Du, Shanshan; Sun, Shuhong; Liu, Liyan; Zhang, Qiao; Guo, Fuchuan; Li, Chunlong; Feng, Rennan; Sun, Changhao
2017-06-02
The aim of current study was to investigate the metabolic changes associated with histidine supplementation in serum and urine metabolic signatures and serum amino acid (AA) profiles. Serum and urine 1 H NMR-based metabolomics and serum AA profiles were employed in 32 and 37 obese women with metabolic syndrome (MetS) intervened with placebo or histidine for 12 weeks. Multivariable statistical analysis were conducted to define characteristic metabolites. In serum 1 H NMR metabolic profiles, increases in histidine, glutamine, aspartate, glycine, choline, and trimethylamine-N-oxide (TMAO) were observed; meanwhile, decreases in cholesterol, triglycerides, fatty acids and unsaturated lipids, acetone, and α/β-glucose were exhibited after histidine supplement. In urine 1 H NMR metabolic profiles, citrate, creatinine/creatine, methylguanidine, and betaine + TMAO were higher, while hippurate was lower in histidine supplement group. In serum AA profiles, 10 AAs changed after histidine supplementation, including increased histidine, glycine, alanine, lysine, asparagine, and tyrosine and decreased leucine, isoleucine, ornithine, and citrulline. The study showed a systemic metabolic response in serum and urine metabolomics and AA profiles to histidine supplementation, showing significantly changed metabolism in AAs, lipid, and glucose in obese women with MetS.
Liu, Sixiu; Liang, Shanshan; Liu, Hua; Chen, Lei; Sun, Lingshuang; Wei, Meng; Jiang, Hongli; Wang, Jing
2018-05-22
Recently, the colon has been recognized as an important source of various uremic toxins in patients with end stage renal disease. Medicinal charcoal tablets are an oral adsorbent that are widely used in patients with chronic kidney disease in China to remove creatinine and urea from the colon. A parallel fecal and serum metabolomics study was performed to determine comprehensive metabolic profiles of patients receiving hemodialysis (HD). The effects of medicinal charcoal tablets on the fecal and serum metabolomes of HD patients were also investigated. Ultra-performance liquid chromatography/mass spectrometry was used to investigate the fecal and serum metabolic profiles of 20 healthy controls and 31 HD patients before and after taking medicinal charcoal tablets for 3 months. There were distinct metabolic variations between the HD patients and healthy controls both in the feces and serum according to multivariate data analysis. Metabolic disturbances of alanine, aspartate and glutamate metabolism, arginine and proline metabolism figured prominently in the serum. However, in the feces, alterations of tryptophan metabolism, lysine degradation and beta-alanine metabolism were pronounced, and the levels of several amino acids (leucine, phenylalanine, lysine, histidine, methionine, tyrosine, and tryptophan) were increased dramatically. Nineteen fecal metabolites and 21 serum metabolites were also identified as biomarkers that contributed to the metabolic differences. Additionally, medicinal charcoal treatment generally enabled the serum and fecal metabolomes of the HD patients to draw close to those of the control subjects, especially the serum metabolic profile. Parallel fecal and serum metabolomics uncovered the systematic metabolic variations of HD patients, especially disturbances in amino acid metabolism in the colon. Medicinal charcoal tablets had an impact on the serum and fecal metabolomes of HD patients, but their exact effects still need to be studied further. © 2018 The Author(s). Published by S. Karger AG, Basel.
Larmo, Petra S; Kangas, Antti J; Soininen, Pasi; Lehtonen, Henna-Maria; Suomela, Jukka-Pekka; Yang, Baoru; Viikari, Jorma; Ala-Korpela, Mika; Kallio, Heikki P
2013-10-01
Berries are associated with health benefits. Little is known about the effect of baseline metabolome on the overall metabolic responses to berry intake. We studied the effects of berries on serum metabolome. Eighty overweight women completed this randomized crossover study. During the interventions of 30 d, subjects consumed dried sea buckthorn berries (SBs), sea buckthorn oil (SBo), sea buckthorn phenolics ethanol extract mixed with maltodextrin (SBe+MD) (1:1), or frozen bilberries. Metabolic profiles were quantified from serum samples by using (1)H nuclear magnetic resonance spectroscopy. All interventions induced a significant (P < 0.001-0.003) effect on the overall metabolic profiles. The effect was observed both in participants who had a metabolic profile that reflected higher cardiometabolic risk at baseline (group B: P = 0.001-0.008) and in participants who had a lower-risk profile (group A: P < 0.001-0.009). Although most of the changes in individual metabolites were not statistically significant after correction for multiplicity, clear trends were observed. SB-induced effects were mainly on serum triglycerides and very-low-density lipoprotein (VLDL) and its subclasses, which decreased in metabolic group B. SBo induced a decreasing trend in serum total, intermediate-density lipoprotein (IDL), and low-density lipoprotein (LDL) cholesterol and subfractions of IDL and LDL in group B. During the SBe+MD treatment, VLDL fractions and serum triglycerides increased. Bilberries caused beneficial changes in serum lipids and lipoproteins in group B, whereas the opposite was true in group A. Berry intake has overall metabolic effects, which depend on the cardiometabolic risk profile at baseline. This trial was registered at clinicaltrials.gov as NCT01860547.
Larmo, Petra S; Kangas, Antti J; Soininen, Pasi; Lehtonen, Henna-Maria; Suomela, Jukka-Pekka; Yang, Baoru; Viikari, Jorma; Ala-Korpela, Mika; Kallio, Heikki P
2013-01-01
Background: Berries are associated with health benefits. Little is known about the effect of baseline metabolome on the overall metabolic responses to berry intake. Objective: We studied the effects of berries on serum metabolome. Design: Eighty overweight women completed this randomized crossover study. During the interventions of 30 d, subjects consumed dried sea buckthorn berries (SBs), sea buckthorn oil (SBo), sea buckthorn phenolics ethanol extract mixed with maltodextrin (SBe+MD) (1:1), or frozen bilberries. Metabolic profiles were quantified from serum samples by using 1H nuclear magnetic resonance spectroscopy. Results: All interventions induced a significant (P < 0.001–0.003) effect on the overall metabolic profiles. The effect was observed both in participants who had a metabolic profile that reflected higher cardiometabolic risk at baseline (group B: P = 0.001–0.008) and in participants who had a lower-risk profile (group A: P < 0.001–0.009). Although most of the changes in individual metabolites were not statistically significant after correction for multiplicity, clear trends were observed. SB-induced effects were mainly on serum triglycerides and very-low-density lipoprotein (VLDL) and its subclasses, which decreased in metabolic group B. SBo induced a decreasing trend in serum total, intermediate-density lipoprotein (IDL), and low-density lipoprotein (LDL) cholesterol and subfractions of IDL and LDL in group B. During the SBe+MD treatment, VLDL fractions and serum triglycerides increased. Bilberries caused beneficial changes in serum lipids and lipoproteins in group B, whereas the opposite was true in group A. Conclusion: Berry intake has overall metabolic effects, which depend on the cardiometabolic risk profile at baseline. This trial was registered at clinicaltrials.gov as NCT01860547. PMID:23945716
USDA-ARS?s Scientific Manuscript database
Supplementation of zilpaterol hydrochloride (ZH; Zilmax®) to cattle has been implicated as having a negative impact on the well-being of cattle. However, there is no data to support or refute these claims. This study was designed to determine if differences exist in the serum metabolic profile and m...
Ji, Jian; Zhu, Pei; Cui, Fangchao; Pi, Fuwei; Zhang, Yinzhi; Li, Yun; Wang, Jiasheng; Sun, Xiulan
2017-01-01
Metabolic profiling in liver and serum of mice was studied for the combined toxic effects of deoxynivalenol (DON) and zearalenone (ZEN), through gas chromatography mass spectrum. The spectrum of serum and liver sample of mice, treated with individual 2 mg/kg DON, 20 mg/kg ZEN, and the combined DON + ZEN with final concentration 2 mg/kg DON and 20 mg/kg ZEN for 21 days, were deconvoluted, aligned and identified with MS DIAL. The data matrix was processed with univariate analysis and multivariate analysis for selection of metabolites with variable importance for the projection (VIP) > 1, t-test p value < 0.05. The metabolic pathway analysis was performed with MetaMapp and drawn by CytoScape. Results show that the combined DON and ZEN treatment has an obvious “antagonistic effect” in serum and liver tissue metabolic profiling of mice. The blood biochemical indexes, like alkaline phosphatase, alanine transaminase, and albumin (ALB)/globulin (GLO), reveal a moderated trend in the combined DON + ZEN treatment group, which is consistent with histopathological examination. The metabolic pathway analysis demonstrated that the combined DON and ZEN treatment could down-regulate the valine, leucine and isoleucine biosynthesis, glycine, serine and threonine metabolism, and O-glycosyl compounds related glucose metabolism in liver tissue. The metabolic profiling in serum confirmed the finding that the combined DON and ZEN treatment has an “antagonistic effect” on liver metabolism of mice. PMID:28075412
Zhou, Chun-Xue; Cong, Wei; Chen, Xiao-Qing; He, Shen-Yi; Elsheikha, Hany M.; Zhu, Xing-Quan
2018-01-01
Toxoplasma gondii is an obligate intracellular parasite causing severe diseases in immunocompromised individuals and congenitally infected neonates, such as encephalitis and chorioretinitis. This study aimed to determine whether serum metabolic profiling can (i) identify metabolites associated with oocyst-induced T. gondii infection and (ii) detect systemic metabolic differences between T. gondii-infected mice and controls. We performed the first global metabolomics analysis of mice serum challenged with 100 sporulated T. gondii Pru oocysts (Genotype II). Sera from acutely infected mice (11 days post-infection, dpi), chronically infected mice (33 dpi) and control mice were collected and analyzed using LC-MS/MS platform. Following False Discovery Rate filtering, we identified 3871 and 2825 ions in ESI+ or ESI− mode, respectively. Principal Component Analysis (PCA) and Partial Least Squares Discriminant Analysis (PLS-DA) identified metabolomic profiles that clearly differentiated T. gondii-infected and -uninfected serum samples. Acute infection significantly influenced the serum metabolome. Our results identified common and uniquely perturbed metabolites and pathways. Acutely infected mice showed perturbations in metabolites associated with glycerophospholipid metabolism, biosynthesis of amino acid, and tyrosine metabolism. These findings demonstrated that acute T. gondii infection induces a global perturbation of mice serum metabolome, providing new insights into the mechanisms underlying systemic metabolic changes during early stage of T. gondii infection. PMID:29354104
[Metabolic Characteristics of Lethal Bradycardia Induced by Myocardial Ischemia].
Wu, J Y; Wang, D; Kong, J; Wang, X X; Yu, X J
2017-02-01
To explore the metabolic characteristics of lethal bradycardia induced by myocardial ischemia in rat's serum. A rat myocardial ischemia-bradycardia-sudden cardiac death (MI-B-SCD) model was established, which was compared with the sham-operation group. The metabolic profile of postmortem serum was analyzed by gas chromatography-mass spectrometry (GC-MS), coupled with the analysis of serum metabolic characteristics using metabolomics strategies. The serum metabolic profiles were significantly different between the MI-B-SCD rats and the control rats. Compared to the control rats, the MI-B-SCD rats had significantly higher levels of lysine, ornithine, purine, serine, alanine, urea and lactic acid; and significantly lower levels of succinate, hexadecanoic acid, 2-ketoadipic acid, glyceraldehyde, hexendioic acid and octanedioic acid in the serum. There were some correlations among different metabolites. There is obvious metabolic alterations in the serum of MI-B-SCD rat. Both lysine and purine have a high value in diagnosing MI-B-SCD. The results are expected to provide references for forensic and clinical applications of prevention and control of sudden cardiac death. Copyright© by the Editorial Department of Journal of Forensic Medicine
Metabolomic analysis of amino acid and energy metabolism in rats supplemented with chlorogenic acid
Ruan, Zheng; Yang, Yuhui; Zhou, Yan; Wen, Yanmei; Ding, Sheng; Liu, Gang; Wu, Xin; Deng, Zeyuan; Assaad, Houssein; Wu, Guoyao
2016-01-01
This study was conducted to investigate effects of chlorogenic acid (CGA) supplementation on serum and hepatic metabolomes in rats. Rats received daily intragastric administration of either CGA (60 mg/kg body weight) or distilled water (control) for 4 weeks. Growth performance, serum biochemical profiles, and hepatic morphology were measured. Additionally, serum and liver tissue extracts were analyzed for metabolomes by high-resolution 1H nuclear magnetic resonance-based metabolomics and multivariate statistics. CGA did not affect rat growth performance, serum biochemical profiles, or hepatic morphology. However, supplementation with CGA decreased serum concentrations of lactate, pyruvate, succinate, citrate, β-hydroxybutyrate and acetoacetate, while increasing serum concentrations of glycine and hepatic concentrations of glutathione. These results suggest that CGA supplementation results in perturbation of energy and amino acid metabolism in rats. We suggest that glycine and glutathione in serum may be useful biomarkers for biological properties of CGA on nitrogen metabolism in vivo. PMID:24927697
Emoto, Naoya; Kato, Katsuhito; Sugihara, Hitoshi
2017-01-01
Aim: Glucagon-like peptide-1 can reduce both postprandial plasma glucose (PG) and chylomicron (CM) levels in patients with type 2 diabetes. However, there have been no reports regarding the relationship between the postprandial metabolism of PG and CM. Methods: Patients with type 2 diabetes who were admitted for glycemic control were randomized to insulin alone (Ins; n = 16) or insulin plus vildagliptin 100 mg (InsV; n = 16) groups. The insulin dose was adjusted to maintain normal blood glucose levels. The daily profiles of serum TG, remnant lipoprotein cholesterol (RemL-C), and apolipoprotein B48 (ApoB48) were estimated by frequent blood collection on admission and before discharge, and the daily glucose fluctuation profile was also estimated using continuous glucose monitoring (CGM) before discharge. Results: The daily profiles of serum TG and RemL-C indicated a significant decrease before discharge compared with on admission; however, no significant changes in serum ApoB48 levels were observed in either group. At discharge, daily glucose fluctuation profile and the change in the serum ApoB48 level from fasting to the peak of the daily profile was significantly smaller in the InsV group than in the Ins group. The increment of serum ApoB48 level was significantly correlated with the mean amplitude of glycemic excursions calculated using CGM data only in the Ins group (R2 = 0.5242, P <0.001). Conclusions: Short-term glycemic control decreased serum TG and RemL-C levels, but not ApoB48 levels, and the postprandial metabolism of PG and CM might be regulated by the same mechanism except GLP-1 effect. PMID:27397060
Okajima, Fumitaka; Emoto, Naoya; Kato, Katsuhito; Sugihara, Hitoshi
2017-02-01
Glucagon-like peptide-1 can reduce both postprandial plasma glucose (PG) and chylomicron (CM) levels in patients with type 2 diabetes. However, there have been no reports regarding the relationship between the postprandial metabolism of PG and CM. Patients with type 2 diabetes who were admitted for glycemic control were randomized to insulin alone (Ins; n=16) or insulin plus vildagliptin 100 mg (InsV; n=16) groups. The insulin dose was adjusted to maintain normal blood glucose levels. The daily profiles of serum TG, remnant lipoprotein cholesterol (RemL-C), and apolipoprotein B48 (ApoB48) were estimated by frequent blood collection on admission and before discharge, and the daily glucose fluctuation profile was also estimated using continuous glucose monitoring (CGM) before discharge. The daily profiles of serum TG and RemL-C indicated a significant decrease before discharge compared with on admission; however, no significant changes in serum ApoB48 levels were observed in either group. At discharge, daily glucose fluctuation profile and the change in the serum ApoB48 level from fasting to the peak of the daily profile was significantly smaller in the InsV group than in the Ins group. The increment of serum ApoB48 level was significantly correlated with the mean amplitude of glycemic excursions calculated using CGM data only in the Ins group (R 2 = 0.5242,P<0.001). Short-term glycemic control decreased serum TG and RemL-C levels, but not ApoB48 levels, and the postprandial metabolism of PG and CM might be regulated by the same mechanism except GLP-1 effect.
Fan, Fan; Cao, Quan; Wang, Cong; Ma, Xin; Shen, Cheng; Liu, Xiang-wei; Bu, Li-ping; Zou, Yun-zeng; Hu, Kai; Sun, Ai-jun; Ge, Jun-bo
2014-08-01
To investigate the roles of acetaldehyde dehydrogenase 2 (ALDH2), the key enzyme of ethanol metabolism, in chronic low to moderate alcohol consumption-induced heart protective effects in mice. Twenty-one male wild-type (WT) or ALDH2-knockout (KO) mice were used in this study. In each genotype, 14 animals received alcohol (2.5%, 5% and 10% in week 1-3, respectively, and 18% in week 4-7), and 7 received water for 7 weeks. After the treatments, survival rate and general characteristics of the animals were evaluated. Serum ethanol and acetaldehyde levels and blood lipids were measured. Metabolomics was used to characterize the heart and serum metabolism profiles. Chronic alcohol intake decreased the survival rate of KO mice by 50%, and significantly decreased their body weight, but did not affect those of WT mice. Chronic alcohol intake significantly increased the serum ethanol levels in both WT and KO mice, but KO mice had significantly higher serum acetaldehyde levels than WT mice. Chronic alcohol intake significantly increased the serum HDL cholesterol levels in WT mice, and did not change the serum HDL cholesterol levels in KO mice. After chronic alcohol intake, WT and KO mice showed differential heart and serum metabolism profiles, including the 3 main energy substrate types (lipids, glucose and amino acids) and three carboxylic acid cycles. Low to moderate alcohol consumption increases HDL cholesterol levels and improves heart energy metabolism profile in WT mice but not in ALDH2-KO mice. Thus, preserved ALDH2 function is essential for the protective effect of low to moderate alcohol on the cardiovascular system.
Li, Yanjie; Song, Xue; Zhao, Xinjie; Zou, Lijuan; Xu, Guowang
2014-09-01
Lung cancer is currently the leading cause of cancer-related mortality worldwide. It is, therefore, important to enhance understanding and add a new auxiliary detection tool of lung cancer. In this work, serum metabolic characteristics of lung cancer were investigated with a non-targeted metabolomics method. The metabolic profiling of 23 patients with lung cancer and 23 healthy controls were analyzed using ultra high performance liquid chromatography/quadrupole time of flight mass spectrometry (UPLC/Q-TOF MS). Partial least squares discriminant analysis (PLS-DA) model of the metabolic data allowed the clear separation of the lung cancer patients from the healthy controls. In total, 27 differential metabolites were identified, which were mostly related to the perturbation of lipid metabolism, including choline, free fatty acids, lysophosphatidylcholines, etc. Choline and linoleic acid were defined as one combinational biomarker using binary logistic regression, which was supported by the validation with a smaller sample-set (9 patients and 9 healthy controls). These findings show that LC/MS-based serum metabolic profiling has potential application in complementary identification of lung cancer patients, and could be a powerful tool for cancer research. Copyright © 2014 Elsevier B.V. All rights reserved.
The Impact of Inflammation on Metabolomic Profiles in Patients With Arthritis
Young, Stephen P; Kapoor, Sabrina R; Viant, Mark R; Byrne, Jonathan J; Filer, Andrew; Buckley, Christopher D; Kitas, George D; Raza, Karim
2013-01-01
Objective. Inflammatory arthritis is associated with systemic manifestations including alterations in metabolism. We used nuclear magnetic resonance (NMR) spectroscopy–based metabolomics to assess metabolic fingerprints in serum from patients with established rheumatoid arthritis (RA) and those with early arthritis. Methods. Serum samples were collected from newly presenting patients with established RA who were naive for disease-modifying antirheumatic drugs, matched healthy controls, and 2 groups of patients with synovitis of ≤3 months' duration whose outcomes were determined at clinical followup. Serum metabolomic profiles were assessed using 1-dimensional 1H-NMR spectroscopy. Discriminating metabolites were identified, and the relationships between metabolomic profiles and clinical variables including outcomes were examined. Results. The serum metabolic fingerprint in established RA was clearly distinct from that of healthy controls. In early arthritis, we were able to stratify the patients according to the level of current inflammation, with C-reactive protein correlating with metabolic differences in 2 separate groups (P < 0.001). Lactate and lipids were important discriminators of inflammatory burden in both early arthritis patient groups. The sensitivities and specificities of models to predict the development of either RA or persistent arthritis in patients with early arthritis were low. Conclusion. The metabolic fingerprint reflects inflammatory disease activity in patients with synovitis, demonstrating that underlying inflammatory processes drive significant changes in metabolism that can be measured in the peripheral blood. The identification of metabolic alterations may provide insights into disease mechanisms operating in patients with inflammatory arthritis. PMID:23740368
Austdal, Marie; Tangerås, Line H; Skråstad, Ragnhild B; Salvesen, Kjell; Austgulen, Rigmor; Iversen, Ann-Charlotte; Bathen, Tone F
2015-09-08
Hypertensive disorders of pregnancy, including preeclampsia, are major contributors to maternal morbidity. The goal of this study was to evaluate the potential of metabolomics to predict preeclampsia and gestational hypertension from urine and serum samples in early pregnancy, and elucidate the metabolic changes related to the diseases. Metabolic profiles were obtained by nuclear magnetic resonance spectroscopy of serum and urine samples from 599 women at medium to high risk of preeclampsia (nulliparous or previous preeclampsia/gestational hypertension). Preeclampsia developed in 26 (4.3%) and gestational hypertension in 21 (3.5%) women. Multivariate analyses of the metabolic profiles were performed to establish prediction models for the hypertensive disorders individually and combined. Urinary metabolomic profiles predicted preeclampsia and gestational hypertension at 51.3% and 40% sensitivity, respectively, at 10% false positive rate, with hippurate as the most important metabolite for the prediction. Serum metabolomic profiles predicted preeclampsia and gestational hypertension at 15% and 33% sensitivity, respectively, with increased lipid levels and an atherogenic lipid profile as most important for the prediction. Combining maternal characteristics with the urinary hippurate/creatinine level improved the prediction rates of preeclampsia in a logistic regression model. The study indicates a potential future role of clinical importance for metabolomic analysis of urine in prediction of preeclampsia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiedner, Susan D.; Burnum, Kristin E.; Pederson, Leeanna M.
2012-08-03
Environmental and metabolic adaptability is critical for survival of the fungal human pathogen Aspergillus fumigatus in the immunocompromised lung. We employed an activity-based protein profiling (ABPP) approach utilizing a new aryl vinyl sulfonate probe and a serine hydrolase probe combined with quantitative LC-MS based accurate mass and time (AMT) tag proteomics for the identification of functional pathway adaptation of A. fumigatus to environmental variability relevant to pulmonary Invasive Aspergillosis. When the fungal pathogen was grown with human serum, metabolism and energy processes were markedly decreased compared to no serum culture. Additionally, functional pathways associated with amino acid and protein biosynthesismore » were limited as the fungus scavenged from the serum to obtain essential nutrients. Our approach revealed significant metabolic adaptation by A. fumigatus, and provides direct insight into this pathogen’s ability to survive and proliferate.« less
Alteration of metabolomic markers of amino-acid metabolism in piglets with in-feed antibiotics.
Mu, Chunlong; Yang, Yuxiang; Yu, Kaifan; Yu, Miao; Zhang, Chuanjian; Su, Yong; Zhu, Weiyun
2017-04-01
In-feed antibiotics have been used to promote growth in piglets, but its impact on metabolomics profiles associated with host metabolism is largely unknown. In this study, to test the hypothesis that antibiotic treatment may affect metabolite composition both in the gut and host biofluids, metabolomics profiles were analyzed in antibiotic-treated piglets. Piglets were fed a corn-soy basal diet with or without in-feed antibiotics from postnatal day 7 to day 42. The serum biochemical parameters, metabolomics profiles of the serum, urine, and jejunal digesta, and indicators of microbial metabolism (short-chain fatty acids and biogenic amines) were analyzed. Compared to the control group, antibiotics treatment did not have significant effects on serum biochemical parameters except that it increased (P < 0.05) the concentration of urea. Antibiotics treatment increased the relative concentrations of metabolites involved in amino-acid metabolism in the serum, while decreased the relative concentrations of most amino acids in the jejunal content. Antibiotics reduced urinary 2-ketoisocaproate and hippurate. Furthermore, antibiotics decreased (P < 0.05) the concentrations of propionate and butyrate in the feces. Antibiotics significantly affected the concentrations of biogenic amines, which are derived from microbial amino-acid metabolism. The three major amines, putrescine, cadaverine, and spermidine, were all increased (P < 0.05) in the large intestine of antibiotics-treated piglets. These results identified the phenomena that in-feed antibiotics may have significant impact on the metabolomic markers of amino-acid metabolism in piglets.
Quan-Jun, Yang; Jian-Ping, Zhang; Jian-Hua, Zhang; Yong-Long, Han; Bo, Xin; Jing-Xian, Zhang; Bona, Dai; Yuan, Zhang; Cheng, Guo
2017-03-01
Inhaled budesonide and salbutamol represent the most important and frequently used drugs in asthmatic children during acute exacerbation. However, there is still no consensus about their resulting metabolic derangements; thus, this study was conducted to determine the distinct metabolic profiles of these two drugs. A total of 69 children with asthma during acute exacerbation were included, and their serum and urine were investigated using high-resolution nuclear magnetic resonance (NMR). A metabolomics analysis was performed using a principal component analysis and orthogonal signal correction-partial least squares using SIMCA-P. The different metabolites were identified, and the distinct metabolic profiles were analysed using MetPA. A high-resolution NMR-based serum and urine metabolomics approach was established to study the overall metabolic changes after inhaled budesonide and salbutamol in asthmatic children during acute exacerbation. The perturbed metabolites included 22 different metabolites in the serum and 21 metabolites in the urine. Based on an integrated analysis, the changed metabolites included the following: increased 4-hydroxybutyrate, lactate, cis-aconitate, 5-hydroxyindoleacetate, taurine, trans-4-hydroxy-l-proline, tiglylglycine, 3-hydroxybutyrate, 3-methylhistidine, glucose, cis-aconitate, 2-deoxyinosine and 2-aminoadipate; and decreased alanine, glycerol, arginine, glycylproline, 2-hydroxy-3-methylvalerate, creatine, citrulline, glutamate, asparagine, 2-hydroxyvalerate, citrate, homoserine, histamine, sn-glycero-3-phosphocholine, sarcosine, ornithine, creatinine, glycine, isoleucine and trimethylamine N-oxide. The MetPA analysis revealed seven involved metabolic pathways: arginine and proline metabolism; taurine and hypotaurine metabolism; glycine, serine and threonine metabolism; glyoxylate and dicarboxylate metabolism; methane metabolism; citrate cycle; and pyruvate metabolism. The perturbed metabolic profiles suggest potential metabolic reprogramming associated with a combination treatment of inhaled budesonide and salbutamol in asthmatic children. © 2016 The Authors. Basic & Clinical Pharmacology & Toxicology published by John Wiley & Sons Ltd on behalf of Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).
GC-TOF/MS-based metabolomic profiling of estrogen deficiency-induced obesity in ovariectomized rats
Ma, Bo; Zhang, Qi; Wang, Guang-ji; A, Ji-ye; Wu, Di; Liu, Ying; Cao, Bei; Liu, Lin-sheng; Hu, Ying-ying; Wang, Yong-lu; Zheng, Ya-ya
2011-01-01
Aim: To explore the alteration of endogenous metabolites and identify potential biomarkers using metabolomic profiling with gas chromatography coupled a time-of-flight mass analyzer (GC/TOF-MS) in a rat model of estrogen-deficiency-induced obesity. Methods: Twelve female Sprague-Dawley rats six month of age were either sham-operated or ovariectomized (OVX). Rat blood was collected, and serum was analyzed for biomarkers using standard colorimetric methods with commercial assay kits and a metabolomic approach with GC/TOF-MS. The data were analyzed using multivariate statistical techniques. Results: A high body weight and body mass index inversely correlated with serum estradiol (E2) in the OVX rats compared to the sham rats. Estrogen deficiency also significantly increased serum total cholesterol, triglycerides, and low-density lipoprotein cholesterol. Utilizing GC/TOF-MS-based metabolomic analysis and the partial least-squares discriminant analysis, the OVX samples were discriminated from the shams. Elevated levels of cholesterol, glycerol, glucose, arachidonic acid, glutamic acid, glycine, and cystine and reduced alanine levels were observed. Serum glucose metabolism, energy metabolism, lipid metabolism, and amino acid metabolism were involved in estrogen-deficiency-induced obesity in OVX rats. Conclusion: The series of potential biomarkers identified in the present study provided fingerprints of rat metabolomic changes during obesity and an overview of multiple metabolic pathways during the progression of obesity involving glucose metabolism, lipid metabolism, and amino acid metabolism. PMID:21293480
Miyazaki, Teruo; Nagasaka, Hironori; Komatsu, Haruki; Inui, Ayano; Morioka, Ichiro; Tsukahara, Hirokazu; Kaji, Shunsaku; Hirayama, Satoshi; Miida, Takashi; Kondou, Hiroki; Ihara, Kenji; Yagi, Mariko; Kizaki, Zenro; Bessho, Kazuhiko; Kodama, Takahiro; Iijima, Kazumoto; Yorifuji, Tohru; Matsuzaki, Yasushi; Honda, Akira
2018-04-14
Citrin (mitochondrial aspartate-glutamate transporter) deficiency causes the failures in both carbohydrate-energy metabolism and the urea cycle, and the alterations in the serum levels of several amino acids in the stages of newborn (NICCD) and adult (CTLN2). However, the clinical manifestations are resolved between the NICCD and CTLN2, but the reasons are still unclear. This study evaluated the serum amino acid profile in citrin-deficient children during the healthy stage. Using HPLC-MS/MS analysis, serum amino acids were evaluated among 20 citrin-deficient children aged 5-13 years exhibiting normal liver function and 35 age-matched healthy controls. The alterations in serum amino acids characterized in the NICCD and CTLN2 stages were not observed in the citrin-deficient children. Amino acids involved in the urea cycle, including arginine, ornithine, citrulline, and aspartate, were comparable in the citrin-deficient children to the respective control levels, but serum urea was twofold higher, suggestive of a functional urea cycle. The blood sugar level was normal, but glucogenic amino acids and glutamine were significantly decreased in the citrin-deficient children compared to those in the controls. In addition, significant increases of ketogenic amino acids, branched-chain amino acids (BCAAs), a valine intermediate 3-hydroxyisobutyrate, and β-alanine were also found in the citrin-deficient children. The profile of serum amino acids in the citrin-deficient children during the healthy stage showed different characteristics from the NICCD and CTLN2 stages, suggesting that the failures in both urea cycle function and energy metabolism might be compensated by amino acid metabolism. In the citrin-deficient children during the healthy stage, the characteristics of serum amino acids, including decrease of glucogenic amino acids, and increase of ketogenic amino acids, BCAAs, valine intermediate, and β-alanine, were found by comparison to the age-matched healthy control children, and it suggested that the characteristic alteration of serum amino acids may be resulted from compensation for energy metabolism and ammonia detoxification.
Bjerrum, Jacob Tveiten; Steenholdt, Casper; Ainsworth, Mark; Nielsen, Ole Haagen; Reed, Michelle Ac; Atkins, Karen; Günther, Ulrich Leonhard; Hao, Fuhua; Wang, Yulan
2017-10-16
One-third of inflammatory bowel disease (IBD) patients show no response to infliximab (IFX) induction therapy, and approximately half of patients responding become unresponsive over time. Thus, identification of potential treatment response biomarkers are of great clinical significance. This study employs spectroscopy-based metabolic profiling of serum from patients with IBD treated with IFX and healthy subjects (1) to substantiate the use of spectroscopy as a semi-invasive diagnostic tool, (2) to identify potential biomarkers of treatment response and (3) to characterise the metabolic changes during management of patients with tumour necrosis factor-α inhibitors. Successive serum samples collected during IFX induction treatment (weeks 0, 2, 6 and 14) from 87 IBD patients and 37 controls were analysed by 1 H nuclear magnetic resonance (NMR) spectroscopy. Data were analysed with principal components analysis and orthogonal projection to latent structures discriminant analysis using SIMCA-P+ v12 and MATLAB. Metabolic profiles were significantly different between active ulcerative colitis and controls, active Crohn's disease and controls, and quiescent Crohn's disease and controls. Metabolites holding differential power belonged primarily to lipids and phospholipids with proatherogenic characteristics and metabolites in the pyruvate metabolism, suggestive of an intense inflammation-driven energy demand. IBD patients not responding to IFX were identified as a potentially distinct group based on their metabolic profile, although no applicable response biomarkers could be singled out in the current setting. 1 H NMR spectroscopy of serum samples is a powerful semi-invasive diagnostic tool in flaring IBD. With its use, we provide unique insights into the metabolic changes taking place during induction treatment with IFX. Of distinct clinical relevance is the identification of a reversible proatherogenic lipid profile in IBD patients with active disease, which partially explains the increased risk of cardiovascular disease associated with IBD.
Ahn, Joong Kyong; Kim, Jungyeon; Hwang, Jiwon; Song, Juhwan; Kim, Kyoung Heon; Cha, Hoon-Suk
2018-05-01
Although many diagnostic criteria of Behcet's disease (BD) have been developed and revised by experts, diagnosing BD is still complicated and challenging. No metabolomic studies on serum have been attempted to improve the diagnosis and to identify potential biomarkers of BD. The purposes of this study were to investigate distinctive metabolic changes in serum samples of BD patients and to identify metabolic candidate biomarkers for reliable diagnosis of BD using the metabolomics platform. Metabolomic profiling of 90 serum samples from 45 BD patients and 45 healthy controls (HCs) were performed via gas chromatography with time-of-flight mass spectrometry (GC/TOF-MS) with multivariate statistical analyses. A total of 104 metabolites were identified from samples. The serum metabolite profiles obtained from GC/TOF-MS analysis can distinguish BD patients from HC group in discovery set. The variation values of the partial least squared-discrimination analysis (PLS-DA) model are R 2 X of 0.246, R 2 Y of 0.913 and Q 2 of 0.852, respectively, indicating strong explanation and prediction capabilities of the model. A panel of five metabolic biomarkers, namely, decanoic acid, fructose, tagatose, linoleic acid and oleic acid were selected and adequately validated as putative biomarkers of BD (sensitivity 100%, specificity 97.1%, area under the curve 0.998) in the discovery set and independent set. The PLS_DA model showed clear discrimination of BD and HC groups by the five metabolic biomarkers in independent set. This is the first report on characteristic metabolic profiles and potential metabolite biomarkers in serum for reliable diagnosis of BD using GC/TOF-MS. Copyright © 2017. Published by Elsevier SAS.
6C.04: INTEGRATED SNP ANALYSIS AND METABOLOMIC PROFILES OF METABOLIC SYNDROME.
Marrachelli, V; Monleon, D; Morales, J M; Rentero, P; Martínez, F; Chaves, F J; Martin-Escudero, J C; Redon, J
2015-06-01
Metabolic syndrome (MS) has become a health and financial burden worldwide. Susceptibility of genetically determined metabotype of MS has not yet been investigated. We aimed to identify a distinctive metabolic profile of blood serum which might correlates to the early detection of the development of MS associated to genetic polymorphism. We applied high resolution NMR spectroscopy to profile blood serum from patients without MS (n = 945) or with (n = 291). Principal component analysis (PCA) and projection to latent structures for discriminant analysis (PLS-DA) were applied to NMR spectral datasets. Results were cross-validated using the Venetian Blinds approach. Additionally, five SNPs previously associated with MS were genotyped with SNPlex and tested for associations between the metabolic profiles and the genetic variants. Statistical analysis was performed using in-house MATLAB scripts and the PLS Toolbox statistical multivariate analysis library. Our analysis provided a PLS-DA Metabolic Syndrome discrimination model based on NMR metabolic profile (AUC = 0.86) with 84% of sensitivity and 72% specificity. The model identified 11 metabolites differentially regulated in patients with MS. Among others, fatty acids, glucose, alanine, hydroxyisovalerate, acetone, trimethylamine, 2-phenylpropionate, isobutyrate and valine, significantly contributed to the model. The combined analysis of metabolomics and SNP data revealed an association between the metabolic profile of MS and genes polymorphism involved in the adiposity regulation and fatty acids metabolism: rs2272903_TT (TFAP2B), rs3803_TT (GATA2), rs174589_CC (FADS2) and rs174577_AA (FADS2). In addition, individuals with the rs2272903-TT genotype seem to develop MS earlier than general population. Our study provides new insights on the metabolic alterations associated with a MS high-risk genotype. These results could help in future development of risk assessment and predictive models for subclinical cardiovascular disease.
Effect of long-distance transportation on serum metabolic profiles of steer calves.
Takemoto, Satoshi; Tomonaga, Shozo; Funaba, Masayuki; Matsui, Tohru
2017-12-01
Long-distance transportation is sometimes inevitable in the beef industry because of the geographic separation of major breeding and fattening areas. Long-distance transportation negatively impacts production and health of cattle, which may, at least partly, result from the disturbance of metabolism during and after transportation. However, alteration of metabolism remains elusive in transported cattle. We investigated the effects of transportation on the metabolomic profiles of Holstein steer calves. Non-targeted analysis of serum concentrations of low molecular weight metabolites was performed by gas chromatography mass spectrometry. Transportation affected 38 metabolites in the serum. A pathway analysis suggested that 26, 10, and 10 pathways were affected immediately after transportation, and 3 and 7 days after transportation, respectively. Some pathways were disturbed only immediately after transportation, likely because of feed and water withdrawal during transit. Nicotinate and nicotinamide metabolism, and citric acid cycle were affected for 3 days after transportation, whereas propionate metabolism, phenylalanine and tyrosine metabolism were affected throughout the experiment. Four pathways were not affected immediately after transportation, but were altered thereafter. These results suggested that many metabolic pathways had marked perturbations during transportation. Metabolites such as citric acid, propionate, tyrosine and niacin can be candidate supplements for mitigating transportation-induced adverse effects. © 2017 Japanese Society of Animal Science.
Pilot Metabolome-Wide Association Study of Benzo(a)pyrene in Serum from Military Personnel
Walker, Douglas I.; Pennell, Kurt D.; Uppal, Karan; Xia, Xiaoyan; Hopke, Philip K.; Utell, Mark J.; Phipps, Richard P.; Sime, Patricia J.; Rohrbeck, Patricia; Mallon, COL Timothy M.; Jones, Dean P.
2016-01-01
Objective A pilot study was conducted to test the feasibility of using Department of Defense Serum Repository (DoDSR) samples to study health and exposure-related effects. Methods Thirty unidentified human serum samples were obtained from the DoDSR and analyzed for normal serum metabolites with high-resolution mass spectrometry and serum levels of free benzo(a)pyrene (BaP) by gas chromatography-mass spectrometry. Metabolic associations with BaP were determined using a metabolome wide association study (MWAS) and metabolic pathway enrichment. Results The serum analysis detected normal ranges of glucose, selected amino acids, fatty acids, and creatinine. Free BaP was detected in a broad concentration range. MWAS of BaP showed associations with lipids, fatty acids, and sulfur amino acid metabolic pathways. Conclusion The results show the DoDSR samples are of sufficient quality for chemical profiling of DoD personnel. PMID:27501104
Pilot Metabolome-Wide Association Study of Benzo(a)pyrene in Serum From Military Personnel.
Walker, Douglas I; Pennell, Kurt D; Uppal, Karan; Xia, Xiaoyan; Hopke, Philip K; Utell, Mark J; Phipps, Richard P; Sime, Patricia J; Rohrbeck, Patricia; Mallon, Col Timothy M; Jones, Dean P
2016-08-01
A pilot study was conducted to test the feasibility of using Department of Defense Serum Repository (DoDSR) samples to study health and exposure-related effects. Thirty unidentified human serum samples were obtained from the DoDSR and analyzed for normal serum metabolites with high-resolution mass spectrometry and serum levels of free benzo(a)pyrene (BaP) by gas chromatography-mass spectrometry. Metabolic associations with BaP were determined using a metabolome-wide association study (MWAS) and metabolic pathway enrichment. The serum analysis detected normal ranges of glucose, selected amino acids, fatty acids, and creatinine. Free BaP was detected in a broad concentration range. MWAS of BaP showed associations with lipids, fatty acids, and sulfur amino acid metabolic pathways. The results show that the DoDSR samples are of sufficient quality for chemical profiling of DoD personnel.
Raouf, Joan; Idborg, Helena; Englund, Petter; Alexanderson, Helene; Dastmalchi, Maryam; Jakobsson, Per-Johan; Lundberg, Ingrid E; Korotkova, Marina
2018-05-02
Polymyositis (PM) and dermatomyositis (DM) are severe chronic autoimmune diseases, characterized by muscle fatigue and low muscle endurance. Conventional treatment includes high doses of glucocorticoids and immunosuppressive drugs; however, few patients recover full muscle function. One explanation of the persistent muscle weakness could be altered lipid metabolism in PM/DM muscle tissue as we previously reported. Using a targeted lipidomic approach we aimed to characterize serum lipid profiles in patients with PM/DM compared to healthy individuals (HI) in a cross-sectional study. Also, in the longitudinal study we compared serum lipid profiles in patients newly diagnosed with PM/DM before and after immunosuppressive treatment. Lipidomic profiles were analyzed in serum samples from 13 patients with PM/DM, 12 HI and 8 patients newly diagnosed with PM/DM before and after conventional immunosuppressive treatment using liquid chromatography tandem mass spectrometry (LC-MS/MS) and a gas-chromatography flame ionization detector (GC-FID). Functional Index (FI), as a test of muscle performance and serum levels of creatine kinase (s-CK) as a proxy for disease activity were analyzed. The fatty acid (FA) composition of total serum lipids was altered in patients with PM/DM compared to HI; the levels of palmitic (16:0) acid were significantly higher while the levels of arachidonic (20:4, n-6) acid were significantly lower in patients with PM/DM. The profiles of serum phosphatidylcholine and triacylglycerol species were changed in patients with PM/DM compared to HI, suggesting disproportionate levels of saturated and polyunsaturated FAs that might have negative effects on muscle performance. After immunosuppressive treatment the total serum lipid levels of eicosadienoic (20:2, n-6) and eicosapentaenoic (20:5, n-3) acids were increased and serum phospholipid profiles were altered in patients with PM/DM. The correlation between FI or s-CK and levels of several lipid species indicate the important role of lipid changes in muscle performance and inflammation. Serum lipids profiles are significantly altered in patients with PM/DM compared to HI. Moreover, immunosuppressive treatment in patients newly diagnosed with PM/DM significantly affected serum lipid profiles. These findings provide new evidence of the dysregulated lipid metabolism in patients with PM/DM that could possibly contribute to low muscle performance.
Yan, Bei; Liu, Yao; Shi, Aixin; Wang, Zhihong; Aa, Jiye; Huang, Xiaoping; Liu, Yi
2018-05-01
Ginseng is usually used for alleviating fatigue. The purpose of this paper was to evaluate the regulatory effect of Korean ginseng on the metabolic pattern in professional athletes, and, further, to explore the underlying mechanism of the antifatigue effect of Korean ginseng. GC-time-of-flight-MS was used to profile serum samples from professional athletes before training and after 15 and 30 day training, and professional athletes administered with Korean ginseng in the meanwhile. Biochemical parameters of all athletes were also analyzed. For the athlete control group, strength-endurance training resulted in an elevation of creatine kinase (CK) and blood urea nitrogen (BUN), and a reduction in blood hemoglobin, and a dynamic trajectory of the metabolomic profile which were related to fatigue. Korean ginseng treatment not only lead to a marked reduction in CK and blood urea nitrogen (BUN) in serum, but also showed regulatory effects on the serum metabolic profile and restored scores plots close to normal, suggesting that the change in metabolic profiling could reflect the antifatigue effect of Korean ginseng. Furthermore, perturbed levels of 11 endogenous metabolites were regulated by Korean ginseng significantly, which might be primarily involved in lipid metabolism, energy balance, and chemical signaling. These findings suggest that metabolomics is a potential tool for the evaluation of the antifatigue effect of Korean ginseng and for the elucidation of its pharmacological mechanism.
Choi, Jihyun E; Ainsworth, Barbara E
2016-06-01
To examine the associations of food consumption, serum vitamins and metabolic syndrome risk with physical activity level in middle-aged adults. Cross-sectional. National Health and Nutrition Examination Survey (NHANES) 2005-2006. Adults aged 40-70 years were divided into three groups by tertile of accelerometer-determined steps/d (in men and women, respectively): tertile 1 (sedentary), <6802, <5785; tertile 2 (intermediate), 6802-10698, 5785-9225; tertile 3 (active), ≥10699, ≥9226. The active men consumed more grain products, fruits and vegetables, whereas the active women consumed more legumes and vegetables, compared with the sedentary group. Serum vitamin concentrations were associated with daily steps in both men and women. Vitamin C, α-carotene, trans-β-carotene, cis-β-carotene, β-cryptoxanthin, lutein+zeaxanthin, lycopene, γ-tocopherol and vitamin D were significantly associated with daily steps. OR (P<0·05) for the sedentary group were 1·52 and 1·61 for low HDL cholesterol, 1·66 and 3·97 for hypertriacylglycerolaemia, 1·02 and 2·73 for abdominal obesity, 1·79 and 1·77 for hyperglycaemia, 1·59 and 1·60 for hypertension, and 1·85 and 2·47 for metabolic syndrome in men and women, respectively. Those with the highest steps taken showed a more healthful eating profile and a better serum vitamin profile compared with less active adults. Those with the lowest steps taken had greater odds of having metabolic syndrome and its risk components. Probably, daily walking is a marker of a healthful eating profile and increasing daily walking is one of the healthful ways to decrease the metabolic syndrome and its risk components.
Serum Metabolomic Profiling of Piglets Infected with Virulent Classical Swine Fever Virus
Gong, Wenjie; Jia, Junjie; Zhang, Bikai; Mi, Shijiang; Zhang, Li; Xie, Xiaoming; Guo, Huancheng; Shi, Jishu; Tu, Changchun
2017-01-01
Classical swine fever (CSF) is a highly contagious swine infectious disease and causes significant economic losses for the pig industry worldwide. The objective of this study was to determine whether small molecule metabolites contribute to the pathogenesis of CSF. Birefly, serum metabolomics of CSFV Shimen strain-infected piglets were analyzed by ultraperformance liquid chromatography/electrospray ionization time-of-flight mass spectrometry (UPLC/ESI-Q-TOF/MS) in combination with multivariate statistical analysis. In CSFV-infected piglets at days 3 and 7 post-infection changes were found in metabolites associated with several key metabolic pathways, including tryptophan catabolism and the kynurenine pathway, phenylalanine metabolism, fatty acid and lipid metabolism, the tricarboxylic acid and urea cycles, branched-chain amino acid metabolism, and nucleotide metabolism. Several pathways involved in energy metabolism including fatty acid biosynthesis and β-oxidation, branched-chain amino acid metabolism, and the tricarboxylic acid cycle were significantly inhibited. Changes were also observed in several metabolites exclusively associated with gut microbiota. The metabolomic profiles indicate that CSFV-host gut microbiome interactions play a role in the development of CSF. PMID:28496435
Haren, Matthew T; Li, Ming; Petkov, John; McDermott, Robyn A
2010-08-03
The interaction between overweight/obesity and alcohol intake on liver enzyme concentrations have been demonstrated. No studies have yet examined the interaction between metabolic syndrome or multiple metabolic risk factors and alcohol intake on liver enzymes. The aim of this study was to examine if alcohol consumption modifies the effect of metabolic risk on elevated serum GGT in Indigenous Australians. Data were from N = 2609 Indigenous Australians who participated in a health screening program in rural far north Queensland in 1999-2000 (44.5% response rate). The individual and interactive effects of metabolic risk and alcohol drinking on elevated serum GGT concentrations (>or=50 U/L) were analyzed using logistic regression. Overall, 26% of the population had GGT>or=50 U/L. Elevated GGT was associated with alcohol drinking (moderate drinking: OR 2.3 [95%CI 1.6 - 3.2]; risky drinking: OR 6.0 [4.4 - 8.2]), and with abdominal obesity (OR 3.7 [2.5 - 5.6]), adverse metabolic risk cluster profile (OR 3.4 [2.6 - 4.3]) and metabolic syndrome (OR 2.7 [2.1 - 3.5]) after adjustment for age, sex, ethnicity, smoking, physical activity and BMI. The associations of obesity and metabolic syndrome with elevated GGT were similar across alcohol drinking strata, but the association of an adverse metabolic risk cluster profile with elevated GGT was larger in risky drinkers (OR 4.9 [3.7 - 6.7]) than in moderate drinkers (OR 2.8 [1.6 - 4.9]) and abstainers (OR 1.6 [0.9 - 2.8]). In this Indigenous population, an adverse metabolic profile conferred three times the risk of elevated GGT in risky drinkers compared with abstainers, independent of sex and ethnicity. Community interventions need to target both determinants of the population's metabolic status and alcohol consumption to reduce the risk of elevated GGT.
2010-01-01
Background The interaction between overweight/obesity and alcohol intake on liver enzyme concentrations have been demonstrated. No studies have yet examined the interaction between metabolic syndrome or multiple metabolic risk factors and alcohol intake on liver enzymes. The aim of this study was to examine if alcohol consumption modifies the effect of metabolic risk on elevated serum GGT in Indigenous Australians. Methods Data were from N = 2609 Indigenous Australians who participated in a health screening program in rural far north Queensland in 1999-2000 (44.5% response rate). The individual and interactive effects of metabolic risk and alcohol drinking on elevated serum GGT concentrations (≥50 U/L) were analyzed using logistic regression. Results Overall, 26% of the population had GGT≥50 U/L. Elevated GGT was associated with alcohol drinking (moderate drinking: OR 2.3 [95%CI 1.6 - 3.2]; risky drinking: OR 6.0 [4.4 - 8.2]), and with abdominal obesity (OR 3.7 [2.5 - 5.6]), adverse metabolic risk cluster profile (OR 3.4 [2.6 - 4.3]) and metabolic syndrome (OR 2.7 [2.1 - 3.5]) after adjustment for age, sex, ethnicity, smoking, physical activity and BMI. The associations of obesity and metabolic syndrome with elevated GGT were similar across alcohol drinking strata, but the association of an adverse metabolic risk cluster profile with elevated GGT was larger in risky drinkers (OR 4.9 [3.7 - 6.7]) than in moderate drinkers (OR 2.8 [1.6 - 4.9]) and abstainers (OR 1.6 [0.9 - 2.8]). Conclusions In this Indigenous population, an adverse metabolic profile conferred three times the risk of elevated GGT in risky drinkers compared with abstainers, independent of sex and ethnicity. Community interventions need to target both determinants of the population's metabolic status and alcohol consumption to reduce the risk of elevated GGT. PMID:20682033
Metabolomic profiling of doxycycline treatment in chronic obstructive pulmonary disease.
Singh, Brajesh; Jana, Saikat K; Ghosh, Nilanjana; Das, Soumen K; Joshi, Mamata; Bhattacharyya, Parthasarathi; Chaudhury, Koel
2017-01-05
Serum metabolic profiling can identify the metabolites responsible for discrimination between doxycycline treated and untreated chronic obstructive pulmonary disease (COPD) and explain the possible effect of doxycycline in improving the disease conditions. 1 H nuclear magnetic resonance (NMR)-based metabolomics was used to obtain serum metabolic profiles of 60 add-on doxycycline treated COPD patients and 40 patients receiving standard therapy. The acquired data were analyzed using multivariate principal component analysis (PCA), partial least-squares-discriminant analysis (PLS-DA), and orthogonal projection to latent structure with discriminant analysis (OPLS-DA). A clear metabolic differentiation was apparent between the pre and post doxycycline treated group. The distinguishing metabolites lactate and fatty acids were significantly down-regulated and formate, citrate, imidazole and l-arginine upregulated. Lactate and folate are further validated biochemically. Metabolic changes, such as decreased lactate level, inhibited arginase activity and lowered fatty acid level observed in COPD patients in response to add-on doxycycline treatment, reflect the anti-inflammatory action of the drug. Doxycycline as a possible therapeutic option for COPD seems promising. Copyright © 2016 Elsevier B.V. All rights reserved.
1H-NMR, 1H-NMR T2-edited, and 2D-NMR in bipolar disorder metabolic profiling.
Sethi, Sumit; Pedrini, Mariana; Rizzo, Lucas B; Zeni-Graiff, Maiara; Mas, Caroline Dal; Cassinelli, Ana Cláudia; Noto, Mariane N; Asevedo, Elson; Cordeiro, Quirino; Pontes, João G M; Brasil, Antonio J M; Lacerda, Acioly; Hayashi, Mirian A F; Poppi, Ronei; Tasic, Ljubica; Brietzke, Elisa
2017-12-01
The objective of this study was to identify molecular alterations in the human blood serum related to bipolar disorder, using nuclear magnetic resonance (NMR) spectroscopy and chemometrics. Metabolomic profiling, employing 1 H-NMR, 1 H-NMR T 2 -edited, and 2D-NMR spectroscopy and chemometrics of human blood serum samples from patients with bipolar disorder (n = 26) compared with healthy volunteers (n = 50) was performed. The investigated groups presented distinct metabolic profiles, in which the main differential metabolites found in the serum sample of bipolar disorder patients compared with those from controls were lipids, lipid metabolism-related molecules (choline, myo-inositol), and some amino acids (N-acetyl-L-phenyl alanine, N-acetyl-L-aspartyl-L-glutamic acid, L-glutamine). In addition, amygdalin, α-ketoglutaric acid, and lipoamide, among other compounds, were also present or were significantly altered in the serum of bipolar disorder patients. The data presented herein suggest that some of these metabolites differentially distributed between the groups studied may be directly related to the bipolar disorder pathophysiology. The strategy employed here showed significant potential for exploring pathophysiological features and molecular pathways involved in bipolar disorder. Thus, our findings may contribute to pave the way for future studies aiming at identifying important potential biomarkers for bipolar disorder diagnosis or progression follow-up.
Xuan, Jiekun; Pan, Guihua; Qiu, Yunping; Yang, Lun; Su, Mingming; Liu, Yumin; Chen, Jian; Feng, Guoyin; Fang, Yiru; Jia, Wei; Xing, Qinghe; He, Lin
2011-12-02
Despite recent advances in understanding the pathophysiology of schizophrenia and the mechanisms of antipsychotic drug action, the development of biomarkers for diagnosis and therapeutic monitoring in schizophrenia remains challenging. Metabolomics provides a powerful approach to discover diagnostic and therapeutic biomarkers by analyzing global changes in an individual's metabolic profile in response to pathophysiological stimuli or drug intervention. In this study, we performed gas chromatography-mass spectrometry based metabolomic profiling in serum of unmedicated schizophrenic patients before and after an 8-week risperidone monotherapy, to detect potential biomarkers associated with schizophrenia and risperidone treatment. Twenty-two marker metabolites contributing to the complete separation of schizophrenic patients from matched healthy controls were identified, with citrate, palmitic acid, myo-inositol, and allantoin exhibiting the best combined classification performance. Twenty marker metabolites contributing to the complete separation between posttreatment and pretreatment patients were identified, with myo-inositol, uric acid, and tryptophan showing the maximum combined classification performance. Metabolic pathways including energy metabolism, antioxidant defense systems, neurotransmitter metabolism, fatty acid biosynthesis, and phospholipid metabolism were found to be disturbed in schizophrenic patients and partially normalized following risperidone therapy. Further study of these metabolites may facilitate the development of noninvasive biomarkers and more efficient therapeutic strategies for schizophrenia.
Metabolomics Based Profiling of Dexamethasone Side Effects in Rats
Malkawi, Abeer K.; Alzoubi, Karem H.; Jacob, Minnie; Matic, Goran; Ali, Asmaa; Al Faraj, Achraf; Almuhanna, Falah; Dasouki, Majed; Abdel Rahman, Anas M.
2018-01-01
Dexamethasone (Dex) is a synthetic glucocorticoid that has anti-inflammatory and immunosuppressant effects and is used in several conditions such as asthma and severe allergy. Patients receiving Dex, either at a high dose or for a long time, might develop several side effects such as hyperglycemia, weight change, or osteoporosis due to its in vivo non-selectivity. Herein, we used liquid chromatography-tandem mass spectrometry-based comprehensive targeted metabolomic profiling as well as radiographic imaging techniques to study the side effects of Dex treatment in rats. The Dex-treated rats suffered from a ∼20% reduction in weight gain, hyperglycemia (145 mg/dL), changes in serum lipids, and reduction in total serum alkaline phosphatase (ALP) (∼600 IU/L). Also, compared to controls, Dex-treated rats showed a distinctive metabolomics profile. In particular, serum amino acids metabolism showed six-fold reduction in phenylalanine, lysine, and arginine levels and upregulation of tyrosine and hydroxyproline reflecting perturbations in gluconeogenesis and protein catabolism which together lead to weight loss and abnormal bone metabolism. Sorbitol level was markedly elevated secondary to hyperglycemia and reflecting activation of the polyol metabolism pathway causing a decrease in the availability of reducing molecules (glutathione, NADPH, NAD+). Overexpression of succinylacetone (4,6-dioxoheptanoic acid) suggests a novel inhibitory effect of Dex on hepatic fumarylacetoacetate hydrolase. The acylcarnitines, mainly the very long chain species (C12, C14:1, C18:1) were significantly increased after Dex treatment which reflects degradation of the adipose tissue. In conclusion, long-term Dex therapy in rats is associated with a distinctive metabolic profile which correlates with its side effects. Therefore, metabolomics based profiling may predict Dex treatment-related side effects and may offer possible novel therapeutic interventions. PMID:29503615
Metabolomics Based Profiling of Dexamethasone Side Effects in Rats.
Malkawi, Abeer K; Alzoubi, Karem H; Jacob, Minnie; Matic, Goran; Ali, Asmaa; Al Faraj, Achraf; Almuhanna, Falah; Dasouki, Majed; Abdel Rahman, Anas M
2018-01-01
Dexamethasone (Dex) is a synthetic glucocorticoid that has anti-inflammatory and immunosuppressant effects and is used in several conditions such as asthma and severe allergy. Patients receiving Dex, either at a high dose or for a long time, might develop several side effects such as hyperglycemia, weight change, or osteoporosis due to its in vivo non-selectivity. Herein, we used liquid chromatography-tandem mass spectrometry-based comprehensive targeted metabolomic profiling as well as radiographic imaging techniques to study the side effects of Dex treatment in rats. The Dex-treated rats suffered from a ∼20% reduction in weight gain, hyperglycemia (145 mg/dL), changes in serum lipids, and reduction in total serum alkaline phosphatase (ALP) (∼600 IU/L). Also, compared to controls, Dex-treated rats showed a distinctive metabolomics profile. In particular, serum amino acids metabolism showed six-fold reduction in phenylalanine, lysine, and arginine levels and upregulation of tyrosine and hydroxyproline reflecting perturbations in gluconeogenesis and protein catabolism which together lead to weight loss and abnormal bone metabolism. Sorbitol level was markedly elevated secondary to hyperglycemia and reflecting activation of the polyol metabolism pathway causing a decrease in the availability of reducing molecules (glutathione, NADPH, NAD + ). Overexpression of succinylacetone (4,6-dioxoheptanoic acid) suggests a novel inhibitory effect of Dex on hepatic fumarylacetoacetate hydrolase. The acylcarnitines, mainly the very long chain species (C12, C14:1, C18:1) were significantly increased after Dex treatment which reflects degradation of the adipose tissue. In conclusion, long-term Dex therapy in rats is associated with a distinctive metabolic profile which correlates with its side effects. Therefore, metabolomics based profiling may predict Dex treatment-related side effects and may offer possible novel therapeutic interventions.
Sahin Ersoy, Gulcin; Altun Ensari, Tugba; Vatansever, Dogan; Emirdar, Volkan; Cevik, Ozge
2017-02-01
To determine the levels of WISP1 and betatrophin in normal weight and obese women with polycystic ovary syndrome (PCOS) and to assess their relationship with anti-Müllerian hormone (AMH) levels, atherogenic profile and metabolic parameters Methods: In this prospective cross-sectional study, the study group was composed of 49 normal weighed and 34 obese women with PCOS diagnosed based on the Rotterdam criteria; 36 normal weight and 26 obese age matched non-hyperandrogenemic women with regular menstrual cycle. Serum WISP1, betatrophin, homeostasis model assessment of insulin resistance (HOMA-IR) and AMH levels were evaluated. Univariate and multivariate analyses were performed between betatrophin, WISP1 levels and AMH levels, metabolic and atherogenic parameters. Serum WISP1 and betatrophin values were elevated in the PCOS group than in the control group. Moreover, serum WISP1 and betatrophin levels were higher in the obese PCOS subgroup than in normal weight and obese control subgroups. Multivariate analyses revealed that Body mass index, HOMA-IR, AMH independently and positively predicted WISP1 levels. Serum betatrophin level variability was explained by homocysteine, HOMA-IR and androstenedione levels. WISP1 and betatrophin may play a key role on the pathogenesis of PCOS.
Tae, Hyejin; Huh, Hyu Jung; Hwang, Jihyun; Chae, Jeong-Ho
2018-05-16
The objective of this study was to investigate the relationship between serum lipid concentrations and PTSD symptoms in the bereaved after a traumatic familial loss. Eighteen months after the Sewol ferry disaster, 107 subjects who experienced traumatic losses as a result of the accident completed a mental and medical survey as well as laboratory tests for lipid profiles. At 30 months after the trauma, a total of 64 individuals completed a follow-up psychometric survey and biochemical measurements. We performed multiple linear regression analyses, examining the association between PTSD symptoms and lipid profiles. Other potential influences on lipid profiles such as metabolic risk factors, demographic risk factors, and underlying medical history were accounted for. Participants reporting clinically significant PTSD symptoms exhibited lower serum HDL-C levels than those without PTSD symptoms. In addition, we found that the severity of PTSD symptoms and sex could explain the changes in lipid profiles independently of other possible risk factors of changes. The results of this study suggest that PTSD symptoms may contribute to an increased risk for developing metabolic syndrome via detrimental changes in lipid concentrations. Routine screening and multidisciplinary management to prevent metabolic syndrome in individuals who experience traumatic losses would therefore be valuable. Copyright © 2018 Elsevier B.V. All rights reserved.
Farhangi, Mahdieh Abbasalizad; Jahangiry, Leila
2018-04-17
Metabolic syndrome is associated with cardio-metabolic risk factors and lipid abnormalities. Previous studies evaluated the dietary habits and nutrient intakes among patients with metabolic syndrome; however the association between metabolic risk factors and adiponectin with dietary diversity score (DDS) in patients with metabolic syndrome has not been evaluated yet. Therefore the aim of the current study was to evaluate these relationships among patients with metabolic syndrome. One hundred sixty patients with metabolic syndrome were recruited in the study. The anthropometric parameters including weight, height, waist circumference and hip circumference were measured. Serum adiponectin concentration was measured by enzyme- linked immunosorbent assay method (ELISA). Lipid profile and fasting serum glucose concentrations (FSG) were also measured with enzymatic colorimetric methods. Blood pressure was also measured and DDS was calculated using the data obtained from food frequency questionnaire (FFQ). Subjects in lower DDS categorizes had significantly lower energy and fiber intake; whereas mean protein intake of subjects in the highest quartile was significantly higher than second quartile. Higher prevalence of obesity was also observed in the top quartiles (P < 0.001). Subjects in the lower quartiles had higher serum triglyceride concentrations and systolic blood pressure (SBP) values and lower serum adiponectin concentrations compared with subjects in higher DDS categorizes (P < 0.05). The prevalence of metabolic syndrome components among patients in lower DDS quartiles was significantly higher (P < 0.05). Our study found a lower serum triglyceride and SBP and higher serum adiponectin concentrations in top quartiles of DDS. The findings clarify the possible preventive role of higher dietary diversity score against metabolic syndrome. However, for further confirming the findings, more studies are warranted.
Serum metabolomics of slow vs. rapid motor progression Parkinson's disease: a pilot study.
Roede, James R; Uppal, Karan; Park, Youngja; Lee, Kichun; Tran, Vilinh; Walker, Douglas; Strobel, Frederick H; Rhodes, Shannon L; Ritz, Beate; Jones, Dean P
2013-01-01
Progression of Parkinson's disease (PD) is highly variable, indicating that differences between slow and rapid progression forms could provide valuable information for improved early detection and management. Unfortunately, this represents a complex problem due to the heterogeneous nature of humans in regards to demographic characteristics, genetics, diet, environmental exposures and health behaviors. In this pilot study, we employed high resolution mass spectrometry-based metabolic profiling to investigate the metabolic signatures of slow versus rapidly progressing PD present in human serum. Archival serum samples from PD patients obtained within 3 years of disease onset were analyzed via dual chromatography-high resolution mass spectrometry, with data extraction by xMSanalyzer and used to predict rapid or slow motor progression of these patients during follow-up. Statistical analyses, such as false discovery rate analysis and partial least squares discriminant analysis, yielded a list of statistically significant metabolic features and further investigation revealed potential biomarkers. In particular, N8-acetyl spermidine was found to be significantly elevated in the rapid progressors compared to both control subjects and slow progressors. Our exploratory data indicate that a fast motor progression disease phenotype can be distinguished early in disease using high resolution mass spectrometry-based metabolic profiling and that altered polyamine metabolism may be a predictive marker of rapidly progressing PD.
The Basic Metabolic Profile in Heart Failure-Marker and Modifier.
Elfar, Ahmed; Sambandam, Kamalanathan K
2017-08-01
The physiologic determinants of each of the components of the basic metabolic profile in patients with heart failure will be explored. Additionally, the review will discuss the prognostic value of alterations in the basic metabolic profile as well as their effects on management. Abnormalities in the basic metabolic profile have significant correlation with clinical outcomes and can modify treatment in heart failure. Hypochloremia has recently received increased attention for these reasons. Elevated creatinine, increased blood urea nitrogen, hyponatremia, and hypochloremia correlate with worse mortality and diuretic resistance in heart failure. Hypokalemia, even when mild, has proven to be a worse clinical indicator than modest elevations in serum potassium. Hypochloremia is mechanistically linked to hyponatremia and metabolic alkalosis, but recent compelling data suggests that it can provide more discriminating prognostic information. Knowledge of the physiologic basis for each of these alterations informs their management.
Wang, Weiwei; Li, Zhui; Gan, Liping; Fan, Hao; Guo, Yuming
2018-06-18
Metabolomics is used to evaluate the bioavailability of food components, as well as to validate the metabolic changes associated with food consumption. This study was conducted to investigate the effects of the dietary supplement Kluyveromyces marxianus on the serum metabolite profile in broiler chickens. A total of 240 1-d-old broilers were divided into 2 groups with 8 replicates. Birds were fed basal diets without or with K. marxianus supplementation (5 × 1010 CFU kg-1 of diet). Serum samples were collected on d 21 and were analyzed by high-performance liquid chromatography with quadrupole time-of flight/mass spectrometry. The results showed that supplemental K. marxianus altered the concentrations of a variety of metabolites in the serum. Thereinto, a total of 39 metabolites were identified at higher (P < 0.05) concentrations while 21 metabolites were identified at lower (P < 0.05) concentrations in the treatment group as compared with the control. These metabolites were primarily involved with the regulation of amino acids and carbohydrate metabolism. Further metabolic pathway analysis revealed that glutamine and glutamate metabolism was the most relevant and critical pathway identified from these two groups. The activated pathway may partially interpret the beneficial effects of K. marxianus. Overall, the present research could promote our understanding of the probiotic action of K. marxianus and provide new insight into the design and application of K. marxianus-containing functional foods.
Khan, Adnan; Park, Hyesook; Lee, Hye Ah; Park, Bohyun; Gwak, Hye Sun; Lee, Hye-Ra; Jee, Sun Ha; Park, Youngja H
2017-12-01
Health risks associated with bisphenol A (BPA) exposure are controversially highlighted by numerous studies. High-resolution metabolomics (HRM) can confirm these proposed associations and may provide a mechanistic insight into the connections between BPA exposure and metabolic perturbations. This study was aimed to identify the changes in metabolomics profile due to BPA exposure in urine and serum samples collected from female and male children (n = 18) aged 7-9. Urine was measured for BPA concentration, and the children were subsequently classified into high and low BPA groups. HRM, coupled with Liquid chromatography-mass spectrometry/MS, followed by multivariate statistical analysis using MetaboAnalyst 3.0, were performed on urine to discriminate metabolic profiles between high and low BPA children as well as males and females, followed by further validation of our findings in serum samples obtained from same population. Metabolic pathway analysis showed that biosynthesis of steroid hormones and 7 other pathways-amino acid and nucleotide biosynthesis, phenylalanine metabolism, tryptophan metabolism, tyrosine metabolism, lysine degradation, pyruvate metabolism, and arginine biosynthesis-were affected in high BPA children. Elevated levels of metabolites associated with these pathways in urine and serum were mainly observed in female children, while these changes were negligible in male children. Our results suggest that the steroidogenesis pathway and amino acid metabolism are the main targets of perturbation by BPA in preadolescent girls. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Lamb, Joseph J; Holick, Michael F; Lerman, Robert H; Konda, Veera R; Minich, Deanna M; Desai, Anuradha; Chen, Tai C; Austin, Melissa; Kornberg, Jacob; Chang, Jyh-Lurn; Hsi, Alex; Bland, Jeffrey S; Tripp, Matthew L
2011-05-01
Metabolic syndrome poses additional risk for postmenopausal women who are already at risk for osteoporosis. We hypothesized that a nutritional supplement containing anti-inflammatory phytochemicals and essential bone nutrients would produce a favorable bone biomarker profile in postmenopausal women with metabolic syndrome. In this 14-week, randomized trial, 51 women were instructed to consume a modified Mediterranean-style, low-glycemic-load diet and to engage in aerobic exercise. Those in the intervention arm (n = 25) additionally received 200 mg hop rho iso-alpha acids, 100 mg berberine sulfate trihydrate, 500 IU vitamin D₃, and 500 μg vitamin K₁ twice daily. Forty-five women completed the study. Baseline nutrient intake did not differ between arms. Compared with baseline, the intervention arm exhibited an approximate 25% mean decrease (P < .001) in serum osteocalcin (indicative of bone turnover), whereas the placebo arm exhibited a 21% increase (P = .003). Serum 25-hydroxyvitamin D increased 23% (P = .001) in the intervention arm and decreased 12% (P = .03) in the placebo arm. The between-arm differences for osteocalcin and 25-hydroxyvitamin D were statistically significant. Serum insulin-like growth factor I was statistically increased in both arms, but the between-arm differences were not statistically significant. Subanalysis showed that among those in the highest tertile of baseline insulin-like growth factor I, the intervention arm exhibited a significant increase in amino-terminal propeptide of type I collagen, whereas the placebo arm showed a significant decrease at 14 weeks. Treatment with rho iso-alpha acids, berberine, vitamin D₃, and vitamin K₁ produced a more favorable bone biomarker profile indicative of healthy bone metabolism in postmenopausal women with metabolic syndrome. Copyright © 2011 Elsevier Inc. All rights reserved.
2013-01-01
Background Despite the importance of abnormalities in lipoprotein metabolism in clinical canine medicine, the fact that most previously used methods for lipoprotein profiling are rather laborious and time-consuming has been a major obstacle to the wide clinical application and use of lipoprotein profiling in this species. The aim of the present study was to assess the feasibility of a continuous lipoprotein density profile (CLPDP) generated within a bismuth sodium ethylenediaminetetraacetic acid (NaBiEDTA) density gradient to characterize and compare the lipoprotein profiles of healthy dogs of various breeds, healthy Miniature Schnauzers, and Miniature Schnauzers with primary hypertriacylglycerolemia. A total of 35 healthy dogs of various breeds with serum triacylglycerol (TAG) and cholesterol concentrations within their respective reference intervals were selected for use as a reference population. Thirty-one Miniature Schnauzers with serum TAG and cholesterol concentrations within their respective reference intervals and 31 Miniature Schnauzers with hypertriacylglyceridemia were also included in the study. Results The results suggest that CLPDP using NaBiEDTA provides unique diagnostic information in addition to measurements of serum TAG and cholesterol concentrations and that it is a useful screening method for dogs with suspected lipoprotein metabolism disorders. Using the detailed and continuous density distribution information provided by the CLPDP, important differences in lipoprotein profiles can be detected even among dogs that have serum TAG and cholesterol concentrations within the reference interval. Miniature Schnauzers with serum TAG and cholesterol concentrations within the reference interval had significantly different lipoprotein profiles than dogs of various other breeds. In addition, it was further established that specific lipoprotein fractions are associated with hypertriacylglyceridemia in Miniature Schnauzers. Conclusions The results of the present study suggest that density gradient ultracentrifugation using NaBiEDTA is a useful screening method for the study of lipoprotein profiles in dogs. Therefore, this method could potentially be used for diagnostic purposes for the separation of dogs suspected of having lipoprotein abnormalities from healthy dogs. PMID:23497598
Serum progranulin levels in relation to insulin resistance in childhood obesity.
Alissa, Eman M; Sutaih, Rima H; Kamfar, Hayat Z; Alagha, Abdulmoeen E; Marzouki, Zuhair M
2017-11-27
Progranulin is an adipokine that is involved in the inflammatory response, glucose metabolism, insulin resistance, and may therefore be involved in chronic subclinical inflammation associated with the pathogenesis of childhood obesity. We aimed to investigate the association of circulating progranulin levels with metabolic parameters in children and to assess the importance of progranulin as a biomarker for metabolic diseases. A total of 150 children were consecutively recruited from the Pediatric Nutrition Clinics at King Abdulaziz University Hospital in Jeddah, Saudi Arabia. Children were classified into four groups based on quartile for serum progranulin. Anthropometric variables were measured in all study subjects. Fasting blood samples were collected for measurement of blood glucose, insulin and lipid profile. Children within the upper quartile for serum progranulin concentration were heavier, more insulin resistant and had higher concentrations of serum total cholesterol, triglycerides, insulin and high sensitivity C reactive protein compared to those in the lower quartile. On correlation analysis, serum progranulin concentrations were significantly related to general and central adiposity, metabolic parameters, markers of inflammation and insulin resistance. Stepwise multiple regression showed that 26.6% of the variability in serum progranulin could be explained by measures of adiposity. The increased serum progranulin concentrations were closely related to measures of adiposity, metabolic parameters, inflammatory marker and insulin resistance indices, suggesting that progranulin may be an excellent biomarker for obesity in childhood.
Saito, Takafumi; Sugimoto, Masahiro; Okumoto, Kazuo; Haga, Hiroaki; Katsumi, Tomohiro; Mizuno, Kei; Nishina, Taketo; Sato, Sonoko; Igarashi, Kaori; Maki, Hiroko; Tomita, Masaru; Ueno, Yoshiyuki; Soga, Tomoyoshi
2016-07-21
To clarify the characteristics of metabolite profiles in virus-related hepatocellular carcinoma (HCC) patients using serum metabolome analysis. The serum levels of low-molecular-weight metabolites in 68 patients with HCC were quantified using capillary electrophoresis chromatography and mass spectrometry. Thirty and 38 of the patients suffered from hepatitis B virus-related HCC (HCC-B) and hepatitis C virus-related HCC (HCC-C), respectively. The main metabolites characteristic of HCC were those associated with glutathione metabolism, notably 13 γ-glutamyl peptides, which are by-products of glutathione induction. Two major profiles, i.e., concentration patterns, of metabolites were identified in HCC patients, and these were classified into two groups: an HCC-B group and an HCC-C group including some of the HCC-B cases. The receiver operating characteristic curve for the multiple logistic regression model discriminating HCC-B from HCC-C incorporating the concentrations of glutamic acid, methionine and γ-glutamyl-glycine-glycine showed a highly significant area under the curve value of 0.94 (95%CI: 0.89-1.0, P < 0.0001). The serum levels of γ-glutamyl peptides, as well as their concentration patterns, contribute to the development of potential biomarkers for virus-related HCC. The difference in metabolite profiles between HCC-B and HCC-C may reflect the respective metabolic reactions that underlie the different pathogeneses of these two types of HCC.
Bernini, Patrizia; Bertini, Ivano; Luchinat, Claudio; Nincheri, Paola; Staderini, Samuele; Turano, Paola
2011-04-01
(1)H NMR metabolic profiling of urine, serum and plasma has been used to monitor the impact of the pre-analytical steps on the sample quality and stability in order to propose standard operating procedures (SOPs) for deposition in biobanks. We analyzed the quality of serum and plasma samples as a function of the elapsed time (t = 0-4 h) between blood collection and processing and of the time from processing to freezing (up to 24 h). The stability of the urine metabolic profile over time (up to 24 h) at various storage temperatures was monitored as a function of the different pre-analytical treatments like pre-storage centrifugation, filtration, and addition of the bacteriostatic preservative sodium azide. Appreciable changes in the profiles, reflecting changes in the concentration of a number of metabolites, were detected and discussed in terms of chemical and enzymatic reactions for both blood and urine samples. Appropriate procedures for blood derivatives collection and urine preservation/storage that allow maintaining as much as possible the original metabolic profile of the fresh samples emerge, and are proposed as SOPs for biobanking.
Zheng, Tian; Liu, Linsheng; Shi, Jian; Yu, Xiaoyi; Xiao, Wenjing; Sun, Runbing; Zhou, Yahong; Aa, Jiye; Wang, Guangji
2014-07-01
Although the stimulating and psychotropic effects of methamphetamine (METH) on the nervous system are well documented, the impact of METH abuse on biological metabolism and the turnover of peripheral transmitters are poorly understood. Metabolomics has the potential to reveal the effect of METH abuse on systemic metabolism and potential markers suggesting the underlying mechanism of toxicity. In this study, male Sprague Dawley rats were intraperitoneally injected with METH at escalating doses of mg kg(-1) for 5 consecutive days and then were withdrawn for 2 days. The metabolites in the serum and urine were profiled and the systemic effects of METH on metabolic pathways were evaluated. Multivariate statistical analysis showed that METH caused distinct deviations, whereas the withdrawal of METH restored the metabolic patterns towards baseline. METH administration elevated energy metabolism, which was manifested by the distinct depletion of branched-chain amino acids, accelerated tricarboxylic-acid cycle and lipid metabolism, reduced serum glycerol-3-phosphate, and elevated serum and urinary 3-hydroxybutyrate and urinary glycerol. In addition to the increased serum levels of the excitatory amino acids glutamate and aspartate (the inhibitory neurotransmitters in the brain), a marked decline in serum alanine and glycine after METH treatment suggested the activation and decreased inhibition of the nervous system and hence elevated nervous activity. Withdrawal of METH for 2 days efficiently restored all but a few metabolites to baseline, including serum creatinine, citrate, 2-ketoglutarate, and urinary lactate. Therefore, these metabolites are potential markers of METH use, and they may be used to facilitate the diagnosis of METH abuse.
Kangas, Antti J; Soininen, Pasi; Lawlor, Debbie A; Davey Smith, George; Ala-Korpela, Mika
2017-01-01
Abstract Detailed metabolic profiling in large-scale epidemiologic studies has uncovered novel biomarkers for cardiometabolic diseases and clarified the molecular associations of established risk factors. A quantitative metabolomics platform based on nuclear magnetic resonance spectroscopy has found widespread use, already profiling over 400,000 blood samples. Over 200 metabolic measures are quantified per sample; in addition to many biomarkers routinely used in epidemiology, the method simultaneously provides fine-grained lipoprotein subclass profiling and quantification of circulating fatty acids, amino acids, gluconeogenesis-related metabolites, and many other molecules from multiple metabolic pathways. Here we focus on applications of magnetic resonance metabolomics for quantifying circulating biomarkers in large-scale epidemiology. We highlight the molecular characterization of risk factors, use of Mendelian randomization, and the key issues of study design and analyses of metabolic profiling for epidemiology. We also detail how integration of metabolic profiling data with genetics can enhance drug development. We discuss why quantitative metabolic profiling is becoming widespread in epidemiology and biobanking. Although large-scale applications of metabolic profiling are still novel, it seems likely that comprehensive biomarker data will contribute to etiologic understanding of various diseases and abilities to predict disease risks, with the potential to translate into multiple clinical settings. PMID:29106475
Effects of Pu-erh ripened tea on hyperuricemic mice studied by serum metabolomics.
Zhao, Ran; Chen, Dong; Wu, Hualing
2017-11-15
To evaluate effects of Pu-erh ripened tea in hyperuricemic mice, a mouse hyperuricemia model was developed by oral administration of potassium oxonate for 7 d. Serum metabolomics, based on gas chromatography-mass spectrometry, was used to generate metabolic profiles from normal control, hyperuricemic and allopurinol-treated hyperuricemic mice, as well as hyperuricemic mice given Pu-erh ripened tea at three doses. Pu-erh ripened tea significantly lowered serum uric acid levels. Twelve potential biomarkers associated with hyperuricemia were identified. Pu-erh ripened tea and allopurinol differed in their metabolic effects in the hyperuricemic mice. Levels of glutamic acid, indolelactate, L-allothreonine, nicotinoylglycine, isoleucine, l-cysteine and glycocyamine, all involved in amino acid metabolism, were significantly changed in hyperuricemic mice treated Pu-erh ripened tea. Thus, modulating amino acid metabolism might be the primary mechanism of anti-hyperuricemia by Pu-erh ripened tea. Copyright © 2017 Elsevier B.V. All rights reserved.
Chen, Der-Yuan; Chen, Yi-Ming; Chien, Han-Ju; Lin, Chi-Chen; Hsieh, Chia-Wei; Chen, Hsin-Hua; Hung, Wei-Ting; Lai, Chien-Chen
2016-01-01
Liquid chromatography/mass spectrometry (LC/MS)-based comprehensive analysis of metabolic profiles with metabolomics approach has potential diagnostic and predictive implications. However, no metabolomics data have been reported in adult-onset Still's disease (AOSD). This study investigated the metabolomic profiles in AOSD patients and examined their association with clinical characteristics and disease outcome. Serum metabolite profiles were determined on 32 AOSD patients and 30 healthy controls (HC) using ultra-performance liquid chromatography (UPLC)/MS analysis, and the differentially expressed metabolites were quantified using multiple reactions monitoring (MRM)/MS analysis in 44 patients and 42 HC. Pure standards were utilized to confirm the presence of the differentially expressed metabolites. Eighteen differentially expressed metabolites were identified in AOSD patents using LC/MS-based analysis, of which 13 metabolites were validated by MRM/MS analysis. Among them, serum levels of lysoPC(18:2), urocanic acid and indole were significantly lower, and L-phenylalanine levels were significantly higher in AOSD patients compared with HC. Moreover, serum levels of lysoPC(18:2), PhePhe, uridine, taurine, L-threonine, and (R)-3-Hydroxy-hexadecanoic acid were significantly correlated with disease activity scores (all p<0.05) in AOSD patients. A different clustering of metabolites was associated with a different disease outcome, with significantly lower levels of isovalerylsarcosine observed in patients with chronic articular pattern (median, 77.0AU/ml) compared with monocyclic (341.5AU/ml, p<0.01) or polycyclic systemic pattern (168.0AU/ml, p<0.05). Thirteen differentially expressed metabolites identified and validated in AOSD patients were shown to be involved in five metabolic pathways. Significant associations of metabolic profiles with disease activity and outcome of AOSD suggest their involvement in AOSD pathogenesis.
Serum Myostatin Is Reduced in Individuals with Metabolic Syndrome
Chiang, Chih-Kang; Tseng, Fen-Yu; Tseng, Ping-Huei; Chen, Chi-Ling; Wu, Kwan-Dun; Yang, Wei-Shiung
2014-01-01
Aims Myostatin is a negative regulator of skeletal muscle mass and may also modulate energy metabolism secondarily. We aim to investigate the relationship between serum myostatin and the metabolic variables in diabetic (DM) and non-diabetic subjects. Materials and Methods A cross-sectional study recruiting 246 consecutive DM patients and 82 age- and gender-matched non-diabetic individuals at a medical center was conducted. The variables of anthropometry and blood chemistry were obtained. Serum myostatin level was measured with enzyme immunoassay. Results DM group had lower serum myostatin compared with non-diabetics (7.82 versus 9.28 ng/ml, p<0.01). Sixty-two percent of the recruited individuals had metabolic syndrome (MetS). The patients with MetS had significantly lower serum myostatin than those without (7.39 versus 9.49 ng/ml, p<0.001). The serum myostatin level decreased with increasing numbers of the MetS components (p for trend<0.001). The patients with higher body mass index, larger abdominal girth, lower high-density lipoprotein cholesterol (HDL-C), and higher triglycerides had lower serum myostatin than those without. The serum myostatin level was independently negatively related to larger abdominal girth, higher triglycerides, and lower HDL-C after adjustment. The odds ratios for MetS, central obesity, low HDL-C, high triglycerides, and DM were 0.85, 0.88, 0.89, 0.85, and 0.92, respectively, when serum myostatin increased per 1 ng/mL, in the binary logistic regression models. Conclusions Lower serum myostatin independently associated with MetS, central obesity, low HDL-C, and high triglycerides after adjustment. Higher serum myostatin is associated with favorable metabolic profiles. PMID:25254550
Masquio, Deborah Cristina Landi; de Piano-Ganen, Aline; Oyama, Lila Missae; Campos, Raquel Munhoz da Silveira; Santamarina, Aline Boveto; de Souza, Gabriel Inácio de Morais Honorato; Gomes, Aline Dal'Olio; Moreira, Renata Guimarães; Corgosinho, Flávia Campos; do Nascimento, Claudia Maria Oller; Tock, Lian; Tufik, Sergio; de Mello, Marco Túlio; Dâmaso, Ana R
2016-07-01
The purpose of the present study was to evaluate if interdisciplinary therapy can influence the cardiometabolic and serum free fatty acid profile. The second aim was to evaluate if there is an association between serum free fatty acids, inflammation and cardiometabolic biomarkers in obese adolescents with and without metabolic syndrome submitted to a long-term interdisciplinary therapy. The study involved 108 postpuberty obese adolescents, who were divided according to metabolic syndrome (MetS) diagnosis: MetS (n=32) and Non-MetS (n=76). The interdisciplinary therapy consisted of a 1-year period of nutrition, psychology, physical exercise and clinical support. After therapy, both groups improved metabolic, inflammatory (leptin, adiponectin, leptin/adiponectin ratio, adiponectin/leptin ratio and C-reactive protein) and cardiometabolic profile (PAI-1 and ICAM). Metabolic syndrome prevalence reduced from 28.70% to 12.96%. Both groups reduced myristic acid (C14:0) and increased docosahexaenoic acid (DHA, C22:6n3), heneicosapentaenoic acid (HPA, C21:5n3) and arachidonic acid (C20:4n6). After adjustment for metabolic syndrome and the number of metabolic syndrome parameters, multiple regression analysis showed that changes in VCAM and PAI-1 were negatively associated with changes in cis-linoleic acid (C18:2n6c). Additionally, changes in trans-linoleic acid (C18:2n6t) were also positively associated with these biomarkers. Moreover, leptin and leptin/adiponectin ratio were negatively associated with changes in docosapentaenoic acid (DPA, C22:5n3) and stearidonic acid (SDA, C18:4n3). Adiponectin/leptin ratio was positively associated with docosapentaenoic acid (DPA, C22:5n3). Changes in adiponectin were positively correlated with changes in omega 3, such as heneicosapentaenoic acid (HPA, C21:5n3) and docosapentaenoic acid (DPA, C22:5n3). Results support that interdisciplinary therapy can control inflammatory and cardiometabolic profile in obese adolescents. Moreover, serum fatty acids can be influenced by lifestyle changes and are able to modulate these biomarkers. Copyright © 2016 Elsevier Inc. All rights reserved.
Klevenhusen, Fenja; Humer, Elke; Metzler-Zebeli, Barbara; Podstatzky-Lichtenstein, Leopold; Wittek, Thomas; Zebeli, Qendrim
2015-01-01
Simple Summary This research established an association between lactation number and milk production and metabolic and inflammatory responses in high-producing dairy cows affected by left abomasal displacement in small-scaled dairy farms. The study showed metabolic alterations, liver damage, and inflammation in the sick cows, which were further exacerbated with increasing lactation number and milk yield of the cows. Abstract Left displaced abomasum (LDA) is a severe metabolic disease of cattle with a strong negative impact on production efficiency of dairy farms. Metabolic and inflammatory alterations associated with this disease have been reported in earlier studies, conducted mostly in large dairy farms. This research aimed to: (1) evaluate metabolic and inflammatory responses in dairy cows affected by LDA in small-scaled dairy farms; and (2) establish an association between lactation number and milk production with the outcome of metabolic variables. The cows with LDA had lower serum calcium (Ca), but greater concentrations of non-esterified fatty acids (NEFA) and beta-hydroxy-butyrate (BHBA), in particular when lactation number was >2. Cows with LDA showed elevated levels of aspartate aminotransferase, glutamate dehydrogenase, and serum amyloid A (SAA), regardless of lactation number. In addition, this study revealed strong associations between milk yield and the alteration of metabolic profile but not with inflammation in the sick cows. Results indicate metabolic alterations, liver damage, and inflammation in LDA cows kept under small-scale farm conditions. Furthermore, the data suggest exacerbation of metabolic profile and Ca metabolism but not of inflammation and liver health with increasing lactation number and milk yield in cows affected by LDA. PMID:26479481
Circulating Adipokines in Healthy versus Unhealthy Overweight and Obese Subjects
Alfadda, Assim A.
2014-01-01
It is now well established that not all obese subjects are at increased risk of cardiometabolic complications; such patients are termed the metabolically healthy obese. Despite their higher-than-normal body fat mass, they are still insulin sensitive, with a favorable inflammatory and lipid profile and no signs of hypertension. It remains unclear which factors determine an individual's metabolic health. Adipose tissue is known to secrete multiple bioactive substances, called adipokines, that can contribute to the development of obesity-associated complications. The goal of this study was to determine whether the circulating adipokine profiles differs between metabolically healthy and metabolically unhealthy overweight and obese subjects, thereby obtaining data that could help to explain the link between obesity and its related cardiometabolic complications. We defined metabolic health in terms of several metabolic and inflammatory risk factors. The serum adiponectin levels were higher in the healthy group and showed a positive correlation with HDL cholesterol levels in the unhealthy group. There were no differences between the two groups in the levels of serum leptin, chemerin and orosomucoid. Accordingly, adiponectin might play a role in protecting against obesity-associated cardiometabolic derangements. More studies are needed to clarify the role of different chemerin isoforms in this system. PMID:24550983
Low levels of serum serotonin and amino acids identified in migraine patients.
Ren, Caixia; Liu, Jia; Zhou, Juntuo; Liang, Hui; Wang, Yayun; Sun, Yinping; Ma, Bin; Yin, Yuxin
2018-02-05
Migraine is a highly disabling primary headache associated with a high socioeconomic burden and a generally high prevalence. The clinical management of migraine remains a challenge. This study was undertaken to identify potential serum biomarkers of migraine. Using Liquid Chromatography coupled to Mass Spectrometry (LC-MS), the metabolomic profile of migraine was compared with healthy individuals. Principal component analysis (PCA) and Orthogonal partial least squares-discriminant analysis (orthoPLS-DA) showed the metabolomic profile of migraine is distinguishable from controls. Volcano plot analysis identified 10 serum metabolites significantly decreased during migraine. One of these was serotonin, and the other 9 were amino acids. Pathway analysis and enrichment analysis showed tryptophan metabolism (serotonin metabolism), arginine and proline metabolism, and aminoacyl-tRNA biosynthesis are the three most prominently altered pathways in migraine. ROC curve analysis indicated Glycyl-l-proline, N-Methyl-dl-Alanine and l-Methionine are potential sensitive and specific biomarkers for migraine. Our results show Glycyl-l-proline, N-Methyl-dl-Alanine and l-Methionine may be as specific or more specific for migraine than serotonin which is the traditional biomarker of migraine. We propose that therapeutic manipulation of these metabolites or metabolic pathways may be helpful in the prevention and treatment of migraine. Copyright © 2018 Elsevier Inc. All rights reserved.
Okposio, Matthias Mariere; Onyiriuka, Alphonsus Ndidi; Abhulimhen-Iyoha, Blessing Imuetiyan
2015-12-01
Fluid, electrolytes and acid base disturbances are responsible for most deaths due to acute diarrhoea. The aim of this study is to describe the point-of-admission serum electrolyte profile of children with dehydration due to acute diarrhoea. In this cross-sectional study, the serum electrolyte levels of 185 children with dehydration due to acute diarrhoea were assessed at the point of admission at the Diarrhoea Treatment and Training Unit of the University of Benin Teaching Hospital. The age of the study population ranged from 29 days to 59 months. Out of a total of 185 subjects, 30 (16.2%), 114 (61.6%), and 41 (22.2%) had severe, moderate and mild dehydration, respectively. In addition, hyponatraemic dehydration was the most common type of dehydration, accounting for 60.5% of cases. Metabolic acidosis and hypokalaemia occurred in 59.5% and 44.3% of cases, respectively. Only the serum bicarbonate level was significantly affected by degree of dehydration (p = 0.001). Age of more than 12 months and presence of vomiting were significantly associated with hyponatraemia (p = 0.005 & p = 0.02), while age of less than or equal 12 months and absence of vomiting were associated with metabolic acidosis (p = 0.04 & p = 0.03). The degree of dehydration appears to be a good predictor of the occurrence of metabolic acidosis while age is a risk factor for hyponatraemia and metabolic acidosis.
Changes of human serum proteome profile during 7-day “dry” immersion
NASA Astrophysics Data System (ADS)
Pakharukova, N. A.; Pastushkova, L. Kh.; Larina, I. M.; Grigoriev, A. I.
2011-05-01
The aim of this study was to characterize changes of serum proteome profile during 7-day "dry" immersion (DI). The experiment with DI consisted of three series: control group without countermeasures (10 men), with using mechanical stimulation (6 men) and low-frequency myostimulation (5 men) as preventive means. Serum samples were fractionated using ClinProt robot (Bruker Daltonics) on magnetic beads (weak cation exchange magnetic beads—MB WCX) prior to mass-spectral profiling. It was obtained 170 peaks after fractionation of serum samples in each group. On 7th immersion day peak areas of fibrinopeptide A ( m/ z=1206; 1464), angiotensin II ( m/ z=1051), high molecular mass kininogen fragment ( m/ z=2133 Da) and C3-fragment of the complement system ( m/ z=1350 Da) were significantly decreased comparing with pre-experimental values of all experimental series. Peak areas of apolipoprotein C III ( m/ z=9419) and C4a fragment of the complement system ( m/ z=3206 Da) were increased. On 7th day of the recovery peak areas of all changed peaks were not close to pre-experimental values. This fact provided evidence of incomplete recovery of an organism after DI. The depth of the alterations had considerable individual variability. Thereby the detected changes of serum proteome profile in the experiment. They indicated a reorganization of the hormonal, immune systems and lipid metabolism. The use of myostimulation and mechanical stimulation as countermeasures partly compensated adverse effects of 7-day dry immersion on the parameters of coagulation system (fibrinopeptide A) and lipid metabolism (apolipoprotein CIII).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Desinia B.; Karoly, Edward D.; Jones, Jan C.
Air pollution has been linked to increased incidence of diabetes. Recently, we showed that ozone (O{sub 3}) induces glucose intolerance, and increases serum leptin and epinephrine in Brown Norway rats. In this study, we hypothesized that O{sub 3} exposure will cause systemic changes in metabolic homeostasis and that serum metabolomic and liver transcriptomic profiling will provide mechanistic insights. In the first experiment, male Wistar Kyoto (WKY) rats were exposed to filtered air (FA) or O{sub 3} at 0.25, 0.50, or 1.0 ppm, 6 h/day for two days to establish concentration-related effects on glucose tolerance and lung injury. In a secondmore » experiment, rats were exposed to FA or 1.0 ppm O{sub 3}, 6 h/day for either one or two consecutive days, and systemic metabolic responses were determined immediately after or 18 h post-exposure. O{sub 3} increased serum glucose and leptin on day 1. Glucose intolerance persisted through two days of exposure but reversed 18 h-post second exposure. O{sub 3} increased circulating metabolites of glycolysis, long-chain free fatty acids, branched-chain amino acids and cholesterol, while 1,5-anhydroglucitol, bile acids and metabolites of TCA cycle were decreased, indicating impaired glycemic control, proteolysis and lipolysis. Liver gene expression increased for markers of glycolysis, TCA cycle and gluconeogenesis, and decreased for markers of steroid and fat biosynthesis. Genes involved in apoptosis and mitochondrial function were also impacted by O{sub 3}. In conclusion, short-term O{sub 3} exposure induces global metabolic derangement involving glucose, lipid, and amino acid metabolism, typical of a stress–response. It remains to be examined if these alterations contribute to insulin resistance upon chronic exposure. - Highlights: • Ozone, an ubiquitous air pollutant induces acute systemic metabolic derangement. • Serum metabolomic approach provides novel insights in ozone-induced changes. • Ozone exposure induces leptinemia, hyperglycemia, and glucose intolerance. • Ozone increases serum free fatty acids, branched chain amino acids, cholesterols. • Ozone metabolic derangement is likely mediated by neuronal stress response pathway.« less
Obesity alters immune and metabolic profiles: new insight from obese-resistant mice on high fat diet
Boi, Shannon K.; Buchta, Claire M.; Pearson, Nicole A.; Francis, Meghan B.; Meyerholz, David K.; Grobe, Justin L.; Norian, Lyse A.
2016-01-01
Objective Diet-induced obesity has been shown to alter immune function in mice, but distinguishing the effects of obesity from changes in diet composition is complicated. We hypothesized that immunological differences would exist between diet-induced obese (DIO) and obese-resistant (OB-Res) mice fed the same high-fat diet (HFD). Methods BALB/c mice were fed either standard chow or HFD to generate lean or DIO and OB-Res mice, respectively. Resulting mice were analyzed for serum immunologic and metabolic profiles, and cellular immune parameters. Results BALB/c mice on HFD can be categorized as DIO or OB-Res, based on body weight versus lean controls. DIO mice are physiologically distinct from OB-Res mice, whose serum Insulin, Leptin, GIP, and Eotaxin concentrations remain similar to lean controls. DIO mice have increased macrophage+ crown-like structures in white adipose tissue, although macrophage percentages were unchanged from OB-Res and lean mice. DIO mice also have decreased splenic CD4+ T cells, elevated serum GM-CSF, and increased splenic CD11c+ dendritic cells, but impaired dendritic cell stimulatory capacity (p < 0.05 versus lean controls). These parameters were unaltered in OB-Res mice versus lean controls. Conclusions Diet-induced obesity results in alterations in immune and metabolic profiles that are distinct from effects caused by HFD alone. PMID:27515998
Mickiewicz, Beata; Shin, Sung Y.; Pozzi, Ambra; Vogel, Hans J.; Clark, Andrea L.
2016-01-01
The risk of developing post traumatic osteoarthritis (PTOA) following joint injury is high. Furthering our understanding of the molecular mechanisms underlying PTOA and/or identifying novel biomarkers for early detection may help improve treatment outcomes. Increased expression of integrin α1β1 and inhibition of epidermal growth factor receptor (EGFR) signaling protect the knee from spontaneous OA, however the impact of the integrin α1β1/EGFR axis on PTOA is currently unknown. We sought to determine metabolic changes in serum samples collected from wild type and integrin α1-null mice that underwent surgery to destabilize the medial meniscus and were treated with the EGFR inhibitor erlotinib. Following 1H nuclear magnetic resonance spectroscopy we generated multivariate statistical models that distinguished between the metabolic profiles of erlotinib- versus vehicle-treated mice, and the integrin α1-null versus wild type mouse genotype. Our results show the sex dependent effects of erlotinib treatment and highlight glutamine as a metabolite that counteracts this treatment. Furthermore, we identified a set of metabolites associated with increased reactive oxygen species production, susceptibility to OA and regulation of TRP channels in α1-null mice. Our study indicates that systemic pharmacological and genetic factors have a greater effect on serum metabolic profiles than site specific factors such as surgery. PMID:26784366
Das, Kusal K; Gupta, Amrita Das; Dhundasi, Salim A; Patil, Ashok M; Das, Swastika N; Ambekar, Jeevan G
2006-01-01
Nickel exposure greatly depletes intracellular ascorbate and alters ascorbate-cholesterol metabolism. We studied the effect of the simultaneous oral treatment with L-ascorbic acid (50 mg/100 g body weight (BW) and nickel sulfate (2.0 mg/100 g BW, i.p) on nickelinduced changes in serum lipid profiles and liver histopathology. Nickel-treated rats showed a significant increase in serum low-density lipoprotein-cholesterol, total cholesterol, triglycerides, and a significant decrease in serum high-density lipoprotein-cholesterol. In the liver, nickel sulfate caused a loss of normal architecture, fatty changes, extensive vacuolization in hepatocytes, eccentric nuclei, and Kupffer cell hypertrophy. Simultaneous administration of L-ascorbic acid with nickel sulfate improved both the lipid profile and liver impairments when compared with rats receiving nickel sulfate only. The results indicate that L-ascorbic acid is beneficial in preventing nickel-induced lipid alterations and hepatocellular damage.
Skibinska, Maria; Kapelski, Pawel; Pawlak, Joanna; Rajewska-Rager, Aleksandra; Dmitrzak-Weglarz, Monika; Szczepankiewicz, Aleksandra; Czerski, Piotr; Twarowska-Hauser, Joanna
2017-10-01
Neurotrophic factors have been implicated in neuropsychiatric disorders, including schizophrenia and depression. Glial Cell Line-Derived Neurotrophic Factor (GDNF) promotes development, differentiation, and protection of dopaminergic, serotonergic, GABAergic and noradrenergic neurons as well as glial cells in different brain regions. This study examined serum levels of GDNF in schizophrenia and depression and its correlation with metabolic parameters during 8 weeks of treatment. Serum GDNF level, fasting serum glucose and lipid profile were measured at baseline and week 8 in 133 women: 55 with schizophrenia, 30 with a first episode depression and 48 healthy controls. The severity of the symptoms was evaluated using Positive and Negative Syndrome Scale (PANSS), 17-item Hamilton Depression Rating Scale (HDRS) and Beck Depression Inventory (BDI). There was statistically significant higher GDNF level in schizophrenia at baseline when compared with week 8. Correlations of GDNF with PANSS in schizophrenia and cholesterol level in depression have also been detected. To our knowledge, this is the first study which correlates GDNF levels with metabolic parameters. Our results show no differences in GDNF serum level between schizophrenia, a first depressive episode, and healthy controls. GDNF serum level did not correlate with metabolic parameters except for total cholesterol in depression. Copyright © 2017 Elsevier B.V. All rights reserved.
Wang, Dian; Wang, Xingxing; Kong, Jing; Wu, Jiayan; Lai, Minchao
2016-10-01
Understanding the overall and common metabolic changes of seizures can provide novel clues for their control and prevention. Here, we aim to investigate the global metabolic feature of serum for three types of seizures. We recruited 27 patients who had experienced a seizure within 48h (including 11 who had a generalized seizure, nine who had a generalized seizure secondary to partial seizure and seven who had a partial seizure) and 23 healthy controls. We analyzed the global metabolic changes of serum after seizures using gas chromatography-mass spectrometry-based metabolomics. Based on differential metabolites, the metabolic pathways and their potential to diagnose seizures were analyzed, and metabolic differences among three types of seizures were compared. The metabolic profiles of serum were distinctive between the seizure group and the controls but were not different among the three types of seizures. Compared to the controls, patients with seizures had higher levels of lactate, butanoic acid, proline and glutamate and lower levels of palmitic acid, linoleic acid, elaidic acid, trans-13-octadecenoic acid, stearic acid, citrate, cysteine, glutamine, asparagine, and glyceraldehyde in the serum. Furthermore, these differential metabolites had common change trends among the three types of seizures. Related pathophysiological processes reflected by these metabolites are energy deficit, inflammation, nervous excitation and neurotoxicity. Importantly, transamination inhibition is suspected to occur in seizures. Lactate, glyceraldehyde and trans-13-octadecenoic acid in serum jointly enabled a precision of 92.9% for diagnosing seizures. There is a common metabolic feature in three types of seizures. Lactate, glyceraldehyde and trans-13-octadecenoic acid levels jointly enable high-precision seizure diagnosis. Copyright © 2016 Elsevier B.V. All rights reserved.
Bostanci, Esra Isci; Ozler, Sibel; Yilmaz, Nafiye Karakas; Yesilyurt, Huseyin
2018-06-01
Polycystic ovary syndrome (PCOS) is a common endocrinopathy among female adolescents and young women. The aim of this study was to investigate the relationship between serum 25-hydroxy vitamin D (25[OH] D) levels and metabolic parameters and other characteristics of PCOS and non-PCOS adolescents. Case-control study. We analyzed 31 girls with PCOS as defined using the Rotterdam criteria and 35 girls were non-PCOS control participants. The serum 25(OH) D level was measured. Anthropometric, clinical, endocrine, and metabolic components were determined in both groups. The group with PCOS showed no difference in the level of serum 25(OH) D (14.58 ± 6.15 vs 16.02 ± 7.87; P = .414). In addition to this, no significant correlations were found between serum 25(OH) D levels and endocrine or metabolic parameters in either PCOS patients or control participants. There was no difference in the level of serum 25(OH) D between PCOS patients and matched control participants. Vitamin D deficiency was common among the patients as well as in the control participants. Also, we did not find any relationship between serum 25(OH) D levels and clinical or metabolic profiles in the 2 groups. Copyright © 2017 North American Society for Pediatric and Adolescent Gynecology. Published by Elsevier Inc. All rights reserved.
Yonga, G O; Ogola, E N; Orinda, D A
1993-11-01
In a prospective single-blind comparative trial, sixty newly diagnosed mild to moderate hypertensives were randomly assigned to either propranolol or hydroflumethiazide monotherapy. Baseline fasting serum glucose lipid profiles, serum uric acid and potassium levels, were determined at the beginning of the trial. Repeat levels were determined at completion of twelve weeks of treatment. Propranolol treatment significantly reduced HDL-cholesterol (p < 0.02) and increased both VLDL and total serum triglycerides (p < 0.01). Hydroflumethiazide significantly increased total and LDL-chole-sterol, fasting serum glucose and uric acid levels (p < 0.01); potassium levels were significantly lowered (p < 0.01). Treatment with either propranolol or hydroflumethiazide is associated with significant metabolic side-effects which require regular monitoring and intervention as appropriate.
Liao, Yupeng; Hu, Rui; Wang, Zhisheng; Peng, Quanhui; Dong, Xianwen; Zhang, Xiangfei; Zou, Huawei; Pu, Qijian; Xue, Bai; Wang, Lizhi
2018-06-25
This study was to determine differences in the global metabolic profiles of serum and urine of Xuanhan yellow cattle, Simmental crossbred cattle (Simmental × Xuanhan yellow cattle), and cattle-yaks (Jersey × Maiwa yak) under heat stress (temperature-humidity index remained above 80 for 1 week). A total of 55 different metabolites associated with the three breeds were identified in the serum and urine samples by gas chromatography-mass spectrometry. The metabolic adaptations to heat stress are heterogeneous. Cattle-yaks mobilize a greater amount of body protein to release glucogenic amino acids to supply energy, whereas the tricarboxylic acid cycle is inhibited. Simmental crossbred cattle mobilize a greater amount of body fat to use free fatty acids as an energy source. In comparison with Simmental crossbred cattle and cattle-yaks, Xuanhan yellow cattle have higher glycolytic activity and possess a stronger antioxidant defense system and are, in conclusion, more adapted to hot and humid environments.
Maple-Brown, Louise J; Hughes, Jaquelyne T; Lu, Zhong X; Jeyaraman, Kanakamani; Lawton, Paul; Jones, Graham Rd; Ellis, Andrew; Sinha, Ashim; Cass, Alan; MacIsaac, Richard J; Jerums, George; O'Dea, Kerin
2014-01-01
Low levels of serum 25-hydroxy vitamin D (25(OH)D), have been associated with development of type 2 diabetes and cardiovascular disease (CVD); however there are limited data on serum 25(OH)D in Indigenous Australians, a population at high risk for both diabetes and CVD. We aimed to assess levels of serum 25(OH)D in Aboriginal and Torres Strait Islander Australians and to explore relationships between 25(OH)D and cardio-metabolic risk factors and diabetes. 592 Aboriginal and/or Torres Strait Islander Australian participants of The eGFR (estimated glomerular filtration rate) Study, a cross-sectional analysis of a cohort study performed in 2007-2011, from urban and remote centres within communities, primary care and tertiary hospitals across Northern Territory, Far North Queensland and Western Australia. Assessment of serum 25(OH)D, cardio-metabolic risk factors (central obesity, diabetes, hypertension, history of cardiovascular disease, current smoker, low HDL-cholesterol), and diabetes (by history or HbA1c ≥6.5%) was performed. Associations were explored between 25(OH)D and outcome measures of diabetes and number of cardio-metabolic risk factors. The median (IQR) serum 25(OH)D was 60 (45-77) nmol/L, 31% had 25(OH)D <50 nmol/L. For participants with 25(OH)D < 50 vs ≥50 nmol/L, cardio-metabolic risk profile differed for: diabetes (54%, 36% p < 0.001), past history of cardiovascular disease (16%, 9%, p = 0.014), waist-hip ratio (0.98, 0.92, p < 0.001), urine albumin-creatinine ratio (2.7, 1.5 mg/mmol, p < 0.001). The OR (95% CI) for diabetes was 2.02 (1.03 - 3.95) for people in the lowest vs highest tertiles of 25(OH)D (<53 vs >72 nmol/L, respectively) after adjusting for known cardio-metabolic risk factors. The percentage of 25(OH)D levels <50 nmol/L was high among Aboriginal and Torres Strait Islander Australians from Northern and Central Australia. Low 25(OH)D level was associated with adverse cardio-metabolic risk profile and was independently associated with diabetes. These findings require exploration in longitudinal studies.
Siemińska, Lucyna; Wojciechowska, Celina; Walczak, Krzysztof; Borowski, Artur; Marek, Bogdan; Nowak, Mariusz; Kajdaniuk, Dariusz; Foltyn, Wanda; Kos-Kudła, Beata
2015-01-01
The prevalence of metabolic syndrome increases after menopause; however, the role of concomitant subclinical hypothyroidism has not been completely elucidated. The aim of the study was to identify associations between thyrotropin, immune status, inflammation, and metabolic syndrome in postmenopausal women. The specific goals were: to assess thyrotropin (TSH) and interleukin-6 (IL-6) concentrations in the serum of subclinical hypothyroid postmenopausal women with and without metabolic syndrome and compare them with euthyroid controls; to test whether immune status is related to metabolic syndrome in postmenopausal women and determine the role of IL-6; to examine the relationships between TSH and different features of metabolic syndrome: insulin resistance, waist circumferences, waist-to-hip ratio (WHR), BMI, metabolic parameters (triglycerides, total cholesterol and high-density lipoprotein cholesterol), and inflammatory cytokines (IL-6). Three hundred and seventy-two postmenopausal women were included in the study: 114 women had subclinical hypothyroidism (10.0 uIU/mL > TSH ≥ 4.5 uIU/mL, normal fT4), and 258 women were in euthyreosis (TSH 0.35-4.5 uIU/mL, normal fT4); both groups were matched by age. Anthropometric measurements were conducted (BMI, waist circumference, WHR) and blood pressure was measured. In all subjects the following were assessed in serum: lipid profile, glucose, insulin, TSH, fT4, thyroid antibodies (T-Abs) - TPO-Abs, TG-Abs, and IL-6 concentrations. The prevalence of metabolic syndrome was 49.12% in subclinical hypothyroid women and 46.89% in euthyroid women. However, the proportion of subjects with one or two abnormalities was significantly higher in the subclinical hypothyroid group (45.61%) than in the euthyroid group (32.17%). When we compared subclinical hypothyroid women with and without metabolic syndrome, subjects with metabolic syndrome had higher BMI, abdominal circumferences, WHR, and HOMA-I. They presented higher systolic and diastolic blood pressure. Serum concentrations of cholesterol, triglycerides, fasting glucose, IL-6, TSH, T-Abs were also higher and serum cHDL was lower. There were no significant differences in fT4 concentrations. A similar comparison was made for euthyroid women with and without metabolic syndrome. Higher BMI, waist circumference, WHR, HOMA-I, and systolic blood pressure were observed in subjects with metabolic syndrome. Serum concentrations of TSH, triglycerides, glucose, and IL-6 were also higher, but the concentration of cHDL was significantly lower. There were no significant differences in fT4, T-Abs, cholesterol levels, and diastolic pressure. When we compared euthyroid women T-Abs (+) and T-Abs (-), the prevalence of metabolic syndrome was similar (48.68% vs. 46.15%). There were no differences in BMI, waist circumference, WHR, lipid profile, glucose, and HOMA-I, fT4. However, thyroid autoimmunity was associated with elevated TSH and IL-6 levels. When we analysed subclinical hypothyroid women with and without thyroid autoimmunity, there were no significant differences in glucose and lipid profile. However, Hashimoto`s subjects were more obese, had higher waist circumference, WHR, HOMA-I, and higher prevalence of metabolic syndrome. Serum concentrations of TSH and IL-6 were also higher and fT4 was lower. Among all of the women, serum TSH concentration was significantly correlated with BMI, waist circumference, WHR, systolic blood pressure, cholesterol, triglycerides, and TPO-Abs. When the variables of subjects with upper quartile of TSH were compared with lower quartile of TSH, we found significantly higher BMI, waist circumference, WHR, increased concentration of IL-6, cholesterol, triglycerides, and T-Abs, and concentrations of cHDL and fT4 were lower. OR for metabolic syndrome in subjects with upper quartile TSH vs. lower quartile was 1.35 (95% confidence interval [CI] 1.10-1.60). Our study confirms that metabolic syndrome in both euthyroid and subclinical hypothyroid women is connected with obesity, visceral fat accumulation, and higher TSH and IL-6 concentrations. Immune thyroiditis is associated with higher TSH and IL-6 levels. Obese subclinical hypothyroid women with Hashimoto`s thyroditis have a higher prevalence of metabolic syndrome when compared with subclinical hypothyroid women without thyroid autoimmunity. It is possible that in the crosstalking between subclinical hypothyroidism and metabolic syndrome, enhanced proinflammatory cytokine release in the course of immunological thyroiditis plays a role.
Ma, Wang; Wang, Shuangyuan; Zhang, Tengfei; Zhang, Erik Y; Zhou, Lina; Hu, Chunxiu; Yu, Jane J; Xu, Guowang
2018-06-05
Esophageal squamous cell carcinoma (ESCC) is a major health threat worldwide. Research focused on molecular events associated with ESCC carcinogenesis for diagnosis, treatment and prevention is needed. Our goal is to discover novel biomarkers and investigate the underlying molecular mechanisms of ESCC progression by employing a global metabolomic approach. Sera from 34 ESCC patients and 32 age and sex matched healthy controls were profiled using two-dimensional liquid chromatography-mass spectrometry (2D LC-MS). We identified 120 differential metabolites in ESCC patient serums compared to healthy controls. Several amino acids, serine, arginine, lysine and histidine were significantly changed in ESCC patients. Most importantly, we found dysregulated lipid metabolism as an important characteristic in ESCC patients. Several free fat acids (FFA) and carnitines were found down-regulated in ESCC patients. Choline was significantly increased and phosphatidylcholines (PC) were significantly decreased in ESCC serum. The high expression of choline and low expression of total PC in patient serum were associated with the high expression of choline kinase (Chok) and activated Kennedy pathway in ESCC cells. Chok expression can serve as a significant biomarker for ESCC prognosis. In conclusion, metabolite profiles in the ESCC patient serum were significantly different from those in the healthy controls. Phosphatidylcholines and Chok, the key enzyme in the PC metabolism pathway, may serve as novel biomarkers for ESCC. Copyright © 2018 Elsevier B.V. All rights reserved.
Aging affects the response of female rats to a hypercaloric diet.
Arbo, B D; Niches, G; Zanini, P; Bassuino, D M; Driemeier, D; Ribeiro, M F; Cecconello, A L
2018-01-01
Metabolic syndrome is a major risk factor for the development of cardiovascular diseases and diabetes, among other conditions. Studies have shown that aging and metabolic syndrome share several metabolic alterations, and that aged individuals, in particular females, are at an increased risk of developing metabolic disorders. Although several studies have investigated the effects of hypercaloric diets in the development of obesity and metabolic syndrome in young animals, few studies have investigated these parameters in aged animals, especially in females. Therefore, the aim of this study was to investigate the effects of a hypercaloric diet in metabolic parameters of young and aged female rats, including its effects on lipid and glycemic profile and on liver lipid content. When compared to young animals, the aged rats presented increased serum levels of triglycerides and decreased serum levels of HDL cholesterol and glycemia, as well as increased hepatic levels of triglycerides and total cholesterol. The hypercaloric diet increased food intake, body weight gain and adiposity index, leading both young and aged animals to a dyslipidemia, represented by increased serum levels of triglycerides. The hypercaloric diet increased the glycemia and the HOMA index only in the young animals. On the other hand, the diet increased the frequency of hepatocellular microvacuolar degeneration only in the aged animals. In summary, it was observed that the females from different ages respond differently to hypercaloric diet intake: while the aged animals were more resistant to the changes in the glycemic profile, they were more susceptible to the hepatic damage caused by this diet. Copyright © 2017 Elsevier Inc. All rights reserved.
Deciphering the biological effects of acupuncture treatment modulating multiple metabolism pathways.
Zhang, Aihua; Yan, Guangli; Sun, Hui; Cheng, Weiping; Meng, Xiangcai; Liu, Li; Xie, Ning; Wang, Xijun
2016-02-16
Acupuncture is an alternative therapy that is widely used to treat various diseases. However, detailed biological interpretation of the acupuncture stimulations is limited. We here used metabolomics and proteomics technology, thereby identifying the serum small molecular metabolites into the effect and mechanism pathways of standardized acupuncture treatments at 'Zusanli' acupoint which was the most often used acupoint in previous reports. Comprehensive overview of serum metabolic profiles during acupuncture stimulation was investigated. Thirty-four differential metabolites were identified in serum metabolome and associated with ten metabolism pathways. Importantly, we have found that high impact glycerophospholipid metabolism, fatty acid metabolism, ether lipid metabolism were acutely perturbed by acupuncture stimulation. As such, these alterations may be useful to clarify the biological mechanism of acupuncture stimulation. A series of differentially expressed proteins were identified and such effects of acupuncture stimulation were found to play a role in transport, enzymatic activity, signaling pathway or receptor interaction. Pathway analysis further revealed that most of these proteins were found to play a pivotal role in the regulation of multiple metabolism pathways. It demonstrated that the metabolomics coupled with proteomics as a powerful approach for potential applications in understanding the biological effects of acupuncture stimulation.
Stringer, Kathleen A.; Younger, John G.; McHugh, Cora; Yeomans, Larisa; Finkel, Michael A.; Puskarich, Michael A.; Jones, Alan E.; Trexel, Julie; Karnovsky, Alla
2015-01-01
Serum is a common sample of convenience for metabolomics studies. Its processing time can be lengthy and may result in the loss of metabolites including those of red blood cells (RBC). Unlike serum, whole blood (WB) is quickly processed, minimizing the influence of variable hemolysis while including RBC metabolites. To determine differences between serum and WB metabolomes, both sample types, collected from healthy volunteers, were assayed by 1H-NMR spectroscopy. A total of 34 and 50 aqueous metabolites were quantified from serum and WB, respectively. Free hemoglobin (Hgb) levels in serum were measured and the correlation between Hgb and metabolite concentrations was determined. All metabolites detected in serum were at higher concentrations in WB with the exception of acetoacetate and propylene glycol. The 18 unique metabolites of WB included adenosine, AMP, ADP and ATP, which are associated with RBC metabolism. The use of serum results in the underrepresentation of a number of metabolic pathways including branched chain amino acid degradation and glycolysis and gluconeogenesis. The range of free Hgb in serum was 0.03-0.01 g/dL and 8 metabolites were associated (p ≤ 0.05) with free Hgb. The range of free Hgb in serum samples from 18 sepsis patients was 0.02-0.46 g/dL. WB and serum have unique aqueous metabolite profiles but the use of serum may introduce potential pathway bias. Use of WB for metabolomics may be particularly important for studies in diseases like sepsis in which RBC metabolism is altered and mechanical and sepsis-induced hemolysis contributes to variance in the metabolome. PMID:26009817
Shui, Sufang; Cai, Xiaorong; Huang, Rongqing; Xiao, Bingkun; Yang, Jianyun
2017-01-30
Yi Guanjian (YGJ), one of the Chinese herbal medicines most commonly used in western countries, reported to possess significant anti-inflammatary effects that inhibit the process of inflammation. However, the mechanisms underlying its anti-inflammation effects remain largely unresolved. This study was aimed to investigate the anti-inflammatory activity of YGJ and to explore its potential anti-inflammatory mechanisms by serum metabonomics approach. An xylene-induced mouse right-ear-edema model was used as an inflammatory response in vivo model. Ear edema, prostaglandin E2 (PGE 2 ) and Tumor-Necrosis-Factor-alpha (TNF-α) were detected. Then, serum metabolic profiling was analyzed and pathway analysis performed on the biomarkers reversed after YGJ administration and further integration of metabolic networks. The results showed that YGJ alleviated ear edema and decreased serum PGE 2 and TNF-α levels. Fourteen biomarkers were screened, and the levels were all reversed to different degrees after YGJ administration. These biomarkers were mainly related to linoleic acid metabolism, taurine and hypotaurine metabolism, glyoxylate and dicarboxylate metabolism, glycine, serine and threonine metabolism and citrate cycle (TCA cycle). In metabolic networks, glycine and pyruvate were node molecules. This indicated that YGJ could significantly inhibit inflammatory response triggered by acute local stimulation and exerted anti-inflammatory activity mainly by regulating node molecules. Copyright © 2016 Elsevier B.V. All rights reserved.
Vázquez, C; Botella-Carretero, J I; Corella, D; Fiol, M; Lage, M; Lurbe, E; Richart, C; Fernández-Real, J M; Fuentes, F; Ordóñez, A; de Cos, A I; Salas-Salvadó, J; Burguera, B; Estruch, R; Ros, E; Pastor, O; Casanueva, F F
2014-03-01
Reduction of cardiovascular risk with high consumption of fish in diet is still a matter of debate, and concerns about heavy metal contamination have limited consumption of oily fish. We aimed to evaluate the effect of regular ingestion of white fish on cardiovascular risk factors in patients with metabolic syndrome. Multicenter randomized crossover clinical trial including 273 individuals with metabolic syndrome. An 8-week only-one dietary intervention: 100 g/d of white fish (Namibia hake) with advice on a healthy diet, compared with no fish or seafood with advice on a healthy diet. Outcomes were lipid profile, individual components of the metabolic syndrome, serum insulin concentrations, homeostasis model of insulin resistance, serum C-reactive protein and serum fatty acid levels. We found a significant lowering effect of the intervention with white fish on waist circumference (P < 0.001) and diastolic blood pressure (P = 0.014). A significant lowering effect was also shown after the dietary intervention with fish on serum LDL concentrations (P = 0.048), whereas no significant effects were found on serum HDL or triglyceride concentrations. A significant rise (P < 0.001) in serum EPA and DHA fatty acids was observed following white fish consumption. Overall adherence to the intervention was good and no adverse events were found. In individuals with metabolic syndrome, regular consumption of hake reduces LDL cholesterol concentrations, waist circumference and blood pressure components of the metabolic syndrome. White Fish for Cardiovascular Risk Factors in Patients with Metabolic Syndrome Study, Registered under ClinicalTrials.gov Identifier: NCT01758601. Copyright © 2013 Elsevier B.V. All rights reserved.
Wilimowska, J; Kłys, M; Jawień, W
2014-01-01
To compare the metabolic profile of valproic acid (VPA) in the studied groups of cases through an analysis of variability of concentrations of VPA with its selected metabolites (2-ene-VPA, 4-ene-VPA, 3-keto-VPA). Blood serum samples collected from 27 patients treated with VPA drugs in the Psychiatry Unit and in the Neurology and Cerebral Strokes Unit at the Ludwik Rydygier Provincial Specialist Hospital in Krakow, and blood serum samples collected from 26 patients hospitalized because of suspected acute VPA poisoning at the Toxicology Department, Chair of Toxicology and Environmental Diseases, Jagiellonian University Medical College in Krakow. The analysis of concentrations of VPA and its selected metabolites has shown that the metabolic profile of VPA determined in cases of acute poisoning is different from cases of VPA therapy. One of VPA's metabolic pathways - the process of desaturation - is unchanged in acute poisoning and prevails over the process of β-oxidation. The ingestion of toxic VPA doses results in an increased formation of 4-ene-VPA, proportional to an increase in VPA concentration. Acute VPA poisoning involves the saturation of VPA's metabolic transformations at the stage of β-oxidation. The process of oxidation of 2-ene-VPA to 3-keto-VPA is slowed down after the ingestion of toxic doses.
Serum irisin levels in patients with psoriasis.
Baran, Anna; Myśliwiec, Hanna; Kiluk, Paulina; Świderska, Magdalena; Flisiak, Iwona
2017-06-01
Irisin has been proposed to regulate metabolic diseases such as obesity, diabetes or metabolic syndrome which are common comorbidities in psoriasis. The aim of this study was to evaluate the serum irisin level in psoriasis and elucidate possible associations with disease activity, inflammatory or metabolic parameters and topical treatment. Thirty-seven individuals with active plaque-type psoriasis and 15 healthy controls were enrolled. Blood samples were collected before and after two weeks of therapy. Serum irisin concentrations were examined by enzyme-linked immunosorbent assay (ELISA). The results were correlated with psoriasis area and severity index (PASI), body mass index (BMI), inflammatory and biochemical markers, lipid profile and effectiveness of topical treatment. Irisin serum levels were insignificantly increased in psoriatic patients in comparison to the controls (p = 0.38). No significant correlations between investigated adipokine and several indicators of metabolic disorders, nor BMI (p = 0.37) or PASI (p = 0.5) were found. Significant positive correlations with C-reactive protein (CRP) (0.009), lipocalin-2 (p = 0.02), age (p = 0.02) and disease duration (p = 0.008) were noted. After topical treatment, serum irisin level did not significantly change (p = 0.31), despite clinical improvement. Irisin might be a marker of inflammation in psoriatic patients, but may not be a reliable indicator of metabolic conditions, severity of psoriasis nor efficacy of antipsoriatic treatment.
Effect of moderate intake of sweeteners on metabolic health in the rat
Figlewicz, D.P.; Ioannou, G.; Jay, J. Bennett; Kittleson, S.; Savard, C.; Roth, C.L.
2009-01-01
The rise in prevalence of obesity, diabetes, metabolic syndrome, and fatty liver disease has been linked to increased consumption of fructose-containing foods or beverages. Our aim was to compare the effects of moderate consumption of fructose-containing and non-caloric sweetened beverages on feeding behavior, metabolic and serum lipid profiles, and hepatic histology and serum liver enzymes, in rats. Behavioral tests determined preferred (12.5–15%) concentrations of solutions of agave, fructose, high fructose corn syrup (HFCS), a combination of HFCS and Hoodia (a putative appetite suppressant), or the non-caloric sweetener Stevia (n=5/gp). HFCS intake was highest, in preference and self-administration tests. Groups (n=10/gp) were then assigned to one of the sweetened beverages or water as the sole source of liquid at night (3 nights/wk, 10wks). Although within the normal range, serum cholesterol was higher in the fructose and HFCS groups, and serum triglycerides were higher in the Agave, HFCS, and HFCS/Hoodia groups (vs. water-controls, p<0.05). Liver histology was normal in all groups with no evidence of steatosis, inflammation, or fibrosis; however serum alanine aminotransferase was higher in the fructose and HFCS groups (vs. water-controls, p<0.05). Serum inflammatory marker levels were comparable among Stevia, agave, fructose, HFCS, and water-consuming groups, however levels of IL-6 were significantly lower in association with the ingestion of Hoodia. There were no differences in terminal body weights, or glucose tolerance assessed by 120-min IVGTTs performed at the end of the 10-week regimen. We conclude that even moderate consumption of fructose-containing liquids may lead to the onset of unfavorable changes in the plasma lipid profile and one marker of liver health, independent of significant effects of sweetener consumption on body weight. PMID:19815021
Effect of moderate intake of sweeteners on metabolic health in the rat.
Figlewicz, D P; Ioannou, G; Bennett Jay, J; Kittleson, S; Savard, C; Roth, C L
2009-12-07
The rise in prevalence of obesity, diabetes, metabolic syndrome, and fatty liver disease has been linked to increased consumption of fructose-containing foods or beverages. Our aim was to compare the effects of moderate consumption of fructose-containing and non-caloric sweetened beverages on feeding behavior, metabolic and serum lipid profiles, and hepatic histology and serum liver enzymes, in rats. Behavioral tests determined preferred (12.5-15%) concentrations of solutions of agave, fructose, high fructose corn syrup (HFCS), a combination of HFCS and Hoodia (a putative appetite suppressant), or the non-caloric sweetener Stevia (n=5/gp). HFCS intake was highest, in preference and self-administration tests. Groups (n=10/gp) were then assigned to one of the sweetened beverages or water as the sole source of liquid at night (3 nights/wk, 10wks). Although within the normal range, serum cholesterol was higher in the fructose and HFCS groups, and serum triglycerides were higher in the Agave, HFCS, and HFCS/Hoodia groups (vs. water-controls, p<0.05). Liver histology was normal in all groups with no evidence of steatosis, inflammation, or fibrosis; however serum alanine aminotransferase was higher in the fructose and HFCS groups (vs. water-controls, p<0.05). Serum inflammatory marker levels were comparable among Stevia, agave, fructose, HFCS, and water-consuming groups, however levels of IL-6 were significantly lower in association with the ingestion of Hoodia. There were no differences in terminal body weights, or glucose tolerance assessed by 120-min IVGTTs performed at the end of the 10-week regimen. We conclude that even moderate consumption of fructose-containing liquids may lead to the onset of unfavorable changes in the plasma lipid profile and one marker of liver health, independent of significant effects of sweetener consumption on body weight.
Effects of Shiitake Intake on Serum Lipids in Rats Fed Different High-Oil or High-Fat Diets.
Asada, Norihiko; Kairiku, Rumi; Tobo, Mika; Ono, Akifumi
2018-04-27
Shiitake (Lentinula edodes) extract, eritadenine, has been shown to reduce cholesterol levels, and its hypocholesterolemic actions are involved in the metabolism of methionine. However, the mechanisms by which eritadenine affects cholesterol metabolism in animals fed a high-fat diet containing different sources of lipids have not yet been elucidated in detail. This study was conducted to investigate the effects of shiitake supplementation on serum lipid concentrations in rats fed a diet including a high amount of a plant oil (HO [high oil] and HOS [high oil with shiitake] groups), animal fat (HF [high fat] and HFS [high fat with shiitake] groups), or MCT- (medium-chain triglyceride-) rich plant oil (HM [high MCT] and HMS [high MCT with shiitake] groups). Rats in the HOS, HFS, and HMS groups were fed shiitake. When rats were fed a diet containing shiitake, serum triglyceride, cholesterol levels, and LCAT (lecithin-cholesterol acyltransferase) activities were lower in rats given MCT-rich plant oil than in those that consumed lard. The lipid type in the diet with shiitake also affected serum cholesterol levels and LCAT activities. The diet containing MCT-rich plant oil showed the greatest rates of decrease in all serum lipid profiles and LCAT activities. These results suggest that shiitake and MCT-rich plant oil work together to reduce lipid profiles and LCAT activity in serum.
Ostojic, Sergej M; Niess, Barbara; Stojanovic, Marko; Obrenovic, Milos
2013-01-01
Guanidinoacetic acid (GAA) is a natural precursor of creatine, yet the potential use of GAA as a nutritional additive for restoring creatine availability in humans has been limited by unclear efficacy and safety after exogenous GAA administration. The present study evaluated the effects of orally administered GAA on serum and urinary GAA, creatine and creatinine concentration, and on the occurrence of adverse events in healthy humans. Twenty-four healthy volunteers were randomized in a double-blind design to receive either GAA (2.4 grams daily) or placebo (PLA) by oral administration for 6 weeks. www.clinicaltrials.gov, identification number NCT01133899. Serum creatine and creatinine increased significantly from before to after administration in GAA-supplemented participants (P < 0.05). The proportion of participants who reported minor side effects was 58.3% in the GAA group and 45.5% in the placebo group (P = 0.68). A few participants experienced serum creatine levels above 70 µmol/L. Exogenous GAA is metabolized to creatine, resulting in a significant increase of fasting serum creatine after intervention. GAA had an acceptable side-effects profile with a low incidence of biochemical abnormalities.
Ostojic, Sergej M.; Niess, Barbara; Stojanovic, Marko; Obrenovic, Milos
2013-01-01
Objectives; Guanidinoacetic acid (GAA) is a natural precursor of creatine, yet the potential use of GAA as a nutritional additive for restoring creatine availability in humans has been limited by unclear efficacy and safety after exogenous GAA administration. The present study evaluated the effects of orally administered GAA on serum and urinary GAA, creatine and creatinine concentration, and on the occurrence of adverse events in healthy humans. Methods and Results; Twenty-four healthy volunteers were randomized in a double-blind design to receive either GAA (2.4 grams daily) or placebo (PLA) by oral administration for 6 weeks. Clinical trial registration: www.clinicaltrials.gov, identification number NCT01133899. Serum creatine and creatinine increased significantly from before to after administration in GAA-supplemented participants (P < 0.05). The proportion of participants who reported minor side effects was 58.3% in the GAA group and 45.5% in the placebo group (P = 0.68). A few participants experienced serum creatine levels above 70 µmol/L. Conclusion; Exogenous GAA is metabolized to creatine, resulting in a significant increase of fasting serum creatine after intervention. GAA had an acceptable side-effects profile with a low incidence of biochemical abnormalities. PMID:23329885
Moghaddam, Asma Salari; Entezari, Mohammad Hassan; Iraj, Bijan; Askari, Gholam Reza; Maracy, Mohammad Reza
2014-12-01
Diabetes mellitus is one of the most common chronic diseases in the world and has become a major threat for global health. Recent studies reported that the soy has beneficial effects in diabetic mellitus patients. The aim of this study was to assess the effects of soybean flour fortified bread consumption on metabolic profile in type 2 diabetic women. This randomized, cross-over, controlled clinical trial was carried out in 30 type 2 diabetic women. At first, a 2-week run-in period was applied. Then, participants were randomly assigned to either intervention or control groups. Participants in the intervention group were asked to replace 120 g of soybean flour fortified bread with the same amount of their usual bread intake or other cereal products for 6 weeks. After a 4 weeks washout period, participants were crossed over for another 6 weeks. Mean (±standard deviation) age and body mass index of subjects was 45.7 ± 3.8 years and 29.5 ± 3.9 kg/m(2), respectively. The results of our study showed no significant effects of soybean flour fortified bread on metabolic profile. We found a reduction in serum triglycerides (change difference: -3.7, P = 0.82), serum low-density lipoprotein-cholesterol (change difference: -11.2, P = 0.50), insulin (change difference: -3.6, P = 0.7), and homeostatic model assessment of insulin resistance (change differences: -0.57, P = 0.45) after 6 weeks but these changes were not statistically significant. No significant effects of soybean flour fortified bread on serum concentrations of fasting blood sugar, glycated hemoglobin, high-density lipoproteins and total cholesterol levels were found. Six weeks consumption of soybean flour fortified bread among diabetic patients had no significant effects on metabolic profile.
Moazzami, Ali A; Shrestha, Aahana; Morrison, David A; Poutanen, Kaisa; Mykkänen, Hannu
2014-06-01
Changes in serum metabolic profile after the intake of different food products (e.g., bread) can provide insight into their interaction with human metabolism. Postprandial metabolic responses were compared after the intake of refined wheat (RWB), whole-meal rye (WRB), and refined rye (RRB) breads. In addition, associations between the metabolic profile in fasting serum and the postprandial concentration of insulin in response to different breads were investigated. Nineteen postmenopausal women with normal fasting glucose and normal glucose tolerance participated in a randomized, controlled, crossover meal study. The test breads, RWB (control), RRB, and WRB, providing 50 g of available carbohydrate, were each served as a single meal. The postprandial metabolic profile was measured using nuclear magnetic resonance and targeted LC-mass spectrometry and was compared between different breads using ANOVA and multivariate models. Eight amino acids had a significant treatment effect (P < 0.01) and a significant treatment × time effect (P < 0.05). RWB produced higher postprandial concentrations of leucine (geometric mean: 224; 95% CI: 196, 257) and isoleucine (mean ± SD: 111 ± 31.5) compared with RRB (geometric mean: 165; 95% CI: 147, 186; mean ± SD: 84.2 ± 22.9) and WRB (geometric mean: 190; 95% CI: 174, 207; mean ± SD: 95.8 ± 17.3) at 60 min respectively (P < 0.001). In addition, 2 metabolic subgroups were identified using multivariate models based on the association between fasting metabolic profile and the postprandial concentration of insulin. Women with higher fasting concentrations of leucine and isoleucine and lower fasting concentrations of sphingomyelins and phosphatidylcholines had higher insulin responses despite similar glucose concentration after all kinds of bread (cross-validated ANOVA, P = 0.048). High blood concentration of branched-chain amino acids, i.e., leucine and isoleucine, has been associated with the increased risk of diabetes, which suggests that additional consideration should be given to bread proteins in understanding the beneficial health effects of different kinds of breads. The present study suggests that the fasting metabolic profile can be used to characterize the postprandial insulin demand in individuals with normal glucose metabolism that can be used for establishing strategies for the stratification of individuals in personalized nutrition. © 2014 American Society for Nutrition.
Alterations in fatty acid metabolism in response to obesity surgery combined with dietary counseling
Walle, P; Takkunen, M; Männistö, V; Vaittinen, M; Käkelä, P; Ågren, J; Schwab, U; Lindström, J; Tuomilehto, J; Uusitupa, M; Pihlajamäki, J
2017-01-01
Background: The effects of obesity surgery on serum and adipose tissue fatty acid (FA) profile and FA metabolism may modify the risk of obesity-related diseases. Methods: We measured serum (n=122) and adipose tissue (n=24) FA composition and adipose tissue mRNA expression of genes regulating FA metabolism (n=100) in participants of the Kuopio Obesity Surgery Study (KOBS, age 47.2±8.7 years, BMI 44.6±6.0, 40 men, 82 women) before and one year after obesity surgery. As part of the surgery protocol, all the subjects were instructed to add sources of unsaturated fatty acids, such as rapeseed oil and fatty fish, into their diet. The results were compared with changes in serum FA composition in 122 subjects from the Finnish Diabetes Prevention study (DPS) (age 54.3±7.1 years, BMI 32.2±4.6, 28 men, 94 women). Results: The proportion of saturated FAs decreased and the proportion of n-3 and n-6 FAs increased in serum triglycerides after obesity surgery (all P<0.002). Weight loss predicted changes in quantitative amounts of saturated FAs, monounsaturated FAs, n-3 and n-6 FAs in triglycerides (P<0.002 for all). Moreover, the changes in adipose tissue FAs reflected the changes in serum FAs, and some of the changes were associated with mRNA expression of elongases and desaturases in adipose tissue (all P<0.05). In line with this the estimated activity of elongase (18:1 n-7/16:1 n-7) increased significantly after obesity surgery in all lipid fractions (all P<4 × 10−7) and the increase in the estimated activity of D5D in triglycerides was associated with higher weight loss (r=0.415, P<2 × 10−6). Changes in serum FA profile were similar after obesity surgery and lifestyle intervention, except for the change in the absolute amounts of n-3 FAs between the two studies (P=0.044). Conclusions: Beneficial changes in serum and adipose tissue FAs after obesity surgery could be associated with changes in endogenous metabolism and diet. PMID:28869586
Walle, P; Takkunen, M; Männistö, V; Vaittinen, M; Käkelä, P; Ågren, J; Schwab, U; Lindström, J; Tuomilehto, J; Uusitupa, M; Pihlajamäki, J
2017-09-04
The effects of obesity surgery on serum and adipose tissue fatty acid (FA) profile and FA metabolism may modify the risk of obesity-related diseases. We measured serum (n=122) and adipose tissue (n=24) FA composition and adipose tissue mRNA expression of genes regulating FA metabolism (n=100) in participants of the Kuopio Obesity Surgery Study (KOBS, age 47.2±8.7 years, BMI 44.6±6.0, 40 men, 82 women) before and one year after obesity surgery. As part of the surgery protocol, all the subjects were instructed to add sources of unsaturated fatty acids, such as rapeseed oil and fatty fish, into their diet. The results were compared with changes in serum FA composition in 122 subjects from the Finnish Diabetes Prevention study (DPS) (age 54.3±7.1 years, BMI 32.2±4.6, 28 men, 94 women). The proportion of saturated FAs decreased and the proportion of n-3 and n-6 FAs increased in serum triglycerides after obesity surgery (all P<0.002). Weight loss predicted changes in quantitative amounts of saturated FAs, monounsaturated FAs, n-3 and n-6 FAs in triglycerides (P<0.002 for all). Moreover, the changes in adipose tissue FAs reflected the changes in serum FAs, and some of the changes were associated with mRNA expression of elongases and desaturases in adipose tissue (all P<0.05). In line with this the estimated activity of elongase (18:1 n-7/16:1 n-7) increased significantly after obesity surgery in all lipid fractions (all P<4 × 10 -7 ) and the increase in the estimated activity of D5D in triglycerides was associated with higher weight loss (r=0.415, P<2 × 10 -6 ). Changes in serum FA profile were similar after obesity surgery and lifestyle intervention, except for the change in the absolute amounts of n-3 FAs between the two studies (P=0.044). Beneficial changes in serum and adipose tissue FAs after obesity surgery could be associated with changes in endogenous metabolism and diet.
Metabolic changes in serum metabolome in response to a meal.
Shrestha, Aahana; Müllner, Elisabeth; Poutanen, Kaisa; Mykkänen, Hannu; Moazzami, Ali A
2017-03-01
The change in serum metabolic response from fasting state to postprandial state provides novel insights into the impact of a single meal on human metabolism. Therefore, this study explored changes in serum metabolite profile after a single meal. Nineteen healthy postmenopausal women with normal glucose tolerance participated in the study. They received a meal consisting of refined wheat bread (50 g carbohydrates, 9 g protein, 4.2 g fat and 2.7 g dietary fibre), 40 g cucumber and 300 mL noncaloric orange drink. Blood samples were collected at fasting and five postprandial time points. Metabolic profile was measured by nuclear magnetic resonance and targeted liquid chromatography-mass spectrometry. Changes over time were assessed with multivariate models and ANOVA, with baseline as control. The metabolomic analyses demonstrated alterations in phospholipids, amino acids and their breakdown products, glycolytic products, acylcarnitines and ketone bodies after a single meal. More specifically, phosphatidylcholines, lysophosphatidylcholines and citrate displayed an overall declining pattern, while leucine, isoleucine, methionine and succinate increased initially but declined thereafter. A sharp decline in acylcarnitines and ketone bodies and increase in glycolytic products postprandially suggest a switch in the body's energy source from β-oxidation to glycolysis. Moreover, individuals with relatively high postprandial insulin responses generated a higher postprandial leucine responses compared to participants with lower insulin responses. The study demonstrated complex changes from catabolic to anabolic metabolism after a meal and indicated that the extent of postprandial responses is different between individuals with high and low insulin response.
Liesenfeld, David B; Grapov, Dmitry; Fahrmann, Johannes F; Salou, Mariam; Scherer, Dominique; Toth, Reka; Habermann, Nina; Böhm, Jürgen; Schrotz-King, Petra; Gigic, Biljana; Schneider, Martin; Ulrich, Alexis; Herpel, Esther; Schirmacher, Peter; Fiehn, Oliver; Lampe, Johanna W; Ulrich, Cornelia M
2015-01-01
Background: Metabolic and transcriptomic differences between visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) compartments, particularly in the context of obesity, may play a role in colorectal carcinogenesis. We investigated the differential functions of their metabolic compositions. Objectives: Biochemical differences between adipose tissues (VAT compared with SAT) in patients with colorectal carcinoma (CRC) were investigated by using mass spectrometry metabolomics and gene expression profiling. Metabolite compositions were compared between VAT, SAT, and serum metabolites. The relation between patients’ tumor stage and metabolic profiles was assessed. Design: Presurgery blood and paired VAT and SAT samples during tumor surgery were obtained from 59 CRC patients (tumor stages I–IV) of the ColoCare cohort. Gas chromatography time-of-flight mass spectrometry and liquid chromatography quadrupole time-of-flight mass spectrometry were used to measure 1065 metabolites in adipose tissue (333 identified compounds) and 1810 metabolites in serum (467 identified compounds). Adipose tissue gene expression was measured by using Illumina’s HumanHT-12 Expression BeadChips. Results: Compared with SAT, VAT displayed elevated markers of inflammatory lipid metabolism, free arachidonic acid, phospholipases (PLA2G10), and prostaglandin synthesis–related enzymes (PTGD/PTGS2S). Plasmalogen concentrations were lower in VAT than in SAT, which was supported by lower gene expression of FAR1, the rate-limiting enzyme for ether-lipid synthesis in VAT. Serum sphingomyelin concentrations were inversely correlated (P = 0.0001) with SAT adipose triglycerides. Logistic regression identified lipids in patients’ adipose tissues, which were associated with CRC tumor stage. Conclusions: As one of the first studies, we comprehensively assessed differences in metabolic, lipidomic, and transcriptomic profiles between paired human VAT and SAT and their association with CRC tumor stage. We identified markers of inflammation in VAT, which supports prior evidence regarding the role of visceral adiposity and cancer. This trial was registered at clinicaltrials.gov as NCT02328677. PMID:26156741
Liesenfeld, David B; Grapov, Dmitry; Fahrmann, Johannes F; Salou, Mariam; Scherer, Dominique; Toth, Reka; Habermann, Nina; Böhm, Jürgen; Schrotz-King, Petra; Gigic, Biljana; Schneider, Martin; Ulrich, Alexis; Herpel, Esther; Schirmacher, Peter; Fiehn, Oliver; Lampe, Johanna W; Ulrich, Cornelia M
2015-08-01
Metabolic and transcriptomic differences between visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) compartments, particularly in the context of obesity, may play a role in colorectal carcinogenesis. We investigated the differential functions of their metabolic compositions. Biochemical differences between adipose tissues (VAT compared with SAT) in patients with colorectal carcinoma (CRC) were investigated by using mass spectrometry metabolomics and gene expression profiling. Metabolite compositions were compared between VAT, SAT, and serum metabolites. The relation between patients' tumor stage and metabolic profiles was assessed. Presurgery blood and paired VAT and SAT samples during tumor surgery were obtained from 59 CRC patients (tumor stages I-IV) of the ColoCare cohort. Gas chromatography time-of-flight mass spectrometry and liquid chromatography quadrupole time-of-flight mass spectrometry were used to measure 1065 metabolites in adipose tissue (333 identified compounds) and 1810 metabolites in serum (467 identified compounds). Adipose tissue gene expression was measured by using Illumina's HumanHT-12 Expression BeadChips. Compared with SAT, VAT displayed elevated markers of inflammatory lipid metabolism, free arachidonic acid, phospholipases (PLA2G10), and prostaglandin synthesis-related enzymes (PTGD/PTGS2S). Plasmalogen concentrations were lower in VAT than in SAT, which was supported by lower gene expression of FAR1, the rate-limiting enzyme for ether-lipid synthesis in VAT. Serum sphingomyelin concentrations were inversely correlated (P = 0.0001) with SAT adipose triglycerides. Logistic regression identified lipids in patients' adipose tissues, which were associated with CRC tumor stage. As one of the first studies, we comprehensively assessed differences in metabolic, lipidomic, and transcriptomic profiles between paired human VAT and SAT and their association with CRC tumor stage. We identified markers of inflammation in VAT, which supports prior evidence regarding the role of visceral adiposity and cancer. © 2015 American Society for Nutrition.
Inhaled ozone (O3)-induces changes in serum metabolomic and liver transcriptomic profiles in rats☆
Miller, Desinia B.; Karoly, Edward D.; Jones, Jan C.; Ward, William O.; Vallanat, Beena D.; Andrews, Debora L.; Schladweiler, Mette C.; Snow, Samantha J.; Bass, Virginia L.; Richards, Judy E.; Ghio, Andrew J.; Cascio, Wayne E.; Ledbetter, Allen D.; Kodavanti, Urmila P.
2016-01-01
Air pollution has been linked to increased incidence of diabetes. Recently, we showed that ozone (O3) induces glucose intolerance, and increases serum leptin and epinephrine in Brown Norway rats. In this study, we hypothesized that O3 exposure will cause systemic changes in metabolic homeostasis and that serum metabolomic and liver transcriptomic profiling will provide mechanistic insights. In the first experiment, male Wistar Kyoto (WKY) rats were exposed to filtered air (FA) or O3 at 0.25, 0.50, or 1.0 ppm, 6 h/day for two days to establish concentration-related effects on glucose tolerance and lung injury. In a second experiment, rats were exposed to FA or 1.0 ppm O3, 6 h/day for either one or two consecutive days, and systemic metabolic responses were determined immediately after or 18 h post-exposure. O3 increased serum glucose and leptin on day 1. Glucose intolerance persisted through two days of exposure but reversed 18 h-post second exposure. O3 increased circulating metabolites of glycolysis, long-chain free fatty acids, branched-chain amino acids and cholesterol, while 1,5-anhydroglucitol, bile acids and metabolites of TCA cycle were decreased, indicating impaired glycemic control, proteolysis and lipolysis. Liver gene expression increased for markers of glycolysis, TCA cycle and gluconeogenesis, and decreased for markers of steroid and fat biosynthesis. Genes involved in apoptosis and mitochondrial function were also impacted by O3. In conclusion, short-term O3 exposure induces global metabolic derangement involving glucose, lipid, and amino acid metabolism, typical of a stress–response. It remains to be examined if these alterations contribute to insulin resistance upon chronic exposure. PMID:25838073
Inhaled ozone (O3)-induces changes in serum metabolomic and liver transcriptomic profiles in rats.
Miller, Desinia B; Karoly, Edward D; Jones, Jan C; Ward, William O; Vallanat, Beena D; Andrews, Debora L; Schladweiler, Mette C; Snow, Samantha J; Bass, Virginia L; Richards, Judy E; Ghio, Andrew J; Cascio, Wayne E; Ledbetter, Allen D; Kodavanti, Urmila P
2015-07-15
Air pollution has been linked to increased incidence of diabetes. Recently, we showed that ozone (O3) induces glucose intolerance, and increases serum leptin and epinephrine in Brown Norway rats. In this study, we hypothesized that O3 exposure will cause systemic changes in metabolic homeostasis and that serum metabolomic and liver transcriptomic profiling will provide mechanistic insights. In the first experiment, male Wistar Kyoto (WKY) rats were exposed to filtered air (FA) or O3 at 0.25, 0.50, or 1.0ppm, 6h/day for two days to establish concentration-related effects on glucose tolerance and lung injury. In a second experiment, rats were exposed to FA or 1.0ppm O3, 6h/day for either one or two consecutive days, and systemic metabolic responses were determined immediately after or 18h post-exposure. O3 increased serum glucose and leptin on day 1. Glucose intolerance persisted through two days of exposure but reversed 18h-post second exposure. O3 increased circulating metabolites of glycolysis, long-chain free fatty acids, branched-chain amino acids and cholesterol, while 1,5-anhydroglucitol, bile acids and metabolites of TCA cycle were decreased, indicating impaired glycemic control, proteolysis and lipolysis. Liver gene expression increased for markers of glycolysis, TCA cycle and gluconeogenesis, and decreased for markers of steroid and fat biosynthesis. Genes involved in apoptosis and mitochondrial function were also impacted by O3. In conclusion, short-term O3 exposure induces global metabolic derangement involving glucose, lipid, and amino acid metabolism, typical of a stress-response. It remains to be examined if these alterations contribute to insulin resistance upon chronic exposure. Published by Elsevier Inc.
[MicroRNAs: circulating biomarkers in type 2 Diabetes Mellitus and physical exercise].
Gómez-Banoy, Nicolás; Mockus, Ismena
2016-03-01
MicroRNAs are small, non-coding molecules with a crucial function in the cell´s biologic regulation. Circulating levels of miRNAs may be useful biomarkers in metabolic diseases such as type 2 Diabetes Mellitus (DM2), which alters the circulating concentrations of several types of miRNA. Specific serum profiles of these molecules have been identified in high-risk patients before the development of DM2 and its chronic complications. Most importantly, these profiles can be modified with physical exercise, which is crucial in the treatment of metabolic diseases. Acute physical activity alone can induce changes in tissue specific miRNAs, and responses are different in aerobic or non-aerobic training. Muscle and cardiovascular miRNAs, which may play an important role in the adap tation to exercise, are predominantly altered. Even further, there is a correlation between serum levels of miRNAs and fitness, suggesting a role for chronic exercise in their regulation. Thus, miRNAs are molecules of growing importance in exercise physiology, and may be involved in the mechanisms behind the beneficial effects of physical activity for patients with metabolic diseases.
Metabolomic profile of systemic sclerosis patients.
Murgia, Federica; Svegliati, Silvia; Poddighe, Simone; Lussu, Milena; Manzin, Aldo; Spadoni, Tatiana; Fischetti, Colomba; Gabrielli, Armando; Atzori, Luigi
2018-05-16
Systemic sclerosis (SSc) is an autoimmune disease of unknown aetiology characterized by vascular lesions, immunological alterations and diffuse fibrosis of the skin and internal organs. Since recent evidence suggests that there is a link between metabolomics and immune mediated disease, serum metabolic profile of SSc patients and healthy controls was investigated by 1 H-NMR and GC-MS techniques. The results indicated a lower level of aspartate, alanine, choline, glutamate, and glutarate in SSc patients compared with healthy controls. Moreover, comparing patients affected by limited SSc (lcSSc) and diffuse SSc (dcSSc), 6 discriminant metabolites were identified. The multivariate analysis performed using all the metabolites significantly different revealed glycolysis, gluconeogenesis, energetic pathways, glutamate metabolism, degradation of ketone bodies and pyruvate metabolism as the most important networks. Aspartate, alanine and citrate yielded a high area under receiver-operating characteristic (ROC) curves (AUC of 0.81; CI 0.726-0.93) for discriminating SSc patients from controls, whereas ROC curve generated with acetate, fructose, glutamate, glutamine, glycerol and glutarate (AUC of 0.84; CI 0.7-0.98) discriminated between lcSSc and dcSSc. These results indicated that serum NMR-based metabolomics profiling method is sensitive and specific enough to distinguish SSc from healthy controls and provided a feasible diagnostic tool for the diagnosis and classification of the disease.
López-Contreras, B E; Morán-Ramos, S; Villarruel-Vázquez, R; Macías-Kauffer, L; Villamil-Ramírez, H; León-Mimila, P; Vega-Badillo, J; Sánchez-Muñoz, F; Llanos-Moreno, L E; Canizalez-Román, A; Del Río-Navarro, B; Ibarra-González, I; Vela-Amieva, M; Villarreal-Molina, T; Ochoa-Leyva, A; Aguilar-Salinas, C A; Canizales-Quinteros, S
2018-06-01
Childhood obesity is a serious public health problem in Mexico. Adult gut microbiota composition has been linked to obesity, but few studies have addressed the role of gut microbiota in childhood obesity. The aim of this study is to compare gut microbiota composition in obese and normal-weight children and to associate gut microbiota profiles with amino acid serum levels and obesity-related metabolic traits. Microbial taxa relative abundance was determined by 16S rRNA sequencing in 67 normal-weight and 71 obese children aged 6-12 years. Serum amino acid levels were measured by mass spectrometry. Associations between microbiota composition, metabolic parameters and amino acid serum levels were tested. No significant differences in phyla abundances or Firmicutes/Bacteroidetes ratios were observed between normal-weight and obese children. However, Bacteroides eggerthii abundance was significantly higher in obese children and correlated positively with body fat percentage and negatively with insoluble fibre intake. Additionally, Bacteroides plebeius and unclassified Christensenellaceae abundances were significantly higher in normal-weight children. Abundance of both these species correlated negatively with phenylalanine serum levels, a metabolite also found to be associated with obesity in Mexican children. The study identified bacterial species associated with obesity, metabolic complications and amino acid serum levels in Mexican children. © 2017 World Obesity Federation.
Serum YKL-40 as a potential biomarker of inflammation in psoriasis.
Baran, Anna; Myśliwiec, Hanna; Szterling-Jaworowska, Malgorzata; Kiluk, Paulina; Świderska, Magdalena; Flisiak, Iwona
2018-02-01
YKL-40 is an inflammatory glycoprotein associated with atherosclerosis, cardiovascular disease, diabetes or metabolic syndrome which are common comorbidities in psoriasis. The aim of the study was to assess serum YKL-40 level in psoriasis and elucidate possible associations with disease activity, inflammatory or metabolic parameters and treatment. A total of 37 individuals with active plaque-type psoriasis and 15 healthy controls were enrolled. Blood samples were collected before and after 2 weeks of therapy. Serum YKL-40 concentrations were evaluated by enzyme-linked immunosorbent assay (ELISA). The results were correlated with Psoriasis Area and Severity Index (PASI), body mass index (BMI), inflammatory and biochemical markers, lipid profile and topical therapy. Median YKL-40 serum levels were significantly increased in psoriatic patients in comparison to the controls (p < .0001). No significant correlations between investigated protein and metabolic parameters as BMI (p = .19), glucose (p = .32) nor lipids levels were found. Significant positive relation with CRP (p = .003) or alanine aminotransferase (p = .04) and no correlation with PASI (p = .2) were noted. Serum YKL-40 level remained unchanged (p = .5) after topical treatment, despite clinical improvement. YKL-40 might be a biomarker of psoriasis and inflammation in psoriatic patients, but not a reliable indicator of metabolic conditions, severity of psoriasis nor efficacy of the treatment.
Serum fatty acid profile in psoriasis and its comorbidity.
Myśliwiec, Hanna; Baran, Anna; Harasim-Symbor, Ewa; Myśliwiec, Piotr; Milewska, Anna Justyna; Chabowski, Adrian; Flisiak, Iwona
2017-07-01
Psoriasis is a chronic inflammatory skin disease that is accompanied by metabolic disturbances and cardio-metabolic disorders. Fatty acids (FAs) might be a link between psoriasis and its comorbidity. The aim of the study was to evaluate serum concentrations of FAs and to investigate their association with the disease activity, markers of inflammation and possible involvement in psoriatic comorbidity: obesity, type 2 diabetes and hypertension. We measured 14 total serum fatty acids content and composition by gas-liquid chromatography and flame-ionization detector after direct in situ transesterification in 85 patients with exacerbated plaque psoriasis and in 32 healthy controls. FAs were grouped according to their biologic properties to saturated FA (SFA), unsaturated FA (UFA), monounsaturated FA (MUFA), n-3 polyunsaturated FA (n-3 PUFA) and n-6 PUFA. Generally, patients characteristic included: Psoriasis Area and Severity Index (PASI), Body Mass Index, inflammatory and biochemical markers, lipid profile and presence of psoriatic comorbidity. We have observed highly abnormal FAs pattern in psoriatic patients both with and without obesity compared to the control group. We have demonstrated association of PASI with low levels of circulating DHA, n-3 PUFA (p = 0.044 and p = 0.048, respectively) and high percent of MUFA (p = 0.024) in the non-obese psoriatic group. The SFA/UFA ratio increased with the duration of the disease (p = 0.03) in all psoriatic patients. These findings indicate abnormal FAs profile in psoriasis which may reflect metabolic disturbances and might play a role in the psoriatic comorbidity.
Wang, Haifeng; Bai, Jiao; Chen, Gang; Li, Wen; Xiang, Rongwu; Su, Guangyue; Pei, Yuehu
2013-03-27
Zhusha Anshen Wan (ZSASW), a traditional Chinese medicine (TCM) prescription, composed of cinnabar (cinnabaris), Coptidis Rhizoma (Coptis chinensis French.), Angelicae Sinensis Radix (Angelica sinensis (oliv.) Diels), uncooked Rehmanniae Radix (Rehmannia glutinosa Libosch.), honey fried Glycyrrhizae Radix Et Rhizoma (Glycyrrhiza uralensis Fisch.), has been widely used for sedative therapy. Cinnabar, the chief component of ZSASW, has been proved to possess the toxicities. In this study, a metabonomics approach based on high-resolution (1)H nuclear magnetic resonance spectroscopy was applied to investigate the protective effects of ZSASW on the toxic effects induced by cinnabar alone. Male Wistar rats were divided into three groups: control group, ZSASW group and cinnabar group. Partial least squares-discriminant analysis (PLS-DA) was performed to identify different metabolic profiles of urine and serum from rats. Liver and kidney histopathology examinations and serum clinical chemistry analysis were also performed. The significant difference in metabolic profiling of urine and serum of the rats was observed between cinnabar treated group, control group, and the changes of endogenous metabolites related to the toxicities were identified. The results were also certified by the liver and kidney histopathology examinations and biochemical analysis of blood. Our results suggested that the four combined herbal medicines of ZSASW had the effects of protecting from the toxicity induced by cinnabar alone. This work showed that the NMR-based metabonomics approach might be a promising approach to study detoxification of Chinese medicines and reasonable combination of TCM prescriptions. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Izquierdo-Garcia, Jose L; Nin, Nicolas; Jimenez-Clemente, Jorge; Horcajada, Juan P; Arenas-Miras, Maria Del Mar; Gea, Joaquim; Esteban, Andres; Ruiz-Cabello, Jesus; Lorente, Jose A
2017-12-29
The integrated analysis of changes in the metabolic profile could be critical for the discovery of biomarkers of lung injury, and also for generating new pathophysiological hypotheses and designing novel therapeutic targets for the acute respiratory distress syndrome (ARDS). This study aimed at developing a Nuclear Magnetic Resonance (NMR)-based approach for the identification of the metabolomic profile of ARDS in patients with H1N1 influenza virus pneumonia. Serum samples from 30 patients (derivation set) diagnosed of H1N1 influenza virus pneumonia were analysed by unsupervised Principal Component Analysis (PCA) to identify metabolic differences between patients with and without ARDS by NMR-spectroscopy. A predictive model of partial least squares discriminant analysis (PLS-DA) was developed for the identification of ARDS. PLS-DA was trained with the derivation set and tested in another set of samples from 26 patients also diagnosed of H1N1 influenza virus pneumonia (validation set). Decreased serum glucose, alanine, glutamine, methylhistidine and fatty acids concentrations, and elevated serum phenylalanine and methylguanidine concentrations, discriminated patients with ARDS versus patients without ARDS. PLS-DA model successfully identified the presence of ARDS in the validation set with a success rate of 92% (sensitivity 100% and specificity 91%). The classification functions showed a good correlation with the Sequential Organ Failure Assessment (SOFA) score (R = 0.74, p < 0.0001) and the Pa02/Fi02 ratio (R = 0.41, p = 0.03). The serum metabolomic profile is sensitive and specific to identify ARDS in patients with H1N1 influenza A pneumonia. Future studies are needed to determine the role of NMR-spectroscopy as a biomarker of ARDS.
Nasrallah, Henry A; Newcomer, John W; Risinger, Robert; Du, Yangchun; Zummo, Jacqueline; Bose, Anjana; Stankovic, Srdjan; Silverman, Bernard L; Ehrich, Elliot W
2016-11-01
Aripiprazole lauroxil, a long-acting injectable antipsychotic, demonstrated safety and efficacy in treating symptoms of schizophrenia in a double-blind, placebo-controlled trial. Because the metabolic profile of antipsychotics is an important safety feature, the effects of aripiprazole lauroxil on body weight, endocrine and metabolic profiles, and safety were examined in a secondary analysis. Patients with schizophrenia (DSM-IV-TR criteria) were randomly assigned to aripiprazole lauroxil 441 mg, aripiprazole lauroxil 882 mg, or placebo intramuscularly once monthly between December 2011 and March 2014. Changes in body weight, body mass index, fasting blood glucose and serum lipids, glycosylated hemoglobin (HbA1c), and prolactin over 12 weeks were assessed. The incidence of treatment-emergent adverse events (AEs) was evaluated. Among 622 randomized patients, no clinically relevant changes from baseline to week 12 were observed for any serum lipid, lipoprotein, plasma glucose, or HbA1c value with placebo or either dose of aripiprazole lauroxil. Both doses of aripiprazole lauroxil were associated with reductions in mean prolactin levels, whereas placebo treatment was not. The mean (standard deviation) change from baseline for body weight was 0.74 (3.9) kg, 0.86 (3.7) kg, and 0.01 (3.6) kg for aripiprazole lauroxil 441 mg, aripiprazole lauroxil 882 mg, and placebo groups, respectively. AEs related to metabolic parameters were reported in 2.4%, 1.4%, and 2.4% of patients in the aripiprazole lauroxil 441 mg, aripiprazole lauroxil 882 mg, and placebo groups, respectively. Aripiprazole lauroxil was well tolerated, with a low-risk metabolic profile relative to published data for other antipsychotics. Changes similar to those observed with placebo were observed in the aripiprazole lauroxil groups for metabolic parameters, with modest weight gain in the active treatment groups over the 12-week course. ClinicalTrials.gov identifier: NCT01469039. © Copyright 2016 Physicians Postgraduate Press, Inc.
Serum leptin and its relationship with metabolic variables in Arabs with type 2 diabetes mellitus.
Al-Shoumer, Kamal A; Al-Asousi, Adnan A; Doi, Suhail A; Vasanthy, Bagavathy A
2008-01-01
Most studies on serum leptin in type 2 diabetes mellitus have focused on white populations. We studied serum leptin concentrations and parameters related to glycemic control and the association between leptin levels and anthropometric and metabolic factors in Arab patients with type 2 diabetes and in Arab control subjects. Ninety-two patients (65 females and 27 males) with type 2 diabetes and 69 matched normal control subjects (48 females and 21 males) were included. Anthropometric measures (including body mass index [BMI] and waist:hip ratio) were assessed in all subjects. After an overnight fast, blood was collected for serum leptin assay. Other metabolic parameters including glucose, insulin, C-peptide, intact proinsulin, insulin resistance index (HOMA-IR), insulin-like growth factor 1 (IGF-1), lipids and hemoglobin A1c (HbA1c) were determined. Fasting serum leptin levels, IGF-1 and high-density lipoprotein (HDL) cholesterol were similar in patients with type 2 diabetes and control subjects. When obese subjects (BMI > or =30 kg/m2) were analyzed separately, serum levels of leptin were significantly lower in patients compared to controls. In contrast, patients had higher fasting glucose, insulin, C-peptide, intact proinsulin, insulin resistance, total cholesterol, triglycerides, HbA1c, and a larger waist circumference and waist-to-hip ratio than controls. Serum leptin correlated positively with BMI, negatively with waist-to-hip ratio, and demonstrated no relationship to other parameters. Patients with type 2 diabetes in an Arab ethnic population showed evidence of an unfavorable metabolic profile despite having leptin levels similar to controls. Obesity influences serum leptin levels more significantly in type 2 diabetes, in which leptin levels tends to be low.
NMR- and GC/MS-based metabolomics of sulfur mustard exposed individuals: a pilot study.
Nobakht, B Fatemeh; Aliannejad, Rasoul; Rezaei-Tavirani, Mostafa; Arefi Oskouie, Afsaneh; Naseri, Mohammad Taghi; Parastar, Hadi; Aliakbarzadeh, Ghazaleh; Fathi, Fariba; Taheri, Salman
2016-09-01
Sulfur mustard (SM) is a potent alkylating agent and its effects on cells and tissues are varied and complex. Due to limitations in the diagnostics of sulfur mustard exposed individuals (SMEIs) by noninvasive approaches, there is a great necessity to develop novel techniques and biomarkers for this condition. We present here the first nuclear magnetic resonance (NMR) and gas chromatography-mass spectrometry (GC/MS) metabolic profiling of serum from and healthy controls to identify novel biomarkers in blood serum for better diagnostics. Of note, SMEIs were exposed to SM 30 years ago and that differences between two groups could still be found. Pathways in which differences between SMEIs and healthy controls are observed are related to lipid metabolism, ketogenesis, tricarboxylic acid (TCA) cycle and amino acid metabolism.
Serum and kidney metabolic changes of rat nephrotoxicity induced by Morning Glory Seed.
Ma, Chao; Bi, Kaishun; Su, Dan; Ji, Wei; Zhang, Ming; Fan, Xinxin; Wang, Chao; Chen, Xiaohui
2010-10-01
Previous nephrotoxicology study on Morning Glory Seed (MGS) mainly focused on whole animal level, using creatinine and BUN as biochemical indicators to evaluate renal function. This work was designed to delineate the comprehensive metabolic syndromes of MGS-induced nephrotoxicity. An ultra liquid chromatography coupled with mass spectrometry (UPLC/MS) metabonomic approach was employed to characterize the metabolic profile of plasma and kidney tissue extract from rats treated with MGS at a single nephrotoxic dose of 15 g/kg/day for 14 consecutive days. Acquired data were subjected to principal component analysis (PCA) for differentiating the model and the control groups. The results indicated that certain metabolic pathways, such as lysophosphatidylcholines formation and sphingolipids cycle were accelerated, while the phenylalanine level in serum was decreased. We believe that metabonomic approach is helpful to further understanding and clinical diagnosis of traditional Chinese medicine (TCM) induced nephrotoxicity. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Hu, Hua-Hui; Huang, Xiao-Long; Quan, Ren-Fu; Yang, Zong-Bao; Xu, Jing-Jing
2017-02-25
To establish the rat model of acute spinal cord injury, followed by aprimary study on this model with ¹H NMR based on metabonomics and to explore the metabonomics and biomarkers of spinal cord injury rat. Twenty eight-week-old adult male SD rats of clean grade, with body weight of (200±10) g, were divided into sham operation group and model group in accordance with the law of random numbers, and every group had 10 rats. The rats of sham operation group were operated without damaging the spinal cord, and rats of model group were made an animal model of spinal cord incomplete injury according to the modified Allen's method. According to BBB score to observate the motor function of rats on the 1th, 5th, and 7th days after surgery. Postoperative spinal cord tissue was collected in order to pathologic observation at the 7th day, and the metabolic profilings of serum and spinal cord from spinal cord injury rats were studied by ¹H NMR spectroscopy. The hindlimb motion of rats did not obviously change in sham operation group, there was no significant difference at each time point;and rats of model group occurred flaccid paralysis of both lower extremities, there was a significant difference at each time; there was significant differences between two groups at each time. Pathological results showed the spinal cord structure was normal with uniform innervation in shame group, while in model group, the spinal cord structure was mussy, and the neurons were decreased, with inflammatory cells and necrotic tissue. Analysis of metabonomics showed that concentration of very low density fat protein (VLDL), low density fat protein (LDL), glutamine, citric acid, dimethylglycine (DMG) in the serum and glutathione, 3-OH-butyrate, N-Acetyl-L-aspartic acid (NAA), glycerophosphocholine (GPC), glutamic acid, and ascorbate in spinal cord had significant changes( P <0.05). There are significant differences in metabolic profile from serum and spinal cord sample between model group and sham operation group, it conduces to explain the changes of small molecular substances in serum and spinal cord tissue after spinal cord injury, this provides the research basis for targeted research on the role of metabolic markers in patients with acute spinal cord injury.
Al-Khelaifi, Fatima; Diboun, Ilhame; Donati, Francesco; Botrè, Francesco; Alsayrafi, Mohammed; Georgakopoulos, Costas; Suhre, Karsten; Yousri, Noha A; Elrayess, Mohamed A
2018-01-05
The outstanding performance of an elite athlete might be associated with changes in their blood metabolic profile. The aims of this study were to compare the blood metabolic profiles between moderate- and high-power and endurance elite athletes and to identify the potential metabolic pathways underlying these differences. Metabolic profiling of serum samples from 191 elite athletes from different sports disciplines (121 high- and 70 moderate-endurance athletes, including 44 high- and 144 moderate-power athletes), who participated in national or international sports events and tested negative for doping abuse at anti-doping laboratories, was performed using non-targeted metabolomics-based mass spectroscopy combined with ultrahigh-performance liquid chromatography. Multivariate analysis was conducted using orthogonal partial least squares discriminant analysis. Differences in metabolic levels between high- and moderate-power and endurance sports were assessed by univariate linear models. Out of 743 analyzed metabolites, gamma-glutamyl amino acids were significantly reduced in both high-power and high-endurance athletes compared to moderate counterparts, indicating active glutathione cycle. High-endurance athletes exhibited significant increases in the levels of several sex hormone steroids involved in testosterone and progesterone synthesis, but decreases in diacylglycerols and ecosanoids. High-power athletes had increased levels of phospholipids and xanthine metabolites compared to moderate-power counterparts. This pilot data provides evidence that high-power and high-endurance athletes exhibit a distinct metabolic profile that reflects steroid biosynthesis, fatty acid metabolism, oxidative stress, and energy-related metabolites. Replication studies are warranted to confirm differences in the metabolic profiles associated with athletes' elite performance in independent data sets, aiming ultimately for deeper understanding of the underlying biochemical processes that could be utilized as biomarkers with potential therapeutic implications.
Metabolic Profiling in Patients with Pneumonia on Intensive Care.
Antcliffe, David; Jiménez, Beatriz; Veselkov, Kirill; Holmes, Elaine; Gordon, Anthony C
2017-04-01
Clinical features and investigations lack predictive value when diagnosing pneumonia, especially when patients are ventilated and when patients develop ventilator associated pneumonia (VAP). New tools to aid diagnosis are important to improve outcomes. This pilot study examines the potential for metabolic profiling to aid the diagnosis in critical care. In this prospective observational study ventilated patients with brain injuries or pneumonia were recruited in the intensive care unit and serum samples were collected soon after the start of ventilation. Metabolic profiles were produced using 1D 1 H NMR spectra. Metabolic data were compared using multivariate statistical techniques including Principal Component Analysis (PCA) and Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA). We recruited 15 patients with pneumonia and 26 with brain injuries, seven of whom went on to develop VAP. Comparison of metabolic profiles using OPLS-DA differentiated those with pneumonia from those with brain injuries (R 2 Y=0.91, Q 2 Y=0.28, p=0.02) and those with VAP from those without (R 2 Y=0.94, Q 2 Y=0.27, p=0.05). Metabolites that differentiated patients with pneumonia included lipid species, amino acids and glycoproteins. Metabolic profiling shows promise to aid in the diagnosis of pneumonia in ventilated patients and may allow a more timely diagnosis and better use of antibiotics. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Homocysteine and other cardiovascular risk factors in patients with lichen planus.
Saleh, N; Samir, N; Megahed, H; Farid, E
2014-11-01
Chronic inflammation was found to play an important role in the development of cardiovascular risk factors. Homocysteine (Hcy) and fibrinogen have been identified as a major independent risk factor for cardiovascular disease. Lichen planus is assumed to be closely related to dyslipidaemia. Several cytokines involved in lichen planus pathogenesis, could explain its association with dyslipidaemia. Also chronic inflammation with lichen planus has been suggested as a component of the metabolic syndrome. The aim of this study was to detect a panel of cardiovascular risk factors in patients of lichen planus. This study was done on 40 patients of lichen planus and 40 healthy controls. All patients and controls were subjected to clinical examination. Serum levels of homocysteine, fibrinogen and high-sensitive C-reactive protein (hs-CRP) were measured by enzyme-linked immunosorbent assay technique (ELISA). Metabolic syndrome parameters including anthropometric measures, lipid profiles, blood sugar and blood pressure were studied. Patients with lichen planus showed significant association with metabolic syndrome parameters than controls (P < 0.001). Serum homocysteine, fibrinogen and hs-CRP were significantly higher in lichen planus patients than controls (P < 0.001). Serum homocysteine correlated with both serum hs-CRP and serum fibrinogen. However, there was no correlation between serum levels of homocysteine and fibrinogen with any metabolic syndrome criteria and related disorders except for a negative correlation of fibrinogen with high-density lipoprotein (HDL). In the present work, patients with lichen planus were found to have higher makers of both metabolic and cardiovascular risk factors in relation to controls most probably due to long standing inflammation. © 2013 European Academy of Dermatology and Venereology.
Metabolic profile of serum and follicular fluid from postpartum dairy cows during summer and winter.
Alves, Benner G; Alves, Kele A; Martins, Muller C; Braga, Lucas S; Silva, Thiago H; Alves, Bruna G; Santos, Ricarda M; Silva, Thiago V; Viu, Marco A O; Beletti, Marcello E; Jacomini, José O; Gambarini, Maria L
2014-01-01
This study was designed to monitor the biochemical profiles of serum and follicular fluid (FF) of postpartum dairy cows during the summer (n=30) and winter (n=30). Blood and FF (follicles ≥ 9 mm) were obtained from Girolando cows at 30, 45, 60, 75 and 90 days postpartum. The samples were collected and analysed to determine glucose, total cholesterol (TC), triglyceride (TG), urea, sodium (Na), potassium (K) and calcium (Ca) levels. Throughout the study, the following clinical variables were measured: rectal temperature (RT), respiratory rate (RR) and body condition score (BCS). In addition, the temperature humidity index (THI) was calculated for each season. During the summer season, THI was higher, BCS decreased, there was an increase in RT, and glucose, urea, Na and K serum levels were decreased (P<0.05). The levels of TC, TG, urea, K and Ca in follicular fluid increased (P<0.05). Positive correlations (P<0.05) were observed between the serum and FF levels for glucose (r=0.29), TC (r=0.24) and Ca (r=0.30). Therefore, the biochemical profile of serum and FF of dairy cows under summer heat-stress conditions demonstrates marked changes that may impair fertility during lactation.
Wang, Xiaofei; Liu, Liangpo; Zhang, Weibing; Zhang, Jie; Du, Xiaoyan; Huang, Qingyu; Tian, Meiping; Shen, Heqing
2017-10-01
Previous in vivo and in vitro studies have linked perfluorinated compound (PFC) exposure with metabolic interruption, but the inter-species difference and high treatment doses usually make the results difficult to be extrapolated to humans directly. The best strategy for identifying the metabolic interruption may be to establish the direct correlations between monitored PFCs data and metabolic data on human samples. In this study, serum metabolome data and PFC concentrations were acquired for a Chinese adult male cohort. The most abundant PFCs are PFOA and PFOS with concentration medians 7.56 and 12.78 nM, respectively; in together they count around 81.6% of the total PFCs. PFC concentration-related serum metabolic profile changes and the related metabolic biomarkers were explored by using partial least squares-discriminant analysis (PLS-DA). Respectively taking PFOS, PFOA and total PFC as the classifiers, serum metabolome can be differentiated between the lowest dose group (1st quartile PFCs) and the highest PFC dose group (4th quartile PFCs). Ten potential PFC biomarkers were identified, mainly involving in pollutant detoxification, antioxidation and nitric oxide (NO) signal pathways. These suggested that low-level environmental PFC exposure has significantly adverse impacts on glutathione (GSH) cycle, Krebs cycle, nitric oxide (NO) generation and purine oxidation in humans. To the best of our knowledge, this is the first report investigating the association of environmental PFC exposure with human serum metabolome alteration. Given the important biological functions of the identified biomarkers, we suggest that PFC could increase the metabolism syndromes risk including diabetes and cardiovascular diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sjögren, Klara; Leung, Kin-Chuen; Kaplan, Warren; Gardiner-Garden, Margaret; Gibney, James; Ho, Ken K Y
2007-07-01
Muscle is a target of growth hormone (GH) action and a major contributor to whole body metabolism. Little is known about how GH regulates metabolic processes in muscle or the extent to which muscle contributes to changes in whole body substrate metabolism during GH treatment. To identify GH-responsive genes that regulate substrate metabolism in muscle, we studied six hypopituitary men who underwent whole body metabolic measurement and skeletal muscle biopsies before and after 2 wk of GH treatment (0.5 mg/day). Transcript profiles of four subjects were analyzed using Affymetrix GeneChips. Serum insulin-like growth factor I (IGF-I) and procollagens I and III were measured by RIA. GH increased serum IGF-I and procollagens I and III, enhanced whole body lipid oxidation, reduced carbohydrate oxidation, and stimulated protein synthesis. It induced gene expression of IGF-I and collagens in muscle. GH reduced expression of several enzymes regulating lipid oxidation and energy production. It reduced calpain 3, increased ribosomal protein L38 expression, and displayed mixed effects on genes encoding myofibrillar proteins. It increased expression of circadian gene CLOCK, and reduced that of PERIOD. In summary, GH exerted concordant effects on muscle expression and blood levels of IGF-I and collagens. It induced changes in genes regulating protein metabolism in parallel with a whole body anabolic effect. The discordance between muscle gene expression profiles and metabolic responses suggests that muscle is unlikely to contribute to GH-induced stimulation of whole body energy and lipid metabolism. GH may regulate circadian function in skeletal muscle by modulating circadian gene expression with possible metabolic consequences.
Benedetti, Brad T.; Peterson, Erica J.; Kabolizadeh, Peyman; Martínez, Alberto; Kipping, Ralph; Farrell, Nicholas P.
2012-01-01
The overall efficacy of platinum based drugs is limited by metabolic deactivation through covalent drug–protein binding. In this study the factors affecting cytotoxicity in the presence of glutathione, human serum albumin (HSA) and whole serum binding with cisplatin, BBR3464, and TriplatinNC, a “noncovalent” derivative of BBR3464, were investigated. Upon treatment with buthionine sulfoximine (BSO), to reduce cellular glutathione levels, cisplatin and BBR3464-induced apoptosis was augmented whereas TriplatinNC-induced cytotoxicity was unaltered. Treatment of A2780 ovarian carcinoma cells with HSA-bound cisplatin (cisplatin/HSA) and cisplatin preincubated with whole serum showed dramatic decreases in cytotoxicity, cellular accumulation, and DNA adduct formation compared to treatment with cisplatin alone. Similar effects are seen with BBR3464. In contrast, TriplatinNC, the HSAbound derivative (TriplatinNC/HSA), and TriplatinNC pretreated with whole serum retained identical cytotoxic profiles and equal levels of cellular accumulation at all time points. Confocal microscopy of both TriplatinNC-NBD, a fluorescent derivative of TriplatinNC, and TriplatinNC-NBD/HSA showed nuclear/nucleolar localization patterns, distinctly different from the lysosomal localization pattern seen with HSA. Cisplatin-NBD, a fluorescent derivative of cisplatin, was shown to accumulate in the nucleus and throughout the cytoplasmwhile the localization of cisplatin-NBD/HSA was limited to lysosomal regions of the cytoplasm. The results suggest that TriplatinNCcan avoid high levels of metabolic deactivation currently seen with clinical platinum chemotherapeutics, and therefore retain a unique cytotoxic profile after cellular administration. PMID:21548575
Alhidary, Ibrahim A; Abdelrahman, Mutassim M; Harron, Raafat M
2016-04-01
A study was conducted to evaluate the effects of a long-acting trace mineral rumen bolus (TMB) supplement on the productive performance, metabolic profiles, and trace mineral status of growing camels under natural grazing conditions. Fifteen 6-month-old growing male camels (average bodyweight 139.51 ± 26.49 kg) were used in a 150-day trial. Animals were individually housed in a shaded pen and randomly assigned to receive zero (control group, CON), one (TMB1), or two (TMB2) long-acting TMBs. Feed intake was measured weekly, and camels were weighed monthly. Blood samples were collected from all camels on days 1, 30, 60, 90, 120, and 150 to obtain metabolic profiles. Zinc, selenium, copper, cobalt, and manganese concentrations were determined in the diet, serum, and liver. In comparison with controls, giving camels one TMB increased the average daily gain (14.38%; P < 0.04) and feed efficiency (13.68%; P < 0.01). Additionally, the serum and liver concentrations of zinc, copper, selenium, cobalt, and manganese were greater (P < 0.01) in camels in the TMB2 group. These data indicate that TMB supplementation has positive effects on the growth performance and trace mineral profiles of camels. Different levels, sources, and synergistic combinations of trace minerals can be used in further studies to elucidate their abilities to increase productive variables as well as their availability and cost to the camel industry.
Hajiluian, Ghazaleh; Abbasalizad Farhangi, Mahdieh; Jahangiry, Leila
2017-01-01
Aims To evaluate the relationship between Mediterranean dietary pattern, anthropometric and metabolic biomarkers and vascular endothelial growth factor (VEGF) +405 G/C gene polymorphism in patient with metabolic syndrome (Mets). Materials and methods In this study 150 patients with Mets and 50 healthy subjects were enrolled. Dietary intakes were evaluated with a semi-quantitative food-frequency questionnaire (FFQ) and Mediterranean dietary quality index (Med-DQI) was assessed. Anthropometric assessments and blood pressure measurement were performed. Biochemical assays including fasting serum glucose (FSG), matrix metalloproteinase-3 (MMP-3), liver enzymes and lipid profiles were also assessed. Polymorphism of +405 G/C VEGF gene was determined utilizing polymerase chain reaction-restriction fragments length polymorphism (PCR-RFLP) method. Results Serum high density lipoprotein-cholesterol (HDL-C) was significantly lower and low density lipoprotein cholesterol (LDL-C), triglyceride (TG), total cholesterol (TC) concentrations and FSG were significantly higher in metabolic syndrome patients compared with control group (P < 0.05). Metabolic syndrome group with high consumption of “cholesterol” had significantly upper serum TG; also high consumption of “fish” and “vegetables-fruits” was associated with a significantly lower serum LDL concentrations. In metabolic syndrome patients with CC genotype, mean score of “saturated fatty acid” subgroup was significantly higher compared with other genotypes; whereas, in healthy individuals, mean score of “fruit-vegetable” subgroup in individuals of CC and GG genotype was significantly higher (P<0.05). Conclusion Our findings indicated a significant relationship between Mediterranean dietary quality index and both anthropometric and metabolic risk factors. We also indicated a higher “saturated fatty acid” intake in CC genotype among metabolic syndrome patients. PMID:28212431
Xiong, Zhili; Yang, Jie; Huang, Yue; Zhang, Kuo; Bo, Yunhai; Lu, Xiumei; Su, Guangyue; Ma, Jie; Yang, Jingyu; Zhao, Longshan; Wu, Chunfu
2016-09-01
Xiao-Chai-Hu-Tang (XCHT) has been proven to be effective for the clinical treatment of depression. However, the mechanisms of definite antidepressant-like effects and detailed metabolic biomarkers were still unclear in this prior study. Here, we have investigated the metabolic profiles and potential biomarkers in a chronic unpredictable mild stress model after treatment with XCHT. Metabonomics based on ultra-high performance liquid chromatography coupled with mass spectrometry was used to profile the metabolic fingerprints of serum obtained from a rat model with chronic unpredictable mild stress with and without XCHT treatment. The model rats showed a significant decrease in sucrose preference and food consumption, and these depression-like symptoms were significantly improved by XCHT. Through principal component analysis (PCA), nine potential biomarkers of tryptophan, uric acid, phenylalanine, cholic acid and lysophosphatidylcholine (C18:0 LPC, C16:0 LPC, C16:1 LPC, C18:1 LPC, C20:4 LPC) were characterized as potential biomarkers involved the pathogenesis of depression. The therapeutic effect of XCHT on depression may involve in amino acid metabolism, lipid metabolism, oxidative stress and inflammation response. The present investigation highlights that metabonomics is a valuable tool for studying the essence of depression as well as evaluating the efficacy of the corresponding drug treatment. Copyright © 2016 Elsevier B.V. All rights reserved.
Song, Jia; Hu, Manjiang; Li, Cheng; Yang, Bo; Ding, Qing; Wang, Chunhong; Mao, Limei
2018-06-20
n-3PUFA consumption has been widely accepted as a nutritional strategy for the secondary prevention of cardiovascular events in patients at high risk of cardiovascular disease (CVD), but little is known about the dose-response relationship between dietary n-3PUFA and serum biomarkers associated with cardiovascular health in the general population. The present study involved a 12-week double-blind, randomized controlled trial to explore the effects of fish oil with different doses (0.31, 0.62 and 1.24 g d-1 of EPA and DHA) on serum fatty acids and cardio-metabolic biomarkers including adiponectin, inflammatory markers, lipid profiles and fasting glucose in healthy middle-aged and elderly Chinese people. 240 volunteers met our inclusion criteria. A total of 39 subjects dropped out and 201 finally completed the intervention. No significant differences in baseline characteristics and daily intakes of dietary nutrients were detected among all groups. After a 12-week intervention, fish oil dose-dependently enhanced serum EPA, DHA, n-3PUFA and adiponectin (except for 0.31 g d-1), but decreased serum n-6/n-3PUFA, TG and fasting glucose. Changes in the above indicators from the baseline to week 12 in fish oil groups significantly differed from those in the control. Meanwhile, all the doses of EPA and DHA led to decreases in serum CRP; only 1.24 g d-1 led to an increase in HDL-C with a concurrent decrease in TC/HDL-C even though these changes were not significantly different among all groups. All the findings suggested that fish oil dose-dependently regulated serum PUFA and cardio-metabolic biomarkers including adiponectin, CRP, lipid profiles and fasting glucose in healthy middle-aged and elderly Chinese people who consumed insufficient dietary n-3PUFA, and the most desirable changes were observed for 1.24 g d-1.
Diet compounds, glycemic index and obesity-related cardiac effects.
Diniz, Yeda S; Burneiko, Regina M; Seiva, Fabio R F; Almeida, Flávia Q A; Galhardi, Cristiano Machado; Filho, José Luiz V B Novelli; Mani, Fernanda; Novelli, Ethel L B
2008-02-20
Diet compounds may influence obesity-related cardiac oxidative stress and metabolic sifting. Carbohydrate-rich diet may be disadvantageous from fat-rich diet to cardiac tissue and glycemic index rather than lipid profile may predict the obesity-related cardiac effects. Male Wistar rats were divided into three groups (n=8/group): (C) receiving standard chow (3.0 kcal/g); (CRD) receiving carbohydrate-rich diet (4.0 kcal/g), and (FRD) receiving fat-rich diet (4.0 kcal/g). Rats were sacrificed after the oral glucose tolerance test (OGTT) at 60 days of dietary treatments. Lipid profile and oxidative stress parameters were determined in serum. Myocardial samples were used to determine oxidative stress, metabolic enzymes, glycogen and triacylglycerol. FRD rats showed higher final body weight and body mass index than CRD and C. Serum cholesterol and low-density lipoprotein were higher in FRD than in CRD, while triacylglycerol and oxidized low-density lipoprotein cholesterol were higher in CRD than in FRD. CRD rats had the highest myocardial lipid hydroperoxide and diminished superoxide dismutase and catalase activities. Myocardial glycogen was lower and triacylglycerol was higher in CRD than in C and FRD rats. Although FRD rats had depressed myocardial-reducing power, no significant changes were observed in myocardial energy metabolism. Myocardial beta-hydroxyacyl coenzyme-A dehydrogenase and citrate synthase, as well as the enhanced lactate dehydrogenase/citrate synthase ratio indicated that fatty acid degradation was decreased in CRD rats. Glycemic index was positively correlated with obesity-related cardiac effects. Isoenergetic carbohydrate-rich and fat-rich diets induced different degree of obesity and differently affected lipid profile. Carbohydrate-rich diet was deleterious relative to fat-rich diet in the heart enhancing lipoperoxidation and shifting the metabolic pathway for energy production. Glycemic index rather than dyslipidemic profile may predict the obesity effects on cardiac tissue.
2014-01-01
Background The higher prevalence of Asperger Syndrome (AS) and other autism spectrum conditions in males has been known for many years. However, recent multiplex immunoassay profiling studies have shown that males and females with AS have distinct proteomic changes in serum. Methods Here, we analysed sera from adults diagnosed with AS (males = 14, females = 16) and controls (males = 13, females = 16) not on medication at the time of sample collection, using a combination of multiplex immunoassay and shotgun label-free liquid chromatography mass spectrometry (LC-MSE). The main objective was to identify sex-specific serum protein changes associated with AS. Results Multiplex immunoassay profiling led to identification of 16 proteins that were significantly altered in AS individuals in a sex-specific manner. Three of these proteins were altered in females (ADIPO, IgA, APOA1), seven were changed in males (BMP6, CTGF, ICAM1, IL-12p70, IL-16, TF, TNF-alpha) and six were changed in both sexes but in opposite directions (CHGA, EPO, IL-3, TENA, PAP, SHBG). Shotgun LC-MSE profiling led to identification of 13 serum proteins which had significant sex-specific changes in the AS group and, of these, 12 were altered in females (APOC2, APOE, ARMC3, CLC4K, FETUB, GLCE, MRRP1, PTPA, RN149, TLE1, TRIPB, ZC3HE) and one protein was altered in males (RGPD4). The free androgen index in females with AS showed an increased ratio of 1.63 compared to controls. Conclusion Taken together, the serum multiplex immunoassay and shotgun LC-MSE profiling results indicate that adult females with AS had alterations in proteins involved mostly in lipid transport and metabolism pathways, while adult males with AS showed changes predominantly in inflammation signalling. These results provide further evidence that the search for biomarkers or novel drug targets in AS may require stratification into male and female subgroups, and could lead to the development of novel targeted treatment approaches. PMID:24467795
Tantalaki, Evangelia; Piperi, Christina; Livadas, Sarantis; Kollias, Anastasios; Adamopoulos, Christos; Koulouri, Aikaterini; Christakou, Charikleia; Diamanti-Kandarakis, Evanthia
2014-01-01
To investigate the impact of dietary intervention on Advanced Glycation End products (AGEs) intake on the hormonal and metabolic profile in women with polycystic ovary syndrome (PCOS). After baseline evaluation, 23 women with PCOS [mean ± SD, age: 23.4 ± 5.7 years; body mass index (BMI): 26 ± 5.7 kg/m2] underwent the following consecutive 2-month dietary regimens: a hypocaloric diet with ad-libitum AGEs content (Hypo), an isocaloric diet with high AGEs (HA) and an isocaloric diet with low AGEs (LA). Metabolic, hormonal and oxidative stress status was assessed and AGEs levels were determined in all subjects after the completion of each dietary intervention. Serum levels of AGEs, testosterone, oxidative stress, insulin and HOMA-IR index were significantly increased on the HA compared to the Hypo diet and subsequently decreased on the LA diet (compared to HA) (p<0.05 for all parameters). BMI remained unaltered throughout the HA and LA periods compared to the Hypo period. Serum AGEs were strongly correlated with insulin, as well as with HOMA, during the LA dietary period (r=0.53, p=0.02 and r=0.51, p=0.03, respectively). For the same period, dietary AGEs were correlated with insulin levels (rho=0.49, p=0.04). Modifications of dietary AGEs intake are associated with parallel changes in serum AGEs, metabolic, hormonal and oxidative stress biomarkers in women with PCOS. These novel findings support recommendations for a low AGEs dietary content along with lifestyle changes in women with PCOS.
Dietary melatonin alters uterine artery hemodynamics in pregnant holstein heifers
USDA-ARS?s Scientific Manuscript database
The objective was to examine uterine artery hemodynamics and maternal serum profiles in pregnant heifers supplemented with dietary melatonin (MEL) or no supplementation (CON). In addition, melatonin receptor–mediated responses in steroid metabolism were examined using a bovine endometrial epithelial...
Man, Elim; Cheung, Pik-To; Cheung, Yiu-Fai
2017-07-01
To determine the structural and functional alterations of systemic arteries in obese adolescents and their relationships with adiposity, metabolic and lipid profile, and serum liver enzyme levels. Carotid intima-media thickness (IMT), carotid stiffness index, and brachial-ankle pulse wave velocity (baPWV) were measured in 56 obese adolescents and 58 lean controls. Obese adolescents had additional liver ultrasound and determination of fasting blood indices of glucose metabolism and lipid profile, and serum levels of liver enzymes. Carotid IMT (P < 0.0001), carotid stiffness index (P < 0.0001) and baPWV (P = 0.001) were significantly greater in obese than control subjects. Thirty-seven (66%) obese subjects had fatty liver changes and their aspartate aminotransferase, alanine aminotransferase (ALT), alkaline phosphatase, and gamma-glutamyl transferase levels were significantly higher than those without (all P < 0.05). Univariate analyses showed positive correlations between serum ALT (r = 0.29, P = 0.03) and alkaline phosphatase (r = 0.28, P = 0.04) levels and carotid IMT, aspartate aminotransferase level and carotid stiffness (r = 0.41, P = 0.002), and gamma-glutamyl transferase level and baPWV (r = 0.34, P = 0.02) in obese subjects. Multivariate linear regression revealed serum ALT level (β = 0.02, P = 0.006) as an independent correlate of carotid stiffness. Obese adolescents have increased carotid IMT and stiffness, which are associated positively with serum liver enzyme levels. © 2017 Paediatrics and Child Health Division (The Royal Australasian College of Physicians).
Swain, Manorama; Nath, Preetam; Parida, Prasant Kumar; Narayan, Jimmy; Padhi, Pradeep Kumar; Pati, Girish Kumar; Singh, Ayaskanta; Misra, Bijay; Misra, Debasis; Kar, Sanjib Kumar; Panigrahi, Manas Kumar; Meher, Chudamani; Agrawal, Omprakash; Rout, Niranjan; Pattnaik, Kaumudee; Bhuyan, Pallavi; Mishra, Pramila Kumari; Singh, Shivaram Prasad
2017-07-01
Aminotransferase assay is often used as a screening test as well as an endpoint for resolution of disease in nonalcoholic fatty liver disease (NAFLD). Aim of the study was to evaluate the relationship of transaminase level with metabolic variables and histology in NAFLD. Single center observational study was conducted in a gastroenterology clinic at Cuttack in coastal Odisha. Subjects were consecutive patients presenting with functional bowel disease and undergoing abdominal sonography. All participants were evaluated for the presence of metabolic syndrome (MS), insulin resistance, liver function test and lipid profile. Various parameters were compared between NAFLD subjects and controls. 53.5 % of NAFLD had normal serum transaminases, whereas 20.8 % of healthy controls had transaminitis. NAFLD patients had significantly higher BMI, fasting plasma glucose, serum transaminases, serum triglycerides, serum insulin and homeostatic model assessment (HOMA) IR than controls. NAFLD patients who had transaminitis had significantly higher incidence of MS and higher mean HOMA IR than those without. There was no significant difference in histopathological features between NAFLD with and without transaminitis. To conclude, over half of NAFLD subjects do not have transaminitis while transaminitis is present in a fifth of healthy people without fatty liver. Hence serum transaminase should not be used as screening test for NAFLD. NAFLD patients with transaminitis had a higher incidence of MS and insulin resistance than those without. However, there was no significant difference in histopathological features between these two groups.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bag, Swarnendu, E-mail: Swarna.bag@gmail.com; Banerjee, Deb Ranjan, E-mail: debranjan2@gmail.com; Basak, Amit, E-mail: absk@chem.iitkgp.ernet.in
At functional levels, besides genes and proteins, changes in metabolome profiles are instructive for a biological system in health and disease including malignancy. It is understood that metabolomic alterations in association with proteomic and transcriptomic aberrations are very fundamental to unravel malignant micro-ambient criticality and oral cancer is no exception. Hence deciphering intricate dimensions of oral cancer metabolism may be contributory both for integrated appreciation of its pathogenesis and to identify any critical but yet unexplored dimension of this malignancy with high mortality rate. Although several methods do exist, NMR provides higher analytical precision in identification of cancer metabolomic signature.more » Present study explored abnormal signatures in choline metabolism in oral squamous cell carcinoma (OSCC) using {sup 1}H and {sup 13}C NMR analysis of serum. It has demonstrated down-regulation of choline with concomitant up-regulation of its break-down product in the form of trimethylamine N-oxide in OSCC compared to normal counterpart. Further, no significant change in lactate profile in OSCC possibly indicated that well-known Warburg effect was not a prominent phenomenon in such malignancy. Amongst other important metabolites, malonate has shown up-regulation but D-glucose, saturated fatty acids, acetate and threonine did not show any significant change. Analyzing these metabolomic findings present study proposed trimethyl amine N-oxide and malonate as important metabolic signature for oral cancer with no prominent Warburg effect. - Highlights: • NMR ({sup 1}H and {sup 13}C) study of Oral Squamous cell Carcinoma Serum. • Abnormal Choline metabolomic signatures. • Up-regulation of Trimethylamine N-oxide. • Unchanged lactate profile indicates no prominent Warburg effect. • Proposed alternative glucose metabolism path through up-regulation of malonate.« less
Mella, Olav; Bruland, Ove; Risa, Kristin; Dyrstad, Sissel E.; Alme, Kine; Rekeland, Ingrid G.; Sapkota, Dipak; Røsland, Gro V.; Fosså, Alexander; Ktoridou-Valen, Irini; Lunde, Sigrid; Sørland, Kari; Lien, Katarina; Herder, Ingrid; Thürmer, Hanne; Gotaas, Merete E.; Baranowska, Katarzyna A.; Bohnen, Louis M.L.J.; Schäfer, Christoph; McCann, Adrian; Sommerfelt, Kristian; Helgeland, Lars; Ueland, Per M.; Dahl, Olav
2016-01-01
Myalgic encephalopathy/chronic fatigue syndrome (ME/CFS) is a debilitating disease of unknown etiology, with hallmark symptoms including postexertional malaise and poor recovery. Metabolic dysfunction is a plausible contributing factor. We hypothesized that changes in serum amino acids may disclose specific defects in energy metabolism in ME/CFS. Analysis in 200 ME/CFS patients and 102 healthy individuals showed a specific reduction of amino acids that fuel oxidative metabolism via the TCA cycle, mainly in female ME/CFS patients. Serum 3-methylhistidine, a marker of endogenous protein catabolism, was significantly increased in male patients. The amino acid pattern suggested functional impairment of pyruvate dehydrogenase (PDH), supported by increased mRNA expression of the inhibitory PDH kinases 1, 2, and 4; sirtuin 4; and PPARδ in peripheral blood mononuclear cells from both sexes. Myoblasts grown in presence of serum from patients with severe ME/CFS showed metabolic adaptations, including increased mitochondrial respiration and excessive lactate secretion. The amino acid changes could not be explained by symptom severity, disease duration, age, BMI, or physical activity level among patients. These findings are in agreement with the clinical disease presentation of ME/CFS, with inadequate ATP generation by oxidative phosphorylation and excessive lactate generation upon exertion. PMID:28018972
Yi, Lunzhao; Shi, Shuting; Wang, Yang; Huang, Wei; Xia, Zi-an; Xing, Zhihua; Peng, Weijun; Wang, Zhe
2016-01-01
Cognitive impairment, the leading cause of traumatic brain injury (TBI)-related disability, adversely affects the quality of life of TBI patients, and exacts a personal and economic cost that is difficult to quantify. The underlying pathophysiological mechanism is currently unknown, and an effective treatment of the disease has not yet been identified. This study aimed to advance our understanding of the mechanism of disease pathogenesis; thus, metabolomics based on gas chromatography/mass spectrometry (GC-MS), coupled with multivariate and univariate statistical methods were used to identify potential biomarkers and the associated metabolic pathways of post-TBI cognitive impairment. A biomarker panel consisting of nine serum metabolites (serine, pyroglutamic acid, phenylalanine, galactose, palmitic acid, arachidonic acid, linoleic acid, citric acid, and 2,3,4-trihydroxybutyrate) was identified to be able to discriminate between TBI patients with cognitive impairment, TBI patients without cognitive impairment and healthy controls. Furthermore, associations between these metabolite markers and the metabolism of amino acids, lipids and carbohydrates were identified. In conclusion, our study is the first to identify several serum metabolite markers and investigate the altered metabolic pathway that is associated with post-TBI cognitive impairment. These markers appear to be suitable for further investigation of the disease mechanisms of post-TBI cognitive impairment. PMID:26883691
Serum Metabolomic Profiling in Acute Alcoholic Hepatitis Identifies Multiple Dysregulated Pathways
Rachakonda, Vikrant; Gabbert, Charles; Raina, Amit; Bell, Lauren N.; Cooper, Sara; Malik, Shahid; Behari, Jaideep
2014-01-01
Background and Objectives While animal studies have implicated derangements of global energy homeostasis in the pathogenesis of acute alcoholic hepatitis (AAH), the relevance of these findings to the development of human AAH remains unclear. Using global, unbiased serum metabolomics analysis, we sought to characterize alterations in metabolic pathways associated with severe AAH and identify potential biomarkers for disease prognosis. Methods This prospective, case-control study design included 25 patients with severe AAH and 25 ambulatory patients with alcoholic cirrhosis. Serum samples were collected within 24 hours of the index clinical encounter. Global, unbiased metabolomics profiling was performed. Patients were followed for 180 days after enrollment to determine survival. Results Levels of 234 biochemicals were altered in subjects with severe AAH. Random-forest analysis, principal component analysis, and integrated hierarchical clustering methods demonstrated that metabolomics profiles separated the two cohorts with 100% accuracy. Severe AAH was associated with enhanced triglyceride lipolysis, impaired mitochondrial fatty acid beta oxidation, and upregulated omega oxidation. Low levels of multiple lysolipids and related metabolites suggested decreased plasma membrane remodeling in severe AAH. While most measured bile acids were increased in severe AAH, low deoxycholate and glycodeoxycholate levels indicated intestinal dysbiosis. Several changes in substrate utilization for energy homeostasis were identified in severe AAH, including increased glucose consumption by the pentose phosphate pathway, altered tricarboxylic acid (TCA) cycle activity, and enhanced peptide catabolism. Finally, altered levels of small molecules related to glutathione metabolism and antioxidant vitamin depletion were observed in patients with severe AAH. Univariable logistic regression revealed 15 metabolites associated with 180-day survival in severe AAH. Conclusion Severe AAH is characterized by a distinct metabolic phenotype spanning multiple pathways. Metabolomics profiling revealed a panel of biomarkers for disease prognosis, and future studies are planned to validate these findings in larger cohorts of patients with severe AAH. PMID:25461442
Serum metabolomics differentiating pancreatic cancer from new-onset diabetes
He, Xiangyi; Zhong, Jie; Wang, Shuwei; Zhou, Yufen; Wang, Lei; Zhang, Yongping; Yuan, Yaozong
2017-01-01
To establish a screening strategy for pancreatic cancer (PC) based on new-onset diabetic mellitus (NO-DM), serum metabolomics analysis and a search for the metabolic pathways associated with PC related DM were performed. Serum samples from patients with NO-DM (n = 30) and patients with pancreatic cancer and NO-DM were examined by liquid chromatography-mass spectrometry. Data were analyzed using principal components analysis (PCA) and orthogonal projection to latent structures (OPLS) of the most significant metabolites. The diagnostic model was constructed using logistic regression analysis. Metabolic pathways were analyzed using the web-based tool MetPA. PC patients with NO-DM were older and had a lower BMI and shorter duration of DM than those with NO-DM. The metabolomic profiles of patients with PC and NO-DM were significantly different from those of patients with NO-DM in the PCA and OPLS models. Sixty two differential metabolites were identified by the OPLS model. The logistic regression model using a panel of two metabolites including N_Succinyl_L_diaminopimelic_acid and PE (18:2) had high sensitivity (93.3%) and specificity (93.1%) for PC. The top three metabolic pathways associated with PC related DM were valine, leucine and isoleucine biosynthesis and degradation, primary bile acid biosynthesis, and sphingolipid metabolism. In conclusion, screening for PC based on NO-DM using serum metabolomics in combination with clinic characteristics and CA19-9 is a potential useful strategy. Several metabolic pathways differed between PC related DM and type 2 DM. PMID:28418859
Su, Guangyue; Wang, Haifeng; Gao, Yuxian; Chen, Gang; Pei, Yuehu; Bai, Jiao
2017-11-02
Coptis chinensis Franch has been used in Traditional Chinese Medicine (TCM) for treating infectious and inflammatory diseases for over two thousand years. Berberine (BN), an isoquinoline alkaloid, is the main component of Coptis chinensis . The pharmacological basis for its therapeutic effects, which include hepatoprotective effects on liver injuries, has been studied intensively, yet the therapy of liver injuries and underlying mechanism remain unclear. We investigated the detoxification mechanism of Coptis chinensis and berberine using metabolomics of urine and serum in the present study. After the treatment with Coptis chinensis and berberine, compared with the cinnabar group, Coptis chinensis and berberine can regulate the concentration of the endogenous metabolites. PLS-DA score plots demonstrated that the urine and serum metabolic profiles in rats of the Coptis chinensis and berberine groups were similar those of the control group, yet remarkably apart from the cinnabar group. The mechanism may be related to the endogenous metabolites including energy metabolism, amino acid metabolism and metabolism of intestinal flora in rats. Meanwhile, liver and kidney histopathology examinations and serum clinical chemistry analysis verified the experimental results of metabonomics.
Does canine inflammatory bowel disease influence gut microbial profile and host metabolism?
Xu, Jia; Verbrugghe, Adronie; Lourenço, Marta; Janssens, Geert P J; Liu, Daisy J X; Van de Wiele, Tom; Eeckhaut, Venessa; Van Immerseel, Filip; Van de Maele, Isabel; Niu, Yufeng; Bosch, Guido; Junius, Greet; Wuyts, Brigitte; Hesta, Myriam
2016-06-16
Inflammatory bowel disease (IBD) refers to a diverse group of chronic gastrointestinal diseases, and gut microbial dysbiosis has been proposed as a modulating factor in its pathogenesis. Several studies have investigated the gut microbial ecology of dogs with IBD but it is yet unclear if this microbial profile can alter the nutrient metabolism of the host. The aim of the present study was to characterize the faecal bacterial profile and functionality as well as to determine host metabolic changes in IBD dogs. Twenty-three dogs diagnosed with IBD and ten healthy control dogs were included. Dogs with IBD were given a clinical score using the canine chronic enteropathy clinical activity index (CCECAI). Faecal short-chain fatty acids (SCFA) and ammonia concentrations were measured and quantitative PCR was performed. The concentration of plasma amino acids, acylcarnitines, serum folate, cobalamin, and indoxyl sulfate was determined. No significant differences in the abundance of a selection of bacterial groups and fermentation metabolites were observed between the IBD and control groups. However, significant negative correlations were found between CCECAI and the faecal proportion of Lactobacillus as well as between CCECAI and total SCFA concentration. Serum folate and plasma citrulline were decreased and plasma valine was increased in IBD compared to control dogs. Increased plasma free carnitine and total acylcarnitines were observed in IBD compared with control dogs, whereas short-chain acylcarnitines (butyrylcarnitine + isobutyrylcarnitine and, methylmalonylcarnitine) to free carnitine ratios decreased. Dogs with IBD had a higher 3-hydroxyisovalerylcarnitine + isovalerylcarnitine to leucine ratio compared to control dogs. Canine IBD induced a wide range of changes in metabolic profile, especially for the plasma concentrations of short-chain acylcarnitines and amino acids, which could have evolved from tissue damage and alteration in host metabolism. In addition, dogs with more severe IBD were characterised by a decrease in faecal proportion of Lactobacillus.
Li, Qin; Xing, Baoheng
2016-08-01
Gestational diabetes mellitus (GDM) has become a serious health risk among pregnant women throughout the world. Phytosterol-enriched margarines are capable of lowering total cholesterol (TC) and low-density lipoprotein (LDL), but little is known about its effects on GDM. We aimed to examine the effects of daily consumption of a phytosterol-enriched spread on insulin resistance and lipid profile in pregnant GDM women. Pregnant women suffering from GDM in their second trimester were recruited and randomly assigned to consume a margarine spread either with or without phytosterols daily for 16 weeks. Serum lipid profile and glucose and insulin metabolisms were assessed at week 0 (baseline) and week 16 (end of trial). After 16 weeks, levels of triacylglycerol, TC, and LDL were significantly decreased, while high-density lipoprotein was significantly increased, compared with the baseline in the phytosterol group. In addition, in the same treatment group, glucose metabolic parameters, including fasting plasma glucose, serum insulin levels, the quantitative insulin check index, homeostasis model of assessment of insulin resistance, and β-cell function, were also significantly improved. Daily consumption of a phytosterol-enriched spread improved insulin resistance and lipid profile in women with GDM.
Acute Phase Response, Inflammation and Metabolic Syndrome Biomarkers of Libby Asbestos Exposure
Background: Identification of biomarkers assists in the diagnosis of disease and the assessment of health risks from environmental exposures. Objective: We hypothesized that rats exposed to Libby amphibole (LA) would present with a unique serum proteomic profile which could help ...
Steckling, Flávia Mariel; Farinha, Juliano Boufleur; Figueiredo, Felipe da Cunha; Santos, Daniela Lopes Dos; Bresciani, Guilherme; Kretzmann, Nélson Alexandre; Stefanello, Sílvio Terra; Courtes, Aline Alves; Beck, Maristela de Oliveira; Sangoi Cardoso, Manuela; Duarte, Marta Maria Medeiros Frescura; Moresco, Rafael Noal; Soares, Félix Alexandre Antunes
2018-02-12
This study investigate the effects of high-intensity interval training (HIIT) on systemic levels of inflammatory and hormonal markers in postmenopausal women with metabolic syndrome (MS). Fifteen postmenopausal women with MS completed the training on treadmills. Functional, body composition parameters, maximal oxygen uptake (VO 2 max), and lipid profile were assessed before and after HIIT. Serum or plasma levels of cytokines and hormonal markers were measured along the intervention. The analysis of messenger RNA (mRNA) expression of these cytokines was performed in peripheral blood mononuclear cells (PBMC). VO 2 max and some anthropometric parameters were improved after HIIT, while decreased levels of proinflammatory markers and increased levels of interleukin-10 (IL-10) were also found. Adipokines were also modulated after 12 weeks or training. The mRNA expression of the studied genes was unchanged after HIIT. In conclusion, HIIT benefits inflammatory and hormonal axis on serum or plasma samples, without changes on PBMC of postmenopausal MS patients.
Shi, Xiao-Lei; Gu, Jin-Yang; Zhang, Yue; Han, Bing; Xiao, Jiang-Qiang; Yuan, Xian-Wen; Zhang, Ning; Ding, Yi-Tao
2011-01-01
AIM: To investigate whether the function of hepatocytes co-cultured with bone marrow mesenchymal stem cells (MSCs) could be maintained in serum from acute-on-chronic liver failure (ACLF) patients. METHODS: Hepatocyte supportive functions and cytotoxicity of sera from 18 patients with viral hepatitis B-induced ACLF and 18 healthy volunteers were evaluated for porcine hepatocytes co-cultured with MSCs and hepatocyte mono-layered culture, respectively. Chemokine profile was also examined for the normal serum and liver failure serum. RESULTS: Hepatocyte growth factor (HGF) and Tumor necrosis factor; tumor necrosis factor (TNF)-α were remarkably elevated in response to ACLF while epidermal growth factor (EGF) and VEGF levels were significantly decreased. Liver failure serum samples induced a higher detachment rate, lower viability and decreased liver support functions in the homo-hepatocyte culture. Hepatocytes co-cultured with MSCs could tolerate the cytotoxicity of the serum from ACLF patients and had similar liver support functions compared with the hepatocytes cultured with healthy human serum in vitro. In addition, co-cultured hepatocytes maintained a proliferative capability despite of the insult from liver failure serum. CONCLUSION: ACLF serum does not impair the cell morphology, viability, proliferation and overall metabolic capacities of hepatocyte co-cultured with MSCs in vitro. PMID:21633639
Zhang, Xiaoya; Liu, Xutong; Jia, Hongmin; He, Pingli; Mao, Xiangbing; Qiao, Shiyan; Zeng, Xiangfang
2018-03-28
The objective of this study was to investigate whether valine (Val) supplementation in a reduced protein (RP) diet regulates growth performance associated with the changes in plasma amino acids (AAs) profile, metabolism, endocrine, and neural system in piglets. Piglets or piglets with a catheter in the precaval vein were randomly assigned to two treatments, including two RP diets with standardized ileal digestible (SID) Val:Lysine (Lys) ratio of 0.45 and 0.65, respectively. The results indicated that piglets in the higher Val:Lys ratio treatment had higher average daily feed intake (ADFI) ( P < 0.001), average daily gain (ADG) ( P = 0.001), feed conversion ratio (FCR) ( P = 0.004), lower plasma urea nitrogen ( P = 0.032), expression of gastric cholecystokinin (CCK), and hypothalamic pro-opiomelanocortin (POMC). Plasma AAs profiles including postprandial plasma essential AAs (EAAs) profile and in serum, muscle, and liver involved in metabolism of AAs and fatty acids were significantly different between two treatments. In conclusion, Val influenced growth performance associated with metabolism of AAs and fatty acids and both endocrine and neural system in piglets.
Beauclercq, Stéphane; Nadal-Desbarats, Lydie; Hennequet-Antier, Christelle; Gabriel, Irène; Tesseraud, Sophie; Calenge, Fanny; Le Bihan-Duval, Elisabeth; Mignon-Grasteau, Sandrine
2018-04-27
The increasing cost of conventional feedstuffs has bolstered interest in genetic selection for digestive efficiency (DE), a component of feed efficiency, assessed by apparent metabolisable energy corrected to zero nitrogen retention (AMEn). However, its measurement is time-consuming and constraining, and its relationship with metabolic efficiency poorly understood. To simplify selection for this trait, we searched for indirect metabolic biomarkers through an analysis of the serum metabolome using nuclear magnetic resonance ( 1 H NMR). A partial least squares (PLS) model including six amino acids and two derivatives from butyrate predicted 59% of AMEn variability. Moreover, to increase our knowledge of the molecular mechanisms controlling DE, we investigated 1 H NMR metabolomes of ileal, caecal, and serum contents by fitting canonical sparse PLS. This analysis revealed strong associations between metabolites and DE. Models based on the ileal, caecal, and serum metabolome respectively explained 77%, 78%, and 74% of the variability of AMEn and its constitutive components (utilisation of starch, lipids, and nitrogen). In our conditions, the metabolites presenting the strongest associations with AMEn were proline in the serum, fumarate in the ileum and glucose in caeca. This study shows that serum metabolomics offers new opportunities to predict chicken DE.
Yoshida, Kengo; Nakashima, Eiji; Kyoizumi, Seishi; Hakoda, Masayuki; Hayashi, Tomonori; Hida, Ayumi; Ohishi, Waka; Kusunoki, Yoichiro
2016-09-01
Immune system impairments reflected by the composition and function of circulating lymphocytes are still observed in atomic bomb survivors, and metabolic abnormalities including altered blood triglyceride and cholesterol levels have also been detected in such survivors. Based on closely related features of immune and metabolic profiles of individuals, we investigated the hypothesis that long-term effects of radiation exposure on lymphocyte subsets might be modified by metabolic profiles in 3,113 atomic bomb survivors who participated in health examinations at the Radiation Effect Research Foundation, Hiroshima and Nagasaki, in 2000-2002. The lymphocyte subsets analyzed involved T-, B- and NK-cell subsets, and their percentages in the lymphocyte fraction were assessed using flow cytometry. Health examinations included metabolic indicators, body mass index, serum levels of total cholesterol, high-density lipoprotein cholesterol, C-reactive protein and hemoglobin A1c, as well as diabetes and fatty liver diagnoses. Standard regression analyses indicated that several metabolic indicators of obesity/related disease, particularly high-density lipoprotein cholesterol levels, were positively associated with type-1 helper T- and B-cell percentages but were inversely associated with naïve CD4 T and NK cells. A regression analysis adjusted for high-density lipoprotein cholesterol revealed a radiation dose relationship with increasing NK-cell percentage. Additionally, an interaction effect was suggested between radiation dose and C-reactive protein on B-cell percentage with a negative coefficient of the interaction term. Collectively, these findings suggest that radiation exposure and subsequent metabolic profile changes, potentially in relationship to obesity-related inflammation, lead to such long-term alterations in lymphocyte subset composition. Because this study is based on cross-sectional and exploratory analyses, the implications regarding radiation exposure, metabolic profiles and circulating lymphocytes warrant future longitudinal and molecular mechanistic studies.
Metabolic Risk Profile and Cancer in Korean Men and Women.
Ko, Seulki; Yoon, Seok-Jun; Kim, Dongwoo; Kim, A-Rim; Kim, Eun-Jung; Seo, Hye-Young
2016-05-01
Metabolic syndrome is a cluster of risk factors for type 2 diabetes mellitus and cardiovascular disease. Associations between metabolic syndrome and several types of cancer have recently been documented. We analyzed the sample cohort data from the Korean National Health Insurance Service from 2002, with a follow-up period extending to 2013. The cohort data included 99 565 individuals who participated in the health examination program and whose data were therefore present in the cohort database. The metabolic risk profile of each participant was assessed based on obesity, high serum glucose and total cholesterol levels, and high blood pressure. The occurrence of cancer was identified using Korean National Health Insurance claims data. Hazard ratios (HRs) and 95% confidence intervals (CIs) were estimated using Cox proportional hazards models, adjusting for age group, smoking status, alcohol intake, and regular exercise. A total of 5937 cases of cancer occurred during a mean follow-up period of 10.4 years. In men with a high-risk metabolic profile, the risk of colon cancer was elevated (HR, 1.40; 95% CI, 1.14 to 1.71). In women, a high-risk metabolic profile was associated with a significantly increased risk of gallbladder and biliary tract cancer (HR, 2.05; 95% CI, 1.24 to 3.42). Non-significantly increased risks were observed in men for pharynx, larynx, rectum, and kidney cancer, and in women for colon, liver, breast, and ovarian cancer. The findings of this study support the previously suggested association between metabolic syndrome and the risk of several cancers. A high-risk metabolic profile may be an important risk factor for colon cancer in Korean men and gallbladder and biliary tract cancer in Korean women.
Metabolic Risk Profile and Cancer in Korean Men and Women
Kim, A-Rim; Kim, Eun-Jung; Seo, Hye-Young
2016-01-01
Objectives: Metabolic syndrome is a cluster of risk factors for type 2 diabetes mellitus and cardiovascular disease. Associations between metabolic syndrome and several types of cancer have recently been documented. Methods: We analyzed the sample cohort data from the Korean National Health Insurance Service from 2002, with a follow-up period extending to 2013. The cohort data included 99 565 individuals who participated in the health examination program and whose data were therefore present in the cohort database. The metabolic risk profile of each participant was assessed based on obesity, high serum glucose and total cholesterol levels, and high blood pressure. The occurrence of cancer was identified using Korean National Health Insurance claims data. Hazard ratios (HRs) and 95% confidence intervals (CIs) were estimated using Cox proportional hazards models, adjusting for age group, smoking status, alcohol intake, and regular exercise. Results: A total of 5937 cases of cancer occurred during a mean follow-up period of 10.4 years. In men with a high-risk metabolic profile, the risk of colon cancer was elevated (HR, 1.40; 95% CI, 1.14 to 1.71). In women, a high-risk metabolic profile was associated with a significantly increased risk of gallbladder and biliary tract cancer (HR, 2.05; 95% CI, 1.24 to 3.42). Non-significantly increased risks were observed in men for pharynx, larynx, rectum, and kidney cancer, and in women for colon, liver, breast, and ovarian cancer. Conclusions: The findings of this study support the previously suggested association between metabolic syndrome and the risk of several cancers. A high-risk metabolic profile may be an important risk factor for colon cancer in Korean men and gallbladder and biliary tract cancer in Korean women. PMID:27255073
Sookoian, Silvia; Castaño, Gustavo O; Scian, Romina; Fernández Gianotti, Tomas; Dopazo, Hernán; Rohr, Cristian; Gaj, Graciela; San Martino, Julio; Sevic, Ina; Flichman, Diego; Pirola, Carlos J
2016-02-01
Extensive epidemiologic studies have shown that cardiovascular disease and the metabolic syndrome (MetS) are associated with serum concentrations of liver enzymes; however, fundamental characteristics of this relation are currently unknown. We aimed to explore the role of liver aminotransferases in nonalcoholic fatty liver disease (NAFLD) and MetS. Liver gene- and protein-expression changes of aminotransferases, including their corresponding isoforms, were evaluated in a case-control study of patients with NAFLD (n = 42), which was proven through a biopsy (control subjects: n = 10). We also carried out a serum targeted metabolite profiling to the glycolysis, gluconeogenesis, and Krebs cycle (n = 48) and an exploration by the next-generation sequencing of aminotransferase genes (n = 96). An in vitro study to provide a biological explanation of changes in the transcriptional level and enzymatic activity of aminotransferases was included. Fatty liver was associated with a deregulated liver expression of aminotransferases, which was unrelated to the disease severity. Metabolite profiling showed that serum aminotransferase concentrations are a signature of liver metabolic perturbations, particularly at the amino acid metabolism and Krebs cycle level. A significant and positive association between systolic hypertension and liver expression levels of glutamic-oxaloacetic transaminase 2 (GOT2) messenger RNA (Spearman R = 0.42, P = 0.03) was observed. The rs6993 located in the 3' untranslated region of the GOT2 locus was significantly associated with features of the MetS, including arterial hypertension [P = 0.028; OR: 2.285 (95% CI: 1.024, 5.09); adjusted by NAFLD severity] and plasma lipid concentrations. In the context of an abnormal hepatic triglyceride accumulation, circulating aminotransferases rise as a consequence of the need for increased reactions of transamination to cope with the liver metabolic derangement that is associated with greater gluconeogenesis and insulin resistance. Hence, to maintain homeostasis, the liver upregulates these enzymes, leading to changes in the amounts of amino acids released into the circulation. © 2016 American Society for Nutrition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teeguarden, Justin G., E-mail: jt@pnl.gov; Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 93771; Twaddle, Nathan C., E-mail: nathan.twaddle@fda.hhs.gov
Extensive first-pass metabolism of ingested bisphenol A (BPA) in the gastro-intestinal tract and liver restricts blood concentrations of bioactive BPA to < 1% of total BPA in humans and non-human primates. Absorption of ingested BPA through non-metabolizing tissues of the oral cavity, recently demonstrated in dogs, could lead to the higher serum BPA concentrations reported in some human biomonitoring studies. We hypothesized that the extensive interaction with the oral mucosa by a liquid matrix, like soup, relative to solid food or capsules, might enhance absorption through non-metabolizing oral cavity tissues in humans, producing higher bioavailability and higher serum BPA concentrations.more » Concurrent serum and urine concentrations of d6-BPA, and its glucuronide and sulfate conjugates, were measured over a 24 hour period in 10 adult male volunteers following ingestion of 30 μg d6-BPA/kg body weight in soup. Absorption of d6-BPA was rapid (t{sub 1/2} = 0.45 h) and elimination of the administered dose was complete 24 h post-ingestion, evidence against any tissue depot for BPA. The maximum serum d6-BPA concentration was 0.43 nM at 1.6 h after administration and represented < 0.3% of total d6-BPA. Pharmacokinetic parameters, pharmacokinetic model simulations, and the significantly faster appearance half-life of d6-BPA-glucuronide compared to d6-BPA (0.29 h vs 0.45 h) were evidence against meaningful absorption of BPA in humans through any non-metabolizing tissue (< 1%). This study confirms that typical exposure to BPA in food produces picomolar to subpicomolar serum BPA concentrations in humans, not nM concentrations reported in some biomonitoring studies.« less
Teeguarden, Justin G; Twaddle, Nathan C; Churchwell, Mona I; Yang, Xiaoxia; Fisher, Jeffrey W; Seryak, Liesel M; Doerge, Daniel R
2015-10-15
Extensive first-pass metabolism of ingested bisphenol A (BPA) in the gastro-intestinal tract and liver restricts blood concentrations of bioactive BPA to <1% of total BPA in humans and non-human primates. Absorption of ingested BPA through non-metabolizing tissues of the oral cavity, recently demonstrated in dogs, could lead to the higher serum BPA concentrations reported in some human biomonitoring studies. We hypothesized that the extensive interaction with the oral mucosa by a liquid matrix, like soup, relative to solid food or capsules, might enhance absorption through non-metabolizing oral cavity tissues in humans, producing higher bioavailability and higher serum BPA concentrations. Concurrent serum and urine concentrations of d6-BPA, and its glucuronide and sulfate conjugates, were measured over a 24hour period in 10 adult male volunteers following ingestion of 30μg d6-BPA/kg body weight in soup. Absorption of d6-BPA was rapid (t1/2=0.45h) and elimination of the administered dose was complete 24h post-ingestion, evidence against any tissue depot for BPA. The maximum serum d6-BPA concentration was 0.43nM at 1.6h after administration and represented <0.3% of total d6-BPA. Pharmacokinetic parameters, pharmacokinetic model simulations, and the significantly faster appearance half-life of d6-BPA-glucuronide compared to d6-BPA (0.29h vs 0.45h) were evidence against meaningful absorption of BPA in humans through any non-metabolizing tissue (<1%). This study confirms that typical exposure to BPA in food produces picomolar to subpicomolar serum BPA concentrations in humans, not nM concentrations reported in some biomonitoring studies. Published by Elsevier Inc.
Wiedner, Susan D.; Burnum, Kristin E.; Pederson, LeeAnna M.; Anderson, Lindsey N.; Fortuin, Suereta; Chauvigné-Hines, Lacie M.; Shukla, Anil K.; Ansong, Charles; Panisko, Ellen A.; Smith, Richard D.; Wright, Aaron T.
2012-01-01
Environmental adaptability is critical for survival of the fungal human pathogen Aspergillus fumigatus in the immunocompromised host lung. We hypothesized that exposure of the fungal pathogen to human serum would lead to significant alterations to the organism's physiology, including metabolic activity and stress response. Shifts in functional pathway and corresponding enzyme reactivity of A. fumigatus upon exposure to the human host may represent much needed prognostic indicators of fungal infection. To address this, we employed a multiplexed activity-based protein profiling (ABPP) approach coupled to quantitative mass spectrometry-based proteomics to measure broad enzyme reactivity of the fungus cultured with and without human serum. ABPP showed a shift from aerobic respiration to ethanol fermentation and utilization over time in the presence of human serum, which was not observed in serum-free culture. Our approach provides direct insight into this pathogen's ability to survive, adapt, and proliferate. Additionally, our multiplexed ABPP approach captured a broad swath of enzyme reactivity and functional pathways and provides a method for rapid assessment of the A. fumigatus response to external stimuli. PMID:22865858
Wiedner, Susan D; Burnum, Kristin E; Pederson, LeeAnna M; Anderson, Lindsey N; Fortuin, Suereta; Chauvigné-Hines, Lacie M; Shukla, Anil K; Ansong, Charles; Panisko, Ellen A; Smith, Richard D; Wright, Aaron T
2012-09-28
Environmental adaptability is critical for survival of the fungal human pathogen Aspergillus fumigatus in the immunocompromised host lung. We hypothesized that exposure of the fungal pathogen to human serum would lead to significant alterations to the organism's physiology, including metabolic activity and stress response. Shifts in functional pathway and corresponding enzyme reactivity of A. fumigatus upon exposure to the human host may represent much needed prognostic indicators of fungal infection. To address this, we employed a multiplexed activity-based protein profiling (ABPP) approach coupled to quantitative mass spectrometry-based proteomics to measure broad enzyme reactivity of the fungus cultured with and without human serum. ABPP showed a shift from aerobic respiration to ethanol fermentation and utilization over time in the presence of human serum, which was not observed in serum-free culture. Our approach provides direct insight into this pathogen's ability to survive, adapt, and proliferate. Additionally, our multiplexed ABPP approach captured a broad swath of enzyme reactivity and functional pathways and provides a method for rapid assessment of the A. fumigatus response to external stimuli.
Tranchida, Fabrice; Shintu, Laetitia; Rakotoniaina, Zo; Tchiakpe, Léopold; Deyris, Valérie; Hiol, Abel; Caldarelli, Stefano
2015-01-01
We explored, using nuclear magnetic resonance (NMR) metabolomics and fatty acids profiling, the effects of a common nutritional complement, Curcuma longa, at a nutritionally relevant dose with human use, administered in conjunction with an unbalanced diet. Indeed, traditional food supplements have been long used to counter metabolic impairments induced by unbalanced diets. Here, rats were fed either a standard diet, a high level of fructose and saturated fatty acid (HFS) diet, a diet common to western countries and that certainly contributes to the epidemic of insulin resistance (IR) syndrome, or a HFS diet with a Curcuma longa extract (1% of curcuminoids in the extract) for ten weeks. Orthogonal projections to latent structures discriminant analysis (OPLS-DA) on the serum NMR profiles and fatty acid composition (determined by GC/MS) showed a clear discrimination between HFS groups and controls. This discrimination involved metabolites such as glucose, amino acids, pyruvate, creatine, phosphocholine/glycerophosphocholine, ketone bodies and glycoproteins as well as an increase of monounsaturated fatty acids (MUFAs) and a decrease of n-6 and n-3 polyunsaturated fatty acids (PUFAs). Although the administration of Curcuma longa did not prevent the observed increase of glucose, triglycerides, cholesterol and insulin levels, discriminating metabolites were observed between groups fed HFS alone or with addition of a Curcuma longa extract, namely some MUFA and n-3 PUFA, glycoproteins, glutamine, and methanol, suggesting that curcuminoids may act respectively on the fatty acid metabolism, the hexosamine biosynthesis pathway and alcohol oxidation. Curcuma longa extract supplementation appears to be beneficial in these metabolic pathways in rats. This metabolomic approach highlights important serum metabolites that could help in understanding further the metabolic mechanisms leading to IR.
Tranchida, Fabrice; Shintu, Laetitia; Rakotoniaina, Zo; Tchiakpe, Léopold; Deyris, Valérie; Hiol, Abel; Caldarelli, Stefano
2015-01-01
We explored, using nuclear magnetic resonance (NMR) metabolomics and fatty acids profiling, the effects of a common nutritional complement, Curcuma longa, at a nutritionally relevant dose with human use, administered in conjunction with an unbalanced diet. Indeed, traditional food supplements have been long used to counter metabolic impairments induced by unbalanced diets. Here, rats were fed either a standard diet, a high level of fructose and saturated fatty acid (HFS) diet, a diet common to western countries and that certainly contributes to the epidemic of insulin resistance (IR) syndrome, or a HFS diet with a Curcuma longa extract (1% of curcuminoids in the extract) for ten weeks. Orthogonal projections to latent structures discriminant analysis (OPLS-DA) on the serum NMR profiles and fatty acid composition (determined by GC/MS) showed a clear discrimination between HFS groups and controls. This discrimination involved metabolites such as glucose, amino acids, pyruvate, creatine, phosphocholine/glycerophosphocholine, ketone bodies and glycoproteins as well as an increase of monounsaturated fatty acids (MUFAs) and a decrease of n-6 and n-3 polyunsaturated fatty acids (PUFAs). Although the administration of Curcuma longa did not prevent the observed increase of glucose, triglycerides, cholesterol and insulin levels, discriminating metabolites were observed between groups fed HFS alone or with addition of a Curcuma longa extract, namely some MUFA and n-3 PUFA, glycoproteins, glutamine, and methanol, suggesting that curcuminoids may act respectively on the fatty acid metabolism, the hexosamine biosynthesis pathway and alcohol oxidation. Curcuma longa extract supplementation appears to be beneficial in these metabolic pathways in rats. This metabolomic approach highlights important serum metabolites that could help in understanding further the metabolic mechanisms leading to IR. PMID:26288372
Metabonomics identifies serum metabolite markers of colorectal cancer.
Tan, Binbin; Qiu, Yunping; Zou, Xia; Chen, Tianlu; Xie, Guoxiang; Cheng, Yu; Dong, Taotao; Zhao, Linjing; Feng, Bo; Hu, Xiaofang; Xu, Lisa X; Zhao, Aihua; Zhang, Menghui; Cai, Guoxiang; Cai, Sanjun; Zhou, Zhanxiang; Zheng, Minhua; Zhang, Yan; Jia, Wei
2013-06-07
Recent studies suggest that biofluid-based metabonomics may identify metabolite markers promising for colorectal cancer (CRC) diagnosis. We report here a follow-up replication study, after a previous CRC metabonomics study, aiming to identify a distinct serum metabolic signature of CRC with diagnostic potential. Serum metabolites from newly diagnosed CRC patients (N = 101) and healthy subjects (N = 102) were profiled using gas chromatography time-of-flight mass spectrometry (GC-TOFMS) and ultraperformance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-QTOFMS). Differential metabolites were identified with statistical tests of orthogonal partial least-squares-discriminant analysis (VIP > 1) and the Mann-Whitney U test (p < 0.05). With a total of 249 annotated serum metabolites, we were able to differentiate CRC patients from the healthy controls using an orthogonal partial least-squares-discriminant analysis (OPLS-DA) in a learning sample set of 62 CRC patients and 62 matched healthy controls. This established model was able to correctly assign the rest of the samples to the CRC or control groups in a validation set of 39 CRC patients and 40 healthy controls. Consistent with our findings from the previous study, we observed a distinct metabolic signature in CRC patients including tricarboxylic acid (TCA) cycle, urea cycle, glutamine, fatty acids, and gut flora metabolism. Our results demonstrated that a panel of serum metabolite markers is of great potential as a noninvasive diagnostic method for the detection of CRC.
Ovine placental steroid synthesis and metabolism in late gestation.
Reynolds, Lawrence P; Legacki, Erin L; Corbin, C Jo; Caton, Joel S; Vonnahme, Kimberly A; Stanley, Scott; Conley, Alan J
2018-04-14
Steroid synthesis is required for pregnancy maintenance and for parturition but comparatively little is known about the major metabolic routes that influence circulating concentrations. Dietary intake changes progesterone and estradiol concentrations in pregnant ewes but whether this reflects placental synthesis is unknown. Progesterone metabolism by 5alpha-reduction is a major metabolic route in other species and can influence the onset of parturition. Therefore, studies were conducted to 1) determine placental enzyme activity, progesterone and estradiol measured by immuno-assay in late gestation ewes on low, moderate and high nutritional planes, 2) to assess the significance of 5alpha-reduction of progesterone in determining progesterone concentrations in late gestation ewes (gestation day 145) given finasteride to inhibit 5alpha-reductase metabolism. In the second experiment, steroid profiles were examined comprehensively in blood and tissues by liquid chromatography tandem mass spectrometry for the first time in this species. Dietary intake altered progesterone and estradiol serum concentrations but without correlated changes in placental 3beta-hydroxysteroid dehydrogenase, 17alpha-hydroxylase/17,20-lyase cytochrome P450 or aromatase activity. 5alpha-reduced pregnane metabolites were identified in ewes at 145 days of gestation, but concentrations were lower than those of progesterone. Finasteride inhibited 5alpha-reduced progesterone metabolism but did not impact serum progesterone concentrations in these ewes. We conclude 1) that diet-induced changes in serum progesterone and estradiol concentrations are not likely a result of altered placental synthesis of sex steroid but most likely by their metabolism, and 2) metabolism by 5α-reduction is not a major determinant of systemic progesterone concentrations in late gestation ewes.
USDA-ARS?s Scientific Manuscript database
This study aimed to compare oocyte gene expression profiles and follicular fluid (FF) content from overweight/obese (OW) women and normal weight (NW) women who were undergoing fertility treatments. Using single cell transcriptomic analyses, we investigated oocyte gene expression using RNA-seq. Serum...
USDA-ARS?s Scientific Manuscript database
Metabolic profiling may provide insight into biologic mechanisms related to age-related increases in regional adiposity and insulin resistance. The objectives of the current study were to characterize the association between mid-thigh intermuscular and subcutaneous adipose tissue (IMAT, SCAT, respec...
Donaldson, Janine; Madziva, Michael Taurai; Erlwanger, Kennedy Honey
2017-01-01
Objective The current study aimed to investigate the impact of high-fat diets composed of different animal and vegetable fat sources on serum metabolic health markers in Japanese quail, as well as the overall lipid content and fatty acid profiles of the edible bird tissues following significantly increased dietary lipid supplementation. Methods Fifty seven male quail were divided into six groups and fed either a standard diet or a diet enriched with one of five different fats (22% coconut oil, lard, palm oil, soybean oil, or sunflower oil) for 12 weeks. The birds were subjected to an oral glucose tolerance test following the feeding period, after which they were euthanized and blood, liver, breast, and thigh muscle samples collected. Total fat content and fatty acid profiles of the tissue samples, as well as serum uric acid, triglyceride, cholesterol, total protein, albumin, aspartate transaminase, and total bilirubin concentrations were assessed. Results High-fat diet feeding had no significant effects on the glucose tolerance of the birds. Dietary fatty acid profiles of the added fats were reflected in the lipid profiles of both the liver and breast and thigh muscle tissues, indicating successful transfer of dietary fatty acids to the edible bird tissues. The significantly increased level of lipid inclusion in the diets of the quail used in the present study was unsuccessful in increasing the overall lipid content of the edible bird tissues. Serum metabolic health markers in birds on the high-fat diets were not significantly different from those observed in birds on the standard diet. Conclusion Thus, despite the various high-fat diets modifying the fatty acid profile of the birds’ tissues, unlike in most mammals, the birds maintained a normal health status following consumption of the various high-fat diets. PMID:27764914
Donaldson, Janine; Madziva, Michael Taurai; Erlwanger, Kennedy Honey
2017-05-01
The current study aimed to investigate the impact of high-fat diets composed of different animal and vegetable fat sources on serum metabolic health markers in Japanese quail, as well as the overall lipid content and fatty acid profiles of the edible bird tissues following significantly increased dietary lipid supplementation. Fifty seven male quail were divided into six groups and fed either a standard diet or a diet enriched with one of five different fats (22% coconut oil, lard, palm oil, soybean oil, or sunflower oil) for 12 weeks. The birds were subjected to an oral glucose tolerance test following the feeding period, after which they were euthanized and blood, liver, breast, and thigh muscle samples collected. Total fat content and fatty acid profiles of the tissue samples, as well as serum uric acid, triglyceride, cholesterol, total protein, albumin, aspartate transaminase, and total bilirubin concentrations were assessed. High-fat diet feeding had no significant effects on the glucose tolerance of the birds. Dietary fatty acid profiles of the added fats were reflected in the lipid profiles of both the liver and breast and thigh muscle tissues, indicating successful transfer of dietary fatty acids to the edible bird tissues. The significantly increased level of lipid inclusion in the diets of the quail used in the present study was unsuccessful in increasing the overall lipid content of the edible bird tissues. Serum metabolic health markers in birds on the high-fat diets were not significantly different from those observed in birds on the standard diet. Thus, despite the various high-fat diets modifying the fatty acid profile of the birds' tissues, unlike in most mammals, the birds maintained a normal health status following consumption of the various high-fat diets.
Kaufmann, Martin; Lee, Seong Min; Pike, J. Wesley
2015-01-01
Vitamin D receptor (VDR)-mediated 1,25-dihydroxyvitamin D3 (1,25(OH)2D3)-dependent gene expression is compromised in the VDR null mouse. The biological consequences include: hypocalcemia, hypophosphatemia, elevated parathyroid hormone (PTH) and 1,25(OH)2D3, and consequential skeletal abnormalities. CYP24A1 is a cytochrome P450 enzyme that is involved in the side chain oxidation and destruction of both 1,25(OH)2D3 and 25-hydroxyvitamin D3 (25-OH-D3). In the current studies, we used liquid chromatography-tandem mass spectrometry technology to compare the metabolic profiles of VDR null mice fed either a normal or a calcium and phosphate-enriched rescue diet and to assess the consequence of transgenic expression of either mouse or human VDR genes in the same background. Serum 1,25(OH)2D3 levels in VDR null mice on normal chow were highly elevated (>3000 pg/mL) coincident with undetectable levels of catabolites such as 24,25-(OH)2D3 and 25-OH-D3-26,23-lactone normally observed in wild-type mice. The rescue diet corrected serum Ca++, PTH, and 1,25(OH)2D3 values and restored basal expression of Cyp24a1 as evidenced by both renal expression of Cyp24a1 and detection of 24,25-(OH)2D3 and the 25-OH-D3-26,23-lactone. Unexpectedly, this diet also resulted in supranormal levels of 3-epi-24,25-(OH)2D3 and 3-epi-25-OH-D3-26,23-lactone. The reappearance of serum 24,25-(OH)2D3 and renal Cyp24a1 expression after rescue suggests that basal levels of Cyp24a1 may be repressed by high PTH. Introduction of transgenes for either mouse or human VDR also normalized vitamin D metabolism in VDR null mice, whereas this metabolic pattern was unaffected by a transgene encoding a ligand binding-deficient mutant (L233S) human VDR. We conclude that liquid chromatography-tandem mass spectrometry-based metabolic profiling is an ideal analytical method to study mouse models with alterations in calcium/phosphate homeostasis. PMID:26441239
Montoliu, Ivan; Scherer, Max; Beguelin, Fiona; DaSilva, Laeticia; Mari, Daniela; Salvioli, Stefano; Martin, Francois-Pierre J; Capri, Miriam; Bucci, Laura; Ostan, Rita; Garagnani, Paolo; Monti, Daniela; Biagi, Elena; Brigidi, Patrizia; Kussmann, Martin; Rezzi, Serge; Franceschi, Claudio; Collino, Sebastiano
2014-01-01
As centenarians well represent the model of healthy aging, there are many important implications in revealing the underlying molecular mechanisms behind such successful aging. By combining NMR metabonomics and shot-gun lipidomics in serum we analyzed metabolome and lipidome composition of a group of centenarians with respect to elderly individuals. Specifically, NMR metabonomics profiling of serum revealed that centenarians are characterized by a metabolic phenotype distinct from that of elderly subjects, in particular regarding amino acids and lipid species. Shot- gun lipidomics approach displays unique changes in lipids biosynthesis in centenarians, with 41 differently abundant lipid species with respect to elderly subjects. These findings reveal phospho/sphingolipids as putative markers and biological modulators of healthy aging, in humans. Considering the particular actions of these metabolites, these data are suggestive of a better counteractive antioxidant capacity and a well-developed membrane lipid remodelling process in the healthy aging phenotype.
Liu, Xin; Zhao, Yaling; Li, Qiang; Dang, Shaonong; Yan, Hong
2017-07-08
Obesity classification using body mass index (BMI) may miss subjects with elevated body fat percentage (BF%) and related metabolic risk factors. We aimed to evaluate whether BF% calculated by equations could provide more information about metabolic risks, in addition to BMI classification, in a cross-sectional rural Chinese population. A total of 2,990 men and women aged 18-80 years were included in this study. BF% was calculated using previously validated Chinese-specific equations. Metabolic syndrome was defined according to the updated National Cholesterol Education Program Panel III criteria for Asian Americans. In total, 33.6% men and 32.9% women were overweight/obese according to BMI classification. Among those within the normal BMI range, 25.4% men and 54.7% women were indicated as overweight or obese given their elevated BF% (men: BF% ≥ 20%; women: BF% ≥ 30%). In both men and women, compared with those with normal BMI and BF% (NBB), subjects with normal BMI but elevated BF% (NBOB) were more likely to carry abnormal serum lipid profile and to have higher risks of metabolic syndrome. The multivariable adjusted odds ratios (95% confidence intervals) for metabolic syndrome were 5.45 (2.37-9.53, P < 0.001) and 5.65 (3.36-9.52, P < 0.001) for men and women, respectively. Moreover, the women with NBOB also showed higher blood pressure and serum uric acid than women with NBB. Our study suggested that high BF% based on equations may indicate adverse metabolic profiles among rural Chinese adults with a normal BMI. © 2017 Wiley Periodicals, Inc.
Chang, Xinxia; Wang, Zhe; Zhang, Jinlan; Yan, Hongmei; Bian, Hua; Xia, Mingfeng; Lin, Huandong; Jiang, Jiandong; Gao, Xin
2016-09-15
We recently demonstrated a positive effect of berberine on nonalcoholic fatty liver disease patients after 16 weeks of treatment by comparing mere lifestyle intervention in type 2 diabetes patients with berberine treatment, which decreased the content of hepatic fat. However, the potential mechanisms of the clinical effects are unclear. We used a lipidomic approach to characterize the state of lipid metabolism as reflected in the circulation of subjects with nonalcoholic fatty liver disease (NAFLD) before and after berberine treatment. Liquid chromatography-mass spectrometry evaluated the various lipid metabolites in serum samples obtained from the participants (41 patients in the berberine group and 39 patients in the mere lifestyle intervention group) before and after treatment. A total of 256 serum lipid molecular species were identified and quantified. Both treatments regulated various types of lipids in metabolic pathways, such as free fatty acids, phosphoglycerides and glycerides, in metabolic pathways, but berberine induced a substantially greater change in serum lipid species compared with mere lifestyle intervention after treatment. Berberine also caused obvious differences on ceramides. Berberine treatment markedly decreased serum levels of ceramide and ceramide-1-phosphate. Berberine altered circulating ceramides, which may underlie the improvement in fatty liver disease. ClinicalTrials.gov NCT00633282, Registered March 3, 2008.
Kim, Koh-Woon; Yoo, Hye Hyun; Cho, Jae-Heung; Yang, Yo-Chan; Kim, Je-In; Kim, Song-Yi; Park, Ji-Yeun; Park, Hi-Joon; Song, Mi-Yeon
2015-08-04
Complex metabolic changes cause obesity, making weight loss difficult. For this reason, understanding metabolism is important, and considering the shortcomings of conventional treatment options for obesity, acupuncture is a possible option. However, evidence supporting its efficacy on metabolic parameters in obese patients is lacking. The aim of this study is to investigate the effects of acupuncture on serum metabolic parameters in premenopausal obese women. This ongoing study is a randomized, patient-assessor blind, two-arm parallel non-penetrating sham-controlled clinical trial. Eligible participants, premenopausal adult women (19 years of age or older) with a clinical diagnosis of obesity (body mass index of 25 kg/m(2) or more) blinded to the treatment received, will be randomly allocated blindly into the real acupuncture treatment group (manual acupuncture plus electroacupuncture, n = 60) or the sham acupuncture control group (sham acupuncture plus placebo acupuncture without electrical stimulation, n = 60) and receive treatment two times a week for a total of 12 sessions over 6 weeks. The primary outcome measure is the serum cholesterol and triglyceride (TG) levels at baseline and endpoint. The secondary outcomes are body weight, body fat mass, muscle mass, waist and hip circumference, other serum metabolic profiles, International Physical Activity Questionnaire (IPAQ), Social Readjustment Rating Scale (SRRS), Stress Response Inventory (SRI), Fatigue Severity Scale (FSS), the Korean version of the Beck Depression Inventory (BDI), and urine metabolites. Adverse events will be assessed at every visit. The results of this trial (which will be available in 2015) will provide important clinical evidence for the effect of acupuncture on serum metabolites and demonstrate how acupuncture can be helpful for the treatment of obesity. Trial registration registered via US National Institutes of Health Clinical Trials registry (ClinicalTrials.gov) on 11 November 2014, identifier: NCT02066090 .
Metabolic Effects of FecB Gene on Follicular Fluid and Ovarian Vein Serum in Sheep (Ovis aries)
Guo, Xiaofei; Wang, Xiangyu; Di, Ran; Liu, Qiuyue; Hu, Wenping; He, Xiaoyun; Yu, Jiarui; Zhang, Xiaosheng; Zhang, Jinlong; Broniowska, Katarzyna; Chen, Wei; Wu, Changxin; Chu, Mingxing
2018-01-01
The FecB gene has been discovered as an important gene in sheep for its high relationship with the ovulation rate, but its regulatory mechanism remains unknown. In the present study, liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) techniques were adopted to detect the metabolic effects of FecB gene in follicular fluid (FF) and ovarian vein serum (OVS) in Small Tail Han (STH) sheep. ANOVA and random forest statistical methods were employed for the identification of important metabolic pathways and biomarkers. Changes in amino acid metabolism, redox environment, and energy metabolism were observed in FF from the three FecB genotype STH ewes. Principal component analysis (PCA) and hierarchical clustering analysis (HCA) showed that metabolic effects of FecB gene are more pronounced in FF than in OVS. Therefore, the difference of the metabolic profile in FF is also affected by the FecB genotypes. In Spearman correlation analysis, key metabolites (e.g., glucose 6-phosphate, glucose 1-phosphate, aspartate, asparagine, glutathione oxidized (GSSG), cysteine-glutathione disulfide, γ-glutamylglutamine, and 2-hydrosybutyrate) in ovine FF samples showed a significant correlation with the ovulation rate. Our findings will help to explain the metabolic mechanism of high prolificacy ewes and benefit fertility identification. PMID:29439449
Early life lipid profile and metabolic programming in very young children.
Wijnands, K P J; Obermann-Borst, S A; Steegers-Theunissen, R P M
2015-06-01
Lipid derangements during early postnatal life may induce stable epigenetic changes and alter metabolic programming. We investigated associations between serum lipid profiles in very young children and DNA methylation of tumor necrosis factor-alpha (TNFα) and leptin (LEP). Secondly, we explored if the maternal serum lipid profile modifies DNA methylation in the child. In 120 healthy children at 17 months of age, DNA methylation of TNFα and LEP was measured in DNA derived from whole blood. Linear mixed models were used to calculate exposure-specific differences and associations. Total cholesterol in children was associated with decreased methylation of TNFα (-5.8%, p = 0.036), and HDL-cholesterol was associated with decreased methylation of both TNFα (-6.9%, p = 0.013) and LEP (-3.4%, p = 0.021). Additional adjustment for gestational age at birth, birth weight, sex, breastfeeding and educational level attenuated the effects, TNFα (-6.1%, p = 0.058) and LEP (-3.1%, p = 0.041). In mothers, HDL-cholesterol only was associated with decreased methylation of TNFα in the child (-8.7%, p = 0.001). Our data support the developmental origin of health and disease hypothesis by showing that total cholesterol and HDL-cholesterol levels in very young children are associated with epigenetic metabolic programming, which may affect their vulnerability for developing cardiovascular diseases in later life. Copyright © 2015 Elsevier B.V. All rights reserved.
Metzler-Zebeli, Barbara U; Eberspächer, Eva; Grüll, Dietmar; Kowalczyk, Lidia; Molnar, Timea; Zebeli, Qendrim
2015-01-01
Developing host digestion-resistant starches to promote human health is of great research interest. Chemically modified starches (CMS) are widely used in processed foods and although the modification of the starch molecule allows specific reduction in digestibility, the metabolic effects of CMS have been less well described. This short-term study evaluated the impact of enzymatically modified starch (EMS) on fasting and postprandial profiles of blood glucose, insulin and lipids, and serum metabolome in growing pigs. Eight jugular-vein catheterized pigs (initial body weight, 37.4 kg; 4 months of age) were fed 2 diets containing 72% purified starch (EMS or waxy corn starch (control)) in a cross-over design for 7 days. On day 8, an 8-hour meal tolerance test (MTT) was performed with serial blood samplings. Besides biochemical analysis, serum was analysed for 201 metabolites through targeted mass spectrometry-based metabolomic approaches. Pigs fed the EMS diet showed increased (P<0.05) immediate serum insulin and plasma glucose response compared to pigs fed the control diet; however, area-under-the-curves for insulin and glucose were not different among diets. Results from MTT indicated reduced postprandial serum triglycerides with EMS versus control diet (P<0.05). Likewise, serum metabolome profiling identified characteristic changes in glycerophospholipid, lysophospholipids, sphingomyelins and amino acid metabolome profiles with EMS diet compared to control diet. Results showed rapid adaptations of blood metabolites to dietary starch shifts within 7 days. In conclusion, EMS ingestion showed potential to attenuate postprandial raise in serum lipids and suggested constant alteration in the synthesis or breakdown of sphingolipids and phospholipids which might be a health benefit of EMS consumption. Because serum insulin was not lowered, more research is warranted to reveal possible underlying mechanisms behind the observed changes in the profile of serum lipid metabolome in response to EMS consumption.
Metzler-Zebeli, Barbara U.; Eberspächer, Eva; Grüll, Dietmar; Kowalczyk, Lidia; Molnar, Timea; Zebeli, Qendrim
2015-01-01
Developing host digestion-resistant starches to promote human health is of great research interest. Chemically modified starches (CMS) are widely used in processed foods and although the modification of the starch molecule allows specific reduction in digestibility, the metabolic effects of CMS have been less well described. This short-term study evaluated the impact of enzymatically modified starch (EMS) on fasting and postprandial profiles of blood glucose, insulin and lipids, and serum metabolome in growing pigs. Eight jugular-vein catheterized pigs (initial body weight, 37.4 kg; 4 months of age) were fed 2 diets containing 72% purified starch (EMS or waxy corn starch (control)) in a cross-over design for 7 days. On day 8, an 8-hour meal tolerance test (MTT) was performed with serial blood samplings. Besides biochemical analysis, serum was analysed for 201 metabolites through targeted mass spectrometry-based metabolomic approaches. Pigs fed the EMS diet showed increased (P<0.05) immediate serum insulin and plasma glucose response compared to pigs fed the control diet; however, area-under-the-curves for insulin and glucose were not different among diets. Results from MTT indicated reduced postprandial serum triglycerides with EMS versus control diet (P<0.05). Likewise, serum metabolome profiling identified characteristic changes in glycerophospholipid, lysophospholipids, sphingomyelins and amino acid metabolome profiles with EMS diet compared to control diet. Results showed rapid adaptations of blood metabolites to dietary starch shifts within 7 days. In conclusion, EMS ingestion showed potential to attenuate postprandial raise in serum lipids and suggested constant alteration in the synthesis or breakdown of sphingolipids and phospholipids which might be a health benefit of EMS consumption. Because serum insulin was not lowered, more research is warranted to reveal possible underlying mechanisms behind the observed changes in the profile of serum lipid metabolome in response to EMS consumption. PMID:26076487
Dynamic changes in metabolic profiles of rats subchronically exposed to mequindox.
Jiang, Limiao; Zhao, Xiuju; Huang, Chongyang; Lei, Hehua; Tang, Huiru; Wang, Yulan
2014-11-01
Mequindox is widely used as an antibacterial veterinary drug and a feeding additive for farm animals in China. Although its toxicity has been widely studied, little is known regarding the metabolic effects of subchronic exposure to mequindox, which is vital for the health of meat producing livestock. Here, we characterized the dose- and time-dependent metabolic alterations in female Wistar rats subchronically exposed to mequindox through dietary supplementation at the level of 40, 110 and 280 mg kg(-1) for 13 weeks, employing a NMR based metabonomics approach with supplementary information from serum clinical chemistry. We found that urinary metabolic profiles were significantly affected in all dosed groups during the supplementation period; plasma and hepatic metabolic profiles were significantly affected only in rats dosed with moderate and high levels of mequindox. We also observed a return to control levels, for the profiles of urine and liver, at all dose levels after a two weeks washout period. However, this was not the case for the metabolic profiles of plasma from rats dosed at high levels. At the molecular level, we showed that subchronic exposure to mequindox resulted in tricarboxylic acid cycle (TCA cycle) stimulation, suppression of glycolysis, and promotion of gluconeogenesis and lipid oxidation in rats. In addition, subchronic exposure to mequindox induced oxidative stress in rats. Furthermore, a disturbance of gut microbiota, manifested by alterations in the urinary excretion of hippurate, phenylacetylglycine, 3-(3-hydroxyphenyl)propionate, p-cresol glucuronide, methylamine, dimethylamine, and formate, was associated with mequindox exposure. The present study provided important holistic metabolic information on the effects of subchronic dosage of mequindox on rats, which is useful for evaluating the safety of mequindox usage in meat producing animals.
Metabolic profiles of placenta in preeclampsia using HR-MAS MRS metabolomics.
Austdal, Marie; Thomsen, Liv Cecilie Vestrheim; Tangerås, Line Haugstad; Skei, Bente; Mathew, Seema; Bjørge, Line; Austgulen, Rigmor; Bathen, Tone Frost; Iversen, Ann-Charlotte
2015-12-01
Preeclampsia is a heterogeneous gestational disease characterized by maternal hypertension and proteinuria, affecting 2-7% of pregnancies. The disorder is initiated by insufficient placental development, but studies characterizing the placental disease components are lacking. Our aim was to phenotype the preeclamptic placenta using high-resolution magic angle spinning nuclear magnetic resonance spectroscopy (HR-MAS MRS). Placental samples collected after delivery from women with preeclampsia (n = 19) and normotensive pregnancies (n = 15) were analyzed for metabolic biomarkers including amino acids, osmolytes, and components of the energy and phospholipid metabolism. The metabolic biomarkers were correlated to clinical characteristics and inflammatory biomarkers in the maternal sera. Principal component analysis showed inherent differences in placental metabolic profiles between preeclamptic and normotensive pregnancies. Significant differences in metabolic profiles were found between placentas from severe and non-severe preeclampsia, but not between preeclamptic pregnancies with fetal growth restricted versus normal weight neonates. The placental metabolites correlated with the placental stress marker sFlt-1 and triglycerides in maternal serum, suggesting variation in placental stress signaling between different placental phenotypes. HR-MAS MRS is a sensitive method for defining the placental disease component of preeclampsia, identifying several altered metabolic pathways. Placental HR-MAS MRS analysis may improve insight into processes affected in the preeclamptic placenta, and represents a novel long-required tool for a sensitive placental phenotyping of this heterogeneous disease. Copyright © 2015 Elsevier Ltd. All rights reserved.
Norman, Daniel; Bardwell, Wayne A; Arosemena, Farah; Nelesen, Richard; Mills, Paul J; Loredo, Jose S; Lavine, Joel E; Dimsdale, Joel E
2008-01-01
Nonalcoholic fatty liver disease (NAFLD) is a disorder that often presents with elevated serum aminotransferase levels. Although it has classically been linked with the metabolic syndrome, recent studies suggest NAFLD may also be associated with obstructive sleep apnea (OSA). This study evaluates the association between serum aminotransferase levels and factors connected with: either the metabolic syndrome (elevated body mass index [BMI], lipid profile, blood pressure, fasting glucose), or with OSA severity (apnea hypopnea index, lowest oxygen saturation level, oxygen desaturation index, percent of time below 90% saturation [%T<90]). Retrospective case series. 109 adult patients with OSA at a university hospital general clinical research center. Markers of hypoxia (lowest oxygen saturation level and %T<90), correlated significantly with aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels (Pearson's r = -0.31 to -0.38, P <0.003), while apnea hypopnea index, body mass index, blood pressure, fasting glucose, triglyceride, and cholesterol levels did not. Hierarchical linear regression was then done to determine the best predictors of aminotransferase levels. Markers of metabolic syndrome were entered as one block and markers of sleep apnea as another. Regression analyses explained 16.3% of the variance in AST and 18.9% of the variance in ALT, with %T<90 playing the largest role. In patients with obstructive sleep apnea, serum aminotransferase levels are better predicted by markers of oxygen desaturation than by factors traditionally associated with the metabolic syndrome.
Serum Predictors of Percent Lean Mass in Young Adults.
Lustgarten, Michael S; Price, Lori L; Phillips, Edward M; Kirn, Dylan R; Mills, John; Fielding, Roger A
2016-08-01
Lustgarten, MS, Price, LL, Phillips, EM, Kirn, DR, Mills, J, and Fielding, RA. Serum predictors of percent lean mass in young adults. J Strength Cond Res 30(8): 2194-2201, 2016-Elevated lean (skeletal muscle) mass is associated with increased muscle strength and anaerobic exercise performance, whereas low levels of lean mass are associated with insulin resistance and sarcopenia. Therefore, studies aimed at obtaining an improved understanding of mechanisms related to the quantity of lean mass are of interest. Percent lean mass (total lean mass/body weight × 100) in 77 young subjects (18-35 years) was measured with dual-energy x-ray absorptiometry. Twenty analytes and 296 metabolites were evaluated with the use of the standard chemistry screen and mass spectrometry-based metabolomic profiling, respectively. Sex-adjusted multivariable linear regression was used to determine serum analytes and metabolites significantly (p ≤ 0.05 and q ≤ 0.30) associated with the percent lean mass. Two enzymes (alkaline phosphatase and serum glutamate oxaloacetate aminotransferase) and 29 metabolites were found to be significantly associated with the percent lean mass, including metabolites related to microbial metabolism, uremia, inflammation, oxidative stress, branched-chain amino acid metabolism, insulin sensitivity, glycerolipid metabolism, and xenobiotics. Use of sex-adjusted stepwise regression to obtain a final covariate predictor model identified the combination of 5 analytes and metabolites as overall predictors of the percent lean mass (model R = 82.5%). Collectively, these data suggest that a complex interplay of various metabolic processes underlies the maintenance of lean mass in young healthy adults.
Serum metabonomic analysis of protective effects of Curcuma aromatica oil on renal fibrosis rats.
Zhao, Liangcai; Zhang, Haiyan; Yang, Yunjun; Zheng, Yongquan; Dong, Minjian; Wang, Yaqiang; Bai, Guanghui; Ye, Xinjian; Yan, Zhihan; Gao, Hongchang
2014-01-01
Curcuma aromatica oil is a traditional herbal medicine demonstrating protective and anti-fibrosis activities in renal fibrosis patients. However, study of its mechanism of action is challenged by its multiple components and multiple targets that its active agent acts on. Nuclear magnetic resonance (NMR)-based metabonomics combined with clinical chemistry and histopathology examination were performed to evaluate intervening effects of Curcuma aromatica oil on renal interstitial fibrosis rats induced by unilateral ureteral obstruction. The metabolite levels were compared based on integral values of serum 1H NMR spectra from rats on 3, 7, 14, and 28 days after the medicine administration. Time trajectory analysis demonstrated that metabolic profiles of the agent-treated rats were restored to control levels after 7 days of dosage. The results confirmed that the agent would be an effective anti-fibrosis medicine in a time-dependent manner, especially in early renal fibrosis stage. Targeted metabolite analysis showed that the medicine could lower levels of lipid, acetoacetate, glucose, phosphorylcholine/choline, trimethylamine oxide and raise levels of pyruvate, glycine in the serum of the rats. Serum clinical chemistry and kidney histopathology examination dovetailed well with the metabonomics data. The results substantiated that Curcuma aromatica oil administration can ameliorate renal fibrosis symptoms by inhibiting some metabolic pathways, including lipids metabolism, glycolysis and methylamine metabolism, which are dominating targets of the agent working in vivo. This study further strengthens the novel analytical approach for evaluating the effect of traditional herbal medicine and elucidating its molecular mechanism.
McClenathan, Bruce M.; Stewart, Delisha A.; Spooner, Christina E.; Pathmasiri, Wimal W.; Burgess, Jason P.; McRitchie, Susan L.; Choi, Y. Sammy; Sumner, Susan C.J.
2017-01-01
An Adverse Event Following Immunization (AEFI) is an adverse reaction to a vaccination that goes above and beyond the usual side effects associated with vaccinations. One serious AEFI related to the smallpox vaccine is myopericarditis. Metabolomics involves the study of the low molecular weight metabolite profile of cells, tissues, and biological fluids, and provides a functional readout of the phenotype. Metabolomics may help identify a particular metabolic signature in serum of subjects who are predisposed to developing AEFIs. The goal of this study was to identify metabolic markers that may predict the development of adverse events following smallpox vaccination. Serum samples were collected from military personnel prior to and following receipt of smallpox vaccine. The study population included five subjects who were clinically diagnosed with myopericarditis, 30 subjects with asymptomatic elevation of troponins, and 31 subjects with systemic symptoms following immunization, and 34 subjects with no AEFI, serving as controls. Two-hundred pre- and post-smallpox vaccination sera were analyzed by untargeted metabolomics using 1H nuclear magnetic resonance (NMR) spectroscopy. Baseline (pre-) and post-vaccination samples from individuals who experienced clinically verified myocarditis or asymptomatic elevation of troponins were more metabolically distinguishable pre- and post-vaccination compared to individuals who only experienced systemic symptoms, or controls. Metabolomics profiles pre- and post-receipt of vaccine differed substantially when an AEFI resulted. This study is the first to describe pre- and post-vaccination metabolic profiles of subjects who developed an adverse event following immunization. The study demonstrates the promise of metabolites for determining mechanisms associated with subjects who develop AEFI and the potential to develop predictive biomarkers. PMID:28169076
McClenathan, Bruce M; Stewart, Delisha A; Spooner, Christina E; Pathmasiri, Wimal W; Burgess, Jason P; McRitchie, Susan L; Choi, Y Sammy; Sumner, Susan C J
2017-03-01
An Adverse Event Following Immunization (AEFI) is an adverse reaction to a vaccination that goes above and beyond the usual side effects associated with vaccinations. One serious AEFI related to the smallpox vaccine is myopericarditis. Metabolomics involves the study of the low molecular weight metabolite profile of cells, tissues, and biological fluids, and provides a functional readout of the phenotype. Metabolomics may help identify a particular metabolic signature in serum of subjects who are predisposed to developing AEFIs. The goal of this study was to identify metabolic markers that may predict the development of adverse events following smallpox vaccination. Serum samples were collected from military personnel prior to and following receipt of smallpox vaccine. The study population included five subjects who were clinically diagnosed with myopericarditis, 30 subjects with asymptomatic elevation of troponins, and 31 subjects with systemic symptoms following immunization, and 34 subjects with no AEFI, serving as controls. Two-hundred pre- and post-smallpox vaccination sera were analyzed by untargeted metabolomics using 1 H nuclear magnetic resonance (NMR) spectroscopy. Baseline (pre-) and post-vaccination samples from individuals who experienced clinically verified myocarditis or asymptomatic elevation of troponins were more metabolically distinguishable pre- and post-vaccination compared to individuals who only experienced systemic symptoms, or controls. Metabolomics profiles pre- and post-receipt of vaccine differed substantially when an AEFI resulted. This study is the first to describe pre- and post-vaccination metabolic profiles of subjects who developed an adverse event following immunization. The study demonstrates the promise of metabolites for determining mechanisms associated with subjects who develop AEFI and the potential to develop predictive biomarkers. Published by Elsevier Ltd.
Abd Rahman, Shaffinaz; Schirra, Horst Joachim; Lichanska, Agnieszka M; Huynh, Tony; Leong, Gary M
2013-01-01
Growth hormone (GH) is a protein hormone with important roles in growth and metabolism. The objective of this study was to investigate the metabolism of a human subject with severe GH deficiency (GHD) due to a PIT-1 gene mutation and the metabolic effects of GH therapy using Nuclear Magnetic Resonance (NMR)-based metabonomics. NMR-based metabonomics is a platform that allows the metabolic profile of biological fluids such as urine to be recorded, and any alterations in the profile modulated by GH can potentially be detected. Urine samples were collected from a female subject with severe GHD before, during and after GH therapy, and from healthy age- and sex-matched controls and analysed with NMR-based metabonomics. The samples were collected at a hospital and the study was performed at a research facility. We studied a 17 year old female adolescent with severe GHD secondary to PIT-1 gene mutation who had reached final adult height and who had ceased GH therapy for over 3 years. The subject was subsequently followed for 5 years with and without GH therapy. Twelve healthy age-matched female subjects acted as control subjects. The GH-deficient subject re-commenced GH therapy at a dose of 1 mg/day to normalise serum IGF-1 levels. Urine metabolic profiles were recorded using NMR spectroscopy and analysed with multivariate statistics to distinguish the profiles at different time points and identify significant metabolites affected by GH therapy. NMR-based metabonomics revealed that the metabolic profile of the GH-deficient subject altered with GH therapy and that her profile was different from healthy controls before, and during withdrawal of GH therapy. This study illustrates the potential use of NMR-based metabonomics for monitoring the effects of GH therapy on metabolism by profiling the urine of GH-deficient subjects. Further controlled studies in larger numbers of GH-deficient subjects are required to determine the clinical benefits of NMR-based metabonomics in subjects receiving GH therapy. Copyright © 2012 Elsevier Ltd. All rights reserved.
Puupponen-Pimiä, Riitta; Seppänen-Laakso, Tuulikki; Kankainen, Matti; Maukonen, Johanna; Törrönen, Riitta; Kolehmainen, Marjukka; Leppänen, Tiina; Moilanen, Eeva; Nohynek, Liisa; Aura, Anna-Marja; Poutanen, Kaisa; Tómas-Barberán, Francisco A; Espín, Juan C; Oksman-Caldentey, Kirsi-Marja
2013-12-01
Ellagitannins are polyphenols abundant in strawberries, raspberries, and cloudberries. The effects of a mixture of these berries were studied in a randomized controlled trial with subjects having symptoms of metabolic syndrome. The study focused on serum lipid profiles, gut microbiota, and ellagitannin metabolites. The results indicate that bioavailability of ellagitannins appears to be dependent on the composition of gut microbiota. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Qian, Yiyun; Peng, Yunru; Shang, Erxin; Zhao, Ming; Yan, Liang; Zhu, Zhenhua; Tao, Jinhua; Su, Shulan; Guo, Sheng; Duan, Jin-Ao
2017-08-01
Ginkgolic acids (GAs) are thought to be the potentially hazardous constituents corresponding to the toxic side effects of Ginkgo products. In this study, toxicological and metabolomics studies of GAs were carried out by ultra-performance liquid chromatography-high-definition mass spectrometry (UPLC-HDMS). Significant changes in serum clinical chemistry were observed in the both low (100 mg/kg) and high (900 mg/kg) doses. Especially the serum enzyme of ALT, AST, LDH, and CK decreased in treated groups. The histopathological observation demonstrated hepatic steatosis in liver and tubular vacuolar degeneration in kidney. These results demonstrated the hepatotoxicity and nephrotoxicity of GAs. Functional disorders are more likely to be toxic induced by GAs. Metabolic profiling within seven days revealed the change of the body status after oral administration. The results indicated the body function was significantly influenced at the 3rd day and could recover in seven days. Metabolomic analysis showed alterations in 14 metabolites from plasma such as LysoPC(18:0), LysoPC(18:2) and other lipids. The results suggested that exposure to GAs could cause disturbances in liver and kidney function associated with the metabolisms of lipids, glucose and the enzyme activity. Copyright © 2017. Published by Elsevier B.V.
Johannsson, G; Nilsson, A G; Bergthorsdottir, R; Burman, P; Dahlqvist, P; Ekman, B; Engström, B E; Olsson, T; Ragnarsson, O; Ryberg, M; Wahlberg, J; Biller, B M K; Monson, J P; Stewart, P M; Lennernäs, H; Skrtic, S
2012-02-01
Patients with treated adrenal insufficiency (AI) have increased morbidity and mortality rate. Our goal was to improve outcome by developing a once-daily (OD) oral hydrocortisone dual-release tablet with a more physiological exposure-time cortisol profile. The aim was to compare pharmacokinetics and metabolic outcome between OD and the same daily dose of thrice-daily (TID) dose of conventional hydrocortisone tablets. We conducted an open, randomized, two-period, 12-wk crossover multicenter trial with a 24-wk extension at five university hospital centers. The trial enrolled 64 adults with primary AI; 11 had concomitant diabetes mellitus (DM). The same daily dose of hydrocortisone was administered as OD dual-release or TID. We evaluated cortisol pharmacokinetics. Compared with conventional TID, OD provided a sustained serum cortisol profile 0-4 h after the morning intake and reduced the late afternoon and the 24-h cortisol exposure. The mean weight (difference = -0.7 kg, P = 0.005), systolic blood pressure (difference = -5.5 mm Hg, P = 0.0001) and diastolic blood pressure (difference: -2.3 mm Hg; P = 0.03), and glycated hemoglobin (absolute difference = -0.1%, P = 0.0006) were all reduced after OD compared with TID at 12 wk. Compared with TID, a reduction in glycated hemoglobin by 0.6% was observed in patients with concomitant DM during OD (P = 0.004). The OD dual-release tablet provided a more circadian-based serum cortisol profile. Reduced body weight, reduced blood pressure, and improved glucose metabolism were observed during OD treatment. In particular, glucose metabolism improved in patients with concomitant DM.
Cardiopulmonary and Metabolic Effects of Yoga in Healthy Volunteers
Divya, T Satheesh; Vijayalakshmi, MT; Mini, K; Asish, K; Pushpalatha, M; Suresh, Varun
2017-01-01
Background: Yoga the spiritual union of mind with the divine intelligence of the universe aims to liberate a human being from conflicts of body–mind duality. Beneficial cardiovascular and pulmonary effects of yoga are in par with aerobic exercise, even amounting to replace the exercise model. We conducted an interventional study in healthy volunteers, to analyze the impact of short-term yoga training on cardiovascular, pulmonary, autonomic function tests, lipid profile, and thyroid function tests. Materials and Methods: A sample of fifty new recruits attending the district yoga center was subject to 75 min yoga practice a day for 41 days. Basal values of cardiovascular, pulmonary, autonomic function tests, lipid profile, and thyroid function tests were recorded before yoga training and were reassessed for postyoga changes after 41 days. Results: After yoga practice there was a significant reduction in the resting heart rate, systolic blood pressure, diastolic blood pressure, and mean blood pressure of the participants. Effects on autonomic function tests were variable and inconclusive. There was a significant increase in forced vital capacity, forced expiratory volume in 1 s, and peak expiratory flow rate after yoga. A significant reduction in body mass index was observed. Effects on metabolic parameters were promising with a significant reduction in fasting blood sugar level, serum total cholesterol, serum triglycerides serum low-density lipoprotein levels, and significant increase in high-density lipoprotein. There was no significant change in thyroid function tests after yoga. Conclusion: Short-term yoga practice has no effect on thyroid functions. Yoga practice was found beneficial in maintaining physiological milieu pertaining to cardiovascular and other metabolic parameters. PMID:29422741
Cardiopulmonary and Metabolic Effects of Yoga in Healthy Volunteers.
Divya, T Satheesh; Vijayalakshmi, M T; Mini, K; Asish, K; Pushpalatha, M; Suresh, Varun
2017-01-01
Yoga the spiritual union of mind with the divine intelligence of the universe aims to liberate a human being from conflicts of body-mind duality. Beneficial cardiovascular and pulmonary effects of yoga are in par with aerobic exercise, even amounting to replace the exercise model. We conducted an interventional study in healthy volunteers, to analyze the impact of short-term yoga training on cardiovascular, pulmonary, autonomic function tests, lipid profile, and thyroid function tests. A sample of fifty new recruits attending the district yoga center was subject to 75 min yoga practice a day for 41 days. Basal values of cardiovascular, pulmonary, autonomic function tests, lipid profile, and thyroid function tests were recorded before yoga training and were reassessed for postyoga changes after 41 days. After yoga practice there was a significant reduction in the resting heart rate, systolic blood pressure, diastolic blood pressure, and mean blood pressure of the participants. Effects on autonomic function tests were variable and inconclusive. There was a significant increase in forced vital capacity, forced expiratory volume in 1 s, and peak expiratory flow rate after yoga. A significant reduction in body mass index was observed. Effects on metabolic parameters were promising with a significant reduction in fasting blood sugar level, serum total cholesterol, serum triglycerides serum low-density lipoprotein levels, and significant increase in high-density lipoprotein. There was no significant change in thyroid function tests after yoga. Short-term yoga practice has no effect on thyroid functions. Yoga practice was found beneficial in maintaining physiological milieu pertaining to cardiovascular and other metabolic parameters.
Recently, air pollution has been linked to insulin resistance and obesity but the mechanisms remain to be elucidated. We have recently shown that acute O3 exposure induces glucose intolerance, hyperglycemia and increases in leptin and epinephrine in rats. Here, we hypothesized th...
USDA-ARS?s Scientific Manuscript database
The objectives of this study were to describe the simple elimination kinetics of two abundant norditerpenoid alkaloids in larkspur, MLA and deltaline, and measure the heart rate response of intoxicated cattle over 96 hours. Five Angus steers halter broke, gentled, and habituated to metabolism crate...
Karamali, Maryam; Ashrafi, Mahnaz; Razavi, Maryamalsadat; Jamilian, Mehri; Kashanian, Maryam; Akbari, Maryam; Asemi, Zatollah
2017-05-01
Data on the effects of calcium, vitamins D and K co-supplementation on markers of insulin metabolism and lipid profiles among vitamin D-deficient women with polycystic ovary syndrome (PCOS) are scarce. This study was done to determine the effects of calcium, vitamins D and K co-supplementation on markers of insulin metabolism and lipid profiles in vitamin D-deficient women with PCOS. This randomized double-blind, placebo-controlled trial was conducted among 55 vitamin D-deficient women diagnosed with PCOS aged 18-40 years old. Subjects were randomly assigned into 2 groups to intake either 500 mg calcium, 200 IU vitamin D and 90 µg vitamin K supplements (n=28) or placebo (n=27) twice a day for 8 weeks. After the 8-week intervention, compared with the placebo, joint calcium, vitamins D and K supplementation resulted in significant decreases in serum insulin concentrations (-1.9±3.5 vs. +1.8±6.6 µIU/mL, P=0.01), homeostasis model of assessment-estimated insulin resistance (-0.4±0.7 vs. +0.4±1.4, P=0.01), homeostasis model of assessment-estimated b cell function (-7.9±14.7 vs. +7.0±30.3, P=0.02) and a significant increase in quantitative insulin sensitivity check index (+0.01±0.01 vs. -0.008±0.03, P=0.01). In addition, significant decreases in serum triglycerides (-23.4±71.3 vs. +9.9±39.5 mg/dL, P=0.03) and VLDL-cholesterol levels (-4.7±14.3 vs. +2.0±7.9 mg/dL, P=0.03) was observed following supplementation with combined calcium, vitamins D and K compared with the placebo. Overall, calcium, vitamins D and K co-supplementation for 8 weeks among vitamin D-deficient women with PCOS had beneficial effects on markers of insulin metabolism, serum triglycerides and VLDL-cholesterol levels. © Georg Thieme Verlag KG Stuttgart · New York.
Biomarker identification and pathway analysis of preeclampsia based on serum metabolomics.
Chen, Tingting; He, Ping; Tan, Yong; Xu, Dongying
2017-03-25
Preeclampsia presents serious risk of both maternal and fetal morbidity and mortality. Biomarkers for the detection of preeclampsia are critical for risk assessment and targeted intervention. The goal of this study is to screen potential biomarkers for the diagnosis of preeclampsia and to illuminate the pathogenesis of preeclampsia development based on the differential expression network. Two groups of subjects, including healthy pregnant women, subjects with preeclampsia, were recruited for this study. The metabolic profiles of all of the subjects' serum were obtained by liquid chromatography quadruple time-of-flight mass spectrometry. Correlation between metabolites was analyzed by bioinformatics technique. Results showed that the PC(14:0/00), proline betaine and proline were potential sensitive and specific biomarkers for preeclampsia diagnosis and prognosis. Perturbation of corresponding biological pathways, such as iNOS signaling, nitric oxide signaling in the cardiovascular system, mitochondrial dysfunction were responsible for the pathogenesis of preeclampsia. This study indicated that the metabolic profiling had a good clinical significance in the diagnosis of preeclampsia as well as in the study of its pathogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.
Shahbah, Doaa; El Naga, Amr Abo; Hassan, Tamer; Zakaria, Marwa; Beshir, Mohamed; Al Morshedy, Salah; Abdalhady, Mohamed; Kamel, Ezzat; Rahman, Doaa Abdel; Kamel, Lamiaa; Abdelkader, May
2016-11-01
Diabetes mellitus has been suggested to be the most common metabolic disorder associated with magnesium deficiency, having 25% to 39% prevalence. This deficit could be associated with the development of late diabetic complications, especially macroangiopathy.We aimed to evaluate the status of serum Mg in children with type 1 diabetes and assess its relation to glycemic control and lipid profile.We included 71 Egyptian children with type 1diabetes having their follow-up at Pediatric Endocrinology outpatient clinic, Zagazig University Hospital and 71 age- and sex-matched control. We measured Serum magnesium, HbA1c, and lipid profile in all study subjects.Diabetic children had significantly lower serum magnesium level compared to control children (1.83 ± .27 mg/dL in diabetic children versus 2.00 ± .16 mg/dL in control children). Taking cut-off level of serum magnesium <1.7 mg/dL for definition of hypomagnesemia, hypomagnesemia was detected in 28.2% of diabetic children compared to 9.9% of control children. In diabetic patients, there was statistically significant difference in HbA1c between hypomagnesemic and normomagnesemic group being higher in the low magnesium group, as it is mean ± SD was 11.93 ± 3.17 mg/dL in group I versus 8.92 ± 0.93 mg/dL in the normomagnesemic group. Serum magnesium was found to be positively correlated with HDL (P < 0.001), and negatively correlated with age, HbA1c, triglycerides, total cholesterol, LDL, and duration of diabetes (P < 0.001).We concluded that total serum magnesium was frequently low in Egyptian children with type 1 diabetes and it is correlated with HbA1c and with lipid profile. Hypomagnesemia was more evident in patients with poor diabetic control and those with higher atherogenic lipid parameters. We suggest that low serum magnesium may be included in pathogenesis of poor glycemic control and abnormal lipid profile in children with type 1 diabetes. We need to perform further studies on giving magnesium supplements in diabetic children with hypomagnesemia to observe the effect of correction of serum magnesium on glycemic control, lipid profile, and the risk of diabetic complications.
Shahbah, Doaa; El Naga, Amr Abo; Hassan, Tamer; Zakaria, Marwa; Beshir, Mohamed; Al Morshedy, Salah; Abdalhady, Mohamed; Kamel, Ezzat; Rahman, Doaa Abdel; Kamel, Lamiaa; Abdelkader, May
2016-01-01
Abstract Diabetes mellitus has been suggested to be the most common metabolic disorder associated with magnesium deficiency, having 25% to 39% prevalence. This deficit could be associated with the development of late diabetic complications, especially macroangiopathy. We aimed to evaluate the status of serum Mg in children with type 1 diabetes and assess its relation to glycemic control and lipid profile. We included 71 Egyptian children with type 1diabetes having their follow-up at Pediatric Endocrinology outpatient clinic, Zagazig University Hospital and 71 age- and sex-matched control. We measured Serum magnesium, HbA1c, and lipid profile in all study subjects. Diabetic children had significantly lower serum magnesium level compared to control children (1.83 ± .27 mg/dL in diabetic children versus 2.00 ± .16 mg/dL in control children). Taking cut-off level of serum magnesium <1.7 mg/dL for definition of hypomagnesemia, hypomagnesemia was detected in 28.2% of diabetic children compared to 9.9% of control children. In diabetic patients, there was statistically significant difference in HbA1c between hypomagnesemic and normomagnesemic group being higher in the low magnesium group, as it is mean ± SD was 11.93 ± 3.17 mg/dL in group I versus 8.92 ± 0.93 mg/dL in the normomagnesemic group. Serum magnesium was found to be positively correlated with HDL (P < 0.001), and negatively correlated with age, HbA1c, triglycerides, total cholesterol, LDL, and duration of diabetes (P < 0.001). We concluded that total serum magnesium was frequently low in Egyptian children with type 1 diabetes and it is correlated with HbA1c and with lipid profile. Hypomagnesemia was more evident in patients with poor diabetic control and those with higher atherogenic lipid parameters. We suggest that low serum magnesium may be included in pathogenesis of poor glycemic control and abnormal lipid profile in children with type 1 diabetes. We need to perform further studies on giving magnesium supplements in diabetic children with hypomagnesemia to observe the effect of correction of serum magnesium on glycemic control, lipid profile, and the risk of diabetic complications. PMID:27893657
Sampey, Brante P.; Freemerman, Alex J.; Zhang, Jimmy; Kuan, Pei-Fen; Galanko, Joseph A.; O'Connell, Thomas M.; Ilkayeva, Olga R.; Muehlbauer, Michael J.; Stevens, Robert D.; Newgard, Christopher B.; Brauer, Heather A.; Troester, Melissa A.; Makowski, Liza
2012-01-01
Obesity has reached epidemic proportions worldwide. Several animal models of obesity exist, but studies are lacking that compare traditional lard-based high fat diets (HFD) to “Cafeteria diets" (CAF) consisting of nutrient poor human junk food. Our previous work demonstrated the rapid and severe obesogenic and inflammatory consequences of CAF compared to HFD including rapid weight gain, markers of Metabolic Syndrome, multi-tissue lipid accumulation, and dramatic inflammation. To identify potential mediators of CAF-induced obesity and Metabolic Syndrome, we used metabolomic analysis to profile serum, muscle, and white adipose from rats fed CAF, HFD, or standard control diets. Principle component analysis identified elevations in clusters of fatty acids and acylcarnitines. These increases in metabolites were associated with systemic mitochondrial dysfunction that paralleled weight gain, physiologic measures of Metabolic Syndrome, and tissue inflammation in CAF-fed rats. Spearman pairwise correlations between metabolites, physiologic, and histologic findings revealed strong correlations between elevated markers of inflammation in CAF-fed animals, measured as crown like structures in adipose, and specifically the pro-inflammatory saturated fatty acids and oxidation intermediates laurate and lauroyl carnitine. Treatment of bone marrow-derived macrophages with lauroyl carnitine polarized macrophages towards the M1 pro-inflammatory phenotype through downregulation of AMPK and secretion of pro-inflammatory cytokines. Results presented herein demonstrate that compared to a traditional HFD model, the CAF diet provides a robust model for diet-induced human obesity, which models Metabolic Syndrome-related mitochondrial dysfunction in serum, muscle, and adipose, along with pro-inflammatory metabolite alterations. These data also suggest that modifying the availability or metabolism of saturated fatty acids may limit the inflammation associated with obesity leading to Metabolic Syndrome. PMID:22701716
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei Lai; Liao Peiqiu; Wu Huifeng
2009-02-01
The toxicological effects of realgar after intragastrical administration (1 g/kg body weight) were investigated over a 21 day period in male Wistar rats using metabonomic analysis of {sup 1}H NMR spectra of urine, serum and liver tissue aqueous extracts. Liver and kidney histopathology examination and serum clinical chemistry analyses were also performed. {sup 1}H NMR spectra and pattern recognition analyses from realgar treated animals showed increased excretion of urinary Kreb's cycle intermediates, increased levels of ketone bodies in urine and serum, and decreased levels of hepatic glucose and glycogen, as well as hypoglycemia and hyperlipoidemia, suggesting the perturbation of energymore » metabolism. Elevated levels of choline containing metabolites and betaine in serum and liver tissue aqueous extracts and increased serum creatine indicated altered transmethylation. Decreased urinary levels of trimethylamine-N-oxide, phenylacetylglycine and hippurate suggested the effects on the gut microflora environment by realgar. Signs of impairment of amino acid metabolism were supported by increased hepatic glutamate levels, increased methionine and decreased alanine levels in serum, and hypertaurinuria. The observed increase in glutathione in liver tissue aqueous extracts could be a biomarker of realgar induced oxidative injury. Serum clinical chemistry analyses showed increased levels of lactate dehydrogenase, aspartate aminotransferase, and alkaline phosphatase as well as increased levels of blood urea nitrogen and creatinine, indicating slight liver and kidney injury. The time-dependent biochemical variations induced by realgar were achieved using pattern recognition methods. This work illustrated the high reliability of NMR-based metabonomic approach on the study of the biochemical effects induced by traditional Chinese medicine.« less
Circulating linoleic acid and alpha-linolenic acid and glucose metabolism: the Hoorn Study.
Cabout, Mieke; Alssema, Marjan; Nijpels, Giel; Stehouwer, Coen D A; Zock, Peter L; Brouwer, Ingeborg A; Elshorbagy, Amany K; Refsum, Helga; Dekker, Jacqueline M
2017-09-01
Data on the relation between linoleic acid (LA) and alpha-linolenic acid (ALA) and type 2 diabetes mellitus (T2DM) risk are scarce and inconsistent. The aim of this study was to investigate the association of serum LA and ALA with fasting and 2 h post-load plasma glucose and glycated hemoglobin (HbA1c). This study included 667 participants from third examination (2000) of the population-based Hoorn study in which individuals with glucose intolerance were overrepresented. Fatty acid profiles in serum total lipids were measured at baseline, in 2000. Diabetes risk markers were measured at baseline and follow-up in 2008. Linear regression models were used in cross-sectional and prospective analyses. In cross-sectional analyses (n = 667), serum LA was inversely associated with plasma glucose, both in fasting conditions (B = -0.024 [-0.045, -0.002]) and 2 h after glucose tolerance test (B = -0.099 [-0.158, -0.039]), but not with HbA1c (B = 0.000 [-0.014, 0.013]), after adjustment for relevant factors. In prospective analyses (n = 257), serum LA was not associated with fasting (B = 0.003 [-0.019, 0.025]) or post-load glucose (B = -0.026 [-0.100, 0.049]). Furthermore, no significant associations were found between serum ALA and glucose metabolism in cross-sectional or prospective analyses. In this study, serum LA was inversely associated with fasting and post-load glucose in cross-sectional, but not in prospective analyses. Further studies are needed to elucidate the exact role of serum LA and ALA levels and dietary polyunsaturated fatty acids in glucose metabolism.
Tehrani, Fahimeh Ramezani; Rashidi, Homeira; Khomami, Mahnaz Bahri; Tohidi, Maryam; Azizi, Fereidoun
2014-09-16
Polycystic ovary syndrome (PCOS) is a common endocrinopathy, associated with metabolic abnormalities. Metabolic features of various phenotypes of this syndrome are still debatable. The aim of present study hence was to evaluate the metabolic and hormonal features of PCOS phenotypes in comparison to a group of healthy control. A total of 646 reproductive-aged women were randomly selected using the stratified, multistage probability cluster sampling method. The subjects were divided into five phenotypes: A (oligo/anovulation + hyperandrogenism + polycystic ovaries), B (oligo/anovulation + hyperandrogenism), C (hyperandrogenism + polycystic ovaries) and D (oligo/anovulation + polycystic ovaries). Hormonal and metabolic profiles and the prevalence of metabolic syndrome among these groups were compared using ANCOVA adjusted for age and body mass index. Among women with PCOS (n = 85), those of groups A and C had higher serum levels of insulin and homeostatic model assessment for insulin resistance (HOMA-IR), compared to PCOS women of group D. Serum concentrations of cholesterol, low density lipoprotein, triglycerides and glucose in group A were higher than in other phenotypes, whereas the metabolic syndrome was more prevalent among group B. Women who had all three components of the syndrome showed the highest level of metabolic disturbances indicating that metabolic screening of the severest phenotype of PCOS may be necessary.
Misiak, Błażej; Łaczmański, Łukasz; Słoka, Natalia Kinga; Szmida, Elżbieta; Piotrowski, Patryk; Loska, Olga; Ślęzak, Ryszard; Kiejna, Andrzej; Frydecka, Dorota
2016-04-30
The aim of this study was to investigate the prevalence of metabolic disturbances in patients with first-episode schizophrenia (FES) and test the hypothesis that genetic variation in one-carbon metabolism may account for metabolic dysregulation in early psychosis. We measured fasting glucose, lipid profile parameters, homocysteine, folate and vitamin B12 in 135 patients with FES and 146 healthy controls (HCs). Polymorphisms in the following genes were determined: MTHFR (C677T and A1298C), MTHFD1 (G1958A), MTRR (A66G) and BHMT (G742A). Serum levels of folate and high-density lipoproteins (HDL) were significantly lower in patients with FES compared to HCs. In turn, serum levels of homocysteine and triglycerides were significantly higher in patients with FES than in HCs. Prevalence of hyperhomocysteinemia, low folate and HDL levels together with dyslipidemia was significantly higher in patients with FES compared to HCs. Higher homocysteine levels, lower vitamin B12 levels and the presence of metabolic syndrome were associated with higher severity of negative symptoms. None of studied polymorphisms was associated with schizophrenia risk. Several associations between studied polymorphisms and cardio-metabolic parameters were found. None of them remained significant after Bonferroni correction. Our results indicate that metabolic dysregulation in patients with FES is not associated with genetic variation in one-carbon metabolism. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Norman, Daniel; Bardwell, Wayne A.; Arosemena, Farah; Nelesen, Richard; Mills, Paul J.; Loredo, Jose S.; Lavine, Joel E.; Dimsdale, Joel E.
2008-01-01
Study Objectives: Nonalcoholic fatty liver disease (NAFLD) is a disorder that often presents with elevated serum aminotransferase levels. Although it has classically been linked with the metabolic syndrome, recent studies suggest NAFLD may also be associated with obstructive sleep apnea (OSA). This study evaluates the association between serum aminotransferase levels and factors connected with: either the metabolic syndrome (elevated body mass index [BMI], lipid profile, blood pressure, fasting glucose), or with OSA severity (apnea hypopnea index, lowest oxygen saturation level, oxygen desaturation index, percent of time below 90% saturation [%T<90]). Design: Retrospective case series. Patients and Setting: 109 adult patients with OSA at a university hospital general clinical research center. Measurements and Results: Markers of hypoxia (lowest oxygen saturation level and %T<90), correlated significantly with aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels (Pearson's r = −0.31 to −0.38, P <0.003), while apnea hypopnea index, body mass index, blood pressure, fasting glucose, triglyceride, and cholesterol levels did not. Hierarchical linear regression was then done to determine the best predictors of aminotransferase levels. Markers of metabolic syndrome were entered as one block and markers of sleep apnea as another. Regression analyses explained 16.3% of the variance in AST and 18.9% of the variance in ALT, with %T<90 playing the largest role. Conclusions: In patients with obstructive sleep apnea, serum aminotransferase levels are better predicted by markers of oxygen desaturation than by factors traditionally associated with the metabolic syndrome. Citation: Norman D; Bardwell WA; Arosemena F; Nelesen R; Mills PJ; Loredo JS; Lavine JE; Dimsdale JE. Serum aminotransferase levels are associated with markers of hypoxia in patients with obstructive sleep apnea. SLEEP 2008;31(1):-121-126. PMID:18220085
Hebrani, Paria; Manteghi, Ali Akhoundpour; Behdani, Fatemeh; Hessami, Elham; Rezayat, Kambiz Akhavan; Marvast, Majid Nabizadeh; Rezayat, Amir Akhavan
2015-04-01
One of the major causes of death in schizophrenia is a metabolic syndrome. The clozapine has the highest rate of weight gain among antipsychotics. It has been shown that metformin can promote weight loss. We aimed to investigate the effect of metformin as an adjunctive therapy with clozapine to prevent metabolic syndrome in patients with schizophrenia. A total of 37 patients consisting metformin group (19 cases) and a group of placebo consisting of 18 cases were evaluated. A brief psychiatric rating scale score (BPRS) and metabolic profiles was determined for all patients. All of the variables were also determined at 2, 8, 16, and 20 weeks after the onset of the study. The mean age of the group of metformin was 47.2 ± 10.4 compared with 45.8 ± 10.2 for the group of placebo. The difference in mean waist circumference and serum level of triglyceride at baseline compared with the end of study showed a statistically significant difference between two groups (P = 0. 000). A statistically significant difference was also observed in a comparison of mean difference of weight and body mass index at baseline compared with end of study (P = 0. 000). There was a statistically significant difference of fasting blood sugar (P = 0.011) and serum high-density lipoprotein (P = 0.000) between two groups but this difference was not significant for mean BPRS scores, mean systolic and diastolic blood pressure, serum level of triiodothyronine, thyroxin and thyroid stimulating hormone, serum low-density lipoprotein and serum cholesterol. Metformin could be considered an adjunctive therapy with clozapine to prevent metabolic syndrome in schizophrenic patients.
Hložek, Tomáš; Uttl, Libor; Kadeřábek, Lukáš; Balíková, Marie; Lhotková, Eva; Horsley, Rachel R; Nováková, Pavlína; Šíchová, Klára; Štefková, Kristýna; Tylš, Filip; Kuchař, Martin; Páleníček, Tomáš
2017-12-01
Metabolic and behavioural effects of, and interactions between Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) are influenced by dose and administration route. Therefore we investigated, in Wistar rats, effects of pulmonary, oral and subcutaneous (sc.) THC, CBD and THC+CBD. Concentrations of THC, its metabolites 11-OH-THC and THC-COOH, and CBD in serum and brain were determined over 24h, locomotor activity (open field) and sensorimotor gating (prepulse inhibition, PPI) were also evaluated. In line with recent knowledge we expected metabolic and behavioural interactions between THC and CBD. While cannabinoid serum and brain levels rapidly peaked and diminished after pulmonary administration, sc. and oral administration produced long-lasting levels of cannabinoids with oral reaching the highest brain levels. Except pulmonary administration, CBD inhibited THC metabolism resulting in higher serum/brain levels of THC. Importantly, following sc. and oral CBD alone treatments, THC was also detected in serum and brain. S.c. cannabinoids caused hypolocomotion, oral treatments containing THC almost complete immobility. In contrast, oral CBD produced mild hyperlocomotion. CBD disrupted, and THC tended to disrupt PPI, however their combination did not. In conclusion, oral administration yielded the most pronounced behavioural effects which corresponded to the highest brain levels of cannabinoids. Even though CBD potently inhibited THC metabolism after oral and sc. administration, unexpectedly it had minimal impact on THC-induced behaviour. Of central importance was the novel finding that THC can be detected in serum and brain after administration of CBD alone which, if confirmed in humans and given the increasing medical use of CBD-only products, might have important legal and forensic ramifications. Copyright © 2017 Elsevier B.V. and ECNP. All rights reserved.
A Systematic Evaluation of Blood Serum and Plasma Pre-Analytics for Metabolomics Cohort Studies
Jobard, Elodie; Trédan, Olivier; Postoly, Déborah; André, Fabrice; Martin, Anne-Laure; Elena-Herrmann, Bénédicte; Boyault, Sandrine
2016-01-01
The recent thriving development of biobanks and associated high-throughput phenotyping studies requires the elaboration of large-scale approaches for monitoring biological sample quality and compliance with standard protocols. We present a metabolomic investigation of human blood samples that delineates pitfalls and guidelines for the collection, storage and handling procedures for serum and plasma. A series of eight pre-processing technical parameters is systematically investigated along variable ranges commonly encountered across clinical studies. While metabolic fingerprints, as assessed by nuclear magnetic resonance, are not significantly affected by altered centrifugation parameters or delays between sample pre-processing (blood centrifugation) and storage, our metabolomic investigation highlights that both the delay and storage temperature between blood draw and centrifugation are the primary parameters impacting serum and plasma metabolic profiles. Storing the blood drawn at 4 °C is shown to be a reliable routine to confine variability associated with idle time prior to sample pre-processing. Based on their fine sensitivity to pre-analytical parameters and protocol variations, metabolic fingerprints could be exploited as valuable ways to determine compliance with standard procedures and quality assessment of blood samples within large multi-omic clinical and translational cohort studies. PMID:27929400
Tariq, Sundus; Lone, Khalid Parvez; Tariq, Saba
2016-01-01
Optimal physical activity is important in attaining a peak bone mass. Physically active women have better bone mineral density and reduce fracture risk as compared to females living a sedentary life. The objective of this study was to compare parameters of bone profile and serum homocysteine levels in physically active and non-active postmenopausal females. In this cross sectional study postmenopausal females between 50-70 years of age were recruited and divided into two groups: Physically inactive (n=133) performing light physical activity and Physically active (n=34) performing moderate physical activity. Physical activity (in metabolic equivalents), bone mineral density and serum homocysteine levels were assessed. Spearman's rho correlation was applied to observe correlations. Two independent sample t test and Mann Whitney U test were applied to compare groups. P-value ≤ 0.05 was taken statistically significant. Parameters of bone profile were significantly higher and serum homocysteine levels were significantly lower in postmenopausal females performing moderate physical activity as compared to females performing light physical activity. Homocysteine was not significantly related to T-score and Z-score in both groups. Improving physical activity could be beneficial for improving the quality of bone, decreasing fracture risk and decreasing serum homocysteine levels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Ying; Lin, Lianjie; Xu, Yanbin
2013-04-19
Highlights: •Twenty ulcerative colitis patients and nineteen healthy controls were enrolled. •Increased 3-hydroxybutyrate, glucose, phenylalanine, and decreased lipid were found. •We report early stage diagnosis of ulcerative colitis using NMR-based metabolomics. -- Abstract: Ulcerative colitis (UC) has seriously impaired the health of citizens. Accurate diagnosis of UC at an early stage is crucial to improve the efficiency of treatment and prognosis. In this study, proton nuclear magnetic resonance ({sup 1}H NMR)-based metabolomic analysis was performed on serum samples collected from active UC patients (n = 20) and healthy controls (n = 19), respectively. The obtained spectral profiles were subjected tomore » multivariate data analysis. Our results showed that consistent metabolic alterations were present between the two groups. Compared to healthy controls, UC patients displayed increased 3-hydroxybutyrate, β-glucose, α-glucose, and phenylalanine, but decreased lipid in serum. These findings highlight the possibilities of NMR-based metabolomics as a non-invasive diagnostic tool for UC.« less
Asemi, Zatollah; Khorrami-Rad, Ashraf; Alizadeh, Sabihe-Alsadat; Shakeri, Hossein; Esmaillzadeh, Ahmad
2014-04-01
We are aware of no study indicating the effects of synbiotic food consumption on metabolic profiles, inflammation and oxidative stress among diabetic patients. The aim of the current study was to investigate the effects of synbiotic food consumption on metabolic profiles, hs-CRP and biomarkers of oxidative stress in diabetic patients. This randomized double-blinded cross-over controlled clinical trial was performed among 62 diabetic patients aged 35-70 y. After a 2-wk run-in period, subjects were randomly assigned to consume either a synbiotic (n = 62) or control food (n = 62) for 6 weeks. A 3-week washout period was applied following which subjects were crossed over to the alternate treatment arm for an additional 6 weeks. The synbiotic food consisted of a probiotic viable and heat-resistant Lactobacillus sporogenes (1 × 10(7) CFU), 0.04 g inulin (HPX) as prebiotic with 0.38 g isomalt, 0.36 g sorbitol and 0.05 g stevia as sweetener per 1 g. Control food (the same substance without probiotic bacteria and prebiotic inulin) was packed in identical 9-gram packages. Patients were asked to consume the synbiotic and control foods three times a day. Fasting blood samples were taken at baseline and after a 6-wk intervention to measure metabolic profiles, hs-CRP and biomarkers of oxidative stress. Consumption of a synbiotic food, compared to the control, resulted in a significant decrease in serum insulin levels (changes from baseline: -1.75 ± 0.60 vs. +0.95 ± 1.09 μIU/mL, P = 0.03). Although we failed to find a significant effect of synbiotic food consumption on total- and LDL-cholesterol levels and HOMA-IR, the effects on FPG (22.3 vs. 4.2 mg/dL, P = 0.09), serum triglycerides (45.9 vs. 20.6 mg/dL, P = 0.08) and HDL-cholesterol levels (3.1 vs. -2 mg/dL, P = 0.06) tended to be significant. A significant reduction in serum hs-CRP levels (-1057.86 ± 283.74 vs. 95.40 ± 385.38 ng/mL, P = 0.01) was found following the consumption of synbiotic food compared with the control group. Supplementation with the synbiotic food led to a significant increase in plasma total GSH (319.98 vs. 19.73 μmol/L, P < 0.001) and serum uric acid levels (+0.7 vs. -0.1 mg/dL, P = 0.04) compared to the control food. No significant effect of the synbiotic food was observed on plasma TAC levels. In conclusion, consumption of a synbiotic food for 6 weeks among diabetic patients had significant effects on serum insulin, hs-CRP, uric acid and plasma total GSH levels. www.irct.ir: IRCT201201195623N1. Copyright © 2013 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
NASA Astrophysics Data System (ADS)
Pradhan, Surya Narayan; Das, Aleena; Meena, Ramovatar; Nanda, Ranjan Kumar; Rajamani, Paulraj
2016-10-01
Occupational exposure to air pollution induces oxidative stress and prolonged exposure increases susceptibility to cardiovascular and respiratory diseases in several working groups. Biofluid of these subjects may reflect perturbed metabolic phenotypes. In this study we carried out a comparative molecular profiling study using parallel biofluids collected from subjects (n = 85) belonging to auto rickshaw drivers (ARD), traffic cops (TC) and office workers (OW). Higher levels of oxidative stress and inflammation markers in serum of ARD subjects were observed as compared to OW and TC. Uni and multivariate analyses of metabolites identified in urine by 1H NMR revealed 11 deregulated molecules in ARD subjects and involved in phenylalanine, histidine, arginine and proline metabolism. Despite contribution of confounding factors like exposure period, dietary factors including smoking and alcohol status, our results demonstrate existence of exposure specific metabotypes in biofluids of ARD, OW and TC groups. Monitoring serum oxidative stress and inflammation markers and urine metabolites by NMR may be useful to characterize perturbed metabolic phenotypes in populations exposed to urban traffic air pollution.
Lim, Jisun; Park, Hye Soon; Lee, Seul Ki; Jang, Yeon Jin; Lee, Yeon Ji; Heo, Yoonseok
2016-04-01
Bariatric surgery has beneficial effects on weight loss and metabolic profiles. Recent evidence suggests that liver-derived hepatokines play a role in the pathophysiology of metabolic diseases. However, few studies have reported longitudinal changes in hepatokines after gastric bypass surgery. We investigated changes in the serum levels of angiopoietin-like protein 6 (Angptl6) and selenoprotein P after gastric bypass surgery. We followed 10 patients who were treated with gastric bypass for weight loss. We measured metabolic parameters and the serum levels of Angptl6 and selenoprotein P before, 1 month after, and 9 months after surgery. We investigated the changes in those hepatokines after surgery and the associations between changes in Angptl6 and selenoprotein P, respectively, and metabolic parameters. Body mass index decreased linearly. Levels of hemoglobin A1c (HbA1c), aspartate aminotransferase (AST), alanine aminotransferase (ALT), gamma glutamyltransferase (GGT), total cholesterol, triglyceride, LDL cholesterol, and Angptl6 were significantly lower 1 and 9 months after surgery. Fasting plasma glucose was normal throughout the study. Fasting insulin decreased 1 month after surgery but increased 9 months post-surgery. Levels of selenoprotein P increased linearly. Significant correlations were detected between the levels of Angptl6 and LDL cholesterol and fasting insulin. Changes in Angptl6 levels were significantly correlated with changes in total cholesterol and LDL cholesterol. Selenoprotein P levels were inversely correlated with GGT, and changes in selenoprotein P were inversely correlated with changes in homeostasis model assessment for insulin resistance (HOMA-IR). Our results suggest that gastric bypass may alter the serum levels of hepatokines independent of weight loss, and these changes are related to certain hepatic metabolic changes.
2012-01-01
Background The soluble cell adhesion molecules and adipokines are elevated in patients with obesity, hypertension, type 2 diabetes mellitus, breast cancer and atherosclerosis. Objective To investigate the relationship between anthropometric profile, dietary intake, lipid profile and fasting glycemia with serum levels of adipokines (adiponectin and PAI-1) and adhesion molecules (ICAM-1 and VCAM-1) in women without breast cancer undergoing routine mammographic screening. Design Transversal study. Subjects One hundred and forty-five women over 40-years old participated in this study. Results In 39.3% of cases the BMI was above 30 kg/m2; 46.9% had hypertension, 14.5% had type 2 Diabetes Mellitus, 31.7% had dyslipidemia and 88.3% presented a waist-to-hip ratio ≥ 0.8. A linear correlation was found between serum levels of PAI-1 and triglycerides, between serum levels of PAI-1 and WHR and between serum levels of VCAM-1 and BMI. Conclusion We found a high prevalence of obesity and metabolic syndrome. PAI-1 and VCAM-1 levels were correlated with clinical indicators of obesity and overweight. PMID:23113882
Xue, Yong; He, Tingchao; Yu, Kai; Zhao, Ai; Zheng, Wei; Zhang, Yumei; Zhu, Baoli
2017-07-01
CVD remains the leading cause of mortality worldwide, with abnormal lipid metabolism as a major risk factor. The aim of this study was to investigate associations between spicy food consumption and serum lipids in Chinese adults. Data were extracted from the 2009 phase of the China Health and Nutrition Survey, consisting of 6774 apparently healthy Chinese adults aged 18-65 years. The frequency of consumption and degree of pungency of spicy food were self-reported, and regular spicy food consumption was assessed using three consecutive 24-h recalls. Total cholesterol, TAG, LDL-cholesterol and HDL-cholesterol in fasting serum were measured. Multilevel mixed-effects models were constructed to estimate associations between spicy food consumption and serum lipid profiles. The results showed that the frequency and the average amount of spicy food intake were both inversely associated with LDL-cholesterol and LDL-cholesterol:HDL-cholesterol ratio (all P for trend<0·05) after adjustment for potential confounders and cluster effects. HDL-cholesterol in participants who usually consumed spicy food (≥5 times/week) and who consumed spicy food perceived as moderate in pungency were significantly higher than those who did not (both P<0·01). The frequency and the average amount of spicy food intake and the degree of pungency in spicy food were positively associated with TAG (all P for trend<0·05). Spicy food consumption was inversely associated with serum cholesterol and positively associated with serum TAG, and additional studies are needed to confirm the findings as well as to elucidate the potential roles of spicy food consumption in lipid metabolism.
NASA Astrophysics Data System (ADS)
Anne, Marie-Laure; Le Lan, Caroline; Monbet, Valérie; Boussard-Plédel, Catherine; Ropert, Martine; Sire, Olivier; Pouchard, Michel; Jard, Christine; Lucas, Jacques; Adam, Jean Luc; Brissot, Pierre; Bureau, Bruno; Loréal, Olivier
2009-09-01
Fiber evanescent wave spectroscopy (FEWS) explores the mid-infrared domain, providing information on functional chemical groups represented in the sample. Our goal is to evaluate whether spectral fingerprints obtained by FEWS might orientate clinical diagnosis. Serum samples from normal volunteers and from four groups of patients with metabolic abnormalities are analyzed by FEWS. These groups consist of iron overloaded genetic hemochromatosis (GH), iron depleted GH, cirrhosis, and dysmetabolic hepatosiderosis (DYSH). A partial least squares (PLS) logistic method is used in a training group to create a classification algorithm, thereafter applied to a test group. Patients with cirrhosis or DYSH, two groups exhibiting important metabolic disturbances, are clearly discriminated from control groups with AUROC values of 0.94+/-0.05 and 0.90+/-0.06, and sensibility/specificity of 86/84% and 87/87%, respectively. When pooling all groups, the PLS method contributes to discriminate controls, cirrhotic, and dysmetabolic patients. Our data demonstrate that metabolic profiling using infrared FEWS is a possible way to investigate metabolic alterations in patients.
Kumar, Bhowmik Salil; Lee, Young-Joo; Yi, Hong Jae; Chung, Bong Chul; Jung, Byung Hwa
2010-02-19
In order to develop a safety biomarker for atorvastatin, this drug was orally administrated to hyperlipidemic rats, and a metabolomic study was performed. Atorvastatin was given in doses of either 70 mg kg(-1) day(-1) or 250 mg kg(-1) day(-1) for a period of 7 days (n=4 for each group). To evaluate any abnormal effects of the drug, physiological and plasma biochemical parameters were measured and histopathological tests were carried out. Safety biomarkers were derived by comparing these parameters and using both global and targeted metabolic profiling. Global metabolic profiling was performed using liquid chromatography/time of flight/mass spectrometry (LC/TOF/MS) with multivariate data analysis. Several safety biomarker candidates that included various steroids and amino acids were discovered as a result of global metabolic profiling, and they were also confirmed by targeted metabolic profiling using gas chromatography/mass spectrometry (GC/MS) and capillary electrophoresis/mass spectrometry (CE/MS). Serum biochemical and histopathological tests were used to detect abnormal drug reactions in the liver after repeating oral administration of atorvastatin. The metabolic differences between control and the drug-treated groups were compared using PLS-DA score plots. These results were compared with the physiological and plasma biochemical parameters and the results of a histopathological test. Estrone, cortisone, proline, cystine, 3-ureidopropionic acid and histidine were proposed as potential safety biomarkers related with the liver toxicity of atorvastatin. These results indicate that the combined application of global and targeted metabolic profiling could be a useful tool for the discovery of drug safety biomarkers. Copyright 2009 Elsevier B.V. All rights reserved.
Niu, Xiaoyi; He, Bosai; Du, Yiyang; Sui, Zhenyu; Rong, Weiwei; Wang, Xiaotong; Li, Qing; Bi, Kaishun
2018-06-01
Suanzaoren decoction, as one of the traditional Chinese medicine prescriptions, has been most commonly used in Asian countries and reported to inhibit the process of immunodeficiency insomnia. Polysaccharide is important component which also contributes to the role of immunoprotective and sedative hypnotic effects. This study was aimed to explore the immunoprotective and sedative hypnotic mechanisms of polysaccharide from Suanzaoren decoction by serum metabonomics approach. With this purpose, complex physical and chemical immunodeficiency insomnia models were firstly established according to its multi-target property. Serum samples were analyzed using UHPLC/Q-TOF-MS spectrometry approach to determine endogenous metabolites. Then, principal component analysis was used to distinguish the groups, and partial least squares discriminate analysis was carried out to confirm the important variables. The serum metabolic profiling was identified and pathway analysis was performed after the total polysaccharide administration. The twenty-one potential biomarkers were screened, and the levels were all reversed to different degrees in the total polysaccharide treated groups. These potential biomarkers were mainly related to vitamin, sphingolipid, bile acid, phospholipid and acylcarnitine metabolisms. The result has indicated that total polysaccharide could inhibit insomnia triggered by immunodeficiency stimulation through regulating those metabolic pathways. This study provides a useful approach for exploring the mechanism and evaluating the efficacy of total polysaccharide from Suanzaoren decoction. Copyright © 2018 Elsevier B.V. All rights reserved.
Oral Fructose Absorption in Obese Children with Non-Alcoholic Fatty Liver Disease
Sullivan, Jillian S; Le, MyPhuong T; Pan, Zhaoxing; Rivard, Christopher; Love-Osborne, Kathryn; Robbins, Kristen; Johnson, Richard J; Sokol, Ronald J; Sundaram, Shikha S
2014-01-01
Background Fructose intake is associated with NAFLD (Non-Alcoholic Fatty Liver Disease) development. Objective To measure fructose absorption/metabolism in pediatric NAFLD compared to obese and lean controls. Methods Children with histologically proven NAFLD, and obese and lean controls received oral fructose (1 gm/kg ideal body weight). Serum glucose, insulin, uric acid, and fructose, urine uric acid, urine fructose, and breath hydrogen levels were measured at baseline and multiple points until 360 minutes after fructose ingestion. Results Nine NAFLD (89% Hispanic, mean age 14.3 years, mean BMI 35.3 kg/m2), 6 Obese Controls (67% Hispanic, mean age 12.7 years, mean BMI 31.0 kg/m2), and 9 Lean Controls (44% Hispanic, mean age 14.3 years, mean BMI 19.4 kg/m2) were enrolled. Following fructose ingestion, NAFLD vs. Lean Controls had elevated serum glucose, insulin, and uric acid (p<0.05), higher urine uric acid (p=0.001) but lower fructose excretion (p=0.002) and lower breath hydrogen 180-min AUC (p=0.04). NAFLD vs. Obese Controls had similar post-fructose serum glucose, insulin, urine uric acid, and breath hydrogen, but elevated serum uric acid (p<0.05) and lower urine fructose excretion (p=0.02). Conclusions Children with NAFLD absorb and metabolize fructose more effectively than lean subjects, associated with an exacerbated metabolic profile following fructose ingestion. PMID:24961681
Chang, Zhihui; Wang, Hairui; Li, Beibei; Liu, Zhaoyu; Zheng, Jiahe
2018-01-01
Purpose: To explore the metabolic characterization of host responses to drainage-resistant Klebsiella pneumoniae liver abscesses (DRKPLAs) with serum 1H-nuclear magnetic resonance (NMR) spectroscopy. Materials and Methods: The hospital records of all patients with a diagnosis of a liver abscess between June 2015 and December 2016 were retrieved from an electronic hospital database. Eighty-six patients with Klebsiella pneumoniae ( K. pneumoniae ) liver abscesses who underwent percutaneous drainage were identified. Twenty patients with confirmed DRKPLAs were studied. Moreover, we identified 20 consecutive patients with drainage-sensitive Klebsiella pneumoniae liver abscesses (DSKPLAs) as controls. Serum samples from the two groups were analyzed with 1H NMR spectroscopy. Partial least squares discriminant analysis (PLS-DA) was used to perform 1H NMR metabolic profiling. Metabolites were identified using the Human Metabolome Database, and pathway analysis was performed with MetaboAnalyst 3.0. Results: The PLS-DA test was able to discriminate between the two groups. Five key metabolites that contributed to their discrimination were identified. Glucose, lactate, and 3-hydroxybutyrate were found to be upregulated in DRKPLAs, whereas glutamine and alanine were downregulated compared with the DSKPLAs. Pathway analysis indicated that amino acid metabolisms were significantly different between the DRKPLAs and the DSKPLAs. The D-glutamine and D-glutamate metabolisms exhibited the greatest influences. Conclusions: The five key metabolites identified in our study may be potential targets for guiding novel therapeutics of DRKPLAs and are worthy of additional investigation.
Wang, Ou; Liu, Jia; Cheng, Qian; Guo, Xiaoxuan; Wang, Yong; Zhao, Liang; Zhou, Feng; Ji, Baoping
2015-01-01
The high morbidity of metabolic dysfunction diseases has heightened interest in seeking natural and safe compounds to maintain optimal health. γ-Oryzanol (OZ), the ferulic acid (FA) ester with phytosterols, mainly present in rice bran has been shown to improve markers of metabolic syndrome. This study investigates the effects of FA and OZ on alleviating high-fat and high-fructose diet (HFFD)-induced metabolic syndrome parameters. Male SD rats were fed with a regular rodent diet, HFFD, or HFFD supplemented with 0.05% FA or 0.16% OZ (equimolar concentrations) for 13 weeks. Food intake, organ indices, serum lipid profiles, glucose metabolism, insulin resistance (IR) index and cytokine levels were analyzed. The mechanisms were further investigated in oleic acid-stimulated HepG2 cells by analyzing triglyceride (TG) content and lipogenesis-related gene expressions. In the in vivo study, FA and OZ exhibited similar effects in alleviating HFFD-induced obesity, hyperlipidemia, hyperglycemia, and IR. However, only OZ treatment significantly decreased liver index and hepatic TG content, lowered serum levels of C-reactive protein and IL-6, and increased serum concentration of adiponectin. In the in vitro assay, only OZ administration significantly inhibited intracellular TG accumulation and down-regulated expression of stearoyl coenzyme-A desaturase-1, which might facilitate OZ to enhance its hepatoprotective effect. OZ is more effective than FA in inhibiting hepatic fat accumulation and inflammation. Thus, FA and OZ could be used as dietary supplements to alleviate the deleterious effects of HFFD.
Wang, Xiao-Yu; Luo, Jian-Ping; Chen, Rui; Zha, Xue-Qiang; Pan, Li-Hua
2015-01-01
The prevalence of alcohol consumption has increased in modern dietary life and alcoholic liver injury can follow. Dendrobium huoshanense polysaccharide (DHP) is a homogeneous polysaccharide isolated from Dendrobium huoshanense, which possesses hepatoprotection function. In this study, we investigated the metabolic profiles of serum and liver tissues extracts from control, ethanol-treated and DHP\\ethanol-treated mice using a UHPLC/LTQ Orbitrap XL MS-based metabolomics approach. Our results indicated that DHP alleviated early steatosis and inflammation in liver histology and the metabolomic analysis of serum and hepatic tissue revealed that first, ethanol treatment mainly altered phosphatidylcholines (PCs) including PC (13:0) and phosphocholine, arachidonic acid metabolites including 20-ethyl PGF2α and amino acids including L-Proline; Second, DHP supplementation ameliorated the altered metabolic levels particularly involved in phosphocholine and L-Proline. These data suggested that DHP might restore the perturbed metabolism pathways by ethanol exposure to prevent the progression of alcoholic liver injury. Copyright © 2015 Elsevier B.V. All rights reserved.
Utility of metabolic profiling of serum in the diagnosis of pregnancy complications.
Powell, Katie L; Carrozzi, Anthony; Stephens, Alexandre S; Tasevski, Vitomir; Morris, Jonathan M; Ashton, Anthony W; Dona, Anthony C
2018-06-01
Currently there are no clinical screening tests available to identify pregnancies at risk of developing preeclampsia (PET) and/or intrauterine growth restriction (IUGR), both of which are associated with abnormal placentation. Metabolic profiling is now a stable analytical platform used in many laboratories and has successfully been used to identify biomarkers associated with various pathological states. We used nuclear magnetic resonance spectroscopy (NMR) to metabolically profile serum samples collected from 143 pregnant women at 26-41 weeks gestation with pregnancy outcomes of PET, IUGR, PET IUGR or small for gestational age (SGA) that were age-matched to normal pre/term pregnancies. Spectral analysis found no difference in the measured metabolites from normal term, pre-term and SGA samples, and of 25 identified metabolites, only glutamate was marginally different between groups. Of the identified metabolites, 3-methylhistidine, creatinine, acetyl groups and acetate, were determined to be independent predictors of PET and produced area under the curves (AUC) = 0.938 and 0.936 for the discovery and validation sets. Only 3-hydroxybutyrate was determined to be an independent predictor of IUGR, however the model had low predictive power (AUC = 0.623 and 0.581 for the discovery and validation sets). A sub-panel of metabolites had strong predictive power for identifying PET samples in a validation dataset, however prediction of IUGR was more difficult using the identified metabolites. NMR based metabolomics can identify metabolites strongly associated with disease and has the potential to be useful in developing early clinical screening tests for at risk pregnancies. Copyright © 2018 Elsevier Ltd. All rights reserved.
Brundige, Dottie R.; Maga, Elizabeth A.; Klasing, Kirk C.
2009-01-01
Nutrition, bacterial composition of the gastrointestinal tract, and general health status can all influence the metabolic profile of an organism. We previously demonstrated that feeding pasteurized transgenic goats’ milk expressing human lysozyme (hLZ) can positively impact intestinal morphology and modulate intestinal microbiota composition in young pigs. The objective of this study was to further examine the effect of consuming hLZ-containing milk on young pigs by profiling serum metabolites. Pigs were placed into two groups and fed a diet of solid food and either control (non-transgenic) goats’ milk or milk from hLZ-transgenic goats for 6 weeks. Serum samples were collected at the end of the feeding period and global metabolite profiling was performed. For a total of 225 metabolites (160 known, 65 unknown) semi-quantitative data was obtained. Levels of 18 known and 4 unknown metabolites differed significantly between the two groups with the direction of change in 13 of the 18 known metabolites being almost entirely congruent with improved health status, particularly in terms of the gastrointestinal tract health and immune response, with the effects of the other five being neutral or unknown. These results further support our hypothesis that consumption of hLZ-containing milk is beneficial to health. PMID:19847666
Brundige, Dottie R; Maga, Elizabeth A; Klasing, Kirk C; Murray, James D
2010-08-01
Nutrition, bacterial composition of the gastrointestinal tract, and general health status can all influence the metabolic profile of an organism. We previously demonstrated that feeding pasteurized transgenic goats' milk expressing human lysozyme (hLZ) can positively impact intestinal morphology and modulate intestinal microbiota composition in young pigs. The objective of this study was to further examine the effect of consuming hLZ-containing milk on young pigs by profiling serum metabolites. Pigs were placed into two groups and fed a diet of solid food and either control (non-transgenic) goats' milk or milk from hLZ-transgenic goats for 6 weeks. Serum samples were collected at the end of the feeding period and global metabolite profiling was performed. For a total of 225 metabolites (160 known, 65 unknown) semi-quantitative data was obtained. Levels of 18 known and 4 unknown metabolites differed significantly between the two groups with the direction of change in 13 of the 18 known metabolites being almost entirely congruent with improved health status, particularly in terms of the gastrointestinal tract health and immune response, with the effects of the other five being neutral or unknown. These results further support our hypothesis that consumption of hLZ-containing milk is beneficial to health.
Orhan, Cemal; Şahin, Nurhan; Tuzcu, Zeynep; Komorowski, James R.; Şahin, Kazım
2017-11-13
Background/aim: A novel complex of a nutritional supplement (CDB) contains chromium picolinate (CrPic), phosphatidylserine (PS), docosahexaenoic acid (DHA), and boron (B). The present study aimed to investigate the effects of CDB on the metabolic profile and memory acquisition in rats fed a high-fat diet (HFD). Materials and methods: Male Wistar rats were divided into six groups and received either a regular diet or HFD supplemented with or without different levels of CDB (0, 11, or 22 mg/kg BW). Results: Rats fed the HFD had greater glucose, insulin, lipid profile, and serum malondialdehyde concentrations, but lower serotonin and tryptophan in the serum and brain and lower Cr concentrations in serum, kidney, brain, and liver (P < 0.0001). CDB complex supplementation reversed all the effects, and the reversal effect was more pronounced with HFD for some parameters. Latency was less (P < 0.05) but probe was greater (P < 0.0001) for rats fed a regular diet. Increasing CDB complex levels in the diets resulted in a linear decrease in latency (P < 0.0002) but a linear increase in probe (P < 0.0002). Conclusion: Findings of the present work indicate that the CDB complex could be considered as an alternative treatment for preventing certain metabolic diseases and improving neurological functions, such as learning and memory.
Yan, J; Winter, L B; Burns-Whitmore, B; Vermeylen, F; Caudill, M A
2012-01-01
OBJECTIVES: We aimed to test the hypotheses that (i) plasma choline metabolites differ between normal (body mass index (BMI)<25 kg m−2) and overweight (BMI ⩾25 kg m−2) men, and (ii) an elevated BMI alters associations between plasma choline metabolites and indicators of metabolic stress. DESIGN: This was a cross-sectional study. A one-time fasting blood sample was obtained for measurements of the choline metabolites and metabolic stress indicators (that is, serum alanine aminotransferase (ALT), glucose, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglycerides and homocysteine), and for genotype determination. SUBJECTS: The analysis was conducted with 237 Mexican American men with a median age of 22 years. RESULTS: Compared with men with a normal BMI (n=98), those with an elevated BMI (n=139) had 6% lower (P=0.049) plasma betaine and an 11% lower (P=0.002) plasma betaine to choline ratio. Among men with an elevated BMI, plasma betaine and the plasma betaine to choline ratio positively associated (P⩽0.044) with a favorable serum cholesterol profile, and inversely associated (P=0.001) with serum ALT, a marker of liver dysfunction. The phosphatidylethanolamine N-methyltransferase (PEMT) 5465G→A (rs7946) genotype interacted (P⩽0.007) with the plasma betaine to choline ratio to modulate indicators of metabolic stress with stronger inverse associations observed among overweight men with the PEMT 5465GG genotype. CONCLUSIONS: Plasma choline metabolites predict metabolic stress among overweight men often in a genotype-specific manner. The diminished betaine among overweight men coupled with the inverse association between betaine and metabolic stress suggest that betaine supplementation may be effective in mitigating some of the metabolic insults arising from lipid overload. PMID:23169489
Maida, Adriano; Chan, Jessica S K; Sjøberg, Kim A; Zota, Annika; Schmoll, Dieter; Kiens, Bente; Herzig, Stephan; Rose, Adam J
2017-08-01
Dietary protein dilution (PD) has been associated with metabolic advantages such as improved glucose homeostasis and increased energy expenditure. This phenotype involves liver-induced release of FGF21 in response to amino acid insufficiency; however, it has remained unclear whether dietary dilution of specific amino acids (AAs) is also required. Circulating branched chain amino acids (BCAAs) are sensitive to protein intake, elevated in the serum of obese humans and mice and thought to promote insulin resistance. We tested whether replenishment of dietary BCAAs to an AA-diluted (AAD) diet is sufficient to reverse the glucoregulatory benefits of dietary PD. We conducted AA profiling of serum from healthy humans and lean and high fat-fed or New Zealand obese (NZO) mice following dietary PD. We fed wildtype and NZO mice one of three amino acid defined diets: control, total AAD, or the same diet with complete levels of BCAAs (AAD + BCAA). We quantified serum AAs and characterized mice in terms of metabolic efficiency, body composition, glucose homeostasis, serum FGF21, and tissue markers of the integrated stress response (ISR) and mTORC1 signaling. Serum BCAAs, while elevated in serum from hyperphagic NZO, were consistently reduced by dietary PD in humans and murine models. Repletion of dietary BCAAs modestly attenuated insulin sensitivity and metabolic efficiency in wildtype mice but did not restore hyperglycemia in NZO mice. While hepatic markers of the ISR such as P-eIF2α and FGF21 were unabated by dietary BCAA repletion, hepatic and peripheral mTORC1 signaling were fully or partially restored, independent of changes in circulating glucose or insulin. Repletion of BCAAs in dietary PD is sufficient to oppose changes in somatic mTORC1 signaling but does not reverse the hepatic ISR nor induce insulin resistance in type 2 diabetes during dietary PD.
Effect of alprazolam on rat serum metabolic profiles.
Li, Yan; Lin, Gaotong; Chen, Bingbao; Zhang, Jing; Wang, Lingtian; Li, Zixia; Cao, Yungang; Wen, Congcong; Yang, Xuezhi; Cao, Gaozhong; Wang, Xianqin; Cao, Guoquan
2017-09-01
We developed a serum metabolomic method by gas chromatography-mass spectrometry (GC-MS) to evaluate the effect of alprazolam in rats. The GC-MS with HP-5MS (0.25 μm × 30 m × 0.25 mm) mass was conducted in electron impact ionization (EI) mode with electron energy of 70 eV, and full-scan mode with m/z 50-550. The rats were randomly divided to four groups, three alprazolam-treated groups and a control group. The alprazolam-treated rats were given 5, 10 or 20 mg/kg (low, medium, high) of alprazolam by intragastric administration each day for 14 days. The serum samples were corrected on the seventh and fourteenth days for metabolomic study. The blood was collected for biochemical tests. Then liver and brain were rapidly isolated and immersed for pathological study. Compared with the control group, on the seventh and fourteen days, the levels of d-glucose, 9,12-octadecadienoic acid, butanoic acid, l-proline, d-mannose and malic acid had changed, indicating that alprazolam induced energy metabolism, fatty acid metabolism and amino acid metabolism perturbations in rats. There was no significant difference for alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, urea and uric acid between controls and alprazolam groups. According to the pathological results, alprazolam is not hepatotoxic. Metabolomics could distinguish different alprazolam doses in rats. Copyright © 2017 John Wiley & Sons, Ltd.
Fang, Bing; Li, Jin Wang; Zhang, Ming; Ren, Fa Zheng; Pang, Guo Fang
2018-01-01
Chlorpyrifos is a commonly-used pesticide which was reported to interfere with hormone signaling and metabolism, however, little is known about its effect on gut microbiota. In this study, adult male rats fed a normal (NF) or high fat (HF) diet were exposed to 0.3 or 3.0 mg chlorpyrifos/kg bodyweight/day or vehicle alone for 9 weeks. Effects on bodyweight, serum levels of glucose, lipid, cytokines, and gut microbiome community structure were measured. The effects of chlorpyrifos on metabolism were dose- and diet-dependent, with NF-fed rats administered the low dose showing the largest metabolic changes. NF-fed rats exposed to chlorpyrifos exhibited a pro-obesity phenotype compared with their controls, whereas there was no difference in pro-obesity phenotype between HF-fed groups. Chlorpyrifos exposure significantly reduced serum insulin, C-peptide, and amylin concentrations in NF- and HF-fed rats, leaving serum glucose and lipid profiles unaffected. Chlorpyrifos exposure also significantly altered gut microbiota composition, including the abundance of opportunistic pathogens, short chain fatty acid-producing bacteria and other bacteria previously associated with obese and diabetic phenotypes. The abundance of bacteria associated with neurotoxicity and islet injury was also significantly increased by chlorpyrifos. Our results suggest risk assessments for chlorpyrifos exposure should consider other effects in addition to neurotoxicity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Malek Mahdavi, Aida; Mahdavi, Reza; Kolahi, Sousan; Zemestani, Maryam; Vatankhah, Amir-Mansour
2015-08-01
Considering the pathologic importance of oxidative stress and altered lipid metabolism in osteoarthritis (OA), this study aimed to investigate the effect of l-carnitine supplementation on oxidative stress, lipid profile, and clinical status in women with knee OA. We hypothesized that l-carnitine would improve clinical status by modulating serum oxidative stress and lipid profile. In this randomized double-blind, placebo-controlled trial, 72 overweight or obese women with mild to moderate knee OA were randomly allocated into 2 groups to receive 750 mg/d l-carnitine or placebo for 8 weeks. Dietary intake was evaluated using 24-hour recall for 3 days. Serum malondialdehyde (MDA), total antioxidant capacity (TAC) and lipid profile, visual analog scale for pain intensity, and patient global assessment of severity of disease were assessed before and after supplementation. Only 69 patients (33 in the l-carnitine group and 36 in the placebo group) completed the study. l-Carnitine supplementation resulted in significant reductions in serum MDA (2.46 ± 1.13 vs 2.16 ± 0.94 nmol/mL), total cholesterol (216.09 ± 34.54 vs 206.12 ± 39.74 mg/dL), and low-density lipoprotein cholesterol (129.45 ± 28.69 vs 122.05 ± 32.76 mg/dL) levels compared with baseline (P < .05), whereas these parameters increased in the placebo group. Serum triglyceride, high-density lipoprotein cholesterol, and TAC levels did not change significantly in both groups (P > .05). No significant differences were observed in dietary intake, serum lipid profile, MDA, and TAC levels between groups after adjusting for baseline values and covariates (P > .05). There were significant intragroup and intergroup differences in pain intensity and patient global assessment of disease status after supplementation (P < .05). Collectively, l-carnitine improved clinical status without changing oxidative stress and lipid profile significantly in women with knee OA. Copyright © 2015 Elsevier Inc. All rights reserved.
Effect of psoriasis activity and topical treatment on serum lipocalin-2 levels.
Baran, A; Świderska, M; Myśliwiec, H; Flisiak, I
2017-03-01
Psoriasis has been considered as systemic disorder. Lipocalin-2 might be a link between psoriasis and its comorbidities. Aim of the study was to investigate the associations between serum lipocalin-2 levels and the disease activity, markers of inflammation or metabolic disturbances and changes after topical treatment in psoriatic patients. Thirty-seven individuals with active plaque-type psoriasis and 15 healthy controls were recruited. Blood samples were collected before and after 14 days of therapy. Serum lipocalin-2 concentrations were examined by enzyme-linked immunosorbent assay. The results were correlated with Psoriasis Area and Severity Index (PASI), body mass index (BMI), inflammatory and biochemical markers, lipid profile and with effectiveness of topical treatment. Lipocalin-2 serum levels were significantly increased in psoriatic patients in comparison to the controls (p = 0.023). No significant correlations with indicators of inflammation, nor BMI or PASI were noted. A statistical association between lipocalin-2 and low-density lipoprotein-cholesterol was shown. After topical treatment serum lipocalin-2 level did not significantly change (p = 0.9), still remaining higher than in the controls, despite clinical improvement. Lipocalin-2 might be a marker of psoriasis and convey cardiovascular or metabolic risk in psoriatic patients, but may not be a reliable indicator of inflammation, severity of psoriasis nor efficacy of antipsoriatic treatment.
[Intervention effects of Jiaotai pills on PCPA-induced insomnia in rats].
Yue, He; Zhou, Xiang-Yu; Li, Chun-Yuan; Zou, Zhong-Jie; Wang, Shu-Mei; Liang, Sheng-Wang; Gong, Meng-Juan
2016-09-01
To elucidate the intervention effects of Jiaotai pills(JTP) on p-chlorophenylalanine (PCPA)-induced insomnia in rats and its underlying mechanism, the insomnia model was established by single intraperitoneal injection with PCPA in rats. The locomotor activity of rats was observed, and the levels of nerve growth factor(NGF) in hypothalamus, hippocampus, prefrontal cortex and serum of rats were determined by using ELISA. Moreover, a proton nuclear magnetic resonance(¹H-NMR)-based metabonomic approach was developed to profile insomnia-related metabolites in rat serum and hippocampus and analyze the intervention effects of JTP on changes in underlying biomarkers related to locomotor activity, NGF and insomnia. According to the results, JTP could significantly suppress the locomotor activity of insomnia rats, and increase the NGF levels in hypothalamus, hippocampus, prefrontal cortex and serum of rats with insomnia. The disturbed metabolic state associated with PCPA-induced insomnia in rat serum and hippocampus could be intervened by JTP. Meanwhile, six and five potential biomarkers related to insomnia in rat serum and hippocampus were reversed by administration of JTP. In conclusion, the current study demonstrated that JTP had protective effects against PCPA-induced insomnia in rats, which was probably correlated with regulation of NGF level and metabolism of amino acids, lipids and choline. Copyright© by the Chinese Pharmaceutical Association.
Jonas, Marta Izabela; Kurylowicz, Alina; Bartoszewicz, Zbigniew; Lisik, Wojciech; Jonas, Maurycy; Domienik-Karlowicz, Justyna; Puzianowska-Kuznicka, Monika
2017-01-01
The interplay between adiponectin and resistin, the two adipokines of opposite effects, may determine the metabolic profile of obese individuals and development of obesity-related complications. The current study was conducted to assess how adiponectin/resistin interplay in sera and adipose tissues may influence the metabolic profile of obese and normal-weight subjects. Concentrations of adiponectin and resistin were measured on protein level by immunoassay in visceral and subcutaneous adipose tissues from 50 obese (body mass index > 40 kg/m 2 ) and 28 normal-weight (body mass index 20-24.9 kg/m 2 ) individuals. Simultaneously expression of ADIPOQ and RETN (encoding adiponectin and resistin, respectively) was assessed on mRNA level by real-time PCR. ADIPOQ mRNA (P = 0.0001) and adiponectin protein (P = 0.0013) levels were lower, while RETN mRNA (P = 0.0338) and resistin (P < 0.0001)-higher in subcutaneous adipose tissues of obese subjects. ADIPOQ and RETN mRNA levels did not correlate with protein concentrations in the investigated adipose tissues. In obesity adiponectin serum concentrations correlated positively with ADIPOQ mRNA in subcutaneous adipose tissue (P = 0.005) and negatively with protein levels in visceral adipose tissue (P = 0.001). Obesity was associated with higher adiponectin-resistin index value in sera (P < 0.0001) and decreased in subcutaneous adipose tissue (P < 0.001), but only adiponectin-resistin index measured in sera was significantly higher in obese with the metabolic syndrome (P = 0.04). Obesity affects synthesis of adiponectin and resistin mainly in subcutaneous adipose tissue. The adiponectin-resistin index assessed in the adipose tissues has a different prognostic value compared to the adiponectin-resistin index in serum and does not reflect a metabolic risk in obese individuals.
Gu, Jiaojiao; Jing, Lulu; Ma, Xiaotao; Zhang, Zhaofeng; Guo, Qianying; Li, Yong
2015-12-01
The present study aimed to explore the metabolic response of oat bran consumption in dyslipidemic rats by a high-throughput metabolomics approach. Four groups of Sprague-Dawley rats were used: N group (normal chow diet), M group (dyslipidemia induced by 4-week high-fat feeding, then normal chow diet), OL group and OH group (dyslipidemia induced, then normal chow diet supplemented with 10.8% or 43.4% naked oat bran). Intervention lasted for 12weeks. Gas chromatography quadrupole time-of-flight mass spectrometry was used to identify serum metabolite profiles. Results confirmed the effects of oat bran on improving lipidemic variables and showed distinct metabolomic profiles associated with diet intervention. A number of endogenous molecules were changed by high-fat diet and normalized following supplementation of naked oat bran. Elevated levels of serum unsaturated fatty acids including arachidonic acid (Log2Fold of change=0.70, P=.02 OH vs. M group), palmitoleic acid (Log2Fold of change=1.24, P=.02 OH vs. M group) and oleic acid (Log2Fold of change=0.66, P=.04 OH vs. M group) were detected after oat bran consumption. Furthermore, consumption of oat bran was also characterized by higher levels of methionine and S-adenosylmethionine. Pathway exploration found that most of the discriminant metabolites were involved in fatty acid biosynthesis, biosynthesis and metabolism of amino acids, microbial metabolism in diverse environments and biosynthesis of plant secondary metabolites. These results point to potential biomarkers and underlying benefit of naked oat bran in the context of diet-induced dyslipidemia and offer some insights into the mechanism exploration. Copyright © 2015 Elsevier Inc. All rights reserved.
Jee, Sun Ha; Kim, Minjoo; Kim, Minkyung; Yoo, Hye Jin; Kim, Hyungyoon; Jung, Keum Ji; Hong, Seri; Lee, Jong Ho
2018-05-01
In the prospective Korean Cancer Prevention Study-II (KCPS-II), we investigated the application of metabolomics to differentiate subjects with incident hepatocellular carcinoma (HCC group) from subjects who remained free of cancer (control group) during a mean follow-up period of 7 years with the aim of identifying valuable metabolic biomarkers for HCC. We used baseline serum samples from 75 subjects with incident HCC and 134 age- and gender-matched cancer-free subjects. Serum metabolic profiles associated with HCC incidence were investigated via metabolomics analysis. Compared with the control group, the HCC group showed significantly higher serum levels of aspartate aminotransferase (AST), alanine aminotransferase, and γ-glutamyl transpeptidase. At baseline, compared with the control group, the HCC group showed significantly higher levels of 9 metabolites, including leucine, 5-hydroxyhexanoic acid, phenylalanine, tyrosine, arachidonic acid, and tauroursodeoxycholic acid (TUDCA), but lower levels of 28 metabolites, including oleamide, androsterone sulfate, L-palmitoylcarnitine, lysophosphatidic acid (LPA) 16:0, LPA 18:1, and lysophosphatidylcholines (lysoPC). Multiple linear regression revealed that the incidence of HCC was associated with the levels of tyrosine, AST, lysoPCs (16:1, 20:3), oleamide, 5-hydroxyhexanoic acid, androsterone sulfate, and TUDCA (adjusted R 2 = 0.514, P = 0.036). This study showed the clinical relevance of the dysregulation of not only branched amino acids, aromatic amino acids, and lysoPCs but also bile acid biosynthesis and linoleic acid, arachidonic acid, and fatty acid metabolism. In addition, tyrosine, AST, lysoPCs (16:1, 20:3), oleamide, 5-hydroxyhexanoic acid, androsterone sulfate, and TUDCA were identified as independent variables associated with the incidence of HCC. Cancer Prev Res; 11(5); 303-12. ©2018 AACR . ©2018 American Association for Cancer Research.
Santangelo, C; Filesi, C; Varì, R; Scazzocchio, B; Filardi, T; Fogliano, V; D'Archivio, M; Giovannini, C; Lenzi, A; Morano, S; Masella, R
2016-11-01
Phenolic compounds naturally contained in extra-virgin olive oil (EVOO) have demonstrated anti-inflammatory and antioxidant properties. The present study aimed at evaluating the effects of a polyphenol-rich extra-virgin olive oil (EVOO) (high-polyphenol EVOO, HP-EVOO) on the metabolic control and the production of specific pro-/anti-inflammatory adipokines in overweight patients with type 2 diabetes mellitus (T2D). Eleven overweight T2D patients not in treatment with insulin were invited to follow their habitual diet for a total of 8 weeks. During the first 4 weeks (wash-out period), they were asked to consume refined olive oil (ROO, polyphenols not detectable) and then to replace ROO with HP-EVOO (25 mL/day, 577 mg of phenolic compounds/kg) for the remaining 4 weeks. Anthropometric parameters, fasting glycaemia, glycated haemoglobin (HbA1c), high-sensitive C-reactive protein, plasma lipid profile, liver function and serum levels of TNF-α, IL-6, adiponectin, visfatin and apelin were assessed at the end of each 4-week period. HP-EVOO consumption significantly reduced fasting plasma glucose (P = 0.023) and HbA1c (P = 0.039) levels as well as BMI (P = 0.012) and body weight (P = 0.012). HP-EVOO ingestion determined a reduction in serum level of aspartate aminotransferase (AST, P = 0.0056) and alanine aminotransferase (ALT, P = 0.024). Serum visfatin levels strongly decreased after HP-EVOO ingestion (P = 0.0021). Daily consumption of polyphenol-rich EVOO might improve metabolic control and circulating inflammatory adipokines profile in overweight T2D patients.
Yang, Shu-Yu; Li, Xue-Jun; Zhang, Wei; Liu, Chang-Qin; Zhang, Hui-Jie; Lin, Jin-Rong; Yan, Bing; Yu, Ya-Xin; Shi, Xiu-Lin; Li, Can-Dong; Li, Wei-Hua
2012-06-01
To investigate whether the Chinese lacto-vegetarian diet has protective effects on metabolic and cardiovascular disease (CVD). One hundred sixty-nine healthy Chinese lacto-vegetarians and 126 healthy omnivore men aged 21-76 years were enrolled. Anthropometric indexes, lipid profile, insulin sensitivity, pancreatic β cell function, and intima-media thickness (IMT) of carotid arteries were assessed and compared. Cardiovascular risk points and probability of developing CVD in 5-10 years in participants aged 24-55 years were calculated. Compared with omnivores, lacto-vegetarians had remarkably lower body mass index, systolic and diastolic blood pressure, and serum levels of triglyceride, total cholesterol, low-density lipoprotein cholesterol, apolipoprotein B, γ-glutamyl transferase, serum creatinine, uric acid, fasting blood glucose, as well as lower total cholesterol/high-density lipoprotein cholesterol ratio. Vegetarians also had higher homeostasis model assessment β cell function and insulin secretion index and thinner carotid IMT than the omnivores did. These results corresponded with lower cardiovascular risk points and probability of developing CVD in 5-10 years in vegetarians 24-55 years old. In healthy Chinese men, the lacto-vegetarian diet seems to exert protective effects on blood pressure, lipid profiles, and metabolic parameters and results in significantly lower carotid IMT. Lower CVD risks found in vegetarians also reflect the beneficial effect of the Chinese lacto-vegetarian diet.
Metabolic Phenotyping Reveals a Lipid Mediator Response to Ionizing Radiation
2015-01-01
Exposure to ionizing radiation has dramatically increased in modern society, raising serious health concerns. The molecular response to ionizing radiation, however, is still not completely understood. Here, we screened mouse serum for metabolic alterations following an acute exposure to γ radiation using a multiplatform mass-spectrometry-based strategy. A global, molecular profiling revealed that mouse serum undergoes a series of significant molecular alterations following radiation exposure. We identified and quantified bioactive metabolites belonging to key biochemical pathways and low-abundance, oxygenated, polyunsaturated fatty acids (PUFAs) in the two groups of animals. Exposure to γ radiation induced a significant increase in the serum levels of ether phosphatidylcholines (PCs) while decreasing the levels of diacyl PCs carrying PUFAs. In exposed mice, levels of pro-inflammatory, oxygenated metabolites of arachidonic acid increased, whereas levels of anti-inflammatory metabolites of omega-3 PUFAs decreased. Our results indicate a specific serum lipidomic biosignature that could be utilized as an indicator of radiation exposure and as novel target for therapeutic intervention. Monitoring such a molecular response to radiation exposure might have implications not only for radiation pathology but also for countermeasures and personalized medicine. PMID:25126707
Metabolic changes in serum steroids induced by total-body irradiation of female C57B/6 mice.
Moon, Ju-Yeon; Shin, Hee-June; Son, Hyun-Hwa; Lee, Jeongae; Jung, Uhee; Jo, Sung-Kee; Kim, Hyun Sik; Kwon, Kyung-Hoon; Park, Kyu Hwan; Chung, Bong Chul; Choi, Man Ho
2014-05-01
The short- and long-term effects of a single exposure to gamma radiation on steroid metabolism were investigated in mice. Gas chromatography-mass spectrometry was used to generate quantitative profiles of serum steroid levels in mice that had undergone total-body irradiation (TBI) at doses of 0Gy, 1Gy, and 4Gy. Following TBI, serum samples were collected at the pre-dose time point and 1, 3, 6, and 9 months after TBI. Serum levels of progestins, progesterone, 5β-DHP, 5α-DHP, and 20α-DHP showed a significant down-regulation following short-term exposure to 4Gy, with the exception of 20α-DHP, which was significantly decreased at each of the time points measured. The corticosteroids 5α-THDOC and 5α-DHB were significantly elevated at each of the time points measured after exposure to either 1 or 4Gy. Among the sterols, 24S-OH-cholestoerol showed a dose-related elevation after irradiation that reached significance in the high dose group at the 6- and 9-month time points. Copyright © 2014 Elsevier Ltd. All rights reserved.
Merzouk, H; Bouchenak, M; Loukidi, B; Madani, S; Prost, J; Belleville, J
2000-01-01
Aims—To determine the effects of fetal macrosomia related to maternal type 1 diabetes on the lipid transport system. Methods—Serum lipoprotein concentrations and composition and lecithin:cholesterol acyltransferase (LCAT) activity were investigated in macrosomic newborns (mean birth weight, 4650 g; SEM, 90) and their mothers with poorly controlled type 1 diabetes, in appropriate for gestational age newborns (mean birth weight, 3616 g; SEM, 68) and their mothers with well controlled type 1 diabetes, and macrosomic (mean birth weight, 4555 g; SEM, 86) or appropriate for gestational age (mean birth weight, 3290 g; SEM, 45) newborns and their healthy mothers. Results—In mothers with well controlled type 1 diabetes, serum lipids, apolipoproteins, and lipoproteins were comparable with those of healthy mothers. Similarly, in their infants, these parameters did not differ from those of appropriate for gestational age newborns. Serum triglyceride, very low density lipoprotein (VLDL), apolipoprotein B100 (apo B100), and high density lipoprotein (HDL) triglyceride concentrations were higher, whereas serum apo A-I and HDL3 concentrations were lower in mothers with diabetes and poor glycaemic control than in healthy mothers. Their macrosomic newborns had higher concentrations in all serum lipids and lipoproteins, with high apo A-I and apo B100 values compared with appropriate for gestational age newborns. In macrosomic infants of healthy mothers, there were no significant differences in lipoprotein profiles compared with those of appropriate for gestational age infants. LCAT activity was similar in both groups of mothers and newborns. Conclusion—Poorly controlled maternal type 1 diabetes and fetal macrosomia were associated with lipoprotein abnormalities. Macrosomic lipoprotein profiles related to poor metabolic control of type 1 diabetes appear to have implications for later metabolic diseases. Key Words: apolipoproteins • lipids • lipoproteins • lecithin:cholesterol acyltransferase • fetal macrosomia • maternal type 1 diabetes PMID:11265176
Viana, Laís Rosa; Canevarolo, Rafael; Luiz, Anna Caroline Perina; Soares, Raquel Frias; Lubaczeuski, Camila; Zeri, Ana Carolina de Mattos; Gomes-Marcondes, Maria Cristina Cintra
2016-10-03
Cachexia is one of the most important causes of cancer-related death. Supplementation with branched-chain amino acids, particularly leucine, has been used to minimise loss of muscle tissue, although few studies have examined the effect of this type of nutritional supplementation on the metabolism of the tumour-bearing host. Therefore, the present study evaluated whether a leucine-rich diet affects metabolomic derangements in serum and tumour tissues in tumour-bearing Walker-256 rats (providing an experimental model of cachexia). After 21 days feeding Wistar female rats a leucine-rich diet, distributed in L-leucine and LW-leucine Walker-256 tumour-bearing groups, we examined the metabolomic profile of serum and tumour tissue samples and compared them with samples from tumour-bearing rats fed a normal protein diet (C - control; W - tumour-bearing groups). We utilised 1 H-NMR as a means to study the serum and tumour metabolomic profile, tumour proliferation and tumour protein synthesis pathway. Among the 58 serum metabolites examined, we found that 12 were altered in the tumour-bearing group, reflecting an increase in activity of some metabolic pathways related to energy production, which diverted many nutrients toward tumour growth. Despite displaying increased tumour cell activity (i.e., higher Ki-67 and mTOR expression), there were no differences in tumour mass associated with changes in 23 metabolites (resulting from valine, leucine and isoleucine synthesis and degradation, and from the synthesis and degradation of ketone bodies) in the leucine-tumour group. This result suggests that the majority of nutrients were used for host maintenance. A leucine rich-diet, largely used to prevent skeletal muscle loss, did not affect Walker 256 tumour growth and led to metabolomic alterations that may partially explain the positive effects of leucine for the whole tumour-bearing host.
Gut Microbiota and Metabolic Endotoxemia in Young Obese Mexican Subjects
Radilla-Vázquez, Romina Belén; Parra-Rojas, Isela; Martínez-Hernández, Norma Edith; Márquez-Sandoval, Yolanda Fabiola; Illades-Aguiar, Berenice; Castro-Alarcón, Natividad
2016-01-01
Background The gut microbiota plays an important role in human metabolism; previous studies suggest that the imbalance can cause a metabolic endotoxemia that may be linked to weight gain and insulin resistance. The purpose of this study was to investigate the relationship between the gut microbiota composition, the lipopolysaccharide levels and the metabolic profile in obese and normal-weight young subjects. Methods We studied 32 obese (BMI ≥ 30 kg/m2) and 32 normal-weight subjects (BMI = 18.5-24.9 kg/m2), aged 18-25 years. Quantification of intestinal bacteria was performed by real-time PCR. Endotoxin units were determined with the test QCL-1000, and biochemical profile was performed under a standard protocol of Spinreact. Results Obese individuals had a BMI of 34.5 (32.9-36.45) kg/m2, increased triglycerides (123 vs. 70 mg/dl), total cholesterol (168 vs. 142 mg/dl), and LDL-cholesterol (114 vs. 96.5 mg/dl). In obese subjects body temperature was higher than in normal-weight subjects. We found a greater number of Clostridum leptum and Lactobacillus (p < 0.001) and lower numbers of Prevotella and Escherichia coli (p < 0.001) in the obese group. A decrease of E. coli was associated with an increased risk of lipopolysaccharide levels ranging from 1 to 1.3 EU/ml. A positive correlation was found between serum lipopolysaccharides and BMI (r = 0.46, p = 0.008), triglyceride levels (r = 0.44, p = 0.011) as well as waist circumference (r = 0.34, p = 0.040), being more evident in young obese females. Conclusion Subclinical metabolic endotoxemia determined by serum concentration of lipopolysaccharides was related to the smallest amount of E. coli, high triglyceride levels, and central adiposity in obese young persons. PMID:26745497
Macotela, Yazmin; Emanuelli, Brice; Bång, Anneli M.; Espinoza, Daniel O.; Boucher, Jeremie; Beebe, Kirk; Gall, Walter; Kahn, C. Ronald
2011-01-01
Environmental factors, such as the macronutrient composition of the diet, can have a profound impact on risk of diabetes and metabolic syndrome. In the present study we demonstrate how a single, simple dietary factor—leucine—can modify insulin resistance by acting on multiple tissues and at multiple levels of metabolism. Mice were placed on a normal or high fat diet (HFD). Dietary leucine was doubled by addition to the drinking water. mRNA, protein and complete metabolomic profiles were assessed in the major insulin sensitive tissues and serum, and correlated with changes in glucose homeostasis and insulin signaling. After 8 weeks on HFD, mice developed obesity, fatty liver, inflammatory changes in adipose tissue and insulin resistance at the level of IRS-1 phosphorylation, as well as alterations in metabolomic profile of amino acid metabolites, TCA cycle intermediates, glucose and cholesterol metabolites, and fatty acids in liver, muscle, fat and serum. Doubling dietary leucine reversed many of the metabolite abnormalities and caused a marked improvement in glucose tolerance and insulin signaling without altering food intake or weight gain. Increased dietary leucine was also associated with a decrease in hepatic steatosis and a decrease in inflammation in adipose tissue. These changes occurred despite an increase in insulin-stimulated phosphorylation of p70S6 kinase indicating enhanced activation of mTOR, a phenomenon normally associated with insulin resistance. These data indicate that modest changes in a single environmental/nutrient factor can modify multiple metabolic and signaling pathways and modify HFD induced metabolic syndrome by acting at a systemic level on multiple tissues. These data also suggest that increasing dietary leucine may provide an adjunct in the management of obesity-related insulin resistance. PMID:21731668
Eguchi, Akifumi; Sakurai, Kenichi; Watanabe, Masahiro; Mori, Chisato
2017-05-01
Polychlorinated biphenyls (PCBs) have been associated with adverse human reproductive and fetal developmental measures or outcomes because of their endocrine-disrupting effects; however, the biological mechanisms of adverse effects of PCB exposure in humans are not currently well established. In this study, we aimed to identify the biological pathways and potential biomarkers of PCB exposure in maternal and umbilical cord serum using a hydrophilic interaction chromatography-tandem mass spectrometry (HILIC-MS/MS) metabolomics platform. The median concentration of total PCBs in maternal (n=93) and cord serum (n=93) were 350 and 70pgg -1 wet wt, respectively. PCB levels in maternal and fetal serum from the Chiba Study of Mother and Children's Health (C-MACH) cohort are comparable to those of earlier cohort studies conducted in Japan, the USA, and European countries. We used the random forest model with the metabolome profile to predict exposure levels of PCB (first quartile [Q1] and fourth quartile [Q4]) for pregnant women and fetuses. In the prediction model for classification of Q1 versus Q4 (area-under-curve [AUC]: pregnant women=0.812 and fetuses=0.919), citraconic acid level in maternal serum and ethanolamine, p-hydroxybenzoate, and purine levels in cord serum had >0.70 AUC values. These candidate biomarkers and metabolite included in composited models were related to glutathione and amino acid metabolism in maternal serum and the amino acid metabolism and ubiquinone and other terpenoid-quinone biosynthesis in cord serum (FDR <0.10), indicating disruption of metabolic pathways by PCB exposure in pregnant women and fetuses. These results showed that metabolome analysis might be useful to explore potential biomarkers and related biological pathways for PCB exposure. Thus, more detailed studies are needed to verify sensitivity of the biomarkers and clarify the biochemical changes resulting from PCB exposure. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Intermittent hypoxia induces hyperlipidemia in lean mice.
Li, Jianguo; Thorne, Laura N; Punjabi, Naresh M; Sun, Cheuk-Kwan; Schwartz, Alan R; Smith, Philip L; Marino, Rafael L; Rodriguez, Annabelle; Hubbard, Walter C; O'Donnell, Christopher P; Polotsky, Vsevolod Y
2005-09-30
Obstructive sleep apnea, a syndrome leading to recurrent intermittent hypoxia (IH), has been associated previously with hypercholesterolemia, independent of underlying obesity. We examined the effects of experimentally induced IH on serum lipid levels and pathways of lipid metabolism in the absence and presence of obesity. Lean C57BL/6J mice and leptin-deficient obese C57BL/6J-Lep(ob) mice were exposed to IH for five days to determine changes in serum lipid profile, liver lipid content, and expression of key hepatic genes of lipid metabolism. In lean mice, exposure to IH increased fasting serum levels of total cholesterol, high-density lipoprotein (HDL) cholesterol, phospholipids (PLs), and triglycerides (TGs), as well as liver TG content. These changes were not observed in obese mice, which had hyperlipidemia and fatty liver at baseline. In lean mice, IH increased sterol regulatory element binding protein 1 (SREBP-1) levels in the liver, increased mRNA and protein levels of stearoyl-coenzyme A desaturase 1 (SCD-1), an important gene of TG and PL biosynthesis controlled by SREBP-1, and increased monounsaturated fatty acid content in serum, which indicated augmented SCD-1 activity. In addition, in lean mice, IH decreased protein levels of scavenger receptor B1, regulating uptake of cholesterol esters and HDL by the liver. We conclude that exposure to IH for five days increases serum cholesterol and PL levels, upregulates pathways of TG and PL biosynthesis, and inhibits pathways of cholesterol uptake in the liver in the lean state but does not exacerbate the pre-existing hyperlipidemia and metabolic disturbances in leptin-deficient obesity.
Metabolomic Changes in Serum of Children with Different Clinical Diagnoses of Malnutrition.
Di Giovanni, Valeria; Bourdon, Celine; Wang, Dominic X; Seshadri, Swapna; Senga, Edward; Versloot, Christian J; Voskuijl, Wieger; Semba, Richard D; Trehan, Indi; Moaddel, Ruin; Ordiz, M Isabel; Zhang, Ling; Parkinson, John; Manary, Mark J; Bandsma, Robert Hj
2016-12-01
Mortality in children with severe acute malnutrition (SAM) remains high despite standardized rehabilitation protocols. Two forms of SAM are classically distinguished: kwashiorkor and marasmus. Children with kwashiorkor have nutritional edema and metabolic disturbances, including hypoalbuminemia and hepatic steatosis, whereas marasmus is characterized by severe wasting. The metabolic changes underlying these phenotypes have been poorly characterized, and whether homeostasis is achieved during hospital stay is unclear. We aimed to characterize metabolic differences between children with marasmus and kwashiorkor at hospital admission and after clinical stabilization and to compare them with stunted and nonstunted community controls. We studied children aged 9-59 mo from Malawi who were hospitalized with SAM (n = 40; 21 with kwashiorkor and 19 with marasmus) or living in the community (n = 157; 78 stunted and 79 nonstunted). Serum from patients with SAM was obtained at hospital admission and 3 d after nutritional stabilization and from community controls. With the use of targeted metabolomics, 141 metabolites, including amino acids, biogenic amines, acylcarnitines, sphingomyelins, and phosphatidylcholines, were measured. At admission, most metabolites (128 of 141; 91%) were lower in children with kwashiorkor than in those with marasmus, with significant differences in several amino acids and biogenic amines, including those of the kynurenine-tryptophan pathway. Several phosphatidylcholines and some acylcarnitines also differed. Patients with SAM had profiles that were profoundly different from those of stunted and nonstunted controls, even after clinical stabilization. Amino acids and biogenic amines generally improved with nutritional rehabilitation, but most sphingomyelins and phosphatidylcholines did not. Children with kwashiorkor were metabolically distinct from those with marasmus, and were more prone to severe metabolic disruptions. Children with SAM showed metabolic profiles that were profoundly different from stunted and nonstunted controls, even after clinical stabilization. Therefore, metabolic recovery in children with SAM likely extends beyond discharge, which may explain the poor long-term outcomes in these children. This trial was registered at isrctn.org as ISRCTN13916953. © 2016 American Society for Nutrition.
Metabolomic Changes in Serum of Children with Different Clinical Diagnoses of Malnutrition123
Di Giovanni, Valeria; Wang, Dominic X; Seshadri, Swapna; Senga, Edward; Versloot, Christian J; Semba, Richard D; Moaddel, Ruin; Ordiz, M Isabel; Zhang, Ling; Parkinson, John; Manary, Mark J; Bandsma, Robert HJ
2016-01-01
Background: Mortality in children with severe acute malnutrition (SAM) remains high despite standardized rehabilitation protocols. Two forms of SAM are classically distinguished: kwashiorkor and marasmus. Children with kwashiorkor have nutritional edema and metabolic disturbances, including hypoalbuminemia and hepatic steatosis, whereas marasmus is characterized by severe wasting. The metabolic changes underlying these phenotypes have been poorly characterized, and whether homeostasis is achieved during hospital stay is unclear. Objectives: We aimed to characterize metabolic differences between children with marasmus and kwashiorkor at hospital admission and after clinical stabilization and to compare them with stunted and nonstunted community controls. Methods: We studied children aged 9–59 mo from Malawi who were hospitalized with SAM (n = 40; 21 with kwashiorkor and 19 with marasmus) or living in the community (n = 157; 78 stunted and 79 nonstunted). Serum from patients with SAM was obtained at hospital admission and 3 d after nutritional stabilization and from community controls. With the use of targeted metabolomics, 141 metabolites, including amino acids, biogenic amines, acylcarnitines, sphingomyelins, and phosphatidylcholines, were measured. Results: At admission, most metabolites (128 of 141; 91%) were lower in children with kwashiorkor than in those with marasmus, with significant differences in several amino acids and biogenic amines, including those of the kynurenine-tryptophan pathway. Several phosphatidylcholines and some acylcarnitines also differed. Patients with SAM had profiles that were profoundly different from those of stunted and nonstunted controls, even after clinical stabilization. Amino acids and biogenic amines generally improved with nutritional rehabilitation, but most sphingomyelins and phosphatidylcholines did not. Conclusions: Children with kwashiorkor were metabolically distinct from those with marasmus, and were more prone to severe metabolic disruptions. Children with SAM showed metabolic profiles that were profoundly different from stunted and nonstunted controls, even after clinical stabilization. Therefore, metabolic recovery in children with SAM likely extends beyond discharge, which may explain the poor long-term outcomes in these children. This trial was registered at isrctn.org as ISRCTN13916953. PMID:27807038
Temperament Type Specific Metabolite Profiles of the Prefrontal Cortex and Serum in Cattle
Brand, Bodo; Hadlich, Frieder; Brandt, Bettina; Schauer, Nicolas; Graunke, Katharina L.; Langbein, Jan; Repsilber, Dirk; Ponsuksili, Siriluk; Schwerin, Manfred
2015-01-01
In the past decade the number of studies investigating temperament in farm animals has increased greatly because temperament has been shown not only to affect handling but also reproduction, health and economically important production traits. However, molecular pathways underlying temperament and molecular pathways linking temperament to production traits, health and reproduction have yet to be studied in full detail. Here we report the results of metabolite profiling of the prefrontal cortex and serum of cattle with distinct temperament types that were performed to further explore their molecular divergence in the response to the slaughter procedure and to identify new targets for further research of cattle temperament. By performing an untargeted comprehensive metabolite profiling, 627 and 1097 metabolite features comprising 235 and 328 metabolites could be detected in the prefrontal cortex and serum, respectively. In total, 54 prefrontal cortex and 51 serum metabolite features were indicated to have a high relevance in the classification of temperament types by a sparse partial least square discriminant analysis. A clear discrimination between fearful/neophobic-alert, interested-stressed, subdued/uninterested-calm and outgoing/neophilic-alert temperament types could be observed based on the abundance of the identified relevant prefrontal cortex and serum metabolites. Metabolites with high relevance in the classification of temperament types revealed that the main differences between temperament types in the response to the slaughter procedure were related to the abundance of glycerophospholipids, fatty acyls and sterol lipids. Differences in the abundance of metabolites related to C21 steroid metabolism and oxidative stress indicated that the differences in the metabolite profiles of the four extreme temperament types could be the result of a temperament type specific regulation of molecular pathways that are known to be involved in the stress and fear response. PMID:25927228
Temperament type specific metabolite profiles of the prefrontal cortex and serum in cattle.
Brand, Bodo; Hadlich, Frieder; Brandt, Bettina; Schauer, Nicolas; Graunke, Katharina L; Langbein, Jan; Repsilber, Dirk; Ponsuksili, Siriluk; Schwerin, Manfred
2015-01-01
In the past decade the number of studies investigating temperament in farm animals has increased greatly because temperament has been shown not only to affect handling but also reproduction, health and economically important production traits. However, molecular pathways underlying temperament and molecular pathways linking temperament to production traits, health and reproduction have yet to be studied in full detail. Here we report the results of metabolite profiling of the prefrontal cortex and serum of cattle with distinct temperament types that were performed to further explore their molecular divergence in the response to the slaughter procedure and to identify new targets for further research of cattle temperament. By performing an untargeted comprehensive metabolite profiling, 627 and 1097 metabolite features comprising 235 and 328 metabolites could be detected in the prefrontal cortex and serum, respectively. In total, 54 prefrontal cortex and 51 serum metabolite features were indicated to have a high relevance in the classification of temperament types by a sparse partial least square discriminant analysis. A clear discrimination between fearful/neophobic-alert, interested-stressed, subdued/uninterested-calm and outgoing/neophilic-alert temperament types could be observed based on the abundance of the identified relevant prefrontal cortex and serum metabolites. Metabolites with high relevance in the classification of temperament types revealed that the main differences between temperament types in the response to the slaughter procedure were related to the abundance of glycerophospholipids, fatty acyls and sterol lipids. Differences in the abundance of metabolites related to C21 steroid metabolism and oxidative stress indicated that the differences in the metabolite profiles of the four extreme temperament types could be the result of a temperament type specific regulation of molecular pathways that are known to be involved in the stress and fear response.
Metabolic Profiling of Geobacter sulfurreducens during Industrial Bioprocess Scale-Up.
Muhamadali, Howbeer; Xu, Yun; Ellis, David I; Allwood, J William; Rattray, Nicholas J W; Correa, Elon; Alrabiah, Haitham; Lloyd, Jonathan R; Goodacre, Royston
2015-05-15
During the industrial scale-up of bioprocesses it is important to establish that the biological system has not changed significantly when moving from small laboratory-scale shake flasks or culturing bottles to an industrially relevant production level. Therefore, during upscaling of biomass production for a range of metal transformations, including the production of biogenic magnetite nanoparticles by Geobacter sulfurreducens, from 100-ml bench-scale to 5-liter fermentors, we applied Fourier transform infrared (FTIR) spectroscopy as a metabolic fingerprinting approach followed by the analysis of bacterial cell extracts by gas chromatography-mass spectrometry (GC-MS) for metabolic profiling. FTIR results clearly differentiated between the phenotypic changes associated with different growth phases as well as the two culturing conditions. Furthermore, the clustering patterns displayed by multivariate analysis were in agreement with the turbidimetric measurements, which displayed an extended lag phase for cells grown in a 5-liter bioreactor (24 h) compared to those grown in 100-ml serum bottles (6 h). GC-MS analysis of the cell extracts demonstrated an overall accumulation of fumarate during the lag phase under both culturing conditions, coinciding with the detected concentrations of oxaloacetate, pyruvate, nicotinamide, and glycerol-3-phosphate being at their lowest levels compared to other growth phases. These metabolites were overlaid onto a metabolic network of G. sulfurreducens, and taking into account the levels of these metabolites throughout the fermentation process, the limited availability of oxaloacetate and nicotinamide would seem to be the main metabolic bottleneck resulting from this scale-up process. Additional metabolite-feeding experiments were carried out to validate the above hypothesis. Nicotinamide supplementation (1 mM) did not display any significant effects on the lag phase of G. sulfurreducens cells grown in the 100-ml serum bottles. However, it significantly improved the growth behavior of cells grown in the 5-liter bioreactor by reducing the lag phase from 24 h to 6 h, while providing higher yield than in the 100-ml serum bottles. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Jiang, Linlin; Huang, Jia; Chen, Yaxiao; Yang, Yabo; Li, Ruiqi; Li, Yu; Chen, Xiaoli; Yang, Dongzi
2016-07-01
This study aimed to detect serum microRNAs (miRNAs) differentially expressed between polycystic ovary syndrome (PCOS) patients with impaired glucose metabolism (IGM), PCOS patients with normal glucose tolerance (NGT), and healthy controls. A TaqMan miRNA array explored serum miRNA profiles as a pilot study, then selected miRNAs were analyzed in a validation cohort consisting of 65 PCOS women with IGM, 65 PCOS women with NGT, and 45 healthy women The relative expression of miR-122, miR-193b, and miR-194 was up-regulated in PCOS patients compared with controls, whereas that of miR-199b-5p was down-regulated. Furthermore, miR-122, miR-193b, and miR-194 were increased in the PCOS-IGM group compared with the PCOS-NGT group. Multiple linear regression analyses revealed that miR-193b and body mass index contributed independently to explain 43.7 % (P < 0.0001) of homeostasis model assessment-insulin resistance after adjustment for age. Investigation of diagnostic values confirmed the optimal combination of BMI and miR-193b to explore the possibility of IGM in PCOS women with area under the curve of 0.752 (95 % CI 0.667-0.837, P < 0.001). Bioinformatics analysis indicated that the predicted target functions of these miRNAs mainly involved glycometabolism and ovarian follicle development pathways, including the insulin signaling pathway, the neurotrophin signaling pathway, the PI3K-AKT signaling pathway, and regulation of actin cytoskeleton. This study expands our knowledge of the serum miRNA expression profiles of PCOS patients with IGM and the predicted target signal pathways involved in disease pathophysiology.
Assessment of serum biomarkers in rats after exposure to pesticides of different chemical classes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moser, Virginia C., E-mail: Moser.ginger@epa.gov; Stewart, Nicholas; Freeborn, Danielle L.
There is increasing emphasis on the use of biomarkers of adverse outcomes in safety assessment and translational research. We evaluated serum biomarkers and targeted metabolite profiles after exposure to pesticides (permethrin, deltamethrin, imidacloprid, carbaryl, triadimefon, fipronil) with different neurotoxic actions. Adult male Long–Evans rats were evaluated after single exposure to vehicle or one of two doses of each pesticide at the time of peak effect. The doses were selected to produce similar magnitude of behavioral effects across chemicals. Serum or plasma was analyzed using commercial cytokine/protein panels and targeted metabolomics. Additional studies of fipronil used lower doses (lacking behavioral effects),more » singly or for 14 days, and included additional markers of exposure and biological activity. Biomarker profiles varied in the number of altered analytes and patterns of change across pesticide classes, and discriminant analysis could separate treatment groups from control. Low doses of fipronil produced greater effects when given for 14 days compared to a single dose. Changes in thyroid hormones and relative amounts of fipronil and its sulfone metabolite also differed between the dosing regimens. Most cytokine changes reflected alterations in inflammatory responses, hormone levels, and products of phospholipid, fatty acid, and amino acid metabolism. These findings demonstrate distinct blood-based analyte profiles across pesticide classes, dose levels, and exposure duration. These results show promise for detailed analyses of these biomarkers and their linkages to biological pathways. - Highlights: • Pesticides typical of different classes produced distinct patterns of change in biomarker panels. • Based on the panels used, alterations suggest impacts on immune, metabolism, and homeostasis functions. • Some changes may reflect actions on neurotransmitter systems involved in immune modulation. • Fipronil effects on thyroid and kinetics differed with acute and repeated administration.« less
Cenci, Maria Claudia Peixoto; Soares, Débora Vieira; Spina, Luciana Diniz Carneiro; Brasil, Rosane Resende de Lima Oliveira; Lobo, Priscila Marise; Michmacher, Eduardo; Vaisman, Mario; Boguszewski, Cesar Luiz; Conceição, Flávia Lúcia
2012-01-01
To compare the effects of two regimens of GH therapy with different target IGF-1 levels on anthropometric parameters, glucose metabolism, lipid profile and cardiac function in adults with GH deficiency (GHD). Retrospective analysis of 14 GHD adults from Clementino Fraga Filho University Hospital, Rio de Janeiro, Brazil, who were treated with a GH regimen aimed at maintaining serum IGF-1 levels between the median and upper reference limit (high dose group - HDGH) and 18 GHD adults from Federal University Hospital, Curitiba, Brazil, who received a fixed GH dose of 0.2mg/day in the first year of treatment, followed by titration to maintain serum IGF-1 levels between the median and lower reference limit (low dose group - LDGH). All patients were followed for 2 years with analysis of anthropometric parameters, serum levels of IGF-1, glucose, insulin, HOMA-IR, lipid profile, and transthoracic echocardiography. Changes on weight, BMI and waist circumference were similar between the two groups. Insulin levels increased and HOMA-IR worsened in the LDGH group at 1year and improved thereafter. Total cholesterol and triglycerides did not change with therapy. LDL cholesterol reduced in both groups, while HDL-cholesterol significantly increased only in the HDGH group (p=0.007 vs LDGH). No significant variations on echocardiographic parameters were observed. The HDGH and LDGH regimens resulted in similar changes on anthropometric, echocardiographic, glucose and lipid parameters in GHD adults, except for increase in HDL cholesterol that was only observed in the HDGH regimen. Copyright © 2012 Elsevier Ltd. All rights reserved.
Omidi, Arash; Sajedi, Zhila; Montazer Torbati, Mohammad Bagher; Ansari Nik, Hossein
2014-04-01
Changes in lipid metabolism have been shown to occur during pregnancy. The thyroid hormones affect lipid metabolism. The present study was carried out to find out whether the last trimester of pregnancy affects thyroid hormones, thyroid-stimulating hormone (TSH), lipid, and lipoprotein profile in healthy dromedary camels. Twenty clinical healthy dromedary camels aged between 4-5 years were divided into two equal groups: (1) pregnant camels in their last trimester of pregnancy and (2) non-pregnant age-matched controls. Thyroid function tests were carried out by measuring serum levels of TSH, free thyroxin (fT4), total thyroxin (T4), free triiodothyronine (fT3), and total triiodothyronine (T3) by commercially available radio immunoassay kits. Total cholesterol (TC), triglyceride (TG), and high-density lipoprotein (HDL) cholesterol were analyzed using enzymatic/spectrophotometric methods while low-density lipoprotein (LDL) cholesterol, very low-density lipoprotein (VLDL), and total lipid (TL) were calculated using Friedewald's and Raylander's formula, respectively. Serum levels of TSH and thyroid hormones except fT4 did not show any significant difference between pregnant and non-pregnant camels. fT4 level was lower in the pregnant camels (P < 0.05). Serum levels of total cholesterol, triglyceride, total lipid, LDL cholesterol, HDL cholesterol, and VLDL did not show significant difference between pregnant and non-pregnant camels. All of these variables in pregnant camels were higher than non-pregnant. Based on the results of this study, the fetus load may not alter the thyroid status of the camel and the concentrations of thyroid hormones were not correlated with TSH and lipid profile levels in the healthy pregnant camels.
Ward, William O; Delker, Don A; Hester, Susan D; Thai, Sheau-Fung; Wolf, Douglas C; Allen, James W; Nesnow, Stephen
2006-01-01
Conazoles are environmental and pharmaceutical fungicides. The present study relates the toxicological effects of conazoles to alterations of gene and pathway transcription and identifies potential modes of tumorigenic action. In a companion study employing conventional toxicological bioassays (Allen et al., 2006), male CD-1 mice were fed triadimefon, propiconazole, or myclobutanil in a continuous oral-dose regimen for 4, 30, or 90 days. These conazoles were found to induce hepatomegaly, to induce high levels of hepatic pentoxyresorufin-O-dealkylase activity, to increase hepatic cell proliferation, to decrease serum cholesterol, and to increase serum triglycerides. Differentially expressed genes and pathways were identified using Affymetrix GeneChips. Gene-pathway associations were obtained from the Kyoto Encyclopedia of Genes and Genomes, Biocarta, and MetaCore compendia. The pathway profiles of each conazole were different at each time point. In general, the number of altered metabolism, signaling, and growth pathways increased with time and dose and were greatest with propiconazole. All conazoles had effects on nuclear receptors as evidenced by increased expression and enzymatic activities of a series of related cytochrome P450s (CYP). A subset of altered genes and pathways distinguished the three conazoles from each other. Triadimefon and propiconazole both altered apoptosis, cell cycle, adherens junction, calcium signaling, and EGFR signaling pathways. Triadimefon produced greater changes in cholesterol biosynthesis and retinoic acid metabolism genes and in selected signaling pathways. Propiconazole had greater effects on genes responding to oxidative stress and on the IGF/P13K/AKt/PTEN/mTor and Wnt-beta-catenin pathways. In conclusion, while triadimefon, propiconazole, and myclobutanil had similar effects in mouse liver on hepatomegaly, histology, CYP activities, cell proliferation, and serum cholesterol, genomic analyses revealed major differences in their gene expression profiles.
DelGiudice, G.D.; Mech, L.D.; Kunkel, K.E.; Gese, E.M.; Seal, U.S.
1992-01-01
Weights, hematology, and serum profIles of white-tailed does in the central Superior National Forest of northeastern Minnesota were examined year-around to determine seasonal patterns of nutritional condition and metabolism. Deer were initially captured by Clover trap or rocket net. Between 15 February 1989 and 23 January 1990, we recaptured 12 adult (> 1.5 years) female deer 1-9 times each (a total of 59 recaptures) using a radio-controlled capture collar. Monthly weights of deer exhibited a cyclic seasonal pattern. Mean weight declined 22 % from February to an annual minimum during May, then steadily increased 45 % to a maximum in October. Seasonal patterns were most evident for hemoglobin concentration, red blood cells, packed cell volume, serum total protein, urea nitrogen, creatinine, the urea N to creatinine ratio, triiodothyronine, cortisol, and potassium. Wide seasonal variations of these characteristics were indicative of shifts in the deer's metabolic physiology. Although seasonal metabolic shifts are partially attributable to an endogenous rhythm, the intensity of, their expression was most likely affected by nutritional changes and concomitant alterations of body condition. Annual changes in seasonal trends of blood characteristics may be useful in investigating nutritional effects of specific environmental and demographic factors. We compare our findings with those reported for deer on ranges farther south.
Ali, Adil Ahmed; Ali, Khalid Eltom; Fadlalla, Abd Eigani; Khalid, Khalid Eltahir
2008-01-10
This study aimed at assessing the effect of gum arabic (Acacia senegal) oral treatment on the metabolic profile of chronic renal failure (CRF) patients. A total of 36 CRF patients (under regular haemodialysis) and 10 normal subjects participated in this study. The patients were randomly allocated into three groups-group A: 12 CRF patients under low-protein diet (LPD) (<40 g day(-1)) and gum arabic (50 g day(-1)) treatment; group B: 14 CRF patients under LPD and gum arabic, iron (ferrous sulphate, 200 mg day(-1)) and folic acid (5 mg day(-1)) treatment; group C (control group): 10 CRF patients under LPD and iron and folic acid treatment and group D: 10 normal volunteers (on normal diet) under daily dose of 50 g gum arabic. Each of the above treatments was continued for three consecutive months. Blood samples were collected from each subject before treatment and twice per month "pre-dialysis" for 3 months. Biochemical parameters measured were: serum urea, serum creatinine, serum uric acid, serum calcium and serum phosphorus. By the end of the 3 months of treatment, serum urea levels significantly decreased by 31.2 and 44.18% for group A and B, respectively, compared with the baseline (0.01 < p < 0.001) and control group (p < 0.05). Serum creatinine levels significantly decreased in the groups of gum users (A, B and D) by 9.94, 12.65 and 11.7%, respectively, compared with the control group (p < 0.001). There was a significant decrease (p < 0.05) in serum uric acid levels by 14 and 19.9% for group A and B, respectively, compared with the baseline. Serum calcium levels increased by 12.64, 15.75 and 8.75% for group A, B and D, respectively, and these increases were significantly different (0.05 < p < 0.001) from baseline and control group for groups A and B. Serum phosphorus levels significantly decreased by 22.54% for group A, 17.69% for group B and 7.71% for group D, compared with the baseline (0.05 < p < 0.001). From this study, we conclude that oral administration of gum arabic could conceivably alleviate adverse effects of CRF.
Cianci, Antonio; Panella, Marco; Fichera, Michele; Falduzzi, Cristina; Bartolo, Manuela; Caruso, Salvatore
2015-06-01
To evaluate the effects of the combination of d-chiro-inositol (DCI) and alpha lipoic acid on menses and metabolic disorders in women with polycystic ovary syndrome (PCOS). Forty-six women (26 study group subjects and 20 controls) of reproductive age with PCOS according to Rotterdam criteria were enrolled in this prospective study. Fasting serum samples were collected from each woman. Homeostasis model of insulin resistance, insulin levels, lipid profile, frequency of menstrual cycles, number of ovarian peripheral cysts and BMI of both groups were investigated at baseline and after 180 days. Clinical and metabolic aspects of women on DCI and lipoic acid treatment underwent improvement (p < 0.5) with respect to the control group. Regarding lipid profile, no statistically difference was observed in total cholesterol and triglycerides levels in both groups at follow-up with respect the baseline values (p = NS). DCI and alpha lipoic acid treatment has been thought because it plays an essential role in mitochondrial specific pathways that generate energy from glucose and its potent effect as antioxidant. The association might have a strong impact on metabolic profile even with a short-term treatment. Further investigations are needed to evaluate other effects on reproductive physiology of women with PCOS.
Guleria, Anupam; Misra, Durga Prasanna; Rawat, Atul; Dubey, Durgesh; Khetrapal, Chunni Lal; Bacon, Paul; Misra, Ramnath; Kumar, Dinesh
2015-08-07
Takayasu arteritis (TA) is a debilitating, systemic disease that involves the aorta and large arteries in a chronic inflammatory process that leads to vessel stenosis. Initially, the disease remains clinically silent (or remains undetected) until the patients present with vascular occlusion. Therefore, new methods for appropriate and timely diagnosis of TA cases are needed to start proper therapy on time and also to monitor the patient's response to the given treatment. In this context, NMR-based serum metabolomic profiling has been explored in this proof-of-principle study for the first time to determine characteristic metabolites that could be potentially helpful for diagnosis and prognosis of TA. Serum metabolic profiling of TA patients (n = 29) and healthy controls (n = 30) was performed using 1D (1)H NMR spectroscopy, and possible biomarker metabolites were identified. Using projection to least-squares discriminant analysis, we could distinguish TA patients from healthy controls. Compared to healthy controls, TA patients had (a) increased serum levels of choline metabolites, LDL cholesterol, N-acetyl glycoproteins (NAGs), and glucose and (b) decreased serum levels of lactate, lipids, HDL cholesterol, and glucogenic amino acids. The results of this study are preliminary and need to be confirmed in a prospective study.
Eslam, Mohammed; Booth, David R; George, Jacob; Ahlenstiel, Golo
2013-11-07
Metabolic changes are inextricably linked to chronic hepatitis C (CHC). Recently polymorphisms in the IFNL3 (IL28B) region have been shown to be strongly associated with spontaneous and treatment induced recovery from hepatitis C virus (HCV) infection. Further, circumstantial evidence suggests a link between IFNL3 single nucleotide polymorphisms and lipid metabolism, steatosis and insulin resistance in CHC. The emerging picture suggests that the responder genotypes of IFNL3 polymorphisms are associated with a higher serum lipid profile, and less frequent steatosis and insulin resistance. This review analyzes the current data regarding this interaction and its meaning for HCV pathogenesis and disease progression.
Lifshitz, Fima; Pintos, Patricia M; Lezón, Christian E; Macri, Elisa V; Friedman, Silvia M; Boyer, Patricia M
2012-01-01
Previous studies performed in an experimental model of nutritional growth retardation (NGR) have observed metabolic adaptation. We hypothesized that changes in lipid-lipoprotein profile, glucose, and insulin levels occur, whereas overall body growth is reduced.The aim of this study was to assess serum lipid-lipoprotein profile, hepatogram, insulinemia and glycemia, and CVD risk markers in rats fed a suboptimal diet. Weanling male rats were assigned either to control (C) or NGR group. In this 4-week study, C rats were fed ad libitum a standard diet, and NGR rats received 80% of the amount of food consumed by C. Zoometric parameters, body fat content, serum lipid-lipoprotein profile, hepatogram, insulinemia, and glycemia were determined, and the cardiovascular disease (CVD) risk markers homeostasis model assessment-insulin resistance and homeostasis model assessment and β-cell function were calculated. Suboptimal food intake induced a significant decrease in body weight and length, which were accompanied by a reduction of 50% in body fat mass. Serum lipoproteins were significantly higher in NGR rats, with the exception of high-density lipoprotein cholesterol, which remained unchanged. Nutritional growth retardation rats had decreased triglycerides compared with C rats. No significant differences were detected in liver function parameters. The CVD risk markers homeostasis model assessment (HOMA)-insulin resistance and homeostasis model assessment and β-cell function were significantly lower in NGR rats. Mild chronic suboptimal nutrition in weanling male rats led to growth retardation and changes in the lipid-lipoprotein profile, glucose, and insulin levels while preserving the integrity of liver function. These data suggest a metabolic adaptation during suboptimal food intake, which ensures substrates flux to tissues that require constant energy-in detriment to body growth. The CVD risk markers suggested that mild chronic food restriction of approximately 20% could provide protection against this degenerative disease. Copyright © 2012 Elsevier Inc. All rights reserved.
Wang, Ou; Liu, Jia; Cheng, Qian; Guo, Xiaoxuan; Wang, Yong; Zhao, Liang; Zhou, Feng; Ji, Baoping
2015-01-01
Background The high morbidity of metabolic dysfunction diseases has heightened interest in seeking natural and safe compounds to maintain optimal health. γ-Oryzanol (OZ), the ferulic acid (FA) ester with phytosterols, mainly present in rice bran has been shown to improve markers of metabolic syndrome. This study investigates the effects of FA and OZ on alleviating high-fat and high-fructose diet (HFFD)-induced metabolic syndrome parameters. Methods Male SD rats were fed with a regular rodent diet, HFFD, or HFFD supplemented with 0.05% FA or 0.16% OZ (equimolar concentrations) for 13 weeks. Food intake, organ indices, serum lipid profiles, glucose metabolism, insulin resistance (IR) index and cytokine levels were analyzed. The mechanisms were further investigated in oleic acid-stimulated HepG2 cells by analyzing triglyceride (TG) content and lipogenesis-related gene expressions. Results In the in vivo study, FA and OZ exhibited similar effects in alleviating HFFD-induced obesity, hyperlipidemia, hyperglycemia, and IR. However, only OZ treatment significantly decreased liver index and hepatic TG content, lowered serum levels of C-reactive protein and IL-6, and increased serum concentration of adiponectin. In the in vitro assay, only OZ administration significantly inhibited intracellular TG accumulation and down-regulated expression of stearoyl coenzyme-A desaturase-1, which might facilitate OZ to enhance its hepatoprotective effect. Conclusion OZ is more effective than FA in inhibiting hepatic fat accumulation and inflammation. Thus, FA and OZ could be used as dietary supplements to alleviate the deleterious effects of HFFD. PMID:25646799
Serum osteocalcin is significantly related to indices of obesity and lipid profile in Malaysian men.
Chin, Kok-Yong; Ima-Nirwana, Soelaiman; Mohamed, Isa Naina; Ahmad, Fairus; Ramli, Elvy Suhana Mohd; Aminuddin, Amilia; Ngah, Wan Zurinah Wan
2014-01-01
Recent studies revealed a possible reciprocal relationship between the skeletal system and obesity and lipid metabolism, mediated by osteocalcin, an osteoblast-specific protein. This study aimed to validate the relationship between serum osteocalcin and indices of obesity and lipid parameters in a group of Malaysian men. A total of 373 men from the Malaysian Aging Male Study were included in the analysis. Data on subjects' demography, body mass index (BMI), body fat (BF) mass, waist circumference (WC), serum osteocalcin and fasting lipid levels were collected. Bioelectrical impendence (BIA) method was used to estimate BF. Multiple linear and binary logistic regression analyses were performed to analyze the association between serum osteocalcin and the aforementioned variables, with adjustment for age, ethnicity and BMI. Multiple regression results indicated that weight, BMI, BF mass, BF %, WC were significantly and negatively associated with serum osteocalcin (p < 0.001). There was a significant positive association between serum osteocalcin and high density lipoprotein (HDL) cholesterol (p = 0.032). Binary logistic results indicated that subjects with low serum osteocalcin level were more likely to be associated with high BMI (obese and overweight), high BF%, high WC and low HDL cholesterol (p < 0.05). Subjects with high osteocalcin level also demonstrated high total cholesterol level (p < 0.05) but this association was probably driven by high HDL level. These variables were not associated with serum C-terminal of telopeptide crosslinks in the subjects (p > 0.05). Serum osteocalcin is associated with indices of obesity and HDL level in men. These relationships should be validated by a longitudinal study, with comprehensive hormone profile testing.
Ferreira-Hermosillo, Aldo; Molina-Ayala, Mario; Ramírez-Rentería, Claudia; Vargas, Guadalupe; Gonzalez, Baldomero; Isibasi, Armando; Archundia-Riveros, Irma; Mendoza, Victoria
2015-01-01
To compare the serum concentration of IL-6, IL-10, TNF, IL-8, resistin, and adiponectin in type 1 diabetic patients with and without metabolic syndrome and to determine the cut-off point of the estimated glucose disposal rate that accurately differentiated these groups. We conducted a cross-sectional evaluation of all patients in our type 1 diabetes clinic from January 2012 to January 2013. Patients were considered to have metabolic syndrome when they fulfilled the joint statement criteria and were evaluated for clinical, biochemical, and immunological features. We determined serum IL-6, IL-8, IL-10, and TNF with flow cytometry and adiponectin and resistin concentrations with enzyme linked immunosorbent assay in patients with and without metabolic syndrome. We also compared estimated glucose disposal rate between groups. We tested 140 patients. Forty-four percent fulfilled the metabolic syndrome criteria (n = 61), 54% had central obesity, 30% had hypertriglyceridemia, 29% had hypoalphalipoproteinemia, and 19% had hypertension. We observed that resistin concentrations were higher in patients with MS. . We found a high prevalence of MS in Mexican patients with T1D. The increased level of resistin may be related to the increased fat mass and could be involved in the development of insulin resistance.
Davami, Fatemeh; Eghbalpour, Farnaz; Nematollahi, Leila; Barkhordari, Farzaneh; Mahboudi, Fereidoun
2015-01-01
The optimization of bioprocess conditions towards improved growth profile and productivity yield is considered of great importance in biopharmaceutical manufacturing. Peptones as efficient sources of nutrients have been studied for their effect on media development; however, their role on metabolic pathway is not well understood. In the present study, the effect of different concentration of peptones on a recombinant Chinese hamster ovary (CHO) cell line grown in three serum-free suspension cultures was determined. Six peptones of different origins and available amino acid profiles were investigated regarding their impact on cell growth, productivity, and metabolic pathways changes. In optimized feeding strategies, increases of 136% and 159% in volumetric productivity (for a low-nutrient culture media) and 55% (for a high-nutrient culture media) were achieved. Furthermore, particular sources of peptones with specific amino acid profile developed preferential results for each different culture medium. Two peptones, SoyA2SC and SoyE-110, were the only hydrolysates that showed production improvement in all three media. Casein Peptone plus Tryptone N1 and SoyA3SC showed different improved results based on their implemented concentration for each individual basal medium. The amino acid profile of peptones may provide clues to identify the most effective feeding strategies for recombinant CHO cells.
Davami, Fatemeh; Eghbalpour, Farnaz; Nematollahi, Leila; Barkhordari, Farzaneh; Mahboudi, Fereidoun
2015-01-01
Background: The optimization of bioprocess conditions towards improved growth profile and productivity yield is considered of great importance in biopharmaceutical manufacturing. Peptones as efficient sources of nutrients have been studied for their effect on media development; however, their role on metabolic pathway is not well understood. Methods: In the present study, the effect of different concentration of peptones on a recombinant Chinese hamster ovary (CHO) cell line grown in three serum-free suspension cultures was determined. Six peptones of different origins and available amino acid profiles were investigated regarding their impact on cell growth, productivity, and metabolic pathways changes. Results: In optimized feeding strategies, increases of 136% and 159% in volumetric productivity (for a low-nutrient culture media) and 55% (for a high-nutrient culture media) were achieved. Furthermore, particular sources of peptones with specific amino acid profile developed preferential results for each different culture medium. Two peptones, SoyA2SC and SoyE-110, were the only hydrolysates that showed production improvement in all three media. Casein Peptone plus Tryptone N1 and SoyA3SC showed different improved results based on their implemented concentration for each individual basal medium. Conclusion: The amino acid profile of peptones may provide clues to identify the most effective feeding strategies for recombinant CHO cells. PMID:26232332
Digilio, Giuseppe; Sforzini, Susanna; Cassino, Claudio; Robotti, Elisa; Oliveri, Caterina; Marengo, Emilio; Musso, Davide; Osella, Domenico; Viarengo, Aldo
2016-01-01
Numerous studies on molluscs have been carried out to clarify the physiological roles of haemolymph serum proteins and haemocytes. However, little is known about the presence and functional role of the serum metabolites. In this study, Nuclear Magnetic Resonance (NMR) was used to assess whether changes of the metabolic profile of Mytilus galloprovincialis haemolymph may reflect alterations of the physiological status of the organisms due to environmental stressors, namely copper and temperature. Mussel haemolymph was taken from the posterior adductor muscle after a 4-day exposure to ambient (16 °C) or high temperature (24 °C) and in the absence or presence (5 μg/L, 20 μg/L, or 40 μg/L) of sublethal copper (Cu(2+)). The total glutathione (GSH) concentration in the haemolymph of both control and treated mussels was minimal, indicating the absence of significant contaminations by muscle intracellular metabolites due to the sampling procedure. In the (1)H-NMR spectrum of haemolymph, 27 metabolites were identified unambiguously. The separate and combined effects of exposure to copper and temperature on the haemolymph metabolic profile were assessed by Principal Component Analysis (PCA) and Ranking-PCA multivariate analysis. Changes of the metabolomic profile due to copper exposure at 16 °C became detectable at a dose of 20 μg/L copper. Alanine, lysine, serine, glutamine, glycogen, glucose and protein aliphatics played a major role in the classification of the metabolic changes according to the level of copper exposition. High temperature (24 °C) and high copper levels caused a coherent increase of a common set of metabolites (mostly glucose, serine, and lysine), indicating that the metabolic impairment due to high temperature is enforced by the presence of copper. Overall, the results demonstrate that, as for human blood plasma, the analysis of haemolymph metabolites represents a promising tool for the diagnosis of pollutant-induced stress syndrome in marine mussels. Copyright © 2016 Elsevier Inc. All rights reserved.
Correlation between epicardial fat thickness and biochemical markers of metabolic risk.
Rubio-Guerra, Alberto Francisco; Benítez-Maldonado, Daniel Rabindranath; Lozano-Nuevo, José Juan; Arana-Pazos, Karla Corina; Huerta-Ramirez, Saul; Narváez-Rivera, Jorge Luis
2018-02-28
Epicardial fat has been associated with increased cardiovascular risk and the development of atherosclerosis. Transthoracic echocardiography provides a reliable measurement of epicardial fat thickness (EFT). The aim of this study is to evaluate the relationship between EFT and biochemical parameters of metabolic risk. We assessed 211 patients who underwent echocardiography; EFT was measured by two cardiologists. In addition, patients' glycaemia, lipid profile and serum uric acid were measured. Statistical analysis was performed with the Pearson coefficient test and Odds ratio. A positive correlation between EFT with glycaemia (r=.064), total serum cholesterol (r=.0056), high density lipoproteins (r=-.038), or with triglycerides (r=.118) was not observed. However, we did find a significant positive correlation between EFT and serum uric acid (r=.415, P<.00001). The odds ratio for EFT>3mm in patients with hyperuricemia was 6.26 (IC 95 2.79-14, P<.0001). Hyperuricemia is strongly associated with EFT in Mexican patients; EFT is a useful tool for global cardiovascular risk calculation. Copyright © 2018 Elsevier España, S.L.U. All rights reserved.
Ovarian Lipid Metabolism Modulates Circulating Lipids in Premenopausal Women.
Jensen, Jeffrey T; Addis, Ilana B; Hennebold, Jon D; Bogan, Randy L
2017-09-01
The premenopausal circulating lipid profile may be linked to the hormonal profile and ovarian lipid metabolism. Assess how estradiol, progesterone, and ovarian lipid metabolism contributes to the premenopausal lipid profile; and evaluate the acute effects of a common hormonal oral contraceptive (OC) on circulating lipids. Experimental crossover with repeated measures. Academic hospitals. Eight healthy, regularly menstruating women. Participants underwent periodic serum sampling during a normal menstrual cycle; a standard 21-day, monophasic combined hormonal OC cycle (30 µg of ethinyl estradiol and 150 µg of levonorgestrel per day); menopause simulated by leuprolide acetate (22.5-mg depot); and an artificial menstrual cycle achieved via transdermal estradiol (50 to 300 µg/d) and vaginal micronized progesterone (100 to 300 mg/d). Primary outcomes included evaluation of total cholesterol, high-density lipoprotein (HDL) cholesterol, low-density lipoprotein cholesterol, triglycerides, and the total cholesterol to HDL cholesterol ratio. To estimate the effect of estradiol, progesterone, and ovarian lipid metabolism, all specimens except those from the OC cycle were analyzed. Subgroup analysis was conducted on the follicular and luteal phases. In a separate analysis, the effect of the OC was evaluated relative to the normal menstrual cycle. Estradiol was significantly associated with increased levels of HDL cholesterol throughout the menstrual cycle and in the follicular phase. Ovarian effects were associated with reduced lipid levels, especially during the luteal phase. The OC was associated with an increased total cholesterol to HDL cholesterol ratio and triglycerides. Previously unappreciated factors including ovarian lipid metabolism may contribute to the premenopausal lipid profile. Copyright © 2017 by the Endocrine Society
Aa, Jiye; Zheng, Tian; Shi, Jian; Li, Mengjie; Wang, Xinwen; Zhao, Chunyan; Xiao, Wenjing; Yu, Xiaoyi; Sun, Runbin; Gu, Rongrong; Zhou, Jun; Wu, Liang; Hao, Gang; Zhu, Xuanxuan; Wang, Guangji
2012-01-01
Background Individual variances usually affect drug metabolism and disposition, and hence result in either ineffectiveness or toxicity of a drug. In addition to genetic polymorphism, the multiple confounding factors of lifestyles, such as dietary preferences, contribute partially to individual variances. However, the difficulty of quantifying individual diversity greatly challenges the realization of individualized drug therapy. This study aims at quantitative evaluating the association between individual variances and the pharmacokinetics. Methodology/Principal Findings Molecules in pre-dose baseline serum were profiled using gas chromatography mass spectrometry to represent the individual variances of the model rats provided with high fat diets (HFD), routine chows and calorie restricted (CR) chows. Triptolide and its metabolites were determined using high performance liquid chromatography mass spectrometry. Metabonomic and pharmacokinetic data revealed that rats treated with the varied diets had distinctly different metabolic patterns and showed differential Cmax values, AUC and drug metabolism after oral administration of triptolide. Rats with fatty chows had the lowest Cmax and AUC values and the highest percentage of triptolide metabolic transformation, while rats with CR chows had the highest Cmax and AUC values and the least percentage of triptolide transformation. Multivariate linear regression revealed that in baseline serum, the concentrations of creatinine and glutamic acid, which is the precursor of GSH, were linearly negatively correlated to Cmax and AUC values. The glutamic acid and creatinine in baseline serum were suggested as the potential markers to represent individual diversity and as predictors of the disposal and pharmacokinetics of triptolide. Conclusions/Significance These results highlight the robust potential of metabonomics in characterizing individual variances and identifying relevant markers that have the potential to facilitate individualized drug therapy. PMID:22912866
Abouzed, Tarek Kamal; Contreras, María Del Mar; Sadek, Kadry Mohamed; Shukry, Moustafa; H Abdelhady, Doaa; Gouda, Wael Mohamed; Abdo, Walied; Nasr, Nasr Elsayed; Mekky, Reham Hassan; Segura-Carretero, Antonio; Kahilo, Khaled Abdel-Aleim; Abdel-Sattar, Essam
2018-06-01
The present study was designed to investigate the effect of red onion scales extract (ROS) against diabetic nephropathy, in relation to its metabolic profiling. Four groups of male Wistar rats were assigned as follows; 1st untreated group, 2nd group (animals with diabetes) treated with streptozotocin (STZ, 50 mg/kg) IP, 3rd group co-treated with ROS (150 mg/kg + STZ, 50 mg/kg) and 4th group co-treated with ROS by a dose (300 mg/kg + STZ, 50 mg/kg) daily. After four weeks, random and fasting blood glucose (FBG) levels, serum insulin, advanced glycation end products (AGEs), urea, uric acid and inflammatory and fibrotic gene expression were evaluated. Moreover, histopathological examination of the renal tissues was performed. In addition, the metabolic profiling of ROS was performed via RP-HPLC-DAD-QTOF-MS and -MS/MS. The metabolic profiling of ROS revealed that protocatechuic acid and cyanidin-3-O-glucoside were the predominant compounds among 32 metabolites identified in the extract. ROS treated groups showed improvement of FBG and AGEs levels, whereas serum insulin level showed significant elevation. In addition, down-regulation of inflammatory mRNA expression associated with the hyperglycemic condition and amelioration in histopathological alterations in kidney tissues were observed. This study displayed the presence of 32 phenolic compounds in the ethanolic extract of ROS, a common by-product of the industrial production of onion in Egypt. This study proved the therapeutic potential of ROS as antidiabetic agent and its preventive effect against diabetic nephropathy. Therefore, this study represents a perspective of the utilization of food waste products. Copyright © 2018 Elsevier B.V. All rights reserved.
Tully, Douglas B; Bao, Wenjun; Goetz, Amber K; Blystone, Chad R; Ren, Hongzu; Schmid, Judith E; Strader, Lillian F; Wood, Carmen R; Best, Deborah S; Narotsky, Michael G; Wolf, Douglas C; Rockett, John C; Dix, David J
2006-09-15
Four triazole fungicides were studied using toxicogenomic techniques to identify potential mechanisms of action. Adult male Sprague-Dawley rats were dosed for 14 days by gavage with fluconazole, myclobutanil, propiconazole, or triadimefon. Following exposure, serum was collected for hormone measurements, and liver and testes were collected for histology, enzyme biochemistry, or gene expression profiling. Body and testis weights were unaffected, but liver weights were significantly increased by all four triazoles, and hepatocytes exhibited centrilobular hypertrophy. Myclobutanil exposure increased serum testosterone and decreased sperm motility, but no treatment-related testis histopathology was observed. We hypothesized that gene expression profiles would identify potential mechanisms of toxicity and used DNA microarrays and quantitative real-time PCR (qPCR) to generate profiles. Triazole fungicides are designed to inhibit fungal cytochrome P450 (CYP) 51 enzyme but can also modulate the expression and function of mammalian CYP genes and enzymes. Triazoles affected the expression of numerous CYP genes in rat liver and testis, including multiple Cyp2c and Cyp3a isoforms as well as other xenobiotic metabolizing enzyme (XME) and transporter genes. For some genes, such as Ces2 and Udpgtr2, all four triazoles had similar effects on expression, suggesting possible common mechanisms of action. Many of these CYP, XME and transporter genes are regulated by xeno-sensing nuclear receptors, and hierarchical clustering of CAR/PXR-regulated genes demonstrated the similarities of toxicogenomic responses in liver between all four triazoles and in testis between myclobutanil and triadimefon. Triazoles also affected expression of multiple genes involved in steroid hormone metabolism in the two tissues. Thus, gene expression profiles helped identify possible toxicological mechanisms of the triazole fungicides.
Minamoto, Yasushi; Otoni, Cristiane C; Steelman, Samantha M; Büyükleblebici, Olga; Steiner, Jörg M; Jergens, Albert E; Suchodolski, Jan S
2015-01-01
Idiopathic inflammatory bowel disease (IBD) is a common cause of chronic gastrointestinal (GI) disease in dogs. The combination of an underlying host genetic susceptibility, an intestinal dysbiosis, and dietary/environmental factors are suspected as main contributing factors in the pathogenesis of canine IBD. However, actual mechanisms of the host-microbe interactions remain elusive. The aim of this study was to compare the fecal microbiota and serum metabolite profiles between healthy dogs (n = 10) and dogs with IBD before and after 3 weeks of medical therapy (n = 12). Fecal microbiota and metabolite profiles were characterized by 454-pyrosequencing of 16 S rRNA genes and by an untargeted metabolomics approach, respectively. Significantly lower bacterial diversity and distinct microbial communities were observed in dogs with IBD compared to the healthy control dogs. While Gammaproteobacteria were overrepresented, Erysipelotrichia, Clostridia, and Bacteroidia were underrepresented in dogs with IBD. The functional gene content was predicted from the 16 S rRNA gene data using PICRUSt, and revealed overrepresented bacterial secretion system and transcription factors, and underrepresented amino acid metabolism in dogs with IBD. The serum metabolites 3-hydroxybutyrate, hexuronic acid, ribose, and gluconic acid lactone were significantly more abundant in dogs with IBD. Although a clinical improvement was observed after medical therapy in all dogs with IBD, this was not accompanied by significant changes in the fecal microbiota or in serum metabolite profiles. These results suggest the presence of oxidative stress and a functional alteration of the GI microbiota in dogs with IBD, which persisted even in the face of a clinical response to medical therapy.
Minamoto, Yasushi; Otoni, Cristiane C; Steelman, Samantha M; Büyükleblebici, Olga; Steiner, Jörg M; Jergens, Albert E; Suchodolski, Jan S
2015-01-01
Idiopathic inflammatory bowel disease (IBD) is a common cause of chronic gastrointestinal (GI) disease in dogs. The combination of an underlying host genetic susceptibility, an intestinal dysbiosis, and dietary/environmental factors are suspected as main contributing factors in the pathogenesis of canine IBD. However, actual mechanisms of the host-microbe interactions remain elusive. The aim of this study was to compare the fecal microbiota and serum metabolite profiles between healthy dogs (n = 10) and dogs with IBD before and after 3 weeks of medical therapy (n = 12). Fecal microbiota and metabolite profiles were characterized by 454-pyrosequencing of 16 S rRNA genes and by an untargeted metabolomics approach, respectively. Significantly lower bacterial diversity and distinct microbial communities were observed in dogs with IBD compared to the healthy control dogs. While Gammaproteobacteria were overrepresented, Erysipelotrichia, Clostridia, and Bacteroidia were underrepresented in dogs with IBD. The functional gene content was predicted from the 16 S rRNA gene data using PICRUSt, and revealed overrepresented bacterial secretion system and transcription factors, and underrepresented amino acid metabolism in dogs with IBD. The serum metabolites 3-hydroxybutyrate, hexuronic acid, ribose, and gluconic acid lactone were significantly more abundant in dogs with IBD. Although a clinical improvement was observed after medical therapy in all dogs with IBD, this was not accompanied by significant changes in the fecal microbiota or in serum metabolite profiles. These results suggest the presence of oxidative stress and a functional alteration of the GI microbiota in dogs with IBD, which persisted even in the face of a clinical response to medical therapy. PMID:25531678
Kim, Hae Jin; Han, Seung Jin; Kim, Dae Jung; Jang, Hak Chul; Lim, Soo; Choi, Sung Hee; Kim, Yong Hyun; Shin, Dong Hyun; Kim, Se Hwa; Kim, Tae Ho; Ahn, Yu Bae; Ko, Seung Hyun; Kim, Nan Hee; Seo, Ji A; Kim, Ha Young; Lee, Kwan Woo
2017-05-01
Oxidative stress plays an important role in the pathogenesis and progression of diabetic complications and antagonists of renin-angiotensin system and amlodipine have been reported previously to reduce oxidative stress. In this study, we compared the changes in oxidative stress markers after valsartan and amlodipine treatment in type 2 diabetic patients with hypertension and compared the changes in metabolic parameters. Type 2 diabetic subjects with hypertension 30 to 80 years of age who were not taking antihypertensive drugs were randomized into either valsartan (n = 33) or amlodipine (n = 35) groups and treated for 24 weeks. We measured serum nitrotyrosine levels as an oxidative stress marker. Metabolic parameters including serum glucose, insulin, lipid profile, and urine albumin and creatinine were also measured. After 24 weeks of valsartan or amlodipine treatment, systolic and diastolic blood pressure decreased, with no significant difference between the groups. Both groups showed a decrease in serum nitrotyrosine (7.74 ± 7.30 nmol/L vs. 3.95 ± 4.07 nmol/L in the valsartan group and 8.37 ± 8.75 nmol/L vs. 2.68 ± 2.23 nmol/L in the amlodipine group) with no significant difference between the groups. Other parameters including glucose, lipid profile, albumin-to-creatinine ratio, and homeostasis model assessment of insulin resistance showed no significant differences before and after treatment in either group. Valsartan and amlodipine reduced the oxidative stress marker in type 2 diabetic patients with hypertension.
NMR spectroscopy of filtered serum of prostate cancer: A new frontier in metabolomics.
Kumar, Deepak; Gupta, Ashish; Mandhani, Anil; Sankhwar, Satya Narain
2016-09-01
To address the shortcomings of digital rectal examinations (DRE), serum prostate-specific antigen (PSA), and trans-rectal ultrasound (TRUS) for precise determination of prostate cancer (PC) and differentiation from benign prostatic hyperplasia (BPH), we applied (1) H-nuclear magnetic resonance (NMR) spectroscopy as a surrogate tactic for probing and prediction of PC and BPH. The study comprises 210 filtered sera from suspected PC, BPH, and a healthy subjects' cohort (HC). The filtered serum approach delineates to identify and quantify 52 metabolites using (1) H NMR spectroscopy. All subjects had undergone clinical evaluations (DRE, PSA, and TRUS) followed by biopsy for Gleason score, if needed. NMR-measured metabolites and clinical evaluation data were examined separately using linear multivariate discriminant function analysis (DFA) to probe the signature descriptors for each cohort. DFA indicated that glycine, sarcosine, alanine, creatine, xanthine, and hypoxanthine were able to determine abnormal prostate (BPH + PC). DFA-based classification presented high precision (86.2% by NMR and 68.1% by clinical laboratory method) in discriminating HC from BPH + PC. DFA reveals that alanine, sarcosine, creatinine, glycine, and citrate were able to discriminate PC from BPH. DFA-based categorization exhibited high accuracy (88.3% by NMR and 75.2% by clinical laboratory method) to differentiate PC from BPH. (1) H NMR-based metabolic profiling of filtered-serum sample appears to be assuring, swift, and least-invasive for probing and prediction of PC and BPH with its signature metabolic profile. This novel technique is not only on a par with histopathological evaluation of PC determination but is also comparable to liquid chromatography-based mass spectrometry to identify the metabolites. Prostate 76:1106-1119, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Babaei, Parvin; Shirkouhi, Samaneh Ghorbani; Hosseini, Rastegar; Soltani Tehrani, Bahram
2017-01-01
Here, we studied the beneficial effects of aerobic exercise on metabolic syndrome components, cognitive performance, brain derived neurotrophic factor (BDNF) and irisin in ovariectomized rats with different serum vitamin D (Vit D) status. Eighty female wistar rats were divided into 2 groups of sham operated (sham, n = 8), and ovariectomized (OVX, n = 72). Then OVX were divided into 9 groups of receiving combination of exercise protocol with low dose of Vit D (OVX + EXE + LD), high dose of Vit D (OVX + EXE + HD), Vit D deficiency (OVX + EXE - D), and (OVX + EXE + Veh). Also non exercised groups of OVX receiving high dose of Vit D (OVX + HD), low dose of Vit D (OVX + LD), Vit D deficiency (OVX - D), and Veh (OVX + Veh) were included. After 2 months of related interventions, spatial memory was assessed using Morris water maze (MWM), and then metabolic syndrome components were measured. High dose of Vit D supplementation showed significant reduction in weight (p = 0.001), lipid profiles (p = 0.001), visceral fat (p = 0.001) and waist circumference (p = 0.001) regardless of exercising or not, with no change in cognitiive function. Serum BDNF level was significantly higher in Vit D deficient group (p = 0.001), and was decreased in the OVX + HD. In contrary, irisin did not show any significant relationship with serum concentration of Vit D, while it was significantly elevated in the exercised groups compared with non-exercised counterparts. Vit D insufficiency deteriorates metabolic syndrome components, and elevates serum BDNF as a compensatory metabotropic factor, and further supplementation significantly attenuates these components parallel with reduction in BDNF. In addition, aerobic exercise successfully induces various metabolic benefits, provided optimum serum level of Vit D.
Sleep and rhythm consequences of a genetically induced loss of serotonin.
Leu-Semenescu, Smaranda; Arnulf, Isabelle; Decaix, Caroline; Moussa, Fathi; Clot, Fabienne; Boniol, Camille; Touitou, Yvan; Levy, Richard; Vidailhet, Marie; Roze, Emmanuel
2010-03-01
A genetic deficiency in sepiapterin reductase leads to a combined deficit of serotonin and dopamine. The motor phenotype is characterized by a dopa-responsive fluctuating generalized dystonia-parkinsonism. The non-motor symptoms are poorly recognized. In particular, the effects of brain serotonin deficiency on sleep have not been thoroughly studied. We examine the sleep, sleep-wake rhythms, CSF neurotransmitters, and melatonin profile in a patient with sepiapterin reductase deficiency. The patient was a 28-year-old man with fluctuating generalized dystonia-parkinsonism caused by sepiapterin reductase deficiency. A sleep interview, wrist actigraphy, sleep log over 14 days, 48-h continuous sleep and core temperature monitoring, and measurement of CSF neurotransmitters and circadian serum melatonin and cortisol levels before and after treatment with 5-hydroxytryptophan (the precursor of serotonin) and levodopa were performed. Before treatment, the patient had mild hypersomnia with long sleep time (704 min), ultradian sleep-wake rhythm (sleep occurred every 11.8 +/- 5.3 h), organic hyperphagia, attentionlexecutive dysfunction, and no depression. The serotonin metabolism in the CSF was reduced, and the serum melatonin profile was flat, while cortisol and core temperature profiles were normal. Supplementation with 5-hydroxytryptophan, but not with levodopa, normalized serotonin metabolism in the CSF, reduced sleep time to 540 min, normalized the eating disorder and the melatonin profile, restored a circadian sleep-wake rhythm (sleep occurred every 24 +/- 1.7 h, P < 0.0001), and improved cognition. In this unique genetic paradigm, the melatonin deficiency (caused by a lack of its substrate, serotonin) may cause the ultradian sleep-wake rhythm.
Metabolic system alterations in pancreatic cancer patient serum: potential for early detection
2013-01-01
Background The prognosis of pancreatic cancer (PC) is one of the poorest among all cancers, due largely to the lack of methods for screening and early detection. New biomarkers for identifying high-risk or early-stage subjects could significantly impact PC mortality. The goal of this study was to find metabolic biomarkers associated with PC by using a comprehensive metabolomics technology to compare serum profiles of PC patients to healthy control subjects. Methods A non-targeted metabolomics approach based on high-resolution, flow-injection Fourier transform ion cyclotron resonance mass spectrometry (FI-FTICR-MS) was used to generate comprehensive metabolomic profiles containing 2478 accurate mass measurements from the serum of Japanese PC patients (n=40) and disease-free subjects (n=50). Targeted flow-injection tandem mass spectrometry (FI-MS/MS) assays for specific metabolic systems were developed and used to validate the FI-FTICR-MS results. A FI-MS/MS assay for the most discriminating metabolite discovered by FI-FTICR-MS (PC-594) was further validated in two USA Caucasian populations; one comprised 14 PCs, six intraductal papillary mucinous neoplasims (IPMN) and 40 controls, and a second comprised 1000 reference subjects aged 30 to 80, which was used to create a distribution of PC-594 levels among the general population. Results FI-FTICR-MS metabolomic analysis showed significant reductions in the serum levels of metabolites belonging to five systems in PC patients compared to controls (all p<0.000025). The metabolic systems included 36-carbon ultra long-chain fatty acids, multiple choline-related systems including phosphatidylcholines, lysophosphatidylcholines and sphingomyelins, as well as vinyl ether-containing plasmalogen ethanolamines. ROC-AUCs based on FI-MS/MS of selected markers from each system ranged between 0.93 ±0.03 and 0.97 ±0.02. No significant correlations between any of the systems and disease-stage, gender, or treatment were observed. Biomarker PC-594 (an ultra long-chain fatty acid), was further validated using an independently-collected US Caucasian population (blinded analysis, n=60, p=9.9E-14, AUC=0.97 ±0.02). PC-594 levels across 1000 reference subjects showed an inverse correlation with age, resulting in a drop in the AUC from 0.99 ±0.01 to 0.90 ±0.02 for subjects aged 30 to 80, respectively. A PC-594 test positivity rate of 5.0% in low-risk reference subjects resulted in a PC sensitivity of 87% and a significant improvement in net clinical benefit based on decision curve analysis. Conclusions The serum metabolome of PC patients is significantly altered. The utility of serum metabolite biomarkers, particularly PC-594, for identifying subjects with elevated risk of PC should be further investigated. PMID:24024929
USDA-ARS?s Scientific Manuscript database
Supplementation of zilpaterol hydrochloride (ZH; Zilmax®) to cattle has been implicated as having a negative impact on the well-being of cattle. However, there is no data to support or refute these claims. This study was designed to determine if differences exist in the serum metabolic profile and m...
Lopez-Alvarenga, Juan C.; Ebbesson, Sven O E; Ebbesson, Lars O E; Tejero, M Elizabeth; Voruganti, V. Saroja; Comuzzie, Anthony G
2009-01-01
Serum fatty acids (FA) have wide effects on metabolism: Serum saturated fatty acids (SFA) increase triglyceride (TG) levels in plasma while polyunsaturated fatty acids (PUFA) reduce them. Traditionally, Eskimos have a high consumption of omega -3 fatty acids (ω–3 FA), but the westernization of their food habits have increased their dietary SFAs, partly reflected in their serum concentrations. We studied the joint effect of serum SFAs and PUFAs on circulating levels of TG in the presence of metabolic syndrome components. We included 212 men and 240 women (age 47.9±15.7 y, BMI 26.9±5.3) from four villages located in Alaska for a cross sectional study. Generalized linear models were employed to build surface responses of TG as in functions of SFAs and PUFAs measured in blood samples adjusting by sex, BMI and village. The effects of individual FAs were assessed by multiple linear regression analysis and partial correlations (r) were calculated. The most important predictors for TG levels were glucose tolerance (r = 0.116, p = 0.018) and BMI (r = 0.42, p<0.001). TG concentration showed negative associations with 20:3ω-6 (r =− 0.16, p = 0.001), 20:4ω-6 (r = −0.14, p=0.005), 20:5ω-3 (r = −0.17, p<0.001) and 22:5ω-3 (r = −0.26, p<0.001), and positive associations with palmitic acid (r = 0.16, p<0.001) and 18:3ω-3 (r = 0.15, p<0.001). The surface response analysis suggested that the effect of palmitic acid on TG is blunted in different degrees according to the PUFA chemical structure. The long chain ω-3, even in presence of high levels of SF, was associated with lower triglyceride levels. Eicosapentanoic acid (20:5ω3) had the strongest effect against palmitic acid on TG. The total FA showed moderate association with levels of TG, while SFA was positively associated, and large chain PUFA negatively. The westernized dietary habits among Eskimos are likely to change their metabolic profile and increase comorbidities related to metabolic disease. PMID:19766268
Li, Yu-Fen; Chang, Ya-Yuan; Huang, Hui-Chi; Wu, Yi-Chen; Yang, Mei-Due; Chao, Pei-Min
2015-05-01
Lycopene is a carotene and phytochemical known to protect against metabolic diseases. It is found in red fruits and vegetables, predominantly tomatoes. This study aimed to show the supplementation effect of tomato juice on indices associated with metabolic health and adipokine profiles in generally healthy people. A total of 30 young females (20- to 30-years-old) with a body mass index (BMI) ≥ 20 were recruited, of whom 25 completed the entire study. The subjects continued with their normal diet and exercise schedule, but were given 280 mL of tomato juice (containing 32.5 mg of lycopene) daily for 2 mo. Metabolic indices, including anthropometric data and serum levels of glucose, lipids, adipokines, lycopene, and antioxidants, were compared pre- and postintervention. Tomato juice supplementation significantly reduced body weight, body fat, waist circumference, BMI, and serum levels of cholesterol, monocyte chemoattractant protein-1 (MCP-1), and thiobarbituric reactive substances, while significantly increasing serum levels of adiponectin, triglyceride, and lycopene. When subjects were stratified by body fat change, i.e., reduction or non-reduction (including increase or no change), the tomato juice-induced reduction in waist circumference, serum cholesterol, and MCP-1 levels and increase in adiponectin and lycopene levels were seen in both subgroups. The changes in waist circumference, cholesterol, MCP-1, and adiponectin levels remained significant after adjusting for each covariable individually, with the exception of lycopene. These results show that daily tomato juice supplementation reduces waist circumference, as well as serum cholesterol and inflammatory adipokine levels in young healthy women and that these effects are unrelated to body fat changes. Copyright © 2015 Elsevier Inc. All rights reserved.
Markers of iron metabolism in retired racing Greyhounds with and without osteosarcoma
Caro, J. T.; Marín, L. M.; Iazbik, M. C.; Zaldivar-López, S.; Borghese, H.; Couto, C. G.
2014-01-01
Background Greyhounds have well-described clinicopathologic idiosyncrasies, including a high prevalence of osteosarcoma (OSA). Hematocrit, HGB, and HGB oxygen affinity are higher than in other dogs, while haptoglobin concentration is lower, so we hypothesized that Greyhounds have a different iron metabolism. To our knowledge, there are no reports on serum iron profiles in Greyhounds. Objectives To elucidate iron metabolism in Greyhounds, we wanted to compare serum iron concentration, total iron-binding capacity (TIBC), and percent transferrin saturation (%SAT) in healthy retired racing Greyhounds (RRGs) with OSA (RRGs – OSA), and also with non-Greyhounds (NGs), without and with OSA (NGs – OSA). Methods Serum iron concentration and unsaturated iron-binding capacity (UIBC) were measured by standard methods, and TIBC and %SAT were calculated in RRGs (n = 25), RRGs – OSA (n = 28), NGs (n = 30), and NGs – OSA (n = 32). Results TIBC was lower in RRGs than in NGs (P < .0001), and in RRGs – OSA than in NGs – OSA (P < .0001). NGs – OSA had lower TIBC than healthy NGs (P = .003). Percent SAT was higher in RRGs than in NGs (P < .0001) and in RRGs – OSA (P = .008), and %SAT was also lower in NGs than in NGs – OSA (P = .004). Percent SAT was also higher in RRGs – OSA than in NGs – OSA (P = .001). Both RRGs – OSA (P = .02) and NGs – OSA (P < .0001) had lower serum iron concentrations than their healthy counterparts. Conclusion Lower TIBC and higher %SAT may constitute another Greyhound idiosyncrasy compared with other dogs. In this study, all dogs with OSA had higher serum iron concentrations and %SAT than healthy dogs. PMID:24033801
Spégel, Peter; Lindqvist, Andreas; Sandberg, Monica; Wierup, Nils
2014-02-10
Hypersecretion of the incretin hormone glucose-dependent insulinotropic polypeptide (GIP) has been associated with obesity and glucose intolerance. This condition has been suggested to be linked to GIP resistance. Besides its insulinotropic effect, GIP also directly affects glucose uptake and lipid metabolism. This notwithstanding, effects of GIP on other circulating metabolites than glucose have not been thoroughly investigated. Here, we examined effects of infusion of various concentrations of GIP in normo- and hyperglycemic rats on serum metabolite profiles. We found that, despite a decrease in serum glucose levels (-26%, p<0.01), the serum metabolite profile was largely unaffected by GIP infusion in normoglycemic rats. Interestingly, levels of branched chain amino acids and the ketone body β-hydroxybutyrate were decreased by 21% (p<0.05) and 27% (p<0.001), respectively, in hyperglycemic rats infused with 60 ng/ml GIP. Hence, our data suggest that GIP provokes a decrease in BCAA levels and ketone body production. Increased concentrations of these metabolites have been associated with obesity and T2D. Copyright © 2014. Published by Elsevier B.V.
Cho, Kyung-Dong; Han, Chan-Kyu; Lee, Bog-Hieu
2013-09-01
The purpose of this study was to investigate the influence of apple pomace (AP) and apple juice concentrate (AC) supplementation on body weight and fat loss as well as lipid metabolism in obese rats fed a high-fat diet. Diet-induced obese rats were assigned to three groups (n=8 for each group): high fat diet (HFD) control, HFD containing 10% (w/w) AP, and HFD containing 10% (w/w) AC. There was also a normal diet group (n=8). After 5 weeks, body weight gain, adipose tissue weight, serum and hepatic lipid profiles, liver morphology, and adipocyte size were measured. Body weight gain, white adipose tissue (WAT) weight, serum total cholesterol, low-density lipoprotein cholesterol and triglyceride concentrations, epididymal adipocyte size, and lesion scores were significantly lower and serum high-density lipoprotein cholesterol concentration and brown adipose tissue weights were significantly higher in the AP and AC groups compared with the HFD group. In addition, atherogenic indices in the AP and AC groups were significantly lower than in the HFD group. These results indicate that supplementing apple products such as AP and AC may help suppress body weight and WAT gain, as well as improve lipid profiles in diet-induced obese rats.
Cho, Kyung-Dong; Han, Chan-Kyu
2013-01-01
Abstract The purpose of this study was to investigate the influence of apple pomace (AP) and apple juice concentrate (AC) supplementation on body weight and fat loss as well as lipid metabolism in obese rats fed a high-fat diet. Diet-induced obese rats were assigned to three groups (n=8 for each group): high fat diet (HFD) control, HFD containing 10% (w/w) AP, and HFD containing 10% (w/w) AC. There was also a normal diet group (n=8). After 5 weeks, body weight gain, adipose tissue weight, serum and hepatic lipid profiles, liver morphology, and adipocyte size were measured. Body weight gain, white adipose tissue (WAT) weight, serum total cholesterol, low-density lipoprotein cholesterol and triglyceride concentrations, epididymal adipocyte size, and lesion scores were significantly lower and serum high-density lipoprotein cholesterol concentration and brown adipose tissue weights were significantly higher in the AP and AC groups compared with the HFD group. In addition, atherogenic indices in the AP and AC groups were significantly lower than in the HFD group. These results indicate that supplementing apple products such as AP and AC may help suppress body weight and WAT gain, as well as improve lipid profiles in diet-induced obese rats. PMID:23909905
Mostafa, Dalia K; Nasra, Rasha A; Zahran, Noha; Ghoneim, Mohammed T
2016-12-05
Several lines of evidence point to the association of vitamin D deficiency with the different components of metabolic syndrome. Yet, the effect of vitamin D supplementation on metabolic syndrome is not clearly elucidated. Herein, we tested the hypothesis that administration of vitamin D, either alone or in combination of metformin can improve metabolic and structural derangements associated with metabolic syndrome. Fifty wistar rats were randomly assigned to serve either as normal control (10 rats) or metabolic syndrome rats, by feeding them with a standard or a high fat diet (HFD), respectively. Metabolic syndrome rats were further assigned to receive either vehicle, Metformin (100mg/Kg orally), vitamin D (6ng/Kg SC.) or both, daily for 8 weeks. Body weight, blood pressure, serum glucose, insulin, insulin resistance, lipid profile, oxidative stress, serum uric acid and Ca +2 were assessed at the end of the study. Histopathological examination of hepatic, renal and cardiac tissues were also performed. Treatment with vitamin D was associated with a significant improvement of the key features of metabolic syndrome namely obesity, hypertension and dyslipidaemia with a neutral effect on Ca +2 level. When combined with metformin, most of the other metabolic abnormalities were ameliorated. Furthermore, a significant attenuation of the associated hepatic steatosis was observed with vitamin D as well as vitamin D/metformin combination. In conclusion, vitamin D can improve hypertension, metabolic and structural abnormalities induced by HFD, and it provides additional benefits when combined with metformin. Therefore, vitamin D could represent a feasible therapeutic option for prevention of metabolic syndrome. Copyright © 2016 Elsevier B.V. All rights reserved.
Gagan, Sood K.
2017-01-01
Obesity now affects millions of people and places them at risk of developing metabolic syndrome, nonalcoholic fatty liver disease (NAFLD), and even hepatocellular carcinoma. This rapidly emerging epidemic has led to a search for cost-effective methods to prevent the metabolic syndrome and NAFLD as well as the progression of NAFLD to cirrhosis and hepatocellular carcinoma. In murine models, time-restricted feeding resets the hepatic circadian clock and enhances transcription of key metabolic regulators of glucose and lipid homeostasis. Studies of the effect of dawn-to-sunset Ramadan fasting, which is akin to time-restricted feeding model, have also identified significant improvement in body mass index, serum lipid profiles, and oxidative stress parameters. Based on the findings of studies conducted on human subjects, dawn-to-sunset fasting has the potential to be a cost-effective intervention for obesity, metabolic syndrome, and NAFLD. PMID:29348746
Chen, Rui; Han, Su; Liu, Xuefeng; Wang, Kunpeng; Zhou, Yong; Yang, Chundong; Zhang, Xi
2018-05-15
Osteoarthritis (OA) is a degenerative synovial joint disease affecting people worldwide. However, the exact pathogenesis of OA remains unclear. Metabolomics analysis was performed to obtain insight into possible pathogenic mechanisms and diagnostic biomarkers of OA. Ultra-high performance liquid chromatography-triple quadrupole mass spectrometry (UPLC-TQ-MS), followed by multivariate statistical analysis, was used to determine the serum amino acid profiles of 32 OA patients and 35 healthy controls. Variable importance for project values and Student's t-test were used to determine the metabolic abnormalities in OA. Another 30 OA patients were used as independent samples to validate the alterations in amino acids. MetaboAnalyst was used to identify the key amino acid pathways and construct metabolic networks describing their relationships. A total of 25 amino acids and four biogenic amines were detected by UPLC-TQ-MS. Differences in amino acid profiles were found between the healthy controls and OA patients. Alanine, γ-aminobutyric acid and 4-hydroxy-l-proline were important biomarkers distinguishing OA patients from healthy controls. The metabolic pathways with the most significant effects were involved in metabolism of alanine, aspartate, glutamate, arginine and proline. The results of this study improve understanding of the amino acid metabolic abnormalities and pathogenic mechanisms of OA at the molecular level. The metabolic perturbations may be important for the diagnosis and prevention of OA. Copyright © 2018 Elsevier B.V. All rights reserved.
Serum trace elements in obese Egyptian children: a case–control study
2014-01-01
Background To date, only a few studies on child obesity concerned Trace Elements (TE). TE is involved in the pathogenesis of obesity and obesity related diseases. We tried to assess trace elements status [zinc (Zn), copper (Cu), selenium (Se), iron (Fe), and chromium (Cr)] in obese Egyptian children and their relationships with serum leptin and metabolic risk factors of obesity. Methods This was a case–control study performed with 80 obese children (BMI ≥ 95thcentile for age and gender) and 80 healthy non-obese children with comparable age and gender as the control group. For all subjects, serum Zn, Cu, Se, Fe, ferritin and Cr as well as biochemical parameters including lipid profile, serum glucose and homeostasis model assessment of insulin resistance (HOMA-IR) were assessed. Levels of serum leptin were measured by (enzyme-linked immunosorbent assay [ELISA] method), and serum insulin was measured by an electrochemiluminesce immunoassay. Results Compared to the control group, serum Zn, Se, and Fe levels were significantly lower (all P < 0.01) and serum Cu level was significantly higher (P < 0.01) in the obese children. Meanwhile, no significant differences were observed in serum ferritin or Cr levels (P > 0.05). A significant negative correlation was found between serum leptin and zinc levels in the obese children (r = −0.746; P < 0.01). Further, serum Zn showed significant negative correlations with total cholesterol TC levels (P < 0.05) and were positively correlated with high density lipoprotein- cholesterol HDL-C levels (P < 0.01) in the obese children. In addition, serum Se levels showed significant positive correlations with HOMA-IR values in the obese children (P < 0.01). Conclusion The obese children may be at a greater risk of developing imbalance (mainly deficiency) of trace elements which may be playing an important role in the pathogenesis of obesity and related metabolic risk factors. PMID:24555483
Quantitative analysis of urea in human urine and serum by 1H nuclear magnetic resonance†
Liu, Lingyan; Mo, Huaping; Wei, Siwei
2016-01-01
A convenient and fast method for quantifying urea in biofluids is demonstrated using NMR analysis and the solvent water signal as a concentration reference. The urea concentration can be accurately determined with errors less than 3% between 1 mM and 50 mM, and less than 2% above 50 mM in urine and serum. The method is promising for various applications with advantages of simplicity, high accuracy, and fast non-destructive detection. With an ability to measure other metabolites simultaneously, this NMR method is also likely to find applications in metabolic profiling and system biology. PMID:22179722
Wang, Yingfeng; Man, Hongxue; Gao, Jian; Liu, Xinfeng; Ren, Xiaolei; Chen, Jianxin; Zhang, Jiayu; Gao, Kuo; Li, Zhongfeng; Zhao, Baosheng
2016-09-01
Lang-du (LD) has been traditionally used to treat human diseases in China. Plasma metabolic profiling was applied in this study based on LC-MS to elucidate the toxicity in rats induced by injected ethanol extract of LD. LD injection was given by intraperitoneal injection at doses of 0.1, 0.05, 0.025 and 0 g kg(-1) body weight per day to rats. The blood biochemical levels of alanine aminotransferase, direct bilirubin, creatinine, serum β2-microglobulin and low-density lipoprotein increased in LD-injected rats, and the levels of total protein and albumin decreased in these groups. The metabolic profiles of the samples were analyzed by multivariate statistics analysis, including principal component analysis, partial least squares discriminant analysis and orthogonal projection to latent structures discriminate analysis (OPLS-DA). The metabolic characters in rats injected with LD were perturbed in a dose-dependent manner. By OPLS-DA, 18 metabolites were served as the potential toxicity biomarkers. Moreover, LD treatment resulted in an increase in the p-cresol, p-cresol sulfate, lysophosphatidylethanolamine (LPE) (18:0), LPE (16:0), lysophosphatidylcholine (16:0) and 12-HETE concentrations, and a decrease in hippuric acid, cholic acid and N-acetyl-l-phenylalanine. These results suggested that chronic exposure to LD could cause a disturbance in lipids metabolism and amino acids metabolism, etc. Therefore, an analysis of the metabolic profiles can contribute to a better understanding of the adverse effects of LD. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
2011-01-01
Aging and physical inactivity are two factors that favors the development of cardiovascular disease, metabolic syndrome, obesity, diabetes, and sleep dysfunction. In contrast, the adoption a habitual of moderate exercise may present a non-pharmacological treatment alternative for sleep and metabolic disorders. We aimed to assess the effects of moderate exercise training on sleep quality and on the metabolic profile of elderly people with a sedentary lifestyle. Fourteen male sedentary, healthy, elderly volunteers performed moderate training for 60 minutes/day, 3 days/week for 24 wk at a work rate equivalent to the ventilatory aerobic threshold. The environment was kept at a temperature of 23 ± 2°C, with an air humidity 60 ± 5%. Blood and polysomnographs analysis were collected 3 times: at baseline (1 week before training began), 3 and 6 months (after 3 and 6 months of training). Training promoted increasing aerobic capacity (relative VO2, time and velocity to VO2max; p < 0.05), and reduced serum NEFA, and insulin concentrations as well as improved HOMA index (p < 0.05), and increased adiponectin levels (p < 0.05), after 3 months of training when compared with baseline data. The sleep parameters, awake time and REM sleep latency were decreased after 6 months exercise training (p < 0.05) in relation baseline values. Our results demonstrate that the moderate exercise training protocol improves the sleep profile in older people, but the metabolism adaptation does not persist. Suggesting that this population requires training strategy modifications as to ensure consistent alterations regarding metabolism. PMID:21733182
Park, Ju Yeon; Lee, Sang-Hak; Shin, Min-Jeong; Hwang, Geum-Sook
2015-01-01
Lipid metabolites are indispensable regulators of physiological and pathological processes, including atherosclerosis and coronary artery disease (CAD). However, the complex changes in lipid metabolites and metabolism that occur in patients with these conditions are incompletely understood. We performed lipid profiling to identify alterations in lipid metabolism in patients with angina and myocardial infarction (MI). Global lipid profiling was applied to serum samples from patients with CAD (angina and MI) and age-, sex-, and body mass index-matched healthy subjects using ultra-performance liquid chromatography/quadruple time-of-flight mass spectrometry and multivariate statistical analysis. A multivariate analysis showed a clear separation between the patients with CAD and normal controls. Lysophosphatidylcholine (lysoPC) and lysophosphatidylethanolamine (lysoPE) species containing unsaturated fatty acids and free fatty acids were associated with an increased risk of CAD, whereas species of lysoPC and lyso-alkyl PC containing saturated fatty acids were associated with a decreased risk. Additionally, PC species containing palmitic acid, diacylglycerol, sphingomyelin, and ceramide were associated with an increased risk of MI, whereas PE-plasmalogen and phosphatidylinositol species were associated with a decreased risk. In MI patients, we found strong positive correlation between lipid metabolites related to the sphingolipid pathway, sphingomyelin, and ceramide and acute inflammatory markers (high-sensitivity C-reactive protein). The results of this study demonstrate altered signatures in lipid metabolism in patients with angina or MI. Lipidomic profiling could provide the information to identity the specific lipid metabolites under the presence of disturbed metabolic pathways in patients with CAD.
Tordiffe, Adrian S W; Wachter, Bettina; Heinrich, Sonja K; Reyers, Fred; Mienie, Lodewyk J
2016-01-01
Cheetahs (Acinonyx jubatus) are highly specialised large felids, currently listed as vulnerable on the IUCN red data list. In captivity, they are known to suffer from a range of chronic non-infectious diseases. Although low heterozygosity and the stress of captivity have been suggested as possible causal factors, recent studies have started to focus on the contribution of potential dietary factors in the pathogenesis of these diseases. Fatty acids are an important component of the diet, not only providing a source of metabolisable energy, but serving other important functions in hormone production, cellular signalling as well as providing structural components in biological membranes. To develop a better understanding of lipid metabolism in cheetahs, we compared the total serum fatty acid profiles of 35 captive cheetahs to those of 43 free-ranging individuals in Namibia using gas chromatography-mass spectrometry. The unsaturated fatty acid concentrations differed most remarkably between the groups, with all of the polyunsaturated and monounsaturated fatty acids, except arachidonic acid and hypogeic acid, detected at significantly lower concentrations in the serum of the free-ranging animals. The influence of age and sex on the individual fatty acid concentrations was less notable. This study represents the first evaluation of the serum fatty acids of free-ranging cheetahs, providing critical information on the normal fatty acid profiles of free-living, healthy individuals of this species. The results raise several important questions about the potential impact of dietary fatty acid composition on the health of cheetahs in captivity.
Xiao, Y P; Wu, T X; Sun, J M; Yang, L; Hong, Q H; Chen, A G; Yang, C M
2012-12-01
A novel metabolomic method based on gas chromatography-mass spectrometry was applied to investigate serum metabolites in response to dietary Gln supplementation in piglets. Sixteen, 21-d-old pigs were weaned and assigned randomly to 2 isonitrogenous diets: 1) Gln diet, which contained 1% L-Gln (as-fed basis), and 2) control diet, which contained L-Ala to make this diet isonitrogenous with the Gln diet. Serum samples were collected to characterize metabolites after a 30-d treatment. in addition, 4 liver samples per treatment were collected to examine enzyme activity and gene expression involved in metabolic regulation. Results indicated that 12 metabolites were altered (P < 0.05) by Gln treatment, including carbohydrates, AA, and fatty acids. A leave-one-out cross validation of random forest analysis indicated that Pro was most important among the 12 metabolites. Thus, these data demonstrate that the control and Gln-supplemented pigs differed (P < 0.05) in terms of metabolism of carbohydrates, Pro, Tyr, and glycerophospholipids. Principal component analysis yielded separate clusters of profiles between the Gln and control groups. Metabolic enzyme activities of Ala aminotransferase and hexokinase increased by 26.8% (P = 0.026) and 26.2% (P = 0.004) in the liver of Gln-supplemented pigs vs. control, respectively, whereas pyruvate kinase (PK) activity decreased by 29.1% (P = 0.001). The gene expression of PK in the liver decreased by 66.1% (P = 0.034) by Gln treatment for 30 d. No differences were observed for the mRNA abundance of mammalian target of rapamycin and PPARγ. On the basis of these data, Gln treatment affected carbohydrate, lipid, and AA metabolism in the whole body of the early weaned piglets. These findings provide insight into specific metabolic pathways and lay the groundwork for the complex metabolic alteration in response to dietary Gln supplementation of pigs.
Kim, Ji Young; Park, Ju Yeon; Kim, Oh Yoen; Ham, Bo Mi; Kim, Hyun-Jin; Kwon, Dae Young; Jang, Yangsoo; Lee, Jong Ho
2010-09-03
Obesity is currently epidemic in many countries worldwide and is strongly related to diabetes and cardiovascular disease. This study investigated the differences in metabolomic profiling between overweight/obese and normal-weight men. Overweight/obese (n=30) and age-matched, normal-weight men (n=30) were included. Anthropometric parameters, conventional metabolites, and biomarkers were measured. Metabolomic profiling was analyzed with UPLC-Q-TOF MS. Overweight/obese men showed higher levels of HOMA-IR, triglycerides, total cholesterol, and LDL-cholesterol, and lower levels of HDL-cholesterol and adiponectin than lean men. Overweight/obese men showed higher proportion of stearic acid and lower proportion of oleic acid in serum phospholipids. Additionally, overweight/obese individuals showed higher fat intake and lower ratio of polyunsaturated fatty acids to saturated fatty acids. We identified three lyso-phosphatidylcholine (lysoPC) as potential plasma markers and confirmed eight known metabolites for overweight/obesity men. Especially, overweight/obese subjects showed higher levels of lysoPC C14:0 and lysoPC C18:0 and lower levels of lysoPC C18:1 than lean subjects. Results confirmed abnormal metabolism of two branched-chain amino acids, two aromatic amino acids, and fatty acid synthesis and oxidation in overweight/obese men. Additionally, the amount of dietary saturated fat may influence the proportion of saturated fatty acids in serum phospholipids and the degree of saturation of the constituent acyl group of plasma lysoPC.
Wen, Shi; Zhan, Bohan; Feng, Jianghua; Hu, Weize; Lin, Xianchao; Bai, Jianxi; Huang, Heguang
2017-11-02
The differentiation of pancreatic ductal adenocarcinoma (PDAC) could be associated with prognosis and may influence the choices of clinical management. No applicable methods could reliably predict the tumor differentiation preoperatively. Thus, the aim of this study was to compare the metabonomic profiling of pancreatic ductal adenocarcinoma with different differentiations and assess the feasibility of predicting tumor differentiations through metabonomic strategy based on nuclear magnetic resonance spectroscopy. By implanting pancreatic cancer cell strains Panc-1, Bxpc-3 and SW1990 in nude mice in situ, we successfully established the orthotopic xenograft models of PDAC with different differentiations. The metabonomic profiling of serum from different PDAC was achieved and analyzed by using 1 H nuclear magnetic resonance (NMR) spectroscopy combined with the multivariate statistical analysis. Then, the differential metabolites acquired were used for enrichment analysis of metabolic pathways to get a deep insight. An obvious metabonomic difference was demonstrated between all groups and the pattern recognition models were established successfully. The higher concentrations of amino acids, glycolytic and glutaminolytic participators in SW1990 and choline-contain metabolites in Panc-1 relative to other PDAC cells were demonstrated, which may be served as potential indicators for tumor differentiation. The metabolic pathways and differential metabolites identified in current study may be associated with specific pathways such as serine-glycine-one-carbon and glutaminolytic pathways, which can regulate tumorous proliferation and epigenetic regulation. The NMR-based metabonomic strategy may be served as a non-invasive detection method for predicting tumor differentiation preoperatively.
Asemi, Zatollah; Samimi, Mansooreh; Tabassi, Zohreh; Shakeri, Hossein; Esmaillzadeh, Ahmad
2013-09-01
Unfavorable metabolic profiles and oxidative stress in pregnancy are associated with several complications. This study was conducted to determine the effects of vitamin D supplementation on serum concentrations of high-sensitivity C-reactive protein (hs-CRP), metabolic profiles, and biomarkers of oxidative stress in healthy pregnant women. This randomized, double-blind, placebo-controlled clinical trial was conducted in 48 pregnant women aged 18-40 y old at 25 wk of gestation. Participants were randomly assigned to receive either 400 IU/d cholecalciferol supplements (n = 24) or placebo (n = 24) for 9 wk. Fasting blood samples were taken at study baseline and after 9 wk of intervention to quantify serum concentrations of hs-CRP, lipid concentrations, insulin, and biomarkers of oxidative stress. After 9 wk of intervention, the increases in serum 25-hydroxyvitamin D and calcium concentrations were greater in the vitamin D group (+3.7 μg/L and +0.20 mg/dL, respectively) than in the placebo group (-1.2 μg/L and -0.12 mg/dL, respectively; P < 0.001 for both). Vitamin D supplementation resulted in a significant decrease in serum hs-CRP (vitamin D vs. placebo groups: -1.41 vs. +1.50 μg/mL; P-interaction = 0.01) and insulin concentrations (vitamin D vs. placebo groups: -1.0 vs. +2.6 μIU/mL; P-interaction = 0.04) and a significant increase in the Quantitative Insulin Sensitivity Check Index score (vitamin D vs. placebo groups: +0.02 vs. -0.02; P-interaction = 0.006), plasma total antioxidant capacity (vitamin D vs. placebo groups: +152 vs. -20 mmol/L; P-interaction = 0.002), and total glutathione concentrations (vitamin D vs. placebo groups: +205 vs. -32 μmol/L; P-interaction = 0.02) compared with placebo. Intake of vitamin D supplements led to a significant decrease in fasting plasma glucose (vitamin D vs. placebo groups: -0.65 vs. -0.12 mmol/L; P-interaction = 0.01), systolic blood pressure (vitamin D vs. placebo groups: -0.2 vs. +5.5 mm Hg; P-interaction = 0.01), and diastolic blood pressure (vitamin D vs. placebo groups: -0.4 vs. +3.1 mm Hg; P-interaction = 0.01) compared with placebo. In conclusion, vitamin D supplementation for 9 wk among pregnant women has beneficial effects on metabolic status.
UPLC-QTOFMS-based metabolomic analysis of the serum of hypoxic preconditioning mice
Liu, Jie; Zhang, Gang; Chen, Dewei; Chen, Jian; Yuan, Zhi-Bin; Zhang, Er-Long; Gao, Yi-Xing; Xu, Gang; Sun, Bing-Da; Liao, Wenting; Gao, Yu-Qi
2017-01-01
Hypoxic preconditioning (HPC) is well-known to exert a protective effect against hypoxic injury; however, the underlying molecular mechanism remains unclear. The present study utilized a serum metabolomics approach to detect the alterations associated with HPC. In the present study, an animal model of HPC was established by exposing adult BALB/c mice to acute repetitive hypoxia four times. The serum samples were collected by orbital blood sampling. Metabolite profiling was performed using ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOFMS), in conjunction with univariate and multivariate statistical analyses. The results of the present study confirmed that the HPC mouse model was established and refined, suggesting significant differences between the control and HPC groups at the molecular levels. HPC caused significant metabolic alterations, as represented by the significant upregulation of valine, methionine, tyrosine, isoleucine, phenylalanine, lysophosphatidylcholine (LysoPC; 16:1), LysoPC (22:6), linoelaidylcarnitine, palmitoylcarnitine, octadecenoylcarnitine, taurine, arachidonic acid, linoleic acid, oleic acid and palmitic acid, and the downregulation of acetylcarnitine, malate, citrate and succinate. Using MetaboAnalyst 3.0, a number of key metabolic pathways were observed to be acutely perturbed, including valine, leucine and isoleucine biosynthesis, in addition to taurine, hypotaurine, phenylalanine, linoleic acid and arachidonic acid metabolism. The results of the present study provided novel insights into the mechanisms involved in the acclimatization of organisms to hypoxia, and demonstrated the protective mechanism of HPC. PMID:28901489
Sun, Qi; Li, Minghui; Yang, Xiao; Xu, Xi; Wang, Junsong; Zhang, Jianfa
2017-09-01
Previous studies suggest that dietary salecan (a water-soluble β-glucan) effectively reduces high-fat-diet-induced adiposity through disturbing bile-acid-promoted emulsification in mice. However, the effects of salecan on metabolic genes and metabolites involved in lipid accumulation are mostly unknown. Here, we confirmed that dietary 3% and 6% salecan for 4 weeks markedly decreased fat accumulation in liver and adipose tissue in high-fat-diet rats, displaying a decrease in mRNA levels of SREBP1-C, FAS, SCD1 and ACC1 involved in de novo lipogenesis and a reduction of levels of GPAT1, DGAT1 and DGAT2 related to triglyceride synthesis. Dietary salecan also increased the mRNA levels of PPARα and CYP7A1, which are related to fatty acid oxidation and cholesterol decomposition, respectively. In the 1 H nuclear magnetic resonance metabolomic analysis, both the serum and liver metabolite profiles differed among the control groups, and the metabolic profiles of the salecan groups were shifted toward that of the low-fat-diet group. Metabolites analysis showed that salecan significantly increased hepatic glutathione and betaine levels which are related to regulation of cellular reactive oxygen species. These data demonstrate that dietary salecan not only disturbed fat digestion and absorption but also influenced lipid accumulation and metabolism in diet-induced obesity. Copyright © 2017 Elsevier Inc. All rights reserved.
Martin, Glynn R; Loredo, J C; Sun, Guang
2008-04-01
Ghrelin has been recognized for its involvement in food intake, control of energy homeostasis, and lipid metabolism. However, the roles of genetic variations in the ghrelin precursor gene (GHRL) on body compositions and serum lipids are not clear in humans. Our study investigated five single-nucleotide polymorphisms (SNPs) within GHRL to determine their relationship with body fat percentage (BF), trunk fat percentage (TF), lower body (legs) fat percentage (LF), and serum lipids in 1,464 subjects, which were recruited from the genetically homogeneous population of Newfoundland and Labrador (NL), Canada. Serum glucose, insulin, total cholesterol, high-density lipoprotein-cholesterol, low-density lipoprotein-cholesterol, and triglycerides were determined. Five SNPs are rs35684 (A/G: a transition substitution in exon 1), rs4684677 (A/T: a missense mutation), rs2075356 (C/T: intron), rs26802 (G/T: intron), and rs26311 (A/G: near the 3' untranslated region) of GHRL were genotyped using TaqMan validated or functionally tested SNP genotyping assays. Our study found no significant evidence of an allele or genotype association between any of the variant sites and body compositions or serum lipids. Furthermore, haplotype frequencies were not found to be significantly different between lean and obese subjects. In summary, the results of our study do not support a significant role for genetic variations in GHRL in the differences of body fat and serum lipid profiles in the NL population.
Gupta Jain, Sonal; Puri, Seema; Misra, Anoop; Gulati, Seema; Mani, Kalaivani
2017-06-12
Nutritional modulation remains central to the management of metabolic syndrome. Intervention with cinnamon in individuals with metabolic syndrome remains sparsely researched. We investigated the effect of oral cinnamon consumption on body composition and metabolic parameters of Asian Indians with metabolic syndrome. In this 16-week double blind randomized control trial, 116 individuals with metabolic syndrome were randomized to two dietary intervention groups, cinnamon [6 capsules (3 g) daily] or wheat flour [6 capsules (2.5 g) daily]. Body composition, blood pressure and metabolic parameters were assessed. Significantly greater decrease [difference between means, (95% CI)] in fasting blood glucose (mmol/L) [0.3 (0.2, 0.5) p = 0.001], glycosylated haemoglobin (mmol/mol) [2.6 (0.4, 4.9) p = 0.023], waist circumference (cm) [4.8 (1.9, 7.7) p = 0.002] and body mass index (kg/m2 ) [1.3 (0.9, 1.5) p = 0.001] was observed in the cinnamon group compared to placebo group. Other parameters which showed significantly greater improvement were: waist-hip ratio, blood pressure, serum total cholesterol, low-density lipoprotein cholesterol, serum triglycerides, and high-density lipoprotein cholesterol. Prevalence of defined metabolic syndrome was significantly reduced in the intervention group (34.5%) vs. the placebo group (5.2%). A single supplement intervention with 3 g cinnamon for 16 weeks resulted in significant improvements in all components of metabolic syndrome in a sample of Asian Indians in north India. The clinical trial was retrospectively registered (after the recruitment of the participants) in ClinicalTrial.gov under the identification number: NCT02455778 on 25th May 2015.
Serum Peptide Changes in Chickens with Metabolic Skeletal Problems Associated with Lameness
NASA Astrophysics Data System (ADS)
Rasaputra, Komal S.; Liyanage, Rohana; Okimoto, Ron; Lay, Jackson O.; Rath, Narayan C.
2011-06-01
Serum proteins and peptides have potential as biomarkers since they form the structural and functional basis of tissues and are involved in metabolic and regulatory processes. Changes in their profiles or their breakdown products have been of interest as potential biomarkers. Tibial dyschondroplasia (TD) and femoral head separation (FHS) are two metabolic skeletal problems in poultry that cause lameness. The objective of this study was to identify serum peptide changes associated with lameness in poultry that may be predictive of the disease and may help in eliminating these hereditary defects from the genetic pool. Serum peptides were extracted from six-wk-old chickens with or without the above leg problems using C18 magnetic beads and analyzed by MALDI-TOF mass spectrometry. Differentially expressed peptides were analyzed in the m/z range of 1,000-10,000 using ClinproTool™ software. Twenty two peaks from TD and 20 from FHS affected chickens were compared with their respective controls. The spectral peaks were identified using mass spectrometry followed by a data base search. Some of the peptides identified were hemostasis associated breakdown products. No differentially expressed peptide was detected in FHS but a peptide with m/z 5308.1 was elevated in chickens with TD (p⩽0.05). It was identified as a fragment of alpha 1 type-XI isoform 1. Type XI collagen is a cartilage specific extracellular matrix protein that is involved in the organization of other collagens and maintains extracellular matrix integrity. Its breakdown product may indicate cartilage degeneration in tibial dyschondroplasia thus may serve as a surrogate marker for this problem.
[Serum creatine kinase activity in dogs and cats with metabolic diseases].
Neumann, S
2005-09-01
Elevated Creatine kinase-activitiy (CK) indicates disturbances of the muscle cell integrity. In addition to primary muscle disease, like trauma, inflammation or dystrophy, diseases of other organs can lead to secondary muscle involvement, which will be indicated by increased serum activities of the CK. The mechanisms of muscle cell disturbance are still unknown. An elevated protein catabolism in the muscle cell is suspected. In the present study we investigated, if dogs and cats with metabolic diseases have increased CK-activity in the serum. From 34 dogs and cats in a group with different metabolic diseases without metabolic acidosis 19% of the dogs and 50% of the cats had increased CK-activity in the serum. From 33 dogs and cats with different metabolic diseases connected with metabolic acidosis 86% of the dogs and 95% of the cats had simultaneously increased CK-activity in the serum. In comparison to healthy dogs and cats animals with metabolic diseases have significant and in cases of metabolic di-seases with metabolic acidosis cats have high significant elevation (dogs significant) of CK-activity in the serum. There was no significant correlation between the groups of patients. In conclusion we think that our results show that metabolic diseases often induce secondary myopathy, measured by CK-activity in the serum, but metabolic acidosis has no direct influence on elevated CK activity in dogs and cats.
Tapia-Limonchi, Rafael; Díaz, Irene; Cahuana, Gladys M; Bautista, Mario; Martín, Franz; Soria, Bernat; Tejedo, Juan R; Bedoya, Francisco J
2014-01-01
Homeostatic levels of nitric oxide (NO) protect efficiently against apoptotic death in both human and rodent pancreatic β cells, but the protein profile of this action remains to be determined. We have applied a 2 dimensional LC-MS-MALDI-TOF/TOF-based analysis to study the impact of protective NO in rat insulin-producing RINm5F cell line and in mouse and human pancreatic islets (HPI) exposed to serum deprivation condition. 24 proteins in RINm5F and 22 in HPI were identified to undergo changes in at least one experimental condition. These include stress response mitochondrial proteins (UQCRC2, VDAC1, ATP5C1, ATP5A1) in RINm5F cells and stress response endoplasmic reticulum proteins (HSPA5, PDIA6, VCP, GANAB) in HPI. In addition, metabolic and structural proteins, oxidoreductases and chaperones related with protein metabolism are also regulated by NO treatment. Network analysis of differentially expressed proteins shows their interaction in glucocorticoid receptor and NRF2-mediated oxidative stress response pathways and eNOS signaling. The results indicate that exposure to exogenous NO counteracts the impact of serum deprivation on pancreatic β cell proteome. Species differences in the proteins involved are apparent. PMID:25658244
Meza-Herrera, C A; Calderón-Leyva, G; Soto-Sanchez, M J; Serradilla, J M; García-Martinez, A; Mellado, M; Veliz-Deras, F G
2014-06-30
Different neurotransmitter and neuromodulatory systems regulate synthesis and secretion of GnRH. Whereas the endocrine and neural systems are activated in response to the metabolic status and the circulating levels of specific blood metabolites, glutamate receptors have been reported at hepatic level. This study evaluated the possible effect of glutamate supplementation upon changes in serum concentrations across time for total protein (TP), urea (UR) and cholesterol (CL) around the onset of puberty in goats. Prepuberal female goats (n=18) were randomly assigned to: (1) excitatory amino acids group, GLUT, n=10; 16.52±1.04kg live weight (LW), 3.4±0.12 body condition score (BCS) receiving an i.v. infusion of 7mgkg(-1) LW of l-glutamate, and (2) Control group, CONT, n=8; 16.1±1.04kg LW, 3.1±0.12 BCS. General averages for LW (23.2±0.72kg), BCS (3.37±0.10 units), serum TP (65.28±2.46mgdL(-1)), UR (23.42±0.95mgdL(-1)), CL (77.89±1.10mgdL(-1)) as well as the serum levels for TP and UR across time did not differ (P>0.05) between treatments. However, while GLUT positively affected (P<0.05) both the onset (207±9 vs. 225±12 d) and the percentage (70 vs. 25%) of females showing puberty, a treatment×time interaction effect (P<0.05) was observed in the GLUT group, with increases in serum cholesterol, coincident with the onset of puberty. Therefore, in peripuberal glutamate supplemented goats, serum cholesterol profile could act as a metabolic modulator for the establishment of puberty, denoting also a potential role of glutamate as modulator of lipid metabolism. Copyright © 2014 Elsevier B.V. All rights reserved.
Bao, Jiaolin; Liu, Fang; Zhang, Chao; Wang, Kai; Jia, Xuejing; Wang, Xiaotong; Chen, Meiwan; Li, Peng; Su, Huanxing; Wang, Yitao; Wan, Jian-Bo; He, Chengwei
2016-01-01
Metabolomics is a comprehensive assessment of endogenous metabolites of a biological system in a holistic context. In this study, we evaluated the in vivo anti-melanoma activity of aqueous extract of Forsythiae Fructus (FAE) and globally explored the serum metabolome characteristics of B16-F10 melanoma-bearing mice. UPLC/Q-TOF MS combined with pattern recognition approaches were employed to examine the comprehensive metabolic signatures and differentiating metabolites. The results demonstrated that FAE exhibited remarkable antitumor activity against B16-F10 melanoma in C57BL/6 mice and restored the disturbed metabolic profile by tumor insult. We identified 17 metabolites which were correlated with the antitumor effect of FAE. Most of these metabolites are involved in glycerophospholipid metabolisms. Notably, several lysophosphatidylcholines (LysoPCs) significantly decreased in tumor model group, while FAE treatment restored the changes of these phospholipids to about normal condition. Moreover, we found that lysophosphatidylcholine acyltransferase 1 (LPCAT1) and autotaxin (ATX) were highly expressed in melanoma, and FAE markedly down-regulated their expression. These findings indicated that modulation of glycerophospholipid metabolisms may play a pivotal role in the growth of melanoma and the antitumor activity of FAE. Besides, our results suggested that serum LysoPCs could be potential biomarkers for the diagnosis and prognosis of melanoma and other malignant tumors. PMID:27991567
Serum potassium level is associated with metabolic syndrome: a population-based study.
Sun, Kan; Su, Tingwei; Li, Mian; Xu, Baihui; Xu, Min; Lu, Jieli; Liu, Jianmin; Bi, Yufang; Ning, Guang
2014-06-01
Evidence has suggested that low serum potassium concentration or low dietary potassium intake can result in many metabolic disorders. Our objective was to evaluate the association between serum potassium level and risk of prevalent metabolic syndrome. We conducted a cross-sectional study in 10,341 participants aged 40 years or older. Metabolic syndrome was defined according to guidelines from the National Cholesterol Education Program with modification. The prevalence rate of metabolic syndrome was 51.7% in participants with hypokalemia and 37.7% in those with normokalemia. With the reduction of serum potassium quartiles, participants were tended to have higher level of triglycerides and uric acid, lower level of high-density lipoprotein cholesterol (HDL-C), larger waist circumference and more severe insulin resistance. Serum potassium level significantly decreased with the increasing number of metabolic syndrome components. Compared with subjects in the highest quartile of serum potassium level, multivariate adjusted odds ratios for prevalent metabolic syndrome in the lowest quartile was 1.48 (95% confidence interval, 1.16-1.87). Moreover, compared with subjects without central obesity, hypertriglyceridemia, low HDL-C and elevated fasting plasma glucose, those with each of these metabolic syndrome components have lower level of serum potassium after adjusted for age and sex. Low serum potassium level significantly associated with prevalence of metabolic syndrome in middle-aged and elderly Chinese. Copyright © 2013 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Saad, Mohamed I.; Kamel, Maher A.; Hanafi, Mervat Y.
2015-01-01
Type 2 diabetes mellitus (T2DM) is a group of metabolic disorders characterized by hyperglycemia owing to insulin resistance and/or insulin deficiency. Current theories of T2DM pathophysiology include a decline in β-cells function, a defect in insulin signaling pathways, and a dysregulation of secretory function of adipocytes. This study aimed to investigate the effect of different antidiabetic drugs on serum levels of certain adipocytokines and nonesterified fatty acids (NEFA) in high-fat diet (HFD)/streptozotocin- (STZ-) induced diabetic rats. All treatments significantly decreased serum NEFA level. Metformin and sitagliptin increased serum adiponectin level, whereas they decreased serum leptin level. Glimepiride showed significant decline in serum levels of both adiponectin and leptin. All treatments remarkably ameliorated insulin resistance, suggested by an improvement of glycemic control, a significant reduction in homeostasis model assessment of insulin resistance (HOMA-IR), and a correction in lipid profile. Modulation of adipocytokines production (i.e., increased serum adiponectin and decreased serum leptin) may also underlie the improvement of insulin resistance and could be a possible mechanism for the beneficial cardiovascular effects of metformin and sitagliptin. PMID:25838947
Hollmen, T.; Franson, J.C.; Hario, Martti; Sankari, S.; Kilpi, Mikael; Lindstrom, K.
2001-01-01
During 1997–1999, we collected serum samples from 156 common eider (Somateria mollissima) females incubating eggs in the Finnish archipelago of the Baltic Sea. We used serum chemistry profiles to evaluate metabolic changes in eiders during incubation and to compare the health and nutritional status of birds nesting at a breeding area where the eider population has declined by over 50% during the past decade, with birds nesting at two areas with stable populations. Several changes in serum chemistries were observed during incubation, including (1) decreases in serum glucose, total protein, albumin, β‐globulin, and γ‐globulin concentrations and (2) increases in serum uric acid, creatine kinase, and β‐hydroxybutyrate concentrations. However, these changes were not consistent throughout the 3‐yr period, suggesting differences among years in the rate of carbohydrate, lipid, and protein utilization during incubation. The mean serum concentrations of free fatty acids, glycerol, and albumin were lowest and the serum α‐ and γ‐globulin levels were highest in the area where the eider population has declined, suggesting a role for nutrition and diseases in the population dynamics of Baltic eiders.
Guo, Wei-Ling; Pan, Yu-Yang; Li, Lu; Li, Tian-Tian; Liu, Bin; Lv, Xu-Cong
2018-06-07
The objective of this study was to investigate the effects of ethanol extract of Ganoderma lucidum (GL95) on hyperlipidaemia and gut microbiota, and its regulation mechanism in Wistar rats fed on a high-fat diet (HFD). UPLC-QTOF MS indicated that GL95 was enriched with triterpenoids, especially ganoderic acids. The results of the animal experiment showed that oral administration of GL95 markedly alleviated the dyslipidemia through decreasing the levels of serum total triglyceride (TG), total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C), and inhibiting hepatic lipid accumulation and steatosis. Furthermore, GL95 supplementation altered the composition of gut microbiota, in particular modulating the relative abundance of functionally relevant enterotypes compared with the HFD group. The Spearman's correlation analysis revealed that Alistipes, Defluviitalea, Peptococcaceae and Alloprevotella were negatively correlated with serum and hepatic lipid profiles. Meanwhile, the GL95 treatment regulated the mRNA expression levels of the genes involved in lipid and cholesterol metabolism. The findings above illustrate that Ganoderma triterpenoids have the potential to ameliorate lipid metabolic disorders, in part through modulating specific gut microbiota and regulating the genes involved in lipid and cholesterol metabolism, suggesting Ganoderma triterpenoids as a potential novel functional food for the treatment or prevention of hyperlipidaemia.
Szabo, David T.; Pathmasiri, Wimal; Sumner, Susan; Birnbaum, Linda S.
2016-01-01
Background: Hexabromocyclododecane (HBCD) is a high production volume brominated flame retardant added to building insulation foams, electronics, and textiles. HBCD is a commercial mixture (CM-HBCD) composed of three main stereoisomers: α-HBCD (10%), β-HBCD (10%), and γ-HBCD (80%). A shift from the dominant stereoisomer γ-HBCD to α-HBCD is detected in humans and wildlife. Objectives: Considering CM-HBCD has been implicated in neurodevelopment and endocrine disruption, with expected metabolism perturbations, we performed metabolomics on mice serum obtained during a window-of-developmental neurotoxicity to draw correlations between early-life exposures and developmental outcomes and to predict health risks. Methods: Six female C57BL/6 mice at postnatal day (PND) 10 were administered a single gavage dose of α-, γ-, or CM-HBCD at 3, 10, and 30 mg/kg. Nuclear magnetic resonance metabolomics was used to analyze 60 μL serum aliquots of blood collected 4 days post-oral exposure. Results: Infantile mice exposed to α-, γ-, or CM-HBCD demonstrated differences in endogenous metabolites by treatment and dose groups, including metabolites involved in glycolysis, gluconeogenesis, lipid metabolism, citric acid cycle, and neurodevelopment. Ketone bodies, 3-hydroxybutyrate, and acetoacetate, were nonstatistically elevated, when compared with mean control levels, in all treatment and dose groups, while glucose, pyruvate, and alanine varied. Acetoacetate was significantly increased in the 10 mg/kg α-HBCD and was nonsignificantly decreased with CM-HBCD. A third ketone body, acetone, was significantly lower in the 30 mg/kg α-HBCD group with significant increases in pyruvate at the same treatment and dose group. Metabolites significant in differentiating treatment and dose groups were also identified, including decreases in amino acids glutamate (excitatory neurotransmitter in learning and memory) and phenylalanine (neurotransmitter precursor) after α-HBCD and γ-HBCD exposure, respectively. Conclusions: We demonstrated that 4 days following a single neonatal oral exposure to α-, γ-, and CM-HBCD resulted in different serum metabolomic profiles, indicating stereoisomer- and mixture-specific effects and possible mechanisms of action. Citation: Szabo DT, Pathmasiri W, Sumner S, Birnbaum LS. 2017. Serum metabolomic profiles in neonatal mice following oral brominated flame retardant exposures to hexabromocyclododecane (HBCD) alpha, gamma, and commercial mixture. Environ Health Perspect 125:651–659; http://dx.doi.org/10.1289/EHP242 PMID:27814246
Toxicological effects of cinnabar in rats by NMR-based metabolic profiling of urine and serum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei Lai; Liao Peiqiu; Wu Huifeng
2008-03-15
Cinnabar, an important traditional Chinese mineral medicine, has been widely used as a Chinese patent medicine ingredient for sedative therapy. However, the pharmaceutical and toxicological effects of cinnabar, especially in the whole organism, were subjected to few investigations. In this study, an NMR-based metabolomics approach has been applied to investigate the toxicological effects of cinnabar after intragastrical administration (dosed at 0.5, 2 and 5 g/kg body weight) on male Wistar rats. Liver and kidney histopathology examinations and serum clinical chemistry analyses were also performed. The {sup 1}H NMR spectra were analyzed using multivariate pattern recognition techniques to show the time-more » and dose-dependent biochemical variations induced by cinnabar. The metabolic signature of urinalysis from cinnabar-treated animals exhibited an increase in the levels of creatinine, acetate, acetoacetate, taurine, hippurate and phenylacetylglycine, together with a decrease in the levels of trimethyl-N-oxide, dimethylglycine and Kreb's cycle intermediates (citrate, 2-oxoglutarate and succinate). The metabolomics analyses of serum showed elevated concentrations of ketone bodies (3-D-hydroxybutyrate and acetoacetate), branched-chain amino acids (valine, leucine and isoleucine), choline and creatine as well as decreased glucose, lipids and lipoproteins from cinnabar-treated animals. These findings indicated cinnabar induced disturbance in energy metabolism, amino acid metabolism and gut microflora environment as well as slight injury in liver and kidney, which might indirectly result from cinnabar induced oxidative stress. This work illustrated the high reliability of NMR-based metabolomic approach on the study of the biochemical effects induced by traditional Chinese medicine.« less
RoyChoudhury, Sourav; Mishra, Biswa Prasanna; Khan, Tila; Chattopadhayay, Ratna; Lodh, Indrani; Datta Ray, Chaitali; Bose, Gunja; Sarkar, Himadri S; Srivastava, Sudha; Joshi, Mamata V; Chakravarty, Baidyanath; Chaudhury, Koel
2016-10-18
Polycystic ovary syndrome (PCOS) is one of the most commonly occurring metabolic and endocrinological disorders affecting women of reproductive age. Metabolomics is an emerging field that holds promise in understanding disease pathophysiology. Recently, a few metabolomics based studies have been attempted in PCOS patients; however, none of them have included patients from the Indian population. The main objective of this study was to investigate the serum metabolomic profile of Indian women with PCOS and compare them with controls. Proton nuclear magnetic resonance ( 1 H NMR) was used to first identify the differentially expressed metabolites among women with PCOS from the Eastern region of India during the discovery phase and further validated in a separate cohort of PCOS and control subjects. Multivariate analysis of the binned spectra indicated 16 dysregulated bins in the sera of these women with PCOS. Out of these 16 bins, 13 identified bins corresponded to 12 metabolites including 8 amino acids and 4 energy metabolites. Amongst the amino acids, alanine, valine, leucine and threonine and amongst the energy metabolites, lactate and acetate were observed to be significantly up-regulated in women with PCOS when compared with controls. The remaining 4 amino acids, l-glutamine, proline, glutamate and histidine were down-regulated along with 2 energy metabolites: glucose and 3-hydroxybutyric acid. Our findings showed dysregulations in the expression of different metabolites in the serum of women with PCOS suggesting the involvement of multiple pathways including amino acid metabolism, carbohydrate/lipid metabolism, purine and pyrimidine metabolism and protein synthesis.
Dietrich, Stefan; Floegel, Anna; Weikert, Cornelia; Prehn, Cornelia; Adamski, Jerzy; Pischon, Tobias; Boeing, Heiner; Drogan, Dagmar
2016-08-01
Metabolomics is a promising tool to gain new insights into early metabolic alterations preceding the development of hypertension in humans. We therefore aimed to identify metabolites associated with incident hypertension using measured data of serum metabolites of the European Prospective Investigation Into Cancer and Nutrition (EPIC)-Potsdam study. Targeted metabolic profiling was conducted on serum blood samples of a randomly drawn EPIC-Potsdam subcohort consisting of 135 cases and 981 noncases of incident hypertension, all of them being free of hypertension and not on antihypertensive therapy at the time of blood sampling. Mean follow-up was 9.9 years. A validated set of 127 metabolites was statistically analyzed with a random survival forest backward selection algorithm to identify predictive metabolites of incident hypertension taking into account important epidemiological hypertension risk markers. Six metabolites were identified to be most predictive for the development of hypertension. Higher concentrations of serine, glycine, and acyl-alkyl-phosphatidylcholines C42:4 and C44:3 tended to be associated with higher and diacyl-phosphatidylcholines C38:4 and C38:3 with lower predicted 10-year hypertension-free survival, although visualization by partial plots revealed some nonlinearity in the above associations. The identified metabolites improved prediction of incident hypertension when used together with known risk markers of hypertension. In conclusion, these findings indicate that metabolic alterations occur early in the development of hypertension. However, these alterations are confined to a few members of the amino acid or phosphatidylcholine metabolism, respectively. © 2016 American Heart Association, Inc.
Kraut, Jeffrey A; Xing, Shelly Xiaolei
2011-09-01
An increase in serum osmolality and serum osmolal gap with or without high-anion-gap metabolic acidosis is an important clue to exposure to one of the toxic alcohols, which include methanol, ethylene glycol, diethylene glycol, propylene glycol, or isopropanol. However, the increase in serum osmolal gap and metabolic acidosis can occur either together or alone depending on several factors, including baseline serum osmolal gap, molecular weight of the alcohol, and stage of metabolism of the alcohol. In addition, other disorders, including diabetic or alcoholic ketoacidosis, acute kidney injury, chronic kidney disease, and lactic acidosis, can cause high-anion-gap metabolic acidosis associated with an increased serum osmolal gap and therefore should be explored in the differential diagnosis. It is essential for clinicians to understand the value and limitations of osmolal gap to assist in reaching the correct diagnosis and initiating appropriate treatment. In this teaching case, we present a systematic approach to diagnosing high serum osmolality and increased serum osmolal gap with or without high-anion-gap metabolic acidosis. Published by Elsevier Inc.
Alteration of Lipid Parameters in Patients With Subclinical Hypothyroidism
Laway, Bashir Ahmad; War, Fayaz Ahmad; Shah, Sonaullah; Misgar, Raiz Ahmad; Kumar Kotwal, Suman
2014-01-01
Background: Overt hypothyroidism is associated with abnormalities of lipid metabolism, but conflicting results regarding the degree of lipid changes in subclinical hypothyroidism (SCH) exist. Objectives: The aim of this study was to assess differences in lipid profile parameters between subjects with and without SCH in a north Indian population. Patients and Methods: Serum lipid parameters of 70 patients with subclinical hypothyroidism and 100 age and sex matched euthyroid controls were evaluated in a cross-sectional study. Results: Mean serum total cholesterol (TC), triglycerides (TG) and very low-density cholesterol (VLDL) were significantly higher in patients with SCH than controls (P < 0.05). Mean TC, TG and low-density cholesterol (LDL) concentrations were higher in patients with serum thyroid stimulating hormone (TSH) greater than 10 mU/L than those with serum TSH equal to or less than 10 mU/L, but this difference was not statistically significant. No association was found between serum high-density cholesterol (HDL-C) concentration and serum TSH level. Conclusions: High TC, TG and VLDL were observed in our patients with SCH. PMID:25237326
Piccione, G; Alberghina, D; Marafioti, S; Giannetto, C; Casella, S; Assenza, A; Fazio, F
2012-08-01
The aim of this study was to evaluate the influence of different physiological phases on serum total proteins and their fractions of ten Comisana ewes housed in Mediterranean area. From each animal, blood samples were collected at different physiological phases: late pregnancy, post-partum, early, mid-, end lactation and dry period. On all samples serum total proteins were determined by the biuret method, and albumin, α-globulins, β(1) -globulins, β(2) -globulins and γ-globulins concentrations were assessed using an automated system. One-way repeated measures analysis of variance was applied to determine the significant effect of different physiological phases on the parameters studied. During the late pregnancy and post-partum, total proteins, β1- and β2-globulins and γ-globulins showed the highest values. Starting from post-partum, α-globulins increased to reach their peaks in mid-lactation. Early lactation was characterized by low γ-globulins values. The increase in serum albumin concentration and the drop in some globulin fractions determined the significant increase in albumin/globulin ratio. The obtained results contributed to improve the knowledge on electrophoretic profile during the different physiological phases in ewes, confirming that pregnancy and lactation periods affect the protein metabolism. Particularly, serum protein fractions pattern could give information about dehydration, plasma volume expansion and hepatic function, which occur during the different physiological phases. Dynamics of the protein profile - from pregnancy to dry period - which are provided by our results, could be considered as guidelines for the management strategies to guarantee the nutritional needs of these animals during the different physiological phases and to avoid a decline of productive performance and consequently an economic loss. © 2011 Blackwell Verlag GmbH.
Gorczyca, D; Paściak, M; Szponar, B; Gamian, A; Jankowski, A
2011-02-01
Vegetarian diet has become an increasing trend in western world and in Poland. The frequency of allergies is growing, and the effectiveness of vegetarian diet in allergic diseases is a concern for research. We aimed to study an effect of vegetarian diet on lipid profile in serum in a group of Polish children in Poland and to investigate lipid parameters in healthy vegetarian children and in omnivorous children with diagnosed atopic disease. Serum lipid profiles (triglycerides, total cholesterol, low-density lipoprotein (LDL) and high-density lipoprotein (HDL) cholesterol, fatty acids) were assessed in groups of children: healthy vegetarians (n=24) and children with diagnosed atopic diseases (n=16), with control group of healthy omnivores (n=18). Diet classification was assessed by a questionnaire. No differences were observed in serum triglycerides, LDL cholesterol and saturated and monounsaturated fatty acids level in all groups. In the group of Polish vegetarian children, we recorded high consumption of vegetable oils rich in monounsaturated fatty acid, and sunflower oil containing linoleic acid. This observation was associated with higher content of linoleic acid in serum in this group. Among polyunsaturated n-6 fatty acids, linoleic acid revealed significantly (P<0.05) lower levels in allergy vs vegetarian groups. In case of eicosapentaenoic acid (n-3 fatty acid), the allergy group showed higher levels of this compound in comparison to vegetarians. Significantly higher concentration of linoleic acid in vegetarian children in comparison to allergy group indicated possible alternative path of lipid metabolism in studied groups, and in consequence, some elements of vegetarian diet may promote protection against allergy.
Monroig, Óscar; Lu, You; Yuan, Ye; Li, Yi; Ding, Liyun; Tocher, Douglas R.; Zhou, Qicun
2017-01-01
An 8-week feeding trial was conducted to investigate the effects of dietary docosahexaenoic to eicosapentaenoic acid ratio (DHA/EPA) on growth performance, fatty acid profiles, antioxidant capacity, hematological characteristics and expression of some lipid metabolism related genes of juvenile black seabream (Acanthopagrus schlegelii) of initial weight 9.47 ± 0.03 g. Five isonitrogenous and isolipidic diets (45% crude protein and 14% crude lipid) were formulated to contain graded DHA/EPA ratios of 0.65, 1.16, 1.60, 2.03 and 2.67. There were no differences in growth performance and feed utilization among treatments. Fish fed higher DHA/EPA ratios had higher malondialdehyde (MDA) contents in serum than lower ratios. Serum triacylglycerol (TAG) content was significantly higher in fish fed the lowest DHA/EPA ratio. Tissue fatty acid profiles reflected the diets despite down-regulation of LC-PUFA biosynthesis genes, fatty acyl desaturase 2 (fads2) and elongase of very long-chain fatty acids 5 (elovl5), by high DHA/EPA ratios. Expression of acetyl-CoA carboxylase alpha (accα) and carnitine palmitoyl transferase 1A (cpt1a) were up-regulated by high DHA/EPA ratio, whereas sterol regulatory element-binding protein-1 (srebp-1) and hormone-sensitive lipase (hsl) were down-regulated. Fatty acid synthase (fas), 6-phosphogluconate dehydrogenase (6pgd) and peroxisome proliferator-activated receptor alpha (pparα) showed highest expression in fish fed intermediate (1.16) DHA/EPA ratio. Overall, this study indicated that dietary DHA/EPA ratio affected fatty acid profiles and significantly influenced lipid metabolism including LC-PUFA biosynthesis and other anabolic and catabolic pathways, and also had impacts on antioxidant capacity and hematological characteristics. PMID:28430821
Jin, Min; Monroig, Óscar; Lu, You; Yuan, Ye; Li, Yi; Ding, Liyun; Tocher, Douglas R; Zhou, Qicun
2017-01-01
An 8-week feeding trial was conducted to investigate the effects of dietary docosahexaenoic to eicosapentaenoic acid ratio (DHA/EPA) on growth performance, fatty acid profiles, antioxidant capacity, hematological characteristics and expression of some lipid metabolism related genes of juvenile black seabream (Acanthopagrus schlegelii) of initial weight 9.47 ± 0.03 g. Five isonitrogenous and isolipidic diets (45% crude protein and 14% crude lipid) were formulated to contain graded DHA/EPA ratios of 0.65, 1.16, 1.60, 2.03 and 2.67. There were no differences in growth performance and feed utilization among treatments. Fish fed higher DHA/EPA ratios had higher malondialdehyde (MDA) contents in serum than lower ratios. Serum triacylglycerol (TAG) content was significantly higher in fish fed the lowest DHA/EPA ratio. Tissue fatty acid profiles reflected the diets despite down-regulation of LC-PUFA biosynthesis genes, fatty acyl desaturase 2 (fads2) and elongase of very long-chain fatty acids 5 (elovl5), by high DHA/EPA ratios. Expression of acetyl-CoA carboxylase alpha (accα) and carnitine palmitoyl transferase 1A (cpt1a) were up-regulated by high DHA/EPA ratio, whereas sterol regulatory element-binding protein-1 (srebp-1) and hormone-sensitive lipase (hsl) were down-regulated. Fatty acid synthase (fas), 6-phosphogluconate dehydrogenase (6pgd) and peroxisome proliferator-activated receptor alpha (pparα) showed highest expression in fish fed intermediate (1.16) DHA/EPA ratio. Overall, this study indicated that dietary DHA/EPA ratio affected fatty acid profiles and significantly influenced lipid metabolism including LC-PUFA biosynthesis and other anabolic and catabolic pathways, and also had impacts on antioxidant capacity and hematological characteristics.
Kim, Hae Jin; Han, Seung Jin; Kim, Dae Jung; Jang, Hak Chul; Lim, Soo; Choi, Sung Hee; Kim, Yong Hyun; Shin, Dong Hyun; Kim, Se Hwa; Kim, Tae Ho; Ahn, Yu Bae; Ko, Seung Hyun; Kim, Nan Hee; Seo, Ji A; Kim, Ha Young; Lee, Kwan Woo
2017-01-01
Background/Aims Oxidative stress plays an important role in the pathogenesis and progression of diabetic complications and antagonists of renin-angiotensin system and amlodipine have been reported previously to reduce oxidative stress. In this study, we compared the changes in oxidative stress markers after valsartan and amlodipine treatment in type 2 diabetic patients with hypertension and compared the changes in metabolic parameters. Methods Type 2 diabetic subjects with hypertension 30 to 80 years of age who were not taking antihypertensive drugs were randomized into either valsartan (n = 33) or amlodipine (n = 35) groups and treated for 24 weeks. We measured serum nitrotyrosine levels as an oxidative stress marker. Metabolic parameters including serum glucose, insulin, lipid profile, and urine albumin and creatinine were also measured. Results After 24 weeks of valsartan or amlodipine treatment, systolic and diastolic blood pressure decreased, with no significant difference between the groups. Both groups showed a decrease in serum nitrotyrosine (7.74 ± 7.30 nmol/L vs. 3.95 ± 4.07 nmol/L in the valsartan group and 8.37 ± 8.75 nmol/L vs. 2.68 ± 2.23 nmol/L in the amlodipine group) with no significant difference between the groups. Other parameters including glucose, lipid profile, albumin-to-creatinine ratio, and homeostasis model assessment of insulin resistance showed no significant differences before and after treatment in either group. Conclusions Valsartan and amlodipine reduced the oxidative stress marker in type 2 diabetic patients with hypertension. PMID:28490725
Amiri, Mina; Ramezani Tehrani, Fahimeh; Nahidi, Fatemeh; Kabir, Ali; Azizi, Fereidoun; Carmina, Enrico
2017-08-01
Although oral contraceptives (OCs) are the most common treatment in women with polycystic ovary syndrome (PCOS), their effects and safety on the metabolic profiles of these patients are relatively unknown. In this meta-analysis the effects of the different durations (from 3months to 1year) of OC treatment using cyproterone acetate (CA) or third generation progestins on metabolic profile of patients with PCOS were assessed. PubMed, Scopus, Google Scholar and ScienceDirect databases (2001-2015) were searched to identify clinical trials investigating the effects of OC containing CA or third generation progestins on metabolic profiles of women with PCOS. Both fixed and random effect models were used. Subgroup analyses were performed based on the progestin compounds used and on duration of treatment. Oral contraceptive (OC) use was found to be associated with a worsening in lipid profiles but no changes were observed in other metabolic outcomes, including body mass index (BMI), fasting blood glucose (FBG), fasting insulin, homeostatic model for measuring insulin resistance (HOMA-IR) and in blood pressure (BP) values. All studied OCs showed similar effects on lipid profiles but with different timings, with products containing CA, requiring 6months to raise high density lipoprotein-cholesterol (HDL-C) levels and 12months to increase triglycerides (TG). On the contrary, products containing drospirenone (DRSP) or desogestrel (DSG) increased HDL-C after only 3months but determined elevations of TG after 6months. All OCs induced an increase in low density lipoprotein-cholesterol (LDL-C) after 12months of use. The study shows that, in women with PCOS, OC use is associated with significant changes in lipid profiles, including elevation not only in HDL-C but also in TG and LDL-C. All OCs studied showed similar effects but with different timings, with products containing CA generally requiring more prolonged use to increase serum lipids. Instead, OC use does not affect body weight, BP or glucose levels, with only some minor increase of fasting insulin levels. Copyright © 2017 Elsevier Inc. All rights reserved.
Molecular regulation of urea cycle function by the liver glucocorticoid receptor.
Okun, Jürgen G; Conway, Sean; Schmidt, Kathrin V; Schumacher, Jonas; Wang, Xiaoyue; de Guia, Roldan; Zota, Annika; Klement, Johanna; Seibert, Oksana; Peters, Achim; Maida, Adriano; Herzig, Stephan; Rose, Adam J
2015-10-01
One of the major side effects of glucocorticoid (GC) treatment is lean tissue wasting, indicating a prominent role in systemic amino acid metabolism. In order to uncover a novel aspect of GCs and their intracellular-receptor, the glucocorticoid receptor (GR), on metabolic control, we conducted amino acid and acylcarnitine profiling in human and mouse models of GC/GR gain- and loss-of-function. Blood serum and tissue metabolite levels were determined in Human Addison's disease (AD) patients as well as in mouse models of systemic and liver-specific GR loss-of-function (AAV-miR-GR) with or without dexamethasone (DEX) treatments. Body composition and neuromuscular and metabolic function tests were conducted in vivo and ex vivo, the latter using precision cut liver slices. A serum metabolite signature of impaired urea cycle function (i.e. higher [ARG]:[ORN + CIT]) was observed in human (CTRL: 0.45 ± 0.03, AD: 1.29 ± 0.04; p < 0.001) and mouse (AAV-miR-NC: 0.97 ± 0.13, AAV-miR-GR: 2.20 ± 0.19; p < 0.001) GC/GR loss-of-function, with similar patterns also observed in liver. Serum urea levels were consistently affected by GC/GR gain- (∼+32%) and loss (∼-30%) -of-function. Combined liver-specific GR loss-of-function with DEX treatment revealed a tissue-autonomous role for the GR to coordinate an upregulation of liver urea production rate in vivo and ex vivo, and prevent hyperammonaemia and associated neuromuscular dysfunction in vivo. Liver mRNA expression profiling and GR-cistrome mining identified Arginase I (ARG1) a urea cycle gene targeted by the liver GR. The liver GR controls systemic and liver urea cycle function by transcriptional regulation of ARG1 expression.
Subacute effects of hexabromocyclododecane (HBCD) on hepatic gene expression profiles in rats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Canton, Rocio F.; Peijnenburg, Ad A.C.M.; Hoogenboom, Ron L.A.P.
2008-09-01
Hexabromoyclododecane (HBCD), used as flame retardant (FR) mainly in textile industry and in polystyrene foam manufacture, has been identified as a contaminant at levels comparable to other brominated FRs (BFRs). HBCD levels in biota are increasing slowly and seem to reflect the local market demand. The toxicological database of HBCD is too limited to perform at present a solid risk assessment, combining data from exposure and effect studies. In order to fill in some gaps, a 28-day HBCD repeated dose study (OECD407) was done in Wistar rats. In the present work liver tissues from these animals were used for genemore » expression profile analysis. Results show clear gender specificity with females having a higher number of regulated genes and therefore being more sensitive to HBCD than males. Several specific pathways were found to be affected by HBCD exposure, like PPAR-mediated regulation of lipid metabolism, triacylglycerol metabolism, cholesterol biosynthesis, and phase I and II pathways. These results were corroborated with quantitative RT-PCR analysis. Cholesterol biosynthesis and lipid metabolism were especially down-regulated in females. Genes involved in phase I and II metabolism were up-regulated predominantly in males, which could explain the observed lower HBCD hepatic disposition in male rats in this 28-day study. These sex-specific differences in gene expression profiles could also underlie sex-specific differences in toxicity (e.g. decreased thyroid hormone or increased serum cholesterol levels). To our knowledge, this is the fist study that describes the changes in rat hepatic gene profiles caused by this commonly used flame retardant.« less
NMR Metabolomics Investigates the Influence of Flavonoid-Enriched Rations on Chicken Plasma.
Fotakis, Charalambos; Lantzouraki, Dimitra Z; Goliomytis, Michael; Simitzis, Panagiotis E; Charismiadou, Maria; Deligeorgis, Stelios G; Zoumpoulakis, Panagiotis
2017-03-01
The use of flavonoids as dietary supplements is well established, mainly due to their intense antioxidant and anti-inflammatory properties. In the present study, hesperidin, naringin, and vitamin E were used as additives at different concentrations in poultry rations in order to achieve meat of improved quality. NMR metabolomics was applied to chicken blood serum samples to discern whether and how the enriched rations affected the animals' metabolic profile. Variations in the metabolic patterns according to sustenance consumption were traced by orthogonal projections to latent structures discriminant analysis (OPLS-DA) models and were attributed to specific metabolites by using S-line plots. In particular, serum samples from chickens fed with vitamin E displayed higher concentrations of glycine and succinic acid compared to control samples, which were mainly characterized by betaine, formic acid, and lipoproteins. Samples from chickens fed with hesperidin were characterized by increased levels of lactic acid, citric acid, creatine, carnosine, creatinine, phosphocreatine, anserine, glucose, and alanine compared to control samples. Lastly, naringin samples exhibited increased levels of citric and acetic acids. Results verify the scalability of NMR metabolomics to highlight metabolite variations among chicken serum samples in relation to food rations.
Szemraj, Maciej; Oszajca, Katarzyna; Szemraj, Janusz; Jurowski, Piotr
2017-01-01
Background Congenital hemochromatosis is a disorder caused by mutations of genes involved in iron metabolism, leading to increased levels of iron concentration in tissues and serum. High concentrations of iron can lead to the development of AMD. The aim of this study was to analyze circulating miRNAs in the serum of congenital hemochromatosis patients with AMD and their correlation with the expression of genes involved in iron metabolism. Material/Methods Peripheral blood monolayer cells and serum were obtained from patients with congenital hemochromatosis, congenital hemochromatosis and AMD, AMD patients without congenital hemochromatosis, and healthy controls. Serum miRNAs expressions were analyzed by RT-PCR (qRT-PCR) using TaqMan MicroRNA probes, and proteins levels were measured by ELSA kits. Gene polymorphisms in TF and TFRC genes were determined using the TaqMan discrimination assay. Results Statistical analysis of the miRNAs expressions selected for further study the miR-31, miR-133a, miR-141, miR-145, miR-149, and miR-182, which are involved in the posttranscriptional expression of iron-related genes: TF, TFRI, DMT1, FTL, and FPN1. It was discovered that the observed changes in the expressions of the miRNAs was correlated with the level of protein in the serum of the analyzed genes. There were no statistically significant differences in the distribution of genotype and allele frequencies in TF and TFRC genes between analyzed groups of patients. Conclusions The differences studied in the miRNA serum profile, in conjunction with the changes in the analyzed protein levels, may be useful in the early detection of congenital hemochromatosis in patients who may develop AMD disease. PMID:28827515
Metabolic profiles in serum of mouse after chronic exposure to drinking water.
Zhang, Yan; Wu, Bing; Zhang, Xuxiang; Li, Aimin; Cheng, Shupei
2011-08-01
The toxicity of Nanjing drinking water on mouse (Mus musculus) was detected by (1)H nuclear magnetic resonance (NMR)-based metabonomic method. Three groups of mice were fed with drinking water (produced by Nanjing BHK Water Plant), 3.8 μg/L benzo(a)pyrene as contrast, and clean water as control, respectively, for 90 days. It was observed that the levels of lactate, alanine, and creatinine in the mice fed with drinking water were increased and that of valine was decreased. The mice of drinking water group were successfully separated from control. The total concentrations of polycyclic aromatic hydrocarbons (PAHs), phthalates (PAEs), and other organic pollutants in the drinking water were 0.23 μg/L, 4.57 μg/L, and 0.34 μg/L, respectively. In this study, Nanjing drinking water was found to induce distinct perturbations of metabolic profiles on mouse including disorders of glucose-alanine cycle, branched-chain amino acid and energy metabolism, and dysfunction of kidney. This study suggests that metabonomic method is feasible and sensitive to evaluate potential toxic effects of drinking water.
Serum Progranulin Levels in Type 2 Diabetic Patients with Metabolic Syndrome.
Shafaei, Azam; Marjani, Abdoljalal; Khoshnia, Masoud
2016-12-01
The role of progranulin in individuals with metabolic syndrome is not exactly clear.We aimed to assess the serum level of progranulin in type 2 diabetic patients with and without metabolic syndrome and compare them with healthy controls. The study included 60 patients with type 2 diabetes and 30 healthy individuals as control groups. Biochemical parameters and progranulin levels were determined. Subjects with metabolic syndrome showed significantly higher levels of triglyceride, waist circumference, BMI, systolic and diastolic blood pressure than subjects without metabolic syndrome and the control groups, while HDL-cholesterol level was significantly lower in subjects with metabolic syndrome. Fasting blood sugar was significantly higher in type 2 diabetic patients than in the control groups. Serum level of progranulin was slightly increased in subjects with metabolic syndrome. Serum progranulin level had no significant relationship with metabolic syndrome components. Serum progranulin was also not dependent on cardiometabolic risk factors for subjects with metabolic syndrome, but it could be considered for the management of type 2 diabetes mellitus. Further studies are recommended to explain the effect of progranulin on the pathogenesis of metabolic risk factors.
Qiu, Peiyu; Man, Shuli; Yang, He; Fan, Wei; Yu, Peng; Gao, Wenyuan
2016-08-25
Murine H22 hepatocarcinoma model is so popular to be used for the preclinical anticancer candidate's evaluation. However, the metabolic biomarkers of this model were not identified. Meanwhile, Rhizoma Paridis saponins (RPS) as natural products have been found to show strong antitumor activity, while its anti-cancer mechanism is not clear. To search for potential metabolite biomarkers of this model, serum metabonomics approach was applied to detect the variation of metabolite biomarkers and the related metabolism genes and signaling pathway were used to deduce the antitumor mechanisms of RPS. As a result, ten serum metabolites were identified in twenty-four mice including healthy mice, non-treated cancer mice, RPS-treated cancer mice and RPS-treated healthy mice. RPS significantly decreased tumor weight correlates to down-regulating lactate, acetate, N-acetyl amino acid and glutamine signals (p < 0.05), which were marked metabolites screened according to the very important person (VIP), loading plot and receiver operating characteristic curve (ROC) tests. For the analysis of metabolic enzyme related genes, RPS reversed the aerobic glycolysis through activating tumor suppressor p53 and PTEN, and suppressed FASN to inhibit lipogenesis. What's more, RPS repressed Myc and GLS expression and decreased glutamine level. The regulating PI3K/Akt/mTOR and HIF-1α/Myc/Ras networks also participated in these metabolic changes. Taken together, RPS suppressed ATP product made the tumor growth slow, which indicated a good anti-cancer effect and new angle for understanding the mechanism of RPS. In conclusion, this study demonstrated that the utility of (1)H NMR metabolic profiles taken together with tumor weight and viscera index was a promising screening tool for evaluating the antitumor effect of candidates. In addition, RPS was a potent anticancer agent through inhibiting cancer cellular metabolism to suppress proliferation in hepatoma H22 tumor murine, which promoted the application of RPS in the future. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Karaz, Sonia; Morin-Rivron, Delphine; Masoodi, Mojgan; Feige, Jerome N.; Parkinson, Scott James
2017-01-01
The microbiome has been demonstrated to play an integral role in the maintenance of many aspects of health that are also associated with aging. In order to identify areas of potential exploration and intervention, we simultaneously characterized age-related alterations in gut microbiome, muscle physiology and serum proteomic and lipidomic profiles in aged rats to define an integrated signature of the aging phenotype. We demonstrate that aging skews the composition of the gut microbiome, in particular by altering the Sutterella to Barneseilla ratio, and alters the metabolic potential of intestinal bacteria. Age-related changes of the gut microbiome were associated with the physiological decline of musculoskeletal function, and with molecular markers of nutrient processing/availability, and inflammatory/immune status in aged versus adult rats. Altogether, our study highlights that aging leads to a complex interplay between the microbiome and host physiology, and provides candidate microbial species to target physical and metabolic decline during aging by modulating gut microbial ecology. PMID:28783713
Siddharth, Jay; Chakrabarti, Anirikh; Pannérec, Alice; Karaz, Sonia; Morin-Rivron, Delphine; Masoodi, Mojgan; Feige, Jerome N; Parkinson, Scott James
2017-07-17
The microbiome has been demonstrated to play an integral role in the maintenance of many aspects of health that are also associated with aging. In order to identify areas of potential exploration and intervention, we simultaneously characterized age-related alterations in gut microbiome, muscle physiology and serum proteomic and lipidomic profiles in aged rats to define an integrated signature of the aging phenotype. We demonstrate that aging skews the composition of the gut microbiome, in particular by altering the Sutterella to Barneseilla ratio, and alters the metabolic potential of intestinal bacteria. Age-related changes of the gut microbiome were associated with the physiological decline of musculoskeletal function, and with molecular markers of nutrient processing/availability, and inflammatory/immune status in aged versus adult rats. Altogether, our study highlights that aging leads to a complex interplay between the microbiome and host physiology, and provides candidate microbial species to target physical and metabolic decline during aging by modulating gut microbial ecology.
Chen, Kuanlin; Zhuo, Tiejun; Wang, Jian; Mei, Qing
2018-06-18
Saxagliptin as one of dipeptidyl peptidase-4 (DPP-4) inhibitors can effectively improve glycaemic control in type 2 diabetes mellitus, and nesfatin-1 is regarded as a very important factor in regulating feeding behavior and energy homeostasis. In this trial, we observed the effect of saxagliptin on regulating nesfatin-1 secretion and ameliorating insulin resistance and metabolic profiles in type 2 diabetes mellitus. One hundred two type 2 diabetes participants (M/F = 48/54) were investigated. Fifty-one (M/F = 24/27) of them as the treatment group were treated with oral glucose-lowering agents including saxagliptin, the other 51 (M/F = 24/27) as the control group were treated with oral glucose-lowering agents excluding any DPP-4 inhibitors. The parameters of serum nesfatin-1, C-peptide, homeostasis model assessment-β (HOMA-β) function, HOMA insulin resistance (HOMA-IR), glycosylated hemoglobin A1c (HbA1c), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), body mass index (BMI), and blood pressure (BP) at baseline, month 3, 6, and 12 were observed and compared respectively. Saxagliptin significantly upregulated nesfatin-1 secretion (P < 0.001 at 3-, 6-, and 12-months vs. baseline), increased serum C-peptide (P < 0.05, 0.001, and 0.001 at 3-, 6-, and 12-months vs. baseline), improved HOMA-IR and function of HOMA-β (P < 0.001 at 3-, 6-, and 12-months vs. baseline) and metabolic profiles (P < 0.001 with HbA1c at 3-, 6- and 12-months; P < 0.001 with LDL-C at 6- and 12-months; P < 0.001 and 0.01 with HDL-C at 6- and 12-months vs. baseline), declined BMI (P < 0.05 at 6- and 12-months vs. baseline) and BP (P < 0.001 with systolic BP (SBP), and mean BP at 6- and 12-months, P < 0.01 with diastolic BP at 6- and 12-months vs. baseline). Saxagliptin could upregulate nesfatin-1 secretion and ameliorate insulin resistance and metabolic profiles in type 2 diabetes mellitus. Saxagliptin had the potential to play fundamental by upregulating nesfatin-1 secretion besides lowering glucose by inhibiting the degradation of glucagon-like peptide-1.
Xu, Wenfeng; Wang, Haifeng; Chen, Gang; Li, Wen; Xiang, Rongwu; Zhang, Xiaoli; Pei, Yuehu
2014-05-14
Niuhuang Jiedu Tablet (NJT), composed of Realgar (As₂S₂), Bovis Calculus Artificialis, Borneolum Synthcticum, Gypsum Fibrosum, Rhei Radix et Rhizoma (RR), Scutellariae Radix (SR), Platycodonis Radix (PR) and Glycyrrhizae Radix et Rhizoma (GR), is an effective formula of traditional Chinese medicine (TCM) used in treating acute tonsillitis, pharyngitis, periodontitis and mouth ulcer. In the formula, significant level of realgar (As₂S₂) as a potentially toxic element is contained. In our pervious experiments, NJT was significantly less toxic than realgar (As₂S₂), and the material bases of toxicity alleviation effect to realgar (As₂S₂) were RR, SR, PR and GR. However, the toxicity alleviation effect of each above mentioned four herbs to realgar (As₂S₂) and their synergistic detoxification effects to realgar (As₂S₂) were still obscure. Male Wistar rats were divided into 11 groups: control, group R (treated with Realgar), group RRSPG (treated with Realgar, RR, SR, PR and GR), group RRSP (treated with Realgar, RR, SR and PR), group RRSG (treated with Realgar, RR, SR and GR), group RRPG (treated with Realgar, RR, PR and GR), group RSPG (treated with Realgar, SR, PR and GR), group RR (treated with Realgar and RR), group RS (treated with Realgar and SR), group RP (treated with Realgar and PR) and group RG (treated with Realgar and GR). Based on (1)H NMR spectra of urine and serum from rats, PCA and PLS-DA were performed to identify different metabolic profiles. Liver and kidney histopathology examinations and serum clinical chemistry analysis were also performed. The metabolic profiles of groups RR, RS, RP and RG were similar to those of group R, while the metabolic profiles of groups RRSPG, RRSP, RRSG, RRPG and RSPG were almost in line with those of control group. Statistics results were confirmed by the histopathological examination and biochemical assay. The present work suggested that the toxicity alleviation effects of RR, SR, PR and GR to realgar (As₂S₂) were not obvious when combined with realgar (As₂S₂) respectively, but they had synergistic detoxification effects on realgar (As₂S₂) mutually. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
A cross-omics toxicological evaluation of drinking water treated with different processes.
Shi, Peng; Jia, Shuyu; Zhang, Xu-Xiang; Zhao, Fuzheng; Chen, Yajun; Zhou, Qing; Cheng, Shupei; Li, Ai-Min
2014-04-30
Cross-omics profiling and phenotypic analysis were conducted to comprehensively assess the toxicities of source of drinking water (SDW), effluent of conventional treatment (ECT) and effluent of advanced treatment (EAT) in a water treatment plant. SDW feeding increased body weight, and relative liver and kidney weights of mice. Hepatic histopathological damages and serum biochemical alterations were observed in the mice fed with SDW and ECT, but EAT feeding showed no obvious effects. Transcriptomic analysis demonstrated that exposure to water samples caused differential expression of hundreds of genes in livers. Cluster analysis of the differentially expressed genes which generated by both microarrays and digital gene expression showed similar grouping patterns. Proteomic and metabolomics analyses indicated that drinking SDW, ECT and EAT generated 59, 145 and 41 significantly altered proteins in livers and 8, 2 and 0 altered metabolites in serum, respectively. SDW was found to affect several metabolic pathways including metabolism of xenobiotics by cytochrome P450 and fatty acid metabolism. SDW and ECT might induce molecular toxicities to mice, but the advanced treatment process can reduce the potential health risk by effectively removing toxic chemicals in drinking water. Copyright © 2014 Elsevier B.V. All rights reserved.
Gulati, Seema; Misra, Anoop; Pandey, Ravindra Mohan; Bhatt, Surya Prakash; Saluja, Shelza
2014-02-01
The aim of this study was to evaluate the effects of pistachio nuts as an adjunct to diet and exercise on body composition, metabolic, inflammatory, and oxidative stress parameters in Asian Indians with metabolic syndrome. In this 24-wk randomized control trial, 60 individuals with the metabolic syndrome were randomized to either pistachio (intervention group) or control group (diet as per weight and physical activity profile, modulated according to dietary guidelines for Asian Indians) after 3 wk of a diet and exercise run in. In the first group, unsalted pistachios (20% energy) were given daily. A standard diet and exercise protocol was followed for both groups. Body weight, waist circumference (WC), magnetic resonance imaging estimation of intraabdominal adipose tissue and subcutaneous abdominal adipose tissue, fasting blood glucose (FBG), fasting serum insulin, glycosylated hemoglobin, lipid profile, high-sensitivity C-reactive protein (hs-CRP), adiponectin, free fatty acids (FFAs), tumor necrosis factor (TNF)-α, leptin, and thiobarbituric acid reactive substances (TBARS) were assessed before and after the intervention. Statistically significant improvement in mean values for various parameters in the intervention group compared with control group were as follows: WC (P < 0.02), FBG (P < 0.04), total cholesterol (P < 0.02), low-density lipoprotein cholesterol (P < 0.006), hs-CRP (P < 0.05), TNF-α (P < 0.03), FFAs (P < 0.001), TBARS (P < 0.01), and adiponectin levels (P < 0.001). A single food intervention with pistachios leads to beneficial effects on the cardiometabolic profile of Asian Indians with metabolic syndrome. Copyright © 2014 Elsevier Inc. All rights reserved.
Kumar, Pranesh; Singh, Ashok K; Raj, Vinit; Rai, Amit; Maity, Siddhartha; Rawat, Atul; Kumar, Umesh; Kumar, Dinesh; Prakash, Anand; Guleria, Anupam; Saha, Sudipta
2017-08-01
6,7-dimethoxy-1,2,3,4-tetrahydro-isoquinoline-3-carboxylic acid (M1) was synthesized and evaluated for in-vivo antiproliferative action in diethylnitrosamine-induced hepatocarcinogenic rats. The antiproliferative effect of M1 was assessed by various biochemical parameters, histopathology of liver and HPLC analysis. Proton nuclear magnetic resonance-based serum metabolic study was implemented on rat sera to explore the effects of M1 on hepatocellular carcinoma-induced metabolic alterations. M1 showed protective action on liver and restored the arrangement of liver tissues in normal proportion. HPLC analysis displayed a good plasma drug concentration after its oral administration. Score plots of partial least squares discriminate analysis models exhibited that M1 therapy ameliorated hepatocellular carcinoma-induced metabolic alterations which signified its antiproliferative potential. M1 manifested notable antiproliferative profile, and warrants further investigation for future anticancer therapy.
Van Buren, Peter N.; Lewis, Julia B.; Dwyer, Jamie P.; Greene, Tom; Middleton, John; Sika, Mohammed; Umanath, Kausik; Abraham, Josephine D.; Arfeen, Shahabul S.; Bowline, Isai G.; Chernin, Gil; Fadem, Stephen Z.; Goral, Simin; Koury, Mark; Sinsakul, Marvin V.; Weiner, Daniel E.
2016-01-01
Background Phosphate binders are the cornerstone of hyperphosphatemia management in dialysis patients. Ferric citrate is an iron-based oral phosphate binder that effectively lowers serum phosphorus levels. Study Design 52-week, open-label, phase 3, randomized, controlled trial for safety-profile assessment. Setting & Participants Maintenance dialysis patients with serum phosphorus levels ≥6.0 mg/dL after washout of prior phosphate binders. Intervention 2:1 randomization to ferric citrate or active control (sevelamer carbonate and/or calcium acetate). Outcomes Changes in mineral bone disease, protein-energy wasting/inflammation, and occurrence of adverse events after 1 year. Measurements Serum calcium, intact parathyroid hormone, phosphorus, aluminum, white blood cell count, percentage of lymphocytes, serum urea nitrogen, and bicarbonate. Results There were 292 participants randomly assigned to ferric citrate, and 149, to active control. Groups were well matched. For mean changes from baseline, phosphorus levels decreased similarly in the ferric citrate and active control groups (−2.04 ± 1.99 [SD] vs −2.18 ± 2.25 mg/dL, respectively; P = 0.9); serum calcium levels increased similarly in the ferric citrate and active control groups (0.22 ± 0.90 vs 0.31 ± 0.95 mg/dL; P = 0.2). Hypercalcemia occurred in 4 participants receiving calcium acetate. Parathyroid hormone levels decreased similarly in the ferric citrate and active control groups (−167.1 ± 399.8 vs −152.7 ± 392.1 pg/mL; P = 0.8). Serum albumin, bicarbonate, serum urea nitrogen, white blood cell count and percentage of lymphocytes, and aluminum values were similar between ferric citrate and active control. Total and low-density lipoprotein cholesterol levels were lower in participants receiving sevelamer than those receiving ferric citrate and calcium acetate. Fewer participants randomly assigned to ferric citrate had serious adverse events compared with active control. Limitations Open-label study, few peritoneal dialysis patients. Conclusions Ferric citrate was associated with similar phosphorus control compared to active control, with similar effects on markers of bone and mineral metabolism in dialysis patients. There was no evidence of protein-energy wasting/inflammation or aluminum toxicity, and fewer participants randomly assigned to ferric citrate had serious adverse events. Ferric citrate is an effective phosphate binder with a safety profile comparable to sevelamer and calcium acetate. PMID:25958079
Metabolic Footprinting of Fermented Milk Consumption in Serum of Healthy Men
Pimentel, Grégory; Burton, Kathryn J; von Ah, Ueli; Bütikofer, Ueli; Pralong, François P; Vionnet, Nathalie; Portmann, Reto; Vergères, Guy
2018-01-01
Abstract Background Fermentation is a widely used method of natural food preservation that has consequences on the nutritional value of the transformed food. Fermented dairy products are increasingly investigated in view of their ability to exert health benefits beyond their nutritional qualities. Objective To explore the mechanisms underpinning the health benefits of fermented dairy intake, the present study followed the effects of milk fermentation, from changes in the product metabolome to consequences on the human serum metabolome after its ingestion. Methods A randomized crossover study design was conducted in 14 healthy men [mean age: 24.6 y; mean body mass index (in kg/m2): 21.8]. At the beginning of each test phase, serum samples were taken 6 h postprandially after the ingestion of 800 g of a nonfermented milk or a probiotic yogurt. During the 2-wk test phases, subjects consumed 400 g of the assigned test product daily (200 g, 2 times/d). Serum samples were taken from fasting participants at the end of each test phase. The serum metabolome was assessed through the use of LC-MS–based untargeted metabolomics. Results Postprandial serum metabolomes after milk or yogurt intake could be differentiated [orthogonal projections to latent structures discriminant analysis (OPLS-DA) Q2 = 0.74]. Yogurt intake was characterized by higher concentrations of 7 free amino acids (including proline, P = 0.03), reduced concentrations of 5 bile acids (including glycocholic acid, P = 0.04), and modulation of 4 indole derivative compounds (including indole lactic acid, P = 0.01). Fasting serum samples after 2 wk of daily intake of milk or yogurt could also be differentiated based on their metabolic profiles (OPLS-DA Q2 = 0.56) and were discussed in light of the postprandial results. Conclusion Metabolic pathways related to amino acids, indole derivatives, and bile acids were modulated in healthy men by the intake of yogurt. Further investigation to explore novel health effects of fermented dairy products is warranted.This trial was registered at clinicaltrials.gov as NCT02230345. PMID:29788433
Newman, Monica A.; Zebeli, Qendrim; Eberspächer, Eva; Grüll, Dietmar; Molnar, Timea; Metzler-Zebeli, Barbara U.
2017-01-01
Due to the functional properties and physiological effects often associated with chemically modified starches, significant interest lies in their development for incorporation in processed foods. This study investigated the effect of transglycosylated cornstarch (TGS) on blood glucose, insulin, and serum metabolome in the pre- and postprandial phase in growing pigs. Eight jugular vein-catheterized barrows were fed two diets containing 72% purified starch (waxy cornstarch (CON) or TGS). A meal tolerance test (MTT) was performed with serial blood sampling for glucose, insulin, lipids, and metabolome profiling. TGS-fed pigs had reduced postprandial insulin (p < 0.05) and glucose (p < 0.10) peaks compared to CON-fed pigs. The MTT showed increased (p < 0.05) serum urea with TGS-fed pigs compared to CON, indicative of increased protein catabolism. Metabolome profiling showed reduced (p < 0.05) amino acids such as alanine and glutamine with TGS, suggesting increased gluconeogenesis compared to CON, probably due to a reduction in available glucose. Of all metabolites affected by dietary treatment, alkyl-acyl-phosphatidylcholines and sphingomyelins were generally increased (p < 0.05) preprandially, whereas diacyl-phosphatidylcholines and lysophosphatidylcholines were decreased (p < 0.05) postprandially in TGS-fed pigs compared to CON. In conclusion, TGS led to changes in postprandial insulin and glucose metabolism, which may have caused the alterations in serum amino acid and phospholipid metabolome profiles. PMID:28300770
Newman, Monica A; Zebeli, Qendrim; Eberspächer, Eva; Grüll, Dietmar; Molnar, Timea; Metzler-Zebeli, Barbara U
2017-03-16
Due to the functional properties and physiological effects often associated with chemically modified starches, significant interest lies in their development for incorporation in processed foods. This study investigated the effect of transglycosylated cornstarch (TGS) on blood glucose, insulin, and serum metabolome in the pre- and postprandial phase in growing pigs. Eight jugular vein-catheterized barrows were fed two diets containing 72% purified starch (waxy cornstarch (CON) or TGS). A meal tolerance test (MTT) was performed with serial blood sampling for glucose, insulin, lipids, and metabolome profiling. TGS-fed pigs had reduced postprandial insulin ( p < 0.05) and glucose ( p < 0.10) peaks compared to CON-fed pigs. The MTT showed increased ( p < 0.05) serum urea with TGS-fed pigs compared to CON, indicative of increased protein catabolism. Metabolome profiling showed reduced ( p < 0.05) amino acids such as alanine and glutamine with TGS, suggesting increased gluconeogenesis compared to CON, probably due to a reduction in available glucose. Of all metabolites affected by dietary treatment, alkyl-acyl-phosphatidylcholines and sphingomyelins were generally increased ( p < 0.05) preprandially, whereas diacyl-phosphatidylcholines and lysophosphatidylcholines were decreased ( p < 0.05) postprandially in TGS-fed pigs compared to CON. In conclusion, TGS led to changes in postprandial insulin and glucose metabolism, which may have caused the alterations in serum amino acid and phospholipid metabolome profiles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Constantinou, Maria A.; Department of Forensic Medicine and Toxicology, Medical School, University of Athens, 75, Mikras Asias str., 11527 Athens; Theocharis, Stamatios E.
2007-01-01
Metabonomics has already been used to discriminate different pathological states in biological fields. The metabolic profiles of chronic experimental fibrosis and cirrhosis induction in rats were investigated using {sup 1}H NMR spectroscopy of liver extracts and serum combined with pattern recognition techniques. Rats were continuously administered with thioacetamide (TAA) in the drinking water (300 mg TAA/L), and sacrificed on 1st, 2nd, and 3rd month of treatment. {sup 1}H NMR spectra of aqueous and lipid liver extracts, together with serum were subjected to Principal Component Analysis (PCA). Liver portions were also subjected to histopathological examination and biochemical determination of malondialdehyde (MDA).more » Liver fibrosis and cirrhosis were progressively induced in TAA-treated rats, verified by the histopathological examination and the alterations of MDA levels. TAA administration revealed a number of changes in the {sup 1}H NMR spectra compared to control samples. The performance of PCA in liver extracts and serum, discriminated the control samples from the fibrotic and cirrhotic ones. Metabolic alterations revealed in NMR spectra during experimental liver fibrosis and cirrhosis induction, characterize the stage of fibrosis and could be illustrated by subsequent PCA of the spectra. Additionally, the PCA plots of the serum samples presented marked clustering during fibrosis progression and could be extended in clinical diagnosis for the management of cirrhotic patients.« less
Rødgaard, Tina; Stagsted, Jan; Christoffersen, Berit Ø; Cirera, Susanna; Moesgaard, Sophia G; Sturek, Michael; Alloosh, Mouhamad; Heegaard, Peter M H
2013-02-15
The acute phase protein orosomucoid (ORM) has anti-inflammatory and immunomodulatory effects, and may play an important role in the maintenance of metabolic homeostasis in obesity-induced low-grade inflammation. Even though the pig is a widely used model for obesity related metabolic symptoms, the expression of ORM has not yet been characterized in such pig models. The objective of this study was to investigate the expression of ORM1 mRNA in liver, visceral adipose tissue, subcutaneous adipose tissue (SAT) from the abdomen or retroperitoneal abdominal adipose tissue (RPAT) and SAT from the neck, as well as the serum concentration of ORM protein in three porcine obesity models; the domestic pig, Göttingen minipigs and Ossabaw minipigs. No changes in ORM1 mRNA expression were observed in obese pigs compared to lean pigs in the four types of tissues. However, obese Ossabaw minipigs, but none of the other breeds, showed significantly elevated ORM serum concentrations compared to their lean counterparts. Studies in humans have shown that the expression of ORM was unchanged in adipose tissue depots in obese humans with an increased serum concentration of ORM. Thus in this respect, obese Ossabaw minipigs behave more similarly to obese humans than the other two pig breeds investigated. Copyright © 2012 Elsevier B.V. All rights reserved.
Wachter, Bettina; Heinrich, Sonja K.; Reyers, Fred; Mienie, Lodewyk J.
2016-01-01
Cheetahs (Acinonyx jubatus) are highly specialised large felids, currently listed as vulnerable on the IUCN red data list. In captivity, they are known to suffer from a range of chronic non-infectious diseases. Although low heterozygosity and the stress of captivity have been suggested as possible causal factors, recent studies have started to focus on the contribution of potential dietary factors in the pathogenesis of these diseases. Fatty acids are an important component of the diet, not only providing a source of metabolisable energy, but serving other important functions in hormone production, cellular signalling as well as providing structural components in biological membranes. To develop a better understanding of lipid metabolism in cheetahs, we compared the total serum fatty acid profiles of 35 captive cheetahs to those of 43 free-ranging individuals in Namibia using gas chromatography-mass spectrometry. The unsaturated fatty acid concentrations differed most remarkably between the groups, with all of the polyunsaturated and monounsaturated fatty acids, except arachidonic acid and hypogeic acid, detected at significantly lower concentrations in the serum of the free-ranging animals. The influence of age and sex on the individual fatty acid concentrations was less notable. This study represents the first evaluation of the serum fatty acids of free-ranging cheetahs, providing critical information on the normal fatty acid profiles of free-living, healthy individuals of this species. The results raise several important questions about the potential impact of dietary fatty acid composition on the health of cheetahs in captivity. PMID:27992457
2014-01-01
Background Rhaponticum cathamoides (RC) is an endemic wild Siberian herb with marked medicinal properties that are still poorly understood. The aim of this study is to investigate the therapeutic potential of RC extract (ERC) compared to the effects of Glycyrrhiza glabra (EGG) and Punica granatum extracts (EPG) in a rat model with high-fat diet-(HFD)-induced signs of metabolic syndrome; therefore, this study addresses a significant global public health problem. Methods Six-month-old male Wistar Albino Glaxo rats were subjected to eight weeks of a standard diet (SD), HFD, or HFD in which ERC, EGG, or EPG powders were incorporated at 300 mg/kg/day. The serum lipid profile, corticosterone and cytokine concentrations, glucose tolerance, systolic blood pressure, triacylglycerol accumulation, and PPARα DNA-binding activities in the liver samples were determined. Results In contrast to EGG and EPG, an ERC supplement significantly reduced the weight of epididymal tissue (19.0%, p < 0.01) and basal serum glucose level (19.4%, p < 0.05). ERC improved glucose intolerance as well as dyslipidemia more efficiently than EGG and EPG. EGG but not ERC or EPG supplementation decreased systolic blood pressure by 12.0% (p < 0.05). All of the tested extracts reduced serum IL6 and corticosterone levels induced by HFD. However, the lowering effects of ERC consumption on the serum TNF-α level and its restoring effect on the adrenal corticosterone level significantly exceeded the improvements induced by EGG and EPG. ERC intake also reduced triacylglycerol accumulation and increased the PPARα DNA-binding activity in the liver more significantly than EGG and EPG. Conclusions ERC powder supplementation improved glucose and lipid metabolism more significantly than EGG and EPG in rats fed on HFD, supporting the strategy of R. carthamoides use for safe relief of metabolic syndrome and its related disturbances such as inflammation, stress, and hepatic steatosis. PMID:24444255
Vuksan, V; Sievenpiper, J L; Owen, R; Swilley, J A; Spadafora, P; Jenkins, D J; Vidgen, E; Brighenti, F; Josse, R G; Leiter, L A; Xu, Z; Novokmet, R
2000-01-01
Dietary fiber has recently received recognition for reducing the risk of developing diabetes and heart disease. The implication is that it may have therapeutic benefit in prediabetic metabolic conditions. To test this hypothesis, we investigated the effect of supplementing a high-carbohydrate diet with fiber from Konjac-mannan (KJM) on metabolic control in subjects with the insulin resistance syndrome. We screened 278 free-living subjects between the ages of 45 and 65 years from the Canadian-Maltese Diabetes Study. A total of 11 (age 55+/-4 years, BMI 28+/-1.5 kg/m2) were recruited who satisfied the inclusion criteria: impaired glucose tolerance, reduced HDL cholesterol, elevated serum triglycerides, and moderate hypertension. After an 8-week baseline, they were randomly assigned to take either KJM fiber-enriched test biscuits (0.5 g of glucomannan per 100 kcal of dietary intake or 8-13 g/day) or wheat bran fiber (WB) control biscuits for two 3-week treatment periods separated by a 2-week washout. The diets were isoenergetic, metabolically controlled, and conformed to National Cholesterol Education Program Step 2 guidelines. Serum lipids, glycemic control, and blood pressure were the outcome measures. Decreases in serum cholesterol (total, 12.4+/-3.1%, P<0.004; LDL, 22+/-3.9%, P<0.002; total/HDL ratio, 15.2+/-3.4%, P<0.003; and LDL/HDL ratio, 22.2+/-4.1%, P< 0.002), apolipoprotein (apo) B (15.1+/-4.3%, P<0.0004), apo B/A-1 ratio (13.1+/-3.4%, P< 0.0003), and serum fructosamine (5.2+/-1.4%, P<0.002) were observed during KJM treatment compared with WB-control. Fasting blood glucose, insulin, triglycerides, HDL cholesterol, and body weight remained unchanged. A diet rich in high-viscosity KJM improves glycemic control and lipid profile, suggesting a therapeutic potential in the treatment of the insulin resistance syndrome.
Liang, Yong-Hong; Tang, Chao-Ling; Lu, Shi-Yin; Cheng, Bang; Wu, Fang; Chen, Zhao-Ni; Song, Fangming; Ruan, Jun-Xiang; Zhang, Hong-Ye; Song, Hui; Zheng, Hua; Su, Zhi-Heng
2016-09-10
Corydalis saxicola Bunting (CS), a traditional Chinese folk medicine, has been effectively used for treating liver disease in Zhuang nationality in South China. However, the exact hepatoprotective mechanism of CS was still looking forward to further elucidation by far. In present work, metabonomic study of biochemical changes in the serum of carbon tetrachloride (CCl4)-induced acute liver injury rats after CS treatment were performed using proton nuclear magnetic resonance ((1)H-NMR) analysis. Metabolic profiling by means of principal components analysis (PCA) and partial least squares-discriminate analysis (PLS-DA) indicated that the metabolic perturbation caused by CCl4 was reduced by CS treatment. A total of 9 metabolites including isoleucine (1), lactate (2), alanine (3), glutamine (4), acetone (5), succinate (6), phosphocholine (7), d-glucose (8) and glycerol (9) were considered as potential biomarkers involved in the development of CCl4-induced acute liver injury. According to pathway analysis by metabolites identified and correlation network construction by Pearson's correlation coefficency matrix, alanine, aspartate and glutamate metabolism and glycerolipid metabolism were recognized as the most influenced metabolic pathways associated with CCl4 injury. As a result, notably, deviations of metabolites 1, 3, 4, 7 and 9 in the process of CCl4-induced acute liver injury were improved by CS treatment, which suggested that CS mediated synergistically abnormalities of the metabolic pathways, composed of alanine, aspartate and glutamate metabolism and glycerolipid metabolism. In this study, it was the first report to investigate the hepatoprotective effect of the CS based on metabonomics strategy, which may be a potentially powerful tool to interpret the action mechanism of traditional Chinese folk medicines. Copyright © 2016 Elsevier B.V. All rights reserved.
Mansouri, Masoume; Abasi, Roshanak; Nasiri, Morteza; Sharifi, Farshad; Vesaly, Sedyghe; Sadeghi, Omid; Rahimi, Nayere; Sharif, Nasrin Akbary
2018-05-01
We aimed to assess the association of vitamin D status with metabolic syndrome and its components among high educated Iranian adults. In this cross-sectional study, 352 faculty members with age of 35 years or more, belong to Tarbiat Modares University, Tehran, Islamic Republic of Iran, were recruited during 2016 and 2017. Fasting blood samples were obtained to quantify serum 25(OH)D concentrations, glycemic indicators and lipid profile. Metabolic syndrome was defined based on the guidelines of the National Cholesterol Education Program Adult Treatment Panel III (ATP III). Multivariate logistic regression adjusted for potential confounders was used to evaluate the association between vitamin D status and metabolic syndrome. Metabolic syndrome and vitamin D insufficiency were prevalent among 26% and 60.2% of subjects, respectively. There was no statistically significant difference in the prevalence of metabolic syndrome across quartiles of 25(OH)D levels either before or after adjusting for potential confounders (OR: 0.94, 95% CI: 0.43-1.95). In terms of metabolic syndrome components, subjects in the highest quartile of vitamin D levels had 59% decreased risk of abdominal obesity compared with those in the lowest quartile (OR: 0.41, 95% CI: 0.17-0.99), after adjusting for potential confounders. Such inverse relationship was also seen for elevated blood pressure (OR: 0.37, 95% CI: 0.14-0.99), and abnormal glucose homeostasis (OR: 0.40, 95% CI: 0.19-0.85). Serum levels of 25(OH)D was inversely associated with the risk of abdominal obesity, hypertension, and abnormal glucose homeostasis. However, no significant relationship was seen for metabolic syndrome. Copyright © 2018. Published by Elsevier Ltd.
Kim, Jong-Won; Kim, Do-Yeon
2012-12-01
The percentage of obese postmenopausal women with metabolic syndrome is rising, and physical factors associated with the metabolic syndrome prevalence or incidence are also rising, including high body mass index (BMI), visceral fat area (VFA), low plasma sex hormone-binding globulin (SHBG) levels, and low cardiorespiratory fitness. Therefore, we investigated the influence of aerobic exercise on SHBG, body fat index (BFI), and metabolic syndrome factors in obese postmenopausal Korean women. Thirty healthy postmenopausal, women aged 53.46 ± 2.4 years and with over 32% body fat, were randomly assigned to an aerobic exercise group (EX; n=15) or to a "nonexercise" control (Con; n=15) group. The primary outcome measurements were serum SHBG, lipid profiles, insulin levels, and metabolic syndrome factors. Secondary outcome measurements were body composition, VFA, blood pressure (BP), and homeostasis model assessment of insulin resistance (HOMA-IR). Posttraining body weight and BFI (P<0.05), total cholesterol, glucose, and insulin levels (P<0.01), BP, and HOMA-IR (P<0.001) decreased, whereas SHBG (P<0.001) and metabolic syndrome factors (P<0.01) improved in the exercise group but not in the control group. SHBG levels also showed a significant positive correlation with high-density lipoprotein cholesterol (HDL-C) and significant negative correlations withglucose, diastolic blood pressure, fat mass, BMI, and percent body fat (P<0.05). Our findings indicate that aerobic exercise improves body composition, SHBG, insulin levels, and metabolic syndrome factors. These findings suggest that in obesepostmenopausal Korean women, 16 weeks of aerobic exercise is effective for preventing the metabolic syndrome caused by obesity.
Yary, Teymoor; Virtanen, Jyrki K; Ruusunen, Anu; Tuomainen, Tomi-Pekka; Voutilainen, Sari
2017-05-01
The aim of this study was to investigate associations of serum zinc with incident metabolic syndrome and its components in middle-aged and older Finnish men. An 11-y prospective follow-up study conducted among 683 men from the Kuopio Ischaemic Heart Disease Risk Factor Study who were 42 to 60 y old at baseline in 1984 to 1989. The main outcome was incident metabolic syndrome, defined by the National Cholesterol Education Program (NCEP) criteria. Other outcomes were the individual components of the NCEP metabolic syndrome: Fasting blood glucose, serum triacylglycerols, serum high-density lipoprotein (HDL) cholesterol, hypertension, and waist circumference. During the average follow-up of 11 y, 139 men (20.4%) developed metabolic syndrome. Those in the highest tertile of serum zinc had 84% higher risk (95% confidence interval 12 to 201%, P trend across tertiles = 0.015) to develop metabolic syndrome compared with those in the lowest tertile, after adjustment for several potential confounders. The association between serum zinc and incident metabolic syndrome was attenuated by adjustment for waist circumference, serum HDL cholesterol, or hypertension. Serum zinc was also directly associated with higher waist circumference and hypertension and inversely associated with HDL cholesterol at the 11 y examinations. We found a direct association between serum zinc and incidence of metabolic syndrome in middle-aged and older eastern Finnish men. Further studies are warranted to explore the mechanisms. Copyright © 2016 Elsevier Inc. All rights reserved.
Ara, Jesmin; Lee, Sung Pyo; Jung, Jin Young
2018-01-01
Purpose This study was performed to evaluate antifatigue effect of hydrogen water (HW) drinking in chronic forced exercise mice model. Materials and Methods Twelve-week-old C57BL6 female mice were divided into nonstressed normal control (NC) group and stressed group: (purified water/PW-treated group and HW-treated group). Stressed groups were supplied with PW and HW, respectively, ad libitum and forced to swim for the stress induction every day for 4 consecutive weeks. Gross antifatigue effects of HW were assessed by swimming endurance capacity (once weekly for 4 wk), metabolic activities, and immune-redox activities. Metabolic activities such as blood glucose, lactate, glycogen, blood urea nitrogen (BUN), and lactate dehydrogenase (LDH) as well as immune-redox activities such as reactive oxygen species (ROS), nitric oxide (NO), glutathione peroxidase (GPx), catalase, and the related cytokines were evaluated to elucidate underlying mechanism. Blood glucose and lactate were measured at 0 wk (before swimming) and 4 wk (after swimming). Results HW group showed a higher swimming endurance capacity (p < 0.001) than NC and PW groups. Positive metabolic effects in HW group were revealed by the significant reduction of blood glucose, lactate, and BUN in serum after 4 wk (p < 0.01, resp.), as well as the significant increase of liver glycogen (p < 0.001) and serum LDH (p < 0.05) than PW group. In parallel, redox balance was represented by lower NO in serum (p < 0.01) and increased level of GPx in both serum and liver (p < 0.05) than PW group. In line, the decreased levels of serum TNF-α (p < 0.01), IL-6, IL-17, and liver IL-1β (p < 0.05) in HW group revealed positive cytokine profile compared to PW and NC group. Conclusion This study shows antifatigue effects of HW drinking in chronic forced swimming mice via metabolic coordination and immune-redox balance. In that context, drinking HW could be applied to the alternative and safety fluid remedy for chronic fatigue control. PMID:29850492
Martinez, Jessica A; Chalasani, Pavani; Thomson, Cynthia A; Roe, Denise; Altbach, Maria; Galons, Jean-Philippe; Stopeck, Alison; Thompson, Patricia A; Villa-Guillen, Diana Evelyn; Chow, H-H Sherry
2016-07-19
Two-thirds of U.S. adult women are overweight or obese. High body mass index (BMI) and adult weight gain are risk factors for a number of chronic diseases, including postmenopausal breast cancer. The higher postmenopausal breast cancer risk in women with elevated BMI is likely to be attributable to related metabolic disturbances including altered circulating sex steroid hormones and adipokines, elevated pro-inflammatory cytokines, and insulin resistance. Metformin is a widely used antidiabetic drug that has demonstrated favorable effects on metabolic disturbances and as such may lead to lower breast cancer risk in obese women. Further, the anti-proliferative effects of metformin suggest it may decrease breast density, an accepted biomarker of breast cancer risk. This is a Phase II randomized, double-blind, placebo-controlled trial of metformin in overweight/obese premenopausal women who have elements of metabolic syndrome. Eligible participants will be randomized to receive metformin 850 mg BID (n = 75) or placebo (n = 75) for 12 months. The primary endpoint is change in breast density, based on magnetic resonance imaging (MRI) acquired fat-water features. Secondary outcomes include changes in serum insulin levels, serum insulin-like growth factor (IGF)-1 to insulin-like growth factor binding protein (IGFBP)-3 ratio, serum IGF-2 levels, serum testosterone levels, serum leptin to adiponectin ratio, body weight, and waist circumference. Exploratory outcomes include changes in metabolomic profiles in plasma and nipple aspirate fluid. Changes in tissue architecture as well as cellular and molecular targets in breast tissue collected in a subgroup of participants will also be explored. The study will evaluate whether metformin can result in favorable changes in breast density, select proteins and hormones, products of body metabolism, and body weight and composition. The study should help determine the potential breast cancer preventive activity of metformin in a growing population at risk for multiple diseases. ClinicalTrials.gov Identifier: NCT02028221 . Registered on January 2, 2014. Grant #: 1R01CA172444-01A1 awarded on Sept 11, 2013.
[The proteomic profiling of blood serum of children with gastroesophageal reflux disease].
Korkotashvili, L V; Kolesov, S A; Jukova, E A; Vidmanova, T A; Kankova, N Yu; Bashurova, I A; Sidorova, A M; Kulakova, E V
2015-03-01
The mass-spectra of proteome of blood serum from healthy children and children with gastroesophageal reflux disease were received. The technology platform including direct proteome mass-spectrometer profiling after pre-fractional rectification using magnetic particles MB WCX was applied. The significant differences in mass-spectra were established manifesting in detection of more mass-spectrometer peaks and higher indicators of their intensity and area in group of healthy children. The study detected 39 particular peptides and low-molecular proteins predominantly intrinsic to healthy or ill children. It was established that two peptides with molecular mass 925 and 909 Da. are registered only in healthy patients and have no traces in group ofpatients with gastroesophageal reflux disease. The peptide 1564 Da is detected only in blood of children with gastroesophageal reflux disease and totally is absent in healthy children. The research data permitted to reveal specific patterns (signatures) of low-molecular proteins and peptides specific for blood serum of healthy children and patients with gastroesophageal reflux disease. The results testify the availability of singularities in metabolism of low-molecular proteins and can be used as a basis for development of minimally invasive mass-spectrometer system for its diagnostic.
Qualitative metabolomics profiling of serum and bile from dogs with gallbladder mucocele formation.
Gookin, Jody L; Mathews, Kyle G; Cullen, John; Seiler, Gabriela
2018-01-01
Mucocele formation is characterized by secretion of abnormally thick mucus by the gallbladder epithelium of dogs that may cause obstruction of the bile duct or rupture of the gallbladder. The disease is increasingly recognized and is associated with a high morbidity and mortality. The cause of gallbladder mucocele formation in dogs is unknown. There is a strong breed predisposition and affected dogs have a high incidence of concurrent endocrinopathy or hyperlipidemia. These observations suggest a significant influence of both genetic and metabolic factors on disease pathogenesis. In this study, we investigated a theory that mucocele formation is associated with a syndrome of metabolic disruption. We surmised that a global, untargeted metabolomics approach could provide unique insight into the systemic pathogenesis of gallbladder mucocele formation and identify specific compounds as candidate biomarkers or treatment targets. Moreover, concurrent examination of the serum and hepatic duct bile metabolome would enable the construction of mechanism-based theories or identification of specific compounds responsible for altered function of the gallbladder epithelium. Abnormalities observed in dogs with gallbladder mucocele formation, including a 33-fold decrease in serum adenosine 5'-monophosphate (AMP), lower quantities of precursors required for synthesis of energy transporting nucleotides, and increases in citric acid cycle intermediates, suggest excess metabolic energy and a carbon surplus. Altered quantities of compounds involved in protein translation and RNA turnover, together with accumulation of gamma-glutamylated and N-acetylated amino acids in serum suggest abnormal regulation of protein and amino acid metabolism. Increases in lathosterol and 7α-hydroxycholesterol suggest a primary increase in cholesterol synthesis and diversion to bile acid formation. A number of specific biomarker compounds were identified for their ability to distinguish between control dogs and those that formed a gallbladder mucocele. Particularly noteworthy was a significant decrease in quantity of biologically active compounds that stimulate biliary ductal fluid secretion including adenosine, cAMP, taurolithocholic acid, and taurocholic acid. These findings support the presence of significant metabolic disruption in dogs with mucocele formation. A targeted, quantitative analysis of the identified serum biomarkers is warranted to determine their utility for diagnosis of this disease. Finally, repletion of compounds whose biological activity normally promotes biliary ductal secretion should be examined for any therapeutic impact for resolution or prevention of mucocele formation.
Qualitative metabolomics profiling of serum and bile from dogs with gallbladder mucocele formation
Mathews, Kyle G.; Cullen, John; Seiler, Gabriela
2018-01-01
Mucocele formation is characterized by secretion of abnormally thick mucus by the gallbladder epithelium of dogs that may cause obstruction of the bile duct or rupture of the gallbladder. The disease is increasingly recognized and is associated with a high morbidity and mortality. The cause of gallbladder mucocele formation in dogs is unknown. There is a strong breed predisposition and affected dogs have a high incidence of concurrent endocrinopathy or hyperlipidemia. These observations suggest a significant influence of both genetic and metabolic factors on disease pathogenesis. In this study, we investigated a theory that mucocele formation is associated with a syndrome of metabolic disruption. We surmised that a global, untargeted metabolomics approach could provide unique insight into the systemic pathogenesis of gallbladder mucocele formation and identify specific compounds as candidate biomarkers or treatment targets. Moreover, concurrent examination of the serum and hepatic duct bile metabolome would enable the construction of mechanism-based theories or identification of specific compounds responsible for altered function of the gallbladder epithelium. Abnormalities observed in dogs with gallbladder mucocele formation, including a 33-fold decrease in serum adenosine 5’-monophosphate (AMP), lower quantities of precursors required for synthesis of energy transporting nucleotides, and increases in citric acid cycle intermediates, suggest excess metabolic energy and a carbon surplus. Altered quantities of compounds involved in protein translation and RNA turnover, together with accumulation of gamma-glutamylated and N-acetylated amino acids in serum suggest abnormal regulation of protein and amino acid metabolism. Increases in lathosterol and 7α-hydroxycholesterol suggest a primary increase in cholesterol synthesis and diversion to bile acid formation. A number of specific biomarker compounds were identified for their ability to distinguish between control dogs and those that formed a gallbladder mucocele. Particularly noteworthy was a significant decrease in quantity of biologically active compounds that stimulate biliary ductal fluid secretion including adenosine, cAMP, taurolithocholic acid, and taurocholic acid. These findings support the presence of significant metabolic disruption in dogs with mucocele formation. A targeted, quantitative analysis of the identified serum biomarkers is warranted to determine their utility for diagnosis of this disease. Finally, repletion of compounds whose biological activity normally promotes biliary ductal secretion should be examined for any therapeutic impact for resolution or prevention of mucocele formation. PMID:29324798
Wiklund, Petri; Zhang, Xiaobo; Tan, Xiao; Keinänen-Kiukaanniemi, Sirkka; Alen, Markku; Cheng, Sulin
2016-05-01
Branched-chain and aromatic amino acids are associated with high risk of developing dyslipidemia and type II diabetes in adults. This study aimed to examine whether serum amino acid profiles associate with triglyceride concentrations during pubertal growth and predict hypertriglyceridemia in early adulthood. This was a 7.5-year longitudinal study. The study was conducted at the Health Science Laboratory, University of Jyväskylä. A total of 396 nondiabetic Finnish girls aged 11.2 ± 0.8 years at the baseline participated in the study. Body composition was assessed by dual-energy x-ray absorptiometry; serum concentrations of glucose, insulin, and triglyceride by enzymatic photometric methods; and amino acids by nuclear magnetic resonance spectroscopy. Serum leucine and isoleucine correlated significantly with future triglyceride, independent of baseline triglyceride level (P < .05 for all). In early adulthood (at the age of 18 years), these amino acids were significantly associated with hypertriglyceridemia, whereas fat mass and homeostasis model assessment of insulin resistance were not. Leucine was the strongest determinant discriminating subjects with hypertriglyceridemia from those with normal triglyceride level (area under the curve, 0.822; 95% confidence interval, 0.740-0.903; P = .000001). Serum leucine and isoleucine were associated with future serum triglyceride levels in girls during pubertal growth and predicted hypertriglyceridemia in early adulthood. Therefore, these amino acid indices may serve as biomarkers to identify individuals at high risk for developing hypertriglyceridemia and cardiovascular disease later in life. Further studies are needed to elucidate the role these amino acids play in the lipid metabolism.
Association between serum CA 19-9 and metabolic syndrome: A cross-sectional study.
Du, Rui; Cheng, Di; Lin, Lin; Sun, Jichao; Peng, Kui; Xu, Yu; Xu, Min; Chen, Yuhong; Bi, Yufang; Wang, Weiqing; Lu, Jieli; Ning, Guang
2017-11-01
Increasing evidence suggests that serum CA 19-9 is associated with abnormal glucose metabolism. However, data on the association between CA 19-9 and metabolic syndrome is limited. The aim of the present study was to investigate the association between serum CA 19-9 and metabolic syndrome. A cross-sectional study was conducted on 3641 participants aged ≥40 years from the Songnan Community, Baoshan District in Shanghai, China. Logistic regression analysis was used to evaluate the association between serum CA 19-9 and metabolic syndrome. Multivariate logistic regression analysis showed that compared with participants in the first tertile of serum CA 19-9, those in the second and third tertiles had increased odds ratios (OR) for prevalent metabolic syndrome (multivariate adjusted OR 1.46 [95% confidence interval {CI} 1.11-1.92] and 1.51 [95% CI 1.14-1.98]; P trend = 0.005). In addition, participants with elevated serum CA 19-9 (≥37 U/mL) had an increased risk of prevalent metabolic syndrome compared with those with serum CA 19-9 < 37 U/mL (multivariate adjusted OR 2.10; 95% CI 1.21-3.65). Serum CA 19-9 is associated with an increased risk of prevalent metabolic syndrome. In order to confirm this association and identify potential mechanisms, prospective cohort and mechanic studies should be performed. © 2017 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and John Wiley & Sons Australia, Ltd.
Nan, Yang; Zhou, Xiaohang; Liu, Qi; Zhang, Aihua; Guan, Yu; Lin, Shanhua; Kong, Ling; Han, Ying; Wang, Xijun
2016-07-15
Kidney yang deficiency syndrome, a diagnostic pattern in Chinese medicine, is similar with clinical features of the glucocorticoid withdrawal syndrome. The aim of this present study was to explore low molecular mass differentiating metabolites between control group and model group of kidney yang deficiency rats induced with corticosterone as well as the therapeutic effect of Shen Qi Pill, a classic traditional Chinese medicine formula for treating Kidney yang deficiency syndrome in China. This study utilized ultra-performance liquid chromatography coupled with electrospray ionization synapt quadrupole time-of-flight high definition mass spectrometry (UPLC/ESI-SYNAPT-QTOF-HDMS) to identify the underlying biomarkers for clarifying mechanism of Shen Qi Pill in treating Kidney yang deficiency syndrome based on metabolite profiling of the serum samples and in conjunction with multivariate and pathway analysis. Meanwhile, blood biochemistry assay and histopathology were examined to identify specific changes in the model group rats. Distinct changes in the pattern of metabolites were observed by UPLC-HDMS. The changes in metabolic profiling were restored to their baseline values after treatment with Shen Qi Pill according to the combined with a principal component analysis (PCA) score plots. Altogether, the current metabolomics approach based on UPLC-HDMS and orthogonal projection to latent structures discriminate analysis (OPLS-DA) demonstrated 27 ions (18 in the negative mode, 9 in the positive mode, 17 ions restored by Shen Qi Pill). These results indicated that effectiveness of Shen Qi Pill in Kidney yang deficiency syndrome rats induced a substantial change in the metabolic profiles by regulating the biomarkers and adjusting the metabolic disorder. It suggested that the metabolomics approach was a powerful approach for elucidation of pathologic changes of Chinese medicine syndrome and action mechanisms of traditional Chinese medicine. Copyright © 2015 Elsevier B.V. All rights reserved.
Bhardwaj, Swati; Misra, Anoop; Gulati, Seema; Anoop, Shajith; Kamal, Vineet Kumar; Pandey, Ravindra Mohan
2017-12-01
In view of the increasing prevalence of obesity in largely vegetarian Asian Indians, it is important to research a high protein, low carbohydrate vegetarian diet. The present study was designed to evaluate the effects of a "High P rotein C omplete (lacto) V E geta R ian Diet (Acronym; 'PACER diet'), on weight, body composition and metabolic profiles in non-diabetic obese Asian Indians living in north India. In this 8-week randomized control trial, 102 vegetarian subjects with body mass index (BMI) >25 kg/m 2 were randomized to either a test diet (PACER diet; high protein, high fat and moderately low carbohydrate, lacto-vegetarian diet) or control diet (standard vegetarian diet formulated as the dietary guidelines for Asian Indians) after 4 weeks of diet and exercise run-in period. A standard exercise protocol was followed for both groups. Body weight, BMI, waist circumference (WC), blood pressure, fasting plasma glucose (FPG), fasting serum insulin and lipid profile were assessed before and after the intervention. There was significant weight loss along with improvements in cardio-metabolic risk factors among both the groups post intervention. Percent reductions in the intervention group for weight (6.1± 2.9; p < 0.001), WC (3.9 ± 1.7; p < 0.001), FPG (5.9 ± 3.2; p < 0.001), total cholesterol (10.2 ± 6.3: p < 0.001), serum triacylglycerol (13.6 ± 10.6; p < 0.001) and low-density lipoprotein cholesterol (11.9 ± 7.1; p < 0.001]) were significantly greater than the control diet group. In summary, intervention with a PACER diet (high protein, high fat and moderately low carbohydrate, lacto-vegetarian diet) showed significant improvement in weight loss, body composition and cardio-metabolic profile as compared to a standard vegetarian diet among obese Asian Indians in north India.
Bonfante, Ivan Luiz Padilha; Chacon-Mikahil, Mara Patricia Traina; Brunelli, Diego Trevisan; Gáspari, Arthur Fernandes; Duft, Renata Garbellini; Oliveira, Alexandre Gabarra; Araujo, Tiago Gomes; Saad, Mario Jose Abdalla; Cavaglieri, Cláudia Regina
2017-12-01
Thus, the aim of this study was to compare if higher or smaller fibronectin type 3 domain-containing protein 5 (FNDC5)/irisin levels are associated with inflammatory and metabolic markers, caloric/macronutrient intake, physical fitness and type 2 diabetes mellitus (T2DM) risk in obese middle-aged men, and also to correlate all variables analyzed with FNDC5/irisin. On the basis of a cluster study, middle-aged obese men (IMC: 31.01 ± 1.64 kg/m2) were divided into groups of higher and smaller levels of FNDC5/irisin. The levels of leptin, resistin, adiponectin, tumor necrosis factor alpha (TNFα), interleukin 6 and 10 (IL6, IL10), lipopolysaccharide (LPS), glucose, insulin, glycated hemoglobin, insulin resistance and sensibility, lipid profile, risk of T2DM development, body composition, rest energy expenditure, caloric/macronutrient intake and physical fitness were measured. The higher FNDC5/ irisin group presented improved insulin sensibility (homeostasis model assessment - sensibility (HOMA-S) (p = 0.01) and QUICKI index (p < 0.01)), insulin (p = 0.02) and triglyceride levels (p = 0.01), lower insulin resistance (homeostasis model assessment - insulin resistance (HOMA-IR) (p = 0.01), triglycerides/glucose (TYG index) (p = 0.02), neck circumference (p = 0.02), risk of T2DM development (p = 0.02), tendency to decrease serum resistin (p = 0.08) and significant lower LPS levels (p = 0.02). Inverse correlations between FNDC5/irisin and body weight (r -0.46, p = 0.04), neck circumference (r -0.51, p = 0.02), free fat mass (r -0.49, p = 0.02), triglycerides (r -0.43, p = 0.05) and risk of developing T2DM (r -0.61, p = 0.04) were observed. These results suggest that higher FNDC5/irisin levels in obese middle-aged men are related to a better metabolic profile and lower risk of T2DM development and serum LPS, a potential inducer of insulin resistance.
Asemi, Zatollah; Soleimani, Alireza; Bahmani, Fereshteh; Shakeri, Hossein; Mazroii, Navid; Abedi, Fatemeh; Fallah, Melika; Mohammadi, Ali Akbar; Esmaillzadeh, Ahmad
2016-02-01
This study was conducted to determine the effects of omega-3 fatty acid plus vitamin E supplementation on subjective global assessment (SGA) score and metabolic profiles in chronic hemodialysis (HD) patients. This randomized double-blind placebo-controlled clinical trial was conducted among 120 chronic HD patients. Participants were randomly divided into four groups to receive: (i) 1250 mg/day omega-3 fatty acid containing 600 mg eicosapentaenoic acid and 300 mg docosahexaenoic acid + vitamin E placebo (n = 30), (ii) 400 IU/day vitamin E + omega-3 fatty acids placebo (n = 30), (iii) 1250 mg omega-3 fatty acids/day + 400 IU/day vitamin E (n = 30), and (iv) omega-3 fatty acids placebo + vitamin E placebo (n = 30) for 12 wk. Fasting blood samples were taken at baseline and after 12-wk intervention to measure metabolic profiles. Patients who received combined omega-3 fatty acids and vitamin E supplements compared with vitamin E, omega-3 fatty acids, and placebo had significantly decreased SGA score (p < 0.001), fasting plasma glucose (p = 0.01), serum insulin levels (p = 0.001), homeostasis model of assessment insulin resistance (p = 0.002), and improved quantitative insulin sensitivity check index (p = 0.006). Omega-3 fatty acids plus vitamin E supplementation for 12 wk among HD patients had beneficial effects on SGA score and metabolic profiles. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Joshi, Shivam G.; Chandola, Hari Mohan; Dave, Alankruta R.
2014-01-01
Background: Dyslipidemia is a disorder of lipoprotein metabolism, including lipoprotein overproduction or deficiency and it can be understood in the parlance of the closest conditions in Ayurveda, viz. Kapha Medo Margavarana (dyslipidemia), Atisthaulya (obesity) or Meda Roga and Prameha. Asanadi Ghanavati (AG) is a modified presentation of Asanadi Gana drugs referred in Ashtanga Hridaya and Gomutra Haritaki (GH) is described in Charaka Samhita under Shotha Chikitsa and Ashtanga Hridaya in Arsha Chikitsa. Aim: To evaluate and compare the clinical effect of AG and GH in Kapha Medo Margavarana. Materials and Methods: Patients with the high lipid profile were selected and randomly divided into two groups. In Group A (n = 30), patients were administered with tablet of AG 1 g (500 mg each) thrice a day for 8 weeks and in Group B (n = 30), tablet of GH in similar dose and duration. Effect of therapy was assessed by body circumference, Body Mass Index (BMI), cardinal symptoms like Anga-Gaurava, Bharavriddhi, etc., and lipid profile parameters. Result: AG decreased the serum cholesterol by 7.12%, Serum Triglyceride (S. TG) by 7.72%, Serum Low Density Lipoprotein (S. LDL) by 11.68%, Serum Very Low Density Lipoprotein (S. VLDL) by 7.73%, and had increased Serum High Density Lipoprotein (S. HDL) by 9.52%, with moderate improvement in 14.81% and mild improvement in 70.37% of patients. The GH decreased the serum cholesterol by 6.31%, S. TG by 9.61%, S. LDL by 12.55%, serum VLDL by 8.99%, and increased S. HDL by 10.52% with moderate improvement in 3.70%, and mild improvement in 74.07% patients. Conclusion: AG and GH are suggested to be used in Kleda Bahul Samprapti Janya Vyadhi and Ama Bahul Samprapti Janya Vyadhi respectively. PMID:25558160
Zhu, Yong; Wang, Huifen; Hollis, James H; Jacques, Paul F
2015-06-01
Recent studies have shown that yogurt consumption was associated with better diet quality and a healthier metabolic profile in adults. However, such associations have not been investigated in children. The present study examined the associations in children using data from a nationally representative survey. Data from 5,124 children aged 2-18 years, who participated in the National Health and Nutrition Examination Survey (NHANES) between 2003 and 2006 in the USA were analyzed. The frequency of yogurt consumption over 12 months was determined using a validated food frequency questionnaire. Diet quality was assessed by the Healthy Eating Index 2005 (HEI-2005) using one 24-HR dietary recall, and metabolic profiles were obtained from the NHANES laboratory data. It was found that only 33.1 % of children consumed yogurt at least once per week (frequent consumers). Adjusting for covariates, frequent consumers had better diet quality than infrequent consumers, as indicated by a higher HEI-2005 total score (P = 0.04). Frequent yogurt consumption was associated with a lower fasting insulin level (P < 0.001), a lower homeostatic model assessment of insulin resistance (P < 0.001), and a higher quantitative insulin sensitivity check index (P = 0.03). However, yogurt consumption was not associated with body weight, fasting glucose, serum lipid profiles, C-reactive protein, and blood pressures (all P > 0.05). These results suggest that frequent yogurt consumption may contribute to improved diet quality and a healthier insulin profile in children. Future longitudinal studies and clinical trials in children are warranted to explore the health benefits of yogurt consumption.
St-Onge, Marie-Pierre; Bosarge, Aubrey; Goree, Laura Lee T.; Darnell, Betty
2010-01-01
Objective Medium chain triglyceride (MCT) consumption may have a beneficial impact on weight management, however, some studies point to a negative impact of MCT oil consumption on cardiovascular disease risk. This study examined the effects of MCT oil consumption, as part of a weight loss diet, on metabolic risk profile compared to olive oil. Design Thirty-one men and women, age 19–50 y and body mass index 27–33 kg/m2, completed this randomized, controlled, 16-week weight loss program. Oils were consumed at a level of ~12% of the subjects’ prescribed energy intakes in the form of muffins and liquid oil. Results After controlling for body weight, there was a significant effect of time on fasting serum glucose (P = 0.0177) and total cholesterol (P = 0.0386) concentrations, and on diastolic blood pressure (P = 0.0413), with reductions in these variables occurring over time; there was no time-by-diet interaction for any of the parameters studied. Two of the 3 subjects in the MCT oil group with evidence of the metabolic syndrome at baseline did not have metabolic syndrome at endpoint. In the olive oil group, 6 subjects had the metabolic syndrome at baseline; 2 subjects no longer had metabolic syndrome at endpoint, 1 person developed metabolic syndrome, and 4 subjects did not have any change in their metabolic syndrome status. Conclusions Our results suggest that MCT oil can be incorporated into a weight loss program without fear of adversely affecting metabolic risk factors. Distinction should be made regarding chain length when it comes to discussing the effects of saturated fats on metabolic risk factors. PMID:18845704
Kim, Yunhye; Yoon, Sun; Lee, Sun Bok; Han, Hye Won; Oh, Hayoun; Lee, Wu Joo; Lee, Seung-Min
2014-01-01
We aimed to investigate whether in vitro fermentation of soy with L. plantarum could promote its beneficial effects on lipids at the molecular and physiological levels. Rats were fed an AIN76A diet containing 50% sucrose (w/w) (CTRL), a modified AIN76A diet supplemented with 1% (w/w) cholesterol (CHOL), or a CHOL diet where 20% casein was replaced with soy milk (SOY) or fermented soy milk (FSOY). Dietary isoflavone profiles, serum lipids, hepatic and fecal cholesterol, and tissue gene expression were examined. The FSOY diet had more aglycones than did the SOY diet. Both the SOY and FSOY groups had lower hepatic cholesterol and serum triglyceride (TG) than did the CHOL group. Only FSOY reduced hepatic TG and serum free fatty acids and increased serum HDL-CHOL and fecal cholesterol. Compared to CHOL, FSOY lowered levels of the nuclear forms of SREBP-1c and SREBP-2 and expression of their target genes, including FAS, SCD1, LDLR, and HMGCR. On the other hand, FSOY elevated adipose expression levels of genes involved in TG-rich lipoprotein uptake (ApoE, VLDLR, and Lrp1), fatty acid oxidation (PPARα, CPT1α, LCAD, CYP4A1, UCP2, and UCP3), HDL-biogenesis (ABCA1, ApoA1, and LXRα), and adiponectin signaling (AdipoQ, AdipoR1, and AdipoR2), as well as levels of phosphorylated AMPK and ACC. SOY conferred a similar expression profile in both liver and adipose tissues but failed to reach statistical significance in many of the genes tested, unlike FSOY. Our data indicate that fermentation may be a way to enhance the beneficial effects of soy on lipid metabolism, in part via promoting a reduction of SREBP-dependent cholesterol and TG synthesis in the liver, and enhancing adiponectin signaling and PPARα-induced expression of genes involved in TG-rich lipoprotein clearance, fatty acid oxidation, and reverse cholesterol transport in adipose tissues.
Mourad, Ahmed A; Heeba, Gehan H; Taye, Ashraf; El-Moselhy, Mohamed A
2013-10-01
Obesity is often associated with chronic inflammatory state which contributes to the development of insulin resistance (IR) and type 2 diabetes mellitus (T2DM). This study investigated the effects of single and combined administration of atorvastatin (ATOR, lipid-lowering drug) and losartan (LOS, angiotensin receptor antagonist) on metabolic disorders and inflammatory status that are implicated in the development of T2DM with the use of pioglitazone (PIO) as a standard antidiabetic drug. T2DM was induced in male rats by high-fat diet (HFD) feeding for 16 weeks. Oral administrations of ATOR (10 mg/kg), LOS (20 mg/kg), PIO (3 mg/kg), their binary combinations, or vehicle were started in the last 4 weeks. Fasting serum glucose, oral glucose tolerance, fasting serum insulin, IR, serum lipid profile, serum TNF-α and body composition index were determined. Results showed that all drugs and their combinations had positive impact effect on all measured parameters, and better results were achieved from binary drug combinations than administration of each drug alone. Combination of PIO with either ATOR or LOS provided better improvements on T2DM-associated metabolic abnormalities and inflammatory status with respect to each drug alone. However, the most pronounced effects of drugs and their combinations regarding the above parameters were attributed to LOS + PIO combination. In conclusion, this study indicates that combination of ATOR + PIO and, in particular, LOS + PIO can be used as promising effective therapies in the management of HFD-induced T2DM. This concept may be attributed to the combined effects of the respective monotherapies to improve lipid profile, insulin sensitivity, and TNF-α level. © 2012 The Authors Fundamental and Clinical Pharmacology © 2012 Société Française de Pharmacologie et de Thérapeutique.
Han, Hye Won; Oh, Hayoun; Lee, Wu Joo; Lee, Seung-Min
2014-01-01
We aimed to investigate whether in vitro fermentation of soy with L. plantarum could promote its beneficial effects on lipids at the molecular and physiological levels. Rats were fed an AIN76A diet containing 50% sucrose (w/w) (CTRL), a modified AIN76A diet supplemented with 1% (w/w) cholesterol (CHOL), or a CHOL diet where 20% casein was replaced with soy milk (SOY) or fermented soy milk (FSOY). Dietary isoflavone profiles, serum lipids, hepatic and fecal cholesterol, and tissue gene expression were examined. The FSOY diet had more aglycones than did the SOY diet. Both the SOY and FSOY groups had lower hepatic cholesterol and serum triglyceride (TG) than did the CHOL group. Only FSOY reduced hepatic TG and serum free fatty acids and increased serum HDL-CHOL and fecal cholesterol. Compared to CHOL, FSOY lowered levels of the nuclear forms of SREBP-1c and SREBP-2 and expression of their target genes, including FAS, SCD1, LDLR, and HMGCR. On the other hand, FSOY elevated adipose expression levels of genes involved in TG-rich lipoprotein uptake (ApoE, VLDLR, and Lrp1), fatty acid oxidation (PPARα, CPT1α, LCAD, CYP4A1, UCP2, and UCP3), HDL-biogenesis (ABCA1, ApoA1, and LXRα), and adiponectin signaling (AdipoQ, AdipoR1, and AdipoR2), as well as levels of phosphorylated AMPK and ACC. SOY conferred a similar expression profile in both liver and adipose tissues but failed to reach statistical significance in many of the genes tested, unlike FSOY. Our data indicate that fermentation may be a way to enhance the beneficial effects of soy on lipid metabolism, in part via promoting a reduction of SREBP-dependent cholesterol and TG synthesis in the liver, and enhancing adiponectin signaling and PPARα-induced expression of genes involved in TG-rich lipoprotein clearance, fatty acid oxidation, and reverse cholesterol transport in adipose tissues. PMID:24520358
Watanabe, Miki; Roth, Terri L; Bauer, Stuart J; Lane, Adam; Romick-Rosendale, Lindsey E
2016-01-01
A variety of wildlife species maintained in captivity are susceptible to iron storage disease (ISD), or hemochromatosis, a disease resulting from the deposition of excess iron into insoluble iron clusters in soft tissue. Sumatran rhinoceros (Dicerorhinus sumatrensis) is one of the rhinoceros species that has evolutionarily adapted to a low-iron diet and is susceptible to iron overload. Hemosiderosis is reported at necropsy in many African black and Sumatran rhinoceroses but only a small number of animals reportedly die from hemochromatosis. The underlying cause and reasons for differences in susceptibility to hemochromatosis within the taxon remains unclear. Although serum ferritin concentrations have been useful in monitoring the progression of ISD in many species, there is some question regarding their value in diagnosing hemochromatosis in the Sumatran rhino. To investigate the metabolic changes during the development of hemochromatosis and possibly increase our understanding of its progression and individual susceptibility differences, the serum metabolome from a Sumatran rhinoceros was investigated by nuclear magnetic resonance (NMR)-based metabolomics. The study involved samples from female rhinoceros at the Cincinnati Zoo (n = 3), including two animals that died from liver failure caused by ISD, and the Sungai Dusun Rhinoceros Conservation Centre in Peninsular Malaysia (n = 4). Principal component analysis was performed to visually and statistically compare the metabolic profiles of the healthy animals. The results indicated that significant differences were present between the animals at the zoo and the animals in the conservation center. A comparison of the 43 serum metabolomes of three zoo rhinoceros showed two distinct groupings, healthy (n = 30) and unhealthy (n = 13). A total of eighteen altered metabolites were identified in healthy versus unhealthy samples. Results strongly suggest that NMR-based metabolomics is a valuable tool for animal health monitoring and may provide insight into the progression of this and other insidious diseases.
NASA Astrophysics Data System (ADS)
Lu, Xiaoyan; Tian, Yu; Zhao, Qinqin; Jin, Tingting; Xiao, Shun; Fan, Xiaohui
2011-02-01
Understanding the underlying properties-dependent interactions of nanostructures with biological systems is essential to nanotoxicological research. This study investigates the relationship between particle size and toxicity, and further reveals the mechanism of injury, using silica particles (SP) with diameters of 30, 70, and 300 nm (SP30, SP70, and SP300) as model materials. The biochemical compositions of liver tissues and serum of mice treated with SP30, SP70, and SP300 were analyzed by integrated metabonomics analysis based on gas chromatography-mass spectrometry (GC-MS) and in combination with pattern recognition approaches. Histopathological examinations and serum biochemical analysis were simultaneously performed. The toxicity induced by three different sizes of SP mainly involved hepatocytic necrosis, increased serum aminotransferase, and inflammatory cytokines. Moreover, the toxic effects of SP were dose-dependent for each particle size. The doses of SP30, SP70, and SP300 that were toxic to the liver were 10, 40, and 200 mg kg - 1, respectively. In this study, surface area has a greater effect than particle number on the toxicity of SP30, SP70, and SP300 in the liver. The disturbances in energy metabolism, amino acid metabolism, lipid metabolism, and nucleotide metabolism may be attributable to the hepatotoxicity induced by SP. In addition, no major differences were found in the response of biological systems caused by the different SP sizes among the metabolite profiles. The results suggest that not only nano-sized but also submicro-sized SP can cause similar extents of liver injury, which is dependent on the exposure dose, and the mechanism of toxicity may be almost the same.
Duration of Fasting, Serum Lipids, and Metabolic Profile in Early Childhood.
Anderson, Laura N; Maguire, Jonathon L; Lebovic, Gerald; Hanley, Anthony J; Hamilton, Jill; Adeli, Khosrow; McCrindle, Brian W; Borkhoff, Cornelia M; Parkin, Patricia C; Birken, Catherine S
2017-01-01
To evaluate the association between fasting duration and lipid and metabolic test results. A cross-sectional study was conducted in healthy children aged 0-6 years from The Applied Research Group for Kids! (TARGet Kids!) primary care practice network, Toronto, Canada, 2008-2013. The associations between duration of fasting at blood collection and serum lipid tests and metabolic tests were evaluated using linear regression. Among 2713 young children with blood tests the fasting time ranged from 0 to 5 hours (1st and 99th percentiles). Fasting duration was not significantly associated with total cholesterol (β = 0.006; P = .629), high-density lipoprotein (HDL) (β = 0.002; P = .708), low-density lipoprotein (β = 0.0013; P = .240), non-HDL (β = 0.004; P = .744), or triglycerides (β = -0.016; P = .084) adjusted for age, sex, body mass index, maternal ethnicity, and time of blood draw. Glucose, insulin, and homeostasis model assessment of insulin resistance were significantly associated with fasting duration, and the average percent change between 0 and 5 hours was -7.2%, -67.1%, and -69.9%, respectively. The effect of fasting on lipid or metabolic test results did not differ by age or sex; HDL and triglycerides may differ by weight status. In this cohort of healthy young children, we found little evidence to support the need for fasting prior to measurement of lipids. The effect of fasting on glucose was small and may not be clinically important. When measuring serum lipid tests in early childhood, fasting makes a very small difference. ClinicalTrials.gov: NCT0186953. Copyright © 2016 Elsevier Inc. All rights reserved.
Puurunen, Johanna; Piltonen, Terhi; Puukka, Katri; Ruokonen, Aimo; Savolainen, Markku J; Bloigu, Risto; Morin-Papunen, Laure; Tapanainen, Juha S
2013-12-01
Statins have been shown to improve hyperandrogenism in women with polycystic ovary syndrome (PCOS). However, their use has also been associated with impairment of glucose metabolism and an increased risk of type 2 diabetes mellitus. Because women with PCOS are prone to disturbances in glucose metabolism, statin therapy could also have negative effects. Our objective was to explore the effects of atorvastatin therapy on hormonal and metabolic parameters in women with PCOS. We conducted a randomized, double-blind, placebo-controlled 6-month follow-up study conducted at Oulu University Hospital, Finland. Women with PCOS (Rotterdam criteria) were treated with atorvastatin (20 mg/d, n = 15) or placebo (n = 13) for 6 months. Fasting serum samples were collected at baseline and at 3 and 6 months. Oral and iv glucose tolerance tests were performed at 0 and 6 months. Androgen secretion and glucose metabolism were measured. Fasting levels and area under the curve of insulin increased significantly and insulin sensitivity (insulinogenic and Matsuda indexes) decreased during 6 months of atorvastatin therapy. Serum levels of dehydroepiandrosterone sulfate decreased in the atorvastatin group, whereas no change was observed in serum testosterone levels. Levels of C-reactive protein, total and low-density lipoprotein-cholesterol, and triglycerides decreased significantly during statin therapy. Atorvastatin therapy improves chronic inflammation and lipid profile, but it impairs insulin sensitivity in women with PCOS. Because women with PCOS have an increased risk of developing type 2 diabetes mellitus, the results suggest that statin therapy should be initiated on the basis of generally accepted criteria and individual risk assessment of cardiovascular disease, and not only because of PCOS.
Somabhai, Chaudhari Archana; Raghuvanshi, Ruma; Nareshkumar, G.
2016-01-01
Aims To assess protective efficacy of genetically modified Escherichia coli Nissle 1917 (EcN) on metabolic effects induced by chronic consumption of dietary fructose. Materials and Methods EcN was genetically modified with fructose dehydrogenase (fdh) gene for conversion of fructose to 5-keto-D-fructose and mannitol-2-dehydrogenase (mtlK) gene for conversion to mannitol, a prebiotic. Charles foster rats weighing 150–200 g were fed with 20% fructose in drinking water for two months. Probiotic treatment of EcN (pqq), EcN (pqq-glf-mtlK), EcN (pqq-fdh) was given once per week 109 cells for two months. Furthermore, blood and liver parameters for oxidative stress, dyslipidemia and hyperglycemia were estimated. Fecal samples were collected to determine the production of short chain fatty acids and pyrroloquinoline quinone (PQQ) production. Results EcN (pqq-glf-mtlK), EcN (pqq-fdh) transformants were confirmed by restriction digestion and functionality was checked by PQQ estimation and HPLC analysis. There was significant increase in body weight, serum glucose, liver injury markers, lipid profile in serum and liver, and decrease in antioxidant enzyme activity in high-fructose-fed rats. However the rats treated with EcN (pqq-glf-mtlK) and EcN (pqq-fdh) showed significant reduction in lipid peroxidation along with increase in serum and hepatic antioxidant enzyme activities. Restoration of liver injury marker enzymes was also seen. Increase in short chain fatty acids (SCFA) demonstrated the prebiotic effects of mannitol and gluconic acid. Conclusions Our study demonstrated the effectiveness of probiotic EcN producing PQQ and fructose metabolizing enzymes against the fructose induced hepatic steatosis suggesting that its potential for use in treating fructose induced metabolic syndrome. PMID:27760187
Subclinical hypothyroidism does not influence the metabolic and hormonal profile of women with PCOS.
Trakakis, Eftihios; Pergialiotis, Vasilios; Hatziagelaki, Erifili; Panagopoulos, Periklis; Salloum, Ioannis; Papantoniou, Nikolaos
2017-06-23
Background Subclinical hypothyroidism (SCH) is present in 5%-10% of polycystic ovary syndrome (PCOS) patients. To date, its impact on the metabolic and hormonal profile of those women remains controversial. The purpose of our study is to evaluate the impact of SCH on the glycemic, lipid and hormonal profile of PCOS patients. Materials and methods We conducted a prospective case control study of patients that attended the Department of Gynecological Endocrinology of our hospital. Results Overall, 280 women with PCOS were enrolled during a time period of 7 years (2009-2015). Twenty-one patients (7.5%) suffered from SCH. The anthropometric characteristics were comparable among women with PCOS and those with SCH + PCOS. The prevalence of acne, hirsutism and anovulation did not differ. Significant differences were observed in the 2-h oral glucose tolerance test (OGTT) (p = 0.003 for glucose and p = 0.046 for insulin). The QUICKI, Matsuda and homeostatic model assessment-insulin resistance (HOMA-IR) indices where, however, similar. No difference in serum lipids was observed. Slightly elevated levels of follicle stimulating hormone (FSH) and testosterone were noted. The remaining hormonal parameters remained similar among groups. Similarly, the ovarian volume and the endometrial thickness did not differ. Conclusions The impact of SCH on the metabolic and hormonal profile of PCOS patients seems to be negligible. Future studies are needed in the field and their conduct in a multi-institutional basis seems to be required, given the small prevalence of SCH among women with PCOS.
Bermúdez-Cardona, Juliana; Velásquez-Rodríguez, Claudia
2016-02-15
The study evaluated the profile of circulating fatty acids (FA) in obese youth with and without metabolic syndrome (MetS) to determine its association with nutritional status, lifestyle and metabolic variables. A cross-sectional study was conducted in 96 young people, divided into three groups: obese with MetS (OBMS), obese (OB) and appropriate weight (AW). FA profiles were quantified by gas chromatography; waist circumference (WC), fat folds, lipid profile, high-sensitivity C-reactive protein, glucose, insulin, the homeostasis model assessment (HOMA index), food intake and physical activity (PA) were assessed. The OBMS group had significantly greater total free fatty acids (FFAs), palmitic-16:0 in triglyceride (TG), palmitoleic-16:1n-7 in TG and phospholipid (PL); in the OB group, these FAs were higher than in the AW group. Dihomo-gamma-linolenic (DHGL-20:3n-6) was higher in the OBMS than the AW in PL and FFAs. Linoleic-18:2n-6 in TG and PL had the lowest proportion in the OBMS group. WC, PA, total FFA, linoleic-18:2n-6 in TG and DHGL-20:3n-6 in FFAs explained 62% of the HOMA value. The OB group presented some higher proportions of FA and biochemical values than the AW group. The OBMS had proportions of some FA in the TG, PL and FFA fractions that correlated with disturbances of MetS.
Li, Shengxian; Chu, Qianqian; Ma, Jing; Sun, Yun; Tao, Tao; Huang, Rong; Liao, Yu; Yue, Jiang; Zheng, Jun; Wang, Lihua; Xue, Xinli; Zhu, Mingjiang; Kang, Xiaonan; Yin, Huiyong; Liu, Wei
2017-03-01
Polycystic ovary syndrome (PCOS) is a complex syndrome showing clinical features of an endocrine/metabolic disorder, including hyperinsulinemia and hyperandrogenism. Polyunsaturated fatty acids (PUFAs) and their derivatives, both tightly linked to PCOS and obesity, play important roles in inflammation and reproduction. This study aimed to investigate serum lipid profiles in newly diagnosed patients with PCOS using lipidomics and correlate these features with the hyperinsulinemia and hyperandrogenism associated with PCOS and obesity. Thirty-two newly diagnosed women with PCOS and 34 controls were divided into obese and lean subgroups. A PCOS rat model was used to validate results of the human studies. Serum lipid profiles, including phospholipids, free fatty acids (FFAs), and bioactive lipids, were analyzed using gas chromatography-mass spectrometry (MS) and liquid chromatography-MS. Elevation in phosphatidylcholine and a concomitant decrease in lysophospholipid were found in obese patients with PCOS vs lean controls. Obese patients with PCOS had decreased PUFA levels and increased levels of long-chain saturated fatty acids vs lean controls. Serum bioactive lipids downstream of arachidonic acid were increased in obese controls, but reduced in both obese and lean patients with PCOS vs their respective controls. Patients with PCOS showed abnormal levels of phosphatidylcholine, FFAs, and PUFA metabolites. Circulating insulin and androgens may have opposing effects on lipid profiles in patients with PCOS, particularly on the bioactive lipid metabolites derived from PUFAs. These clinical observations warrant further studies of the molecular mechanisms and clinical implications of PCOS and obesity. Copyright © 2017 by the Endocrine Society
de Miranda, Aline Mayrink; Rossoni Júnior, Joamyr Victor; Souza E Silva, Lorena; Dos Santos, Rinaldo Cardoso; Silva, Marcelo Eustáquio; Pedrosa, Maria Lúcia
2017-06-01
The sun mushroom (Agaricus brasiliensis) is considered a major source of bioactive compounds with potential health benefits. Mushrooms typically act as lipid-lowering agents; however, little is known about the mechanisms of action of A. brasiliensis in biological systems. This study aimed to determine the underlying mechanism involved in the cholesterol-lowering effect of A. brasiliensis through the assessment of fecal and serum lipid profiles in addition to gene expression analysis of specific transcription factors, enzymes, and transporters involved in cholesterol homeostasis. Twenty-four albino Fischer rats approximately 90 days old, with an average weight of 205 g, were divided into four groups of 6 each and fed a standard AIN-93 M diet (C), hypercholesterolemic diet (H), hypercholesterolemic diet +1 % A. brasiliensis (HAb), or hypercholesterolemic diet +0.008 % simvastatin (HS) for 6 weeks. Simvastatin was used as a positive control, as it is a typical drug prescribed for lipid disorders. Subsequently, blood, liver, and feces samples were collected for lipid profile and quantitative real-time polymerase chain reaction gene expression analyses. Diet supplementation with A. brasiliensis significantly improved serum lipid profiles, comparable to the effect observed for simvastatin. In addition, A. brasiliensis dietary supplementation markedly promoted fecal cholesterol excretion. Increased expression of 7α-hydroxylase (CYP7A1), ATP-binding cassette subfamily G-transporters (ABCG5/G8), and low-density lipoprotein receptor (LDLR) was observed following A. brasiliensis administration. Our results suggest that consumption of A. brasiliensis improves the serum lipid profile in hypercholesterolemic rats by modulating the expression of key genes involved in hepatic cholesterol metabolism.
Li, Shengxian; Chu, Qianqian; Ma, Jing; Sun, Yun; Tao, Tao; Huang, Rong; Liao, Yu; Yue, Jiang; Zheng, Jun; Wang, Lihua; Xue, Xinli; Zhu, Mingjiang; Kang, Xiaonan; Yin, Huiyong
2017-01-01
Abstract Context: Polycystic ovary syndrome (PCOS) is a complex syndrome showing clinical features of an endocrine/metabolic disorder, including hyperinsulinemia and hyperandrogenism. Polyunsaturated fatty acids (PUFAs) and their derivatives, both tightly linked to PCOS and obesity, play important roles in inflammation and reproduction. Objective: This study aimed to investigate serum lipid profiles in newly diagnosed patients with PCOS using lipidomics and correlate these features with the hyperinsulinemia and hyperandrogenism associated with PCOS and obesity. Design and Setting: Thirty-two newly diagnosed women with PCOS and 34 controls were divided into obese and lean subgroups. A PCOS rat model was used to validate results of the human studies. Main Outcome Measures: Serum lipid profiles, including phospholipids, free fatty acids (FFAs), and bioactive lipids, were analyzed using gas chromatography–mass spectrometry (MS) and liquid chromatography–MS. Results: Elevation in phosphatidylcholine and a concomitant decrease in lysophospholipid were found in obese patients with PCOS vs lean controls. Obese patients with PCOS had decreased PUFA levels and increased levels of long-chain saturated fatty acids vs lean controls. Serum bioactive lipids downstream of arachidonic acid were increased in obese controls, but reduced in both obese and lean patients with PCOS vs their respective controls. Conclusions: Patients with PCOS showed abnormal levels of phosphatidylcholine, FFAs, and PUFA metabolites. Circulating insulin and androgens may have opposing effects on lipid profiles in patients with PCOS, particularly on the bioactive lipid metabolites derived from PUFAs. These clinical observations warrant further studies of the molecular mechanisms and clinical implications of PCOS and obesity. PMID:27886515
Santarsieri, Martina; Niyonkuru, Christian; McCullough, Emily H.; Dobos, Julie A.; Dixon, C. Edward; Berga, Sarah L.
2014-01-01
Abstract Despite significant advances in the management of head trauma, there remains a lack of pharmacological treatment options for traumatic brain injury (TBI). While progesterone clinical trials have shown promise, corticosteroid trials have failed. The purpose of this study was to (1) characterize endogenous cerebrospinal fluid (CSF) progesterone and cortisol levels after TBI, (2) determine relationships between CSF and serum profiles, and (3) assess the utility of these hormones as predictors of long-term outcomes. We evaluated 130 adults with severe TBI. Serum samples (n=538) and CSF samples (n=746) were collected for 6 days post-injury, analyzed for cortisol and progesterone, and compared with healthy controls (n=13). Hormone data were linked with clinical data, including Glasgow Outcome Scale (GOS) scores at 6 and 12 months. Group based trajectory (TRAJ) analysis was used to develop temporal hormone profiles delineating distinct subpopulations. Compared with controls, CSF cortisol levels were significantly and persistently elevated during the first week after TBI, and high CSF cortisol levels were associated with poor outcome. As a precursor to cortisol, progesterone mediated these effects. Serum and CSF levels for both cortisol and progesterone were strongly correlated after TBI relative to controls, possibly because of blood–brain barrier disruption. Also, differentially impaired hormone transport and metabolism mechanisms after TBI, potential de novo synthesis of steroids within the brain, and the complex interplay of cortisol and pro-inflammatory cytokines may explain these acute hormone profiles and, when taken together, may help shed light on why corticosteroid trials have previously failed and why progesterone treatment after TBI may be beneficial. PMID:24354775
Ahmed, Farid; Plantman, Stefan; Cernak, Ibolja; Agoston, Denes V.
2015-01-01
Time-dependent changes in blood-based protein biomarkers can help identify the pathological processes in blast-induced traumatic brain injury (bTBI), assess injury severity, and monitor disease progression. We obtained blood from control and injured mice (exposed to a single, low-intensity blast) at 2-h, 1-day, 1–week, and 1-month post-injury. We then determined the serum levels of biomarkers related to metabolism (4-HNE, HIF-1α, ceruloplasmin), vascular function (AQP1, AQP4, VEGF, vWF, Flk-1), inflammation (OPN, CINC1, fibrinogen, MIP-1a, OX-44, p38, MMP-8, MCP-1 CCR5, CRP, galectin-1), cell adhesion and the extracellular matrix (integrin α6, TIMP1, TIMP4, Ncad, connexin-43), and axonal (NF-H, Tau), neuronal (NSE, CK-BB) and glial damage (GFAP, S100β, MBP) at various post-injury time points. Our findings indicate that the exposure to a single, low-intensity blast results in metabolic and vascular changes, altered cell adhesion, and axonal and neuronal injury in the mouse model of bTBI. Interestingly, serum levels of several inflammatory and astroglial markers were either unchanged or elevated only during the acute and subacute phases of injury. Conversely, serum levels of the majority of biomarkers related to metabolic and vascular functions, cell adhesion, as well as neuronal and axonal damage remained elevated at the termination of the experiment (1 month), indicating long-term systemic and cerebral alterations due to blast. Our findings show that the exposure to a single, low-intensity blast induces complex pathological processes with distinct temporal profiles. Hence, monitoring serum biomarker levels at various post-injury time points may provide enhanced diagnostics in blast-related neurological and multi-system deficits. PMID:26124743
Acute effect of infection by adipogenic human adenovirus Ad36
Pasarica, Magdalena; Loiler, Scott; Dhurandhar, Nikhil V.
2009-01-01
Human adenovirus Ad36 is causally and correlatively associated in animals and humans, respectively, with increased adiposity and altered metabolic profile. We inoculated rats with Ad36, UV-inactivated Ad36 or mock-infected. Four-days later, Ad36-infected rats showed 23% greater epididymal fat pad weight and viral mRNA, the viral DNA could also be detected in tissues viz. the liver, brain, and adipose tissue. Intranasal or intra-peritoneal routes of viral inoculations showed similar tissue affinity. Serum cytokine response was remarkably down regulated. Ad36 acutely suppresses systemic immune response and spreads widely. This information will help to determine Ad36 tissue tropism and its metabolic consequences. PMID:18830560
Hu, Xindi C; Dassuncao, Clifton; Zhang, Xianming; Grandjean, Philippe; Weihe, Pál; Webster, Glenys M; Nielsen, Flemming; Sunderland, Elsie M
2018-02-01
Humans are exposed to poly- and perfluoroalkyl substances (PFASs) from diverse sources and this has been associated with negative health impacts. Advances in analytical methods have enabled routine detection of more than 15 PFASs in human sera, allowing better profiling of PFAS exposures. The composition of PFASs in human sera reflects the complexity of exposure sources but source identification can be confounded by differences in toxicokinetics affecting uptake, distribution, and elimination. Common PFASs, such as perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS) and their precursors are ubiquitous in multiple exposure sources. However, their composition varies among sources, which may impact associated adverse health effects. We use available PFAS concentrations from several demographic groups in a North Atlantic seafood consuming population (Faroe Islands) to explore whether chemical fingerprints in human sera provide insights into predominant exposure sources. We compare serum PFAS profiles from Faroese individuals to other North American populations to investigate commonalities in potential exposure sources. We compare individuals with similar demographic and physiological characteristics and samples from the same years to reduce confounding by toxicokinetic differences and changing environmental releases. Using principal components analysis (PCA) confirmed by hierarchical clustering, we assess variability in serum PFAS concentrations across three Faroese groups. The first principal component (PC)/cluster consists of C9-C12 perfluoroalkyl carboxylates (PFCAs) and is consistent with measured PFAS profiles in consumed seafood. The second PC/cluster includes perfluorohexanesulfonic acid (PFHxS) and the PFOS precursor N-ethyl perfluorooctane sulfonamidoacetate (N-EtFOSAA), which are directly used or metabolized from fluorochemicals in consumer products such as carpet and food packaging. We find that the same compounds are associated with the same exposure sources in two North American populations, suggesting generalizability of results from the Faroese population. We conclude that PFAS homologue profiles in serum provide valuable information on major exposure sources. It is essential to compare samples collected at similar time periods and to correct for demographic groups that are highly affected by differences in physiological processes (e.g., pregnancy). Information on PFAS homologue profiles is crucial for attributing adverse health effects to the proper mixtures or individual PFASs.
Ramírez, Eva M; Espinosa, Omar; Berrones, Ricardo; Sepúlveda, Elisa M; Guilbert, Lizbeth; Solís, Miguel; Zerrweck, Carlos
2018-05-03
Whether or not the initial body mass index (BMI) influences weight loss and comorbidities improvement after bariatric surgery continues to be a matter of debate. The main reason for this is a lack of studies including obesity class I. Retrospective study with patients submitted to gastric bypass at a single institution. They were classified based on initial BMI (obesity class I, II, and III), and a comparative analysis of their metabolic profile (glucose, HbA1c%, C-peptide, insulin and diabetes medication), lipid profile (triglycerides, total cholesterol, HDL, LDL), and clinical data (systolic/diastolic blood pressure and cardiovascular risk) was performed at 0 and 12 months. Diabetes remission and weight loss were also analyzed. Two-hundred and twenty patients were included (23 in group 1, 113 in group 2, and 84 in group 3). Initial weight, BMI, and number of patients with T2DM were statistically different in group 1; other parameters were homogenous. At 12 months, every group had similar improvement of the metabolic profile, excepting serum insulin. Diabetes remission was 57.9, 61.1, and 60% for group 1, 2, and 3. For weight loss, there were differences between groups when using BMI and percentage of excess weight loss, but not with percentage of total weight loss. The non-metabolic and clinical data improved without differences, except for total cholesterol and LDL. The metabolic, lipid, and clinical profiles associated with obesity present similar improvement 1 year after laparoscopic gastric bypass, despite different baseline BMI. Diabetes remission and percentage of total weight loss were also similar.
Metabolic profiling of gestational diabetes in obese women during pregnancy.
White, Sara L; Pasupathy, Dharmintra; Sattar, Naveed; Nelson, Scott M; Lawlor, Debbie A; Briley, Annette L; Seed, Paul T; Welsh, Paul; Poston, Lucilla
2017-10-01
Antenatal obesity and associated gestational diabetes (GDM) are increasing worldwide. While pre-existing insulin resistance is implicated in GDM in obese women, the responsible metabolic pathways remain poorly described. Our aim was to compare metabolic profiles in blood of obese pregnant women with and without GDM 10 weeks prior to and at the time of diagnosis by OGTT. We investigated 646 women, of whom 198 developed GDM, in this prospective cohort study, a secondary analysis of UK Pregnancies Better Eating and Activity Trial (UPBEAT), a multicentre randomised controlled trial of a complex lifestyle intervention in obese pregnant women. Multivariate regression analyses adjusted for multiple testing, and accounting for appropriate confounders including study intervention, were performed to compare obese women with GDM with obese non-GDM women. We measured 163 analytes in serum, plasma or whole blood, including 147 from a targeted NMR metabolome, at time point 1 (mean gestational age 17 weeks 0 days) and time point 2 (mean gestational age 27 weeks 5 days, at time of OGTT) and compared them between groups. Multiple significant differences were observed in women who developed GDM compared with women without GDM (false discovery rate corrected p values <0.05). Most were evident prior to diagnosis. Women with GDM demonstrated raised lipids and lipoprotein constituents in VLDL subclasses, greater triacylglycerol enrichment across lipoprotein particles, higher branched-chain and aromatic amino acids and different fatty acid, ketone body, adipokine, liver and inflammatory marker profiles compared with those without GDM. Among obese pregnant women, differences in metabolic profile, including exaggerated dyslipidaemia, are evident at least 10 weeks prior to a diagnosis of GDM in the late second trimester.
High-Resolution Metabolomics for Nutrition and Health Assessment of Armed Forces Personnel.
Accardi, Carolyn Jonas; Walker, Douglas I; Uppal, Karan; Quyyumi, Arshed A; Rohrbeck, Patricia; Pennell, Kurt D; Mallon, Col Timothy M; Jones, Dean P
2016-08-01
The aim of this study was to test the utility of high-resolution metabolomics (HRM) for analysis of nutritional status and health indicators in military personnel. Serum samples from 400 military personnel were obtained from the Department of Defense Serum Repository (DoDSR) and analyzed for metabolites related to nutrition and health status. Metabolic profile organization was studied using modulated modularity clustering (MMC). HRM provided quantitative measures of 61 metabolites across chemical classes for use as nutritional and clinical biomarkers. Levels were comparable to reported values except for arginine and glutamine, which were above and below reference ranges, respectively. MMC generated five clusters, three of which were associated and contained amino acids. The others contained lipids and mitochondria-related metabolites. HRM analysis of serum is suitable for real-time and/or retrospective evaluation of nutrition and health status of specific military cohorts.
Antioxidant Drug Tempol Promotes Functional Metabolic Changes in the Gut Microbiota.
Cai, Jingwei; Zhang, Limin; Jones, Richard A; Correll, Jared B; Hatzakis, Emmanuel; Smith, Philip B; Gonzalez, Frank J; Patterson, Andrew D
2016-02-05
Recent studies have identified the important role of the gut microbiota in the pathogenesis and progression of obesity and related metabolic disorders. The antioxidant tempol was shown to prevent or reduce weight gain and modulate the gut microbiota community in mice; however, the mechanism by which tempol modulates weight gain/loss with respect to the host and gut microbiota has not been clearly established. Here we show that tempol (0, 1, 10, and 50 mg/kg p.o. for 5 days) decreased cecal bacterial fermentation and increased fecal energy excretion in a dose-dependent manner. Liver (1)H NMR-based metabolomics identified a dose-dependent decrease in glycogen and glucose, enhanced glucogenic and ketogenic activity (tyrosine and phenylalanine), and increased activation of the glycolysis pathway. Serum (1)H NMR-based metabolomics indicated that tempol promotes enhanced glucose catabolism. Hepatic gene expression was significantly altered as demonstrated by an increase in Pepck and G6pase and a decrease in Hnf4a, ChREBP, Fabp1, and Cd36 mRNAs. No significant change in the liver and serum metabolomic profiles was observed in germ-free mice, thus establishing a significant role for the gut microbiota in mediating the beneficial metabolic effects of tempol. These results demonstrate that tempol modulates the gut microbial community and its function, resulting in reduced host energy availability and a significant shift in liver metabolism toward a more catabolic state.
Arivazhahan, Avinash; Bairy, Laxminarayana Kurady; Nayak, Veena; Kunder, Sushil Kiran
2017-02-01
Metabolic Syndrome (MS) is a complex of risk factors for the development of cardiovascular complications and Type 2 Diabetes Mellitus (DM). Pharmacological management of the condition is complex, as multiple drug groups have to be used, as the syndrome itself is multi faceted. Angiotensin Converting Enzyme Inhibitors (ACEIs) are chiefly used to manage the hypertensive component of the syndrome. However, recent studies have shown that these drugs may have a role in the non hypertensive aspects of the syndrome as well. To evaluate the therapeutic effect of enalapril on total body weight, random blood glucose and serum lipid profile in a rodent model of olanzapine induced MS. Three different dosages (1 mg/kg/day, 10 mg/kg/day and 20 mg/kg/day) of oral enalapril were administered (for three weeks) in albino wistar rats, which received prior intra peritoneal olanzapine (for three weeks), and compared against control (normal saline) and standard (olanzapine only and enalapril only) groups. Parameters like total body weight, random blood glucose and serum lipid profile were measured at baseline, at three weeks and at six weeks. Enalapril at 20 mg/kg/day was found to be effective in reversing the weight gain, hyperglycaemia and hypercholesterolaemia, without any changes in triglycerides, High Density Lipoprotein (HDL) and Low Density Lipoprotein (LDL). 10 mg/kg/day of enalapril prevented any further rise in body weight, blood glucose, total cholesterol and serum triglycerides, after olanzapine was stopped. 1 mg/kg/day of enalapril was ineffective. High dose of enalapril may be considered as a component of therapeutic regimens to combat weight gain, hyperglycaemia and dyslipidaemia seen in MS, in addition to its antihypertensive utility. Further rodent and clinical studies may be required to ascertain the same.
Effects of triacylglycerol structure and solid fat content on fasting responses of mice.
Wang, Xiaosan; Wang, Tong; Spurlock, Michael E; Wang, Xingguo
2016-06-01
Fat randomization and interesterification change triacylglycerol (TAG) structure and its solid fat content profile. It has not been thoroughly investigated whether these changes affect lipid metabolism. Two experiments were conducted to investigate the effects of TAG structure and solid fat content on feed intake, body weight change, and serum metabolite concentrations in mice. An experiment used two fats rich in 1,2-dipalmitoyl-3-oleoylglycerol (PPO) and 1,3-dipalmitoyl-2-oleoylglycerol (POP) as comparative pair of fats to assess the effect of TAG structure since PPO and POP have the same fatty acid composition and solid fat content at 37 °C. Another experiment used a fat rich in 1-palmitoyl-2,3-dioleoylglycerol (POO) with solid fat content of zero at 37 °C and a mixture of fats that had the same general fatty acid composition and palmitic acid positional distribution, but with solid fat content of 22 % at 37 °C. This pair of fats was used to examine the effect of solid fat content on blood lipid profile. After 6-week feeding, the pair of fats with different solid fat contents did not significantly affect the concentrations of total serum cholesterol, HDL cholesterol, TAG, non-esterified fatty acid (NEFA), or blood glucose. However, the PPO fat significantly reduced feed intake, body weight, and serum glucose concentration as compared to POP. These results suggest that the presence of solid fat at the level examined does not affect lipid metabolism and lipemia, but PPO diet significantly affects NEFA and glucose concentrations. Palmitic acid at the sn-2 position of the TAG may have significant effect on appetite, which may be mediated via the gut receptors.
Horska, Katerina; Ruda-Kucerova, Jana; Drazanova, Eva; Karpisek, Michal; Demlova, Regina; Kasparek, Tomas; Kotolova, Hana
2017-09-01
Schizophrenia appears to be linked to higher incidence of metabolic syndrome even in the absence of antipsychotic treatment. Atypical antipsychotics substantially differ in their propensity to induce metabolic alterations. Aripiprazole is considered to represent an antipsychotic drug with low risk of metabolic syndrome development. The aim of this study was to evaluate metabolic phenotype of neurodevelopmental polyI:C rat model and assess metabolic effects of chronic aripiprazole treatment with regard to complex neuroendocrine regulations of energy homeostasis. Polyinosinic:polycytidylic acid (polyI:C) was administered subcutaneously at a dose of 8 mg/kg in 10 ml on gestational day 15 to female Wistar rats. For this study 20 polyI:C and 20 control adult male offspring were used, randomly divided into 2 groups per 10 animals for chronic aripiprazole treatment and vehicle. Aripiprazole (5 mg/kg, dissolved tablets, ABILIFY ® ) was administered once daily via oral gavage for a month. Altered lipid profile in polyI:C model was observed and a trend towards different dynamics of weight gain in polyI:C rats was noted in the absence of significant antipsychotic treatment effect. PolyI:C model was not associated with changes in other parameters i.e. adipokines, gastrointestinal hormones and cytokines levels. Aripiprazole did not influence body weight but it induced alterations in neurohumoral regulations. Leptin and GLP-1 serum levels were significantly reduced, while ghrelin level was elevated. Furthermore aripiprazole decreased serum levels of pro-inflammatory cytokines. Our data indicate dysregulation of adipokines and gastrointestinal hormones present after chronic treatment with aripiprazole which is considered metabolically neutral in the polyI:C model of schizophrenia. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeong, Eun Sook; Kim, Gabin; Shin, Ho Jung
A liquid chromatography/time-of-flight mass spectrometry (LC/TOF-MS)-based metabolomics approach was employed to identify endogenous metabolites as potential biomarkers for thioacetamide (TAA)-induced liver injury. TAA (10 and 30 mg/kg), a well-known hepatotoxic agent, was administered daily to male Sprague–Dawley (SD) rats for 28 days. We then conducted untargeted analyses of endogenous serum and liver metabolites. Partial least squares discriminant analysis (PLS-DA) was performed on serum and liver samples to evaluate metabolites associated with TAA-induced perturbation. TAA administration resulted in altered levels of bile acids, acyl carnitines, and phospholipids in serum and in the liver. We subsequently demonstrated and confirmed the occurrence ofmore » compromised bile acid homeostasis. TAA treatment significantly increased serum levels of conjugated bile acids in a dose-dependent manner, which correlated well with toxicity. However, hepatic levels of these metabolites were not substantially changed. Gene expression profiling showed that the hepatic mRNA levels of Ntcp, Bsep, and Oatp1b2 were significantly suppressed, whereas those of basolateral Mrp3 and Mrp4 were increased. Decreased levels of Ntcp, Oatp1b2, and Ostα proteins in the liver were confirmed by western blot analysis. These results suggest that serum bile acids might be increased due to the inhibition of bile acid enterohepatic circulation rather than increased endogenous bile acid synthesis. Moreover, serum bile acids are a good indicator of TAA-induced hepatotoxicity. - Highlights: • Endogenous metabolic profiles were assessed in rat after treatment of thioacetamide. • It significantly increased the levels of bile acids in serum but not in the liver. • Expression of the genes related to bile acid secretion and reuptake was decreased. • Increased serum bile acids result from block of enterohepatic circulation of bile acids.« less
Farrokhian, A; Bahmani, F; Taghizadeh, M; Mirhashemi, S M; Aarabi, M H; Raygan, F; Aghadavod, E; Asemi, Z
2016-04-01
To our knowledge, this study is the first indicating the effects of selenium supplementation on metabolic status of patients with type 2 diabetes mellitus (T2DM) and coronary heart disease (CHD). This study was conducted to evaluate the effects of selenium supplementation on metabolic profiles, biomarkers of inflammation, and oxidative stress of patients with T2DM and CHD. This randomized, double-blind, placebo-controlled trial was performed among 60 patients with T2DM and CHD aged 40-85 years. Participants were randomly divided into 2 groups. Group A received 200 μg selenium supplements (n=30) and group B received placebo per day (n=30) for 8 weeks. Fasting blood samples were taken at the beginning of the study and after 8-week intervention to quantify metabolic profiles. After 8 weeks, compared with the placebo, selenium supplementation resulted in a significant decrease in serum insulin levels (- 2.2±4.6 vs. + 3.6±8.4 μIU/ml, p=0.001), homeostasis model of assessment-insulin resistance (HOMA-IR) (- 0.7±1.3 vs. + 0.9±2.4, p=0.004), homeostatic model assessment-beta cell function (HOMA-B) (- 7.5±17.2 vs. + 15.1±34.5, p=0.002) and a significant increase in quantitative insulin sensitivity check index (QUICKI) (+0.01±0.03 vs. - 0.01±0.03, p=0.02). In addition, patients who received selenium supplements had a significant reduction in serum high-sensitivity C-reactive protein (hs-CRP) (- 1 372.3±2 318.8 vs. - 99.8±1 453.6 ng/ml, p=0.01) and a significant rise in plasma total antioxidant capacity (TAC) concentrations (+ 301.3±400.6 vs. - 127.2±428.0 mmol/l, p<0.001) compared with the placebo. A 200 μg/day selenium supplementation among patients with T2DM and CHD resulted in a significant decrease in insulin, HOMA-IR, HOMA-B, serum hs-CRP, and a significant increase in QUICKI score and TAC concentrations. © Georg Thieme Verlag KG Stuttgart · New York.
Korecka, Agata; Dona, Anthony; Lahiri, Shawon; Tett, Adrian James; Al-Asmakh, Maha; Braniste, Viorica; D'Arienzo, Rossana; Abbaspour, Afrouz; Reichardt, Nicole; Fujii-Kuriyama, Yoshiaki; Rafter, Joseph; Narbad, Arjan; Holmes, Elaine; Nicholson, Jeremy; Arulampalam, Velmurugesan; Pettersson, Sven
2016-01-01
The ligand-induced transcription factor, aryl hydrocarbon receptor (AhR) is known for its capacity to tune adaptive immunity and xenobiotic metabolism-biological properties subject to regulation by the indigenous microbiome. The objective of this study was to probe the postulated microbiome-AhR crosstalk and whether such an axis could influence metabolic homeostasis of the host. Utilising a systems-biology approach combining in-depth 1 H-NMR-based metabonomics (plasma, liver and skeletal muscle) with microbiome profiling (small intestine, colon and faeces) of AhR knockout (AhR -/- ) and wild-type (AhR +/+ ) mice, we assessed AhR function in host metabolism. Microbiome metabolites such as short-chain fatty acids were found to regulate AhR and its target genes in liver and intestine. The AhR signalling pathway, in turn, was able to influence microbiome composition in the small intestine as evident from microbiota profiling of the AhR +/+ and AhR -/- mice fed with diet enriched with a specific AhR ligand or diet depleted of any known AhR ligands. The AhR -/- mice also displayed increased levels of corticosterol and alanine in serum. In addition, activation of gluconeogenic genes in the AhR -/- mice was indicative of on-going metabolic stress. Reduced levels of ketone bodies and reduced expression of genes involved in fatty acid metabolism in the liver further underscored this observation. Interestingly, exposing AhR -/- mice to a high-fat diet showed resilience to glucose intolerance. Our data suggest the existence of a bidirectional AhR-microbiome axis, which influences host metabolic pathways.
Leppik, Liisa; Kriisa, Kärt; Koido, Kati; Koch, Kadri; Kajalaid, Kärolin; Haring, Liina; Vasar, Eero; Zilmer, Mihkel
2018-01-01
Schizophrenia (SCH) is a heterogeneous disorder, deriving from a potential multitude of etiopathogenetic factors. During the past few years there has been an increasing interest in the role of circulating amino acids (AAs) and biogenic amines (BAs) in the pathophysiology of SCH. In the present study, we aimed to provide an insight into the potential role of alterations in levels of AAs and BAs as well as examine their more specific metabolic shifts in relation to early stage of SCH. We measured 21 AAs and 17 BAs in serum samples of patients with first-episode psychosis (FEP) before and after 7-month antipsychotic treatment in comparison to control subjects (CSs). According to multivariate analysis, antipsychotic-naïve FEP patients had significantly higher levels of taurine and spermine, whereas values of proline (Pro), alpha-aminoadipic acid (alpha-AAA), kynurenine (Kyn), valine (Val), tyrosine (Tyr), citrulline (Citr), tryptophan (Trp), and histidine (His) were diminished compared to CSs. Increased levels of taurine and spermine, as well as reduced levels of alpha-AAA and Kyn probably reflect the compromised function of N -methyl-D-aspartate (NMDA) receptors in patients. The decreased levels of Pro (AA modulating the function of glutamate decarboxylase) likely reflect the imbalanced function of gamma-aminobutyric acid (GABA) system in the brain of FEP patients. The alterations in ratio between Tyr and phenylalanine (Phe) can be taken as a sign of compromised function of dopaminergic system. These metabolic shifts were reinstated by 7-month antipsychotic treatment. Serum metabolic profiles can be regarded as important indicators to investigate clinical course of SCH and treatment response.
Shen, Youqing; Huang, Guoyuan; McCormick, Bryan P.; Song, Tao
2017-01-01
The aim of the present study was to compare the effects of high-intensity interval training (HI) to mild-intensity endurance training (ME), combined with a high-fat diet (HFD) or control diet (CD) on metabolic phenotype and corticosterone levels in rats. Fifty-three rats were randomized to 6 groups according to diet and training regimen as follows: CD and sedentary (CS, n = 11), CD and ME (CME, n = 8), CD and HI (CHI, n = 8), HFD and sedentary (HS, n = 10), HFD and ME (HME, n = 8), and HFD and HI (HHI, n = 8). All exercise groups were trained for 10 weeks and had matched running distances. Dietary intake, body composition, blood metabolites, and corticosterone levels were measured. Histological lipid droplets were observed in the livers. The HFD led to hyperglycemia, hyperlipidemia and higher body fat (all, P < 0.01, η2 > 0.06), as well as higher corticosterone levels (P < 0.01, η2 = 0.09) compared with the CD groups. Exercise training improved fat weight, glucose, and lipid profiles, and reduced corticosterone levels (P < 0.01, η2 = 0.123). Furthermore, body and fat weight, serum glucose and triglycerides, lipid content in the liver, and corticosterone levels (P < 0.05) were lower with HI training compared to ME training. Reductions in HFD-induced body weight gain, blood glucose and lipid profiles, and corticosterone levels, as well as improvements in QUICKI were better with HHI compared to HME. Correlation analyses revealed that corticosterone levels were significantly associated with phenotype variables (P < 0.01). Corticosterone level was inversely correlated with QUICKI (r = −0.38, P < 0.01). Altogether, these results indicate that HFD may elicit an exacerbated basal serum corticosterone level and thus producing a metabolic imbalance. Compared with ME training, HI training contributes to greater improvements in metabolic and corticosterone responses, leading to a greater reduction in susceptibility to HFD-induced disorders. PMID:28727846
Shen, Youqing; Huang, Guoyuan; McCormick, Bryan P; Song, Tao; Xu, Xiangfeng
2017-01-01
The aim of the present study was to compare the effects of high-intensity interval training (HI) to mild-intensity endurance training (ME), combined with a high-fat diet (HFD) or control diet (CD) on metabolic phenotype and corticosterone levels in rats. Fifty-three rats were randomized to 6 groups according to diet and training regimen as follows: CD and sedentary (CS, n = 11), CD and ME (CME, n = 8), CD and HI (CHI, n = 8), HFD and sedentary (HS, n = 10), HFD and ME (HME, n = 8), and HFD and HI (HHI, n = 8). All exercise groups were trained for 10 weeks and had matched running distances. Dietary intake, body composition, blood metabolites, and corticosterone levels were measured. Histological lipid droplets were observed in the livers. The HFD led to hyperglycemia, hyperlipidemia and higher body fat (all, P < 0.01, η2 > 0.06), as well as higher corticosterone levels (P < 0.01, η2 = 0.09) compared with the CD groups. Exercise training improved fat weight, glucose, and lipid profiles, and reduced corticosterone levels (P < 0.01, η2 = 0.123). Furthermore, body and fat weight, serum glucose and triglycerides, lipid content in the liver, and corticosterone levels (P < 0.05) were lower with HI training compared to ME training. Reductions in HFD-induced body weight gain, blood glucose and lipid profiles, and corticosterone levels, as well as improvements in QUICKI were better with HHI compared to HME. Correlation analyses revealed that corticosterone levels were significantly associated with phenotype variables (P < 0.01). Corticosterone level was inversely correlated with QUICKI (r = -0.38, P < 0.01). Altogether, these results indicate that HFD may elicit an exacerbated basal serum corticosterone level and thus producing a metabolic imbalance. Compared with ME training, HI training contributes to greater improvements in metabolic and corticosterone responses, leading to a greater reduction in susceptibility to HFD-induced disorders.
Ling, Bey-Leei; Chiu, Chun-Tang; Lu, Hsiu-Chin; Lin, Jin-Jin; Kuo, Chiung-Yin; Chou, Fen-Pi
2014-01-01
To understand the molecular basis of the short and long-term effects of an immediate shortage of energy storage caused by lipectomy on expression profile of genes involved in lipid and carbohydrate metabolism in high fat and high cholesterol diet-induced obese rats. The hepatic mRNA levels of enzymes, regulator and transcription factors involved in glucose and lipid metabolism were analyzed by quantitative real time polymerase chain reaction (RT-qPCR) ten days and eight weeks after lipectomy in obese rats. Body and liver weights and serum biochemical parameters, adiponectin, leptin and insulin were determined. No significant difference was observed on the food intake between the lipectomized and sham-operated groups during the experimental period. Ten days after the operation, the lipectomized animals showed significant higher triacylglycerol, glucose and insulin levels, a lower adiponectin concentration than the sham-operated rats, along with significant higher hepatic mRNA levels of hepatocyte nuclear factor 4α (HNF4α) and the enzymes involved in lipogenesis, sterol biosynthesis and gluconeogenesis. The results of immunohistochemical (IHC) analysis also confirmed increased levels of lipogenic enzymes in the liver of lipectomized versus sham-operated animals. The lipectomized group had a significantly lower adiponectin/leptin ratio that was positively correlated to the level of LDL (r = 0.823, P<0.05) and negatively to glucose and insulin (r = -0.821 and -0.892 respectively, P<0.05). Eight weeks after the operation, the lipectomized animals revealed significant higher body and liver weights, weight gain, liver to body weight ratio, hepatic triacylglycerol and serum insulin level. In response to lipectomy a short term enhancement of the expression of hepatic anabolic genes involved in lipid and carbohydrate metabolism was triggered that might eventually lead to the final extra weight gain. These metabolic changes could be the results of reduced circulating adiponectin that further influences the functions of insulin and hepatic HNF4α.
Hepatotoxic constituents and toxicological mechanism of Xanthium strumarium L. fruits.
Xue, Li-Ming; Zhang, Qiao-Yan; Han, Ping; Jiang, Yi-Ping; Yan, Rong-Di; Wang, Yang; Rahman, Khalid; Jia, Min; Han, Ting; Qin, Lu-Ping
2014-03-14
In the recent years, the international community has attached increasing importance to possible toxicity associated with Traditional Chinese Medicine (TCM). And hepatotoxicity is one of the major concerns, a fundamental pathological process induced by toxicant. This paper is in an attempt to identify the hepatotoxic components in Xanthium strumarium L. fruits (XSF) and interpret the toxicological mechanism induced by XSF. XSF extract was prepared and seven characteristic components were isolated and identified in XSF water extracts. We evaluated their hepatotoxicity effect on cell proliferation and lactate dehydrogenase (LDH) activity in L-02 and BRL liver cell line. An integrated metabonomics study using high-resolution (1)H nuclear magnetic resonance ((1)H NMR) spectroscopy combined with multivariate statistical analysis was undertake to elucidate the hepatotoxicity mechanism induced in rats by XSF. The urine and serum metabolites were measured after treatment of rats with XSF (7.5, 15.0 and 30.0 g/kg/day) for 5 days. The results showed that atractyloside, carboxyatractyloside, 4'-desulphate-atractyloside and XSF induced significant cytotoxic effects in both L-02 and BRL liver cell lines, indicating that atractyloside, carboxyatractyloside, and 4'-desulphate-atractyloside were the toxic components of XSF. When rats were treated with XSF at 30.0 g/kg the hepatotoxicity was reflected in the changes observed in serum biochemical profiles and by the histopathological examination of the liver. The levels of VLDL/LDL, 3-HB, lactate, acetate, acetone and glutamate in serum were increased in this group, while d-glucose, choline and valine were decreased. The elevation in the levels of succinate, citrate, 2-oxo-glutamate, glycine, 3-HB, acetate, lactate, hippurate, dimethylglycine, methylamine, dimethylamine, phenylalanine and tryptophan was observed in urine, in contrast a reduction in the intensities of taurine, d-glucose, N-acetyl-glucoprotein and trimethylamine-N-oxide (TMAO) was observed. The results demonstrate that the major hepatotoxicity constituents are atractyloside, carboxyatractyloside and 4'-desulphate-atractyloside, and the hepatotoxicity of XSF involves mitochondrial inability, fatty acid metabolism, and some amino acids metabolism. This integrated (1)H NMR -based metabolic profiling approach has been able to capture and probe the metabolic alterations associated with the onset and progression of hepatotoxicity induced by XSF, and permits a comprehensive understanding of systemic toxicity for phytochemicals and other types of xenobiotic agents. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Fortunati, Nicoletta; Manti, Roberta; Birocco, Nadia; Pugliese, Mariateresa; Brignardello, Enrico; Ciuffreda, Libero; Catalano, Maria G; Aragno, Manuela; Boccuzzi, Giuseppe
2007-12-01
Cancer-related cachexia, that is present in about 50% of cancer patients and accounts for 20% of all cancer deaths, is clinically characterized by progressive weight loss, anorexia, metabolic alterations, asthenia, depletion of lipid stores and severe loss of skeletal muscle proteins. The main biochemical and molecular alterations that are responsible for the syndrome are prematurely present in the progress of the disease and the identification of the early stages of cachexia can be useful in targetting patients who will benefit from early treatment. The aim of the present study was to delineate the bio-humoral profile of a group of lung cancer patients either non-cachectic or cachectic by evaluating serum pro-inflammatory cytokines and oxidative stress/antioxidant parameters (both recognized to be involved in cachexia pathogenesis) and pro-inflammatory cytokine gene expression in PBMC (Peripheral blood mononuclear cells) of cancer patients. All serum pro-inflammatory cytokines and oxidative stress/antioxidant parameters significantly increased in neoplastic patients, but only TNF-alpha, ROS, GSH and vitamin E showed a significantly greater increase in cachectic patients. Pro-inflammatory cytokine gene expression mirrored serum level behaviour except for IL-6 that was increased in serum but not as gene expression, suggesting its provenience from tumour tissue. Our data support that the simultaneous determination of ROS, GSH, vitamin E, together with TNF-alpha allows the identification of a lung cancer patient developing cancer-related cachexia. This bio-humoral profile should be used for the early diagnosis and follow-up of the syndrome. Moreover, the evaluation of gene expression in patient PBMC was helpful in differentiating tumour vs host factors, therefore being useful in the study of pathogenetic mechanisms in neoplastic cachectic patients.
Abdominal obesity and circulating metabolites: A twin study approach.
Bogl, Leonie H; Kaye, Sanna M; Rämö, Joel T; Kangas, Antti J; Soininen, Pasi; Hakkarainen, Antti; Lundbom, Jesper; Lundbom, Nina; Ortega-Alonso, Alfredo; Rissanen, Aila; Ala-Korpela, Mika; Kaprio, Jaakko; Pietiläinen, Kirsi H
2016-03-01
To investigate how obesity, insulin resistance and low-grade inflammation link to circulating metabolites, and whether the connections are due to genetic or environmental factors. Circulating serum metabolites were determined by proton NMR spectroscopy. Data from 1368 (531 monozygotic (MZ) and 837 dizygotic (DZ)) twins were used for bivariate twin modeling to derive the genetic (rg) and environmental (re) correlations between waist circumference (WC) and serum metabolites. Detailed examination of the associations between fat distribution (DEXA) and metabolic health (HOMA-IR, CRP) was performed among 286 twins including 33 BMI-discordant MZ pairs (intrapair BMI difference ≥3 kg/m(2)). Fat, especially in the abdominal area (i.e. WC, android fat % and android to gynoid fat ratio), together with HOMA-IR and CRP correlated significantly with an atherogenic lipoprotein profile, higher levels of branched-chain (BCAA) and aromatic amino acids, higher levels of glycoprotein, and a more saturated fatty acid profile. In contrast, a higher proportion of gynoid to total fat associated with a favorable metabolite profile. There was a significant genetic overlap between WC and several metabolites, most strongly with phenylalanine (rg=0.40), glycoprotein (rg=0.37), serum triglycerides (rg=0.36), BCAAs (rg=0.30-0.40), HDL particle diameter (rg=-0.33) and HDL cholesterol (rg=-0.30). The effect of acquired obesity within the discordant MZ pairs was particularly strong for atherogenic lipoproteins. A wide range of unfavorable alterations in the serum metabolome was associated with abdominal obesity, insulin resistance and low-grade inflammation. Twin modeling and obesity-discordant twin analysis suggest that these associations are partly explained by shared genes but also reflect mechanisms independent of genetic liability. Copyright © 2015 Elsevier Inc. All rights reserved.
Genomic and Metabolomic Profile Associated to Clustering of Cardio-Metabolic Risk Factors
Marrachelli, Vannina G.; Rentero, Pilar; Mansego, María L.; Morales, Jose Manuel; Galan, Inma; Pardo-Tendero, Mercedes; Martinez, Fernando; Martin-Escudero, Juan Carlos; Briongos, Laisa; Chaves, Felipe Javier; Redon, Josep; Monleon, Daniel
2016-01-01
Background To identify metabolomic and genomic markers associated with the presence of clustering of cardiometabolic risk factors (CMRFs) from a general population. Methods and Findings One thousand five hundred and two subjects, Caucasian, > 18 years, representative of the general population, were included. Blood pressure measurement, anthropometric parameters and metabolic markers were measured. Subjects were grouped according the number of CMRFs (Group 1: <2; Group 2: 2; Group 3: 3 or more CMRFs). Using SNPlex, 1251 SNPs potentially associated to clustering of three or more CMRFs were analyzed. Serum metabolomic profile was assessed by 1H NMR spectra using a Brucker Advance DRX 600 spectrometer. From the total population, 1217 (mean age 54±19, 50.6% men) with high genotyping call rate were analysed. A differential metabolomic profile, which included products from mitochondrial metabolism, extra mitochondrial metabolism, branched amino acids and fatty acid signals were observed among the three groups. The comparison of metabolomic patterns between subjects of Groups 1 to 3 for each of the genotypes associated to those subjects with three or more CMRFs revealed two SNPs, the rs174577_AA of FADS2 gene and the rs3803_TT of GATA2 transcription factor gene, with minimal or no statistically significant differences. Subjects with and without three or more CMRFs who shared the same genotype and metabolomic profile differed in the pattern of CMRFS cluster. Subjects of Group 3 and the AA genotype of the rs174577 had a lower prevalence of hypertension compared to the CC and CT genotype. In contrast, subjects of Group 3 and the TT genotype of the rs3803 polymorphism had a lower prevalence of T2DM, although they were predominantly males and had higher values of plasma creatinine. Conclusions The results of the present study add information to the metabolomics profile and to the potential impact of genetic factors on the variants of clustering of cardiometabolic risk factors. PMID:27589269
Genomic and Metabolomic Profile Associated to Clustering of Cardio-Metabolic Risk Factors.
Marrachelli, Vannina G; Rentero, Pilar; Mansego, María L; Morales, Jose Manuel; Galan, Inma; Pardo-Tendero, Mercedes; Martinez, Fernando; Martin-Escudero, Juan Carlos; Briongos, Laisa; Chaves, Felipe Javier; Redon, Josep; Monleon, Daniel
2016-01-01
To identify metabolomic and genomic markers associated with the presence of clustering of cardiometabolic risk factors (CMRFs) from a general population. One thousand five hundred and two subjects, Caucasian, > 18 years, representative of the general population, were included. Blood pressure measurement, anthropometric parameters and metabolic markers were measured. Subjects were grouped according the number of CMRFs (Group 1: <2; Group 2: 2; Group 3: 3 or more CMRFs). Using SNPlex, 1251 SNPs potentially associated to clustering of three or more CMRFs were analyzed. Serum metabolomic profile was assessed by 1H NMR spectra using a Brucker Advance DRX 600 spectrometer. From the total population, 1217 (mean age 54±19, 50.6% men) with high genotyping call rate were analysed. A differential metabolomic profile, which included products from mitochondrial metabolism, extra mitochondrial metabolism, branched amino acids and fatty acid signals were observed among the three groups. The comparison of metabolomic patterns between subjects of Groups 1 to 3 for each of the genotypes associated to those subjects with three or more CMRFs revealed two SNPs, the rs174577_AA of FADS2 gene and the rs3803_TT of GATA2 transcription factor gene, with minimal or no statistically significant differences. Subjects with and without three or more CMRFs who shared the same genotype and metabolomic profile differed in the pattern of CMRFS cluster. Subjects of Group 3 and the AA genotype of the rs174577 had a lower prevalence of hypertension compared to the CC and CT genotype. In contrast, subjects of Group 3 and the TT genotype of the rs3803 polymorphism had a lower prevalence of T2DM, although they were predominantly males and had higher values of plasma creatinine. The results of the present study add information to the metabolomics profile and to the potential impact of genetic factors on the variants of clustering of cardiometabolic risk factors.
Metabolic markers in sports medicine.
Banfi, Giuseppe; Colombini, Alessandra; Lombardi, Giovanni; Lubkowska, Anna
2012-01-01
Physical exercise induces adaptations in metabolism considered beneficial for health. Athletic performance is linked to adaptations, training, and correct nutrition in individuals with genetic traits that can facilitate such adaptations. Intense and continuous exercise, training, and competitions, however, can induce changes in the serum concentrations of numerous laboratory parameters. When these modifications, especially elevated laboratory levels, result outside the reference range, further examinations are ordered or participation in training and competition is discontinued or sports practice loses its appeal. In order to correctly interpret commonly used laboratory data, laboratory professionals and sport physicians need to know the behavior of laboratory parameters during and after practice and competition. We reviewed the literature on liver, kidney, muscle, heart, energy, and bone parameters in athletes with a view to increase the knowledge about clinical chemistry applied to sport and to stimulate studies in this field. In liver metabolism, the interpretation of serum aminotransferases concentration in athletes should consider the release of aspartate aminotransferase (AST) from muscle and of alanine aminotransferase (ALT) mainly from the liver, when bilirubin can be elevated because of continuous hemolysis, which is typical of exercise. Muscle metabolism parameters such as creatine kinase (CK) are typically increased after exercise. This parameter can be used to interpret the physiological release of CK from muscle, its altered release due to rhabdomyolysis, or incomplete recovery due to overreaching or trauma. Cardiac markers are released during exercise, and especially endurance training. Increases in these markers should not simply be interpreted as a signal of cardiac damage or wall stress but rather as a sign of regulation of myocardial adaptation. Renal function can be followed in athletes by measuring serum creatinine concentration, but it should be interpreted considering the athlete's body-mass index (BMI) and phase of the competitive season; use of cystatin C could be a reliable alternative to creatinine. Exercise and training induce adaptations in glucose metabolism which improve glucose utilization in athletes and are beneficial for reducing insulin insensitivity in nonathletes. Glucose metabolism differs slightly for different sports disciplines, as revealed in laboratory levels. Sport activities induce a blood lipid profile superior to that of sedentary subjects. There are few reports for a definitive conclusion, however. The differences between athletes and sedentary subjects are mainly due to high-density lipoprotein cholesterol (HDLC) concentrations in physically active individuals, although some differences among sport disciplines exist. The effect of sports on serum and urinary markers for bone metabolism is not univocal; further studies are needed to establish the real and effective influence of sport on bone turnover and especially to establish its beneficial effect.
Lee, Ming-Fen; Liou, Tsan-Hon; Wang, Weu; Pan, Wen-Harn; Lee, Wei-Jei; Hsu, Chung-Tan; Wu, Suh-Fen; Chen, Hsin-Hung
2013-01-01
Hyperuricemia is closely associated with obesity and metabolic abnormalities, which is also an independent risk factor for cardiovascular diseases. The PPARγ gene, which is linked to obesity and metabolic abnormalities in Han Chinese, might be considered a top candidate gene that is involved in hyperuricemia. This study recruited 457 participants, aged 20-40 years old, to investigate the associations of the PPARγ gene and metabolic parameters with hyperuricemia. Three tag-single nucleotide polymorphisms, rs2292101, rs4684846, and rs1822825, of the PPARγ gene were selected to explore their association with hyperuricemia. Risk genotypes on rs1822825 of the PPARγ gene exhibited statistical significance with hyperuricemia (odds ratio: 1.9; 95% confidence interval: 1.05-3.57). Although gender, body mass index (BMI), serum total cholesterol concentration, or protein intake per day were statistically associated with hyperuricemia, the combination of BMI, gender, and rs1822825, rather than that of age, serum lipid profile, blood pressure, and protein intake per day, satisfied the predictability for hyperuricemia (sensitivity: 69.3%; specificity: 83.7%) in Taiwan-born obese Han Chinese. BMI, gender, and the rs1822825 polymorphism in the PPARγ gene appeared good biomarkers in hyperuricemia; therefore, these powerful indicators may be included in the prediction of hyperuricemia to increase the accuracy of the analysis.
Ahn, Song Vogue; Jung, Dong-Hyuk; Yadav, Dhananjay; Kim, Jang-Young; Koh, Sang-Baek
2018-02-01
Metabolic syndrome is closely linked to obesity. Menopause may play a critical role in understanding the pathophysiology of metabolic syndrome in women. We investigated the relative contribution of obesity and menopause to the association between serum adiponectin levels and the development of metabolic syndrome. A prospective cohort study was conducted in which a total of 1,219 women without metabolic syndrome were examined at baseline (2005-2008) and followed up (2008-2011). Women were divided according to tertiles of serum adiponectin levels and menopause status, and then stratified into four groups: the nonobese with high adiponectin; the nonobese with low adiponectin; the obese with high adiponectin; and the obese with low adiponectin. During an average 2.5-year follow-up, 44 premenopausal women (9.8%) and 161 postmenopausal women (20.9%) developed metabolic syndrome. The obese group with low serum adiponectin demonstrated an increased risk for developing metabolic syndrome in both premenopausal (odds ratio [OR] 5.92, 95% confidence interval [CI] 2.24-15.66) and postmenopausal women (OR 4.22, 95% CI 2.41-7.36). However, the inverse association between serum adiponectin levels and incidence of metabolic syndrome was observed in premenopausal women with obesity (OR 0.16, 95% CI 0.03-0.81), but not in postmenopausal women with obesity (OR 0.55, 95% CI 0.27-1.14). High serum adiponectin levels showed no inverse association with metabolic syndrome in postmenopausal women with obesity. These findings may suggest a need for closer management of metabolic risk in postmenopausal women.
Serum proteomic profiling of major depressive disorder
Bot, M; Chan, M K; Jansen, R; Lamers, F; Vogelzangs, N; Steiner, J; Leweke, F M; Rothermundt, M; Cooper, J; Bahn, S; Penninx, B W J H
2015-01-01
Much has still to be learned about the molecular mechanisms of depression. This study aims to gain insight into contributing mechanisms by identifying serum proteins related to major depressive disorder (MDD) in a large psychiatric cohort study. Our sample consisted of 1589 participants of the Netherlands Study of Depression and Anxiety, comprising 687 individuals with current MDD (cMDD), 482 individuals with remitted MDD (rMDD) and 420 controls. We studied the relationship between MDD status and the levels of 171 serum proteins detected on a multi-analyte profiling platform using adjusted linear regression models. Pooled analyses of two independent validation cohorts (totaling 78 MDD cases and 156 controls) was carried out to validate our top markers. Twenty-eight analytes differed significantly between cMDD cases and controls (P<0.05), whereas 10 partly overlapping markers differed significantly between rMDD cases and controls. Antidepressant medication use and comorbid anxiety status did not substantially impact on these findings. Sixteen of the cMDD-related markers had been assayed in the pooled validation cohorts, of which seven were associated with MDD. The analytes prominently associated with cMDD related to diverse cell communication and signal transduction processes (pancreatic polypeptide, macrophage migration inhibitory factor, ENRAGE, interleukin-1 receptor antagonist and tenascin-C), immune response (growth-regulated alpha protein) and protein metabolism (von Willebrand factor). Several proteins were implicated in depression. Changes were more prominent in cMDD, suggesting that molecular alterations in serum are associated with acute depression symptomatology. These findings may help to establish serum-based biomarkers of depression and could improve our understanding of its pathophysiology. PMID:26171980
Battistini, Tânia Regina Beraldo; Sarni, Roseli Oselka Saccardo; de Souza, Fabíola Isabel Suano; Pitta, Tassiana Sacchi; Fernandes, Ana Paula; Hix, Sonia; Fonseca, Fernando Luiz Affonso; Tardini, Priscila Chemiotti; dos Santos, Valter Pinho; Lopez, Fábio Ancona
2010-06-01
To assess serum retinol and levels of carotenoids in children and adolescents with acquired immunodeficiency syndrome (AIDS) and to correlate low serum retinol and carotenoid levels with the presence of lipodystrophy, lipid profile changes, lipid peroxidation, and insulin resistance. A cross-sectional, controlled observational study was carried out with 30 children and adolescents with AIDS (mean age 9.1 y) receiving antiretroviral therapy (median length of treatment 28.4 mo), including 30 uninfected healthy controls matched for age and gender. Clinical and laboratory assessments were performed to determine nutritional status, presence of lipodystrophy, serum concentrations of retinol, beta-carotene, lycopene, lipid profile (high-density lipoprotein cholesterol, high-density lipoprotein cholesterol, triacylglycerols), lipid peroxidation (thiobarbituric acid-reactive substances), glycemia, and serum insulin (homeostasis model assessment for insulin resistance, cutoff point >3). Statistical analysis was done with chi-square test and Student's t test. Lipodystrophy was observed in 53.3% of patients with AIDS, and dyslipidemia was detected in 60% and 23% of subjects with human immunodeficiency virus and control subjects, respectively (P = 0.004). A higher prevalence of retinol deficiency (60% versus 26.7%, P = 0.009) and beta-carotene deficiency (23.3% versus 3.3%, P = 0.026) was found in the group with human immunodeficiency virus than in the control group. No correlation was found for low retinol and beta-carotene levels, changes in lipid and glucose metabolism, or lipodystrophy in children and adolescents with AIDS. Despite the high frequency of dyslipidemia, lipodystrophy, and retinol and beta-carotene deficiencies, it was not possible to demonstrate a correlation of these findings with lipid peroxidation and insulin resistance. More studies are needed to investigate the causes of retinol and beta-carotene deficiencies in this population and the clinical consequences of these findings. Copyright 2010 Elsevier Inc. All rights reserved.
Korosteleva, S N; Smith, T K; Boermans, H J
2009-04-01
A previous study in dairy cows showed some effect of feed contaminated with Fusarium mycotoxins on metabolism and immunity. A subsequent experiment investigated the effect of feedborne Fusarium mycotoxins on some immune functions in more detail. A total mixed ration (TMR) containing a blend of feedstuffs naturally contaminated with Fusarium mycotoxins was fed for 63 d to 12 mid-lactation Holstein cows with an average milk production of 36 kg/d in a completely randomized design with repeated measures including 1) control TMR and 2) contaminated TMR. Wheat, corn, hay, and corn silage were the contaminated feedstuffs. Deoxynivalenol was the major contaminant and was found in TMR at 3.5 mg/kg of dry matter. The parameters measured were 1) performance: body weight, body condition score, dry matter intake, milk production, composition and somatic cell count; 2) health: blood serum chemistry, hematology, coagulation profile, and rumen fluid ammonia levels; 3) immune function: total serum immunoglobulins (IgA, IgG, IgM), specific antibody response to ovalbumin, and neutrophil phagocytosis. Dry matter intake, body weight, milk production, and milk composition were not affected by diet. Neutrophil phagocytosis was depressed throughout the experiment in cows fed the contaminated diet. Serum sodium concentrations and osmolality were significantly elevated throughout the experiment in cows fed the contaminated diet. Primary antibody response to ovalbumin immunization was higher in cows fed the contaminated diet compared with controls. It was concluded that feed naturally contaminated with Fusarium mycotoxins can affect metabolic parameters and immune function of dairy cows.
Lubkowska, Anna; Radecka, Aleksandra; Bryczkowska, Iwona; Rotter, Iwona; Laszczyńska, Maria; Dudzińska, Wioleta
2015-09-14
The purpose of the study was to evaluate the relationship between serum adiponectin and leptin concentrations and body composition, hematological indices and lipid profile parameters in adults. The study involved 95 volunteers (BMI from 23.3 to 53 kg/m²). Anthropometric parameters were measured: body weight and height, waist and hip circumference, waist-to-hip ratio, body fat mass (BMF), subcutaneous and visceral fat mass (SFM, VFM), lean body mass (LBM), skeletal muscle mass (SMM). In serum we determined adiponectin and leptin concentrations, extracellular hemoglobin, total bilirubin, as well as lipid metabolism (TCh, HDL-Ch, LDL-Ch, TG). Mean adipokine levels were significantly higher in women (p ≤ 0.01), adiponectin significantly negatively correlated with body height and weight, systolic blood pressure and absolute LBM and SMM values. The same relation was observed for erythroid system indicators and lipid indicators. A positive correlation was exceptionally found between adiponectin and HDL-Ch. LEP negatively correlated with some percentage rates (%LBM, %SMM). Only in women, we observed a positive correlation between LEP and body weight, BMI and WHR. Studies on ADPN and the ADPN/LEP ratio as a valuable complementary diagnostic element in the prediction and prevention of cardiovascular diseases need to be continued.
Vianna, Andre Gustavo Daher; de Lacerda, Claudio Silva; Pechmann, Luciana Muniz; Polesel, Michelle Garcia; Marino, Emerson Cestari; Borba, Victoria Zeghbi Cochenski; Barreto, Fellype de Carvalho
2017-01-01
Several antidiabetic therapies affect bone metabolism. Sulfonylureas have the lowest impact on bone among oral antidiabetics. The objective of this study is to compare the effects of vildagliptin and gliclazide modified release (MR) on bone turnover markers (BTMs) and bone mineral density (BMD) in postmenopausal women with uncontrolled type 2 diabetes (T2D). Forty-two postmenopausal women with uncontrolled T2D were randomly allocated into vildagliptin or gliclazide MR (control) groups. The primary endpoint was the change in the BTMs in months 6 and 12 compared with the baseline. The secondary endpoint was the variation in the BMD, which was assessed via dual-energy X-ray absorptiometry at the lumbar spine, femoral neck and total hip at baseline and month 12. After a 12-month treatment, the BTM serum carboxy-terminal telopeptide of type 1 collagen increased 0.001 ± 0.153 ng/mL in the vildagliptin group versus 0.008 ± 0.060 ng/mL in the gliclazide MR group ( p = 0.858). The serum osteocalcin, serum amino-terminal propeptide of procollagen type I and urinary amino-terminal telopeptide of type 1 collagen remained stable in both groups, and there was no statistically significant difference between the effect of vildagliptin and gliclazide MR on these variables. The lumbar spine BMD did not change in the vildagliptin or gliclazide MR groups after a 12-month treatment (0.000 ± 0.025 g/cm 2 versus -0.008 ± 0.036, respectively, p = 0.434). Furthermore, there was a similar lack of change in the femoral neck and total hip BMD values in both treatments. Bone turnover markers and BMD remained unchanged after a 12-month treatment in both groups, which suggests that vildagliptin has the same safety profile as gliclazide MR on bone metabolism. Trial Registration ClinicalTrials.gov number NCT01679899.
Kumar, Pranesh; Singh, Ashok K; Raj, Vinit; Rai, Amit; Maity, Siddhartha; Rawat, Atul; Kumar, Umesh; Kumar, Dinesh; Prakash, Anand; Guleria, Anupam; Saha, Sudipta
2017-01-01
Aim: 6,7-dimethoxy-1,2,3,4-tetrahydro-isoquinoline-3-carboxylic acid (M1) was synthesized and evaluated for in-vivo antiproliferative action in diethylnitrosamine-induced hepatocarcinogenic rats. Materials & methods: The antiproliferative effect of M1 was assessed by various biochemical parameters, histopathology of liver and HPLC analysis. Proton nuclear magnetic resonance-based serum metabolic study was implemented on rat sera to explore the effects of M1 on hepatocellular carcinoma-induced metabolic alterations. Results: M1 showed protective action on liver and restored the arrangement of liver tissues in normal proportion. HPLC analysis displayed a good plasma drug concentration after its oral administration. Score plots of partial least squares discriminate analysis models exhibited that M1 therapy ameliorated hepatocellular carcinoma-induced metabolic alterations which signified its antiproliferative potential. Conclusion: M1 manifested notable antiproliferative profile, and warrants further investigation for future anticancer therapy. PMID:28884001
Xiong, J; Bian, J; Wang, L; Zhou, J-Y; Wang, Y; Zhao, Y; Wu, L-L; Hu, J-J; Li, B; Chen, S-J; Yan, C; Zhao, W-L
2015-01-01
Cancer cells have distinct metabolomic profile. Metabolic enzymes regulate key oncogenic signaling pathways and have an essential role on tumor progression. Here, serum metabolomic analysis was performed in 45 patients with T-cell lymphoma (TCL) and 50 healthy volunteers. The results showed that dysregulation of choline metabolism occurred in TCL and was related to tumor cell overexpression of choline kinase-α (Chokα). In T-lymphoma cells, pharmacological and molecular silencing of Chokα significantly decreased Ras-GTP activity, AKT and ERK phosphorylation and MYC oncoprotein expression, leading to restoration of choline metabolites and induction of tumor cell apoptosis/necropotosis. In a T-lymphoma xenograft murine model, Chokα inhibitor CK37 remarkably retarded tumor growth, suppressed Ras-AKT/ERK signaling, increased lysophosphatidylcholine levels and induced in situ cell apoptosis/necropotosis. Collectively, as a regulatory gene of aberrant choline metabolism, Chokα possessed oncogenic activity and could be a potential therapeutic target in TCL, as well as other hematological malignancies with interrupted Ras signaling pathways. PMID:25768400
Bernardo, Barbara L; Wachtmann, Timothy S; Cosgrove, Patricia G; Kuhn, Max; Opsahl, Alan C; Judkins, Kyle M; Freeman, Thomas B; Hadcock, John R; LeBrasseur, Nathan K
2010-06-25
Interventions for T2DM have in part aimed to mimic exercise. Here, we have compared the independent and combined effects of a PPARdelta agonist and endurance training mimetic (GW501516) and a myostatin antibody and resistance training mimetic (PF-879) on metabolic and performance outcomes in obese insulin resistant mice. Male ob/ob mice were treated for 6 weeks with vehicle, GW501516, PF-879, or GW501516 in combination with PF-879. The effects of the interventions on body composition, glucose homeostasis, glucose tolerance, energy expenditure, exercise capacity and metabolic gene expression were compared at the end of study. GW501516 attenuated body weight and fat mass accumulation and increased the expression of genes of oxidative metabolism. In contrast, PF-879 increased body weight by driving muscle growth and altered the expression of genes involved in insulin signaling and glucose metabolism. Despite their differences, both interventions alone improved glucose homeostasis. Moreover, GW501516 more effectively improved serum lipids, and PF-879 uniquely increased energy expenditure, exercise capacity and adiponectin levels. When combined the robust effects of GW501516 and/or PF-879 on body weight, adiposity, muscle mass, glycemia, serum lipids, energy expenditure and exercise capacity were highly conserved. The data, for the first time, demonstrate postnatal inhibition of myostatin not only promotes gains in muscle mass similar to resistance training,but improves metabolic homeostasis. In several instances, these effects were either distinct from or complimentary to those of GW501516. The data further suggest that strategies to increase muscle mass, and not necessarily oxidative capacity, may effectively counter insulin resistance and T2DM.
Effects of omega-3 on metabolic markers in postmenopausal women with metabolic syndrome.
Tardivo, A P; Nahas-Neto, J; Orsatti, C L; Dias, F B; Poloni, P F; Schmitt, E B; Nahas, E A P
2015-04-01
The aim of this study was to evaluate the effect of diet alone or combined with omega-3 supplementation on metabolic and inflammatory markers in postmenopausal women with metabolic syndrome. This randomized, controlled trial included 87 Brazilian women (age ≥ 45 years and with amenorrhea ≥ 12 months). Exclusion criteria were: cardiovascular disease, insulin-dependent diabetes, cancer, autoimmune diseases and use of either statins or hormone therapy. Participants were randomized to diet alone (n = 43, control) or diet plus omega-3 supplementation, 900 mg/day orally (n = 44). All women were provided with an individualized dietary prescription. Clinical, anthropometrical (body mass index and waist circumference) and biochemical variables were measured. The inflammatory profile included C-reactive protein, tumor necrosis factor α and interleukins (IL-1β and IL-6). The intervention time was 6 months, with assessments at initiation and completion. Data were analyzed according to intention-to-treat, using the independent t-test and ANOVA. There were significant reductions in body mass index and waist circumference in both groups (p < 0.05) without significant changes in body fat or muscle mass. Intervention with diet plus omega-3 was associated with significant reduction in systolic (< 12.2%) and diastolic (< 8.2%) blood pressure, serum triglyceride concentration (< 21.4%), and insulin resistance (< 13.1%) (p < 0.05), as well as a reduction in serum IL-6 concentration (< 28.5%) (p = 0.034). In postmenopausal women with metabolic syndrome, dietary intervention plus supplementation of omega-3 resulted in a further decrease in triglycerides and blood pressure and also in an improvement in insulin resistance and inflammatory markers, important components of metabolic syndrome.
Hayirli, A
2006-10-01
As a result of a marked decline in dry matter intake (DMI) prior to parturition and a slow rate of increase in DMI relative to milk production after parturition, dairy cattle experience a negative energy balance. Changes in nutritional and metabolic status during the periparturient period predispose dairy cattle to develop hepatic lipidosis and ketosis. The metabolic profile during early lactation includes low concentrations of serum insulin, plasma glucose, and liver glycogen and high concentrations of serum glucagon, adrenaline, growth hormone, plasma beta-hydroxybutyrate and non-esterified fatty acids, and liver triglyceride. Moreover, during late gestation and early lactation, flow of nutrients to fetus and mammary tissues are accorded a high degree of metabolic priority. This priority coincides with lowered responsiveness and sensitivity of extrahepatic tissues to insulin, which presumably plays a key role in development of hepatic lipidosis and ketosis. Hepatic lipidosis and ketosis compromise production, immune function, and fertility. Cows with hepatic lipidosis and ketosis have low tissue responsiveness to insulin owing to ketoacidosis. Insulin has numerous roles in metabolism of carbohydrates, lipids and proteins. Insulin is an anabolic hormone and acts to preserve nutrients as well as being a potent feed intake regulator. In addition to the major replacement therapy to alleviate severity of negative energy balance, administration of insulin with concomitant delivery of dextrose increases efficiency of treatment for hepatic lipidosis and ketosis. However, data on use of insulin to prevent these lipid-related metabolic disorders are limited and it should be investigated.
Yin, Fugui; Yu, Hai; Lepp, Dion; Shi, Xuejiang; Yang, Xiaojian; Hu, Jielun; Leeson, Steve; Yang, Chengbo; Nie, Shaoping; Hou, Yongqing; Gong, Joshua
2016-01-01
Background & Aims Butyrate has been shown to potently regulate energy expenditure and lipid metabolism in animals, yet the underlying mechanisms remain to be fully understood. The aim of this study was to investigate the molecular mechanisms of butyrate (in the form of butyrate glycerides, BG)-induced lipid metabolism at the level of gene expression in the jejunum and liver of broilers. Methodology/Principal Findings Two animal experiments were included in this study. In Experiment 1, two hundred and forty male broiler chickens were equally allocated into two groups: 1) basal diet (BD), 2) BG diets (BD + BG). Growth performance was compared between treatments for the 41-day trial. In Experiment 2, forty male broiler chickens were equally allocated into two groups. The general experimental design, group and management were the same as described in Experiment 1 except for reduced bird numbers and 21-day duration of the trial. Growth performance, abdominal fat deposition, serum lipid profiles as well as serum and tissue concentrations of key enzymes involved in lipid metabolism were compared between treatments. RNA-seq was employed to identify both differentially expressed genes (DEGs) and treatment specifically expressed genes (TSEGs). Functional clustering of DEGs and TSEGs and signaling pathways associated with lipid metabolism were identified using Ingenuity Pathways Analysis (IPA) and DAVID Bioinformatics Resources 6.7 (DAVID-BR). Quantitative PCR (qPCR) assays were subsequently conducted to further examine the expression of genes in the peroxisome proliferator-activated receptors (PPAR) signaling pathway identified by DAVID-BR. Dietary BG intervention significantly reduced abdominal fat ratio (abdominal fat weight/final body weight) in broilers. The decreased fat deposition in BG-fed chickens was in accordance with serum lipid profiles as well as the level of lipid metabolism-related enzymes in the serum, abdominal adipose, jejunum and liver. RNA-seq analysis indicated that dietary BG intervention induced 79 and 205 characterized DEGs in the jejunum and liver, respectively. In addition, 255 and 165 TSEGs were detected in the liver and jejunum of BG-fed group, while 162 and 211 TSEGs genes were observed in the liver and jejunum of BD-fed birds, respectively. Bioinformatic analysis with both IPA and DAVID-BR further revealed a significant enrichment of DEGs and TSEGs in the biological processes for reducing the synthesis, storage, transportation and secretion of lipids in the jejunum, while those in the liver were for enhancing the oxidation of ingested lipids and fatty acids. In particular, transcriptional regulators of THRSP and EGR-1 as well as several DEGs involved in the PPAR-α signaling pathway were significantly induced by dietary BG intervention for lipid catabolism. Conclusions Our results demonstrate that BG reduces body fat deposition via regulation of gene expression, which is involved in the biological events relating to the reduction of synthesis, storage, transportation and secretion, and improvement of oxidation of lipids and fatty acids. PMID:27508934
Physical activity and total antioxidant capacity across an adult lifespan of men.
Chrzczanowicz, Jacek; Gawron-Skarbek, Anna; Kostka, Joanna; Nowak, Dariusz; Drygas, Wojciech; Jegier, Anna; Kostka, Tomasz
2012-04-01
The aim of the study was to determine the association between the long-term physical activity (PA) and the total antioxidant capacity (TAC) of blood serum and their association with coexisting risk factors of cardiometabolic diseases in a group of relatively healthy men. The research was conducted among 422 males age 19.2-89.8 yr, either sedentary or involved in recreational sports activities. Anthropometric measurements, lipid profile, and measurement of glucose and uric acid levels were performed in every man. Current PA, historical PA, and aerobic fitness (physical working capacity) were assessed. TAC was determined with two spectrophotometric methods: the ferric reducing ability of serum (TAC-FRAS) and 2,2-diphenyl-1-picryl-hydrazyl (TAC-DPPH) tests. TAC was not related to the age of the subjects. Higher current and historical PA were associated with a more favorable cardiometabolic risk profile but not TAC. In fact, current PA level was connected with lower values of TAC-FRAS. Values of both TAC-FRAS and TAC-DPPH decreased with an increase of aerobic capacity. Individuals with coexisting anthropometric and biochemical risk factors of cardiovascular diseases and with elevated values of arterial pressure had higher TAC. Values of both TAC-FRAS (r = 0.66) and TAC-DPPH (r = 0.39) were strongly positively correlated with uric acid level. Overweight, obesity, higher blood pressure, unfavorable blood lipid profile, and especially higher uric acid levels are connected with greater TAC of blood serum across an adult man's life. High PA and fitness are associated with a more favorable overall risk profile of cardiovascular and metabolic diseases but are related to lower TAC.
Genome-wide association study identifies multiple loci influencing human serum metabolite levels
Kettunen, Johannes; Tukiainen, Taru; Sarin, Antti-Pekka; Ortega-Alonso, Alfredo; Tikkanen, Emmi; Lyytikäinen, Leo-Pekka; Kangas, Antti J; Soininen, Pasi; Würtz, Peter; Silander, Kaisa; Dick, Danielle M; Rose, Richard J; Savolainen, Markku J; Viikari, Jorma; Kähönen, Mika; Lehtimäki, Terho; Pietiläinen, Kirsi H; Inouye, Michael; McCarthy, Mark I; Jula, Antti; Eriksson, Johan; Raitakari, Olli T; Salomaa, Veikko; Kaprio, Jaakko; Järvelin, Marjo-Riitta; Peltonen, Leena; Perola, Markus; Freimer, Nelson B; Ala-Korpela, Mika; Palotie, Aarno; Ripatti, Samuli
2013-01-01
Nuclear magnetic resonance assays allow for measurement of a wide range of metabolic phenotypes. We report here the results of a GWAS on 8,330 Finnish individuals genotyped and imputed at 7.7 million SNPs for a range of 216 serum metabolic phenotypes assessed by NMR of serum samples. We identified significant associations (P < 2.31 × 10−10) at 31 loci, including 11 for which there have not been previous reports of associations to a metabolic trait or disorder. Analyses of Finnish twin pairs suggested that the metabolic measures reported here show higher heritability than comparable conventional metabolic phenotypes. In accordance with our expectations, SNPs at the 31 loci associated with individual metabolites account for a greater proportion of the genetic component of trait variance (up to 40%) than is typically observed for conventional serum metabolic phenotypes. The identification of such associations may provide substantial insight into cardiometabolic disorders. PMID:22286219
Seasonal influence over serum and urine metabolic markers in submariners during prolonged patrols
Holy, Xavier; Bégot, Laurent; Renault, Sylvie; Butigieg, Xavier; André, Catherine; Bonneau, Dominique; Savourey, Gustave; Collombet, Jean-Marc
2015-01-01
Within the framework of earlier publications, we have consistently dedicated our investigations to eliciting the effects of both seasonal vitamin D deficiency and submarine-induced hypercapnia on serum parameters for acid–base balance and bone metabolism in submariners over a 2-month winter (WP) or summer (SP) patrols. The latest findings reported herein, contribute further evidence with regard to overall physiological regulations in the same submariner populations that underwent past scrutiny. Hence, urine and blood samples were collected in WP and SP submariners at control prepatrol time as well as on submarine patrol days 20, 41, and 58. Several urine and serum metabolic markers were quantified, namely, deoxypyridinoline (DPD), lactate, albumin, creatinine, nonesterified fatty acids (NEFA), and ionized sodium (Na+) or potassium (K+), with a view to assessing bone, muscle, liver, or kidney metabolisms. We evidenced bone metabolism alteration (urine DPD, calcium, and phosphorus) previously recorded in submarine crewmembers under prolonged patrols. We also highlighted transitory modifications in liver metabolism (serum albumin) occurring within the first 20 days of submersion. We further evidenced changes in submariners’ renal physiology (serum creatinine) throughout the entire patrol time span. Measurements of ionic homeostasis (serum Na+ and K+) displayed potential seasonal impact over active ionic pumps in submariners. Finally, there is some evidence that submersion provides beneficial conditions prone to fend off seasonal lactic acidosis (serum lactate) detected in WP submariners. PMID:26265754
Lacroix, Delphine; Moutel, Sandrine; Coupaye, Muriel; Huvenne, Hélène; Faucher, Pauline; Pelloux, Véronique; Rouault, Christine; Bastard, Jean-Philippe; Cagnard, Nicolas; Dubern, Béatrice; Clément, Karine; Poitou, Christine
2015-03-01
Prader-Willi syndrome (PWS), the most frequent syndrome of obesity, is a model of early fat mass (FM) development, but scarce data exist on adipose tissue characteristics. The objective of the study was to compare metabolic, fat distribution, and transcriptomic signatures of sc adipose tissue (scAT) in PWS adults, with matched obese adults with primary obesities. Hormonal and metabolic assessments, systemic inflammation, and gene expression in scAT were compared between PWS patients and obese controls (OCs). Each 42nd PWS patient was matched with one randomly paired control with primary obesity. Matching factors were age, gender, fat mass (percentage), and diabetic status. Compared with OCs, the PWS group had a decreased percentage of trunk FM and a better metabolic profile with decreased insulin and homeostasis model assessment, an index of insulin-resistance, and increased concentrations of serum adiponectin and ghrelin. Adipocyte size relative to body fat was significantly higher in PWS vs OCs. scAT in PWS patients was characterized by a transcriptomic functional signature with enrichment of themes related to immunoinflammation, the extracellular matrix, and angiogenesis. A RT-PCR targeted study revealed that candidate genes encoding proinflammatory markers and remodeling molecules, CD68, CD3e, IL-1β, chemokine (C-C motif) ligand 5, collagen type 4-α, and lysyl oxidase, were down-regulated. Matched for FM, PWS subjects have a better metabolic profile, a phenotype that could be linked to changes in scAT remodeling and promotion of adipocyte growth.
Qi, Xiaozhe; Chen, Siyuan; Sheng, Yao; Guo, Mingzhang; Liu, Yifei; He, Xiaoyun; Huang, Kunlun; Xu, Wentao
2015-02-01
The genetically modified (GM) rice expressing human serum albumin (HSA) is used for non-food purposes; however, its food safety assessment should be conducted due to the probability of accidental mixture with conventional food. In this research, Sprague Dawley rats were fed diets containing 50% (wt/wt) GM rice expressing HSA or non-GM rice for 90 days. Urine metabolites were detected by (1)H NMR to examine the changes of the metabolites in the dynamic process of metabolism. Fecal bacterial profiles were detected by denaturing gradient gel electrophoresis to reflect intestinal health. Additionally, short chain fatty acids and fecal enzymes were investigated. The results showed that compared with rats fed the non-GM rice, some significant differences were observed in rats fed with the GM rice; however, these changes were not significantly different from the control diet group. Additionally, the gut microbiota was associated with blood indexes and urine metabolites. In conclusion, the GM rice diet is as safe as the traditional daily diet. Furthermore, urine metabonomics and fecal bacterial profiles provide a non-invasive food safety assessment rat model for genetically modified crops that are used for non-food/feed purposes. Fecal bacterial profiles have the potential for predicting the change of blood indexes in future. Copyright © 2014 Elsevier Ltd. All rights reserved.
Yin, Rui; Yang, Tongshu; Su, Hui; Ying, Li; Liu, Liyan; Sun, Changhao
2016-09-26
The aims were to investigate the serum free fatty acid (FFA) and esterified fatty acid (EFA) profiles and to identify biomarkers that can be used to identify patients with epithelial ovarian cancer (EOC) based on the metabolomics approach. We applied a targeted gas chromatography-mass spectrometry metabolomics approach to serum samples from 40 EOC patients and 35 healthy controls for achieving the FFA and EFA profiles. These metabolite profiles were processed using multivariate analysis to obtain potential biomarkers. And then, some independent samples were chosen to validate these potential biomarkers. There were higher saturated fatty acids and lower unsaturated fatty acids in EOC patients when compared with the healthy controls. EFA (C16:0), EFA (C18:0) and FFA (C16:0) were identified as potential biomarkers that distinguished EOC from the healthy controls. The areas under the curve from the EFA (C16:0), EFA (C18:0) and FFA (C16:0) in validated study were 0.745, 0.701, 0.682, respectively. Our study provides useful information to bridge the gaps in our understanding to the fatty acids metabolic alterations associated with EOC, and this study has demonstrated saturated fatty acid biomarkers might be helpful for the detection and characterization of EOC patients.
Åkerman, Linda; Casas, Rosaura; Ludvigsson, Johnny; Tavira, Beatriz; Skoglund, Camilla
2018-01-01
Micro RNAs (miRNAs) are promising disease biomarkers due to their high stability. Their expression in serum is altered in type 1 diabetes, but whether deviations exist in individuals with high risk for type 1 diabetes remains unexplored. We therefore assessed serum miRNAs in high-risk individuals (n = 21) positive for multiple islet autoantibodies, age-matched healthy children (n = 17) and recent-onset type 1 diabetes patients (n = 8), using Serum/Plasma Focus microRNA PCR Panels from Exiqon. The miRNA levels in the high-risk group were similar to healthy controls, and no specific miRNA profile was identified for the high-risk group. However, serum miRNAs appeared to reflect glycemic status and ongoing islet autoimmunity in high-risk individuals, since several miRNAs were associated to glucose homeostasis and autoantibody titers. High-risk individuals progressing to clinical disease after the sampling could not be clearly distinguished from non-progressors, while miRNA expression in the type 1 diabetes group deviated significantly from high-risk individuals and healthy controls, perhaps explained by major metabolic disturbances around the time of diagnosis.
Psychogios, Nikolaos; Hau, David D.; Peng, Jun; Guo, An Chi; Mandal, Rupasri; Bouatra, Souhaila; Sinelnikov, Igor; Krishnamurthy, Ramanarayan; Eisner, Roman; Gautam, Bijaya; Young, Nelson; Xia, Jianguo; Knox, Craig; Dong, Edison; Huang, Paul; Hollander, Zsuzsanna; Pedersen, Theresa L.; Smith, Steven R.; Bamforth, Fiona; Greiner, Russ; McManus, Bruce; Newman, John W.; Goodfriend, Theodore; Wishart, David S.
2011-01-01
Continuing improvements in analytical technology along with an increased interest in performing comprehensive, quantitative metabolic profiling, is leading to increased interest pressures within the metabolomics community to develop centralized metabolite reference resources for certain clinically important biofluids, such as cerebrospinal fluid, urine and blood. As part of an ongoing effort to systematically characterize the human metabolome through the Human Metabolome Project, we have undertaken the task of characterizing the human serum metabolome. In doing so, we have combined targeted and non-targeted NMR, GC-MS and LC-MS methods with computer-aided literature mining to identify and quantify a comprehensive, if not absolutely complete, set of metabolites commonly detected and quantified (with today's technology) in the human serum metabolome. Our use of multiple metabolomics platforms and technologies allowed us to substantially enhance the level of metabolome coverage while critically assessing the relative strengths and weaknesses of these platforms or technologies. Tables containing the complete set of 4229 confirmed and highly probable human serum compounds, their concentrations, related literature references and links to their known disease associations are freely available at http://www.serummetabolome.ca. PMID:21359215
Piantedosi, Diego; Di Loria, Antonio; Guccione, Jacopo; De Rosa, Angela; Fabbri, Silvia; Cortese, Laura; Carta, Sergio; Ciaramella, Paolo
2016-10-01
The aim of this study was to evaluate the serum biochemistry profile, inflammatory cytokines, adipokines and cardiovascular findings in obese dogs. Twenty obese and 20 normal weight healthy pet dogs were recruited into the study, where they underwent blood testing and assessment of cardiovascular function (blood pressure analysis, electrocardiography and echocardiography). Higher concentrations of total cholesterol, triglycerides, lactate dehydrogenase, total serum proteins, α-globulins, total bilirubin, insulin, insulin:glucose ratio, alkaline phosphate and alanine aminotransferase were observed in obese dogs than dogs of normal weight. There were no differences in concentrations of tumour necrosis factor (TNF)-α or interleukin (IL)-6 between the two groups. Obese dogs had higher serum leptin but lower adiponectin concentrations than dogs of normal weight. Systolic arterial blood pressure was higher in obese dogs than dogs of normal weight. The values for the thickness of the free wall of the left ventricle and interventricular septal thickness were greater at end-diastole in obese dogs compared to dogs of normal weight. Four of 20 obese dogs were determined to have obesity-related metabolic dysfunction (ORMD). The findings indicate that a chronic inflammatory state is not necessarily evident in obese dogs, as has been described in human beings, and the criteria used for ORMD can be used to define this syndrome in dogs. In this study, canine obesity was associated with cardiac and vascular dysfunction. Copyright © 2016 Elsevier Ltd. All rights reserved.
Yoon, Leena; Liu, Ya-Nan; Park, Hyunjin; Kim, Hyun-Sook
2015-07-01
We hypothesized that olive leaf extract might alleviate dyslipidemia resulting from estrogen deficiency. Serum lipid profile and mRNA expression of the related genes in the liver and adipose tissue were analyzed after providing olive leaf extract (200 or 400 mg/kg body weight; n=7 for each group) to ovariectomized rats for 10 weeks. After 10 weeks' administration, the rats in the olive leaf extract-administered groups showed significantly lower levels of serum triglyceride and very-low-density lipoprotein (VLDL)-cholesterol compared with the rats in the control group, whereas the administration of olive leaf extract did not significantly change the elevated low-density lipoprotein cholesterol levels. In addition, administration of high dose of olive leaf extract significantly decreased the liver triglyceride and increased serum estradiol levels. mRNA expressions of peroxisome proliferator-activated receptor alpha (PPAR α) and acyl-CoA oxidase (ACO) were not affected by ovariectomy, however, administration of olive leaf extract significantly increased both PPAR α and ACO mRNA expression. Expression of adiponectin mRNA in adipose tissue was significantly decreased in the ovariectomized control group. Rats administered low-dose olive leaf extract showed significantly elevated adiponectin mRNA expression compared with rats in the ovariectomized control group. Even though dose-dependent effects were not observed in most of the measurements, these results suggest that genes involved in lipid metabolism may be regulated by olive leaf extract administration in ovariectomized rats.
Metabolomic Quality Assessment of EDTA Plasma and Serum Samples.
Malm, Linus; Tybring, Gunnel; Moritz, Thomas; Landin, Britta; Galli, Joakim
2016-10-01
Handling and processing of blood can significantly alter the molecular composition and consistency of biobank samples and can have a major impact on the identification of biomarkers. It is thus crucial to identify tools to determine the quality of samples to be used in biomarker discovery studies. In this study, a non-targeted gas chromatography/time-of-flight mass spectrometry (GC-TOFMS) metabolomic strategy was used with the aim of identifying quality markers for serum and plasma biobank collections lacking proper documentation of preanalytical handling. The effect of postcentrifugation delay was examined in serum stored in tubes with gel separation plugs and ethylenediaminetetraacetic acid (EDTA) plasma in tubes with or without gel separation plugs. The change in metabolic pattern was negligible in all sample types processed within 3 hours after centrifugation regardless of whether the samples were kept at 4°C or 22°C. After 8 and 24 hours postcentrifugation delay before aliquoting, there was a pronounced increase in the number of affected metabolites, as well as in the magnitude of the observed changes. No protective effect on the metabolites was observed in gel-separated EDTA plasma samples. In a separate series of experiments, lactate and glucose levels were determined in plasma to estimate the effect of precentrifugation delay. This separate experiment indicates that the lactate to glucose ratio may serve as a marker to identify samples with delayed time to centrifugation. Although our data from the untargeted GC-TOFMS analysis did not identify any specific markers, we conclude that plasma and serum metabolic profiles remain quite stable when plasma and serum are centrifuged and separated from the blood cells within 3 hours.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Wenxiang; Zhang, Wenchang, E-mail: wenchang2002@sina.com; Liu, Jin
Female Wistar rats at 21 days of age were treated with one of three concentrations of soy isoflavones (SIF) (50, 100 or 200 mg/kg body weight, orally, once per day) from weaning until sexual maturity (3 months) in order to evaluate the influence of SIF on ovarian follicle development. After treatment, the serum sex hormone levels and enumeration of ovarian follicles of the ovary were measured. The metabolic profile of follicular fluid was determined using HPLC-MS. Principal component analysis (PCA) and partial least-squares-discriminant analysis (PLS-DA) was used to identify differences in metabolites and reveal useful toxic biomarkers. The results indicatedmore » that modest doses of SIF affect ovarian follicle development, as demonstrated by decreased serum estradiol levels and increases in both ovarian follicle atresia and corpora lutea number in the ovary. SIF treatment-related metabolic alterations in follicular fluid were also found in the PCA and PLS-DA models. The 24 most significantly altered metabolites were identified, including primary sex hormones, amino acids, fatty acids and metabolites involved in energy metabolism. These findings may indicate that soy isoflavones affect ovarian follicle development by inducing metabolomic variations in the follicular fluid. - Highlights: ► Modest doses of soy isoflavones (SIF) do affect ovarian follicle development. ► SIF treatment-related metabolic alterations in follicular fluid were found. ► The 24 most significantly altered metabolites were identified.« less
Li, Feida; Li, Yong; Liu, Huan; Zhang, Xingju; Liu, Chuxin; Tian, Kai; Bolund, Lars; Dou, Hongwei; Yang, Wenxian; Yang, Huanming; Staunstrup, Nicklas Heine; Du, Yutao
2015-12-01
Growth hormone (GH) is an anabolic mitogen with widespread influence on cellular growth and differentiation as well as on glucose and lipid metabolism. GH binding to the growth hormone receptor (GHR) on hepatocytes prompts expression of insulin growth factor I (IGF-1) involved in nutritionally induced compensatory hyperplasia of pancreatic β-cell islets and insulin release. A prolonged hyperactivity of the IGF-1/insulin axis in the face of insulinotropic nutrition, on the other hand, can lead to collapse of the pancreatic islets and glucose intolerance. Individuals with Laron syndrome carry mutations in the GHR gene resulting in severe congenital IGF-1 deficiency and elevated GH serum levels leading to short stature as well as perturbed lipid and glucose metabolism. However, these individuals enjoy a reduced prevalence of acne, cancer and possibly diabetes. Minipigs have become important biomedical models for human conditions due to similarities in organ anatomy, physiology, and metabolism relative to humans. The purpose of this study was to generate transgenic Wuzhishan minipigs by handmade cloning with impaired systemic GHR activity and assess their growth profile and glucose metabolism. Transgenic minipigs featuring overexpression of a dominant-negative porcine GHR (GHR(dm)) presented postnatal growth retardation and proportionate dwarfism. Molecular changes included elevated GH serum levels and mild hyperglycemia. We believe that this model may prove valuable in the study of GH functions in relation to cancer, diabetes and longevity.
Lebda, Mohamed A; Tohamy, Hossam G; El-Sayed, Yasser S
2017-05-01
Dietary intake of fructose corn syrup in sweetened beverages is associated with the development of metabolic syndrome and obesity. We hypothesized that inflammatory cytokines play a role in lipid storage and induction of liver injury. Therefore, this study intended to explore the expression of adipocytokines and its link to hepatic damage. Rats were assigned to drink water, cola soft drink (free access) and aspartame (240 mg/kg body weight/day orally) for 2 months. The lipid profiles, liver antioxidants and pathology, and mRNA expression of adipogenic cytokines were evaluated. Subchronic intake of soft drink or aspartame substantially induced hyperglycemia and hypertriacylglycerolemia, as represented by increased serum glucose, triacylglycerol, low-density lipoprotein and very low-density lipoprotein cholesterol, with obvious visceral fatty deposition. These metabolic syndromes were associated with the up-regulation of leptin and down-regulation of adiponectin and peroxisome proliferator activated receptor-γ (PPAR-γ) expression. Moreover, alterations in serum transaminases accompanied by hepatic oxidative stress involving induction of malondialdehyde and reduction of superoxide dismutase, catalase, and glutathione peroxidase and glutathione levels are indicative of oxidative hepatic damage. Several cytoarchitecture alterations were detected in the liver, including degeneration, infiltration, necrosis, and fibrosis, predominantly with aspartame. These data suggest that long-term intake of soft drink or aspartame-induced hepatic damage may be mediated by the induction of hyperglycemia, lipid accumulation, and oxidative stress with the involvement of adipocytokines. Copyright © 2017 Elsevier Inc. All rights reserved.
[Serum sclerostin levels and metabolic bone diseases].
Yamauchi, Mika; Sugimoto, Toshitsugu
2013-06-01
Serum sclerostin levels are being investigated in various metabolic bone diseases. Since serum sclerostin levels are decreased in primary hyperparathyroidism and elevated in hypoparathyroidism, parathyroid hormone (PTH) is thought to be a regulatory factor for sclerostin. Serum sclerostin levels exhibit a significant positive correlation with bone mineral density. On the other hand, a couple of studies on postmenopausal women have shown that high serum sclerostin levels are a risk factor for fracture. Although glucocorticoid induced osteoporosis and diabetes are both diseases that reduce bone formation, serum sclerostin levels have been reported to be decreased in the former and elevated in the latter, suggesting differences in the effects of sclerostin in the two diseases. Serum sclerostin levels are correlated with renal function, and increase with reduction in renal function. Serum sclerostin level may be a new index of bone assessment that differs from bone mineral density and bone metabolic markers.
Hussein, Mahmoud R; Ahmed, Omyma G; Hassan, Asmaa F; Ahmed, Marwa A
2007-02-01
Obesity and its associated metabolic pathologies are the most common and detrimental diseases, affecting over 50% of the adult population. Our knowledge about the protective effects of melatonin against high-fat diet (HFD)-induced obesity is still marginal. In this investigation, we hypothesized that melatonin can minimize the metabolic pathologies and morphological changes associated with obesity in animals receiving an HFD. To examine these effects, and to test our hypothesis, an animal model formed of male Boscat white rabbits was established. The animals were divided into three groups: (i) a control group fed regular diet; (ii) an obesity group fed an HFD for 12 weeks; and (iii) a treated group fed HFD for 12 weeks and then treated with melatonin for 4 weeks. The animals were killed and their serum and tissues were evaluated for: (i) lipid profile (cholesterol, triglycerides and low-density lipoprotein) and glucose; (ii) antioxidant enzyme (serum glutathione peroxidase, GSH-PX); and (iii) fatty changes (liver, kidney and blood vessels). Compared with the control group, intake of HFD (obesity group) was associated with: (i) a statistically significant increase in blood pressure, heart rate, sympathetic nerve activity, body weight, food consumption, serum lipids, blood glucose levels and atherogenic index; (ii) decreased level of GSH-PX and high-density lipoprotein (HDL); and (iii) fatty changes in the liver and kidney as well as atheromatous changes in the blood vessels. Compared with the obesity group, intake of melatonin (treated group) was associated with: (i) a statistically significant decrease in blood pressure, heart rate, sympathetic nerve activity, body weight, food consumption, serum lipids, blood glucose levels and atherogenic index; (ii) increased level of GSH-PX and HDL; and (iii) disappearance of fatty changes in the liver and kidney as well as atheromatous changes in the blood vessels. The administration of melatonin reduced the metabolic pathologies associated with the intake of HFD, suggesting a protective role. Although the underlying mechanisms are unclear, they may include its antioxidant and receptor-mediated effects. The clinical ramifications of these effects await further investigations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teeguarden, Justin G.; Twaddle, Nathan C.; Churchwell, Mona I.
Here we present data to evaluate potential absorption of Bisphenol A through non-metabolizing tissues of the upper digestive tract. Concurrent serum and urine concentrations of d6-BPA, and its glucuronide and sulfate conjugates, were measured over a 24 h period in 10 adult male volunteers following ingestion of 30 μg d6-BPA/kg body weight in soup. The pharmacokinetic behavior of BPA and its metabolites in this cohort (rapid absorption, complete elimination, evidence against sublingual absorption) was reported. This Data in Brief article contains the corresponding individual pharmacokinetic data, reports the demographics of the cohort and provides additional details related to the analyticalmore » methods employed and is related to [4].« less
Teeguarden, Justin G.; Twaddle, Nathan C.; Churchwell, Mona I.; ...
2015-09-01
Here we present data to evaluate potential absorption of Bisphenol A through non-metabolizing tissues of the upper digestive tract. Concurrent serum and urine concentrations of d6-BPA, and its glucuronide and sulfate conjugates, were measured over a 24 h period in 10 adult male volunteers following ingestion of 30 μg d6-BPA/kg body weight in soup. The pharmacokinetic behavior of BPA and its metabolites in this cohort (rapid absorption, complete elimination, evidence against sublingual absorption) was reported. This Data in Brief article contains the corresponding individual pharmacokinetic data, reports the demographics of the cohort and provides additional details related to the analyticalmore » methods employed and is related to [4].« less
Teeguarden, Justin G.; Twaddle, Nathan C.; Churchwell, Mona I.; Yang, Xiaoxia; Fisher, Jeffrey W.; Seryak, Liesel M.; Doerge, Daniel R.
2015-01-01
Here we present data to evaluate potential absorption of Bisphenol A through non-metabolizing tissues of the upper digestive tract. Concurrent serum and urine concentrations of d6-BPA, and its glucuronide and sulfate conjugates, were measured over a 24 h period in 10 adult male volunteers following ingestion of 30 μg d6-BPA/kg body weight in soup. The pharmacokinetic behavior of BPA and its metabolites in this cohort (rapid absorption, complete elimination, evidence against sublingual absorption) was reported. This Data in Brief article contains the corresponding individual pharmacokinetic data, reports the demographics of the cohort and provides additional details related to the analytical methods employed and is related to [4]. PMID:26217767
The gut microbiota modulates host energy and lipid metabolism in mice[S
Velagapudi, Vidya R.; Hezaveh, Rahil; Reigstad, Christopher S.; Gopalacharyulu, Peddinti; Yetukuri, Laxman; Islam, Sama; Felin, Jenny; Perkins, Rosie; Borén, Jan; Orešič, Matej; Bäckhed, Fredrik
2010-01-01
The gut microbiota has recently been identified as an environmental factor that may promote metabolic diseases. To investigate the effect of gut microbiota on host energy and lipid metabolism, we compared the serum metabolome and the lipidomes of serum, adipose tissue, and liver of conventionally raised (CONV-R) and germ-free mice. The serum metabolome of CONV-R mice was characterized by increased levels of energy metabolites, e.g., pyruvic acid, citric acid, fumaric acid, and malic acid, while levels of cholesterol and fatty acids were reduced. We also showed that the microbiota modified a number of lipid species in the serum, adipose tissue, and liver, with its greatest effect on triglyceride and phosphatidylcholine species. Triglyceride levels were lower in serum but higher in adipose tissue and liver of CONV-R mice, consistent with increased lipid clearance. Our findings show that the gut microbiota affects both host energy and lipid metabolism and highlights its role in the development of metabolic diseases. PMID:20040631
2014-01-01
Background Early diagnosis of initial metabolic derangements in young obese children could influence their management; however, this impairment is frequently not overt, but subtle and undetectable by routinely used clinical assays. Our aim was to evaluate the ability of serum proteomic analysis to detect these incipient metabolic alterations in comparison to standard clinical methods and to identify new candidate biomarkers. Methods A cross-sectional study of fasting serum samples from twenty-two prepubertal, Caucasian obese (OB; 9.22 ± 1.93 years; 3.43 ± 1.08 BMI-SDS) and twenty-one lean controls (C; 8.50 ± 1.98 years; -0.48 ± 0.81 BMI-SDS) and a prospective study of fasting serum samples from twenty prepubertal, Caucasian obese children (11 insulin resistant [IR]) before (4.77 ± 1.30 BMI-SDS) and after weight reduction (2.57 ± 1.29 BMI-SDS) by conservative treatment in a reference hospital (Pros-OB) was performed. Proteomic analysis (two-dimension-eletrophoresis + mass spectrometry analysis) of serum and comparative evaluation of the sensitivity of routinely used assays in the clinics to detect the observed differences in protein expression level, as well as their relationship with anthropometric features, insulin resistance indexes, lipid profile and adipokine levels were carried out. Results Study of the intensity data from proteomic analysis showed a decrease of several isoforms of apolipoprotein-A1, apo-J/clusterin, vitamin D binding protein, transthyretin in OBvs. C, with some changes in these proteins being enhanced by IR and partially reversed after weight loss. Expression of low molecular weight isoforms of haptoglobin was increased in OB, enhanced in IR and again decreased after weight loss, being positively correlated with serum interleukin-6 and NAMPT/visfatin levels. After statistical correction for multiple comparisons, significance remained for a single isoform of low MW haptoglobin (OB vs. C and IR vs. non-IR) and Apo A1 (IR vs. non-IR). Assays routinely used in the clinical setting (ELISA/kinetic nephelometry), only partially confirmed the changes observed by proteomic analysis (ApoA1 and haptoglobin). Conclusion Proteomic analysis can allow for the identification of potential new candidate biomarkers as a complement to routinely used assays to detect initial changes in serum markers of inflammation and lipid metabolism impairment in young obese children. PMID:24949022
Würtz, Peter; Suomela, Emmi; Lehtovirta, Miia; Kangas, Antti J.; Jula, Antti; Mikkilä, Vera; Viikari, Jorma S.A.; Juonala, Markus; Rönnemaa, Tapani; Hutri‐Kähönen, Nina; Kähönen, Mika; Lehtimäki, Terho; Soininen, Pasi; Ala‐Korpela, Mika; Raitakari, Olli T.
2016-01-01
Nonalcoholic fatty liver is associated with obesity‐related metabolic disturbances, but little is known about the metabolic perturbations preceding fatty liver disease. We performed comprehensive metabolic profiling to assess how circulating metabolites, such as lipoprotein lipids, fatty acids, amino acids, and glycolysis‐related metabolites, reflect the presence of and future risk for fatty liver in young adults. Sixty‐eight lipids and metabolites were quantified by nuclear magnetic resonance metabolomics in the population‐based Young Finns Study from serum collected in 2001 (n = 1,575), 2007 (n = 1,509), and 2011 (n = 2,002). Fatty liver was diagnosed by ultrasound in 2011 when participants were aged 34‐49 years (19% prevalence). Cross‐sectional associations as well as 4‐year and 10‐year risks for fatty liver were assessed by logistic regression. Metabolites across multiple pathways were strongly associated with the presence of fatty liver (P < 0.0007 for 60 measures in age‐adjusted and sex‐adjusted cross‐sectional analyses). The strongest direct associations were observed for extremely large very‐low‐density lipoprotein triglycerides (odds ratio [OR] = 4.86 per 1 standard deviation, 95% confidence interval 3.48‐6.78), other very‐low‐density lipoprotein measures, and branched‐chain amino acids (e.g., leucine OR = 2.94, 2.51‐3.44). Strong inverse associations were observed for high‐density lipoprotein measures, e.g., high‐density lipoprotein size (OR = 0.36, 0.30‐0.42) and several fatty acids including omega‐6 (OR = 0.37, 0.32‐0.42). The metabolic associations were attenuated but remained significant after adjusting for waist, physical activity, alcohol consumption, and smoking (P < 0.0007). Similar aberrations in the metabolic profile were observed already 10 years before fatty liver diagnosis. Conclusion: Circulating lipids, fatty acids, and amino acids reflect fatty liver independently of routine metabolic risk factors; these metabolic aberrations appear to precede the development of fatty liver in young adults. (Hepatology 2017;65:491‐500). PMID:27775848
Masson, C; Bougrine, R; Bois, F; Zaïd, A; Nicolas, J P; Guéant, J L
1995-01-01
We have studied the effects of a hyperglycemic temperature induced factor (TIF) on glucose metabolism, in 3 groups of Wistar rats: 10 rats injected with non-heated serum, 10 rats injected with heated serum and 10 rats injected with semi-purified TIF. Seric levels of insulin and glucagon were not modified in rats injected with heated serum. The injection of heated serum induced hyperglycemia (p < 0.0001), a decrease of lactate (p < 0.001) and pyruvate (p < 0.05) levels, and an increase of acetoacetate level (p < 0.001). The levels of beta hydroxybutyrate and amino acids (alanine and glutamine) were not changed. Glucose turn over rate (12.3 +/- 1.3 g/min/kg) and metabolic clearance of glucose (10.0 +/- 0.8 ml/min/kg) were significantly lower in rats treated with heated serum and purified TIF than in controls (respectively, p < 0.05 and p < 0.001). These data suggested that the hyperglycemic effect of heated serum and isolated TIF could correspond to an impaired metabolic clearance of glucose and to an increased gluconeogenesis.
Gender differences in fat distribution and inflammatory markers among Arabs.
Farooq, Abdulaziz; Knez, Wade L; Knez, Kelly; Al-Noaimi, Asma; Grantham, Justin; Mohamed-Ali, Vidya
2013-01-01
Recent studies from the Gulf region suggest that compared to men, women have a greater risk of developing metabolic syndrome (MeS). To investigate gender differences in body composition, adipokines, inflammatory markers, and aerobic fitness in a cohort of healthy Qatari adults. Participants. Healthy Qatari (n = 58) were matched for age, gender, and body mass index. Body composition and regional fat distribution were determined by dual-energy X-ray absorptiometry and computerized tomography. Laboratory assessments included serum levels of fasting glucose, insulin, lipid profile analysis, adipokines, and inflammatory markers. Subjects were also evaluated for aerobic fitness. Women had more adipose tissue in the total abdominal (P = 0.04) and abdominal subcutaneous (P = 0.07) regions compared to men. Waist circumference and indices of insulin sensitivity were similar; however, women had a more favourable lipid profile than men. Serum adiponectin and leptin levels were significantly higher in women, whereas inflammatory profiles were not different between men and women. Aerobic fitness was lower in women and was associated with abdominal fat accumulation. In premenopausal women, higher levels of adiponectin may support maintenance of insulin sensitivity and normolipidemia despite greater adiposity. However, poor aerobic fitness combined with abdominal fat accumulation may explain their greater future risk of MeS compared with men.
Gender Differences in Fat Distribution and Inflammatory Markers among Arabs
Farooq, Abdulaziz; Knez, Wade L.; Knez, Kelly; Al-Noaimi, Asma; Grantham, Justin; Mohamed-Ali, Vidya
2013-01-01
Recent studies from the Gulf region suggest that compared to men, women have a greater risk of developing metabolic syndrome (MeS). Objective. To investigate gender differences in body composition, adipokines, inflammatory markers, and aerobic fitness in a cohort of healthy Qatari adults. Participants. Healthy Qatari (n = 58) were matched for age, gender, and body mass index. Methods. Body composition and regional fat distribution were determined by dual-energy X-ray absorptiometry and computerized tomography. Laboratory assessments included serum levels of fasting glucose, insulin, lipid profile analysis, adipokines, and inflammatory markers. Subjects were also evaluated for aerobic fitness. Results. Women had more adipose tissue in the total abdominal (P = 0.04) and abdominal subcutaneous (P = 0.07) regions compared to men. Waist circumference and indices of insulin sensitivity were similar; however, women had a more favourable lipid profile than men. Serum adiponectin and leptin levels were significantly higher in women, whereas inflammatory profiles were not different between men and women. Aerobic fitness was lower in women and was associated with abdominal fat accumulation. Conclusion. In premenopausal women, higher levels of adiponectin may support maintenance of insulin sensitivity and normolipidemia despite greater adiposity. However, poor aerobic fitness combined with abdominal fat accumulation may explain their greater future risk of MeS compared with men. PMID:24227909
Collins, K H; Paul, H A; Reimer, R A; Seerattan, R A; Hart, D A; Herzog, W
2015-11-01
Osteoarthritis (OA) may result from intrinsic inflammation related to metabolic disturbance. Obesity-associated inflammation is triggered by lipopolysaccharide (LPS) derived from the gut microbiota. However, the relationship between gut microbiota, LPS, inflammation, and OA remain unclear. To evaluate the associations between gut microbiota, systemic LPS levels, serum and local inflammatory profiles, and joint damage in a high fat/high sucrose diet induced obese rat model. 32 rats were randomized to a high fat/high sucrose diet (diet-induced obese (DIO), 40% fat, 45% sucrose, n = 21) or chow diet group (12% fat, 3.7% sucrose n = 11) for 28 weeks. After a 12-week obesity induction period, DIO animals were stratified into Obesity Prone (DIO-P, top 33% by change in body mass, n = 7), and Obesity Resistant groups (DIO-R, bottom 33%, n = 7). At sacrifice, joints were scored using a Modified Mankin Criteria. Blood and synovial fluid analytes, serum LPS, and fecal gut microbiota were analyzed. DIO animals had greater Modified Mankin scores than chow animals (P = 0.002). There was a significant relationship (r = 0.604, p = 0.001) between body fat, but not body mass, and Modified Mankin score. Eighteen synovial fluid and four serum analytes were increased in DIO animals. DIO serum LPS levels were increased compared to chow (P = 0.031). Together, Lactobacillus species (spp.) and Methanobrevibacter spp. abundance had a strong predictive relationship with Modified Mankin Score (r(2) = 0.5, P < 0.001). Increased OA in DIO animals is associated with greater body fat, not body mass. The link between gut microbiota and adiposity-derived inflammation and metabolic OA warrants further investigation. Copyright © 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Miettinen, T A; Gylling, H; Nissinen, M J
2011-10-01
To study the whole-body cholesterol metabolism in man, cholesterol synthesis and absorption need to be measured. Because of the complicated methods of the measurements, new approaches were developed including the analysis of serum non-cholesterol sterols. In current lipidologic papers and even in intervention studies, serum non-cholesterol sterols are frequently used as surrogate markers of cholesterol metabolism without any validation to the absolute metabolic variables. The present review compares serum non-cholesterol sterols with absolute measurements of cholesterol synthesis and absorption in published papers to find out whether the serum markers are valid indicators of cholesterol metabolism in various conditions. During statin treatment, during interventions of dietary fat, and in type 2 diabetes the relative and absolute variables of cholesterol synthesis and absorption were frequently but not constantly correlated with each other. In some occasions, especially in subjects with apolipoprotein E3/4 and E4/4 phenotypes, the relative metabolic markers were even more sensitive than the absolute ones to reflect changes in cholesterol metabolism during dietary interventions. Even in general population at very high absorption the homeostasis of cholesterol metabolism is disturbed damaging the validity of the serum markers. It is worth using several instead of only one precursor and absorption sterol marker for making conclusions of altered synthesis or absorption of cholesterol, and even then the presence of at least some absolute measurement is valuable. During consumption of plant sterol-enriched diets and in situations of interfered cholesterol homeostasis the relative markers do not adequately reflect cholesterol metabolism. Accordingly, the validity of the relative markers of cholesterol metabolism should not be considered as self-evident. Copyright © 2011 Elsevier B.V. All rights reserved.
Druart, Céline; Dewulf, Evelyne M; Cani, Patrice D; Neyrinck, Audrey M; Thissen, Jean-Paul; Delzenne, Nathalie M
2014-04-01
The aim of this human study was to assess the influence of prebiotic-induced gut microbiota modulation on PUFA-derived bacterial metabolites production. Therefore, we analyzed the circulating fatty acid profile including CLA/CLnA in obese women treated during 3 months with inulin-type fructan prebiotics. In these patients, we had already determined gut microbiota composition by phylogenetic microarray and qPCR analysis of 16S rDNA. Some PUFA-derived bacterial metabolites were detected in the serum of obese patients. Despite the prebiotic-induced modulation of gut microbiota, including changes in CLA/CLnA-producing bacteria, the treatment did not impact significantly on the circulating level of these metabolites. However, some PUFA-derived bacterial metabolites were positively correlated with specific fecal bacteria (Bifidobacterium spp., Eubacterium ventriosum and Lactobacillus spp.) and inversely correlated with serum cholesterol (total, LDL, HDL). These correlations suggest a potential beneficial effect of some of these metabolites but this remains to be confirmed by further investigation.
Fotschki, Bartosz; Juśkiewicz, Jerzy; Kołodziejczyk, Krzysztof; Jurgoński, Adam; Kosmala, Monika; Milala, Joanna; Ognik, Katarzyna; Zduńczyk, Zenon
2018-04-04
The present study compares the effects of two dietary strawberry extracts rich in monomeric (ME) or dimeric (DE) ellagitannins (ETs) on gastrointestinal, blood and tissue biomarkers in Wistar rats fed high-fructose diets. Both strawberry extracts beneficially affect the antioxidant status and lipid profile of the liver and serum. The ME extract shows a greater ability to inhibit lipid peroxidation in kidneys, more effectively decreases serum and liver triglycerides, and exerts greater anti-inflammatory effects in blood serum than the DE extract. The DE extract significantly reduces the activity of microbial enzymes in the cecum. These effects might be associated with higher cecum and urine levels of ET metabolites in rats fed with ME than in rats fed with DE. In conclusion, the diet-induced fructose-related disturbances observed in biochemical parameters are regulated by both extracts; nevertheless, the beneficial effects of the ME extract are mostly associated with systemic parameters, while those of the DE extracts are associated with local microbial activity.
Stogov, V M; Kireeva, E A; Karasev, A G
2014-12-01
The study was carried out to comparatively analyze metabolic profile and content of growth factors in blood serum of patients with retarded consolidation of fractures of bones of lower extremities. The evaluation was applied to concentration of metabolites, growth factors and enzyme activity of blood serum in 13 patients with retarded consolidation of fractures of thigh and shank bones (main group). The comparative group included 14 patients with solid fractures of thigh and shank bones. The analysis established that as compared to patients with solid fractures of bones, in patients with retarded consolidation of fractures blood serum contained reliably higher concentration of triglycerides, products of glycolysis, epidermal growth factor and transforming growth factors TGF-α and TGF-β2. The content of vitamin E and insullin-like growth factor (IGF-1) was decreased The given markers can be labeled as potential markers of diagnostic and prognosis of development of retarded consolidation of fractures.
Serum Ferritin Is Associated with Metabolic Syndrome and Red Meat Consumption
Felipe, Avila; Guadalupe, Echeverría; Druso, Pérez; Carlos, Martinez; Pablo, Strobel; Oscar, Castillo; Luis, Villaroel; Diego, Mezzano; Jaime, Rozowski; Inés, Urquiaga; Federico, Leighton
2015-01-01
Background and Aims. Hyperferritinemia has been related with a wide spectrum of pathologies, including diabetes, cardiovascular disease, neurodegenerative disorders, and metabolic syndrome. The aim of this study was to investigate the association between hyperferritinemia and iron consumption. Methods and Results. Serum ferritin concentration was evaluated in 66 presumed healthy men, along with other clinical and biochemical markers of chronic diseases. A three-day food questionnaire was applied for nutrition information. Hyperferritinemia was a condition found in 13.4% of the volunteers analyzed. Significant correlations were found between serum ferritin concentration and metabolic syndrome parameters (HDL cholesterol, triglycerides, and fasting glucose) as well as an increase of the serum ferritin mean value with the number of risk factors of metabolic syndrome. Also, oxidative stress markers (carbonyl groups, AOPP, and glycated hemoglobin), hepatic damage markers (GGT, SGOT), and parameters related to insulin resistance (HOMA, blood insulin, and blood glucose) correlate significantly with serum ferritin. Volunteers had an excessive iron intake, principally by bread consumption. Analyses of food intake showed that red meat consumption correlates significantly with serum ferritin. Conclusion. Red meat consumption, metabolic syndrome, and chronic disease markers are associated with hyperferritinemia in a population of Chilean men. PMID:26451235
Serum Ferritin Is Associated with Metabolic Syndrome and Red Meat Consumption.
Avila, Felipe; Echeverría, Guadalupe; Pérez, Druso; Martinez, Carlos; Strobel, Pablo; Castillo, Oscar; Villaroel, Luis; Mezzano, Diego; Rozowski, Jaime; Urquiaga, Inés; Leighton, Federico
2015-01-01
Hyperferritinemia has been related with a wide spectrum of pathologies, including diabetes, cardiovascular disease, neurodegenerative disorders, and metabolic syndrome. The aim of this study was to investigate the association between hyperferritinemia and iron consumption. Serum ferritin concentration was evaluated in 66 presumed healthy men, along with other clinical and biochemical markers of chronic diseases. A three-day food questionnaire was applied for nutrition information. Hyperferritinemia was a condition found in 13.4% of the volunteers analyzed. Significant correlations were found between serum ferritin concentration and metabolic syndrome parameters (HDL cholesterol, triglycerides, and fasting glucose) as well as an increase of the serum ferritin mean value with the number of risk factors of metabolic syndrome. Also, oxidative stress markers (carbonyl groups, AOPP, and glycated hemoglobin), hepatic damage markers (GGT, SGOT), and parameters related to insulin resistance (HOMA, blood insulin, and blood glucose) correlate significantly with serum ferritin. Volunteers had an excessive iron intake, principally by bread consumption. Analyses of food intake showed that red meat consumption correlates significantly with serum ferritin. Red meat consumption, metabolic syndrome, and chronic disease markers are associated with hyperferritinemia in a population of Chilean men.
Aalami-Harandi, Rezvan; Karamali, Maryam; Asemi, Zatollah
2015-01-01
This study was performed to determine the favorable effects of garlic on metabolic status and pregnancy outcomes among pregnant women at risk for pre-eclampsia. This randomized, double-blind, placebo-controlled trial was conducted among 44 pregnant women, primigravida, aged 18-40 years old at 27 weeks' gestation with positive roll-over test. Participants were randomly assigned to receive either one garlic tablet (equal to 400 mg garlic and 1 mg allicin) (n = 22) or placebo (n = 22) once daily for 9 weeks. Fasting blood samples were taken at baseline and after 9 weeks' intervention to measure metabolic profiles and biomarkers of oxidative stress. Administration of garlic compared with the placebo resulted in decreased levels of serum high sensitivity C-reactive protein (hs-CRP) (-1425.90 versus 1360.50 ng/mL, p = 0.01) and increased plasma glutathione (GSH) (+98.10 versus. -49.87 µmol/l, p = 0.03). A trend toward a significant effect of garlic intake on reducing fasting plasma glucose (FPG) (p = 0.07), insulin (p = 0.09) and increasing quantitative insulin sensitivity check (QUICKI) (p = 0.05) was also observed. Consumption of garlic for 9 weeks among pregnant women at risk for pre-eclampsia led to decreased hs-CRP and increased GSH, but did not affect lipid profiles, total antioxidant capacity (TAC) and pregnancy outcomes.
Liu, Zhichao; Wang, Yuping; Borlak, Jürgen; Tong, Weida
2016-04-05
Hepatic steatosis is characterised by excessive triglyceride accumulation in the form of lipid droplets (LD); however, mechanisms differ in drug induced (DIS) and/or non-alcoholic fatty liver disease (NAFLD). Here we hypothesized distinct molecular circuits of microRNA/LD-associated target genes and searched for mechanistically linked serum and tissue biomarkers that would distinguish between DIS and human NAFLD of different grades. We analysed >800 rat hepatic whole genome data for 17 steatotic drugs and identified 157 distinct miRNAs targeting 77 DIS regulated genes. Subsequently, genomic data of N = 105 cases of human NAFLD and N = 32 healthy controls were compared to serum miRNA profiles of N = 167 NAFLD patients. This revealed N = 195 tissue-specific miRNAs being mechanistically linked to LD-coding genes and 24 and 9 miRNAs were commonly regulated in serum and tissue of advanced and mild NAFLD, respectively. The NASH serum regulated miRNAs informed on hepatic inflammation, adipocytokine and insulin signalling, ER-and caveolae associated activities and altered glycerolipid metabolism. Conversely, serum miRNAs associated with blunt steatosis specifically highlighted activity of FOXO1&HNF4α on CPT2, the lipid droplet and ER-lipid-raft associated PLIN3 and Erlin1. Altogether, serum miRNAs informed on the molecular pathophysiology of NAFLD and permitted differentiation between DIS and NAFLD of different grades.
van Wietmarschen, Herman A; van der Greef, Jan; Schroën, Yan; Wang, Mei
2013-12-12
Rehmannia Six Formula (R6, Chinese name is Liu Wei Di Huang Wan) is one of the most important classic Chinese medicine formula used to treat metabolic disorders related to aging. It was first reported in the Chinese medicine book titled 'Xiao Er Yao Zheng Zhi Jue by Qian Yi' (Chinese Song dynasty: 1035-1117). In modern times it is therefore often used to treat diabetes, pre-diabetes, fatigue and people with metabolic syndrome. The aim of this study is to measure changes in symptoms, clinical parameters and serum metabolite profiles during R6 treatment of human subjects with features of metabolic syndrome. Symptoms, clinical parameters and serum metabolites were measured before and after 4 and 8 weeks of R6 treatment. Nonlinear Principal Component Analysis was applied for the first time to conduct an integrated analysis of the three data sets. Correlation structures were compared before treatment and after 4 and 8 weeks of treatment. Additionally, a State Space Grid approach was used to study personalized changes in symptom profiles. The symptoms 'hectic fever' and 'spontaneous sweating' were found to be most relieved during R6 treatment. Most of the symptoms were less correlated with other variables after 8 weeks of R6 treatment. LDL-C, total cholesterol, systolic blood pressure and waist size were found to decrease during R6 treatment. Additionally, 10 of the 15 measured phosphatidylcholines were found to decrease. Personalized symptom profiles as described by Chinese medical terms show that most Yin deficiencies are addressed first by R6 treatment. However, in subjects with reduced or less Yin deficiency but which do have a substantial Qi deficiency a reduction of Qi deficiency is subsequently observed. R6 treatment was shown to improve the lipid profile indicating a reduction of cardiovascular risk. Additionally, the changes observed in correlation structure indicate a different angle of looking at treatment effects. Less strong correlations between symptoms and metabolites suggest a healthier situation after R6 treatment. A State Space Grid analysis showed that the effect of R6 was different for the Yin deficiency subjects and the Qi deficiency subjects. The observed decrease of Yin deficiency related symptoms is in agreement with the use of R6 in Chinese medicine to nourish Yin. Observing individual differences in treatment effects is therefore an essential step in the development of personalized medicine. © 2013 Elsevier Ireland Ltd. All rights reserved.
Barrett, Eoin; Fitzgerald, Patrick; Dinan, Timothy G; Cryan, John F; Ross, R Paul; Quigley, Eamonn M; Shanahan, Fergus; Kiely, Barry; Fitzgerald, Gerald F; O'Toole, Paul W; Stanton, Catherine
2012-01-01
The aim of this study was to compare the impact of dietary supplementation with a Bifidobacterium breve strain together with linoleic acid & α-linolenic acid, for 7 weeks, on colonic sensitivity and fatty acid metabolism in rats. Maternally separated and non-maternally separated Sprague Dawley rats (n = 15) were orally gavaged with either B. breve DPC6330 (10(9) microorganisms/day) alone or in combination with 0.5% (w/w) linoleic acid & 0.5% (w/w) α-linolenic acid, daily for 7 weeks and compared with trehalose and bovine serum albumin. Tissue fatty acid composition was assessed by gas-liquid chromatography and visceral hypersensitivity was assessed by colorectal distension. Significant differences in the fatty acid profiles of the non-separated controls and maternally separated controls were observed for α-linolenic acid and arachidonic acid in the liver, oleic acid and eicosenoic acid (c11) in adipose tissue, and for palmitoleic acid and docosahexaenoic acid in serum (p<0.05). Administration of B. breve DPC6330 to MS rats significantly increased palmitoleic acid, arachidonic acid and docosahexaenoic acid in the liver, eicosenoic acid (c11) in adipose tissue and palmitoleic acid in the prefrontal cortex (p<0.05), whereas feeding B. breve DPC6330 to non separated rats significantly increased eicosapentaenoic acid and docosapentaenoic acid in serum (p<0.05) compared with the NS un-supplemented controls. Administration of B. breve DPC6330 in combination with linoleic acid and α-linolenic acid to maternally separated rats significantly increased docosapentaenoic acid in the serum (p<0.01) and α-linolenic acid in adipose tissue (p<0.001), whereas feeding B. breve DPC6330 with fatty acid supplementation to non-separated rats significantly increased liver and serum docosapentaenoic acid (p<0.05), and α-linolenic acid in adipose tissue (p<0.001). B. breve DPC6330 influenced host fatty acid metabolism. Administration of B. breve DPC6330 to maternally separated rats significantly modified the palmitoleic acid, arachidonic acid and docosahexaenoic acid contents in tissues. The effect was not observed in non-separated animals.
Barrett, Eoin; Fitzgerald, Patrick; Dinan, Timothy G.; Cryan, John F.; Ross, R. Paul; Quigley, Eamonn M.; Shanahan, Fergus; Kiely, Barry; Fitzgerald, Gerald F.; O'Toole, Paul W.; Stanton, Catherine
2012-01-01
The aim of this study was to compare the impact of dietary supplementation with a Bifidobacterium breve strain together with linoleic acid & α-linolenic acid, for 7 weeks, on colonic sensitivity and fatty acid metabolism in rats. Maternally separated and non-maternally separated Sprague Dawley rats (n = 15) were orally gavaged with either B. breve DPC6330 (109 microorganisms/day) alone or in combination with 0.5% (w/w) linoleic acid & 0.5% (w/w) α-linolenic acid, daily for 7 weeks and compared with trehalose and bovine serum albumin. Tissue fatty acid composition was assessed by gas-liquid chromatography and visceral hypersensitivity was assessed by colorectal distension. Significant differences in the fatty acid profiles of the non-separated controls and maternally separated controls were observed for α-linolenic acid and arachidonic acid in the liver, oleic acid and eicosenoic acid (c11) in adipose tissue, and for palmitoleic acid and docosahexaenoic acid in serum (p<0.05). Administration of B. breve DPC6330 to MS rats significantly increased palmitoleic acid, arachidonic acid and docosahexaenoic acid in the liver, eicosenoic acid (c11) in adipose tissue and palmitoleic acid in the prefrontal cortex (p<0.05), whereas feeding B. breve DPC6330 to non separated rats significantly increased eicosapentaenoic acid and docosapentaenoic acid in serum (p<0.05) compared with the NS un-supplemented controls. Administration of B. breve DPC6330 in combination with linoleic acid and α-linolenic acid to maternally separated rats significantly increased docosapentaenoic acid in the serum (p<0.01) and α-linolenic acid in adipose tissue (p<0.001), whereas feeding B. breve DPC6330 with fatty acid supplementation to non-separated rats significantly increased liver and serum docosapentaenoic acid (p<0.05), and α-linolenic acid in adipose tissue (p<0.001). B. breve DPC6330 influenced host fatty acid metabolism. Administration of B. breve DPC6330 to maternally separated rats significantly modified the palmitoleic acid, arachidonic acid and docosahexaenoic acid contents in tissues. The effect was not observed in non-separated animals. PMID:23185248
Association of Serum Ferritin Levels with Metabolic Syndrome and Insulin Resistance.
Padwal, Meghana K; Murshid, Mohsin; Nirmale, Prachee; Melinkeri, R R
2015-09-01
The impact of CVDs and Type II DM is increasing over the last decade. It has been estimated that by 2025 their incidence will double. Ferritin is one of the key proteins regulating iron homeostasis and is a widely available clinical biomarker of iron status. Some studies suggest that prevalence of atherosclerosis and insulin resistance increases significantly with increasing serum ferritin. Metabolic syndrome is known to be associated with increased risk of atherosclerosis as well as insulin resistance. The present study was designed to explore the association of serum ferritin levels with metabolic syndrome and insulin resistance. The present study was prospective, cross sectional. The study protocol was approved by IEC. The study group consisted of 90 participants (50 cases of metabolic syndrome and 40 age and sex matched controls). Diagnosis of metabolic syndrome was done as per NCEP ATP III criteria. Estimation of serum Ferritin and Insulin was done by Chemiluminescence Immunoassay (CLIA) while Glucose by Glucose Oxidase and Peroxidase (GOD-POD) method. Insulin Resistance was calculated by HOMA IR score. Data obtained was statistically analysed by using student t-test. We found statistically significant rise in the levels of serum ferritin (p=<0.001), glucose (p=<0.001), insulin (p=<0.001) and HOMA IR score (p=<0.0001) in cases of metabolic syndrome as compared with controls. High serum ferritin levels though within normal range are significantly associated with both metabolic syndrome and insulin resistance.
Rigano, K S; Gehring, J L; Evans Hutzenbiler, B D; Chen, A V; Nelson, O L; Vella, C A; Robbins, C T; Jansen, H T
2017-05-01
Grizzly bears (Ursus arctos horribilis) have evolved remarkable metabolic adaptations including enormous fat accumulation during the active season followed by fasting during hibernation. However, these fluctuations in body mass do not cause the same harmful effects associated with obesity in humans. To better understand these seasonal transitions, we performed insulin and glucose tolerance tests in captive grizzly bears, characterized the annual profiles of circulating adipokines, and tested the anorectic effects of centrally administered leptin at different times of the year. We also used bear gluteal adipocyte cultures to test insulin and beta-adrenergic sensitivity in vitro. Bears were insulin resistant during hibernation but were sensitive during the spring and fall active periods. Hibernating bears remained euglycemic, possibly due to hyperinsulinemia and hyperglucagonemia. Adipokine concentrations were relatively low throughout the active season but peaked in mid-October prior to hibernation when fat content was greatest. Serum glycerol was highest during hibernation, indicating ongoing lipolysis. Centrally administered leptin reduced food intake in October, but not in August, revealing seasonal variation in the brain's sensitivity to its anorectic effects. This was supported by strong phosphorylated signal transducer and activator of transcription 3 labeling within the hypothalamus of hibernating bears; labeling virtually disappeared in active bears. Adipocytes collected during hibernation were insulin resistant when cultured with hibernation serum but became sensitive when cultured with active season serum. Heat treatment of active serum blocked much of this action. Clarifying the cellular mechanisms responsible for the physiology of hibernating bears may inform new treatments for metabolic disorders.
Acute phase response, inflammation and metabolic syndrome biomarkers of Libby asbestos exposure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shannahan, Jonathan H.; Alzate, Oscar; Winnik, Witold M.
Identification of biomarkers assists in the diagnosis of disease and the assessment of health risks from environmental exposures. We hypothesized that rats exposed to Libby amphibole (LA) would present with a unique serum proteomic profile which could help elucidate epidemiologically-relevant biomarkers. In four experiments spanning varied protocols and temporality, healthy (Wistar Kyoto, WKY; and F344) and cardiovascular compromised (CVD) rat models (spontaneously hypertensive, SH; and SH heart failure, SHHF) were intratracheally instilled with saline (control) or LA. Serum biomarkers of cancer, inflammation, metabolic syndrome (MetS), and the acute phase response (APR) were analyzed. All rat strains exhibited acute increases inmore » α-2-macroglobulin, and α1-acid glycoprotein. Among markers of inflammation, lipocalin-2 was induced in WKY, SH and SHHF and osteopontin only in WKY after LA exposure. While rat strain- and age-related changes were apparent in MetS biomarkers, no LA effects were evident. The cancer marker mesothelin was increased only slightly at 1 month in WKY in one of the studies. Quantitative Intact Proteomic profiling of WKY serum at 1 day or 4 weeks after 4 weekly LA instillations indicated no oxidative protein modifications, however APR proteins were significantly increased. Those included serine protease inhibitor, apolipoprotein E, α-2-HS-glycoprotein, t-kininogen 1 and 2, ceruloplasmin, vitamin D binding protein, serum amyloid P, and more 1 day after last LA exposure. All changes were reversible after a short recovery regardless of the acute or long-term exposures. Thus, LA exposure induces an APR and systemic inflammatory biomarkers that could have implications in systemic and pulmonary disease in individuals exposed to LA. -- Highlights: ► Biomarkers of asbestos exposure are required for disease diagnosis. ► Libby amphibole exposure is associated with increased human mortality. ► Libby amphibole increases circulating proteins involved in acute phase response. ► Libby amphibole exposure increases circulating osteopontin and lipocalin-2. ► Rats with heart failure have compromised ability to mount acute phase response.« less
Serum Metabolomics Investigation of Humanized Mouse Model of Dengue Virus Infection.
Cui, Liang; Hou, Jue; Fang, Jinling; Lee, Yie Hou; Costa, Vivian Vasconcelos; Wong, Lan Hiong; Chen, Qingfeng; Ooi, Eng Eong; Tannenbaum, Steven R; Chen, Jianzhu; Ong, Choon Nam
2017-07-15
Dengue is an acute febrile illness caused by dengue virus (DENV) and a major cause of morbidity and mortality in tropical and subtropical regions of the world. The lack of an appropriate small-animal model of dengue infection has greatly hindered the study of dengue pathogenesis and the development of therapeutics. In this study, we conducted mass spectrometry-based serum metabolic profiling from a model using humanized mice (humice) with DENV serotype 2 infection at 0, 3, 7, 14, and 28 days postinfection (dpi). Forty-eight differential metabolites were identified, including fatty acids, purines and pyrimidines, acylcarnitines, acylglycines, phospholipids, sphingolipids, amino acids and derivatives, free fatty acids, and bile acid. These metabolites showed a reversible-change trend-most were significantly perturbed at 3 or 7 dpi and returned to control levels at 14 or 28 dpi, indicating that the metabolites might serve as prognostic markers of the disease in humice. The major perturbed metabolic pathways included purine and pyrimidine metabolism, fatty acid β-oxidation, phospholipid catabolism, arachidonic acid and linoleic acid metabolism, sphingolipid metabolism, tryptophan metabolism, phenylalanine metabolism, lysine biosynthesis and degradation, and bile acid biosynthesis. Most of these disturbed pathways are similar to our previous metabolomics findings in a longitudinal cohort of adult human dengue patients across different infection stages. Our analyses revealed the commonalities of host responses to DENV infection between humice and humans and suggested that humice could be a useful small-animal model for the study of dengue pathogenesis and the development of dengue therapeutics. IMPORTANCE Dengue virus is the most widespread arbovirus, causing an estimated 390 million dengue infections worldwide every year. There is currently no effective treatment for the disease, and the lack of an appropriate small-animal model of dengue infection has greatly increased the challenges in the study of dengue pathogenesis and the development of therapeutics. Metabolomics provides global views of small-molecule metabolites and is a useful tool for finding metabolic pathways related to disease processes. Here, we conducted a serum metabolomics study on a model using humanized mice with dengue infection that had significant levels of human platelets, monocytes/macrophages, and hepatocytes. Forty-eight differential metabolites were identified, and the underlying perturbed metabolic pathways are quite similar to the pathways found to be altered in dengue patients in previous metabolomics studies, indicating that humanized mice could be a highly relevant small-animal model for the study of dengue pathogenesis and the development of dengue therapeutics. Copyright © 2017 Cui et al.
Kien, C. Lawrence; Everingham, Karen I.; Stevens, Robert D.; Fukagawa, Naomi K.; Muoio, Deborah M.
2010-01-01
In cultured cells, palmitic acid (PA) and oleic acid (OA) confer distinct metabolic effects, yet, unclear, is whether changes in dietary fat intake impact cellular fatty acid (FA) composition. We hypothesized that short-term increases in dietary PA or OA would result in corresponding changes in the FA composition of skeletal muscle diacylglycerol (DAG) and triacylglycerol (TAG) and/or the specific FA selected for β-oxidation. Healthy males (N = 12) and females (N = 12) ingested a low-PA diet for 7 days. After fasting measurements of the serum acylcarnitine (AC) profile, subjects were randomized to either high-PA (HI PA) or low-PA/high-OA (HI OA) diets. After 7 days, the fasting AC measurement was repeated and a muscle/fat biopsy obtained. FA composition of intramyocellular DAG and TAG and serum AC was measured. HI PA increased, whereas HI OA decreased, serum concentration of 16:0 AC (P < 0.001). HI OA increased 18:1 AC (P = 0.005). HI PA was associated with a higher PA/OA ratio in muscle DAG and TAG (DAG: 1.03 ± 0.24 vs. 0.46 ± 0.08, P = 0.04; TAG: 0.63 ± 0.07 vs. 0.41 ± 0.03, P = 0.01). The PA concentration in the adipose tissue DAG (μg/mg adipose tissue) was 0.17 ± 0.02 in those receiving the HI PA diet (n = 6), compared to 0.11 ± 0.02 in the HI OA group (n = 4) (P = 0.067). The relative PA concentration in muscle DAG and TAG and the serum palmitoylcarnitine concentration was higher in those fed the high-PA diet. PMID:20559306
Kien, C Lawrence; Everingham, Karen I; D Stevens, Robert; Fukagawa, Naomi K; Muoio, Deborah M
2011-02-01
In cultured cells, palmitic acid (PA) and oleic acid (OA) confer distinct metabolic effects, yet, unclear, is whether changes in dietary fat intake impact cellular fatty acid (FA) composition. We hypothesized that short-term increases in dietary PA or OA would result in corresponding changes in the FA composition of skeletal muscle diacylglycerol (DAG) and triacylglycerol (TAG) and/or the specific FA selected for β-oxidation. Healthy males (N = 12) and females (N = 12) ingested a low-PA diet for 7 days. After fasting measurements of the serum acylcarnitine (AC) profile, subjects were randomized to either high-PA (HI PA) or low-PA/high-OA (HI OA) diets. After 7 days, the fasting AC measurement was repeated and a muscle/fat biopsy obtained. FA composition of intramyocellular DAG and TAG and serum AC was measured. HI PA increased, whereas HI OA decreased, serum concentration of 16:0 AC (P < 0.001). HI OA increased 18:1 AC (P = 0.005). HI PA was associated with a higher PA/OA ratio in muscle DAG and TAG (DAG: 1.03 ± 0.24 vs. 0.46 ± 0.08, P = 0.04; TAG: 0.63 ± 0.07 vs. 0.41 ± 0.03, P = 0.01). The PA concentration in the adipose tissue DAG (µg/mg adipose tissue) was 0.17 ± 0.02 in those receiving the HI PA diet (n = 6), compared to 0.11 ± 0.02 in the HI OA group (n = 4) (P = 0.067). The relative PA concentration in muscle DAG and TAG and the serum palmitoylcarnitine concentration was higher in those fed the high-PA diet.
Xie, Wei; Wu, Qian; Kania-Korwel, Izabela; Tharappel, Job C; Telu, Sanjay; Coleman, Mitchell C; Glauert, Howard P; Kannan, Kurunthachalam; Mariappan, S V S; Spitz, Douglas R; Weydert, Jamie; Lehmler, Hans-Joachim
2009-10-01
Perfluorooctanesulfonamides, such as N-ethyl perfluorooctanesulfonamidoethanol (N-EtFOSE), are large scale industrial chemicals but their disposition and toxicity are poorly understood despite significant human exposure. The hypothesis that subacute exposure to N-EtFOSE, a weak peroxisome proliferator, causes a redox imbalance in vivo was tested using the known peroxisome proliferator, ciprofibrate, as a positive control. Female Sprague-Dawley rats were treated orally with N-EtFOSE, ciprofibrate or corn oil (vehicle) for 21 days, and levels of N-EtFOSE and its metabolites as well as markers of peroxisome proliferation and oxidative stress were assessed in serum, liver and/or uterus. The N-EtFOSE metabolite profile in liver and serum was in good agreement with reported in vitro biotransformation pathways in rats and the metabolite levels decreasing in the order perfluorooctanesulfonate > perfluorooctanesulfonamide ~ N-ethyl perfluorooctanesulfonamidoacetate > perfluorooctanesulfonamidoethanol approximately N-EtFOSE. Although N-EtFOSE treatment significantly decreased the growth rate, increased relative liver weight and activity of superoxide dismutases (SOD) in liver and uterus (total SOD, CuZnSOD and MnSOD), a metabolic study revealed no differences in the metabolome in serum from N-EtFOSE-treated and control animals. Ciprofibrate treatment increased liver weight and peroxisomal acyl Co-A oxidase activity in the liver and altered antioxidant enzyme activities in the uterus and liver. According to NMR metabolomic studies, ciprofibrate treated animals had altered serum lipid profiles compared to N-EtFOSE-treated and control animals, whereas putative markers of peroxisome proliferation in serum were not affected. Overall, this study demonstrates the biotransformation of N-EtFOSE to PFOS in rats that is accompanied by N-EtFOSE-induced alterations in antioxidant enzyme activity.
Xie, Wei; Wu, Qian; Kania-Korwel, Izabela; Tharappel, Job C.; Telu, Sanjay; Coleman, Mitchell C.; Glauert, Howard P.; Kannan, Kurunthachalam; Santhana Mariappan, S. V.; Spitz, Douglas R.; Weydert, Jamie; Lehmler, Hans-Joachim
2009-01-01
Perfluorooctanesulfonamides, such as N-ethyl perfluorooctanesulfonamidoethanol (N-EtFOSE), are large scale industrial chemicals but their disposition and toxicity are poorly understood despite significant human exposure. The hypothesis that subacute exposure to N-EtFOSE, a weak peroxisome proliferator, causes a redox imbalance in vivo was tested using the known peroxisome proliferator, ciprofibrate, as a positive control. Female Sprague-Dawley rats were treated orally with N-EtFOSE, ciprofibrate or corn oil (vehicle) for 21 days, and levels of N-EtFOSE and its metabolites as well as markers of peroxisome proliferation and oxidative stress were assessed in serum, liver and/or uterus. The N-EtFOSE metabolite profile in liver and serum was in good agreement with reported in vitro biotransformation pathways in rats and the metabolite levels decreasing in the order perfluorooctanesulfonate ≫ perfluorooctanesulfonamide ∼ N-ethyl perfluorooctanesulfonamidoacetate ≫ perfluorooctanesulfonamidoethanol ∼ N-EtFOSE. Although N-EtFOSE treatment significantly decreased the growth rate, increased relative liver weight and activity of superoxide dismutases (SOD) in liver and uterus (total SOD, CuZnSOD and MnSOD), a metabolic study revealed no differences in the metabolome in serum from N-EtFOSE-treated and control animals. Ciprofibrate treatment increased liver weight and peroxisomal acyl Co-A oxidase activity in the liver and altered antioxidant enzyme activities in the uterus and liver. According to NMR metabolomic studies, ciprofibrate treated animals had altered serum lipid profiles compared to N-EtFOSE-treated and control animals, whereas putative markers of peroxisome proliferation in serum were not affected. Overall, this study demonstrates the biotransformation of N-EtFOSE to PFOS in rats that is accompanied by N-EtFOSE-induced alterations in antioxidant enzyme activity. PMID:19544052
Wang, Huisong; Pang, Guangchang
2017-05-01
Resistant starch generated after treating ordinary starch is of great significance to human health in the countries with overnutrition. However, its functional evaluation in the human body has been rarely reported. By determining the lactate metabolic flux, 12 serum enzymes expression level and 38 serum cytokines in healthy volunteers, the variation in cytokine network and lactate metabolic network in serum were investigated to compare the mechanism of the physiological effects between the two starches. The results indicated that compared with digestible starch, resistant starch had anti-inflammatory effects, increased anabolism, and decreased catabolism. Further, the intercellular communication networks including cytokine and lactate metabolic networks were mapped out. The relationship suggested that resistant starch might affect and control the secretion of cytokines to regulate lactate metabolic network in the body, promoting the development of immunometabolism. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wang, Dan; Sun, Yong; Chang, Lili; Tong, Zheng; Xie, Quanliang; Jin, Xiang; Zhu, Liping; He, Peng; Li, Hongbin; Wang, Xuchu
2018-06-30
Rubber particle (RP) is a specific organelle for natural rubber biosynthesis (NRB) and storage in rubber tree Hevea brasiliensis. NRB is processed by RP membrane-localized proteins, which were traditionally purified by repeated washing. However, we noticed many proteins in the discarded washing solutions (WS) from RP. Here, we compared the proteome profiles of WS, C-serum (CS) and RP by 2-DE, and identified 233 abundant proteins from WS by mass spectrometry. Many spots on 2-DE gels were identified as different protein species. We further performed shotgun analysis of CS, WS and RP and identified 1837, 1799 and 1020 unique proteins, respectively. Together with 2-DE, we finally identified 1825 proteins from WS, 246 were WS-specific. These WS-specific proteins were annotated in Gene Ontology, indicating most abundant pathways are organic substance metabolic process, protein degradation, primary metabolic process, and energy metabolism. Protein-protein interaction analysis revealed these WS-specific proteins are mainly involved in ribosomal metabolism, proteasome system, vacuolar protein sorting and endocytosis. Label free and Western blotting revealed many WS-specific proteins and protein complexes are crucial for NRB initiation. These findings not only deepen our understanding of WS proteome, but also provide new evidences on the roles of RP membrane proteins in NRB. Natural rubber is stored in rubber particle from the rubber tree. Rubber particles were traditionally purified by repeated washing, but many proteins were identified from the washing solutions (WS). We obtained the first visualization proteome profiles with 1825 proteins from WS, including 246 WS-specific ones. These WS proteins contain almost all enzymes for polyisoprene initiation and may play important roles in rubber biosynthesis. Copyright © 2018 Elsevier B.V. All rights reserved.
Mice with chimeric livers are an improved model for human lipoprotein metabolism.
Ellis, Ewa C S; Naugler, Willscott Edward; Nauglers, Scott; Parini, Paolo; Mörk, Lisa-Mari; Jorns, Carl; Zemack, Helen; Sandblom, Anita Lövgren; Björkhem, Ingemar; Ericzon, Bo-Göran; Wilson, Elizabeth M; Strom, Stephen C; Grompe, Markus
2013-01-01
Rodents are poor model for human hyperlipidemias because total cholesterol and low density lipoprotein levels are very low on a normal diet. Lipoprotein metabolism is primarily regulated by hepatocytes and we therefore assessed whether chimeric mice extensively repopulated with human cells can model human lipid and bile acid metabolism. FRG [ F ah(-/-) R ag2(-/-)Il2r g (-/-)]) mice were repopulated with primary human hepatocytes. Serum lipoprotein lipid composition and distribution (VLDL, LDL, and HDL) was analyzed by size exclusion chromatography. Bile was analyzed by LC-MS or by GC-MS. RNA expression levels were measured by quantitative RT-PCR. Chimeric mice displayed increased LDL and VLDL fractions and a lower HDL fraction compared to wild type, thus significantly shifting the ratio of LDL/HDL towards a human profile. Bile acid analysis revealed a human-like pattern with high amounts of cholic acid and deoxycholic acid (DCA). Control mice had only taurine-conjugated bile acids as expcted, but highly repopulated mice had glycine-conjugated cholic acid as found in human bile. RNA levels of human genes involved in bile acid synthesis including CYP7A1, and CYP27A1 were significantly upregulated as compared to human control liver. However, administration of recombinant hFGF19 restored human CYP7A1 levels to normal. Humanized-liver mice showed a typical human lipoprotein profile with LDL as the predominant lipoprotein fraction even on a normal diet. The bile acid profile confirmed presence of an intact enterohepatic circulation. Although bile acid synthesis was deregulated in this model, this could be fully normalized by FGF19 administration. Taken together these data indicate that chimeric FRG-mice are a useful new model for human lipoprotein and bile-acid metabolism.
Serum lipocalin-2 levels are increased in patients with psoriasis.
Kamata, M; Tada, Y; Tatsuta, A; Kawashima, T; Shibata, S; Mitsui, H; Asano, Y; Sugaya, M; Kadono, T; Kanda, N; Watanabe, S; Sato, S
2012-04-01
The protein lipocalin (LCN)-2 is known to be related to insulin resistance, obesity and atherosclerotic diseases. Psoriasis is an inflammatory skin disease related to metabolic syndrome. The aim of this study was to examine the relationship between serum LCN2 levels and indicators for metabolic syndrome and inflammatory cytokine levels in patients with psoriasis. Serum LCN2 levels were measured in patients with psoriasis, atopic dermatitis (AD) or bullous pemphigoid (BP), and compared with those of healthy controls. Serum LCN2 levels were also compared with several indicators for metabolic syndrome, and with serum levels of interleukin (IL)-6 and tumour necrosis factor (TNF)-α, two markers of inflammation. Serum LCN2 levels in patients with psoriasis were significantly higher than those of healthy controls, but there was no significant correlation between serum LCN2 and body mass index. Serum LCN2 levels also correlated with serum IL-6 and TNF-α levels in patients with psoriasis. Serum LCN2 levels are a general indicator for increased inflammation in the patients with psoriasis. © The Author(s). CED © 2012 British Association of Dermatologists.
Concurrent determination of bisphenol A pharmacokinetics in maternal and fetal rhesus monkeys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patterson, Tucker A.; Twaddle, Nathan C.; Roegge, Cindy S.
Bisphenol A (BPA) is an important industrial chemical used as the monomer for polycarbonate plastic and in epoxy resins for food can liners. Worldwide biomonitoring studies consistently find a high prevalence of BPA conjugates in urine (> 90%) in amounts consistent with aggregate exposure at levels below 1 μg/kg bw/d. The current study used LC/MS/MS to measure concurrently the pharmacokinetics of aglycone (active) and conjugated (inactive) deuterated BPA (d6) in maternal and fetal rhesus monkey serum, amniotic fluid, and placenta following intravenous injection in the dam (100 μg/kg bw). Internal exposures of the fetus to aglycone d6-BPA (serum AUC) weremore » attenuated by maternal, placental, and fetal Phase II metabolism to less than half that in the dam. Levels of aglycone and conjugated d6-BPA measured in whole placenta were consistent with a role in metabolic detoxification. The monotonic elimination of aglycone d6-BPA from the fetal compartment accompanied by persistent conjugate levels provides further evidence arguing against the hypothesis that BPA conjugates are selectively deconjugated by either the placenta or fetus. These results also provide benchmarks to guide the interpretation of human cord blood, amniotic fluid, and placenta sampling and measurement strategies as a basis for estimating fetal exposures to BPA. This study in a non-human primate model provides additional pharmacokinetic data for use in PBPK modeling of perinatal exposures to BPA from food contact, medical devices, and other environmental sources. - Highlights: ► Maternal, placental, and fetal Phase II metabolism attenuate fetal exposure to BPA. ► Serum AUC for aglycone BPA in fetal monkeys is less than half of that in the dam. ► BPA profiles in monkey fetus rule out selective deconjugation and accumulation. ► BPA levels in monkey placenta are similar to other metabolically active tissues. ► Some published human cord blood data for BPA are inconsistent with these measurements.« less
Diamanti-Kandarakis, Evanthia; Livadas, Sarantis; Katsikis, Ilias; Piperi, Christine; Mantziou, Aimilia; Aimilia, Mantziou; Papavassiliou, Athanasios G; Panidis, Dimitrios
2011-03-01
Intriguing studies suggest that osteocalcin (OC) and its carboxylated (Gla)/uncarboxylated form are involved in the regulation of insulin secretion and action. Additionally, advanced glycated end products (AGEs) directly regulate the secretion of these osteoblast-derived molecules. In polycystic ovarian syndrome (PCOS), among the pathophysiological aberrations, deregulation of insulin secretion and action as well as elevated AGEs levels have been demonstrated. In this study, we evaluated the serum levels of osteocalcin and Gla osteocalcin and their possible associations with metabolic, hormonal, and ultrasonographic components of PSOS: 97 women were studied, 50 PCOS patients and 47 controls, matched for age and body mass index (BMI). In each subject, the levels of bone metabolism markers have been evaluated, and metabolic and hormonal profiles as well as ovarian ultrasound were carried out. Osteocalcin (4.30 ± 1.74 vs. 6.20 ± 1.78 ng/ml, P < 0.0005) values were significantly lower, whereas Gla osteocalcin (37.93 ± 6.87 vs. 9.64 ± 8.21 ng/ml, P < 0.0005) and receptor activator for nuclear factor-κB ligand (0.54 ± 0.26 vs. 0.16 ± 0.15 pmol/l, P < 0.0005) values were significantly higher in PCOS subjects compared to the control group, independently of obesity. A significant association was disclosed between osteocalcin and Gla osteocalcin with androgens, insulin resistance, AGEs, and ovarian morphology. Receiver operating curve analysis revealed that Gla osteocalcin [AUC, 0.975 (95% CI, 0.93-1.00)] as well as AGEs are significant prognostic factors of PCOS [AUC, 0.986 (95% CI, 0.97-1.00)]. Lower osteocalcin and elevated serum levels of its carboxylated form are displayed in PCOS subjects and are associated with several PCOS components. These findings suggest a potential interaction between bone-derived markers and the metabolic/hormonal abnormalities observed in PCOS. However, the pathophysiological mechanisms and moreover the possible clinical implications require further investigation.
Gu, Haiwei; Pan, Zhengzheng; Xi, Bowei; Asiago, Vincent; Musselman, Brian; Raftery, Daniel
2011-02-07
Nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS) are the two most commonly used analytical tools in metabolomics, and their complementary nature makes the combination particularly attractive. A combined analytical approach can improve the potential for providing reliable methods to detect metabolic profile alterations in biofluids or tissues caused by disease, toxicity, etc. In this paper, (1)H NMR spectroscopy and direct analysis in real time (DART)-MS were used for the metabolomics analysis of serum samples from breast cancer patients and healthy controls. Principal component analysis (PCA) of the NMR data showed that the first principal component (PC1) scores could be used to separate cancer from normal samples. However, no such obvious clustering could be observed in the PCA score plot of DART-MS data, even though DART-MS can provide a rich and informative metabolic profile. Using a modified multivariate statistical approach, the DART-MS data were then reevaluated by orthogonal signal correction (OSC) pretreated partial least squares (PLS), in which the Y matrix in the regression was set to the PC1 score values from the NMR data analysis. This approach, and a similar one using the first latent variable from PLS-DA of the NMR data resulted in a significant improvement of the separation between the disease samples and normals, and a metabolic profile related to breast cancer could be extracted from DART-MS. The new approach allows the disease classification to be expressed on a continuum as opposed to a binary scale and thus better represents the disease and healthy classifications. An improved metabolic profile obtained by combining MS and NMR by this approach may be useful to achieve more accurate disease detection and gain more insight regarding disease mechanisms and biology. Copyright © 2010 Elsevier B.V. All rights reserved.
Jurynczyk, Maciej; Probert, Fay; Yeo, Tianrong; Tackley, George; Claridge, Tim D W; Cavey, Ana; Woodhall, Mark R; Arora, Siddharth; Winkler, Torsten; Schiffer, Eric; Vincent, Angela; DeLuca, Gabriele; Sibson, Nicola R; Isabel Leite, M; Waters, Patrick; Anthony, Daniel C; Palace, Jacqueline
2017-12-06
The overlapping clinical features of relapsing remitting multiple sclerosis (RRMS), aquaporin-4 (AQP4)-antibody (Ab) neuromyelitis optica spectrum disorder (NMOSD), and myelin oligodendrocyte glycoprotein (MOG)-Ab disease mean that detection of disease specific serum antibodies is the gold standard in diagnostics. However, antibody levels are not prognostic and may become undetectable after treatment or during remission. Therefore, there is still a need to discover antibody-independent biomarkers. We sought to discover whether plasma metabolic profiling could provide biomarkers of these three diseases and explore if the metabolic differences are independent of antibody titre. Plasma samples from 108 patients (34 RRMS, 54 AQP4-Ab NMOSD, and 20 MOG-Ab disease) were analysed by nuclear magnetic resonance spectroscopy followed by lipoprotein profiling. Orthogonal partial-least squares discriminatory analysis (OPLS-DA) was used to identify significant differences in the plasma metabolite concentrations and produce models (mathematical algorithms) capable of identifying these diseases. In all instances, the models were highly discriminatory, with a distinct metabolite pattern identified for each disease. In addition, OPLS-DA identified AQP4-Ab NMOSD patient samples with low/undetectable antibody levels with an accuracy of 92%. The AQP4-Ab NMOSD metabolic profile was characterised by decreased levels of scyllo-inositol and small high density lipoprotein particles along with an increase in large low density lipoprotein particles relative to both RRMS and MOG-Ab disease. RRMS plasma exhibited increased histidine and glucose, along with decreased lactate, alanine, and large high density lipoproteins while MOG-Ab disease plasma was defined by increases in formate and leucine coupled with decreased myo-inositol. Despite overlap in clinical measures in these three diseases, the distinct plasma metabolic patterns support their distinct serological profiles and confirm that these conditions are indeed different at a molecular level. The metabolites identified provide a molecular signature of each condition which is independent of antibody titre and EDSS, with potential use for disease monitoring and diagnosis.
Craig, L D; Nicholson, S; SilVerstone, F A; Kennedy, R D
1998-06-01
Physiologic responses of 30 enterally-fed long-term care residents with type 2 diabetes receiving total nutrition support via either a disease-specific (reduced-carbohydrate, modified-fat) formula or a standard high-carbohydrate formula for 3 mo were compared. Objectives of the study included evaluating metabolic response (glycemic control and lipids) and clinical outcomes. Thirty-four subjects requiring total enteral nutrition support by tube were enrolled in this prospectively randomized, double-blind, controlled, parallel group 3-mo pilot trial. Thirty were evaluable in that they completed 4 wk. Twenty-seven completed all 12 wk. The groups were well-matched for physiologic and demographic parameters at baseline. Fasting serum glucose and capillary (fingerstick) glucose values demonstrated better control in the disease-specific formula-fed group. Serum lipid profiles of this group were similar to or better than those of the standard formula-fed group. The amount of insulin administered to insulin-using subjects in the disease-specific formula-fed group was consistently less than before initiation of the formula, whereas the amount administered was consistently higher in the group fed the standard formula. Overall, subjects randomized to the disease-specific formula experienced better numerical biochemical control and better clinical outcomes when expressed on a numerical and percentage basis. These included surrogate markers of diabetes control such as serum glucose and glycohemoglobin, as well as clinical outcomes such as incidence of infections and pressure ulcers. These findings confirm that the disease-specific formula provides better glycemic control, poses no risk to lipoprotein metabolism, and provides for better clinical outcomes.
Fasting and postprandial levels of a novel anorexigenic peptide nesfatin in childhood obesity.
Anık, Ahmet; Çatlı, Gönül; Abacı, Ayhan; Küme, Tuncay; Bober, Ece
2014-07-01
Nesfatin-1, a recently discovered anorexigenic peptide, is expressed in several tissues, including pancreatic islet cells and central nervous system. However, its pathophysiological role in the development of obesity and insulin resistance remains unknown. To investigate the possible involvement of nesfatin-1 in the pathogenesis of childhood obesity, we examined the relationship between fasting and postprandial nesfatin-1 concentrations and metabolic/antropometric parameters in obese children. The study included obese children with a body mass index >95th percentile. Fasting serum glucose, insulin, lipid profile, fasting and postprandial (120th min) nesfatin-1 levels were measured to evaluate the metabolic parameters. Different cutoff values for prepubertal and pubertal stages were used to determine the status of insulin resistance (HOMA-IR) (prepubertal >2.5, pubertal >4). The percentage of body fat was measured using bioelectric impedance analysis. Seventy-one obese children were included in this study. There was no statistically significant difference between fasting and postprandial nesfatin-1 levels in obese subjects (0.70 ± 0.15 and 0.69 ± 0.14 ng/mL, p>0.05, respectively). Insulin resistance was observed in 58% (41/71) of the cases. There was no significant difference in either fasting or postprandial serum nesfatin-1 levels between the insulin-resistant and non-resistant groups (p>0.05). There was no correlation between fasting and postprandial serum nesfatin-1 levels and anthropometric and metabolic parameters in insulin-resistant and non-resistant groups. In this study, there was no significant increase in the postprandial level of nesfatin-1. This observation suggested that oral glucose load in obese children may not be sufficient for nesfatin-1 response and that nesfatin-1 may not have an effect as a short-term regulator of food intake.
[Pathogenic mechanisms of proatherogenic changes in pregnant women with concomitant obesity].
Tarasenko, K V; Mamontova, T V
2013-12-01
The concentration of insulin, high sensitivity C-reactive protein (CRP) and indices of lipid metabolism (concentrations of triacylglycerols, total cholesterol, cholesterol of low density lipoproteins and cholesterol of very low density lipoproteins) in women with concomitant obesity in the second trimester of pregnancy were studied. Changes of the lipid profile in the pregnant women with concomitant obesity indicate development of type IV hyperlipoproteinemia. Concentrations of insulin and CRP in the blood serum of the pregnant women with obesity were respectively 92.1% and 62.5% higher than in the control group. On the basis of literature data and our own research it was concluded that the complex of the metabolic changes (insulin resistance, dislipidemia, endothelial dysfunction, systemic inflammation) in pregnant women with obesity promotes development of proatherogenic changes.
Elevated serum tartrate-resistant acid phosphatase isoform 5a levels in metabolic syndrome.
Huang, Yi-Jhih; Huang, Tsai-Wang; Chao, Tsu-Yi; Sun, Yu-Shan; Chen, Shyi-Jou; Chu, Der-Ming; Chen, Wei-Liang; Wu, Li-Wei
2017-09-29
Tartrate-resistant phosphatase isoform 5a is expressed in tumor-associated macrophages and is a biomarker of chronic inflammation. Herein, we correlated serum tartrate-resistant phosphatase isoform 5a levels with metabolic syndrome status and made comparisons with traditional markers of inflammation, including c-reactive protein and interleukin-6. One hundred healthy volunteers were randomly selected, and cut-off points for metabolic syndrome related inflammatory biomarkers were determined using receiver operating characteristic curves. Linear and logistic regression models were subsequently used to correlate inflammatory markers with the risk of metabolic syndrome. Twenty-two participants met the criteria for metabolic syndrome, and serum tartrate-resistant phosphatase isoform 5a levels of >5.8 μg/L were associated with metabolic syndrome (c-statistics, 0.730; p = 0.001; 95% confidence interval, 0.618-0.842). In addition, 1 μg/L increases in tartrate-resistant phosphatase isoform 5a levels were indicative of a 1.860 fold increase in the risk of metabolic syndrome (p = 0.012). Elevated serum tartrate-resistant phosphatase isoform 5a levels are associated with the risk of metabolic syndrome, with a cut-off level of 5.8 μg/L.
Reis, Felipe C G; Branquinho, Jéssica L O; Brandão, Bruna B; Guerra, Beatriz A; Silva, Ismael D; Frontini, Andrea; Thomou, Thomas; Sartini, Loris; Cinti, Saverio; Kahn, C Ronald; Festuccia, William T; Kowaltowski, Alicia J; Mori, Marcelo A
2016-06-01
Aging increases the risk of type 2 diabetes, and this can be prevented by dietary restriction (DR). We have previously shown that DR inhibits the downregulation of miRNAs and their processing enzymes - mainly Dicer - that occurs with aging in mouse white adipose tissue (WAT). Here we used fat-specific Dicer knockout mice (AdicerKO) to understand the contributions of adipose tissue Dicer to the metabolic effects of aging and DR. Metabolomic data uncovered a clear distinction between the serum metabolite profiles of Lox control and AdicerKO mice, with a notable elevation of branched-chain amino acids (BCAA) in AdicerKO. These profiles were associated with reduced oxidative metabolism and increased lactate in WAT of AdicerKO mice and were accompanied by structural and functional changes in mitochondria, particularly under DR. AdicerKO mice displayed increased mTORC1 activation in WAT and skeletal muscle, where Dicer expression is not affected. This was accompanied by accelerated age-associated insulin resistance and premature mortality. Moreover, DR-induced insulin sensitivity was abrogated in AdicerKO mice. This was reverted by rapamycin injection, demonstrating that insulin resistance in AdicerKO mice is caused by mTORC1 hyperactivation. Our study evidences a DR-modulated role for WAT Dicer in controlling metabolism and insulin resistance.
Reis, Felipe C. G.; Branquinho, Jéssica L. O.; Brandão, Bruna B.; Guerra, Beatriz A.; Silva, Ismael D.; Frontini, Andrea; Thomou, Thomas; Sartini, Loris; Cinti, Saverio; Kahn, C. Ronald; Festuccia, William T.; Kowaltowski, Alicia J.; Mori, Marcelo A.
2016-01-01
Aging increases the risk of type 2 diabetes, and this can be prevented by dietary restriction (DR). We have previously shown that DR inhibits the downregulation of miRNAs and their processing enzymes - mainly Dicer - that occurs with aging in mouse white adipose tissue (WAT). Here we used fat-specific Dicer knockout mice (AdicerKO) to understand the contributions of adipose tissue Dicer to the metabolic effects of aging and DR. Metabolomic data uncovered a clear distinction between the serum metabolite profiles of Lox control and AdicerKO mice, with a notable elevation of branched-chain amino acids (BCAA) in AdicerKO. These profiles were associated with reduced oxidative metabolism and increased lactate in WAT of AdicerKO mice and were accompanied by structural and functional changes in mitochondria, particularly under DR. AdicerKO mice displayed increased mTORC1 activation in WAT and skeletal muscle, where Dicer expression is not affected. This was accompanied by accelerated age-associated insulin resistance and premature mortality. Moreover, DR-induced insulin sensitivity was abrogated in AdicerKO mice. This was reverted by rapamycin injection, demonstrating that insulin resistance in AdicerKO mice is caused by mTORC1 hyperactivation. Our study evidences a DR-modulated role for WAT Dicer in controlling metabolism and insulin resistance. PMID:27241713
Basis of aggravated hepatic lipid metabolism by chronic stress in high-fat diet-fed rat.
Han, Ying; Lin, Min; Wang, Xiaobin; Guo, Keke; Wang, Shanshan; Sun, Mengfei; Wang, Jiao; Han, Xiaoyu; Fu, Ting; Hu, Yang; Fu, Jihua
2015-03-01
Our previous study has demonstrated that long-term stress, known as chronic stress (CS), can aggravate nonalcoholic fatty liver disease in high-fat diet (HFD)-fed rat. In this study, we tried to figure out which lipid metabolic pathways were impacted by CS in the HFD-fed rat. Male Sprague-Dawley rats (6 weeks of age, n = 8 per group) were fed with either standard diet or HFD with or without CS exposure for 8 weeks. Hepatic lipidosis, biochemical, hormonal, and lipid profile markers in serum and liver, and enzymes involved in de novo lipogenesis (DNL) of fatty acids (FAs) and cholesterol, β-oxidation, FAs uptake, triglycerides synthesis, and very low-density lipoprotein (VLDL) assembly in the liver were detected. CS exposure reduced hepatic lipidosis but further elevated hepatic VLDL content with aggravated dyslipidemia in the HFD-fed rats. There was a synergism between CS and HFD on VLDL production and dyslipidemia. PCR and western blot assays showed that CS exposure significantly promoted hepatic VLDL assembly in rats, especially in the HFD-fed rats, while it had little impact on DNL, β-oxidation, FAs uptake, and triglycerides synthesis in the HFD-fed rats. This phenomenon was in accordance with elevated serum glucocorticoid level. The critical influence of CS exposure on hepatic lipid metabolism in the HFD-fed rats is VLDL assembly which might be regulated by glucocorticoid.
Pregnancy to postpartum transition of serum metabolites in women with gestational diabetes.
Chorell, Elin; Hall, Ulrika Andersson; Gustavsson, Carolina; Berntorp, Kerstin; Puhkala, Jatta; Luoto, Riitta; Olsson, Tommy; Holmäng, Agneta
2017-07-01
Gestational diabetes is commonly linked to development of type 2 diabetes mellitus (T2DM). There is a need to characterize metabolic changes associated with gestational diabetes in order to find novel biomarkers for T2DM. To find potential pathophysiological mechanisms and markers for progression from gestational diabetes mellitus to T2DM by studying the metabolic transition from pregnancy to postpartum. The metabolic transition profile from pregnancy to postpartum was characterized in 56 women by mass spectrometry-based metabolomics; 11 women had gestational diabetes mellitus, 24 had normal glucose tolerance, and 21 were normoglycaemic but at increased risk for gestational diabetes mellitus. Fasting serum samples collected during trimester 3 (gestational week 32±0.6) and postpartum (10.5±0.4months) were compared in diagnosis-specific multivariate models (orthogonal partial least squares analysis). Clinical measurements (e.g., insulin, glucose, lipid levels) were compared and models of insulin sensitivity and resistance were calculated for the same time period. Women with gestational diabetes had significantly increased postpartum levels of the branched-chain amino acids (BCAAs) leucine, isoleucine, and valine, and their circulating lipids did not return to normal levels after pregnancy. The increase in BCAAs occurred postpartum since the BCAAs did not differ during pregnancy, as compared to normoglycemic women. Postpartum levels of specific BCAAs, notably valine, are related to gestational diabetes during pregnancy. Copyright © 2017 Elsevier Inc. All rights reserved.
Sarma, Siddhartha Mahadeva; Singh, Dhirendra Pratap; Singh, Paramdeep; Khare, Pragyanshu; Mangal, Priyanka; Singh, Shashank; Bijalwan, Vandana; Kaur, Jaspreet; Mantri, Shrikant; Boparai, Ravneet Kaur; Mazumder, Koushik; Bishnoi, Mahendra; Bhutani, Kamlesh Kumar; Kondepudi, Kanthi Kiran
2018-01-01
Arabinoxylan (AX), a non-starch polysaccharide extracted from cereals such as wheat, rice and millets, is known to impart various health promoting effects. Our earlier study suggested that finger millet (FM) could ameliorate high fat diet (HFD)-induced metabolic derangements. The present study is aimed to evaluate the effect of FM-AX supplementation, a key bioactive from finger millet, on HFD-induced metabolic and gut bacterial derangements. Male Swiss albino mice were fed with normal chow diet (NPD) or HFD (60%kcal from fat) for 10 weeks. FM-AX was orally supplemented at doses of 0.5 and 1.0g/kg bodyweight on every alternate day for 10 weeks. Glucose tolerance, serum hormones, hepatic lipid accumulation and inflammation, white adipose tissue marker gene expression, adipocyte size and inflammation; metagenomic alterations in cecal bacteria; cecal short chain fatty acids and colonic tight junction gene expressions were studied. FM-AX supplementation prevented HFD-induced weight gain, alerted glucose tolerance and serum lipid profile, hepatic lipid accumulation and inflammation. Hepatic and white adipose tissue gene expressions were beneficially modulated. Further, AX supplementation prevented metagenomic alterations in cecum; improved ileal and colonic health and overall prevented metabolic endotoxemia. Present work suggests that AX from finger millet can be developed as a nutraceutical for the management of HFD- induced obesity. Copyright © 2017 Elsevier B.V. All rights reserved.
Zimprich, Annemarie; Mroz, Gabi; Meyer Zu Reckendorf, Christopher; Anastasiadou, Sofia; Förstner, Philip; Garrett, Lillian; Hölter, Sabine M; Becker, Lore; Rozman, Jan; Prehn, Cornelia; Rathkolb, Birgit; Moreth, Kristin; Wurst, Wolfgang; Klopstock, Thomas; Klingenspor, Martin; Adamski, Jerzy; Wolf, Eckhard; Bekeredjian, Raffi; Fuchs, Helmut; Gailus-Durner, Valerie; de Angelis, Martin Hrabe; Knöll, Bernd
2017-12-01
Stress experience modulates behavior, metabolism, and energy expenditure of organisms. One molecular hallmark of an acute stress response is a rapid induction of immediate early genes (IEGs) such as c-Fos and Egr family members. IEG transcription in neurons is mediated by the neuronal activity-driven gene regulator serum response factor (SRF). We show a first role of SRF in immediate and long-lasting acute restraint stress (AS) responses. For this, we employed a standardized mouse phenotyping protocol at the German Mouse Clinic (GMC) including behavioral, metabolic, and cardiologic tests as well as gene expression profiling to analyze the consequences of forebrain-specific SRF deletion in mice exposed to AS. Adult mice with an SRF deletion in glutamatergic neurons (Srf; CaMKIIa-CreERT2 ) showed hyperactivity, decreased anxiety, and impaired working memory. In response to restraint AS, instant stress reactivity including locomotor behavior and corticosterone induction was impaired in Srf mutant mice. Interestingly, even several weeks after previous AS exposure, SRF-deficient mice showed long-lasting AS-associated changes including altered locomotion, metabolism, energy expenditure, and cardiovascular changes. This suggests a requirement of SRF for mediating long-term stress coping mechanisms in wild-type mice. SRF ablation decreased AS-mediated IEG induction and activity of the actin severing protein cofilin. In summary, our data suggest an SRF function in immediate AS reactions and long-term post-stress-associated coping mechanisms.
Yiu, Wai Han; Pan, Chi-Jiunn; Allamarvdasht, Mohammad; Kim, So Youn; Chou, Janice Y.
2008-01-01
Glycogen storage disease type Ib (GSD-Ib) is caused by a deficiency in the glucose-6-phosphate transporter (G6PT), an endoplasmic reticulum-associated transmembrane protein that is ubiquitously expressed. GSD-Ib patients suffer from disturbed glucose homeostasis and myeloid dysfunctions. To evaluate the feasibility of gene replacement therapy for GSD-Ib, we have infused adenoviral (Ad) vector containing human G6PT (Ad-hG6PT) into G6PT-deficient (G6PT-/-) mice that manifest symptoms characteristics of the human disorder. Ad-hG6PT-infusion restores significant levels of G6PT mRNA expression in the liver, bone marrow, and spleen and corrects metabolic as well as myeloid abnormalities in G6PT-/- mice. The G6PT-/- mice receiving gene therapy exhibit improved growth; normalized serum profiles for glucose, cholesterol, triglyceride, uric acid, and lactic acid; and reduced hepatic glycogen deposition. The therapy also corrects neutropenia and lowers the elevated serum levels of granulocyte colony stimulating factor. The development of bone and spleen in the infused G6PT-/- mice is improved and accompanied by increased cellularity and normalized myeloid progenitor cell frequencies in both tissues. This effective use of gene therapy to correct metabolic imbalances and myeloid dysfunctions in GSD-Ib mice holds promise for the future of gene therapy in humans. PMID:17006547
Zhang, Limin; Hatzakis, Emmanuel; Nichols, Robert G; Hao, Ruixin; Correll, Jared; Smith, Philip B; Chiaro, Christopher R; Perdew, Gary H; Patterson, Andrew D
2015-07-07
Environmental exposure to dioxins and dioxin-like compounds poses a significant health risk for human health. Developing a better understanding of the mechanisms of toxicity through activation of the aryl hydrocarbon receptor (AHR) is likely to improve the reliability of risk assessment. In this study, the AHR-dependent metabolic response of mice exposed to 2,3,7,8-tetrachlorodibenzofuran (TCDF) was assessed using global (1)H nuclear magnetic resonance (NMR)-based metabolomics and targeted metabolite profiling of extracts obtained from serum and liver. (1)H NMR analyses revealed that TCDF exposure suppressed gluconeogenesis and glycogenolysis, stimulated lipogenesis, and triggered inflammatory gene expression in an Ahr-dependent manner. Targeted analyses using gas chromatography coupled with mass spectrometry showed TCDF treatment altered the ratio of unsaturated/saturated fatty acids. Consistent with this observation, an increase in hepatic expression of stearoyl coenzyme A desaturase 1 was observed. In addition, TCDF exposure resulted in inhibition of de novo fatty acid biosynthesis manifested by down-regulation of acetyl-CoA, malonyl-CoA, and palmitoyl-CoA metabolites and related mRNA levels. In contrast, no significant changes in the levels of glucose and lipid were observed in serum and liver obtained from Ahr-null mice following TCDF treatment, thus strongly supporting the important role of the AHR in mediating the metabolic effects seen following TCDF exposure.
Han, Guang-Ming; Meza, Jane L; Soliman, Ghada A; Islam, K M Monirul; Watanabe-Galloway, Shinobu
2016-05-01
Metabolic syndrome increases the risk of mortality. Increased oxidative stress and inflammation may play an important role in the high mortality of individuals with metabolic syndrome. Previous studies have suggested that lycopene intake might be related to the reduced oxidative stress and decreased inflammation. Using data from the National Health and Nutrition Examination Survey, we examined the hypothesis that lycopene is associated with mortality among individuals with metabolic syndrome. A total of 2499 participants 20 years and older with metabolic syndrome were divided into 3 groups based on their serum concentration of lycopene using the tertile rank method. The National Health and Nutrition Examination Survey from years 2001 to 2006 was linked to the mortality file for mortality follow-up data through December 31, 2011, to determine the mortality rate and hazard ratios (HR) for the 3 serum lycopene concentration groups. The mean survival time was significantly higher in the group with the highest serum lycopene concentration (120.6 months; 95% confidence interval [CI], 118.8-122.3) and the medium group (116.3 months; 95% CI, 115.2-117.4), compared with the group with lowest serum lycopene concentration (107.4 months; 95% CI, 106.5-108.3). After adjusting for possible confounding factors, participants in the highest (HR, 0.61; P = .0113) and in the second highest (HR, 0.67; P = .0497) serum lycopene concentration groups showed significantly lower HRs of mortality when compared with participants in the lower serum lycopene concentration. The data suggest that higher serum lycopene concentration has a significant association with the reduced risk of mortality among individuals with metabolic syndrome. Copyright © 2016 Elsevier Inc. All rights reserved.
Linefsky, Jason P; O'Brien, Kevin D; Sachs, Michael; Katz, Ronit; Eng, John; Michos, Erin D; Budoff, Matthew J; de Boer, Ian; Kestenbaum, Bryan
2014-04-01
This study sought to investigate associations of phosphate metabolism biomarkers with aortic valve calcification (AVC). Calcific aortic valve disease (CAVD) is a common progressive condition that involves inflammatory and calcification mediators. Currently there are no effective medical treatments, but mineral metabolism pathways may be important in the development and progression of disease. We examined associations of phosphate metabolism biomarkers, including serum phosphate, urine phosphate, parathyroid hormone (PTH) and serum fibroblast growth factor (FGF)-23, with CT-assessed AVC at study baseline and in short-term follow-up in 6814 participants of the Multi-Ethnic Study of Atherosclerosis (MESA). At baseline, AVC prevalence was 13.2%. Higher serum phosphate levels were associated with significantly greater AVC prevalence (relative risk 1.3 per 1 mg/dL increment, 95% confidence incidence: 1.1 to 1.5, p<0.001). Serum FGF-23, serum PTH, and urine phosphate were not associated with prevalent AVC. Average follow-up CT evaluation was 2.4 years (range 0.9-4.9 years) with an AVC incidence of 4.1%. Overall, phosphate metabolism biomarkers were not associated with incident AVC except in the top FGF-23 quartile. Serum phosphate levels are significantly associated with AVC prevalence. Further study of phosphate metabolism as a modifiable risk factor for AVC is warranted. Published by Elsevier Ireland Ltd.
Linefsky, Jason P.; O’Brien, Kevin D.; Sachs, Michael; Katz, Ronit; Eng, John; Michos, Erin D.; Budoff, Matthew J.; de Boer, Ian; Kestenbaum, Bryan
2014-01-01
Objectives This study sought to investigate associations of phosphate metabolism biomarkers with aortic valve calcification (AVC). Background Calcific aortic valve disease (CAVD) is a common progressive condition that involves inflammatory and calcification mediators. Currently there are no effective medical treatments, but mineral metabolism pathways may be important in the development and progression of disease. Methods We examined associations of phosphate metabolism biomarkers, including serum phosphate, urine phosphate, parathyroid hormone (PTH) and serum fibroblast growth factor (FGF)-23, with CT-assessed AVC at study baseline and in short-term follow-up in 6,814 participants of the Multi-Ethnic Study of Atherosclerosis (MESA). Results At baseline, AVC prevalence was 13.2%. Higher serum phosphate levels were associated with significantly greater AVC prevalence (relative risk 1.3 per 1mg/dL increment, 95% confidence incidence: 1.1 to 1.5, p < 0.001). Serum FGF-23, serum PTH, and urine phosphate were not associated with prevalent AVC. Average follow-up CT evaluation was 2.4 years (range 0.9–4.9 years) with an AVC incidence of 4.1%. Overall, phosphate metabolism biomarkers were not associated with incident AVC except in the top FGF-23 quartile. Conclusions Serum phosphate levels are significantly associated with AVC prevalence. Further study of phosphate metabolism as a modifiable risk factor for AVC is warranted. PMID:24530958
Korecka, Agata; Dona, Anthony; Lahiri, Shawon; Tett, Adrian James; Al-Asmakh, Maha; Braniste, Viorica; D’Arienzo, Rossana; Abbaspour, Afrouz; Reichardt, Nicole; Fujii-Kuriyama, Yoshiaki; Rafter, Joseph; Narbad, Arjan; Holmes, Elaine; Nicholson, Jeremy; Arulampalam, Velmurugesan; Pettersson, Sven
2016-01-01
The ligand-induced transcription factor, aryl hydrocarbon receptor (AhR) is known for its capacity to tune adaptive immunity and xenobiotic metabolism—biological properties subject to regulation by the indigenous microbiome. The objective of this study was to probe the postulated microbiome-AhR crosstalk and whether such an axis could influence metabolic homeostasis of the host. Utilising a systems-biology approach combining in-depth 1H-NMR-based metabonomics (plasma, liver and skeletal muscle) with microbiome profiling (small intestine, colon and faeces) of AhR knockout (AhR−/−) and wild-type (AhR+/+) mice, we assessed AhR function in host metabolism. Microbiome metabolites such as short-chain fatty acids were found to regulate AhR and its target genes in liver and intestine. The AhR signalling pathway, in turn, was able to influence microbiome composition in the small intestine as evident from microbiota profiling of the AhR+/+ and AhR−/− mice fed with diet enriched with a specific AhR ligand or diet depleted of any known AhR ligands. The AhR−/− mice also displayed increased levels of corticosterol and alanine in serum. In addition, activation of gluconeogenic genes in the AhR−/− mice was indicative of on-going metabolic stress. Reduced levels of ketone bodies and reduced expression of genes involved in fatty acid metabolism in the liver further underscored this observation. Interestingly, exposing AhR−/− mice to a high-fat diet showed resilience to glucose intolerance. Our data suggest the existence of a bidirectional AhR-microbiome axis, which influences host metabolic pathways. PMID:28721249
Fitian, Asem I; Nelson, David R; Liu, Chen; Xu, Yiling; Ararat, Miguel; Cabrera, Roniel
2014-10-01
The metabolic pathway disturbances associated with hepatocellular carcinoma (HCC) remain unsatisfactorily characterized. Determination of the metabolic alterations associated with the presence of HCC can improve our understanding of the pathophysiology of this cancer and may provide opportunities for improved disease monitoring of patients at risk for HCC development. To characterize the global metabolic alterations associated with HCC arising from hepatitis C (HCV)-associated cirrhosis using an integrated non-targeted metabolomics methodology employing both gas chromatography/mass spectrometry (GC/MS) and ultrahigh-performance liquid chromatography/electrospray ionization tandem mass spectrometry (UPLC/MS-MS). The global serum metabolomes of 30 HCC patients, 27 hepatitis C cirrhosis disease controls and 30 healthy volunteers were characterized using a metabolomics approach that combined two metabolomics platforms, GC/MS and UPLC/MS-MS. Random forest, multivariate statistics and receiver operator characteristic analysis were performed to identify the most significantly altered metabolites in HCC patients vs. HCV-cirrhosis controls and which therefore exhibited a close association with the presence of HCC. Elevated 12-hydroxyeicosatetraenoic acid (12-HETE), 15-HETE, sphingosine, γ-glutamyl oxidative stress-associated metabolites, xanthine, amino acids serine, glycine and aspartate, and acylcarnitines were strongly associated with the presence of HCC. Elevations in bile acids and dicarboxylic acids were highly correlated with cirrhosis. Integrated metabolomic profiling through GC/MS and UPLC/MS-MS identified global metabolic disturbances in HCC and HCV-cirrhosis. Aberrant amino acid biosynthesis, cell turnover regulation, reactive oxygen species neutralization and eicosanoid pathways may be hallmarks of HCC. Aberrant dicarboxylic acid metabolism, enhanced bile acid metabolism and elevations in fibrinogen cleavage peptides may be signatures of cirrhosis. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Zhao, Huajie; Li, Shangshang; Zhang, Jianjun; Che, Gen; Zhou, Meng; Liu, Min; Zhang, Chen; Xu, Nuo; Lin, Lin; Liu, Yu; Jia, Le
2016-10-20
Two polysaccharides, EIPS and AIPS were obtained by the hydrolysis of IPS from Termitomyces albuminosus, and their pharmacological effects on blood lipid profiles metabolism and oxidative stress were investigated. The results demonstrated that EIPS was superior to IPS and AIPS on reducing hepatic lipid levels and preventing oxidative stress by improving serum enzyme activities (ALT, AST, and ALP), serum lipid levels (TC, TG, HDL-C, LDL-C and VLDL-C), hepatic lipid levels (TC and TG), and antioxidant status (SOD, GSH-Px, CAT, T-AOC, MDA, and LPO). These conclusions indicated that EIPS, AIPS and IPS might be suitable for functional foods and natural drugs on preventing the high-fat emulsion-induced hyperlipidemia. In addition, the monosaccharide compositions of IPS and its hydrolyzate were also processed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Metabolomics Reveals Altered Lipid Metabolism in a Mouse Model of Endometriosis.
Dutta, Mainak; Anitha, Mallappa; Smith, Philip B; Chiaro, Christopher R; Maan, Meenu; Chaudhury, Koel; Patterson, Andrew D
2016-08-05
Endometriosis is a common chronic estrogen-dependent gynecological disease affecting 10% of women in their reproductive age. It is characterized by proliferation of functional endometrial glands and stroma outside the uterine cavity. In the present study, we used mass spectrometry-based lipidomics to investigate the alterations in serum lipid profiles of mice induced with endometriosis. We identified several dysregulated lipids such as phosphatidylcholines, sphingomyelins, phosphatidylethanolamines, and triglycerides and show that triglycerides may be due to a general inflammatory condition in the peritoneum. We also show that in addition to phosphatidylcholine alteration, there is also an effect in the ratio of phosphatidylcholine/phosphatidylethanolamine in serum of mice induced with the disease and that this change may be due to increased expression of the phosphatidylethanolamine N-methyltransferase gene. The study provides new insight into the etiology of endometriosis.
Biomarkers of Alzheimer’s Disease Among Mexican Americans
O’Bryant, Sid E.; Xiao, Guanghua; Edwards, Melissa; Devous, Michael; Gupta, Veer Bala; Martins, Ralph; Zhang, Fan; Barber, Robert
2013-01-01
Background Mexican Americans are the fastest aging segment of the U.S. population yet little scientific literature exists regarding the Alzheimer disease (AD) among this segment of the population. The extant literature suggests that biomarkers of AD will vary according to race/ethnicity though no prior work has explicitly studied this possibility. The aim of this study was to create a serum-based biomarker profile of AD among Mexican American. Methods Data were analyzed from 363 Mexican American participants (49 AD and 314 normal controls) enrolled in the Texas Alzheimer’s Research & Care Consortium (TARCC). Non-fasting serum samples were analyzed using a luminex-based multi-plex platform. A biomarker profile was generated using random forest analyses. Results The biomarker profile of AD among Mexican Americans was different from prior work from non-Hispanic populations with regards to the variable importance plots. In fact, many of the top markers were related to metabolic factors (e.g. FABP, GLP-1, CD40, pancreatic polypeptide, insulin-like-growth factor, and insulin). The biomarker profile was a significant classifier of AD status yielding an area under the receiver operating characteristic curve (AUC), sensitivity (SN) and specificity (SP) of 0.77, 0.92 and 0.64, respectively. Combining biomarkers with clinical variables yielded a better balance of SN and SP. Conclusion The biomarker profile for AD among Mexican American cases is significantly different from that previously identified among non-Hispanic cases from many large-scale studies. This is the first study to explicitly examine and provide support for blood-based biomarkers of AD among Mexican Americans. Areas for future research are highlighted. PMID:23313927
Frigolet, Maria E; Torres, Nimbe; Uribe-Figueroa, Laura; Rangel, Claudia; Jimenez-Sanchez, Gerardo; Tovar, Armando R
2011-02-01
Obesity is associated with an increase in adipose tissue mass due to an imbalance between high dietary energy intake and low physical activity; however, the type of dietary protein may contribute to its development. The aim of the present work was to study the effect of soy protein versus casein on white adipose tissue genome profiling, and the metabolic functions of adipocytes in rats with diet-induced obesity. The results showed that rats fed a Soy Protein High-Fat (Soy HF) diet gained less weight and had lower serum leptin concentration than rats fed a Casein High-Fat (Cas HF) diet, despite similar energy intake. Histological studies indicated that rats fed the Soy HF diet had significantly smaller adipocytes than those fed the Cas HF diet, and this was associated with a lower triglyceride/DNA content. Fatty acid synthesis in isolated adipocytes was reduced by the amount of fat consumed but not by the type of protein ingested. Expression of genes of fatty acid oxidation increased in adipose tissue of rats fed Soy diets; microarray analysis revealed that Soy protein consumption modified the expression of 90 genes involved in metabolic functions and inflammatory response in adipose tissue. Network analysis showed that the expression of leptin was regulated by the type of dietary protein and it was identified as a central regulator of the expression of lipid metabolism genes in adipose tissue. Thus, soy maintains the size and metabolic functions of adipose tissue through biochemical adaptations, adipokine secretion, and global changes in gene expression. Copyright © 2011 Elsevier Inc. All rights reserved.
Yasein, Nada; Shroukh, Wejdan; Hijjawi, Razan
2015-01-01
Vitamin D deficiency and insufficiency and the metabolic syndrome are two common health issues worldwide. The association between these two health problems is subject to debate. This study aims to investigate the association between vitamin D deficiency or insufficiency and the metabolic syndrome in a sample of osteoporotic postmenopausal women attending a family practice clinic in Amman-Jordan. This was an observational cross sectional study. It was carried out in the family practice clinic in Jordan University Hospital. The study included all postmenopausal osteoporotic women attending the clinic between June 2011 and May 2012, yielding a total of 326 subjects. The association between metabolic syndrome and serum vitamin D levels was investigated. Waist circumference, body mass index, triglycerides and fasting blood sugar were significantly higher among postmenopausal women with metabolic syndrome, but HDL cholesterol was significantly lower (p<0.05). The prevalence of metabolic syndrome among all study participants was 42.9%. Triglycerides and LDL cholesterol were significantly higher among women deficiency or insufficiency (p<0.05). The prevalence of vitamin D deficiency or insufficiency was 45.7%. Among patients with metabolic syndrome, the prevalence of vitamin D deficiency or insufficiency was 50.7%. Findings of the current study suggest a lack of relationship between serum vitamin D and metabolic syndrome. However, a significant inverse relationship was found between serum vitamin D levels and both serum triglycerides and LDL levels.
Sepehrmanesh, Zahra; Kolahdooz, Fariba; Abedi, Fatemeh; Mazroii, Navid; Assarian, Amin; Asemi, Zatollah; Esmaillzadeh, Ahmad
2016-02-01
Vitamin D may decrease depression symptoms through its beneficial effects on neurotransmitters, metabolic profiles, biomarkers of inflammation, and oxidative stress. This study was designed to assess whether vitamin D supplementation can reduce symptoms of depression, metabolic profiles, serum high-sensitivity C-reactive protein (hs-CRP), and biomarkers of oxidative stress in patients with major depressive disorder (MDD). This randomized, double-blind, placebo-controlled clinical trial was performed in 40 patients between 18 and 65 y of age with a diagnosis of MDD based on criteria from the Diagnostic and Statistical Manual of Mental Disorders. Patients were randomly assigned to receive either a single capsule of 50 kIU vitamin D/wk (n = 20) or placebo (n = 20) for 8 wk. Fasting blood samples were taken at baseline and postintervention to quantify relevant variables. The primary [Beck Depression Inventory (BDI), which examines depressive symptoms] and secondary (glucose homeostasis variables, lipid profiles, hs-CRP, and biomarkers of oxidative stress) outcomes were assessed. Baseline concentrations of mean serum 25-hydroxyvitamin D were significantly different between the 2 groups (9.2 ± 6.0 and 13.6 ± 7.9 μg/L in the placebo and control groups, respectively, P = 0.02). After 8 wk of intervention, changes in serum 25-hydroxyvitamin D concentrations were significantly greater in the vitamin D group (+20.4 μg/L) than in the placebo group (-0.9 μg/L, P < 0.001). A trend toward a greater decrease in the BDI was observed in the vitamin D group than in the placebo group (-8.0 and -3.3, respectively, P = 0.06). Changes in serum insulin (-3.6 compared with +2.9 μIU/mL, P = 0.02), estimated homeostasis model assessment of insulin resistance (-1.0 compared with +0.6, P = 0.01), estimated homeostasis model assessment of β cell function (-13.9 compared with +10.3, P = 0.03), plasma total antioxidant capacity (+63.1 compared with -23.4 mmol/L, P = 0.04), and glutathione (+170 compared with -213 μmol/L, P = 0.04) in the vitamin D group were significantly different from those in the placebo group. Overall, vitamin D supplementation of patients with MDD for 8 wk had beneficial effects on the BDI, indicators of glucose homeostasis, and oxidative stress. This trial was registered at www.irct.ir as IRCT201412065623N29. © 2016 American Society for Nutrition.
Schäfer, Michaela; Oeing, Christian U.; Rohm, Maria; Baysal-Temel, Ezgi; Lehmann, Lorenz H.; Bauer, Ralf; Volz, H. Christian; Boutros, Michael; Sohn, Daniela; Sticht, Carsten; Gretz, Norbert; Eichelbaum, Katrin; Werner, Tessa; Hirt, Marc N.; Eschenhagen, Thomas; Müller-Decker, Karin; Strobel, Oliver; Hackert, Thilo; Krijgsveld, Jeroen; Katus, Hugo A.; Berriel Diaz, Mauricio; Backs, Johannes; Herzig, Stephan
2015-01-01
Objectives Cancer cachexia affects the majority of tumor patients and significantly contributes to high mortality rates in these subjects. Despite its clinical importance, the identity of tumor-borne signals and their impact on specific peripheral organ systems, particularly the heart, remain mostly unknown. Methods and results By combining differential colon cancer cell secretome profiling with large-scale cardiomyocyte phenotyping, we identified a signature panel of seven “cachexokines”, including Bridging integrator 1, Syntaxin 7, Multiple inositol-polyphosphate phosphatase 1, Glucosidase alpha acid, Chemokine ligand 2, Adamts like 4, and Ataxin-10, which were both sufficient and necessary to trigger cardiac atrophy and aberrant fatty acid metabolism in cardiomyocytes. As a prototypical example, engineered secretion of Ataxin-10 from non-cachexia-inducing cells was sufficient to induce cachexia phenotypes in cardiomyocytes, correlating with elevated Ataxin-10 serum levels in murine and human cancer cachexia models. Conclusions As Ataxin-10 serum levels were also found to be elevated in human cachectic cancer patients, the identification of Ataxin-10 as part of a cachexokine cocktail now provides a rational approach towards personalized predictive, diagnostic and therapeutic measures in cancer cachexia. PMID:26909315
Yang, Hua; Jiang, Tingshu; Li, Ping; Mao, Qishan
2015-09-01
Acetaminophen (APAP)-induced liver toxicity remains the key factor limiting the clinical application of APAP, and herbs are the important sources for isolation of compounds preventing APAP-induced toxicity. To investigate the protection mechanism of glycyrrhetinic acid towards APAP-induced liver damage using metabolomics method. APAP-induced liver toxicity model was made through intraperitoneal injection (i.p.) of APAP (400 mg/kg). Glycyrrhetinic acid was dissolved in corn oil, and intraperitoneal injection (i.p.) of glycyrrhetinic acid (500 mg/kg body weight) was performed for 20 days before the injection of APAP. UPLC-ESI-QTOF MS was employed to analyze the metabolomic profile of serum samples. The pre-treatment of glycyrrhetinic acid significantly protected APAP-induced toxicity, indicated by the histology of liver, the activity of ALT and AST. Metabolomics showed that the level of palmtioylcarnitine and oleoylcarnitine significantly increased in serum of APAP-treated mice, and the pre-treatment with GA can prevent this elevation of these two fatty acid-carnitines. Reversing the metabolism pathway of fatty acid is an important mechanism for the protection of glycyrrhetinic acid towards acetaminophen-induced liver toxicity.
Drzymała-Czyż, Sławomira; Szczepanik, Mariusz; Krzyżanowska, Patrycja; Duś-Żuchowska, Monika; Pogorzelski, Andrzej; Sapiejka, Ewa; Juszczak, Paweł; Lisowska, Aleksandra; Koletzko, Berthold; Walkowiak, Jarosław
2017-01-01
Cystic fibrosis (CF) liver disease is the third most frequent cause of death in CF patients. Although it alters fatty acid (FA) metabolism, data concerning the profile of FA in CF patients with liver cirrhosis is lacking. This study aimed to assess the FA composition of serum phospholipids in CF patients with and without liver cirrhosis. The study comprised 25 CF patients with liver cirrhosis and 25 without it. We assessed Z-scores for body height and weight, lung function, exocrine pancreatic sufficiency and colonization with Pseudomonas aeruginosa. FAs' profile of serum glycerophospholipids was quantified by gas chromatography mass spectrometry. In CF patients with liver cirrhosis, the levels of C16:0 were higher and the amounts of C20:2n-6, C20:3n-6, C20:4n-6, and all the n-3 polyunsaturated FAs (PUFAs) (C18:3n-3, C20:5n-3, C22:5n-3, C22:6n-3) were lower than those in CF subjects without liver cirrhosis. The n-6/n-3, C20:4n-6/C18:2n-6, total n-6/C18:2n-6, C20:5n-3/C18:3n-3 and total n-3/C18:3n-3 ratios did not differ between the 2 groups. Liver cirrhosis may associate with profound abnormalities in the composition of serum glycerophospholipids FAs in CF patients. None of the analyzed clinical factors could explain the greater prevalence of low levels of PUFAs in this CF subgroup. © 2017 S. Karger AG, Basel.
Common patterns and disease-related signatures in tuberculosis and sarcoidosis.
Maertzdorf, Jeroen; Weiner, January; Mollenkopf, Hans-Joachim; Bauer, Torsten; Prasse, Antje; Müller-Quernheim, Joachim; Kaufmann, Stefan H E
2012-05-15
In light of the marked global health impact of tuberculosis (TB), strong focus has been on identifying biosignatures. Gene expression profiles in blood cells identified so far are indicative of a persistent activation of the immune system and chronic inflammatory pathology in active TB. Definition of a biosignature with unique specificity for TB demands that identified profiles can differentiate diseases with similar pathology, like sarcoidosis (SARC). Here, we present a detailed comparison between pulmonary TB and SARC, including whole-blood gene expression profiling, microRNA expression, and multiplex serum analytes. Our analysis reveals that previously disclosed gene expression signatures in TB show highly similar patterns in SARC, with a common up-regulation of proinflammatory pathways and IFN signaling and close similarity to TB-related signatures. microRNA expression also presented a highly similar pattern in both diseases, whereas cytokines in the serum of TB patients revealed a slightly elevated proinflammatory pattern compared with SARC and controls. Our results indicate several differences in expression between the two diseases, with increased metabolic activity and significantly higher antimicrobial defense responses in TB. However, matrix metallopeptidase 14 was identified as the most distinctive marker of SARC. Described communalities as well as unique signatures in blood profiles of two distinct inflammatory pulmonary diseases not only have considerable implications for the design of TB biosignatures and future diagnosis, but they also provide insights into biological processes underlying chronic inflammatory disease entities of different etiology.
Carvalho, Roberta F; Uehara, Sofia K; Rosa, Glorimar
2012-01-01
Animal studies have suggested beneficial effects of conjugated linoleic acid (CLA) in reducing body fat mass and improvement in the serum lipid profile and glycemia. However, these effects are controversial in humans. The purpose of this study was to investigate the effects of microencapsulated CLA supplementation on body composition, body mass index, waist circumference, and blood pressure in sedentary women with metabolic syndrome. This study was a placebo-controlled and randomized clinical trial. Fourteen women diagnosed with metabolic syndrome received light strawberry jam enriched or not with microencapsulated CLA (3 g/day) as a mixture of 38.57% cis-9, trans-11, and 39.76% trans-10, cis-12 CLA isomers associated with a hypocaloric diet for 90 days. The subjects were monitored to assess variables associated with the metabolic syndrome, in addition to assessing adherence with the intervention. There were no significant effects of microencapsulated CLA on the lipid profile or blood pressure. Mean plasma insulin concentrations were significantly lower in women supplemented with microencapsulated CLA (Δ T₉₀ - T₀ = -12.87 ± 4.26 μU/mL, P = 0.02). Microencapsulated CLA supplementation did not alter the waist circumference, but there was a reduction in body fat mass detected after 30 days (Δ = -2.68% ± 0.82%, P = 0.02), which was maintained until the 90-day intervention period (Δ = -3.32% ± 1.41%, P = 0.02) in the microencapsulated CLA group. The placebo group showed this effect only after 90 days (Δ = -1.97% ± 0.60%, P = 0.02), but had a reduced waist circumference (Δ T₉₀ - T₀ = -4.25 ± 1.31 cm, P = 0.03). Supplementation with mixed-isomer microencapsulated CLA may have a favorable effect on glycemic control and body fat mass loss at an earlier time in sedentary women with metabolic syndrome, although there were no effects on lipid profile and blood pressure.
Vidović, Bojana; Milovanović, Srđan; Stefanović, Aleksandra; Kotur-Stevuljević, Jelena; Takić, Marija; Debeljak-Martačić, Jasmina; Pantović, Maja; Đorđević, Brižita
2017-01-01
Adiponectin is an adipocyte-derived plasma protein with insulin-sensitizing and anti-inflammatory properties and is suggested to be a biomarker of metabolic disturbances. The aim of this study was to investigate the effects of alpha-lipoic acid (ALA) on plasma adiponectin and some metabolic risk factors in patients with schizophrenia. The plasma adipokine levels (adiponectin and leptin), routine biochemical and anthropometric parameters, markers of oxidative stress, and the serum phospholipid fatty acid profile in eighteen schizophrenic patients at baseline, in the middle, and at the end of a 3-month long supplementation period with ALA (500 mg daily) were determined. A significant increase in the plasma adiponectin concentrations, as well as a decrease in fasting glucose and aspartate aminotransferase activity (AST), was found. Baseline AST activity was independently correlated with the adiponectin concentrations. Our data show that ALA can improve plasma adiponectin levels and may play a potential role in the treatment of metabolic risk factor in patients with schizophrenia. Future randomized controlled trials are needed to confirm these preliminary investigations.
Ling, Bey-Leei; Chiu, Chun-Tang; Lu, Hsiu-Chin; Lin, Jin-Jin; Kuo, Chiung-Yin; Chou, Fen-Pi
2014-01-01
Objective To understand the molecular basis of the short and long-term effects of an immediate shortage of energy storage caused by lipectomy on expression profile of genes involved in lipid and carbohydrate metabolism in high fat and high cholesterol diet-induced obese rats. Methods The hepatic mRNA levels of enzymes, regulator and transcription factors involved in glucose and lipid metabolism were analyzed by quantitative real time polymerase chain reaction (RT-qPCR) ten days and eight weeks after lipectomy in obese rats. Body and liver weights and serum biochemical parameters, adiponectin, leptin and insulin were determined. Results No significant difference was observed on the food intake between the lipectomized and sham-operated groups during the experimental period. Ten days after the operation, the lipectomized animals showed significant higher triacylglycerol, glucose and insulin levels, a lower adiponectin concentration than the sham-operated rats, along with significant higher hepatic mRNA levels of hepatocyte nuclear factor 4α (HNF4α) and the enzymes involved in lipogenesis, sterol biosynthesis and gluconeogenesis. The results of immunohistochemical (IHC) analysis also confirmed increased levels of lipogenic enzymes in the liver of lipectomized versus sham-operated animals. The lipectomized group had a significantly lower adiponectin/leptin ratio that was positively correlated to the level of LDL (r = 0.823, P<0.05) and negatively to glucose and insulin (r = −0.821 and −0.892 respectively, P<0.05). Eight weeks after the operation, the lipectomized animals revealed significant higher body and liver weights, weight gain, liver to body weight ratio, hepatic triacylglycerol and serum insulin level. Conclusions In response to lipectomy a short term enhancement of the expression of hepatic anabolic genes involved in lipid and carbohydrate metabolism was triggered that might eventually lead to the final extra weight gain. These metabolic changes could be the results of reduced circulating adiponectin that further influences the functions of insulin and hepatic HNF4α. PMID:25264921
Kurtz, Pedro; Claassen, Jan; Schmidt, J Michael; Helbok, Raimund; Hanafy, Khalid A; Presciutti, Mary; Lantigua, Hector; Connolly, E Sander; Lee, Kiwon; Badjatia, Neeraj; Mayer, Stephan A
2013-12-01
The brain is dependent on glucose to meet its energy demands. We sought to evaluate the potential importance of impaired glucose transport by assessing the relationship between brain/serum glucose ratios, cerebral metabolic distress, and mortality after severe brain injury. We studied 46 consecutive comatose patients with subarachnoid or intracerebral hemorrhage, traumatic brain injury, or cardiac arrest who underwent cerebral microdialysis and intracranial pressure monitoring. Continuous insulin infusion was used to maintain target serum glucose levels of 80-120 mg/dL (4.4-6.7 mmol/L). General linear models of logistic function utilizing generalized estimating equations were used to relate predictors of cerebral metabolic distress (defined as a lactate/pyruvate ratio [LPR] ≥ 40) and mortality. A total of 5,187 neuromonitoring hours over 300 days were analyzed. Mean serum glucose was 133 mg/dL (7.4 mmol/L). The median brain/serum glucose ratio, calculated hourly, was substantially lower (0.12) than the expected normal ratio of 0.40 (brain 2.0 and serum 5.0 mmol/L). In addition to low cerebral perfusion pressure (P = 0.05) and baseline Glasgow Coma Scale score (P < 0.0001), brain/serum glucose ratios below the median of 0.12 were independently associated with an increased risk of metabolic distress (adjusted OR = 1.4 [1.2-1.7], P < 0.001). Low brain/serum glucose ratios were also independently associated with in-hospital mortality (adjusted OR = 6.7 [1.2-38.9], P < 0.03) in addition to Glasgow Coma Scale scores (P = 0.029). Reduced brain/serum glucose ratios, consistent with impaired glucose transport across the blood brain barrier, are associated with cerebral metabolic distress and increased mortality after severe brain injury.
Aziz, Muhammad Shakir Abdul; Giribabu, Nelli; Rao, Pasupuleti Visweswara; Salleh, Naguib
2017-05-01
Stingless bee honey (SLBH) has been claimed to possess multiple health benefits. Its anti-diabetic properties are however unknown. In this study, ability of SLBH from Geniotrigona thoracica stingless bee species in ameliorating pancreatic damage and in maintaining metabolic profiles were investigated in diabetic condition. SLBH at 1 and 2g/kg/b.w. was given orally to streptozotocin (STZ)-nicotinamide-induced male diabetic rats for 28days. Metabolic parameters (fasting blood glucose-FBG and lipid profiles-LP and serum insulin) were measured by biochemical assays. Distribution and expression level of insulin, oxidative stress marker i.e. catalase, inflammatory markers i.e. IKK-β, TNF-α, IL-1β and apoptosis marker i.e. caspase-9 in the pancreatic islets were identified and quantified respectively by immunohistochemistry. Levels of NF-κβ in pancreas were determined by enzyme-linked immunoassay (ELISA). SLBH administration to diabetic male rats prevented increase in FBG, total cholesterols (TC), triglyceride (TG) and low density lipoprotein (LDL) levels. However, high density lipoprotein (HDL) and serum insulin levels in diabetic rats receiving SLBH increased. Additionally, histopathological changes and expression level of oxidative stress, inflammation and apoptosis markers in pancreatic islets of diabetic rats decreased with increased expression level of insulin in the islets. LC-MS analysis revealed the presence of several compounds in SLBH that might be responsible for these effects. SLBH has great potential to be used as agent to protect the pancreas against damage and dysfunction where these could account for its anti-diabetic properties. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Jamali, Fakhreddin; Kunz-Dober, Cornelia M
1999-01-01
Aims Rapid onset of analgesia is essential in the treatment of acute pain. There is evidence that conditions of stress cause delayed and decreased pain relief from oral analgesic products through impaired absorption. The aim was to determine the effect of surgery for removal of wisdom teeth on the plasma concentration-time profile of ibuprofen enantiomers. Methods Racemic ibuprofen, 200 mg in one group (n=7) and 600 mg in another group (n=7) was administered 1 week before (control) and again after (test) surgical removal of wisdom teeth. Serum concentrations of ibuprofen enantiomers were measured for 6 h. Results During the control phase, S- and R-ibuprofen concentrations were within the suggested therapeutic range. Surgery resulted in a 2 h delay in the mean time to peak concentration, significant decreases in serum ibuprofen concentration following both doses, and a fall to sub-optimal serum concentrations following the 200 mg dose. During the first 2 h after the 200 mg dose, dental extraction resulted in a significant reduction of the area under serum drug concentration (AUC (0, 2 h) mg l−1 h) from 5.6±2.9 to 1.6±1.8 (P<0.01) and from 5.5±3.0 to 2.1±2.0 (P<0.05) for S and R-ibuprofen, respectively. Similar observations were made following the 600 mg dose for AUC (0, 2 h) of S-ibuprofen (from 14.2±6.1 to 7.2±5.5 mg l−1 h, P<0.05) with no significant difference for R-ibuprofen (from 14.4±9.5 to 5.8±7.1). AUC (0, 6 h) was also significantly reduced by surgery. The pattern of stereoselectivity in serum ibuprofen concentration was reversed by surgery such that the S enantiomer was predominant in the control phase but not in the post-surgery phase, which is suggestive of reduced metabolic chiral inversion. Conclusions Surgery for wisdom tooth removal resulted in substantial decreases in the serum concentration of ibuprofen enantiomers and a prolongation in the time to peak concentration. Reduced absorption and altered metabolism are the likely cause of these changes. Thus, dental patients may experience a delayed response and possible treatment failure when taking ibuprofen for pain relief after surgery. Our observation may have implications for the treatment of other diseases. PMID:10233203
Dewulf, Evelyne M; Cani, Patrice D; Claus, Sandrine P; Fuentes, Susana; Puylaert, Philippe G B; Neyrinck, Audrey M; Bindels, Laure B; de Vos, Willem M; Gibson, Glenn R; Thissen, Jean-Paul; Delzenne, Nathalie M
2013-08-01
To highlight the contribution of the gut microbiota to the modulation of host metabolism by dietary inulin-type fructans (ITF prebiotics) in obese women. A double blind, placebo controlled, intervention study was performed with 30 obese women treated with ITF prebiotics (inulin/oligofructose 50/50 mix; n=15) or placebo (maltodextrin; n=15) for 3 months (16 g/day). Blood, faeces and urine sampling, oral glucose tolerance test, homeostasis model assessment and impedancemetry were performed before and after treatment. The gut microbial composition in faeces was analysed by phylogenetic microarray and qPCR analysis of 16S rDNA. Plasma and urine metabolic profiles were analysed by 1H-NMR spectroscopy. Treatment with ITF prebiotics, but not the placebo, led to an increase in Bifidobacterium and Faecalibacterium prausnitzii; both bacteria negatively correlated with serum lipopolysaccharide levels. ITF prebiotics also decreased Bacteroides intestinalis, Bacteroides vulgatus and Propionibacterium, an effect associated with a slight decrease in fat mass and with plasma lactate and phosphatidylcholine levels. No clear treatment clustering could be detected for gut microbial analysis or plasma and urine metabolomic profile analyses. However, ITF prebiotics led to subtle changes in the gut microbiota that may importantly impact on several key metabolites implicated in obesity and/or diabetes. ITF prebiotics selectively changed the gut microbiota composition in obese women, leading to modest changes in host metabolism, as suggested by the correlation between some bacterial species and metabolic endotoxaemia or metabolomic signatures.
Li, Xiaowei; Zhang, Fusheng; Wang, Dongqin; Li, Zhenyu; Qin, Xuemei; Du, Guanhua
2014-02-01
Carbon tetrachloride (CCl4) is commonly used as a model toxicant to induce chronic and acute liver injuries. In this study, metabolite profiling and gene expression analysis of liver tissues were performed by nuclear magnetic resonance and quantitative real-time polymerase chain reaction to understand the responses of acute liver injury system in rats to CCl4. Acute liver injury was successfully induced by CCl4 as revealed by histopathological results and significant increase in alanine aminotransferase and serum aspartate aminotransferase. We found that CCl4 caused a significant increase in lactate, succinate, citrate, dimethylgycine, choline and taurine. CCl4 also caused a decrease in some of the amino acids such as leucine/isoleucine, glutamine/glutathione and betaine. Gene function analysis revealed that 10 relevant enzyme genes exhibited changes in expressions in the acute liver injury model. In conclusion, the metabolic pathways, including tricarboxylic acid cycle, antioxidant defense systems, fatty acid β-oxidation, glycolysis and choline and mevalonate metabolisms were impaired in CCl4-treated rat livers. These findings provided an overview of the biochemical consequences of CCl4 exposure and comprehensive insights into the metabolic aspects of CCl4-induced hepatotoxicity in rats. These findings may also provide reference of the mechanisms of acute liver injury that could be used to study the changes in functional genes and metabolites. Copyright © 2013 Elsevier B.V. All rights reserved.
Zhang, Qian; Zheng, Jia; Li, Ming; Yu, Miao; Ping, Fan; Wang, Zhixin; Qi, Cuijuan; Wang, Tong; Wang, Xiaojing
2017-01-01
Increasing evidence shows that maternal nutrition status has a vital effect on offspring susceptibility to obesity. MicroRNAs are related to lipid metabolism processes. This study aimed to evaluate whether maternal chromium restriction could affect miRNA expression involved in lipid metabolism in offspring. Weaning C57BL/6J mice born from mothers fed with normal control diet or chromium-restricted diet were fed for 13 weeks. The adipose miRNA expression profile was analyzed by miRNA array analysis. At 16 weeks old, pups from dams fed with chromium-restricted diet exhibit higher body weight, fat weight, and serum TC, TG levels. Six miRNAs were identified as upregulated in the RC group compared with the CC group, whereas eight miRNAs were lower than the threshold level set in the RC group. In the validated target genes of these differentially expressed miRNA, the MAPK signaling pathway serves an important role in the influence of early life chromium-restricted diet on lipid metabolism through miRNA. Long-term programming on various specific miRNA and MAPK signaling pathway may be involved in maternal chromium restriction in the adipose of female offspring. Impact statement For the first time, our study demonstrates important miRNA differences in the effect of maternal chromium restriction in offspring. These miRNAs may serve as “bridges” between the mother and the offspring by affecting the MAPK pathway. PMID:28669221
Zhang, Qian; Xiao, Xinhua; Zheng, Jia; Li, Ming; Yu, Miao; Ping, Fan; Wang, Zhixin; Qi, Cuijuan; Wang, Tong; Wang, Xiaojing
2017-08-01
Increasing evidence shows that maternal nutrition status has a vital effect on offspring susceptibility to obesity. MicroRNAs are related to lipid metabolism processes. This study aimed to evaluate whether maternal chromium restriction could affect miRNA expression involved in lipid metabolism in offspring. Weaning C57BL/6J mice born from mothers fed with normal control diet or chromium-restricted diet were fed for 13 weeks. The adipose miRNA expression profile was analyzed by miRNA array analysis. At 16 weeks old, pups from dams fed with chromium-restricted diet exhibit higher body weight, fat weight, and serum TC, TG levels. Six miRNAs were identified as upregulated in the RC group compared with the CC group, whereas eight miRNAs were lower than the threshold level set in the RC group. In the validated target genes of these differentially expressed miRNA, the MAPK signaling pathway serves an important role in the influence of early life chromium-restricted diet on lipid metabolism through miRNA. Long-term programming on various specific miRNA and MAPK signaling pathway may be involved in maternal chromium restriction in the adipose of female offspring. Impact statement For the first time, our study demonstrates important miRNA differences in the effect of maternal chromium restriction in offspring. These miRNAs may serve as "bridges" between the mother and the offspring by affecting the MAPK pathway.
Palma, Mariana; Hernández-Castellano, Lorenzo E; Castro, Noemí; Arguëllo, Anastasio; Capote, Juan; Matzapetakis, Manolis; de Almeida, André Martinho
2016-06-21
Goats are of special importance in the Mediterranean and tropical regions for producing a variety of dairy products. The scarcity of pastures during the dry season leads to seasonal weight loss (SWL), which affects milk production. In this work, we studied the effect of feed-restriction on two dairy goat breeds, with different tolerance levels to SWL: the Majorera breed (tolerant) and the Palmera breed (susceptible). Nuclear magnetic resonance (NMR) was used to compare the metabolome of an aqueous fraction of the mammary gland and milk serum from both breeds. Goats in mid-lactation were divided by breed, and each in two feed-regime groups: the control group and the restricted-fed group (to achieve 15-20% reduction of body weight at the end of the experiment). Milk and mammary gland samples were collected at the end of the experimental period (23rd day). (1)H NMR spectra were collected from the aqueous extract of the mammary gland biopsies and the milk serum. Profiling analysis has led to the identification of 46 metabolites in the aqueous extract of the mammary gland. Lactose, glutamate, glycine and lactate were found to be the most abundant. Analysis of milk serum allowed the identification of 50 metabolites, the most abundant being lactose, citrate and creatine. Significant differences were observed, in mammary gland biopsies and milk serum, between control and restricted-fed groups in both breeds, albeit with no differences between the breeds. Variations seem to be related to metabolism adaptation to the low-energy diet and are indicative of breed-specific microflora. Milk serum showed more metabolites varying between control and restricted groups, than the mammary gland. The Majorera breed also showed more variations than the Palmera breed in milk samples, which could be an indication of a prompt adaptation to SWL by the Majorera breed.
Proteomic evaluation of sheep serum proteins
2012-01-01
Background The applications of proteomic strategies to ovine medicine remain limited. The definition of serum proteome may be a good tool to identify useful protein biomarkers for recognising sub-clinical conditions and overt disease in sheep. Findings from bovine species are often directly translated for use in ovine medicine. In order to characterize normal protein patterns and improve knowledge of molecular species-specific characteristics, we generated a two-dimensional reference map of sheep serum. The possible application of this approach was tested by analysing serum protein patterns in ewes with mild broncho-pulmonary disease, which is very common in sheep and in the peripartum period which is a stressful time, with a high incidence of infectious and parasitic diseases. Results This study generated the first reference 2-DE maps of sheep serum. Overall, 250 protein spots were analyzed, and 138 identified. Compared with healthy sheep, serum protein profiles of animals with rhino-tracheo-bronchitis showed a significant decrease in protein spots identified as transthyretin, apolipoprotein A1 and a significant increase in spots identified as haptoglobin, endopin 1b and alpha1B glycoprotein. In the peripartum period, haptoglobin, alpha-1-acid glycoprotein, apolipoprotein A1 levels rose, while transthyretin content dropped. Conclusions This study describes applications of proteomics in putative biomarker discovery for early diagnosis as well as for monitoring the physiological and metabolic situations critical for ovine welfare. PMID:22630135
Paul, Heather A; Bomhof, Marc R; Vogel, Hans J; Reimer, Raylene A
2016-02-12
Maternal obesity and overnutrition during pregnancy and lactation can program an increased risk of obesity in offspring. In this context, improving maternal metabolism may help reduce the intergenerational transmission of obesity. Here we show that, in Sprague-Dawley rats, selectively altering obese maternal gut microbial composition with prebiotic treatment reduces maternal energy intake, decreases gestational weight gain, and prevents increased adiposity in dams and their offspring. Maternal serum metabolomics analysis, along with satiety hormone and gut microbiota analysis, identified maternal metabolic signatures that could be implicated in programming offspring obesity risk and highlighted the potential influence of maternal gut microbiota on maternal and offspring metabolism. In particular, the metabolomic signature of insulin resistance in obese rats normalized when dams consumed the prebiotic. In summary, prebiotic intake during pregnancy and lactation improves maternal metabolism in diet-induced obese rats in a manner that attenuates the detrimental nutritional programming of offspring associated with maternal obesity. Overall, these findings contribute to our understanding of the maternal mechanisms influencing the developmental programming of offspring obesity and provide compelling pre-clinical evidence for a potential strategy to improve maternal and offspring metabolic outcomes in human pregnancy.
Paul, Heather A.; Bomhof, Marc R.; Vogel, Hans J.; Reimer, Raylene A.
2016-01-01
Maternal obesity and overnutrition during pregnancy and lactation can program an increased risk of obesity in offspring. In this context, improving maternal metabolism may help reduce the intergenerational transmission of obesity. Here we show that, in Sprague-Dawley rats, selectively altering obese maternal gut microbial composition with prebiotic treatment reduces maternal energy intake, decreases gestational weight gain, and prevents increased adiposity in dams and their offspring. Maternal serum metabolomics analysis, along with satiety hormone and gut microbiota analysis, identified maternal metabolic signatures that could be implicated in programming offspring obesity risk and highlighted the potential influence of maternal gut microbiota on maternal and offspring metabolism. In particular, the metabolomic signature of insulin resistance in obese rats normalized when dams consumed the prebiotic. In summary, prebiotic intake during pregnancy and lactation improves maternal metabolism in diet-induced obese rats in a manner that attenuates the detrimental nutritional programming of offspring associated with maternal obesity. Overall, these findings contribute to our understanding of the maternal mechanisms influencing the developmental programming of offspring obesity and provide compelling pre-clinical evidence for a potential strategy to improve maternal and offspring metabolic outcomes in human pregnancy. PMID:26868870
Abuelo, A; Hernández, J; Benedito, J L; Castillo, C
2014-09-01
The number of organically managed cattle (OMC) within the European Union has increased tremendously in the last decade. However, there are still some concerns about animals under this farming system meeting their dietary requirements for milk production. The aim of this study was to compare the metabolic adaptations to the onset of lactation in three different herds, one conventional and two organic ones. Twenty-two conventionally managed cattle (CMC) and 20 from each organic farm were sampled throughout the periparturient period. These samplings were grouped into four different stages: (i) far-off dry, (ii) close-up dry, (iii) fresh and (iv) peak of lactation and compared among them. In addition, the results of periparturient animals were also compared within each management type with a control group (animals between the 4th and 5th months of pregnancy). Metabolic profiles were used to assess the health status of the herds, along with the quantification of the acute phase proteins haptoglobin and serum amyloid A, insulin and the calculation of different surrogate indices of insulin sensitivity. Generalised linear mixed models with repeated measurements were used to study the effect of the stage, management type or their interaction on the serum variables studied. The prevalence of subclinical ketosis was higher in OMC, although they showed better insulin sensitivity, a lower degree of inflammation and less liver injury, without a higher risk of macromineral deficiencies. Therefore, attention should be paid on organic farms to the nutritional management of cows around the time of calving in order to prevent the harmful consequences of excessive negative energy balance. Moreover, it must be taken into account that most of the common practices used to treat this condition in CMC are not allowed on a systematic basis in OMC.
Lu, Yonghai; Wang, Yeli; Ong, Choon-Nam; Subramaniam, Tavintharan; Choi, Hyung Won; Yuan, Jian-Min; Koh, Woon-Puay; Pan, An
2016-11-01
Metabolomics has provided new insight into diabetes risk assessment. In this study we characterised the human serum metabolic profiles of participants in the Singapore Chinese Health Study cohort to identify metabolic signatures associated with an increased risk of type 2 diabetes. In this nested case-control study, baseline serum metabolite profiles were measured using LC-MS and GC-MS during a 6-year follow-up of 197 individuals with type 2 diabetes but without a history of cardiovascular disease or cancer before diabetes diagnosis, and 197 healthy controls matched by age, sex and date of blood collection. A total of 51 differential metabolites were identified between cases and controls. Of these, 35 were significantly associated with diabetes risk in the multivariate analysis after false discovery rate adjustment, such as increased branched-chain amino acids (leucine, isoleucine and valine), non-esterified fatty acids (palmitic acid, stearic acid, oleic acid and linoleic acid) and lysophosphatidylinositol (LPI) species (16:1, 18:1, 18:2, 20:3, 20:4 and 22:6). A combination of six metabolites including proline, glycerol, aminomalonic acid, LPI (16:1), 3-carboxy-4-methyl-5-propyl-2-furanpropionic acid and urea showed the potential to predict type 2 diabetes in at-risk individuals with high baseline HbA1c levels (≥6.5% [47.5 mmol/mol]) with an AUC of 0.935. Combined lysophosphatidylglycerol (LPG) (12:0) and LPI (16:1) also showed the potential to predict type 2 diabetes in individuals with normal baseline HbA1c levels (<6.5% [47.5 mmol/mol]; AUC = 0.781). Our findings show that branched-chain amino acids and NEFA are potent predictors of diabetes development in Chinese adults. Our results also indicate the potential of lysophospholipids for predicting diabetes.
Roef, Greet L; Rietzschel, Ernst R; Van Daele, Caroline M; Taes, Youri E; De Buyzere, Marc L; Gillebert, Thierry C; Kaufman, Jean-Marc
2014-02-01
We have previously shown that in healthy young men, a less favorable body composition is associated with higher free triiodothyronine (fT3) levels within the euthyroid range. Besides, a higher free-triiodothyronine-to-free-thyroxin (fT3-to-fT4) ratio has been related to a less favorable metabolic phenotype and more placental growth in pregnant women. In the present study, we therefore investigated whether serum thyrotropin (TSH), thyroid hormone levels, and the fT3-to-fT4 ratio are associated with metabolic and adiposity-related cardiovascular risk markers in a healthy population of middle-aged euthyroid men and women. Thyroid parameters were measured in 2524 generally healthy subjects from the Asklepios Study (35-55 years, mean age 46 years). Analyses were restricted to 2315 subjects (1138 women and 1177 men), not using thyroid medication, not having anti-TPO levels above clinical cutoff values or TSH levels outside the reference range (0.27-4.2 mU/L). Twenty-seven percent of the women and 47.5% of the men were overweight, while 13% of women and 17% of men were obese. Twenty percent of the subjects were active smokers. Serum thyroid function parameters were determined by electrochemiluminescence. fT3 and the fT3-to-fT4 ratio were positively related to body mass index (BMI), waist circumference, and components of metabolic syndrome, that is, triglycerides, systolic and diastolic blood pressure, and fasting plasma glucose, and negatively with HDL-cholesterol levels, whereas fT4 was negatively associated with BMI, waist circumference, and triglycerides (p<0.001). TSH related positively with total cholesterol levels (p<0.01), triglycerides, and systolic and diastolic blood pressure (p<0.001). The fT3-to-fT4 ratio was further positively associated with the adiposity-related inflammation markers interleukin-6 and high-sensitivity C-reactive protein and to pulse wave velocity. All associations were adjusted for sex, age, height, and smoking, and most associations persisted after additional adjustment for weight or waist circumference. In healthy euthyroid middle-aged men and women, higher fT3 levels, lower fT4 levels, and thus a higher fT3-to-fT4 ratio are consistently associated with various markers of unfavorable metabolic profile and cardiovascular risk.
Lipińska, Anna; Koczaj-Bremer, Magdalena; Jankowski, Krzysztof; Kaźmierczak, Agnieszka; Ciurzyński, Michał; Ou-Pokrzewińska, Aisha; Mikocka, Ewelina; Lewandowski, Zbigniew; Demkow, Urszula; Pruszczyk, Piotr
2014-01-01
Early identification of high-risk individuals is key for the prevention of cardiovascular disease (CVD). The aim of this study was to assess the potential impact of a family history of metabolic syndrome (fhMetS) on the risk of metabolic disorders (abnormal body mass, lipid profile, glucose metabolism, insulin resistance, and blood pressure) in healthy young individuals. We studied CVD risk factors in 90 healthy volunteers, aged 27-39 years; of these, 78 had fhMetS and 12 were without fhMetS (control group). Fasting serum lipids, glucose, and insulin levels were assayed, and anthropometric parameters and blood pressure using, an ambulatory blood pressure monitoring system, were measured. Nutritional and physical activity habits were assessed. Despite similar nutritional and physical activity habits, abnormal body mass was found in 53.2% of the fhMetS participants and 46.1% of the control participants (p = 0.54). The occurrence of obesity was 19.4% and 0%, respectively (p = 0.69). Compared to the control participants, fhMetS was associated with significantly higher total cholesterol (5.46 mmol/L vs. 4.69 mmol/L, p < 0.030), low-density lipoprotein cholesterol ( 3.28 mmol/L vs. 2.90 mmol/L, p < 0.032), and non-high-density lipoprotein cholesterol ( 3.74 mmol/L vs. 3.25 mmol/L, p < 0.016) levels, in addition to lower fasting glucose levels ( 4.51 mmol/L vs. 4.81 mmol/L, p < 0.042). A positive correlation between fasting glucose and insulin levels (r = 0.28; p < 0.015) was detected in the fhMetS participants. Higher mean daytime systolic blood pressure (121.5 mmHg vs. 113.3 mmHg, p < 0.035), mean daytime diastolic blood pressure ( 79.0 mmHg vs. 74.5 mmHg, p < 0.045), and mean nighttime diastolic blood pressure ( 64.0 mmHg vs. 59.5 mmHg, p < 0.019) were observed in the fhMetS group. More than 50% of the fhMetS participants had excess weight or a lipid disorder, which may indicate an increased risk of cardiovascular disease and the need for regular ambulatory assessment of serum lipid concentrations in young people with a family history of MetS.
Serum and urine metabolomics study reveals a distinct diagnostic model for cancer cachexia
Yang, Quan‐Jun; Zhao, Jiang‐Rong; Hao, Juan; Li, Bin; Huo, Yan; Han, Yong‐Long; Wan, Li‐Li; Li, Jie; Huang, Jinlu; Lu, Jin
2017-01-01
Abstract Background Cachexia is a multifactorial metabolic syndrome with high morbidity and mortality in patients with advanced cancer. The diagnosis of cancer cachexia depends on objective measures of clinical symptoms and a history of weight loss, which lag behind disease progression and have limited utility for the early diagnosis of cancer cachexia. In this study, we performed a nuclear magnetic resonance‐based metabolomics analysis to reveal the metabolic profile of cancer cachexia and establish a diagnostic model. Methods Eighty‐four cancer cachexia patients, 33 pre‐cachectic patients, 105 weight‐stable cancer patients, and 74 healthy controls were included in the training and validation sets. Comparative analysis was used to elucidate the distinct metabolites of cancer cachexia, while metabolic pathway analysis was employed to elucidate reprogramming pathways. Random forest, logistic regression, and receiver operating characteristic analyses were used to select and validate the biomarker metabolites and establish a diagnostic model. Results Forty‐six cancer cachexia patients, 22 pre‐cachectic patients, 68 weight‐stable cancer patients, and 48 healthy controls were included in the training set, and 38 cancer cachexia patients, 11 pre‐cachectic patients, 37 weight‐stable cancer patients, and 26 healthy controls were included in the validation set. All four groups were age‐matched and sex‐matched in the training set. Metabolomics analysis showed a clear separation of the four groups. Overall, 45 metabolites and 18 metabolic pathways were associated with cancer cachexia. Using random forest analysis, 15 of these metabolites were identified as highly discriminating between disease states. Logistic regression and receiver operating characteristic analyses were used to create a distinct diagnostic model with an area under the curve of 0.991 based on three metabolites. The diagnostic equation was Logit(P) = −400.53 – 481.88 × log(Carnosine) −239.02 × log(Leucine) + 383.92 × log(Phenyl acetate), and the result showed 94.64% accuracy in the validation set. Conclusions This metabolomics study revealed a distinct metabolic profile of cancer cachexia and established and validated a diagnostic model. This research provided a feasible diagnostic tool for identifying at‐risk populations through the detection of serum metabolites. PMID:29152916
A novel mice model of metabolic syndrome: the high-fat-high-fructose diet-fed ICR mice.
Zhuhua, Zhang; Zhiquan, Wang; Zhen, Yang; Yixin, Niu; Weiwei, Zhang; Xiaoyong, Li; Yueming, Liu; Hongmei, Zhang; Li, Qin; Qing, Su
2015-01-01
Currently, the metabolic syndrome (MS) is occurring at growing rates worldwide, raising extensive concerns on the mechanisms and therapeutic interventions for this disorder. Herein, we described a novel method of establishing MS model in rodents. Male Institute of Cancer Research (ICR) mice were fed with high-fat-high-fructose (HFHF) diet or normal chow (NC) respectively for 12 weeks. Metabolic phenotypes were assessed by glucose tolerance test, insulin tolerance test and hyperinsulinemic-euglycemic clamp. Blood pressure was measured by a tail-cuff system. At the end of the experiment, mice were sacrificed, and blood and tissues were harvested for subsequent analysis. Serum insulin levels were measured by ELISA, and lipid profiles were determined biochemically. The HFHF diet-fed ICR mice exhibited obvious characteristics of the components of MS, including obvious obesity, severe insulin resistance, hyperinsulinemia, dislipidemia, significant hypertension and hyperuricemia. Our data suggest that HFHF diet-fed ICR mice may be a robust and efficient animal model that could well mimic the basic pathogenesis of human MS.
Chng, Chiaw-Ling; Lim, Adoree Yi Ying; Tan, Hong Chang; Kovalik, Jean-Paul; Tham, Kwang Wei; Bee, Yong Mong; Lim, Weiying; Acharyya, Sanchalika; Lai, Oi Fah; Chong, Mary Foong-Fong; Yen, Paul Michael
2016-10-01
The serum metabolomic profile and its relationship to physiological changes during hyperthyroidism and restoration to euthyroidism are not known. This study aimed to examine the physiological, adipokine, and metabolomic changes that occur when subjects with Graves' disease transition from hyperthyroidism to euthyroidism with medical treatment. Chinese women between 21 and 50 years of age and with newly diagnosed Graves' disease attending the endocrine outpatient clinics in a single institution were recruited between July 2012 and September 2014. All subjects were treated with thioamides to achieve euthyroidism. Clinical parameters (body weight, body composition via bioelectrical impedance analysis, resting energy expenditure and respiratory quotient via indirect calorimetry, and reported total energy intake via 24 h food diary), biochemical parameters (thyroid hormones, lipid profile, fasting insulin and glucose levels), serum leptin, adiponectin, and metabolomics profiles were measured during hyperthyroidism and repeated in early euthyroidism. Twenty four Chinese women with an average age of 36.3 ± 8.6 years were included in the study. The average duration of treatment that was required to reach euthyroidism for these subjects was 38 ± 16.3 weeks. There was a significant increase in body weight (52.6 ± 9.0 kg to 55.3 ± 9.4 kg; p < 0.001) and fat mass (14.3 ± 6.9 kg to 16.8 ± 6.5 kg; p = 0.005). There was a reduction in resting energy expenditure corrected for weight (28.7 ± 4.0 kcal/kg to 21.5 ± 4.1 kcal/kg; p < 0.001) and an increase in respiratory quotient (0.76 to 0.81; p = 0.037). Resting energy expenditure increased significantly with increasing free triiodothyronine levels (p = 0.007). Significant increases in total cholesterol, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol were noted. There was no significant change in leptin levels, but adiponectin levels increased significantly (p = 0.018). Significant reductions in fasting C2, medium-chain, long-chain, and total acylcarnitines were observed, but no changes in the fat-free mass, branched chain amino acid levels, or insulin sensitivity during recovery from hyperthyroidism were noted. Serum metabolomics profile changes complemented the physiological changes observed during the transition from hyperthyroidism to euthyroidism. This study provides a comprehensive and integrated view of the changes in fuel metabolism and energy balance that occur following the treatment of hyperthyroidism.
Han, Bo La; Guan, Qiunong; Chafeeva, Irina; Mendelson, Asher A; Roza, Gerald da; Liggins, Richard; Kizhakkedathu, Jayachandran N; Du, Caigan
2018-05-12
Metabolic syndrome (MetS) is commonly observed among peritoneal dialysis (PD) patients, and hyperbranched polyglycerol (HPG) is a promising glucose-sparing osmotic agent for PD. However, the biocompatibility of a HPG-based PD solution (HPG) in subjects with MetS has not been investigated. This study compared the local and systemic effects of a HPG solution with conventional Physioneal (PYS) and Icodextrin (ICO) PD solutions in rats with MetS. Obese type 2 diabetic ZSF1 rats received a daily intraperitoneal injection of PD solutions (10 mL) for 3 months. The peritoneal membrane (PM) function was determined by ultrafiltration, and the systemic responses were determined by profiling blood metabolic substances, cytokines and oxidative status. Tissue damage was assessed by histology. At the end of the 3-month treatment with PD solutions, PM damage and ultrafiltration loss in both the PYS and ICO groups were greater than those in the HPG group. Blood analyses showed that compared to the baseline control, the rats in the HPG group exhibited a significant decrease only in serum albumin and IL-6 and a minor glomerular injury, whereas in both the PYS and ICO groups, there were more significant decreases in serum albumin, antioxidant activity, IL-6, KC/GRO (CXCL1) and TNF-α (in ICO only) as well as a mores substantial glomerular injury compared to the HPG group. Furthermore, PYS increased serum creatinine, serum glucose and urine production. In conclusion, compared to PYS or ICO solutions, the HPG solution had less adverse effects locally on the PM and systemically on distant organs (e.g., kidneys) and the plasma oxidative status in rats with MetS. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Leucine supplementation via drinking water reduces atherosclerotic lesions in apoE null mice
Zhao, Yang; Dai, Xiao-yan; Zhou, Zhou; Zhao, Ge-xin; Wang, Xian; Xu, Ming-jiang
2016-01-01
Aim: Recent evidence suggests that the essential amino acid leucine may be involved in systemic cholesterol metabolism. In this study, we investigated the effects of leucine supplementation on the development of atherosclerosis in apoE null mice. Methods: ApoE null mice were fed with chow supplemented with leucine (1.5% w/v) in drinking water for 8 week. Aortic atherosclerotic lesions were examined using Oil Red O staining. Plasma lipoprotein-cholesterol levels were measured with fast protein liquid chromatography. Hepatic gene expression was detected using real-time PCR and Western blot analyses. Results: Leucine supplementation resulted in 57.6% reduction of aortic atherosclerotic lesion area in apoE null mice, accompanied by 41.2% decrease of serum LDL-C levels and 40.2% increase of serum HDL-C levels. The body weight, food intake and blood glucose level were not affected by leucine supplementation. Furthermore, leucine supplementation increased the expression of Abcg5 and Abcg8 (that were involved in hepatic cholesterol efflux) by 1.28- and 0.86-fold, respectively, and significantly increased their protein levels. Leucine supplementation also increased the expression of Srebf1, Scd1 and Pgc1b (that were involved in hepatic triglyceride metabolism) by 3.73-, 1.35- and 1.71-fold, respectively. Consequently, leucine supplementation resulted in 51.77% reduction of liver cholesterol content and 2.2-fold increase of liver triglyceride content. Additionally, leucine supplementation did not affect the serum levels of IL-6, IFN-γ, TNF-α, IL-10 and IL-12, but markedly decreased the serum level of MCP-1. Conclusion: Leucine supplementation effectively attenuates atherosclerosis in apoE null mice by improving the plasma lipid profile and reducing systemic inflammation. PMID:26687933
Hoeke, Geerte; Nahon, Kimberly J; Bakker, Leontine E H; Norkauer, Sabine S C; Dinnes, Donna L M; Kockx, Maaike; Lichtenstein, Laeticia; Drettwan, Diana; Reifel-Miller, Anne; Coskun, Tamer; Pagel, Philipp; Romijn, Fred P H T M; Cobbaert, Christa M; Jazet, Ingrid M; Martinez, Laurent O; Kritharides, Leonard; Berbée, Jimmy F P; Boon, Mariëtte R; Rensen, Patrick C N
Cold exposure and β3-adrenergic receptor agonism, which both activate brown adipose tissue, markedly influence lipoprotein metabolism by enhancing lipoprotein lipase-mediated catabolism of triglyceride-rich lipoproteins and increasing plasma high-density lipoprotein (HDL) levels and functionality in mice. However, the effect of short-term cooling on human lipid and lipoprotein metabolism remained largely elusive. The objective was to assess the effect of short-term cooling on the serum lipoprotein profile and HDL functionality in men. Body mass index-matched young, lean men were exposed to a personalized cooling protocol for 2 hours. Before and after cooling, serum samples were collected for analysis of lipids and lipoprotein composition by 1 H-nuclear magnetic resonance. Adenosine triphosphate-binding cassette A1 (ABCA1)-mediated cholesterol efflux capacity of HDL was measured using [ 3 H]cholesterol-loaded ABCA1-transfected Chinese hamster ovary cells. Short-term cooling increased serum levels of free fatty acids, triglycerides, and cholesterol. Cooling increased the concentration of large very low-density lipoprotein (VLDL) particles accompanied by increased mean size of VLDL particles. In addition, cooling enhanced the concentration of small LDL and small HDL particles as well as the cholesterol levels within these particles. The increase in small HDL was accompanied by increased ABCA1-dependent cholesterol efflux in vitro. Our data show that short-term cooling increases the concentration of large VLDL particles and increases the generation of small LDL and HDL particles. We interpret that cooling increases VLDL production and turnover, which results in formation of surface remnants that form small HDL particles that attract cellular cholesterol. Copyright © 2017 National Lipid Association. Published by Elsevier Inc. All rights reserved.