRs regulate affective behavioral responses to unconditioned aversive stimuli through mechanisms involving the disinhibition of ascending dopaminergic pathways. PMID:26630489

  11. Cyclopiazonic acid alters serotonin-induced responses in rat thoracic aorta.

    PubMed

    Selli, C; Erac, Y; Tosun, M

    2014-01-01

    We previously showed that endothelin A (ETA) receptor antagonist BQ-123 partially inhibited cyclopiazonic acid (CPA)-enhanced endothelin-1 (ET-1)-induced contractions suggesting enhancement of ETA receptor internalization in caveolar structures by sarco/endoplasmic reticulum Ca+2 ATPase (SERCA) blockade. Since serotonin (5-Hydroxytryptamine, 5-HT) receptors are reported to be localized on caveolar membranes, we investigated whether SERCA inhibition affects 5-HT-induced responses and 5-HT receptor antagonism. For this purpose, vascular responses were measured in thoracic aorta segments from male Wistar albino rats using isolated tissue experiments. Data showed that CPA inhibits 5-HT- and PE-induced contractions in intact vessels while potentiating those in endothelium-denuded. Furthermore, non-selective 5-HT receptor blocker methysergide partially inhibited CPA-induced 5-HT contractions. However, α1-adrenergic receptor antagonist prazosin totally inhibited CPA-potentiated PE contractions. We suggest that SERCA inhibition results in 5-HT receptor internalization similar to ETA receptors possibly through protein kinase C activation by increased subsarcolemmal Ca2+ levels, eventually preventing 5-HT receptor antagonism. PMID:24704610

  12. [Alfa-blockade with doxazosin vs tamsulozin in combination of intermittent androgen blockade in patients with prostate cancer].

    PubMed

    Muradian, A A

    2005-03-01

    We have studied the efficacy of Alfa-blockade with Doxazosin vs Tamsulozin in combination with Intermittent Androgen Blockade (IAB) in patients with low grade prostate cancer. Our clinical trial included: I group (n=15) of patients who received doxazosin with IAB and flutamide; II group (n=13) of patients who received tamsulozin in combination with IAB and flutamide and III (n=33) group with flutamid monotherapy alone. Our results have shown that the combination of doxasozin and IAB with the flutamide leads to the better improvement of uroflowmetry and IPSS parameters, whereas the tamsulozin and IAB with flutamide combination induce those improvements for the longer period during the disease remission.

  13. Thermostabilization of the Human Serotonin Transporter in an Antidepressant-Bound Conformation

    PubMed Central

    Green, Evan M.; Coleman, Jonathan A.; Gouaux, Eric

    2015-01-01

    Serotonin is a ubiquitous chemical transmitter with particularly important roles in the gastrointestinal, cardiovascular and central nervous systems. Modulation of serotonergic signaling occurs, in part, by uptake of the transmitter by the serotonin transporter (SERT). In the brain, SERT is the target for numerous antidepressants including tricyclic antidepressants and selective serotonin reuptake inhibitors (SSRIs). Despite the importance of SERT in human physiology, biochemical, biophysical and high-resolution structural studies have been hampered due to the instability of SERT in detergent micelles. To identify a human SERT (hSERT) construct suitable for detailed biochemical and structural studies, we developed an efficient thermostability screening protocol and rapidly screened 219 mutations for thermostabilization of hSERT in complex with the SSRI paroxetine. We discovered three mutations—Y110A, I291A and T439S –that, when combined into a single construct, deemed TS3, yielded a hSERT variant with an apparent melting temperature (Tm) 19°C greater than that of the wild-type transporter, albeit with a loss of transport activity. Further investigation yielded a double mutant—I291A and T439S—defined as TS2, with a 12°C increase in Tm and retention of robust transport activity. Both TS2 and TS3 were more stable in short-chain detergents in comparison to the wild-type transporter. This thermostability screening protocol, as well as the specific hSERT variants, will prove useful in studies of other integral membrane receptors and transporters and in the investigation of structure and function relationships in hSERT. PMID:26695939

  14. Serotonin 2c receptors in pro-opiomelanocortin neurons regulate energy and glucose homeostasis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Energy and glucose homeostasis are regulated by central serotonin 2C receptors. These receptors are attractive pharmacological targets for the treatment of obesity; however, the identity of the serotonin 2C receptor-expressing neurons that mediate the effects of serotonin and serotonin 2C receptor a...

  15. Serotonin shifts first-spike latencies of inferior colliculus neurons.

    PubMed

    Hurley, Laura M; Pollak, George D

    2005-08-24

    Many studies of neuromodulators have focused on changes in the magnitudes of neural responses, but fewer studies have examined neuromodulator effects on response latency. Across sensory systems, response latency is important for encoding not only the temporal structure but also the identity of stimuli. In the auditory system, latency is a fundamental response property that varies with many features of sound, including intensity, frequency, and duration. To determine the extent of neuromodulatory regulation of latency within the inferior colliculus (IC), a midbrain auditory nexus, the effects of iontophoretically applied serotonin on first-spike latencies were characterized in the IC of the Mexican free-tailed bat. Serotonin significantly altered the first-spike latencies in response to tones in 24% of IC neurons, usually increasing, but sometimes decreasing, latency. Serotonin-evoked changes in latency and spike count were not always correlated but sometimes occurred independently within individual neurons. Furthermore, in some neurons, the size of serotonin-evoked latency shifts depended on the frequency or intensity of the stimulus, as reported previously for serotonin-evoked changes in spike count. These results support the general conclusion that changes in latency are an important part of the neuromodulatory repertoire of serotonin within the auditory system and show that serotonin can change latency either in conjunction with broad changes in other aspects of neuronal excitability or in highly specific ways. PMID:16120790

  16. Serotonin and the regulation of mammalian energy balance

    PubMed Central

    Donovan, Michael H.; Tecott, Laurence H.

    2013-01-01

    Maintenance of energy balance requires regulation of the amount and timing of food intake. Decades of experiments utilizing pharmacological and later genetic manipulations have demonstrated the importance of serotonin signaling in this regulation. Much progress has been made in recent years in understanding how central nervous system (CNS) serotonin systems acting through a diverse array of serotonin receptors impact feeding behavior and metabolism. Particular attention has been paid to mechanisms through which serotonin impacts energy balance pathways within the hypothalamus. How upstream factors relevant to energy balance regulate the release of hypothalamic serotonin is less clear, but work addressing this issue is underway. Generally, investigation into the central serotonergic regulation of energy balance has had a predominantly “hypothalamocentric” focus, yet non-hypothalamic structures that have been implicated in energy balance regulation also receive serotonergic innervation and express multiple subtypes of serotonin receptors. Moreover, there is a growing appreciation of the diverse mechanisms through which peripheral serotonin impacts energy balance regulation. Clearly, the serotonergic regulation of energy balance is a field characterized by both rapid advances and by an extensive and diverse set of central and peripheral mechanisms yet to be delineated. PMID:23543912

  17. Brain pathology in fatal serotonin syndrome: presentation of two cases.

    PubMed

    Slettedal, Jon K; Nilssen, Dag Olav V; Magelssen, Morten; Løberg, Else Marit; Maehlen, Jan

    2011-06-01

    Serotonin syndrome is a potentially life-threatening reaction that occurs in patients using drugs that elevate the serotonin level in the body. Excess serotonergic activity in the CNS and peripheral serotonin receptors results in neuromuscular hyperactivity, mental changes and autonomic symptoms. Hyperthermia is a characteristic feature of the syndrome. We describe neuropathological findings from two cases of lethal serotonin syndrome, both patients presenting with hyperthermia and neuromuscular symptoms. One of the patients had been taking amitriptylin and mirtazapin and the other had used amitriptylin and citalopram. They died, respectively, 10 days and 2½ months after the onset of serotonin syndrome symptoms. Post-mortem examination of the brains showed subtotal loss of cerebellar Purkinje cells in both cases. In the case with shorter survival time, areas with partial loss of cerebellar granule cells were observed, whereas in the case with longer survival time general and extensive loss of granule cells was found. Cells in other areas of the brain known to be sensitive to hypoxic injury were not affected. Selective loss of Purkinje cells has previously been described in neuroleptic malignant syndrome and heatstroke, conditions that are characterized by hyperthermia. This suggests that hyperthermia may be a causative factor of brain damage in serotonin syndrome. This is the first report describing neuropathological findings in serotonin syndrome.

  18. Electrochemical quantification of serotonin in the live embryonic zebrafish intestine

    PubMed Central

    Njagi, John; Ball, Michael; Best, Marc; Wallace, Kenneth N.; Andreescu, Silvana

    2010-01-01

    We monitored real-time in vivo levels of serotonin release in the digestive system of intact zebrafish embryos during early development (5 dpf) using differential pulse voltammetry with implanted carbon fiber microelectrodes modified with carbon nanotubes dispersed in nafion. A detection limit of 1 nM, a linear range between 5 to 200 nM and a sensitivity of 83.65 nA·μM−1 were recorded. The microelectrodes were implanted at various locations in the intestine of zebrafish embryos. Serotonin levels of up to 29.9(±1.13) nM were measured in vivo in normal physiological conditions. Measurements were performed in intact live embryos without additional perturbation beyond electrode insertion. The sensor was able to quantify pharmacological alterations in serotonin release and provide the longitudinal distribution of this neurotransmitter along the intestine with high spatial resolution. In the presence of fluvoxamine, a selective serotonin reuptake inhibitor (SSRI), concentrations of 54.1(±1.05) nM were recorded while in the presence of p-chloro-phenylalanine (PCPA), a tryptophan hydroxylase inhibitor, the serotonin levels decreased to 7.2(±0.45) nM. The variation of serotonin levels was correlated with immunohistochemical analysis. We have demonstrated the first use of electrochemical microsensors for in vivo monitoring of intestinal serotonin levels in intact zebrafish embryos. PMID:20148518

  19. Electrochemical quantification of serotonin in the live embryonic zebrafish intestine.

    PubMed

    Njagi, John; Ball, Michael; Best, Marc; Wallace, Kenneth N; Andreescu, Silvana

    2010-03-01

    We monitored real-time in vivo levels of serotonin release in the digestive system of intact zebrafish embryos during early development (5 days postfertilization, dpf) using differential pulse voltammetry with implanted carbon fiber microelectrodes modified with carbon nanotubes dispersed in nafion. A detection limit of 1 nM, a linear range between 5 and 200 nM, and a sensitivity of 83.65 nA x microM(-1) were recorded. The microelectrodes were implanted at various locations in the intestine of zebrafish embryos. Serotonin levels of up to 29.9 (+/-1.13) nM were measured in vivo in normal physiological conditions. Measurements were performed in intact live embryos without additional perturbation beyond electrode insertion. The sensor was able to quantify pharmacological alterations in serotonin release and provide the longitudinal distribution of this neurotransmitter along the intestine with high spatial resolution. In the presence of fluvoxamine, a selective serotonin reuptake inhibitor (SSRI), concentrations of 54.1 (+/-1.05) nM were recorded while in the presence of p-chloro-phenylalanine (PCPA), a tryptophan hydroxylase inhibitor, the serotonin levels decreased to 7.2 (+/-0.45) nM. The variation of serotonin levels was correlated with immunohistochemical analysis. We have demonstrated the first use of electrochemical microsensors for in vivo monitoring of intestinal serotonin levels in intact zebrafish embryos. PMID:20148518

  20. The Union Blockade and Demoralization of the South: Relative Prices in the Confederacy.

    ERIC Educational Resources Information Center

    Ekelund, Robert B., Jr.; Thornton, Mark

    1992-01-01

    Applies the economic concept of relative prices to the blockaded Confederacy during the U.S. Civil War. Describes how the Union blockade encouraged blockade runners to supply luxury items while soldiers lacked food, clothing, and ammunition. Contends that the resultant demoralization was a factor in the demise of the Confederacy. (CFR)

  1. Rotavirus and Serotonin Cross-Talk in Diarrhoea

    PubMed Central

    Nordgren, Johan; Karlsson, Thommie; Sharma, Sumit; Magnusson, Karl-Eric; Svensson, Lennart

    2016-01-01

    Rotavirus (RV) has been shown to infect and stimulate secretion of serotonin from human enterochromaffin (EC) cells and to infect EC cells in the small intestine of mice. It remains to identify which intracellularly expressed viral protein(s) is responsible for this novel property and to further establish the clinical role of serotonin in RV infection. First, we found that siRNA specifically silencing NSP4 (siRNANSP4) significantly attenuated secretion of serotonin from Rhesus rotavirus (RRV) infected EC tumor cells compared to siRNAVP4, siRNAVP6 and siRNAVP7. Second, intracellular calcium mobilization and diarrhoeal capacity from virulent and avirulent porcine viruses correlated with the capacity to release serotonin from EC tumor cells. Third, following administration of serotonin, all (10/10) infants, but no (0/8) adult mice, responded with diarrhoea. Finally, blocking of serotonin receptors using Ondansetron significantly attenuated murine RV (strain EDIM) diarrhoea in infant mice (2.9 vs 4.5 days). Ondansetron-treated mice (n = 11) had significantly (p < 0.05) less diarrhoea, lower diarrhoea severity score and lower total diarrhoea output as compared to mock-treated mice (n = 9). Similarly, Ondansetron-treated mice had better weight gain than mock-treated animals (p < 0.05). A most surprising finding was that the serotonin receptor antagonist significantly (p < 0.05) also attenuated total viral shedding. In summary, we show that intracellularly expressed NSP4 stimulates release of serotonin from human EC tumor cells and that serotonin participates in RV diarrhoea, which can be attenuated by Ondansetron. PMID:27459372

  2. Rotavirus and Serotonin Cross-Talk in Diarrhoea.

    PubMed

    Bialowas, Sonja; Hagbom, Marie; Nordgren, Johan; Karlsson, Thommie; Sharma, Sumit; Magnusson, Karl-Eric; Svensson, Lennart

    2016-01-01

    Rotavirus (RV) has been shown to infect and stimulate secretion of serotonin from human enterochromaffin (EC) cells and to infect EC cells in the small intestine of mice. It remains to identify which intracellularly expressed viral protein(s) is responsible for this novel property and to further establish the clinical role of serotonin in RV infection. First, we found that siRNA specifically silencing NSP4 (siRNANSP4) significantly attenuated secretion of serotonin from Rhesus rotavirus (RRV) infected EC tumor cells compared to siRNAVP4, siRNAVP6 and siRNAVP7. Second, intracellular calcium mobilization and diarrhoeal capacity from virulent and avirulent porcine viruses correlated with the capacity to release serotonin from EC tumor cells. Third, following administration of serotonin, all (10/10) infants, but no (0/8) adult mice, responded with diarrhoea. Finally, blocking of serotonin receptors using Ondansetron significantly attenuated murine RV (strain EDIM) diarrhoea in infant mice (2.9 vs 4.5 days). Ondansetron-treated mice (n = 11) had significantly (p < 0.05) less diarrhoea, lower diarrhoea severity score and lower total diarrhoea output as compared to mock-treated mice (n = 9). Similarly, Ondansetron-treated mice had better weight gain than mock-treated animals (p < 0.05). A most surprising finding was that the serotonin receptor antagonist significantly (p < 0.05) also attenuated total viral shedding. In summary, we show that intracellularly expressed NSP4 stimulates release of serotonin from human EC tumor cells and that serotonin participates in RV diarrhoea, which can be attenuated by Ondansetron. PMID:27459372

  3. Modulation of anxiety by cortical serotonin 1A receptors

    PubMed Central

    Piszczek, Lukasz; Piszczek, Agnieszka; Kuczmanska, Joanna; Audero, Enrica; Gross, Cornelius T.

    2015-01-01

    Serotonin (5-HT) plays an important role in the modulation of behavior across animal species. The serotonin 1A receptor (Htr1a) is an inhibitory G-protein coupled receptor that is expressed both on serotonin and non-serotonin neurons in mammals. Mice lacking Htr1a show increased anxiety behavior suggesting that its activation by serotonin has an anxiolytic effect. This outcome can be mediated by either Htr1a population present on serotonin (auto-receptor) or non-serotonin neurons (hetero-receptor), or both. In addition, both transgenic and pharmacological studies have shown that serotonin acts on Htr1a during development to modulate anxiety in adulthood, demonstrating a function for this receptor in the maturation of anxiety circuits in the brain. However, previous studies have been equivocal about which Htr1a population modulates anxiety behavior, with some studies showing a role of Htr1a hetero-receptor and others implicating the auto-receptor. In particular, cell-type specific rescue and suppression of Htr1a expression in either forebrain principal neurons or brainstem serotonin neurons reached opposite conclusions about the role of the two populations in the anxiety phenotype of the knockout. One interpretation of these apparently contradictory findings is that the modulating role of these two populations depends on each other. Here we use a novel Cre-dependent inducible allele of Htr1a in mice to show that expression of Htr1a in cortical principal neurons is sufficient to modulate anxiety. Together with previous findings, these results support a hetero/auto-receptor interaction model for Htr1a function in anxiety. PMID:25759645

  4. Accurate Coulomb blockade thermometry up to 60 kelvin.

    PubMed

    Meschke, M; Kemppinen, A; Pekola, J P

    2016-03-28

    We demonstrate experimentally a precise realization of Coulomb blockade thermometry working at temperatures up to 60 K. Advances in nano-fabrication methods using electron beam lithography allow us to fabricate uniform arrays of sufficiently small tunnel junctions to guarantee an overall temperature reading precision of about 1%. PMID:26903107

  5. A new regime of Pauli-spin blockade

    NASA Astrophysics Data System (ADS)

    Perron, Justin K.; Stewart, M. D.; Zimmerman, Neil M.

    2016-04-01

    Pauli-spin blockade (PSB) is a transport phenomenon in double quantum dots that allows for a type of spin to charge conversion often used to probe fundamental physics such as spin relaxation and singlet-triplet coupling. In this paper, we theoretically explore Pauli-spin blockade as a function of magnetic field B applied parallel to the substrate. In the well-studied low magnetic field regime, where PSB occurs in the forward (1, 1) → (0, 2) tunneling direction, we highlight some aspects of PSB that are not discussed in detail in existing literature, including the change in size of both bias triangles measured in the forward and reverse biasing directions as a function of B. At higher fields, we predict a crossover to "reverse PSB" in which current is blockaded in the reverse direction due to the occupation of a spin singlet as opposed to the traditional triplet blockade that occurs at low fields. The onset of reverse PSB coincides with the development of a tail like feature in the measured bias triangles and occurs when the Zeeman energy of the polarized triplet equals the exchange energy in the (0, 2) charge configuration. In Si quantum dots, these fields are experimentally accessible; thus, this work suggests a way to observe a crossover in magnetic field to qualitatively different behavior.

  6. Axillary Brachial Plexus Blockade for the Reflex Sympathetic Dystrophy Syndrome.

    ERIC Educational Resources Information Center

    Ribbers, G. M.; Geurts, A. C. H.; Rijken, R. A. J.; Kerkkamp, H. E. M.

    1997-01-01

    Reflex sympathetic dystrophy syndrome (RSD) is a neurogenic pain syndrome characterized by pain, vasomotor and dystrophic changes, and often motor impairments. This study evaluated the effectiveness of brachial plexus blockade with local anaesthetic drugs as a treatment for this condition. Three patients responded well; three did not. (DB)

  7. Non-linear HRV indices under autonomic nervous system blockade.

    PubMed

    Bolea, Juan; Pueyo, Esther; Laguna, Pablo; Bailón, Raquel

    2014-01-01

    Heart rate variability (HRV) has been studied as a non-invasive technique to characterize the autonomic nervous system (ANS) regulation of the heart. Non-linear methods based on chaos theory have been used during the last decades as markers for risk stratification. However, interpretation of these nonlinear methods in terms of sympathetic and parasympathetic activity is not fully established. In this work we study linear and non-linear HRV indices during ANS blockades in order to assess their relation with sympathetic and parasympathetic activities. Power spectral content in low frequency (0.04-0.15 Hz) and high frequency (0.15-0.4 Hz) bands of HRV, as well as correlation dimension, sample and approximate entropies were computed in a database of subjects during single and dual ANS blockade with atropine and/or propranolol. Parasympathetic blockade caused a significant decrease in the low and high frequency power of HRV, as well as in correlation dimension and sample and approximate entropies. Sympathetic blockade caused a significant increase in approximate entropy. Sympathetic activation due to postural change from supine to standing caused a significant decrease in all the investigated non-linear indices and a significant increase in the normalized power in the low frequency band. The other investigated linear indices did not show significant changes. Results suggest that parasympathetic activity has a direct relation with sample and approximate entropies.

  8. Serotonin syndrome precipitated by fentanyl during procedural sedation.

    PubMed

    Kirschner, Ron; Donovan, J Ward

    2010-05-01

    Fentanyl is frequently used for analgesia during emergency procedures. We present the cases of 2 patients who developed agitation and delirium after intravenous fentanyl administration. These patients were chronically taking selective serotonin reuptake inhibitors (SSRIs). Both developed neuromuscular examinations consistent with serotonin syndrome, a diagnosis that must be established on the basis of clinical criteria. Although they required aggressive supportive care, including mechanical ventilation, both patients made a full recovery. Use of fentanyl for procedural sedation may precipitate serotonin syndrome in patients taking SSRIs or other serotonergic drugs. PMID:18757161

  9. 4-haloethenylphenyl tropane:serotonin transporter imaging agents

    DOEpatents

    Goodman, Mark M.; Martarello, Laurent

    2005-01-18

    A series of compounds in the 4-fluoroalkyl-3-halophenyl nortropanes and 4-haloethenylphenyl tropane families are described as diagnostic and therapeutic agents for diseases associated with serotonin transporter dysfunction. These compounds bind to serotonin transporter protein with high affinity and selectivity. The invention provides methods of synthesis which incorporate radioisotopic halogens at a last step which permit high radiochemical yield and maximum usable product life. The radiolabeled compounds of the invention are useful as imaging agents for visualizing the location and density of serotonin transporter by PET and SPECT imaging.

  10. The serotonin irritation syndrome--a new clinical entity?

    PubMed

    Giannini, A J; Malone, D A; Piotrowski, T A

    1986-01-01

    The literature on the possible existence of a "serotonin irritation syndrome" is examined. This syndrome is an anxiety state occurring in the presence of elevated levels of atmospheric or ambient cations and is associated with elevated central and peripheral serotonin levels. Investigation of these cations' effects on microbes, insects, and mammals, including humans, shows a disruption of normal activity. It is suggested that clinicians become acquainted with the potential relationship between cation exposure and serotonin in their treatment of anxious patients. Further research exploring the etiology and diagnostic definition of this entity is urged. PMID:2416736

  11. Antidepressant Specificity of Serotonin Transporter Suggested by Three LeuT-SSRI Structures

    SciTech Connect

    Zhou, Z.; Zhen, J; Karpowich, N; Law, C; Reith, M; Wang, D

    2009-01-01

    Sertraline and fluoxetine are selective serotonin re-uptake inhibitors (SSRIs) that are widely prescribed to treat depression. They exert their effects by inhibiting the presynaptic plasma membrane serotonin transporter (SERT). All SSRIs possess halogen atoms at specific positions, which are key determinants for the drugs' specificity for SERT. For the SERT protein, however, the structural basis of its specificity for SSRIs is poorly understood. Here we report the crystal structures of LeuT, a bacterial SERT homolog, in complex with sertraline, R-fluoxetine or S-fluoxetine. The SSRI halogens all bind to exactly the same pocket within LeuT. Mutation at this halogen-binding pocket (HBP) in SERT markedly reduces the transporter's affinity for SSRIs but not for tricyclic antidepressants. Conversely, when the only nonconserved HBP residue in both norepinephrine and dopamine transporters is mutated into that found in SERT, their affinities for all the three SSRIs increase uniformly. Thus, the specificity of SERT for SSRIs is dependent largely on interaction of the drug halogens with the protein's HBP.

  12. Interleukin-15 affects serotonin system and exerts antidepressive effects through IL15Rα receptor

    PubMed Central

    Wu, Xiaojun; Hsuchou, Hung; Kastin, Abba J.; He, Yi; Khan, Reas S.; Stone, Kirsten P.; Cash, Michael S.; Pan, Weihong

    2010-01-01

    Summary Contrary to the reduction of depressive-like behavior observed in several strains of cytokine receptor knockout mice, mice lacking the specific receptor for interleukin (IL)-15 showed increased immobility in tail suspension and modified forced swimming tests. There was also a reduction in social interactions. The hippocampus of the IL15Rα knockout mice had decreased mRNA for 5-HT1A, increased mRNA for 5-HT2C, and region-specific changes of serotonin reuptake transporter (SERT) immunoreactivity. Fluoxetine (the classic antidepressant Prozac, which inhibits 5-HT2C and SERT) reduced the immobility of the IL15Rα knockout mice in comparison with their pretreatment baseline. Together with the unchanged performance of the IL15Rα knockout mice on the rotarod, this response to fluoxetine indicates that the immobility reflects depression. Wildtype mice responded to IL15 treatment with improvement of immobility induced by forced swimming, whereas the knockout mice failed to respond. Thus, the cognate IL15 receptor is necessary for the antidepressive activity of IL15. In ex-vivo studies, IL15 decreased synaptosomal uptake of 5-HT, and modulated the expression of 5-HT2C and SERT in cultured neurons in a dose- and time-dependent manner. Thus, the effect of IL15 on serotonin transmission may underlie the depressive-like behavior of IL15Rα knockout mice. We speculate that IL15 is essential to maintain neurochemical homeostasis and thereby plays a role in preventing neuropsychiatric symptoms. PMID:20724079

  13. Additive effects of glyburide and antidepressants in the forced swimming test: evidence for the involvement of potassium channel blockade.

    PubMed

    Guo, W; Todd, K; Bourin, M; Hascoet, M; Kouadio, F

    1996-08-01

    Evidence in the literature suggests that the modulatory effects of antidepressant drugs (ADS) on neuronal excitability, via the inhibition of K+ channels, may be the final common pathway of pharmacological action. Therefore, we tested the hypothesis that combining the ATP-sensitive K+ channel blocker glyburide with a variety of ADS would produce an additive effect and decrease the immobility time of mice in the forced swimming test (FST). Glyburide (GLY, IP, 30 and 50 mg/kg) and subactive doses of ADS were administered 45 and 30 min, respectively, prior to behavioral testing. Results showed that when combined with GLY, ADS whose main pharmacological effect is one of 5-HT uptake blockade (imipramine, amitriptyline, citalopram, paroxetine, fluoxetine, and fluvoxamine) were more effective in decreasing the amount of time mice were immobile, than when these drugs were administered alone. Some noradrenaline uptake inhibiting ADS (desipramine and viloxazine, but not maprotiline) were also significantly more effective in decreasing immobility time when combined with GLY than when administered alone. Pretreatment with GLY was found to have no effect on the dopamine uptake inhibitor bupropion, and out of the atypical ADS tested (trazodone, mianserine and iprindole), only coadministration with iprindole decreased the immobility time. Only the specific MAO-A inhibitor moclobemide was observed to have an antiimmobility effect when combined with GLY. Neither MAO-B specific (RO 16 6491) nor mixed MAO inhibitors (nialamide and pargyline) interacted with GLY to produce antiimmobility effects. These results corroborate and extend our previous report of the ADS enhancing effects of quinine in the same behavioral model, and suggest that the additive effects of quinine and GLY on ADS in FST are a result of K+ channel blockade.

  14. The microwave spectrum of neurotransmitter serotonin.

    PubMed

    Cabezas, Carlos; Varela, Marcelino; Peña, Isabel; López, Juan C; Alonso, José L

    2012-10-21

    A laser ablation device in combination with a molecular beam Fourier-transform microwave spectrometer has allowed the observation of the rotational spectrum of serotonin for the first time. Three conformers of the neurotransmitter have been detected and characterized in the 4-10 GHz frequency range. The complicated hyperfine structure arising from the presence of two (14)N nuclei has been fully resolved for all conformers and used for their identification. Nuclear quadrupole coupling constants of the nitrogen atom of the side chain have been used to determine the orientation of the amino group probing the existence of N-Hπ interactions involving the amino group and the pyrrole unit in the Gauche-Phenyl conformer (GPh) or the phenyl unit in the Gauche-Pyrrole (GPy) ones.

  15. Flux coupling in the human serotonin transporter.

    PubMed Central

    Adams, Scott V; DeFelice, Louis J

    2002-01-01

    The serotonin (5-hydroxytryptamine; 5HT) transporter (SERT) catalyzes the movement of 5HT across cellular membranes. In the brain, SERT clears 5HT from extracellular spaces, modulating the strength and duration of serotonergic signaling. SERT is also an important pharmacological target for antidepressants and drugs of abuse. We have studied the flux of radio-labeled 5HT through the transporter stably expressed in HEK-293 cells. Analysis of the time course of net transport, the equilibrium 5HT gradient sustained, and the ratio of the unidirectional influx to efflux of 5HT indicate that mechanistically, human SERT functions as a 5HT channel rather than a classical carrier. This is especially apparent at relatively high [5HT](out) (> or =10 microM), but is not restricted to this regime of external 5HT. PMID:12496095

  16. Possible involvement of serotonin in extinction.

    PubMed

    Beninger, R J; Phillips, A G

    1979-01-01

    In Experiment 1, rats were trained to leverpress for continuous reinforcement with food; half were then intubated with the serotonin synthesis inhibitor parachlorophenylalanine (PCPA: 400 mg/kg) and half with water. In extinction the PCPA-treated rats responded at a higher rate. In Experiment 2, rats were trained on a random interval schedule and then assigned to two groups, treated as in Experiment 1, and tested in extinction. There was no significant difference in the resistance to extinction of the two groups. In Experiment 3, the responding of rats trained in a punished stepdown response paradigm and then given an intragastric injection of PCPA took longer to recover than the responding of water-injected controls. These observations suggest that serotonergic neurons might play a role in extinction processes. PMID:155820

  17. Alpha-Ca2+/calmodulin-dependent protein kinase II contributes to the developmental programming of anxiety in serotonin receptor 1A knock-out mice.

    PubMed

    Lo Iacono, Luisa; Gross, Cornelius

    2008-06-11

    Mice lacking the serotonin receptor 1A [Htr1aknock-out (Htr1a(KO))] display increased innate and conditioned anxiety-related behavior. Expression of the receptor in the mouse forebrain during development is sufficient to restore normal anxiety-related behavior to knock-out mice, demonstrating a role for serotonin in the developmental programming of anxiety circuits. However, the precise developmental period as well as the signaling pathways and neural substrates involved in this phenomenon are unknown. Here, we show that pharmacological blockade of the receptor from postnatal day 13 (P13)-P34 is sufficient to reproduce the knock-out phenotype in adulthood, thus defining a role for serotonin in the maturation and refinement of anxiety circuits during a limited postnatal period. Furthermore, we identify increases in the phosphorylation of alpha-Ca(2+)/calmodulin-dependent protein kinase II (alphaCaMKII) at threonine 286 in the hippocampus of young Htr1a(KO) mice under anxiety-provoking conditions. Increases in alphaCaMKII phosphorylation were most pronounced in the CA1 region of the hippocampus and were localized to the extrasynaptic compartment, consistent with a tissue-specific effect of the receptor. No changes in alphaCaMKII phosphorylation were found in adult knock-out mice, suggesting a transient role of alphaCaMKII as a downstream target of the receptor. Finally, the anxiety phenotype was abolished when knock-out mice were crossed to mice in which alphaCaMKII phosphorylation was compromised by the heterozygous mutation of threonine 286 into alanine. These findings suggest that modulation of alphaCaMKII function by serotonin during a restricted postnatal period contributes to the developmental programming of anxiety-related behavior. PMID:18550767

  18. Sources of activator calcium for potassium- and serotonin-induced constriction of isolated bovine cerebral arteries

    SciTech Connect

    Not Available

    1986-03-01

    Previous in vitro studies with the calcium channel blockers (CCB) indirectly suggest that K/sup +/ and serotonin (5HT) constrict bovine middle cerebral arteries (BMCA) by promoting the influx of extracellular calcium (Ca) through CCB-sensitive channels. In this study, the authors directly determined the sources of activator Ca for K/sup +/- and 5HT-induced constriction of BMCA, using radiolabelled /sup 4/)2%Ca and /sup 3/H-sorbitol. EGTA-resistant Ca uptake, an estimate of Ca influx into vascular smooth muscle, was determined by exposure to Ca-deficient 2 mM EGTA solutions at 1/sup 0/C. The total Ca content of BMCA was 4.4 nmole/mg (wet wt.) after equilibration at 37/sup 0/C. The total exchangeable Ca content was 1.64 nmole/mg after 1 hr of /sup 45/Ca loading; the Ca content of the extracellular water was 0.30 nmole/mg, as estimated from the /sup 3/H-sorbitol space (0.25 ul/mg). The EGTA-resistant Ca uptake at 1 hr was 134 pmole/mg. K/sup +/ and 5HT significantly increased EGTA-resistant Ca uptake during 5 min of /sup 45/Ca loading; for K/sup +/, Ca uptake increased from 71 to 202 pmole/mg, and for 5HT, from 65 to 102 pmole/mg. Verapamil (10/sup -5/ M) or nifedipine (3.3 x 10/sup -7/ M) significantly blocked the increase in EGTA-resistant Ca uptake induced by K/sup +/ or 5HT. These results provide direct evidence that K/sup +/ or 5HT may constrict BMCA by promoting the influx of extracellular Ca through CCB-sensitive channels.

  19. Evidence that phospholipid turnover is the signal transducing system coupled to serotonin-S2 receptor sites

    SciTech Connect

    de Chaffoy de Courcelles, D.; Leysen, J.E.; De Clerck, F.; Van Belle, H.; Janssen, P.A.

    1985-06-25

    Upon stimulation with serotonin of washed human platelets prelabeled with (/sup 32/P)orthophosphate, the authors found an approximately 250% increase in (/sup 32/P)phosphatidic acid (PA) formation, a small decrease in (/sup 32/P)phosphatidylinositol 4,5-bisphosphate, and a concomitant increase in (/sup 32/P)phosphatidylinositol 4-phosphate. Using (/sup 3/H)arachidonate for prelabeling, (/sup 3/H)diacylglycerol accumulated transiently at 10 s after addition of the agonist, (/sup 3/H)PA increased but to a lower extent compared to /sup 32/P-labeled lipid, and the formation of both (/sup 3/H)polyphosphoinositides increased. The serotonin-induced dose-dependent changes in (/sup 32/P)PA correlate with its effect on the changes in slope of aggregation of platelets. The potency of 13 drugs to antagonize the serotonin-induced PA formation closely corresponds to both their potency to inhibit platelet aggregation and their binding affinity for serotonin-S2 receptor sites. It is suggested that at least part of the signal transducing system following activation of the serotonin-S2 receptors involves phospholipase C catalyzed inositol lipid breakdown yielding diacylglycerol which is subsequently phosphorylated to PA.

  20. CNS effects of citalopram, a new serotonin inhibitor antidepressant (a quantitative pharmaco-electroencephalography study).

    PubMed

    Itil, T M; Menon, G N; Bozak, M M; Itil, K Z

    1984-01-01

    Citalopram, a new phthalane derivative and a specific serotonin re-uptake inhibitor in animal pharmacological tests, was evaluated in a double-blind, crossover, quantitative pharmaco-EEG (QPEEGTM) study in healthy human volunteers. The CNS effects of citalopram are linear, dose- and time-related, can statistically be differentiated from placebo, and indicate a rapid onset of effects with short duration. According to the Computer Data Bank, citalopram has a mode of action similar to mood elevators (antidepressants) with fewer sedative properties. Thus the therapeutic action of citalopram is predicted to be similar to desipramine and protriptyline from the tricyclics, and fluvoxamine from non-tricyclics. According to data bank assessment, it is hypothesized that the single antidepressant dose of citalopram is to be more than 25 mg, which should be given t.i.d. in clinical trials. PMID:6592676

  1. CNS effects of citalopram, a new serotonin inhibitor antidepressant (a quantitative pharmaco-electroencephalography study).

    PubMed

    Itil, T M; Menon, G N; Bozak, M M; Itil, K Z

    1984-01-01

    Citalopram, a new phthalane derivative and a specific serotonin re-uptake inhibitor in animal pharmacological tests, was evaluated in a double-blind, crossover, quantitative pharmaco-EEG (QPEEGTM) study in healthy human volunteers. The CNS effects of citalopram are linear, dose- and time-related, can statistically be differentiated from placebo, and indicate a rapid onset of effects with short duration. According to the Computer Data Bank, citalopram has a mode of action similar to mood elevators (antidepressants) with fewer sedative properties. Thus the therapeutic action of citalopram is predicted to be similar to desipramine and protriptyline from the tricyclics, and fluvoxamine from non-tricyclics. According to data bank assessment, it is hypothesized that the single antidepressant dose of citalopram is to be more than 25 mg, which should be given t.i.d. in clinical trials.

  2. Stereoselective effects of MDMA on inhibition of monoamine uptake

    SciTech Connect

    Steele, T.D.; Nichols, D.E.; Yim, G.K.W.

    1986-03-05

    The R(-)-isomers of hallucinogenic phenylisopropylamines are most active, whereas the S(+)-enantiomers of amphetamine (AMPH) and methylenedioxymethamphetamine (MDMA) are more potent centrally. To determine if MDMA exhibits stereoselective effects at the biochemical level that resemble either those of amphetamine or the potent hallucinogen 2,5-dimethoxy-4-methylamphetamine (DOM), the ability of the isomers of MDMA, AMPH and DOM to inhibit uptake of radiolabelled monoamines into synaptosomes was measured. AMPH was more potent than MDMA in inhibiting uptake of /sup 3/H-norepinephrine (NE) into hypothalamic synaptosomes and /sup 3/H-dopamine (DA) into striatal synaptosomes. The S(+)-isomer was more active in each case. MDMA was more potent than AMPH in inhibiting uptake of /sup 3/H-serotonin (5-HT) into hippocampal synaptosomes and exhibited a high degree of stereoselectivity, in favor of the S(+)-isomer. DOM showed only minimal activity in inhibiting uptake of any monoamine (IC/sub 50/ > 10/sup -5/M). These results suggest that MDMA exhibits stereoselective effects similar to those of amphetamine on monoamine uptake inhibition, a parameter that is unrelated to the mechanism of action of the hallucinogen DOM.

  3. Agonist-directed signaling of serotonin 5-HT2C receptors: differences between serotonin and lysergic acid diethylamide (LSD).

    PubMed

    Backstrom, J R; Chang, M S; Chu, H; Niswender, C M; Sanders-Bush, E

    1999-08-01

    For more than 40 years the hallucinogen lysergic acid diethylamide (LSD) has been known to modify serotonin neurotransmission. With the advent of molecular and cellular techniques, we are beginning to understand the complexity of LSD's actions at the serotonin 5-HT2 family of receptors. Here, we discuss evidence that signaling of LSD at 5-HT2C receptors differs from the endogenous agonist serotonin. In addition, RNA editing of the 5-HT2C receptor dramatically alters the ability of LSD to stimulate phosphatidylinositol signaling. These findings provide a unique opportunity to understand the mechanism(s) of partial agonism.

  4. Systemic modulation of serotonergic synapses via reuptake blockade or 5HT1A receptor antagonism does not alter perithreshold taste sensitivity in rats.

    PubMed

    Mathes, Clare M; Spector, Alan C

    2014-09-01

    Systemic blockade of serotonin (5HT) reuptake with paroxetine has been shown to increase sensitivity to sucrose and quinine in humans. Here, using a 2-response operant taste detection task, we measured the effect of paroxetine and the 5HT1A receptor antagonist WAY100635 on the ability of rats to discriminate sucrose, NaCl, and citric acid from water. After establishing individual psychometric functions, 5 concentrations of each taste stimulus were chosen to represent the dynamic portion of the concentration-response curve, and the performance of the rats to these stimuli was assessed after vehicle, paroxetine (7mg/kg intraperitoneally), and WAY100635 (0.3mg/kg subcutaneously; 1mg/kg intravenously) administration. Although, at times, overall performance across concentrations dropped, at most, 5% from vehicle to drug conditions, no differences relative to vehicle were seen on the parameters of the psychometric function (asymptote, slope, or EC50) after drug administration. In contrast to findings in humans, our results suggest that modulation of 5HT activity has little impact on sucrose detectability at perithreshold concentrations in rats, at least at the doses used in this task. In the rat model, the purported paracrine/neurocrine action of serotonin in the taste bud may work in a manner that does not impact overt taste detection behavior.

  5. (/sup 3/)tetrahydrotrazodone binding. Association with serotonin binding sites

    SciTech Connect

    Kendall, D.A.; Taylor, D.P.; Enna, S.J.

    1983-05-01

    High (17 nM) and low (603 nM) affinity binding sites for (/sup 3/)tetrahydrotrazodone ((/sup 3/) THT), a biologically active analogue of trazodone, have been identified in rat brain membranes. The substrate specificity, concentration, and subcellular and regional distributions of these sites suggest that they may represent a component of the serotonin transmitter system. Pharmacological analysis of (/sup 3/)THT binding, coupled with brain lesion and drug treatment experiments, revealed that, unlike other antidepressants, (/sup 3/) THT does not attach to either a biogenic amine transporter or serotonin binding sites. Rather, it would appear that (/sup 3/)THT may be an antagonist ligand for the serotonin binding site. This probe may prove of value in defining the mechanism of action of trazodone and in further characterizing serotonin receptors.

  6. Plasma serotonin in horses undergoing surgery for small intestinal colic.

    PubMed

    Torfs, Sara C; Maes, An A; Delesalle, Catherine J; Pardon, Bart; Croubels, Siska M; Deprez, Piet

    2015-02-01

    This study compared serotonin concentrations in platelet poor plasma (PPP) from healthy horses and horses with surgical small intestinal (SI) colic, and evaluated their association with postoperative ileus, strangulation and non-survival. Plasma samples (with EDTA) from 33 horses with surgical SI colic were collected at several pre- and post-operative time points. Serotonin concentrations were determined using liquid-chromatography tandem mass spectrometry. Results were compared with those for 24 healthy control animals. The serotonin concentrations in PPP were significantly lower (P < 0.01) in pre- and post-operative samples from surgical SI colic horses compared to controls. However, no association with postoperative ileus or non-survival could be demonstrated at any time point. In this clinical study, plasma serotonin was not a suitable prognostic factor in horses with SI surgical colic.

  7. Serotonin Affects Movement Gain Control in the Spinal Cord

    PubMed Central

    Glaser, Joshua I.; Deng, Linna; Thompson, Christopher K.; Stevenson, Ian H.; Wang, Qining; Hornby, Thomas George; Heckman, Charles J.; Kording, Konrad P.

    2014-01-01

    A fundamental challenge for the nervous system is to encode signals spanning many orders of magnitude with neurons of limited bandwidth. To meet this challenge, perceptual systems use gain control. However, whether the motor system uses an analogous mechanism is essentially unknown. Neuromodulators, such as serotonin, are prime candidates for gain control signals during force production. Serotonergic neurons project diffusely to motor pools, and, therefore, force production by one muscle should change the gain of others. Here we present behavioral and pharmaceutical evidence that serotonin modulates the input–output gain of motoneurons in humans. By selectively changing the efficacy of serotonin with drugs, we systematically modulated the amplitude of spinal reflexes. More importantly, force production in different limbs interacts systematically, as predicted by a spinal gain control mechanism. Psychophysics and pharmacology suggest that the motor system adopts gain control mechanisms, and serotonin is a primary driver for their implementation in force production. PMID:25232107

  8. [Serotonin syndrome and pain medication : What is relevant for practice?].

    PubMed

    Schenk, M; Wirz, S

    2015-04-01

    Serotonin syndrome is a dangerous and rare complication of a pharmacotherapy and can lead to death. Caused by unwanted interactions of serotonergic drugs, it is characterised by a neuroexcitatory triad of mental changes, neuromuscular hyperactivity and autonomic instability. Opioids with serotonergic effects include the phenylpiperidine series opioids fentanyl, methadone, meperidine and tramadol and the morphine analogues oxycodone and codeine. In combination with certain serotonergic drugs, e.g. antidepressants, they can provoke serotonin syndrome. In patients with such combinations, special attention should be paid to clinical signs of serotonergic hyperactivity. Higher risk combinations (e.g. monoamine oxidase inhibitors with tramadol) must be avoided. Treatment with serotonergic agents must be stopped in moderate or severe serotonin syndrome. Patients with a severe serotonin syndrome require symptomatic intensive care and specifically a pharmacological antagonism with cyproheptadine or chlorpromazine.

  9. Plasma serotonin in horses undergoing surgery for small intestinal colic

    PubMed Central

    Torfs, Sara C.; Maes, An A.; Delesalle, Catherine J.; Pardon, Bart; Croubels, Siska M.; Deprez, Piet

    2015-01-01

    This study compared serotonin concentrations in platelet poor plasma (PPP) from healthy horses and horses with surgical small intestinal (SI) colic, and evaluated their association with postoperative ileus, strangulation and non-survival. Plasma samples (with EDTA) from 33 horses with surgical SI colic were collected at several pre- and post-operative time points. Serotonin concentrations were determined using liquid-chromatography tandem mass spectrometry. Results were compared with those for 24 healthy control animals. The serotonin concentrations in PPP were significantly lower (P < 0.01) in pre- and post-operative samples from surgical SI colic horses compared to controls. However, no association with postoperative ileus or non-survival could be demonstrated at any time point. In this clinical study, plasma serotonin was not a suitable prognostic factor in horses with SI surgical colic. PMID:25694668

  10. Multiple messengers in descending serotonin neurons: localization and functional implications.

    PubMed

    Hökfelt, T; Arvidsson, U; Cullheim, S; Millhorn, D; Nicholas, A P; Pieribone, V; Seroogy, K; Ulfhake, B

    2000-02-01

    In the present review article we summarize mainly histochemical work dealing with descending bulbospinal serotonin neurons which also express a number of neuropeptides, in particular substance P and thyrotropin releasing hormone. Such neurons have been observed both in rat, cat and monkey, and may preferentially innervate the ventral horns of the spinal cord, whereas the serotonin projections to the dorsal horn seem to lack these coexisting peptides. More recent studies indicate that a small population of medullary raphe serotonin neurons, especially at rostral levels, also synthesize the inhibitory neurotransmitter gamma-amino butyric acid (GABA). Many serotonin neurons contain the glutamate synthesizing enzyme glutaminase and can be labelled with antibodies raised against glutamate, suggesting that one and the same neuron may release several signalling substances, causing a wide spectrum of post- (and pre-) synaptic actions. PMID:10708921

  11. Structural specificity of serotonin effect on human erythrocyte fragility.

    PubMed

    Gilboa-Garber, N; Kirstein-Segal, R

    1998-08-01

    Serotonin, a neurotransmitter and vasoconstrictor, affects various cell properties. We have analyzed the importance of its structural components for its extensive effect on human erythrocyte fragility, using its O- and N-linked derivatives and related compounds. The results presented in this communication indicate that the amino group, free of adjacent negative charges, and the hydroxyl group are indispensable for the serotonin-induced increase in red blood cell fragility. PMID:9758719

  12. Determination of serotonin released from coffee wax by liquid chromatography.

    PubMed

    Kele, M; Ohmacht, R

    1996-04-12

    A simple hydrolysis and extraction method was developed for the release of serotonin (5-hydroxytryptamine) from a coffee wax sample obtained from decaffeination of coffee beans. The recoverable amount of serotonin was determined by reversed-phase high-performance liquid chromatography with gradient elution and UV detection, using the standard addition method. Different type of basic deactivated chromatographic columns were used for the separation.

  13. Halogenated naphthyl methoxy piperidines for mapping serotonin transporter sites

    DOEpatents

    Goodman, Mark M.; Faraj, Bahjat

    1999-01-01

    Halogenated naphthyl methoxy piperidines having a strong affinity for the serotonin transporter are disclosed. Those compounds can be labeled with positron-emitting and/or gamma emitting halogen isotopes by a late step synthesis that maximizes the useable lifeterm of the label. The labeled compounds are useful for localizing serotonin transporter sites by positron emission tomography and/or single photon emission computed tomography.

  14. Serotonin induces peripheral mechanical antihyperalgesic effects in mice.

    PubMed

    Diniz, Danielle A; Petrocchi, Júlia Alvarenga; Navarro, Larissa Caldeira; Souza, Tâmara Cristina; Castor, Marina G M; Perez, Andrea C; Duarte, Igor D G; Romero, Thiago R L

    2015-11-15

    The role of serotonin (5-HT) in nociception will vary according to the subtypes of receptors activated. When administered peripherally, it induces pain in humans and in rats by activation of 5-HT1, 5-HT2 and 5-HT3 receptors. In addition, endogenous 5-HT produced in situ, is involved in the nociceptive response induced by formalin in rat's paw inflammation, possibly via 5-HT3 receptors. Moreover, it has been shown that 5-HT released in the dorsal horn of the spinal cord by stimulation of the periaqueductal gray causes activation of inhibitory interneurons, resulting in inhibition of spinal neurons. In the present study we evaluated the effect of serotonin and its receptors at peripheral antinociception. The mice paw pressure test was used in animals that had increased sensitivity by an intraplantar injection of PGE2 (2 µg). We used selective antagonists of serotonin receptors (isamoltan 5-HT1B, BRL 15572 5-HT1D, ketanserin 5-HT2A, ondansetron 5-HT3 and SB-269970 5-HT7). Administration of serotonin into the right hind paw (62.5, 125, 250 and 500 ng and 1 µg) produced a dose-dependent peripheral mechanical antihyperalgesic effect of serotonin in mice. Selective antagonists for 5-HT1B, 5-HT2A, 5-HT3 receptors at doses of 0.1, 1 and 10 µg, reversed the antihyperalgesic effect induced by 250 ng serotonin. In contrast, selective antagonists for 5-HT1D and 5-HT7 receptors were unable to reverse the antihyperalgesic effect induced by serotonin. These results demonstrated for the first time, the peripheral mechanical antihyperalgesic effect of serotonin, and participation of 5-HT1B, 5-HT2A and 5-HT3 receptors in this event.

  15. Tryptophan availability modulates serotonin release from rat hypothalamic slices

    NASA Technical Reports Server (NTRS)

    Schaechter, Judith D.; Wurtman, Richard J.

    1989-01-01

    The relationship between the tryptophan availability and serononin release from rat hypothalamus was investigated using a new in vitro technique for estimating rates at which endogenous serotonin is released spontaneously or upon electrical depolarization from hypothalamic slices superfused with a solution containing various amounts of tryptophan. It was found that the spontaneous, as well as electrically induced, release of serotonin from the brain slices exhibited a dose-dependent relationship with the tryptophan concentration of the superfusion medium.

  16. Halogenated naphthyl methoxy piperidines for mapping serotonin transporter sites

    DOEpatents

    Goodman, M.M.; Faraj, B.

    1999-07-06

    Halogenated naphthyl methoxy piperidines having a strong affinity for the serotonin transporter are disclosed. Those compounds can be labeled with positron-emitting and/or gamma emitting halogen isotopes by a late step synthesis that maximizes the useable lifeterm of the label. The labeled compounds are useful for localizing serotonin transporter sites by positron emission tomography and/or single photon emission computed tomography.

  17. Determination of serotonin released from coffee wax by liquid chromatography.

    PubMed

    Kele, M; Ohmacht, R

    1996-04-12

    A simple hydrolysis and extraction method was developed for the release of serotonin (5-hydroxytryptamine) from a coffee wax sample obtained from decaffeination of coffee beans. The recoverable amount of serotonin was determined by reversed-phase high-performance liquid chromatography with gradient elution and UV detection, using the standard addition method. Different type of basic deactivated chromatographic columns were used for the separation. PMID:8680597

  18. The study of genetic polymorphisms related to serotonin in Alzheimer's disease: a new perspective in a heterogenic disorder.

    PubMed

    Oliveira, J R; Zatz, M

    1999-04-01

    Genetic and environmental factors have been implicated in the development of Alzheimer's disease (AD), the most common form of dementia in the elderly. Mutations in 3 genes mapped on chromosomes 21, 14 and 1 are related to the rare early onset forms of AD while the epsilon 4 allele of the apolipoprotein E (APOE) gene (on chromosome 19) is the major susceptibility locus for the most common late onset AD (LOAD). Serotonin (5-hydroxytryptamine or 5-HT) is a key neurotransmitter implicated in the control of mood, sleep, appetite and a variety of traits and behaviors. Recently, a polymorphism in the transcriptional control region upstream of the 5-HT transporter (5-HTT) gene has been studied in several psychiatric diseases and personality traits. It has been demonstrated that the short variant(s) of this 5-HTT gene-linked polymorphic region (5-HTTLPR) is associated with a different transcriptional efficiency of the 5-HTT gene promoter resulting in decreased 5-HTT expression and 5-HT uptake in lymphocytes. An increased frequency of this 5-HTTLPR short variant polymorphism in LOAD was recently reported. In addition, another common polymorphic variation in the 5-HT2A and 5-HT2C serotonin receptor genes previously analyzed in schizophrenic patients was associated with auditory and visual hallucinations in AD. These observations suggest that the involvement of the serotonin pathway might provide an explanation for some aspects of the affective symptoms commonly observed in AD patients. In summary, research on genetic polymorphisms related to AD and involved in receptors, transporter proteins and the enzymatic machinery of serotonin might enhance our understanding of this devastating neurodegenerative disorder.

  19. The effect of low estrogen state on serotonin transporter function in mouse hippocampus: a behavioral and electrochemical study.

    PubMed

    Bertrand, Paul P; Paranavitane, Udeni T; Chavez, Carolina; Gogos, Andrea; Jones, Margaret; van den Buuse, Maarten

    2005-12-01

    Defects in serotonergic transmission, including serotonin transporter (SERT) function, have been implicated in depression, anxiety disorders and some aspects of schizophrenia. The sex steroid hormone estrogen is known to modulate functional SERT activity, but whether it is up- or down-regulated is unclear. The aim of the present study was to examine the effect of a low estrogen state in mice on the behavioral effect of drugs acting through the SERT, serotonin uptake kinetics and SERT density in the hippocampus. We compared control mice, ovariectomized (OVX) C57BL/6J mice and aromatase knockout (ArKO) mice that are unable to produce estrogen. Fluoxetine treatment, but not fenfluramine treatment, significantly increased prepulse inhibition (PPI), a measure of sensorimotor gating, in C57BL/6J mice. The effect of fluoxetine was greater in OVX compared to sham-operated mice. In ArKO and J129 wild-type mice, fluoxetine increased PPI to the same extent while fenfluramine increased PPI more in ArKO mice compared to controls. Measurement of the time-course for diffusion and reuptake of exogenous serotonin in the CA3 region of the hippocampus showed that, in OVX mice, the fluoxetine-induced slowing of signal decay after application of serotonin was enhanced when compared to sham-operated controls. Similarly, in ArKO mice, the effect of fluoxetine was enhanced, suggesting that SERT function was greater than in J129 wild-type controls. Measurement of SERT density by [3H]-citalopram autoradiography, revealed an 18% decrease in hippocampus of OVX mice compared to intact controls. SERT density was also significantly reduced in nucleus accumbens (26%) but not in other regions, such as the raphe nuclei. Together, these results suggest that a low estrogen state increases SERT activity in the hippocampus despite an apparent reduction in SERT density. The behavioral consequences of these changes depend on the model of estrogen state used. PMID:16298349

  20. Serotonin 1A, 1B, and 7 receptors of the rat medial nucleus accumbens differentially regulate feeding, water intake, and locomotor activity.

    PubMed

    Clissold, Kara A; Choi, Eugene; Pratt, Wayne E

    2013-11-01

    Serotonin (5-HT) signaling has been widely implicated in the regulation of feeding behaviors in both humans and animal models. Recently, we reported that co-stimulation of 5-HT1&7 receptors of the anterior medial nucleus accumbens with the drug 5-CT caused a dose-dependent decrease in food intake, water intake, and locomotion in rats (Pratt et al., 2009). The current experiments sought to determine which of three serotonin receptor subtypes (5-HT1A, 5-HT1B, or 5-HT7) might be responsible for these consummatory and locomotor effects. Food-deprived rats were given 2-h access to rat chow after stimulation of nucleus accumbens 5-HT1A, 5-HT1B, or 5-HT7 receptors, or blockade of the 5-HT1A or 5-HT1B receptors. Stimulation of 5-HT1A receptors with 8-OH-DPAT (at 0.0, 2.0, 4.0, and 8.0 μg/0.5 μl/side) caused a dose-dependent decrease in food and water intake, and reduced rearing behavior but not ambulation. In contrast, rats that received the 5-HT1B agonist CP 93129 (at 0.0, 1.0, 2.0 and 4.0 μg/0.5 μl/side) showed a significant dose-dependent decrease in water intake only; stimulation of 5-HT7 receptors (AS 19; at 0.0, 1.0, and 5.0 μg/0.5 μl/side) decreased ambulatory activity but did not affect food or water consumption. Blockade of 5-HT1A or 5-HT1B receptors had no lasting effects on measures of food consumption. These data suggest that the food intake, water intake, and locomotor effects seen after medial nucleus accumbens injections of 5-CT are due to actions on separate serotonin receptor subtypes, and contribute to growing evidence for selective roles of individual serotonin receptors within the nucleus accumbens on motivated behavior.

  1. Expression of serotonin receptor genes in cranial ganglia.

    PubMed

    Maeda, Naohiro; Ohmoto, Makoto; Yamamoto, Kurumi; Kurokawa, Azusa; Narukawa, Masataka; Ishimaru, Yoshiro; Misaka, Takumi; Matsumoto, Ichiro; Abe, Keiko

    2016-03-23

    Taste cells release neurotransmitters to gustatory neurons to transmit chemical information they received. Sweet, umami, and bitter taste cells use ATP as a neurotransmitter. However, ATP release from sour taste cells has not been observed so far. Instead, they release serotonin when they are activated by sour/acid stimuli. Thus it is still controversial whether sour taste cells use ATP, serotonin, or both. By reverse transcription-polymerase chain reaction and subsequent in situ hybridization (ISH) analyses, we revealed that of 14 serotonin receptor genes only 5-HT3A and 5-HT3B showed significant/clear signals in a subset of neurons of cranial sensory ganglia in which gustatory neurons reside. Double-fluorescent labeling analyses of ISH for serotonin receptor genes with wheat germ agglutinin (WGA) in cranial sensory ganglia of pkd1l3-WGA mice whose sour neural pathway is visualized by the distribution of WGA originating from sour taste cells in the posterior region of the tongue revealed that WGA-positive cranial sensory neurons rarely express either of serotonin receptor gene. These results suggest that serotonin receptors expressed in cranial sensory neurons do not play any role as neurotransmitter receptor from sour taste cells. PMID:26854841

  2. Comparison of seven different heterologous protein expression systems for the production of the serotonin transporter.

    PubMed

    Tate, Christopher G; Haase, Jana; Baker, Cara; Boorsma, Marco; Magnani, Francesca; Vallis, Yvonne; Williams, D Clive

    2003-02-17

    The rat serotonin transporter (rSERT) is an N-glycosylated integral membrane protein with 12 transmembrane regions; the N-glycans improve the ability of the SERT polypeptide chain to fold into a functional transporter, but they are not required for the transmembrane transport of serotonin per se. In order to define the best system for the expression, purification and structural analysis of serotonin transporter (SERT), we expressed SERT in Escherichia coli, Pichia pastoris, the baculovirus expression system and in four different stable mammalian cell lines. Two stable cell lines that constitutively expressed SERT (Imi270 and Coca270) were constructed using episomal plasmids in HEK293 cells expressing the EBNA-1 antigen. SERT expression in the three different inducible stable mammalian cell lines was induced either by a decrease in temperature (cell line pCytTS-SERT), the addition of tetracycline to the growth medium (cell line T-REx-SERT) or by adding DMSO which caused the cells to differentiate (cell line MEL-SERT). All the mammalian cell lines expressed functional SERT, but SERT expressed in E. coli or P. pastoris was nonfunctional as assessed by 5-hydroxytryptamine uptake and inhibitor binding assays. Expression of functional SERT in the mammalian cell lines was assessed by an inhibitor binding assay; the cell lines pCytTS-SERT, Imi270 and Coca270 contained levels of functional SERT similar to that of the standard baculovirus expression system (250,000 copies per cell). The expression of SERT in induced T-REx-SERT cells was 400,000 copies per cell, but in MEL-SERT it was only 80,000 copies per cell. All the mammalian stable cell lines expressed SERT at the plasma membrane as assessed by [3H]-5-hydroxytryptamine uptake into whole cells, but the V(max) for the T-Rex-SERT cell line was 10-fold higher than any of the other cell lines. It was noticeable that the cell lines that constitutively expressed SERT grew extremely poorly, compared to the inducible cell lines

  3. Immunotherapeutic implications of IL-6 blockade for cytokine storm.

    PubMed

    Tanaka, Toshio; Narazaki, Masashi; Kishimoto, Tadamitsu

    2016-07-01

    IL-6 contributes to host defense against infections and tissue injuries. However, exaggerated, excessive synthesis of IL-6 while fighting environmental stress leads to an acute severe systemic inflammatory response known as 'cytokine storm', since high levels of IL-6 can activate the coagulation pathway and vascular endothelial cells but inhibit myocardial function. Remarkable beneficial effects of IL-6 blockade therapy using a humanized anti-IL-6 receptor antibody, tocilizumab were recently observed in patients with cytokine release syndrome complicated by T-cell engaged therapy. In this review we propose the possibility that IL-6 blockade may constitute a novel therapeutic strategy for other types of cytokine storm, such as the systemic inflammatory response syndrome including sepsis, macrophage activation syndrome and hemophagocytic lymphohistiocytosis. PMID:27381687

  4. Counting Atoms Using Interaction Blockade in an Optical Superlattice

    SciTech Connect

    Cheinet, P.; Trotzky, S.; Schnorrberger, U.; Moreno-Cardoner, M.; Foelling, S.; Bloch, I.; Feld, M.

    2008-08-29

    We report on the observation of an interaction blockade effect for ultracold atoms in optical lattices, analogous to the Coulomb blockade observed in mesoscopic solid state systems. When the lattice sites are converted into biased double wells, we detect a discrete set of steps in the well population for increasing bias potentials. These correspond to tunneling resonances where the atom number on each side of the barrier changes one by one. This allows us to count and control the number of atoms within a given well. By evaluating the amplitude of the different plateaus, we can fully determine the number distribution of the atoms in the lattice, which we demonstrate for the case of a superfluid and Mott insulating regime of {sup 87}Rb.

  5. Immunotherapeutic implications of IL-6 blockade for cytokine storm.

    PubMed

    Tanaka, Toshio; Narazaki, Masashi; Kishimoto, Tadamitsu

    2016-07-01

    IL-6 contributes to host defense against infections and tissue injuries. However, exaggerated, excessive synthesis of IL-6 while fighting environmental stress leads to an acute severe systemic inflammatory response known as 'cytokine storm', since high levels of IL-6 can activate the coagulation pathway and vascular endothelial cells but inhibit myocardial function. Remarkable beneficial effects of IL-6 blockade therapy using a humanized anti-IL-6 receptor antibody, tocilizumab were recently observed in patients with cytokine release syndrome complicated by T-cell engaged therapy. In this review we propose the possibility that IL-6 blockade may constitute a novel therapeutic strategy for other types of cytokine storm, such as the systemic inflammatory response syndrome including sepsis, macrophage activation syndrome and hemophagocytic lymphohistiocytosis.

  6. Silicon-based Coulomb blockade thermometer with Schottky barriers

    NASA Astrophysics Data System (ADS)

    Tuboltsev, V.; Savin, A.; Rogozin, V. D.; Räisänen, J.

    2014-04-01

    A hybrid Coulomb blockade thermometer (CBT) in form of an array of intermittent aluminum and silicon islands connected in series via tunnel junctions was fabricated on a thin silicon-on-insulator (SOI) film. Tunnel barriers in the micrometer size junctions were formed by metal-semiconductor Schottky contacts between aluminium electrodes and heavily doped silicon. Differential conductance through the array vs. bias voltage was found to exhibit characteristic features of competing thermal and charging effects enabling absolute temperature measurements over the range of ˜65 to ˜500 mK. The CBT performance implying the primary nature of the thermometer demonstrated for rather trivial architecture attempted in this work paves a route for introduction of Coulomb blockade thermometry into well-developed contemporary SOI technology.

  7. Conductance of a proximitized nanowire in the Coulomb blockade regime

    NASA Astrophysics Data System (ADS)

    van Heck, B.; Lutchyn, R. M.; Glazman, L. I.

    2016-06-01

    We identify the leading processes of electron transport across finite-length segments of proximitized nanowires and build a quantitative theory of their two-terminal conductance. In the presence of spin-orbit interaction, a nanowire can be tuned across the topological transition point by an applied magnetic field. Due to a finite segment length, electron transport is controlled by the Coulomb blockade. Upon increasing of the field, the shape and magnitude of the Coulomb blockade peaks in the linear conductance are defined, respectively, by Andreev reflection, single-electron tunneling, and resonant tunneling through the Majorana modes emerging after the topological transition. Our theory provides the framework for the analysis of experiments with proximitized nanowires [such as reported in S. M. Albrecht et al., Nature (London) 531, 206 (2016), 10.1038/nature17162] and identifies the signatures of the topological transition in the two-terminal conductance.

  8. Gastric pentadecapeptide BPC 157 effective against serotonin syndrome in rats.

    PubMed

    Boban Blagaic, Alenka; Blagaic, Vladimir; Mirt, Mirela; Jelovac, Nikola; Dodig, Goran; Rucman, Rudolf; Petek, Marijan; Turkovic, Branko; Anic, Tomislav; Dubovecak, Miroslav; Staresinic, Mario; Seiwerth, Sven; Sikiric, Predrag

    2005-04-11

    Serotonin syndrome commonly follows irreversible monoamine oxidase (MAO)-inhibition and subsequent serotonin (5-HT) substrate (in rats with fore paw treading, hind limbs abduction, wet dog shake, hypothermia followed by hyperthermia). A stable gastric pentadecapeptide BPC 157 with very safe profile (inflammatory bowel disease clinical phase II, PL-10, PLD-116, PL-14736, Pliva) reduced the duration of immobility to a greater extent than imipramine, and, given peripherally, has region specific influence on brain 5-HT synthesis (alpha-[14C]methyl-L-tryptophan autoradiographic measurements) in rats, different from any other serotonergic drug. Thereby, we investigate this peptide (10 microg, 10 ng, 10 pg/kg i.p.) in (i) full serotonin syndrome in rat combining pargyline (irreversible MAO-inhibition; 75 mg/kg i.p.) and subsequent L-tryptophan (5-HT precursor; 100 mg/kg i.p.; BPC 157 as a co-treatment), or (ii, iii) using pargyline or L-tryptophan given separately, as a serotonin-substrate with (ii) pargyline (BPC 157 as a 15-min posttreatment) or as a potential serotonin syndrome inductor with (iii) L-tryptophan (BPC 157 as a 15 min-pretreatment). In all experiments, gastric pentadecapeptide BPC 157 contrasts with serotonin-syndrome either (i) presentation (i.e., particularly counteracted) or (ii) initiation (i.e., neither a serotonin substrate (counteraction of pargyline), nor an inductor for serotonin syndrome (no influence on L-tryptophan challenge)). Indicatively, severe serotonin syndrome in pargyline + L-tryptophan rats is considerably inhibited even by lower pentadecapeptide BPC 157 doses regimens (particularly disturbances such as hyperthermia and wet dog shake thought to be related to stimulation of 5-HT2A receptors), while the highest pentadecapeptide dose counteracts mild disturbances present in pargyline rats (mild hypothermia, feeble hind limbs abduction). Thereby, in severe serotonin syndrome, gastric pentadecapeptide BPC 157 (alone, no behavioral or

  9. Touch Perception Altered by Chronic Pain and by Opioid Blockade.

    PubMed

    Case, Laura K; Čeko, Marta; Gracely, John L; Richards, Emily A; Olausson, Håkan; Bushnell, M Catherine

    2016-01-01

    Touch plays a significant role in human social behavior and social communication, and its rewarding nature has been suggested to involve opioids. Opioid blockade in monkeys leads to increased solicitation and receipt of grooming, suggesting heightened enjoyment of touch. We sought to study the role of endogenous opioids in perception of affective touch in healthy adults and in patients with fibromyalgia, a chronic pain condition shown to involve reduced opioid receptor availability. The pleasantness of touch has been linked to the activation of C-tactile fibers, which respond maximally to slow gentle touch and correlate with ratings of pleasantness. We administered naloxone to patients and healthy controls to directly observe the consequences of µ-opioid blockade on the perceived pleasantness and intensity of touch. We found that at baseline chronic pain patients showed a blunted distinction between slow and fast brushing for both intensity and pleasantness, suggesting reduced C-tactile touch processing. In addition, we found a differential effect of opioid blockade on touch perception in healthy subjects and pain patients. In healthy individuals, opioid blockade showed a trend toward increased ratings of touch pleasantness, while in chronic pain patients it significantly decreased ratings of touch intensity. Further, in healthy individuals, naloxone-induced increase in touch pleasantness was associated with naloxone-induced decreased preference for slow touch, suggesting a possible effect of opioid levels on processing of C-tactile fiber input. These findings suggest a role for endogenous opioids in touch processing, and provide further evidence for altered opioid functioning in chronic pain patients. PMID:27022625

  10. Deterministic entanglement of two neutral atoms via Rydberg blockade

    SciTech Connect

    Zhang, X. L.; Isenhower, L.; Gill, A. T.; Walker, T. G.; Saffman, M.

    2010-09-15

    We demonstrate the deterministic entanglement of two individually addressed neutral atoms using a Rydberg blockade mediated controlled-not gate. Parity oscillation measurements reveal a Bell state fidelity of F=0.58{+-}0.04, which is above the entanglement threshold of F=0.5, without any correction for atom loss, and F=0.71{+-}0.05 after correcting for background collisional losses. The fidelity results are shown to be in good agreement with a detailed error model.

  11. Dynamical Coulomb blockade of tunnel junctions driven by alternating voltages

    NASA Astrophysics Data System (ADS)

    Grabert, Hermann

    2015-12-01

    The theory of the dynamical Coulomb blockade is extended to tunneling elements driven by a time-dependent voltage. It is shown that, for standard setups where an external voltage is applied to a tunnel junction via an impedance, time-dependent driving entails an excitation of the modes of the electromagnetic environment by the applied voltage. Previous approaches for ac driven circuits need to be extended to account for the driven bath modes. A unitary transformation involving also the variables of the electromagnetic environment is introduced which allows us to split off the time dependence from the Hamiltonian in the absence of tunneling. This greatly simplifies perturbation-theoretical calculations based on treating the tunneling Hamiltonian as a perturbation. In particular, the average current flowing in the leads of the tunnel junction is studied. Explicit results are given for the case of an applied voltage with a constant dc part and a sinusoidal ac part. The connection with standard dynamical Coulomb blockade theory for constant applied voltage is established. It is shown that an alternating voltage source reveals significant additional effects caused by the electromagnetic environment. The hallmark of the dynamical Coulomb blockade in ac driven devices is a suppression of higher harmonics of the current by the electromagnetic environment. The theory presented basically applies to all tunneling devices driven by alternating voltages.

  12. Intrathecal rimantadine induces motor, proprioceptive, and nociceptive blockades in rats.

    PubMed

    Tzeng, Jann-Inn; Wang, Jieh-Neng; Wang, Jhi-Joung; Chen, Yu-Wen; Hung, Ching-Hsia

    2016-04-01

    The purpose of the experiment was to evaluate the local anesthetic effect of rimantadine in spinal anesthesia. Rimantadine in a dose-dependent fashion was constructed after intrathecally injecting the rats with four different doses. The potency and duration of rimantadine were compared with that of the local anesthetic lidocaine at producing spinal motor, nociceptive, and proprioceptive blockades. We demonstrated that intrathecal rimantadine dose-dependently produced spinal motor, nociceptive, and proprioceptive blockades. On the 50% effective dose (ED50) basis, the ranks of potencies at inducing spinal motor, nociceptive, and proprioceptive blockades was lidocaine>rimantadine (P<0.01). Rimantadine exhibited more nociceptive block (ED50) than motor block (P<0.05). At equi-anesthetic doses (ED25, ED50, and ED75), the spinal block duration produced by rimantadine was longer than that produced by lidocaine (P<0.01). Furthermore, rimantadine (26.52μmol/kg) prolonged the nociceptive nerve block more than the motor block (P<0.001). Our preclinical data showed that rimantadine, with a more sensory-selective action over motor block, was less potent than lidocaine. Rimantadine produced longer duration in spinal anesthesia when compared with lidocaine.

  13. Sequential RAAS blockade: is it worth the risk?

    PubMed

    Persson, Frederik; Rossing, Peter

    2014-03-01

    Soon after the emergence of the renin-angiotensin-aldosterone system (RAAS) blocking treatment as the cornerstone of renoprotective treatment in the prevention and treatment of diabetic and nondiabetic CKD, it was investigated if a higher degree of achievable RAAS blockade by combining more than one compound is feasible and advantageous. Regardless of the benefits from using monotherapy for diabetic kidney disease, there is still much improvement to wish for in terms of kidney prognosis in these populations. A great deal of research has gone into evaluating combinations of the RAAS blocking treatments in different populations and with different drugs and doses. Studies have mostly been short-term and use surrogate endpoints such as albuminuria. Side effects have been well known and expected in terms of increasing potassium levels and hypotension, but to an acceptable extent. With recent disappointing results from major hard endpoint trials using dual RAAS blockade the concept is now under scrutiny. In this review we will discuss the pros and cons of dual RAAS blockade, with facts and findings from smaller studies, endpoint trials, and meta-analyses. PMID:24602465

  14. Shape-sensitive Pauli blockade in a bent carbon nanotube

    NASA Astrophysics Data System (ADS)

    Széchenyi, Gábor; Pályi, András

    2015-01-01

    Motivated by a recent experiment [F. Pei et al., Nat. Nanotechnol. 7, 630 (2012), 10.1038/nnano.2012.160], we theoretically study the Pauli blockade transport effect in a double quantum dot embedded in a bent carbon nanotube. We establish a model for the Pauli blockade, taking into account the strong g -factor anisotropy that is linked to the local orientation of the nanotube axis in each quantum dot. We provide a set of conditions under which our model is approximately mapped to the spin-blockade model of Jouravlev and Nazarov [O. N. Jouravlev and Y. V. Nazarov, Phys. Rev. Lett. 96, 176804 (2006), 10.1103/PhysRevLett.96.176804]. The results we obtain for the magnetic anisotropy of the leakage current, together with their qualitative geometrical explanation, provide a possible interpretation of previously unexplained experimental results. Furthermore, we find that in a certain parameter range, the leakage current becomes highly sensitive to the shape of the tube, and this sensitivity increases with increasing g -factor anisotropy. This mutual dependence of the electron transport and the tube shape allows for mechanical control of the leakage current, and for characterization of the tube shape via measuring the leakage current.

  15. Serotonin depresses feeding behaviour in ants.

    PubMed

    Falibene, Agustina; Rössler, Wolfgang; Josens, Roxana

    2012-01-01

    Feeding behaviour is a complex functional system that relies on external signals and the physiological state of the animal. This is also the case in ants as they vary their feeding behaviour according to food characteristics, environmental conditions and - as they are social insects - to the colony's requirements. The biogenic amine serotonin (5-HT) was shown to be involved in the control and modulation of many actions and processes related to feeding in both vertebrates and invertebrates. In this study, we investigated whether 5-HT affects nectar feeding in ants by analysing its effect on the sucking-pump activity. Furthermore, we studied 5-HT association with tissues and neuronal ganglia involved in feeding regulation. Our results show that 5-HT promotes a dose-dependent depression of sucrose feeding in Camponotus mus ants. Orally administered 5-HT diminished the intake rate by mainly decreasing the volume of solution taken per pump contraction, without modifying the sucrose acceptance threshold. Immunohistochemical studies all along the alimentary canal revealed 5-HT-like immunoreactive processes on the foregut (oesophagus, crop and proventriculus), while the midgut and hindgut lacked 5-HT innervation. Although the frontal and suboesophageal ganglia contained 5-HT immunoreactive cell bodies, serotonergic innervation in the sucking-pump muscles was absent. The results are discussed in the frame of a role of 5-HT in feeding control in ants.

  16. Serotonin signaling mediates protein valuation and aging

    PubMed Central

    Ro, Jennifer; Pak, Gloria; Malec, Paige A; Lyu, Yang; Allison, David B; Kennedy, Robert T; Pletcher, Scott D

    2016-01-01

    Research into how protein restriction improves organismal health and lengthens lifespan has largely focused on cell-autonomous processes. In certain instances, however, nutrient effects on lifespan are independent of consumption, leading us to test the hypothesis that central, cell non-autonomous processes are important protein restriction regulators. We characterized a transient feeding preference for dietary protein after modest starvation in the fruit fly, Drosophila melanogaster, and identified tryptophan hydroxylase (Trh), serotonin receptor 2a (5HT2a), and the solute carrier 7-family amino acid transporter, JhI-21, as required for this preference through their role in establishing protein value. Disruption of any one of these genes increased lifespan up to 90% independent of food intake suggesting the perceived value of dietary protein is a critical determinant of its effect on lifespan. Evolutionarily conserved neuromodulatory systems that define neural states of nutrient demand and reward are therefore sufficient to control aging and physiology independent of food consumption. DOI: http://dx.doi.org/10.7554/eLife.16843.001 PMID:27572262

  17. Serotonin signaling mediates protein valuation and aging.

    PubMed

    Ro, Jennifer; Pak, Gloria; Malec, Paige A; Lyu, Yang; Allison, David B; Kennedy, Robert T; Pletcher, Scott D

    2016-01-01

    Research into how protein restriction improves organismal health and lengthens lifespan has largely focused on cell-autonomous processes. In certain instances, however, nutrient effects on lifespan are independent of consumption, leading us to test the hypothesis that central, cell non-autonomous processes are important protein restriction regulators. We characterized a transient feeding preference for dietary protein after modest starvation in the fruit fly, Drosophila melanogaster, and identified tryptophan hydroxylase (Trh), serotonin receptor 2a (5HT2a), and the solute carrier 7-family amino acid transporter, JhI-21, as required for this preference through their role in establishing protein value. Disruption of any one of these genes increased lifespan up to 90% independent of food intake suggesting the perceived value of dietary protein is a critical determinant of its effect on lifespan. Evolutionarily conserved neuromodulatory systems that define neural states of nutrient demand and reward are therefore sufficient to control aging and physiology independent of food consumption. PMID:27572262

  18. Selective serotonin-reuptake inhibitors: an update.

    PubMed

    Masand, P S; Gupta, S

    1999-01-01

    Selective serotonin-reuptake inhibitors (SSRIs), including fluoxetine, sertraline, paroxetine, fluvoxamine, and citalopram, represent an important advance in the pharmacotherapy of mood and other disorders. They are chemically unrelated to tricyclic, heterocyclic, and other first-generation antidepressants. SSRIs are the treatment of choice for many indications, including major depression, dysthymia, panic disorder, obsessive-compulsive disorder, eating disorders, and premenstrual dysphoric disorder, because of their efficacy, good side-effect profile, tolerability, and safety in overdose, as well as patient compliance. A review of the literature was conducted using Medline and the terms "SSRIs," "fluoxetine," "sertraline," "paroxetine," "fluvoxamine," and "citalopram." Articles were limited to those published in English within the last 15 years. The search revealed that indications for antidepressants include unipolar depression, dysthymia, bipolar depression, treatment-resistant depression, depression in the medically ill, panic disorder, obsessive-compulsive disorder, eating disorders, social phobia, and premenstrual dysphoric disorder. One SSRI, fluoxetine, has demonstrated safety in pregnancy. Side effects of SSRIs include gastrointestinal disturbances, headache, sedation, insomnia, activation, weight gain, impaired memory, excessive perspiration, paresthesia, and sexual dysfunction.

  19. Probing the diversity of serotonin neurons

    PubMed Central

    Gaspar, Patricia; Lillesaar, Christina

    2012-01-01

    The serotonin (5-HT) system is generally considered as a single modulatory system, with broad and diffuse projections. However, accumulating evidence points to the existence of distinct cell groups in the raphe. Here, we review prior evidence for raphe cell heterogeneity, considering different properties of 5-HT neurons, from metabolism to anatomy, and neurochemistry to physiology. We then summarize more recent data in mice and zebrafish that support a genetic diversity of 5-HT neurons, based on differential transcription factor requirements for the acquisition of the 5-HT identity. In both species, PET1 plays a major role in the acquisition and maintenance of 5-HT identity in the hindbrain, although some 5-HT neurons do not require PET1 for their differentiation, indicating the existence of several transcriptional routes to become serotoninergic. In mice, both PET1-dependent and -independent 5-HT neurons are located in the raphe, but have distinct anatomical features, such as the morphology of axon terminals and projection patterns. In zebrafish, all raphe neurons express pet1, but Pet1-independent 5-HT cell groups are present in the forebrain. Overall, these observations support the view that there are a number of distinct 5-HT subsystems, including within the raphe nuclei, with unique genetic programming and functions. PMID:22826339

  20. 5-Hydroxytryptamine (serotonin) in the gastrointestinal tract

    PubMed Central

    Gershon, Michael D.

    2013-01-01

    Purpose of review Although the gut contains most of the body’s 5-hydroxytryptamine (5-HT), many of its most important functions have recently been discovered. This review summarizes and directs attention to this new burst of knowledge. Recent findings Enteroendocrine cells have classically been regarded as pressure sensors, which secrete 5-HT to initiate peristaltic reflexes; nevertheless, recent data obtained from studies of mice that selectively lack 5-HT either in enterochromaffin cells (deletion of tryptophan hydroxylase 1 knockout; TPH1KO) or neurons (TPH2KO) imply that neuronal 5-HT is more important for constitutive gastrointestinal transit than that of enteroendocrine cells. The enteric nervous system of TPH2KO mice, however, also lacks a full complement of neurons; therefore, it is not clear whether slow transit in TPH2KO animals is due to their neuronal deficiency or absence of serotonergic neurotransmission. Neuronal 5-HT promotes the growth/maintenance of the mucosa as well as neurogenesis. Enteroendocrine cell derived 5-HT is an essential component of the gastrointestinal inflammatory response; thus, deletion of the serotonin transporter increases, whereas TPH1KO decreases the severity of intestinal inflammation. Enteroendocrine cell derived 5-HT, moreover, is also a hormone, which inhibits osteoblast proliferation and promotes hepatic regeneration. Summary New studies show that enteric 5-HT is a polyfunctional signalling molecule, acting both in developing and mature animals as a neurotransmitter paracrine factor, endocrine hormone and growth factor. PMID:23222853

  1. Pulmonary serotonin and histamine in experimental asbestosis

    SciTech Connect

    Keith, I.M.; Day, R.; Lemaire, S.

    1986-03-01

    Adult male Wistar rats were treated once with tracheal instillation of 5 mg Crysotile B asbestos fibers in 0.5 ml saline under ketamine/xylaxine anesthesia. Control rats (n = 37) received 0.5 ml saline. Test and control rats were killed at 7 and 14 d., and 1, 3 and 6 mo. post instillation. Serotonin (5-HT) was quantitated in lung tissue homogenate from all rats using HPLC and electrochemical detection. Among rats killed at 1, 3 and 6 mo., lung tissue histamine-o-phthaldialdehyde complex was quantitated using reverse phase HPLC coupled to a fluorometric detector. Furthermore, 5-HT was quantitated in the cytoplasm of grouped (NEB) and individual (NEC) neuroendocrine cells and in mast cells using formaldehyde-vapor-induced fluorescence and microspectrofluorometry, and mast cell numbers were determined. Test rats had higher pulmonary 5-HT and histamine levels than controls at 1, 3 and 6 mo. Test rats also had higher cellular 5-HT compared to controls in NEB's at 1 mo., but not in NECs, and tended to have higher 5-HT-levels in mast cells at 6 mo. Mast cell numbers were higher among tests at 1 and 3 mo. The authors results suggest that NEBs may contribute to the early asbestos induced rise in 5-HT, and that the major source of 5-HT and histamine is from the increased numbers of mast cells.

  2. Brain temperature responses to salient stimuli persist during dopamine receptor blockade despite a blockade of locomotor responses.

    PubMed

    Kiyatkin, Eugene A

    2008-12-01

    We examined how an acute dopamine (DA) receptor blockade affects locomotor and brain (nucleus accumbens or NAcc), muscle and skin temperature responses to three arousing stimuli (procedure of sc injection, tail-pinch and social interaction with another male rat) and intravenous cocaine (1 mg/kg). DA receptor blockade was induced by mixture of D1- (SCH23390) and D-2 selective (eticlopride) DA antagonists at 0.2 mg/kg doses. Each arousing stimulus and cocaine caused locomotor activation, prolonged increase in NAcc and muscle temperature (0.6-1.0 degrees C for 20-50 min) and transient skin hypothermia (-0.6 degrees C for 1-3 min) in drug-naive conditions. DA receptor blockade strongly decreased basal locomotor activity, but moderately increased brain, muscle and skin temperatures. Therefore, selective interruption of DA transmission does not inhibit the brain, making it more metabolically active and warmer despite skin vasodilatation and the enhanced heat loss to the body and the external environment. DA antagonists strongly decreased locomotor responses to all stimuli and cocaine, had no effects on acute skin vasoconstriction, but differentially affected stimuli- and drug-induced changes in NAcc and muscle temperatures. While brain and muscle temperatures induced by cocaine were fully blocked and both temperatures slightly decreased, temperature increases induced by tail-pinch and social interaction, despite a significant attenuation, persisted during DA receptor blockade. These data are discussed to define the role of the DA system in regulating the central activation processes and behavioral responsiveness to natural arousing and drug stimuli. PMID:18727935

  3. Checkpoint Blockade Cancer Immunotherapy Targets Tumour-Specific Mutant Antigens

    PubMed Central

    Gubin, Matthew M.; Zhang, Xiuli; Schuster, Heiko; Caron, Etienne; Ward, Jeffrey P.; Noguchi, Takuro; Ivanova, Yulia; Hundal, Jasreet; Arthur, Cora D.; Krebber, Willem-Jan; Mulder, Gwenn E.; Toebes, Mireille; Vesely, Matthew D.; Lam, Samuel S.K.; Korman, Alan J.; Allison, James P.; Freeman, Gordon J.; Sharpe, Arlene H.; Pearce, Erika L.; Schumacher, Ton N.; Aebersold, Ruedi; Rammensee, Hans-Georg; Melief, Cornelis J. M.; Mardis, Elaine R.; Gillanders, William E.; Artyomov, Maxim N.; Schreiber, Robert D.

    2014-01-01

    The immune system plays key roles in determining the fate of developing cancers by not only functioning as a tumour promoter facilitating cellular transformation, promoting tumour growth and sculpting tumour cell immunogenicity1–6, but also as an extrinsic tumour suppressor that either destroys developing tumours or restrains their expansion1,2,7. Yet clinically apparent cancers still arise in immunocompetent individuals in part as a consequence of cancer induced immunosuppression. In many individuals, immunosuppression is mediated by Cytotoxic T-Lymphocyte Associated Antigen-4 (CTLA-4) and Programmed Death-1 (PD-1), two immunomodulatory receptors expressed on T cells8,9. Monoclonal antibody (mAb) based therapies targeting CTLA-4 and/or PD-1 (checkpoint blockade) have yielded significant clinical benefits—including durable responses—to patients with different malignancies10–13. However, little is known about the identity of the tumour antigens that function as the targets of T cells activated by checkpoint blockade immunotherapy and whether these antigens can be used to generate vaccines that are highly tumour-specific. Herein, we use genomics and bioinformatics approaches to identify tumour-specific mutant proteins as a major class of T cell rejection antigens following αPD-1 and/or αCTLA-4 therapy of mice bearing progressively growing sarcomas and show that therapeutic synthetic long peptide (SLP) vaccines incorporating these mutant epitopes induce tumour rejection comparably to checkpoint blockade immunotherapy. Whereas, mutant tumour antigen-specific T cells are present in progressively growing tumours, they are reactivated following treatment with αPD-1- and/or αCTLA-4 and display some overlapping but mostly treatment-specific transcriptional profiles rendering them capable of mediating tumour rejection. These results reveal that tumour-specific mutant antigens (TSMA) are not only important targets of checkpoint blockade therapy but also can be

  4. Serotonin-induced platelet aggregation predicts the antihypertensive response to serotonin receptor antagonists.

    PubMed

    Gleerup, G; Persson, B; Hedner, T; Winther, K

    1993-01-01

    The 5-HT2-receptor antagonist ketanserin (20-40 mg b.i.d.) was administered to 62 patients of both sexes with uncomplicated primary hypertension. After 4 weeks of treatment about 50% of the patients had reached the target diastolic blood pressure of 90 mm Hg or below. Interindividual variability was large. In a retrospective analysis the variability could not be explained by sex or the dose of ketanserin. There was a weak association between age and systolic blood pressure response (r = 0.24; P = 0.06), which could be entirely accounted for by the higher base line blood pressure in the elderly patients. In one group of patients (n = 12), the ex vivo aggregation to serotonin (10(-6) M) was studied during treatment with placebo and ketanserin. Ketanserin completely inhibited 5-HT-induced aggregation in all patients. There was a close correlation between the area under the 5-HT-induced platelet aggregation curve during placebo and the subsequent reduction in diastolic blood pressure after 4 weeks of treatment with ketanserin. The present data suggest that the blood pressure response to ketanserin can be predicted from the ex vivo sensitivity of platelets to serotonin. By implication, they also support a role for serotonergic mechanisms in hypertension.

  5. Fluoxetine-induced alterations in human platelet serotonin transporter expression: serotonin transporter polymorphism effects

    PubMed Central

    Little, Karley Y.; Zhang, Lian; Cook, Edwin

    2006-01-01

    Objective Long-term antidepressant drug exposure may regulate its target molecule — the serotonin transporter (SERT). This effect could be related to an individual's genotype for an SERT promoter polymorphism (human serotonin transporter coding [5-HTTLPR]). We aimed to determine the effects of fluoxetine exposure on human platelet SERT levels. Method We harvested platelet samples from 21 healthy control subjects. The platelets were maintained alive ex vivo for 24 hours while being treated with 0.1 μM fluoxetine or vehicle. The effects on SERT immunoreactivity (IR) were then compared. Each individual's SERT promoter genotype was also determined to evaluate whether fluoxetine effects on SERT were related to genotype. Results Fluoxetine exposure replicably altered SERT IR within individuals. Both the magnitude and the direction of effect were related to a person's SERT genotype. People who were homozygous for the short gene (SS) displayed decreased SERT IR, whereas those who were homozygous for the long gene (LL) demonstrated increased SERT IR. A mechanistic experiment suggested that some individuals with the LL genotype might experience increased conversion of complexed SERT to primary SERT during treatment. Conclusions These preliminary results suggest that antidepressant effects after longer-term use may include changes in SERT expression levels and that the type and degree of effect may be related to the 5-HTTLPR polymorphism. PMID:16951736

  6. A systematic investigation of the differential roles for ventral tegmentum serotonin 1- and 2-type receptors on food intake in the rat.

    PubMed

    Pratt, Wayne E; Clissold, Kara A; Lin, Peagan; Cain, Amanda E; Ciesinski, Alexa F; Hopkins, Thomas R; Ilesanmi, Adeolu O; Kelly, Erin A; Pierce-Messick, Zachary; Powell, Daniel S; Rosner, Ian A

    2016-10-01

    Central serotonin (5-HT) pathways are known to influence feeding and other ingestive behaviors. Although the ventral tegmentum is important for promoting the seeking and consumption of food and drugs of abuse, the roles of 5-HT receptor subtypes in this region on food intake have yet to be comprehensively examined. In these experiments, food restricted rats were given 2-h access to rat chow; separate groups of non-restricted animals had similar access to a sweetened fat diet. Feeding and locomotor activity were monitored following ventral tegmentum stimulation or blockade of 5-HT1A, 5-HT1B, 5-HT2A, 5-HT2B, or 5-HT2C receptors. 5-HT1A receptor stimulation transiently inhibited rearing behavior and chow intake in food-restricted rats, and had a biphasic effect on non-restricted rats offered the palatable diet. 5-HT1B receptor agonism transiently inhibited feeding in restricted animals, but did not affect intake of non-restricted rats. In contrast, 5-HT1B receptor antagonism decreased palatable feeding. Although stimulation of ventral tegmental 5-HT2B receptors with BW723C86 did not affect hunger-driven food intake, it significantly affected palatable feeding, with a trend for an increasing intake at 2.0µg/side but not at 5.0µg/side. Antagonism of the same receptor modestly but significantly inhibited feeding of the palatable diet at 5.0µg/side ketanserin. Neither stimulation nor blockade of 5-HT2A or 5-HT2C receptors caused prolonged effects on intake or locomotion. These data suggest that serotonin's effects on feeding within the ventral tegmentum depend upon the specific receptor targeted, as well as whether intake is motivated by food restriction or the palatable nature of the offered diet. PMID:27431937

  7. A systematic investigation of the differential roles for ventral tegmentum serotonin 1- and 2-type receptors on food intake in the rat.

    PubMed

    Pratt, Wayne E; Clissold, Kara A; Lin, Peagan; Cain, Amanda E; Ciesinski, Alexa F; Hopkins, Thomas R; Ilesanmi, Adeolu O; Kelly, Erin A; Pierce-Messick, Zachary; Powell, Daniel S; Rosner, Ian A

    2016-10-01

    Central serotonin (5-HT) pathways are known to influence feeding and other ingestive behaviors. Although the ventral tegmentum is important for promoting the seeking and consumption of food and drugs of abuse, the roles of 5-HT receptor subtypes in this region on food intake have yet to be comprehensively examined. In these experiments, food restricted rats were given 2-h access to rat chow; separate groups of non-restricted animals had similar access to a sweetened fat diet. Feeding and locomotor activity were monitored following ventral tegmentum stimulation or blockade of 5-HT1A, 5-HT1B, 5-HT2A, 5-HT2B, or 5-HT2C receptors. 5-HT1A receptor stimulation transiently inhibited rearing behavior and chow intake in food-restricted rats, and had a biphasic effect on non-restricted rats offered the palatable diet. 5-HT1B receptor agonism transiently inhibited feeding in restricted animals, but did not affect intake of non-restricted rats. In contrast, 5-HT1B receptor antagonism decreased palatable feeding. Although stimulation of ventral tegmental 5-HT2B receptors with BW723C86 did not affect hunger-driven food intake, it significantly affected palatable feeding, with a trend for an increasing intake at 2.0µg/side but not at 5.0µg/side. Antagonism of the same receptor modestly but significantly inhibited feeding of the palatable diet at 5.0µg/side ketanserin. Neither stimulation nor blockade of 5-HT2A or 5-HT2C receptors caused prolonged effects on intake or locomotion. These data suggest that serotonin's effects on feeding within the ventral tegmentum depend upon the specific receptor targeted, as well as whether intake is motivated by food restriction or the palatable nature of the offered diet.

  8. Glycogen Synthase Kinase-3 is an Intermediate Modulator of Serotonin Neurotransmission

    PubMed Central

    Polter, Abigail M.; Li, Xiaohua

    2011-01-01

    Serotonin is a neurotransmitter with broad functions in brain development, neuronal activity, and behaviors; and serotonin is the prominent drug target in several major neuropsychiatric diseases. The multiple actions of serotonin are mediated by diverse serotonin receptor subtypes and associated signaling pathways. However, the key signaling components that mediate specific function of serotonin neurotransmission have not been fully identified. This review will provide evidence from biochemical, pharmacological, and animal behavioral studies showing that serotonin regulates the activation states of brain glycogen synthase kinase-3 (GSK3) via type 1 and type 2 serotonin receptors. In return, GSK3 directly interacts with serotonin receptors in a highly selective manner, with a prominent effect on modulating serotonin 1B receptor activity. Therefore, GSK3 acts as an intermediate modulator in the serotonin neurotransmission system, and balanced GSK3 activity is essential for serotonin-regulated brain function and behaviors. Particularly important, several classes of serotonin-modulating drugs, such as antidepressants and atypical antipsychotics, regulate GSK3 by inhibiting its activity in brain, which reinforces the importance of GSK3 as a potential therapeutic target in neuropsychiatric diseases associated with abnormal serotonin function. PMID:22028682

  9. Increased brain serotonin turnover in panic disorder patients in the absence of a panic attack: reduction by a selective serotonin reuptake inhibitor.

    PubMed

    Esler, Murray; Lambert, Elisabeth; Alvarenga, Marlies; Socratous, Florentia; Richards, Jeff; Barton, David; Pier, Ciaran; Brenchley, Celia; Dawood, Tye; Hastings, Jacqueline; Guo, Ling; Haikerwal, Deepak; Kaye, David; Jennings, Garry; Kalff, Victor; Kelly, Michael; Wiesner, Glen; Lambert, Gavin

    2007-08-01

    Since the brain neurotransmitter changes characterising panic disorder remain uncertain, we quantified brain noradrenaline and serotonin turnover in patients with panic disorder, in the absence of a panic attack. Thirty-four untreated patients with panic disorder and 24 matched healthy volunteers were studied. A novel method utilising internal jugular venous sampling, with thermodilution measurement of jugular blood flow, was used to directly quantify brain monoamine turnover, by measuring the overflow of noradrenaline and serotonin metabolites from the brain. Radiographic depiction of brain venous sinuses allowed differential venous sampling from cortical and subcortical regions. The relation of brain serotonin turnover to serotonin transporter genotype and panic disorder severity were evaluated, and the influence of an SSRI drug, citalopram, on serotonin turnover investigated. Brain noradrenaline turnover in panic disorder patients was similar to that in healthy subjects. In contrast, brain serotonin turnover, estimated from jugular venous overflow of the metabolite, 5-hydroxyindole acetic acid, was increased approximately 4-fold in subcortical brain regions and in the cerebral cortex (P < 0.01). Serotonin turnover was highest in patients with the most severe disease, was unrelated to serotonin transporter genotype, and was reduced by citalopram (P < 0.01). Normal brain noradrenaline turnover in panic disorder patients argues against primary importance of the locus coeruleus in this condition. The marked increase in serotonin turnover, in the absence of a panic attack, possibly represents an important underlying neurotransmitter substrate for the disorder, although this point remains uncertain. Support for this interpretation comes from the direct relationship which existed between serotonin turnover and illness severity, and the finding that SSRI administration reduced serotonin turnover. Serotonin transporter genotyping suggested that increased whole brain

  10. Genetic linkage study of bipolar disorder and the serotonin transporter

    SciTech Connect

    Kelsoe, J.R.; Morison, M.; Mroczkowski-Parker, Z.; Bergesch, P.; Rapaport, M.H.; Mirow, A.L.

    1996-04-09

    The serotonin transporter (HTT) is an important candidate gene for the genetic transmission of bipolar disorder. It is the site of action of many antidepressants, and plays a key role in the regulation of serotonin neurotransmission. Many studies of affectively ill patients have found abnormalities in serotonin metabolism, and dysregulation of the transporter itself. The human serotonin transporter has been recently cloned and mapped to chromosome 17. We have identified a PstI RFLP at the HTT locus, and here report our examination of this polymorphism for possible linkage to bipolar disorder. Eighteen families were examined from three populations: the Old Order Amish, Iceland, and the general North American population. In addition to HTT, three other microsatellite markers were examined, which span an interval known to contain HTT. Linkage analyses were conducted under both dominant and recessive models, as well as both narrow (bipolar only) and broad (bipolar + recurrent unipolar) diagnostic models. Linkage could be excluded to HTT under all models examined. Linkage to the interval spanned by the microsatellites was similarly excluded under the dominant models. In two individual families, maximum lod scores of 1.02 and 0.84 were obtained at D17S798 and HTT, respectively. However, these data overall do not support the presence of a susceptibility locus for bipolar disorder near the serotonin transporter. 20 refs., 2 tabs.

  11. A Theoretical Study of the Conformational Landscape of Serotonin

    SciTech Connect

    Mourik, Van Tonja; Emson, Laura E.

    2002-10-25

    The conformational landscape of neutral serotonin has been investigated by several theoretical methods. The potential energy surface was scanned by systematically varying the three dihedral angles that determine the conformation of the alkyl side chain. In addition, the two possible conformations of the phenol hydroxyl group (anti and syn with respect to the indole NH) were considered. The OH-anti stationary points located with SCF/6-31G* have been re-optimized with B3LYP/6-31+G*, which resulted in twelve true minima. Eleven of these have a corresponding OH-syn conformer that is 1-4 kJ/mol higher in energy. IR vibrational spectra of all twenty-three serotonin conformers, computed at the B3LYP/6-31+G* level f theory, are presented. The initial scan of the serotonin potential energy surface has been repeated with several computationally cheaper methods, to assess their reliability for locating the correct serotonin conformers. It is found that the semi-empirical methods AM1 and PM3 do no t yield sufficiently accurate results, due to their inability to account for subtle intramolecular interactions within the serotonin molecule. On the other hand, SCF in combination with the 3-21G* basis set is ascertained to be a good alternative to SCF/6-31G* for performing the initial scan of the potential energy surface of flexible molecules.

  12. Serotonin deficiency exacerbates acetaminophen-induced liver toxicity in mice.

    PubMed

    Zhang, Jingyao; Song, Sidong; Pang, Qing; Zhang, Ruiyao; Zhou, Lei; Liu, Sushun; Meng, Fandi; Wu, Qifei; Liu, Chang

    2015-01-29

    Acetaminophen (APAP) overdose is a major cause of acute liver failure. Peripheral 5-hydroxytryptamine (serotonin, 5-HT) is a cytoprotective neurotransmitter which is also involved in the hepatic physiological and pathological process. This study seeks to investigate the mechanisms involved in APAP-induced hepatotoxicity, as well as the role of 5-HT in the liver's response to APAP toxicity. We induced APAP hepatotoxicity in mice either sufficient of serotonin (wild-type mice and TPH1-/- plus 5- Hydroxytryptophan (5-HTP)) or lacking peripheral serotonin (Tph1-/- and wild-type mice plus p-chlorophenylalanine (PCPA)). Mice with sufficient 5-HT exposed to acetaminophen have a significantly lower mortality rate and a better outcome compared with mice deficient of 5-HT. This difference is at least partially attributable to a decreased level of inflammation, oxidative stress and endoplasmic reticulum (ER) stress, Glutathione (GSH) depletion, peroxynitrite formation, hepatocyte apoptosis, elevated hepatocyte proliferation, activation of 5-HT2B receptor, less activated c-Jun NH₂-terminal kinase (JNK) and hypoxia-inducible factor (HIF)-1α in the mice sufficient of 5-HT versus mice deficient of 5-HT. We thus propose a physiological function of serotonin that serotonin could ameliorate APAP-induced liver injury mainly through inhibiting hepatocyte apoptosis ER stress and promoting liver regeneration.

  13. Behavioral, hormonal and central serotonin modulating effects of injected leptin.

    PubMed

    Haleem, Darakhshan J; Haque, Zeba; Inam, Qurrat-ul-Aen; Ikram, Huma; Haleem, Muhammad Abdul

    2015-12-01

    Leptin is viewed as an important target for developing novel therapeutics for obesity, depression/anxiety and cognitive dysfunctions. The present study therefore concerns behavioral, hormonal and central serotonin modulating effects of systemically injected leptin. Pharmacological doses (100 and 500 μg/kg) of leptin injected systemically decreased 24h cumulative food intake and body weight in freely feeding rats and improved acquisition and retention of memory in Morris water maze test. Potential anxiety reducing, hormonal and serotonin modulating effects of the peptide hormone were determined in a separate experiment. Animals injected with 100 or 500 μg/kg leptin were tested for anxiety in an elevated plus maze test 1h later. A significant increase in the number of entries and time passed in open arm of the elevated plus maze in leptin injected animals suggested pronounced anxiety reducing effect. Moreover, circulating levels of leptin correlated significantly with anxiety reducing effects of the peptide hormone. Serum serotonin increased and ghrelin decreased in leptin injected animals and correlated, positively and negatively respectively, with circulating leptin. Corticosterone increased at low dose and levels were normal at higher dose. Serotonin metabolism in the hypothalamus and hippocampus decreased only at higher dose of leptin. The results support a role of leptin in the treatment of obesity, anxiety and cognitive dysfunctions. It is suggested that hormonal and serotonin modulating effects of leptin can alter treatment efficacy in particularly comorbid conditions.

  14. A case study of delayed serotonin syndrome: lessons learned.

    PubMed

    Pearce, Shannon; Ahned, Nasiva; Varas, Grace M

    2009-01-01

    Serotonin syndrome is a potentially life-threatening condition that results from excessive serotonin agonism of the central and peripheral nervous system. Though serotonin syndrome is most often associated with ingestion of more than one serotonergic drug, many other mechanisms have been associated with serotonergic excess. This case study presents a 79-year-old African-American female, an assisted living resident, who presented to the emergency department with altered mental status, acute onset of "chills," reduced appetite, urinary incontinence, and an elevated temperature of 103 degrees F (39.4 degrees C). Extensive initial diagnostic findings were negative for urinary tract infection, systemic infection, pneumonia, myocardial infarction, and stroke. Despite aggressive medical management, including intravenous hydration and broad-spectrum antibiotics, the patient continued to become more confused, agitated, and despondent over the subsequent 24 hours. The initial working diagnosis did not include serotonin syndrome, but once other studies did not reveal an etiology of the symptoms and the patient continued to be delirious, paroxetine was discontinued and all symptoms resolved within 48 hours of last dose. Voluntary reporting, postmarketing surveillance, and implementation of well-designed randomized clinical trials are all mechanisms to gather data on serotonin syndrome. These practices will provide future researchers with needed information to solidify diagnostic criteria, educate health care professionals, and safeguard the public against this preventable and potentially lethal drug-drug interaction. PMID:19275460

  15. Interactions of melatonin and serotonin with lactoperoxidase enzyme.

    PubMed

    Şişecioğlu, Melda; Çankaya, Murat; Gülçin, İlhami; Özdemir, Hasan

    2010-12-01

    Melatonin is the chief secretory product of the pineal gland and is synthesized enzymatically from serotonin. These indoleamine derivatives play an important role in the prevention of oxidative damage. Lactoperoxidase (LPO; EC 1.11.1.7) was purified from bovine milk with three purification steps: Amberlite CG-50 resin, CM-Sephadex C-50 ion-exchange, and Sephadex G-100 gel filtration chromatography, respectively. LPO was purified with a yield of 21.6%, a specific activity of 34.0 EU/mg protein, and 14.7-fold purification. To determine the enzyme purity, SDS-PAGE was performed and a single band was observed. The R(z) (A(412)/A(280)) value for LPO was 0.9. The effect of melatonin and serotonin on lactoperoxidase was determined using ABTS as chromogenic substrate. The half-maximal inhibitory concentration (IC(50)) values for melatonin and serotonin were found to be 1.46 and 1.29 μM, respectively. Also, the inhibition constants (K(i)) for melatonin and serotonin were 0.82 ± 0.28 and 0.26 ± 0.04 μM, respectively. Both melatonin and serotonin were found to be competitive inhibitors.

  16. Pharmacometabolomics reveals that serotonin is implicated in aspirin response variability.

    PubMed

    Ellero-Simatos, S; Lewis, J P; Georgiades, A; Yerges-Armstrong, L M; Beitelshees, A L; Horenstein, R B; Dane, A; Harms, A C; Ramaker, R; Vreeken, R J; Perry, C G; Zhu, H; Sànchez, C L; Kuhn, C; Ortel, T L; Shuldiner, A R; Hankemeier, T; Kaddurah-Daouk, R

    2014-01-01

    While aspirin is generally effective for prevention of cardiovascular disease, considerable variation in drug response exists, resulting in some individuals displaying high on-treatment platelet reactivity. We used pharmacometabolomics to define pathways implicated in variation of response to treatment. We profiled serum samples from healthy subjects pre- and postaspirin (14 days, 81 mg/day) using mass spectrometry. We established a strong signature of aspirin exposure independent of response (15/34 metabolites changed). In our discovery (N = 80) and replication (N = 125) cohorts, higher serotonin levels pre- and postaspirin correlated with high, postaspirin, collagen-induced platelet aggregation. In a third cohort, platelets from subjects with the highest levels of serotonin preaspirin retained higher reactivity after incubation with aspirin than platelets from subjects with the lowest serotonin levels preaspirin (72 ± 8 vs. 61 ± 11%, P = 0.02, N = 20). Finally, ex vivo, serotonin strongly increased platelet reactivity after platelet incubation with aspirin (+20%, P = 4.9 × 10(-4), N = 12). These results suggest that serotonin is implicated in aspirin response variability. PMID:25029353

  17. Structure and Function of Serotonin G protein Coupled Receptors

    PubMed Central

    McCorvy, John D.; Roth, Bryan L.

    2015-01-01

    Serotonin receptors are prevalent throughout the nervous system and the periphery, and remain one of the most lucrative and promising drug discovery targets for disorders ranging from migraine headaches to neuropsychiatric disorders such as schizophrenia and depression. There are 14 distinct serotonin receptors, of which 13 are G protein coupled receptors (GPCRs), which are targets for approximately 40% of the approved medicines. Recent crystallographic and biochemical evidence has provided a converging understanding of the basic structure and functional mechanics of GPCR activation. Currently, two GPCR crystal structures exist for the serotonin family, the 5-HT1B and 5-HT2B receptor, with the antimigraine and valvulopathic drug ergotamine bound. The first serotonin crystal structures not only provide the first evidence of serotonin receptor topography but also provide mechanistic explanations into functional selectivity or biased agonism. This review will detail the findings of these crystal structures from a molecular and mutagenesis perspective for driving rational drug design for novel therapeutics incorporating biased signaling. PMID:25601315

  18. Aggravation of viral hepatitis by platelet-derived serotonin.

    PubMed

    Lang, Philipp A; Contaldo, Claudio; Georgiev, Panco; El-Badry, Ashraf Mohammad; Recher, Mike; Kurrer, Michael; Cervantes-Barragan, Luisa; Ludewig, Burkhard; Calzascia, Thomas; Bolinger, Beatrice; Merkler, Doron; Odermatt, Bernhard; Bader, Michael; Graf, Rolf; Clavien, Pierre-Alain; Hegazy, Ahmed N; Löhning, Max; Harris, Nicola L; Ohashi, Pamela S; Hengartner, Hans; Zinkernagel, Rolf M; Lang, Karl S

    2008-07-01

    More than 500 million people worldwide are persistently infected with hepatitis B virus or hepatitis C virus. Although both viruses are poorly cytopathic, persistence of either virus carries a risk of chronic liver inflammation, potentially resulting in liver steatosis, liver cirrhosis, end-stage liver failure or hepatocellular carcinoma. Virus-specific T cells are a major determinant of the outcome of hepatitis, as they contribute to the early control of chronic hepatitis viruses, but they also mediate immunopathology during persistent virus infection. We have analyzed the role of platelet-derived vasoactive serotonin during virus-induced CD8(+) T cell-dependent immunopathological hepatitis in mice infected with the noncytopathic lymphocytic choriomeningitis virus. After virus infection, platelets were recruited to the liver, and their activation correlated with severely reduced sinusoidal microcirculation, delayed virus elimination and increased immunopathological liver cell damage. Lack of platelet-derived serotonin in serotonin-deficient mice normalized hepatic microcirculatory dysfunction, accelerated virus clearance in the liver and reduced CD8(+) T cell-dependent liver cell damage. In keeping with these observations, serotonin treatment of infected mice delayed entry of activated CD8(+) T cells into the liver, delayed virus control and aggravated immunopathological hepatitis. Thus, vasoactive serotonin supports virus persistence in the liver and aggravates virus-induced immunopathology.

  19. Possible involvement of serotonin 5-HT2 receptor in the regulation of feeding behavior through the histaminergic system.

    PubMed

    Murotani, Tomotaka; Ishizuka, Tomoko; Isogawa, Yuka; Karashima, Michitaka; Yamatodani, Atsushi

    2011-01-01

    The central histaminergic system has been proven to be involved in several physiological functions including feeding behavior. Some atypical antipsychotics like risperidone and aripiprazole are known to affect feeding behavior and to antagonize the serotonin (5-HT) receptor subtypes. To examine the possible neural relationship between the serotonergic and histaminergic systems in the anorectic effect of the antipsychotics, we studied the effect of a single administration of these drugs on food intake and hypothalamic histamine release in mice using in vivo microdialysis. Single injection of risperidone (0.5mg/kg, i.p.) or aripiprazole (1mg/kg, i.p.), which have binding affinities to 5-HT(1A, 2A, 2B) and (2C) receptors decreased food intake in C57BL/6N mice with concomitant increase of hypothalamic histamine release. However, a selective D(2)-antagonist, haloperidol (0.5mg/kg, i.p.), did not have effects on food intake or histamine release. Furthermore, in histamine H(1) receptor-deficient mice, there was no reduction of food intake induced by atypical antipsychotics, although histamine release was increased. Moreover, selective 5-HT(2A)-antagonists, volinanserin (0.5, 1mg/kg, i.p.) and ketanserin (5, 10mg/kg, i.p.), significantly increased histamine release and 5-HT(2B/2C) -antagonist, SB206553 (2.5, 5mg/kg, i.p.), slightly increased it. On the contrary, 5-HT(1A) -selective antagonist, WAY100635 (1, 2mg/kg), did not affect the histaminergic tone. These findings suggest that serotonin tonically inhibits histamine release via 5-HT(2) receptors and that antipsychotics enhance the release of hypothalamic histamine by blockade of 5-HT(2) receptors resulting in anorexia via the H(1) receptor.

  20. Serotonin autoreceptor function and antidepressant drug action.

    PubMed

    Hjorth, S; Bengtsson, H J; Kullberg, A; Carlzon, D; Peilot, H; Auerbach, S B

    2000-06-01

    This article briefly summarizes, within the context of a brief review of the relevant literature, the outcome of our recent rat microdialysis studies on (1) the relative importance of serotonin (5-HT)1A versus 5-HT1B autoreceptors in the mechanism of action of 5-HT reuptake blocking agents, including putative regional differences in this regard, and (2) autoreceptor responsiveness following chronic SSRI administration. First, our data are consistent with the primacy of 5-HT1A autoreceptors in restraining the elevation of 5-HT levels induced by SSRIs, whereas nerve terminal 5-HT1B autoreceptors appear to have an accessory role in this regard. Second, there is an important interplay between cell body and nerve terminal 5-HT autoreceptors, and recent findings suggest that this interplay may potentially be exploited to obtain regionally preferential effects on 5-HT neurotransmission in the central nervous system, even upon systemic drug administration. In particular, emerging data suggest that somatodendritic 5-HT1A autoreceptor- and nerve terminal 5-HT1B autoreceptor-mediated feedback may be relatively more important in the control of 5-HT output in dorsal raphe-frontal cortex and median raphe-dorsal hippocampus systems, respectively. Third, 5-HT autoreceptors evidently retain the capability to limit the 5-HT transmission-promoting effect of SSRIs after chronic treatment. Thus, although the responsiveness of these sites is probably somewhat reduced, residual autoreceptor capacity still remains an effective restraint on large increases in extracellular 5-HT, even after prolonged treatment. If a further increase in extracellular 5-HT is crucial to the remission of depression in patients responding only partially to prolonged administration of antidepressants, then sustained adjunctive treatment with autoreceptor-blocking drugs may consequently prove useful in the long term.

  1. Serotonin in the regulation of brain microcirculation.

    PubMed

    Cohen, Z; Bonvento, G; Lacombe, P; Hamel, E

    1996-11-01

    Manipulation of brainstem serotonin (5-HT) raphe neurons induces significant alterations in local cerebral metabolism and perfusion. The vascular consequences of intracerebrally released 5-HT point to a major vasoconstrictor role, resulting in cerebral blood flow (CBF) decreases in several brain regions such as the neocortex. However, vasodilatations, as well as changes in blood-brain barrier (BBB) permeability, which are blocked by 5-HT receptor antagonists also can be observed. A lack of relationship between the changes in flow and metabolism indicates uncoupling between the two variables and is suggestive of a direct neurogenic control by brain intrinsic 5-HT neurons on the microvascular bed. In line with these functional data are the close associations that exist between 5-HT neurons and the microarterioles, capillaries and perivascular astrocytes of various regions but more intimately and/or more frequently so in those where CBF is altered significantly following manipulation of 5-HT neurons. The ability of the microvascular bed to respond directly to intracerebrally released 5-HT is underscored by the expression of distinct 5-HT receptors in the various cellular compartments of the microvascular bed. Thus, it appears that while some 5-HT-mediated microvascular functions involve directly the blood vessel wall, others would be relayed through the perivascular astrocyte. The strategic localization of perivascular astrocytes and the different 5-HT receptors that they harbor strongly emphasize their putative pivotal role in transmitting information between 5-HT neurons and microvessels. It is concluded that the cerebral circulation has full capacity to adequately and locally adapt brain perfusion to changes in central 5-HT neurotransmission either directly or indirectly via the neuronal-astrocytic-vascular tripartite functional unit. Dysfunctions in these neurovascular interactions might result in perfusion deficits and might be involved in specific pathological

  2. Serotonin regulation of the human stress response.

    PubMed

    Hood, Sean D; Hince, Dana A; Robinson, Hayley; Cirillo, Melita; Christmas, David; Kaye, Joey M

    2006-10-01

    Acute tryptophan depletion (ATD) is a technique that has been used to evaluate the effects on humans of acutely reducing serotonin neurotransmission. We have developed a model using a single breath of 35% CO(2) that activates the hormonal axis and produces autonomic and behavioural arousal, thus modelling a stress response. This study combines ATD and single breath 35% CO(2) inhalation to study stress responses in volunteers. A randomised, double-blinded, placebo-controlled, cross-over trial involving 14 healthy adult volunteers aged between 18 and 65 years was undertaken. Subjects underwent double-blind tryptophan depletion over 2 days and were then crossed over 1 week later. During each study day, at the time of peak depletion, participants were single blinded to receive a single breath of 35% CO(2) or air. This was followed 40 min later by the other gas. Psychological outcomes were assessed with the Spielberger State Anxiety Inventory (SSAI), Visual Analogue Scales (VAS), Panic Inventory (PI), Panic and Agoraphobia Scale (PSI) and Beck Depression Inventory (BDI). Physiological outcome was measured by serial plasma cortisol, prolactin and tryptophan levels, pulse and blood pressure. Tryptophan depletion did not exacerbate 35% CO(2) inhalation effects on anxiety symptoms. Single breath CO(2) robustly increased plasma cortisol levels in comparison to an air inhalation; this was less certain for prolactin levels. ATD influenced the HPA axis (associated with higher cortisol levels), apparently independent of CO(2) or air inhalation stressors. ATD and 35% CO(2) inhalation both induced a pressor response and bradycardia in these normal volunteers. Thirty-five percent CO(2) inhalation and ATD independently activate the human stress response, but do not appear to produce synergistic effects when combined, at least for the conditions produced in this study.

  3. Lithium modulates tryptophan hydroxylase 2 gene expression and serotonin release in primary cultures of serotonergic raphe neurons.

    PubMed

    Scheuch, Kathrin; Höltje, Markus; Budde, Holger; Lautenschlager, Marion; Heinz, Andreas; Ahnert-Hilger, Gudrun; Priller, Josef

    2010-01-11

    Lithium salts are mood-stabilizing agents with acute antimanic properties and proven efficacy in the long-term prevention of manic and depressive episodes. Furthermore, lithium augmentation is a well-established strategy to treat depressed patients, which do not respond to antidepressants alone. There is evidence to suggest that these effects of lithium are due to a synergism with central serotonin (5-HT) neurotransmission. In this study, we investigated the effects of lithium chloride (LiCl, 1 mM) on 5-HT uptake and release in primary serotonergic neurons from rat raphe nuclei. Short-term (8 h) and long-term (14 days) treatment with LiCl resulted in a 20% and 23% increase in 5-HT release, but neither influenced 5-HT uptake across the plasma membrane nor vesicular 5-HT uptake. In lithium-treated raphe neurons, the inhibition of 5-HT uptake by fluoxetine was unchanged. Using real-time reverse transcriptase polymerase chain reaction and Western blotting, we examined the effect of lithium on tryptophan hydroxylase 2 (TPH2) expression, the rate-limiting enzyme in brain 5-HT biosynthesis. Short-term lithium treatment resulted in a 45% decrease in tph2 mRNA expression and a 31% reduction of TPH2 protein levels, which was completely compensated after long-term treatment. Our results suggest that lithium can modify tph2 gene expression and 5-HT release in raphe neurons, providing new insight into the serotonergic mechanisms of action of lithium.

  4. Serotonin-immunoreactive neural system and contractile system in the hydroid Cladonema (Cnidaria, Hydrozoa).

    PubMed

    Mayorova, T D; Kosevich, I A

    2013-12-01

    Serotonin is a widespread neurotransmitter which is present in almost all animal phyla including lower metazoans such as Cnidaria. Serotonin detected in the polyps of several cnidarian species participates in the functioning of a neural system. It was suggested that serotonin coordinates polyp behavior. For example, serotonin may be involved in muscle contraction and/or cnidocyte discharge. However, the role of serotonin in cnidarians is not revealed completely yet. The aim of this study was to investigate the neural system of Cladonema radiatum polyps. We detected the net of serotonin-positive processes within the whole hydranth body using anti-serotonin antibodies. The hypostome and tentacles had denser neural net in comparison with the gastric region. Electron microscopy revealed muscle processes throughout the hydranth body. Neural processes with specific vesicles and neurotubules in their cytoplasm were also shown at an ultrastructural level. This work demonstrates the structure of serotonin-positive neural system and smooth muscle layer in C. radiatum hydranths.

  5. Serotonin skews human macrophage polarization through HTR2B and HTR7.

    PubMed

    de las Casas-Engel, Mateo; Domínguez-Soto, Angeles; Sierra-Filardi, Elena; Bragado, Rafael; Nieto, Concha; Puig-Kroger, Amaya; Samaniego, Rafael; Loza, Mabel; Corcuera, María Teresa; Gómez-Aguado, Fernando; Bustos, Matilde; Sánchez-Mateos, Paloma; Corbí, Angel L

    2013-03-01

    Besides its role as a neurotransmitter, serotonin (5-hydroxytryptamine, 5HT) regulates inflammation and tissue repair via a set of receptors (5HT(1-7)) whose pattern of expression varies among cell lineages. Considering the importance of macrophage polarization plasticity for inflammatory responses and tissue repair, we evaluated whether 5HT modulates human macrophage polarization. 5HT inhibited the LPS-induced release of proinflammatory cytokines without affecting IL-10 production, upregulated the expression of M2 polarization-associated genes (SERPINB2, THBS1, STAB1, COL23A1), and reduced the expression of M1-associated genes (INHBA, CCR2, MMP12, SERPINE1, CD1B, ALDH1A2). Whereas only 5HT(7) mediated the inhibitory action of 5HT on the release of proinflammatory cytokines, both 5HT(2B) and 5HT(7) receptors mediated the pro-M2 skewing effect of 5HT. In fact, blockade of both receptors during in vitro monocyte-to-macrophage differentiation preferentially modulated the acquisition of M2 polarization markers. 5HT(2B) was found to be preferentially expressed by anti-inflammatory M2(M-CSF) macrophages and was detected in vivo in liver Kupffer cells and in tumor-associated macrophages. Therefore, 5HT modulates macrophage polarization and contributes to the maintenance of an anti-inflammatory state via 5HT(2B) and 5HT(7), whose identification as functionally relevant markers for anti-inflammatory/homeostatic human M2 macrophages suggests their potential therapeutic value in inflammatory pathologies. PMID:23355731

  6. Aortic Valve Cyclic Stretch Causes Increased Remodeling Activity and Enhanced Serotonin Receptor Responsiveness

    PubMed Central

    Balachandran, Kartik; Bakay, Marina A.; Connolly, Jeanne M.; Zhang, Xuemei; Yoganathan, Ajit P.; Levy, Robert J.

    2011-01-01

    Background Increased serotonin(5HT) receptor(5HTR) signaling has been associated with cardiac valvulopathy. Prior cell culture studies of 5HTR signaling in heart valve interstitial cells have provided mechanistic insights concerning only static conditions. We investigated the hypothesis that aortic valve biomechanics participate in the regulation of both 5HTR expression and inter-related extracellular matrix remodeling events. Methods The effects of cyclic-stretch on aortic valve 5HTR, expression, signaling and extracellular matrix remodeling were investigated using a tensile stretch bioreactor in studies which also compared the effects of adding 5HT and/or the 5HT-transporter inhibitor, Fluoxetine. Results Cyclic-stretch alone increased both proliferation and collagen in porcine aortic valve cusp samples. However, with cyclic-stretch, unlike static conditions, 5HT plus Fluoxetine caused the greatest increase in proliferation (p<0.0001), and also caused significant increases in collagen(p<0.0001) and glycosaminoglycans (p<0.0001). DNA microarray data demonstrated upregulation of 5HTR2A and 5HTR2B (>4.5 fold) for cyclic-stretch versus static (p<0.001), while expression of the 5HT transporter was not changed significantly. Extracellular matrix genes (eg. Collagen Types I,II,III, and proteoglycans) were also upregulated by cyclic-stretch. Conclusions Porcine aortic valve cusp samples subjected to cyclic stretch upregulate 5HTR2A and 2B, and also initiate remodeling activity characterized by increased proliferation and collagen production. Importantly, enhanced 5HTR responsiveness, due to increased 5HTR2A and 2B expression, results in a significantly greater response in remodeling endpoints (proliferation, collagen and GAG production) to 5HT in the presence of 5HT transporter blockade. PMID:21718840

  7. Lack of evidence for reduced prefrontal cortical serotonin and dopamine efflux after acute tryptophan depletion

    PubMed Central

    Meerkerk, Dorie (T). J.; Lieben, Cindy K. J.; Blokland, Arjan; Feenstra, Matthijs G. P.

    2007-01-01

    Rationale Acute tryptophan depletion (ATD) is a widely used method to study the role of serotonin (5-HT) in affect and cognition. ATD results in a strong but transient decrease in plasma tryptophan and central 5-HT synthesis and availability. Although its use is widespread, the evidence that the numerous functional effects of ATD are caused by actual changes in 5-HT neuronal release is not very strong. Thus far, decreases in 5-HT efflux (thought to reflect synaptic release) were only reported after chronic tryptophan depletion or when ATD was combined with blockade of 5-HT reuptake. Objective With the current experiment, we aimed to study the validity of the method of ATD by measuring the extent to which it reduces the efflux of 5-HT (and dopamine) in the prefrontal cortex in the absence of reuptake blockage. Materials and methods We simultaneously measured in freely moving animals plasma tryptophan via a catheter in the jugular vein and 5-HT and DA efflux in the medial prefrontal cortex through microdialysis after ATD treatment. Results ATD reduced plasma tryptophan to less than 30% of control, without affecting 5-HT or DA efflux in the prefrontal cortex, indicating that even strong reductions of plasma tryptophan do not necessarily result in decreases in central 5-HT efflux. Conclusion The present experiment showed that reductions in plasma tryptophan, similar to values associated with behavioural effects, do not necessarily reduce 5-HT efflux and suggest that the cognitive and behavioural effects of ATD may not be (exclusively) due to alterations in 5-HT release. PMID:17713760

  8. The role of serotonin receptor subtypes in treating depression: a review of animal studies

    PubMed Central

    Carr, Gregory V.

    2012-01-01

    Rationale Serotonin reuptake inhibitors (SSRIs) are effective in treating depression. Given the existence of different families and subtypes of 5-HT receptors, multiple 5-HT receptors may be involved in the antidepressant-like behavioral effects of SSRIs. Objective Behavioral pharmacology studies investigating the role of 5-HT receptor subtypes in producing or blocking the effects of SSRIs were reviewed. Results Few animal behavior tests were available to support the original development of SSRIs. Since their development, a number of behavioral tests and models of depression have been developed that are sensitive to the effects of SSRIs, as well as to other types of antidepressant treatments. The rationale for the development and use of these tests is reviewed. Behavioral effects similar to those of SSRIs (antidepressant-like) have been produced by agonists at 5-HT1A, 5-HT1B, 5-HT2C, 5-HT4, and 5-HT6 receptors. Also, antagonists at 5-HT2A, 5-HT2C, 5-HT3, 5- HT6, and 5-HT7 receptors have been reported to produce antidepressant-like responses. Although it seems paradoxical that both agonists and antagonists at particular 5-HT receptors can produce antidepressant-like effects, they probably involve diverse neurochemical mechanisms. The behavioral effects of SSRIs and other antidepressants may also be augmented when 5-HT receptor agonists or antagonists are given in combination. Conclusions The involvement of 5-HT receptors in the antidepressant-like effects of SSRIs is complex and involves the orchestration of stimulation and blockade at different 5-HT receptor subtypes. Individual 5-HT receptors provide opportunities for the development of a newer generation of antidepressants that may be more beneficial and effective than SSRIs. PMID:21107537

  9. Sex Differences in Serotonin 1 Receptor Binding in Rat Brain

    NASA Astrophysics Data System (ADS)

    Fischette, Christine T.; Biegon, Anat; McEwen, Bruce S.

    1983-10-01

    Male and female rats exhibit sex differences in binding by serotonin 1 receptors in discrete areas of the brain, some of which have been implicated in the control of ovulation and of gonadotropin release. The sex-specific changes in binding, which occur in response to the same hormonal (estrogenic) stimulus, are due to changes in the number of binding sites. Castration alone also affects the number of binding sites in certain areas. The results lead to the conclusion that peripheral hormones modulate binding by serotonin 1 receptors. The status of the serotonin receptor system may affect the reproductive capacity of an organism and may be related to sex-linked emotional disturbances in humans.

  10. Neuronal serotonin in the regulation of maternal behavior in rodents

    PubMed Central

    Angoa-Pérez, Mariana; Kuhn, Donald M.

    2016-01-01

    Maternal behavior is probably the most important pro-social behavior in female mammals, ensuring both the development and survival of her offspring. Signals driving maternal behaviors are complex and involve several brain areas, most of which are innervated by serotonin. Serotonin transmission influences maternal processes indirectly through release of maternally-relevant hormones such as prolactin, oxytocin and vasopressin, but it can also have more direct effects on survival and the growth rate of offspring, as well as on maternal care, aggression and pup killing. This article aims to examine the basics of the components of maternal behaviors in rodents and the neural systems underpinning these maternal responses with special emphasis on the role of neural serotonin in the regulation of these behaviors. PMID:27148594

  11. Serotonin, noradrenaline, dopamine metabolites in transcendental meditation-technique.

    PubMed

    Bujatti, M; Riederer, P

    1976-01-01

    The highly significant increase of 5-HIAA (5-hydroxyindole-3-acetic acid) in Transcendental Meditation technique suggests systemic serotonin as "rest and fulfillment hormone" of deactivation-relaxation. Furthermore 5-HT (5-hydroxytryptamine, serotonin) is considered to be the EC-cell (enterochromaffine-cell) hormone requested by Fujita and Kobayashi and its role for EEG synchronisation via area postrema chemoreceptor as anti arousal agent is being discussed. The significant decrease of the catecholamine metabolite VMA (vanillic-mandelic acid) in meditators, that is associated with a reciprocal increase of 5-HIAA supports as a feedback necessity the "rest and fulfillment response" versus "fight and flight". As the adreno medullary tissue serves for hormonal reinforcement of orthosympathetic activity, the Enterochromaffine Cell System (having taken the form of distinct organs in some species as octopus and discoglossus) is suggested to serve via serotonin for humoral reinforcement of parasympathetic activity in deep relaxation.

  12. Soy and social stress affect serotonin neurotransmission in primates.

    PubMed

    Shively, C A; Mirkes, S J; Lu, N Z; Henderson, J A; Bethea, C L

    2003-01-01

    Stress and sex steroidal milieu can each influence mood in women. The purpose of this study was to compare the effect of long-term conjugated equine estrogen (CEE), soy phytoestrogen (SPE), and social subordination stress on dorsal raphe serotonin neurotransmission of ovariectomized cynomolgus monkeys. Tryptophan hydroxylase (TPH) and serotonin reuptake transporter (SERT) protein content were determined, and the in vitro degradation of macaque SERT protein was examined in the presence and absence of protease inhibitors, serotonin (5-HT), and citalopram. Like CEE, SPE increased TPH protein levels. Social subordinates had markedly lower TPH protein levels than dominants regardless of hormone replacement. Therefore, these two variables had independent and additive effects. CEE and SPE increased SERT, and social status had no effect. Thus, the hormone-induced increase in SERT was accompanied by increased 5-HT synthesis and neuronal firing, which appears biologically reasonable as 5-HT prevented SERT degradation in vitro. PMID:12746737

  13. Effect of environmental enrichment on dopamine and serotonin transporters and glutamate neurotransmission in medial prefrontal and orbitofrontal cortex.

    PubMed

    Darna, Mahesh; Beckmann, Joshua S; Gipson, Cassandra D; Bardo, Michael T; Dwoskin, Linda P

    2015-03-01

    Recent studies have reported that rats raised in an enriched condition (EC) have decreased dopamine transporter (DAT) function and expression in medial prefrontal cortex (mPFC), as well as increased d-amphetamine-induced glutamate release in nucleus accumbens compared to rats raised in an isolated condition (IC). In these previous studies, DAT function and expression were evaluated using mPFC pooled from four rats for each condition to obtain kinetic parameters due to sparse DAT expression in mPFC. In contrast, accumbal glutamate release was determined using individual rats. The current study extends the previous work and reports on the optimization of DAT and serotonin transporter (SERT) functional assays, as well as cell surface expression assays using both mPFC and orbitofrontal cortex (OFC) from individual EC or IC rats. In addition, the effect of d-amphetamine on glutamate release in mPFC and OFC of EC and IC rats was determined using in vivo microdialysis. Results show that environmental enrichment decreased maximal transport velocity (Vmax) for [(3)H]dopamine uptake in mPFC, but increased Vmax for [(3)H]dopamine uptake in OFC. Corresponding changes in DAT cell surface expression were not found. In contrast, Vmax for [(3)H]serotonin uptake and cellular localization of SERT in mPFC and OFC were not different between EC and IC rats. Further, acute d-amphetamine (2mg/kg, s.c.) increased extracellular glutamate concentrations in mPFC of EC rats only and in OFC of IC rats only. Overall, these results suggest that enrichment produces long-lasting alterations in mPFC and OFC DAT function via a trafficking-independent mechanism, as well as differential glutamate release in mPFC and OFC. Rearing-induced modulation of DAT function and glutamate release in prefrontal cortical subregions may contribute to the known protective effects of enrichment on drug abuse vulnerability.

  14. Anticonvulsant effects of N-arachidonoyl-serotonin, a dual fatty acid amide hydrolase enzyme and transient receptor potential vanilloid type-1 (TRPV1) channel blocker, on experimental seizures: the roles of cannabinoid CB1 receptors and TRPV1 channels.

    PubMed

    Vilela, Luciano R; Medeiros, Daniel C; de Oliveira, Antonio Carlos P; Moraes, Marcio F; Moreira, Fabricio A

    2014-10-01

    Selective blockade of anandamide hydrolysis, through the inhibition of the FAAH enzyme, has anticonvulsant effects, which are mediated by CB1 receptors. Anandamide, however, also activates TRPV1 channels, generally with an opposite outcome on neuronal modulation. Thus, we suggested that the dual FAAH and TRPV1 blockade with N-arachidonoyl-serotonin (AA-5-HT) would be efficacious in inhibiting pentylenetetrazole (PTZ)-induced seizures in mice. We also investigated the contribution of CB1 activation and TRPV1 blockade to the overt effect of AA-5-HT. In the first experiment, injection of AA-5-HT (0.3-3.0 mg/kg) delayed the onset and reduced the duration of PTZ (60 mg)-induced seizures in mice. These effects were reversed by pre-treatment with the CB1 antagonist, AM251 (1.0-3.0 mg/kg). Finally, we observed that administration of the selective TRPV1 antagonist, SB366791 (0.1-1 mg/kg), did not entirely mimic AA-5-HT effects. In conclusion, AA-5-HT alleviates seizures in mice, an effect inhibited by CB1 antagonism, but not completely mimicked by TRPV1 blockage, indicating that the overall effect of AA-5-HT seems to depend mainly on CB1 receptors. This may represent a new strategy for the development of drugs against seizures, epilepsies and related syndromes.

  15. [Serotonin dysfunctions in the background of the seven deadly sins].

    PubMed

    Janka, Zoltán

    2003-11-20

    The symbolic characters of the Seven Deadly Sins can be traced from time to time in the cultural history of human mankind, being directly specified in certain artistic products. Such are, among others, the painting entitled "The Seven Deadly Sins and the Four Lost Things" by Hieronymus Bosch and the poems Divina Commedia and The Foerie Queene by Dante Alighieri and Edmund Spenser, respectively. However, there are several paragraphs referring to these behaviours of the Seven Deadly Sins in the Bible and in the dramas of William Shakespeare. The objective of the present review is to propose that dysfunctions in the central serotonergic system might be involved in the neurobiology of these 'sinful' behaviour patterns. Evidences indicate that behaviour traits such as Accidia (Sloth), Luxuria (Lust, Lechery), Superbia (Pride), Ira (Wrath, Anger), Invidia (Envy), Avaritia (Greed, Avarice), and Gula (Gluttony) can relate to the functional alterations of serotonin in the brain. Results of biochemical and molecular genetic (polymorphism) studies on the human serotonergic system (receptor, transporter, enzyme), findings of functional imaging techniques, effects of depletion (or supplementation) of the serotonin precursor tryptophan, data of challenge probe investigations directed to testing central serotonergic functions, alterations in the peripheral serotonin measures (platelet), and the changes in the CSF 5-hydroxy-indoleacetic acid content indicate such serotonergic involvement. Furthermore, results of animal experiments on behaviour change (aggressive, dominant or submissive, appetite, alcohol preference) attributed to serotonin status modification and the clinically evidenced therapeutic efficacy of pharmacological interventions, based on the modulation and perturbation of the serotonergic system (e.g. selective serotonin reuptake inhibitors), in treating the 'sinful' behaviour forms and analogous pathological states reaching the severity of psychiatric disorders

  16. [Serotonin dysfunctions in the background of the seven deadly sins].

    PubMed

    Janka, Zoltán

    2003-11-20

    The symbolic characters of the Seven Deadly Sins can be traced from time to time in the cultural history of human mankind, being directly specified in certain artistic products. Such are, among others, the painting entitled "The Seven Deadly Sins and the Four Lost Things" by Hieronymus Bosch and the poems Divina Commedia and The Foerie Queene by Dante Alighieri and Edmund Spenser, respectively. However, there are several paragraphs referring to these behaviours of the Seven Deadly Sins in the Bible and in the dramas of William Shakespeare. The objective of the present review is to propose that dysfunctions in the central serotonergic system might be involved in the neurobiology of these 'sinful' behaviour patterns. Evidences indicate that behaviour traits such as Accidia (Sloth), Luxuria (Lust, Lechery), Superbia (Pride), Ira (Wrath, Anger), Invidia (Envy), Avaritia (Greed, Avarice), and Gula (Gluttony) can relate to the functional alterations of serotonin in the brain. Results of biochemical and molecular genetic (polymorphism) studies on the human serotonergic system (receptor, transporter, enzyme), findings of functional imaging techniques, effects of depletion (or supplementation) of the serotonin precursor tryptophan, data of challenge probe investigations directed to testing central serotonergic functions, alterations in the peripheral serotonin measures (platelet), and the changes in the CSF 5-hydroxy-indoleacetic acid content indicate such serotonergic involvement. Furthermore, results of animal experiments on behaviour change (aggressive, dominant or submissive, appetite, alcohol preference) attributed to serotonin status modification and the clinically evidenced therapeutic efficacy of pharmacological interventions, based on the modulation and perturbation of the serotonergic system (e.g. selective serotonin reuptake inhibitors), in treating the 'sinful' behaviour forms and analogous pathological states reaching the severity of psychiatric disorders

  17. Neuromuscular blockade: what was, is and will be.

    PubMed

    Schepens, Tom; Cammu, Guy

    2014-01-01

    Non-depolarizing neuromuscular blocking agents (NMBAs) produce neuromuscular blockade by competing with acetylcholine at the neuromuscular junction, whereas depolarizing NMBAs open receptor channels in a manner similar to that of acetylcholine. Problems with NMBAs include malignant hyperthermia caused by succinylcholine, anaphylaxis with the highest incidence for succinylcholine and rocuronium, and residual neuromuscular blockade. To reverse these blocks, anticholinesterases can act indirectly by increasing the amount of acetylcholine in the neuromuscular junction; sugammadex is the only selective relaxant binding agent (SRBA) in clinical use. At all levels of blockade, recovery after sugammadex is faster than after neostigmine. Sugammadex potentially also has some other advantages over neostigmine that are related to neostigmine's increase in the amount of acetylcholine and the necessity of co-administering anticholinergics. However, hypersensitivity reactions, including anaphylaxis, have occurred in some patients and healthy volunteers after sugammadex and remain an issue for the FDA. In the near future, we may see the emergence of new SRBAs and of easier-to-use technologies that can routinely monitor neuromuscular transmissions in daily practice. The nature of the effect of sugammadex on freeing nicotinic acetylcholine receptors located outside the neuromuscular junction from NMBAs is unknown. Moreover, it is uncertain whether the full removal of the competing antagonists (by SRBAs) at the neuromuscular junction impacts the efficiency of acetylcholine transmission. In a recent pilot study in healthy volunteers, we demonstrated increased electromyographic diaphragm activity after sugammadex, compared to neostigmine. Further research is needed to elucidate the role of NMBAs and their reversal agents in the central control of breathing, respiratory muscle activity, and respiratory outcomes. PMID:25622380

  18. VEGF blockade inhibits angiogenesis and reepithelialization of endometrium

    PubMed Central

    Fan, Xiujun; Krieg, Sacha; Kuo, Calvin J.; Wiegand, Stanley J.; Rabinovitch, Marlene; Druzin, Maurice L.; Brenner, Robert M.; Giudice, Linda C.; Nayak, Nihar R.

    2008-01-01

    Despite extensive literature on vascular endothelial growth factor (VEGF) expression and regulation by steroid hormones, the lack of clear understanding of the mechanisms of angiogenesis in the endometrium is a major limitation for use of antiangiogenic therapy targeting endometrial vessels. In the current work, we used the rhesus macaque as a primate model and the decidualized mouse uterus as a murine model to examine angiogenesis during endometrial breakdown and regeneration. We found that blockade of VEGF action with VEGF Trap, a potent VEGF blocker, completely inhibited neovascularization during endometrial regeneration in both models but had no marked effect on preexisting or newly formed vessels, suggesting that VEGF is essential for neoangiogenesis but not survival of mature vessels in this vascular bed. Blockade of VEGF also blocked reepithelialization in both the postmenstrual endometrium and the mouse uterus after decidual breakdown, evidence that VEGF has pleiotropic effects in the endometrium. In vitro studies with a scratch wound assay showed that the migration of luminal epithelial cells during repair involved signaling through VEGF receptor 2–neuropilin 1 (VEGFR2-NP1) receptors on endometrial stromal cells. The leading front of tissue growth during endometrial repair was strongly hypoxic, and this hypoxia was the local stimulus for VEGF expression and angiogenesis in this tissue. In summary, we provide novel experimental data indicating that VEGF is essential for endometrial neoangiogenesis during postmenstrual/postpartum repair.—Fan, X., Krieg, S., Kuo, C. J., Wiegand, S. J., Rabinovitch, M., Druzin, M. L., Brenner, R. M., Giudice, L. C., Nayak, N. R. VEGF blockade inhibits angiogenesis and reepithelialization of endometrium. PMID:18606863

  19. Association of Serotonin Concentration to Behavior and IQ in Autistic Children.

    ERIC Educational Resources Information Center

    Kuperman, Samuel; And Others

    1987-01-01

    The IQ and behavior patterns on the Autism Behavior Checklist (ABC) of 25 boys were compared to blood concentrations of platelet rich plasma (PRP) serotonin. Although no correlations were found between serotonin levels and IQ or ABC scales, four individual ABC items did correlate with serotonin concentrations. (Author/DB)

  20. Coaction of Stress and Serotonin Transporter Genotype in Predicting Aggression at the Transition to Adulthood

    ERIC Educational Resources Information Center

    Conway, Christopher C.; Keenan-Miller, Danielle; Hammen, Constance; Lind, Penelope A.; Najman, Jake M.; Brennan, Patricia A.

    2012-01-01

    Despite consistent evidence that serotonin functioning affects stress reactivity and vulnerability to aggression, research on serotonin gene-stress interactions (G x E) in the development of aggression remains limited. The present study investigated variation in the promoter region of the serotonin transporter gene (5-HTTLPR) as a moderator of the…

  1. THE RELATIONSHIP BETWEEN WHOLE BLOOD SEROTONIN AND REPETITIVE BEHAVIORS IN AUTISM

    PubMed Central

    Kolevzon, Alexander; Newcorn, Jeffrey H.; Kryzak, Lauren; Chaplin, William; Watner, Dryden; Hollander, Eric; Smith, Christopher J.; Cook, Edwin H.; Silverman, Jeremy M.

    2009-01-01

    This study was conducted to examine the relationship between whole blood serotonin level and behavioral symptoms in 78 subjects with autism. No significant associations were found between serotonin level and the primary behavioral outcome measures. However, a significant inverse relationship between serotonin level and self-injury was demonstrated. PMID:20044143

  2. 21 CFR 862.1390 - 5-Hydroxyindole acetic acid/serotonin test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false 5-Hydroxyindole acetic acid/serotonin test system... Test Systems § 862.1390 5-Hydroxyindole acetic acid/serotonin test system. (a) Identification. A 5-hydroxyindole acetic acid/serotonin test system is a device intended to measure 5-hydroxyindole acetic...

  3. 21 CFR 862.1390 - 5-Hydroxyindole acetic acid/serotonin test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false 5-Hydroxyindole acetic acid/serotonin test system... Test Systems § 862.1390 5-Hydroxyindole acetic acid/serotonin test system. (a) Identification. A 5-hydroxyindole acetic acid/serotonin test system is a device intended to measure 5-hydroxyindole acetic...

  4. 21 CFR 862.1390 - 5-Hydroxyindole acetic acid/serotonin test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false 5-Hydroxyindole acetic acid/serotonin test system... Test Systems § 862.1390 5-Hydroxyindole acetic acid/serotonin test system. (a) Identification. A 5-hydroxyindole acetic acid/serotonin test system is a device intended to measure 5-hydroxyindole acetic...

  5. 21 CFR 862.1390 - 5-Hydroxyindole acetic acid/serotonin test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false 5-Hydroxyindole acetic acid/serotonin test system... Test Systems § 862.1390 5-Hydroxyindole acetic acid/serotonin test system. (a) Identification. A 5-hydroxyindole acetic acid/serotonin test system is a device intended to measure 5-hydroxyindole acetic...

  6. Serotonin syndrome in patients with peripheral neuropathy: a diagnostic challenge.

    PubMed

    Prakash, Sanjay; Gosai, Falgun; Brahmbhatt, Jit; Shah, Chintan

    2014-01-01

    According to the Hunter Serotonin Toxicity Criteria, the presence of either clonus or hyperreflexia is a must for making a diagnosis of serotonin syndrome (SS). We report five patients with SS who had areflexia because of associated polyneuropathy. None of the patients fulfilled the Hunter criteria for SS. However, all five patients had features suggestive of neuromuscular hyperactivity, autonomic hyperactivity and altered mental status and fulfilled the Sternbach criteria for SS. All patients responded to cyproheptadine within 5 days to 2 weeks duration. These cases highlight the limitations of the Hunter criteria for SS in patients with associated polyneuropathy.

  7. Serotonin Reuptake Inhibitors and Risk of Abnormal Bleeding.

    PubMed

    Andrade, Chittaranjan; Sharma, Eesha

    2016-09-01

    Serotonin reuptake inhibitors (SRIs) increase the risk of abnormal bleeding by lowering platelet serotonin and hence the efficiency of platelet-driven hemostasis; by increasing gastric acidity and possibly gastric ulceration; and by other mechanisms. The upper gastrointestinal tract is the commonest site of SRI-related abnormal bleeding; bleeding at this location may be increased by concurrent nonsteroidal anti-inflammatory drug therapy and by treatment with antiplatelet or anticoagulant drugs. Bleeding at this location may be reduced by concurrent administration of acid-suppressing drugs. PMID:27514297

  8. GP IIb/IIIa Blockade During Peripheral Artery Interventions

    SciTech Connect

    Tepe, Gunnar Wiskirchen, Jakub; Pereira, Philippe; Claussen, Claus D.; Miller, Stephen; Duda, Stephan H.

    2008-01-15

    The activation of the platelet GP IIb/IIIa receptor is the final and common pathway in platelet aggregation. By blocking this receptor, platelet aggregation can be inhibited independently of the stimulus prompted the targeting of this receptor. Several years ago, three drugs have been approved for coronary artery indications. Since that time, there is increasing evidence that GP IIb/IIIa receptor blockade might have also an important role in peripheral arterial intervention. This article summarizes the action and differences of GP Ilb/IIIa receptor inhibitors and its possible indication in peripheral arteries.

  9. Coulomb blockade and superuniversality of the theta angle.

    PubMed

    Burmistrov, I S; Pruisken, A M M

    2008-08-01

    Based on the Ambegaokar-Eckern-Schön approach to the Coulomb blockade, we develop a complete quantum theory of the single electron transistor. We identify a previously unrecognized physical observable in the problem that, unlike the usual average charge on the island, is robustly quantized for any finite value of the tunneling conductance as the temperature goes to absolute zero. This novel quantity is fundamentally related to the nonsymmetrized current noise of the system. Our results display all of the superuniversal topological features of the theta angle concept that previously arose in the theory of the quantum Hall effect.

  10. Association between low-activity serotonin transporter genotype and heroin dependence: behavioral and personality correlates.

    PubMed

    Gerra, G; Garofano, L; Santoro, G; Bosari, S; Pellegrini, C; Zaimovic, A; Moi, G; Bussandri, M; Moi, A; Brambilla, F; Donnini, C

    2004-04-01

    In previous studies, serotonin (5-HT) system disturbance was found involved in a variety of behavioral disorders, psychopathologies, and substance use disorders. A functional polymorphism in the promoter region of the human serotonin transporter gene (5-HTTLPR) was recently identified and the presence of the short (S) allele found to be associated with a lower level of expression of the gene, lower levels of 5-HT uptake, type 2 alcoholism, violence and suicidal behavior. In the present study, 101 heroin addicts (males, West European, Caucasians) and 101 healthy control subjects matched for race and gender, with no history of substance use disorder, have been genotyped. Aggressiveness levels were measured in both heroin addicts and controls utilizing Buss-Durkee-Hostility-Inventory (BDHI). Data about suicide attempt and violent criminal behavior in subject history have been collected. The short-short (SS) genotype frequency was significantly higher among heroin dependent individuals compared with control subjects (P = 0.025). The odds ratio for the SS genotype versus the long-long (LL) genotype frequency was 0.69, 95% Cl (0.49-0.97), when heroin addicts were compared with healthy controls. The SS genotype frequency was significantly higher among violent heroin dependent individuals compared with addicted individuals without aggressive behavior (P = 0.02). BDHI mean total scores and suspiciousness and negativism subscales scores were significantly higher in SS individuals, in comparison with LL subjects, among heroin addicts. No association was found between SS genotype and suicide history. Our data suggest that a decreased expression of the gene encoding the 5-HTT transporter, due to "S" promoter polymorphism, may be associated with an increased risk for substance use disorders, particularly in the subjects with more consistent aggressiveness and impulsiveness.

  11. Mitochondrial calcium uptake.

    PubMed

    Williams, George S B; Boyman, Liron; Chikando, Aristide C; Khairallah, Ramzi J; Lederer, W J

    2013-06-25

    Calcium (Ca(2+)) uptake into the mitochondrial matrix is critically important to cellular function. As a regulator of matrix Ca(2+) levels, this flux influences energy production and can initiate cell death. If large, this flux could potentially alter intracellular Ca(2+) ([Ca(2+)]i) signals. Despite years of study, fundamental disagreements on the extent and speed of mitochondrial Ca(2+) uptake still exist. Here, we review and quantitatively analyze mitochondrial Ca(2+) uptake fluxes from different tissues and interpret the results with respect to the recently proposed mitochondrial Ca(2+) uniporter (MCU) candidate. This quantitative analysis yields four clear results: (i) under physiological conditions, Ca(2+) influx into the mitochondria via the MCU is small relative to other cytosolic Ca(2+) extrusion pathways; (ii) single MCU conductance is ∼6-7 pS (105 mM [Ca(2+)]), and MCU flux appears to be modulated by [Ca(2+)]i, suggesting Ca(2+) regulation of MCU open probability (P(O)); (iii) in the heart, two features are clear: the number of MCU channels per mitochondrion can be calculated, and MCU probability is low under normal conditions; and (iv) in skeletal muscle and liver cells, uptake per mitochondrion varies in magnitude but total uptake per cell still appears to be modest. Based on our analysis of available quantitative data, we conclude that although Ca(2+) critically regulates mitochondrial function, the mitochondria do not act as a significant dynamic buffer of cytosolic Ca(2+) under physiological conditions. Nevertheless, with prolonged (superphysiological) elevations of [Ca(2+)]i, mitochondrial Ca(2+) uptake can increase 10- to 1,000-fold and begin to shape [Ca(2+)]i dynamics.

  12. Serotonin stimulates lateral habenula via activation of the post-synaptic serotonin 2/3 receptors and transient receptor potential channels.

    PubMed

    Zuo, Wanhong; Zhang, Yong; Xie, Guiqin; Gregor, Danielle; Bekker, Alex; Ye, Jiang-Hong

    2016-02-01

    There is growing interest on the role of the lateral habenula (LHb) in depression, because it closely and bilaterally connects with the serotoninergic raphe nuclei. The LHb sends glutamate efferents to the raphe nuclei, while it receives serotoninergic afferents, and expresses a high density of serotonin (5-HT) receptors. Recent studies suggest that 5-HT receptors exist both in the presynaptic and postsynaptic sites of LHb neurons, and activation of these receptors may have different effects on the activity of LHb neurons. The current study focused on the effect of 5-HT on the postsynaptic membrane. We found that 5-HT initiated a depolarizing inward current (I((5-HTi))) and accelerated spontaneous firing in ∼80% of LHb neurons in rat brain slices. I((5-HTi)) was also induced by the 5-HT uptake blocker citalopram, indicating activity of endogenous 5-HT. I((5-HTi)) was diminished by 5-HT(2/3) receptor antagonists (ritanserin, SB-200646 or ondansetron), and activated by the selective 5-HT(2/3) agonists 1-(3-Chlorophenyl) piperazine hydrochloride or 1-(3-Chlorophenyl) biguanide hydrochloride. Furthermore, I((5-HTi)) was attenuated by 2-Aminoethyl diphenylborinate, a blocker of transient receptor potential channels, and an IP3 receptor inhibitor, indicating the involvement of transient receptor potential channels. These results demonstrate that the reciprocal connection between the LHb and the 5-HT system highlights a key role for 5-HT stimulation of LHb neurons that may be important in the pathogenesis of depression.

  13. Serotonin, Amygdala and Fear: Assembling the Puzzle

    PubMed Central

    Bocchio, Marco; McHugh, Stephen B.; Bannerman, David M.; Sharp, Trevor; Capogna, Marco

    2016-01-01

    The fear circuitry orchestrates defense mechanisms in response to environmental threats. This circuitry is evolutionarily crucial for survival, but its dysregulation is thought to play a major role in the pathophysiology of psychiatric conditions in humans. The amygdala is a key player in the processing of fear. This brain area is prominently modulated by the neurotransmitter serotonin (5-hydroxytryptamine, 5-HT). The 5-HT input to the amygdala has drawn particular interest because genetic and pharmacological alterations of the 5-HT transporter (5-HTT) affect amygdala activation in response to emotional stimuli. Nonetheless, the impact of 5-HT on fear processing remains poorly understood.The aim of this review is to elucidate the physiological role of 5-HT in fear learning via its action on the neuronal circuits of the amygdala. Since 5-HT release increases in the basolateral amygdala (BLA) during both fear memory acquisition and expression, we examine whether and how 5-HT neurons encode aversive stimuli and aversive cues. Next, we describe pharmacological and genetic alterations of 5-HT neurotransmission that, in both rodents and humans, lead to altered fear learning. To explore the mechanisms through which 5-HT could modulate conditioned fear, we focus on the rodent BLA. We propose that a circuit-based approach taking into account the localization of specific 5-HT receptors on neurochemically-defined neurons in the BLA may be essential to decipher the role of 5-HT in emotional behavior. In keeping with a 5-HT control of fear learning, we review electrophysiological data suggesting that 5-HT regulates synaptic plasticity, spike synchrony and theta oscillations in the BLA via actions on different subcellular compartments of principal neurons and distinct GABAergic interneuron populations. Finally, we discuss how recently developed optogenetic tools combined with electrophysiological recordings and behavior could progress the knowledge of the mechanisms underlying 5

  14. Serotonin modulation of cortical neurons and networks

    PubMed Central

    Celada, Pau; Puig, M. Victoria; Artigas, Francesc

    2013-01-01

    The serotonergic pathways originating in the dorsal and median raphe nuclei (DR and MnR, respectively) are critically involved in cortical function. Serotonin (5-HT), acting on postsynaptic and presynaptic receptors, is involved in cognition, mood, impulse control and motor functions by (1) modulating the activity of different neuronal types, and (2) varying the release of other neurotransmitters, such as glutamate, GABA, acetylcholine and dopamine. Also, 5-HT seems to play an important role in cortical development. Of all cortical regions, the frontal lobe is the area most enriched in serotonergic axons and 5-HT receptors. 5-HT and selective receptor agonists modulate the excitability of cortical neurons and their discharge rate through the activation of several receptor subtypes, of which the 5-HT1A, 5-HT1B, 5-HT2A, and 5-HT3 subtypes play a major role. Little is known, however, on the role of other excitatory receptors moderately expressed in cortical areas, such as 5-HT2C, 5-HT4, 5-HT6, and 5-HT7. In vitro and in vivo studies suggest that 5-HT1A and 5-HT2A receptors are key players and exert opposite effects on the activity of pyramidal neurons in the medial prefrontal cortex (mPFC). The activation of 5-HT1A receptors in mPFC hyperpolarizes pyramidal neurons whereas that of 5-HT2A receptors results in neuronal depolarization, reduction of the afterhyperpolarization and increase of excitatory postsynaptic currents (EPSCs) and of discharge rate. 5-HT can also stimulate excitatory (5-HT2A and 5-HT3) and inhibitory (5-HT1A) receptors in GABA interneurons to modulate synaptic GABA inputs onto pyramidal neurons. Likewise, the pharmacological manipulation of various 5-HT receptors alters oscillatory activity in PFC, suggesting that 5-HT is also involved in the control of cortical network activity. A better understanding of the actions of 5-HT in PFC may help to develop treatments for mood and cognitive disorders associated with an abnormal function of the frontal lobe

  15. Serotonin's role in piglet mortality and thriftiness.

    PubMed

    Dennis, R L; McMunn, K A; Cheng, H W; Marchant-Forde, J N; Lay, D C

    2014-11-01

    Improving piglet survivability rates is of high priority for swine production as well as for piglet well-being. Dysfunction in the serotonin (5-HT) system has been associated with growth deficiencies, infant mortalities, or failure to thrive in human infants. The aim of this research was to determine if a relationship exists between infant mortality and failure to thrive (or unthriftiness), and umbilical 5-HT concentration in piglets. Umbilical blood was collected from a total of 60 piglets from 15 litters for analysis of 5-HT and tryptophan (Trp; the AA precursor to 5-HT) concentrations. Behavior was scan sampled for the first 2 days after birth. Brain samples were also taken at 8 h after birth from healthy and unthrifty piglets (n = 4/group). The raphe nucleus was dissected out and analyzed for 5-HT and dopamine concentrations as well as their major metabolites 5-hydroxyindoleacetic acid (5-HIAA) and homovanillic acid (HVA), respectively. Data were analyzed by ANOVA. Piglets that died within 48 h of birth (n = 14) had significantly lower umbilical blood 5-HT concentrations at the time of their birth compared to their healthy counterparts (n = 46, P = 0.003). However, no difference in Trp was detected (P 0.38). Time spent under the heat lamp and sleeping were positively correlated with umbilical 5-HT levels (P = 0.004 and P = 0.02, respectively), while inactivity had a negative correlation with 5-HT levels (P = 0.04). In the raphe nucleus, the center for brain 5-HT biosynthesis, unthrifty piglets had a greater concentration of 5-HIAA (P = 0.02) and a trend for higher concentrations of 5-HT (P = 0.07) compared with healthy piglets. Dopamine levels did not differ between thrifty and unthrifty piglets (P = 0.45); however, its metabolite HVA tended to be greater in unthrifty piglets (P = 0.05). Our results show evidence of serotonergic dysfunction, at both the central and peripheral levels, accompanying early piglet mortalities. These data suggest a possible route for

  16. Serotonin, Amygdala and Fear: Assembling the Puzzle.

    PubMed

    Bocchio, Marco; McHugh, Stephen B; Bannerman, David M; Sharp, Trevor; Capogna, Marco

    2016-01-01

    The fear circuitry orchestrates defense mechanisms in response to environmental threats. This circuitry is evolutionarily crucial for survival, but its dysregulation is thought to play a major role in the pathophysiology of psychiatric conditions in humans. The amygdala is a key player in the processing of fear. This brain area is prominently modulated by the neurotransmitter serotonin (5-hydroxytryptamine, 5-HT). The 5-HT input to the amygdala has drawn particular interest because genetic and pharmacological alterations of the 5-HT transporter (5-HTT) affect amygdala activation in response to emotional stimuli. Nonetheless, the impact of 5-HT on fear processing remains poorly understood.The aim of this review is to elucidate the physiological role of 5-HT in fear learning via its action on the neuronal circuits of the amygdala. Since 5-HT release increases in the basolateral amygdala (BLA) during both fear memory acquisition and expression, we examine whether and how 5-HT neurons encode aversive stimuli and aversive cues. Next, we describe pharmacological and genetic alterations of 5-HT neurotransmission that, in both rodents and humans, lead to altered fear learning. To explore the mechanisms through which 5-HT could modulate conditioned fear, we focus on the rodent BLA. We propose that a circuit-based approach taking into account the localization of specific 5-HT receptors on neurochemically-defined neurons in the BLA may be essential to decipher the role of 5-HT in emotional behavior. In keeping with a 5-HT control of fear learning, we review electrophysiological data suggesting that 5-HT regulates synaptic plasticity, spike synchrony and theta oscillations in the BLA via actions on different subcellular compartments of principal neurons and distinct GABAergic interneuron populations. Finally, we discuss how recently developed optogenetic tools combined with electrophysiological recordings and behavior could progress the knowledge of the mechanisms underlying 5

  17. Two allelic isoforms of the serotonin transporter from Schistosoma mansoni display electrogenic transport and high selectivity for serotonin

    PubMed Central

    Fontana, Andréia C. K.; Sonders, Mark S.; Pereira-Junior, Olavo S.; Knight, Matty; Javitch, Jonathan A.; Rodrigues, Vanderlei; Amara, Susan G.; Mortensen, Ole V.

    2009-01-01

    The human blood fluke Schistosoma mansoni is the primary cause of schistosomiasis, a debilitating disease that affects 200 million individuals in over 70 countries. The biogenic amine serotonin is essential for the survival of the parasite and serotonergic proteins are potential novel drug targets for treating schistosomiasis. Here we characterize two novel serotonin transporter gene transcripts, SmSERT-A and SmSERT-B, from Schistosoma mansoni. Southern blot analysis shows that the two mRNAs are the products of different alleles of a single SmSERT gene locus. The two SmSERT forms differ in three amino acid positions near the N-terminus of the protein. Both SmSERTs are expressed in the adult form and in the sporocyst form (infected snails) of the parasite, but are absent from all other stages of the parasite’s complex life cycle. Heterologous expression of the two cDNAs in mammalian cells resulted in saturable, sodium-dependent serotonin transport activity with an apparent affinity for serotonin comparable to that of the human serotonin transporter. Although the two SmSERTs are pharmacologically indistinguishable from each other, efflux experiments reveal notably higher substrate selectivity for serotonin compared with their mammalian counterparts. Several well-established substrates for human SERT including (±)MDMA, S-(+)amphetamine, RU 24969, and m-CPP are not transported by SmSERTs, underscoring the higher selectivity of the schistosomal isoforms. Voltage clamp recordings of SmSERT substrate-elicited currents confirm the substrate selectivity observed in efflux experiments and suggest that it may be possible to exploit the electrogenic nature of SmSERT to screen for compounds that target the parasite in vivo. PMID:19549517

  18. Continuous neuromuscular blockade is associated with decreased mortality in post-cardiac arrest patients

    PubMed Central

    Salciccioli, Justin D.; Cocchi, Michael N.; Rittenberger, Jon C.; Peberdy, Mary Ann; Ornato, Joseph P.; Abella, Benjamin S.; Gaieski, David F.; Clore, John; Gautam, Shiva; Giberson, Tyler; Callaway, Clifton W.; Donnino, Michael W.

    2013-01-01

    Aim Neuromuscular blockade may improve outcome in patients with acute respiratory distress syndrome. In post-cardiac arrest patients receiving therapeutic hypothermia, neuromuscular blockade is often used to prevent shivering. Our objective was to determine whether neuromuscular blockade is associated with improved outcomes after out-of-hospital cardiac arrest. Methods A post-hoc analysis of a prospective observational study of comatose adult (> 18 years) out-of-hospital cardiac arrest at 4 tertiary cardiac arrest centers. The primary exposure of interest was neuromuscular blockade for 24 hours following return of spontaneous circulation and primary outcomes were in-hospital survival and neurologically intact survival. Secondary outcomes were evolution of oxygenation (PaO2:FiO2), and change in lactate. We tested the primary outcomes of in-hospital survival and neurologically intact survival with multivariable logistic regression. Secondary outcomes were tested with multivariable linear mixed-models. Results A total of 111 patients were analyzed. In patients with 24 hours of sustained neuromuscular blockade, the crude survival rate was 14/18 (78%) compared to 38/93 (41%) in patients without sustained neuromuscular blockade (p = 0.004). After multivariable adjustment, neuromuscular blockade was associated with survival (adjusted OR: 7.23, 95% CI: 1.56 –33.38). There was a trend toward improved functional outcome with neuromuscular blockade (50% vs. 28%; p = 0.07). Sustained neuromuscular blockade was associated with improved lactate clearance (adjusted p = 0.01). Conclusions We found that early neuromuscular blockade for a 24-hour period is associated with an increased probability of survival. Secondarily, we found that early, sustained neuromuscular blockade is associated with improved lactate clearance. PMID:23796602

  19. Antidepressant Drugs Transactivate TrkB Neurotrophin Receptors in the Adult Rodent Brain Independently of BDNF and Monoamine Transporter Blockade

    PubMed Central

    Rantamäki, Tomi; Di Lieto, Antonio; Tammela, Päivi; Schmitt, Angelika; Lesch, Klaus-Peter; Rios, Maribel; Castrén, Eero

    2011-01-01

    Background Antidepressant drugs (ADs) have been shown to activate BDNF (brain-derived neurotrophic factor) receptor TrkB in the rodent brain but the mechanism underlying this phenomenon remains unclear. ADs act as monoamine reuptake inhibitors and after prolonged treatments regulate brain bdnf mRNA levels indicating that monoamine-BDNF signaling regulate AD-induced TrkB activation in vivo. However, recent findings demonstrate that Trk receptors can be transactivated independently of their neurotrophin ligands. Methodology In this study we examined the role of BDNF, TrkB kinase activity and monoamine reuptake in the AD-induced TrkB activation in vivo and in vitro by employing several transgenic mouse models, cultured neurons and TrkB-expressing cell lines. Principal Findings Using a chemical-genetic TrkBF616A mutant and TrkB overexpressing mice, we demonstrate that ADs specifically activate both the maturely and immaturely glycosylated forms of TrkB receptors in the brain in a TrkB kinase dependent manner. However, the tricyclic AD imipramine readily induced the phosphorylation of TrkB receptors in conditional bdnf−/− knock-out mice (132.4±8.5% of control; P = 0.01), indicating that BDNF is not required for the TrkB activation. Moreover, using serotonin transporter (SERT) deficient mice and chemical lesions of monoaminergic neurons we show that neither a functional SERT nor monoamines are required for the TrkB phosphorylation response induced by the serotonin selective reuptake inhibitors fluoxetine or citalopram, or norepinephrine selective reuptake inhibitor reboxetine. However, neither ADs nor monoamine transmitters activated TrkB in cultured neurons or cell lines expressing TrkB receptors, arguing that ADs do not directly bind to TrkB. Conclusions The present findings suggest that ADs transactivate brain TrkB receptors independently of BDNF and monoamine reuptake blockade and emphasize the need of an intact tissue context for the ability of ADs to

  20. The serotonin transporter: Examination of the changes in transporter affinity induced by ligand binding

    SciTech Connect

    Humphreys, C.J.

    1989-01-01

    The plasmalemmal serotonin transporter uses transmembrane gradients of Na{sup +}, Cl{sup {minus}} and K{sup +} to accumulate serotonin within blood platelets. Transport is competitively inhibited by the antidepressant imipramine. Like serotonin transport, imipramine binding requires Na{sup +}. Unlike serotonin, however, imipramine does not appear to be transported. To gain insight into the mechanism of serotonin transport the author have analyzed the influences of Na{sup +} and Cl{sup {minus}}, the two ions cotransported with serotonin, on both serotonin transport and the interaction of imipramine and other antidepressant drugs with the plasmalemmal serotonin transporter of human platelets. Additionally, the author have synthesized, purified and characterized the binding of 2-iodoimipramine to the serotonin transporter. Finally, the author have conducted a preliminary study of the inhibition of serotonin transport and imipramine binding produced by dicyclohexylcarbodiimide. My results reveal many instances of positive heterotropic cooperativity in ligand binding to the serotonin transporter. Na{sup +} binding enhances the transporters affinity for imipramine and several other antidepressant drugs, and also increases the affinity for Cl{sup {minus}}. Cl{sup {minus}} enhances the transporters affinity for imipramine, as well as for Na{sup +}. At concentrations in the range of its K{sub M} for transport serotonin is a competitive inhibitor of imipramine binding. At much higher concentrations, however, serotonin also inhibits imipramines dissociation rate constant. This latter effect which is Na{sup +}-independent and species specific, is apparently produced by serotonin binding at a second, low affinity site on, or near, the transporter complex. Iodoimipramine competitively inhibit both ({sup 3}H)imipramine binding and ({sup 3}H)serotonin transport.

  1. Assessment of bronchial beta blockade after oral bevantolol.

    PubMed

    Mackay, A D; Gribbin, H R; Baldwin, C J; Tattersfield, A E

    1981-01-01

    We have applied a new method for quantitative measurement of bronchial beta adrenoceptor blockade to a new beta adrenoceptor antagonist, bevantolol. Dose-response curves to a beta agonist, albuterol, were obtained in six normal subjects by measuring specific airway conductance (sGaw) after increasing doses of inhaled albuterol. These were repeated on three separate occasions 2 hr after subjects had taken oral placebo or bevantolol (75 or 150 mg), double-blind in random order. The dose-response curves after bevantolol 75 mg were displaced in the right of placebo in four subjects and after 150 mg were displaced to the right of placebo in all subjects. The mean dose ratios for bevantolol 75 or 150 mg were 1.02 and 2.77, much the same as those obtained in the same subjects after practolol 100 and 200 mg and considerably less than that after propranolol 40 mg. The mean reductions in exercise heart rate were 25% and 29% after bevantolol 75 and 150 mg. Our data show that bronchial beta blockade after a beta blocking drug can be assessed quantitatively in many by a double-blind technique.

  2. Effects of VLA-1 Blockade on Experimental Inflammation in Mice.

    PubMed

    Totsuka, Ryuichi; Kondo, Takaaki; Matsubara, Shigeki; Hirai, Midori; Kurebayashi, Yoichi

    2016-01-01

    VLA-1 (very late antigen-1) is implicated in recruitment, retention and activation of leukocytes and its blockade has been referred as a potential target of new drug discovery to address unmet medical needs in inflammatory disease area. In the present study, we investigate the effects of an anti-murine CD49a (integrin α subunit of VLA-1) monoclonal antibody (Ha31/8) on various experimental models of inflammatory diseases in mice. Pretreatment with Ha31/8 at an intraperitoneal dose of 250 µg significantly (P<0.01) reduced arthritic symptoms and joint tissue damage in mice with type II collagen-induced arthritis. In addition, Ha31/8 at an intraperitoneal dose of 100 µg significantly (P<0.01) inhibited airway inflammatory cell infiltration induced by repeated exposure to cigarette smoke. In contrast, Ha31/8 failed to inhibit oxazolone-induced chronic dermatitis and OVA-induced airway hyperresponsiveness at an intraperitoneal dose of 100 µg. These results show that VLA-1 is involved, at least partly, in the pathogenesis of type II collagen-induced arthritis and cigarette smoke-induced airway inflammatory cell infiltration in mice, indicating the therapeutic potential of VLA-1 blockade against rheumatoid arthritis and chronic occlusive pulmonary disease. PMID:27578034

  3. OX40L blockade protects against inflammation-driven fibrosis.

    PubMed

    Elhai, Muriel; Avouac, Jérôme; Hoffmann-Vold, Anna Maria; Ruzehaji, Nadira; Amiar, Olivia; Ruiz, Barbara; Brahiti, Hassina; Ponsoye, Matthieu; Fréchet, Maxime; Burgevin, Anne; Pezet, Sonia; Sadoine, Jérémy; Guilbert, Thomas; Nicco, Carole; Akiba, Hisaya; Heissmeyer, Vigo; Subramaniam, Arun; Resnick, Robert; Molberg, Øyvind; Kahan, André; Chiocchia, Gilles; Allanore, Yannick

    2016-07-01

    Treatment for fibrosis represents a critical unmet need, because fibrosis is the leading cause of death in industrialized countries, and there is no effective therapy to counteract the fibrotic process. The development of fibrosis relates to the interplay between vessel injury, immune cell activation, and fibroblast stimulation, which can occur in various tissues. Immunotherapies have provided a breakthrough in the treatment of immune diseases. The glycoprotein OX40-OX40 ligand (OX40L) axis offers the advantage of a targeted approach to costimulatory signals with limited impact on the whole immune response. Using systemic sclerosis (SSc) as a prototypic disease, we report compelling evidence that blockade of OX40L is a promising strategy for the treatment of inflammation-driven fibrosis. OX40L is overexpressed in the fibrotic skin and serum of patients with SSc, particularly in patients with diffuse cutaneous forms. Soluble OX40L was identified as a promising serum biomarker to predict the worsening of lung and skin fibrosis, highlighting the role of this pathway in fibrosis. In vivo, OX40L blockade prevents inflammation-driven skin, lung, and vessel fibrosis and induces the regression of established dermal fibrosis in different complementary mouse models. OX40L exerts potent profibrotic effects by promoting the infiltration of inflammatory cells into lesional tissues and therefore the release of proinflammatory mediators, thereafter leading to fibroblast activation.

  4. Chlorpheniramine produces spinal motor, proprioceptive and nociceptive blockades in rats.

    PubMed

    Tzeng, Jann-Inn; Lin, Heng-Teng; Chen, Yu-Wen; Hung, Ching-Hsia; Wang, Jhi-Joung

    2015-04-01

    This study aimed to assess the local anesthetic effects of chlorpheniramine in spinal anesthesia and is compared with mepivacaine, a widely-used local anesthetic. Spinal anesthesia with chlorpheniramine and mepivacaine was constructed in a dosage-dependent fashion after the rats were injected intrathecally. The spinal block effect of chlorpheniramine in motor function, nociception, and proprioception was compared to that of mepivacaine. We revealed that intrathecal chlorpheniramine and mepivacaine exhibited a dose-dependent spinal block of motor function, nociception, and proprioception. On the 50% effective dose (ED50) basis, the ranks of potencies in motor function, nociception, and proprioception were chlorpheniramine>mepivacaine (P<0.01 for the differences). On the equianesthetic basis (ED25, ED50, ED75), the duration of spinal anesthesia with chlorpheniramine was greater than that of mepivacaine (P<0.01 for the differences). Instead of mepivacaine, chlorpheniramine produced a greater duration of sensory blockade than the motor blockade. These preclinical data showed that chlorpheniramine has a better sensory-selective action over motor block to produce more potent and long-lasting spinal anesthesia than mepivacaine.

  5. Assessment of Methods for the Intracellular Blockade of GABAA Receptors.

    PubMed

    Atherton, Laura A; Burnell, Erica S; Mellor, Jack R

    2016-01-01

    Selective blockade of inhibitory synaptic transmission onto specific neurons is a useful tool for dissecting the excitatory and inhibitory synaptic components of ongoing network activity. To achieve this, intracellular recording with a patch solution capable of blocking GABAA receptors has advantages over other manipulations, such as pharmacological application of GABAergic antagonists or optogenetic inhibition of populations of interneurones, in that the majority of inhibitory transmission is unaffected and hence the remaining network activity preserved. Here, we assess three previously described methods to block inhibition: intracellular application of the molecules picrotoxin, 4,4'-dinitro-stilbene-2,2'-disulphonic acid (DNDS) and 4,4'-diisothiocyanostilbene-2,2'-disulphonic acid (DIDS). DNDS and picrotoxin were both found to be ineffective at blocking evoked, monosynaptic inhibitory postsynaptic currents (IPSCs) onto mouse CA1 pyramidal cells. An intracellular solution containing DIDS and caesium fluoride, but lacking nucleotides ATP and GTP, was effective at decreasing the amplitude of IPSCs. However, this effect was found to be independent of DIDS, and the absence of intracellular nucleotides, and was instead due to the presence of fluoride ions in this intracellular solution, which also blocked spontaneously occurring IPSCs during hippocampal sharp waves. Critically, intracellular fluoride ions also caused a decrease in both spontaneous and evoked excitatory synaptic currents and precluded the inclusion of nucleotides in the intracellular solution. Therefore, of the methods tested, only fluoride ions were effective for intracellular blockade of IPSCs but this approach has additional cellular effects reducing its selectivity and utility. PMID:27501143

  6. Philosophical Intelligence: Letters, Print, and Experiment during Napoleon's Continental Blockade.

    PubMed

    Watts, Iain P

    2015-12-01

    This essay investigates scientific exchanges between Britain and France from 1806 to 1814, at the height of the Napoleonic Wars. It argues for a picture of scientific communication that sees letters and printed texts not as separate media worlds, but as interconnected bearers of time-critical information within a single system of intelligence gathering and experimental practice. During this period, Napoleon Bonaparte's Continental System blockade severed most links between Britain and continental Europe, yet scientific communications continued--particularly on electrochemistry, a subject of fierce rivalry between Britain and France. The essay traces these exchanges using the archive of a key go-between, the English man of science Sir Charles Blagden. The first two sections look at Blagden's letter-writing operation, reconstructing how he harnessed connections with neutral American diplomats, merchants, and the State to get scientific intelligence between London and Paris. The third section, following Blagden's words from Britain to France to America, looks at how information in letters cross-fertilized with information in print. The final section considers how letters and print were used together to solve the difficult practical problem of replicating experiments across the blockade.

  7. [Recent Development of Therapies for Melanoma Using Immune Checkpoint Blockades].

    PubMed

    Okuyama, Ryuhei

    2016-06-01

    Melanoma is a highly immune tumor, and tumor-specific T lymphocytes are occasionally induced. Recent progress in tumor immunology has made it possible to clinically develop new medicines targeting immune checkpoint molecules, such as cytotoxic T lymphocyte antigen 4(CTLA-4), programmed cell death 1(PD-1), and programmed cell death 1 ligand 1(PD-L1). CTLA-4 is expressed on naïve T cells and regulatory T cells. Ipilimumab, an anti-CTLA-4 antibody, shows a distinct durable clinical benefit by inhibiting the immunosuppressive function of CTLA-4. PD-1, which is expressed on activated T cells, inhibits T cell responses against tumor cells. The antibodies against PD-1, nivolumab and pembrolizumab, produce anti-tumor responses in melanoma and other cancers due to T cell reactivation. Furthermore, clinical trials of combination therapies using immune checkpoint blockades with molecularly targeted therapies and other chemotherapeutic agents are being conducted. However, immune checkpoint blockades frequently cause immune-related adverse events. Targeted therapies to immune checkpoint molecules are expected to be promising strategies for treatment of melanoma and other cancers. PMID:27306802

  8. OX40L blockade protects against inflammation-driven fibrosis.

    PubMed

    Elhai, Muriel; Avouac, Jérôme; Hoffmann-Vold, Anna Maria; Ruzehaji, Nadira; Amiar, Olivia; Ruiz, Barbara; Brahiti, Hassina; Ponsoye, Matthieu; Fréchet, Maxime; Burgevin, Anne; Pezet, Sonia; Sadoine, Jérémy; Guilbert, Thomas; Nicco, Carole; Akiba, Hisaya; Heissmeyer, Vigo; Subramaniam, Arun; Resnick, Robert; Molberg, Øyvind; Kahan, André; Chiocchia, Gilles; Allanore, Yannick

    2016-07-01

    Treatment for fibrosis represents a critical unmet need, because fibrosis is the leading cause of death in industrialized countries, and there is no effective therapy to counteract the fibrotic process. The development of fibrosis relates to the interplay between vessel injury, immune cell activation, and fibroblast stimulation, which can occur in various tissues. Immunotherapies have provided a breakthrough in the treatment of immune diseases. The glycoprotein OX40-OX40 ligand (OX40L) axis offers the advantage of a targeted approach to costimulatory signals with limited impact on the whole immune response. Using systemic sclerosis (SSc) as a prototypic disease, we report compelling evidence that blockade of OX40L is a promising strategy for the treatment of inflammation-driven fibrosis. OX40L is overexpressed in the fibrotic skin and serum of patients with SSc, particularly in patients with diffuse cutaneous forms. Soluble OX40L was identified as a promising serum biomarker to predict the worsening of lung and skin fibrosis, highlighting the role of this pathway in fibrosis. In vivo, OX40L blockade prevents inflammation-driven skin, lung, and vessel fibrosis and induces the regression of established dermal fibrosis in different complementary mouse models. OX40L exerts potent profibrotic effects by promoting the infiltration of inflammatory cells into lesional tissues and therefore the release of proinflammatory mediators, thereafter leading to fibroblast activation. PMID:27298374

  9. Philosophical Intelligence: Letters, Print, and Experiment during Napoleon's Continental Blockade.

    PubMed

    Watts, Iain P

    2015-12-01

    This essay investigates scientific exchanges between Britain and France from 1806 to 1814, at the height of the Napoleonic Wars. It argues for a picture of scientific communication that sees letters and printed texts not as separate media worlds, but as interconnected bearers of time-critical information within a single system of intelligence gathering and experimental practice. During this period, Napoleon Bonaparte's Continental System blockade severed most links between Britain and continental Europe, yet scientific communications continued--particularly on electrochemistry, a subject of fierce rivalry between Britain and France. The essay traces these exchanges using the archive of a key go-between, the English man of science Sir Charles Blagden. The first two sections look at Blagden's letter-writing operation, reconstructing how he harnessed connections with neutral American diplomats, merchants, and the State to get scientific intelligence between London and Paris. The third section, following Blagden's words from Britain to France to America, looks at how information in letters cross-fertilized with information in print. The final section considers how letters and print were used together to solve the difficult practical problem of replicating experiments across the blockade. PMID:27024935

  10. Uptake and metabolism of indole compounds by the goldfish pineal organ

    SciTech Connect

    McNulty, J.A.

    1986-02-01

    Indole metabolism was studied in the pineal organ of the goldfish by radioautography and high-performance liquid chromatography. The rate of uptake of tritiated serotonin was rapid in vitro with dense labeling over the photoreceptor cells. Tritiated tryptophan was taken up at a slower rate and the label was distributed evenly over the epithelium. Continual light caused a reduction in the concentration of serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) compared to groups exposed to constant darkness both in vivo and in explants, suggesting that these effects are not derived from photoreceptors outside the pineal organ. These data are consistent with the hypothesis that indole metabolism is functionally linked to phototransduction events in the pineal organ of lower vertebrates.

  11. THE SEROTONIN (5-HT) 5-HT2A RECEPTOR: ASSOCIATION WITH INHERENT AND COCAINE-EVOKED BEHAVIORAL DISINHIBITION IN RATS

    PubMed Central

    Anastasio, Noelle C.; Stoffel, Erin C.; Fox, Robert G.; Bubar, Marcy J.; Rice, Kenner C.; Moeller, F. Gerard; Cunningham, Kathryn A.

    2011-01-01

    Alterations in the balance of functional activity within the serotonin (5-HT) system are hypothesized to underlie impulse control. Cocaine-dependent subjects consistently demonstrate greater impulsivity relative to non-drug using control subjects. Preclinical studies suggest that the 5-HT2A receptor (5-HT2AR) contributes to the regulation of impulsive behavior and also mediates some of the behavioral effects of cocaine. We hypothesized that the selective 5-HT2AR antagonist M100907 would reduce inherent levels of impulsivity and attenuate impulsive responding induced by cocaine in two animal models of impulsivity, the differential reinforcement of low rate (DRL) task and the one-choice serial reaction time (1-CSRT) task. M100907 reduced rates of responding in the DRL task and premature responding in the 1-CSRT task. Conversely, cocaine disrupted rates of responding in the DRL task and increased premature responding in the 1-CSRT task. M100907 attenuated cocaine-induced increases in specific markers of behavioral disinhibition in the DRL and 1-CSRT tasks. These results suggest that the 5-HT2AR regulates inherent impulsivity, and that blockade of the 5-HT2AR alleviates specific aspects of elevated levels of impulsivity induced by cocaine exposure. These data point to the 5-HT2AR as an important regulatory substrate in impulse control. PMID:21499079

  12. Nutraceutical up-regulation of serotonin paradoxically induces compulsive behavior

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The role of diet in either the etiology or treatment of complex mental disorder is highly controversial in psychiatry. However, physiological mechanisms by which diet can influence brain chemistry – particularly that of serotonin – are well established. Here we show that dietary up-regulation of br...

  13. The effect of ageing on human platelet sensitivity to serotonin.

    PubMed

    Gleerup, G; Winther, K

    1988-10-01

    Twelve healthy young volunteers (mean age 21, range 18-27 years) and 12 elderly people (mean age 77, range 72-86 years) were tested regarding platelet aggregation induced by adrenaline, ADP and serotonin. The serum levels of thromboxane B2 (TXB2) and serum 6-keto-PGF1 alpha and the plasma level of adrenaline and cyclic AMP (cAMP) were also measured. Platelet aggregation induced by adrenaline and ADP increased significantly in the elderly compared with the young group (P less than 0.05 and P less than 0.02, respectively). There was a substantial and highly significant increase in the response of platelets from elderly people to serotonin (P less than 0.01). No alteration was observed in the serum level of TXB2 or 6-keto-PGF1 alpha. Plasma adrenaline increased in the old group, but plasma cAMP was unaffected. As serotonin is known to amplify adrenaline- and ADR-induced platelet aggregation, the considerable increase in platelet sensitivity to serotonin could be an important factor in the increased adrenaline and ADP-induced platelet aggregability of elderly people.

  14. A role for serotonin in piglet preweaning mortality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Improving piglet survivability rate is of high priority for swine production as well as for piglet well-being. Dysfunction in the serotonin system has been associated with growth deficiencies, infant mortality or failure to thrive (FTT) in human infants. The aim of this study was to examine the role...

  15. Platelet Serotonin, A Possible Marker for Familial Autism.

    ERIC Educational Resources Information Center

    Piven, Joseph; And Others

    1991-01-01

    Platelet serotonin (5HT) levels of 5 autistic subjects (ages 16-37) who had siblings with either autism or pervasive developmental disorder were significantly higher than levels of 23 autistic subjects without affected siblings. Autistic subjects without affected siblings had 5HT levels significantly higher than 10 normal controls. Sex, age, and…

  16. Linezolid and Rasagiline – A culprit for serotonin syndrome

    PubMed Central

    Hisham, Mohamed; Sivakumar, Mundalipalayam N.; Nandakumar, V.; Lakshmikanthcharan, S.

    2016-01-01

    A 65-year-old female patient was admitted to the hospital for cellulitis. She had a history of diabetes mellitus and parkinsonism on levodopa/carbidopa, rasagiline, ropinirole, trihexyphenidyl, amantadine, metformin, and glipizide. We present here a case of rare incidence of serotonin syndrome associated with linezolid and rasagiline. PMID:26997732

  17. Brief Report: Platelet-Poor Plasma Serotonin in Autism

    ERIC Educational Resources Information Center

    Anderson, George M.; Hertzig, Margaret E.; McBride, P. A.

    2012-01-01

    Possible explanations for the well-replicated platelet hyperserotonemia of autism include an alteration in the platelet's handling of serotonin (5-hydroxyserotonin, 5-HT) or an increased exposure of the platelet to 5-HT. Measurement of platelet-poor plasma (PPP) levels of 5-HT appears to provide the best available index of in vivo exposure of the…

  18. Perinatal vs Genetic Programming of Serotonin States Associated with Anxiety

    PubMed Central

    Altieri, Stefanie C; Yang, Hongyan; O'Brien, Hannah J; Redwine, Hannah M; Senturk, Damla; Hensler, Julie G; Andrews, Anne M

    2015-01-01

    Large numbers of women undergo antidepressant treatment during pregnancy; however, long-term consequences for their offspring remain largely unknown. Rodents exposed to serotonin transporter (SERT)-inhibiting antidepressants during development show changes in adult emotion-like behavior. These changes have been equated with behavioral alterations arising from genetic reductions in SERT. Both models are highly relevant to humans yet they vary in their time frames of SERT disruption. We find that anxiety-related behavior and, importantly, underlying serotonin neurotransmission diverge between the two models. In mice, constitutive loss of SERT causes life-long increases in anxiety-related behavior and hyperserotonemia. Conversely, early exposure to the antidepressant escitalopram (ESC; Lexapro) results in decreased anxiety-related behavior beginning in adolescence, which is associated with adult serotonin system hypofunction in the ventral hippocampus. Adult behavioral changes resulting from early fluoxetine (Prozac) exposure were different from those of ESC and, although somewhat similar to SERT deficiency, were not associated with changes in hippocampal serotonin transmission in late adulthood. These findings reveal dissimilarities in adult behavior and neurotransmission arising from developmental exposure to different widely prescribed antidepressants that are not recapitulated by genetic SERT insufficiency. Moreover, they support a pivotal role for serotonergic modulation of anxiety-related behavior. PMID:25523893

  19. Perinatal vs genetic programming of serotonin states associated with anxiety.

    PubMed

    Altieri, Stefanie C; Yang, Hongyan; O'Brien, Hannah J; Redwine, Hannah M; Senturk, Damla; Hensler, Julie G; Andrews, Anne M

    2015-05-01

    Large numbers of women undergo antidepressant treatment during pregnancy; however, long-term consequences for their offspring remain largely unknown. Rodents exposed to serotonin transporter (SERT)-inhibiting antidepressants during development show changes in adult emotion-like behavior. These changes have been equated with behavioral alterations arising from genetic reductions in SERT. Both models are highly relevant to humans yet they vary in their time frames of SERT disruption. We find that anxiety-related behavior and, importantly, underlying serotonin neurotransmission diverge between the two models. In mice, constitutive loss of SERT causes life-long increases in anxiety-related behavior and hyperserotonemia. Conversely, early exposure to the antidepressant escitalopram (ESC; Lexapro) results in decreased anxiety-related behavior beginning in adolescence, which is associated with adult serotonin system hypofunction in the ventral hippocampus. Adult behavioral changes resulting from early fluoxetine (Prozac) exposure were different from those of ESC and, although somewhat similar to SERT deficiency, were not associated with changes in hippocampal serotonin transmission in late adulthood. These findings reveal dissimilarities in adult behavior and neurotransmission arising from developmental exposure to different widely prescribed antidepressants that are not recapitulated by genetic SERT insufficiency. Moreover, they support a pivotal role for serotonergic modulation of anxiety-related behavior.

  20. Role of the serotonin transporter gene in temperament and character.

    PubMed

    Hamer, D H; Greenberg, B D; Sabol, S Z; Murphy, D L

    1999-01-01

    The biosocial model postulates that personality is comprised of two broad domains: temperament, which is largely due to inherited variations in specific monoamine neurotransmitter systems; and character, which arises from socioculturally learned differences in values, goals, and self-concepts and is the strongest predictor of personality disorders. The model also proposes that serotonin modulates the temperament trait of harm avoidance. We analyzed the association of temperament and character traits with the 5-HTTLPR, an inherited variation that modulates serotonin transporter gene expression, in 634 volunteer subjects. Contrary to theory, the 5-HTTLPR was most strongly associated with the character traits of cooperativeness and self-directedness. Associations with the temperament traits of reward dependence and harm avoidance were weaker and could be attributable largely to cross-correlations with the character traits and demographic variables. Psychometric analysis indicated that the serotonin transporter influences two broad areas of personality, negative affect and social disaffiliation, that are consistent across inventories but are more concisely described by the 5-factor model of personality than by the biosocial model. These results suggest that there is no fundamental mechanistic distinction between character and temperament in regard to the serotonin transporter gene, and that a single neurotransmitter can influence multiple personality traits.

  1. The role of melatonin and serotonin in aging: update.

    PubMed

    Grad, B R; Rozencwaig, R

    1993-01-01

    It has been proposed that aging occurs because of a failure of the pineal gland to produce melatonin from serotonin each day beginning at sunset and throughout the night. This lack leads to a nighttime deficiency of melatonin both absolutely and also relatively to serotonin. As melatonin has wide-spread integrative and regenerative effects, its lack may lead to disturbances normally associated with aging. The present paper reviews the pertinent literature which appeared since our first publication, but earlier articles are also included. Evidence is presented for a role of melatonin and serotonin in controlling the neuroendocrine and immune networks and in inhibiting the development of ischemic heart and Alzheimer's disease, tumor formation and other degenerative processes associated with aging. The possible role of melatonin in the favourable effects of dietary restriction on aging is also discussed. This paper provides additional evidence that a melatonin deficiency, especially in relation to serotonin, may be responsible for the promotion of aging in the organism. PMID:8292130

  2. Alterations to embryonic serotonin change aggression and fearfulness

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prenatal environment, including maternal hormones, affects the development of the serotonin (5-HT) system, with long-lasting effects on mood and behavioral exhibition in children and adults. The chicken provides a unique animal model to study the effects of embryonic development on childhood and ado...

  3. Effects of Postnatal Serotonin Agonism on Fear Response and Memory

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The neurotransmitter serotonin (5-HT) also acts as a neurogenic compound in the developing brain. Early administration of a 5-HT agonist could alter the development of the serotonergic circuitry, altering behaviors mediated by 5-HT signaling, such as memory, fear and aggression. White leghorn chicks...

  4. The serotonin transporter gene and startle response during nicotine deprivation.

    PubMed

    Minnix, Jennifer A; Robinson, Jason D; Lam, Cho Y; Carter, Brian L; Foreman, Jennifer E; Vandenbergh, David J; Tomlinson, Gail E; Wetter, David W; Cinciripini, Paul M

    2011-01-01

    Affective startle probe methodology was used to examine the effects of nicotine administration and deprivation on emotional processes among individuals carrying at least one s allele versus those with the l/l genotype of the 5-Hydroxytryptamine (Serotonin) Transporter Linked Polymorphic Region, 5-HTTLPR in the promoter region of the serotonin transporter gene [solute ligand carrier family 6 member A4 (SLC6A4) or SERT]. Smokers (n=84) completed four laboratory sessions crossing deprivation (12-h deprived vs. non-deprived) with nicotine spray (nicotine vs. placebo). Participants viewed affective pictures (positive, negative, neutral) while acoustic startle probes were administered. We found that smokers with the l/l genotype showed significantly greater suppression of the startle response when provided with nicotine vs. placebo than those with the s/s or s/l genotypes. The results suggest that l/l smokers, who may have higher levels of the serotonin transporter and more rapid synaptic serotonin clearance, experience substantial reduction in activation of the defensive system when exposed to nicotine.

  5. Serotonin and calcium homeostasis during the transition period.

    PubMed

    Weaver, S R; Laporta, J; Moore, S A E; Hernandez, L L

    2016-07-01

    The transition from pregnancy to lactation puts significant, sudden demands on maternal energy and calcium reserves. Although most mammals are able to effectively manage these metabolic adaptations, the lactating dairy cow is acutely susceptible to transition-related disorders because of the high amounts of milk being produced. Hypocalcemia is a common metabolic disorder that occurs at the onset of lactation. Hypocalcemia is also known to result in poor animal welfare conditions. In addition, cows that develop hypocalcemia are more susceptible to a host of other negative health outcomes. Different feeding tactics, including manipulating the dietary cation-anion difference and administering low-calcium diets, are commonly used preventative strategies. Despite these interventions, the incidence of hypocalcemia in the subclinical form is still as high as 25% to 30% in the United States dairy cow population, with a 5% to 10% incidence of clinical hypocalcemia. In addition, although there are various effective treatments in place, they are administered only after the cow has become noticeably ill, at which point there is already significant metabolic damage. This emphasizes the need for developing alternative prevention strategies, with the monoamine serotonin implicated as a potential therapeutic target. Our research in rodents has shown that serotonin is critical for the induction of mammary parathyroid hormone-related protein, which is necessary for the mobilization of bone tissue and subsequent restoration of maternal calcium stores during lactation. We have shown that circulating serotonin concentrations are positively correlated with serum total calcium on the first day of lactation in dairy cattle. Administration of serotonin's immediate precursor through feeding, injection, or infusion to various mammalian species has been shown to increase circulating serotonin concentrations, with positive effects on other components of maternal metabolism. Most recently

  6. A voltammetric and mathematical analysis of histaminergic modulation of serotonin in the mouse hypothalamus.

    PubMed

    Samaranayake, Srimal; Abdalla, Aya; Robke, Rhiannon; Nijhout, H Frederik; Reed, Michael C; Best, Janet; Hashemi, Parastoo

    2016-08-01

    Histamine and serotonin are neuromodulators which facilitate numerous, diverse neurological functions. Being co-localized in many brain regions, these two neurotransmitters are thought to modulate one another's chemistry and are often implicated in the etiology of disease. Thus, it is desirable to interpret the in vivo chemistry underlying neurotransmission of these two molecules to better define their roles in health and disease. In this work, we describe a voltammetric approach to monitoring serotonin and histamine simultaneously in real time. Via electrical stimulation of the axonal bundles in the medial forebrain bundle, histamine release was evoked in the mouse premammillary nucleus. We found that histamine release was accompanied by a rapid, potent inhibition of serotonin in a concentration-dependent manner. We developed mathematical models to capture the experimental time courses of histamine and serotonin, which necessitated incorporation of an inhibitory receptor on serotonin neurons. We employed pharmacological experiments to verify that this serotonin inhibition was mediated by H3 receptors. Our novel approach provides fundamental mechanistic insights that can be used to examine the full extent of interconnectivity between histamine and serotonin in the brain. Histamine and serotonin are co-implicated in many of the brain's functions. In this paper, we develop a novel voltammetric method for simultaneous real-time monitoring of histamine and serotonin in the mouse premammillary nucleus. Electrical stimulation of the medial forebrain bundle evokes histamine and inhibits serotonin release. We show voltammetrically, mathematically, and pharmacologically that this serotonin inhibition is H3 receptor mediated. PMID:27167463

  7. A voltammetric and mathematical analysis of histaminergic modulation of serotonin in the mouse hypothalamus.

    PubMed

    Samaranayake, Srimal; Abdalla, Aya; Robke, Rhiannon; Nijhout, H Frederik; Reed, Michael C; Best, Janet; Hashemi, Parastoo

    2016-08-01

    Histamine and serotonin are neuromodulators which facilitate numerous, diverse neurological functions. Being co-localized in many brain regions, these two neurotransmitters are thought to modulate one another's chemistry and are often implicated in the etiology of disease. Thus, it is desirable to interpret the in vivo chemistry underlying neurotransmission of these two molecules to better define their roles in health and disease. In this work, we describe a voltammetric approach to monitoring serotonin and histamine simultaneously in real time. Via electrical stimulation of the axonal bundles in the medial forebrain bundle, histamine release was evoked in the mouse premammillary nucleus. We found that histamine release was accompanied by a rapid, potent inhibition of serotonin in a concentration-dependent manner. We developed mathematical models to capture the experimental time courses of histamine and serotonin, which necessitated incorporation of an inhibitory receptor on serotonin neurons. We employed pharmacological experiments to verify that this serotonin inhibition was mediated by H3 receptors. Our novel approach provides fundamental mechanistic insights that can be used to examine the full extent of interconnectivity between histamine and serotonin in the brain. Histamine and serotonin are co-implicated in many of the brain's functions. In this paper, we develop a novel voltammetric method for simultaneous real-time monitoring of histamine and serotonin in the mouse premammillary nucleus. Electrical stimulation of the medial forebrain bundle evokes histamine and inhibits serotonin release. We show voltammetrically, mathematically, and pharmacologically that this serotonin inhibition is H3 receptor mediated.

  8. Lithium carbonate therapy for cluster headache. Changes in number of platelets, and serotonin and histamine levels.

    PubMed

    Medina, J L; Fareed, J; Diamond, S

    1980-09-01

    Three groups of patients were studied: Group A consisted of 12 patients with cluster headache that was treated with lithium carbonate. Group B consisted of six patients with cluster headache that was managed with other drugs. Group C consisted of five patients with muscle contraction headache who received lithium. Serum lithium levels, platelet count, platelet serotonin levels, and platelet-rich plasma histamine levels were determined before and during therapy. The frequency of the headache and levels of serotonin and histamine tended to follow a parallel course in groups A and B: as the headache frequency dropped, serotonin and histamine levels fell. The stable period was characterized by little change in serotonin and histamine levels. Recurrences of headaches were accompanied by a return of serotonin and histamine to pretreatment levels. The course of cluster headache is related to changes in serotonin and histamine levels. Lithium, by modifying the headache course, changes serotonin and histamine levels. PMID:7417056

  9. Exercise and sleep in aging: emphasis on serotonin.

    PubMed

    Melancon, M O; Lorrain, D; Dionne, I J

    2014-10-01

    Reductions in central serotonin activity with aging might be involved in sleep-related disorders in later life. Although the beneficial effects of aerobic exercise on sleep are not new, sleep represents a complex recurring state of unconsciousness involving many lines of transmitters which remains only partly clear despite intense ongoing research. It is known that serotonin released into diencephalon and cerebrum might play a key inhibitory role to help promote sleep, likely through an active inhibition of supraspinal neural networks. Several lines of evidence support the stimulatory effects of exercise on higher serotonergic pathways. Hence, exercise has proved to elicit acute elevations in forebrain serotonin concentrations, an effect that waned upon cessation of exercise. While adequate exercise training might lead to adaptations in higher serotonergic networks (desensitization of forebrain receptors), excessive training has been linked to serious brain serotonergic maladaptations accompanied by insomnia. Dietary supplementation of tryptophan (the only serotonin precursor) is known to stimulate serotonergic activity and promote sleep, whereas acute tryptophan depletion causes deleterious effects on sleep. Regarding sleep-wake regulation, exercise has proved to accelerate resynchronization of the biological clock to new light-dark cycles following imposition of phase shifts in laboratory animals. Noteworthy, the effect of increased serotonergic transmission on wake state appears to be biphasic, i.e. promote wake and thereafter drowsiness. Therefore, it might be possible that acute aerobic exercise would act on sleep by increasing activity of ascending brain serotonergic projections, though additional work is warranted to better understand the implication of serotonin in the exercise-sleep axis.

  10. Exercise and sleep in aging: emphasis on serotonin.

    PubMed

    Melancon, M O; Lorrain, D; Dionne, I J

    2014-10-01

    Reductions in central serotonin activity with aging might be involved in sleep-related disorders in later life. Although the beneficial effects of aerobic exercise on sleep are not new, sleep represents a complex recurring state of unconsciousness involving many lines of transmitters which remains only partly clear despite intense ongoing research. It is known that serotonin released into diencephalon and cerebrum might play a key inhibitory role to help promote sleep, likely through an active inhibition of supraspinal neural networks. Several lines of evidence support the stimulatory effects of exercise on higher serotonergic pathways. Hence, exercise has proved to elicit acute elevations in forebrain serotonin concentrations, an effect that waned upon cessation of exercise. While adequate exercise training might lead to adaptations in higher serotonergic networks (desensitization of forebrain receptors), excessive training has been linked to serious brain serotonergic maladaptations accompanied by insomnia. Dietary supplementation of tryptophan (the only serotonin precursor) is known to stimulate serotonergic activity and promote sleep, whereas acute tryptophan depletion causes deleterious effects on sleep. Regarding sleep-wake regulation, exercise has proved to accelerate resynchronization of the biological clock to new light-dark cycles following imposition of phase shifts in laboratory animals. Noteworthy, the effect of increased serotonergic transmission on wake state appears to be biphasic, i.e. promote wake and thereafter drowsiness. Therefore, it might be possible that acute aerobic exercise would act on sleep by increasing activity of ascending brain serotonergic projections, though additional work is warranted to better understand the implication of serotonin in the exercise-sleep axis. PMID:25104243

  11. Serotonin syndrome probably triggered by a morphine-phenelzine interaction.

    PubMed

    Mateo-Carrasco, Hector; Muñoz-Aguilera, Eva María; García-Torrecillas, Juan Manuel; Abu Al-Robb, Hiba

    2015-06-01

    Serotonin syndrome is a potentially life-threatening condition caused by excessive central and peripheral stimulation of serotonin brainstem receptors, usually triggered by inadvertent interactions between agents with serotonergic activity. Evidence supporting an association between nonserotonergic opiates, such as oxycodone or morphine, and serotonin syndrome is very limited and even contradictory. In this case report, we describe a patient who developed serotonergic-adverse effects likely precipitated by an interaction between morphine and phenelzine. A 57-year-old woman presented to the emergency department with complaints of increasing visual hallucinations, restlessness, photophobia, dizziness, neck stiffness, occipital headache, confusion, sweating, tachycardia, and nausea over the previous week. On admission, her blood pressure was 185/65 mm Hg, and clonus was noted in the lower extremities. The patient was hospitalized 10 days earlier for cellulitis of the left breast secondary to a left mastectomy 5 months earlier, and a short course of oral morphine was prescribed for pain control. Her routine medications consisted of aspirin, atorvastatin, bisoprolol, clopidogrel, gabapentin, omeprazole, phenelzine, and ramipril. Supportive measures were initiated on admission. Phenelzine and morphine were discontinued immediately, leading to a progressive resolution of symptoms over the next 48 hours. Phenelzine was restarted on discharge without further complications. Use of the Drug Interaction Probability Scale indicated a probable relationship (score of 6) between the patient's development of serotonin syndrome and the combination of morphine and phenelzine. The mechanism underlying this interaction, however, remains unclear and warrants further investigation. Clinicians should carefully weigh the risk and benefits of initiating morphine in patients taking monoamine oxidase inhibitors or any other serotonin-enhancing drugs.

  12. On the possible quantum role of serotonin in consciousness.

    PubMed

    Tonello, Lucio; Cocchi, Massimo; Gabrielli, Fabio; Tuszynski, Jack A

    2015-09-01

    Cell membrane's fatty acids (FAs) have been carefully investigated in neurons and platelets in order to study a possible connection to psychopathologies. An important link between the FA distribution and membrane dynamics appears to emerge with the cytoskeleton dynamics. Microtubules (MTs) in particular have been implicated in some recent quantum consciousness models and analyses. The recently proposed quantum model of Craddock et al. (2014) states that MTs possess structural and functional characteristics that are consistent with collective quantum coherent excitations in the aromatic groups of their tryptophan residues. These excitations are consistent with a clocking mechanism on a sub-nanosecond scale. This mechanism and analogous phenomena in light-harvesting complexes in plants and bacteria, are induced by photons and have been touted as evidence of quantum processes in biology. A possible source of intra-cellular photons could be membrane lipid peroxidation processes, so the FA profile could then be linked to the bio-photon emission. The model presented here suggests new ways to understand the role serotonin plays in relation to FAs. In plants, tryptophan conversion of light to exciton energy can participate in the directional orientation of leaves toward sunlight. Since serotonin is structurally similar to tryptophan, in the human brain, neurons could use tryptophan to capture photons and also use serotonin to initiate movement toward the source of light. Hence, we postulate two possible new roles for serotonin: (1) as an antioxidant, in order to counter-balance the oxidative effect of FAs, and (2) to participate in quantum interactions with MTs, in the same way as anesthetics and psychoactive compounds have been recently shown to act. In this latter case, the FA profile could provide an indirect measure of serotonin levels.

  13. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis.

    PubMed

    O'Mahony, S M; Clarke, G; Borre, Y E; Dinan, T G; Cryan, J F

    2015-01-15

    The brain-gut axis is a bidirectional communication system between the central nervous system and the gastrointestinal tract. Serotonin functions as a key neurotransmitter at both terminals of this network. Accumulating evidence points to a critical role for the gut microbiome in regulating normal functioning of this axis. In particular, it is becoming clear that the microbial influence on tryptophan metabolism and the serotonergic system may be an important node in such regulation. There is also substantial overlap between behaviours influenced by the gut microbiota and those which rely on intact serotonergic neurotransmission. The developing serotonergic system may be vulnerable to differential microbial colonisation patterns prior to the emergence of a stable adult-like gut microbiota. At the other extreme of life, the decreased diversity and stability of the gut microbiota may dictate serotonin-related health problems in the elderly. The mechanisms underpinning this crosstalk require further elaboration but may be related to the ability of the gut microbiota to control host tryptophan metabolism along the kynurenine pathway, thereby simultaneously reducing the fraction available for serotonin synthesis and increasing the production of neuroactive metabolites. The enzymes of this pathway are immune and stress-responsive, both systems which buttress the brain-gut axis. In addition, there are neural processes in the gastrointestinal tract which can be influenced by local alterations in serotonin concentrations with subsequent relay of signals along the scaffolding of the brain-gut axis to influence CNS neurotransmission. Therapeutic targeting of the gut microbiota might be a viable treatment strategy for serotonin-related brain-gut axis disorders.

  14. Blockade of GpIIb/IIIa inhibits the release of vascular endothelial growth factor (VEGF) from tumor cell-activated platelets and experimental metastasis.

    PubMed

    Amirkhosravi, A; Amaya, M; Siddiqui, F; Biggerstaff, J P; Meyer, T V; Francis, J L

    1999-01-01

    Evidence that platelets play a role in tumor metastasis includes the observation of circulating tumor cell-platelet aggregates and the anti-metastatic effect of thrombocytopenia and anti-platelet drugs. Platelets have recently been shown to contain vascular endothelial growth factor (VEGF) which is released during clotting. We therefore studied the effects of (1) tumor cell-platelet adherence and tumor cell TF activity on platelet VEGF release; and (2) the effects of GpIIb/IIIa blockade on tumor cell-induced platelet VEGF release, tumor cell-induced thrombocytopenia and experimental metastasis. Adherent A375 human melanoma cells (TF+) and KG1 myeloid leukemia (TF-) cells were cultured in RPMI containing 10% fetal bovine serum. Platelet-rich plasma was obtained from normal citrated whole blood and the presence of VEGF (34 and 44 kDa isoforms) confirmed by immunoblotting. Platelet-rich plasma with or without anti-GpIIb/IIIa (Abciximab) was added to A375 monolayers and supernatant VEGF measured by ELISA. Tumor cell-induced platelet activation and release were determined by CD62P expression and serotonin release respectively. In vitro, tumor cell-platelet adherence was evaluated by flow cytometry. In vivo, thrombocytopenia and lung seeding were assessed 30 min and 18 days, respectively, after i.v. injection of Lewis Lung carcinoma (LL2) cells into control or murine 7E3 F(ab')(2) (6 mg/ kg) athymic rats. Maximal in vitro platelet activation (72% serotonin release) occurred 30 min after adding platelets to tumor cells. At this time, 87% of the A375 cells had adhered to platelets. Abciximab significantly (P<0.05) reduced platelet adherence to tumor cells as evidenced by flow cytometry. Incubation of A375 cells with platelets induced VEGF release in a time-dependent manner. This release was significantly inhibited by Abciximab (81% at 30 min; P<0.05). In the presence of fibrinogen and FII, VEGF release induced by A375 (TF+) cells was significantly higher than that induced

  15. Blockade of GpIIb/IIIa inhibits the release of vascular endothelial growth factor (VEGF) from tumor cell-activated platelets and experimental metastasis.

    PubMed

    Amirkhosravi, A; Amaya, M; Siddiqui, F; Biggerstaff, J P; Meyer, T V; Francis, J L

    1999-01-01

    Evidence that platelets play a role in tumor metastasis includes the observation of circulating tumor cell-platelet aggregates and the anti-metastatic effect of thrombocytopenia and anti-platelet drugs. Platelets have recently been shown to contain vascular endothelial growth factor (VEGF) which is released during clotting. We therefore studied the effects of (1) tumor cell-platelet adherence and tumor cell TF activity on platelet VEGF release; and (2) the effects of GpIIb/IIIa blockade on tumor cell-induced platelet VEGF release, tumor cell-induced thrombocytopenia and experimental metastasis. Adherent A375 human melanoma cells (TF+) and KG1 myeloid leukemia (TF-) cells were cultured in RPMI containing 10% fetal bovine serum. Platelet-rich plasma was obtained from normal citrated whole blood and the presence of VEGF (34 and 44 kDa isoforms) confirmed by immunoblotting. Platelet-rich plasma with or without anti-GpIIb/IIIa (Abciximab) was added to A375 monolayers and supernatant VEGF measured by ELISA. Tumor cell-induced platelet activation and release were determined by CD62P expression and serotonin release respectively. In vitro, tumor cell-platelet adherence was evaluated by flow cytometry. In vivo, thrombocytopenia and lung seeding were assessed 30 min and 18 days, respectively, after i.v. injection of Lewis Lung carcinoma (LL2) cells into control or murine 7E3 F(ab')(2) (6 mg/ kg) athymic rats. Maximal in vitro platelet activation (72% serotonin release) occurred 30 min after adding platelets to tumor cells. At this time, 87% of the A375 cells had adhered to platelets. Abciximab significantly (P<0.05) reduced platelet adherence to tumor cells as evidenced by flow cytometry. Incubation of A375 cells with platelets induced VEGF release in a time-dependent manner. This release was significantly inhibited by Abciximab (81% at 30 min; P<0.05). In the presence of fibrinogen and FII, VEGF release induced by A375 (TF+) cells was significantly higher than that induced

  16. Serotonin 5-HT1A receptors as targets for agents to treat psychiatric disorders: rationale and current status of research.

    PubMed

    Celada, Pau; Bortolozzi, Analía; Artigas, Francesc

    2013-09-01

    Psychiatric disorders represent a large economic burden in modern societies. However, pharmacological treatments are still far from optimal. Drugs used in the treatment of major depressive disorder (MDD) and anxiety disorders (selective serotonin [5-HT] reuptake inhibitors [SSRIs] and serotonin-noradrenaline reuptake inhibitors [SNRIs]) are pharmacological refinements of first-generation tricyclic drugs, discovered by serendipity, and show low efficacy and slowness of onset. Moreover, antipsychotic drugs are partly effective in positive symptoms of schizophrenia, yet they poorly treat negative symptoms and cognitive deficits. The present article reviews the neurobiological basis of 5-HT1A receptor (5-HT1A-R) function and the role of pre- and postsynaptic 5-HT1A-Rs in the treatment of MDD, anxiety and psychotic disorders. The activation of postsynaptic 5-HT1A-Rs in corticolimbic areas appears beneficial for the therapeutic action of antidepressant drugs. However, presynaptic 5-HT1A-Rs play a detrimental role in MDD, since individuals with high density or function of presynaptic 5-HT1A-Rs are more susceptible to mood disorders and suicide, and respond poorly to antidepressant drugs. Moreover, the indirect activation of presynaptic 5-HT1A-Rs by SSRIs/SNRIs reduces 5-HT neuron activity and terminal 5-HT release, thus opposing the elevation of extracellular 5-HT produced by blockade of the serotonin transporter (SERT) in the forebrain. Chronic antidepressant treatment desensitizes presynaptic 5-HT1A-Rs, thus reducing the effectiveness of the 5-HT1A autoreceptor-mediated negative feedback. The prevention of this process by the non-selective partial agonist pindolol accelerates clinical antidepressant effects. Two new antidepressant drugs, vilazodone (marketed in the USA) and vortioxetine (in development) incorporate partial 5-HT1A-R agonist properties with SERT blockade. Several studies with transgenic mice have also established the respective role of pre- and

  17. Serotonin, serotonin 5-HT(1A) receptors and dopamine in blood peripheral lymphocytes of major depression patients.

    PubMed

    Fajardo, O; Galeno, J; Urbina, M; Carreira, I; Lima, L

    2003-09-01

    There are increasing evidences of cell markers present in the immune and the nervous systems. These include neurotransmitter receptors and transporters. Serotonin receptor subtypes are related to depression and also have been shown to be present in certain cells of the immune system. In the present report, we determined the presence of 5-HT(1A) receptors by the binding of the selective agonist 8-hydroxy-2-(di-n-propyl-amino)tetralin in lymphocytes of peripheral blood isolated by Ficoll/Hypaque gradients from controls and depressed patients. The capacity of these receptors was around 24 fmol/10(6) cells in both groups of subjects, without significant difference among them. The affinity was in the nM range and either differ between controls and patients. Serotonin, 5-hydroxyindoleacetic acid, dopamine and 3,4-dihydroxyphenylacetic acid were determined by HPLC with electrochemical detector. There were no significant differences between controls and major depression patients in the values obtained for rich and poor platelet plasma or in the isolated cells. However, there was a reduction in serotonin turnover rate indicated by an increase in the ratio serotonin/5-hydroxyindoleacetic acid, but not in that of dopamine, in lymphocytes of major depression patients. Thus, there is a serotonergic dysfunction in immune circulating cells of major depression patients, without changes in the number of 5-HT(1A) receptors, although the coupling of these receptors to transduction mechanisms could be affected and may be related to the alteration of 5-HT turnover rate.

  18. Effects of the monoamine uptake inhibitors RTI-112 and RTI-113 on cocaine- and food-maintained responding in rhesus monkeys.

    PubMed

    Negus, S S; Mello, N K; Kimmel, H L; Howell, L L; Carroll, F I

    2009-01-01

    Cocaine blocks uptake of the monoamines dopamine, serotonin and norepinephrine, and monoamine uptake inhibitors constitute one class of drugs under consideration as candidate "agonist" medications for the treatment of cocaine abuse and dependence. The pharmacological selectivity of monoamine uptake inhibitors to block uptake of dopamine, serotonin and norepinephrine is one factor that may influence the efficacy and/or safety of these compounds as drug abuse treatment medications. To address this issue, the present study compared the effects of 7-day treatment with a non-selective monoamine uptake inhibitor (RTI-112) and a dopamine-selective uptake inhibitor (RTI-113) on cocaine- and food-maintained responding in rhesus monkeys. Monkeys (N=3) were trained to respond for cocaine injections (0.01 mg/kg/inj) and food pellets under a second-order schedule [FR2(VR16:S)] during alternating daily components of cocaine and food availability. Both RTI-112 (0.0032-0.01 mg/kg/hr) and RTI-113 (0.01-0.056 mg/kg/h) produced dose-dependent, sustained and nearly complete elimination of cocaine self-administration. However, for both drugs, the potency to reduce cocaine self-administration was similar to the potency to reduce food-maintained responding. These findings do not support the hypothesis that pharmacological selectivity to block dopamine uptake is associated with behavioral selectivity to decrease cocaine- vs. food-maintained responding in rhesus monkeys. PMID:18755212

  19. [Treatment of inter-specific aggression in cats with the selective serotonin reuptake inhibitor fluvoxamine. A case report].

    PubMed

    Sprauer, S

    2012-01-01

    The article describes the redirected, inter-specific aggression of a Maine Coon cat, which was principally directed towards the owners. The cat reacted towards different, nonspecific sounds with abrupt aggressive behaviour and injured the victims at this juncture with moderate scratching and biting. Exclusively using behaviour therapy did not achieve the desired result, thus the therapy was supported with pharmaceuticals. The cat orally received the selective serotonin re-uptake inhibitor fluvoxamine at an initial dosage of 0.5mg/kg BW once daily. After 4 weeks the application rate was increased to 1.0 mg/kg BW once daily. The medication did not cause any side effects. Together with the behaviour-modulating therapy, carried out parallel to the medication therapy, the aggressive behaviour problem of the cat was resolved. After administration for a period of 63 weeks the fluvoxamine therapy was discontinued by gradually reducing the dose without recurrence of the aggressive behaviour. PMID:23242225

  20. Coulomb blockade and BLOCH oscillations in superconducting Ti nanowires.

    PubMed

    Lehtinen, J S; Zakharov, K; Arutyunov, K Yu

    2012-11-01

    Quantum fluctuations in quasi-one-dimensional superconducting channels leading to spontaneous changes of the phase of the order parameter by 2π, alternatively called quantum phase slips (QPS), manifest themselves as the finite resistance well below the critical temperature of thin superconducting nanowires and the suppression of persistent currents in tiny superconducting nanorings. Here we report the experimental evidence that in a current-biased superconducting nanowire the same QPS process is responsible for the insulating state--the Coulomb blockade. When exposed to rf radiation, the internal Bloch oscillations can be synchronized with the external rf drive leading to formation of quantized current steps on the I-V characteristic. The effects originate from the fundamental quantum duality of a Josephson junction and a superconducting nanowire governed by QPS--the QPS junction.

  1. Interleukin-1 blockade in refractory giant cell arteritis.

    PubMed

    Ly, Kim-Heang; Stirnemann, Jérôme; Liozon, Eric; Michel, Marc; Fain, Olivier; Fauchais, Anne-Laure

    2014-01-01

    Giant cell arteritis is a primary large-vessel vasculitis characterized by an arterial wall inflammation associated with intimal hyperplasia leading to arterial occlusion. Glucocorticoids remain the mainstay of giant cell arteritis treatment. However, relapses and glucocorticoid-related complications are frequent and therapeutic options for refractory giant cell arteritis are quite limited. Like tumor necrosis factor-α and interleukin-6, interleukin-1β is also highly expressed in inflamed arterial walls of patients with giant cell arteritis and may contribute in the pathogenesis of this disease. We report treatment of three cases of refractory giant cell arteritis successfully treated with anakinra, an interleukin-1 blockade therapy. Anakinra was effective for all patients, yielding improvement in their inflammation biomarkers and/or in their symptoms, as well as a disappearance of arterial inflammation in PET/CT for two of them.

  2. Costimulation Blockade in Autoimmunity and Transplantation: The CD28 Pathway.

    PubMed

    Adams, Andrew B; Ford, Mandy L; Larsen, Christian P

    2016-09-15

    T cell activation is a complex process that requires multiple cell signaling pathways, including a primary recognition signal and additional costimulatory signals. TCR signaling in the absence of costimulatory signals can lead to an abortive attempt at activation and subsequent anergy. One of the best-characterized costimulatory pathways includes the Ig superfamily members CD28 and CTLA-4 and their ligands CD80 and CD86. The development of the fusion protein CTLA-4-Ig as an experimental and subsequent therapeutic tool is one of the major success stories in modern immunology. Abatacept and belatacept are clinically approved agents for the treatment of rheumatoid arthritis and renal transplantation, respectively. Future interventions may include selective CD28 blockade to block the costimulatory potential of CD28 while exploiting the coinhibitory effects of CTLA-4. PMID:27591335

  3. Cavity polaritons with Rydberg blockade and long-range interactions

    NASA Astrophysics Data System (ADS)

    Litinskaya, Marina; Tignone, Edoardo; Pupillo, Guido

    2016-08-01

    We study interactions between polaritons, arising when photons strongly couple to collective excitations in an array of two-level atoms trapped in an optical lattice inside a cavity. We consider two types of interactions between atoms: dipolar forces and atomic saturability, which range from hard-core repulsion to Rydberg blockade. We show that, in spite of the underlying repulsion in the subsystem of atomic excitations, saturability induces a broadband bunching of photons for two-polariton scattering states. We interpret this bunching as a result of interference, and trace it back to the mismatch of the quantization volumes for atomic excitations and photons. We also examine bound bipolaritonic states: these include states created by dipolar forces, as well as a gap bipolariton, which forms solely due to saturability effects in the atomic transition. Both types of bound states exhibit strong bunching in the photonic component. We discuss the dependence of bunching on experimentally relevant parameters.

  4. Weber Blockade Theory of Magnetoresistance Oscillations in Superconducting Strips

    NASA Astrophysics Data System (ADS)

    Pekker, David; Refael, Gil; Goldbart, Paul M.

    2011-07-01

    Recent experiments on the conductance of thin, narrow superconducting strips have found periodic fluctuations, as a function of the perpendicular magnetic field, with a period corresponding to approximately two flux quanta per strip area [A. Johansson , Phys. Rev. Lett. 95, 116805 (2005)PRLTAO0031-900710.1103/PhysRevLett.95.116805]. We argue that the low-energy degrees of freedom responsible for dissipation correspond to vortex motion. Using vortex-charge duality, we show that the superconducting strip behaves as the dual of a quantum dot, with the vortices, magnetic field, and bias current respectively playing the roles of the electrons, gate voltage, and source-drain voltage. In the bias-current versus magnetic-field plane, the strip conductance displays regions of small vortex conductance (i.e., small electrical resistance) that we term “Weber blockade” diamonds, which are dual to Coulomb blockade diamonds in quantum dots.

  5. Investigation of uncertainty components in Coulomb blockade thermometry

    SciTech Connect

    Hahtela, O. M.; Heinonen, M.; Manninen, A.; Meschke, M.; Savin, A.; Pekola, J. P.; Gunnarsson, D.; Prunnila, M.; Penttilä, J. S.; Roschier, L.

    2013-09-11

    Coulomb blockade thermometry (CBT) has proven to be a feasible method for primary thermometry in every day laboratory use at cryogenic temperatures from ca. 10 mK to a few tens of kelvins. The operation of CBT is based on single electron charging effects in normal metal tunnel junctions. In this paper, we discuss the typical error sources and uncertainty components that limit the present absolute accuracy of the CBT measurements to the level of about 1 % in the optimum temperature range. Identifying the influence of different uncertainty sources is a good starting point for improving the measurement accuracy to the level that would allow the CBT to be more widely used in high-precision low temperature metrological applications and for realizing thermodynamic temperature in accordance to the upcoming new definition of kelvin.

  6. Deterministic spin-wave interferometer based on the Rydberg blockade

    SciTech Connect

    Wei Ran; Deng Youjin; Pan Jianwei; Zhao Bo; Chen Yuao

    2011-06-15

    The spin-wave (SW) N-particle path-entangled |N,0>+|0,N> (NOON) state is an N-particle Fock state with two atomic spin-wave modes maximally entangled. Attributed to the property that the phase is sensitive to collective atomic motion, the SW NOON state can be utilized as an atomic interferometer and has promising application in quantum enhanced measurement. In this paper we propose an efficient protocol to deterministically produce the atomic SW NOON state by employing the Rydberg blockade. Possible errors in practical manipulations are analyzed. A feasible experimental scheme is suggested. Our scheme is far more efficient than the recent experimentally demonstrated one, which only creates a heralded second-order SW NOON state.

  7. Effect of on-chip filter on Coulomb blockade thermometer

    NASA Astrophysics Data System (ADS)

    Roschier, L.; Gunnarsson, D.; Meschke, M.; Savin, A.; Penttilä, J. S.; Prunnila, M.

    2012-12-01

    Coulomb Blockade Thermometer (CBT) is a primary thermometer based on electric conductance of normal tunnel junction arrays. One limitation for CBT use at the lowest temperatures has been due to environmental noise heating. To improve on this limitation, we have done measurements on CBT sensors fabricated with different on-chip filtering structures in a dilution refrigerator with a base temperature of 10 mK. The CBT sensors were produced with a wafer scale tunnel junction process. We present how the different on-chip filtering schemes affect the limiting saturation temperatures and show that CBT sensors with proper on-chip filtering work at temperatures below 20 mK and are tolerant to noisy environment.

  8. Investigation of uncertainty components in Coulomb blockade thermometry

    NASA Astrophysics Data System (ADS)

    Hahtela, O. M.; Meschke, M.; Savin, A.; Gunnarsson, D.; Prunnila, M.; Penttilä, J. S.; Roschier, L.; Heinonen, M.; Manninen, A.; Pekola, J. P.

    2013-09-01

    Coulomb blockade thermometry (CBT) has proven to be a feasible method for primary thermometry in every day laboratory use at cryogenic temperatures from ca. 10 mK to a few tens of kelvins. The operation of CBT is based on single electron charging effects in normal metal tunnel junctions. In this paper, we discuss the typical error sources and uncertainty components that limit the present absolute accuracy of the CBT measurements to the level of about 1 % in the optimum temperature range. Identifying the influence of different uncertainty sources is a good starting point for improving the measurement accuracy to the level that would allow the CBT to be more widely used in high-precision low temperature metrological applications and for realizing thermodynamic temperature in accordance to the upcoming new definition of kelvin.

  9. Anisotropic Pauli spin blockade in hole quantum dots

    NASA Astrophysics Data System (ADS)

    Brauns, Matthias; Ridderbos, Joost; Li, Ang; Bakkers, Erik P. A. M.; van der Wiel, Wilfred G.; Zwanenburg, Floris A.

    2016-07-01

    We present measurements on gate-defined double quantum dots in Ge-Si core-shell nanowires, which we tune to a regime with visible shell filling in both dots. We observe a Pauli spin blockade and can assign the measured leakage current at low magnetic fields to spin-flip cotunneling, for which we measure a strong anisotropy related to an anisotropic g factor. At higher magnetic fields we see signatures for leakage current caused by spin-orbit coupling between (1,1) singlet and (2,0) triplet states. Taking into account these anisotropic spin-flip mechanisms, we can choose the magnetic field direction with the longest spin lifetime for improved spin-orbit qubits.

  10. Assessment of Methods for the Intracellular Blockade of GABAA Receptors

    PubMed Central

    Atherton, Laura A.; Burnell, Erica S.; Mellor, Jack R.

    2016-01-01

    Selective blockade of inhibitory synaptic transmission onto specific neurons is a useful tool for dissecting the excitatory and inhibitory synaptic components of ongoing network activity. To achieve this, intracellular recording with a patch solution capable of blocking GABAA receptors has advantages over other manipulations, such as pharmacological application of GABAergic antagonists or optogenetic inhibition of populations of interneurones, in that the majority of inhibitory transmission is unaffected and hence the remaining network activity preserved. Here, we assess three previously described methods to block inhibition: intracellular application of the molecules picrotoxin, 4,4’-dinitro-stilbene-2,2’-disulphonic acid (DNDS) and 4,4’-diisothiocyanostilbene-2,2’-disulphonic acid (DIDS). DNDS and picrotoxin were both found to be ineffective at blocking evoked, monosynaptic inhibitory postsynaptic currents (IPSCs) onto mouse CA1 pyramidal cells. An intracellular solution containing DIDS and caesium fluoride, but lacking nucleotides ATP and GTP, was effective at decreasing the amplitude of IPSCs. However, this effect was found to be independent of DIDS, and the absence of intracellular nucleotides, and was instead due to the presence of fluoride ions in this intracellular solution, which also blocked spontaneously occurring IPSCs during hippocampal sharp waves. Critically, intracellular fluoride ions also caused a decrease in both spontaneous and evoked excitatory synaptic currents and precluded the inclusion of nucleotides in the intracellular solution. Therefore, of the methods tested, only fluoride ions were effective for intracellular blockade of IPSCs but this approach has additional cellular effects reducing its selectivity and utility. PMID:27501143

  11. Influence of antiseptics on microcirculation after neuronal and receptor blockade.

    PubMed

    Goertz, Ole; Hirsch, Tobias; Ring, Andrej; Muehlberger, Thomas; Steinau, Hans U; Tilkorn, Daniel; Lehnhardt, Marcus; Homann, Heinz H

    2011-08-01

    The topical application of the antiseptics octenidine and polyhexanide on wounds seems to improve microcirculation. These two antiseptics were tested in combination with neuronal inhibition and sympathethic receptor blockade to verify these findings, explore the influence of β blockers on these microcirculative effects, and find out the principle of operation. Investigations were carried out on a standardised cremaster muscle model in rats (n = 66). The tested antiseptics, octenidine and polyhexanide were investigated alone (n = 12) and in combination with bupivacaine (n = 12), metoprolol (n = 12), phentolamine (n = 12) and surgical denervation (n = 12). Physiological saline was used for control (n = 6). The arteriolar diameter and functional capillary density (FCD) were investigated via trans-illumination microscopy before, as well as 60 and 120 minutes after application. Polyhexanide caused a significant increase in arteriolar diameter (86·5 ± 3·8 µm versus 100·0 ± 3·6 µm) and, like octenidine (7·2 ± 0·7 n/0·22 mm(2) versus 11·6 ± 0·6 n/0·22 mm(2) ), in FCD (9·2 ± 0·5 versus 12·6 ± 0·9) as well. When the antiseptics are used in combination with bupivacaine, metoprolol, phentolamine or surgical sympathectomy, these effects were eliminated or inverted. Assessing the results of the different blockades in combination with polyhexanide, we surmise that the antiseptic polyhexanide acts on the microcirculation mainly by blocking α receptors. This study shows that polyhexanide and octenidine improve muscular perfusion. Interestingly, the benefit of polyhexanide and octenidine on muscular perfusion is eliminated when the antiseptics are combined with other vasoactive agents, especially β blockers.

  12. Selective serotonin reuptake inhibitors for fibromyalgia syndrome

    PubMed Central

    Walitt, Brian; Urrútia, Gerard; Nishishinya, María Betina; Cantrell, Sarah E; Häuser, Winfried

    2016-01-01

    Background Fibromyalgia is a clinically well-defined chronic condition with a biopsychosocial aetiology. Fibromyalgia is characterized by chronic widespread musculoskeletal pain, sleep problems, cognitive dysfunction, and fatigue. Patients often report high disability levels and poor quality of life. Since there is no specific treatment that alters the pathogenesis of fibromyalgia, drug therapy focuses on pain reduction and improvement of other aversive symptoms. Objectives The objective was to assess the benefits and harms of selective serotonin reuptake inhibitors (SSRIs) in the treatment of fibromyalgia. Search methods We searched the Cochrane Central Register of Controlled Trials (CENTRAL; 2014, Issue 5), MEDLINE (1966 to June 2014), EMBASE (1946 to June 2014), and the reference lists of reviewed articles. Selection criteria We selected all randomized, double-blind trials of SSRIs used for the treatment of fibromyalgia symptoms in adult participants. We considered the following SSRIs in this review: citalopram, fluoxetine, escitalopram, fluvoxamine, paroxetine, and sertraline. Data collection and analysis Three authors extracted the data of all included studies and assessed the risks of bias of the studies. We resolved discrepancies by discussion. Main results The quality of evidence was very low for each outcome. We downgraded the quality of evidence to very low due to concerns about risk of bias and studies with few participants. We included seven placebo-controlled studies, two with citalopram, three with fluoxetine and two with paroxetine, with a median study duration of eight weeks (4 to 16 weeks) and 383 participants, who were pooled together. All studies had one or more sources of potential major bias. There was a small (10%) difference in patients who reported a 30% pain reduction between SSRIs (56/172 (32.6%)) and placebo (39/171 (22.8%)) risk difference (RD) 0.10, 95% confidence interval (CI) 0.01 to 0.20; number needed to treat for an additional

  13. The antidepressant-like pharmacological profile of Yuanzhi-1, a novel serotonin, norepinephrine and dopamine reuptake inhibitor.

    PubMed

    Jin, Zeng-liang; Gao, Nana; Li, Xiao-rong; Tang, Yu; Xiong, Jie; Chen, Hong-xia; Xue, Rui; Li, Yun-Feng

    2015-04-01

    Triple reuptake inhibitors that block dopamine transporters (DATs), norepinephrine transporters (NETs), and serotonin transporters (SERTs) are being developed as a new class of antidepressants that might have better efficacy and fewer side effects than traditional antidepressants. In this study, we performed in vitro binding and uptake assays as well as in vivo behavioural tests to assess the pharmacological properties and antidepressant-like efficacy of Yuanzhi-1. In vitro, Yuanzhi-1 had a high affinity for SERTs, NETs, and DATs prepared from rat brain tissue (Ki=3.95, 4.52 and 0.87nM, respectively) and recombinant cells (Ki=2.87, 6.86 and 1.03nM, respectively). Moreover, Yuanzhi-1 potently inhibited the uptake of serotonin (5-hydroxytryptamine; 5-HT), norepinephrine (NE) and dopamine (DA) into rat brain synaptosomes (Ki=2.12, 4.85 and 1.08nM, respectively) and recombinant cells (Ki=1.65, 5.32 and 0.68nM, respectively). In vivo, Yuanzhi-1 decreased immobility in a dose-dependent manner, which was shown among rats via the forced-swim test (FST) and mice via the tail-suspension test (TST). The results observed in the behavioural tests did not appear to result from the stimulation of locomotor activity. Repeated Yuanzhi-1 treatment (2.5, 5 or 10mg/kg) significantly reversed depression-like behaviours in chronically stressed rats, including reduced sucrose preference, decreased locomotor activity, and prolonged time to begin eating. Furthermore, in vivo microdialysis studies showed that 5- and 10-mg/kg administrations of Yuanzhi-1 significantly increased the extracellular concentrations of 5-HT, NE and DA in the frontal cortices of freely moving rats. Therefore, Yuanzhi-1 might represent a novel triple reuptake inhibitor and possess antidepressant-like activity. PMID:25638027

  14. Amphetamine Action at the Cocaine- and Antidepressant-Sensitive Serotonin Transporter Is Modulated by αCaMKII

    PubMed Central

    Steinkellner, Thomas; Montgomery, Therese R.; Hofmaier, Tina; Kudlacek, Oliver; Yang, Jae-Won; Rickhag, Mattias; Jung, Gangsoo; Lubec, Gert; Gether, Ulrik; Freissmuth, Michael

    2015-01-01

    Serotonergic neurotransmission is terminated by reuptake of extracellular serotonin (5-HT) by the high-affinity serotonin transporter (SERT). Selective 5-HT reuptake inhibitors (SSRIs) such as fluoxetine or escitalopram inhibit SERT and are currently the principal treatment for depression and anxiety disorders. In addition, SERT is a major molecular target for psychostimulants such as cocaine and amphetamines. Amphetamine-induced transport reversal at the closely related dopamine transporter (DAT) has been shown previously to be contingent upon modulation by calmodulin kinase IIα (αCaMKII). Here, we show that not only DAT, but also SERT, is regulated by αCaMKII. Inhibition of αCaMKII activity markedly decreased amphetamine-triggered SERT-mediated substrate efflux in both cells coexpressing SERT and αCaMKII and brain tissue preparations. The interaction between SERT and αCaMKII was verified using biochemical assays and FRET analysis and colocalization of the two molecules was confirmed in primary serotonergic neurons in culture. Moreover, we found that genetic deletion of αCaMKII impaired the locomotor response of mice to 3,4-methylenedioxymethamphetamine (also known as “ecstasy”) and blunted d-fenfluramine-induced prolactin release, substantiating the importance of αCaMKII modulation for amphetamine action at SERT in vivo as well. SERT-mediated substrate uptake was neither affected by inhibition of nor genetic deficiency in αCaMKII. This finding supports the concept that uptake and efflux at monoamine transporters are asymmetric processes that can be targeted separately. Ultimately, this may provide a molecular mechanism for putative drug developments to treat amphetamine addiction. PMID:26019340

  15. Neuroanatomical approaches of the tectum-reticular pathways and immunohistochemical evidence for serotonin-positive perikarya on neuronal substrates of the superior colliculus and periaqueductal gray matter involved in the elaboration of the defensive behavior and fear-induced analgesia.

    PubMed

    Coimbra, N C; De Oliveira, R; Freitas, R L; Ribeiro, S J; Borelli, K G; Pacagnella, R C; Moreira, J E; da Silva, L A; Melo, L L; Lunardi, L O; Brandão, M L

    2006-01-01

    Deep layers of the superior colliculus, the dorsal periaqueductal gray matter and the inferior colliculus are midbrain structures involved in the generation of defensive behavior and fear-induced anti-nociception. Local injections of the GABA(A) antagonist bicuculline into these structures have been used to produce this defense reaction. Serotonin is thought to be the main neurotransmitter to modulate such defense reaction in mammals. This study is the first attempt to employ immunohistochemical techniques to locate serotonergic cells in the same midbrain sites from where defense reaction is evoked by chemical stimulation with bicuculline. The blockade of GABA(A) receptors in the neural substrates of the dorsal mesencephalon was followed by vigorous defensive reactions and increased nociceptive thresholds. Light microscopy immunocytochemistry with streptavidin method was used for the localization of the putative cells of defensive behavior with antibodies to serotonin in the rat's midbrain. Neurons positive to serotonin were found in the midbrain sites where defensive reactions were evoked by microinjection of bicuculline. Serotonin was localized to somata and projections of the neural networks of the mesencephalic tectum. Immunohistochemical studies showed that the sites in which neuronal perikarya positive to serotonin were identified in intermediate and deep layers of the superior colliculus, and in the dorsal and ventral columns of the periaqueductal gray matter are the same which were activated during the generation of defense behaviors, such as alertness, freezing, and escape reactions, induced by bicuculline. These findings support the contention that serotonin and GABAergic neurons may act in concert in the modulation of defense reaction in the midbrain tectum. Our neuroanatomical findings indicate a direct neural pathway connecting the dorsal midbrain and monoaminergic nuclei of the descending pain inhibitory system, with profuse synaptic terminals mainly

  16. The serotonin releaser fenfluramine alters the auditory responses of inferior colliculus neurons.

    PubMed

    Hall, Ian C; Hurley, Laura M

    2007-06-01

    Local direct application of the neuromodulator serotonin strongly influences auditory response properties of neurons in the inferior colliculus (IC), but endogenous stores of serotonin may be released in a distinct spatial or temporal pattern. To explore this issue, the serotonin releaser fenfluramine was iontophoretically applied to extracellularly recorded neurons in the IC of the Mexican free-tailed bat (Tadarida brasiliensis). Fenfluramine mimicked the effects of serotonin on spike count and first spike latency in most neurons, and its effects could be blocked by co-application of serotonin receptor antagonists, consistent with fenfluramine-evoked serotonin release. Responses to fenfluramine did not vary during single applications or across multiple applications, suggesting that fenfluramine did not deplete serotonin stores. A predicted gradient in the effects of fenfluramine with serotonin fiber density was not observed, but neurons with fenfluramine-evoked increases in latency occurred at relatively greater recording depths compared to other neurons with similar characteristic frequencies. These findings support the conclusion that there may be spatial differences in the effects of exogenous and endogenous sources of serotonin, but that other factors such as the identities and locations of serotonin receptors are also likely to play a role in determining the dynamics of serotonergic effects. PMID:17339086

  17. Effects of Aromatase Inhibition and Androgen Activity on Serotonin and Behavior in Male Macaques

    PubMed Central

    Bethea, Cynthia L.; Reddy, Arubala P.; Robertson, Nicola; Colemen, Kristine

    2014-01-01

    Aggression in humans and animals has been linked to androgens and serotonin function. To further our understanding of the effect of androgens on serotonin and aggression in male macaques, we sought to manipulate circulating androgens and the activity of aromatase; and to then determine behavior and the endogenous availability of serotonin. Male Japanese macaques (Macaca fuscata) were castrated for 5-7 months and then treated for 3 months with [1] placebo, [2] testosterone (T), [3] T+Dutasteride (5a reductase inhibitor; AvodartTM), [4] T+Letrozole (non-steroidal aromatase inhibitor; FemeraTM), [5] Flutamide+ATD (androgen antagonist plus steroidal aromatase inhibitor) or [6] dihydrotestosterone (DHT)+ATD (n=5/group). Behavioral observations were made during treatments. At the end of the treatment period, each animal was sedated with propofol and administered a bolus of fenfluramine (5 mg/kg). Fenfluramine causes the release of serotonin proportional to endogenous availability and in turn, serotonin stimulates the secretion of prolactin. Therefore, serum prolactin concentrations reflect endogenous serotonin. Fenfluramine significantly increased serotonin/prolactin in all groups (p <0.0001). Fenfluramine-induced serotonin/prolactin in the T-treated group was significantly higher than the other groups (p<0.0001). Castration partially reduced the serotonin/prolactin response; and Letrozole partially blocked the effect of T. Complete inhibition of aromatase with ATD, a non-competitve inhibitor, significantly and similarly reduced the fenfluramine-induced serotonin/prolactin response in the presence or absence of DHT. Neither aggressive behavior nor yawning (indicators of androgen activity) correlated with serotonin/prolactin, but posited aromatase activity correlated significantly with prolactin (p<0.0008; r2 =0.95). In summary, androgens induced aggressive behavior but they did not regulate serotonin. Altogether, the data suggest that aromatase activity supports

  18. Effects of aromatase inhibition and androgen activity on serotonin and behavior in male macaques.

    PubMed

    Bethea, Cynthia L; Reddy, Arubala P; Robertson, Nicola; Coleman, Kristine

    2013-06-01

    Aggression in humans and animals has been linked to androgens and serotonin function. To further our understanding of the effect of androgens on serotonin and aggression in male macaques, we sought to manipulate circulating androgens and the activity of aromatase; and to then determine behavior and the endogenous availability of serotonin. Male Japanese macaques (Macaca fuscata) were castrated for 5-7 months and then treated for 3 months with (a) placebo; (b) testosterone (T); (c) T + Dutasteride (5a reductase inhibitor; AvodartTM); (d) T + Letrozole (nonsteroidal aromatase inhibitor; FemeraTM); (e) Flutamide + ATD (androgen antagonist plus steroidal aromatase inhibitor); or (f) dihydrotestosterone (DHT) + ATD (n = 5/group). Behavioral observations were made during treatments. At the end of the treatment period, each animal was sedated with propofol and administered a bolus of fenfluramine (5 mg/kg). Fenfluramine causes the release of serotonin proportional to endogenous availability and in turn, serotonin stimulates the secretion of prolactin. Therefore, serum prolactin concentrations reflect endogenous serotonin. Fenfluramine significantly increased serotonin/prolactin in all groups (p < .0001). Fenfluramine-induced serotonin/prolactin in the T-treated group was significantly higher than the other groups (p < .0001). Castration partially reduced the serotonin/prolactin response and Letrozole partially blocked the effect of T. Complete inhibition of aromatase with ATD, a noncompetitive inhibitor, significantly and similarly reduced the fenfluramine-induced serotonin/prolactin response in the presence or absence of DHT. Neither aggressive behavior nor yawning (indicators of androgen activity) correlated with serotonin/prolactin, but posited aromatase activity correlated significantly with prolactin (p < .0008; r² = 0.95). In summary, androgens induced aggressive behavior but they did not regulate serotonin. Altogether, the data suggest that aromatase activity

  19. Putrescine uptake in saintpaulia petals.

    PubMed

    Bagni, N; Pistocchi, R

    1985-02-01

    Putrescine uptake and the kinetics of this uptake were studied in petals of Saintpaulia ionantha Wendl. Uptake experiments of [(3)H] or [(14)C] putrescine were done on single petals at room temperature at various pH values. The results show that putrescine uptake occurs against a concentration gradient at low external putrescine concentration (0.5-100 micromolar) and follows a concentration gradient at higher external putrescine concentrations (100 micromolar to 100 millimolar). 2,4-Dinitrophenol and carbonylcyanide-m-chlorophenylhydrazone, two uncouplers, had no effect on putrescine uptake. Uptake rates were constant for 2 hours, reaching a maximum after 3 to 4 hours. Putrescine uptake depended markedly on the external pH and two maxima were observed: at low external concentrations of putrescine, the optimum was at pH 5 to 5.5; at higher concentrations the optimum was at pH 8. PMID:16664065

  20. Differential Effects of Hormone Therapy on Serotonin, Vascular Function and Mood in the KEEPS

    PubMed Central

    Raz, Limor; Hunter, Larry; Dowling, N. Maritza; Wharton, Whitney; Gleason, Carey; Jayachandran, Muthuvel; Anderson, Layne; Asthana, Sanjay; Miller, Virginia

    2016-01-01

    Background Serotonin (5-hydroxytryptamine, 5-HT) is modulated by sex steroid hormones and affects vascular function and mood. In the Kronos Early Estrogen Prevention Cognitive and Affective Ancillary Study (KEEPS-Cog), women randomized to oral conjugated equine estrogens (oCEE) showed greater benefit on affective mood states than women randomized to transdermal 17β-estradiol (tE2) or placebo (PL). This study examined the effect of these treatments on the platelet content of 5-HT as a surrogate measure of 5-HT synthesis and uptake in the brain. Methods The following were measured in a subset (n = 79) of women enrolled in KEEPS-Cog: 5-HT by ELISA, carotid intima-medial thickness (CIMT) by ultrasound, endothelial function by reactive hyperemia index (RHI), and self-reported symptoms of affective mood states by the Profile of Mood States (POMS) questionnaire. Results Mean platelet content of 5-HT increased by 107.0%, 84.5% and 39.8%, in tE2, oCEE and PL groups, respectively. Platelet 5-HT positively correlated with estrone in the oCEE group and with 17β- estradiol in the tE2 group. Platelet 5-HT showed a positive association with RHI, but not CIMT, in the PL and oCEE groups. Reduction in mood scores for depression-dejection and anger-hostility associated with elevations in platelet 5-HT only in the oCEE group (r = −0.5, p = 0.02). Conclusions Effects of oCEE compared to tE2 on RHI and mood may be related to mechanisms involving platelet, and perhaps neuronal, uptake and release of 5-HT and reflect conversion of estrone to bioavailable 17β- estradiol in platelets and the brain. PMID:26652904

  1. Immobility responses between mouse strains correlate with distinct hippocampal serotonin transporter protein expression and function.

    PubMed

    Tang, Man; He, Tao; Meng, Qing-yan; Broussard, John Isaac; Yao, Lan; Diao, Yao; Sang, Xiu-bo; Liu, Qing-peng; Liao, Ying-jun; Li, Yuge; Zhao, Shulei

    2014-11-01

    Mouse strain differences in immobility and in sensitivity to antidepressants have been observed in the forced swimming test (FST) and the tail suspension test (TST). However, the neurotransmitter systems and neural substrates that contribute to these differences remain unknown. To investigate the role of the hippocampal serotonin transporter (5-HTT), we measured baseline immobility and the immobility responses to fluoxetine (FLX) in the FST and the TST in male CD-1, C57BL/6, DBA and BALB/c mice. We observed strain differences in baseline immobility time, with CD-1 mice showing the longest and DBA mice showing the shortest. In contrast, DBA and BALB/c mice showed the highest sensitivity to FLX, whereas CD-1 and C57BL/6 mice showed the lowest sensitivity. Also we found strain differences in both the total 5-HTT protein level and the membrane-bound 5-HTT level (estimated by V max) as follows: DBA>BALB/c>CD-1=C57BL/6. The uptake efficiency of the membrane-bound 5-HTT (estimated by 1/K m) was highest in DBA and BALB/c mice and lowest in CD-1 and C57BL/6 mice. A correlation analysis of subregions within the hippocampus revealed that immobility time was negatively correlated with V max and positively correlated with K m in the hippocampus. Therefore a higher uptake capacity of the membrane-bound 5-HTT in the hippocampus was associated with lower baseline immobility and greater sensitivity to FLX. These results suggest that alterations in hippocampal 5-HTT activity may contribute to mouse strain differences in the FST and the TST.

  2. The immobility produced by intermittent swim stress is not mediated by serotonin.

    PubMed

    Christianson, John P; Rabbett, Sarah; Lyckland, Jennifer; Drugan, Robert C

    2008-05-01

    Exposure to uncontrollable stressors such as intermittent swim stress (ISS) produces a behavioral syndrome that resembles behavioral depression including immobility in a Forced Swim Test (FST) and escape learning deficits. The results of previous studies suggest that stress causes a temporary sensitization of the brain serotonin (5-HT) system that is necessary and sufficient for producing behavioral depression. If this hypothesis is true in the ISS paradigm, then enhancing or inhibiting 5-HT transmission during stress should exacerbate or block the development of behavioral depression, respectively. The selective 5-HT uptake inhibitor fluoxetine (FLX) was administered prior to ISS or confinement; 24 h later the FST was used to detect behavioral immobility. ISS, but not FLX, significantly increased immobility in the FST. The purported 5-HT uptake enhancer tianeptine (TPT) was administered in place of FLX. Again ISS increased immobility in the FST, but TPT had no effect. These results suggested that 5-HT is not a critical mediator of ISS induced behavioral depression. However, some authors have raised concern that TPT does not act directly on 5-HT. Therefore, the 5-HT synthesis inhibitor, para-chlorophenylaline (PCPA) was administered to deplete central 5-HT before stress. PCPA did not alter immobility in the FST. Finally, a sub-chronic regimen of FLX given after ISS, but before the FST, was without effect on reversing the ISS-induced immobility. Taken together, these experiments indicate that ISS produces a significant behavioral depression manifested as increased immobility but offer no support of the hypothesis that 5-HT is a critical mediator of these effects.

  3. Chloride dysregulation and inhibitory receptor blockade yield equivalent disinhibition of spinal neurons yet are differentially reversed by carbonic anhydrase blockade.

    PubMed

    Lee, Kwan Yeop; Prescott, Steven A

    2015-12-01

    Synaptic inhibition plays a key role in processing somatosensory information. Blocking inhibition at the spinal level is sufficient to produce mechanical allodynia, and many neuropathic pain conditions are associated with reduced inhibition. Disinhibition of spinal neurons can arise through decreased GABAA/glycine receptor activation or through dysregulation of intracellular chloride. We hypothesized that these distinct disinhibitory mechanisms, despite all causing allodynia, are differentially susceptible to therapeutic intervention. Specifically, we predicted that reducing bicarbonate efflux by blocking carbonic anhydrase with acetazolamide (ACTZ) would counteract disinhibition caused by chloride dysregulation without affecting normal inhibition or disinhibition caused by GABAA/glycine receptor blockade. To test this, responses to innocuous tactile stimulation were recorded in vivo from rat superficial dorsal horn neurons before and after different forms of pharmacological disinhibition and again after application of ACTZ. Blocking GABAA or glycine receptors caused hyperresponsiveness equivalent to that caused by blocking the potassium chloride cotransporter KCC2, but, consistent with our predictions, only disinhibition caused by KCC2 blockade was counteracted by ACTZ. ACTZ did not alter responses of neurons with intact inhibition. As pathological downregulation of KCC2 is triggered by brain-derived neurotrophic factor, we also confirmed that ACTZ was effective against brain-derived neurotrophic factor-induced hyperresponsiveness. Our results argue that intrathecal ACTZ has antiallodynic effects only if allodynia arises through chloride dysregulation; therefore, behavioral evidence that ACTZ is antiallodynic in nerve-injured animals affirms the contribution of chloride dysregulation as a key pathological mechanism. Although different disinhibitory mechanisms are not mutually exclusive, these results demonstrate that their relative contribution dictates which

  4. Ontogeny and Regulation of the Serotonin Transporter: Providing Insights into Human Disorders

    PubMed Central

    Daws, Lynette C.; Gould, Georgianna G.

    2011-01-01

    Serotonin (5-hydroxytryptamine, 5-HT) was one of the first neurotransmitters for which a role in development was identified. Pharmacological and gene knockout studies have revealed a critical role for 5-HT in numerous processes, including cell division, neuronal migration, differentiation and synaptogenesis. An excess in brain 5-HT appears to be mechanistically linked to abnormal brain development, which in turn is associated with neurological disorders. Ambient levels of 5-HT are controlled by a vast orchestra of proteins, including a multiplicity of pre- and post-synaptic 5-HT receptors, heteroreceptors, enzymes and transporters. The 5-HT transporter (SERT, 5-HTT) is arguably the most powerful regulator of ambient extracellular 5-HT. SERT is the high-affinity uptake mechanism for 5-HT and exerts tight control over the strength and duration of serotonergic neurotransmission. Perturbation of its expression level or function has been implicated in many diseases, prominent among them are psychiatric disorders. This review synthesizes existing information on the ontogeny of SERT during embryonic and early postnatal development though adolescence, along with factors that influence its expression and function during these critical developmental windows. We integrate this knowledge to emphasize how inappropriate SERT expression or its dysregulation may be linked to the pathophysiology of psychiatric, cardiovascular and gastrointestinal diseases. PMID:21447358

  5. Serotonin 5-HT2 Receptor Interactions with Dopamine Function: Implications for Therapeutics in Cocaine Use Disorder

    PubMed Central

    Cunningham, Kathryn A.

    2015-01-01

    Cocaine exhibits prominent abuse liability, and chronic abuse can result in cocaine use disorder with significant morbidity. Major advances have been made in delineating neurobiological mechanisms of cocaine abuse; however, effective medications to treat cocaine use disorder remain to be discovered. The present review will focus on the role of serotonin (5-HT; 5-hydroxytryptamine) neurotransmission in the neuropharmacology of cocaine and related abused stimulants. Extensive research suggests that the primary contribution of 5-HT to cocaine addiction is a consequence of interactions with dopamine (DA) neurotransmission. The literature on the neurobiological and behavioral effects of cocaine is well developed, so the focus of the review will be on cocaine with inferences made about other monoamine uptake inhibitors and releasers based on mechanistic considerations. 5-HT receptors are widely expressed throughout the brain, and several different 5-HT receptor subtypes have been implicated in mediating the effects of endogenous 5-HT on DA. However, the 5-HT2A and 5-HT2C receptors in particular have been implicated as likely candidates for mediating the influence of 5-HT in cocaine abuse as well as to traits (e.g., impulsivity) that contribute to the development of cocaine use disorder and relapse in humans. Lastly, new approaches are proposed to guide targeted development of serotonergic ligands for the treatment of cocaine use disorder. PMID:25505168

  6. Serotonin 5-HT2 receptor interactions with dopamine function: implications for therapeutics in cocaine use disorder.

    PubMed

    Howell, Leonard L; Cunningham, Kathryn A

    2015-01-01

    Cocaine exhibits prominent abuse liability, and chronic abuse can result in cocaine use disorder with significant morbidity. Major advances have been made in delineating neurobiological mechanisms of cocaine abuse; however, effective medications to treat cocaine use disorder remain to be discovered. The present review will focus on the role of serotonin (5-HT; 5-hydroxytryptamine) neurotransmission in the neuropharmacology of cocaine and related abused stimulants. Extensive research suggests that the primary contribution of 5-HT to cocaine addiction is a consequence of interactions with dopamine (DA) neurotransmission. The literature on the neurobiological and behavioral effects of cocaine is well developed, so the focus of the review will be on cocaine with inferences made about other monoamine uptake inhibitors and releasers based on mechanistic considerations. 5-HT receptors are widely expressed throughout the brain, and several different 5-HT receptor subtypes have been implicated in mediating the effects of endogenous 5-HT on DA. However, the 5-HT2A and 5-HT2C receptors in particular have been implicated as likely candidates for mediating the influence of 5-HT in cocaine abuse as well as to traits (e.g., impulsivity) that contribute to the development of cocaine use disorder and relapse in humans. Lastly, new approaches are proposed to guide targeted development of serotonergic ligands for the treatment of cocaine use disorder. PMID:25505168

  7. Inhibition of serotonin release by bombesin-like peptides in rat hypothalamus in vitro

    SciTech Connect

    Saporito, M.S.; Warwick, R.O. Jr.

    1989-01-01

    We investigated the activity of bombesin (BN), neuromedin-C (NM-C) and neuromedin-B (NM-B) on serotonin (5-HT) release and reuptake in rat hypothalamus (HYP) in vitro. BN and NM-C but not NM-B decreased K/sup +/ evoked /sup 3/H-5-HT release from superfused HYP slices by 25%. Bacitracin, a nonspecific peptidase inhibitor, reversed the inhibitory effect of BN on K/sup +/ evoked /sup 3/H-5-HT release. Phosphoramidon (PAN, 10 /mu/M) an endopeptidase 24.11 inhibitor, abolished the inhibitory effect of BN, but not NM-C, on K/sup +/ evoked /sup 3/H-5-HT release. The peptidyl dipeptidase A inhibitor enalaprilat (ENP, 10 /mu/M), enhanced both BN and NM-C inhibition of /sup 3/H-5-HT release. Bestatin (BST, 10 /mu/M) had no effect on BN or NM-C inhibitory activity on /sup 3/H-5-HT release. Neither BN, NM-C nor NM-B affected reuptake of /sup 3/H-5-HT into HYP synaptosomes alone or in combination with any of the peptidase inhibitors, nor did these peptides alter the ability of fluoxetine to inhibit /sup 3/H-5-HT uptake.

  8. Hydrogen peroxide stimulates the active transport of serotonin into human platelets

    SciTech Connect

    Bosin, T.R. )

    1991-03-11

    The effect of hydrogen peroxide on the active transport of serotonin (5-HT) by human platelets was investigated. Platelets were exposed to either a single dose of H{sub 2}O{sub 2} or to H{sub 2}O{sub 2} generated by the glucose/glucose oxidase or xanthine/xanthine oxidase enzyme systems. H{sub 2}{sub 2} produced a rapid, dose-dependent and time-dependent increase in 5-HT transport which was maximal after a 2 min incubation and decreased with continued incubation. Catalase completely prevented H{sub 2}O{sub 2}-induced stimulation and fluoxetine totally blocked 5-HT uptake into stimulated platelets. The glucose/glucose oxidase and the xanthine/xanthine oxidase generating systems produced a similar response to that of H{sub 2}O{sub 2}. In the xanthine/xanthine oxidase system, superoxide dismutase failed to alter the stimulation, while catalase effectively prevented the response. The kinetics of 5-HT transport indicated that H{sub 2}O{sub 2} treatment did not alter the K{sub m} of 5-HT transport but significantly increased the maximal rate of 5-HT transport. These data demonstrated that exposure of human platelets to H{sub 2}O{sub 2} resulted in a stimulation of the active transport of 5-HT and suggested that H{sub 2}O{sub 2} may function to regulate this process.

  9. Rationality and emotionality: serotonin transporter genotype influences reasoning bias.

    PubMed

    Stollstorff, Melanie; Bean, Stephanie E; Anderson, Lindsay M; Devaney, Joseph M; Vaidya, Chandan J

    2013-04-01

    Reasoning often occurs under emotionally charged, opinion-laden circumstances. The belief-bias effect indexes the extent to which reasoning is based upon beliefs rather than logical structure. We examined whether emotional content increases this effect, particularly for adults genetically predisposed to be more emotionally reactive. SS/SL(G) carriers of the serotonin transporter genotype (5-HTTLPR) were less accurate selectively for evaluating emotional relational reasoning problems with belief-logic conflict relative to L(A)L(A) carriers. Trait anxiety was positively associated with emotional belief-bias, and the 5-HTTLPR genotype significantly accounted for the variance in this association. Thus, deductive reasoning, a higher cognitive ability, is sensitive to differences in emotionality rooted in serotonin neurotransmitter function.

  10. Serotonin syndrome versus neuroleptic malignant syndrome: a challenging clinical quandary.

    PubMed

    Dosi, Rupal; Ambaliya, Annirudh; Joshi, Harshal; Patell, Rushad

    2014-06-23

    Serotonin syndrome and neuroleptic malignant syndrome are two drug toxidromes that have often overlapping and confusing clinical pictures. We report a case of a young man who presented with alteration of mental status, autonomic instability and neuromuscular hyperexcitability following ingestion of multiple psychiatric and antiepileptic medications. The patient satisfied criteria for serotonin syndrome and neuroleptic malignant syndrome, and based on the characteristic clinical features, laboratory findings and clinical course it was concluded that the patient had both toxidromes. The patient was managed with cyproheptadine and supportive measures, and recovered over the course of 3 weeks. A brief review of literature highlighting the diagnostic clues as well as the importance of recognising and distinguishing the often missed and confounding diagnoses follows.

  11. Serotonin syndrome versus neuroleptic malignant syndrome: a challenging clinical quandary

    PubMed Central

    Dosi, Rupal; Ambaliya, Annirudh; Joshi, Harshal; Patell, Rushad

    2014-01-01

    Serotonin syndrome and neuroleptic malignant syndrome are two drug toxidromes that have often overlapping and confusing clinical pictures. We report a case of a young man who presented with alteration of mental status, autonomic instability and neuromuscular hyperexcitability following ingestion of multiple psychiatric and antiepileptic medications. The patient satisfied criteria for serotonin syndrome and neuroleptic malignant syndrome, and based on the characteristic clinical features, laboratory findings and clinical course it was concluded that the patient had both toxidromes. The patient was managed with cyproheptadine and supportive measures, and recovered over the course of 3 weeks. A brief review of literature highlighting the diagnostic clues as well as the importance of recognising and distinguishing the often missed and confounding diagnoses follows. PMID:24957740

  12. Rationality and emotionality: serotonin transporter genotype influences reasoning bias

    PubMed Central

    Bean, Stephanie E.; Anderson, Lindsay M.; Devaney, Joseph M.; Vaidya, Chandan J.

    2013-01-01

    Reasoning often occurs under emotionally charged, opinion-laden circumstances. The belief-bias effect indexes the extent to which reasoning is based upon beliefs rather than logical structure. We examined whether emotional content increases this effect, particularly for adults genetically predisposed to be more emotionally reactive. SS/SLG carriers of the serotonin transporter genotype (5-HTTLPR) were less accurate selectively for evaluating emotional relational reasoning problems with belief-logic conflict relative to LALA carriers. Trait anxiety was positively associated with emotional belief-bias, and the 5-HTTLPR genotype significantly accounted for the variance in this association. Thus, deductive reasoning, a higher cognitive ability, is sensitive to differences in emotionality rooted in serotonin neurotransmitter function. PMID:22275169

  13. [Pulmonary arterial hypertension, bone marrow, endothelial cell precursors and serotonin].

    PubMed

    Ayme-Dietrich, Estelle; Banas, Sophie M; Monassier, Laurent; Maroteaux, Luc

    2016-01-01

    Serotonin and bone-marrow-derived stem cells participate together in triggering pulmonary hypertension. Our work has shown that the absence of 5-HT2B receptors generates permanent changes in the composition of the blood and bone-marrow in the myeloid lineages, particularly in endothelial cell progenitors. The initial functions of 5-HT2B receptors in pulmonary arterial hypertension (PAH) are restricted to bone-marrow cells. They contribute to the differentiation/proliferation/mobilization of endothelial progenitor cells from the bone-marrow. Those bone-marrow-derived cells have a critical role in the development of pulmonary hypertension and pulmonary vascular remodeling. These data indicate that bone-marrow derived endothelial progenitors play a key role in the pathogenesis of PAH and suggest that interactions involving serotonin and bone morphogenic protein type 2 receptor (BMPR2) could take place at the level of the bone-marrow. PMID:27687599

  14. Opponency Revisited: Competition and Cooperation Between Dopamine and Serotonin

    PubMed Central

    Boureau, Y-Lan; Dayan, Peter

    2011-01-01

    Affective valence lies on a spectrum ranging from punishment to reward. The coding of such spectra in the brain almost always involves opponency between pairs of systems or structures. There is ample evidence for the role of dopamine in the appetitive half of this spectrum, but little agreement about the existence, nature, or role of putative aversive opponents such as serotonin. In this review, we consider the structure of opponency in terms of previous biases about the nature of the decision problems that animals face, the conflicts that may thus arise between Pavlovian and instrumental responses, and an additional spectrum joining invigoration to inhibition. We use this analysis to shed light on aspects of the role of serotonin and its interactions with dopamine. PMID:20881948

  15. Serotonin competence of mouse beta cells during pregnancy.

    PubMed

    Goyvaerts, Lotte; Schraenen, Anica; Schuit, Frans

    2016-07-01

    Pregnancy is a key mammalian reproductive event in which growth and differentiation of the fetus imposes extra metabolic and hormonal demands on the mother. Its successful outcome depends on major changes in maternal blood circulation, metabolism and endocrine function. One example is the endocrine pancreas, where beta cells undergo a number of changes in pregnancy that result in enhanced functional beta cell mass in order to compensate for the rising metabolic needs for maternal insulin. During the last 5 years, a series of studies have increased our understanding of the molecular events involved in this functional adaptation. In the mouse, a prominent functional change during pregnancy is the capacity of some beta cells to produce serotonin. In this review we will discuss the mechanism and potential effects of pregnancy-related serotonin production in beta cells, considering functional consequences at the local intra-islet and systemic level. PMID:27056372

  16. Expression analysis for inverted effects of serotonin transporter inactivation

    SciTech Connect

    Ichikawa, Manabu |; Okamura-Oho, Yuko Shimokawa, Kazuro; Kondo, Shinji; Nakamura, Sakiko; Yokota, Hideo |; Himeno, Ryutaro; Lesch, Klaus-Peter; Hayashizaki, Yoshihide |

    2008-03-28

    Inactivation of serotonin transporter (HTT) by pharmacologically in the neonate or genetically increases risk for depression in adulthood, whereas pharmacological inhibition of HTT ameliorates symptoms in depressed patients. The differing role of HTT function during early development and in adult brain plasticity in causing or reversing depression remains an unexplained paradox. To address this we profiled the gene expression of adult Htt knockout (Htt KO) mice and HTT inhibitor-treated mice. Inverted profile changes between the two experimental conditions were seen in 30 genes. Consistent results of the upstream regulatory element search and the co-localization search of these genes indicated that the regulation may be executed by Pax5, Pax7 and Gata3, known to be involved in the survival, proliferation, and migration of serotonergic neurons in the developing brain, and these factors are supposed to keep functioning to regulate downstream genes related to serotonin system in the adult brain.

  17. Oestradiol modulation of serotonin reuptake transporter and serotonin metabolism in the brain of monkeys.

    PubMed

    Sánchez, M G; Morissette, M; Di Paolo, T

    2013-06-01

    Serotonin (5-hydroxytryptamine; 5-HT) is an important brain neurotransmitter that is implicated in mental and neurodegenerative diseases and is modulated by ovarian hormones. Nevertheless, the effect of oestrogens on 5-HT neurotransmission in the primate caudate nucleus, putamen and nucleus accumbens, which are major components of the basal ganglia, and the anterior cerebral cortex, mainly the frontal and cingulate gyrus, is not well documented. The present study evaluated 5-HT reuptake transporter (SERT) and 5-HT metabolism in these brain regions in response to 1-month treatment with 17β-oestradiol in short-term (1 month) ovariectomised (OVX) monkeys (Macaca fascicularis). SERT-specific binding was measured by autoradiography using the radioligand [³H]citalopram. Biogenic amine concentrations were quantified by high-performance liquid chromatography. 17β-Oestradiol increased SERT in the superior frontal cortex and in the anterior cingulate cortex, in the nucleus accumbens, and in subregions of the caudate nucleus of OVX monkeys. 17β-Oestradiol left [³H]citalopram-specific binding unchanged in the putamen, as well as the dorsal and medial raphe nucleus. 17β-Oestradiol treatment decreased striatal concentrations of the precursor of 5-HT, 5-hydroxytryptophan, and increased 5-HT, dopamine and 3-methoxytyramine concentrations in the nucleus accumbens, caudate nucleus and putamen, whereas the concentrations of the metabolites 5-hydroxyindoleacetic acid, 3,4-dihydroxyphenylacetic acid and homovanillic acid remained unchanged. No effect of 17β-oestradiol treatment was observed for biogenic amine concentrations in the cortical regions. A significant positive correlation was observed between [³H]citalopram-specific binding and 5-HT concentrations in the caudate nucleus, putamen and nucleus accumbens, suggesting their link. These results have translational value for women with low oestrogen, such as those in surgical menopause or perimenopause. PMID:23414342

  18. Ventilatory adaptation to hypoxia occurs in serotonin-depleted rats.

    PubMed

    Olson, E B

    1987-08-01

    To test the hypothesis that serotonin mediated respiratory activity is involved in ventilatory adaptation to hypoxia, rats were treated with parachlorophenylalanine (PCPA), a potent, long-acting inhibitor of tryptophan hydroxylase, the rate-limiting enzyme in the biosynthesis of serotonin. In normoxia, a single, intraperitoneal injection of 300 mg PCPA/kg body weight decreased the Paco2 from a control level at 39.1 +/- 0.6 Torr (mean +/- 95% confidence limits) to 34.0 +/- 0.6 Torr measured during a period from 1 to 48 h following PCPA treatment. This PCPA-produced hyperventilation corresponds to an increase of 3.7 +/- 0.5 in the VA (BTPS)/Vco2 (STPD) ratio. Hyperventilation during ventilatory adaptation to hypoxia (PIO2 approximately equal to 90 Torr) was superimposed in an additive fashion on the underlying hyperventilation due to PCPA pretreatment. Specifically, PCPA pretreatment caused an average 3.5 +/- 1.2 increase in the VA/VCO2 ratio determined in acute (1 h) hypoxia, chronic (24 h) hypoxia and acute return to normoxia following chronic hypoxia. Since ventilatory adaptation to hypoxia occurred in rats treated with PCPA, the prolonged, serotonin mediated respiratory activity described by Millhorn et al. (1980b) is probably not important in ventilatory acclimatization to - or deacclimatization from - hypoxia. PMID:2957766

  19. Serotonin 6 receptor controls Alzheimer's disease and depression.

    PubMed

    Yun, Hyung-Mun; Park, Kyung-Ran; Kim, Eun-Cheol; Kim, Sanghyeon; Hong, Jin Tae

    2015-09-29

    Alzheimer's disease (AD) and depression in late life are one of the most severe health problems in the world disorders. Serotonin 6 receptor (5-HT6R) has caused much interest for potential roles in AD and depression. However, a causative role of perturbed 5-HT6R function between two diseases was poorly defined. In the present study, we found that a 5-HT6R antagonist, SB271036 rescued memory impairment by attenuating the generation of Aβ via the inhibition of γ-secretase activity and the inactivation of astrocytes and microglia in the AD mouse model. It was found that the reduction of serotonin level was significantly recovered by SB271036, which was mediated by an indirect regulation of serotonergic neurons via GABA. Selective serotonin reuptake inhibitor (SSRI), fluoxetine significantly improved cognitive impairment and behavioral changes. In human brain of depression patients, we then identified the potential genes, amyloid beta (A4) precursor protein-binding, family A, member 2 (APBA2), well known AD modulators by integrating datasets from neuropathology, microarray, and RNA seq. studies with correlation analysis tools. And also, it was demonstrated in mouse models and patients of AD. These data indicate functional network of 5-HT6R between AD and depression. PMID:26449188

  20. Associations between Central Nervous System Serotonin, Fasting Glucose and Hostility in African American Females

    PubMed Central

    Boyle, Stephen H.; Georgiades, Anastasia; Brummett, Beverly H.; Barefoot, John C.; Siegler, Ilene C.; Matson, Wayne R.; Kuhn, Cynthia M.; Grichnik, Katherine; Stafford-Smith, Mark; Williams, Redford B.; Kaddurah-Daouk, Rima; Surwit, Richard S.

    2015-01-01

    Background Previous research has shown an association between hostility and fasting glucose in African American women. Central nervous system serotonin activity is implicated both in metabolic processes and in hostility related traits. Purpose To determine whether central nervous system serotonin influences the association between hostility and fasting glucose in African American women. Methods The study consisted of 119 healthy volunteers (36 African American women, 27 white women, 21 white males, and 35 African American males, mean age 34±8.5 years). Serotonin metabolites were measured in cerebrospinal fluid. Hostility was measured by the Cook-Medley Hostility Scale. Results Hostility was associated with fasting glucose and central nervous system serotonin metabolites in African American women only. Controlling for the serotonin metabolites significantly reduced the association of hostility to glucose. Conclusions The positive correlation between hostility and fasting glucose in African American women can partly be explained by central nervous system serotonin function. PMID:24806470

  1. The calcium-dependent neuronal release of serotonin and its antagonism by lithium.

    PubMed

    Stefano, G B; Catapane, E J; Aiello, E; Hiripi, L

    1980-03-01

    The cilio-excitatory serotonergic innervation of lateral gill cilia of Mytilus edulis was studied in vivo. Peripheral serotonin release was dependent on the external calcium concentration. Serotonin release was inhibited by autodialyzing calcium from the tissue or by increasing the calcium concentration in the medium, as determined by measuring ciliary activity stroboscopically and by biochemical and radioassays of serotonin. Lithium also inhibited serotonin release when added to the external bathing medium. Concomitantly, altering calcium concentrations altered the degree of inhibition of serotonin release caused by lithium. The study demonstrates that the terminal release of the monoamine serotonin is a calcium-dependent mechanism. The pharmacological effects of lithium in this system appear to be interrelated with the calcium-dependent releasing mechanism. PMID:7381459

  2. Prostaglandin synthesis inhibitors reduce Cannabis and restraint stress induced increase in rat brain serotonin concentrations.

    PubMed

    Bhattacharya, S K; Bhattacharya, D

    1983-01-01

    Cannabis resin (CI) produced a dose-related increase in rat brain serotonin concentrations, whereas restraint stress produced maximal rise of the neurotransmitter concentrations at 1 h, followed by a tendency to normalise by 4 h. The prostaglandin (PG) synthesis inhibitors, diclofenac and paracetamol, antagonized CI and restraint stress induced rise in serotonin concentrations. The findings lend credence to earlier reports that PG synthesis inhibitors antagonize serotonin-mediated neuropharmacological actions of CI and restraint stress in rats.

  3. Inhibition of FAAH, TRPV1, and COX2 by NSAID-serotonin conjugates.

    PubMed

    Rose, Tyler M; Reilly, Christopher A; Deering-Rice, Cassandra E; Brewster, Clinton; Brewster, Chelsea

    2014-12-15

    Serotonin was linked by amidation to the carboxylic acid groups of a series of structurally diverse NSAIDs. The resulting NSAID-serotonin conjugates were tested in vitro for their ability to inhibit FAAH, TRPV1, and COX2. Ibuprofen-5-HT and Flurbiprofen-5-HT inhibited all three targets with approximately the same potency as N-arachidonoyl serotonin (AA-5-HT), while Fenoprofen-5-HT and Naproxen-5-HT showed activity as dual inhibitors of TRPV1 and COX2.

  4. Inhibition of FAAH, TRPV1, and COX2 by NSAID-Serotonin Conjugates

    PubMed Central

    Rose, Tyler M.; Reilly, Christopher A.; Deering-Rice, Cassandra E.; Brewster, Clinton; Brewster, Chelsea

    2014-01-01

    Serotonin was linked by amidation to the carboxylic acid groups of a series of structurally diverse NSAIDs. The resulting NSAID-serotonin conjugates were tested in vitro for their ability to inhibit FAAH, TRPV1, and COX2. Ibuprofen-5-HT and Flurbiprofen-5-HT inhibited all three targets with approximately the same potency as N-arachidonoyl serotonin (AA-5-HT), while Fenoprofen-5-HT and Naproxen-5-HT showed activity as dual inhibitors of TRPV1 and COX2. PMID:25467164

  5. Nutrient-induced glucagon like peptide-1 release is modulated by serotonin.

    PubMed

    Ripken, Dina; van der Wielen, Nikkie; Wortelboer, Heleen M; Meijerink, Jocelijn; Witkamp, Renger F; Hendriks, Henk F J

    2016-06-01

    Glucagon like peptide-1 (GLP-1) and serotonin are both involved in food intake regulation. GLP-1 release is stimulated upon nutrient interaction with G-protein coupled receptors by enteroendocrine cells (EEC), whereas serotonin is released from enterochromaffin cells (ECC). The central hypothesis for the current study was that nutrient-induced GLP-1 release from EECs is modulated by serotonin through a process involving serotonin receptor interaction. This was studied by assessing the effects of serotonin reuptake inhibition by fluoxetine on nutrient-induced GLP-1, PYY and CCK release from isolated pig intestinal segments. Next, serotonin-induced GLP-1 release was studied in enteroendocrine STC-1 cells, where effects of serotonin receptor inhibition were studied using specific and non-specific antagonists. Casein (1% w/v), safflower oil (3.35% w/v), sucrose (50mM) and rebaudioside A (12.5mM) stimulated GLP-1 release from intestinal segments, whereas casein only stimulated PYY and CCK release. Combining nutrients with fluoxetine further increased nutrient-induced GLP-1, PYY and CCK release. Serotonin release from intestinal tissue segments was stimulated by casein and safflower oil while sucrose and rebaudioside A had no effect. The combination with fluoxetine (0.155μM) further enhanced casein and safflower oil induced-serotonin release. Exposure of ileal tissue segments to serotonin (30μM) stimulated GLP-1 release whereas it did not induce PYY and CCK release. Serotonin (30 and 100μM) also stimulated GLP-1 release from STC-1 cells, which was inhibited by the non-specific 5HT receptor antagonist asenapine (1 and 10μM). These data suggest that nutrient-induced GLP-1 release is modulated by serotonin through a receptor mediated process. PMID:27142747

  6. Changes in Intensity of Serotonin Syndrome Caused by Adverse Interaction between Monoamine Oxidase Inhibitors and Serotonin Reuptake Blockers

    PubMed Central

    Tao, Rui; Rudacille, Mary; Zhang, Gongliang; Ma, Zhiyuan

    2014-01-01

    Drug interaction between inhibitors of monoamine oxidase (MAOIs) and selective serotonin (5-hydroxytryptamine, 5-HT) reuptake (SSRIs) induces serotonin syndrome, which is usually mild but occasionally severe in intensity. However, little is known about neural mechanisms responsible for the syndrome induction and intensification. In this study, we hypothesized that the syndrome induction and intensity utilize two different but inter-related mechanisms. Serotonin syndrome is elicited by excessive 5-HT in the brain (presynaptic mechanism), whereas syndrome intensity is attributed to neural circuits involving 5-HT2A and NMDA receptors (postsynaptic mechanism). To test this hypothesis, basal 5-HT efflux and postsynaptic circuits were pharmacologically altered in rats by once daily pretreatment of the MAOI clorgyline for 3, 6, or 13 days. Syndrome intensity was estimated by measuring 5-HT efflux, neuromuscular activity, and body-core temperature in response to challenge injection of clorgyline combined with the SSRI paroxetine. Results showed that the onset of serotonin syndrome is caused by 5-HT efflux exceeding 10-fold above baseline, confirming the presynaptic hypothesis. The neuromuscular and body-core temperature abnormalities, which were otherwise mild in drug-naive rats, were significantly intensified to a severe level in rats pretreated with daily clorgyline for 3 and 6 days but not in rats pretreated for 13 days. The intensified effect was blocked by M100907 and MK-801, suggesting that variation in syndrome intensity was mediated through a 5-HT2A and NMDA receptor-engaged circuit. Therefore, we concluded that pretreatments of MAOI pharmacologically alter the activity of postsynaptic circuits, which is responsible for changes in syndrome intensity. PMID:24577320

  7. Exocytosis of serotonin from the neuronal soma is sustained by a serotonin and calcium-dependent feedback loop

    PubMed Central

    Leon-Pinzon, Carolina; Cercós, Montserrat G.; Noguez, Paula; Trueta, Citlali; De-Miguel, Francisco F.

    2014-01-01

    The soma of many neurons releases large amounts of transmitter molecules through an exocytosis process that continues for hundreds of seconds after the end of the triggering stimulus. Transmitters released in this way modulate the activity of neurons, glia and blood vessels over vast volumes of the nervous system. Here we studied how somatic exocytosis is maintained for such long periods in the absence of electrical stimulation and transmembrane Ca2+ entry. Somatic exocytosis of serotonin from dense core vesicles could be triggered by a train of 10 action potentials at 20 Hz in Retzius neurons of the leech. However, the same number of action potentials produced at 1 Hz failed to evoke any exocytosis. The 20-Hz train evoked exocytosis through a sequence of intracellular Ca2+ transients, with each transient having a different origin, timing and intracellular distribution. Upon electrical stimulation, transmembrane Ca2+ entry through L-type channels activated Ca2+-induced Ca2+ release. A resulting fast Ca2+ transient evoked an early exocytosis of serotonin from sparse vesicles resting close to the plasma membrane. This Ca2+ transient also triggered the transport of distant clusters of vesicles toward the plasma membrane. Upon exocytosis, the released serotonin activated autoreceptors coupled to phospholipase C, which in turn produced an intracellular Ca2+ increase in the submembrane shell. This localized Ca2+ increase evoked new exocytosis as the vesicles in the clusters arrived gradually at the plasma membrane. In this way, the extracellular serotonin elevated the intracellular Ca2+ and this Ca2+ evoked more exocytosis. The resulting positive feedback loop maintained exocytosis for the following hundreds of seconds until the last vesicles in the clusters fused. Since somatic exocytosis displays similar kinetics in neurons releasing different types of transmitters, the data presented here contributes to understand the cellular basis of paracrine neurotransmission

  8. Adverse effects of serotonin depletion in developing zebrafish.

    PubMed

    Airhart, Mark J; Lee, Deborah H; Wilson, Tracy D; Miller, Barney E; Miller, Merry N; Skalko, Richard G; Monaco, Paul J

    2012-01-01

    In this study, p-chlorophenylalanine (pCPA), an inhibitor of tryptophan hydroxylase (the rate limiting enzyme of serotonin synthesis), was used to reduce serotonin (5HT) levels during early development in zebrafish embryos. One day old dechorionated embryos were treated with 25 μM pCPA for 24h and subsequently rescued. Immunohistological studies using a 5HT antibody confirmed that 5HT neurons in the brain and spinal cord were depleted of transmitter by 2 days post fertilization (dpf). Twenty four hours after pCPA exposure embryos were unable to burst swim and were nearly paralyzed. Movement began to improve at 4 dpf, and by 7 dpf, larvae exhibited swimming activity. Rescued larvae continued to grow in rostrocaudal length over 5 days post-rescue, but their length was always 16-21% below controls. Surprisingly, both groups displayed the same number of myotomes. To examine whether hypertonicity of myotomes in treated embryos played a role in their shorter rostrocaudal lengths, 1 dpf embryos were exposed to a combination of 25 μM pCPA and 0.6 mM of the sodium channel blocker ethyl 3-aminobenzoate methanesulfonate (MS-222). After a 24 hour exposure, the embryos exhibited the same rostrocaudal length as control embryos suggesting that myotome hypertonicity plays a major role in the decreased axial length of the treated larvae. In addition, pCPA treated 2 dpf embryos exhibited abnormal notochordal morphology that persisted throughout recovery. Reverse transcriptase polymerase chain reaction (RT-PCR) was performed to determine the relative levels of the serotonin 1A receptor (5HT(1A)) transcript and the serotonin transporter (SERT) transcript in the brain and spinal cord of control and treated embryos. Transcripts were present in both brain and spinal cord as early as 1 dpf and reached maximal concentrations by 3 dpf. Embryos treated with pCPA demonstrated a decrease in the concentration of 5HT(1A) transcript in both brain and spinal cord. While SERT transcript levels

  9. Electronic ground state properties of Coulomb blockaded quantum dots

    NASA Astrophysics Data System (ADS)

    Patel, Satyadev Rajesh

    Conductance through quantum dots at low temperature exhibits random but repeatable fluctuations arising from quantum interference of electrons. The observed fluctuations follow universal statistics arising from the underlying universality of quantum chaos. Random matrix theory (RMT) has provided an accurate description of the observed universal conductance fluctuations (UCF) in "open" quantum dots (device conductance ≥e 2/h). The focus of this thesis is to search for and decipher the underlying origin of similar universal properties in "closed" quantum dots (device conductance ≤e2/ h). A series of experiments is presented on electronic ground state properties measured via conductance measurements in Coulomb blockaded quantum dots. The statistics of Coulomb blockade (CB) peak heights with zero and non-zero magnetic field measured in various devices agree qualitatively with predictions from Random Matrix Theory (RMT). The standard deviation of the peak height fluctuations for non-zero magnetic field is lower than predicted by RMT; the temperature dependence of the standard deviation of the peak height for non-zero magnetic field is also measured. The second experiment summarizes the statistics of CB peak spacings. The peak spacing distribution width is observed to be on the order of the single particle level spacing, Delta, for both zero and non-zero magnetic field. The ratio of the zero field peak spacing distribution width to the non-zero field peak spacing distribution width is ˜1.2; this is good agreement with predictions from spin-resolved RMT predictions. The standard deviation of the non-zero magnetic field peak spacing distribution width shows a T-1/2 dependence in agreement with a thermal averaging model. The final experiment summarizes the measurement of the peak height correlation length versus temperature for various quantum dots. The peak height correlation length versus temperature saturates in small quantum dots, suggesting spectral scrambling

  10. EXTRINSIC COAGULATION BLOCKADE ATTENUATES LUNG INJURY AND PROINFLAMMATORY CYTOKINE RELEASE AFTER INTRATRACHEAL LIPOPOLYSACCHARIDE

    EPA Science Inventory

    Initiation of coagulation by tissue factor (TF) is a potentially powerful regulator of local inflammatory responses. We hypothesized that blockade of TF-factor VIIa (FVIIa) complex would decrease lung inflammation and proinflammatory cytokine release after tracheal instillation o...

  11. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota

    PubMed Central

    Vétizou, Marie; Pitt, Jonathan M.; Daillère, Romain; Lepage, Patricia; Waldschmitt, Nadine; Flament, Caroline; Rusakiewicz, Sylvie; Routy, Bertrand; Roberti, Maria P.; Duong, Connie P. M.; Poirier-Colame, Vichnou; Roux, Antoine; Becharef, Sonia; Formenti, Silvia; Golden, Encouse; Cording, Sascha; Eberl, Gerard; Schlitzer, Andreas; Ginhoux, Florent; Mani, Sridhar; Yamazaki, Takahiro; Jacquelot, Nicolas; Enot, David P.; Bérard, Marion; Nigou, Jérôme; Opolon, Paule; Eggermont, Alexander; Woerther, Paul-Louis; Chachaty, Elisabeth; Chaput, Nathalie; Robert, Caroline; Mateus, Christina; Kroemer, Guido; Raoult, Didier; Boneca, Ivo Gomperts; Carbonnel, Franck; Chamaillard, Mathias; Zitvogel, Laurence

    2016-01-01

    Antibodies targeting CTLA-4 have been successfully used as cancer immunotherapy. We find that the antitumor effects of CTLA-4 blockade depend on distinct Bacteroides species. In mice and patients, T cell responses specific for B. thetaiotaomicron or B. fragilis were associated with the efficacy of CTLA-4 blockade. Tumors in antibiotic-treated or germ-free mice did not respond to CTLA blockade. This defect was overcome by gavage with B. fragilis, by immunization with B. fragilis polysaccharides, or by adoptive transfer of B. fragilis–specific T cells. Fecal microbial transplantation from humans to mice confirmed that treatment of melanoma patients with antibodies against CTLA-4 favored the outgrowth of B. fragilis with anticancer properties. This study reveals a key role for Bacteroidales in the immunostimulatory effects of CTLA-4 blockade. PMID:26541610

  12. Fano effect dominance over Coulomb blockade in transport properties of parallel coupled quantum dot system

    SciTech Connect

    Brogi, Bharat Bhushan Ahluwalia, P. K.; Chand, Shyam

    2015-06-24

    Theoretical study of the Coulomb blockade effect on transport properties (Transmission Probability and I-V characteristics) for varied configuration of coupled quantum dot system has been studied by using Non Equilibrium Green Function(NEGF) formalism and Equation of Motion(EOM) method in the presence of magnetic flux. The self consistent approach and intra-dot Coulomb interaction is being taken into account. As the key parameters of the coupled quantum dot system such as dot-lead coupling, inter-dot tunneling and magnetic flux threading through the system can be tuned, the effect of asymmetry parameter and magnetic flux on this tuning is being explored in Coulomb blockade regime. The presence of the Coulomb blockade due to on-dot Coulomb interaction decreases the width of transmission peak at energy level ε + U and by adjusting the magnetic flux the swapping effect in the Fano peaks in asymmetric and symmetric parallel configuration sustains despite strong Coulomb blockade effect.

  13. [Genetic Mutation Accumulation and Clinical Outcome of Immune Checkpoint Blockade Therapy].

    PubMed

    Takahashi, Masanobu

    2016-06-01

    Immune checkpoint blockade therapy has recently attracted great attention in the area of oncology. In Japan, since 2014, an anti-PD-1 antibody nivolumab and anti-CTLA-4 antibody ipilimumab have been available for the treatment of patients with malignant melanoma, and nivolumab has been available for patients with non-small cell lung cancer. Clinical trials using these drugs and other immune checkpoint inhibitors are currently in progress worldwide. The immune checkpoint blockade therapy is a promising new cancer therapy; however, not all patients with cancer can benefit from this therapy. Recent evidence shows that markers reflecting the extent of genetic mutation accumulation, including mutation burden, non-synonymous mutation that produces neoantigen, and microsatellite instability, possibly serve as promising marker to predict who can benefit from the immune checkpoint blockade therapy. Here, I introduce the recent evidence and discuss the correlation between genetic mutation accumulation and clinical outcome of immune checkpoint blockade therapy. PMID:27306805

  14. Peripheral serotonin-mediated system suppresses bone development and regeneration via serotonin 6 G-protein-coupled receptor

    PubMed Central

    Yun, Hyung-Mun; Park, Kyung-Ran; Hong, Jin Tae; Kim, Eun-Cheol

    2016-01-01

    Serotonin is important in brain functions and involved in neurological diseases. It is also drawn considerable attention in bone disease since it mainly produced by the gut. Serotonin 6 G-protein-coupled receptor (5-HT6R) is clinical targets for the treatment of neurological diseases. However, 5-HT6R as a therapeutic target in bone has not been reported. Herein, we found that 5-HT6R showed higher expression in bone, and its expression was increased during bone remodeling and osteoblast differentiation. The activation of 5-HT6R by ST1936 caused the inhibition of ALP activity and mineralization in primary osteoblast cultures, which was antagonized by SB258585, an antagonist and by the knockdown of 5-HT6R. Further investigation indicated that 5-HT6R inhibited osteoblast differentiation via Jab1 in BMP2 signaling but not PKA and ERK1/2. In vivo studies showed that the activation of 5-HT6R inhibited bone regeneration in the calvarial defect mice and also delayed bone development in newborn mice; this response was antagonized by SB258585. Therefore, our findings indicate a key role of 5-HT6R in bone formation through serotonin originating in the peripheral system, and suggest that it is a novel therapeutic target for drug development in the bone repair and bone diseases. PMID:27581523

  15. Peripheral serotonin-mediated system suppresses bone development and regeneration via serotonin 6 G-protein-coupled receptor.

    PubMed

    Yun, Hyung-Mun; Park, Kyung-Ran; Hong, Jin Tae; Kim, Eun-Cheol

    2016-01-01

    Serotonin is important in brain functions and involved in neurological diseases. It is also drawn considerable attention in bone disease since it mainly produced by the gut. Serotonin 6 G-protein-coupled receptor (5-HT6R) is clinical targets for the treatment of neurological diseases. However, 5-HT6R as a therapeutic target in bone has not been reported. Herein, we found that 5-HT6R showed higher expression in bone, and its expression was increased during bone remodeling and osteoblast differentiation. The activation of 5-HT6R by ST1936 caused the inhibition of ALP activity and mineralization in primary osteoblast cultures, which was antagonized by SB258585, an antagonist and by the knockdown of 5-HT6R. Further investigation indicated that 5-HT6R inhibited osteoblast differentiation via Jab1 in BMP2 signaling but not PKA and ERK1/2. In vivo studies showed that the activation of 5-HT6R inhibited bone regeneration in the calvarial defect mice and also delayed bone development in newborn mice; this response was antagonized by SB258585. Therefore, our findings indicate a key role of 5-HT6R in bone formation through serotonin originating in the peripheral system, and suggest that it is a novel therapeutic target for drug development in the bone repair and bone diseases. PMID:27581523

  16. Serotonin modulates responses to species-specific vocalizations in the inferior colliculus.

    PubMed

    Hurley, Laura M; Pollak, George D

    2005-06-01

    Neuromodulators such as serotonin are capable of altering the neural processing of stimuli across many sensory modalities. In the inferior colliculus, a major midbrain auditory gateway, serotonin alters the way that individual neurons respond to simple tone bursts and linear frequency modulated sweeps. The effects of serotonin are complex, and vary among neurons. How serotonin transforms the responses to spectrotemporally complex sounds of the type normally heard in natural settings has been poorly examined. To explore this issue further, the effects of iontophoretically applied serotonin on the responses of individual inferior colliculus neurons to a variety of recorded species-specific vocalizations were examined. These experiments were performed in the Mexican free-tailed bat, a species that uses a rich repertoire of vocalizations for the purposes of communication as well as echolocation. Serotonin frequently changed the number of recorded calls that were capable of evoking a response from individual neurons, sometimes increasing (15% of serotonin-responsive neurons), but usually decreasing (62% of serotonin-responsive neurons), this number. A functional consequence of these serotonin-evoked changes would be to change the population response to species-specific vocalizations. PMID:15830241

  17. Sex- and SERT-mediated differences in stimulated serotonin revealed by fast microdialysis.

    PubMed

    Yang, Hongyan; Sampson, Maureen M; Senturk, Damla; Andrews, Anne M

    2015-08-19

    In vivo microdialysis is widely used to investigate how neurotransmitter levels in the brain respond to biologically relevant challenges. Here, we combined recent improvements in the temporal resolution of online sampling and analysis for serotonin with a brief high-K(+) stimulus paradigm to study the dynamics of evoked release. We observed stimulated serotonin overflow with high-K(+) pulses as short as 1 min when determined with 2-min dialysate sampling in ventral striatum. Stimulated serotonin levels in female mice during the high estrogen period of the estrous cycle were similar to serotonin levels in male mice. By contrast, stimulated serotonin overflow during the low estrogen period in female mice was increased to levels similar to those in male mice with local serotonin transporter (SERT) inhibition. Stimulated serotonin levels in mice with constitutive loss of SERT were considerably higher yet, pointing to neuroadaptive potentiation of serotonin release. When combined with brief K(+) stimulation, fast microdialysis reveals dynamic changes in extracellular serotonin levels associated with normal hormonal cycles and pharmacologic vs genetic loss of SERT function.

  18. Radioenzymatic microassay for picogram quantities of serotonin or acetylserotonin in biological fluids and tissues

    SciTech Connect

    Hussain, M.N.; Benedict, C.R.

    1987-06-01

    This paper describes several modifications of the original radioenzymatic assay for serotonin which increase the sensitivity of the assay 20-fold as well as enhance its reliability. Using this method serotonin concentrations can be directly measured in biological examples without precleaning the sample. When compared to currently available methods this assay is specific and sensitive to approximately 1 pg of serotonin and can be used to measure serotonin levels in individual brain nuclei or microliter quantities of biological fluids. This assay can be easily adapted for the direct measurement of N-acetylserotonin. A large number of samples can be assayed in a single working day.

  19. Serotonin syndrome caused by fentanyl and methadone in a burn injury.

    PubMed

    Hillman, Ashley D; Witenko, Corey J; Sultan, Said M; Gala, Gary

    2015-01-01

    Serotonin syndrome is a syndrome identified by a triad of altered mental status, neuromuscular overactivity, and autonomic instability caused by the overstimulation of serotonin in the central nervous system and periphery. Serotonin syndrome may be provoked with the addition or increase in serotonergic agents such as selective serotonin reuptake inhibitors, serotonin norepinephrine reuptake inhibitors, tricyclic antidepressants, and monoamine oxidase inhibitors as well as other agents with serotonergic properties. Some narcotics, including fentanyl and methadone, have these properties and may be associated with the development of serotonin syndrome when used in conjunction with other agents. Currently, there are no identified case reports of narcotics as the sole agent causing serotonin syndrome. This report provides a brief overview of serotonin syndrome, particularly with cases involving administration of narcotics such as fentanyl and methadone. The case described is the first report associated with fentanyl and methadone without the coadministration of other serotonergic agents, and a possible drug interaction with voriconazole is discussed. This raises awareness of using multiple serotonergic narcotics and the potential precipitation of serotonin syndrome.

  20. Effects of 60-Hz electric fields on serotonin metabolism in the rat pineal gland

    SciTech Connect

    Anderson, L.E.; Hilton, D.I.; Phillips, R.D.; Wilson, B.W.; Chess, E.K.

    1982-06-01

    Serotonin and two of its metabolites, melatonin and 5-methoxytryptophol, exhibit circadian rhythmicity in the pineal gland. We recently reported a marked reduction in the normal night-time increase in melatonin concentration in the pineal glands of rats exposed to 60-Hz electric fields. Concomitant with the apparent abolition of melatonin rhythmicity, serotonin-N-acetyl transferase (SNAT) activity was suppressed. We have now conducted studies to determine if abolition of the rhythm in melatonin production in electric-field-exposed rats arises solely from interference in SNAT activity, or if the availability of pineal serotonin is a factor that is affected by exposure. Pineal serotonin concentrations were compared in rats that were either exposed or sham exposed to 65 kV/m for 30 days. Sham-exposed animals exhibited normal diurnal rhythmicity for pineal concentrations of both melatonin and serotonin; melatonin levels increased markedly during the dark phase with a concurrent decrease in serotonin levels. In the exposed animals, however, normal serotonin rhythmicity was abolished; serotonin levels in these animals did not increase during the light period. The conclusion that electric field exposure results in a biochemical alteration in SNAT enzyme activity can be inferred from the loss of both serotonin and melatonin rhythmicity, as well as by direct measurement of SNAT activity itself. 35 references, 3 figures, 1 table.

  1. Depressing Antidepressant: Fluoxetine Affects Serotonin Neurons Causing Adverse Reproductive Responses in Daphnia magna.

    PubMed

    Campos, Bruno; Rivetti, Claudia; Kress, Timm; Barata, Carlos; Dircksen, Heinrich

    2016-06-01

    Selective serotonin reuptake inhibitors (SSRIs) are widely used antidepressants. As endocrine disruptive contaminants in the environment, SSRIs affect reproduction in aquatic organisms. In the water flea Daphnia magna, SSRIs increase offspring production in a food ration-dependent manner. At limiting food conditions, females exposed to SSRIs produce more but smaller offspring, which is a maladaptive life-history strategy. We asked whether increased serotonin levels in newly identified serotonin-neurons in the Daphnia brain mediate these effects. We provide strong evidence that exogenous SSRI fluoxetine selectively increases serotonin-immunoreactivity in identified brain neurons under limiting food conditions thereby leading to maladaptive offspring production. Fluoxetine increases serotonin-immunoreactivity at low food conditions to similar maximal levels as observed under high food conditions and concomitantly enhances offspring production. Sublethal amounts of the neurotoxin 5,7-dihydroxytryptamine known to specifically ablate serotonin-neurons markedly decrease serotonin-immunoreactivity and offspring production, strongly supporting the effect to be serotonin-specific by reversing the reproductive phenotype attained under fluoxetine. Thus, SSRIs impair serotonin-regulation of reproductive investment in a planktonic key organism causing inappropriately increased reproduction with potentially severe ecological impact. PMID:27128505

  2. Serotonin content of platelets in inflammatory rheumatic diseases. Correlation with clinical activity.

    PubMed

    Zeller, J; Weissbarth, E; Baruth, B; Mielke, H; Deicher, H

    1983-04-01

    Significantly decreased platelet serotonin contents were measured in rheumatoid arthritis, systemic lupus erythematosus (SLE), progressive systemic sclerosis, and mixed connective tissue disease. An inverse relationship between platelet serotonin levels and clinical disease activity was observed in both rheumatoid arthritis and systemic lupus erythematosus. SLE patients with multiple organ involvement showed the lowest platelet serotonin values. No correlation was observed between platelet serotonin contents and nonsteroidal antiinflammatory drug treatment, presence of circulating platelet reactive IgG, or the amount of circulating immune complexes. The results are interpreted as indicating platelet release occurring in vivo during inflammatory episodes of the rheumatic disorders investigated. PMID:6838676

  3. [The role of serotonin in the immune system development and functioning during ontogenesis].

    PubMed

    Mel'nikova, V I; Izvol'skaia, M S; Voronova, S N; Zakharova, L A

    2012-01-01

    In this study, we investigated the influence of serotonin on the development and functioning of T- and B-cell-mediated immunity during ontogenesis using the pharmacological model of serotonin depletion in rat fetuses. It has been demonstrated that prenatal serotonin deficiency resulted in a decrease in thymus and spleen weights, changes in their cellular composition, and long-lasting disturbances in cell-mediated and humoral immunity in postnatal ontogenesis. The data obtained suggest that serotonin may be considered a morphogenic factor in development of the immune system. PMID:22834312

  4. Psilocybin induces schizophrenia-like psychosis in humans via a serotonin-2 agonist action.

    PubMed

    Vollenweider, F X; Vollenweider-Scherpenhuyzen, M F; Bäbler, A; Vogel, H; Hell, D

    1998-12-01

    Psilocybin, an indoleamine hallucinogen, produces a psychosis-like syndrome in humans that resembles first episodes of schizophrenia. In healthy human volunteers, the psychotomimetic effects of psilocybin were blocked dose-dependently by the serotonin-2A antagonist ketanserin or the atypical antipsychotic risperidone, but were increased by the dopamine antagonist and typical antipsychotic haloperidol. These data are consistent with animal studies and provide the first evidence in humans that psilocybin-induced psychosis is due to serotonin-2A receptor activation, independently of dopamine stimulation. Thus, serotonin-2A overactivity may be involved in the pathophysiology of schizophrenia and serotonin-2A antagonism may contribute to therapeutic effects of antipsychotics.

  5. Sex- and SERT-mediated differences in stimulated serotonin revealed by fast microdialysis.

    PubMed

    Yang, Hongyan; Sampson, Maureen M; Senturk, Damla; Andrews, Anne M

    2015-08-19

    In vivo microdialysis is widely used to investigate how neurotransmitter levels in the brain respond to biologically relevant challenges. Here, we combined recent improvements in the temporal resolution of online sampling and analysis for serotonin with a brief high-K(+) stimulus paradigm to study the dynamics of evoked release. We observed stimulated serotonin overflow with high-K(+) pulses as short as 1 min when determined with 2-min dialysate sampling in ventral striatum. Stimulated serotonin levels in female mice during the high estrogen period of the estrous cycle were similar to serotonin levels in male mice. By contrast, stimulated serotonin overflow during the low estrogen period in female mice was increased to levels similar to those in male mice with local serotonin transporter (SERT) inhibition. Stimulated serotonin levels in mice with constitutive loss of SERT were considerably higher yet, pointing to neuroadaptive potentiation of serotonin release. When combined with brief K(+) stimulation, fast microdialysis reveals dynamic changes in extracellular serotonin levels associated with normal hormonal cycles and pharmacologic vs genetic loss of SERT function. PMID:26167657

  6. Efficacy of methods of intercostal nerve blockade for pain relief after thoracotomy.

    PubMed

    Detterbeck, Frank C

    2005-10-01

    Intercostal nerve blockade for postthoracotomy pain relief can be accomplished by continuous infusion of local anesthetics through a catheter in the subpleural space or through an interpleural catheter, by cryoanalgesia, and by a direct intercostal nerve block. A systematic review of randomized studies indicates that an extrapleural infusion is at least as effective as an epidural and significantly better than narcotics alone. The other techniques of intercostal blockade do not offer an advantage over narcotics alone. PMID:16181921

  7. Dynamic properties of a Josephson junction balanced comparator with Coulomb blockade

    NASA Astrophysics Data System (ADS)

    Askerzade, I. N.

    2016-09-01

    The dynamics of a Josephson junction balanced comparator with Coulomb blockade has been analyzed. An expression for the time resolution in the case of a linearly increasing gating voltage pulse has been derived with regard to the Bloch inductance. It has been shown that the time resolution depends on the Bloch inductance of small Josephson junctions. Estimates have confirmed the feasibility of a subpicosecond time resolution for balance Josephson comparators with Coulomb blockade.

  8. Transfer of entangled state, entanglement swapping and quantum information processing via the Rydberg blockade

    NASA Astrophysics Data System (ADS)

    Deng, Li; Chen, Ai-Xi; Zhang, Jian-Song

    2011-11-01

    We provide a scheme with which the transfer of the entangled state and the entanglement swapping can be realized in a system of neutral atoms via the Rydberg blockade. Our idea can be extended to teleport an unknown atomic state. According to the latest theoretical research of the Rydberg excitation and experimental reports of the Rydberg blockade effect in quantum information processing, we discuss the experimental feasibility of our scheme.

  9. Animal models of depression in dopamine, serotonin, and norepinephrine transporter knockout mice: prominent effects of dopamine transporter deletions.

    PubMed

    Perona, Maria T G; Waters, Shonna; Hall, Frank Scott; Sora, Ichiro; Lesch, Klaus-Peter; Murphy, Dennis L; Caron, Marc; Uhl, George R

    2008-09-01

    Antidepressant drugs produce therapeutic actions and many of their side effects via blockade of the plasma membrane transporters for serotonin (SERT/SLC6A2), norepinephrine (NET/SLC6A1), and dopamine (DAT/SLC6A3). Many antidepressants block several of these transporters; some are more selective. Mouse gene knockouts of these transporters provide interesting models for possible effects of chronic antidepressant treatments. To examine the role of monoamine transporters in models of depression DAT, NET, and SERT knockout (KO) mice and wild-type littermates were studied in the forced swim test (FST), the tail suspension test, and for sucrose consumption. To dissociate general activity from potential antidepressant effects three types of behavior were assessed in the FST: immobility, climbing, and swimming. In confirmation of earlier reports, both DAT KO and NET KO mice exhibited less immobility than wild-type littermates whereas SERT KO mice did not. Effects of DAT deletion were not simply because of hyperactivity, as decreased immobility was observed in DAT+/- mice that were not hyperactive as well as in DAT-/- mice that displayed profound hyperactivity. Climbing was increased, whereas swimming was almost eliminated in DAT-/- mice, and a modest but similar effect was seen in NET KO mice, which showed a modest decrease in locomotor activity. Combined increases in climbing and decreases in immobility are characteristic of FST results in antidepressant animal models, whereas selective effects on swimming are associated with the effects of stimulant drugs. Therefore, an effect on climbing is thought to more specifically reflect antidepressant effects, as has been observed in several other proposed animal models of reduced depressive phenotypes. A similar profile was observed in the tail suspension test, where DAT, NET, and SERT knockouts were all found to reduce immobility, but much greater effects were observed in DAT KO mice. However, to further determine whether these

  10. Animal models of depression in dopamine, serotonin and norepinephrine transporter knockout mice: prominent effects of dopamine transporter deletions

    PubMed Central

    Perona, Maria T.G.; Waters, Shonna; Hall, F. Scott; Sora, Ichiro; Lesch, Klaus-Peter; Murphy, Dennis L.; Caron, Marc; Uhl, George R.

    2008-01-01

    Antidepressant drugs produce therapeutic actions and many of their side effects via blockade of the plasma membrane transporters for serotonin (SERT/SLC6A2), norepinephrine (NET/SLC6A1) and dopamine (DAT/SLC6A3). Many antidepressants block several ofthese transporters; some are more selective. Mouse gene knockouts of these transporters provide interesting models for possible effects of chronic antidepressant treatments. To examine the role of monoamine transporters in models of depression DAT, NET and SERT KO mice and wildtype littermates were studied in the forced swim test (FST), the tail suspension test (TST) and for sucrose consumption. In order to dissociate general activity from the potential antidepressant effects three types of behavior were assessed in the FST: immobility, climbing and swimming. In confirmation of previous reports, both DAT KO and NET KO mice exhibited less immobility than wildtype littermates while SERT KO mice did not. Effects of DAT deletion were not simply due to hyperactivity as decreased immobility was observed in DAT +/- mice that were not hyperactive as well as in DAT -/- mice that displayed profound hyperactivity. Climbing was increased, while swimming was almost eliminated in DAT -/-mice, while a modest but similar effect was seen in NET KO mice, which showed a modest decrease in locomotor activity. Combined increases in climbing and decreases in immobility are characteristic of forced swim test results in antidepressant animal models, while selective effects on swimming are associated with the effects of stimulant drugs. Therefore, an effect on climbing is thought to more specifically reflect antidepressant effects, as has been observed in several other proposed animal models of reduced depressive phenotypes. A similar profile was observed in the TST, where DAT, NET and SERT knockouts were all found to reduce immobility, but much greater effects were observed in DAT KO mice. However, to further determine whether these effects of

  11. Distinct Therapeutic Mechanisms of Tau Antibodies: Promoting Microglial Clearance Versus Blocking Neuronal Uptake.

    PubMed

    Funk, Kristen E; Mirbaha, Hilda; Jiang, Hong; Holtzman, David M; Diamond, Marc I

    2015-08-28

    Tauopathies are neurodegenerative diseases characterized by accumulation of Tau amyloids, and include Alzheimer disease and certain frontotemporal dementias. Trans-neuronal propagation of amyloid mediated by extracellular Tau may underlie disease progression. Consistent with this, active and passive vaccination studies in mouse models reduce pathology, although by unknown mechanisms. We previously reported that intracerebroventricular administration of three anti-Tau monoclonal antibodies (HJ8.5, HJ9.3, and HJ9.4) reduces pathology in a model overexpressing full-length mutant (P301S) human Tau. We now study effects of these three antibodies and a negative control antibody (HJ3.4) on Tau aggregate uptake into BV2 microglial-like cells and primary neurons. Antibody-independent Tau uptake into BV2 cells was blocked by heparin, consistent with a previously described role for heparan sulfate proteoglycans. Two therapeutic antibodies (HJ8.5 and HJ9.4) promoted uptake of full-length Tau fibrils into microglia via Fc receptors. Surprisingly, HJ9.3 promoted uptake of fibrils composed of the Tau repeat domain or Alzheimer disease-derived Tau aggregates, but failed to influence full-length recombinant Tau fibrils. Size fractionation of aggregates showed that antibodies preferentially promote uptake of larger oligomers (n ≥ ∼ 20-mer) versus smaller oligomers (n ∼ 10-mer) or monomer. No antibody inhibited uptake of full-length recombinant fibrils into primary neurons, but HJ9.3 blocked neuronal uptake of Tau repeat domain fibrils and Alzheimer disease-derived Tau. Antibodies thus have multiple potential mechanisms, including clearance via microglia and blockade of neuronal uptake. However these effects are epitope- and aggregate size-dependent. Establishing specific mechanisms of antibody activity in vitro may help in design and optimization of agents that are more effective in vivo.

  12. Distinct Therapeutic Mechanisms of Tau Antibodies: Promoting Microglial Clearance Versus Blocking Neuronal Uptake.

    PubMed

    Funk, Kristen E; Mirbaha, Hilda; Jiang, Hong; Holtzman, David M; Diamond, Marc I

    2015-08-28

    Tauopathies are neurodegenerative diseases characterized by accumulation of Tau amyloids, and include Alzheimer disease and certain frontotemporal dementias. Trans-neuronal propagation of amyloid mediated by extracellular Tau may underlie disease progression. Consistent with this, active and passive vaccination studies in mouse models reduce pathology, although by unknown mechanisms. We previously reported that intracerebroventricular administration of three anti-Tau monoclonal antibodies (HJ8.5, HJ9.3, and HJ9.4) reduces pathology in a model overexpressing full-length mutant (P301S) human Tau. We now study effects of these three antibodies and a negative control antibody (HJ3.4) on Tau aggregate uptake into BV2 microglial-like cells and primary neurons. Antibody-independent Tau uptake into BV2 cells was blocked by heparin, consistent with a previously described role for heparan sulfate proteoglycans. Two therapeutic antibodies (HJ8.5 and HJ9.4) promoted uptake of full-length Tau fibrils into microglia via Fc receptors. Surprisingly, HJ9.3 promoted uptake of fibrils composed of the Tau repeat domain or Alzheimer disease-derived Tau aggregates, but failed to influence full-length recombinant Tau fibrils. Size fractionation of aggregates showed that antibodies preferentially promote uptake of larger oligomers (n ≥ ∼ 20-mer) versus smaller oligomers (n ∼ 10-mer) or monomer. No antibody inhibited uptake of full-length recombinant fibrils into primary neurons, but HJ9.3 blocked neuronal uptake of Tau repeat domain fibrils and Alzheimer disease-derived Tau. Antibodies thus have multiple potential mechanisms, including clearance via microglia and blockade of neuronal uptake. However these effects are epitope- and aggregate size-dependent. Establishing specific mechanisms of antibody activity in vitro may help in design and optimization of agents that are more effective in vivo. PMID:26126828

  13. Coulomb Blockade Oscillations in Coupled Single-Electron Transistors

    NASA Astrophysics Data System (ADS)

    Shin, Mincheol; Lee, Seongjae; Park, Kyoung Wan

    2000-03-01

    The system we consider in this work is parallel coupled single-electron transistors (SETs) at strong coupling. For weak coupling, the transport characteristics of our coupled SETs are the same as those of the single SET, with the stability diagram exhibiting usual Coulomb diamonds. When the coupling becomes sufficiently strong, however, electron-hole binding and transport become important. In contrast to the previous works carried out in the cotunneling-dominating Coulomb blockade regime [1,2], we study e-h binding in the sequential-tunneling-dominating conducting regime. The major findings in this work are that the Coulomb diamonds in the conducting regime break up into fine internal structures at strong coupling, and that, although the cotunneling processes are much less frequent, they nonetheless play a crucial role. [1] D. V. Averin, A. N. Korotkov, and Yu. V. Nazarov, Phys. Rev. Lett. 66, 2818 (1991). [2] M. Matters, J. J. Versluys, and J. E. Mooij, Phys. Rev. Lett. 78, 2469 (1997).

  14. Novel pharmacological approaches for the antagonism of neuromuscular blockade.

    PubMed

    Pic, Lisa C

    2005-02-01

    Gamma cyclodextrin and purified plasma cholinesterase are 2 novel pharmacological agents being investigated as to their suitability for antagonism of neuromuscular blockade. Both of these agents are devoid of cholinergic stimulation and the accompanying side effects because their action is independent of acetylcholinesterase inhibition. Gamma cyclodextrin antagonizes the steroidal neuromuscular blocker rocuronium via the chemical encapsulation of the molecule forming a "host-guest" complex through van der Waals and hydrophobic interactions in the plasma. Encapsulation decreases plasma drug concentrations, shifting the neuromuscular blocking drug molecules from the neuromuscular junction back to the plasma compartment resulting in a rapid recovery of the neuromuscular function. Org 25969, a modified gamma cyclodextrin, will antagonize profound neuromuscular block induced by rocuronium in approximately 2 minutes. A commercial preparation of purified human plasma cholinesterase has been shown to be effective in reversing succinylcholine or mivacurium-induced block. Administration of exogenous plasma cholinesterase also has been shown to be effective in antagonizing mivacurium-induced neuromuscular block, cocaine toxicity, and organophosphate poisoning.

  15. Reversal of aging by NFkappaB blockade.

    PubMed

    Adler, Adam S; Kawahara, Tiara L A; Segal, Eran; Chang, Howard Y

    2008-03-01

    Genetic studies in model organisms such as yeast, worms, flies, and mice leading to lifespan extension suggest that longevity is subject to regulation. In addition, various system-wide interventions in old animals can reverse features of aging. To better understand these processes, much effort has been put into the study of aging on a molecular level. In particular, genome-wide microarray analysis of differently aged individual organisms or tissues has been used to track the global expression changes that occur during normal aging. Although these studies consistently implicate specific pathways in aging processes, there is little conservation between the individual genes that change. To circumvent this problem, we have recently developed a novel computational approach to discover transcription factors that may be responsible for driving global expression changes with age. We identified the transcription factor NFkappaB as a candidate activator of aging-related transcriptional changes in multiple human and mouse tissues. Genetic blockade of NFkappaB in the skin of chronologically aged mice reversed the global gene expression program and tissue characteristics to those of young mice, demonstrating for the first time that disruption of a single gene is sufficient to reverse features of aging, at least for the short-term.

  16. Immune-Checkpoint Blockade and Active Immunotherapy for Glioma

    PubMed Central

    Ahn, Brian J.; Pollack, Ian F.; Okada, Hideho

    2013-01-01

    Cancer immunotherapy has made tremendous progress, including promising results in patients with malignant gliomas. Nonetheless, the immunological microenvironment of the brain and tumors arising therein is still believed to be suboptimal for sufficient antitumor immune responses for a variety of reasons, including the operation of “immune-checkpoint” mechanisms. While these mechanisms prevent autoimmunity in physiological conditions, malignant tumors, including brain tumors, actively employ these mechanisms to evade from immunological attacks. Development of agents designed to unblock these checkpoint steps is currently one of the most active areas of cancer research. In this review, we summarize recent progresses in the field of brain tumor immunology with particular foci in the area of immune-checkpoint mechanisms and development of active immunotherapy strategies. In the last decade, a number of specific monoclonal antibodies designed to block immune-checkpoint mechanisms have been developed and show efficacy in other cancers, such as melanoma. On the other hand, active immunotherapy approaches, such as vaccines, have shown encouraging outcomes. We believe that development of effective immunotherapy approaches should ultimately integrate those checkpoint-blockade agents to enhance the efficacy of therapeutic approaches. With these agents available, it is going to be quite an exciting time in the field. The eventual success of immunotherapies for brain tumors will be dependent upon not only an in-depth understanding of immunology behind the brain and brain tumors, but also collaboration and teamwork for the development of novel trials that address multiple layers of immunological challenges in gliomas. PMID:24202450

  17. The Role of ERp44 in Maturation of Serotonin Transporter Protein*

    PubMed Central

    Freyaldenhoven, Samuel; Li, Yicong; Kocabas, Arif M.; Ziu, Enrit; Ucer, Serra; Ramanagoudr-Bhojappa, Raman; Miller, Grover P.; Kilic, Fusun

    2012-01-01

    In heterologous and endogenous expression systems, we studied the role of ERp44 and its complex partner endoplasmic reticulum (ER) oxidase 1-α (Ero1-Lα) in mechanisms regulating disulfide bond formation for serotonin transporter (SERT), an oligomeric glycoprotein. ERp44 is an ER lumenal chaperone protein that favors the maturation of disulfide-linked oligomeric proteins. ERp44 plays a critical role in the release of proteins from the ER via binding to Ero1-Lα. Mutation in the thioredoxin-like domain hampers the association of ERp44C29S with SERT, which has three Cys residues (Cys-200, Cys-209, and Cys-109) on the second external loop. We further explored the role of the protein chaperones through shRNA knockdown experiments for ERp44 and Ero1-Lα. Those efforts resulted in increased SERT localization to the plasma membrane but decreased serotonin (5-HT) uptake rates, indicating the importance of the ERp44 retention mechanism in the proper maturation of SERT proteins. These data were strongly supported with the data received from the N-biotinylaminoethyl methanethiosulfonate (MTSEA-biotin) labeling of SERT on ERp44 shRNA cells. MTSEA-biotin only interacts with the free Cys residues from the external phase of the plasma membrane. Interestingly, it appears that Cys-200 and Cys-209 of SERT in ERp44-silenced cells are accessible to labeling by MTSEA-biotin. However, in the control cells, these Cys residues are occupied and produced less labeling with MTSEA-biotin. Furthermore, ERp44 preferentially associated with SERT mutants (C200S, C209S, and C109A) when compared with wild type. These interactions with the chaperone may reflect the inability of Cys-200 and Cys-209 SERT mutants to form a disulfide bond and self-association as evidenced by immunoprecipitation assays. Based on these collective findings, we hypothesize that ERp44 together with Ero1-Lα plays an important role in disulfide formation of SERT, which may be a prerequisite step for the assembly of SERT

  18. The immune-mediated alteration of serotonin and glutamate: towards an integrated view of depression.

    PubMed

    Müller, N; Schwarz, M J

    2007-11-01

    Beside the well-known deficiency in serotonergic neurotransmission as pathophysiological correlate of major depression (MD), recent evidence points to a pivotal role of increased glutamate receptor activation as well. However, cause and interaction of these neurotransmitter alterations are not understood. In this review, we present a hypothesis integrating current concepts of neurotransmission and hypothalamus-pituitary-adrenal (HPA) axis dysregulation with findings on immunological alterations and alterations in brain morphology in MD. An immune activation including increased production of proinflammatory cytokines has repeatedly been described in MD. Proinflammatory cytokines such as interleukin-2, interferon-gamma, or tumor necrosis factor-alpha activate the tryptophan- and serotonin-degrading enzyme indoleamine 2,3-dioxygenase (IDO). Depressive states during inflammatory somatic disorders are also associated with increased proinflammatory cytokines and increased consumption of tryptophan via activation of IDO. An enhanced consumption of serotonin and its precursor tryptophan through IDO activation could well explain the reduced availability of serotonergic neurotransmission in MD. An increased activation of IDO and its subsequent enzyme kynurenine monooxygenase by proinflammatory cytokines, moreover, leads to an enhanced production of quinolinic acid, a strong agonist of the glutamatergic N-methyl-D-aspartate receptor. In inflammatory states of the central nervous system, IDO is mainly activated in microglial cells, which preferentially metabolize tryptophan to the NMDA receptor agonist quinolinic acid, whereas astrocytes - counteracting this metabolism due to the lack of an enzyme of this metabolism - have been observed to be reduced in MD. Therefore the type 1/type 2 immune response imbalance, associated with an astrocyte/microglia imbalance, leads to serotonergic deficiency and glutamatergic overproduction. Astrocytes are further strongly involved in re-uptake

  19. Recombinant glucose uptake system

    DOEpatents

    Ingrahm, Lonnie O.; Snoep, Jacob L.; Arfman, Nico

    1997-01-01

    Recombinant organisms are disclosed that contain a pathway for glucose uptake other than the pathway normally utilized by the host cell. In particular, the host cell is one in which glucose transport into the cell normally is coupled to PEP production. This host cell is transformed so that it uses an alternative pathway for glucose transport that is not coupled to PEP production. In a preferred embodiment, the host cell is a bacterium other than Z. mobilis that has been transformed to contain the glf and glk genes of Z. mobilis. By uncoupling glucose transport into the cell from PEP utilization, more PEP is produced for synthesis of products of commercial importance from a given quantity of biomass supplied to the host cells.

  20. Behavioral History of Withdrawal Influences Regulation of Cocaine Seeking by Glutamate Re-Uptake

    PubMed Central

    Zhou, Luyi; Andersen, Haley; Arreola, Adrian C.; Turner, Jill R.; Ortinski, Pavel I.

    2016-01-01

    Withdrawal from cocaine regulates expression of distinct glutamate re-uptake transporters in the nucleus accumbens (NAc). In this study, we examined the cumulative effect of glutamate re-uptake by multiple excitatory amino acid transporters (EAATs) on drug-seeking at two different stages of withdrawal from self-administered cocaine. Rats were trained on fixed ratio 1 (FR1), progressing to FR5 schedule of reinforcement. After one day of withdrawal, microinfusion of a broad non-transportable EAAT antagonist, DL-threo-beta-benzyloxyaspartate (DL-TBOA), into the NAc shell dose-dependently attenuated self-administration of cocaine. Sucrose self-administration was not affected by DL-TBOA, indicating an effect specific to reinforcing properties of cocaine. The attenuating effect on cocaine seeking was not due to suppression of locomotor response, as DL-TBOA was found to transiently increase spontaneous locomotor activity. Previous studies have established a role for EAAT2-mediated re-uptake on reinstatement of cocaine seeking following extended withdrawal and extinction training. We found that blockade of NAc shell EAATs did not affect cocaine-primed reinstatement of cocaine seeking. These results indicate that behavioral history of withdrawal influences the effect of re-uptake mediated glutamate clearance on cocaine seeking. Dynamic regulation of glutamate availability by re-uptake mechanisms may impact other glutamate signaling pathways to account for such differences. PMID:27685834