Science.gov

Sample records for serum protein binding

  1. Erythropoietin binding protein from mammalian serum

    DOEpatents

    Clemons, G.K.

    1997-04-29

    Purified mammalian erythropoietin binding-protein is disclosed, and its isolation, identification, characterization, purification, and immunoassay are described. The erythropoietin binding protein can be used for regulation of erythropoiesis by regulating levels and half-life of erythropoietin. A diagnostic kit for determination of level of erythropoietin binding protein is also described. 11 figs.

  2. Erythropoietin binding protein from mammalian serum

    DOEpatents

    Clemons, Gisela K.

    1997-01-01

    Purified mammalian erythropoietin binding-protein is disclosed, and its isolation, identification, characterization, purification, and immunoassay are described. The erythropoietin binding protein can be used for regulation of erythropoiesis by regulating levels and half-life of erythropoietin. A diagnostic kit for determination of level of erythropoietin binding protein is also described.

  3. A new aspect of serum protein binding of tolbutamide.

    PubMed

    Ayanoğlu, G; Uihlein, M; Grigoleit, H G

    1986-02-01

    Tolbutamide is known to bind highly to serum proteins. Quite different values have, however, been reported for binding, ranging from 80 to 99 percent. In this study, in vivo and in vitro binding of increasing concentrations of tolbutamide to human serum proteins were evaluated. In vitro studies were done serum from three healthy males and for in vivo studies serum samples from eight healthy males who had received 1,000 mg tolbutamide were used. Protein binding was determined by equilibrium dialysis, using DIANORM system. Tolbutamide concentrations were determined by HPLC method of Uihlein and Hack. The results suggest that there is an increase in percent tolbutamide bound with increasing concentrations of tolbutamide. Generally, an inverse relationship between the total concentration of a drug in serum and its bound fraction is observed. Our findings seem to be contrary to this, at least within the concentration range studied. There exist at least two binding sites on albumin with different affinities for tolbutamide and most probably, at low concentrations, the drug binds mainly to the high affinity sites, whereas at higher concentrations additional drug will bind to the lower affinity sites leading to the observed increase in fraction bound with concentration. In conclusion it may be said that serum protein binding is a much more complicated phenomenon than generally stated and that the normal observations are only true for some ideal compounds where only one site of adsorption has to be taken into account.

  4. Grizzly bear corticosteroid binding globulin: Cloning and serum protein expression.

    PubMed

    Chow, Brian A; Hamilton, Jason; Alsop, Derek; Cattet, Marc R L; Stenhouse, Gordon; Vijayan, Mathilakath M

    2010-06-01

    Serum corticosteroid levels are routinely measured as markers of stress in wild animals. However, corticosteroid levels rise rapidly in response to the acute stress of capture and restraint for sampling, limiting its use as an indicator of chronic stress. We hypothesized that serum corticosteroid binding globulin (CBG), the primary transport protein for corticosteroids in circulation, may be a better marker of the stress status prior to capture in grizzly bears (Ursus arctos). To test this, a full-length CBG cDNA was cloned and sequenced from grizzly bear testis and polyclonal antibodies were generated for detection of this protein in bear sera. The deduced nucleotide and protein sequences were 1218 bp and 405 amino acids, respectively. Multiple sequence alignments showed that grizzly bear CBG (gbCBG) was 90% and 83% identical to the dog CBG nucleotide and amino acid sequences, respectively. The affinity purified rabbit gbCBG antiserum detected grizzly bear but not human CBG. There were no sex differences in serum total cortisol concentration, while CBG expression was significantly higher in adult females compared to males. Serum cortisol levels were significantly higher in bears captured by leg-hold snare compared to those captured by remote drug delivery from helicopter. However, serum CBG expression between these two groups did not differ significantly. Overall, serum CBG levels may be a better marker of chronic stress, especially because this protein is not modulated by the stress of capture and restraint in grizzly bears.

  5. Grizzly bear corticosteroid binding globulin: Cloning and serum protein expression.

    PubMed

    Chow, Brian A; Hamilton, Jason; Alsop, Derek; Cattet, Marc R L; Stenhouse, Gordon; Vijayan, Mathilakath M

    2010-06-01

    Serum corticosteroid levels are routinely measured as markers of stress in wild animals. However, corticosteroid levels rise rapidly in response to the acute stress of capture and restraint for sampling, limiting its use as an indicator of chronic stress. We hypothesized that serum corticosteroid binding globulin (CBG), the primary transport protein for corticosteroids in circulation, may be a better marker of the stress status prior to capture in grizzly bears (Ursus arctos). To test this, a full-length CBG cDNA was cloned and sequenced from grizzly bear testis and polyclonal antibodies were generated for detection of this protein in bear sera. The deduced nucleotide and protein sequences were 1218 bp and 405 amino acids, respectively. Multiple sequence alignments showed that grizzly bear CBG (gbCBG) was 90% and 83% identical to the dog CBG nucleotide and amino acid sequences, respectively. The affinity purified rabbit gbCBG antiserum detected grizzly bear but not human CBG. There were no sex differences in serum total cortisol concentration, while CBG expression was significantly higher in adult females compared to males. Serum cortisol levels were significantly higher in bears captured by leg-hold snare compared to those captured by remote drug delivery from helicopter. However, serum CBG expression between these two groups did not differ significantly. Overall, serum CBG levels may be a better marker of chronic stress, especially because this protein is not modulated by the stress of capture and restraint in grizzly bears. PMID:20347821

  6. Identification of Immunogenic and Serum Binding Proteins of Staphylococcus epidermidis

    PubMed Central

    Sellman, Bret R.; Howell, Alan P.; Kelly-Boyd, Cari; Baker, Steve M.

    2005-01-01

    Staphylococcus epidermidis is a commensal of human skin and a leading cause of nosocomial bloodstream infections. Limited information is available about S. epidermidis proteins that are expressed upon transition to the bloodstream or those involved in host-pathogen interactions. A cell surface fraction from S. epidermidis 0-47 grown in rabbit serum to mimic environmental signals encountered during a bloodstream infection was separated by two-dimensional (2D) gel electrophoresis. Following 2D separation, the proteins were transferred to nitrocellulose and detected with either pooled sera generated in rabbits immunized with live S. epidermidis 0-47 or with biotin-labeled serum proteins eluted from the surface of bacteria grown in rabbit serum. Twenty-nine immunoreactive or serum binding proteins of S. epidermidis were identified by mass spectrometry. Twenty-seven of the corresponding genes were expressed in Escherichia coli, and the purified recombinant proteins were used to immunize mice. In a preliminary screen, 12 of the 27 recombinant proteins induced a response that reduced the number of bacteria recovered from the spleen or bloodstream of infected mice. In subsequent vaccination studies, 5 of the 12 proteins resulted in a statistically significant reduction in the number of bacteria. The identification of five candidate vaccine antigens from the initial screen of only 29 proteins demonstrates the utility of this approach. PMID:16177335

  7. Biologically active protein fragments containing specific binding regions of serum albumin or related proteins

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C. (Inventor)

    1998-01-01

    In accordance with the present invention, biologically active protein fragments can be constructed which contain only those specific portions of the serum albumin family of proteins such as regions known as subdomains IIA and IIIA which are primarily responsible for the binding properties of the serum albumins. The artificial serums that can be prepared from these biologically active protein fragments are advantageous in that they can be produced much more easily than serums containing the whole albumin, yet still retain all or most of the original binding potential of the full albumin proteins. In addition, since the protein fragment serums of the present invention can be made from non-natural sources using conventional recombinant DNA techniques, they are far safer than serums containing natural albumin because they do not carry the potentially harmful viruses and other contaminants that will be found in the natural substances.

  8. Absence of serum growth hormone binding protein in patients with growth hormone receptor deficiency (Laron dwarfism)

    SciTech Connect

    Daughaday, W.H.; Trivedi, B.

    1987-07-01

    It has recently been recognized that human serum contains a protein that specifically binds human growth hormone (hGH). This protein has the same restricted specificity for hGH as the membrane-bound GH receptor. To determine whether the GH-binding protein is a derivative of, or otherwise related to, the GH receptor, the authors have examined the serum of three patients with Laron-type dwarfism, a condition in which GH refractoriness has been attributed to a defect in the GH receptor. The binding of /sup 125/I-labeled hGH incubated with serum has been measured after gel filtration of the serum through an Ultrogel AcA 44 minicolumn. Results are expressed as percent of specifically bound /sup 125/I-hGH and as specific binding relative to that of a reference serum after correction is made for endogenous GH. The mean +/- SEM of specific binding of sera from eight normal adults (26-46 years of age) was 21.6 +/- 0.45%, and the relative specific binding was 101.1 +/- 8.6%. Sera from 11 normal children had lower specific binding of 12.5 +/- 1.95% and relative specific binding of 56.6 +/- 9.1%. Sera from three children with Laron-type dwarfism lacked any demonstrable GH binding, whereas sera from 10 other children with other types of nonpituitary short stature had normal relative specific binding. They suggest that the serum GH-binding protein is a soluble derivative of the GH receptor. Measurement of the serum GH-binding protein may permit recognition of other abnormalities of the GH receptor.

  9. THE INFLUENCE OF SERUM BINDING PROTEINS AND CLEARANCE ON THE COMPARATIVE RECEPTOR BINDING POTENCY OF ENDOCRINE ACTIVE COMPOUNDS

    EPA Science Inventory

    THE INFLUENCE OF SERUM BINDING PROTEINS AND CLEARANCE ON THE COMPARATIVE RECEPTOR BINDING POTENCY OF ENDOCRINE ACTIVE COMPOUNDS. JG Teeguarden1 and HA Barton2. 1ENVIRON International, Ruston LA; 2US EPA, ORD, NHEERL, ETD, Pharmacokinetics Branch, RTP, NC.

    One measure of th...

  10. Fatty acid-binding site environments of serum vitamin D-binding protein and albumin are different

    PubMed Central

    Swamy, Narasimha; Ray, Rahul

    2008-01-01

    Vitamin D-binding protein (DBP) and albumin (ALB) are abundant serum proteins and both possess high-affinity binding for saturated and unsaturated fatty acids. However, certain differences exist. We surmised that in cases where serum albumin level is low, DBP presumably can act as a transporter of fatty acids. To explore this possibility we synthesized several alkylating derivatives of 14C-palmitic acid to probe the fatty acid binding pockets of DBP and ALB. We observed that N-ethyl-5-phenylisooxazolium-3′-sulfonate-ester (WRK ester) of 14C-palmitic acid specifically labeled DBP; but p-nitrophenyl- and N-hydroxysuccinimidyl-esters failed to do so. However, p-nitrophenyl ester of 14C-palmitic acid specifically labeled bovine ALB, indicating that the micro-environment of the fatty acid-binding domains of DBP and ALB may be different; and DBP may not replace ALB as a transporter of fatty acids. PMID:18374965

  11. Serum amyloid A is a retinol binding protein that transports retinol during bacterial infection.

    PubMed

    Derebe, Mehabaw G; Zlatkov, Clare M; Gattu, Sureka; Ruhn, Kelly A; Vaishnava, Shipra; Diehl, Gretchen E; MacMillan, John B; Williams, Noelle S; Hooper, Lora V

    2014-07-29

    Retinol plays a vital role in the immune response to infection, yet proteins that mediate retinol transport during infection have not been identified. Serum amyloid A (SAA) proteins are strongly induced in the liver by systemic infection and in the intestine by bacterial colonization, but their exact functions remain unclear. Here we show that mouse and human SAAs are retinol binding proteins. Mouse and human SAAs bound retinol with nanomolar affinity, were associated with retinol in vivo, and limited the bacterial burden in tissues after acute infection. We determined the crystal structure of mouse SAA3 at a resolution of 2 Å, finding that it forms a tetramer with a hydrophobic binding pocket that can accommodate retinol. Our results thus identify SAAs as a family of microbe-inducible retinol binding proteins, reveal a unique protein architecture involved in retinol binding, and suggest how retinol is circulated during infection.

  12. Binding of labeled thyroxin analog to serum proteins evaluated after radioimmunoassay of free thyroxin

    SciTech Connect

    Arevalo, G.

    1989-03-01

    In ambulatory patients, assay of free thyroxin (FT4) in serum correlates well with thyroid status and with results obtained by equilibrium dialysis. The validity of FT4 results has been questioned mainly in euthyroid patients with altered concentrations of thyroid hormone-binding proteins, as in nonthyroidal illness, hereditary analbuminemia, familial dysalbuminemic hyperthyroxinemia (FDH), and the presence of iodothyronine-binding antibodies. I present here a study of the binding of (/sup 125/I)T4-derivative to serum proteins in the supernate, which is ordinarily discarded after determination of FT4 by one-step radioimmunoassay with dextran-coated charcoal used to separate the free and bound fractions. The results are expressed as a ratio, with results for a normal serum pool as reference. The average ratio was high in hyperthyroid subjects, 1.26 (SD 0.12, n = 25), and in hypoalbuminemia, 1.20 (SD 0.10, n = 15), and low in FDH, 0.62 (SD 0.11, n = 9), and hypothyroid subjects, 0.90 (SD 0.06, n = 20). In normal individuals it was 0.98 (SD 0.05, n = 30). Determination of the analog-binding rate complements the FT4 result and allows for the recognition of cases with abnormal binding by serum proteins, without recourse to other tests recommended for thyroid-function studies.

  13. Cellular Binding of Anionic Nanoparticles is Inhibited by Serum Proteins Independent of Nanoparticle Composition.

    PubMed

    Fleischer, Candace C; Kumar, Umesh; Payne, Christine K

    2013-09-01

    Nanoparticles used in biological applications encounter a complex mixture of extracellular proteins. Adsorption of these proteins on the nanoparticle surface results in the formation of a "protein corona," which can dominate the interaction of the nanoparticle with the cellular environment. The goal of this research was to determine how nanoparticle composition and surface modification affect the cellular binding of protein-nanoparticle complexes. We examined the cellular binding of a collection of commonly used anionic nanoparticles: quantum dots, colloidal gold nanoparticles, and low-density lipoprotein particles, in the presence and absence of extracellular proteins. These experiments have the advantage of comparing different nanoparticles under identical conditions. Using a combination of fluorescence and dark field microscopy, flow cytometry, and spectroscopy, we find that cellular binding of these anionic nanoparticles is inhibited by serum proteins independent of nanoparticle composition or surface modification. We expect these results will aid in the design of nanoparticles for in vivo applications.

  14. Identification of transferrin as the principal neptunium-binding protein in the blood serum of rats.

    PubMed

    Wirth, R; Taylor, D M; Duffield, J

    1985-01-01

    The binding of 239Np(V) to blood serum components of rats was examined in vivo and in vitro. After gel filtration of the serum using a Sephacryl S-300 column, 98% of the applied activity appeared with protein fractions representing coeluted albumins and transferrin. A separation of the albumin- and transferrin-proteins by ion-exchange chromatography using DEAE-cellulose showed the 239Np being entirely bound to the iron-carrier protein transferrin. The high elution yields from the ion-exchange columns, greater than 90%, suggest that the binding may be quite strong. The binding capacity of transferrin for neptunium in vivo was found to decline when the iron level in blood serum was increased. Precipitation experiments showed that 84 +/- 2% of the 239Np was precipitated with 10% (w/v) trichloracetic acid, 77 +/- 3% with 90% ethanol but only 6 +/- 1% with saturated ammonium sulphate at pH 7.4. The available data indicate that as for plutonium, thorium, americium and curium, the iron transport protein, transferrin, may be the main carrier protein for neptunium in mammalian blood serum.

  15. Identification of (L)-fucose-binding proteins from the Nile tilapia (Oreochromis niloticus L.) serum.

    PubMed

    Argayosa, Anacleto M; Lee, Yuan C

    2009-09-01

    Lectins are carbohydrate-binding proteins with many biological functions including cellular recognition and innate immunity. In this study, a major l-fucose-binding lectin from the serum of Nile tilapia (Oreochromis niloticus L.), designated as TFBP, was isolated by l-fucose-BSA Sepharose CL6B affinity chromatography. The SDS-PAGE (10%) analysis of TFBP revealed a major band of approximately 23 kDa with an N-terminal amino acid sequence of DQTETAGQQSXPQDIHAVLREL which did not give significant similarities to the protein databases using BLASTp searches. Ruthenium red staining indicate positive calcium-binding property of TFBP. The purified TFBP agglutinated human type O erythrocytes but not the type A and B fresh erythrocytes. Live Aeromonas hydrophila and Enterococcus faecalis cells were also agglutinated by the lectin. The fucose-binding proteins were detected in the soluble protein extracts from the gills, gut, head kidneys, liver, serum and spleen using a fucose-binding protein probe (l-fucose-BSA-horseradish peroxidase). The binding of TFBP with the l-fucose-BSA probe was inhibited by l-fucose but not by alpha-methyl-d-mannose.

  16. Isomer-Specific Binding Affinity of Perfluorooctanesulfonate (PFOS) and Perfluorooctanoate (PFOA) to Serum Proteins.

    PubMed

    Beesoon, Sanjay; Martin, Jonathan W

    2015-05-01

    Perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) are among the most prominent contaminants in human serum, and these were historically manufactured as technical mixtures of linear and branched isomers. The isomers display unique pharmacokinetics in humans and in animal models, but molecular mechanisms underlying isomer-specific PFOS and PFOA disposition have not previously been studied. Here, ultrafiltration devices were used to examine (i) the dissociation constants (Kd) of individual PFOS and PFOA isomers with human serum albumin (HSA) and (ii) relative binding affinity of isomers in technical mixtures spiked to whole calf serum and human serum. Measurement of HSA Kd's demonstrated that linear PFOS (Kd=8(±4)×10(-8) M) was much more tightly bound than branched PFOS isomers (Kd range from 8(±1)×10(-5) M to 4(±2)×10(-4) M). Similarly, linear PFOA (Kd=1(±0.9)×10(-4) M) was more strongly bound to HSA compared to branched PFOA isomers (Kd range from 4(±2)×10(-4) M to 3(±2)×10(-4) M). The higher binding affinities of linear PFOS and PFOA to total serum protein were confirmed when both calf serum and human serum were spiked with technical mixtures. Overall, these data provide a mechanistic explanation for the longer biological half-life of PFOS in humans, compared to PFOA, and for the higher transplacental transfer efficiencies and renal clearance of branched PFOS and PFOA isomers, compared to the respective linear isomer.

  17. Low protein-high carbohydrate diet induces alterations in the serum thyronine-binding proteins in the rat.

    PubMed

    Young, R A; Braverman, L E; Rajatanavin, R

    1982-05-01

    The serum T3 concentration was increased in 8-week-old lean Zucker rats fed a low protein-high carbohydrate diet for 2 weeks. This increase was secondary to the generation of a binding protein migrating in the postalbumin zone in polyacrylamide gel electrophoresis employing 125I-labeled T3 and is termed rat thyronine-binding globulin. The presence of this T3-binding protein in serum resulted in a marked decrease in the percent free T3 assessed by equilibrium dialysis and a normal free T3 concentration. An increase in the binding of T4 in the postalbumin zone was also observed, but no changes in the dialyzable fraction of T4 or the total and free T4 concentrations occurred. In contrast to these findings in lean Zucker rats fed the low protein-high carbohydrate diet, no change in the pattern of 125I-labeled T3 and T4 binding, the dialyzable fraction of T3 or T4, or total and free T3 or T4 concentrations were observed in the obese Zucker rats fed this diet. The present findings suggest that diet-induced alterations in thyroid hormone-binding proteins must be considered in the interpretation of data which involve alterations in total thyroid hormone concentrations in serum and their role in affecting tissue metabolism.

  18. Association of androgen with gender difference in serum adipocyte fatty acid binding protein levels

    PubMed Central

    Hu, Xiang; Ma, Xiaojing; Pan, Xiaoping; Luo, Yuqi; Xu, Yiting; Xiong, Qin; Bao, Yuqian; Jia, Weiping

    2016-01-01

    Clinical investigations have indicated women have higher levels of adipocyte fatty acid binding protein (A-FABP) than men. The present study aimed to identify factors related to gender difference in serum A-FABP levels. A total of 507 participants (194 men, 132 premenopausal women, and 181 postmenopausal women) were enrolled in the present study. Serum A-FABP levels increased in the order from men to premenopausal women to postmenopausal women in both body mass index categories (<25.0 and ≥25.0 kg/m2; all P < 0.05). Multiple stepwise regression analyses showed that after adjustment for factors related to serum A-FABP levels, the trunk fat mass was an independent and positive factor of serum A-FABP levels. For men, total testosterone was associated independently and inversely with serum A-FABP levels. For pre- and postmenopausal women, bioavailable testosterone and total testosterone were independent and positive factors associated with serum A-FABP levels, respectively. The present study demonstrated that the androgen was correlated with the serum A-FABP levels negatively in men, but positively in women. With these effects on the fat content, especially trunk fat, androgen might contribute to the gender difference in serum A-FABP levels. PMID:27270834

  19. A human serum mannose-binding protein inhibits in vitro infection by the human immunodeficiency virus

    PubMed Central

    1989-01-01

    In vitro infection by the human immunodeficiency virus (HIV) of CD4+ H9 lymphoblasts is inhibited by a mannose-binding protein (MBP) purified from human serum. In addition, MBP is able to selectively bind to HIV- infected H9 cells and HIV-infected cells from the monocyte cell line U937. These results indicate MBP most likely recognizes high mannose glycans known to be present on gp120 in the domain that is recognized by CD4 and thereby inhibits viral entry to susceptible cells. In support of this contention, recombinant gp120 binds directly to MBP; the binding is saturable, mannan inhibitable, removed by N-glycanase treatment, and dependent on divalent cations. PMID:2909656

  20. Serum Mac-2 binding protein is a novel biomarker for chronic pancreatitis

    PubMed Central

    Maekawa, Tomohiro; Kamada, Yoshihiro; Ebisutani, Yusuke; Ueda, Makiko; Hata, Tomoki; Kawamoto, Koichi; Takamatsu, Shinji; Mizutani, Kayo; Shimomura, Mayuka; Sobajima, Tomoaki; Fujii, Hironobu; Nakayama, Kotarosumitomo; Nishino, Kimihiro; Yamada, Makoto; Kumada, Takashi; Ito, Toshifumi; Eguchi, Hidetoshi; Nagano, Hiroaki; Miyoshi, Eiji

    2016-01-01

    AIM: To determine the efficacy of Mac-2 binding protein (Mac-2bp) for diagnosis of chronic pancreatitis. METHODS: Fifty-nine healthy volunteers (HV), 162 patients with chronic pancreatitis (CP), and 94 patients with pancreatic ductal adenocarcinoma (PDAC) were enrolled in this study. We measured serum Mac-2bp using our developed enzyme-linked immunosorbent assay kit. Additional biochemical variables were measured using an automated analyzer (including aminotransferase, alanine aminotransferase, γ-glutamyltransferase, alkaline phosphatase, triglyceride, C-reactive protein, and amylase levels) or chemiluminescent enzyme immunoassay (carbohydrate antigen 19-9 and carcinoembryonic antigen). The ability of Mac-2bp to predict CP diagnosis accurately was assessed using receiver operating characteristic (ROC) analyses. RESULTS: Serum Mac-2bp levels were significantly increased in CP patients compared to HV (P < 0.0001) and PDAC patients (P < 0.0001). Area under the ROC curve values of Mac-2bp for the discrimination of CP from HV and PDAC were 0.727 and 0.784, respectively. Multivariate analyses demonstrated that serum Mac-2bp levels were independent determinants for CP diagnosis from HV and PDAC patients. Immunohistological staining showed that Mac-2bp was expressed faintly in the pancreas tissues of both CP and PDAC patients. Serum aspartate aminotransferase, alanine aminotransferase, γ-glutamyltransferase, alkaline phosphatase, and triglyceride levels were significantly higher in patients with CP or PDAC. Serum Mac-2bp levels were highly correlated with protein levels of alanine aminotransferase, γ-glutamyltransferase, and C-reactive protein, but not amylase, suggesting that the damaged liver produces Mac-2bp. CONCLUSION: Measurement of serum Mac-2bp may be a novel and useful biomarker for CP diagnosis as well as liver fibrosis in the general population. PMID:27158210

  1. Hypophysectomy eliminates and growth hormone (GH) maintains the midpregnancy elevation in GH receptor and serum binding protein in the mouse

    SciTech Connect

    Sanchez-Jimenez, F.; Fielder, P.J.; Martinez, R.R.; Smith, W.C.; Talamantes, F. )

    1990-02-01

    ({sup 125}I)Iodomouse GH (({sup 125}I)iodo-mGH) binding to samples of serum and hepatic microsomal membranes was measured in hypophysectomized pregnant, sham-operated pregnant, intact pregnant, and intact adult virgin mice. Surgeries were carried out on day 11 of pregnancy, and the animals were killed on day 14. The binding of mGH to both serum and hepatic microsomal membranes of intact virgin mice was much lower than to those of intact pregnant mice. In hypophysectomized mice, the mGH-binding capacity of both serum and hepatic microsomes decreased to values similar to those of nonpregnant mice. No significant differences were observed between intact and sham-operated pregnant animals in the maternal serum mGH concentration, the serum GH-binding protein concentration, or the hepatic GH receptor concentration. GH receptor and binding protein-encoding mRNAs were also higher in intact and sham-operated pregnant mice than in virgin and hypophysectomized mice. Hypophysectomized mice were treated with 200 micrograms/day bovine GH, administered by osmotic minipump; after 3 days of treatment, a significant elevation of hepatic GH receptor and serum GH-binding protein levels was observed. These results demonstrate an up-regulation of hepatic GH receptors and serum GH-binding protein by GH during pregnancy in the mouse.

  2. Monte carlo method-based QSAR modeling of penicillins binding to human serum proteins.

    PubMed

    Veselinović, Jovana B; Toropov, Andrey A; Toropova, Alla P; Nikolić, Goran M; Veselinović, Aleksandar M

    2015-01-01

    The binding of penicillins to human serum proteins was modeled with optimal descriptors based on the Simplified Molecular Input-Line Entry System (SMILES). The concentrations of protein-bound drug for 87 penicillins expressed as percentage of the total plasma concentration were used as experimental data. The Monte Carlo method was used as a computational tool to build up the quantitative structure-activity relationship (QSAR) model for penicillins binding to plasma proteins. One random data split into training, test and validation set was examined. The calculated QSAR model had the following statistical parameters: r(2)  = 0.8760, q(2)  = 0.8665, s = 8.94 for the training set and r(2)  = 0.9812, q(2)  = 0.9753, s = 7.31 for the test set. For the validation set, the statistical parameters were r(2)  = 0.727 and s = 12.52, but after removing the three worst outliers, the statistical parameters improved to r(2)  = 0.921 and s = 7.18. SMILES-based molecular fragments (structural indicators) responsible for the increase and decrease of penicillins binding to plasma proteins were identified. The possibility of using these results for the computer-aided design of new penicillins with desired binding properties is presented.

  3. Marsupial and monotreme serum immunoglobulin binding by proteins A, G and L and anti-kangaroo antibody.

    PubMed

    Vaz, Paola K; Hartley, Carol A; Browning, Glenn F; Devlin, Joanne M

    2015-12-01

    Serological studies are often conducted to examine exposure to infectious agents in wildlife populations. However, specific immunological reagents for wildlife species are seldom available and can limit the study of infectious diseases in these animals. This study examined the ability of four commercially available immunoglobulin-binding reagents to bind serum immunoglobulins from 17 species within the Marsupialia and Monotremata. Serum samples were assessed for binding, using immunoblots and ELISAs (Enzyme-linked immunosorbent assays), to three microbially-derived proteins - staphylococcal protein A, streptococcal protein G and peptostreptococcal protein L. Additionally, an anti-kangaroo antibody was included for comparison. The inter- and intra-familial binding patterns of the reagents to serum immunoglobulins varied and evolutionary distance between animal species was not an accurate predictor of the ability of reagents to bind immunoglobulins. Results from this study can be used to inform the selection of appropriate immunological reagents in future serological studies in these clades.

  4. Marsupial and monotreme serum immunoglobulin binding by proteins A, G and L and anti-kangaroo antibody.

    PubMed

    Vaz, Paola K; Hartley, Carol A; Browning, Glenn F; Devlin, Joanne M

    2015-12-01

    Serological studies are often conducted to examine exposure to infectious agents in wildlife populations. However, specific immunological reagents for wildlife species are seldom available and can limit the study of infectious diseases in these animals. This study examined the ability of four commercially available immunoglobulin-binding reagents to bind serum immunoglobulins from 17 species within the Marsupialia and Monotremata. Serum samples were assessed for binding, using immunoblots and ELISAs (Enzyme-linked immunosorbent assays), to three microbially-derived proteins - staphylococcal protein A, streptococcal protein G and peptostreptococcal protein L. Additionally, an anti-kangaroo antibody was included for comparison. The inter- and intra-familial binding patterns of the reagents to serum immunoglobulins varied and evolutionary distance between animal species was not an accurate predictor of the ability of reagents to bind immunoglobulins. Results from this study can be used to inform the selection of appropriate immunological reagents in future serological studies in these clades. PMID:26523413

  5. Regulation of inflammation-primed activation of macrophages by two serum factors, vitamin D3-binding protein and albumin.

    PubMed Central

    Yamamoto, N; Kumashiro, R; Yamamoto, M; Willett, N P; Lindsay, D D

    1993-01-01

    A very small amount (0.0005 to 0.001%) of an ammonium sulfate [50% saturated (NH4)2SO4]-precipitable protein fraction of alpha 2-globulin efficiently supported inflammation-primed activation of macrophages. This fraction contains vitamin D3-binding protein essential for macrophage activation. Comparative macrophage activation studies with fetal calf serum, alpha 2-globulin fraction, 50% (NH4)2SO4 precipitate, and purified bovine vitamin D3-binding protein revealed that fetal calf serum and alpha 2-globulin fraction appear to contain an inhibitor for macrophage activation while ammonium sulfate precipitate contains no inhibitor. This inhibitor was found to be serum albumin. When bovine serum albumin (25 micrograms/ml) was added to a medium supplemented with 0.0005 to 0.05% (NH4)2SO4 precipitate or 1 to 10 ng of vitamin D3-binding protein per ml, activation of macrophages was inhibited. PMID:8225612

  6. Structural modification of serum vitamin D3-binding protein and immunosuppression in AIDS patients.

    PubMed

    Yamamoto, N; Naraparaju, V R; Srinivasula, S M

    1995-11-01

    A serum glycoprotein, vitamin D3-binding protein (Gc protein), can be converted by beta-galactosidase of stimulated B lymphocytes and sialidase of T lymphocytes to a potent macrophage-activating factor (MAF), a protein with N-acetylgalactosamine as the remaining sugar moiety. Thus, Gc protein is a precursor for MAF. Treatment of purified Gc protein with immobilized beta-galactosidase and sialidase generates an extremely high-titered MAF (GcMAF). When peripheral blood monocytes/macrophages of 46 HIV-infected patients were treated with GcMAF (100 pg/ml), the monocytes/macrophages of all patients were efficiently activated. However, the MAF precursor activity of plasma Gc protein was low in 16 (35%) of of these patients. Loss of the MAF precursor activity appeared to be due to deglycosylation of plasma Gc protein by alpha-N-acetylgalactosaminidase found in the patient blood stream. Levels of plasma alpha-N-acetylgalactosaminidase activity in individual patients had an inverse correlation with the MAF precursor activity of their plasma Gc protein. Thus, precursor activity of Gc protein and alpha-N-acetylgalactosaminidase activity in patient blood can serve as diagnostic and prognostic indices. PMID:8573395

  7. Deglycosylation of serum vitamin D3-binding protein leads to immunosuppression in cancer patients.

    PubMed

    Yamamoto, N; Naraparaju, V R; Asbell, S O

    1996-06-15

    Serum vitamin D3-binding protein (Gc protein) can be converted by beta-galactosidase of B cells and sialidase of T cells to a potent macrophage activating factor, a protein with N-acetylgalactosamine as the remaining sugar moiety. Thus, Gc protein is the precursor of the macrophage activating factor (MAF). Treatment of Gc protein with immobilized beta-galactosidase and sialidase generates an extremely high titered MAF, Gc-MAF. When peripheral blood monocytes/macrophages of 52 patients bearing various types of cancer were incubated with 100 pg/ml of GcMAF, the monocytes/macrophages of all patients were efficiently activated. However, the MAF precursor activity of patient plasma Gc protein was found to be severely reduced in about 25% of this patient population. About 45% of the patients had moderately reduced MAF precursor activities. Loss of the precursor activity was found to be due to deglycosylation of plasma Gc protein by alpha-N-acetylgalactosaminidase detected in the patient's bloodstream. The source of the enzyme appeared to be cancerous cells. Radiation therapy decreased plasma alpha-N-acetylgalactosaminidase activity with concomitant increase of precursor activity. This implies that radiation therapy decreases the number of cancerous cells capable of secreting alpha-N-acetylgalactosaminidase. Both alpha-N-acetylgalactosaminidase activity and MAF precursor activity of Gc protein in patient bloodstream can serve as diagnostic and prognostic indices. PMID:8665521

  8. THE INFLUENCE OF SERUM BINDING PROTEINS AND FEEDBACK CONTROL OF SERUM ESTRADIOL LEVELS ON THE COMPARATIVE POTENCY OF ENDOCRINE ACTIVE COMPOUNDS

    EPA Science Inventory

    THE INFLUENCE OF SERUM BINDING PROTEINS ON THE COMPARATIVE RECEPTOR BINDING POTENCY OF ENDOCRINE ACTIVE COMPOUNDS. JG Teeguarden1 and HA Barton2. 1ICF Consulting, Research Triangle Park NC; 2US EPA, ORD, NHEERL, ETD, Pharmacokinetics Branch, RTP, NC.

    Accurate comparison of...

  9. Association of serum retinol binding protein 4 and insulin resistance in apparently healthy adolescents.

    PubMed

    Lee, Duk-Chul; Lee, Ji-Won; Im, Jee-Aee

    2007-03-01

    Insulin resistance constitutes a pathophysiologic link between obesity, atherosclerosis, and/or cardiovascular complications. Retinol binding protein 4 (RBP4) is a newly discovered adipocyte product that modulates glucose metabolism and consequently induces insulin resistance. We investigated the association between serum RBP4 levels and insulin resistance in obese and nonobese adolescents. A total of 87 nonobese (60 males and 27 females) and 85 obese (62 males and 23 females) apparently healthy adolescents, 12 to 18 years old, were included in this study. A questionnaire was used to obtain participant medical history and lifestyle information, such as smoking and alcohol ingestion habits. Subjects' anthropometric measurements were taken to calculate for body mass index and waist-to-hip ratio. Serum RBP4 levels were measured by an enzyme immunoassay kit. High-sensitivity C-reactive protein, fasting glucose, total cholesterol, triglycerides, high-density lipoprotein cholesterol, and fasting insulin were measured. Low-density lipoprotein cholesterol level and homeostatic model assessment of insulin resistance (HOMA-IR) were calculated. Males had significantly higher RBP4 levels than females. Serum RBP4 levels were significantly higher in the obese group compared with the nonobese group. In all subjects, RBP4 was positively correlated with adiposity index (body mass index, waist circumference, waist-to-hip ratio), systolic and diastolic blood pressures, glucose tolerance index (fasting glucose, insulin, HOMA-IR), lipid profile (total cholesterol, triglycerides), and inflammatory indices (high-sensitivity C-reactive protein, white blood cell count). In multiple linear regression analysis, RBP4 was independently associated with age, HOMA-IR, and triglyceride levels in the nonobese group and with sex and triglyceride levels in the obese group. These results suggest that serum RBP4 might have clinical implications for lipid metabolism and insulin action in adolescents.

  10. Is serum retinol binding protein-4: A predictor for diabetes in genetically high risk population?

    PubMed Central

    Bose, K. Subhash Chandra; Gupta, Shachin K.; Singh, Sandeep

    2012-01-01

    Background: Retinol binding protein-4 (BP-4) a new adipocytokine, specifically binds to retinol, through experimental studies, reported its link between obesity and insulin resistance (IR). But till date no studies are available on influence of genetic predisposition of diabetes on RBP-4 expression. Hence, we aimed to study the influence of genetic predisposition of diabetes on the serum RBP-4 and its role in development of IR and diabetes in genetically high risk population. Materials and Methods: Healthy non diabetic individuals (age 18 to 22) were grouped into Group I: Control (n = 81), whose parents are non diabetic, non hypertensive and does not have any family history of coronary heart diseases. Group II: (n = 157) with one of their parents diabetic and Group III: (n = 47) with both parents diabetic. In all the participants, we estimated fasting serum RBP-4, insulin and glucose. Homeostasis model for assessment-insulin resistance (HOMA-IR) and homeostasis model for assessment-beta cell dysfunction (HOMA-B) were calculated from fasting serum insulin and glucose levels. Results: In this study, we observed significantly higher RBP-4 levels 12.71 ± 2.3 in Group-II and 13.25 ± 2 in Group-III, respectively when compared to Group-I 11.4 ± 1.8 (P < 0.01). RBP-4 showed a significantly strong positive correlation with plasma insulin, glucose and HOMA-IR in genetically high risk population (group II and III) P < 0.01. Linear regression analysis revealed a strong positive association of RBP-4 with parental diabetes even after adjusting for BMI, age and sex (OR 1.53, 95% CI 1.089-1.40). Conclusion: Higher serum RBP-4 and its positive correlation with Insulin, glucose, and HOMA-IR in healthy non diabetic participants of genetically high risk population, indicating its role as predictor for the onset of diabetes in coming future. PMID:23833574

  11. Liver Retinol Transporter and Receptor for Serum Retinol-binding Protein (RBP4)*

    PubMed Central

    Alapatt, Philomena; Guo, Fangjian; Komanetsky, Susan M.; Wang, Shuping; Cai, Jinjin; Sargsyan, Ashot; Rodríguez Díaz, Eduardo; Bacon, Brandon T.; Aryal, Pratik; Graham, Timothy E.

    2013-01-01

    Vitamin A (retinol) is absorbed in the small intestine, stored in liver, and secreted into circulation bound to serum retinol-binding protein (RBP4). Circulating retinol may be taken up by extrahepatic tissues or recycled back to liver multiple times before it is finally metabolized or degraded. Liver exhibits high affinity binding sites for RBP4, but specific receptors have not been identified. The only known high affinity receptor for RBP4, Stra6, is not expressed in the liver. Here we report discovery of RBP4 receptor-2 (RBPR2), a novel retinol transporter expressed primarily in liver and intestine and induced in adipose tissue of obese mice. RBPR2 is structurally related to Stra6 and highly conserved in vertebrates, including humans. Expression of RBPR2 in cultured cells confers high affinity RBP4 binding and retinol transport, and RBPR2 knockdown reduces RBP4 binding/retinol transport. RBPR2 expression is suppressed by retinol and retinoic acid and correlates inversely with liver retinol stores in vivo. We conclude that RBPR2 is a novel retinol transporter that potentially regulates retinol homeostasis in liver and other tissues. In addition, expression of RBPR2 in liver and fat suggests a possible role in mediating established metabolic actions of RBP4 in those tissues. PMID:23105095

  12. ANALYSIS OF DRUG-PROTEIN BINDING BY ULTRAFAST AFFINITY CHROMATOGRAPHY USING IMMOBILIZED HUMAN SERUM ALBUMIN

    PubMed Central

    Mallik, Rangan; Yoo, Michelle J.; Briscoe, Chad J.; Hage, David S.

    2010-01-01

    Human serum albumin (HSA) was explored for use as a stationary phase and ligand in affinity microcolumns for the ultrafast extraction of free drug fractions and the use of this information for the analysis of drug-protein binding. Warfarin, imipramine, and ibuprofen were used as model analytes in this study. It was found that greater than 95% extraction of all these drugs could be achieved in as little as 250 ms on HSA microcolumns. The retained drug fraction was then eluted from the same column under isocratic conditions, giving elution in less than 40 s when working at 4.5 mL/min. The chromatographic behavior of this system gave a good fit with that predicted by computer simulations based on a reversible, saturable model for the binding of an injected drug with immobilized HSA. The free fractions measured by this method were found to be comparable to those determined by ultrafiltration, and equilibrium constants estimated by this approach gave good agreement with literature values. Advantages of this method include its speed and the relatively low cost of microcolumns that contain HSA. The ability of HSA to bind many types of drugs also creates the possibility of using the same affinity microcolumn to study and measure the free fractions for a variety of pharmaceutical agents. These properties make this technique appealing for use in drug binding studies and in the high-throughput screening of new drug candidates. PMID:20227701

  13. Serum vitamin D, vitamin D binding protein, and lung cancer survival

    PubMed Central

    Anic, Gabriella M.; Weinstein, Stephanie J.; Mondul, Alison M.; Männistö, Satu; Albanes, Demetrius

    2014-01-01

    Objectives Vitamin D may prolong cancer survival by inhibiting tumor progression and metastasis, however, there are limited epidemiologic studies regarding the association between circulating 25-hydroxyvitamin D (25(OH)D) and lung cancer survival. The aim of this study was to examine the relationship between serum 25(OH)D and lung cancer specific survival and to evaluate whether vitamin D binding protein (DBP) concentration modified this association. Materials and Methods 25(OH)D and DBP were measured in fasting serum samples from 500 male lung cancer cases in the Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study. Cox proportional hazards regression was used to estimate hazard ratios (HRs) and 95% confidence intervals (CI) for lung cancer related death according to quartiles of season-specific 25(OH)D, DBP, and the molar ratio of 25(OH)D:DBP, a proxy for free circulating 25(OH)D. Results Comparing highest to lowest quartiles, serum 25(OH)D (HR=1.18; 95% CI: 0.89–1.56) and DBP (HR=0.95; 95% CI: 0.71–1.26) were not associated with lung cancer survival and DBP concentration did not modify the association with 25(OH)D (p for interaction=0.56). There was suggestion of an association between higher serum 25(OH)D and better survival from adenocarcinoma (HR=0.64; 95% CI: 0.17–2.45) and small cell carcinoma (HR=0.55; 95% CI: 0.21–1.45), but these estimates were based on a relatively small number of cases. Conclusion Serum 25(OH)D was not associated with overall lung cancer survival regardless of DBP concentration, however, these findings should be examined in other studies that include women and subjects with higher 25(OH)D levels. PMID:25456734

  14. Serum Galectin-9 and Galectin-3-Binding Protein in Acute Dengue Virus Infection

    PubMed Central

    Liu, Kuan-Ting; Liu, Yao-Hua; Chen, Yen-Hsu; Lin, Chun-Yu; Huang, Chung-Hao; Yen, Meng-Chi; Kuo, Po-Lin

    2016-01-01

    Dengue fever is a serious threat for public health and induces various inflammatory cytokines and mediators, including galectins and glycoproteins. Diverse immune responses and immunological pathways are induced in different phases of dengue fever progression. However, the status of serum galectins and glycoproteins is not fully determined. The aim of this study was to investigate the serum concentration and potential interaction of soluble galectin-1, galectin-3, galectin-9, galectin-3 binding protein (galectin-3BP), glycoprotein 130 (gp130), and E-, L-, and P-selectin in patients with dengue fever in acute febrile phase. In this study, 317 febrile patients (187 dengue patients, 150 non-dengue patients that included 48 patients with bacterial infection and 102 patients with other febrile illness) who presented to the emergency department and 20 healthy controls were enrolled. Our results showed the levels of galectin-9 and galectin-3BP were significantly higher in dengue patients than those in healthy controls. Lower serum levels of galectin-1, galectin-3, and E-, L-, and P-selectin in dengue patients were detected compared to bacteria-infected patients, but not to healthy controls. In addition, strong correlation between galectin-9 and galectin-3BP was observed in dengue patients. In summary, our study suggested galectin-9 and galectin-3BP might be critical inflammatory mediators in acute dengue virus infection. PMID:27240351

  15. Serum Galectin-9 and Galectin-3-Binding Protein in Acute Dengue Virus Infection.

    PubMed

    Liu, Kuan-Ting; Liu, Yao-Hua; Chen, Yen-Hsu; Lin, Chun-Yu; Huang, Chung-Hao; Yen, Meng-Chi; Kuo, Po-Lin

    2016-01-01

    Dengue fever is a serious threat for public health and induces various inflammatory cytokines and mediators, including galectins and glycoproteins. Diverse immune responses and immunological pathways are induced in different phases of dengue fever progression. However, the status of serum galectins and glycoproteins is not fully determined. The aim of this study was to investigate the serum concentration and potential interaction of soluble galectin-1, galectin-3, galectin-9, galectin-3 binding protein (galectin-3BP), glycoprotein 130 (gp130), and E-, L-, and P-selectin in patients with dengue fever in acute febrile phase. In this study, 317 febrile patients (187 dengue patients, 150 non-dengue patients that included 48 patients with bacterial infection and 102 patients with other febrile illness) who presented to the emergency department and 20 healthy controls were enrolled. Our results showed the levels of galectin-9 and galectin-3BP were significantly higher in dengue patients than those in healthy controls. Lower serum levels of galectin-1, galectin-3, and E-, L-, and P-selectin in dengue patients were detected compared to bacteria-infected patients, but not to healthy controls. In addition, strong correlation between galectin-9 and galectin-3BP was observed in dengue patients. In summary, our study suggested galectin-9 and galectin-3BP might be critical inflammatory mediators in acute dengue virus infection. PMID:27240351

  16. Serum and testicular testosterone and androgen binding protein profiles following subchronic treatment with carbendazim.

    PubMed

    Rehnberg, G L; Cooper, R L; Goldman, J M; Gray, L E; Hein, J F; McElroy, W K

    1989-10-01

    While the general toxicity of the benzimidazole pesticides for mammals is low, one of these compounds, carbendazim (MBC), causes degeneration of testicular tissue and decreases spermatogenic activity at doses well below the LD50 value. A study conducted by S. D. Carter, R. A. Hess, and J. W. Laskey (1987, Biol. Reprod. 37, 709-717) showed that treatment with 400 mg/kg/day MBC resulted in severe seminiferous tubular atrophy and infertility. Since spermatogenesis is an androgen-dependent process, we characterized the effects of MBC (0-400 mg/kg/day) on the endocrine function of the rat testes. Following subchronic (85 day) exposure, serum hormones (TSH, LH, FSH, and Prl) were measured as were androgen binding protein (ABP) and testosterone in testicular fluids (interstitial fluid and seminiferous tubule fluid). In addition, the functional capacity of the Leydig cell to secrete testosterone was assessed in vitro following an hCG challenge. Subchronic treatment with MBC at doses of 50-100 mg/kg/day had no effect on pituitary or testicular hormone concentrations: 200 mg/kg/day elevated the testosterone concentration in the seminiferous tubule fluid and the ABP concentration in both the interstitial fluid and the seminiferous tubule fluid without affecting serum testosterone or ABP concentrations. The 400 mg/kg/day dose resulted in increased concentration of both testosterone and ABP in the interstitial fluid and seminiferous tubule fluid and elevated serum ABP, with no change in serum testosterone. This endocrine profile is consistent with the testicular atrophy and "Sertoli cell-only" syndrome seen in these animals as reported by Gray et al. (1987, Toxicologist 7, 717). We conclude that seminiferous tubule fluid testosterone may be a result of two factors: (1) increased interstitial fluid testosterone concentrations and (2) decreased testosterone outflow from the testis to the general circulation. Also, increased ABP in the interstitial fluid may reflect a change in

  17. First evidence of protein G-binding protein in the most primitive vertebrate: serum lectin from lamprey (Lampetra japonica).

    PubMed

    Xue, Zhuang; Pang, Yue; Liu, Xin; Zheng, Zhen; Xiao, Rong; Jin, Minli; Han, Yinglun; Su, Peng; Lv, Li; Wang, Jihong; Li, QingWei

    2013-12-01

    The intelectins, a recently identified subgroup of extracellular animal lectins, are glycan-binding receptors that recognize glycan epitopes on foreign pathogens in host systems. Here, we have described NPGBP (novel protein G-binding protein), a novel serum lectin found in the lamprey, Lampetra japonica. RT-PCR yielded a 1005 bp cDNA sequence from the lamprey liver encoding a 334 amino acid secretory protein with homology to mammalian and aquatic organism intelectins. Gene expression analyses showed that the NPGBP gene was expressed in the blood, intestines, kidney, heart, gill, liver, adipose tissue and gonads. NPGBP was isolated by protein G-conjugated agarose immunoprecipitation, and SDS-PAGE analyses showed that NPGBP migrated as a specific band (∼35 and ∼124 kDa under reducing and non-reducing conditions, respectively). These results suggested that NPGBP forms monomers and tetramers. NPGBP gene expression was induced by in vivo bacterial stimulation, and NPGBP showed different agglutination activities against pathogenic Gram-positive bacteria, Gram-negative bacteria and fungi. The induction of NPGBP suggested that it plays an important role in defense against microorganisms in the internal circulation system of the lamprey. When incubated with an unrelated antibody, the specific binding between NPGBP and protein G was competitively inhibited, indicating that NPGBP and the Fc region of Ig bind to the same site on protein G. We thus assume that the tertiary structure of NPGBP is similar to that of the Fc region of Ig. Additionally, NPGBP can effectively promote endothelial cell mitosis. These findings suggest that NPGBP plays a role in the immune defense against microorganisms, and this study represents one of the few examples of the characterization and functional analysis of an aquatic organism intelectin.

  18. Binding of radioiodinated human. beta. -endorphin to serum proteins from rats and humans, determined by several methods

    SciTech Connect

    Sato, H.; Sugiyama, Y.; Sawada, Y.; Iga, T.; Hanano, M.

    1985-10-07

    Binding of immunoreactive radioiodinated human ..beta..-endorphin (/sup 125/I-..beta..-EP) to rat serum was demonstrated by gel filtration of /sup 125/I-..beta..-EP in pooled rat serum on Sephadex G-200. Two radioactive peaks associated with proteins eluted from the column. The first peak eluted at the void volume containing lipoproteins, ..cap alpha../sub 2/- and ..beta../sub 2/-macroglobulins, and the second peak at the fraction of albumin. Binding of /sup 125/I-..beta..-EP to albumin was directly proved by gel filtration of /sup 125/I-..beta..-EP in buffer containing 4% human serum albumin on Sephadex G-200. Equilibrium dialysis was not applicable to investigating the interaction of /sup 125/I-..beta..-EP with serum proteins, because of the intense nonspecific adsorption to the semi-permeable membrane and the degradation of the peptide during dialysis. Therefore, in order to quantitatively evaluate the binding of /sup 125/I-..beta..-EP in sera from rats and humans, the authors utilized four other methods (ultrafiltration, charcoal adsorption, polyethylene glycol precipitation and equilibrium gel filtration). These methods corresponded well with each other and indicated 35-44% binding of /sup 125/I-..beta..-EP in rat serum. Binding of /sup 125/I-..beta..-EP in normal human serum was 36%, determined by ultrafiltration. Serum protein binding of /sup 125/I-..beta..-EP was concentration independent over the concentration range studied (1-1000 nM). 23 references, 4 figures, 1 table.

  19. Preclinical characterization of anticancer gallium(III) complexes: solubility, stability, lipophilicity and binding to serum proteins.

    PubMed

    Rudnev, Alexander V; Foteeva, Lidia S; Kowol, Christian; Berger, Roland; Jakupec, Michael A; Arion, Vladimir B; Timerbaev, Andrei R; Keppler, Bernhard K

    2006-11-01

    The discovery and development of gallium(III) complexes capable of inhibiting tumor growth is an emerging area of anticancer drug research. A range of novel gallium coordination compounds with established cytotoxic efficacy have been characterized in terms of desirable chemical and biochemical properties and compared with tris(8-quinolinolato)gallium(III) (KP46), a lead anticancer gallium-based candidate that successfully finished phase I clinical trials (under the name FFC11), showing activity against renal cell cancer. In view of probable oral administration, drug-like parameters, such as solubility in water, saline and 0.5% dimethyl sulfoxide, stability against hydrolysis, measured as the rate constant of hydrolytic degradation in water or physiological buffer using a capillary zone electrophoresis (CZE) assay, and the octanol-water partition coefficient (logP) providing a rational estimate of a drug's lipophilicity, have been evaluated and compared. The differences in bioavailability characteristics between different complexes were discussed within the formalism of structure-activity relationships. The reactivity toward major serum transport proteins, albumin and transferrin, was also assayed in order to elucidate the drug's distribution pathway after intestinal absorption. According to the values of apparent binding rate constants determined by CZE, both KP46 and bis(2-acetylpyridine-4,4-dimethyl-3-thiosemicarbazonato-N,N,S)gallium(III) tetrachlorogallate(III) (KP1089) bind to transferrin faster than to albumin. This implies that transferrin would rather mediate the accumulation of gallium antineoplastic agents in solid tumors. A tendency of being faster converted into the protein-bound form found for KP1089 (due possibly to non-covalent binding) seems complementary to its greater in vitro antiproliferative activity.

  20. The vitamin E-binding protein afamin increases in maternal serum during pregnancy

    PubMed Central

    Hubalek, Michael; Buchner, Hannes; Mörtl, Manfred G.; Schlembach, Dietmar; Huppertz, Berthold; Firulovic, Branka; Köhler, Wolfgang; Hafner, Erich; Dieplinger, Benjamin; Wildt, Ludwig; Dieplinger, Hans

    2014-01-01

    Background Afamin is a liver-derived plasma glycoprotein with vitamin E-binding properties and a putative function in fertility. This study evaluated serum afamin concentrations during and postpartum to uncomplicated pregnancies and investigated a potential association between afamin concentrations and pregnancy outcome. Methods Afamin serum concentrations were measured in women with uncomplicated pregnancies in a retrospective cohort (n = 466) at different gestational ages and a prospective observational study (n = 76) in the first, second and third trimester. Furthermore, afamin was determined in the first trimester in a cross-sectional pilot study including women with preeclampsia (PE), pregnancy-induced hypertension (PIH) and women without pregnancy complications (n = 13 each). Finally, expression of afamin was investigated in human placental tissue by RT-PCR and immunohistochemistry. Results Afamin concentrations increased linearly almost two-fold during pregnancy in both retrospective and prospective studies in women without pregnancy complications with median afamin serum concentrations of 61.9 mg/l, 79.6 mg/l, and 98.6 mg/l in the first, second, and third trimester, respectively. After delivery, median afamin concentrations decreased to baseline values of 54.6 mg/l. In the pilot study with pregnancy complications, women with PE displayed significantly higher median afamin concentrations than did women with uncomplicated pregnancy (70.0 mg/l vs. 55.4 mg/l, P = 0.007). Expression analyses revealed no placental afamin expression at either mRNA or protein level in uncomplicated pregnancy. Conclusion A linear increase in the maternally expressed glycoprotein afamin during pregnancy may serve as basic reference for subsequent investigations of afamin in pregnancy-related disorders. PMID:24768783

  1. Intestinal Dysbiosis and Lowered Serum Lipopolysaccharide-Binding Protein in Parkinson’s Disease

    PubMed Central

    Hasegawa, Satoru; Goto, Sae; Tsuji, Hirokazu; Okuno, Tatsuya; Asahara, Takashi; Nomoto, Koji; Shibata, Akihide; Fujisawa, Yoshiro; Minato, Tomomi; Okamoto, Akira; Ohno, Kinji; Hirayama, Masaaki

    2015-01-01

    Background The intestine is one of the first affected organs in Parkinson’s disease (PD). PD subjects show abnormal staining for Escherichia coli and α-synuclein in the colon. Methods We recruited 52 PD patients and 36 healthy cohabitants. We measured serum markers and quantified the numbers of 19 fecal bacterial groups/genera/species by quantitative RT-PCR of 16S or 23S rRNA. Although the six most predominant bacterial groups/genera/species covered on average 71.3% of total intestinal bacteria, our analysis was not comprehensive compared to metagenome analysis or 16S rRNA amplicon sequencing. Results In PD, the number of Lactobacillus was higher, while the sum of analyzed bacteria, Clostridium coccoides group, and Bacteroides fragilis group were lower than controls. Additionally, the sum of putative hydrogen-producing bacteria was lower in PD. A linear regression model to predict disease durations demonstrated that C. coccoides group and Lactobacillus gasseri subgroup had the largest negative and positive coefficients, respectively. As a linear regression model to predict stool frequencies showed that these bacteria were not associated with constipation, changes in these bacteria were unlikely to represent worsening of constipation in the course of progression of PD. In PD, the serum lipopolysaccharide (LPS)-binding protein levels were lower than controls, while the levels of serum diamine oxidase, a marker for intestinal mucosal integrity, remained unchanged in PD. Conclusions The permeability to LPS is likely to be increased without compromising the integrity of intestinal mucosa in PD. The increased intestinal permeability in PD may make the patients susceptible to intestinal dysbiosis. Conversely, intestinal dysbiosis may lead to the increased intestinal permeability. One or both of the two mechanisms may be operational in development and progression of PD. PMID:26539989

  2. Thyroid metabolism in the recessive sex-linked dwarf female chicken. 2. Binding of thyroid hormones by serum proteins.

    PubMed

    Grandhi, R R; Brown, R G; Reinhart, B S; Summers, J D

    1975-03-01

    Serum protein profiles were studied together with serum binding sites and capacity for L-thyroxine in dwarf and non-dwarf White Leghorn and White Rock breeds at ages 1 wk., 4 wks. and in laying hens. Serum protein profiles varied with breed, strain and age. The percent gamma-globulin fraction was greater (P less than .05) in dwarf 1 wk. old and laying hens of the White Leghorn breed when compared with the normals. The only difference found in the White Rock breed was a decreased level of albumin in dwarf laying hens. There were no significant differences in the capacity or sites of binding of L-thyroxine to serum proteins although greater amounts of L-thyroxine were bound to globulin fractions in the dwarf. The data were interpreted to suggest that changes in serum protein profiles may have been the result of hypothyroidism at the cellular level but there was no reason to suspect abnormal binding of thyroid hormones to be the cause of that hypothyroidism.

  3. Albumin-coated SPIONs: an experimental and theoretical evaluation of protein conformation, binding affinity and competition with serum proteins

    NASA Astrophysics Data System (ADS)

    Yu, Siming; Perálvarez-Marín, Alex; Minelli, Caterina; Faraudo, Jordi; Roig, Anna; Laromaine, Anna

    2016-07-01

    The variety of nanoparticles (NPs) used in biological applications is increasing and the study of their interaction with biological media is becoming more important. Proteins are commonly the first biomolecules that NPs encounter when they interact with biological systems either in vitro or in vivo. Among NPs, super-paramagnetic iron oxide nanoparticles (SPIONs) show great promise for medicine. In this work, we study in detail the formation, composition, and structure of a monolayer of bovine serum albumin (BSA) on SPIONs. We determine, both by molecular simulations and experimentally, that ten molecules of BSA form a monolayer around the outside of the SPIONs and their binding strength to the SPIONs is about 3.5 × 10-4 M, ten times higher than the adsorption of fetal bovine serum (FBS) on the same SPIONs. We elucidate a strong electrostatic interaction between BSA and the SPIONs, although the secondary structure of the protein is not affected. We present data that supports the strong binding of the BSA monolayer on SPIONs and the properties of the BSA layer as a protein-resistant coating. We believe that a complete understanding of the behavior and morphology of BSA-SPIONs and how the protein interacts with SPIONs is crucial for improving NP surface design and expanding the potential applications of SPIONs in nanomedicine.The variety of nanoparticles (NPs) used in biological applications is increasing and the study of their interaction with biological media is becoming more important. Proteins are commonly the first biomolecules that NPs encounter when they interact with biological systems either in vitro or in vivo. Among NPs, super-paramagnetic iron oxide nanoparticles (SPIONs) show great promise for medicine. In this work, we study in detail the formation, composition, and structure of a monolayer of bovine serum albumin (BSA) on SPIONs. We determine, both by molecular simulations and experimentally, that ten molecules of BSA form a monolayer around the

  4. Serum and testicular testosterone and androgen binding protein profiles following subchronic treatment with carbendazim.

    PubMed

    Rehnberg, G L; Cooper, R L; Goldman, J M; Gray, L E; Hein, J F; McElroy, W K

    1989-10-01

    While the general toxicity of the benzimidazole pesticides for mammals is low, one of these compounds, carbendazim (MBC), causes degeneration of testicular tissue and decreases spermatogenic activity at doses well below the LD50 value. A study conducted by S. D. Carter, R. A. Hess, and J. W. Laskey (1987, Biol. Reprod. 37, 709-717) showed that treatment with 400 mg/kg/day MBC resulted in severe seminiferous tubular atrophy and infertility. Since spermatogenesis is an androgen-dependent process, we characterized the effects of MBC (0-400 mg/kg/day) on the endocrine function of the rat testes. Following subchronic (85 day) exposure, serum hormones (TSH, LH, FSH, and Prl) were measured as were androgen binding protein (ABP) and testosterone in testicular fluids (interstitial fluid and seminiferous tubule fluid). In addition, the functional capacity of the Leydig cell to secrete testosterone was assessed in vitro following an hCG challenge. Subchronic treatment with MBC at doses of 50-100 mg/kg/day had no effect on pituitary or testicular hormone concentrations: 200 mg/kg/day elevated the testosterone concentration in the seminiferous tubule fluid and the ABP concentration in both the interstitial fluid and the seminiferous tubule fluid without affecting serum testosterone or ABP concentrations. The 400 mg/kg/day dose resulted in increased concentration of both testosterone and ABP in the interstitial fluid and seminiferous tubule fluid and elevated serum ABP, with no change in serum testosterone. This endocrine profile is consistent with the testicular atrophy and "Sertoli cell-only" syndrome seen in these animals as reported by Gray et al. (1987, Toxicologist 7, 717). We conclude that seminiferous tubule fluid testosterone may be a result of two factors: (1) increased interstitial fluid testosterone concentrations and (2) decreased testosterone outflow from the testis to the general circulation. Also, increased ABP in the interstitial fluid may reflect a change in

  5. Testicular androgen-binding protein (ABP): comparison of ABP in rabbit testis and epididymis with a similar androgen-binding protein (TeBG) in rabbit serum.

    PubMed

    Hansson, V; Ritzen, M E; French, F S; Weddington, S C; Nayfeh, S N

    1975-07-01

    Testicular androgen-binding proteins (ABP) in rabbit testis, caput epididymis and efferent duct fluid (EDF) were compared to a similar androgen-binding protein TeBg) in rabbit serum. The affinity of these proteins for 5alpha-dihydrotesterone (DHT) at 0 degrees C (KaABP = 1.6 X 10(9) M-1 and KaTeBG = 1.9 X 10(9) M-1) and their steroid specificities were similar (DHT greater than androstanediol greater than progesterone and androstenedione). ABP and TeBG had also almost identical Stokes radii (42.8 +/- 1.2 and 43.9 +- 0.8 A, respectively), sedimentation coefficients (4.7 +/- 0.2 S and 4.4 +/- 0.2 S, respectively) and electrophoretic mobility (Rf = 0.4 in 6 1/2% polyacrylamide gels). Calculation of molecular weights from Stokes radii and sedimentation rates indicated a molecular weight of 74,000 (69,000-78,000) for TeBG and 76,000 (71,000-82,000) for ABP. The corresponding frictional ratios were 1.61 for TeBG and 1.55 for ABP assuming a partial specific volume (v) of 0.70 cm3/g. Polyacrylamide gel electrophoresis (PAGE) at different gel concentrations gave a mean molecular radius of 2.74 nm, also indicating a molecular weight of about 75,000 (v = 0.70 cm3/g. ABP and TeBG could not be separated by PAGE; however, partial separation of ABP and TeBG was achieved by isoelectric focusing and ion-exchange chromatography on DEAE-cellulose. TeBG focused at pH 5.4, whereas ABP formed a distinct peak of bound radioactivity at pH 4.7. Also by ionexchange chromatography, ABP in both testis and epididymal supernatants was shown to have an apparently higher surface charge than TeBG in rabbit serum. The concentration of ABP in efferent duct fluid (2 X 10(-7) M = 60 pmol/mg protien) was much higher than TeBG in male rabbit serum (5.2 X 10(-8) M = 0.7 pmol/mg protein). These findings ruled against the possibility that ABP in the testis and epididymis could have been derived directly from serum. It is concluded that ABP and TeBG are very similar if not identical proteins both serving as

  6. Semi-automated competitive protein binding analysis of serum thyroxine on reusable Sephadex columns and its advantages over radioimmunoassay.

    PubMed

    Alexander, N M

    1976-06-01

    Competitive protein-binding analysis of serum thyroxine on small, reusable, Sephadex columns has been further studied and improved. The improved, semi-automated procedure results in reduced working time and costs. It has also been established that triiodothyronine crossreacts only 1/6 to 1/9 as well as thyroxine, and can be ignored because it represents only about 1/80 of the total serum iodothyronine content. The economic and methodological advantages of the improved method over radioammunoassay and other displacement assays are discussed.

  7. [A study of serum protein fraction binding to indocyanine green (ICG) by combined method of immunoelectrophoresis and ICG fundus videosystem].

    PubMed

    Saito, T; Komatsu, Y; Mori, S; Deguchi, T; Koyama, I; Yoneya, S

    1996-08-01

    Binding characteristics of indocyanine green (ICG) to human serum were investigated, with a combination of immunoelectrophoresis and an ICG fundus video system. Serum samples were obtained from three healthy volunteers, 1 minute after intravenous administration of 50 mg/2 ml ICG, and then fractionated immunoelectrophoretically on agarose plates. Electrophoretic patterns on these plates could be observed with an ICG fundus video system as well as an immunoviewer. Using anti-human sera, only one infrared fluorescent line showing the ICG binding immunoprecipitate was recognized near the area of beta fraction, which was also identified by the use of anti-beta-lipoprotein (Lp) antibody. We also studied the affinity of ICG for apolipoproteins (Apo) AI, B, and CIII, which were the main protein components of serum Lps. Electrophoresis showed that ICG bound only to Apo-B, but not to the others. These results indicated that ICG mainly bound to beta-Lp in the blood, and that ICG angiographic patterns were directly reflecting the dynamics of serum Lps, especially for LDL. The high affinity of ICG for only Apo-B could explain the reason why ICG mainly bound to beta-Lp among several serum Lps, because large amounts of Apo-B are included in beta-Lp but a little in other serum Lps.

  8. Purification, characterization and binding interactions of the Chinese-cobra (Naja naja atra) serum antitoxic protein CSAP.

    PubMed Central

    Shao, J; Shen, H; Havsteen, B

    1993-01-01

    The characterization of the single-chain protein in Chinese-cobra (Naja naja atra) blood serum, which yields strong specific protection against the venom of the same snake, is reported. The protein, CSAP (cobra serum antitoxic protein), was purified to electrophoretic homogeneity. Over the pH range 5-9 it formed stable complexes with the neuro- and the cardio-toxin of the snake. The molecular size of the CSAP was estimated to be 70.3 +/- 0.3 kDa. Tryptic hydrolysis of CSAP yielded several peptides that were able to bind to the toxin. The native CSAP maximally bound 8 +/- 1 toxin molecules/molecule. Six tryptic fragments, containing 5-39 residues, were sequenced. The longest of these displayed sequence similarity to rat serum albumin. The protective effect of the CSAP was demonstrated in vivo on mice and in vitro by measurement of the rate of haemolysis. Kinetic and thermodynamic parameters of the binding interactions of the neurotoxin and the CSAP were determined from the rates of displacement of 125I-labelled toxin from its complexes with the CSAP by unlabelled toxin by using a DEAE-cellulose filter assay for CSAP-toxin complexes. The toxin molecules rapidly dissociated from one type of site and slowly from a second. The binding capacity and concentration of the CSAP suffice to explain the protective effect of the latter against the toxin. Images Figure 6 PMID:8343135

  9. Serum Vitamin D, Vitamin D Binding Protein, and Risk of Colorectal Cancer

    PubMed Central

    Anic, Gabriella M.; Weinstein, Stephanie J.; Mondul, Alison M.; Männistö, Satu; Albanes, Demetrius

    2014-01-01

    Background We previously reported a positive association between serum 25-hydroxyvitamin D (25(OH)D) and colorectal cancer risk. To further elucidate this association, we examined the molar ratio of 25(OH)D to vitamin D binding protein (DBP), the primary 25(OH)D transport protein, and whether DBP modified the association between 25(OH)D and colorectal cancer risk. Methods In a nested case-control study within the Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study, controls were 1∶1 matched to 416 colorectal cancer cases based on age and date of blood collection. Logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (CI) for quartiles of 25(OH)D, DBP, and the molar ratio of 25(OH)D:DBP, a proxy for free, unbound circulating 25(OH)D. Results Comparing highest to lowest quartiles, DBP was not associated with colorectal cancer risk (OR = 0.91; 95% CI: 0.58, 1.42, p for trend  = 0.58); however, a positive risk association was observed for the molar ratio of 25(OH)D:DBP (OR = 1.44; 95% CI: 0.92, 2.26, p for trend  = 0.04). In stratified analyses, the positive association between 25(OH)D and colorectal cancer was stronger among men with DBP levels above the median (OR = 1.89; 95% CI: 1.07, 3.36, p for trend  = 0.01) than below the median (OR = 1.20; 95% CI: 0.68, 2.12, p for trend  = 0.87), although the interaction was not statistically significant (p for interaction  = 0.24). Conclusion Circulating DBP may influence the association between 25(OH)D and colorectal cancer in male smokers, with the suggestion of a stronger positive association in men with higher DBP concentrations. This finding should be examined in other populations, especially those that include women and non-smokers. PMID:25036524

  10. Impact of anti-cancer drugs and other determinants on serum protein binding of morphine 6-glucuronide

    PubMed Central

    Mashayekhi, S.O.; Ghandforoush-Sattari, M.; Buss, D.C.; Routledge, P.A.; Hain, R.DW.

    2010-01-01

    Background and the purpose of the study The aim of the present study was to examine factors that may influence the protein binding of morphine 6-glucuronide (M6G), the most active metabolite of morphine. Methods An enzyme-linked immunoabsorbent assay technique was used to measure the M6G concentration in serum of 18 healthy adults, 18 neonatal and 7 children with cancer. Total and free M6G concentrations were measured following equilibrium dialysis for 3 hrs and at physiological pH at 37°C. The influence of vincristine, methotrexate, 6-mercaptopurine, morphine, human albumin, alpha-1-acid glycoprotein, palmitic acid, oleic acid and pH on M6G protein binding was examined. Results M6G was 66.87±0.73 percent free in human serum at physiological pH and temperature. The percentage free (unbound) was increased significantly by vincristine (4.33%) and methotrexate (9.68%), but 6- mercaptopurine and morphine had no significant effect on it. Free percentages of M6G was reduced by decreasing serum albumin concentration but was unaffected by the presence of alpa-1-acid glycoprotein (AAG) or changes in serum pH. Similar results were obtained in human serum albumin (HAS) solutions. Addition of palmitic acid and oleic acid reduced protein binding significantly by 6.3% and 7.4%, respectively. Major conclusion Although M6G in this study was not highly bounded, but because of its high analgesic potency, any change in its free concentration due to concurrent medication or disease caused significant changes in its effects. This dearth of evidence has been implicated in the reluctance of professionals to be cautious in prescribing them to children, particularly in the neonatal period. PMID:22615603

  11. Relationship between serum growth hormone binding protein levels and height in young men.

    PubMed

    Codner, E; Mericq, M V; Maheshwari, H G; Iñguez, G; Capurro, M T; Salazar, T; Baumann, G; Cassorla, F; Codner, D E

    2000-01-01

    The biochemical mediators responsible for variations in stature among normal subjects are largely unknown. To obtain some initial information about potential endocrine factors, we measured the serum concentrations of GH, IGF-1, IGFBP-3 and GHBP in healthy young men shorter than 159 cm and taller than 187 cm. We studied 14 volleyball and basketball players (tall group), and 14 jockey students from a horse racetrack (short group). A careful medical history was taken, including dietary intake, and physical examination with special attention to the possible presence of genetic stigmata was performed. Serum prealbumin was determined as an index of nutritional status. A buccal smear was performed to exclude Klinefelter's syndrome. The BMI and serum prealbumin levels were comparable in both groups of individuals. The nutritional survey, however, revealed that the tall subjects had a higher intake of calories (42.2+/-11.2 vs. 30.1+/-15.15 kcal/kg, p<0.05), and protein (1.5+/-0.6 vs. 0.8+/-0.4 mg/kg, p<0.01). Serum concentrations of GHBP did not differ in the two groups (0.95+/-0.37 nmol/l in the tall, and 0.95+/-0.53 nmol/l in the short group), and did not correlate with height, serum IGF-I levels, or BMI. We observed a significant difference in the serum concentrations of IGF-I in the two groups of individuals (42.02+/-9.37 nmol/l in the tall and 31.79+/-3.18 nmol/l in the short group, p<0.05), and this growth factor showed a positive correlation with height (r = 0.5, p<0.01). These preliminary findings suggest that final height differences in young men do not appear to be mediated by variations in GHBP concentrations.

  12. Quantitative Proteomics Identifies Serum Response Factor Binding Protein 1 as a Host Factor for Hepatitis C Virus Entry.

    PubMed

    Gerold, Gisa; Meissner, Felix; Bruening, Janina; Welsch, Kathrin; Perin, Paula M; Baumert, Thomas F; Vondran, Florian W; Kaderali, Lars; Marcotrigiano, Joseph; Khan, Abdul G; Mann, Matthias; Rice, Charles M; Pietschmann, Thomas

    2015-08-01

    Hepatitis C virus (HCV) enters human hepatocytes through a multistep mechanism involving, among other host proteins, the virus receptor CD81. How CD81 governs HCV entry is poorly characterized, and CD81 protein interactions after virus binding remain elusive. We have developed a quantitative proteomics protocol to identify HCV-triggered CD81 interactions and found 26 dynamic binding partners. At least six of these proteins promote HCV infection, as indicated by RNAi. We further characterized serum response factor binding protein 1 (SRFBP1), which is recruited to CD81 during HCV uptake and supports HCV infection in hepatoma cells and primary human hepatocytes. SRFBP1 facilitates host cell penetration by all seven HCV genotypes, but not of vesicular stomatitis virus and human coronavirus. Thus, SRFBP1 is an HCV-specific, pan-genotypic host entry factor. These results demonstrate the use of quantitative proteomics to elucidate pathogen entry and underscore the importance of host protein-protein interactions during HCV invasion. PMID:26212323

  13. Polymorphism of 14C vitamin D3 binding protein in cattle and water buffalo serum.

    PubMed

    Masina, P; Ramunno, L; Iannelli, D

    1978-01-01

    Cattle and water buffalo sera labelled with vitamin D3[14C] (300 and 480 individual samples respectively) were subjected to starch gel electrophoresis followed by autoradiography in an attempt to identify a possible polymorphism of the proteins capable of binding this vitamin. Three phenotypes controlled by two codominant autosomal alleles were identified in cattle while in water buffalo six phenotypes controlled by three codominant autosomal alleles were observed.

  14. Photoactivable analogs for labeling 25-hydroxyvitamin D3 serum binding protein and for 1,25-dihydroxyvitamin D3 intestinal receptor protein

    NASA Technical Reports Server (NTRS)

    Kutner, A.; Link, R. P.; Schnoes, H. K.; DeLuca, H. F.

    1986-01-01

    3-Azidobenzoates and 3-azidonitrobenzoates of 25-hydroxyvitamin D3 as well as 3-deoxy-3-azido-25-hydroxyvitamin D3 and 3-deoxy-3-azido-1,25-dihydroxyvitamin D3 were prepared as photoaffinity labels for vitamin D serum binding protein and 1,25-dihydroxyvitamin D3 intestinal receptor protein. The compounds prepared were easily activated by short- or long-wavelength uv light, as monitored by uv and ir spectrometry. The efficacy of the compounds to compete with 25-hydroxyvitamin D3 or 1,25-dihydroxyvitamin D3 for the binding site of serum binding protein and receptor, respectively, was studied to evaluate the vitamin D label with the highest affinity for the protein. The presence of an azidobenzoate or azidonitrobenzoate substituent at the C-3 position of 25-OH-D3 significantly decreased (10(4)- to 10(6)-fold) the binding activity. However, the labels containing the azido substituent attached directly to the vitamin D skeleton at the C-3 position showed a high affinity, only 20- to 150-fold lower than that of the parent compounds with their respective proteins. Therefore, 3-deoxy-3-azidovitamins present potential ligands for photolabeling of vitamin D proteins and for studying the structures of the protein active sites.

  15. Neomycin-phenolic conjugates: polycationic amphiphiles with broad-spectrum antibacterial activity, low hemolytic activity and weak serum protein binding.

    PubMed

    Findlay, Brandon; Zhanel, George G; Schweizer, Frank

    2012-02-15

    Here we present a proof-of-concept study, combining two known antimicrobial agents into a hybrid structure in order to develop an emergent cationic detergent-like interaction with the bacterial membrane. Six amphiphilic conjugates were prepared by copper (I)-catalyzed 1,3-dipolar cycloaddition between a neomycin B-derived azide and three alkyne-modified phenolic disinfectants. Three conjugates displayed good activity against a variety of clinically relevant Gram positive and Gram negative bacteria, including MRSA, without the high level of hemolysis or strong binding to serum proteins commonly observed with other cationic antimicrobial peptides and detergents.

  16. Transgenic Mice Overexpressing Serum Retinol-Binding Protein Develop Progressive Retinal Degeneration through a Retinoid-Independent Mechanism.

    PubMed

    Du, Mei; Otalora, Laura; Martin, Ashley A; Moiseyev, Gennadiy; Vanlandingham, Phillip; Wang, Qilong; Farjo, Rafal; Yeganeh, Alexander; Quiambao, Alexander; Farjo, Krysten M

    2015-08-01

    Serum retinol-binding protein 4 (RBP4) is the sole specific transport protein for retinol in the blood, but it is also an adipokine with retinol-independent, proinflammatory activity associated with obesity, insulin resistance, type 2 diabetes, and cardiovascular disease. Moreover, two separate studies reported that patients with proliferative diabetic retinopathy have increased serum RBP4 levels compared to patients with mild or no retinopathy, yet the effect of increased levels of RBP4 on the retina has not been studied. Here we show that transgenic mice overexpressing RBP4 (RBP4-Tg mice) develop progressive retinal degeneration, characterized by photoreceptor ribbon synapse deficiency and subsequent bipolar cell loss. Ocular retinoid and bisretinoid levels are normal in RBP4-Tg mice, demonstrating that a retinoid-independent mechanism underlies retinal degeneration. Increased expression of pro-interleukin-18 (pro-IL-18) mRNA and activated IL-18 protein and early-onset microglia activation in the retina suggest that retinal degeneration is driven by a proinflammatory mechanism. Neither chronic systemic metabolic disease nor other retinal insults are required for RBP4 elevation to promote retinal neurodegeneration, since RBP4-Tg mice do not have coincident retinal vascular pathology, obesity, dyslipidemia, or hyperglycemia. These findings suggest that elevation of serum RBP4 levels could be a risk factor for retinal damage and vision loss in nondiabetic as well as diabetic patients. PMID:26055327

  17. Transgenic Mice Overexpressing Serum Retinol-Binding Protein Develop Progressive Retinal Degeneration through a Retinoid-Independent Mechanism

    PubMed Central

    Du, Mei; Otalora, Laura; Martin, Ashley A.; Moiseyev, Gennadiy; Vanlandingham, Phillip; Wang, Qilong; Farjo, Rafal; Yeganeh, Alexander; Quiambao, Alexander

    2015-01-01

    Serum retinol-binding protein 4 (RBP4) is the sole specific transport protein for retinol in the blood, but it is also an adipokine with retinol-independent, proinflammatory activity associated with obesity, insulin resistance, type 2 diabetes, and cardiovascular disease. Moreover, two separate studies reported that patients with proliferative diabetic retinopathy have increased serum RBP4 levels compared to patients with mild or no retinopathy, yet the effect of increased levels of RBP4 on the retina has not been studied. Here we show that transgenic mice overexpressing RBP4 (RBP4-Tg mice) develop progressive retinal degeneration, characterized by photoreceptor ribbon synapse deficiency and subsequent bipolar cell loss. Ocular retinoid and bisretinoid levels are normal in RBP4-Tg mice, demonstrating that a retinoid-independent mechanism underlies retinal degeneration. Increased expression of pro-interleukin-18 (pro-IL-18) mRNA and activated IL-18 protein and early-onset microglia activation in the retina suggest that retinal degeneration is driven by a proinflammatory mechanism. Neither chronic systemic metabolic disease nor other retinal insults are required for RBP4 elevation to promote retinal neurodegeneration, since RBP4-Tg mice do not have coincident retinal vascular pathology, obesity, dyslipidemia, or hyperglycemia. These findings suggest that elevation of serum RBP4 levels could be a risk factor for retinal damage and vision loss in nondiabetic as well as diabetic patients. PMID:26055327

  18. The interaction of human serum albumin with selected lanthanide and actinide ions: Binding affinities, protein unfolding and conformational changes.

    PubMed

    Ali, Manjoor; Kumar, Amit; Kumar, Mukesh; Pandey, Badri N

    2016-04-01

    Human serum albumin (HSA), the most abundant soluble protein in blood plays critical roles in transportation of biomolecules and maintenance of osmotic pressure. In view of increasing applications of lanthanides- and actinides-based materials in nuclear energy, space, industries and medical applications, the risk of exposure with these metal ions is a growing concern for human health. In present study, binding interaction of actinides/lanthanides [thorium: Th(IV), uranium: U(VI), lanthanum: La(III), cerium: Ce(III) and (IV)] with HSA and its structural consequences have been investigated. Ultraviolet-visible, Fourier transform-infrared, Raman, Fluorescence and Circular dichroism spectroscopic techniques were applied to study the site of metal ions interaction, binding affinity determination and the effect of metal ions on protein unfolding and HSA conformation. Results showed that these metal ions interacted with carbonyl (CO..:)/amide(N..-H) groups and induced exposure of aromatic residues of HSA. The fluorescence analysis indicated that the actinide binding altered the microenvironment around Trp214 in the subdomain IIA. Binding affinity of U(VI) to HSA was slightly higher than that of Th(IV). Actinides and Ce(IV) altered the secondary conformation of HSA with a significant decrease of α-helix and an increase of β-sheet, turn and random coil structures, indicating a partial unfolding of HSA. A correlation was observed between metal ion's ability to alter HSA conformation and protein unfolding. Both cationic effects and coordination ability of metal ions seemed to determine the consequences of their interaction with HSA. Present study improves our understanding about the protein interaction of these heavy ions and their impact on its secondary structure. In addition, binding characteristics may have important implications for the development of rational antidote for the medical management of health effects of actinides and lanthanides.

  19. The interaction of human serum albumin with selected lanthanide and actinide ions: Binding affinities, protein unfolding and conformational changes.

    PubMed

    Ali, Manjoor; Kumar, Amit; Kumar, Mukesh; Pandey, Badri N

    2016-04-01

    Human serum albumin (HSA), the most abundant soluble protein in blood plays critical roles in transportation of biomolecules and maintenance of osmotic pressure. In view of increasing applications of lanthanides- and actinides-based materials in nuclear energy, space, industries and medical applications, the risk of exposure with these metal ions is a growing concern for human health. In present study, binding interaction of actinides/lanthanides [thorium: Th(IV), uranium: U(VI), lanthanum: La(III), cerium: Ce(III) and (IV)] with HSA and its structural consequences have been investigated. Ultraviolet-visible, Fourier transform-infrared, Raman, Fluorescence and Circular dichroism spectroscopic techniques were applied to study the site of metal ions interaction, binding affinity determination and the effect of metal ions on protein unfolding and HSA conformation. Results showed that these metal ions interacted with carbonyl (CO..:)/amide(N..-H) groups and induced exposure of aromatic residues of HSA. The fluorescence analysis indicated that the actinide binding altered the microenvironment around Trp214 in the subdomain IIA. Binding affinity of U(VI) to HSA was slightly higher than that of Th(IV). Actinides and Ce(IV) altered the secondary conformation of HSA with a significant decrease of α-helix and an increase of β-sheet, turn and random coil structures, indicating a partial unfolding of HSA. A correlation was observed between metal ion's ability to alter HSA conformation and protein unfolding. Both cationic effects and coordination ability of metal ions seemed to determine the consequences of their interaction with HSA. Present study improves our understanding about the protein interaction of these heavy ions and their impact on its secondary structure. In addition, binding characteristics may have important implications for the development of rational antidote for the medical management of health effects of actinides and lanthanides. PMID:26821345

  20. A 28,000-dalton protein of normal mouse serum binds specifically to the inner core region of bacterial lipopolysaccharide.

    PubMed

    Brade, L; Brade, H

    1985-12-01

    Normal mouse serum was found to contain a protein, referred to here as factor, which binds to the inner core region of lipopolysaccharides (LPSs) of various bacterial families. Since factor-LPS interactions resulted in activation of guinea pig complement, factor activity could be assayed by a passive hemolysis test with sheep erythrocytes coated with LPS or lipid A from Acinetobacter calcoaceticus (which was found earlier to bind particularly well to factor). Factor was purified by G-50 and hydroxyapatite chromatography whereby the specific hemolytic activity was enriched 1,675-fold. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing conditions revealed the presence of a 28,000-dalton protein as the main band. The identity of this band was determined by absorption experiments with LPS-coated sheep erythrocytes or latex beads, whereby the 28,000-dalton band disappeared after specific absorption and could be recovered from the absorbent. The binding specificity of factor was determined in a passive hemolysis inhibition assay with defined oligosaccharides representative for the inner core region of LPS. Thus, the di- and trisaccharides alpha-D-mannoheptopyranosyl-(1----5)-2-keto-3-deoxy-D-mannoocto nic acid and alpha-D-mannoheptopyranosyl-(1----3)-alpha-D-mannoheptopyranosy l-(1----5)-2- keto-3-deoxy-D-mannooctonic acid, respectively, were able to inhibit binding of factor to LPS. The results are in accordance with our earlier observation that the heptose-2-keto-3-deoxy-D-mannooctonic acid region represents a common antigen of bacterial LPS. Rabbit hyperimmune serum directed against this common antigen and purified factor was found to exhibit the same specificity for LPS. Factor activity was followed in mice in vivo after injection of LPS; it disappeared completely 15 min after the injection of LPS and reappeared within 1 h.

  1. A 28,000-dalton protein of normal mouse serum binds specifically to the inner core region of bacterial lipopolysaccharide.

    PubMed Central

    Brade, L; Brade, H

    1985-01-01

    Normal mouse serum was found to contain a protein, referred to here as factor, which binds to the inner core region of lipopolysaccharides (LPSs) of various bacterial families. Since factor-LPS interactions resulted in activation of guinea pig complement, factor activity could be assayed by a passive hemolysis test with sheep erythrocytes coated with LPS or lipid A from Acinetobacter calcoaceticus (which was found earlier to bind particularly well to factor). Factor was purified by G-50 and hydroxyapatite chromatography whereby the specific hemolytic activity was enriched 1,675-fold. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing conditions revealed the presence of a 28,000-dalton protein as the main band. The identity of this band was determined by absorption experiments with LPS-coated sheep erythrocytes or latex beads, whereby the 28,000-dalton band disappeared after specific absorption and could be recovered from the absorbent. The binding specificity of factor was determined in a passive hemolysis inhibition assay with defined oligosaccharides representative for the inner core region of LPS. Thus, the di- and trisaccharides alpha-D-mannoheptopyranosyl-(1----5)-2-keto-3-deoxy-D-mannoocto nic acid and alpha-D-mannoheptopyranosyl-(1----3)-alpha-D-mannoheptopyranosy l-(1----5)-2- keto-3-deoxy-D-mannooctonic acid, respectively, were able to inhibit binding of factor to LPS. The results are in accordance with our earlier observation that the heptose-2-keto-3-deoxy-D-mannooctonic acid region represents a common antigen of bacterial LPS. Rabbit hyperimmune serum directed against this common antigen and purified factor was found to exhibit the same specificity for LPS. Factor activity was followed in mice in vivo after injection of LPS; it disappeared completely 15 min after the injection of LPS and reappeared within 1 h. Images PMID:4066028

  2. The myostatin propeptide and the follistatin-related gene are inhibitory binding proteins of myostatin in normal serum.

    PubMed

    Hill, Jennifer J; Davies, Monique V; Pearson, Adele A; Wang, Jack H; Hewick, Rodney M; Wolfman, Neil M; Qiu, Yongchang

    2002-10-25

    Myostatin, also known as growth and differentiation factor 8, is a member of the transforming growth factor beta superfamily that negatively regulates skeletal muscle mass (1). Recent experiments have shown that myostatin activity is detected in serum by a reporter gene assay only after activation by acid, suggesting that native myostatin circulates as a latent complex (2). We have used a monoclonal myostatin antibody, JA16, to isolate the native myostatin complex from normal mouse and human serum. Analysis by mass spectrometry and Western blot shows that circulating myostatin is bound to at least two major proteins, the myostatin propeptide and the follistatin-related gene (FLRG). The myostatin propeptide is known to bind and inhibit myostatin in vitro (3). Here we show that this interaction is relevant in vivo, with a majority (>70%) of myostatin in serum bound to its propeptide. Studies with recombinant V5-His-tagged FLRG protein confirm a direct interaction between mature myostatin and FLRG. Functional studies show that FLRG inhibits myostatin activity in a reporter gene assay. These experiments suggest that the myostatin propeptide and FLRG are major negative regulators of myostatin in vivo.

  3. Lipopolysaccharide binding protein and serum amyloid A secretion by human intestinal epithelial cells during the acute phase response.

    PubMed

    Vreugdenhil, A C; Dentener, M A; Snoek, A M; Greve, J W; Buurman, W A

    1999-09-01

    The acute phase proteins LPS binding protein (LBP) and serum amyloid A (SAA) are produced by the liver and are present in the circulation. Both proteins have been shown to participate in the immune response to endotoxins. The intestinal mucosa forms a large surface that is continuously exposed to these microbial products. By secretion of antimicrobial and immunomodulating agents, the intestinal epithelium contributes to the defense against bacteria and their products. The aim of this study was to explore the influence of the inflammatory mediators TNF-alpha, IL-6, and IL-1beta on the release of LBP and SAA by intestinal epithelial cells (IEC). In addition, the induction of LBP and SAA release by cell lines of intestinal epithelial cells and hepatic cells was compared. The data obtained show that in addition to liver cells, IEC also expressed LBP mRNA and released bioactive LBP and SAA upon stimulation. Regulation of LBP and SAA release by IEC and hepatocytes was typical for class 1 acute phase proteins, although differences in regulation between the cell types were observed. Endotoxin did not induce LBP and SAA release. Glucocorticoids were demonstrated to strongly enhance the cytokine-induced release of LBP and SAA by IEC, corresponding to hepatocytes. The data from this study, which imply that human IEC can produce LBP and SAA, suggest a role for these proteins in the local defense mechanism of the gut to endotoxin. Furthermore, the results demonstrate that tissues other than the liver are involved in the acute phase response.

  4. Photoaffinity labeling of serum vitamin D binding protein by 3-deoxy-3-azido-25-hydroxyvitamin D3

    SciTech Connect

    Link, R.P.; Kutner, A.; Schnoes, H.K.; DeLuca, H.F.

    1987-06-30

    3-Deoxy-3-azido-25-hydroxyvitamin D3 was covalently incorporated in the 25-hydroxyvitamin D3 binding site of purified human plasma vitamin D binding protein. Competition experiments showed that 3-deoxy-3-azido-25-hydroxyvitamin D3 and 25-hydroxyvitamin D3 bind at the same site on the protein. Tritiated 3-deoxy-3-azido-25-hydroxyvitamin D3 was synthesized from tritiated 25-hydroxyvitamin D3, retaining the high specific activity of the parent compound. The tritiated azido label bound reversibly to human vitamin D binding protein in the dark and covalently to human vitamin D binding protein after exposure to ultraviolet light. Reversible binding of tritiated 3-deoxy-3-azido-25-hydroxyvitamin D3 was compared to tritiated 25-hydroxyvitamin D3 binding to human vitamin D binding protein. Scatchard analysis of the data indicated equivalent maximum density binding sites with a KD,app of 0.21 nM for 25-hydroxyvitamin D3 and a KD,app of 1.3 nM for the azido derivative. Covalent binding was observed only after exposure to ultraviolet irradiation, with an average of 3% of the reversibly bound label becoming covalently bound to vitamin D binding protein. The covalent binding was reduced 70-80% when 25-hydroxyvitamin D3 was present, indicating strong covalent binding at the vitamin D binding site of the protein. When tritiated 3-deoxy-3-azido-25-hydroxyvitamin D3 was incubated with human plasma in the absence and presence of 25-hydroxyvitamin D3, 12% of the azido derivative was reversibly bound to vitamin D binding protein. After ultraviolet irradiation, four plasma proteins covalently bound the azido label, but vitamin D binding protein was the only protein of the four that was unlabeled in the presence of 25-hydroxyvitamin D3.

  5. [Study of the binding characteristics of chlorophenoxyisobutyric acid to serum proteins in chronically uremic patients : influence of dialysis and heparine (author's transl)].

    PubMed

    Lacour, B; Di Giulio, S; Nicolaï, A; Drüeke, T; Debray, M; Boulu, R G

    1982-01-01

    The binding characteristics of chlorophenoxyisobutyric acid (CPIB) to serum proteins has been studied in 10 chronically uremic patients and 9 healthy subjects using the technique of equilibrium dialysis. Scatchard analysis of the results indicated a significant decrease in association constants for low as well as for high affinity sites. The number of binding sites however was not diminished thus suggesting the presence of competitive inhibitors. Such inhibitors were dializable, at least in part, as demonstrated by in vivo-hemodialysis and in vitro-dialysis experiments. The in vivo administration of 50 mg heparin intravenously led to a striking increase in the unbound fraction of serum CPIB whereas the addition of 10 IU/ml heparin in vitro induced no change of protein binding which is in favor of only an indirect effect of heparin. In conclusion, CPIB binding to serum proteins of chronically uremic patients as compared to normal volunteers was decreased leading to an increase of its unbound circulating fraction. The observed change of protein binding appeared to be due to the presence of competitive inhibitors in uremic serum. PMID:7088259

  6. Metallomics for drug development: serum protein binding and analysis of an anticancer tris(8-quinolinolato)gallium(III) drug using inductively coupled plasma mass spectrometry.

    PubMed

    Ossipov, Konstantin; Foteeva, Lidia S; Seregina, Irina F; Perevalov, Sergei A; Timerbaev, Andrei R; Bolshov, Mikhail A

    2013-06-27

    The application of an inductively coupled plasma mass spectrometry (ICP-MS) assay for quantifying in vitro binding of a gallium-based anticancer drug, tris(8-quinolinolato)gallium(III), to serum albumin and transferrin and in human serum is described. The distribution of the drug between the protein-rich and protein-free fractions was assessed via ICP-MS measurement of total gallium in ultrafiltrates. Comparative kinetic studies revealed that the drug exhibits a different reactivity toward individual proteins. While the maximum possible binding to albumin (~10%) occurs practically immediately, interaction with transferrin has a step-like character and the equilibrium state (with more than 50% binding) is reached for about 48 h. Drug transformation into the bound form in serum, also very fast, results in almost quantitative binding (~95%). The relative affinity of protein-drug binding was characterized in terms of the association constants ranging from 10(3) to 10(4)M(-1). In order to further promote clinical testing of the gallium drug, the ICP-MS method was applied for direct quantification of gallium in human serum spiked with the drug. The detection limit for gallium was found to be as low as 20 ng L(-1). The repeatability was better than 8% (as RSD) and the achieved recoveries were in the range 99-103%.

  7. Rapid Screening of Drug-Protein Binding Using High-Performance Affinity Chromatography with Columns Containing Immobilized Human Serum Albumin

    PubMed Central

    Li, Ying-Fei; Zhang, Xiao-Qiong; Hu, Wei-Yu; Li, Zheng; Liu, Ping-Xia; Zhang, Zhen-Qing

    2013-01-01

    For drug candidates, a plasma protein binding (PPB) more than 90% is more meaningful and deserves further investigation in development. In the study, a high-performance liquid chromatography method employing column containing immobilized human serum albumin (HSA) to screen in vitro PPB of leading compounds was established and successfully applied to tested compounds. Good correlation (a coefficient correlation of 0.96) was attained between the reciprocal values (X) of experimentally obtained retention time of reference compounds eluted through HSA column and the reported PPB values (Y) with a correlation equation of Y = 92.03 − 97.01X. The method was successfully applied to six test compounds, and the result was confirmed by the conventional ultrafiltration technique, and both yielded equal results. However, due to the particular protein immobilized to column, the method cannot be applied for all compounds and should be exploited judiciously based on the value of the logarithmic measure of the acid dissociation constant (pKa) as per the requirement. If α1-acid glycoprotein and other plasma proteins could be immobilized like HSA with their actual ratio in plasma to column simultaneously, the result attained using immobilized column may be more accurate, and the method could be applied to more compounds without pKa limitation. PMID:23607050

  8. Elevated serum insulin-like growth factor (IGF)-II and IGF binding protein-2 in patients with colorectal cancer

    PubMed Central

    Renehan, A G; Jones, J; Potten, C S; Shalet, S M; O'Dwyer, S T

    2000-01-01

    This study explored the relationships of serum insulin-like growth factors, IGF-I and IGF-II, and their binding proteins (IGFBP)-2 and IGFBP-3, with key clinicopathological parameters in 92 patients with colorectal cancer (cases). Comparisons were made with 57 individuals who had a normal colonoscopy (controls). Serial changes were examined in 27 cases. As IGF-related peptides are age- and sex-dependent, absolute concentrations were converted to standard deviation scores (SDS). Mean IGF-II SDS were elevated in Dukes A (n= 12 P< 0.001) and Dukes B (n= 25 P< 0.001) cases compared with controls, but not in advanced disease. Compared with controls, mean IGFBP-2 SDS were significantly elevated in patients with Dukes B (P< 0.001), Dukes C (n= 13 P< 0.001) and advanced disease (n= 42 P< 0.0001), with a significant trend from early to advanced disease (one-way ANOVA P< 0.001). Furthermore, IGFBP-2 SDS were positively related to tumour size (P= 0.01) and fell significantly in patients following curative resection (P= 0.04), suggesting that circulating levels reflect tumour load. We tested the potential tumour marker characteristics of IGFBP-2 SDS against three endpoints: metastasis alone; local pelvic recurrence alone; and metastasis and recurrence combined. The sensitivities for IGFBP-2 alone (≥ + 2SD) were modest at 55%, 46%, and 52%, but in combination with CEA, increased substantially to 90%, 77% and 86%, respectively. We conclude that the serum IGF-II and IGFBP-2 profiles may provide insights into underlying biological mechanisms, and that serum IGFBP-2 may have an adjunct role in cancer surveillance in patients with colorectal cancer. © 2000 Cancer Research Campaign PMID:11044360

  9. Accuracy of the serum intestinal fatty-acid-binding protein for diagnosis of acute intestinal ischemia: a meta-analysis

    PubMed Central

    Sun, Da-Li; Cen, Yun-Yun; Li, Shu-Min; Li, Wei-Ming; Lu, Qi-Ping; Xu, Peng-Yuan

    2016-01-01

    Numerous studies have investigated the utility of serum intestinal fatty-acid binding protein (I-FABP) in differentiating acute intestinal ischemia from acute abdomen. However, the results remain controversial. The aim of this meta-analysis is to determine the overall accuracy of serum I-FABP in the diagnosis of acute intestinal ischemia. Publications addressing the accuracy of serum I-FABP in the diagnosis of ischemic bowel diseases were selected from databases. The values of true-positive (TP), true-negative (TN), false-positive (FP), and false-negative (FN) were extracted or calculated for each study. Pooled sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), and diagnostic odds ratio (DOR) were calculated. The overall diagnostic performance was assessed using a summary receiver operating characteristic curve (SROC) and area under curve (AUC). Nine studies that collectively included 1246 patients met the eligible criteria. The pooled sensitivity, specificity, DOR, PLR, and NLR were 0.80 (95% CI: 0.72–0.86), 0.85 (95% CI: 0.73–0.93), 24 (95% CI: 9–65), 5.5 (95% CI: 2.8–10.8) and 0.23 (95% CI: 0.15–0.35), respectively. The AUC was 0.86 (95% CI: 0.83–0.89). The meta-analysis carried out in this report suggests that the I-FABP may be a useful diagnostic tool to confirm acute intestinal ischemia in acute abdomen, but better-designed trials are still required to confirm our findings. PMID:27681959

  10. Laser ablation inductively coupled plasma-mass spectrometry in combination with gel electrophoresis: a new strategy for speciation of metal binding serum proteins

    NASA Astrophysics Data System (ADS)

    Neilsen, J. L.; Abildtrup, A.; Christensen, J.; Watson, P.; Cox, A.; McLeod, C. W.

    1998-02-01

    A new hyphenated technique-crossed immunoelectrophoresis in combination with laser ablation inductively coupled plasma (ICP)-mass spectrometry—for the identification and quantitation of metal binding proteins in blood serum is described. Human serum enriched with Co was subjected to electrophoresis and the agarose gels corresponding to the first and second dimensions were interrogated and analysed using a Nd Yag laser (1064 nm) interfaced to ICP-mass spectrometry. Comparison of the distribution map for Co with the protein distribution map obtained via Coommassie Brilliant Blue staining allowed identification of main Co binding serum proteins. Signals for Co (single ion monitoring, mle 59) were transient in nature and for gels enriched with increasing concentrations of Co, peak area response was linear with concentration. Precision for replicate analyses was 6% R.S.D. and the limit of detection was - 0.29 ng.

  11. Inverse relation between prostate-specific antigen and insulin-like growth factor-binding protein 3 in bone metastases and serum of patients with prostate cancer.

    PubMed

    Smith, G L; Doherty, A P; Mitchell, H; Hanham, I W; Christmas, T J; Epstein, R J

    1999-12-11

    The usual osteoblastic phenotype of metastatic prostate cancer is unexplained. Here we show that tissue and serum concentrations of prostate-specific antigen (PSA)-vary inversely with a substrate protein that binds a growth factor known to activate osteoblasts. These findings suggest that PSA may contribute to the osteoblastic phenotype, and could thus represent a new drug target devoid of antiandrogenic toxicity.

  12. Radiometric ligand binding assay for C-reactive protein. Complexed C-reactive protein is not detectable in acute phase serum.

    PubMed

    De Beer, F C; Shine, B; Pepys, M B

    1982-10-01

    A radiometric ligand binding assay for human C-reactive protein (CRP) was established using pneumococcal C polysaccharide (CPS) coupled to magnetizable cellulose particles as the solid phase ligand. Competition for binding to the solid phase between 125I-CRP and unlabelled CRP permitted detection of 30 micrograms/l of CRP and the precise assay of concentrations up to 3000 micrograms/l. Identical results were obtained when the assay was used to quantitate isolated pure CRP and pure CRP added to normal human serum. However in vitro addition of known ligands for CRP to acute phase serum resulted in lowering of the apparent CRP concentration in this assay and addition of as little as 1 microgram/l of free CPS or 1 mg/l of lecithin was demonstrable in this way. A combination of the ligand binding assay and the standard electroimmunoassay for CRP was therefore used to test acute phase sera for the presence of CRP complexed in vitro. No evidence of complexed CRP was detected among sera containing between 1-319 mg/l of CRP from patients with Hodgkin's disease (10), rheumatoid arthritis (10), Crohn's disease (19) and various microbial infections (11), including six with subacute bacterial endocarditis. Since it is likely that CRP does form complexes with its ligands in the plasma these results suggest that complexed CRP is rapidly cleared from the circulation.

  13. Effects of Aerobic Exercise on Serum Retinol Binding Protein4, Insulin Resistance and Blood Lipids in Obese Women

    PubMed Central

    TAGHIAN, Farzaneh; ZOLFAGHARI, Maryam; HEDAYATI, Mehdi

    2014-01-01

    Abstract Background Retinol binding protein4 (RBP4) is a type of adipokine which transports vitamin A to serum. RBP4 could be a bridge between obesity and insulin resistance. This study aimed to investigate the effects of aerobic exercises on RBP4 serum’s concentration and metabolic syndrome risk factors in obese women. Methods Twenty obese women with body max index 35.81±3.67Kg/m2, fat percentage 43.98±4.02, and waist to hip ratio 1.03±0.05 were included and were randomly assigned to experimental and control groups. The experimental group received aerobic exercises for a period of 12 weeks each three sessions on treadmill workout. The treadmill speed were based on a 60-65 and 80-85 maximal heart rate percentage and duration of 15-20 and 45-50 minutes, at the beginning and the end of exercise, respectively. Body composition, serum glucose, insulin, TG, LDL-C, HDL-C, total cholesterol, and RBP4, were measured in both groups before and after the treatment by ELISA method. Insulin resistance was measured by HOMA-IR. To compare within group differences and between group comparisons t-correlated and t-independent tests were used, respectively. Results After 12 week aerobic exercises; weight, fat percentage, WHR, and BMI in the experimental group was significantly decreased (P<0.05). RBP4, insulin, insulin resistance, TG and HDL-C had significant differences between two groups. The cholesterol level, LDL-C and glucose did not have any significant changes. Conclusion The aerobic exercises can decrease body composition, insulin resistance, TG, and RBP4, so it can be beneficial for obese women’s health, because it. PMID:26060767

  14. Characterization of the binding of metoprolol tartrate and guaifenesin drugs to human serum albumin and human hemoglobin proteins by fluorescence and circular dichroism spectroscopy.

    PubMed

    Duman, Osman; Tunç, Sibel; Kancı Bozoğlan, Bahar

    2013-07-01

    The interactions of metoprolol tartrate (MPT) and guaifenesin (GF) drugs with human serum albumin (HSA) and human hemoglobin (HMG) proteins at pH 7.4 were studied by fluorescence and circular dichroism (CD) spectroscopy. Drugs quenched the fluorescence spectra of HSA and HMG proteins through a static quenching mechanism. For each protein-drug system, the values of Stern-Volmer quenching constant, bimolecular quenching constant, binding constant and number of binding site on the protein molecules were determined at 288.15, 298.15, 310.15 and 318.15 K. It was found that the binding constants of HSA-MPT and HSA-GF systems were smaller than those of HMG-MPT and HMG-GF systems. For both drugs, the affinity of HMG was much higher than that of HSA. An increase in temperature caused a negative effect on the binding reactions. The number of binding site on blood proteins for MPT and GF drugs was approximately one. Thermodynamic parameters showed that MPT interacted with HSA through electrostatic attraction forces. However, hydrogen bonds and van der Waals forces were the main interaction forces in the formation of HSA-GF, HMG-MPT and HMG-GF complexes. The binding processes between protein and drug molecules were exothermic and spontaneous owing to negative ∆H and ∆G values, respectively. The values of binding distance between protein and drug molecules were calculated from Förster resonance energy transfer theory. It was found from CD analysis that the bindings of MPT and GF drugs to HSA and HMG proteins altered the secondary structure of HSA and HMG proteins. PMID:23471625

  15. Protein binding-dependent decreases in hERG channel blocker potency assessed by whole-cell voltage clamp in serum.

    PubMed

    Margulis, Michael; Sorota, Steve; Chu, Inhou; Soares, Anthony; Priestley, Tony; Nomeir, Amin A

    2010-04-01

    In vitro hERG blocking potency is measured in drug discovery as part of an integrated cardiovascular risk assessment. Typically, the concentrations producing 50% inhibition are measured in protein-free saline solutions and compared with calculated free therapeutic in vivo Cmax values to estimate a hERG safety multiple. The free/unbound fraction is believed responsible for activity. We tested the validity of this approach with 12 compounds by determining potencies in voltage clamp studies conducted in the absence and presence of 100% dialyzed fetal bovine serum (FBS). Bath drug concentrations in saline solutions were measured to account for loss of compounds due to solubility, stability, and/or adsorption. Protein binding in dialyzed FBS was measured to enable predictions of serum IC50s based on the unbound fraction and the saline IC50. For 11 of 12 compounds, the measured potency in the presence of dialyzed FBS was within 2-fold of the predicted potency. The predicted IC50 in dialyzed FBS for one highly bound compound, amiodarone, was 9-fold higher than the measured serum IC50. These data suggest that for highly bound compounds, direct measurement of IC50s in the presence of 100% serum may provide a more accurate estimate of in vivo potencies than the approach based on calculated serum shifts. PMID:20125032

  16. Analysis of drug-protein binding using on-line immunoextraction and high-performance affinity microcolumns: Studies with normal and glycated human serum albumin.

    PubMed

    Matsuda, Ryan; Jobe, Donald; Beyersdorf, Jared; Hage, David S

    2015-10-16

    A method combining on-line immunoextraction microcolumns with high-performance affinity chromatography (HPAC) was developed and tested for use in examining drug-protein interactions with normal or modified proteins. Normal human serum albumin (HSA) and glycated HSA were used as model proteins for this work. High-performance immunoextraction microcolumns with sizes of 1.0-2.0 cm × 2.1mm i.d. and containing anti-HSA polyclonal antibodies were developed and tested for their ability to bind normal HSA or glycated HSA. These microcolumns were able to extract up to 82-93% for either type of protein at 0.05-0.10 mL/min and had a binding capacity of 0.34-0.42 nmol HSA for a 1.0 cm × 2.1mm i.d. microcolumn. The immunoextraction microcolumns and their adsorbed proteins were tested for use in various approaches for drug binding studies. Frontal analysis was used with the adsorbed HSA/glycated HSA to measure the overall affinities of these proteins for the drugs warfarin and gliclazide, giving comparable values to those obtained previously using similar protein preparations that had been covalently immobilized within HPAC columns. Zonal elution competition studies with gliclazide were next performed to examine the specific interactions of this drug at Sudlow sites I and II of the adsorbed proteins. These results were also comparable to those noted in prior work with covalently immobilized samples of normal HSA or glycated HSA. These experiments indicated that drug-protein binding studies can be carried out by using on-line immunoextraction microcolumns with HPAC. The same method could be used in the future with clinical samples and other drugs or proteins of interest in pharmaceutical studies or biomedical research.

  17. The associations of diet with serum insulin-like growth factor I and its main binding proteins in 292 women meat-eaters, vegetarians, and vegans.

    PubMed

    Allen, Naomi E; Appleby, Paul N; Davey, Gwyneth K; Kaaks, Rudolf; Rinaldi, Sabina; Key, Timothy J

    2002-11-01

    The lower rates of some cancers in Asian countries than in Western countries may be partly because of diet, although the mechanisms are unknown. The aim of this cross-sectional study was to determine whether a plant-based (vegan) diet is associated with a lower circulating level of insulin-like growth factor I (IGF-I) compared with a meat-eating or lacto-ovo-vegetarian diet among 292 British women, ages 20-70 years. The mean serum IGF-I concentration was 13% lower in 92 vegan women compared with 99 meat-eaters and 101 vegetarians (P = 0.0006). The mean concentrations of both serum IGF-binding protein (IGFBP)-1 and IGFBP-2 were 20-40% higher in vegan women compared with meat-eaters and vegetarians (P = 0.005 and P = 0.0008 for IGFBP-1 and IGFBP-2, respectively). There were no significant differences in IGFBP-3, C-peptide, or sex hormone-binding globulin concentrations between the diet groups. Intake of protein rich in essential amino acids was positively associated with serum IGF-I (Pearson partial correlation coefficient; r = 0.27; P < 0.0001) and explained most of the differences in IGF-I concentration between the diet groups. These data suggest that a plant-based diet is associated with lower circulating levels of total IGF-I and higher levels of IGFBP-1 and IGFBP-2. PMID:12433724

  18. Time course characterization of serum cardiac troponins, heart fatty acid-binding protein, and morphologic findings with isoproterenol-induced myocardial injury in the rat.

    PubMed

    Clements, Peter; Brady, Sally; York, Malcolm; Berridge, Brian; Mikaelian, Igor; Nicklaus, Rosemary; Gandhi, Mitul; Roman, Ian; Stamp, Clare; Davies, Dai; McGill, Paul; Williams, Thomas; Pettit, Syril; Walker, Dana; Turton, John

    2010-08-01

    We investigated the kinetics of circulating biomarker elevation, specifically correlated with morphology in acute myocardial injury. Male Hanover Wistar rats underwent biomarker and morphologic cardiac evaluation at 0.5 to seventy-two hours after a single subcutaneous isoproterenol administration (100 or 4000 microg/kg). Dose-dependent elevations of serum cardiac troponins I and T (cTnI, cTnT), and heart fatty acid-binding protein (H-FABP) occurred from 0.5 hour, peaked at two to three hours, and declined to baseline by twelve hours (H-FABP) or forty-eight to seventy-two hours (Serum cTns). They were more sensitive in detecting cardiomyocyte damage than other serum biomarkers. The Access 2 platform, an automated chemiluminescence analyzer (Beckman Coulter), showed the greatest cTnI fold-changes and low range sensitivity. Myocardial injury was detected morphologically from 0.5 hour, correlating well with loss of cTnI immunoreactivity and serum biomarker elevation at early time points. Ultrastructurally, there was no evidence of cardiomyocyte death at 0.5 hour. After three hours, a clear temporal disconnect occurred: lesion scores increased with declining cTnI, cTnT, and H-FABP values. Serum cTns are sensitive and specific markers for detecting acute/active cardiomyocyte injury in this rat model. Heart fatty acid-binding protein is a good early marker but is less sensitive and nonspecific. Release of these biomarkers begins early in myocardial injury, prior to necrosis. Assessment of cTn merits increased consideration for routine screening of acute/ongoing cardiomyocyte injury in rat toxicity studies.

  19. The binding of antituberculous drugs to normal and kwashiorkor serum.

    PubMed

    Buchanan, N; van der Walt, L A

    1977-09-17

    The protein binding of 6 antituberculous drugs--ethambutol, ethionamide, isoniazid, para-aminosalicylic acid, rifampicin and streptomycin--to normal and kwashiorkor serum has been investigated. The binding of these drugs was mildly decreased in kwashiorkor serum, but not to such an extent as to be of therapeutic importance, except for streptomycin and possibly para-aminosalicylic acid (PAS). With streptomycin there was a 15% increase in the free component in kwashiorkor serum, while with PAS there was a 12% increase in the free component. Of interest is the observation that rifampicin is predominantly bound to the gamma-globulin fraction, both in normal and in kwashiorkor serum. Secondary binding, predominantly to the alpha 1-, alpha 2-and gamma-globulin fractions, was seen quite commonly in kwashiorkor serum in association with diminished albumin binding.

  20. Nitric oxide protects neuroblastoma cells from apoptosis induced by serum deprivation through cAMP-response element-binding protein (CREB) activation.

    PubMed

    Ciani, Elisabetta; Guidi, Sandra; Della Valle, Giuliano; Perini, Giovanni; Bartesaghi, Renata; Contestabile, Antonio

    2002-12-20

    The transcription factor cAMP-response element-binding protein (CREB) mediates survival in many cells, including neurons. Recently, death of cerebellar granule neurons due to nitric oxide (NO) deprivation was shown to be accompanied by down-regulation of CREB activity (). We now provide evidence that overproduction of endogenous NO or supplementation with exogenous NO renders SK-N-BE human neuroblastoma cells more resistant to apoptosis induced by serum deprivation. Parental cells underwent apoptosis after 24 h of serum deprivation, an outcome largely absent in clones overexpressing human neuronal nitric oxide synthase (nNOS). This protective effect was reversed by the inhibition of NOS itself or soluble guanylyl cyclase, pointing at cGMP as an intermediate effector of NO-mediated rescue. A slow-releasing NO donor protected parental cells to a significant extent, thus confirming the survival effect of NO. The impaired viability of serum-deprived parental cells was accompanied by a strong decrease of CREB phosphorylation and transcriptional activity, effects significantly attenuated in nNOS-overexpressing clones. To confirm the role of CREB in survival, the ectopic expression of CREB and/or protein kinase A largely counteracted serum deprivation-induced cell death of SK-N-BE cells, whereas transfection with a CREB negative mutant was ineffective. These experiments indicate that CREB activity is an important step for NO-mediated survival in neuronal cells.

  1. Nitric oxide protects neuroblastoma cells from apoptosis induced by serum deprivation through cAMP-response element-binding protein (CREB) activation.

    PubMed

    Ciani, Elisabetta; Guidi, Sandra; Della Valle, Giuliano; Perini, Giovanni; Bartesaghi, Renata; Contestabile, Antonio

    2002-12-20

    The transcription factor cAMP-response element-binding protein (CREB) mediates survival in many cells, including neurons. Recently, death of cerebellar granule neurons due to nitric oxide (NO) deprivation was shown to be accompanied by down-regulation of CREB activity (). We now provide evidence that overproduction of endogenous NO or supplementation with exogenous NO renders SK-N-BE human neuroblastoma cells more resistant to apoptosis induced by serum deprivation. Parental cells underwent apoptosis after 24 h of serum deprivation, an outcome largely absent in clones overexpressing human neuronal nitric oxide synthase (nNOS). This protective effect was reversed by the inhibition of NOS itself or soluble guanylyl cyclase, pointing at cGMP as an intermediate effector of NO-mediated rescue. A slow-releasing NO donor protected parental cells to a significant extent, thus confirming the survival effect of NO. The impaired viability of serum-deprived parental cells was accompanied by a strong decrease of CREB phosphorylation and transcriptional activity, effects significantly attenuated in nNOS-overexpressing clones. To confirm the role of CREB in survival, the ectopic expression of CREB and/or protein kinase A largely counteracted serum deprivation-induced cell death of SK-N-BE cells, whereas transfection with a CREB negative mutant was ineffective. These experiments indicate that CREB activity is an important step for NO-mediated survival in neuronal cells. PMID:12368293

  2. Photoaffinity labeling of human serum vitamin D binding protein and chemical cleavage of the labeled protein: Identification of an 11. 5-kDa peptide containing the putative 25-hydroxyvitamin D sub 3 binding site

    SciTech Connect

    Ray, R.; Holick, M.F. ); Bouillon, R.; Baelen, H.V. )

    1991-07-30

    In this paper, the authors describe photoaffinity labeling and related studies of human serum vitamin D binding protein (hDBP) with 25-hydroxyvitamin D{sub 3} 3{beta}-3{prime}-(N-(4-azido-2-nitrophenyl)amino)propyl ether (25-ANE) and its radiolabeled counterpart, i.e., 25-hydroxyvitamin D{sub 3} 3{beta}-3{prime}-(N-(4-azido-2-nitro-(3,5-{sup 3}H)phenyl)amino)propyl ether ({sup 3}H-25-ANE). They have carried out studies to demonstrate that (1) 25-ANE competes with 25-OH-D{sub 3} for the binding site of the latter in hDBP and (2) {sup 3}H-25-ANE is capable of covalently labeling the hDBP molecule when exposed ot UV light. Treatment of a sample of purified hDBP, labeled with {sup 3}H-25-ANE, with BNPS-skatole produced two Coomassie Blue stained peptide fragments, and the majority of the radioactivity was assoicated with the smaller of the two peptide fragments (16.5 kDa). On the other hand, cleavage of the labeled protein with cyanogen bromide produced a peptide (11.5 kDa) containing most of the covalently attached radioactivity. Considering the primary amino acid structure of hDBP, this peptide fragment (11.5 kDa) represents the N-terminus through residue 108 of the intact protein. Thus, the results tentatively identify this segment of the protein containing the binding pocket for 25-OH-D{sub 3}.

  3. Hepatic uptake of (TH)retinol bound to the serum retinol binding protein involves both parenchymal and perisinusoidal stellate cells

    SciTech Connect

    Blomhoff, R.; Norum, K.R.; Berg, T.

    1985-11-05

    We have studied the hepatic uptake of retinol bound to the circulating retinol binding protein-transthyretin complex. Labeled complex was obtained from the plasma of donor rats that were fed radioactive retinol. When labeled retinol-retinol binding protein-transthyretin complex was injected intravenously into control rats, about 45% of the administered dose was recovered in liver after 56 h. Parenchymal liver cells were responsible for an initial rapid uptake. Perisinusoidal stellate cells initially accumulated radioactivity more slowly than did the parenchymal cells, but after 16 h, these cells contained more radioactivity than the parenchymal cells. After 56 h, about 70% of the radioactivity recovered in liver was present in stellate cells. For the first 2 h after injection, most of the radioactivity in parenchymal cells was recovered as unesterified retinol. The radioactivity in the retinyl ester fraction increased after a lag period of about 2 h, and after 5 h more than 60% of the radioactivity was recovered as retinyl esters. In stellate cells, radioactivity was mostly present as retinyl esters at all time points examined. Uptake of retinol in both parenchymal cells and stellate cells was reduced considerably in vitamin A-deficient rats. Less than 5% of the injected dose of radioactivity was found in liver after 5-6 h (as compared to 25% in control rats), and the radioactivity recovered in liver from these animals was mostly in the unesterified retinol fraction. Studies with separated cells in vitro suggested that both parenchymal and stellate cells isolated from control rats were able to take up retinol from the retinol-retinol binding protein-transthyretin complex. This uptake was temperature dependent.

  4. Exploring the affinity binding of alkylmaltoside surfactants to bovine serum albumin and their effect on the protein stability: A spectroscopic approach.

    PubMed

    Hierrezuelo, J M; Carnero Ruiz, C

    2015-08-01

    Steady-state and time-resolved fluorescence together with circular dichroism (CD) spectroscopic studies was performed to examine the interactions between bovine serum albumin (BSA) and two alkylmaltoside surfactants, i.e. n-decyl-β-D-maltoside (β-C10G2) and n-dodecyl-β-D-maltoside (β-C12G2), having identical structures but different tail lengths. Changes in the intrinsic fluorescence of BSA from static as well as dynamic measurements revealed a weak protein-surfactant interaction and gave the corresponding binding curves, suggesting that the binding mechanism of surfactants to protein is essentially cooperative in nature. The behavior of both surfactants is similar, so that the differences detected were attributed to the more hydrophobic nature of β-C12G2, which favors the adsorption of micelle-like aggregates onto the protein surface. These observations were substantially demonstrated by data derived from synchronous, three-dimensional and anisotropy fluorescence experiments. Changes in the secondary structure of the protein induced by the interaction with surfactants were analyzed by CD to determine the contents of α-helix and β-strand. It was noted that whereas the addition of β-C10G2 appears to stabilize the secondary structure of the protein, β-C12G2 causes a marginal denaturation of BSA for a protein:surfactant molar ratio as high as 1 to 100.

  5. Deglycosylation of serum vitamin D3-binding protein by alpha-N-acetylgalactosaminidase detected in the plasma of patients with systemic lupus erythematosus.

    PubMed

    Yamamoto, N; Naraparaju, V R; Moore, M; Brent, L H

    1997-03-01

    A serum glycoprotein, Gc protein (vitamin D3-binding protein), can be converted by beta-galactosidase of B cells and sialidase of T cells to a potent macrophage-activating factor (MAF), a protein with N-acetylgalactosamine as the remaining sugar moiety. Thus, Gc protein is the precursor for MAF. Treatment of Gc protein with immobilized beta-galactosidase and sialidase generates a remarkably high titered macrophage-activating factor (GcMAF). When peripheral blood monocytes/ macrophages (designated macrophages) of 33 systemic lupus erythematosus patients were incubated with GcMAF (100 pg/ml), the macrophages of all patients were activated as determined by superoxide generation. However, the precursor activity of patient plasma Gc protein was lost or reduced in these patients. Loss of the precursor activity was the result of deglycosylation of plasma Gc protein by alpha-N-acetylgalactosaminidase activity found in the patient plasma. Levels of plasma alpha-N-acetylgalactosaminidase activity in individual patients had an inverse correlation with the MAF precursor activity of their plasma Gc protein. Deglycosylated Gc protein cannot be converted to macro-phage-activating factor. The resulting defect in macro-phage activation may lead to an inability to clear pathogenic immune complexes. Thus, elevated plasma alpha-N-acetylgalactosaminidase activity resulting in the loss of MAF precursor activity and reduced macro-phage activity may play a role in the pathogenesis of systemic lupus erythematosus. PMID:9073553

  6. (PCG) Protein Crystal Growth Human Serum Albumin

    NASA Technical Reports Server (NTRS)

    1989-01-01

    (PCG) Protein Crystal Growth Human Serum Albumin. Contributes to many transport and regulatory processes and has multifunctional binding properties which range from various metals, to fatty acids, hormones, and a wide spectrum of therapeutic drugs. The most abundant protein of the circulatory system. It binds and transports an incredible variety of biological and pharmaceutical ligands throughout the blood stream. Principal Investigator on STS-26 was Larry DeLucas.

  7. Protein Binding Pocket Dynamics.

    PubMed

    Stank, Antonia; Kokh, Daria B; Fuller, Jonathan C; Wade, Rebecca C

    2016-05-17

    The dynamics of protein binding pockets are crucial for their interaction specificity. Structural flexibility allows proteins to adapt to their individual molecular binding partners and facilitates the binding process. This implies the necessity to consider protein internal motion in determining and predicting binding properties and in designing new binders. Although accounting for protein dynamics presents a challenge for computational approaches, it expands the structural and physicochemical space for compound design and thus offers the prospect of improved binding specificity and selectivity. A cavity on the surface or in the interior of a protein that possesses suitable properties for binding a ligand is usually referred to as a binding pocket. The set of amino acid residues around a binding pocket determines its physicochemical characteristics and, together with its shape and location in a protein, defines its functionality. Residues outside the binding site can also have a long-range effect on the properties of the binding pocket. Cavities with similar functionalities are often conserved across protein families. For example, enzyme active sites are usually concave surfaces that present amino acid residues in a suitable configuration for binding low molecular weight compounds. Macromolecular binding pockets, on the other hand, are located on the protein surface and are often shallower. The mobility of proteins allows the opening, closing, and adaptation of binding pockets to regulate binding processes and specific protein functionalities. For example, channels and tunnels can exist permanently or transiently to transport compounds to and from a binding site. The influence of protein flexibility on binding pockets can vary from small changes to an already existent pocket to the formation of a completely new pocket. Here, we review recent developments in computational methods to detect and define binding pockets and to study pocket dynamics. We introduce five

  8. Protein Binding Pocket Dynamics.

    PubMed

    Stank, Antonia; Kokh, Daria B; Fuller, Jonathan C; Wade, Rebecca C

    2016-05-17

    The dynamics of protein binding pockets are crucial for their interaction specificity. Structural flexibility allows proteins to adapt to their individual molecular binding partners and facilitates the binding process. This implies the necessity to consider protein internal motion in determining and predicting binding properties and in designing new binders. Although accounting for protein dynamics presents a challenge for computational approaches, it expands the structural and physicochemical space for compound design and thus offers the prospect of improved binding specificity and selectivity. A cavity on the surface or in the interior of a protein that possesses suitable properties for binding a ligand is usually referred to as a binding pocket. The set of amino acid residues around a binding pocket determines its physicochemical characteristics and, together with its shape and location in a protein, defines its functionality. Residues outside the binding site can also have a long-range effect on the properties of the binding pocket. Cavities with similar functionalities are often conserved across protein families. For example, enzyme active sites are usually concave surfaces that present amino acid residues in a suitable configuration for binding low molecular weight compounds. Macromolecular binding pockets, on the other hand, are located on the protein surface and are often shallower. The mobility of proteins allows the opening, closing, and adaptation of binding pockets to regulate binding processes and specific protein functionalities. For example, channels and tunnels can exist permanently or transiently to transport compounds to and from a binding site. The influence of protein flexibility on binding pockets can vary from small changes to an already existent pocket to the formation of a completely new pocket. Here, we review recent developments in computational methods to detect and define binding pockets and to study pocket dynamics. We introduce five

  9. Protein Crystal Serum Albumin

    NASA Technical Reports Server (NTRS)

    1998-01-01

    As the most abundant protein in the circulatory system albumin contributes 80% to colloid osmotic blood pressure. Albumin is also chiefly responsible for the maintenance of blood pH. It is located in every tissue and bodily secretion, with extracellular protein comprising 60% of total albumin. Perhaps the most outstanding property of albumin is its ability to bind reversibly to an incredible variety of ligands. It is widely accepted in the pharmaceutical industry that the overall distribution, metabolism, and efficiency of many drugs are rendered ineffective because of their unusually high affinity for this abundant protein. An understanding of the chemistry of the various classes of pharmaceutical interactions with albumin can suggest new approaches to drug therapy and design. Principal Investigator: Dan Carter/New Century Pharmaceuticals

  10. Associations of serum carotenoid concentrations and fruit or vegetable consumption with serum insulin-like growth factor (IGF)-1 and IGF binding protein-3 concentrations in the Third National Health and Nutrition Examination Survey (NHANES III).

    PubMed

    Diener, Anja; Rohrmann, Sabine

    2016-01-01

    Dietary intervention may alter the insulin-like growth factor (IGF) system and thereby cancer risk. In a qualitative review, eleven of twenty studies showed a link between one or more carotenoids, vegetable or fruit intake and the IGF system, however, with partly contrary findings, such that no firm conclusion can be drawn. Therefore, we evaluated associations between serum carotenoid concentrations or the intake of fruits and vegetables with IGF-1, IGF binding protein (BP)-3 and their molar ratio (IGF-1:IGFBP-3) within the Third National Health and Nutrition Examination Survey (NHANES III, 1988-1994). In our analysis, we included 6061 NHANES III participants and used multivariable-adjusted linear regression models. IGF-1 concentrations were significantly positively associated with serum concentrations of lycopene, β-carotene, α-carotene, β-cryptoxanthin and lutein/zeaxanthin in men and women. Statistically significant positive associations were observed for serum concentrations of α-carotene and lutein/zeaxanthin and intake of fruits with serum IGFBP-3 concentrations in women, but not in men. The IGF-1:IGFBP-3 molar ratio was significantly positively associated with serum concentrations of lycopene, β-carotene and α-carotene in men and with β-carotene in women. In conclusion, dietary interventions with carotenoids, fruits and vegetables may affect the IGF system, although the direction of these effects is currently unclear. PMID:27313849

  11. Analysis of multi-site drug-protein interactions by high-performance affinity chromatography: Binding by glimepiride to normal or glycated human serum albumin.

    PubMed

    Matsuda, Ryan; Li, Zhao; Zheng, Xiwei; Hage, David S

    2015-08-21

    High-performance affinity chromatography (HPAC) was used in a variety of formats to examine multi-site interactions between glimepiride, a third-generation sulfonylurea drug, and normal or in vitro glycated forms of the transport protein human serum albumin (HSA). Frontal analysis revealed that glimepiride interacts with normal HSA and glycated HSA at a group of high affinity sites (association equilibrium constant, or Ka, 9.2-11.8×10(5)M(-1) at pH 7.4 and 37°C) and a group of lower affinity regions (Ka, 5.9-16×10(3)M(-1)). Zonal elution competition studies were designed and carried out in both normal- and reversed-role formats to investigate the binding by this drug at specific sites. These experiments indicated that glimepiride was interacting at both Sudlow sites I and II. Allosteric effects were also noted with R-warfarin at Sudlow site I and with tamoxifen at the tamoxifen site on HSA. The binding at Sudlow site I had a 2.1- to 2.3-fold increase in affinity in going from normal HSA to the glycated samples of HSA. There was no significant change in the affinity for glimepiride at Sudlow site II in going from normal HSA to a moderately glycated sample of HSA, but a slight decrease in affinity was seen in going to a more highly glycated HSA sample. These results demonstrated how various HPAC-based methods can be used to profile and characterize multi-site binding by a drug such as glimepiride to a protein and its modified forms. The information obtained from this study should be useful in providing a better understanding of how drug-protein binding may be affected by glycation and of how separation and analysis methods based on HPAC can be employed to study systems with complex interactions or that involve modified proteins.

  12. Analysis of multi-site drug-protein interactions by high-performance affinity chromatography: Binding by glimepiride to normal or glycated human serum albumin.

    PubMed

    Matsuda, Ryan; Li, Zhao; Zheng, Xiwei; Hage, David S

    2015-08-21

    High-performance affinity chromatography (HPAC) was used in a variety of formats to examine multi-site interactions between glimepiride, a third-generation sulfonylurea drug, and normal or in vitro glycated forms of the transport protein human serum albumin (HSA). Frontal analysis revealed that glimepiride interacts with normal HSA and glycated HSA at a group of high affinity sites (association equilibrium constant, or Ka, 9.2-11.8×10(5)M(-1) at pH 7.4 and 37°C) and a group of lower affinity regions (Ka, 5.9-16×10(3)M(-1)). Zonal elution competition studies were designed and carried out in both normal- and reversed-role formats to investigate the binding by this drug at specific sites. These experiments indicated that glimepiride was interacting at both Sudlow sites I and II. Allosteric effects were also noted with R-warfarin at Sudlow site I and with tamoxifen at the tamoxifen site on HSA. The binding at Sudlow site I had a 2.1- to 2.3-fold increase in affinity in going from normal HSA to the glycated samples of HSA. There was no significant change in the affinity for glimepiride at Sudlow site II in going from normal HSA to a moderately glycated sample of HSA, but a slight decrease in affinity was seen in going to a more highly glycated HSA sample. These results demonstrated how various HPAC-based methods can be used to profile and characterize multi-site binding by a drug such as glimepiride to a protein and its modified forms. The information obtained from this study should be useful in providing a better understanding of how drug-protein binding may be affected by glycation and of how separation and analysis methods based on HPAC can be employed to study systems with complex interactions or that involve modified proteins. PMID:26189669

  13. Analysis of Multi-Site Drug-Protein Interactions by High-Performance Affinity Chromatography: Binding by Glimepiride to Normal or Glycated Human Serum Albumin

    PubMed Central

    Matsuda, Ryan; Li, Zhao; Zheng, Xiwei; Hage, David S.

    2015-01-01

    High-performance affinity chromatography (HPAC) was used in a variety of formats to examine multi-site interactions between glimepiride, a third-generation sulfonylurea drug, and normal or in vitro glycated forms of the transport protein human serum albumin (HSA). Frontal analysis revealed that glimepiride interacts with normal HSA and glycated HSA at a group of high affinity sites (association equilibrium constant, or Ka, 9.2–11.8 × 105 M−1 at pH 7.4 and 37°C) and a group of lower affinity regions (Ka, 5.9–16.2 × 103 M−1). Zonal elution competition studies were designed and carried out in both normal- and reversed-role formats to investigate the binding by this drug at specific sites. These experiments indicated that glimepiride was interacting at both Sudlow sites I and II. Allosteric effects were also noted with R-warfarin at Sudlow site I and with tamoxifen at the tamoxifen site on HSA. The binding at Sudlow site I had a 2.1- to 2.3-fold increase in affinity in going from normal HSA to the glycated samples of HSA. There was no significant change in the affinity for glimepiride at Sudlow site II in going from normal HSA to a moderately glycated sample of HSA, but a slight decrease in affinity was seen in going to a more highly glycated HSA sample. These results demonstrated how various HPAC-based methods can be used to profile and characterize multi-site binding by a drug such as glimepiride to a protein and its modified forms. The information obtained from this study should be useful in providing a better understanding of how drug-protein binding may be affected by glycation and of how separation and analysis methods based on HPAC can be employed to study systems with complex interactions or that involve modified proteins. PMID:26189669

  14. Decreased clearance of serum retinol-binding protein and elevated levels of transthyretin in insulin-resistant ob/ob mice

    PubMed Central

    Mody, Nimesh; Graham, Timothy E.; Tsuji, Yuki; Yang, Qin; Kahn, Barbara B.

    2009-01-01

    Serum retinol-binding protein (RBP4) is secreted by liver and adipocytes and is implicated in systemic insulin resistance in rodents and humans. RBP4 normally binds to the larger transthyretin (TTR) homotetramer, forming a protein complex that reduces renal clearance of RBP4. To determine whether alterations in RBP4-TTR binding contribute to elevated plasma RBP4 levels in insulin-resistant states, we investigated RBP4-TTR interactions in leptin-deficient ob/ob mice and high-fat-fed obese mice (HFD). Gel filtration chromatography of plasma showed that 88–94% of RBP4 is contained within the RBP4-TTR complex in ob/ob and lean mice. Coimmunoprecipitation with an RBP4 antibody brought down stoichiometrically equal amounts of TTR and RBP4, indicating that TTR was not more saturated with RBP4 in ob/ob mice than in controls. However, plasma TTR levels were elevated approximately fourfold in ob/ob mice vs. controls. RBP4 injected intravenously in lean mice cleared rapidly, whereas the t1/2 for disappearance was approximately twofold longer in ob/ob plasma. Urinary fractional excretion of RBP4 was reduced in ob/ob mice, consistent with increased retention. In HFD mice, plasma TTR levels and clearance of injected RBP4 were similar to chow-fed controls. Hepatic TTR mRNA levels were elevated approximately twofold in ob/ob but not in HFD mice. Since elevated circulating RBP4 causes insulin resistance and glucose intolerance in mice, these findings suggest that increased TTR or alterations in RBP4-TTR binding may contribute to insulin resistance by stabilizing RBP4 at higher steady-state concentrations in circulation. Lowering TTR levels or interfering with RBP4-TTR binding may enhance insulin sensitivity in obesity and type 2 diabetes. PMID:18285525

  15. Specific, sensitive and accurate quantification of albumin, retinol binding protein and transferrin in human urine and serum by zone immunoelectrophoresis assay (ZIA).

    PubMed

    Vesterberg, O

    1994-05-01

    For zone immunoelectrophoresis assay (ZIA) glass tubes, ID 2 mm and 90 mm high, are filled to 2/3 with buffer containing agarose and antibodies against the protein to be quantified, each sample being pipetted on top of separate agarose gel rods. On electrophoresis at 35-150 V for several hours, the sample proteins enter the gel with resultant immunoprecipitates, visualized by staining. The extension of each immunoprecipitation zone from the upper gel surface (measured with a ruler) is directly proportional to the amount of protein in each sample and can easily be quantitated by comparison with a linear calibration curve. ZIA can be used for quantification of several proteins in blood serum and plasma as well as in urine, as is illustrated for albumin, retinol-binding protein (RBP) and transferrin. The recovery of the pure proteins added to urine is often close to 100%. ZIA has many advantages: (i) simple apparatus and procedure (no gel punching nor cooling), (ii) minimal antiserum consumption (1 mL may allow > 1000 assays), (iii) electrophoresis can be performed within a few hours or overnight, (iv) low coefficient of variation (often < 4%), (v) linear calibration curves, (vi) low detection limit (< 20 ng/mL), (vii) wide concentration ranges, (viii) no kits nor unique antisera preparation are required, and (ix) good agreement with the results from other methods.

  16. Effects of an endurance cycling competition on resting serum insulin-like growth factor I (IGF-I) and its binding proteins IGFBP-1 and IGFBP-3

    PubMed Central

    Chicharro, J; Lopez-Calderon, A; Hoyos, J; Martin-Velasco, A; Villa, G; Villanua, M; Lucia, A

    2001-01-01

    Objectives—To determine whether consecutive bouts of intense endurance exercise over a three week period alters serum concentrations of insulin-like growth factor I (IGF-I) and/or its binding proteins. Methods—Seventeen professional cyclists (mean (SEM) VO2MAX, 74.7 (2.1) ml/kg/min; age, 27 (1) years) competing in a three week tour race were selected as subjects. Blood samples were collected at each of the following time points: t0 (control, before the start of competition), t1 (end of first week), and t3 (end of third week). Serum levels of both total and free IGF-I and IGF binding proteins 1 and 3 (IGFBP-1 and IGFBP-3) were measured in each of the samples. Cortisol levels were measured in nine subjects. Results—A significant (p<0.01) increase was found in total IGF-I and IGFBP-1 at both t1 and t3 compared with to (IGF-I: 110.9 (17.7), 186.8 (12.0), 196.9 (14.7) ng/ml at t0, t1, and t3 respectively; IGFBP-1: 54.6 (6.6), 80.6 (8.0), and 89.2 (7.9) ng/ml at t0, t1, and t3 respectively). A significant (p<0.01) decrease was noted in free IGF-I at t3 compared with both to and t1 (t0: 0.9 (0.1) ng/ml; t1: 0.9 (0.1) ng/ml; t3: 0.7 (0.1) ng/ml); in contrast, IGFBP-3 levels remained stable throughout the race. Conclusions—It would appear that the increase in circulating levels of both IGF-I and its binding protein IGFBP-1 is a short term (one week) endocrine adaptation to endurance exercise. After three weeks of training, total IGF-I and IGFBP-1 remained stable, whereas free IGF-I fell below starting levels. Key Words: cycling; insulin-like growth factor; exercise; endurance; binding proteins PMID:11579061

  17. Hevea latex lectin binding protein in C-serum as an anti-latex coagulating factor and its role in a proposed new model for latex coagulation.

    PubMed

    Wititsuwannakul, Rapepun; Pasitkul, Piyaporn; Jewtragoon, Pattavuth; Wititsuwannakul, Dhirayos

    2008-02-01

    A distinct protein specifically recognized by its strong interaction with Hevea latex lectin (HLL) was detected in the aqueous C-serum fraction of centrifuged fresh latex. This C-serum lectin binding protein (CS-HLLBP) exhibited strong inhibition of HLL-induced hemagglutination. The CS-HLLBP was purified to homogeneity by a protocol that included ammonium sulfate fractionation, size exclusion and ion exchange chromatography. The purified CS-HLLBP had a specific HI titer of 0.23microg ml(-1). Its M(r)s analyzed by SDS-PAGE was ca. 40kDa and that by gel filtration was ca. 204kDa. It has a pI value of 4.7, an optimum activity between pH 6 and10 and was heat stable up to 50 degrees C. The HI activity of CS-HLLBP was abolished upon treatment with chitinase. The CS-HLLBP inhibited HLL-induced rubber particle aggregation in a dose dependent manner. A highly positive correlation between CS-HLLBP activity and rubber yield per tapping was found. The correlations for fresh latex (r=0.98, P<0.01) and dry rubber (r=0.95, P<0.01) were both highly significant. This indicated that the CS-HLLBP might be used as a reliable marker for the mass screening of young seedlings to identify and select clones with potential to be superior producers of rubber. A latex anti-coagulating role of the CS-HLLBP is proposed. The findings described in this 3 paper series have been used to propose a new model of rubber latex coagulation that logically describes roles for the newly characterized latex lectin and the two lectin binding proteins. PMID:17983633

  18. Retinol binding protein and vitamin D associations with serum antibody isotypes, serum influenza virus-specific neutralizing activities and airway cytokine profiles.

    PubMed

    Jones, B G; Oshansky, C M; Bajracharya, R; Tang, L; Sun, Y; Wong, S S; Webby, R; Thomas, P G; Hurwitz, J L

    2016-02-01

    Vitamin A supports the induction of immunoglobulin (Ig)A responses at mucosal surfaces in mice, but much less is known about the influence of vitamins on antibody isotype expression in humans. To address this knowledge gap, we examined 46 residual blood samples from adults and children, some of whom were experiencing influenza virus infections of the respiratory tract. Assays were performed for retinol binding protein (RBP, a surrogate for vitamin A), vitamin D (a related vitamin) and antibody isotypes. Results showed that all but two tested samples exhibited RBP and/or vitamin D insufficiencies or deficiencies. Vitamin D correlated with blood IgM and IgG3, while RBP correlated with IgG4 and IgA. RBP also correlated positively with age and with influenza virus-specific antibody neutralization titres. Individuals with low blood RBP levels exhibited the highest frequencies of over-expressed cytokines and growth factors in nasal wash samples, an indication of inflamed mucosal tissues. While cause-effect relationships were not discerned, results support a hypothesis that vitamins directly influence B cell isotype expression in humans, and by so doing may help protect mucosal surfaces from respiratory viral disease. PMID:26425827

  19. ANALYSIS OF DRUG INTERACTIONS WITH MODIFIED PROTEINS BY HIGH-PERFORMANCE AFFINITY CHROMATOGRAPHY: BINDING OF GLIBENCLAMIDE TO NORMAL AND GLYCATED HUMAN SERUM ALBUMIN

    PubMed Central

    Matsuda, Ryan; Anguizola, Jeanethe; Joseph, K.S.; Hage, David S.

    2012-01-01

    High-performance affinity chromatography (HPAC) was used to examine the changes in binding that occur for the sulfonylurea drug glibenclamide with human serum albumin (HSA) at various stages of glycation for HSA. Frontal analysis on columns containing normal HSA or glycated HSA indicated glibenclamide was interacting through both high affinity sites (association equilibrium constant, Ka, 1.4–1.9 × 106 M−1 at pH 7.4 and 37°C) and lower affinity sites (Ka, 4.4–7.2 × 104 M−1). Competition studies were used to examine the effect of glycation at specific binding sites of HSA. An increase in affinity of 1.7- to 1.9-fold was seen at Sudlow site I with moderate to high levels of glycation. An even larger increase of 4.3- to 6.0-fold in affinity was noted at Sudlow site II for all of the tested samples of glycated HSA. A slight decrease in affinity may have occurred at the digitoxin site, but this change was not significant for any individual glycated HSA sample. These results illustrate how HPAC can be used as tool for examining the interactions of relatively non-polar drugs like glibenclamide with modified proteins and should lead to a more complete understanding of how glycation can alter the binding of drugs in blood. PMID:23092871

  20. Serum Level of Heart-Type Fatty Acid Binding Protein (H-FABP) Before and After Treatment of Congestive Heart Failure in Children.

    PubMed

    Zoair, Amr; Mawlana, Wegdan; Abo-Elenin, Amany; Korrat, Mostafa

    2015-12-01

    Remodeling of the heart following injury affects the morbidity and mortality in children presented with heart failure (HF). Heart-type fatty acid binding protein (H-FABP) is a novel biomarker that could be of help to predict the prognosis and risk stratification in those children. We aimed to evaluate the diagnostic and prognostic value of H-FABP in children with heart failure before and after treatment. The study was conducted as a prospective cohort study. It included 30 children with HF as a patient group and 20 healthy children matched for age and sex as a control group. Echocardiographic assessment of the heart was done using conventional Doppler echocardiography. Serum levels of (H-FABP) were measured using enzyme-linked immunosorbent assay before and after treatment of HF. All patients were observed during follow-up period of 3 months. There was a significant difference in the serum level of H-FABP in our patients before treatment (5.278 ± 3.253 ng/ml) compared with after treatment (2.089 ± 0.160 ng/ml) with significant difference compared with the control group. There was a significant increase in the serum level of H-FABP with increase in the severity of heart failure according to Ross classification. Significant increase in the H-FABP was associated with adverse outcome. Serum levels of H-FABP strongly correlated with clinical and echocardiographic assessment of LV performance of children with HF, and its levels significantly increased in children with adverse outcome suggesting its value as a useful diagnostic and prognostic predictor (with high sensitivity and specificity). PMID:26123812

  1. Evaluation of Fucosylated Haptoglobin and Mac-2 Binding Protein as Serum Biomarkers to Estimate Liver Fibrosis in Patients with Chronic Hepatitis C.

    PubMed

    Tawara, Seiichi; Tatsumi, Tomohide; Iio, Sadaharu; Kobayashi, Ichizou; Shigekawa, Minoru; Hikita, Hayato; Sakamori, Ryotaro; Hiramatsu, Naoki; Miyoshi, Eiji; Takehara, Tetsuo

    2016-01-01

    Fucosylated haptoglobin (Fuc-Hpt) and Mac-2 binding protein (Mac-2 bp) are identified as cancer biomarkers, based on the results from a glyco-proteomic analysis. Recently, we reported that these glyco-biomarkers were associated with liver fibrosis and/or ballooning hepatocytes in patients with nonalcoholic fatty liver disease (NAFLD). We evaluated the ability of these glycoproteins to estimate liver fibrosis in 317 patients with chronic hepatitis C. We measured the serum Fuc-Hpt and Mac-2 bp levels using a lectin-antibody ELISA and ELISA, respectively. The serum levels of both Fuc-Hpt and Mac-2 bp increased with the progression of liver fibrosis. The multivariate analysis revealed that Mac-2 bp was an independent factor associated with moderate liver fibrosis (F ≥ 2). In contrast, Fuc-Hpt was an independent factor associated with advanced liver fibrosis (F ≥ 3). In terms of evaluating liver fibrosis, the serum levels of these glycomarkers were correlated with well-known liver fibrosis indexes, such as the aspartate aminotransferase to platelet ratio index (APRI) and Fibrosis-4 (FIB4) index. An assay that combined the APRI or FIB4 index and the Fuc-Hpt or Mac-2 bp levels increased the AUC value for diagnosing hepatic fibrosis. Interestingly, the cumulative incidence of hepatocellular carcinoma (HCC) was significantly higher in the patients with elevated serum levels of Fuc-Hpt and Mac-2 bp. In conclusion, both Fuc-Hpt and Mac-2 bp could be useful glyco-biomarkers of liver fibrosis and predictors of HCC in patients with chronic hepatitis C.

  2. Evaluation of Fucosylated Haptoglobin and Mac-2 Binding Protein as Serum Biomarkers to Estimate Liver Fibrosis in Patients with Chronic Hepatitis C.

    PubMed

    Tawara, Seiichi; Tatsumi, Tomohide; Iio, Sadaharu; Kobayashi, Ichizou; Shigekawa, Minoru; Hikita, Hayato; Sakamori, Ryotaro; Hiramatsu, Naoki; Miyoshi, Eiji; Takehara, Tetsuo

    2016-01-01

    Fucosylated haptoglobin (Fuc-Hpt) and Mac-2 binding protein (Mac-2 bp) are identified as cancer biomarkers, based on the results from a glyco-proteomic analysis. Recently, we reported that these glyco-biomarkers were associated with liver fibrosis and/or ballooning hepatocytes in patients with nonalcoholic fatty liver disease (NAFLD). We evaluated the ability of these glycoproteins to estimate liver fibrosis in 317 patients with chronic hepatitis C. We measured the serum Fuc-Hpt and Mac-2 bp levels using a lectin-antibody ELISA and ELISA, respectively. The serum levels of both Fuc-Hpt and Mac-2 bp increased with the progression of liver fibrosis. The multivariate analysis revealed that Mac-2 bp was an independent factor associated with moderate liver fibrosis (F ≥ 2). In contrast, Fuc-Hpt was an independent factor associated with advanced liver fibrosis (F ≥ 3). In terms of evaluating liver fibrosis, the serum levels of these glycomarkers were correlated with well-known liver fibrosis indexes, such as the aspartate aminotransferase to platelet ratio index (APRI) and Fibrosis-4 (FIB4) index. An assay that combined the APRI or FIB4 index and the Fuc-Hpt or Mac-2 bp levels increased the AUC value for diagnosing hepatic fibrosis. Interestingly, the cumulative incidence of hepatocellular carcinoma (HCC) was significantly higher in the patients with elevated serum levels of Fuc-Hpt and Mac-2 bp. In conclusion, both Fuc-Hpt and Mac-2 bp could be useful glyco-biomarkers of liver fibrosis and predictors of HCC in patients with chronic hepatitis C. PMID:27002630

  3. HIGH-PERFORMANCE AFFINITY CHROMATOGRAPHY AND THE ANALYSIS OF DRUG INTERACTIONS WITH MODIFIED PROTEINS: BINDING OF GLICLAZIDE WITH GLYCATED HUMAN SERUM ALBUMIN

    PubMed Central

    Matsuda, Ryan; Anguizola, Jeanethe; Joseph, K.S.; Hage, David S.

    2011-01-01

    This study used high-performance affinity chromatography (HPAC) to examine the binding of gliclazide (i.e., a sulfonylurea drug used to treat diabetes) with the protein human serum albumin (HSA) at various stages of modification due to glycation. Frontal analysis conducted with small HPAC columns was first used to estimate the number of binding sites and association equilibrium constants (Ka) for gliclazide with normal HSA and glycated HSA. Both normal and glycated HSA interacted with gliclazide according to a two-site model, with a class of high affinity sites (average Ka, 7.1-10 × 104 M−1) and a group of lower affinity sites (average Ka, 5.7-8.9 × 103 M−1) at pH 7.4 and 37°C. Competition experiments indicated that Sudlow sites I and II of HSA were both involved in these interactions, with the Ka values for gliclazide at these sites being 1.9 × 104 M−1 and 6.0 × 104 M−1, respectively, for normal HSA. Two samples of glycated HSA had similar affinities to normal HSA for gliclazide at Sudlow site I, but one sample had a 1.9-fold increase in affinity at this site. All three glycated HSA samples differed from normal HSA in their affinity for gliclazide at Sudlow site II. This work illustrated how HPAC can be used to examine both the overall binding of a drug with normal or modified proteins and the site-specific changes that can occur in these interactions as a result of protein modification. PMID:21922305

  4. Studies of the binding of different iron donors to human serum transferrin and isolation of iron-binding fragments from the N- and C-terminal regions of the protein.

    PubMed Central

    Evans, R W; Williams, J

    1978-01-01

    1. Trypsin digestion of human serum transferrin partially saturated with iron(III)-nitrilotriacetate at pH 5.5 or pH 8.5 produces a carbohydrate-containing iron-binding fragment of mol.wt. 43000. 2. When iron(III) citrate, FeCl3, iron (III) ascorabate and (NH4)2SO4,FeSO4 are used as iron donors to saturate the protein partially, at pH8.5, proteolytic digestion yields a fragment of mol.wt. 36000 that lacks carbohydrate. 3. The two fragments differ in their antigenic structures, amino acid compositions and peptide 'maps'. 4. The fragment with mol.wt. 36000 was assigned to the N-terminal region of the protein and the other to the C-terminal region. 5. The distribution of iron in human serum transferrin partially saturated with various iron donors was examined by electrophoresis in urea/polyacrylamide gels and the two possible monoferric forms were unequivocally identified. 6. The site designated A on human serum transferrin [Harris (1977) Biochemistry 16, 560--564] was assigned to the C-terminal region of the protein and the B site to the N-terminal region. 7. The distribution of iron on transferrin in human plasma was determined. Images Fig. 1. Fig. 3. Fig. 5. Fig. 6. PMID:100104

  5. Gender-specific association between the cytoplasmic poly(A) binding protein 4 rs4660293 single nucleotide polymorphism and serum lipid levels

    PubMed Central

    WU, JIAN; YIN, RUI-XING; GUO, TAO; LIN, QUAN-ZHEN; SHEN, SHAO-WEN; SUN, JIA-QI; SHI, GUANG-YUAN; WU, JIN-ZHEN; YANG, DE-ZHAI; LIN, WEI-XIONG

    2015-01-01

    Cytoplasmic poly(A) binding protein 4 (PABPC4) is an RNA-processing protein which has an important role in regulating gene expression. The association of the PABPC4 rs4660293 single nucleotide polymorphism (SNP) and serum lipid profiles has, to the best of our knowledge, not previously been studied in the Chinese population. The present study aimed to investigate the association between the PABPC4 rs4660293 SNP and several environmental factors with serum lipid levels in the Mulao and Han populations. A total of 727 individuals of Mulao nationality and 729 individuals of Han nationality were randomly selected from stratified randomized samples from a previous study by our group. Genotypes of the PABPC4 rs4660293 SNP were determined via polymerase chain reaction and restriction fragment length polymorphism analyses and subsequently confirmed by direct sequencing. Serum levels of low-density lipoprotein cholesterol (LDL-C) and apolipoprotein (Apo) B were higher in the Mulao group than those in the Han group (P<0.01 for each). The genotypic and allelic frequencies of the PABPC4 rs4660293 SNP were significantly different between males and females in the Mulao population (P<0.05 for each), while no significant difference was detected between those of males and females amongst the Han population. The frequency of the G allele was higher in Mulao males than in Mulao females (22.12 vs. 13.44%). The G allele carriers were found to have higher total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C) and ApoAI levels in Han females but not in Han males, and lower TC and HDL-C levels in Mulao females but not in Mulao males than those of the G allele non-carriers (P<0.05 for all). These associations were confirmed by multiple linear regression analysis (P<0.05–0.001). Serum lipid parameters were also correlated with multiple environmental factors (P<0.05–0.001). The PABPC4 rs4660293 SNP was associated with serum TC, HDL-C, LDL-C and ApoAI levels in these study

  6. Serum retinol binding protein 4 is negatively related to beta cell function in Chinese women with non-alcoholic fatty liver disease: a cross-sectional study

    PubMed Central

    2013-01-01

    Background To observe the relationship between serum retinol binding protein 4(RBP4) and β cell function in Chinese subjects with non-alcoholic fatty liver disease (NAFLD) and without known diabetes. Methods 106 patients diagnosed as fatty liver by ultrasonography (M/F: 61/45; aged 47.44 ± 14.16 years) were enrolled in our current cross-sectional study. Subjects with known diabetes, chronic virus hepatitis and excessive alcohol consumption were excluded. Serum RBP4 was detected by ELISA and validated by quantitative Western blotting. β cell function were assessed by HOMA in all subjects and by hyperglycemic clamp in 17 normal glucose tolerance subjects (M = 6, F = 11). Results The levels of serum RBP4 in men were higher than that in women (55.96 ± 11.14 vs 45.87 ± 10.31 μg/ml, p < 0.001). Pearson’s correlation analysis demonstrated that in women, serum RBP4 levels were significantly associated with fasting blood glucose (FBG), HOMA-β, and increment of first phase insulin secretion (1PH), but not associated with age, BMI, waist circumference, WHR, systolic (SBP) and diastolic blood pressure (DBP), TC, TG, HDL-c, LDL-c, 2 h blood glucose, HOMA-IR, ALT, AST, γ-GT, hepatic fat content (HFC), and insulin sensitivity index (ISI). However, in men, serum RBP4 levels were significantly associated with HDL-c, ALT, AST, but not associated with any other parameters as mentioned above. A stepwise multiple linear regression analysis demonstrated that in women, HOMA-IR and RBP4 were significantly associated with HOMA-β, while in men, HOMA-IR and BMI were significantly variables associated with HOMA-β. Conclusions Serum RBP4, secreted mainly by liver and adipose tissue, may involve in the pathogenesis of β cell dysfunction in Chinese women patients with NAFLD. PMID:24160775

  7. The folate binding proteins.

    PubMed

    Corrocher, R; Olivieri, O; Pacor, M L

    1991-01-01

    Folates are essential molecules for cell life and, not surprisingly, their transport in biological fluids and their transfer to cells are finely regulated. Folate binding proteins play a major role in this regulation. This paper will review our knowledge on these proteins and examine the most recent advances in this field. PMID:1820987

  8. Protein electrophoresis - serum

    MedlinePlus

    ... of protein and fat, called lipoproteins (such as LDL cholesterol). ... globulin proteins may indicate: Abnormally low level of LDL cholesterol Malnutrition Increased gamma globulin proteins may indicate: Bone ...

  9. Insulin, insulin-like growth factor 1 and insulin-like growth factor binding protein 3 serum concentrations in patients with adenomatous colon polyps

    PubMed Central

    Janiak, Adam; Oset, Piotr; Kumor, Anna; Małecka-Panas, Ewa

    2013-01-01

    Introduction Insulin stimulates colonic mucosal cells proliferation directly and by influencing the concentration of insulin-like growth factor 1 (IGF-1) and insulin-like growth factor binding protein 3 (IGFBP-3). Aim To estimate serum concentrations of insulin, IGF-1, and IGFBP-3 and to determine the relationships between them and colorectal adenoma location, dysplasia grading, histological type, and size. Material and methods The study included 60 patients with colorectal adenomatous polyps found on colonoscopy and confirmed pathologically. The control group consisted of 30 individuals with no positive findings on colonoscopy. All patients had their blood drawn for assessment of insulin, IGF-1, and IGFBP-3 serum concentrations. Results One hundred and nine adenomas (6–40 mm in size) were found in 60 study patients. The average age of patients with multiple polyps was significantly higher than that of patients with single pathologies (61.1 vs. 56.7 years respectively (p < 0.05)). A higher adenoma incidence rate was observed in the distal portion of the colon than the proximal one (50 vs. 10 polyps respectively (p < 0.01)). Higher serum levels of IGF-1 and IGFBP-3 were found in patients with adenomatous polyps than in the control group. The average IGF-1 concentration in patients with adenomas located proximally was also significantly higher compared to those located distally (p < 0.05). The insulin concentration was similar in both groups and not related to clinical data of patients. Conclusions The results indicate the role of IGF-1 and IGFBP-3 in early carcinogenesis of the large intestine, and IGF-1 particularly in malignant transformation in the proximal part of the organ. PMID:24868275

  10. Alternative Binding Modes Identified for Growth and Differentiation Factor-associated Serum Protein (GASP) Family Antagonism of Myostatin*

    PubMed Central

    Walker, Ryan G.; Angerman, Elizabeth B.; Kattamuri, Chandramohan; Lee, Yun-Sil; Lee, Se-Jin; Thompson, Thomas B.

    2015-01-01

    Myostatin, a member of the TGF-β family of ligands, is a strong negative regulator of muscle growth. As such, it is a prime therapeutic target for muscle wasting disorders. Similar to other TGF-β family ligands, myostatin is neutralized by binding one of a number of structurally diverse antagonists. Included are the antagonists GASP-1 and GASP-2, which are unique in that they specifically antagonize myostatin. However, little is known from a structural standpoint describing the interactions of GASP antagonists with myostatin. Here, we present the First low resolution solution structure of myostatin-free and myostatin-bound states of GASP-1 and GASP-2. Our studies have revealed GASP-1, which is 100 times more potent than GASP-2, preferentially binds myostatin in an asymmetrical 1:1 complex, whereas GASP-2 binds in a symmetrical 2:1 complex. Additionally, C-terminal truncations of GASP-1 result in less potent myostatin inhibitors that form a 2:1 complex, suggesting that the C-terminal domains of GASP-1 are the primary mediators for asymmetric complex formation. Overall, this study provides a new perspective on TGF-β antagonism, where closely related antagonists can utilize different ligand-binding strategies. PMID:25657005

  11. Alternative binding modes identified for growth and differentiation factor-associated serum protein (GASP) family antagonism of myostatin.

    PubMed

    Walker, Ryan G; Angerman, Elizabeth B; Kattamuri, Chandramohan; Lee, Yun-Sil; Lee, Se-Jin; Thompson, Thomas B

    2015-03-20

    Myostatin, a member of the TGF-β family of ligands, is a strong negative regulator of muscle growth. As such, it is a prime therapeutic target for muscle wasting disorders. Similar to other TGF-β family ligands, myostatin is neutralized by binding one of a number of structurally diverse antagonists. Included are the antagonists GASP-1 and GASP-2, which are unique in that they specifically antagonize myostatin. However, little is known from a structural standpoint describing the interactions of GASP antagonists with myostatin. Here, we present the First low resolution solution structure of myostatin-free and myostatin-bound states of GASP-1 and GASP-2. Our studies have revealed GASP-1, which is 100 times more potent than GASP-2, preferentially binds myostatin in an asymmetrical 1:1 complex, whereas GASP-2 binds in a symmetrical 2:1 complex. Additionally, C-terminal truncations of GASP-1 result in less potent myostatin inhibitors that form a 2:1 complex, suggesting that the C-terminal domains of GASP-1 are the primary mediators for asymmetric complex formation. Overall, this study provides a new perspective on TGF-β antagonism, where closely related antagonists can utilize different ligand-binding strategies. PMID:25657005

  12. Characterization of diverse subvariants of the meningococcal factor H (fH) binding protein for their ability to bind fH, to mediate serum resistance, and to induce bactericidal antibodies.

    PubMed

    Seib, Kate L; Brunelli, Brunella; Brogioni, Barbara; Palumbo, Emmanuelle; Bambini, Stefania; Muzzi, Alessandro; DiMarcello, Federica; Marchi, Sara; van der Ende, Arie; Aricó, Beatrice; Savino, Silvana; Scarselli, Maria; Comanducci, Maurizio; Rappuoli, Rino; Giuliani, Marzia M; Pizza, Mariagrazia

    2011-02-01

    Neisseria meningitidis is a commensal of the human nasopharynx but is also a major cause of septicemia and meningitis. The meningococcal factor H binding protein (fHbp) binds human factor H (fH), enabling downregulation of complement activation on the bacterial surface. fHbp is a component of two serogroup B meningococcal vaccines currently in clinical development. Here we characterize 12 fHbp subvariants for their level of surface exposure and ability to bind fH, to mediate serum resistance, and to induce bactericidal antibodies. Flow cytometry and Western analysis revealed that all strains examined expressed fHbp on their surface to different extents and bound fH in an fHbp-dependent manner. However, differences in fH binding did not always correlate with the level of fHbp expression, indicating that this is not the only factor affecting the amount of fH bound. To overcome the issue of strain variability in fHbp expression, the MC58ΔfHbp strain was genetically engineered to express different subvariants from a constitutive heterologous promoter. These recombinant strains were characterized for fH binding, and the data confirmed that each subvariant binds different levels of fH. Surface plasmon resonance revealed differences in the stability of the fHbp-fH complexes that ranged over 2 orders of magnitude, indicating that differences in residues between and within variant groups can influence fH binding. Interestingly, the level of survival in human sera of recombinant MC58 strains expressing diverse subvariants did not correlate with the level of fH binding, suggesting that the interaction of fHbp with fH is not the only function of fHbp that influences serum resistance. Furthermore, cross-reactive bactericidal activity was seen within each variant group, although the degree of activity varied, suggesting that amino acid differences within each variant group influence the bactericidal antibody response.

  13. Serum 25-hydroxyvitamin D, vitamin D binding protein, and risk of colorectal cancer in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial

    PubMed Central

    Weinstein, Stephanie J.; Purdue, Mark P.; Smith-Warner, Stephanie A.; Mondul, Alison M.; Black, Amanda; Ahn, Jiyoung; Huang, Wen-Yi; Horst, Ronald L.; Kopp, William; Rager, Helen; Ziegler, Regina G.; Albanes, Demetrius

    2014-01-01

    The potential role of vitamin D in cancer prevention has generated substantial interest, and laboratory experiments indicate several anti-cancer properties for vitamin D compounds. Prospective studies of circulating 25-hydroxyvitamin D [25(OH)D], the accepted biomarker of vitamin D status, suggest an inverse association with colorectal cancer risk, but with some inconsistencies. Furthermore, the direct or indirect impact of the key transport protein, vitamin D binding protein (DBP), has not been examined. We conducted a prospective study of serum 25(OH)D and DBP concentrations and colorectal cancer risk in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial, based on 476 colorectal cancer cases and 476 controls, matched on age, sex, race, and date of serum collection. All subjects underwent sigmoidoscopic screening at baseline and once during follow-up. Conditional logistic regression estimated odds ratios (ORs) and 95% confidence intervals (CIs). Circulating 25(OH)D was inversely associated with colorectal cancer (OR=0.60, 95% CI 0.38-0.94 for highest versus lowest quintile, p-trend 0.01). Adjusting for recognized colorectal cancer risk factors and accounting for seasonal vitamin D variation did not alter the findings. Neither circulating DBP nor the 25(OH)D:DBP molar ratio, a proxy for free circulating 25(OH)D, was associated with risk (OR=0.82, 95% CI 0.54-1.26, and OR=0.79, 95% CI 0.52-1.21, respectively), and DBP did not modify the 25(OH)D association. The current study eliminated confounding by colorectal cancer screening behavior, and supports an association between higher vitamin D status and substantially lower colorectal cancer risk, but does not indicate a direct or modifying role for DBP. PMID:25156182

  14. Associations of serum insulin-like growth factor-I and insulin-like growth factor-binding protein 3 levels with biomarker-calibrated protein, dairy product and milk intake in the Women's Health Initiative.

    PubMed

    Beasley, Jeannette M; Gunter, Marc J; LaCroix, Andrea Z; Prentice, Ross L; Neuhouser, Marian L; Tinker, Lesley F; Vitolins, Mara Z; Strickler, Howard D

    2014-03-14

    It is well established that protein-energy malnutrition decreases serum insulin-like growth factor (IGF)-I levels, and supplementation of 30 g of whey protein daily has been shown to increase serum IGF-I levels by 8 % after 2 years in a clinical trial. Cohort studies provide the opportunity to assess associations between dietary protein intake and IGF axis protein levels under more typical eating conditions. In the present study, we assessed the associations of circulating IGF axis protein levels (ELISA, Diagnostic Systems Laboratories) with total biomarker-calibrated protein intake, as well as with dairy product and milk intake, among postmenopausal women enrolled in the Women's Health Initiative (n 747). Analyses were carried out using multivariate linear regression models that adjusted for age, BMI, race/ethnicity, education, biomarker-calibrated energy intake, alcohol intake, smoking, physical activity and hormone therapy use. There was a positive association between milk intake and free IGF-I levels. A three-serving increase in milk intake per d (approximately 30 g of protein) was associated with an estimated average 18·6 % higher increase in free IGF-I levels (95 % CI 0·9, 39·3 %). However, total IGF-I and insulin-like growth factor-binding protein 3 (IGFBP-3) levels were not associated with milk consumption and nor were there associations between biomarker-calibrated protein intake, biomarker-calibrated energy intake, and free IGF-I, total IGF-I or IGFBP-3 levels. The findings of the present study carried out in postmenopausal women are consistent with clinical trial data suggesting a specific relationship between milk consumption and serum IGF-I levels, although in the present study this association was only statistically significant for free, but not total, IGF-I or IGFBP-3 levels.

  15. Human Serum Amyloid A3 (SAA3) Protein, Expressed as a Fusion Protein with SAA2, Binds the Oxidized Low Density Lipoprotein Receptor

    PubMed Central

    Tomita, Takeshi; Ieguchi, Katsuaki; Sawamura, Tatsuya; Maru, Yoshiro

    2015-01-01

    Serum amyloid A3 (SAA3) possesses characteristics distinct from the other serum amyloid A isoforms, SAA1, SAA2, and SAA4. High density lipoprotein contains the latter three isoforms, but not SAA3. The expression of mouse SAA3 (mSAA3) is known to be up-regulated extrahepatically in inflammatory responses, and acts as an endogenous ligand for the toll-like receptor 4/MD-2 complex. We previously reported that mSAA3 plays an important role in facilitating tumor metastasis by attracting circulating tumor cells and enhancing hyperpermeability in the lungs. On the other hand, human SAA3 (hSAA3) has long been regarded as a pseudogene, which is in contrast to the abundant expression levels of the other isoforms. Although the nucleotide sequence of hSAA3 is very similar to that of the other SAAs, a single oligonucleotide insertion in exon 2 causes a frame-shift to generate a unique amino acid sequence. In the present study, we identified that hSAA3 was transcribed in the hSAA2-SAA3 fusion transcripts of several human cell lines. In the fusion transcript, hSAA2 exon 3 was connected to hSAA3 exon 1 or hSAA3 exon 2, located approximately 130kb downstream from hSAA2 exon 3 in the genome, which suggested that it is produced by alternative splicing. Furthermore, we succeeded in detecting and isolating hSAA3 protein for the first time by an immunoprecipitation-enzyme linked immune assay system using monoclonal and polyclonal antibodies that recognize the hSAA3 unique amino acid sequence. We also demonstrated that hSAA3 bound oxidized low density lipoprotein receptor (oxLDL receptor, LOX-1) and elevated the phosphorylation of ERK, the intracellular MAP-kinase signaling protein. PMID:25738827

  16. Cellulose binding domain proteins

    DOEpatents

    Shoseyov, O.; Shpiegl, I.; Goldstein, M.; Doi, R.

    1998-11-17

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

  17. Cellulose binding domain proteins

    DOEpatents

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc; Doi, Roy

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  18. Role of conserved residues in structure and stability: Tryptophans of human serum retinol-binding protein, a model for the lipocalin superfamily

    PubMed Central

    Greene, Lesley H.; Chrysina, Evangelia D.; Irons, Laurence I.; Papageorgiou, Anastassios C.; Acharya, K. Ravi; Brew, Keith

    2001-01-01

    Serum retinol binding protein (RBP) is a member of the lipocalin family, proteins with up-and-down β-barrel folds, low levels of sequence identity, and diverse functions. Although tryptophan 24 of RBP is highly conserved among lipocalins, it does not play a direct role in activity. To determine if Trp24 and other conserved residues have roles in stability and/or folding, we investigated the effects of conservative substitutions for the four tryptophans and some adjacent residues on the structure, stability, and spectroscopic properties of apo-RBP. Crystal structures of recombinant human apo-RBP and of a mutant with substitutions for tryptophans 67 and 91 at 1.7 Å and 2.0 Å resolution, respectively, as well as stability measurements, indicate that these relatively exposed tryptophans have little influence on structure or stability. Although Trp105 is largely buried in the wall of the β-barrel, it can be replaced with minor effects on stability to thermal and chemical unfolding. In contrast, substitutions of three different amino acids for Trp24 or replacement of Arg139, a conserved residue that interacts with Trp24, lead to similar large losses in stability and lower yields of native protein generated by in vitro folding. The results and the coordinated nature of natural substitutions at these sites support the idea that conserved residues in functionally divergent homologs have roles in stabilizing the native relative to misfolded structures. They also establish conditions for studies of the kinetics of folding and unfolding by ideying spectroscopic signals for monitoring the formation of different substructures. PMID:11604536

  19. Ghrelin binding to serum albumin and its biological impact.

    PubMed

    Lufrano, Daniela; Trejo, Sebastián A; Llovera, Ramiro E; Salgueiro, Mariano; Fernandez, Gimena; Martínez Damonte, Valentina; González Flecha, F Luis; Raingo, Jesica; Ermácora, Mario R; Perelló, Mario

    2016-11-15

    Ghrelin is an octanoylated peptide hormone that plays a key role in the regulation of the body weight and glucose homeostasis. In plasma, ghrelin circulates bound to larger proteins whose identities are partially established. Here, we used size exclusion chromatography, mass spectrometry and isothermal titration microcalorimetry to show that ghrelin interacts with serum albumin. Furthermore, we found that such interaction displays an estimated dissociation constant (KD) in the micromolar range and involves albumin fatty-acid binding sites as well as the octanoyl moiety of ghrelin. Notably, albumin-ghrelin interaction reduces the spontaneous deacylation of the hormone. Both in vitro experiments-assessing ghrelin ability to inhibit calcium channels-and in vivo studies-evaluating ghrelin orexigenic effects-indicate that the binding to albumin affects the bioactivity of the hormone. In conclusion, our results suggest that ghrelin binds to serum albumin and that this interaction impacts on the biological activity of the hormone. PMID:27431015

  20. SERUM PROTEIN PROFILES IN COCCIDIOIDOMYCOSIS

    PubMed Central

    Reed, William B.; Heiskell, Charles L.; Holeman, Charles W.; Carpenter, Charles

    1962-01-01

    Serum protein analysis is a valuable addition to the present methods for evaluating the status of the individual patient with coccidioidomycosis. The albumin protein and albumin glycoprotein decrease and gamma protein increases in relation to severity of infection. In 40 patients with coccidioidomycosis, changes in individual protein fractions could be significantly correlated with conventional laboratory tests, such as the complement fixation test, erythrocyte sedimentation rate and hematocrit. Changes in the alpha, glycoprotein concentration, the erythrocyte sedimentation rate and the hematocrit value appear to be related to the degree of inflammation, while the changes in the gamma protein and the beta, glycoprotein appear to be related to the specific antibody response. PMID:13973566

  1. Serum protein profiles in coccidioidomycosis.

    PubMed

    REED, W B; HEISKELL, C L; HOLEMAN, C W; CARPENTER, C

    1962-12-01

    Serum protein analysis is a valuable addition to the present methods for evaluating the status of the individual patient with coccidioidomycosis. The albumin protein and albumin glycoprotein decrease and gamma protein increases in relation to severity of infection. In 40 patients with coccidioidomycosis, changes in individual protein fractions could be significantly correlated with conventional laboratory tests, such as the complement fixation test, erythrocyte sedimentation rate and hematocrit. Changes in the alpha, glycoprotein concentration, the erythrocyte sedimentation rate and the hematocrit value appear to be related to the degree of inflammation, while the changes in the gamma protein and the beta, glycoprotein appear to be related to the specific antibody response.

  2. Thyroxine binding to serum thyronine-binding globulin in thyroidectomized adult and normal neonatal rats

    SciTech Connect

    Young, R.A.; Meyers, B.; Alex, S.; Fang, S.L.; Braverman, L.E.

    1988-05-01

    The amount of tracer (125I)T4 bound to serum thyronine-binding globulin (TBG) was measured by polyacrylamide gel electrophoresis in adult thyroidectomized (TX) rats and normal 1-day to 4-week-old rat puts. Thyroidectomy was associated with the appearance of significant amounts of (125I)T4 binding to serum TBG in lean rats, but not in obese Zucker rats. Treatment of the TX rats in vivo with replacement doses of T4 prevented this increase in TBG binding, but enrichment of serum from TX rats with T4 did not. Significant amounts of tracer (125I)T4 binding to TBG was present in serum from 1- to 3-week-old normal rat pups, but not in 1-day- or 4-week-old pups. There were significantly higher levels of TBG binding of (125I)T4 in serum from 2-week-old rat pups raised in litters of 16 pups compared to those raised in litters of 4 pups. All manipulations that result in the appearance of TBG in rat serum also result in either weight loss or a slowing in the rate of growth, suggesting that the appearance of TBG in rat serum has a nutritional component. This possibility is further supported by the observations that increases in TBG binding of (125I)T4 are not found in obese Zucker rats fed a low protein-high carbohydrate diet for 14 days or fasted for 7 days, or after thyroidectomy, perhaps owing to the large stores of fuel in the obese rat.

  3. Heparin-binding properties of human serum spreading factor.

    PubMed

    Barnes, D W; Reing, J E; Amos, B

    1985-08-01

    Human serum spreading factor (SF) is a blood glycoprotein that promotes attachment and spreading and influences growth, migration, and differentiation of a variety of animal cells in culture. SF purified from human plasma or serum by chromatographic methods reported previously (Barnes, D. W., and Silnutzer, J. (1983) J. Biol. Chem. 258, 12548-12552) does not bind to heparin-Sepharose under conditions of physiological ionic strength and pH. In a further examination of the heparin-binding properties of human serum SF, we found that exposure of purified SF to 8 M urea altered several properties of the protein, including heparin affinity, and these alterations remained after removal of the urea from SF solutions. Urea-treated SF bound to heparin under physiological conditions, and salt concentrations of 0.4 M or higher were required for elution of urea-treated SF from heparin-Sepharose at pH 7.0. The alteration of heparin-binding properties of SF also was observed upon exposure of the protein to heat or acid. Treatment of SF with urea, heat, or acid resulted additionally in greatly decreased cell spreading-promoting activity of the molecule. The decreased biological activity was associated with a reduced ability of the treated SF to bind to the cell culture substratum, a prerequisite for the attachment-promoting activity of the molecule. Experiments examining the heparin-binding properties of native SF in unfractionated human plasma indicated that the major portion of SF in blood did not bind to heparin under conditions of physiological ionic strength and pH. PMID:2410408

  4. [Spectroscopic studies on the binding of phenazopyridine hydrochloride and bovine serum albumin].

    PubMed

    Zhou, Hong; Chen, Chang-Yun; Xie, An-Jian

    2007-09-01

    The binding of phenazopyridine hydrochloride and bovine serum albumin under physiological conditions was studied by spectroscopic method. The quenching mechanism of the fluorescence of bovine serum albumin by phenazopyridine hydrochloride was studied with fluorescence and absorption spectroscopy. The binding constant Kb and the number of binding sites n were determined at different temperatures according to Scatchard equation, and the main binding force was discussed by thermodynamic equations. The effect of the drug on bovine serum albumin conformation was also studied by using synchronous fluorescence spectroscopy. The quenching mechanism of phenazopyridine hydrochloride to bovine serum albumin is static quenching and non-radiation energy transfer. The binding constants Kb at 15, 25 and 37 degrees C are 2.47 x 10(7), 9.15 x 10(6) and 4.36 x 10(6) mol(-1) with one binding site, respectively. The thermodynamic parameters of the reaction are DeltaH = -71.2 kJ x mol(-1), and DeltaS = 124.8 J x mol(-1) x K(-1). Binding phenazopyridine hydrochloride to bovine serum albumin is a spontaneous inter-molecular interaction in which entropy increases and Gibbs free energy decreases. The binding distance r between phenazopyridine hydrochloride and bovine serum albumin is 1.61 nm according to Forster theory of non-radiation energy transfer. The binding force is electrostatic interaction. Phenazopyridine hydrochloride can be deposited and transported by serum protein in vivo. Phenazopyridine hydrochloride does affect the serum protein conformation.

  5. 21 CFR 866.5765 - Retinol-binding protein immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Retinol-binding protein immunological test system....5765 Retinol-binding protein immunological test system. (a) Identification. A retinol-binding protein... the retinol-binding protein that binds and transports vitamin A in serum and urine. Measurement...

  6. 21 CFR 866.5765 - Retinol-binding protein immunological test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Retinol-binding protein immunological test system....5765 Retinol-binding protein immunological test system. (a) Identification. A retinol-binding protein... the retinol-binding protein that binds and transports vitamin A in serum and urine. Measurement...

  7. 21 CFR 866.5765 - Retinol-binding protein immunological test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Retinol-binding protein immunological test system....5765 Retinol-binding protein immunological test system. (a) Identification. A retinol-binding protein... the retinol-binding protein that binds and transports vitamin A in serum and urine. Measurement...

  8. 21 CFR 866.5765 - Retinol-binding protein immunological test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Retinol-binding protein immunological test system....5765 Retinol-binding protein immunological test system. (a) Identification. A retinol-binding protein... the retinol-binding protein that binds and transports vitamin A in serum and urine. Measurement...

  9. 21 CFR 866.5765 - Retinol-binding protein immunological test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Retinol-binding protein immunological test system....5765 Retinol-binding protein immunological test system. (a) Identification. A retinol-binding protein... the retinol-binding protein that binds and transports vitamin A in serum and urine. Measurement...

  10. Vitamin D–Binding Protein Levels Do Not Influence The Effect of Vitamin D Repletion on Serum PTH and Calcium: Data From a Randomized, Controlled Trial

    PubMed Central

    McGee, David; Breslow, Jan L.

    2014-01-01

    Context: Vitamin D deficiency, defined by the total serum 25-hydroxyvitamin D [25(OH)D] level, is common and more prevalent among Blacks than whites. Vitamin D–binding protein (DBP) levels vary with race and may modulate “bioavailable” levels of 25(OH)D. Objective: To determine the effect of DBP levels on the functional response to vitamin D. Setting and Design: A randomized, placebo-controlled trial of vitamin D repletion for 2 mo, which took place at an outpatient research unit. Participants included 150 vitamin D–deficient (25(OH)D <20 ng/mL) adults. Participants were randomly assigned to receive either 50,000 IU of vitamin D3 or placebo weekly for 8 weeks. This is a post-hoc analysis using DBP, 25(OH)D, PTH, and calcium levels. Results: Blacks had lower total 25(OH)D (12 vs 15 ng/mL, P < .001) and DBP levels (119 vs 234 μg/mL, P < .001) than non-Blacks. DBP levels were similar before and after vitamin D3 or placebo treatment (r = 0.98, P < .001). Baseline total 25(OH)D levels were a significant determinant of baseline PTH levels (P < .001). The change in total 25(OH)D was associated with the change in PTH (P < 0.001) and calcium levels (P < .05). In contrast, DBP levels were not a determinant of baseline PTH (P = .57) nor significantly related to changes in either PTH (P = .53) or calcium levels (P = .88). Conclusions: DBP levels are stable in Blacks and non-Blacks, and do not change with correction of vitamin D deficiency. Even for individuals with total 25(OH)D levels < 20 ng/mL, Blacks have significantly lower DBP levels than non-Blacks. However, within this range of total 25(OH)D, DBP levels do not influence the effect of vitamin D repletion on PTH or calcium levels. PMID:24712573

  11. Piezoelectric microcantilever serum protein detector

    NASA Astrophysics Data System (ADS)

    Capobianco, Joseph A.

    The development of a serum protein detector will provide opportunities for better screening of at-risk cancer patients, tighter surveillance of disease recurrence and better monitoring of treatment. An integrated system that can process clinical samples for a number of different types of biomarkers would be a useful tool in the early detection of cancer. Also, screening biomarkers such as antibodies in serum would provide clinicians with information regarding the patient's response to treatment. Therefore, the goal of this study is to develop a sensor which can be used for rapid, all-electrical, real-time, label-fee, in-situ, specific quantification of cancer markers, e.g., human epidermal receptor 2 (Her2) or antibodies, in serum. To achieve this end, piezoelectric microcantilever sensors (PEMS) were constructed using an 8 mum thick lead magnesium niobate-lead titanate (PMN-PT) freestanding film as the piezoelectric layer. The desired limit of detection is on the order of pg/mL. In order to achieve this goal the higher frequency lateral extension modes were used. Also, as the driving and sensing of the PEMS is electrical, the PEMS must be insulated in a manner that allows it to function in aqueous solutions. The insulation layer must also be compatible with standardized bioconjugation techniques. Finally, detection of both cancer antigens and antibodies in serum was carried out, and the results were compared to a standard commercialized protocol. PEMS have demonstrated the capability of detecting Her2 at a concentration of 5 pg/mL in diluted human serum (1:40) in less than 1 hour. The approach can be easily translated into the clinical setting because the sensitivity is more than sufficient for monitoring prognosis of breast cancer patients. In addition to Her2 detection, antibodies in serum were assayed in order to demonstrate the feasibility of monitoring the immune response for antibody-dependent cellular cytotoxicity (ADCC) in patients on antibody therapies

  12. Serum protein concentrations in Plasmodium falciparum malaria.

    PubMed

    Graninger, W; Thalhammer, F; Hollenstein, U; Zotter, G M; Kremsner, P G

    1992-12-01

    In patients with uncomplicated Plasmodium falciparum infection cytokine-mediated serum protein levels of C-reactive protein (CRP), coeruloplasmin (COE), beta 2-microglobulin (B2M), alpha 1-acid glycoprotein (AAG), alpha 1-antitrypsin (AAT), haptoglobin (HPT), prealbumin (PRE), retinol binding protein (RBP), albumin (ALB) and transferrin (TRF) were measured in an endemic area of the Amazonian rain forest. Semi-immune (SI) and nonimmune (NI) patients were investigated. In both patient groups the serum concentrations of CRP, COE and B2M were elevated on admission. In addition AAG and AAT concentrations were increased in NI patients compared to control subjects. Significantly lower serum concentrations of HPT, PRE, RBP, ALB and TRF were seen in both patient groups during the acute phase of the disease, and were more pronounced in NI patients. After a 28-day follow-up, AAT and B2M were normal in SI patients but HPT, AAT and B2M were still significantly altered in NI patients.

  13. Spectral Changes of Erythrosin B Luminescence Upon Binding to Bovine Serum Albumin

    NASA Astrophysics Data System (ADS)

    Sablin, N. V.; Gerasimova, M. A.; Nemtseva, E. V.

    2016-04-01

    Changes in absorption, fluorescence, phosphorescence, and delayed fluorescence spectra of erythrosin B are studied in the presence of bovine serum albumin at room temperature. Spectral and chronoscopic characteristics of the observed photophysical processes are defined. The binding of erythrosin B with the protein followed by spectral changes is demonstrated. Absorption and fluorescence spectra of the dye in the bound state are described, the binding mechanism is analyzed. The binding parameters of the dye-protein complex are estimated.

  14. Exploring the binding mechanism of ondansetron hydrochloride to serum albumins: spectroscopic approach.

    PubMed

    B, Sandhya; Hegde, Ashwini H; K C, Ramesh; J, Seetharamappa

    2012-02-01

    The mechanism of interaction of ondansetron hydrochloride (OND) to serum albumins [bovine serum albumin (BSA) and human serum albumin (HSA)] was studied for the first time employing fluorimetric, circular dichroism, FTIR and UV-vis absorption techniques under the simulated physiological conditions. Fluorimetric results were utilized to investigate the binding and conformational characteristics of protein upon interaction with varying concentrations of the drug. Higher binding constant values revealed the strong interaction between the drug and protein while the number of binding sites close to unity indicated single class of binding site for OND in protein. Thermodynamic results revealed that both hydrogen bond and hydrophobic interactions played a major role in stabilizing drug-protein complex. Site marker competitive experiments indicated that the OND bound to albumins at subdomin II A (Sudlow's site I). Further, the binding distance between OND and serum albumin was calculated based on the Förster's theory of non-radioactive energy transfer and found to be 2.30 and 3.41 nm, respectively for OND-BSA and OND-HSA. The circular dichroism data revealed that the presence of OND decreased the α-helix content of serum albumins. 3D-fluorescence results also indicated the conformational changes in protein upon interaction with OND. Further, the effects of some cations have been investigated in the interaction of drug to protein.

  15. When is protein binding important?

    PubMed

    Heuberger, Jules; Schmidt, Stephan; Derendorf, Hartmut

    2013-09-01

    The present paper is an ode to a classic citation by Benet and Hoener (2002. Clin Pharm Ther 71(3):115-121). The now classic paper had a huge impact on drug development and the way the issue of protein binding is perceived and interpreted. Although the authors very clearly pointed out the limitations and underlying assumptions for their delineations, these are too often overlooked and the classic paper's message is misinterpreted by broadening to cases that were not intended. Some members of the scientific community concluded from the paper that protein binding is not important. This was clearly not intended by the authors, as they finished their paper with a paragraph entitled: "When is protein binding important?" Misinterpretation of the underlying assumptions in the classic work can result in major pitfalls in drug development. Therefore, we revisit the topic of protein binding with the intention of clarifying when clinically relevant changes should be considered during drug development.

  16. Synergistic interactions between overlapping binding sites for the serum response factor and ELK-1 proteins mediate both basal enhancement and phorbol ester responsiveness of primate cytomegalovirus major immediate-early promoters in monocyte and T-lymphocyte cell types.

    PubMed Central

    Chan, Y J; Chiou, C J; Huang, Q; Hayward, G S

    1996-01-01

    Cytomegalovirus (CMV) infection is nonpermissive or persistent in many lymphoid and myeloid cell types but can be activated in differentiated macrophages. We have shown elsewhere that both the major immediate-early gene (MIE) and lytic cycle infectious progeny virus expression can be induced in otherwise nonpermissive monocyte-like U-937 cell cultures infected with either human CMV (HCMV) or simian CMV (SCMV) by treatment with the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA). Two multicopy basal enhancer motifs within the SCMV MIE enhancer, namely, 11 copies of the 16-bp cyclic AMP response element (CRE) and 3 copies of novel 17-bp serum response factor (SRF) binding sites referred to as the SNE (SRF/NFkappaB-like element), as well as four classical NFkappaB sites within the HCMV version, contribute to TPA responsiveness in transient assays in monocyte and T-cell types. The SCMV SNE sites contain potential overlapping core recognition binding motifs for SRF, Rel/NFkappaB, ETS, and YY1 class transcription factors but fail to respond to either serum or tumor necrosis factor alpha. Therefore, to evaluate the mechanism of TPA responsiveness of the SNE motifs and of a related 16-bp SEE (SRF/ETS element) motif found in the HCMV and chimpanzee CMV MIE enhancers, we have examined the functional responses and protein binding properties of multimerized wild-type and mutant elements added upstream to the SCMV MIE or simian virus 40 minimal promoter regions in the U-937, K-562, HL-60, THP-1, and Jurkat cell lines. Unlike classical NFkappaB sites, neither the SNE nor the SEE motif responded to phosphatase inhibition by okadaic acid. However, the TPA responsiveness of both CMV elements proved to involve synergistic interactions between the core SRF binding site (CCATATATGG) and the adjacent inverted ETS binding motifs (TTCC), which correlated directly with formation of a bound tripartite complex containing both the cellular SRF and ELK-1 proteins. This protein

  17. Interaction of triprolidine hydrochloride with serum albumins: thermodynamic and binding characteristics, and influence of site probes.

    PubMed

    Sandhya, B; Hegde, Ashwini H; Kalanur, Shankara S; Katrahalli, Umesha; Seetharamappa, J

    2011-04-01

    The interaction between triprolidine hydrochloride (TRP) to serum albumins viz. bovine serum albumin (BSA) and human serum albumin (HSA) has been studied by spectroscopic methods. The experimental results revealed the static quenching mechanism in the interaction of TRP with protein. The number of binding sites close to unity for both TRP-BSA and TRP-HSA indicated the presence of single class of binding site for the drug in protein. The binding constant values of TRP-BSA and TRP-HSA were observed to be 4.75 ± 0.018 × 10(3) and 2.42 ± 0.024 × 10(4)M(-1) at 294 K, respectively. Thermodynamic parameters indicated that the hydrogen bond and van der Waals forces played the major role in the binding of TRP to proteins. The distance of separation between the serum albumin and TRP was obtained from the Förster's theory of non-radioactive energy transfer. The metal ions viz., K(+), Ca(2+), Co(2+), Cu(2+), Ni(2+), Mn(2+) and Zn(2+) were found to influence the binding of the drug to protein. Displacement experiments indicated the binding of TRP to Sudlow's site I on both BSA and HSA. The CD, 3D fluorescence spectra and FT-IR spectral results revealed the changes in the secondary structure of protein upon interaction with TRP.

  18. Serum Protein Profile Alterations in Hemodialysis Patients

    SciTech Connect

    Murphy, G A; Davies, R W; Choi, M W; Perkins, J; Turteltaub, K W; McCutchen-Maloney, S L; Langlois, R G; Curzi, M P; Trebes, J E; Fitch, J P; Dalmasso, E A; Colston, B W; Ying, Y; Chromy, B A

    2003-11-18

    Background: Serum protein profiling patterns can reflect the pathological state of a patient and therefore may be useful for clinical diagnostics. Here, we present results from a pilot study of proteomic expression patterns in hemodialysis patients designed to evaluate the range of serum proteomic alterations in this population. Methods: Surface-Enhanced Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (SELDI-TOFMS) was used to analyze serum obtained from patients on periodic hemodialysis treatment and healthy controls. Serum samples from patients and controls were first fractionated into six eluants on a strong anion exchange column, followed by application to four array chemistries representing cation exchange, anion exchange, metal affinity and hydrophobic surfaces. A total of 144 SELDI-TOF-MS spectra were obtained from each serum sample. Results: The overall profiles of the patient and control samples were consistent and reproducible. However, 30 well-defined protein differences were observed; 15 proteins were elevated and 15 were decreased in patients compared to controls. Serum from one patient exhibited novel protein peaks suggesting possible additional changes due to a secondary disease process. Conclusion: SELDI-TOF-MS demonstrated dramatic serum protein profile differences between patients and controls. Similarity in protein profiles among dialysis patients suggests that patient physiological responses to end-stage renal disease and/or dialysis therapy have a major effect on serum protein profiles.

  19. Increased serum cortisol binding in chronic active hepatitis

    SciTech Connect

    Orbach, O.; Schussler, G.C.

    1989-01-01

    A high serum cortisol concentration, apparently due to increased cortisol-binding globulin (CBG), was found in a patient (index case) with chronic active hepatitis (CAH). We therefore performed further studies to determine whether increased cortisol binding is generally associated with CAH. Serum samples were obtained from 15 hospitalized patients with long-term liver function test elevations but no evidence of cirrhosis, 15 normal subjects without a history of hepatitis, four healthy pregnant women, and 10 alcoholic patients with stigmata of cirrhosis. Serum cortisol binding was measured by an adaptation of a previously described charcoal uptake method. Thyroxine-binding globulin (TBG) and sex hormone-binding globulin were determined by radioimmunoassays. Charcoal uptake of 125I cortisol from sera of normal subjects and additional patients with CAH revealed that increased serum cortisol binding by a saturable site, presumably CBG, was associated with CAH. Cortisol binding was significantly correlated with immunoassayable TBG, suggesting that in CAH, similar mechanisms may be responsible for increasing the serum concentrations of CBG and TBG.

  20. Thyroid hormone binding in serum of 15 vertebrate species: isolation of thyroxine-binding globulin and prealbumin analogs.

    PubMed

    Larsson, M; Pettersson, T; Carlström, A

    1985-06-01

    The binding of [125I]T4 to serum proteins was studied in human, monkey, cattle, sheep, goat, water buffalo, horse, swine, dog, cat, rabbit, rat, chicken, frog, and salmon. Attempts were made to isolate thyroxine-binding globulin (TBG) and thyroxine-binding prealbumin (TBPA) from serum of all species, utilizing purification methods based on the specific properties of these proteins. TBPA was found to exist in all species examined. The protein was found anodal to albumin only in human, monkey, horse, and chicken. In cattle, swine, dog, cat, rabbit, frog, and salmon, TBPA was found cathodal to albumin, while sheep, goat, water buffalo, and rat had identical mobility of albumin and TBPA. The presence of TBG was demonstrated in larger mammals. In cat, rabbit, rat, chicken, frog, and salmon, TBG could not be demonstrated. The thyroxine-binding capacity of TBPA in serum varied from 1000 to greater than 6000 nmol/l and that of TBG between 150 and 600 nmol/l. TBPA from all species except salmon showed affinity to human retinol-binding protein. The presence of TBPA in all vertebrates suggests prealbumin to be a far more important thyroxine carrier than earlier anticipated.

  1. Specific serum binding of morphine, levorphanol and heroin

    PubMed Central

    Herndon, B. L.; Baeder, D. H.; Ringle, D. A.

    1976-01-01

    Effects of repeated subcutaneous pellet implantation of a series of narcotic drugs on the serum binding of [14C]morphine was studied in rabbits. Three of the compounds, morphine, heroin and levorphanol, elicited production of a morphine-binding globulin in the implanted rabbits. This serum response did not occur with several other compounds tested, including the potent analgesic methadone, and the narcotic antagonist naloxone. The time course of production of this globulin response, as well as the specificity of the binding for the drug that induced the response are both characteristic of an immunological reaction.

  2. The complexity of condensed tannin binding to bovine serum albumin--An isothermal titration calorimetry study.

    PubMed

    Kilmister, Rachel L; Faulkner, Peta; Downey, Mark O; Darby, Samuel J; Falconer, Robert J

    2016-01-01

    Isothermal titration calorimetry was applied to study the binding of purified proanthocyanidin oligomers to bovine serum albumin (BSA). The molecular weight of the proanthocyanidin oligomer had a major impact on its binding to BSA. The calculated change in enthalpy (ΔH) and association constant (Ka) became greater as the oligomer size increased then plateaued at the heptameric oligomer. These results support a model for precipitation of proteins by proanthocyanidin where increased oligomer size enhanced the opportunity for cross linkages between proteins ultimately forming sediment-able complexes. The authors suggest tannin binding to proteins is opportunistic and involves multiple sites, each with a different Ka and ΔH of binding. The ΔH of binding comprises both an endothermic hydrophobic interaction and exothermic hydrogen bond component. This suggests the calculated entropy value (ΔS) for tannin-protein interactions is subject to a systematic error and should be interpreted with caution.

  3. Cellulose binding domain fusion proteins

    DOEpatents

    Shoseyov, O.; Yosef, K.; Shpiegl, I.; Goldstein, M.A.; Doi, R.H.

    1998-02-17

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

  4. Cellulose binding domain fusion proteins

    DOEpatents

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  5. Multiplexed microfluidic quantification of proteins in serum

    NASA Astrophysics Data System (ADS)

    Rajan, Nitin; Rajauria, Sukumar; Cleland, Andrew

    2015-03-01

    Rapid and low cost immunoassays targeting proteins in blood or other bodily fluids are highly sought after for point-of-care devices and early screening of patients. Immunoturbidimetric assays utilize latex particles functionalized with antibodies, with particle aggregation in the presence of the analyte detected by a change in absorbance. Using a high throughput micro-fluidic particle analyzer based solely on electrical signals (resistive pulse sensing), we are able to accurately quantify the degree of aggregation by analyzing the changes in the particle size distribution. Thus we study the aggregation of streptavidin (SAv) coated beads in the presence of biotinylated bovine serum albumin as a proof-of-principle assay and extract the binding capacity of the SAv beads from the dose-response curve. We also use our aggregation measurement platform to characterize a commercial C-reactive protein (CRP) immunoturbidimetric assay (hsCRP, Diazyme Inc.). We obtain a linear calibration curve as well as a better limit of detection of CRP than that obtained by absorbance measurements. By using different bead sizes functionalized with different antibodies, multiplexed analyte detection is also possible. We demonstrate this by combining the commercial anti-CRP functionalized beads (0.4 microns) with biotin coated beads (1.0 microns), and carry out the simultaneous detection of SAv and CRP in a single sample.

  6. Locating the Binding Sites of Pb(II) Ion with Human and Bovine Serum Albumins

    PubMed Central

    Belatik, Ahmed; Hotchandani, Surat; Carpentier, Robert; Tajmir-Riahi, Heidar-Ali

    2012-01-01

    Lead is a potent environmental toxin that has accumulated above its natural level as a result of human activity. Pb cation shows major affinity towards protein complexation and it has been used as modulator of protein-membrane interactions. We located the binding sites of Pb(II) with human serum (HSA) and bovine serum albumins (BSA) at physiological conditions, using constant protein concentration and various Pb contents. FTIR, UV-visible, CD, fluorescence and X-ray photoelectron spectroscopic (XPS) methods were used to analyse Pb binding sites, the binding constant and the effect of metal ion complexation on HSA and BSA stability and conformations. Structural analysis showed that Pb binds strongly to HSA and BSA via hydrophilic contacts with overall binding constants of KPb-HSA = 8.2 (±0.8)×104 M−1 and KPb-BSA = 7.5 (±0.7)×104 M−1. The number of bound Pb cation per protein is 0.7 per HSA and BSA complexes. XPS located the binding sites of Pb cation with protein N and O atoms. Pb complexation alters protein conformation by a major reduction of α-helix from 57% (free HSA) to 48% (metal-complex) and 63% (free BSA) to 52% (metal-complex) inducing a partial protein destabilization. PMID:22574219

  7. (PCG) Protein Crystal Growth Horse Serum Albumin

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Horse Serum Albumin crystals grown during the USML-1 (STS-50) mission's Protein Crystal Growth Glovebox Experiment. These crystals were grown using a vapor diffusion technique at 22 degrees C. The crystals were allowed to grow for nine days while in orbit. Crystals of 1.0 mm in length were produced. The most abundant blood serum protein, regulates blood pressure and transports ions, metabolites, and therapeutic drugs. Principal Investigator was Edward Meehan.

  8. Clinical relevance of drug binding to plasma proteins

    NASA Astrophysics Data System (ADS)

    Ascenzi, Paolo; Fanali, Gabriella; Fasano, Mauro; Pallottini, Valentina; Trezza, Viviana

    2014-12-01

    Binding to plasma proteins highly influences drug efficacy, distribution, and disposition. Serum albumin, the most abundant protein in plasma, is a monomeric multi-domain macromolecule that displays an extraordinary ligand binding capacity, providing a depot and carrier for many endogenous and exogenous compounds, such as fatty acids and most acidic drugs. α-1-Acid glycoprotein, the second main plasma protein, is a glycoprotein physiologically involved in the acute phase reaction and is the main carrier for basic and neutral drugs. High- and low-density lipoproteins play a limited role in drug binding and are natural drug delivery system only for few lipophilic drugs or lipid-based formulations. Several factors influence drug binding to plasma proteins, such as pathological conditions, concurrent administration of drugs, sex, and age. Any of these factors, in turn, influences drug efficacy and toxicity. Here, biochemical, biomedical, and biotechnological aspects of drug binding to plasma proteins are reviewed.

  9. Identification of differentially expressed serum proteins in gastric adenocarcinoma☆

    PubMed Central

    Subbannayya, Yashwanth; Mir, Sartaj Ahmad; Renuse, Santosh; Manda, Srikanth S.; Pinto, Sneha M.; Puttamallesh, Vinuth N.; Solanki, Hitendra Singh; Manju, H.C.; Syed, Nazia; Sharma, Rakesh; Christopher, Rita; Vijayakumar, M.; Kumar, K.V. Veerendra; Prasad, T.S. Keshava; Ramaswamy, Girija; Kumar, Rekha V.; Chatterjee, Aditi; Pandey, Akhilesh; Gowda, Harsha

    2015-01-01

    Gastric adenocarcinoma is an aggressive cancer with poor prognosis. Blood based biomarkers of gastric cancer have the potential to improve diagnosis and monitoring of these tumors. Proteins that show altered levels in the circulation of gastric cancer patients could prove useful as putative biomarkers. We used an iTRAQ-based quantitative proteomic approach to identify proteins that show altered levels in the sera of patients with gastric cancer. Our study resulted in identification of 643 proteins, of which 48 proteins showed increased levels and 11 proteins showed decreased levels in serum from gastric cancer patients compared to age and sex matched healthy controls. Proteins that showed increased expression in gastric cancer included inter-alpha-trypsin inhibitor heavy chain H4 (ITIH4), Mannose-binding protein C (MBL2), sex hormone-binding globulin (SHBG), insulin-like growth factor-binding protein 2 (IGFBP2), serum amyloid A protein (SAA1), Orosomucoid 1 (ORM1) and extracellular superoxide dismutase [Cu–Zn] (SOD3). We used multiple reaction monitoring assays and validated elevated levels of ITIH4 and SAA1 proteins in serum from gastric cancer patients. Biological significance Gastric cancer is a highly aggressive cancer associated with high mortality. Serum-based biomarkers are of considerable interest in diagnosis and monitoring of various diseases including cancers. Gastric cancer is often diagnosed at advanced stages resulting in poor prognosis and high mortality. Pathological diagnosis using biopsy specimens remains the gold standard for diagnosis of gastric cancer. Serum-based biomarkers are of considerable importance as they are minimally invasive. In this study, we carried out quantitative proteomic profiling of serum from gastric cancer patients to identify proteins that show altered levels in gastric cancer patients. We identified more than 50 proteins that showed altered levels in gastric cancer patient sera. Validation in a large cohort of well

  10. On the interaction of luminol with human serum albumin: Nature and thermodynamics of ligand binding

    NASA Astrophysics Data System (ADS)

    Moyon, N. Shaemningwar; Mitra, Sivaprasad

    2010-09-01

    The mechanism and thermodynamic parameters for the binding of luminol (LH 2) with human serum albumin was explored by steady state and picosecond time-resolved fluorescence spectroscopy. It was shown that out of two possible LH 2 conformers present is solution, only one is accessible for binding with HSA. The thermodynamic parameters like enthalpy (Δ H) and entropy (Δ S) change corresponding to the ligand binding process were also estimated by performing the experiment at different temperatures. The ligand replacement experiment with bilirubin confirms that LH 2 binds into the sub-domain IIA of the protein.

  11. Interplay of Multiple Interaction Forces: Binding of Norfloxacin to Human Serum Albumin.

    PubMed

    Paul, Bijan K; Ghosh, Narayani; Mukherjee, Saptarshi

    2015-10-15

    Herein, the binding interaction of a potential chemotherapeutic antibacterial drug norfloxacin (NOF) with a serum transport protein, human serum albumin (HSA), is investigated. The prototropic transformation of the drug (NOF) is found to be remarkably modified following interaction with the protein as manifested through significant modulations of the photophysics of the drug. The predominant zwitterionic form of NOF in aqueous buffer phase undergoes transformation to the cationic form within the protein-encapsulated state. This implies the possible role of electrostatic interaction force in NOF-HSA binding. This postulate is further substantiated from the effect of ionic strength on the interaction process. To this end, the detailed study of the thermodynamics of the drug-protein interaction process from isothermal titration calorimetric (ITC) experiments is found to unfold the signature of electrostatic as well as hydrophobic interaction forces underlying the binding process. Thus, interplay of more than one interaction forces is argued to be responsible for the overall drug-protein binding. The ITC results reveal an important finding in terms of enthalpy-entropy compensation (EEC) characterizing the NOF-HSA binding. The effect of drug-binding on the native protein conformation has also been evaluated from circular dichroism (CD) spectroscopy which unveils partial rupture of the protein secondary structure. In conjunction to this, the functionality of the native protein (in terms of esterase-like activity) is found to be lowered as a result of binding with NOF. The AutoDock-based docking simulation unravels the probable binding location of NOF within the hydrophilic subdomain IA of HSA. The present program also focuses on exploring the dynamical aspects of the drug-protein interaction scenario. The rotational-relaxation dynamics of the protein-bound drug reveals the not-so-common "dip-and-rise" pattern.

  12. Calorimetric investigation of diclofenac drug binding to a panel of moderately glycated serum albumins.

    PubMed

    Indurthi, Venkata S K; Leclerc, Estelle; Vetter, Stefan W

    2014-08-01

    Glycation alters the drug binding properties of serum proteins and could affect free drug concentrations in diabetic patients with elevated glycation levels. We investigated the effect of bovine serum albumin glycation by eight physiologically relevant glycation reagents (glucose, ribose, carboxymethyllysine, acetoin, methylglyoxal, glyceraldehyde, diacetyl and glycolaldehyde) on diclofenac drug binding. We used this non-steroidal anti-inflammatory drug diclofenac as a paradigm for acidic drugs with high serum binding and because of its potential cardiovascular risks in diabetic patients. Isothermal titration calorimetry showed that glycation reduced the binding affinity Ka of serum albumin and diclofenac 2 to 6-fold by reducing structural rigidity of albumin. Glycation affected the number of drug binding sites in a glycation reagent dependent manner and lead to a 25% decrease for most reagent, expect for ribose, with decreased by 60% and for the CML-modification, increased the number of binding sites by 60%. Using isothermal titration calorimetry and differential scanning calorimetry we derived the complete thermodynamic characterization of diclofenac binding to all glycated BSA samples. Our results suggest that glycation in diabetic patients could significantly alter the pharmacokinetics of the widely used over-the-counter NSDAI drug diclofenac and with possibly negative implications for patients.

  13. Search for Amyloid-Binding Proteins by Affinity Chromatography

    PubMed Central

    Calero, Miguel; Rostagno, Agueda; Ghiso, Jorge

    2013-01-01

    ‘Amyloid binging proteins’ is a generic term used to designate proteins that interact with different forms of amyloidogenic peptides or proteins and that, as a result, may modulate their physiological and pathological functions by altering solubility, transport, clearance, degradation, and fibril formation. We describe a simple affinity chromatography protocol to isolate and characterize amyloid-binding proteins based on the use of sequential elution steps that may provide further information on the type of binding interaction. As an example, we depict the application of this protocol to the study of Alzheimer’s amyloid β (Aβ) peptide-binding proteins derived from human plasma. Biochemical analysis of the proteins eluted under different conditions identified serum amyloid P component (SAP) and apolipoprotein J (clusterin) as the main plasma Aβ-binding proteins while various apolipoproteins (apoA-IV, apoE, and apoA-I), as well as albumin (HSA) and fibulin were identified as minor contributors. PMID:22528093

  14. Binding of several benzodiazepines to bovine serum albumin: Fluorescence study

    NASA Astrophysics Data System (ADS)

    Machicote, Roberta G.; Pacheco, María E.; Bruzzone, Liliana

    2010-10-01

    The interactions of lorazepam, oxazepam and bromazepam with bovine serum albumin (BSA) were studied by fluorescence spectrometry. The Stern-Volmer quenching constants and corresponding thermodynamic parameters Δ H, Δ G and Δ S were calculated. The binding constants and the number of binding sites were also investigated. The distances between the donor (BSA) and the acceptors (benzodiazepines) were obtained according to fluorescence resonance energy transfer and conformational changes of BSA were observed from synchronous fluorescence spectra.

  15. Detergent activation of the binding protein in the folate radioassay

    SciTech Connect

    Hansen, S.I.; Holm, J.; Lyngbye, J.

    1982-01-01

    A minor cow's whey protein associated with ..beta..-lactoglobulin is used as binding protein in the competitive radioassay for serum and erythrocyte folate. Seeking to optimize the assay, we tested the performance of binder solutions of increasing purity. The folate binding protein was isolated from cow's whey by means of CM-Sepharose CL-6B cation-exchange chromatography, and further purified on a methotrexate-AH-Sepharose 4B affinity matrix. In contrast to ..beta..-lactoglobulin, the purified protein did not bind folate unless the detergents cetyltrimethylammonium (10 mmol/Ll) or Triton X-100 (1 g/L) were present. Such detergent activation was not needed in the presence of serum. There seems to be a striking analogy between these phenomena and the well-known reactivation of certain purified membrane-derived enzymes by surfactants (lipids/detergents).

  16. Stereoselective binding of chiral drugs to plasma proteins

    PubMed Central

    Shen, Qi; Wang, Lu; Zhou, Hui; Jiang, Hui-di; Yu, Lu-shan; Zeng, Su

    2013-01-01

    Chiral drugs show distinct biochemical and pharmacological behaviors in the human body. The binding of chiral drugs to plasma proteins usually exhibits stereoselectivity, which has a far-reaching influence on their pharmacological activities and pharmacokinetic profiles. In this review, the stereoselective binding of chiral drugs to human serum albumin (HSA), α1-acid glycoprotein (AGP) and lipoprotein, three most important proteins in human plasma, are detailed. Furthermore, the application of AGP variants and recombinant fragments of HSA for studying enantiomer binding properties is also discussed. Apart from the stereoselectivity of enantiomer-protein binding, enantiomer-enantiomer interactions that may induce allosteric effects are also described. Additionally, the techniques and methods used to determine drug-protein binding parameters are briefly reviewed. PMID:23852086

  17. Immunological characterization of honey proteins and identification of MRJP 1 as an IgE-binding protein.

    PubMed

    Hayashi, Takeshi; Takamatsu, Nobue; Nakashima, Takashi; Arita, Takashi

    2011-01-01

    We encountered a fourth case of honey allergy in Japan. We characterized and identified the IgE-binding proteins in honey using the serum of a honey-allergenic patient. Immunoblot analysis revealed that IgE in the patient serum specifically bound to four proteins in each honey sample. At least three of these IgE-binding proteins were N-linked glycoproteins. To identify the 60-kDa IgE-binding protein in dandelion honey, the N-terminal sequences of the fragmented protein were analyzed, revealing the protein to be major royal jelly protein 1 (MRJP 1). Three IgE-binding proteins removed of N-linked oligosaccharide showed a large reduction in IgE-binding activity as compared with the intact protein. This suggests that the carbohydrates in the IgE-binding proteins are a major epitope for patient IgE.

  18. Serum corticosteroid binding globulin expression is modulated by fasting in polar bears (Ursus maritimus).

    PubMed

    Chow, Brian A; Hamilton, Jason; Cattet, Marc R L; Stenhouse, Gordon; Obbard, Martyn E; Vijayan, Mathilakath M

    2011-01-01

    Polar bears (Ursus maritimus) from several subpopulations undergo extended fasting during the ice-free season. However, the animals appear to conserve protein despite the prolonged fasting, though the mechanisms involved are poorly understood. We hypothesized that elevated concentrations of corticosteroid binding globulin (CBG), the primary cortisol binding protein in circulation, lead to cortisol resistance and provide a mechanism for protein conservation during extended fasting. The metabolic state (feeding vs. fasting) of 16 field sampled male polar bears was determined based on their serum urea to creatinine ratio (>25 for feeding vs. <5 for fasting). There were no significant differences in serum cortisol levels between all male and female polar bears sampled. Serum CBG expression was greater in lactating females relative to non-lactating females and males. CBG expression was significantly higher in fasting males when compared to non-fasting males. This leads us to suggest that CBG expression may serve as a mechanism to conserve protein during extended fasting in polar bears by reducing systemic free cortisol concentrations. This was further supported by a lower serum glucose concentration in the fasting bears. As well, a lack of an enhanced adrenocortical response to acute capture stress supports our hypothesis that chronic hunger is not a stressor in this species. Overall, our results suggest that elevated serum CBG expression may be an important adaptation to spare proteins by limiting cortisol bioavailability during extended fasting in polar bears.

  19. Serum corticosteroid binding globulin expression is modulated by fasting in polar bears (Ursus maritimus).

    PubMed

    Chow, Brian A; Hamilton, Jason; Cattet, Marc R L; Stenhouse, Gordon; Obbard, Martyn E; Vijayan, Mathilakath M

    2011-01-01

    Polar bears (Ursus maritimus) from several subpopulations undergo extended fasting during the ice-free season. However, the animals appear to conserve protein despite the prolonged fasting, though the mechanisms involved are poorly understood. We hypothesized that elevated concentrations of corticosteroid binding globulin (CBG), the primary cortisol binding protein in circulation, lead to cortisol resistance and provide a mechanism for protein conservation during extended fasting. The metabolic state (feeding vs. fasting) of 16 field sampled male polar bears was determined based on their serum urea to creatinine ratio (>25 for feeding vs. <5 for fasting). There were no significant differences in serum cortisol levels between all male and female polar bears sampled. Serum CBG expression was greater in lactating females relative to non-lactating females and males. CBG expression was significantly higher in fasting males when compared to non-fasting males. This leads us to suggest that CBG expression may serve as a mechanism to conserve protein during extended fasting in polar bears by reducing systemic free cortisol concentrations. This was further supported by a lower serum glucose concentration in the fasting bears. As well, a lack of an enhanced adrenocortical response to acute capture stress supports our hypothesis that chronic hunger is not a stressor in this species. Overall, our results suggest that elevated serum CBG expression may be an important adaptation to spare proteins by limiting cortisol bioavailability during extended fasting in polar bears. PMID:20883811

  20. Spectroscopic and molecular modelling studies of binding mechanism of metformin with bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Sharma, Deepti; Ojha, Himanshu; Pathak, Mallika; Singh, Bhawna; Sharma, Navneet; Singh, Anju; Kakkar, Rita; Sharma, Rakesh K.

    2016-08-01

    Metformin is a biguanide class of drug used for the treatment of diabetes mellitus. It is well known that serum protein-ligand binding interaction significantly influence the biodistribution of a drug. Current study was performed to characterize the binding mechanism of metformin with serum albumin. The binding interaction of the metformin with bovine serum albumin (BSA) was examined using UV-Vis absorption spectroscopy, fluorescence, circular dichroism, density functional theory and molecular docking studies. Absorption spectra and fluorescence emission spectra pointed out the weak binding of metformin with BSA as was apparent from the slight change in absorbance and fluorescence intensity of BSA in presence of metformin. Circular dichroism study implied the significant change in the conformation of BSA upon binding with metformin. Density functional theory calculations showed that metformin has non-planar geometry and has two energy states. The docking studies evidently signified that metformin could bind significantly to the three binding sites in BSA via hydrophobic, hydrogen bonding and electrostatic interactions. The data suggested the existence of non-covalent specific binding interaction in the complexation of metformin with BSA. The present study will certainly contribute to the development of metformin as a therapeutic molecule.

  1. The Binding Constant of Estradiol to Bovine Serum Albumin: An Upper-Level Experiment Utilizing Tritium-Labeled Estradiol and Liquid Scintillation Counting

    ERIC Educational Resources Information Center

    Peihong Liang; Adhyaru, Bhavin; Pearson, Wright L.; Williams, Kathryn R.

    2006-01-01

    The experiment used [to the third power]H-labeled estradiol to determine the binding constant of estradiol to bovine serum albumin. Estradiol must complex with serum proteins for the transport in the blood stream because of its low solubility in aqueous systems and estradiol-protein binding constant, where K[subscript B] is important to understand…

  2. Fasting induces the generation of serum thyronine-binding globulin in Zucker rats

    SciTech Connect

    Young, R.A.; Rajatanavin, R.; Moring, A.F.; Braverman, L.E.

    1985-04-01

    Five-month-old lean and obese Zucker rats were fasted for up to 7 days (lean rats) or 28 days (obese rats), and serum total and free T4 and T3 concentrations, percent free T4 and T3 by equilibrium dialysis, and the binding of (/sup 125/I) T4 to serum proteins by gel electrophoresis were measured. In the lean rats, a 4- or 7-day fast resulted in significant decreases in serum total and free T4 and T3 concentrations. There was a decrease in the percent free T3 after 7 days of starvation. In contrast, a 4- or 7-day fast did not alter any of these variables in the obese rats. However, after 14 or more days of starvation, serum total T4 and T3 concentrations increased, and the percent free T4 and T3 decreased, resulting in no change in the serum free T4 or T3 concentrations in the obese rats. The percent of (/sup 125/I)T4 bound to serum thyronine-binding globulin increased and the percent bound to thyronine-binding prealbumin decreased with the duration of the fast in both the lean and obese rats. The increase in serum thyronine-binding globulin binding of T4 can explain the increase in serum total T4 and T3 concentrations, the decrease in percent free T4 and T3, and the normal free hormone concentration in the long term fasted obese rats. The findings in the lean rats appear to be due to a combination of the known central hypothyroidism that occurs during 4-7 days of fasting and the fasting-induced changes in T4 binding in serum. Changes in T4 and T3 binding in serum during fasting in the rat must be considered when the effects of fasting on serum concentrations of the thyroid hormones, thyroid hormone kinetics, and the peripheral action of the thyroid hormones are evaluated.

  3. The human mannose-binding protein functions as an opsonin

    PubMed Central

    1989-01-01

    The human mannose-binding protein (MBP) is a multimeric serum protein that is divided into three domains: a cysteine-rich NH2-terminal domain that stabilizes the alpha-helix of the second collagen-like domain, and a third COOH-terminal carbohydrate binding region. The function of MBP is unknown, although a role in host defense is suggested by its ability to bind yeast mannans. In this report we show that native and recombinant human MBP can serve in an opsonic role in serum and thereby enhance clearance of mannose rich pathogens by phagocytes. MBP binds to wild-type virulent Salmonella montevideo that express a mannose-rich O- polysaccharide. Interaction of MBP with these organisms results in attachment, uptake, and killing of the opsonized bacteria by phagocytes. These results demonstrate that MBP plays a role in first line host defense against certain pathogenic organisms. PMID:2469767

  4. Interactions of apomorphine with serum and tissue proteins

    SciTech Connect

    Smith, R.V.; Velagapudi, R.B.; McLean, A.M.; Wilcox, R.E.

    1985-05-01

    Physical and covalent interactions of apomorphine with serum and tissue proteins could influence the drug's disposition and pharmacological activities in mammals. Ultrafiltration, equilibrium dialysis, and ultraviolet spectrophotometric methods have been used to study the reversible binding of apomorphine to bovine, human, rat, and swine plasma proteins. The degree of binding was generally greater than 90%, but variations were noted in some instances on the basis of drug concentrations and pH over the range of 6.8-7.8. Incubation of (8,9-/sup 3/H2)apomorphine with bovine serum albumin led to retention of radioactivity and a stoichiometrically controlled released of tritium which arose from the reaction of an electrophilic drug oxidation product and protein, producing drug-protein conjugates. In vitro experiments with mouse striatal brain preparations indicated parallel covalent binding reactions. In vivo experiments in mice indicated accumulation of radioactivity in brain regions and other tissues following daily injections of (8,9-/sup 3/H2)apomorphine for 14 days. The physical and covalent interactions of apomorphine with mammalian tissue proteins could be the cause of longer disposition half-lives in mammals than those previously reported. The covalent interactions, in particular, may be important in elucidating the mechanism of apomorphine-induced behavioral effects in mice.

  5. Induced Long-Range Attractive Potentials of Human Serum Albumin by Ligand Binding

    SciTech Connect

    Sato, Takaaki; Komatsu, Teruyuki; Nakagawa, Akito; Tsuchida, Eishun

    2007-05-18

    Small-angle x-ray scattering and dielectric spectroscopy investigation on the solutions of recombinant human serum albumin and its heme hybrid revealed that heme incorporation induces a specific long-range attractive potential between protein molecules. This is evidenced by the enhanced forward intensity upon heme binding, despite no hindrance to rotatory Brownian motion, unbiased colloid osmotic pressure, and discontiguous nearest-neighbor distance, confirming monodispersity of the proteins. The heme-induced potential may play a trigger role in recognition of the ligand-filled human serum albumins in the circulatory system.

  6. Evidence that Chemical Chaperone 4-Phenylbutyric Acid Binds to Human Serum Albumin at Fatty Acid Binding Sites

    PubMed Central

    James, Joel; Shihabudeen, Mohamed Sham; Kulshrestha, Shweta; Goel, Varun; Thirumurugan, Kavitha

    2015-01-01

    Endoplasmic reticulum stress elicits unfolded protein response to counteract the accumulating unfolded protein load inside a cell. The chemical chaperone, 4-Phenylbutyric acid (4-PBA) is a FDA approved drug that alleviates endoplasmic reticulum stress by assisting protein folding. It is found efficacious to augment pathological conditions like type 2 diabetes, obesity and neurodegeneration. This study explores the binding nature of 4-PBA with human serum albumin (HSA) through spectroscopic and molecular dynamics approaches, and the results show that 4-PBA has high binding specificity to Sudlow Site II (Fatty acid binding site 3, subdomain IIIA). Ligand displacement studies, RMSD stabilization profiles and MM-PBSA binding free energy calculation confirm the same. The binding constant as calculated from fluorescence spectroscopic studies was found to be kPBA = 2.69 x 105 M-1. Like long chain fatty acids, 4-PBA induces conformational changes on HSA as shown by circular dichroism, and it elicits stable binding at Sudlow Site II (fatty acid binding site 3) by forming strong hydrogen bonding and a salt bridge between domain II and III of HSA. This minimizes the fluctuation of HSA backbone as shown by limited conformational space occupancy in the principal component analysis. The overall hydrophobicity of W214 pocket (located at subdomain IIA), increases upon occupancy of 4-PBA at any FA site. Descriptors of this pocket formed by residues from other subdomains largely play a role in compensating the dynamic movement of W214. PMID:26181488

  7. Preferential binding of fisetin to the native state of bovine serum albumin: spectroscopic and docking studies.

    PubMed

    Singha Roy, Atanu; Pandey, Nitin Kumar; Dasgupta, Swagata

    2013-04-01

    We have investigated the binding of the biologically important flavonoid fisetin with the carrier protein bovine serum albumin using multi-spectroscopic and molecular docking methods. The binding constants were found to be in the order of 10(4) M(-1) and the number of binding sites was determined as one. MALDI-TOF analyses showed that one fisetin molecule binds to a single bovine serum albumin (BSA) molecule which is also supported by fluorescence quenching studies. The negative Gibbs free energy change (∆G°) values point to a spontaneous binding process which occurs through the presence of electrostatic forces with hydrophobic association that results in a positive entropy change (+51.69 ± 1.18 J mol(-1) K(-1)). The unfolding and refolding of BSA in urea have been studied in absence and presence of fisetin using steady-state fluorescence and lifetime measurements. Urea denaturation studies indicate that fisetin is gradually released from its binding site on the protein. In the absence of urea, an increase in temperature that causes denaturation of the protein results in the release of fisetin from its bound state indicating that fisetin binds only to the native state of the protein. The circular dichroism (CD) and Fourier transform infrared (FTIR) spectroscopic studies showed an increase in % α-helix content of BSA after binding with fisetin. Site marker displacement studies in accordance with the molecular docking results suggested that fisetin binds in close proximity of the hydrophobic cavity in site 1 (subdomain IIA) of the protein. The PEARLS (Program of Energetic Analysis of Receptor Ligand System) has been used to estimate the interaction energy of fisetin with BSA and the results are in good correlation with the experimental findings.

  8. Quantifying Aptamer-Protein Binding via Thermofluorimetric Analysis

    PubMed Central

    Hu, Juan; Kim, Joonyul; Easley, Christopher J.

    2015-01-01

    Effective aptamer-based protein assays require coupling to a quantitative reporter of aptamer-protein binding. Typically, this involves a direct optical or electrochemical readout of DNA hybridization or an amplification step coupled to the readout. However, method development is often hampered by the multiplicity of aptamer-target binding mechanisms, which can interfere with the hybridization step. As a simpler and more generalizable readout of aptamer-protein binding, we report that thermofluorimetric analysis (TFA) can be used to quantitatively assay protein levels. Sub-nanomolar detection (0.74 nM) of platelet-derived growth factor (PDGF) with its corresponding aptamer is shown as a test case. In the presence of various DNA intercalating dyes, protein-bound aptamers exhibit a change in fluorescence intensity compared to the intercalated, unbound aptamer. This allows thermal resolution of bound and unbound aptamers using fluorescence melting analysis (−dF/dT curves). Remarkably, the homogeneous optical method allows subtraction of autofluorescence in human serum, giving PDGF detection limits of 1.8 and 10.7 nM in serum diluted 1:7 and 1:3, respectively. We have thus demonstrated that bound and unbound aptamers can be thermally resolved in a homogeneous format using a simple qPCR instrument—even in human serum. The simplicity of this approach provides an important step toward a robust, generalizable readout of aptamer-protein binding. PMID:26366207

  9. Synthesis of imidazole derivatives and the spectral characterization of the binding properties towards human serum albumin

    NASA Astrophysics Data System (ADS)

    Yue, Yuanyuan; Dong, Qiao; Zhang, Yajie; Li, Xiaoge; Yan, Xuyang; Sun, Yahui; Liu, Jianming

    2016-01-01

    Small molecular drugs that can combine with target proteins specifically, and then block relative signal pathway, finally obtain the purpose of treatment. For this reason, the synthesis of novel imidazole derivatives was described and this study explored the details of imidazole derivatives binding to human serum albumin (HSA). The data of steady-state and time-resolved fluorescence showed that the conjugation of imidazole derivatives with HSA yielded quenching by a static mechanism. Meanwhile, the number of binding sites, the binding constants, and the thermodynamic parameters were also measured; the raw data indicated that imidazole derivatives could spontaneously bind with HSA through hydrophobic interactions and hydrogen bonds which agreed well with the results from the molecular modeling study. Competitive binding experiments confirmed the location of binding. Furthermore, alteration of the secondary structure of HSA in the presence of the imidazole derivatives was tested.

  10. Serum Albumin Binding Inhibits Nuclear Uptake of Luminescent Metal-Complex-Based DNA Imaging Probes.

    PubMed

    Wragg, Ashley; Gill, Martin R; McKenzie, Luke; Glover, Caroline; Mowll, Rachel; Weinstein, Julia A; Su, Xiaodi; Smythe, Carl; Thomas, Jim A

    2015-08-10

    The DNA binding and cellular localization properties of a new luminescent heterobimetallic Ir(III) Ru(II) tetrapyridophenazine complex are reported. Surprisingly, in standard cell media, in which its tetracationic, isostructural Ru(II) Ru(II) analogue is localized in the nucleus, the new tricationic complex is poorly taken up by live cells and demonstrates no nuclear staining. Consequent cell-free studies reveal that the Ir(III) Ru(II) complex binds bovine serum albumin, BSA, in Sudlow's Site I with a similar increase in emission and binding affinity to that observed with DNA. Contrastingly, in serum-free conditions the complex is rapidly internalized by live cells, where it localizes in cell nuclei and functions as a DNA imaging agent. The absence of serum proteins also greatly alters the cytotoxicity of the complex, where high levels of oncosis/necrosis are observed due to this enhanced uptake. This suggests that simply increasing the lipophilicity of a DNA imaging probe to enhance cellular uptake can be counterproductive as, due to increased binding to serum albumin protein, this strategy can actually disrupt nuclear targeting.

  11. Bezafibrate at clinically relevant doses decreases serum/liver triglycerides via down-regulation of sterol regulatory element-binding protein-1c in mice: a novel peroxisome proliferator-activated receptor alpha-independent mechanism.

    PubMed

    Nakajima, Takero; Tanaka, Naoki; Kanbe, Hiroki; Hara, Atsushi; Kamijo, Yuji; Zhang, Xiaowei; Gonzalez, Frank J; Aoyama, Toshifumi

    2009-04-01

    The triglyceride-lowering effect of bezafibrate in humans has been attributed to peroxisome proliferator-activated receptor (PPAR) alpha activation based on results from rodent studies. However, the bezafibrate dosages used in conventional rodent experiments are typically higher than those in clinical use (> or =50 versus < or =10 mg/kg/day), and thus it remains unclear whether such data can be translated to humans. Furthermore, because bezafibrate is a pan-PPAR activator, the actual contribution of PPARalpha to its triglyceride-lowering properties remains undetermined. To address these issues, bezafibrate at clinically relevant doses (10 mg/kg/day; low) was administered to wild-type and Ppara-null mice, and its effects were compared with those from conventionally used doses (100 mg/kg/day; high). Pharmacokinetic analyses showed that maximum plasma concentration and area under the concentration-time curve in bezafibrate-treated mice were similar to those in humans at low doses, but not at high doses. Low-dose bezafibrate decreased serum/liver triglycerides in a PPARalpha-independent manner by attenuation of hepatic lipogenesis and triglyceride secretion. It is noteworthy that instead of PPAR activation, down-regulation of sterol regulatory element-binding protein (SREBP)-1c was observed in mice undergoing low-dose treatment. High-dose bezafibrate decreased serum/liver triglycerides by enhancement of hepatic fatty acid uptake and beta-oxidation via PPARalpha activation, as expected. In conclusion, clinically relevant doses of bezafibrate exert a triglyceride-lowering effect by suppression of the SREBP-1c-regulated pathway in mice and not by PPARalpha activation. Our results may provide novel information about the pharmacological mechanism of bezafibrate action and new insights into the treatment of disorders involving SREBP-1c. PMID:19124612

  12. Role of serum carrier proteins in the peripheral metabolism and tissue distribution of thyroid hormones in familial dysalbuminemic hyperthyroxinemia and congenital elevation of thyroxine-binding globulin.

    PubMed Central

    Bianchi, R; Iervasi, G; Pilo, A; Vitek, F; Ferdeghini, M; Cazzuola, F; Giraudi, G

    1987-01-01

    To investigate the role of thyroxine-binding globulin (TBG) and albumin in the availability of thyroid hormones to peripheral tissues, comprehensive kinetic studies of thyroxine (T4) and triiodothyronine (T3) were carried out in eight subjects with familial dysalbuminemic hyperthyroxinemia (FDH), in four subjects with inherited TBG excess, and in 15 normals. In high-TBG subjects, the reduction of T4 and T3 plasma clearance rates (by 51% and 54%, respectively) was associated with normal daily productions; T4 and T3 distribution volumes were significantly reduced. In FDH subjects T4 clearance was less reduced (by 31%) than in high TBG; consequently T4 production rate was significantly increased (by 42%); T4 and T3 distribution volumes and T3 clearance rate were unchanged. Increased T3 peripheral production in FDH (by 24%) indicates that T4 bound to abnormal albumin is more available to tissues than T4 carried by TBG, thus suggesting an important role of albumin in T4 availability to the periphery. PMID:3112186

  13. Designing ligands to bind proteins.

    PubMed

    Whitesides, George M; Krishnamurthy, Vijay M

    2005-11-01

    The ability to design drugs (so-called 'rational drug design') has been one of the long-term objectives of chemistry for 50 years. It is an exceptionally difficult problem, and many of its parts lie outside the expertise of chemistry. The much more limited problem - how to design tight-binding ligands (rational ligand design) - would seem to be one that chemistry could solve, but has also proved remarkably recalcitrant. The question is 'Why is it so difficult?' and the answer is 'We still don't entirely know'. This perspective discusses some of the technical issues - potential functions, protein plasticity, enthalpy/entropy compensation, and others - that contribute, and suggests areas where fundamental understanding of protein-ligand interactions falls short of what is needed. It surveys recent technological developments (in particular, isothermal titration calorimetry) that will, hopefully, make now the time for serious progress in this area. It concludes with the calorimetric examination of the association of a series of systematically varied ligands with a model protein. The counterintuitive thermodynamic results observed serve to illustrate that, even in relatively simple systems, understanding protein-ligand association is challenging.

  14. Bovine pituitary, kidney, uterine and mammary gland extracts contain bovine mammary epithelium growth factors that synergise with IGF-I and fetal calf serum: indication for involvement of GTP-binding proteins.

    PubMed

    Waksman, M; Shamay, A; Gertler, A

    1991-04-01

    Bovine mammary undifferentiated epithelial cells from young female calves, cultured in three-dimensional collagen gels in serum-free medium exhibited ultrastructural organization that resembled the in vivo situation. Extracts of bovine pituitary, kidney, uterus and mammary gland, stimulated cell proliferation in a dose-dependent manner. This mitogenic activity strongly synergised with the existant growth factors (GFs) in FCS and with IGF-I, while the addition of EGF had only minor effect. No synergistic manifestation was found with cholera toxin but pertussis toxin inhibited the growth-promoting activity of all four extracts. Other experiments indicated that this mitogenic activity does not result from prolactin, growth hormone or fibroblast growth factor. The present and former results, in which synergism between IGF-I and cholera toxin was demonstrated, suggest therefore, that the mitogenesis of normal mammary epithelial cells regulated by several tissue derived growth factors, consists of at least two pathways which are distinct from those activated by EGF and IGF-I. One of these pathways indicates involvement of pertussis toxin-sensitive GTP-binding proteins, and the other, activation of cholera toxin-sensitive adenylate cyclase. PMID:1906389

  15. Longitudinal associations of age, anthropometric and lifestyle factors with serum total insulin-like growth factor-I and IGF binding protein-3 levels in Black and White men: the CARDIA Male Hormone Study.

    PubMed

    Gapstur, Susan M; Kopp, Peter; Chiu, Brian C-H; Gann, Peter H; Colangelo, Laura A; Liu, Kiang

    2004-12-01

    Although several studies have assessed cross-sectional correlates of serum insulin-like growth factor-I (IGF-I) and IGF binding protein-3 (IGFBP-3), there are no longitudinal studies of the correlates of long-term changes in these measures. We examined the 8-year longitudinal associations of age, body mass index (BMI), waist circumference, physical activity, number of cigarettes smoked per day, and alcohol intake with serum total IGF-I and IGFBP-3 concentrations in 622 Black and 796 White male participants of the Coronary Artery Risk Development in Young Adults Study who were ages 20 to 34 years at the time of the first IGF measurement. In generalized estimating equation analyses, IGF-I decreased by 5.6 and 5.9 ng/mL per year increase in age for Black and White men, respectively (P< 0.0001), and there was an age-related decline in IGFBP-3 that was stronger in Whites (P < 0.0001) than Blacks (P = 0.21). Average IGF-I (beta = -17.51 ng/mL) and IGFBP-3 (beta = -355.4 ng/mL) levels across all three exams were lower in Blacks than Whites (P < 0.0001). Increased BMI was associated with decreased IGF-I (P < 0.0002), but was not associated with IGFBP-3. There were no meaningful associations with waist circumference. Increased physical activity was associated with a decrease in IGFBP-3 (P < 0.05), but was not associated with IGF-I. In White men, there were weak inverse associations between the number of cigarettes smoked per day with IGF-I (P=0.15) and with IGFBP-3 (P = 0.19), and in Black men, increased alcohol intake was associated with a decrease in IGF-I (P = 0.011). In conclusion, these results support an age-related decline and Black-White difference in serum IGF-I and IGFBP-3 levels. Importantly, they suggest that IGF-I and/or IGFBP-3 levels could be influenced by changes in BMI, and perhaps by physical activity, alcohol intake, and cigarette smoking.

  16. Anion binding properties of human serum albumin from halide ion quadrupole relaxation.

    PubMed

    Norne, J E; Hjalmarsson, S G; Lindman, B; Zeppezauer, M

    1975-07-29

    The nuclear magnetic quadrupole relaxation enhancement of 35Cl-, 81Br-, and 12I- anions on binding to human serum albumin has been studied under conditions of variable protein and anion concentration and also in the presence of simple inorganic, amphiphilic, and complex anions which compete with the halide ions for the protein anion binding sites. Two classes of anion binding sites with greatly different binding constans were identified. Experiments at variable halide ion concentration were employed to determin the Cl- and I- binding constants. By means of 35 Cl nuclear magnetic resonance (NMR) the relative affinity for different anions was determined by competition experiments for both the strong and the weak anion binding sites. Anion binding follows the sequence SO42- smaller than F- smaller than CH3COO- smaller than Ci- smaller Br- smaller than NO3- smaller than I- smaller than ClO4- smaller than SCN- smaller than Pt(CN)42- smaller than Au(CN)2- smaller than CH3(CH2)11OSO3- for the high affinity sites, and the sequence SO42- congruent to F- congruent to Cl- smaller CH3COO- smaller than NO3- smaller than Br- smaller than I- smaller than ClO4- smaller than SCN- for the low affinity sites. These series are nearly identical with the well-known lyotropic series. Consequently, those effects of anions on proteins described by the lyotropic series can be correlated with the affinities of the anions for binding to the protein. The data suggest that the physical nature of the interaction is the same for both types of biding sites, and that the differences in affinity between different binding sites must be explained in terms of tertiary structure. Analogous experiments performed using 127I- quadrupole relaxation gave results very similar to those obtained with 35Cl-. A comparison between the Cl-, Br- and I- ions revealed that, as a result of the increasing affinity for the weak anion binding sites in the series Cl- smaller than Br- smaller than I-, Cl- is much more

  17. Binding of trivalent chromium to serum transferrin is sufficiently rapid to be physiologically relevant.

    PubMed

    Deng, Ge; Wu, Kristi; Cruce, Alex A; Bowman, Michael K; Vincent, John B

    2015-02-01

    Transferrin, the major iron transport protein in the blood, also transports trivalent chromium in vivo. Recent in vitro studies have, however, suggested that the binding of chromic ions to apotransferrin is too slow to be biologically relevant. Nevertheless, the in vitro studies have generally failed to adequately take physiological bicarbonate concentrations into account. In aqueous buffer (with ambient (bi)carbonate concentrations), the binding of chromium to transferrin is too slow to be physiologically relevant, taking days to reach equilibrium with the protein's associated conformational changes. However, in the presence of 25mM (bi)carbonate, the concentration in human blood, chromic ions bind rapidly and tightly to transferrin. Details of the kinetics of chromium binding to human serum transferrin and conalbumin (egg white transferrin) in the presence of bicarbonate and other major potential chromium ligands are described and are consistent with transferrin being the major chromic ion transporter from the blood to tissues.

  18. CHARACTERIZATION OF DRUG INTERACTIONS WITH SERUM PROTEINS BY USING HIGH-PERFORMANCE AFFINITY CHROMATOGRAPHY

    PubMed Central

    Hage, David S.; Anguizola, Jeanethe; Barnaby, Omar; Jackson, Abby; Yoo, Michelle J.; Papastavros, Efthimia; Pfaunmiller, Erika; Sobansky, Matt; Tong, Zenghan

    2011-01-01

    The binding of drugs with serum proteins can affect the activity, distribution, rate of excretion, and toxicity of pharmaceutical agents in the body. One tool that can be used to quickly analyze and characterize these interactions is high-performance affinity chromatography (HPAC). This review shows how HPAC can be used to study drug-protein binding and describes the various applications of this approach when examining drug interactions with serum proteins. Methods for determining binding constants, characterizing binding sites, examining drug-drug interactions, and studying drug-protein dissociation rates will be discussed. Applications that illustrate the use of HPAC with serum binding agents such as human serum albumin, α1-acid glycoprotein, and lipoproteins will be presented. Recent developments will also be examined, such as new methods for immobilizing serum proteins in HPAC columns, the utilization of HPAC as a tool in personalized medicine, and HPAC methods for the high-throughput screening and characterization of drug-protein binding. PMID:21395530

  19. Posaconazole in Human Serum: a Greater Pharmacodynamic Effect than Predicted by the Non-Protein-Bound Serum Concentration ▿

    PubMed Central

    Lignell, Anders; Löwdin, Elisabeth; Cars, Otto; Chryssanthou, Erja; Sjölin, Jan

    2011-01-01

    It is generally accepted that only the unbound fraction of a drug is pharmacologically active. Posaconazole is an antifungal agent with a protein binding of 98 to 99%. Taking into account the degree of protein binding, plasma levels in patients, and MIC levels of susceptible strains, it can be assumed that the free concentration of posaconazole sometimes will be too low to exert the expected antifungal effect. The aim was therefore to test the activity of posaconazole in serum in comparison with that of the calculated unbound concentrations in protein-free media. Significant differences (P < 0.05) from the serum control were found at serum concentrations of posaconazole of 1.0 and 0.10 mg/liter, with calculated free concentrations corresponding to 1× MIC and 0.1× MIC, respectively, against one Candida lusitaniae strain selected for proof of principle. In RPMI 1640, the corresponding calculated unbound concentration of 0.015 mg/liter resulted in a significant effect, whereas that of 0.0015 mg/liter did not. Also, against seven additional Candida strains tested, there was an effect of the low posaconazole concentration in serum, in contrast to the results in RPMI 1640. Fluconazole, a low-grade-protein-bound antifungal, was used for comparison at corresponding concentrations in serum and RPMI 1640. No effect was observed at the serum concentration, resulting in a calculated unbound concentration of 0.1× MIC. In summary, there was a substantially greater pharmacodynamic effect of posaconazole in human serum than could be predicted by the non-protein-bound serum concentration. A flux from serum protein-bound to fungal lanosterol 14α-demethylase-bound posaconazole is suggested. PMID:21502622

  20. Imatinib binding to human serum albumin modulates heme association and reactivity.

    PubMed

    Di Muzio, Elena; Polticelli, Fabio; Trezza, Viviana; Fanali, Gabriella; Fasano, Mauro; Ascenzi, Paolo

    2014-10-15

    Imatinib, an inhibitor of the Bcr-Abl tyrosine kinase, is approximately 95% bound to plasma proteins, α1-acid glycoprotein (AGP) being the primary carrier. However, human serum albumin (HSA) may represent the secondary carrier of imatinib in pathological states characterized by low AGP levels, such as pancreatic cancer, hepatic cirrhosis, hepatitis, hyperthyroidism, nephrotic syndrome, malnutrition, and cachexia. Here, thermodynamics of imatinib binding to full-length HSA and its recombinant Asp1-Glu382 truncated form (containing only the FA1, FA2, FA6, and FA7 binding sites; trHSA), in the absence and presence of ferric heme (heme-Fe(III)), and the thermodynamics of heme-Fe(III) binding to HSA and trHSA, in the absence and presence of imatinib, has been investigated. Moreover, the effect of imatinib on kinetics of peroxynitrite detoxification by ferric human serum heme-albumin (HSA-heme-Fe(III)) and ferric truncated human serum heme-albumin (trHSA-heme-Fe(III)) has been explored. All data were obtained at pH 7.0, and 20.0 °C and 37.0 °C. Imatinib binding to the FA7 site of HSA and trHSA inhibits allosterically heme-Fe(III) association to the FA1 site and vice versa, according to linked functions. Moreover, imatinib binding to the secondary FA2 site of HSA-heme-Fe(III) inhibits allosterically peroxynitrite detoxification. Docking simulations and local structural comparison with other imatinib-binding proteins support functional data indicating the preferential binding of imatinib to the FA1 and FA7 sites of HSA, and to the FA2 and FA7 sites of HSA-heme-Fe(III). Present results highlight the allosteric coupling of the FA1, FA2, and FA7 sites of HSA, and may be relevant in modulating ligand binding and reactivity properties of HSA in vivo. PMID:25057771

  1. Calcium-binding proteins and development

    NASA Technical Reports Server (NTRS)

    Beckingham, K.; Lu, A. Q.; Andruss, B. F.; McIntire, L. V. (Principal Investigator)

    1998-01-01

    The known roles for calcium-binding proteins in developmental signaling pathways are reviewed. Current information on the calcium-binding characteristics of three classes of cell-surface developmental signaling proteins (EGF-domain proteins, cadherins and integrins) is presented together with an overview of the intracellular pathways downstream of these surface receptors. The developmental roles delineated to date for the universal intracellular calcium sensor, calmodulin, and its targets, and for calcium-binding regulators of the cytoskeleton are also reviewed.

  2. The detection of DNA-binding proteins by protein blotting.

    PubMed Central

    Bowen, B; Steinberg, J; Laemmli, U K; Weintraub, H

    1980-01-01

    A method, called "protein blotting," for the detection of DNA-binding proteins is described. Proteins are separated on an SDA-polyacrylamide gel. The gel is sandwiched between 2 nitrocellulose filters and the proteins allowed to diffuse out of the gel and onto the filters. The proteins are tightly bound to each filter, producing a replica of the original gel pattern. The replica is used to detect DNA-binding proteins, RNA-binding proteins or histone-binding proteins by incubation of the filter with [32P]DNA, [125I]RNA, or [125I] histone. Evidence is also presented that specific protein-DNA interactions may be detected by this technique; under appropriate conditions, the lac repressor binds only to DNA containing the lac operator. Strategies for the detection of specific protein-DNA interactions are discussed. Images PMID:6243775

  3. Mannose-Binding Lectin Serum Levels in Patients With Candiduria

    PubMed Central

    Moslem, Maryam; Zarei Mahmoudabadi, Ali; Fatahinia, Mahnaz; Kheradmand, Alireza

    2015-01-01

    Background: Candida species are normal mycoflora of human body which are capable to cause urinary tract infection (UTI). Mannose-binding lectin (MBL) is a kind of innate immune system and decreasing plasma levels of MBL may disrupt the natural immune response and increase susceptibility to infections. Objectives: The aim of the present study was to assess MBL in the serum of patients with candiduria and compare them with control. Patients and Methods: The blood and urine samples were collected from 335 patients (hospitalized in Golestan hospital, Ahvaz) using standard methods and the growing colonies on CHROMagar were identified using routine diagnostic tests. MBL activity in the serum of 45 patients with candiduria and 45 controls was measured using Eastbiopharm enzyme-linked immunosorbent assay (ELISA) kit. Results: In this study, 45 (13.4 %) urine samples were positive for Candida species (17 males and 28 females). The most common isolated yeast was Candida albicans (34%), followed by C. glabrata (32.1%), C. tropicalis (9.4%), other Candida species (22.6%), and Rhodotorula species (1.9%). The mean serum levels of MBL were 0.85 ± 0.01 ng/mL and 1.02 ± 0.03 ng/mL among candiduric patients and controls, respectively, and there was no significant difference between the two groups (P = 0.6). Conclusions: Our results showed that there was no significant relationship between MBL serum levels and candiduria. PMID:26870314

  4. Advanced Running Performance by Genetic Predisposition in Male Dummerstorf Marathon Mice (DUhTP) Reveals Higher Sterol Regulatory Element-Binding Protein (SREBP) Related mRNA Expression in the Liver and Higher Serum Levels of Progesterone

    PubMed Central

    Brenmoehl, Julia; Walz, Christina; Ponsuksili, Siriluck; Schwerin, Manfred; Fuellen, Georg; Hoeflich, Andreas

    2016-01-01

    Long-term-selected DUhTP mice represent a non-inbred model for inborn physical high-performance without previous training. Abundance of hepatic mRNA in 70-day male DUhTP and control mice was analyzed using the Affymetrix mouse array 430A 2.0. Differential expression analysis with PLIER corrected data was performed using AltAnalyze. Searching for over-representation in biochemical pathways revealed cholesterol metabolism being most prominently affected in DUhTP compared to unselected control mice. Furthermore, pathway analysis by AltAnalyze plus PathVisio indicated significant induction of glycolysis, fatty acid synthesis and cholesterol biosynthesis in the liver of DUhTP mice versus unselected control mice. In contrast, gluconeogenesis was partially inactivated as judged from the analysis of hepatic mRNA transcript abundance in DUhTP mice. Analysis of mRNA transcripts related to steroid hormone metabolism inferred elevated synthesis of progesterone and reduced levels of sex steroids. Abundance of steroid delta isomerase-5 mRNA (Hsd3b5, FC 4.97) was increased and steroid 17-alpha-monooxygenase mRNA (Cyp17a1, FC -11.6) was massively diminished in the liver of DUhTP mice. Assessment of steroid profiles by LC-MS revealed increased levels of progesterone and decreased levels of sex steroids in serum from DUhTP mice versus controls. Analysis of hepatic mRNA transcript abundance indicates that sterol regulatory element-binding protein-1 (SREBP-1) may play a major role in metabolic pathway activation in the marathon mouse model DUhTP. Thus, results from bioinformatics modeling of hepatic mRNA transcript abundance correlated with direct steroid analysis by mass spectrometry and further indicated functions of SREBP-1 and steroid hormones for endurance performance in DUhTP mice. PMID:26799318

  5. Competitive binding of phenylbutazone and colchicine to serum albumin in multidrug therapy: A spectroscopic study

    NASA Astrophysics Data System (ADS)

    Sułkowska, A.; Maciążek-Jurczyk, M.; Bojko, B.; Równicka, J.; Zubik-Skupień, I.; Temba, E.; Pentak, D.; Sułkowski, W. W.

    2008-06-01

    The binding sites for phenylbutazone and colchicine were identified in tertiary structure of bovine and human serum albumin with the use of spectrofluorescence analysis. It was found that phenylbutazone has two binding sites in both sera albumins (HSA and BSA), while colchicine has one binding site in BSA as well as in HSA. The comparison of the quenching effect of BSA and HSA fluorescence by phenylbutazone and colchicine allows us to identify subdomain IIA in protein as the binding site for these two drugs. In this subdomain tryptophan 214 is located. The participation of tyrosyl and tryptophanyl residues of protein was also estimated in the drug-albumin complex. The comparison of quenching of fluorescence of HSA and BSA excited at 280 nm with that at 295 nm allowed us to state that the participation of tyrosyl residues of albumin in the phenylbutazone-serum albumin interaction is significant. The analysis of quenching of fluorescence of BSA in the binary and ternary systems showed that phenylbutazone does not affect the complex formed between colchicine and BSA. Similarly, colchicine has no effect on the Phe-BSA complex. However marked differences were observed for the complex with HSA. On the basis of Ka and KQ values it was concluded that colchicine may probably cause displacement of phenylbutazone from its complex with serum albumin (SA). Static and dynamic quenching for the binary and ternary systems is also discussed. The competition of phenylbutazone and colchicine in binding to serum albumin should be taken into account in the multi-drug therapy.

  6. Calmodulin Binding Proteins and Alzheimer's Disease.

    PubMed

    O'Day, Danton H; Eshak, Kristeen; Myre, Michael A

    2015-01-01

    The small, calcium-sensor protein, calmodulin, is ubiquitously expressed and central to cell function in all cell types. Here the literature linking calmodulin to Alzheimer's disease is reviewed. Several experimentally-verified calmodulin-binding proteins are involved in the formation of amyloid-β plaques including amyloid-β protein precursor, β-secretase, presenilin-1, and ADAM10. Many others possess potential calmodulin-binding domains that remain to be verified. Three calmodulin binding proteins are associated with the formation of neurofibrillary tangles: two kinases (CaMKII, CDK5) and one protein phosphatase (PP2B or calcineurin). Many of the genes recently identified by genome wide association studies and other studies encode proteins that contain putative calmodulin-binding domains but only a couple (e.g., APOE, BIN1) have been experimentally confirmed as calmodulin binding proteins. At least two receptors involved in calcium metabolism and linked to Alzheimer's disease (mAchR; NMDAR) have also been identified as calmodulin-binding proteins. In addition to this, many proteins that are involved in other cellular events intimately associated with Alzheimer's disease including calcium channel function, cholesterol metabolism, neuroinflammation, endocytosis, cell cycle events, and apoptosis have been tentatively or experimentally verified as calmodulin binding proteins. The use of calmodulin as a potential biomarker and as a therapeutic target is discussed. PMID:25812852

  7. Computational Prediction of RNA-Binding Proteins and Binding Sites.

    PubMed

    Si, Jingna; Cui, Jing; Cheng, Jin; Wu, Rongling

    2015-01-01

    Proteins and RNA interaction have vital roles in many cellular processes such as protein synthesis, sequence encoding, RNA transfer, and gene regulation at the transcriptional and post-transcriptional levels. Approximately 6%-8% of all proteins are RNA-binding proteins (RBPs). Distinguishing these RBPs or their binding residues is a major aim of structural biology. Previously, a number of experimental methods were developed for the determination of protein-RNA interactions. However, these experimental methods are expensive, time-consuming, and labor-intensive. Alternatively, researchers have developed many computational approaches to predict RBPs and protein-RNA binding sites, by combining various machine learning methods and abundant sequence and/or structural features. There are three kinds of computational approaches, which are prediction from protein sequence, prediction from protein structure, and protein-RNA docking. In this paper, we review all existing studies of predictions of RNA-binding sites and RBPs and complexes, including data sets used in different approaches, sequence and structural features used in several predictors, prediction method classifications, performance comparisons, evaluation methods, and future directions.

  8. New insight into the binding interaction of hydroxylated carbon nanotubes with bovine serum albumin.

    PubMed

    Guan, Yonghui; Zhang, Hongmei; Wang, Yanqing

    2014-04-24

    In order to understand the effects of carbon nanotubes on the structural stability of proteins, the ligand-binding ability, fibrillation, and chemical denaturation of bovine serum albumin in the presence of a multi-walled hydroxylated carbon nanotubes (HO-MWCNTs) was characterized by UV-vis, circular dichroism, fluorescence spectroscopy and molecule modeling methods at the molecular level. The experiment results indicated that the fluorescence intensity of BSA was decreased obviously in presence of HO-MWCNTs. The binding interaction of HO-MWCNTs with BSA led to the secondary structure changes of BSA. This interaction could not only affect the ligand-binding ability of BSA, but also change the rate of fibrillation and denaturation of BSA. This work gave us some important information about the structures and properties of protein induced by carbon nanotubes.

  9. Structural basis of non-steroidal anti-inflammatory drug diclofenac binding to human serum albumin.

    PubMed

    Zhang, Yao; Lee, Philbert; Liang, Shichu; Zhou, Zuping; Wu, Xiaoyang; Yang, Feng; Liang, Hong

    2015-11-01

    Human serum albumin (HSA) is the most abundant protein in plasma, which plays a central role in drug pharmacokinetics because most compounds bound to HSA in blood circulation. To understand binding characterization of non-steroidal anti-inflammatory drugs to HSA, we resolved the structure of diclofenac and HSA complex by X-ray crystallography. HSA-palmitic acid-diclofenac structure reveals two distinct binding sites for three diclofenac in HSA. One diclofenac is located at the IB subdomain, and its carboxylate group projects toward polar environment, forming hydrogen bond with one water molecule. The other two diclofenac molecules cobind in big hydrophobic cavity of the IIA subdomain without interactive association. Among them, one binds in main chamber of big hydrophobic cavity, and its carboxylate group forms hydrogen bonds with Lys199 and Arg218, as well as one water molecule, whereas another diclofenac binds in side chamber, its carboxylate group projects out cavity, forming hydrogen bond with Ser480.

  10. Alterations in zinc binding capacity, free zinc levels and total serum zinc in a porcine model of sepsis.

    PubMed

    Hoeger, Janine; Simon, Tim-Philipp; Doemming, Sabine; Thiele, Christoph; Marx, Gernot; Schuerholz, Tobias; Haase, Hajo

    2015-08-01

    Zinc is crucial for immune function. In addition, the redistribution of zinc and other nutrients due to infection is an integral part of the host immune response to limit availability to pathogens. However, the major zinc binding protein albumin is down regulated during the acute phase response, implicating a decrease in zinc binding capacity. A prospective animal study with eight female German landrace pigs was conducted to investigate alterations in zinc binding capacity, total serum zinc and free zinc levels in the initial phase of sepsis. Sepsis was induced by instillation of autologous feces via midline laparotomy. Total serum zinc declined significantly after 1 h (10.89 ± 0.42 µM vs. 7.67 ± 0.41 µM, p < 0.001), total serum copper and iron reached a significant reduction at 4 h. Urinary excretion of zinc declined in line with total serum zinc. In comparison to total serum zinc, free zinc levels declined to a lesser, though significant, extent. Zinc binding capacity of serum decreased over time, whereby free zinc levels after addition of zinc correlated negatively with total serum protein and albumin levels. In addition IL-6 and TNF-α concentrations were measured and increased significantly 2 h after induction of sepsis. Hence, total serum zinc was the first marker of inflammation in our experiment, and might therefore be a promising biomarker for the early diagnosis of sepsis. Furthermore the observation of a substantially different serum free zinc homeostasis during sepsis provides valuable information for a potential therapeutic zinc supplementation, which has to take buffering capacity by serum proteins into account.

  11. Tamoxifen and curcumin binding to serum albumin. Spectroscopic study

    NASA Astrophysics Data System (ADS)

    Maciążek-Jurczyk, M.; Maliszewska, M.; Pożycka, J.; Równicka-Zubik, J.; Góra, A.; Sułkowska, A.

    2013-07-01

    Tamoxifen (TMX) is widely used for the breast cancer treatment and is known as chemopreventive agent. Curcumin (CUR) is natural phenolic compound with broad spectrum of biological activity e.g. anti-inflammatory, antimicrobial, antiviral, antifungal and chemopreventive. Combination of tamoxifen and curcumin could be more effective with lower toxicity than each agent alone in use for the treatment or chemoprevention of breast cancer. Binding of drugs to serum albumin is an important factor, which determines toxicity and therapeutic dosage of the drugs. When two drugs are administered together the competition between them for the binding site on albumin can result in a decrease in bound fraction and an increase in the concentration of free biologically active fraction of drug.

  12. Interactions Between Sirolimus and Anti-Inflammatory Drugs: Competitive Binding for Human Serum Albumin

    PubMed Central

    Khodaei, Arash; Bolandnazar, Soheila; Valizadeh, Hadi; Hasani, Leila; Zakeri-Milani, Parvin

    2016-01-01

    Purpose: The aim of the present study was investigating the effects of three anti-inflammatory drugs, on Sirolimus protein biding. The binding site of Sirolimus on human serum albumin (HSA) was also determined. Methods: Six different concentrations of Sirolimus were separately exposed to HSA at pH 7.4 and 37°C. Ultrafiltration method was used for separating free drug; then free drug concentrations were measured by HPLC. Finally, Sirolimus protein binding parameters was calculated using Scatchard plots. The same processes were conducted in the presence of NSAIDs at lower concentration of albumin and different pH conditions. To characterize the binding site of Sirolimus on albumin, the free concentration of warfarin sodium and Diazepam, site I and II specific probes, bound to albumin were measured upon the addition of increasing Sirolimus concentrations. Results: Based on the obtained results presence of Diclofenac, Piroxicam and Naproxen, could significantly decrease the percentage of Sirolimus protein binding. The Binding reduction was the most in the presence of Piroxicam. Sirolimus-NSAIDs interactions were increased in higher pH values and also in lower albumin concentrations. Probe displacement study showed that Sirolimus may mainly bind to site I on albumin molecule. Conclusion: More considerations in co-administration of NSAIDs and Sirolimus is recommended. PMID:27478785

  13. Exploring binding properties of sertraline with human serum albumin: Combination of spectroscopic and molecular modeling studies.

    PubMed

    Shahlaei, Mohsen; Rahimi, Behnoosh; Nowroozi, Amin; Ashrafi-Kooshk, Mohammad Reza; Sadrjavadi, Komail; Khodarahmi, Reza

    2015-12-01

    Human serum albumin (HSA)-drug binding is an important factor to determine half life and bioavailability of drugs. In the present research, the interaction of sertraline (SER) to HSA was investigated using combination of spectroscopic and molecular modeling techniques. Changes in the UV-Vis, CD and FT-IR spectra as well as a significant degree of tryptophan fluorescence quenching were observed upon SER-HSA interaction. Data obtained by spectroscopic methods along with the computational studies suggest that SER binds to residues located in subdomain IIA of HSA. Analysis of spectroscopic data represented the formation of 1:1 complex, significant binding affinity, negative values of entropy and enthalpy changes and the essential role of hydrophobic interactions in binding of SER to HSA. The binding models were demonstrated in the aspects of SER's conformation, active site interactions, important amino acids and hydrogen bonding. Computational mapping of the possible binding site of SER confirmed that the ligand to be bound in a large hydrophobic cavity of HSA. In accordance with experimental data, computational analyses indicated that SER binding does not alter the secondary structure of the protein. The results not only lead to a better understanding of interaction between SER and HSA but also provide useful data about the influence of SER on the protein conformation. PMID:26471709

  14. Steady-State Fluorescence Anisotropy to Investigate Flavonoids Binding to Proteins

    ERIC Educational Resources Information Center

    Ingersoll, Christine M.; Strollo, Christen M.

    2007-01-01

    The steady-state fluorescence anisotropy is employed to study the binding of protein of a model protein, human serum albumin, to a commonly used flavonoid, quercetin. The experiment describes the thermodynamics, as well as the biochemical interactions of such binding effectively.

  15. The Prognostic Value of Serum Levels of Heart-Type Fatty Acid Binding Protein and High Sensitivity C-Reactive Protein in Patients With Increased Levels of Amino-Terminal Pro-B Type Natriuretic Peptide

    PubMed Central

    Jeong, Ji Hun; Seo, Yiel Hea; Ahn, Jeong Yeal; Kim, Kyung Hee; Seo, Ja Young; Kim, Moon Jin; Lee, Hwan Tae

    2016-01-01

    Background Amino-terminal pro-B type natriuretic peptide (NT-proBNP) is a well-established prognostic factor in heart failure (HF). However, numerous causes may lead to elevations in NT-proBNP, and thus, an increased NT-proBNP level alone is not sufficient to predict outcome. The aim of this study was to evaluate the utility of two acute response markers, high sensitivity C-reactive protein (hsCRP) and heart-type fatty acid binding protein (H-FABP), in patients with an increased NT-proBNP level. Methods The 278 patients were classified into three groups by etiology: 1) acute coronary syndrome (ACS) (n=62), 2) non-ACS cardiac disease (n=156), and 3) infectious disease (n=60). Survival was determined on day 1, 7, 14, 21, 28, 60, 90, 120, and 150 after enrollment. Results H-FABP (P<0.001), NT-proBNP (P=0.006), hsCRP (P<0.001) levels, and survival (P<0.001) were significantly different in the three disease groups. Patients were divided into three classes by using receiver operating characteristic curves for NT-proBNP, H-FABP, and hsCRP. Patients with elevated NT-proBNP (≥3,856 pg/mL) and H-FABP (≥8.8 ng/mL) levels were associated with higher hazard ratio for mortality (5.15 in NT-proBNP and 3.25 in H-FABP). Area under the receiver operating characteristic curve analysis showed H-FABP was a better predictor of 60-day mortality than NT-proBNP. Conclusions The combined measurement of H-FABP with NT-proBNP provides a highly reliable means of short-term mortality prediction for patients hospitalized for ACS, non-ACS cardiac disease, or infectious disease. PMID:27374706

  16. Spectroscopic and molecular docking studies on the charge transfer complex of bovine serum albumin with quinone in aqueous medium and its influence on the ligand binding property of the protein

    NASA Astrophysics Data System (ADS)

    Satheshkumar, Angupillai; Elango, Kuppanagounder P.

    2014-09-01

    The spectral techniques such as UV-Vis, 1H NMR and fluorescence and electrochemical experiments have been employed to investigate the interaction between 2-methoxy-3,5,6-trichloro-1,4-benzoquinone (MQ; a water soluble quinone) and bovine serum albumin (BSA) in aqueous medium. The fluorescence of BSA was quenched by MQ via formation of a 1:1 BSA-MQ charge transfer adduct with a formation constant of 3.3 × 108 L mol-1. Based on the Forster’s theory the binding distance between them is calculated as 2.65 nm indicating high probability of binding. For the first time, influence of quinone on the binding property of various types of ligands such as aspirin, ascorbic acid, nicotinimide and sodium stearate has also been investigated. The results indicated that the strong and spontaneous binding existing between BSA and MQ, decreased the intensity of binding of these ligands with BSA. Since Tryptophan (Trp) is the basic residue present in BSA, a comparison between binding property of Trp-MQ adduct with that of BSA-MQ with these ligands has also been attempted. 1H NMR titration study indicated that the Trp forms a charge transfer complex with MQ, which reduces the interaction of Trp with the ligands. Molecular docking study supported the fact that the quinone interacts with the Trp212 unit of the BSA and the free energy change of binding (ΔG) for the BSA-MQ complex was found to be -46 kJ mol-1, which is comparable to our experimental free energy of binding (-49 kJ mol-1) obtained from fluorescence study.

  17. Protein D of Haemophilus influenzae is not a universal immunoglobulin D-binding protein.

    PubMed Central

    Sasaki, K; Munson, R S

    1993-01-01

    Haemophilus influenzae type b and nontypeable H. influenzae have been reported to bind human immunoglobulin D (IgD). IgD myeloma sera from five patients were tested for the ability of IgD to bind to H. influenzae. Serotype b strains bound human IgD in four of the five sera tested. IgD in the fifth serum bound strongly to type b strain MinnA but poorly to other type b strains. Additionally, IgD binding was not observed when nontypeable strains were tested. The gene for protein D, the putative IgD-binding protein, was cloned from the IgD-binding H. influenzae type b strain MinnA and expressed in Escherichia coli. IgD binding to E. coli expressing protein D was not demonstrable. Recombinant protein D was purified, and antisera were generated in rabbits. Using these rabbit sera, we detected protein D in nontypeable as well as serotype b strains by Western blotting (immunoblotting). In contrast, IgD myeloma protein 4490, which was previously reported to bind to protein D by Ruan and coworkers (M. Ruan, M. Akkoyunlu, A. Grubb, and A. Forsgren, J. Immunol. 145:3379-3384), bound strongly to both type b and nontypeable H. influenzae as well as to E. coli expressing protein D. Thus, IgD binding is a general property of H. influenzae type b strains but not a general property of nontypeable strains, although both type b and nontypeable strains produce protein D. With the exception of IgD myeloma protein 4490 binding, we have no evidence for a role of protein D in IgD binding to H. influenzae. Images PMID:8514409

  18. Serum protein profile of Crohn's disease treated with infliximab.

    PubMed

    Gazouli, Maria; Anagnostopoulos, Athanasios K; Papadopoulou, Aggeliki; Vaiopoulou, Anna; Papamichael, Konstantinos; Mantzaris, Gerassimos; Theodoropoulos, George E; Anagnou, Nicholas P; Tsangaris, George Th

    2013-11-01

    The infliximab (IFX) has dramatically improved the treatment of Crohn's disease (CD). However, the need for predictive factors, indicative of patients' response to IFX, has yet to be met. In the current study, proteomics technologies were employed in order to monitor for differences in protein expression in a cohort of patients following IFX administration, aiming at identifying a panel of candidate protein biomarkers of CD, symptomatic of response to treatment. We enrolled 18 patients, who either had achieved clinical and serological remission (Rm, n=6), or response (Rs, n=6) and/or were PNRs (n=6), to IFX. Serum samples were subjected to two-dimensional Gel Electrophoresis. Following evaluation of densitometrical data, protein spots exhibiting differential expression among the groups, were further characterized by MALDI-TOF-MS. Identified proteins where evaluated by immunoblot analysis while functional network association was carried out to asses significance. Proteins apolipoprotein A-I (APOA1), apolipoprotein E (APOE), complement C4-B (CO4B), plasminogen (PLMN), serotransferrin (TRFE), beta-2-glycoprotein 1 (APOH), and clusterin (CLUS) were found to be up-regulated in the PNR and Rs groups whereas their levels displayed no changes in the Rm group when compared to baseline samples. Additionally, leucine-rich alpha-2-glycoprotein (A2GL), vitamin D-binding protein (VTDB), alpha-1B-glycoprotein (A1BG) and complement C1r subcomponent (C1R) were significantly increased in the serum of the Rm group. Through the incorporation of proteomics technologies, novel serum marker-molecules demonstrating high sensitivity and specificity are introduced, hence offering an innovative approach regarding the evaluation of CD patients' response to IFX therapy.

  19. Binding of Breviscapine Toward Serum Albumin Studied by Spectroscopic and Electrochemical Techniques.

    PubMed

    Liu, Wei; Chen, Yaqing; Chen, Hui; Zhang, Ying

    2016-09-01

    Breviscapine, a cerebrovascular drugs extracted from the Chinese herb Erigeron breviscapinus, has been frequently used to clinically treat cerebrovascular diseases such as cerebral thrombosis, cerebral infarction, and cerebral circulation insufficiency. In order to understand its pharmacology or toxicity, the binding mechanism of breviscapine to a model protein, human serum albumin (HSA), was probed by fluorescence, circular dichroism, Fourier transform infrared spectroscopy (FTIR), and electrochemical impedance spectroscopy approaches. The binding affinities and number of the drug with HSA were about 1.73 × 10(4)  M(-1) and 0.99 at 293 K, respectively. The conformation of the protein was slightly altered after interacting with breviscapine. The drug-protein complex was mainly stabilized by electrostatic forces.

  20. Mercury-binding proteins of Mytilus edulis

    SciTech Connect

    Roesijadi, G.; Morris, J. E.; Calabrese, A.

    1981-11-01

    Mytilus edulis possesses low molecular weight, mercury-binding proteins. The predominant protein isolated from gill tissue is enriched in cysteinyl residues (8%) and possesses an amino acid composition similar to cadmium-binding proteins of mussels and oysters. Continuous exposure of mussels to 5 ..mu..g/l mercury results in spillover of mercury from these proteins to high molecular weight proteins. Antibodies to these proteins have been isolated, and development of immunoassays is presently underway. Preliminary studies to determine whether exposure of adult mussels to mercury will result in induction of mercury-binding proteins in offspring suggest that such proteins occur in larvae although additional studies are indicated for a conclusive demonstration.

  1. Serum proteins in heavily burnt patients.

    PubMed

    Miskulin, M; Moati, F; Robert, A M; Monteil, R; Guilbaud, G

    1978-01-01

    Several serum proteins, such as prealbumin, protease inhibitors, immunoglobulins, metalloproteins and inflammatory glycoproteins were determined in the sera of heavily burnt patients by radial immunodiffusion. An increase of acute phase reactant glycoproteins (orsomucoid, haptoglobin, haemopexin, C-reactive protein), C3-complement, immunoglobulins, prealbumin and of the protease inhibitors (a1-antitrypsin, a2-macroglobulin) was found. For some proteins, such as prealbumin, haemopexin, immunoglobulins, this increase was preceeded by a decrease on days 3 to 5 post-burn. The time course of the increase was variable, faster for some patients and slower for others: orosomucoid, C-reactive protein, C3-complement reached peak values between days 6 and 8; immunoglobulins and hemopexin decreased then towards normal values. No significant increase was found for ceruloplasmin, transferrin, beta2-glycoprotein, a2-SH glycoprotein and GC-globulin. It is proposed that the selective overproduction of the above mentioned proteins may be related to the stimulation of acute-phase reactant protein synthesis by the liver as a result of tissue breakdown produced by the circulating proteases and especially by elastases and collagenases as was shown previously (Miskulin et al., 1978; Moati et al., 1978a).

  2. Photo selective protein immobilization using bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Kim, Wan-Joong; Kim, Ansoon; Huh, Chul; Park, Chan Woo; Ah, Chil Seong; Kim, Bong Kyu; Yang, Jong-Heon; Chung, Kwang Hyo; Choi, Yo Han; Hong, Jongcheol; Sung, Gun Yong

    2012-11-01

    A simple and selective technique which immobilizes protein onto a solid substrate by using UV illumination has been developed. In protein immobilization, a Bovine serum albumin (BSA) performed bifunctional role as a cross-linker between substrate and proteins and as a blocker inhibiting a nonspecific protein adsorption. A new photo-induced protein immobilization process has been investigated at each step by fluorescence microscopy, ellipsometry, and Fourier transform infrared (FT-IR) spectroscopy. A UV photomask has been used to induce selective protein immobilization on target regions of the surface of the SiO2 substrates under UV illumination with negligible nonspecific binding. The UV illumination also showed improved photostability than the conventional methods which employed bifunctional photo-crosslinker molecules of photo-reactive diazirine. This new UV illumination-based photo-addressable protein immobilization provides a new approach for developing novel protein microarrays for multiplexed sensing as well as other types of bio-immobilization in biomedical devices and biotechnologies.

  3. Binding specificity of serum amyloid P component for the pyruvate acetal of galactose

    PubMed Central

    1984-01-01

    Serum amyloid P component (SAP) is a normal plasma protein that is of interest because of its presence in amyloid deposits, its presence in normal human glomerular basement membrane, and its stable evolutionary conservation. It has calcium-dependent ligand-binding specificity for amyloid fibrils, fibronectin (Fn), C4-binding protein (C4bp), and agarose. Although the binding to agarose, a linear galactan hydrocolloid derived from some marine algae, is unlikely per se to be related to the physiological function of SAP, it does provide a model system in which to explore the precise ligand requirements of SAP. We report here that the amount of SAP from human, mouse, and plaice (Pleuronectes platessa L.) serum able to bind to agarose from different sources reflect precisely their pyruvate content. Methylation with diazomethane of the carboxyl groups in the pyruvate moiety of agarose completely abolishes SAP binding to agarose. The pyruvate in agarose exists as the 4,6-pyruvate acetal of beta-D-galactopyranose. We have therefore synthesized this galactoside, using a novel procedure, established its structure by analysis of its nuclear magnetic resonance spectra, and shown that it completely inhibits all known calcium- dependent binding reactions of SAP. The R isomer of the cyclic acetal, methyl 4,6-O-(1-carboxyethylidene)-beta-D-galactopyranoside (MO beta DG) was effective at millimolar concentration and was more potent than its noncyclic analogue, while pyruvate, D-galactose, and methyl beta-D- galactopyranoside were without effect. The autologous protein ligands of SAP presumably, therefore express a structural determinant(s) that stereochemically resembles MO beta DG. Availability of this specific, well-characterized, low molecular weight ligand for SAP should facilitate further investigation of the function of SAP and its role in physiological and pathophysiological processes. PMID:6707579

  4. Chemokine binding proteins encoded by pathogens.

    PubMed

    Alcami, Antonio; Saraiva, Margarida

    2009-01-01

    Chemokines are chemoattractant cytokines that play an important role in immunity. The role of chemokines against invading pathogens is emphasized by the expression of chemokine inhibitors by many pathogens. A mechanims employed by poxviruses and herpesviruses is the secretion of chemokine bindingproteins unrelated to host receptors that bind chemokines with high affinity and block their activity. Soluble chemokine binding proteins have also been identified in the human parasite Schistosoma mansoni and in ticks. The binding specificity of these inhibitors of cell migration point at chemokines that contribute to host defense mechanisms against various pathogens. Chemokine binding proteins modulate the immune response and may lead to new therapeutic approaches to treat inflamatory diseases.

  5. Chromatin-independent binding of serum amyloid P component to apoptotic cells.

    PubMed

    Familian, A; Zwart, B; Huisman, H G; Rensink, I; Roem, D; Hordijk, P L; Aarden, L A; Hack, C E

    2001-07-15

    Human serum amyloid P component (SAP) is a glycoprotein structurally belonging to the pentraxin family of proteins, which has a characteristic pentameric organization. Mice with a targeted deletion of the SAP gene develop antinuclear Abs, which was interpreted as evidence for a role of SAP in controlling the degradation of chromatin. However, in vitro SAP also can bind to phosphatidylethanolamine, a phospholipid which in normal cells is located mainly in the inner leaflet of the cell membrane, to be translocated to the outer leaflet of the cell membrane during a membrane flip-flop. We hypothesized that SAP, because of its specificity for phosphatidylethanolamine, may bind to apoptotic cells independent of its nuclear binding. Calcium-dependent binding of SAP to early, nonpermeable apoptotic Jurkat, SKW, and Raji cells was indeed observed. Experiments with flip-flopped erythrocytes confirmed that SAP bound to early apoptotic cells via exposed phosphatidylethanolamine. Binding of SAP was stronger to late, permeable apoptotic cells. Experiments with enucleated neutrophils, with DNase/RNase treatment of late apoptotic Jurkat cells, and competition experiments with histones suggested that binding of SAP to late apoptotic cells was largely independent of chromatin. Confocal laser microscopic studies indeed suggested that SAP bound to these apoptotic cells mainly via the blebs. Thus, this study shows that SAP binds to apoptotic cells already at an early stage, which raises the possibility that SAP is involved in dealing with apoptotic cells in vivo.

  6. Methyl-triclosan binding to human serum albumin: multi-spectroscopic study and visualized molecular simulation.

    PubMed

    Lv, Wenjuan; Chen, Yonglei; Li, Dayong; Chen, Xingguo; Leszczynski, Jerzy

    2013-10-01

    Methyl-triclosan (MTCS), a transformation product and metabolite of triclosan, has been widely spread in environment through the daily use of triclosan which is a commonly used anti-bacterial and anti-fungal substance in consumer products. Once entering human body, MTCS could affect the conformation of human serum albumin (HSA) by forming MTCS-HSA complex and alter function of protein and endocrine in human body. To evaluate the potential toxicity of MTCS, the binding mechanism of HSA with MTCS was investigated by UV-vis absorption, circular dichroism and Fourier transform infrared spectroscopy. Binding constants, thermodynamic parameters, the binding forces and the specific binding site were studied in detail. Binding constant at room tempreture (T = 298K) is 6.32 × 10(3)L mol(-1); ΔH(0), ΔS(0) and ΔG(0) were 22.48 kJ mol(-1), 148.16 J mol(-1)K(-1) and -21.68 kJ mol(-1), respectively. The results showed that the interactions between MTCS and HSA are mainly hydrophobic forces. The effects of MTCS on HSA conformation were also discussed. The binding distance (r = 1.2 nm) for MTCS-HSA system was calculated by the efficiency of fluorescence resonance energy transfer. The visualized binding details were also exhibited by molecular modeling method and the results could agree well with that from the experimental study.

  7. Molecular beacons for detecting DNA binding proteins.

    PubMed

    Heyduk, Tomasz; Heyduk, Ewa

    2002-02-01

    We report here a simple, rapid, homogeneous fluorescence assay, the molecular beacon assay, for the detection and quantification of sequence-specific DNA-binding proteins. The central feature of the assay is the protein-dependent association of two DNA fragments each containing about half of a DNA sequence defining a protein-binding site. Protein-dependent association of DNA fragments can be detected by any proximity-based spectroscopic signal, such as fluorescence resonance energy transfer (FRET) between fluorochromes introduced into these DNA molecules. The assay is fully homogeneous and requires no manipulations aside from mixing of the sample and the test solution. It offers flexibility with respect to the mode of signal detection and the fluorescence probe, and is compatible with multicolor simultaneous detection of several proteins. The assay can be used in research and medical diagnosis and for high-throughput screening of drugs targeted to DNA-binding proteins.

  8. Protein Assembly in Serum and the Differences from Assembly in Buffer.

    PubMed

    Hill, John J; Laue, Thomas M

    2015-01-01

    This chapter illustrates how analytical ultracentrifugation methods, coupled with the fluorescence detection system, are an excellent approach to characterizing and comparing protein-binding interactions in dilute solution and concentrated, crowded solutions like serum. We show that in serum, the binding and assembly states for a pair of endogenous protein ligands and an antibody inhibitor are dramatically different than those observed in dilute, simple buffers. This type of analysis approach may be helpful in research efforts intent at discerning the underpinnings to a therapeutic's activity and pharmacokinetic properties in vivo.

  9. Isolation, cloning, and characterization of a novel phosphomannan-binding lectin from porcine serum.

    PubMed

    Ma, Bruce Yong; Nakamura, Natsuko; Dlabac, Vladimir; Naito, Haruna; Yamaguchi, Shinsuke; Ishikawa, Makiko; Nonaka, Motohiro; Ishiguro, Masaji; Kawasaki, Nobuko; Oka, Shogo; Kawasaki, Toshisuke

    2007-04-27

    Mannan-binding protein (MBP) is a C-type serum lectin that is an important constituent of the innate immune defense because it activates the complement system via the lectin pathway. While the pig has been proposed to be an attractive source of xenotransplantable tissues and organs, little is known about porcine MBP. In our previous studies, phosphomannan, but not mannan, was found to be an effective inhibitor of the C1q-independent bactericidal activity of newborn piglet serum against some rough strains of Gram-negative bacteria. In contrast, the inhibitory activities of phosphomannan and mannan were very similar in the case of MBP-dependent bactericidal activity against rough strains of Escherichia coli K-12 and S-16. Based on these findings, we inferred that an MBP-like lectin with slightly or completely different carbohydrate binding specificity might exist in newborn piglet serum and be responsible for the C1q-independent bactericidal activity. Herein we report that a novel phosphomannan-binding lectin (PMBL) of 33 kDa under reducing conditions was isolated from both newborn and adult porcine serum and characterized. Porcine PMBL functionally activated the complement system via the lectin pathway triggered by binding with both phosphomannan (P-mannan) and mannan, which, unlike MBP, was effectively inhibited by mannose 6-phosphate- or galatose-containing oligosaccharides. Our observations suggest that porcine PMBL plays a critical role in the innate immune defense from the newborn stage to adult-hood, and the establishment of a newborn piglet experimental model for the innate immune system studies is a valuable step toward elucidation of the physiological function and molecular mechanism of lectin pathway. PMID:17324926

  10. The effect of antenatal dexamethasone on maternal and fetal retinol-binding protein.

    PubMed

    Hustead, V A; Zachman, R D

    1986-01-01

    Sixteen rhesus monkeys received 0.1 to 15 mg/kg of antenatal dexamethasone at 132 days' gestation; seven control animals received placebo. At 135 days' gestation they underwent cesarean section, and maternal and fetal serum was assayed for retinol-binding protein. Fetal and maternal concentrations of retinol-binding protein increased after dexamethasone (p less than 0.05) and there was a trend for fetal levels of retinol-binding protein to increase with increasing dosage (p less than 0.01). Whether the elevation of retinol-binding protein in response to antenatal dexamethasone is a desirable side effect is not clear at this time. PMID:3946495

  11. Behind the scenes of vitamin D binding protein: more than vitamin D binding.

    PubMed

    Delanghe, Joris R; Speeckaert, Reinhart; Speeckaert, Marijn M

    2015-10-01

    Although being discovered in 1959, the number of published papers in recent years reveals that vitamin D binding protein (DBP), a member of the albuminoid superfamily, is a hot research topic. Besides the three major phenotypes (DBP1F, DBP1S and DBP2), more than 120 unique variants have been described of this polymorphic protein. The presence of DBP has been demonstrated in different body fluids (serum, urine, breast milk, ascitic fluid, cerebrospinal fluid, saliva and seminal fluid) and organs (brain, heart, lungs, kidneys, placenta, spleen, testes and uterus). Although the major function is binding, solubilization and transport of vitamin D and its metabolites, the name of this glycoprotein hides numerous other important biological functions. In this review, we will focus on the analytical aspects of the determination of DBP and discuss in detail the multifunctional capacity [actin scavenging, binding of fatty acids, chemotaxis, binding of endotoxins, influence on T cell response and influence of vitamin D binding protein-macrophage activating factor (DBP-MAF) on bone metabolism and cancer] of this abundant plasma protein. PMID:26522461

  12. Phage display of engineered binding proteins.

    PubMed

    Levisson, Mark; Spruijt, Ruud B; Winkel, Ingrid Nolla; Kengen, Servé W M; van der Oost, John

    2014-01-01

    In current purification processes optimization of the capture step generally has a large impact on cost reduction. At present, valuable biomolecules are often produced in relatively low concentrations and, consequently, the eventual selective separation from complex mixtures can be rather inefficient. A separation technology based on a very selective high-affinity binding may overcome these problems. Proteins in their natural environment manifest functionality by interacting specifically and often with relatively high affinity with other molecules, such as substrates, inhibitors, activators, or other proteins. At present, antibodies are the most commonly used binding proteins in numerous applications. However, antibodies do have limitations, such as high production costs, low stability, and a complex patent landscape. A novel approach is therefore to use non-immunoglobulin engineered binding proteins in affinity purification. In order to obtain engineered binders with a desired specificity, a large mutant library of the new to-be-developed binding protein has to be created and screened for potential binders. A powerful technique to screen and select for proteins with desired properties from a large pool of variants is phage display. Here, we indicate several criteria for potential binding protein scaffolds and explain the principle of M13 phage display. In addition, we describe experimental protocols for the initial steps in setting up a M13 phage display system based on the pComb3X vector, including construction of the phagemid vector, production of phages displaying the protein of interest, and confirmation of display on the M13 phage.

  13. Cooperative binding of drugs on human serum albumin

    NASA Astrophysics Data System (ADS)

    Varela, L. M.; Pérez-Rodríguez, M.; García, M.

    In order to explain the adsorption isotherms of the amphiphilic penicillins nafcillin and cloxacillin onto human serum albumin (HSA), a cooperative multilayer adsorption model is introduced, combining the Brunauer-Emmet-Teller (BET) adsorption isotherm with an amphiphilic ionic adsorbate, whose chemical potential is derived from Guggenheim's theory. The non-cooperative model has been previously proved to qualitatively predict the measured adsorption maxima of these drugs [Varela, L. M., García, M., Pérez-Rodríguez, M., Taboada, P., Ruso, J. M., and Mosquera, V., 2001, J. chem. Phys., 114, 7682]. The surface interactions among adsorbed drug molecules are modelled in a mean-field fashion, so the chemical potential of the adsorbate is assumed to include a term proportional to the surface coverage, the constant of proportionality being the lateral interaction energy between bound molecules. The interaction energies obtained from the empirical binding isotherms are of the order of tenths of the thermal energy, therefore suggesting the principal role of van der Waals forces in the binding process.

  14. Drug-drug plasma protein binding interactions of ivacaftor.

    PubMed

    Schneider, Elena K; Huang, Johnny X; Carbone, Vincenzo; Baker, Mark; Azad, Mohammad A K; Cooper, Matthew A; Li, Jian; Velkov, Tony

    2015-06-01

    Ivacaftor is a novel cystic fibrosis (CF) transmembrane conductance regulator (CFTR) potentiator that improves the pulmonary function for patients with CF bearing a G551D CFTR-protein mutation. Because ivacaftor is highly bound (>97%) to plasma proteins, there is the strong possibility that co-administered CF drugs may compete for the same plasma protein binding sites and impact the free drug concentration. This, in turn, could lead to drastic changes in the in vivo efficacy of ivacaftor and therapeutic outcomes. This biochemical study compares the binding affinity of ivacaftor and co-administered CF drugs for human serum albumin (HSA) and α1 -acid glycoprotein (AGP) using surface plasmon resonance and fluorimetric binding assays that measure the displacement of site-selective probes. Because of their ability to strongly compete for the ivacaftor binding sites on HSA and AGP, drug-drug interactions between ivacaftor are to be expected with ducosate, montelukast, ibuprofen, dicloxacillin, omeprazole, and loratadine. The significance of these plasma protein drug-drug interactions is also interpreted in terms of molecular docking simulations. This in vitro study provides valuable insights into the plasma protein drug-drug interactions of ivacaftor with co-administered CF drugs. The data may prove useful in future clinical trials for a staggered treatment that aims to maximize the effective free drug concentration and clinical efficacy of ivacaftor. PMID:25707701

  15. Lipid binding proteins from parasitic platyhelminthes.

    PubMed

    Alvite, Gabriela; Esteves, Adriana

    2012-01-01

    TWO MAIN FAMILIES OF LIPID BINDING PROTEINS HAVE BEEN IDENTIFIED IN PARASITIC PLATYHELMINTHES: hydrophobic ligand binding proteins (HLBPs) and fatty acid binding proteins (FABPs). Members of the former family of proteins are specific to the Cestoda class, while FABPs are conserved across a wide range of animal species. Because Platyhelminthes are unable to synthesize their own lipids, these lipid-binding proteins are important molecules in these organisms. HLBPs are a high molecular mass complex of proteins and lipids. They are composed of subunits of low molecular mass proteins and a wide array of lipid molecules ranging from CoA esters to cholesterol. These proteins are excretory-secretory molecules and are key serological tools for diagnosis of diseases caused by cestodes. FABPs are mainly intracellular proteins of low molecular weight. They are also vaccine candidates. Despite that the knowledge of their function is scarce, the differences in their molecular organization, ligand preferences, intra/extracellular localization, evolution, and phylogenetic distribution, suggest that platyhelminths HLBPs and FABPs should play different functions. FABPs might be involved in the removal of fatty acids from the inner surface of the cell membrane and in their subsequent targeting to specific cellular destinations. In contrast, HLBPs might be involved in fatty acid uptake from the host environment.

  16. 19F nuclear magnetic resonance investigation of stereoselective binding of isoflurane to bovine serum albumin.

    PubMed Central

    Xu, Y; Tang, P; Firestone, L; Zhang, T T

    1996-01-01

    Whether proteins or lipids are the primary target sites for general anesthetic action has engendered considerable debate. Recent in vivo studies have shown that the S(+) and R(-) enantiomers of isoflurane are not equipotent, implying involvement of proteins. Bovine serum albumin (BSA), a soluble protein devoid of lipid, contains specific binding sites for isoflurane and other anesthetics. We therefore conducted 19F nuclear magnetic resonance measurements to determine whether binding of isoflurane to BSA was stereoselective. Isoflurane chemical shifts were measured as a function of BSA concentration to determine the chemical shift differences between the free and bound isoflurane. KD was determined by measuring the 19F transverse relaxation times (T2) as a function of isoflurane concentration. The binding duration was determined by assessing increases in 1/T2 as a result of isoflurane exchanging between the free and bound states. The S(+) and R(-) enantiomers exhibited no stereoselectivity in chemical shifts and KD values (KD = 1.3 +/- 0.2 mM, mean +/- SE, for S(+), R(-), and the racemic mixture). Nonetheless, stereoselectivity was observed in dynamic binding parameters; the S(+) enantiomer bound with slower association and dissociation rates than the R(-). Images FIGURE 1 PMID:8770230

  17. Copper binding in the prion protein.

    PubMed

    Millhauser, Glenn L

    2004-02-01

    A conformational change of the prion protein is responsible for a class of neurodegenerative diseases called the transmissible spongiform encephalopathies that include mad cow disease and the human afflictions kuru and Creutzfeldt-Jakob disease. Despite the attention given to these diseases, the normal function of the prion protein in healthy tissue is unknown. Research over the past few years, however, demonstrates that the prion protein is a copper binding protein with high selectivity for Cu(2+). The structural features of the Cu(2+) binding sites have now been characterized and are providing important clues about the normal function of the prion protein and perhaps how metals or loss of protein function play a role in disease. The link between prion protein and copper may provide insight into the general, and recently appreciated, role of metals in neurodegenerative disease. PMID:14967054

  18. The binding domain structure of retinoblastoma-binding proteins.

    PubMed Central

    Figge, J.; Breese, K.; Vajda, S.; Zhu, Q. L.; Eisele, L.; Andersen, T. T.; MacColl, R.; Friedrich, T.; Smith, T. F.

    1993-01-01

    The retinoblastoma gene product (Rb), a cellular growth suppressor, complexes with viral and cellular proteins that contain a specific binding domain incorporating three invariant residues: Leu-X-Cys-X-Glu, where X denotes a nonconserved residue. Hydrophobic and electrostatic properties are strongly conserved in this segment even though the nonconserved amino acids vary considerably from one Rb-binding protein to another. In this report, we present a diagnostic computer pattern for a high-affinity Rb-binding domain featuring the three conserved residues as well as the conserved physico-chemical properties. Although the pattern encompasses only 10 residues (with only 4 of these explicitly defined), it exhibits 100% sensitivity and 99.95% specificity in database searches. This implies that a certain pattern of structural and physico-chemical properties encoded by this short sequence is sufficient to govern specific Rb binding. We also present evidence that the secondary structural conformation through this region is important for effective Rb binding. PMID:8382993

  19. Elucidation of the binding sites of two novel Ru(II) complexes on bovine serum albumin.

    PubMed

    Nišavić, Marija; Masnikosa, Romana; Butorac, Ana; Perica, Kristina; Rilak, Ana; Korićanac, Lela; Hozić, Amela; Petković, Marijana; Cindrić, Mario

    2016-06-01

    Hyphenated mass spectrometry (MS) techniques have attained an important position in analysis of covalent and non-covalent interactions of metal complexes with peptides and proteins. The aim of the present study was to qualitatively and quantitatively determine ruthenium binding sites on a protein using tandem mass spectrometry and allied techniques, i.e. liquid chromatography (LC) and inductively coupled plasma optical emission spectrometry (ICP-OES). For that purpose, two newly synthesized Ru(II) complexes of a meridional geometry, namely mer-[Ru(4' Cl-tpy)(en)Cl](+) (1) and mer-[Ru(4' Cl-tpy)(dach)Cl](+) (2) (where 4' Cl-tpy=4'-chloro-2,2':6',2″-terpyridine, en=1,2-diaminoethane and dach=1,2-diaminocyclohexane), and bovine serum albumin were used. The binding of the complexes to the protein was investigated by means of size exclusion- and reversed phase-LC, ICP OES, matrix-assisted laser desorption ionization MS and MS/MS. Ruthenated peptide sequence and a binding target amino acid were revealed through accurate elucidation of MS/MS spectra. The results obtained in this study suggest a high binding capacity of the protein towards both complexes, with up to 5.77±0.14 and 6.95±0.43mol of 1 and 2 bound per mol of protein, respectively. The proposed binding mechanism for the selected complexes includes the release of Cl ligand, its replacement with water molecule and further coordination to electron donor histidine residue.

  20. Localization of Cellular Retinol-Binding Protein and Retinol-Binding Protein in Cells Comprising the Blood-Brain Barrier of Rat and Human

    NASA Astrophysics Data System (ADS)

    MacDonald, Paul N.; Bok, Dean; Ong, David E.

    1990-06-01

    Brain is not generally recognized as an organ that requiries vitamin A, perhaps because no obvious histologic lesions have been observed in severely vitamin A-deficient animals. However, brain tissue does contain cellular vitamin A-binding proteins and a nuclear receptor protein for retinoic acid. In the present study, immunohistochemical techniques were used to determine the cell-specific location of cellular retinol-binding protein in human and rat brain tissue. Cellular retinol-binding protein was localized specifically within the endothelial cells of the brain microvasculature and within the cuboidal epithelial cells of the choroid plexus, two primary sites of the mammalian blood-brain barrier. In addition, autoradiographic procedures demonstrated binding sites for serum retinol-binding protein in the choroidal epithelium. These observations suggest that a significant movement of retinol across the blood-brain barrier may occur.

  1. Localization of cellular retinol-binding protein and retinol-binding protein in cells comprising the blood-brain barrier of rat and human

    SciTech Connect

    MacDonald, P.N.; Ong, D.E. ); Bok, D. )

    1990-06-01

    Brain is not generally recognized as an organ that requires vitamin A, perhaps because no obvious histologic lesions have been observed in severely vitamin A-deficient animals. However, brain tissue does contain cellular vitamin A-binding proteins and a nuclear receptor protein for retinoic acid. In the present study, immunohistochemical techniques were used to determine the cell-specific location of cellular retinol-binding protein in human and rat brain tissue. Cellular retinol-binding protein was localized specifically within the cuboidal epithelial cells of the choroid plexus, two primary sites of the mammalian blood-brain barrier. In addition, autoradiographic procedures demonstrated binding sites for serum retinol-binding protein in the choroidal epithelium. These observations suggest that a significant movement of retinol across the blood-brain barrier may occur.

  2. Folding funnels, binding funnels, and protein function.

    PubMed Central

    Tsai, C. J.; Kumar, S.; Ma, B.; Nussinov, R.

    1999-01-01

    Folding funnels have been the focus of considerable attention during the last few years. These have mostly been discussed in the general context of the theory of protein folding. Here we extend the utility of the concept of folding funnels, relating them to biological mechanisms and function. In particular, here we describe the shape of the funnels in light of protein synthesis and folding; flexibility, conformational diversity, and binding mechanisms; and the associated binding funnels, illustrating the multiple routes and the range of complexed conformers. Specifically, the walls of the folding funnels, their crevices, and bumps are related to the complexity of protein folding, and hence to sequential vs. nonsequential folding. Whereas the former is more frequently observed in eukaryotic proteins, where the rate of protein synthesis is slower, the latter is more frequent in prokaryotes, with faster translation rates. The bottoms of the funnels reflect the extent of the flexibility of the proteins. Rugged floors imply a range of conformational isomers, which may be close on the energy landscape. Rather than undergoing an induced fit binding mechanism, the conformational ensembles around the rugged bottoms argue that the conformers, which are most complementary to the ligand, will bind to it with the equilibrium shifting in their favor. Furthermore, depending on the extent of the ruggedness, or of the smoothness with only a few minima, we may infer nonspecific, broad range vs. specific binding. In particular, folding and binding are similar processes, with similar underlying principles. Hence, the shape of the folding funnel of the monomer enables making reasonable guesses regarding the shape of the corresponding binding funnel. Proteins having a broad range of binding, such as proteolytic enzymes or relatively nonspecific endonucleases, may be expected to have not only rugged floors in their folding funnels, but their binding funnels will also behave similarly

  3. Novel 7-(dimethylamino)fluorene-based fluorescent probes and their binding to human serum albumin.

    PubMed

    Park, Kwanghee Koh; Park, Joon Woo; Hamilton, Andrew D

    2009-10-21

    A novel solvatochromic fluorescent molecule, 9,9-dibutyl-7-(dimethylamino)-2-fluorenesulfonate 2 was synthesized from 2-nitrofluorene in moderate yield. The fluorescence spectra of 2 and 7-(dimethylamino)-2-fluorenesulfonate 1 shift to shorter wavelengths as the polarity of the medium decreases. Both 1 and 2 bind to hydrophobic sites of human serum albumin (HSA). The apparent binding constants were determined by fluorescence titration to be 0.37 x 10(6) M(-1) for 1 and 2.2 x 10(6) M(-1) for 2. The energy of the Trp-214 fluorescence of HSA is transferred to the HSA-bound fluorophores with near 100% efficiency. The covalent bonding of acrylodan (AC) to Cys-34 has little effect on the binding affinity of 2 to HSA or fluorescent behavior of HSA-bound 2. Bound 2 also has little effect on the fluorescence of AC, but 2-->AC and Trp-214-->2-->AC resonance energy transfers were observed. Competitive binding between the fluorene compounds and other ligands such as 1-anilino-8-naphthalenesulfonate, aspirin, S-(+)-ibuprofen and phenylbutazone were also studied fluorometrically. The results indicated that the primary binding site of 2 to HSA is site II in domain IIIA, whereas 1 binds to site I in domain IIA, but a different region from the phenylbutazone binding site. Because of its large molar absorptivity, strong fluorescence, sensitivity to its environment, and high binding constant to HSA, 2 can be used successfully in the study of proteins and their binding properties. PMID:19795061

  4. DNA sequence of the serum opacity factor of group A streptococci: identification of a fibronectin-binding repeat domain.

    PubMed Central

    Rakonjac, J V; Robbins, J C; Fischetti, V A

    1995-01-01

    The serum opacity factor (SOF) is a group A streptococcal protein that induces opacity of mammalian serum. The serum opacity factor 22 gene (sof22) from an M type 22 strain was cloned from an EMBL4 library by screening for plaques exhibiting serum opacity activity. DNA sequencing yielded an open reading frame of 3,075 bp. Its deduced amino acid sequence predicts a protein of 1,025 residues with a molecular weight of 112,735, a size that approximates that of the SOF22 protein isolated from both the original streptococcal strain and Escherichia coli harboring the cloned sof22 gene. The molecule is composed of three domains: an N-terminal domain responsible for the opacity reaction (opacity domain), a repeat domain with fibronectin-binding (Fn-binding) activity, and a C-terminal cell attachment domain. The C-terminal end of SOF22 is characterized by a hexameric LPXTGX motif, an adjacent hydrophobic region, and a charged C terminus, which are the hallmarks of cell-bound surface proteins found on nearly all gram-positive bacteria. Immediately upstream of this cell anchor region, SOF22 contains four tandem repeat sequence blocks, flanked by prolinerich segments. The repeats share up to 50% identity with a repeated motif found in other group A streptococcal Fn-binding proteins and exhibit Fn-binding activity, as shown by subcloning experiments. According to deletion analysis, the opacity domain is confined to the region N terminal to the repeat segment. Thus, SOF22 is unique among the known Fn-binding proteins from gram-positive bacteria in containing an independent module with a defined function in its N-terminal portion. Southern blot analysis with a probe from this N-terminal region indicates that the opacity domain of SOF varies extensively among different SOF-producing M types. PMID:7822031

  5. A serum amyloid P-binding hydrogel speeds healing of partial thickness wounds in pigs

    PubMed Central

    Gomer, Richard H.; Pilling, Darrell; Kauvar, Lawrence M.; Ellsworth, Stote; Ronkainen, Sanna D.; Roife, David; Davis, Stephen C.

    2010-01-01

    During wound healing, some circulating monocytes enter the wound, differentiate into fibroblast-like cells called fibrocytes, and appear to then further differentiate into myofibroblasts, cells that play a key role in collagen deposition, cytokine release, and wound contraction. The differentiation of monocytes into fibrocytes is inhibited by the serum protein serum amyloid P (SAP). Depleting SAP at a wound site thus might speed wound healing. SAP binds to some types of agarose in the presence of Ca2+. We found that human SAP binds to an agarose with a KD of 7×10−8M and a Bmax of 2.1 μg SAP/mg wet weight agarose. Mixing this agarose 1: 5 w/v with 30 μg/mL human SAP (the average SAP concentration in normal serum) in a buffer containing 2mM Ca2+ reduced the free SAP concentration to ~0.02 μg/mL, well below the concentration that inhibits fibrocyte differentiation. Compared with a hydrogel dressing and a foam dressing, dressings containing this agarose and Ca2+ significantly increased the speed of wound healing in partial thickness wounds in pigs. This suggests that agarose/Ca2+ dressings may be beneficial for wound healing in humans. PMID:19660048

  6. A serum amyloid P-binding hydrogel speeds healing of partial thickness wounds in pigs.

    PubMed

    Gomer, Richard H; Pilling, Darrell; Kauvar, Lawrence M; Ellsworth, Stote; Ronkainen, Sanna D; Roife, David; Davis, Stephen C

    2009-01-01

    During wound healing, some circulating monocytes enter the wound, differentiate into fibroblast-like cells called fibrocytes, and appear to then further differentiate into myofibroblasts, cells that play a key role in collagen deposition, cytokine release, and wound contraction. The differentiation of monocytes into fibrocytes is inhibited by the serum protein serum amyloid P (SAP). Depleting SAP at a wound site thus might speed wound healing. SAP binds to some types of agarose in the presence of Ca(2+). We found that human SAP binds to an agarose with a K(D) of 7 x 10(-8) M and a B(max) of 2.1 microg SAP/mg wet weight agarose. Mixing this agarose 1 : 5 w/v with 30 microg/mL human SAP (the average SAP concentration in normal serum) in a buffer containing 2 mM Ca(2+) reduced the free SAP concentration to approximately 0.02 microg/mL, well below the concentration that inhibits fibrocyte differentiation. Compared with a hydrogel dressing and a foam dressing, dressings containing this agarose and Ca(2+) significantly increased the speed of wound healing in partial thickness wounds in pigs. This suggests that agarose/Ca(2+) dressings may be beneficial for wound healing in humans. PMID:19660048

  7. A Detour for Yeast Oxysterol Binding Proteins*

    PubMed Central

    Beh, Christopher T.; McMaster, Christopher R.; Kozminski, Keith G.; Menon, Anant K.

    2012-01-01

    Oxysterol binding protein-related proteins, including the yeast proteins encoded by the OSH gene family (OSH1–OSH7), are implicated in the non-vesicular transfer of sterols between intracellular membranes and the plasma membrane. In light of recent studies, we revisited the proposal that Osh proteins are sterol transfer proteins and present new models consistent with known Osh protein functions. These models focus on the role of Osh proteins as sterol-dependent regulators of phosphoinositide and sphingolipid pathways. In contrast to their posited role as non-vesicular sterol transfer proteins, we propose that Osh proteins coordinate lipid signaling and membrane reorganization with the assembly of tethering complexes to promote molecular exchanges at membrane contact sites. PMID:22334669

  8. Maltose-Binding Protein (MBP), a Secretion-Enhancing Tag for Mammalian Protein Expression Systems.

    PubMed

    Reuten, Raphael; Nikodemus, Denise; Oliveira, Maria B; Patel, Trushar R; Brachvogel, Bent; Breloy, Isabelle; Stetefeld, Jörg; Koch, Manuel

    2016-01-01

    Recombinant proteins are commonly expressed in eukaryotic expression systems to ensure the formation of disulfide bridges and proper glycosylation. Although many proteins can be expressed easily, some proteins, sub-domains, and mutant protein versions can cause problems. Here, we investigated expression levels of recombinant extracellular, intracellular as well as transmembrane proteins tethered to different polypeptides in mammalian cell lines. Strikingly, fusion of proteins to the prokaryotic maltose-binding protein (MBP) generally enhanced protein production. MBP fusion proteins consistently exhibited the most robust increase in protein production in comparison to commonly used tags, e.g., the Fc, Glutathione S-transferase (GST), SlyD, and serum albumin (ser alb) tag. Moreover, proteins tethered to MBP revealed reduced numbers of dying cells upon transient transfection. In contrast to the Fc tag, MBP is a stable monomer and does not promote protein aggregation. Therefore, the MBP tag does not induce artificial dimerization of tethered proteins and provides a beneficial fusion tag for binding as well as cell adhesion studies. Using MBP we were able to secret a disease causing laminin β2 mutant protein (congenital nephrotic syndrome), which is normally retained in the endoplasmic reticulum. In summary, this study establishes MBP as a versatile expression tag for protein production in eukaryotic expression systems. PMID:27029048

  9. Investigations of acetaminophen binding to bovine serum albumin in the presence of fatty acid: Fluorescence and 1H NMR studies

    NASA Astrophysics Data System (ADS)

    Bojko, B.; Sułkowska, A.; Maciążek-Jurczyk, M.; Równicka, J.; Sułkowski, W. W.

    2009-04-01

    The binding of acetaminophen to bovine serum albumin (BSA) was studied by the quenching fluorescence method and the proton nuclear magnetic resonance technique ( 1H NMR). For fluorescence measurements 1-anilino-9-naphthalene sulfonate (ANS) hydrophobic probe was used to verify subdomain IIIA as acetaminophen's likely binding site. Three binding sites of acetaminophen in subdomain IIA of bovine serum albumin were found. Quenching constants calculated by the Stern-Volmer modified method were used to estimate the influence of myristic acid (MYR) on the drug binding to the albumin. The influence of [fatty acid]/[albumin] molar ratios on the affinity of the protein towards acetaminophen was described. Changes of chemical shifts and relaxation times of the drug indicated that the presence of MYR inhibits interaction in the AA-albumin complex. It is suggested that the elevated level of fatty acids does not significantly influence the pharmacokinetics of acetaminophen.

  10. Ancestral Protein Reconstruction Yields Insights into Adaptive Evolution of Binding Specificity in Solute-Binding Proteins.

    PubMed

    Clifton, Ben E; Jackson, Colin J

    2016-02-18

    The promiscuous functions of proteins are an important reservoir of functional novelty in protein evolution, but the molecular basis for binding promiscuity remains elusive. We used ancestral protein reconstruction to experimentally characterize evolutionary intermediates in the functional expansion of the polar amino acid-binding protein family, which has evolved to bind a variety of amino acids with high affinity and specificity. High-resolution crystal structures of an ancestral arginine-binding protein in complex with l-arginine and l-glutamine show that the promiscuous binding of l-glutamine is enabled by multi-scale conformational plasticity, water-mediated interactions, and selection of an alternative conformational substate productive for l-glutamine binding. Evolution of specialized glutamine-binding proteins from this ancestral protein was achieved by displacement of water molecules from the protein-ligand interface, reducing the entropic penalty associated with the promiscuous interaction. These results provide a structural and thermodynamic basis for the co-option of a promiscuous interaction in the evolution of binding specificity.

  11. Binding of an Oligomeric Ellagitannin Series to Bovine Serum Albumin (BSA): Analysis by Isothermal Titration Calorimetry (ITC).

    PubMed

    Karonen, Maarit; Oraviita, Marianne; Mueller-Harvey, Irene; Salminen, Juha-Pekka; Green, Rebecca J

    2015-12-16

    A unique series of oligomeric ellagitannins was used to study their interactions with bovine serum albumin (BSA) by isothermal titration calorimetry. Oligomeric ellagitannins, ranging from monomer to heptamer and a mixture of octamer-undecamers, were isolated as individual pure compounds. This series allowed studying the effects of oligomer size and other structural features. The monomeric to trimeric ellagitannins deviated most from the overall trends. The interactions of ellagitannin oligomers from tetramers to octa-undecamers with BSA revealed strong similarities. In contrast to the equilibrium binding constant, enthalpy showed an increasing trend from the dimer to larger oligomers. It is likely that first the macrocyclic part of the ellagitannin binds to the defined binding sites on the protein surface and then the "flexible tail" of the ellagitannin coats the protein surface. The results highlight the importance of molecular flexibility to maximize binding between the ellagitannin and protein surfaces.

  12. Binding of an Oligomeric Ellagitannin Series to Bovine Serum Albumin (BSA): Analysis by Isothermal Titration Calorimetry (ITC).

    PubMed

    Karonen, Maarit; Oraviita, Marianne; Mueller-Harvey, Irene; Salminen, Juha-Pekka; Green, Rebecca J

    2015-12-16

    A unique series of oligomeric ellagitannins was used to study their interactions with bovine serum albumin (BSA) by isothermal titration calorimetry. Oligomeric ellagitannins, ranging from monomer to heptamer and a mixture of octamer-undecamers, were isolated as individual pure compounds. This series allowed studying the effects of oligomer size and other structural features. The monomeric to trimeric ellagitannins deviated most from the overall trends. The interactions of ellagitannin oligomers from tetramers to octa-undecamers with BSA revealed strong similarities. In contrast to the equilibrium binding constant, enthalpy showed an increasing trend from the dimer to larger oligomers. It is likely that first the macrocyclic part of the ellagitannin binds to the defined binding sites on the protein surface and then the "flexible tail" of the ellagitannin coats the protein surface. The results highlight the importance of molecular flexibility to maximize binding between the ellagitannin and protein surfaces. PMID:26608224

  13. Plasma protein binding of zomepirac sodium.

    PubMed

    O'Neill, P J

    1981-07-01

    The plasma protein binding of zomepirac, a new nonnarcotic analgesic, was studied using equilibrium dialysis. Experiments were performed using human plasma and plasma from mice, rats, and rhesus monkeys, all species of pharmacological or toxicological interest. At concentrations approximating those achieved in vivo, the binding was fairly constant at 98-99% in all species except the rhesus monkey, where binding was decreased from 98 to approximately 96% at higher concentrations (greater then 50 microgram/ml). Zomepirac (10 microgram/ml) did not appear to displace or to be displaced by warfarin (10 microgram/ml) caused a concentration-dependent decrease in zomepirac (10 microgram/ml) binding. Zomepirac did not affect salicylate binding.

  14. Aspects of Protein, Chemistry, Part II: Oxygen-Binding Proteins

    ERIC Educational Resources Information Center

    Nixon, J. E.

    1977-01-01

    Compares differences in function and behavior of two oxygen-binding proteins, myoglobin found in muscle and hemoglobin found in blood. Describes the mechanism of oxygen-binding and allosteric effect in hemoglobin; also describes the effect of pH on the affinity of hemoglobin for oxygen. (CS)

  15. Computational studies of the binding mechanisms of fullerenes to human serum albumin.

    PubMed

    Li, Jinyu; Jiang, Lizhi; Zhu, Xiaolei

    2015-07-01

    Fullerene and its derivatives show promising prospects for applications in a vast array of biological systems. A key aspect concerning their biomedical applications is how they interact with proteins from molecular levels, which is still poorly understood. In the current study, we investigated the structural and thermodynamic basis of the interactions between two pharmacologically relevant fullerene derivatives and human serum albumin (HSA) using molecular docking, molecular dynamics simulations, and binding free energy calculations. Our results demonstrate that fullerenes steadily bind with HSA at the interfacial cavity formed by subdomains IIA and IIIA. In agreement with available experimental data, our simulations show that the global structure of HSA becomes more compact in the presence of fullerene, while local structural dynamics of the binding cavity behaves diversely depending on the chemical properties of bound fullerenes. Binding free energy calculations confirmed that the interactions between fullerenes and HSA are dominantly stabilized by van der Waals forces and they further allowed the identification of key residues involved in fullerene binding. The structural and energetic insights obtained from this work may help for the development of fullerene-based drug delivery devices and therapeutic agents with improved biological profile.

  16. Identification and characterization of specific binding proteins for growth hormone in normal human sera.

    PubMed Central

    Herington, A C; Ymer, S; Stevenson, J

    1986-01-01

    The well-recognized "big" forms (45,000-100,000 mol wt) of immunoreactive human growth hormone (hGH) in human serum have been reported to be random aggregates or formal polymers. However, we have now investigated the possibility that they are protein-bound forms. After incubation of monomeric 125I-hGH with normal serum, gel chromatography indicated a peak of bound 125I-hGH (at approximately 120,000 mol wt), which was completely displaced by excess unlabeled hGH. When serum alone was chromatographed two peaks of specific binding were subsequently detected, the major peak, eluting between 74,000 and 85,000 mol wt corresponded to the 125I-hGH-binding protein complex observed at approximately 120,000 mol wt. Using a mini-gel filtration system for separating bound from free hormone, binding of 125I-hGH by normal human serum was dependent on time (equilibrium was reached in 2 h at 21 degrees C), temperature (21 degrees C greater than 37 degrees C), Ca2+ and serum concentrations. Binding was reversible and highly specific for hGH, not being displayed by GH or prolactins from several species. Scatchard analysis revealed linear plots with an affinity (KA) of 0.32 +/- 0.06 X 10(9) M-1 (n = 7). Human serum with low endogenous hGH levels, when added to rabbit liver membranes, decreased the binding of 125I-hGH in this tissue in a dose-dependent manner. These data indicate that human sera contain a specific, high affinity binding protein for hGH and that this may account, at least in part, for the known size heterogeneity of GH in serum. Its effect on GH binding to target tissues may indicate a role for the binding protein in the regulation of GH action. PMID:3711337

  17. Protein-protein binding site identification by enumerating the configurations

    PubMed Central

    2012-01-01

    Background The ability to predict protein-protein binding sites has a wide range of applications, including signal transduction studies, de novo drug design, structure identification and comparison of functional sites. The interface in a complex involves two structurally matched protein subunits, and the binding sites can be predicted by identifying structural matches at protein surfaces. Results We propose a method which enumerates “all” the configurations (or poses) between two proteins (3D coordinates of the two subunits in a complex) and evaluates each configuration by the interaction between its components using the Atomic Contact Energy function. The enumeration is achieved efficiently by exploring a set of rigid transformations. Our approach incorporates a surface identification technique and a method for avoiding clashes of two subunits when computing rigid transformations. When the optimal transformations according to the Atomic Contact Energy function are identified, the corresponding binding sites are given as predictions. Our results show that this approach consistently performs better than other methods in binding site identification. Conclusions Our method achieved a success rate higher than other methods, with the prediction quality improved in terms of both accuracy and coverage. Moreover, our method is being able to predict the configurations of two binding proteins, where most of other methods predict only the binding sites. The software package is available at http://sites.google.com/site/guofeics/dobi for non-commercial use. PMID:22768846

  18. Characterization of insulin-like growth factor-binding proteins from sheep thyroid cells.

    PubMed

    Bachrach, L K; Liu, F R; Burrow, G N; Eggo, M C

    1989-12-01

    The insulin-like growth factors (IGFs) are bound by specific, high affinity binding proteins. Distinct classes of IGF-binding proteins have been described in human serum, amniotic fluid, cerebrospinal fluid, and conditioned medium from cultured cells. Sheep thyroid cells produce IGF-binding proteins under hormonal regulation. Cells grown without or with standard medium supplements (transferrin, glycyl-histidyl-lysine, hydrocortisone, somatostatin, insulin, and TSH) released binding proteins with apparent mol wt of 23, 29, and 32 kDa on Western ligand blot (nonreduced). Binding proteins from these cells appeared as 21, 26, 34, 36, and 41 kDa bands when cross-linked to [125I]IGF-I under reducing conditions. The addition of epidermal growth factor (EGF) or phorbol esters, thyroid cell mitogens stimulated the production of larger binding proteins with mol wt of 40-44 and 48-52 by ligand blot and cross-linking methods, respectively. Deglycosylation of conditioned medium cross-linked to [125I]IGF-I with endoglycosidase-F did not alter the size of the smaller binding proteins, but reduced EGF-stimulated binding proteins to 36-40 kDa. Similarly, tunicamycin treatment, which inhibits glycosylation, reduced only the size of this larger binding protein species. Polyclonal antisera directed against the human amniotic fluid binding protein (BP-28) immunoprecipitated the 32 kDa sheep thyroid binding protein seen on ligand blot and the cross-linked binding protein at 36-38 kDa. Antibody against the major human serum binding protein (BP-53) recognized only the larger EGF-stimulated binding proteins. In contrast to sheep thyroid cells, rat FRTL5 thyroid cells produced no detectable IGF-binding proteins. We conclude that the predominant binding proteins produced by sheep thyroid cells under standard culture conditions are non-glycosylated and immunoreact with antiserum directed against BP-28. EGF and phorbol esters stimulate production of larger glycosylated binding proteins

  19. Ice-Binding Proteins and Their Function.

    PubMed

    Bar Dolev, Maya; Braslavsky, Ido; Davies, Peter L

    2016-06-01

    Ice-binding proteins (IBPs) are a diverse class of proteins that assist organism survival in the presence of ice in cold climates. They have different origins in many organisms, including bacteria, fungi, algae, diatoms, plants, insects, and fish. This review covers the gamut of IBP structures and functions and the common features they use to bind ice. We discuss mechanisms by which IBPs adsorb to ice and interfere with its growth, evidence for their irreversible association with ice, and methods for enhancing the activity of IBPs. The applications of IBPs in the food industry, in cryopreservation, and in other technologies are vast, and we chart out some possibilities. PMID:27145844

  20. Determination of human serum alpha1-acid glycoprotein and albumin binding of various marketed and preclinical kinase inhibitors.

    PubMed

    Zsila, Ferenc; Fitos, Ilona; Bencze, Gyula; Kéri, György; Orfi, László

    2009-01-01

    There are about 380 protein kinase inhibitors in drug development as of today and 15 drugs have been marketed already for the treatment of cancer. This time 139 validated kinase targets are in the focus of drug research of pharmaceutical companies and big efforts are made for the development of new, druglike kinase inhibitors. Plasma protein binding is an important factor of the ADME profiling of a drug compound. Human serum albumin (HSA) and alpha(1)-acid glycoprotein (AAG) are the most relevant drug carriers in blood plasma. Since previous literature data indicated that AAG is the principal plasma binding component of some kinase inhibitors the present work focuses on the comprehensive evaluation of AAG binding of a series of marketed and experimental kinase inhibitors by using circular dichroism (CD) spectroscopy approach. HSA binding was also evaluated by affinity chromatography. Protein binding interactions of twenty-six kinase inhibitors are characterized. The contribution of AAG and HSA binding data to the pharmacokinetic profiles of the investigated therapeutic agents is discussed. Structural, biological and drug binding properties of AAG as well as the applicability of the CD method in studying drug-protein binding interactions are also briefly reviewed.

  1. Probing thyroglobulin in undiluted human serum based on pattern recognition and competitive adsorption of proteins

    NASA Astrophysics Data System (ADS)

    Wang, Ran; Huang, Shuai; Li, Jing; Chae, Junseok

    2014-10-01

    Thyroglobulin (Tg) is a sensitive indicator of persistent or recurrent differentiated thyroid cancer of follicular cell origin. Detection of Tg in human serum is challenging as bio-receptors, such as anti-Tg, used in immunoassay have relatively weak binding affinity. We engineer sensing surfaces using the competitive adsorption of proteins, termed the Vroman Effect. Coupled with Surface Plasmon Resonance, the "cross-responsive" interactions of Tg on the engineered surfaces produce uniquely distinguishable multiple signature patterns, which are discriminated using Linear Discriminant Analysis. Tg-spiked samples, down to 2 ng/ml Tg in undiluted human serum, are sensitively and selectively discriminated from the control (undiluted human serum).

  2. Calcium-binding proteins: an overview.

    PubMed

    Weinman, S

    1991-03-01

    In order to understand the mechanism of the various responses evoked by calcium in the cell, the identification and characterization of a number of calcium receptors were undertaken within the past two decades. Advances in amino acid sequence and protein three-dimensional structure led to the description of two families of calcium-binding proteins, the EF-hand homolog family and the annexin family. The EF-hand motif consists of two alpha helices, "E" and "F", joined by a Ca(2+)-binding loop. EF-hands have been identified in numerous Ca(2+)-binding proteins by similarity of amino acid sequence and confirmed in some crystal structures. Functional EF-hands seem always to occur in pairs. To date, the EF-hand homolog family contains more than 160 different Ca(2+)-modulated proteins which have a broad range of functions. Among them, are the calmodulin, the troponin C, the myosin regulatory light chain, the parvalbumin, the S-100 proteins and the calbindins 9- and 28 kDa. The most striking feature of the EF-hand family is the ability to modulate the activity of a number of enzymes. Several groups have identified proteins from various tissues that show calcium-dependent binding to membranes. These proteins, termed annexins have a molecular weight of 35- or 67 kDa. The amino acid sequences of the members of the annexin family show that each protein contains conserved internal repeats of about 70 amino acids each. The 35 kDa annexins contain four repeats, which show a high degree of homology with each other and with the repeat sequences of the other proteins. These repeats correspond to structural domains with a similar fold.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1864864

  3. Information flow through calcium binding proteins

    NASA Astrophysics Data System (ADS)

    Bak, Ji Hyun; Bialek, William

    2013-03-01

    Calcium signaling is a ubiquitous mode of biological communication, which regulates a great variety of vital processes in living systems. Such a signal typically begins with an elementary event, in which calcium ions bind to a protein, inducing a change in the protein's structure. Information can only be lost, from what was conveyed through this initial event, as the signal is further transduced through the downstream networks. In the present work we analyze and optimize the information flow in the calcium binding process. We explicitly calculate the mutual information between the calcium concentration and the states of the protein, using a simple model for allosteric regulation in a dimeric protein. The optimal solution depends on the dynamic range of the input as well as on the timescale of signal integration. According to our result, the optimizing strategy involves allowing the calcium-binding protein to be ``activated'' by a partial occupation of its sites, and tuning independently the strengths of cooperative interactions in the binding and unbinding processes.

  4. Cadmium-binding protein (metallothionein) in carp

    SciTech Connect

    Kito, H.; Ose, Y.; Sato, T.

    1986-03-01

    When carp (Cyprinus carpio) were exposed to 5 and 30 ppm Cd in the water, the contents of Cd-binding protein, which has low molecular weight, increased in the hepatopancreas, kidney, gills and gastrointestinal tract with duration of exposure. This Cd-binding protein was purified from hepatopancreas, kidney, gills, and spleen of carp administered 2 mg/kg Cd (as CdCl/sub 2/), intraperitoneally for 6 days. Two Cd-binding proteins were separated by DEAE-Sephadex A-25 column chromatography. These proteins had Cd-mercaptide bond, high cysteine contents (ca. 29-34%), but no aromatic amino acids or histidine. From these characteristics the Cd-binding proteins were identified as metallothionein. By using antiserum obtained from a rabbit to which carp hepatopancreas MT-II had been administered, immunological characteristics between hepatopancreas MT-I, II and kidney MT-II were studied, and a slight difference in antigenic determinant was observed among them. By immunological staining techniques with horseradish peroxidase, the localization of metallothionein was investigated. Carp were bred in 1 ppm Cd, 5 ppm Zn solution, and tap water for 14 days, following transfer to 15 ppm Cd solution, respectively. The survival ratio was the highest in the Zn group followed by Cd-treated and control groups.

  5. Binding of an anticancer drug, axitinib to human serum albumin: Fluorescence quenching and molecular docking study.

    PubMed

    Tayyab, Saad; Izzudin, Mohamad Mirza; Kabir, Md Zahirul; Feroz, Shevin R; Tee, Wei-Ven; Mohamad, Saharuddin B; Alias, Zazali

    2016-09-01

    Binding characteristics of a promising anticancer drug, axitinib (AXT) to human serum albumin (HSA), the major transport protein in human blood circulation, were studied using fluorescence, UV-vis absorption and circular dichroism (CD) spectroscopy as well as molecular docking analysis. A gradual decrease in the Stern-Volmer quenching constant with increasing temperature revealed the static mode of the protein fluorescence quenching upon AXT addition, thus confirmed AXT-HSA complex formation. This was also confirmed from alteration in the UV-vis spectrum of HSA upon AXT addition. Fluorescence quenching titration results demonstrated moderately strong binding affinity between AXT and HSA based on the binding constant value (1.08±0.06×10(5)M(-1)), obtained in 10mM sodium phosphate buffer, pH7.4 at 25°C. The sign and magnitude of the enthalpy change (∆H=-8.38kJmol(-1)) as well as the entropy change (∆S=+68.21Jmol(-1)K(-1)) clearly suggested involvement of both hydrophobic interactions and hydrogen bonding in AXT-HSA complex formation. These results were well supported by molecular docking results. Three-dimensional fluorescence spectral results indicated significant microenvironmental changes around Trp and Tyr residues of HSA upon complexation with AXT. AXT binding to the protein produced significant alterations in both secondary and tertiary structures of HSA, as revealed from the far-UV and the near-UV CD spectral results. Competitive drug displacement results obtained with phenylbutazone (site I marker), ketoprofen (site II marker) and hemin (site III marker) along with molecular docking results suggested Sudlow's site I, located in subdomain IIA of HSA, as the preferred binding site of AXT.

  6. Binding of an anticancer drug, axitinib to human serum albumin: Fluorescence quenching and molecular docking study.

    PubMed

    Tayyab, Saad; Izzudin, Mohamad Mirza; Kabir, Md Zahirul; Feroz, Shevin R; Tee, Wei-Ven; Mohamad, Saharuddin B; Alias, Zazali

    2016-09-01

    Binding characteristics of a promising anticancer drug, axitinib (AXT) to human serum albumin (HSA), the major transport protein in human blood circulation, were studied using fluorescence, UV-vis absorption and circular dichroism (CD) spectroscopy as well as molecular docking analysis. A gradual decrease in the Stern-Volmer quenching constant with increasing temperature revealed the static mode of the protein fluorescence quenching upon AXT addition, thus confirmed AXT-HSA complex formation. This was also confirmed from alteration in the UV-vis spectrum of HSA upon AXT addition. Fluorescence quenching titration results demonstrated moderately strong binding affinity between AXT and HSA based on the binding constant value (1.08±0.06×10(5)M(-1)), obtained in 10mM sodium phosphate buffer, pH7.4 at 25°C. The sign and magnitude of the enthalpy change (∆H=-8.38kJmol(-1)) as well as the entropy change (∆S=+68.21Jmol(-1)K(-1)) clearly suggested involvement of both hydrophobic interactions and hydrogen bonding in AXT-HSA complex formation. These results were well supported by molecular docking results. Three-dimensional fluorescence spectral results indicated significant microenvironmental changes around Trp and Tyr residues of HSA upon complexation with AXT. AXT binding to the protein produced significant alterations in both secondary and tertiary structures of HSA, as revealed from the far-UV and the near-UV CD spectral results. Competitive drug displacement results obtained with phenylbutazone (site I marker), ketoprofen (site II marker) and hemin (site III marker) along with molecular docking results suggested Sudlow's site I, located in subdomain IIA of HSA, as the preferred binding site of AXT. PMID:27424099

  7. Antibodies against the calcium-binding protein

    SciTech Connect

    Chou, Mei; Jensen, K.G.; Sjolund, R.D. ); Krause, K.H.; Campbell, K.P. )

    1989-12-01

    Plant microsomes contain a protein clearly related to a calcium-binding protein, calsequestrin, originally found in the sarcoplasmic reticulum of muscle cells, responsible for the rapid release and uptake of Ca{sup 2+} within the cells. The location and role of calsequestrin in plant cells is unknown. To generate monoclonal antibodies specific to plant calsequestrin, mice were immunized with a microsomal fraction from cultured cells of Streptanthus tortuosus (Brassicaceae). Two clones cross-reacted with one protein band with a molecular weight equal to that of calsequestrin (57 kilodaltons) by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblotting. This band is able to bind {sup 45}Ca{sup 2+} and can be recognized by a polyclonal antibody against the canine cardiac muscle calsequestrin. Rabbit skeletal muscle calsequestrin cross-reacted with the plant monoclonal antibodies. The plant monoclonal antibodies generated here are specific to calsequestrin protein.

  8. Differential modulation in binding of ketoprofen to bovine serum albumin in the presence and absence of surfactants: spectroscopic and calorimetric insights.

    PubMed

    Misra, Pinaki P; Kishore, Nand

    2013-07-01

    Surfactants have long been implicated in the unique static and dynamic effect on the structure and function of serum albumins. However, there is very little information on the mode of interactions of drugs to serum albumins in presence of surfactants. The importance of such studies lay in the fact that apart from binding to serum albumins, surfactants are known to radically influence the solvents' micro environment and protein structure. Thus, we have studied the binding of the racemic form of ketoprofen with bovine serum albumin at pH 7.4 in the presence and absence of hexadecyl trimethyl ammonium bromide, sodium dodecyl sulfate, Triton X-100, and NaCl. The structural studies of ketoprofen with bovine serum albumin as investigated by circular dichroism spectroscopy revealed a significant stabilization of bovine serum albumin. However, the combined presence of the surfactants, NaCl and ketoprofen, demonstrated an extremely erratic behavior in terms of stabilization. Further the values of Stern-Volmer and dynamic quenching constant suggested the binding site of ketoprofen to be scattered in the region of domain I B and II A, close to Trp 134. The results of differential scanning calorimetry revealed that the binding of ketoprofen to bovine serum albumin leads to its temperature-dependent separation into two units. The binding parameters of bovine serum albumin obtained from isothermal titration calorimetry in the combined presence of ketoprofen and surfactants/NaCl correlate well with the differential scanning calorimetry studies further confirming the localization of ketoprofen in domain I B and II A. In the combined presence of surfactants, NaCl and ketoprofen, the binding of ketoprofen to bovine serum albumin exhibited altered binding parameters far different from the binding of ketoprofen alone. Overall, the experimental findings strongly indicated positive as well as negative modulation in the binding of ketoprofen to bovine serum albumin in the presence of

  9. [Effect of freezing on cord blood serum proteins].

    PubMed

    Nardid, E O; Rozanova, E D; Tsymbal, L V; Zinchenko, A V; Nardid, O A; Grishchenko, V I

    2009-01-01

    The effect of freezing regimes and storage temperatures on protein conformation and the spectrum of cord blood serum has been investigated. Changes in the parameters of ESR spectra of spin probes in cord blood serum after slow freezing and subsequent thawing were established, indicating protein conformational changes characterized by loosening. This fact is confirmed by an earlier process, the first stage of albumin heat denaturation, as indicated by calorimetric data. It was shown that slow cooling results in the aggregation of serum protein in which serum albumin and immunoglobulins play an important role. It was concluded that, for retaining the properties, of cord blood serum proteins, it is preferable to perform cooling at a rate not lower than 100 degrees C/min and a storage temperature of -80 degrees C and lower. PMID:19894629

  10. Bovine Serum Albumin binding to CoCrMo nanoparticles and the influence on dissolution

    NASA Astrophysics Data System (ADS)

    Simoes, T. A.; Brown, A. P.; Milne, S. J.; Brydson, R. M. D.

    2015-10-01

    CoCrMo alloys exhibit good mechanical properties, excellent biocompatibility and are widely utilised in orthopaedic joint replacements. Metal-on-metal hip implant degradation leads to the release of metal ions and nanoparticles, which persist through the implant's life and could be a possible cause of health complications. This study correlates preferential binding between proteins and metal alloy nanoparticles to the alloy's corrosion behaviour and the release of metal ions. TEM images show the formation of a protein corona in all particles immersed in albumin containing solutions. Only molybdenum release was significant in these tests, suggesting high dissolution of this element when CoCrMo alloy nanoparticles are produced as wear debris in the presence of serum albumin. The same trend was observed during extended exposure of molybdenum reference nanoparticles to albumin.

  11. AUXIN BINDING PROTEIN1: The Outsider

    PubMed Central

    Sauer, Michael; Kleine-Vehn, Jürgen

    2011-01-01

    AUXIN BINDING PROTEIN1 (ABP1) is one of the first characterized proteins that bind auxin and has been implied as a receptor for a number of auxin responses. Early studies characterized its auxin binding properties and focused on rapid electrophysiological and cell expansion responses, while subsequent work indicated a role in cell cycle and cell division control. Very recently, ABP1 has been ascribed a role in modulating endocytic events at the plasma membrane and RHO OF PLANTS-mediated cytoskeletal rearrangements during asymmetric cell expansion. The exact molecular function of ABP1 is still unresolved, but its main activity apparently lies in influencing events at the plasma membrane. This review aims to connect the novel findings with the more classical literature on ABP1 and to point out the many open questions that still separate us from a comprehensive model of ABP1 action, almost 40 years after the first reports of its existence. PMID:21719690

  12. Protein Binding Studies with Zero Mode Waveguides

    NASA Astrophysics Data System (ADS)

    Samiee, K.; Foquet, M.; Cox, E. C.; Craighead, H. G.

    2004-03-01

    Single protein molecules binding to their DNA operator site are observed using zero mode waveguides, novel quasi one-dimensional optical nanostructures. The subwavelength features of the waveguides allow the formation of a focal volume smaller than those allowed by classical diffraction limited optics. The small observation volume allows the use of fluorescence correlation spectroscopy to measure diffusion constants at fluorophore concentrations as high as10uM. Binding is observed between a DNA oligomer containing OR1, an operator site on the Lambda genome, and CI, the repressor protein that inhibits the bacteriophage's lytic growth cycle. The dimensions of the waveguide should allow a single DNA fragment to be fixed at the bottom where its binding dynamics can be characterized on a single molecule basis.

  13. Clinical impact of serum proteins on drug delivery.

    PubMed

    Kratz, Felix; Elsadek, Bakheet

    2012-07-20

    Among serum proteins albumin and transferrin have attracted the most interest as drug carriers in the past two decades. Prior to that, their potential use was overshadowed by the advent of monoclonal antibodies that was initiated by Milstein and Koehler in 1975. Meanwhile intensive pursuit of exploiting transferrin, but above all albumin as an exogenous or endogenous carrier protein for treating various diseases, primarily cancer, rheumatoid arthritis, diabetes and hepatitis has resulted in several marketed products and numerous clinical trials. While the use of transferrin has clinically been primarily restricted to immunotoxins, albumin-based drug delivery systems ranging from albumin drug nanoparticles, albumin fusion protein, prodrugs and peptide derivatives that bind covalently to albumin as well as physically binding antibody fragments and therapeutically active peptides are in advanced clinical trials or approved products. For treating diabetes, Levemir and Victoza that are myristic acid derivatives of human insulin or glucagon-like peptide 1 (GLP-1) act as long-acting peptides by binding to the fatty acid binding sites on circulating albumin to control glucose levels. Levemir from Novo Nordisk has already developed into a blockbuster since its market approval in 2004. Abraxane, an albumin paclitaxel nanoparticle as a water-soluble galenic formulation avoiding the use of cremophor/ethanol, transports paclitaxel through passive targeting as an albumin paclitaxel complex to the tumor site and is superior to conventional Taxol against metastatic breast cancer. INNO-206, an albumin-binding doxorubicin prodrug that also accumulates in solid tumors due to the enhanced permeability and retention (EPR) effect but releases the parent drug through acid cleavage, either intra- or extracellularly, is entering phase II studies against sarcoma. An expanding field is the use of albumin-binding antibody moieties which do not contain the fragment crystallizable (Fc) portion

  14. Glycosylation status of vitamin D binding protein in cancer patients.

    PubMed

    Rehder, Douglas S; Nelson, Randall W; Borges, Chad R

    2009-10-01

    On the basis of the results of activity studies, previous reports have suggested that vitamin D binding protein (DBP) is significantly or even completely deglycosylated in cancer patients, eliminating the molecular precursor of the immunologically important Gc macrophage activating factor (GcMAF), a glycosidase-derived product of DBP. The purpose of this investigation was to directly determine the relative degree of O-linked trisaccharide glycosylation of serum-derived DBP in human breast, colorectal, pancreatic, and prostate cancer patients. Results obtained by electrospray ionization-based mass spectrometric immunoassay showed that there was no significant depletion of DBP trisaccharide glycosylation in the 56 cancer patients examined relative to healthy controls. These results suggest that alternative hypotheses regarding the molecular and/or structural origins of GcMAF must be considered to explain the relative inability of cancer patient serum to activate macrophages. PMID:19642159

  15. Glycosylation status of vitamin D binding protein in cancer patients

    PubMed Central

    Rehder, Douglas S; Nelson, Randall W; Borges, Chad R

    2009-01-01

    On the basis of the results of activity studies, previous reports have suggested that vitamin D binding protein (DBP) is significantly or even completely deglycosylated in cancer patients, eliminating the molecular precursor of the immunologically important Gc macrophage activating factor (GcMAF), a glycosidase-derived product of DBP. The purpose of this investigation was to directly determine the relative degree of O-linked trisaccharide glycosylation of serum-derived DBP in human breast, colorectal, pancreatic, and prostate cancer patients. Results obtained by electrospray ionization-based mass spectrometric immunoassay showed that there was no significant depletion of DBP trisaccharide glycosylation in the 56 cancer patients examined relative to healthy controls. These results suggest that alternative hypotheses regarding the molecular and/or structural origins of GcMAF must be considered to explain the relative inability of cancer patient serum to activate macrophages. PMID:19642159

  16. Competition between transferrin and the serum ligands citrate and phosphate for the binding of aluminum.

    PubMed

    Harris, Wesley R; Wang, Zhepeng; Hamada, Yahia Z

    2003-05-19

    A key issue regarding the speciation of Al(3+) in serum is how well the ligands citric acid and phosphate can compete with the iron transport protein serum transferrin for the aluminum. Previous studies have attempted to measure binding constants for each ligand separately, but experimental problems make it very difficult to obtain stability constants with the accuracy required to make a meaningful comparison between these ligands. In this study, effective binding constants for Al-citrate and Al-phosphate at pH 7.4 have been determined using difference UV spectroscopy to monitor the direct competition between these ligands and transferrin. The analysis of this competition equilibrium also includes the binding of citrate and phosphate as anions to apotransferrin. The effective binding constants are 10(11.59) for the 1:1 Al-citrate complexes and 10(14.90) for the 1:2 Al-citrate complexes. The effective binding constant for the 1:2 Al-phosphate complex is 10(12.02). No 1:1 Al-phosphate complex was detected. Speciation calculations based on these effective binding constants indicate that, at serum concentrations of citrate and phosphate, citrate will be the primary low-molecular-mass ligand for aluminum. Formal stability constants for the Al-citrate system have also been determined by potentiometric methods. This equilibrium system is quite complex, and information from both electrospray mass spectrometry and difference UV experiments has been used to select the best model for fitting the potentiometric data. The mass spectra contain peaks that have been assigned to complexes having aluminum:citrate stoichiometries of 1:1, 1:2, 2:2, 2:3, and 3:3. The difference UV results were used to determine the stability constant for Al(H(-1)cta)-, which was then used in the least-squares fitting of the potentiometric data to determine stability constants for Al(Hcta)+, Al(cta), Al(cta)2(3-), Al(H(-1)cta)(cta)(4-), Al2(H(-1)cta)2(2-), and Al3(H(-1)cta)3(OH)(4-).

  17. Enhanced protective antibody to a mutant meningococcal factor H-binding protein with low-factor H binding.

    PubMed

    Granoff, Dan M; Giuntini, Serena; Gowans, Flor A; Lujan, Eduardo; Sharkey, Kelsey; Beernink, Peter T

    2016-01-01

    Meningococcal factor H-binding protein (FHbp) is an antigen in 2 serogroup B meningococcal vaccines. FHbp specifically binds human and some nonhuman primate complement FH. To investigate the effect of binding of FH to FHbp on protective antibody responses, we immunized infant rhesus macaques with either a control recombinant FHbp antigen that bound macaque FH or a mutant antigen with 2 amino acid substitutions and >250-fold lower affinity for FH. The mutant antigen elicited 3-fold higher serum IgG anti-FHbp titers and up to 15-fold higher serum bactericidal titers than the control FHbp vaccine. When comparing sera with similar IgG anti-FHbp titers, the antibodies elicited by the mutant antigen gave greater deposition of complement component C4b on live meningococci (classical complement pathway) and inhibited binding of FH, while the anti-FHbp antibodies elicited by the control vaccine enhanced FH binding. Thus, the mutant FHbp vaccine elicited an anti-FHbp antibody repertoire directed at FHbp epitopes within the FH binding site, which resulted in greater protective activity than the antibodies elicited by the control vaccine, which targeted FHbp epitopes outside of the FH combining site. Binding of a host protein to a vaccine antigen impairs protective antibody responses, which can be overcome with low-binding mutant antigens. PMID:27668287

  18. Enhanced protective antibody to a mutant meningococcal factor H-binding protein with low-factor H binding

    PubMed Central

    Granoff, Dan M.; Giuntini, Serena; Gowans, Flor A.; Lujan, Eduardo; Sharkey, Kelsey; Beernink, Peter T.

    2016-01-01

    Meningococcal factor H-binding protein (FHbp) is an antigen in 2 serogroup B meningococcal vaccines. FHbp specifically binds human and some nonhuman primate complement FH. To investigate the effect of binding of FH to FHbp on protective antibody responses, we immunized infant rhesus macaques with either a control recombinant FHbp antigen that bound macaque FH or a mutant antigen with 2 amino acid substitutions and >250-fold lower affinity for FH. The mutant antigen elicited 3-fold higher serum IgG anti-FHbp titers and up to 15-fold higher serum bactericidal titers than the control FHbp vaccine. When comparing sera with similar IgG anti-FHbp titers, the antibodies elicited by the mutant antigen gave greater deposition of complement component C4b on live meningococci (classical complement pathway) and inhibited binding of FH, while the anti-FHbp antibodies elicited by the control vaccine enhanced FH binding. Thus, the mutant FHbp vaccine elicited an anti-FHbp antibody repertoire directed at FHbp epitopes within the FH binding site, which resulted in greater protective activity than the antibodies elicited by the control vaccine, which targeted FHbp epitopes outside of the FH combining site. Binding of a host protein to a vaccine antigen impairs protective antibody responses, which can be overcome with low-binding mutant antigens. PMID:27668287

  19. Enhanced protective antibody to a mutant meningococcal factor H-binding protein with low-factor H binding

    PubMed Central

    Granoff, Dan M.; Giuntini, Serena; Gowans, Flor A.; Lujan, Eduardo; Sharkey, Kelsey; Beernink, Peter T.

    2016-01-01

    Meningococcal factor H-binding protein (FHbp) is an antigen in 2 serogroup B meningococcal vaccines. FHbp specifically binds human and some nonhuman primate complement FH. To investigate the effect of binding of FH to FHbp on protective antibody responses, we immunized infant rhesus macaques with either a control recombinant FHbp antigen that bound macaque FH or a mutant antigen with 2 amino acid substitutions and >250-fold lower affinity for FH. The mutant antigen elicited 3-fold higher serum IgG anti-FHbp titers and up to 15-fold higher serum bactericidal titers than the control FHbp vaccine. When comparing sera with similar IgG anti-FHbp titers, the antibodies elicited by the mutant antigen gave greater deposition of complement component C4b on live meningococci (classical complement pathway) and inhibited binding of FH, while the anti-FHbp antibodies elicited by the control vaccine enhanced FH binding. Thus, the mutant FHbp vaccine elicited an anti-FHbp antibody repertoire directed at FHbp epitopes within the FH binding site, which resulted in greater protective activity than the antibodies elicited by the control vaccine, which targeted FHbp epitopes outside of the FH combining site. Binding of a host protein to a vaccine antigen impairs protective antibody responses, which can be overcome with low-binding mutant antigens.

  20. Influence of erythrocyte iodothyronine-binding proteins on radioimmunoassay of thyroxin in dried blood spots

    SciTech Connect

    Sadler, W.A.; Lynskey, C.P.

    1982-01-01

    Three erythrocyte proteins, one identified as hemoglobin, bind thyroid hormones. Using a dextran/charcoal radioimmunoassay for thyroxin in dried blood spots, we demonstrate that such binding differs with the buffer used. Barbital, phosphate, and borate buffers significantly enhance the binding more than glycine and tris(hydroxymethyl)methylamine buffers. Binding is not affected by agents commonly used to inhibit thyroxin binding to serum proteins. A highly significant nonlinear direct relationship between sample storage (temperature and duration) and increased thyroxin-erythrocyte binding is documented, together with an associated decrease in assayed concentrations of thyroxin. However, concomitant serial measurement of thyroxin with polyethylene glycol and combined double-antibody/polyethylene glycol radioimmunoassays produced no evidence of interference by erythrocyte proteins in the radioimmune reaction. We conclude that erythrocyte proteins act only as low-affinity secondary binders in radioimmunoassay for thyroxin.

  1. Spectroscopy and Molecular Modeling Study on Binding of Nickel Phthalocyanine to Human Serum Albumin.

    PubMed

    Dezhampanah, Hamid; Firouzi, Roghaye; Hasani, Leila

    2016-01-01

    The interaction of nickel tetra sulfunated phthalocyanine( NiTSPc) with human serum albumin (HSA), in 20 mM phosphate buffer pH 7.4 was investigated using advanced techniques including fluorescence, synchronous fluorescence, Fourier transform infrared (FT-IR), circular dichroism (CD) spectroscopy and molecular docking. The fluorescence quenching measurements showed a single binding site on HSA for NiTSPc with the binding constant (Kb) value equals to 1.26×106 at 25°C. The results showed that quenching mechanism of HSA by NiTSPc was of dynamic type. The results from FTIR and CD spectroscopies demonstrated that NiTSPc binds to amino acid residues of the main polypeptide chain in protein destroying the hydrogen bonding network. The corresponding thermodynamic parameters were then calculated by analysis of fluorescence data using van't Hoff plot. These data indicated that driving force for interaction was mainly hydrophobic in nature and the process was entropy driven. The information obtained from CD, FT-IR and synchronous fluorescence spectroscopies revealed that both microenvironment and conformation of HSA was changed. Molecular docking study confirmed the binding mode obtained by experimental data. PMID:27449940

  2. Potential toxicity of sulfanilamide antibiotic: binding of sulfamethazine to human serum albumin.

    PubMed

    Chen, Jiabin; Zhou, Xuefei; Zhang, Yalei; Gao, Haiping

    2012-08-15

    Antibiotics are widely used in daily life but their abuse has posed a potential threat to human health. The interaction between human serum albumin (HSA) and sulfamethazine (SMZ) was investigated by capillary electrophoresis, fluorescence spectrometry, and circular dichroism. The binding constant and site were determined to be 1.09×10(4) M(-1) and 1.14 at 309.5 K. The thermodynamic determination indicated that the interaction was driven by enthalpy change, where the electrostatic interaction and hydrogen bond were the dominant binding force. The binding distance between SMZ and tryptophan residue of HSA was obtained to be 3.07 nm according to Fǒrster non-radioactive energy transfer theory. The site marker competition revealed that SMZ bound into subdomain IIA of HSA. The binding of SMZ induced the unfolding of the polypeptides of HSA and transferred the secondary conformation of HSA. The equilibrium dialysis showed that only 0.13 mM SMZ decreased vitamin B(2) by 38% transported on the HSA. This work provides a new quantitative evaluation method for antibiotics to cause the protein damage. PMID:22750172

  3. Controlling the taste receptor accessible structure of rebaudioside A via binding to bovine serum albumin.

    PubMed

    Mudgal, Samriddh; Keresztes, Ivan; Feigenson, Gerald W; Rizvi, S S H

    2016-04-15

    We illustrate a method that uses bovine serum albumin (BSA) to control the receptor-accessible part of rebaudioside A (Reb A). The critical micelle concentration (CMC) of Reb A was found to be 4.5 mM and 5 mM at pH 3 and 6.7 respectively. NMR studies show that below its CMC, Reb A binds weakly to BSA to generate a Reb A-protein complex ("RPC"), which is only modestly stable under varying conditions of pH (3.0-6.7) and temperature (4-40°C) with its binding affinities determined to be in the range of 5-280 mM. Furthermore, saturation transfer difference (STD) NMR experiments confirm that the RPC has fast exchange of the bitterness-instigating diterpene of Reb A into the binding sites of BSA. Our method can be used to alter the strength of Reb A-receptor interaction, as a result of binding of Reb A to BSA, which may ultimately lead to moderation of its taste.

  4. A comparison study on the binding of hesperetin and luteolin to bovine serum albumin by spectroscopy

    NASA Astrophysics Data System (ADS)

    Tang, Lin; Jia, Wanteng

    2013-02-01

    Binding mechanism of luteolin (LUT) and hesperetin (HES) to bovine serum albumin (BSA) was investigated at 288,298,310 K and pH = 7.40 by UV absorption spectroscopy, fluorescence quenching and synchronous fluorescence spectroscopy. Under simulated physiological conditions, the fluorescence data indicated that hesperetin binding to BSA mainly occurs through a static mechanism. In contrast, binding of luteolin to BSA is a combined quenching process while static quenching is prevailing. Linear interval of the Stern-Volmer plot of LUT-BSA for the concentration ratio of LUT to BSA ranged from 0.5 to 1.25 was obtained. The thermodynamic parameters obtained from the Van't Hoff equation indicated that electrostatic force was the predominant force in the LUT-BSA and HES-BSA complex. The inner filter effect was eliminated to get accurate data. The conformational changes of BSA caused by LUT and HES were observed in the UV absorption. Results of fluorescence quenching and synchronous fluorescence showed that degree of luteolin-BSA quenching was higher than hesperetin-BSA quenching, which indicated that the 4'-hydroxide radical was more helpful to the ligand binding to proteins than 4'-methoxyl group for flavones.

  5. Controlling the taste receptor accessible structure of rebaudioside A via binding to bovine serum albumin.

    PubMed

    Mudgal, Samriddh; Keresztes, Ivan; Feigenson, Gerald W; Rizvi, S S H

    2016-04-15

    We illustrate a method that uses bovine serum albumin (BSA) to control the receptor-accessible part of rebaudioside A (Reb A). The critical micelle concentration (CMC) of Reb A was found to be 4.5 mM and 5 mM at pH 3 and 6.7 respectively. NMR studies show that below its CMC, Reb A binds weakly to BSA to generate a Reb A-protein complex ("RPC"), which is only modestly stable under varying conditions of pH (3.0-6.7) and temperature (4-40°C) with its binding affinities determined to be in the range of 5-280 mM. Furthermore, saturation transfer difference (STD) NMR experiments confirm that the RPC has fast exchange of the bitterness-instigating diterpene of Reb A into the binding sites of BSA. Our method can be used to alter the strength of Reb A-receptor interaction, as a result of binding of Reb A to BSA, which may ultimately lead to moderation of its taste. PMID:26616927

  6. Evolution of Protein-binding DNA Sequences through Competitive Binding

    NASA Astrophysics Data System (ADS)

    Peng, Weiqun; Gerland, Ulrich; Hwa, Terence; Levine, Herbert

    2002-03-01

    The dynamics of in vitro DNA evolution controlled via competitive binding of DNA sequences to proteins has been explored in a recent serial transfer experiment footnote B. Dubertret, S.Liu, Q. Ouyang, A. Libchaber, Phys. Rev. Lett. 86, 6022 (2001).. Motivated by the experiment, we investigate a continuum model for this evolution process in various parameter regimes. We establish a self-consistent mean-field evolution equation, determine its dynamical properties and finite population size corrections. In addition, we discuss the experimental implications of our results.

  7. Quantifying drug-protein binding in vivo.

    SciTech Connect

    Buchholz, B; Bench, G; Keating III, G; Palmblad, M; Vogel, J; Grant, P G; Hillegonds, D

    2004-02-17

    Accelerator mass spectrometry (AMS) provides precise quantitation of isotope labeled compounds that are bound to biological macromolecules such as DNA or proteins. The sensitivity is high enough to allow for sub-pharmacological (''micro-'') dosing to determine macromolecular targets without inducing toxicities or altering the system under study, whether it is healthy or diseased. We demonstrated an application of AMS in quantifying the physiologic effects of one dosed chemical compound upon the binding level of another compound in vivo at sub-toxic doses [4].We are using tissues left from this study to develop protocols for quantifying specific binding to isolated and identified proteins. We also developed a new technique to quantify nanogram to milligram amounts of isolated protein at precisions that are comparable to those for quantifying the bound compound by AMS.

  8. Spectroscopic characterization of the binding mechanism of fluorescein and carboxyfluorescein in human serum albumin

    NASA Astrophysics Data System (ADS)

    Sulaiman, Saba A. J.; Kulathunga, H. Udani; Abou-Zied, Osama K.

    2015-03-01

    Fluorescein (FL) and some of its precursors have proven to be effective fluorescent tracers in pharmaceutical and medical applications owing to their high quantum yield of fluorescence in physiological conditions and their high membrane permeability. In order to protect FL from metabolic effects during the process of its delivery, human serum albumin (HSA) has been used as a carrier because of its compatibility with the human body. In the present work, we used spectroscopic methods to characterize the binding mechanisms of FL and one of its derivatives, 5(6)- carboxyfluorescein (CFL), in the HSA protein. The absorbance change of the two ligands (FL and CFL) was quantified as a function of the HSA concentration and the results indicate a moderate binding strength for the two ligands inside HSA (1.00 +/- 0.12 x 104 M-1). The quenching effect of FL(CFL) on the fluorescence intensity of W214 (the sole tryptophan in HSA) indicates that FL and CFL occupy Site I in the protein which is known to bind several hydrophobic drugs. By performing site-competitive experiments, the location of the ligands is determined to be similar to that of the anticoagulant drug warfarin. At higher ratios of [ligand]/[HSA], we observed an upward curvature in the Stern-Volmer plots which indicates that the ligands occupy more pockets in Site I, close to W214. Our results indicate that both ligands bind in HSA with a moderate strength that should not affect their release when used as fluorescent reporters. The chemical and physical identities of the two ligands are also preserved inside the HSA binding sites.

  9. Spectral characterization of the binding and conformational changes of serum albumins upon interaction with an anticancer drug, anastrozole

    NASA Astrophysics Data System (ADS)

    Punith, Reeta; Seetharamappa, J.

    2012-06-01

    The present study employed different optical spectroscopic techniques viz., fluorescence, FTIR, circular dichroism (CD) and UV-vis absorption spectroscopy to investigate the mechanism of interaction of an anticancer drug, anastrozole (AZ) with transport proteins viz., bovine serum albumin (BSA) and human serum albumin (HSA). The drug, AZ quenched the intrinsic fluorescence of protein and the analysis of results revealed the presence of dynamic quenching mechanism. The binding characteristics of drug-protein were computed. The thermodynamic parameters, enthalpy change (ΔH°) and entropy change (ΔS°) were calculated to be +92.99 kJ/mol and +159.18 J/mol/K for AZ-BSA and, +99.43 kJ/mol and +159.19 J/mol/K for AZ-HSA, respectively. These results indicated that the hydrophobic forces stabilized the interaction between the drug and protein. CD, FTIR, absorption, synchronous and 3D fluorescence results indicated that the binding of AZ to protein induced structural perturbation in both serum albumins. The distance, r between the drug and protein was calculated based on the theory of Förster's resonance energy transfer and found to be 5.9 and 6.24 nm, respectively for AZ-BSA and AZ-HSA.

  10. The influence of protein binding on the antibacterial activity of faropenem against Haemophilus influenzae.

    PubMed

    Gustafsson, I; Cars, O

    2004-10-01

    The effects of albumin and human serum on the pharmacodynamics of faropenem were studied. The protein binding of faropenem was 91-95%, corresponding to the increase in MICs for Haemophilus influenzae in broth supplemented with albumin. Time-kill experiments in albumin-containing medium and in inactivated human serum 50% v/v showed that much higher drug concentrations were needed to achieve a bactericidal effect than were needed in broth. Active human serum alone exerted a strain-dependent bactericidal effect. It was concluded that it is the free fraction of faropenem in serum that has antibacterial activity against H. influenzae. PMID:15373892

  11. Serum albumin promotes ATP-binding cassette transporter-dependent sterol uptake in yeast.

    PubMed

    Marek, Magdalena; Silvestro, Daniele; Fredslund, Maria D; Andersen, Tonni G; Pomorski, Thomas G

    2014-12-01

    Sterol uptake in fungi is a multistep process that involves interaction between external sterols and the cell wall, incorporation of sterol molecules into the plasma membrane, and subsequent integration into intracellular membranes for turnover. ATP-binding cassette (ABC) transporters have been implicated in sterol uptake, but key features of their activity remain to be elucidated. Here, we apply fluorescent cholesterol (NBD-cholesterol) to monitor sterol uptake under anaerobic and aerobic conditions in two fungal species, Candida glabrata (Cg) and Saccharomyces cerevisiae (Sc). We found that in both fungal species, ABC transporter-dependent uptake of cholesterol under anaerobic conditions and in mutants lacking HEM1 gene is promoted in the presence of the serum protein albumin that is able to bind the sterol molecule. Furthermore, the C. glabrata ABC transporter CgAus1p expressed in S. cerevisiae requires the presence of serum or albumin for efficient cholesterol uptake. These results suggest that albumin can serve as sterol donor in ABC transporter-dependent sterol uptake, a process potentially important for growth of C. glabrata inside infected humans.

  12. The binding of Curcuma longa extract with bovine serum albumin monitored via time-resolved fluorescence.

    PubMed

    Lemos, M Adília; Hungerford, Graham

    2013-01-01

    Turmeric (Curcuma longa L.) is obtained from the rhizome of the Zingberaceae family and has a long history as an ingredient in cooking. It has been used as a dye and recently research has concentrated on its possible health benefits, specifically because of its antioxidant activity. The principal compound that is responsible for this activity is curcumin, which is present with the other curcuminoids; demethoxycurcumin and bisdemethoxycurcumin. Curcumin exhibits fluorescence and its photophysics are markedly affected by the polarity, hydrogen bonding and pH. This provides a means to examine its interaction with proteins, which is important if its potential health role is to be fully investigated. In this work, we monitor the binding kinetics using time-resolved fluorescence measurements, enabled by the use of low dead time electronics coupled with a high repetition rate excitation source and time-resolved emission spectra of the extracted curcuminoids upon interaction with bovine serum albumin. From these measurements the decay-associated spectra of the different lifetime components were obtained, which is consistent with reports of more than one binding site. Monitoring changes in these spectra with increasing temperature also allows for the denaturing of the serum albumin to be inferred.

  13. Paracetamol and cytarabine binding competition in high affinity binding sites of transporting protein

    NASA Astrophysics Data System (ADS)

    Sułkowska, A.; Bojko, B.; Równicka, J.; Sułkowski, W. W.

    2006-07-01

    Paracetamol (acetaminophen, AA) the most popular analgesic drug is commonly used in the treatment of pain in patients suffering from cancer. In our studies, we evaluated the competition in binding with serum albumin between paracetamol (AA) and cytarabine, antyleukemic drug (araC). The presence of one drug can alter the binding affinity of albumin towards the second one. Such interaction can result in changing of the free fraction of the one of these drugs in blood. Two spectroscopic methods were used to determine high affinity binding sites and the competition of the drugs. Basing on the change of the serum albumin fluorescence in the presence of either of the drugs the quenching ( KQ) constants for the araC-BSA and AA-BSA systems were calculated. Analysis of UV difference spectra allowed us to describe the changes in drug-protein complexes (araC-albumin and AA-albumin) induced by the presence of the second drug (AA and araC, respectively). The mechanism of competition between araC and AA has been proposed.

  14. Evaluation of the binding interaction between bovine serum albumin and dimethyl fumarate, an anti-inflammatory drug by multispectroscopic methods.

    PubMed

    Jattinagoudar, Laxmi; Meti, Manjunath; Nandibewoor, Sharanappa; Chimatadar, Shivamurti

    2016-03-01

    The information of the quenching reaction of bovine serum albumin with dimethyl fumarate is obtained by multi-spectroscopic methods. The number of binding sites, n and binding constants, KA were determined at different temperatures. The effect of increasing temperature on Stern-Volmer quenching constants (KD) indicates that a dynamic quenching mechanism is involved in the interaction. The analysis of thermodynamic quantities namely, ∆H° and ∆S° suggested hydrophobic forces playing a major role in the interaction between dimethyl fumarate and bovine serum albumin. The binding site of dimethyl fumarate on bovine serum albumin was determined by displacement studies, using the site probes viz., warfarin, ibuprofen and digitoxin. The determination of magnitude of the distance of approach for molecular interactions between dimethyl fumarate and bovine serum albumin is calculated according to the theory of Förster energy transfer. The CD, 3D fluorescence spectra, synchronous fluorescence measurements and FT-IR spectral results were indicative of the change in secondary structure of the protein. The influence of some of the metal ions on the binding interaction was also studied. PMID:26688208

  15. Evaluation of the binding interaction between bovine serum albumin and dimethyl fumarate, an anti-inflammatory drug by multispectroscopic methods

    NASA Astrophysics Data System (ADS)

    Jattinagoudar, Laxmi; Meti, Manjunath; Nandibewoor, Sharanappa; Chimatadar, Shivamurti

    2016-03-01

    The information of the quenching reaction of bovine serum albumin with dimethyl fumarate is obtained by multi-spectroscopic methods. The number of binding sites, n and binding constants, KA were determined at different temperatures. The effect of increasing temperature on Stern-Volmer quenching constants (KD) indicates that a dynamic quenching mechanism is involved in the interaction. The analysis of thermodynamic quantities namely, ∆H° and ∆S° suggested hydrophobic forces playing a major role in the interaction between dimethyl fumarate and bovine serum albumin. The binding site of dimethyl fumarate on bovine serum albumin was determined by displacement studies, using the site probes viz., warfarin, ibuprofen and digitoxin. The determination of magnitude of the distance of approach for molecular interactions between dimethyl fumarate and bovine serum albumin is calculated according to the theory of Förster energy transfer. The CD, 3D fluorescence spectra, synchronous fluorescence measurements and FT-IR spectral results were indicative of the change in secondary structure of the protein. The influence of some of the metal ions on the binding interaction was also studied.

  16. Chloramphenicol binding to human serum albumin: Determination of binding constants and binding sites by steady-state fluorescence

    NASA Astrophysics Data System (ADS)

    Ding, Fei; Zhao, Guangyu; Chen, Shoucong; Liu, Feng; Sun, Ying; Zhang, Li

    2009-07-01

    The interaction between chloramphenicol and human serum albumin (HSA) was studied by fluorescence, UV/vis, circular dichroism (CD) and three-dimensional fluorescence spectroscopy. Fluorescence data revealed that the fluorescence quenching of HSA by chloramphenicol was the result of the formation of drug-HSA complex, and the effective quenching constants ( Ka) were 2.852 × 10 4, 2.765 × 10 4, 2.638 × 10 4 and 2.542 × 10 4 M -1 at 287, 295, 303 and 311 K, respectively. The thermodynamic parameters, enthalpy change (Δ H) and entropy change (Δ S) for the reaction were calculated to be -3.634 kJ mol -1 and 72.66 J mol -1 K -1 according to van't Hoff equation. The results indicated that the hydrophobic and electrostatic interactions played a major role in the binding of drug to HSA. The distance r between donor and acceptor was obtained to be 3.63 nm according to Förster's theory. Site marker competitive experiments indicated that the binding of drug to HSA primarily took place in subdomain IIA. The alterations of HSA secondary structure in the presence of chloramphenicol were confirmed by the evidences from synchronous fluorescence, CD and three-dimensional fluorescence spectra. In addition, the effect of common ions on the binding constants of drug-HSA complex was also discussed.

  17. Co-amoxiclav Effects on the Structural and Binding Properties of Human Serum Albumin

    PubMed Central

    Hesami Takallu, Saeed; Rezaei Tavirani, Mostafa; Kalantari, Shiva; Amir Bakhtiarvand, Mahrooz; Mahdavi, Sayed Mohammad

    2010-01-01

    Human serum albumin (HSA) is the most abundant plasma protein in the human body. HSA plays an important role in drug transport and metabolism. This protein has a high affinity to a very wide range of materials, including metals such as Cu2+ and Zn2+, fatty acids, amino acids and metabolites such as bilirubin and many drug compounds. In this study, we investigated the effects of co-amoxiclav, as a drug which could be carried by this protein, on HSA structure and binding properties via spectroscopy and electrochemistry techniques. Based on this study, it was found that a therapeutic dose of co-amoxiclav as well as doses 4 to 8 folds higher than the therapeutic dose has no considerable effect on the HSA tertiary structure at 37oC. However, a dose 2 folds that of the therapeutic dose has a slight effect, but higher doses of the drug has a mild effect in pathological temperature (42oC). In addition, charge density of HSA surface is decreased at 42oC, compared to 37oC. Hence, this finding suggests a reduced role of HSA in regulation of osmotic pressure in the fever conditions, compared to the physiological conditions. Co-amoxiclav reduces the charge surface density of HSA at physiological and pathological temperatures and therefore alters its binding properties, which could be important in drug interference and complications. PMID:24363734

  18. SDS-binding assay based on tyrosine fluorescence as a tool to determine binding properties of human serum albumin in blood plasma

    NASA Astrophysics Data System (ADS)

    Zhdanova, Nadezda; Shirshin, Evgeny; Fadeev, Victor; Priezzhev, Alexander

    2016-04-01

    Among all plasma proteins human serum albumin (HSA) is the most studied one as it is the main transport protein and can bind a wide variety of ligands especially fatty acids (FAs). The concentration of FAs bound to HSA in human blood plasma differs by three times under abnormal conditions (fasting, physical exercises or in case of social important diseases). In the present study a surfactant sodium dodecyl sulfate (SDS) was used to simulate FAs binding to HSA. It was shown that the increase of Tyr fluorescence of human blood plasma due to SDS addition can be completely explained by HSA-SDS complex formation. Binding parameters of SDS-HSA complex (average number of sites and apparent constant of complex formation) were determined from titration curves based on tyrosine (Tyr) fluorescence.

  19. The dynamics of ligands binding to proteins

    NASA Astrophysics Data System (ADS)

    Callender, Robert

    2001-03-01

    The static structures of many proteins have been solved, and this has revealed much about how they function. On the other hand, although the importance of atomic motion to how proteins function has been conjectured for several decades, the characterization of protein dynamics on multiple time scales is scant. This is because of severe experimental and theoretical difficulties, particularly characterizing the nanosecond to millisecond time scales. Recently, several new techniques have been introduced that make it possible to initiate chemical reactions on fast time scales. We have applied advanced laser induced temperature jump relaxation spectroscopy with nanosecond resolution to examine the binding kinetics of ligands to several enzymes. The observed kinetics take place over multiple time scales. The results reveal the dynamical nature of the binding process and show that there are substantial populations of many structures that are in a constant dynamic equilibrium in some cases. Some of these structures lie quite far from the static structure defined in crystallographic studies, which suggest that the conventional thermodynamical picture of binding (an equilibrium between ligand free in solution and bound) is far off the mark. Moreover, the results suggest that the dynamics can certainly play a crucial role in kinetic control of protein function as in, for example, affecting the rates of enzymatic catalysis. This work is a collaborative project with Hong Deng and Nick Zhadin, also at Albert Einstein. Work supported by the NSF and NIH.

  20. [Determination of serum proteins by high performance capillary zone electrophoresis].

    PubMed

    Zhang, N; Tang, Y; Hao, D M; Zheng, L; Qiu, G B

    1999-11-01

    The separation method of serum proteins was established with an untreared 50 microns i.d. x 47 cm (40 cm to detector) capillary and detection of absorbance at 200 nm. Analysis was performed by pressure injectction 17.23 kPa.s and by applying 23 kV in the constant voltage mode. Serum samples were diluted 40-folds with assay buffer (12.5 mmol/L sodium borate, 1 mmol/L calcium lactate, 0.7 mmol/L magnesium sulfate, 1 mmol/L EDTA were mixed). A normal control serum protein was separated into 6 fractions. In pregnant serum, the alpha 0 was an additionally unknown fraction. Comparison of capillary electrophoresis with conventional cellulose acetate electrophoresis for analysis of serum proteins from normal control, pregnant women multiple myeloma and tonic rachitis patients indicates that capillary clectrophoresis is a new technique for the analysis of serum proteins because of its high efficiency, on-line data processing and automation. Capillary electrophoresis is the reliable technique for clinical diagnosis of serum protein abnormalities.

  1. Protein-protein binding before and after photo-modification of albumin

    NASA Astrophysics Data System (ADS)

    Rozinek, Sarah C.; Glickman, Randolph D.; Thomas, Robert J.; Brancaleon, Lorenzo

    2016-03-01

    Bioeffects of directed-optical-energy encompass a wide range of applications. One aspect of photochemical interactions involves irradiating a photosensitizer with visible light in order to induce protein unfolding and consequent changes in function. In the past, irradiation of several dye-protein combinations has revealed effects on protein structure. Beta lactoglobulin, human serum albumin (HSA) and tubulin have all been photo-modified with meso-tetrakis(4- sulfonatophenyl)porphyrin (TSPP) bound, but only in the case of tubulin has binding caused a verified loss of biological function (loss of ability to form microtubules) as a result of this light-induced structural change. The current work questions if the photo-induced structural changes that occur to HSA, are sufficient to disable its biological function of binding to osteonectin. The albumin-binding protein, osteonectin, is about half the molecular weight of HSA, so the two proteins and their bound product can be separated and quantified by size exclusion high performance liquid chromatography. TSPP was first bound to HSA and irradiated, photo-modifying the structure of HSA. Then native HSA or photo-modified HSA (both with TSPP bound) were compared, to assess loss in HSA's innate binding ability as a result of light-induced structure modification.

  2. Phospholipid-binding proteins differ in their capacity to induce autoantibodies and murine systemic lupus erythematosus.

    PubMed

    Levine, J S; Subang, R; Setty, S; Cabrera, J; Laplante, P; Fritzler, M J; Rauch, J

    2014-07-01

    We have previously shown that immunization of nonautoimmune mice with the phospholipid-binding protein β2-glycoprotein I (β2GPI), in combination with lipopolysaccharide (LPS), induces a murine model of systemic lupus erythematosus (SLE), with sequential emergence of autoantibodies and glomerulonephritis. Here, we determine whether the paradigm for induction of murine SLE extends to other phospholipid-binding proteins. Mice were immunized with a phospholipid-binding protein (prothrombin (PT), protein S, or β2GPI), or a nonphospholipid-binding protein (glu-plasminogen), in the presence of LPS. The breadth and degree of the autoantibody response, and the frequency of glomerulonephritis, varied among the three proteins, with β2GPI being the most effective in inducing SLE-like disease. The phospholipid-binding proteins also differed in the pattern of serum cytokines they elicited. The most apparent difference between β2GPI and the other phospholipid-binding proteins was in their ability to bind to LPS: β2GPI bound to LPS, while PT and protein S did not. Our data suggest that binding to phospholipid(s) is a necessary, but not sufficient, condition for full induction of murine SLE. We propose that other properties, such as physiologic function, avidity for anionic phospholipids, and degree of interaction with other cell surface and/or circulating molecules (particularly LPS) may determine the range and severity of disease.

  3. Analysis of Lidocaine Interactions with Serum Proteins Using High-Performance Affinity Chromatography

    PubMed Central

    Soman, Sony; Yoo, Michelle J.; Jang, Yoon Jeong; Hage, David S.

    2010-01-01

    High-performance affinity chromatography was used to study binding by the drug lidocaine to human serum albumin (HSA) and α1–acid glycoprotein (AGP). AGP had strong binding to lidocaine, with an association equilibrium constant (Ka) of 1.1-1.7 × 105 M-1 at 37 °C and pH 7.4. Lidocaine had weak-to-moderate binding to HSA, with a Ka in the range of 103 to 104 M-1. Competitive experiments with site selective probes showed that lidocaine was interacting with Sudlow site II of HSA and the propranolol site of AGP. These results agree with previous observations in the literature and provide a better quantitative understanding of how lidocaine binds to these serum proteins and is transported in the circulation. This study also demonstrates how HPAC can be used to examine the binding of a drug with multiple serum proteins and provide detailed information on the interaction sites and equilibrium constants that are involved in such processes. PMID:20138813

  4. Sterol carrier protein-2: binding protein for endocannabinoids.

    PubMed

    Liedhegner, Elizabeth Sabens; Vogt, Caleb D; Sem, Daniel S; Cunningham, Christopher W; Hillard, Cecilia J

    2014-08-01

    The endocannabinoid (eCB) system, consisting of eCB ligands and the type 1 cannabinoid receptor (CB1R), subserves retrograde, activity-dependent synaptic plasticity in the brain. eCB signaling occurs "on-demand," thus the processes regulating synthesis, mobilization and degradation of eCBs are also primary mechanisms for the regulation of CB1R activity. The eCBs, N-arachidonylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG), are poorly soluble in water. We hypothesize that their aqueous solubility, and, therefore, their intracellular and transcellular distribution, are facilitated by protein binding. Using in silico docking studies, we have identified the nonspecific lipid binding protein, sterol carrier protein 2 (SCP-2), as a potential AEA binding protein. The docking studies predict that AEA and AM404 associate with SCP-2 at a putative cholesterol binding pocket with ∆G values of -3.6 and -4.6 kcal/mol, respectively. These values are considerably higher than cholesterol (-6.62 kcal/mol) but consistent with a favorable binding interaction. In support of the docking studies, SCP-2-mediated transfer of cholesterol in vitro is inhibited by micromolar concentrations of AEA; and heterologous expression of SCP-2 in HEK 293 cells increases time-related accumulation of AEA in a temperature-dependent fashion. These results suggest that SCP-2 facilitates cellular uptake of AEA. However, there is no effect of SCP-2 transfection on the cellular accumulation of AEA determined at equilibrium or the IC50 values for AEA, AM404 or 2-AG to inhibit steady state accumulation of radiolabelled AEA. We conclude that SCP-2 is a low affinity binding protein for AEA that can facilitate its cellular uptake but does not contribute significantly to intracellular sequestration of AEA.

  5. Gene encoding herbicide safener binding protein

    SciTech Connect

    Walton, J.D.; Scott-Craig, J.S.

    1999-10-26

    The cDNA encoding safener binding protein (SafBP), also referred to as SBP1, is presented. The deduced amino acid sequence is provided. Methods of making and using SBP1 and SafBP to alter a plant's sensitivity to certain herbicides or a plant's responsiveness to certain safeners are also provided, as well as expression vectors, transgenic plants or other organisms transfected with vectors and seeds from the plants.

  6. Elevated mercury bound to serum proteins in methylmercury poisoned rats after selenium treatment.

    PubMed

    Li, Yunyun; Fan, Yuqin; Zhao, Jiating; Xu, Xiaohan; Jing, Hui; Shang, Lihai; Gao, Yuxi; Li, Bai; Li, Yu-Feng

    2016-10-01

    Methylmercury is a toxic pollutant and is generated by microbial methylation of elemental or inorganic mercury in the environment. Previous study found decreased hepatic MDA levels and urinary mercury levels in methylmercury poisoned rats after sodium selenite treatment. This study further found increased mercury levels in serum samples from methylmercury poisoned rats after selenium treatment. By using size exclusion chromatography coupled to inductively coupled plasma mass spectrometry, three Hg- binding protein fractions and two Se-binding protein fractions were identified with the molecular weight of approximately 21, 40, and 75 kDa and of 40 and 75 kDa, respectively. Elevated mercury level in the 75 kDa protein fraction was found binding with both Hg and Se, which may explain the decreased urinary Hg excretion in MeHg poisoned rats after Se treatment. MALDI-TOF-MS analysis of the serum found that the 75 kDa protein fractions were albumin binding with both Hg and Se and the 21 kDa fraction was Hg- binding metallothionein. PMID:27542163

  7. Polynucleotides encoding TRF1 binding proteins

    DOEpatents

    Campisi, Judith; Kim, Sahn-Ho

    2002-01-01

    The present invention provides a novel telomere associated protein (Trf1-interacting nuclear protein 2 "Tin2") that hinders the binding of Trf1 to its specific telomere repeat sequence and mediates the formation of a Tin2-Trf1-telomeric DNA complex that limits telomerase access to the telomere. Also included are the corresponding nucleic acids that encode the Tin2 of the present invention, as well as mutants of Tin2. Methods of making, purifying and using Tin2 of the present invention are described. In addition, drug screening assays to identify drugs that mimic and/or complement the effect of Tin2 are presented.

  8. Spectroscopic imaging of serum proteins using quantum cascade lasers.

    PubMed

    Mukherjee, Anadi; Bylund, Quentin; Prasanna, Manu; Margalit, Yotam; Tihan, Tarik

    2013-03-01

    First measurements of biomedical imaging using quantum cascade lasers (QCL) are presented. We report spectroscopic imaging of serum proteins using QCLs as an example for monitoring surface biocontamination. We found that dry smears of human serum can be spectroscopically imaged, identified, and quantified with high sensitivity and specificity. The core parts of the imaging platform consist of optically multiplexing three QCLs and an uncooled microbolometer camera. We show imaging of human serum proteins at 6.1, 9.25, and 9.5 μm QCLs with high sensitivity and specificity. The sensitivity limit of 3  μg/cm² of the human serum spot was measured at an S/N=3.The specificity of human serum detection was measured at 99% probability at a threshold of 77  μg/cm². We anticipate our imaging technique to be a starting point for more sophisticated biomolecular diagnostic applications.

  9. The Promiscuous Protein Binding Ability of Erythrosine B Studied by Metachromasy (Metachromasia)

    PubMed Central

    Ganesan, Lakshmi; Buchwald, Peter

    2013-01-01

    The present study aims to elucidate aspects of the protein binding ability of erythrosine B (ErB), a poly-iodinated xanthene dye and an FDA-approved food colorant (FD&C Red No. 3), which we have identified recently as a promiscuous inhibitor of protein–protein interactions (PPI) with a remarkably consistent median inhibitory concentration (IC50) in the 5–30 µM range. Because ErB exhibits metachromasy, i.e., color change upon binding to several proteins, we exploited this property to quantify its binding to proteins such as bovine serum albumin (BSA) and CD40L (CD154) and to determine the corresponding binding constants (Kd) and stoichiometry (nb) using spectrophotometric methods. Binding was reversible and the estimated affinities for both protein targets obtained here (Kd values of 14 and 20 µM for BSA and CD40L, respectively) were in good agreement with that expected from the protein–protein interaction (PPI) inhibitory activity of ErB. A stoichiometry greater than one was observed both for CD40L and BSA binding (nb of 5–6 and 8–9 for BSA and CD40L, respectively) indicating the possibility of nonspecific binding of the flat an rigid ErB molecule at multiple sites, which could explain the promiscuous PPI inhibitory activity if some of these overlap with the binding site of the protein partner and interfere with the binding. PMID:23456742

  10. The promiscuous protein binding ability of erythrosine B studied by metachromasy (metachromasia).

    PubMed

    Ganesan, Lakshmi; Buchwald, Peter

    2013-04-01

    The present study aims to elucidate aspects of the protein binding ability of erythrosine B (ErB), a poly-iodinated xanthene dye and an FDA-approved food colorant (FD&C Red No. 3), which we have identified recently as a promiscuous inhibitor of protein-protein interactions (PPIs) with a remarkably consistent median inhibitory concentration (IC50 ) in the 5- to 30-μM range. Because ErB exhibits metachromasy, that is, color change upon binding to several proteins, we exploited this property to quantify its binding to proteins such as bovine serum albumin (BSA) and CD40L (CD154) and to determine the corresponding binding constants (Kd ) and stoichiometry (nb ) using spectrophotometric methods. Binding was reversible, and the estimated affinities for both protein targets obtained here (Kd values of 14 and 20 μM for BSA and CD40L, respectively) were in good agreement with that expected from the PPI inhibitory activity of ErB. A stoichiometry greater than one was observed both for CD40L and BSA binding (nb of 5-6 and 8-9 for BSA and CD40L, respectively), indicating the possibility of nonspecific binding of the flat and rigid ErB molecule at multiple sites, which could explain the promiscuous PPI inhibitory activity if some of these overlap with the binding site of the protein partner and interfere with the binding.

  11. Binding of the bioactive component Aloe dihydroisocoumarin with human serum albumin

    NASA Astrophysics Data System (ADS)

    Zhang, Xiu-Feng; Xie, Ling; Liu, Yang; Xiang, Jun-Feng; Tang, Ya-Lin

    2008-11-01

    Aloe dihydroisocoumarin, one of new components isolated from Aloe vera, can scavenge reactive oxygen species. In order to explore the mechanism of drug action at a molecular level, the binding of Aloe dihydroisocoumarin with human serum albumin (HSA) has been investigated by using fluorescence, ultraviolet (UV), circular dichroism (CD) and Fourier transform infrared (FT-IR) spectroscopy, fluorescence dynamics, and molecular dynamic docking for the first time. We observed a quenching of fluorescence of HSA in the presence of Aloe dihydroisocoumarin and also analyzed the quenching results using the Stern-Volmer equation and obtained high affinity binding to HSA. An isoemissive point at 414 nm is seen, indicating that the quenching of HSA fluorescence depends on the formation of Aloe dihydroisocoumarin-HSA complex, which is further confirmed by fluorescence dynamic result. From the CD and FT-IR results, it is apparent that the interaction of Aloe dihydroisocoumarin with HSA causes a conformational change of the protein, with the gain of α-helix, β-sheet and random coil stability and the loss of β-turn content. Data obtained by fluorescence spectroscopy, fluorescence dynamics, CD, and FTIR experiments along with the docking studies suggest that Aloe dihydroisocoumarin binds to residues located in subdomain IIA of HSA.

  12. Differential serum protein markers and the clinical severity of asthma

    PubMed Central

    Meyer, Norbert; Nuss, Sarah Janine; Rothe, Thomas; Siebenhüner, Alexander; Akdis, Cezmi A; Menz, Günter

    2014-01-01

    Background Asthma is a heterogeneous disease characterized by different clinical phenotypes and the involvement of multiple inflammatory pathways. During airway inflammation, many cytokines and chemokines are released and some are detectable in the sera. Objective Serum chemokines and cytokines, involved in airway inflammation in asthma patients, were investigated. Methods A total of 191 asthma patients were classified by hierarchical cluster analysis, including the following parameters: forced expiratory volume in 1 second (FEV1), eosinophil cationic protein (ECP) serum levels, blood eosinophils, Junipers asthma symptom score, and the change in FEV1, ECP serum levels, and blood eosinophils after 3 weeks of asthma therapy. Serum proteins were measured by multiplex analysis. Receiver operating characteristic (ROC) curves were used to evaluate the validity of serum proteins for discriminating between asthma clusters. Results Classification of asthma patients identified one cluster with high ECP serum levels, increased blood eosinophils, low FEV1 values, and good FEV1 improvement in response to asthma therapy (n=60) and one cluster with low ECP serum levels, low numbers of blood eosinophils, higher FEV1 values, and no FEV1 improvement in response to asthma therapy (n=131). Serum interleukin (IL)-8, eotaxin, vascular endothelial growth factor (VEGF), cutaneous T-cell-attracting chemokine (CTACK), growth-related oncogene (GRO)-α, and hepatocyte growth factor (HGF) were significantly different between the two clusters of asthma patients. ROC analysis for serum proteins calculated a sensitivity of 55.9% and specificity of 75.8% for discriminating between them. Conclusion Serum cytokine and chemokine levels might be predictors for the severity of asthmatic inflammation, asthma control, and response to therapy, and therefore might be useful for treatment optimization. PMID:24851055

  13. Riboflavin-binding protein exhibits selective sweet suppression toward protein sweeteners.

    PubMed

    Maehashi, Kenji; Matano, Mami; Kondo, Azusa; Yamamoto, Yasushi; Udaka, Shigezo

    2007-02-01

    Riboflavin-binding protein (RBP) is well known as a riboflavin carrier protein in chicken egg and serum. A novel function of RBP was found as a sweet-suppressing protein. RBP, purified from hen egg white, suppressed the sweetness of protein sweeteners such as thaumatin, monellin, and lysozyme, whereas it did not suppress the sweetness of low molecular weight sweeteners such as sucrose, glycine, D-phenylalanine, saccharin, cyclamate, aspartame, and stevioside. Therefore, the sweet-suppressing activity of RBP was apparently selective to protein sweeteners. The sweet suppression by RBP was independent of binding of riboflavin with its molecule. Yolk RBP, with minor structural differences compared with egg white RBP, also elicited a weaker sweet suppression. However, other commercially available proteins including ovalbumin, ovomucoid, beta-lactogloblin, myoglobin, and albumin did not substantially alter the sweetness of protein sweeteners. Because a prerinse with RBP reduced the subsequent sweetness of protein sweeteners, whereas the enzymatic activity of lysozyme and the elution profile of lysozyme on gel permeation chromatography were not affected by RBP, it is suggested that the sweet suppression is caused by an interaction of RBP with a sweet taste receptor rather than with the protein sweeteners themselves. The selectivity in the sweet suppression by RBP is consistent with the existence of multiple interaction sites within a single sweet taste receptor.

  14. Mannan-binding lectin in cerebrospinal fluid: a leptomeningeal protein

    PubMed Central

    2012-01-01

    Background Mannan-binding lectin (MBL), a protein of the innate immune response is attracting increasing clinical interest, in particularly in relation to its deficiency. Due to its involvement in brain diseases, identifying the source of MBL in CSF is important. Analysis of cerebrospinal fluid (CSF) can provide data that discriminates between blood-, brain-, and leptomeninges-derived proteins. To detect the source of MBL in CSF we need to consider three variables: the molecular size-dependent concentration gradient between CSF and blood, the variation in transfer between blood and CSF, and the CSF MBL concentration correlation with the albumin CSF/serum quotient (QAlb), i.e., with CSF flow rate. Methods MBL was assayed in samples of CSF and serum with an ELISA, coated with anti MBL antibodies. Routine parameters such as albumin-, immunoglobulin- CSF/serum quotients, oligoclonal IgG and cell count were used to characterize the patient groups. Groups comprised firstly, control patients without organic brain disease with normal CSF and normal barrier function and secondly, patients without inflammatory diseases but with increased QAlb, i.e. with a blood CSF barrier dysfunction. Results MBL concentration in CSF was at least five-fold higher than expected for a molecular-size-dependent passage from blood. Secondly, in a QIgM/QAlb quotient diagram (Reibergram) 9/13 cases showed an intrathecal fraction in some cases over 80% of total CSF MBL concentration 3) The smaller inter-individual variation of MBL concentrations in CSF of the control group (CV = 66%) compared to the MBL concentrations in serum (CV = 146%) indicate an independent source of MBL in CSF. 4) The absolute MBL concentration in CSF increases with increasing QAlb. Among brain-derived proteins in CSF only the leptomeningeal proteins showed a (linear) increase with decreasing CSF flow rate, neuronal and glial proteins are invariant to changes of QAlb. Conclusions MBL in CSF is predominantly brain

  15. Binding interaction of a gamma-aminobutyric acid derivative with serum albumin: an insight by fluorescence and molecular modeling analysis.

    PubMed

    Pal, Uttam; Pramanik, Sumit Kumar; Bhattacharya, Baisali; Banerji, Biswadip; C Maiti, Nakul

    2016-01-01

    gamma-Aminobutyric acid (GABA) is a naturally occurring inhibitory neurotransmitter and some of its derivatives showed potential to act as neuroprotective agents. With the aim of developing potential leads for anti-Alzheimer's drugs, in this study we synthesized a novel GABA derivative, methyl 4-(4-((2-(tert-butoxy)-2-oxoethyl)(4-methoxyphenyl)amino)benzamido)butanoate by a unique method of Buchwald-Hartwig cross coupling synthesis; with some modification the yield was significant (97 %) and spectroscopic analysis confirmed that the compound was highly pure (98.8 % by HPLC). The druglikeness properties such as logP, logS, and polar surface area were 3.87, -4.86 and 94.17 Å(2) respectively and it satisfied the Lipinski's rule of five. We examined the binding behavior of the molecule to human serum albumin (HSA) and bovine serum albumin (BSA) which are known as universal drug carrier proteins. The molecule binds to the proteins with low micromolar efficiency and the calculated binding constants were 3.85 and 2.75 micromolar for BSA and HSA, respectively. Temperature dependent study using van't Hoff equation established that the binding was thermodynamically favorable and the changes in the Gibb's free energy, ΔG for the binding process was negative. However, the binding of the molecule to HSA was enthalpy driven and the change of enthalpy (ΔH) was -10.63 kJ/mol, whereas, the binding to BSA was entropy driven and the change in entropy ΔS was 222 J/mol. The molecular docking analysis showed that the binding sites of the molecule lie in the groove between domain I and domain III of BSA, whereas it is within the domain I in case of HSA, which also supported the different thermodynamic nature of binding with HSA and BSA. Molecular dynamics analysis suggested that the binding was stable with time and provided further details of the binding interaction. Molecular dynamics study also highlighted the effect of this ligand binding on the serum albumin structure. PMID

  16. Interaction of Serum Proteins with Surface of Hemodialysis Fiber Membranes

    NASA Astrophysics Data System (ADS)

    Afrin, Rehana; Shirako, Yuji; Kishimoto, Kikuo; Ikai, Atsushi

    2012-08-01

    The poly(vinyl pyrrolidone)-covered hydrophilic surface of hollow-fiber membranes (fiber membrane, hereafter) for hemodialysis was mechanically probed using modified tips on an atomic force microscope (AFM) with covalent crosslinkers and several types of serum protein. The retraction part of many of the force extension (F-E) curves obtained with AFM tips coated with serum albumin had a long and smooth extension up to 200-300 nm indicating forced elongation of poly(vinyl pyrrolidone) chains. When fibrinogen-coated tips were used, long extension F-E curves up to 500 nm with multiple peaks were obtained in addition to smooth curves most likely reflecting the unfolding of fibrinogen molecules. The results indicated that individual polymer chains had a significant affinity toward serum proteins. The adhesion frequency of tips coated with serum proteins was lower on the poly(vinyl pyrrolidone) surface than on the uncoated hydrophobic polysulfone surface.

  17. Novel stereospecificity of the L-arabinose-binding protein

    NASA Astrophysics Data System (ADS)

    Quiocho, Florante A.; Vyas, Nand K.

    1984-08-01

    Tertiary structure refinement at 1.7 Å resolution of the liganded form of L-arabinose-binding protein from Escherichia coli has revealed a novel binding site geometry which accommodates both α- and β-anomers of L-arabinose. This detailed structure analysis provides new understanding of protein-sugar interaction, the process by which the binding protein minimizes the difference in the stability of the two bound sugar anomers, and the roles of periplasmic binding proteins in active transport

  18. Systematic discovery of Xist RNA binding proteins.

    PubMed

    Chu, Ci; Zhang, Qiangfeng Cliff; da Rocha, Simão Teixeira; Flynn, Ryan A; Bharadwaj, Maheetha; Calabrese, J Mauro; Magnuson, Terry; Heard, Edith; Chang, Howard Y

    2015-04-01

    Noncoding RNAs (ncRNAs) function with associated proteins to effect complex structural and regulatory outcomes. To reveal the composition and dynamics of specific noncoding RNA-protein complexes (RNPs) in vivo, we developed comprehensive identification of RNA binding proteins by mass spectrometry (ChIRP-MS). ChIRP-MS analysis of four ncRNAs captures key protein interactors, including a U1-specific link to the 3' RNA processing machinery. Xist, an essential lncRNA for X chromosome inactivation (XCI), interacts with 81 proteins from chromatin modification, nuclear matrix, and RNA remodeling pathways. The Xist RNA-protein particle assembles in two steps coupled with the transition from pluripotency to differentiation. Specific interactors include HnrnpK, which participates in Xist-mediated gene silencing and histone modifications but not Xist localization, and Drosophila Split ends homolog Spen, which interacts via the A-repeat domain of Xist and is required for gene silencing. Thus, Xist lncRNA engages with proteins in a modular and developmentally controlled manner to coordinate chromatin spreading and silencing.

  19. Systematic discovery of Xist RNA binding proteins

    PubMed Central

    Chu, Ci; Zhang, Qiangfeng Cliff; da Rocha, Simão Teixeira; Flynn, Ryan A.; Bharadwaj, Maheetha; Calabrese, J. Mauro; Magnuson, Terry; Heard, Edith; Chang, Howard Y.

    2015-01-01

    Summary Noncoding RNAs (ncRNAs) function with associated proteins to effect complex structural and regulatory outcomes. To reveal the composition and dynamics of specific noncoding RNA- protein complexes (RNPs) in vivo, we developed comprehensive identification of RNA-binding proteins by mass spectrometry (ChIRP-MS). ChIRP-MS analysis of four ncRNAs captures key protein interactors, including a U1-specific link to the 3′ RNA processing machinery. Xist, an essential lncRNA for X-chromosome inactivation (XCI), interacts with 81 proteins from chromatin modification, nuclear matrix, and RNA remodeling pathways. The Xist RNA-protein particle assembles in two steps coupled with the transition from pluripotency to differentiation. Specific interactors include HnrnpK that participates in Xist-mediated gene silencing and histone modifications, but not Xist localization and Drosophila Split ends homolog Spen that interacts via the A-repeat domain of Xist and is required for gene silencing. Thus, Xist lncRNA engages with proteins in a modular and developmentally controlled manner to coordinate chromatin spreading and silencing. PMID:25843628

  20. Porphyrin-induced photodynamic cross-linking of hepatic heme-binding proteins.

    PubMed

    Vincent, S H; Holeman, B; Cully, B C; Muller-Eberhard, U

    1986-01-27

    Three types of hepatic proteins, a heme-binding Z protein, a mixture of the glutathione S-transferases and a cytochrome P450 isozyme, were shown to be susceptible to photodynamic cross-linking and loss in antigenicity by naturally occurring porphyrins. At 50 microM, uroporphyrin caused the most and protoporphyrin the least photodecomposition. Hemopexin, a specific serum heme carrier, was photodecomposed but no cross-linking was detected. Heme and scavengers of singlet oxygen partially prevented protein photodecomposition.

  1. Probing the Sudlow binding site with warfarin: how does gold nanocluster growth alter human serum albumin?

    PubMed

    Russell, B A; Mulheran, P A; Birch, D J S; Chen, Y

    2016-08-17

    The search for new fluorescent molecules is vital to the advancement of molecular imaging and sensing for the benefit of medical and biological studies. One such class of new fluorescent molecule is fluorescent gold nanoclusters encapsulated in Human Serum Albumin (HSA-AuNC). In order to use this new fluorescent molecule as a sensor or fluorescent marker in biological imaging both in vitro and in vivo it is important to understand whether/how the proteins function is changed by the synthesis and presence of the gold nanoclusters inside the protein. Natural HSA acts as the main drug carrier in the blood stream, carrying a multitude of molecules in two major binding sites (Sudlow I and II). To test the effects of gold on the ability of HSA to act as a drug carrier we employed warfarin, an anticoagulant drug, as a fluorescent probe to detect changes between natural HSA and HSA-AuNCs. AuNCs are found to inhibit the take up of warfarin by HSA. Evidence for this is found from fluorescence spectral and lifetime measurements. Interestingly, the presence of warfarin bound to HSA also inhibits the formation of gold nanoclusters within protein. This research provides valuable insight into how protein function can change upon synthesis of AuNCs and how that will affect their use as a fluorescent probe.

  2. Engineering a uranyl specific binding protein from NikR.

    SciTech Connect

    Wegner, S. V.; Boyaci, H.; Chen, H.; Jensen, M. P.; He, C.

    2009-03-16

    The first uranyl-selective DNA-binding protein is designed using the E. coli nickel(II)-responsive protein NikR as the template. The resulting NikR? protein binds uranyl (see picture) with a dissociation constant Kd=53?nM and selectively binds to DNA in the presence of uranyl.

  3. Copper-binding protein in Mimulus guttatus

    SciTech Connect

    Robinson, N.J.; Thurman, D.A.

    1985-01-01

    A Cu-binding protein has been purified from the roots of Mimulus guttatus using gel permeation chromatography on Sephadex G-75 and anion exchange chromatography on DEAE Biogel A. The protein has similar properties to putative metallothioneins (MTS) purified from other angiosperms. Putative MT was estimated by measuring the relative percentage incorporation of (/sup 35/S) into fractions containing the protein after HPLC on SW 3000-gel. In the roots of both Cu-tolerant and non tolerant plants synthesis of putative MT is induced by increased Cu concentration in the nutrient solution. The relative percentage incorporation of (/sup 35/S) into putative MT is significantly higher in extracts from the roots of Cu-tolerant than non tolerant M. guttatus after growth in 1 ..mu..M Cu suggesting involvement in the mechanism of tolerance. 22 refs., 2 figs., 1 tab.

  4. A Crayfish Insulin-like-binding Protein

    PubMed Central

    Rosen, Ohad; Weil, Simy; Manor, Rivka; Roth, Ziv; Khalaila, Isam; Sagi, Amir

    2013-01-01

    Across the animal kingdom, the involvement of insulin-like peptide (ILP) signaling in sex-related differentiation processes is attracting increasing attention. Recently, a gender-specific ILP was identified as the androgenic sex hormone in Crustacea. However, moieties modulating the actions of this androgenic insulin-like growth factor were yet to be revealed. Through molecular screening of an androgenic gland (AG) cDNA library prepared from the crayfish Cherax quadricarinatus, we have identified a novel insulin-like growth factor-binding protein (IGFBP) termed Cq-IGFBP. Based on bioinformatics analyses, the deduced Cq-IGFBP was shown to share high sequence homology with IGFBP family members from both invertebrates and vertebrates. The protein also includes a sequence determinant proven crucial for ligand binding, which according to three-dimensional modeling is assigned to the exposed outer surface of the protein. Recombinant Cq-IGFBP (rCq-IGFBP) protein was produced and, using a “pulldown” methodology, was shown to specifically interact with the insulin-like AG hormone of the crayfish (Cq-IAG). Particularly, using both mass spectral analysis and an immunological tool, rCq-IGFBP was shown to bind the Cq-IAG prohormone. Furthermore, a peptide corresponding to residues 23–38 of the Cq-IAG A-chain was found sufficient for in vitro recognition by rCq-IGFBP. Cq-IGFBP is the first IGFBP family member shown to specifically interact with a gender-specific ILP. Unlike their ILP ligands, IGFBPs are highly conserved across evolution, from ancient arthropods, like crustaceans, to humans. Such conservation places ILP signaling at the center of sex-related phenomena in early animal development. PMID:23775079

  5. Identification of DNA-binding and protein-binding proteins using enhanced graph wavelet features.

    PubMed

    Zhu, Yuan; Zhou, Weiqiang; Dai, Dao-Qing; Yan, Hong

    2013-01-01

    Interactions between biomolecules play an essential role in various biological processes. For predicting DNA-binding or protein-binding proteins, many machine-learning-based techniques have used various types of features to represent the interface of the complexes, but they only deal with the properties of a single atom in the interface and do not take into account the information of neighborhood atoms directly. This paper proposes a new feature representation method for biomolecular interfaces based on the theory of graph wavelet. The enhanced graph wavelet features (EGWF) provides an effective way to characterize interface feature through adding physicochemical features and exploiting a graph wavelet formulation. Particularly, graph wavelet condenses the information around the center atom, and thus enhances the discrimination of features of biomolecule binding proteins in the feature space. Experiment results show that EGWF performs effectively for predicting DNA-binding and protein-binding proteins in terms of Matthew's correlation coefficient (MCC) score and the area value under the receiver operating characteristic curve (AUC). PMID:24334394

  6. Cloning and sequence of the human nuclear protein cyclin: homology with DNA-binding proteins.

    PubMed Central

    Almendral, J M; Huebsch, D; Blundell, P A; Macdonald-Bravo, H; Bravo, R

    1987-01-01

    A full-length cDNA clone for the human nuclear protein cyclin has been isolated by using polyclonal antibodies and sequenced. The sequence predicts a protein of 261 amino acids (Mr 29,261) with a high content of acidic (41, aspartic and glutamic acids) versus basic (24, lysine and arginine) amino acids. The identity of the cDNA clone was confirmed by in vitro hybrid-arrested translation of cyclin mRNA. Blot-hybridization analysis of mouse 3T3 and human MOLT-4 cell RNA revealed a mRNA species of approximately the same size as the cDNA insert. Expression of cyclin mRNA was undetectable or very low in quiescent cells, increasing after 8-10 hr of serum stimulation. Inhibition of DNA synthesis by hydroxyurea in serum-stimulated cells did not affect the increase in cyclin mRNA but inhibited 90% the expression of H3 mRNA. These results suggest that expression of cyclin and histone mRNAs are controlled by different mechanisms. A region of the cyclin sequence shows a significant homology with the putative DNA binding site of several proteins, specially with the transcriptional-regulator cAMP-binding protein of Escherichia coli, suggesting that cyclin could play a similar role in eukaryotic cells. Images PMID:2882507

  7. Identification of C1q as a Binding Protein for Advanced Glycation End Products.

    PubMed

    Chikazawa, Miho; Shibata, Takahiro; Hatasa, Yukinori; Hirose, Sayumi; Otaki, Natsuki; Nakashima, Fumie; Ito, Mika; Machida, Sachiko; Maruyama, Shoichi; Uchida, Koji

    2016-01-26

    Advanced glycation end products (AGEs) make up a heterogeneous group of molecules formed from the nonenzymatic reaction of reducing sugars with the free amino groups of proteins. The abundance of AGEs in a variety of age-related diseases, including diabetic complications and atherosclerosis, and their pathophysiological effects suggest the existence of innate defense mechanisms. Here we examined the presence of serum proteins that are capable of binding glycated bovine serum albumin (AGEs-BSA), prepared upon incubation of BSA with dehydroascorbate, and identified complement component C1q subcomponent subunit A as a novel AGE-binding protein in human serum. A molecular interaction analysis showed the specific binding of C1q to the AGEs-BSA. In addition, we identified DNA-binding regions of C1q, including a collagen-like domain, as the AGE-binding site and established that the amount of positive charge on the binding site was the determining factor. C1q indeed recognized several other modified proteins, including acylated proteins, suggesting that the binding specificity of C1q might be ascribed, at least in part, to the electronegative potential of the ligand proteins. We also observed that C1q was involved in the AGEs-BSA-activated deposition of complement proteins, C3b and C4b. In addition, the AGEs-BSA mediated the proteolytic cleavage of complement protein 5 to release C5a. These findings provide the first evidence of AGEs as a new ligand recognized by C1q, stimulating the C1q-dependent classical complement pathway. PMID:26731343

  8. Competitive protein binding assay for piritrexim

    SciTech Connect

    Woolley, J.L. Jr.; Ringstad, J.L.; Sigel, C.W. )

    1989-09-01

    A competitive protein binding assay for piritrexim (PTX, 1) that makes use of a commercially available radioassay kit for methotrexate has been developed. After it is selectively extracted from plasma, PTX competes with ({sup 125}I)methotrexate for binding to dihydrofolate reductase isolated from Lactobacillus casei. Free drug is separated from bound drug by adsorption to dextran-coated charcoal. Piritrexim is measurable over a range of 0.01 to 10.0 micrograms/mL in plasma with a coefficient of variation less than 15%. The limit of sensitivity of the assay is approximately 2 ng/mL. An excellent correlation between this assay and a previously published HPLC method was found.

  9. Comparison of the rate of uptake and biologic effects of retinol added to human keratinocytes either directly to the culture medium or bound to serum retinol-binding protein

    SciTech Connect

    Hodam, J.R.; St. Hilaire, P.; Creek, K.E. )

    1991-08-01

    Retinol circulates in the plasma bound to retinol-binding protein (RBP), but the mechanism by which retinol is transferred from RBP to target cells is not known. To study retinol delivery, human keratinocytes (HKc) were incubated with (3H)retinol added directly to the culture medium or bound to RBP and the uptake of (3H)retinol was determined at various times. During the first hour of incubation, the rate of (3H)retinol accumulation by HKc was about 40 times greater when the vitamin was added directly to the media rather than bound to RBP. Although maximal uptake of (3H)retinol added directly to the culture medium occurred at 3 h, the uptake of (3H)retinol from RBP was linear with time for at least 72 h. By 57 h, cell-associated (3H)retinol was the same whether it was added directly to the culture medium or bound to RBP. Excess unlabeled retinol or pretreatment of HKc with retinol had no effect on the uptake of (3H)retinol added directly to the culture medium or bound to RBP. Apo- but not holo-RBP was capable of competing with HKc for the uptake of (3H)retinol from RBP. No specific or saturable binding of 125I-labeled RBP to HKc cultured in the absence or the presence of retinol was found. The dose response of retinol inhibition of cholesterol sulfate synthesis and phorbol ester-induced ornithine decarboxylase activity or retinol modulation of keratin expression was the same whether the retinol was delivered to HKc bound to RBP or added directly to the medium. Our data support a mechanism for retinol delivery from RBP to HKc that does not involve cell-surface RBP receptors but instead suggest that the vitamin is first slowly released from RBP and then becomes cell-associated from the aqueous phase. This mechanism is consistent with the finding that HKc respond identically to retinol whether or not it is delivered to them bound to RBP.

  10. Mechanical unfolding of ribose binding protein and its comparison with other periplasmic binding proteins.

    PubMed

    Kotamarthi, Hema Chandra; Narayan, Satya; Ainavarapu, Sri Rama Koti

    2014-10-01

    Folding and unfolding studies on large, multidomain proteins are still rare despite their high abundance in genomes of prokaryotes and eukaryotes. Here, we investigate the unfolding properties of a 271 residue, two-domain ribose binding protein (RBP) from the bacterial periplasm using single-molecule force spectroscopy. We observe that RBP predominately unfolds via a two-state pathway with an unfolding force of ∼80 pN and an unfolding contour length of ∼95 nm. Only a small population (∼15%) of RBP follows three-state pathways. The ligand binding neither increases the mechanical stability nor influences the unfolding flux of RBP through different pathways. The kinetic partitioning between two-state and three-state pathways, which has been reported earlier for other periplasmic proteins, is also observed in RBP, albeit to a lesser extent. These results provide important insights into the mechanical stability and unfolding processes of large two-domain proteins and highlight the contrasting features upon ligand binding. Protein structural topology diagrams are used to explain the differences in the mechanical unfolding behavior of RBP with other periplasmic binding proteins.

  11. Crystal structure of equine serum albumin in complex with cetirizine reveals a novel drug binding site.

    PubMed

    Handing, Katarzyna B; Shabalin, Ivan G; Szlachta, Karol; Majorek, Karolina A; Minor, Wladek

    2016-03-01

    Serum albumin (SA) is the main transporter of drugs in mammalian blood plasma. Here, we report the first crystal structure of equine serum albumin (ESA) in complex with antihistamine drug cetirizine at a resolution of 2.1Å. Cetirizine is bound in two sites--a novel drug binding site (CBS1) and the fatty acid binding site 6 (CBS2). Both sites differ from those that have been proposed in multiple reports based on equilibrium dialysis and fluorescence studies for mammalian albumins as cetirizine binding sites. We show that the residues forming the binding pockets in ESA are highly conserved in human serum albumin (HSA), and suggest that binding of cetirizine to HSA will be similar. In support of that hypothesis, we show that the dissociation constants for cetirizine binding to CBS2 in ESA and HSA are identical using tryptophan fluorescence quenching. Presence of lysine and arginine residues that have been previously reported to undergo nonenzymatic glycosylation in CBS1 and CBS2 suggests that cetirizine transport in patients with diabetes could be altered. A review of all available SA structures from the PDB shows that in addition to the novel drug binding site we present here (CBS1), there are two pockets on SA capable of binding drugs that do not overlap with fatty acid binding sites and have not been discussed in published reviews. PMID:26896718

  12. Human complement protein C99 is a calcium binding protein

    SciTech Connect

    Thielens, N.M.; Lohner, K.; Esser, A.F.

    1988-05-15

    Human complement protein C9 is shown to be a metalloprotein that binds 1 mol of Ca/sup 2 +//mol of C9 with a dissociation constant of 3 ..mu..m as measured by equilibrium dialysis. Incubation with EDTA removes the bound calcium, resulting in a apoprotein with decreased thermal stability. This loss in stability leads to aggregation and, therefore, to loss of hemolytic activity upon heating to a few degrees above the physiological temperature. Heat-induced aggregation of apoC9 can be prevented by salts that stabilize proteins according to the Hofmeister series of lyotropic ions, suggesting that the ion in native C9 may ligand with more than one structural element of domain of the protein. Ligand blotting indicates that the calcium binding site is located in the amino-terminal half of the protein. Removal of calcium by inclusion of EDTA in assay mixtures has no effect on the hemolytic activity of C9, and its capacity to bind to C8 in solution, or to small unilamellar lipid vesicles at temperatures at or below the physiological range. Although the precise structural and functional role of the bound calcium is not know, it is clear that it provides thermal stability to C9 and it may have a function in regulation of membrane insertion.

  13. Binding to Bovine Serum Albumin Protects β-Carotene against Oxidative Degradation.

    PubMed

    Chang, Hui-Ting; Cheng, Hong; Han, Rui-Min; Zhang, Jian-Ping; Skibsted, Leif H

    2016-07-27

    Binding to bovine serum albumin (BSA) was found to protect β-carotene (β-Car) dissolved in air-saturated phosphate buffer solution/tetrahydrofuran (9:1, v/v) efficiently against photobleaching resulting from laser flash excitation at 532 nm. From dependence of the relative photobleaching yield upon the BSA concentration, an association constant of Ka = 4.67 × 10(5) L mol(-1) for β-Car binding to BSA was determined at 25 °C. Transient absorption spectroscopy confirmed less bleaching of β-Car on the microsecond time scale in the presence of BSA, while kinetics of triplet-state β-Car was unaffected by the presence of oxygen. The protection of β-Car against this type of reaction seems accordingly to depend upon dissipation of excitation energy from an excited state into the protein matrix. Static quenching of BSA fluorescence by β-Car had a Stern-Volmer constant of Ksv = 2.67 × 10(4) L mol(-1), with ΔH = 17 kJ mol(-1) and ΔS = 142 J mol(-1) K(-1) at 25 °C. Quenching of tryptophan (Trp) fluorescence by β-Car suggests involvement of Trp in binding of β-Car to BSA through hydrophobic interaction, while the lower value for the Stern-Volmer constant Ksv compared to the binding constant, Ka, may indicate involvement of β-Car aggregates. Bound β-Car increased the random coil fraction of BSA at the expense of α-helix, as shown by circular dichroism, affecting the β-Car configuration, as shown by Raman spectroscopy. PMID:27399620

  14. Effect of protein binding on the in vitro activity and pharmacodynamics of faropenem.

    PubMed

    Boswell, F J; Ashby, J P; Andrews, J M; Wise, R

    2002-10-01

    The influence of protein binding upon different aspects of the in vitro activity of faropenem on recently isolated Staphylococcus aureus and respiratory pathogens was determined. The protein binding of faropenem was investigated in inactivated human serum and albumin by ultrafiltration. The effect of the presence of inactivated human serum and albumin on the in vitro activity of faropenem and amoxicillin was established and the influence of protein binding on the pharmacodynamic properties of faropenem and amoxicillin was compared. The protein binding of faropenem was 96% and 95% in pooled inactivated human serum and 99% and 98% in 45 mg/L human albumin, at 8 and 25 mg/L, respectively. The presence of inactivated human serum (20% and 70%) increased the mean faropenem MICs by two dilution steps and albumin increased the mean faropenem MICs by three dilution steps. The mean amoxicillin MICs were less affected than faropenem by the presence of either inactivated human serum or albumin. Faropenem and amoxicillin exhibited similar time-dependent kinetics. Faropenem was bacteriostatic on Moraxella catarrhalis, Haemophilus influenzae and group A streptococci, and bactericidal for Streptococcus pneumoniae (after 4 h with concentrations equivalent to 5 x and 10 x MIC) in Iso-Sensitest broth. In 70% inactivated human serum faropenem was slowly bactericidal against M. catarrhalis, H. influenzae (one strain) and S. pneumoniae (one strain) but not group A streptococci and the other S. pneumoniae strain. A significant inoculum effect was observed with all strains except S. pneumoniae. Both faropenem and amoxicillin appeared more active in 70% inactivated human serum than in Iso-Sensitest broth. PMID:12356797

  15. 1HNMR study of methotrexate serum albumin (MTX SA) binding in rheumatoid arthritis

    NASA Astrophysics Data System (ADS)

    Sułkowska, A.; Maciążek-Jurczyk, M.; Bojko, B.; Równicka, J.; Sułkowski, W. W.

    2008-11-01

    Rheumatoid arthritis (RA) is an immunologically depended disease. It is characterized by a chronic, progressive inflammatory process. Methotrexate (4-amino-10-methylfolic acid, MTX) is the modifying drug used to treat RA. The aim of the presented studies is to determine the low affinity binding site of MTX in bovine (BSA) and human (HSA) serum albumin with the use of proton nuclear magnetic resonance ( 1HNMR) spectroscopy. The analysis of 1HNMR spectra of MTX in the presence of serum albumin (SA) allows us to observe the interactions between aromatic rings of the drug and the rings of amino acids located in the hydrophobic subdomains of the protein. On the basis of the chemical shifts σ [ppm] and the relaxation times T1 [s] of drug protons the hydrophobic interaction between MTX-SA and the stoichiometric molar ratio of the complex was evaluated. This work is a part of a spectroscopic study on MTX-SA interactions [A. Sułkowska, M. Maciążek, J. Równicka, B. Bojko, D. Pentak, W.W. Sułkowski, J. Mol. Struct. 834-836 (2007) 162-169].

  16. Reevaluation of ANS binding to human and bovine serum albumins: key role of equilibrium microdialysis in ligand - receptor binding characterization.

    PubMed

    Kuznetsova, Irina M; Sulatskaya, Anna I; Povarova, Olga I; Turoverov, Konstantin K

    2012-01-01

    In this work we return to the problem of the determination of ligand-receptor binding stoichiometry and binding constants. In many cases the ligand is a fluorescent dye which has low fluorescence quantum yield in free state but forms highly fluorescent complex with target receptor. That is why many researchers use dye fluorescence for determination of its binding parameters with receptor, but they leave out of account that fluorescence intensity is proportional to the part of the light absorbed by the solution rather than to the concentration of bound dye. We showed how ligand-receptor binding parameters can be determined by spectrophotometry of the solutions prepared by equilibrium microdialysis. We determined the binding parameters of ANS - human serum albumin (HSA) and ANS - bovine serum albumin (BSA) interaction, absorption spectra, concentration and molar extinction coefficient, as well as fluorescence quantum yield of the bound dye. It was found that HSA and BSA have two binding modes with significantly different affinity to ANS. Correct determination of the binding parameters of ligand-receptor interaction is important for fundamental investigations and practical aspects of molecule medicine and pharmaceutics. The data obtained for albumins are important in connection with their role as drugs transporters.

  17. Landscape of protein-small ligand binding modes.

    PubMed

    Kasahara, Kota; Kinoshita, Kengo

    2016-09-01

    Elucidating the mechanisms of specific small-molecule (ligand) recognition by proteins is a long-standing conundrum. While the structures of these molecules, proteins and ligands, have been extensively studied, protein-ligand interactions, or binding modes, have not been comprehensively analyzed. Although methods for assessing similarities of binding site structures have been extensively developed, the methods for the computational treatment of binding modes have not been well established. Here, we developed a computational method for encoding the information about binding modes as graphs, and assessing their similarities. An all-against-all comparison of 20,040 protein-ligand complexes provided the landscape of the protein-ligand binding modes and its relationships with protein- and chemical spaces. While similar proteins in the same SCOP Family tend to bind relatively similar ligands with similar binding modes, the correlation between ligand and binding similarities was not very high (R(2)  = 0.443). We found many pairs with novel relationships, in which two evolutionally distant proteins recognize dissimilar ligands by similar binding modes (757,474 pairs out of 200,790,780 pairs were categorized into this relationship, in our dataset). In addition, there were an abundance of pairs of homologous proteins binding to similar ligands with different binding modes (68,217 pairs). Our results showed that many interesting relationships between protein-ligand complexes are still hidden in the structure database, and our new method for assessing binding mode similarities is effective to find them. PMID:27327045

  18. Landscape of protein-small ligand binding modes.

    PubMed

    Kasahara, Kota; Kinoshita, Kengo

    2016-09-01

    Elucidating the mechanisms of specific small-molecule (ligand) recognition by proteins is a long-standing conundrum. While the structures of these molecules, proteins and ligands, have been extensively studied, protein-ligand interactions, or binding modes, have not been comprehensively analyzed. Although methods for assessing similarities of binding site structures have been extensively developed, the methods for the computational treatment of binding modes have not been well established. Here, we developed a computational method for encoding the information about binding modes as graphs, and assessing their similarities. An all-against-all comparison of 20,040 protein-ligand complexes provided the landscape of the protein-ligand binding modes and its relationships with protein- and chemical spaces. While similar proteins in the same SCOP Family tend to bind relatively similar ligands with similar binding modes, the correlation between ligand and binding similarities was not very high (R(2)  = 0.443). We found many pairs with novel relationships, in which two evolutionally distant proteins recognize dissimilar ligands by similar binding modes (757,474 pairs out of 200,790,780 pairs were categorized into this relationship, in our dataset). In addition, there were an abundance of pairs of homologous proteins binding to similar ligands with different binding modes (68,217 pairs). Our results showed that many interesting relationships between protein-ligand complexes are still hidden in the structure database, and our new method for assessing binding mode similarities is effective to find them.

  19. Regulation of Pluripotency by RNA Binding Proteins

    PubMed Central

    Ye, Julia; Blelloch, Robert

    2015-01-01

    Establishment, maintenance, and exit from pluripotency require precise coordination of a cell’s molecular machinery. Substantial headway has been made in deciphering many aspects of this elaborate system, particularly with respect to epigenetics, transcription, and noncoding RNAs. Less attention has been paid to posttranscriptional regulatory processes such as alternative splicing, RNA processing and modification, nuclear export, regulation of transcript stability, and translation. Here, we introduce the RNA binding proteins that enable the posttranscriptional regulation of gene expression, summarizing current and ongoing research on their roles at different regulatory points and discussing how they help script the fate of pluripotent stem cells. PMID:25192462

  20. Gene encoding herbicide safener binding protein

    DOEpatents

    Walton, Jonathan D.; Scott-Craig, John S.

    1999-01-01

    The cDNA encoding safener binding protein (SafBP), also referred to as SBP1, is set forth in FIG. 5 and SEQ ID No. 1. The deduced amino acid sequence is provided in FIG. 5 and SEQ ID No. 2. Methods of making and using SBP1 and SafBP to alter a plant's sensitivity to certain herbicides or a plant's responsiveness to certain safeners are also provided, as well as expression vectors, transgenic plants or other organisms transfected with said vectors and seeds from said plants.

  1. Calibration-free concentration analysis of protein biomarkers in human serum using surface plasmon resonance.

    PubMed

    Grover Shah, Veenita; Ray, Sandipan; Karlsson, Robert; Srivastava, Sanjeeva

    2015-11-01

    In complex biological samples such as serum, determination of specific and active concentration of target proteins, independent of a calibration curve, will be valuable in many applications. Calibration-free concentration analysis (CFCA) is a surface plasmon resonance (SPR)-based label-free approach, which calculates active concentration of proteins using their known diffusion coefficient and observed changes in binding rates at different flow rates under diffusion-limited conditions. Here, for the first time we demonstrate the application of CFCA for determining protein biomarker abundance, specifically serum amyloid A (SAA), directly in the serum samples of patients suffering from different infectious and non-infectious diseases. The assay involves preparation of appropriate reaction surfaces by immobilizing antibodies on CM5 chips via amine coupling followed by serum sample preparation and injection over activated and reference surfaces at flow-rates of 5 and 100 μL/min. The system was validated in healthy and diseased (infectious and non-infectious) serum samples by quantifying two different proteins: β2-microglobulin (β2M) and SAA. All concentration assays were performed for nearly 100 serum samples, which showed reliable quantification in unattended runs with high accuracy and sensitivity. The method could detect the serum β2M to as low as 13 ng/mL in 1000-fold serum dilution, indicating the possible utility of this approach to detect low abundance protein biomarkers in body fluids. Applying the CFCA approach, significant difference in serum abundance of SAA was identified in diseased subjects as compared to the healthy controls, which correlated well with our previous proteomic investigations. Estimation of SAA concentration for a subset of healthy and diseased sera was also performed using ELISA, and the trend was observed to be similar in both SPR assay and ELISA. The reproducibility of CFCA in various serum samples made the interpretation of assay

  2. Computational Design of DNA-Binding Proteins.

    PubMed

    Thyme, Summer; Song, Yifan

    2016-01-01

    Predicting the outcome of engineered and naturally occurring sequence perturbations to protein-DNA interfaces requires accurate computational modeling technologies. It has been well established that computational design to accommodate small numbers of DNA target site substitutions is possible. This chapter details the basic method of design used in the Rosetta macromolecular modeling program that has been successfully used to modulate the specificity of DNA-binding proteins. More recently, combining computational design and directed evolution has become a common approach for increasing the success rate of protein engineering projects. The power of such high-throughput screening depends on computational methods producing multiple potential solutions. Therefore, this chapter describes several protocols for increasing the diversity of designed output. Lastly, we describe an approach for building comparative models of protein-DNA complexes in order to utilize information from homologous sequences. These models can be used to explore how nature modulates specificity of protein-DNA interfaces and potentially can even be used as starting templates for further engineering. PMID:27094297

  3. Measuring Binding Affinity of Protein-Ligand Interaction Using Spectrophotometry: Binding of Neutral Red to Riboflavin-Binding Protein

    ERIC Educational Resources Information Center

    Chenprakhon, Pirom; Sucharitakul, Jeerus; Panijpan, Bhinyo; Chaiyen, Pimchai

    2010-01-01

    The dissociation constant, K[subscript d], of the binding of riboflavin-binding protein (RP) with neutral red (NR) can be determined by titrating RP to a fixed concentration of NR. Upon adding RP to the NR solution, the maximum absorption peak of NR shifts to 545 nm from 450 nm for the free NR. The change of the absorption can be used to determine…

  4. Serum immune-related proteins are differentially expressed during hibernation in the American black bear.

    PubMed

    Chow, Brian A; Donahue, Seth W; Vaughan, Michael R; McConkey, Brendan; Vijayan, Mathilakath M

    2013-01-01

    Hibernation is an adaptation to conserve energy in the face of extreme environmental conditions and low food availability that has risen in several animal phyla. This phenomenon is characterized by reduced metabolic rate (∼25% of the active basal metabolic rate in hibernating bears) and energy demand, while other physiological adjustments are far from clear. The profiling of the serum proteome of the American black bear (Ursus americanus) may reveal specific proteins that are differentially modulated by hibernation, and provide insight into the remarkable physiological adaptations that characterize ursid hibernation. In this study, we used differential gel electrophoresis (DIGE) analysis, liquid chromatography coupled to tandem mass spectrometry, and subsequent MASCOT analysis of the mass spectra to identify candidate proteins that are differentially expressed during hibernation in captive black bears. Seventy serum proteins were identified as changing by ±1.5 fold or more, out of which 34 proteins increased expression during hibernation. The majority of identified proteins are involved in immune system processes. These included α2-macroglobulin, complement components C1s and C4, immunoglobulin μ and J chains, clusterin, haptoglobin, C4b binding protein, kininogen 1, α2-HS-glycoprotein, and apoplipoproteins A-I and A-IV. Differential expression of a subset of these proteins identified by proteomic analysis was also confirmed by immunodetection. We propose that the observed serum protein changes contribute to the maintenance of the hibernation phenotype and health, including increased capacities for bone maintenance and wound healing during hibernation in bears.

  5. Serum Immune-Related Proteins are Differentially Expressed during Hibernation in the American Black Bear

    PubMed Central

    Chow, Brian A.; Donahue, Seth W.; Vaughan, Michael R.; McConkey, Brendan; Vijayan, Mathilakath M.

    2013-01-01

    Hibernation is an adaptation to conserve energy in the face of extreme environmental conditions and low food availability that has risen in several animal phyla. This phenomenon is characterized by reduced metabolic rate (∼25% of the active basal metabolic rate in hibernating bears) and energy demand, while other physiological adjustments are far from clear. The profiling of the serum proteome of the American black bear (Ursus americanus) may reveal specific proteins that are differentially modulated by hibernation, and provide insight into the remarkable physiological adaptations that characterize ursid hibernation. In this study, we used differential gel electrophoresis (DIGE) analysis, liquid chromatography coupled to tandem mass spectrometry, and subsequent MASCOT analysis of the mass spectra to identify candidate proteins that are differentially expressed during hibernation in captive black bears. Seventy serum proteins were identified as changing by ±1.5 fold or more, out of which 34 proteins increased expression during hibernation. The majority of identified proteins are involved in immune system processes. These included α2-macroglobulin, complement components C1s and C4, immunoglobulin μ and J chains, clusterin, haptoglobin, C4b binding protein, kininogen 1, α2-HS-glycoprotein, and apoplipoproteins A-I and A-IV. Differential expression of a subset of these proteins identified by proteomic analysis was also confirmed by immunodetection. We propose that the observed serum protein changes contribute to the maintenance of the hibernation phenotype and health, including increased capacities for bone maintenance and wound healing during hibernation in bears. PMID:23825529

  6. Serum immune-related proteins are differentially expressed during hibernation in the American black bear.

    PubMed

    Chow, Brian A; Donahue, Seth W; Vaughan, Michael R; McConkey, Brendan; Vijayan, Mathilakath M

    2013-01-01

    Hibernation is an adaptation to conserve energy in the face of extreme environmental conditions and low food availability that has risen in several animal phyla. This phenomenon is characterized by reduced metabolic rate (∼25% of the active basal metabolic rate in hibernating bears) and energy demand, while other physiological adjustments are far from clear. The profiling of the serum proteome of the American black bear (Ursus americanus) may reveal specific proteins that are differentially modulated by hibernation, and provide insight into the remarkable physiological adaptations that characterize ursid hibernation. In this study, we used differential gel electrophoresis (DIGE) analysis, liquid chromatography coupled to tandem mass spectrometry, and subsequent MASCOT analysis of the mass spectra to identify candidate proteins that are differentially expressed during hibernation in captive black bears. Seventy serum proteins were identified as changing by ±1.5 fold or more, out of which 34 proteins increased expression during hibernation. The majority of identified proteins are involved in immune system processes. These included α2-macroglobulin, complement components C1s and C4, immunoglobulin μ and J chains, clusterin, haptoglobin, C4b binding protein, kininogen 1, α2-HS-glycoprotein, and apoplipoproteins A-I and A-IV. Differential expression of a subset of these proteins identified by proteomic analysis was also confirmed by immunodetection. We propose that the observed serum protein changes contribute to the maintenance of the hibernation phenotype and health, including increased capacities for bone maintenance and wound healing during hibernation in bears. PMID:23825529

  7. Two hypervariable minisatellite DNA binding proteins.

    PubMed

    Wahls, W P; Swenson, G; Moore, P D

    1991-06-25

    Hypervariable minisatellite DNA sequences are short, tandemly repeated sequences present at numerous loci in eukaryotes. They stimulate intermolecular homologous recombination up to 13-fold in human cells in culture and may be specific sites for the initiation of recombination in the eukaryotic genome (Wahls, W.P., Wallace, L.J., & Moore, P.D. (1990) Cell 60, 95-103). Reported here is the detection and partial purification of two hypervariable minisatellite DNA binding proteins, called Msbp-2 and Msbp-3, present in the nuclear extracts of human HeLa cells. The proteins elute from a gel filtration column with a native mass of 200-250 kDa and have sizes of 77 kDa and 115 kDa respectively. PMID:2062643

  8. Alternative polyadenylation and RNA-binding proteins.

    PubMed

    Erson-Bensan, Ayse Elif

    2016-08-01

    Our understanding of the extent of microRNA-based gene regulation has expanded in an impressive pace over the past decade. Now, we are beginning to better appreciate the role of 3'-UTR (untranslated region) cis-elements which harbor not only microRNA but also RNA-binding protein (RBP) binding sites that have significant effect on the stability and translational rate of mRNAs. To add further complexity, alternative polyadenylation (APA) emerges as a widespread mechanism to regulate gene expression by producing shorter or longer mRNA isoforms that differ in the length of their 3'-UTRs or even coding sequences. Resulting shorter mRNA isoforms generally lack cis-elements where trans-acting factors bind, and hence are differentially regulated compared with the longer isoforms. This review focuses on the RBPs involved in APA regulation and their action mechanisms on APA-generated isoforms. A better understanding of the complex interactions between APA and RBPs is promising for mechanistic and clinical implications including biomarker discovery and new therapeutic approaches. PMID:27208003

  9. Binding interaction of quinclorac with bovine serum albumin: A biophysical study

    NASA Astrophysics Data System (ADS)

    Han, Xiao-Le; Mei, Ping; Liu, Yi; Xiao, Qi; Jiang, Feng-Lei; Li, Ran

    2009-10-01

    Quinclorac (QUC) is a new class of highly selective auxin herbicides. The interaction between QUC and bovine serum albumin (BSA) was investigated by fluorescence spectroscopy, synchronous fluorescence, three-dimensional fluorescence, CD spectroscopy and UV-vis absorption spectroscopy under simulative physiological condition. It was proved that the probable quenching mechanism of BSA by quinclorac was dynamic quenching. The Stern-Volmer quenching model has been successfully applied and the activation energy of the interaction as much as 8.03 kJ mol -1, corresponding thermodynamic parameters Δ Hθ, Δ Sθ and Δ Gθ were calculated. The results indicated that the acting forces between QUC and BSA were mainly hydrogen bonding and van der Waals forces. According to the Förster non-radiation energy transfer theory, the average binding distance between donor (BSA) and acceptor (QUC) was obtained ( r = 3.12 nm). The alterations of protein secondary structure in the presence of QUC were confirmed by the evidences from three-dimensional fluorescence, synchronous fluorescence and CD spectroscopy. Furthermore, the site marker competitive experiments indicated that the binding of QUC to BSA primarily took place in Sudlow site I.

  10. Synthesis, characterization, DNA binding, DNA cleavage, protein binding and cytotoxic activities of Ru(II) complexes.

    PubMed

    Thota, Sreekanth; Vallala, Srujana; Yerra, Rajeshwar; Rodrigues, Daniel Alencar; Raghavendra, Nulgumnalli Manjunathaiah; Barreiro, Eliezer J

    2016-01-01

    We report on the synthesis of novel Ru(II) compounds (Ru-1 to Ru-8) bearing R-pdc, 4-Cl-pbinh ligands (where R=4-CF3, 4-F, 4-OH pdc=3-phenyl-5-(1H-pyrrol-2-yl)-4,5-dihydro-1H-pyrazole-1-carbothioamide, pbinh=phenoxybenzylidene isonicotinyl hydrazides) and their in vitro antitumor activity toward the cell lines murine leukemia L1210, human lymphocyte CEM, human epithelial cervical carcinoma HeLa, BEL-7402 and Molt4/C8. Some of the complexes exhibited more potent antiproliferative activity against cell lines than the standard drug cisplatin. Ruthenium complex Ru-2 displayed potent cytotoxicity with than that of cisplatin. DNA-binding, DNA cleavage and protein binding properties of ruthenium complexes with these ligands are reported. Interactions of these ruthenium complexes with DNA revealed an intercalative mode of binding between them. Synchronous fluorescence spectra proved that the interaction of ruthenium complexes with bovine serum albumin (BSA) resulted in a conformational change of the latter.

  11. Distinct binding and immunogenic properties of the gonococcal homologue of meningococcal factor h binding protein.

    PubMed

    Jongerius, Ilse; Lavender, Hayley; Tan, Lionel; Ruivo, Nicola; Exley, Rachel M; Caesar, Joseph J E; Lea, Susan M; Johnson, Steven; Tang, Christoph M

    2013-01-01

    Neisseria meningitidis is a leading cause of sepsis and meningitis. The bacterium recruits factor H (fH), a negative regulator of the complement system, to its surface via fH binding protein (fHbp), providing a mechanism to avoid complement-mediated killing. fHbp is an important antigen that elicits protective immunity against the meningococcus and has been divided into three different variant groups, V1, V2 and V3, or families A and B. However, immunisation with fHbp V1 does not result in cross-protection against V2 and V3 and vice versa. Furthermore, high affinity binding of fH could impair immune responses against fHbp. Here, we investigate a homologue of fHbp in Neisseria gonorrhoeae, designated as Gonococcal homologue of fHbp (Ghfp) which we show is a promising vaccine candidate for N. meningitidis. We demonstrate that Gfhp is not expressed on the surface of the gonococcus and, despite its high level of identity with fHbp, does not bind fH. Substitution of only two amino acids in Ghfp is sufficient to confer fH binding, while the corresponding residues in V3 fHbp are essential for high affinity fH binding. Furthermore, immune responses against Ghfp recognise V1, V2 and V3 fHbps expressed by a range of clinical isolates, and have serum bactericidal activity against N. meningitidis expressing fHbps from all variant groups.

  12. Distinct binding and immunogenic properties of the gonococcal homologue of meningococcal factor h binding protein.

    PubMed

    Jongerius, Ilse; Lavender, Hayley; Tan, Lionel; Ruivo, Nicola; Exley, Rachel M; Caesar, Joseph J E; Lea, Susan M; Johnson, Steven; Tang, Christoph M

    2013-01-01

    Neisseria meningitidis is a leading cause of sepsis and meningitis. The bacterium recruits factor H (fH), a negative regulator of the complement system, to its surface via fH binding protein (fHbp), providing a mechanism to avoid complement-mediated killing. fHbp is an important antigen that elicits protective immunity against the meningococcus and has been divided into three different variant groups, V1, V2 and V3, or families A and B. However, immunisation with fHbp V1 does not result in cross-protection against V2 and V3 and vice versa. Furthermore, high affinity binding of fH could impair immune responses against fHbp. Here, we investigate a homologue of fHbp in Neisseria gonorrhoeae, designated as Gonococcal homologue of fHbp (Ghfp) which we show is a promising vaccine candidate for N. meningitidis. We demonstrate that Gfhp is not expressed on the surface of the gonococcus and, despite its high level of identity with fHbp, does not bind fH. Substitution of only two amino acids in Ghfp is sufficient to confer fH binding, while the corresponding residues in V3 fHbp are essential for high affinity fH binding. Furthermore, immune responses against Ghfp recognise V1, V2 and V3 fHbps expressed by a range of clinical isolates, and have serum bactericidal activity against N. meningitidis expressing fHbps from all variant groups. PMID:23935503

  13. Suppression of severe lesions, myonecrosis and hemorrhage, caused by Protobothrops flavoviridis venom with its serum proteins.

    PubMed

    Chijiwa, Takahito; So, Shuhei; Hattori, Shosaku; Yoshida, Aichi; Oda-Ueda, Naoko; Ohno, Motonori

    2013-12-15

    Protobothrops flavoviridis serum proteins precipitated with ammonium sulfate were chromatographed on a DEAE-Toyopearl 650M column at pH 7.5 with stepwise increase or with linear gradient of NaCl concentration. Peaks 3 and 4 serum proteins, obtained by linear gradient elution and named Fr(de3) and Fr(de4), contained Habu serum factors (HSF) and phospholipase A2 (PLA2) inhibitors (PfPLI), respectively. The serum proteins eluted at 0.2 M NaCl by stepwise elution, named Fr(0.2NaCl), effectively suppressed myonecrosis and hemorrhage caused by P. flavoviridis venom in rat or mouse thigh muscles. The Fr(0.2NaCl) were fractionated by HPLC and the fractions, after SDS-PAGE, underwent far-western blot analysis with PLA2 ([Asp(49)]PLA2) and BPI ([Lys(49)]PLA2) as the probes. Four PfPLIs, namely, PfαPLI-A, PfαPLI-B, PfγPLI-A and PfγPLI-B, were identified together with their selective binding specificities to PLA2 species. In addition, a new 9 kDa protein, which is specifically bound to BPI, was found. Suppression of P. flavoviridis venom-induced severe lesions, such as myonecrosis, hemorrhage and edema, with its serum proteins was histopathologically observed in the present work for the first time. The cooperative use of P. flavoviridis antivenom and its serum proteins as medication for P. flavoviridis snake bites is discussed. PMID:24139850

  14. Fluorescent protein-based detection of unconjugated bilirubin in newborn serum

    PubMed Central

    Iwatani, Sota; Nakamura, Hajime; Kurokawa, Daisuke; Yamana, Keiji; Nishida, Kosuke; Fukushima, Sachiyo; Koda, Tsubasa; Nishimura, Noriyuki; Nishio, Hisahide; Iijima, Kazumoto; Miyawaki, Atsushi; Morioka, Ichiro

    2016-01-01

    Increased serum levels of unconjugated bilirubin are associated with the development of brain damage in newborns. In current clinical settings, there are no methods for directly determining serum levels of unconjugated bilirubin. UnaG, a fluorescent protein from Japanese eel muscle that specifically binds to unconjugated bilirubin was used in this study. Linear regression analysis was carried out to compare unconjugated bilirubin levels measured by UnaG and conventional bilirubin oxidase methods. Unconjugated bilirubin levels in the serum of newborns who were untreated or treated with phototherapy were compared. Effects of interfering factors in the serum (conjugated bilirubin, hemoglobin, and lipid) on unconjugated bilirubin concentration measured by the UnaG method were also evaluated. Unconjugated bilirubin levels measured by the UnaG method were highly correlated with those determined by the bilirubin oxidase assay. Unconjugated bilirubin levels determined by bilirubin oxidase and UnaG assays were similar in serum samples containing conjugated bilirubin. The performance of the UnaG assay was unaffected by phototherapy and the presence of serum hemoglobin and lipid emulsion. These results demonstrate the clinical applicability of the UnaG method for direct measurement of unconjugated bilirubin levels in newborn serum. PMID:27324682

  15. Fluorescent protein-based detection of unconjugated bilirubin in newborn serum.

    PubMed

    Iwatani, Sota; Nakamura, Hajime; Kurokawa, Daisuke; Yamana, Keiji; Nishida, Kosuke; Fukushima, Sachiyo; Koda, Tsubasa; Nishimura, Noriyuki; Nishio, Hisahide; Iijima, Kazumoto; Miyawaki, Atsushi; Morioka, Ichiro

    2016-01-01

    Increased serum levels of unconjugated bilirubin are associated with the development of brain damage in newborns. In current clinical settings, there are no methods for directly determining serum levels of unconjugated bilirubin. UnaG, a fluorescent protein from Japanese eel muscle that specifically binds to unconjugated bilirubin was used in this study. Linear regression analysis was carried out to compare unconjugated bilirubin levels measured by UnaG and conventional bilirubin oxidase methods. Unconjugated bilirubin levels in the serum of newborns who were untreated or treated with phototherapy were compared. Effects of interfering factors in the serum (conjugated bilirubin, hemoglobin, and lipid) on unconjugated bilirubin concentration measured by the UnaG method were also evaluated. Unconjugated bilirubin levels measured by the UnaG method were highly correlated with those determined by the bilirubin oxidase assay. Unconjugated bilirubin levels determined by bilirubin oxidase and UnaG assays were similar in serum samples containing conjugated bilirubin. The performance of the UnaG assay was unaffected by phototherapy and the presence of serum hemoglobin and lipid emulsion. These results demonstrate the clinical applicability of the UnaG method for direct measurement of unconjugated bilirubin levels in newborn serum. PMID:27324682

  16. Spectroscopic characterization of effective components anthraquinones in Chinese medicinal herbs binding with serum albumins

    NASA Astrophysics Data System (ADS)

    Bi, Shuyun; Song, Daqian; Kan, Yuhe; Xu, Dong; Tian, Yuan; Zhou, Xin; Zhang, Hanqi

    2005-11-01

    The interactions of serum albumins such as human serum albumin (HSA) and bovine serum albumin (BSA) with emodin, rhein, aloe-emodin and aloin were assessed employing fluorescence quenching and absorption spectroscopic techniques. The results obtained revealed that there are relatively strong binding affinity for the four anthraquinones with HSA and BSA and the binding constants for the interactions of anthraquinones with HSA or BSA at 20 °C were obtained. Anthraquinone-albumin interactions were studied at different temperatures and in the presence of some metal ions. And the competition binding of anthraquinones with serum albumins was also discussed. The Stern-Volmer curves suggested that the quenching occurring in the reactions was the static quenching process. The binding distances and transfer efficiencies for each binding reactions were calculated according to the Föster theory of non-radiation energy transfer. Using thermodynamic equations, the main action forces of these reactions were also obtained. The reasons of the different binding affinities for different anthraquinone-albumin reactions were probed from the point of view of molecular structures.

  17. Comparison of the Folding Mechanism of Highly Homologous Proteins in the Lipid-binding Protein Family

    EPA Science Inventory

    The folding mechanism of two closely related proteins in the intracellular lipid binding protein family, human bile acid binding protein (hBABP) and rat bile acid binding protein (rBABP) were examined. These proteins are 77% identical (93% similar) in sequence Both of these singl...

  18. The alternative complement pathway control protein H binds to immune complexes and serves their detection

    SciTech Connect

    Nydegger, U.E.; Corvetta, A.; Spaeth, P.J.; Spycher, M.

    1983-01-01

    During solubilization of immune complexes C3b becomes fixed to the immunoglobulin part and serves as a receptor for the alternative complement pathway control protein H. The H-C3b immune complex interaction can be made detectable using 4% polyethyleneglycol to separate free from bound /sup 125/I-H. Tetanus toxoid (Te)/anti-Te complexes kept soluble with fresh serum and containing 125 IU of specific antibody bound 18% of /sup 125/I-H; when fresh serum was chelated with 10 mM EDTA, /sup 125/I-H binding was only 5%. On sucrose density gradients, the H-binding material sedimented in the range of 12 to 30 S. In 36 serum samples from rheumatoid arthritis (RA) patients and in 12 serum samples from patients with systemic lupus erythematosus (SLE), /sup 125/I-H binding was significantly elevated to 9.5 +/- 4.7% (mean +/- 1 SD) and 13.3 +/- 5.6%, respectively, while /sup 125/I-H binding by 36 normal human sera was 4 +/- 2%. RA samples (17/36, 47%) and SLE samples (9/12, 75%) had H-binding values increased by more than 2 SD above the normal mean. The serum samples were also assessed for conglutinin- and C1q-binding activities; a significant correlation between H and C1q binding was observed (P less than 0.001); there was no correlation between H and conglutinin binding. Although binding to immune complexes through its interaction with C3b, H clearly detects a population of complexes other than conglutinin, thus expanding the possibilities of further characterizing pathological complexes.

  19. Technical advance: identification of plant actin-binding proteins by F-actin affinity chromatography

    NASA Technical Reports Server (NTRS)

    Hu, S.; Brady, S. R.; Kovar, D. R.; Staiger, C. J.; Clark, G. B.; Roux, S. J.; Muday, G. K.

    2000-01-01

    Proteins that interact with the actin cytoskeleton often modulate the dynamics or organization of the cytoskeleton or use the cytoskeleton to control their localization. In plants, very few actin-binding proteins have been identified and most are thought to modulate cytoskeleton function. To identify actin-binding proteins that are unique to plants, the development of new biochemical procedures will be critical. Affinity columns using actin monomers (globular actin, G-actin) or actin filaments (filamentous actin, F-actin) have been used to identify actin-binding proteins from a wide variety of organisms. Monomeric actin from zucchini (Cucurbita pepo L.) hypocotyl tissue was purified to electrophoretic homogeneity and shown to be native and competent for polymerization to actin filaments. G-actin, F-actin and bovine serum albumin affinity columns were prepared and used to separate samples enriched in either soluble or membrane-associated actin-binding proteins. Extracts of soluble actin-binding proteins yield distinct patterns when eluted from the G-actin and F-actin columns, respectively, leading to the identification of a putative F-actin-binding protein of approximately 40 kDa. When plasma membrane-associated proteins were applied to these columns, two abundant polypeptides eluted selectively from the F-actin column and cross-reacted with antiserum against pea annexins. Additionally, a protein that binds auxin transport inhibitors, the naphthylphthalamic acid binding protein, which has been previously suggested to associate with the actin cytoskeleton, was eluted in a single peak from the F-actin column. These experiments provide a new approach that may help to identify novel actin-binding proteins from plants.

  20. Serum levels of bone Gla-protein in inhabitants exposed to environmental cadmium

    SciTech Connect

    Kido, T.; Honda, R.; Tsuritani, I.; Ishizaki, M.; Yamada, Y.; Nakagawa, H.; Nogawa, K.; Dohi, Y. )

    1991-01-01

    Serum levels of bone Gla-protein (BGP)--the vitamin K-dependent CA2(+)-binding protein--were evaluated in 76 cadmium (Cd)-exposed subjects with renal tubular dysfunction (32 men, 44 women) and 133 nonexposed subjects (53 men, 80 women). Serum BGP levels were higher in the Cd-exposed subjects than in nonexposed subjects. Significant correlations between BGP and each index measured by bone microdensitometry (MD), serum alkaline phosphatase activity, and Cd in blood and urine were found. For all of the Cd-exposed and nonexposed men and women, BGP showed a significant standard partial regression coefficient (multiple regression analysis) with the metacarpal index (MCI), which was one of the MD indicators. Bone Gla-protein also correlated significantly with urinary beta 2-microglobulin in the men and with serum creatinine in the women. Serum BGP values strongly reflect the degree of bone damage and also reflect, although less strongly, the degree of renal damage induced by exposure to Cd.

  1. Cloning, expression and purification of the factor H binding protein and its interaction with factor H

    PubMed Central

    Yarian, Fatemeh; Bandehpour, Mojgan; Seyed, Negar; Kazemi, Bahram

    2016-01-01

    Background and Objective: Neisseria meningitidis is a leading cause of meningitis and sepsis worldwide. The factor H binding protein (fHBP) is a key virulence factor of Neisseria meningitidis that is able to selectively bind to human factor H, the key regulator of the alternative complement pathway, which it has important implications for meningococcal pathogenesis and vaccine design. The aims of present research were cloning, expression, purification of fHbp and confirmation of the interaction between serum factor H (fH) and produced factor H binding protein. Materials and Methods: A 820 base pairs fhbp gene fragment was amplified by PCR and cloned into expression vector pET28a (+) in Bam HI and SalI restriction enzymes sites. Recombinant DNA was expressed in BL21 (DE3) cell. fHBP protein was purified by Ni-NTA agarose resin. Coupling of recombinant protein into CNBr activated Sepharose 4B resin was carried out for application in serum fH protein purification. (fH-fHBP) interaction was confirmed by SDS-PAGE and far-western blotting. Results and Conclusions: SDS-PAGE results showed a 35 kDa protein band. 150 kDa fH protein was purified by designed Sepharose 4B resin. Far-western blotting confirmed (fH-fHBP) interaction and proper folding of factor H binding protein. PMID:27092222

  2. Binding of Complement Factor H (FH) Decreases Protective Anti-FH Binding Protein Antibody Responses of Infant Rhesus Macaques Immunized With a Meningococcal Serogroup B Vaccine

    PubMed Central

    Granoff, Dan M.; Costa, Isabella; Konar, Monica; Giuntini, Serena; Van Rompay, Koen K. A.; Beernink, Peter T.

    2015-01-01

    Background. The meningococcal vaccine antigen, factor H (FH)–binding protein (FHbp), binds human complement FH. In human FH transgenic mice, binding decreased protective antibody responses. Methods. To investigate the effect of primate FH binding, we immunized rhesus macaques with a 4-component serogroup B vaccine (4CMenB). Serum FH in 6 animals bound strongly to FHbp (FHbp-FHhigh) and, in 6 animals, bound weakly to FHbp (FHbp-FHlow). Results. There were no significant differences between the respective serum bactericidal responses of the 2 groups against meningococcal strains susceptible to antibody to the NadA or PorA vaccine antigens. In contrast, anti-FHbp bactericidal titers were 2-fold lower in FHbp-FHhigh macaques against a strain with an exact FHbp match to the vaccine (P = .08) and were ≥4-fold lower against 4 mutants with other FHbp sequence variants (P ≤ .005, compared with FHbp-FHlow macaques). Unexpectedly, postimmunization sera from all 12 macaques enhanced FH binding to meningococci. In contrast, serum anti-FHbp antibodies elicited by 4CMenB in mice whose mouse FH did not bind to the vaccine antigen inhibited FH binding. Conclusions. Binding of FH to FHbp decreases protective anti-FHbp antibody responses of macaques to 4CMenB. Even low levels of FH binding skew the antibody repertoire to FHbp epitopes outside of the FH-binding site, which enhance FH binding. PMID:25676468

  3. Binding of a new bisphenol analogue, bisphenol S to bovine serum albumin and calf thymus DNA.

    PubMed

    Wang, Yan-Qing; Zhang, Hong-Mei; Cao, Jian; Tang, Bo-Ping

    2014-09-01

    Interactions of bisphenol S, a new bisphenol analogue with bovine serum albumin and calf thymus DNA were investigated using different spectroscopic methods and molecular modeling calculation. According to the analysis of experimental and theoretical data, we concluded that hydrophobic interactions and hydrogen bonding primarily mediated the binding processes of bisphenol S with bovine serum albumin and DNA. In addition, the electrostatic force should not be excluded. Molecular modeling studies indicated that the binding site of bisphenol S to bovine serum albumin located in the subdomain IB, while bisphenol S was a groove binder of DNA. In addition, BPS did not obviously induce second structural changes of bovine serum albumin, but it induced a conformational change of calf thymus DNA.

  4. Alpha-amylase inhibitor, CS-1036 binds to serum amylase in a concentration-dependent and saturable manner.

    PubMed

    Honda, Tomohiro; Kaneno-Urasaki, Yoko; Ito, Takashi; Kimura, Takako; Matsushima, Nobuko; Okabe, Hiromi; Yamasaki, Atsushi; Izumi, Takashi

    2014-03-01

    (2R,3R,4R)-4-hydroxy-2-(hydroxymethyl)pyrrolidin-3-yl 4-O-(6-deoxy-β-D-glucopyranosyl)-α-D-glucopyranoside (CS-1036), which is an α-amylase inhibitor, exhibited biphasic and sustained elimination with a long t1/2 (18.4-30.0 hours) in rats and monkeys, but exhibited a short t1/2 (3.7-7.9 hours) in humans. To clarify the species differences in the t1/2, the plasma protein binding of CS-1036 was evaluated by ultrafiltration. A concentration-dependent and saturable plasma protein binding of CS-1036 was observed in rats and monkeys with the dissociation rate constant (KD) of 8.95 and 27.2 nM, and maximal binding capacity (Bmax) of 52.8 and 22.1 nM, respectively. By the assessments of the recombinant amylase and immunoprecipitation, the major binding protein of CS-1036 in rats was identified as salivary amylase (KD 5.64 nM). CS-1036 also showed concentration-dependent and saturable binding to human salivary and pancreatic amylase, with similar binding affinity in rats. However, the protein binding of CS-1036 was constant in human plasma (≤10.2%) due to the lower serum amylase level compared with rats and monkeys. From the calculation of the unbound fraction (fu) in plasma based on in vitro KD and Bmax, the dose-dependent increase in fu after oral administration is speculated to lead to a dose-dependent increase in total body clearance and a high area under the curve/dose at lower doses, such as 0.3 mg/kg in rats.

  5. Helical Defects in MicroRNA Influence Protein Binding by TAR RNA Binding Protein

    PubMed Central

    Acevedo, Roderico; Orench-Rivera, Nichole; Quarles, Kaycee A.; Showalter, Scott A.

    2015-01-01

    Background MicroRNAs (miRNAs) are critical post-transcriptional regulators of gene expression. Their precursors have a globally A-form helical geometry, which prevents most proteins from identifying their nucleotide sequence. This suggests the hypothesis that local structural features (e.g., bulges, internal loops) play a central role in specific double-stranded RNA (dsRNA) selection from cellular RNA pools by dsRNA binding domain (dsRBD) containing proteins. Furthermore, the processing enzymes in the miRNA maturation pathway require tandem-dsRBD cofactor proteins for optimal function, suggesting that dsRBDs play a key role in the molecular mechanism for precise positioning of the RNA within these multi-protein complexes. Here, we focus on the tandem-dsRBDs of TRBP, which have been shown to bind dsRNA tightly. Methodology/Principal Findings We present a combination of dsRNA binding assays demonstrating that TRBP binds dsRNA in an RNA-length dependent manner. Moreover, circular dichroism data shows that the number of dsRBD moieties bound to RNA at saturation is different for a tandem-dsRBD construct than for constructs with only one dsRBD per polypeptide, revealing another reason for the selective pressure to maintain multiple domains within a polypeptide chain. Finally, we show that helical defects in precursor miRNA alter the apparent dsRNA size, demonstrating that imperfections in RNA structure influence the strength of TRBP binding. Conclusion/Significance We conclude that TRBP is responsible for recognizing structural imperfections in miRNA precursors, in the sense that TRBP is unable to bind imperfections efficiently and thus is positioned around them. We propose that once positioned around structural defects, TRBP assists Dicer and the rest of the RNA-induced silencing complex (RISC) in providing efficient and homogenous conversion of substrate precursor miRNA into mature miRNA downstream. PMID:25608000

  6. Structure of the methyl orange-binding site on human serum albumin and its color-change mechanism.

    PubMed

    Ito, Shigenori; Yamamoto, Daisuke

    2015-01-01

    The goal in this study was to clarify the color-change mechanisms of methyl orange (MO) bound to human serum albumin (HSA) and the structure of the binding site. The absorbance of the MOHSA complex was measured at 560 nm in solutions of varying pH (pH 2.4-6.6). The obtained pH-dependent experimental data were consistent with the data calculated using the Henderson-Hasselbalch equation and pKa values (3.8, MO; 1.4, carboxyl group). The extent of the binding of MO to an HSA molecule was determined to be 1-4 by performing surface plasmon resonance analysis. Furthermore, the binding of MO to HSA was inhibited by warfarin. A fitting model of MO to HSA was created to evaluate these results based on PDB data (warfarin-HSA complex: 2BXD) and protein-structure analysis. The color-change mechanism of the MO-HSA complex appears to be as follows: the dissociated sulfo group of MO binds to Arg218/Lys444 sidechains through electrostatic interaction in the warfarin-binding site, and, subsequently, the color change occurs through a proton exchange between the diazenyl group and the γ-carboxyl group of Glu292. The color-changed MO is fixed in the warfarin-binding site. These results could support the development of a reliable dye-binding method and of a new method for staining diverse tissues that is based on a validated mechanism.

  7. The influence of fatty acids on theophylline binding to human serum albumin. Comparative fluorescence study

    NASA Astrophysics Data System (ADS)

    Maciążek-Jurczyk, M.; Sułkowska, A.; Bojko, B.; Równicka-Zubik, J.; Szkudlarek-Haśnik, A.; Zubik-Skupień, I.; Góra, A.; Dubas, M.; Korzonek-Szlacheta, I.; Wielkoszyński, T.; Żurawiński, W.; Sosada, K.

    2012-04-01

    Theophylline, popular diuretic, is used to treat asthma and bronchospasm. In blood it forms complexes with albumin, which is also the main transporter of fatty acids. The aim of the present study was to describe the influence of fatty acids (FA) on binding of theophylline (Th) to human serum albumin (HSA) in the high affinity binding sites. Binding parameters have been obtained on the basis of the fluorescence analysis. The data obtained for the complex of Th and natural human serum albumin (nHSA) obtained from blood of obese patients qualified for surgical removal of stomach was compared with our previous studies on the influence of FA on the complex of Th and commercially available defatted human serum albumin (dHSA).

  8. Activation of the Complement Classical Pathway (C1q Binding) by Mesophilic Aeromonas hydrophila Outer Membrane Protein

    PubMed Central

    Merino, Susana; Nogueras, Maria Mercedes; Aguilar, Alicia; Rubires, Xavier; Albertí, Sebastian; Benedí, Vicente Javier; Tomás, Juan M.

    1998-01-01

    The mechanism of killing of Aeromonas hydrophila serum-sensitive strains in nonimmune serum by the complement classical pathway has been studied. The bacterial cell surface component that binds C1q more efficiently was identified as a major outer membrane protein of 39 kDa, presumably the porin II described by D. Jeanteur, N. Gletsu, F. Pattus, and J. T. Buckley (Mol. Microbiol. 6:3355–3363, 1992), of these microorganisms. We have demonstrated that the purified form of porin II binds C1q and activates the classical pathway in an antibody-independent manner, with the subsequent consumption of C4 and reduction of the serum total hemolytic activity. Activation of the classical pathway has been observed in human nonimmune serum and agammaglobulinemic serum (both depleted of factor D). Binding of C1q to other components of the bacterial outer membrane, in particular to rough lipopolysaccharide, could not be demonstrated. Activation of the classical pathway by this lipopolysaccharide was also much less efficient than activation by the outer membrane protein. The strains possessing O-antigen lipopolysaccharide bind less C1q than the serum-sensitive strains, because the outer membrane protein is less accessible, and are resistant to complement-mediated killing. Finally, a similar or identical outer membrane protein (presumably porin II) that binds C1q was shown to be present in strains from the most common mesophilic Aeromonas O serogroups. PMID:9673268

  9. Preparation of protein imprinted materials by hierarchical imprinting techniques and application in selective depletion of albumin from human serum

    NASA Astrophysics Data System (ADS)

    Liu, Jinxiang; Deng, Qiliang; Tao, Dingyin; Yang, Kaiguang; Zhang, Lihua; Liang, Zhen; Zhang, Yukui

    2014-06-01

    Hierarchical imprinting was developed to prepare the protein imprinted materials, as the artificial antibody, for the selective depletion of HSA from the human serum proteome. Porcine serum albumin (PSA) was employed as the dummy template for the fabrication of the recognition sites. To demonstrate the advantages of the hierarchical imprinting, molecularly imprinted polymers prepared by hierarchical imprinting technique (h-MIPs) were compared with those obtained by bulk imprinting (b-MIPs), in terms of the binding capacity, adsorption kinetics, selectivity and synthesis reproducibility. The binding capacity of h-MIPs could reach 12 mg g-1. And saturation binding could be reached in less than 20 min for the h-MIPs. In the protein mixture, h-MIPs exhibit excellent selectivity for PSA, with imprinting factors as about 3.6, much higher than those for non-template proteins. For the proteomic application, the identified protein group number in serum treated by h-MIPs was increased to 422, which is 21% higher than that obtained from the original serum, meanwhile the identified protein group number for the Albumin Removal kit was only 376. The results demonstrate that protein imprinted polymers prepared by hierarchical imprinting technique, might become the artificial antibodies for the selective depletion of high abundance proteins in proteome study.

  10. Serum Protein Signatures Differentiating Autoimmune Pancreatitis versus Pancreatic Cancer

    PubMed Central

    Fritz, Stefan; Hinz, Ulf; Schnölzer, Martina; Kempf, Tore; Warnken, Uwe; Michel, Angelika; Pawlita, Michael; Werner, Jens

    2013-01-01

    Autoimmune pancreatitis (AIP) is defined by characteristic lymphoplasmacytic infiltrate, ductal strictures and a pancreatic enlargement or mass that can mimic pancreatic cancer (PaCa). The distinction between this benign disease and pancreatic cancer can be challenging. However, an accurate diagnosis may pre-empt the misdiagnosis of cancer, allowing the appropriate medical treatment of AIP and, consequently, decreasing the number of unnecessary pancreatic resections. Mass spectrometry (MS) and two-dimensional differential gel electrophoresis (2D-DIGE) have been applied to analyse serum protein alterations associated with AIP and PaCa, and to identify protein signatures indicative of the diseases. Patients' sera were immunodepleted from the 20 most prominent serum proteins prior to further 2D-DIGE and image analysis. The identity of the most-discriminatory proteins detected, was performed by MS and ELISAs were applied to confirm their expression. Serum profiling data analysis with 2D-DIGE revealed 39 protein peaks able to discriminate between AIP and PaCa. Proteins were purified and further analysed by MALDI-TOF-MS. Peptide mass fingerprinting led to identification of eleven proteins. Among them apolipoprotein A-I, apolipoprotein A-II, transthyretin, and tetranectin were identified and found as 3.0-, 3.5-, 2-, and 1.6-fold decreased in PaCa sera, respectively, whereas haptoglobin and apolipoprotein E were found to be 3.8- and 1.6-fold elevated in PaCa sera. With the exception of haptoglobin the ELISA results of the identified proteins confirmed the 2D-DIGE image analysis characteristics. Integration of the identified serum proteins as AIP markers may have considerable potential to provide additional information for the diagnosis of AIP to choose the appropriate treatment. PMID:24349355

  11. Roles for RNA-binding proteins in development and disease.

    PubMed

    Brinegar, Amy E; Cooper, Thomas A

    2016-09-15

    RNA-binding protein activities are highly regulated through protein levels, intracellular localization, and post-translation modifications. During development, mRNA processing of specific gene sets is regulated through manipulation of functional RNA-binding protein activities. The impact of altered RNA-binding protein activities also affects human diseases in which there are either a gain-of-function or loss-of-function causes pathogenesis. We will discuss RNA-binding proteins and their normal developmental RNA metabolism and contrast how their function is disrupted in disease. This article is part of a Special Issue entitled SI:RNA Metabolism in Disease.

  12. Bovine serum albumin binding, antioxidant and anticancer properties of an oxidovanadium(IV) complex with luteolin.

    PubMed

    Naso, Luciana G; Lezama, Luis; Valcarcel, María; Salado, Clarisa; Villacé, Patricia; Kortazar, Danel; Ferrer, Evelina G; Williams, Patricia A M

    2016-04-01

    Chemotherapy using metal coordination compounds for cancer treatment is the work of the ongoing research. Continuing our research on the improvement of the anticancer activity of natural flavonoids by metal complexation, a coordination compound of the natural antioxidant flavone luteolin (lut) and the oxidovanadium(IV) cation has been synthesized and characterized. Using different physicochemical measurements some structural aspects of [VO(lut)(H2O)2]Na·3H2O (VOlut) were determined. The metal coordinated to two cis-deprotonated oxygen atoms (ArO(-)) of the ligand and two H2O molecules. Magnetic measurements in solid state indicated the presence of an effective exchange pathway between adjacent vanadium ions. VOlut improved the antioxidant capacity of luteolin only against hydroxyl radical. The antitumoral effects were evaluated on MDAMB231 breast cancer and A549 lung cancer cell lines. VOlut exhibited higher viability inhibition (IC50=17 μM) than the ligand on MDAMB231 cells but they have the same behavior on A549 cells (ca. IC50=60 μM). At least oxidative stress processes were active during cancer cell-killing. When metals chelated through the carbonyl group and one adjacent OH group of the flavonoid an effective improvement of the biological properties has been observed. In VOlut the different coordination may be the cause of the small improvement of some of the tested properties of the flavonoid. Luteolin and VOlut could be distributed and transported in vivo. Luteolin interacted in the microenvironment of the tryptophan group of the serum binding protein, BSA, by means of electrostatic forces and its complex bind the protein by H bonding and van der Waals interactions. PMID:26828287

  13. Calcyclin Binding Protein/Siah-1 Interacting Protein Is a Hsp90 Binding Chaperone

    PubMed Central

    Góral, Agnieszka; Bieganowski, Paweł; Prus, Wiktor; Krzemień-Ojak, Łucja; Kądziołka, Beata; Fabczak, Hanna; Filipek, Anna

    2016-01-01

    The Hsp90 chaperone activity is tightly regulated by interaction with many co-chaperones. Since CacyBP/SIP shares some sequence homology with a known Hsp90 co-chaperone, Sgt1, in this work we performed a set of experiments in order to verify whether CacyBP/SIP can interact with Hsp90. By applying the immunoprecipitation assay we have found that CacyBP/SIP binds to Hsp90 and that the middle (M) domain of Hsp90 is responsible for this binding. Furthermore, the proximity ligation assay (PLA) performed on HEp-2 cells has shown that the CacyBP/SIP-Hsp90 complexes are mainly localized in the cytoplasm of these cells. Using purified proteins and applying an ELISA we have shown that Hsp90 interacts directly with CacyBP/SIP and that the latter protein does not compete with Sgt1 for the binding to Hsp90. Moreover, inhibitors of Hsp90 do not perturb CacyBP/SIP-Hsp90 binding. Luciferase renaturation assay and citrate synthase aggregation assay with the use of recombinant proteins have revealed that CacyBP/SIP exhibits chaperone properties. Also, CacyBP/SIP-3xFLAG expression in HEp-2 cells results in the appearance of more basic Hsp90 forms in 2D electrophoresis, which may indicate that CacyBP/SIP dephosphorylates Hsp90. Altogether, the obtained results suggest that CacyBP/SIP is involved in regulation of the Hsp90 chaperone machinery. PMID:27249023

  14. The effect of structural alterations of three mammalian serum albumins on their binding properties

    NASA Astrophysics Data System (ADS)

    Równicka-Zubik, J.; Sułkowski, L.; Maciążek-Jurczyk, M.; Sułkowska, A.

    2013-07-01

    The binding of piroxicam (PIR) to human (HSA), bovine (BSA) and sheep (SSA) serum albumin in native and destabilized/denaturated state was studied by the fluorescence quenching technique. Quenching of the intrinsic fluorescence of three analyzed serum albumins was observed due to selective exciting of tryptophanyl and tyrosil residues at 295 nm and 280 nm. Based on fluorescence emission spectra the quenching (KQ) and binding constants (Ka) were determined. The results showed that PIR is bound mainly in IIA subdomain of HSA and is additionally able to interact with tyrosil groups located in subdomains IB, IIB or IIIA. PIR interacts only with tryptophanyl residues of BSA and SSA [Trp-214, Trp-237 (IIA) and Trp-135, Trp-158 (IB)]. The presence of denaturating factors modified the mechanism of fluorescence quenching of SSA by PIR. Linear Scatchard plots suggest that HSA, BSA and SSA bind PIR in one class of binding sites.

  15. Characterization of the binding of chrysoidine, an illegal food additive to bovine serum albumin.

    PubMed

    Yang, Bingjun; Hao, Fang; Li, Jiarong; Wei, Kai; Wang, Wenyu; Liu, Rutao

    2014-03-01

    Chrysoidine is an industrial azo dye and the presence of chrysoidine in water and food has become an environmental concern due to its negative effects on human beings. Binding of dyes to serum albumins significantly influence their absorption, distribution, metabolism, and excretion properties. In this work, the interactions of chrysoidine with bovine serum albumin (BSA) were explored. Isothermal titration calorimetry results reveal the binding stoichiometry of chrysoidine to BSA is 1:15.5, and van der Waals and hydrogen bonding interactions are the major driving force in the binding of chrysoidine to BSA. Molecular docking simulations show that chrysoidine binds to BSA at a cavity close to Sudlow site I in domain IIA. However, no detectable conformational change of BSA occurs in the presence of chrysoidine as revealed by UV-vis absorption, circular dichroism and fluorescence spectroscopy studies.

  16. Latent TGF-β-binding proteins

    PubMed Central

    Robertson, Ian B.; Horiguchi, Masahito; Zilberberg, Lior; Dabovic, Branka; Hadjiolova, Krassimira; Rifkin, Daniel B.

    2016-01-01

    The LTBPs (or latent transforming growth factor β binding proteins) are important components of the extracellular matrix (ECM) that interact with fibrillin microfibrils and have a number of different roles in microfibril biology. There are four LTBPs isoforms in the human genome (LTBP-1, -2, -3, and -4), all of which appear to associate with fibrillin and the biology of each isoform is reviewed here. The LTBPs were first identified as forming latent complexes with TGFβ by covalently binding the TGFβ propeptide (LAP) via disulfide bonds in the endoplasmic reticulum. LAP in turn is cleaved from the mature TGFβ precursor in the trans golgi network but LAP and TGFβ remain strongly bound through non-covalent interactions. LAP, TGFβ, and LTBP together form the large latent complex (LLC). LTBPs were originally thought to primarily play a role in maintaining TGFβ latency and targeting the latent growth factor to the extracellular matrix (ECM), but it has also been shown that LTBP-1 participates in TGFβ activation by integrins and may also regulate activation by proteases and other factors. LTBP-3 appears to have a role in skeletal formation including tooth development. As well as having important functions in TGFβ regulation, TGFβ-independent activities have recently been identified for LTBP-2 and LTBP-4 in stabilizing microfibril bundles and regulating elastic fiber assembly. PMID:25960419

  17. Characterizing the morphology of protein binding patches.

    PubMed

    Malod-Dognin, Noël; Bansal, Achin; Cazals, Frédéric

    2012-12-01

    Let the patch of a partner in a protein complex be the collection of atoms accounting for the interaction. To improve our understanding of the structure-function relationship, we present a patch model decoupling the topological and geometric properties. While the geometry is classically encoded by the atomic positions, the topology is recorded in a graph encoding the relative position of concentric shells partitioning the interface atoms. The topological-geometric duality provides the basis of a generic dynamic programming-based algorithm comparing patches at the shell level, which may favor topological or geometric features. On the biological side, we address four questions, using 249 cocrystallized heterodimers organized in biological families. First, we dissect the morphology of binding patches and show that Nature enjoyed the topological and geometric degrees of freedom independently while retaining a finite set of qualitatively distinct topological signatures. Second, we argue that our shell-based comparison is effective to perform atomic-level comparisons and show that topological similarity is a less stringent than geometric similarity. We also use the topological versus geometric duality to exhibit topo-rigid patches, whose topology (but not geometry) remains stable upon docking. Third, we use our comparison algorithms to infer specificity-related information amidst a database of complexes. Finally, we exhibit a descriptor outperforming its contenders to predict the binding affinities of the affinity benchmark. The softwares developed with this article are availablefrom http://team.inria.fr/abs/vorpatch_compatch/.

  18. Phenotype-associated lectin-binding profiles of normal and transformed blood cells: a comparative analysis of mannose- and galactose-binding lectins from plants and human serum/placenta.

    PubMed

    Mann, K K; André, S; Gabius, H J; Sharp, J G

    1994-10-01

    Surface glycoconjugates of normal and transformed blood cells are commonly characterized by plant lectins. To infer physiological significance of protein-carbohydrate interactions, mammalian lectins are obviously preferable as research tools. So far, human serum lectins have not been used to assess their binding to immunophenotyped human normal or transformed blood cells. Thus, our study combines two groups of lectins with different specificity from plant and human sources. Besides concanavalin A (ConA) we have isolated the mannose-binding protein and serum amyloid P component from human serum. Especially the mannose-binding protein is believed to play a role in host defence against bacteria and yeast cells with unknown impact on normal and tumor cells. These three lectins establish the first group. In addition to the immunomodulatory mistletoe lectin, whose binding can elicit enhanced cytokine secretion from mononuclear blood cells, we included the beta-galactoside-binding lectin (14 kDa) from human placenta in the second group. The initial series of measurements was undertaken using two-color flow cytometry to determine the phenotype-associated binding (based on cluster designation; CD) of the lectins to blood and bone marrow cells from normal donors and the cell line CEM (T-lymphoblastoid), KG1-A (primitive myeloid leukemia) and Croco II (B-lymphoblastoid). Heterogeneity was apparent for each lectin in the CD-defined cell populations. Significant differences in binding were noted between Viscum album agglutinin (VAA) and other lectins for CD4+ cells from blood and between mannose-binding protein (MBP) and VAA versus 14 kDa, ConA and serum amyloid P component (SAP) for CD19+ cells from bone marrow.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Amyloid-related serum component (protein ASC) IN LEPROSY PATIENTS.

    PubMed Central

    Kronvall, G; Husby, G; Samuel, D; Bjune, G; Wheate, H

    1975-01-01

    The presence of amyloid-related serum component, protein ASC, in serum samples from 63 leprosy patients was investigated. Protein ASC was detected in 38% of the patients. A correlation to the disease spectrum of leprosy was apparent: polar lepromatous cases, 64% positive; borderline lepromatous, 50%; borderline tuberculoid, 36%; subpolar tuberculoid, 17%; and polar tuberculoid, negative. Antibody activity against the a antigen of Mycobacterium leprae was also determined, showing a similar correlation to the disease spectrum. Serum samples from 23 apparently healthy Ethiopians serving as controls showed a protein ASC incidence of 22%. This figure is significantly higher than the frequency found by others among healthy Norwegian blood donors. Immunoglobulin M levels among patients were elevated in the borderline lepromatous and poplar lepromatous groups. The three tuberculoid groups did not differ in this respect from the control group but were all elevated as compared to a normal Caucasian serum pool. Although raised immunoglobulin M levels seemed to parallel increased frequencies of protein ASC in the patient groups as well as in controls, this correlation might be only secondary to a primary derangement in T-cell function. PMID:804451

  20. High-Performance Affinity Chromatography: Applications in Drug-Protein Binding Studies and Personalized Medicine.

    PubMed

    Li, Zhao; Beeram, Sandya R; Bi, Cong; Suresh, D; Zheng, Xiwei; Hage, David S

    2016-01-01

    The binding of drugs with proteins and other agents in serum is of interest in personalized medicine because this process can affect the dosage and action of drugs. The extent of this binding may also vary with a given disease state. These interactions may involve serum proteins, such as human serum albumin or α1-acid glycoprotein, or other agents, such as lipoproteins. High-performance affinity chromatography (HPAC) is a tool that has received increasing interest as a means for studying these interactions. This review discusses the general principles of HPAC and the various approaches that have been used in this technique to examine drug-protein binding and in work related to personalized medicine. These approaches include frontal analysis and zonal elution, as well as peak decay analysis, ultrafast affinity extraction, and chromatographic immunoassays. The operation of each method is described and examples of applications for these techniques are provided. The type of information that can be obtained by these methods is also discussed, as related to the analysis of drug-protein binding and the study of clinical or pharmaceutical samples. PMID:26827600

  1. Liver Fatty Acid Binding Protein and Obesity

    PubMed Central

    Atshaves, B.P.; Martin, G.G.; Hostetler, H.A.; McIntosh, A.L.; Kier, A.B.; Schroeder, F.

    2010-01-01

    While low levels of unesterified long chain fatty acids (LCFAs) are normal metabolic intermediates of dietary and endogenous fat, LCFAs are also potent regulators of key receptors/enzymes, and at high levels become toxic detergents within the cell. Elevated levels of LCFAs are associated with diabetes, obesity, and metabolic syndrome. Consequently, mammals evolved fatty acid binding proteins (FABPs) that bind/sequester these potentially toxic free fatty acids in the cytosol and present them for rapid removal in oxidative (mitochondria, peroxisomes) or storage (endoplasmic reticulum, lipid droplets) organelles. Mammals have a large (15 member) family of FABPs with multiple members occurring within a single cell type. The first described FABP, liver-FABP (L-FABP, or FABP1), is expressed in very high levels (2-5% of cytosolic protein) in liver as well as intestine and kidney. Since L-FABP facilitates uptake and metabolism of LCFAs in vitro and in cultured cells, it was expected that abnormal function or loss of L-FABP would reduce hepatic LCFA uptake/oxidation and thereby increase LCFAs available for oxidation in muscle and/or storage in adipose. This prediction was confirmed in vitro with isolated liver slices and cultured primary hepatocytes from L-FABP gene-ablated mice. Despite unaltered food consumption when fed a control diet ad libitum, the L-FABP null mice exhibited age- and sex-dependent weight gain and increased fat tissue mass. The obese phenotype was exacerbated in L-FABP null mice pair-fed a high fat diet. Taken together with other findings, these data suggest that L-FABP could have an important role in preventing age- or diet-induced obesity. PMID:20537520

  2. Protein function annotation by local binding site surface similarity.

    PubMed

    Spitzer, Russell; Cleves, Ann E; Varela, Rocco; Jain, Ajay N

    2014-04-01

    Hundreds of protein crystal structures exist for proteins whose function cannot be confidently determined from sequence similarity. Surflex-PSIM, a previously reported surface-based protein similarity algorithm, provides an alternative method for hypothesizing function for such proteins. The method now supports fully automatic binding site detection and is fast enough to screen comprehensive databases of protein binding sites. The binding site detection methodology was validated on apo/holo cognate protein pairs, correctly identifying 91% of ligand binding sites in holo structures and 88% in apo structures where corresponding sites existed. For correctly detected apo binding sites, the cognate holo site was the most similar binding site 87% of the time. PSIM was used to screen a set of proteins that had poorly characterized functions at the time of crystallization, but were later biochemically annotated. Using a fully automated protocol, this set of 8 proteins was screened against ∼60,000 ligand binding sites from the PDB. PSIM correctly identified functional matches that predated query protein biochemical annotation for five out of the eight query proteins. A panel of 12 currently unannotated proteins was also screened, resulting in a large number of statistically significant binding site matches, some of which suggest likely functions for the poorly characterized proteins.

  3. Charged gold nanoparticles with essentially zero serum protein adsorption in undiluted fetal bovine serum.

    PubMed

    Murthy, Avinash K; Stover, Robert J; Hardin, William G; Schramm, Robert; Nie, Golay D; Gourisankar, Sai; Truskett, Thomas M; Sokolov, Konstantin V; Johnston, Keith P

    2013-05-29

    The adsorption of even a single serum protein molecule on a gold nanosphere used in biomedical imaging may increase the size too much for renal clearance. In this work, we designed charged ~5 nm Au nanospheres coated with binary mixed-charge ligand monolayers that do not change in size upon incubation in pure fetal bovine serum (FBS). This lack of protein adsorption was unexpected in view of the fact that the Au surface was moderately charged. The mixed-charge monolayers were composed of anionic citrate ligands modified by place exchange with naturally occurring amino acids: either cationic lysine or zwitterionic cysteine ligands. The zwitterionic tips of either the lysine or cysteine ligands interact weakly with the proteins and furthermore increase the distance between the "buried" charges closer to the Au surface and the interacting sites on the protein surface. The ~5 nm nanospheres were assembled into ~20 nm diameter nanoclusters with strong near-IR absorbance (of interest in biomedical imaging and therapy) with a biodegradable polymer, PLA(1k)-b-PEG(10k)-b-PLA(1k). Upon biodegradation of the polymer in acidic solution, the nanoclusters dissociated into primary ~5 nm Au nanospheres, which also did not adsorb any detectable serum protein in undiluted FBS.

  4. Ion-Mobility-Based Quantification of Surface-Coating-Dependent Binding of Serum Albumin to Superparamagnetic Iron Oxide Nanoparticles.

    PubMed

    Jeon, Seongho; Oberreit, Derek R; Van Schooneveld, Gary; Gao, Zhe; Bischof, John C; Haynes, Christy L; Hogan, Christopher J

    2016-09-21

    Protein binding and protein-induced nanoparticle aggregation are known to occur for a variety of nanomaterials, with the extent of binding and aggregation highly dependent on nanoparticle surface properties. However, often lacking are techniques that enable quantification of the extent of protein binding and aggregation, particularly for nanoparticles with polydisperse size distributions. In this study, we adapt ion mobility spectrometry (IMS) to examine the binding of bovine serum albumin to commercially available anionic-surfactant-coated superparamagnetic iron oxide nanoparticles (SPIONs), which are initially ∼21 nm in mean mobility diameter and have a polydisperse size distribution function (geometric standard deviation near 1.4). IMS, carried out with a hydrosol-to-aerosol converting nebulizer, a differential mobility analyzer, and a condensation particle counter, enables measurements of SPION size distribution functions for varying BSA/SPION number concentration ratios. IMS measurements suggest that initially (at BSA concentrations below 50 nM) BSA binds reversibly to SPION surfaces with a binding site density in the 0.05-0.08 nm(-2) range. However, at higher BSA concentrations, BSA induces SPION-SPION aggregation, evidenced by larger shifts in SPION size distribution functions (mean diameters beyond 40 nm for BSA concentrations near 100 nM) and geometric standard deviations (near 1.3) consistent with self-preserving aggregation theories. The onset of BSA aggregation is correlated with a modest but statistically significant decrease in the specific absorption rate (SAR) of SPIONs placed within an alternating magnetic field. The coating of SPIONs with mesoporous silica (MS-SPIONs) as well as PEGylation (MS-SPIONs-PEG) is found to completely mitigate BSA binding and BSA-induced aggregation; IMS-inferred size distribution functions are insensitive to BSA concentration for MS-SPIONs and MS-SPIONs-PEG. The SARs of MS-SPIONs are additionally insensitive to BSA

  5. Detection of secondary binding sites in proteins using fragment screening

    PubMed Central

    Ludlow, R. Frederick; Verdonk, Marcel L.; Saini, Harpreet K.; Tickle, Ian J.; Jhoti, Harren

    2015-01-01

    Proteins need to be tightly regulated as they control biological processes in most normal cellular functions. The precise mechanisms of regulation are rarely completely understood but can involve binding of endogenous ligands and/or partner proteins at specific locations on a protein that can modulate function. Often, these additional secondary binding sites appear separate to the primary binding site, which, for example for an enzyme, may bind a substrate. In previous work, we have uncovered several examples in which secondary binding sites were discovered on proteins using fragment screening approaches. In each case, we were able to establish that the newly identified secondary binding site was biologically relevant as it was able to modulate function by the binding of a small molecule. In this study, we investigate how often secondary binding sites are located on proteins by analyzing 24 protein targets for which we have performed a fragment screen using X-ray crystallography. Our analysis shows that, surprisingly, the majority of proteins contain secondary binding sites based on their ability to bind fragments. Furthermore, sequence analysis of these previously unknown sites indicate high conservation, which suggests that they may have a biological function, perhaps via an allosteric mechanism. Comparing the physicochemical properties of the secondary sites with known primary ligand binding sites also shows broad similarities indicating that many of the secondary sites may be druggable in nature with small molecules that could provide new opportunities to modulate potential therapeutic targets. PMID:26655740

  6. Detection of secondary binding sites in proteins using fragment screening.

    PubMed

    Ludlow, R Frederick; Verdonk, Marcel L; Saini, Harpreet K; Tickle, Ian J; Jhoti, Harren

    2015-12-29

    Proteins need to be tightly regulated as they control biological processes in most normal cellular functions. The precise mechanisms of regulation are rarely completely understood but can involve binding of endogenous ligands and/or partner proteins at specific locations on a protein that can modulate function. Often, these additional secondary binding sites appear separate to the primary binding site, which, for example for an enzyme, may bind a substrate. In previous work, we have uncovered several examples in which secondary binding sites were discovered on proteins using fragment screening approaches. In each case, we were able to establish that the newly identified secondary binding site was biologically relevant as it was able to modulate function by the binding of a small molecule. In this study, we investigate how often secondary binding sites are located on proteins by analyzing 24 protein targets for which we have performed a fragment screen using X-ray crystallography. Our analysis shows that, surprisingly, the majority of proteins contain secondary binding sites based on their ability to bind fragments. Furthermore, sequence analysis of these previously unknown sites indicate high conservation, which suggests that they may have a biological function, perhaps via an allosteric mechanism. Comparing the physicochemical properties of the secondary sites with known primary ligand binding sites also shows broad similarities indicating that many of the secondary sites may be druggable in nature with small molecules that could provide new opportunities to modulate potential therapeutic targets.

  7. Improving Binding Affinity and Selectivity of Computationally Designed Ligand-Binding Proteins Using Experiments.

    PubMed

    Tinberg, Christine E; Khare, Sagar D

    2016-01-01

    The ability to de novo design proteins that can bind small molecules has wide implications for synthetic biology and medicine. Combining computational protein design with the high-throughput screening of mutagenic libraries of computationally designed proteins is emerging as a general approach for creating binding proteins with programmable binding modes, affinities, and selectivities. The computational step enables the creation of a binding site in a protein that otherwise does not (measurably) bind the intended ligand, and targeted mutagenic screening allows for validation and refinement of the computational model as well as provides orders-of-magnitude increases in the binding affinity. Deep sequencing of mutagenic libraries can provide insights into the mutagenic binding landscape and enable further affinity improvements. Moreover, in such a combined computational-experimental approach where the binding mode is preprogrammed and iteratively refined, selectivity can be achieved (and modulated) by the placement of specified amino acid side chain groups around the ligand in defined orientations. Here, we describe the experimental aspects of a combined computational-experimental approach for designing-using the software suite Rosetta-proteins that bind a small molecule of choice and engineering, using fluorescence-activated cell sorting and high-throughput yeast surface display, high affinity and ligand selectivity. We illustrated the utility of this approach by performing the design of a selective digoxigenin (DIG)-binding protein that, after affinity maturation, binds DIG with picomolar affinity and high selectivity over structurally related steroids. PMID:27094290

  8. Minimalistic predictor of protein binding energy: contribution of solvation factor to protein binding.

    PubMed

    Choi, Jeong-Mo; Serohijos, Adrian W R; Murphy, Sean; Lucarelli, Dennis; Lofranco, Leo L; Feldman, Andrew; Shakhnovich, Eugene I

    2015-02-17

    It has long been known that solvation plays an important role in protein-protein interactions. Here, we use a minimalistic solvation-based model for predicting protein binding energy to estimate quantitatively the contribution of the solvation factor in protein binding. The factor is described by a simple linear combination of buried surface areas according to amino-acid types. Even without structural optimization, our minimalistic model demonstrates a predictive power comparable to more complex methods, making the proposed approach the basis for high throughput applications. Application of the model to a proteomic database shows that receptor-substrate complexes involved in signaling have lower affinities than enzyme-inhibitor and antibody-antigen complexes, and they differ by chemical compositions on interfaces. Also, we found that protein complexes with components that come from the same genes generally have lower affinities than complexes formed by proteins from different genes, but in this case the difference originates from different interface areas. The model was implemented in the software PYTHON, and the source code can be found on the Shakhnovich group webpage: http://faculty.chemistry.harvard.edu/shakhnovich/software.

  9. Impaired immunogenicity of a meningococcal factor H-binding protein vaccine engineered to eliminate factor h binding.

    PubMed

    Beernink, Peter T; Shaughnessy, Jutamas; Ram, Sanjay; Granoff, Dan M

    2010-07-01

    Meningococcal factor H-binding protein (fHbp) is a promising antigen that is part of two vaccines in clinical development. The protein specifically binds human complement factor H (fH), which downregulates complement activation on the bacterial surface and enables the organism to evade host defenses. In humans, the vaccine antigen forms a complex with fH, which may affect anti-fHbp antibody repertoire and decrease serum bactericidal activity by covering important fHbp epitopes. In a recent study, fHbp residues in contact with fH were identified from a crystal structure. Two fHbp glutamate residues that mediated ion-pair interactions with fH were replaced with alanine, and the resulting E218A/E239A mutant no longer bound the fH fragment. In the present study, we generated the E218A/E239A mutant recombinant protein and confirmed the lack of fH binding. By enzyme-linked immunosorbent assay (ELISA), the mutant fHbp showed similar respective concentration-dependent inhibition of binding of four bactericidal anti-fHbp monoclonal antibodies (MAbs) to fHbp, compared with inhibition by the soluble wild-type protein. In two mouse strains, the mutant fHbp elicited up to 4-fold-lower IgG anti-fHbp antibody titers and up to 20-fold-lower serum bactericidal titers than those elicited by the wild-type fHbp vaccine. Thus, although introduction of the two alanine substitutions to eliminate fH binding did not appear to destabilize the molecule globally, the mutations resulted in decreased immunogenicity in mouse models in which neither the mutant nor the wild-type control vaccine bound fH. These results cast doubt on the vaccine potential in humans of this mutant fHbp.

  10. New potential role of serum apolipoprotein E mediated by its binding to clumping factor A during Staphylococcus aureus invasive infections to humans

    PubMed Central

    Hair, Pamela S.; Nyalwidhe, Julius O.; Cunnion, Kenji M.

    2015-01-01

    Staphylococcus aureus is a crucial human pathogen expressing various immune-evasion proteins that interact with the host-cell molecules. Clumping factor A (ClfA) is a microbial surface protein that promotes S. aureus binding to fibrinogen, and is associated with septic arthritis and infective endocarditis. In order to identify the major human serum proteins that bind the ClfA, we utilized recombinant ClfA region A in a plate-based assay. SDS-PAGE analysis of the bound proteins yielded five prominent bands, which were analysed by MS yielding apolipoprotein E (ApoE) as the predominant protein. ClfA-sufficient S. aureus bound purified ApoE by more than one log greater than an isogenic ClfA-deficient mutant. An immunodot-blot assay yielded a linearity model for ClfA binding to human ApoE with a stoichiometric-binding ratio of 1.702 at maximal Pearson's correlation coefficient (0.927). These data suggest that ApoE could be a major and novel binding target for the S. aureus virulence factor ClfA. Thus, ClfA recruitment of serum ApoE to the S. aureus surface may sequester ApoE and blunt its host defence function against S. aureus-invasive infections to humans. In this context, compounds that can block or suppress ClfA binding to ApoE might be utilized as prophylactic or therapeutic agents. PMID:25878259

  11. RNA-Binding Proteins in Trichomonas vaginalis: Atypical Multifunctional Proteins.

    PubMed

    Figueroa-Angulo, Elisa E; Calla-Choque, Jaeson S; Mancilla-Olea, Maria Inocente; Arroyo, Rossana

    2015-11-26

    Iron homeostasis is highly regulated in vertebrates through a regulatory system mediated by RNA-protein interactions between the iron regulatory proteins (IRPs) that interact with an iron responsive element (IRE) located in certain mRNAs, dubbed the IRE-IRP regulatory system. Trichomonas vaginalis, the causal agent of trichomoniasis, presents high iron dependency to regulate its growth, metabolism, and virulence properties. Although T. vaginalis lacks IRPs or proteins with aconitase activity, possesses gene expression mechanisms of iron regulation at the transcriptional and posttranscriptional levels. However, only one gene with iron regulation at the transcriptional level has been described. Recently, our research group described an iron posttranscriptional regulatory mechanism in the T. vaginalis tvcp4 and tvcp12 cysteine proteinase mRNAs. The tvcp4 and tvcp12 mRNAs have a stem-loop structure in the 5'-coding region or in the 3'-UTR, respectively that interacts with T. vaginalis multifunctional proteins HSP70, α-Actinin, and Actin under iron starvation condition, causing translation inhibition or mRNA stabilization similar to the previously characterized IRE-IRP system in eukaryotes. Herein, we summarize recent progress and shed some light on atypical RNA-binding proteins that may participate in the iron posttranscriptional regulation in T. vaginalis.

  12. Discovery of binding proteins for a protein target using protein-protein docking-based virtual screening.

    PubMed

    Zhang, Changsheng; Tang, Bo; Wang, Qian; Lai, Luhua

    2014-10-01

    Target structure-based virtual screening, which employs protein-small molecule docking to identify potential ligands, has been widely used in small-molecule drug discovery. In the present study, we used a protein-protein docking program to identify proteins that bind to a specific target protein. In the testing phase, an all-to-all protein-protein docking run on a large dataset was performed. The three-dimensional rigid docking program SDOCK was used to examine protein-protein docking on all protein pairs in the dataset. Both the binding affinity and features of the binding energy landscape were considered in the scoring function in order to distinguish positive binding pairs from negative binding pairs. Thus, the lowest docking score, the average Z-score, and convergency of the low-score solutions were incorporated in the analysis. The hybrid scoring function was optimized in the all-to-all docking test. The docking method and the hybrid scoring function were then used to screen for proteins that bind to tumor necrosis factor-α (TNFα), which is a well-known therapeutic target for rheumatoid arthritis and other autoimmune diseases. A protein library containing 677 proteins was used for the screen. Proteins with scores among the top 20% were further examined. Sixteen proteins from the top-ranking 67 proteins were selected for experimental study. Two of these proteins showed significant binding to TNFα in an in vitro binding study. The results of the present study demonstrate the power and potential application of protein-protein docking for the discovery of novel binding proteins for specific protein targets.

  13. A cDNA clone encoding an IgE-binding protein from Brassica anther has significant sequence similarity to Ca(2+)-binding proteins.

    PubMed

    Toriyama, K; Okada, T; Watanabe, M; Ide, T; Ashida, T; Xu, H; Singh, M B

    1995-12-01

    Thirteen cDNA clones encoding IgE-binding proteins were isolated from expression libraries of anthers of Brassica rapa L. and B. napus L. using serum IgE from a patient who was specifically allergic to Brassica pollen. These clones were divided into two groups, I and II, based on the sequence similarity. All the group I cDNAs predicted the same protein of 79 amino acids, while the group II predicted a protein of 83 amino acids with microheterogeneity. Both of the deduced amino acid sequences contained two regions with sequence similarity to Ca(2+)-binding sites of Ca(2+)-binding proteins such as calmodulin. However flanking sequences were distinct from that of calmodulin or other Ca(2+)-binding proteins. RNA-gel blot analysis showed the genes of group I and II were preferentially expressed in anthers at the later developmental stage and in mature pollen. The recombinant proteins produced in Escherichia coli was recognized in immunoblot analysis by the IgE of a Brassica pollen allergic patient, but not by the Ige of a non-allergic patient. The cDNA clones reported here, therefore, represent pollen allergens of Brassica species.

  14. Species-dependent enantioselective plasma protein binding of MK-571, a potent leukotriene D4 antagonist.

    PubMed

    Lin, J H; deLuna, F A; Ulm, E H; Tocco, D J

    1990-01-01

    The plasma protein binding of the enantiomers of MK-571 was stereoselective and the stereoselectivity was species dependent. The 12 mammalian species studied could be classified into three groups: those that bind the S-(+)-enantiomer to a greater extent than the R-(-)-enantiomer (human, baboon, monkey, cow, dog, and cat); those that bind the R-(-)-enantiomer more extensively (rat, guinea pig, and sheep); and those that show no stereoselectivity (rabbit, hamster, and mouse). The stereoselective binding appears to have no phylogenetic relationship. Using serum albumin instead of plasma, a similar degree of stereoselective binding was observed for human, dog, sheep, and rat, suggesting that albumin is the major binding component for MK-571 enantiomers, and that species differences in stereoselective binding are likely due to structural differences in the albumin molecule. Displacement studies with [14C] diazepam, [14C]warfarin, and [3H]digitoxin indicated that the enantioselective differences in protein binding are most likely due to the differences in binding affinity rather than to different binding sites. PMID:1976072

  15. A simple new competition assay for heparin binding in serum applied to multivalent PAMAM dendrimers.

    PubMed

    Bromfield, Stephen M; Posocco, Paola; Fermeglia, Maurizio; Pricl, Sabrina; Rodríguez-López, Julián; Smith, David K

    2013-05-25

    We report a competition assay using our recently reported dye Mallard Blue, which allows us to identify synthetic heparin binders in competitive media, including human serum - using this we gain insight into the ability of PAMAM dendrimers to bind heparin, with the interesting result that low-generation G2-PAMAM is the preferred heparin binder.

  16. An analysis of beta-lactam-derived antigens on spleen cell and serum proteins by ELISA and Western blotting.

    PubMed

    Warbrick, E V; Thomas, A L; Stejskal, V; Coleman, J W

    1995-11-01

    Penicillins and related beta-lactam antibiotics are known to conjugate to proteins to generate potentially antigenic (haptenic) determinants. In the present study, we used a rabbit polyclonal antibody raised against benzylpenicillin (BP) to investigate the capacity of six penicillins and one cephalosporin to generate haptenic groups in vitro on cultured mouse spleen cells and on serum proteins in the culture medium. All of the drugs tested, namely, BP, amoxicillin (AMX), ampicillin (AMP), cephalothin (CEP), cloxacillin (CLX), flucloxacillin (FLX), and phenoxymethylpenicillin (PMP) generated antigens in a concentration-dependent manner on cell and serum proteins, which could be detected by ELISA, although antigens generated by BP, CEP, FLX, or PMP in either cell- or serum-conjugated form were more readily detected than those generated by AMX, AMP, or CLX. Western blot analysis revealed that BP-derived antigens were generated relatively slowly on cell proteins (maximum binding was not yet reached after 8 h), compared to serum proteins (maximum binding within 1 h). BP, CEP, and PMP all generated similar distinctive patterns of immunostaining of electrophoresed cell or serum proteins which did not reflect the relative abundance of different proteins as revealed by Coomassie brilliant blue staining. FLX, CLX, AMP, and AMX did not generate antigens that could be detected on Western blots. In conclusion, we have shown that various beta-lactam antibiotics generate antigens on cell and serum proteins that can be detected and characterized immunochemically with polyclonal antiserum. Further application of these methods may offer potential for further identification of immunologically relevant cellular and serum antigens generated by these drugs.

  17. Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site

    SciTech Connect

    Gangi Setty, Thanuja; Cho, Christine; Govindappa, Sowmya; Apicella, Michael A.; Ramaswamy, S.

    2014-07-01

    Structure–function studies of sialic acid-binding proteins from F. nucleatum, P. multocida, V. cholerae and H. influenzae reveal a conserved network of hydrogen bonds involved in conformational change on ligand binding. Sialic acids are a family of related nine-carbon sugar acids that play important roles in both eukaryotes and prokaryotes. These sialic acids are incorporated/decorated onto lipooligosaccharides as terminal sugars in multiple bacteria to evade the host immune system. Many pathogenic bacteria scavenge sialic acids from their host and use them for molecular mimicry. The first step of this process is the transport of sialic acid to the cytoplasm, which often takes place using a tripartite ATP-independent transport system consisting of a periplasmic binding protein and a membrane transporter. In this paper, the structural characterization of periplasmic binding proteins from the pathogenic bacteria Fusobacterium nucleatum, Pasteurella multocida and Vibrio cholerae and their thermodynamic characterization are reported. The binding affinities of several mutations in the Neu5Ac binding site of the Haemophilus influenzae protein are also reported. The structure and the thermodynamics of the binding of sugars suggest that all of these proteins have a very well conserved binding pocket and similar binding affinities. A significant conformational change occurs when these proteins bind the sugar. While the C1 carboxylate has been identified as the primary binding site, a second conserved hydrogen-bonding network is involved in the initiation and stabilization of the conformational states.

  18. Topological Analyses of Protein-Ligand Binding: a Network Approach.

    PubMed

    Costanzi, Stefano

    2016-01-01

    Proteins can be conveniently represented as networks of interacting residues, thus allowing the study of several network parameters that can shed light onto several of their structural and functional aspects. With respect to the binding of ligands, which are central for the function of many proteins, network analysis may constitute a possible route to assist the identification of binding sites. As the bulk of this review illustrates, this has generally been easier for enzymes than for non-enzyme proteins, perhaps due to the different topological nature of the binding sites of the former over those of the latter. The article also illustrates how network representations of binding sites can be used to search PDB structures in order to identify proteins that bind similar molecules and, lastly, how codifying proteins as networks can assist the analysis of the conformational changes consequent to ligand binding.

  19. Increased (/sup 125/I)trypsin-binding in serum from cystic fibrosis patients

    SciTech Connect

    Cox, K.L.; Frates, R.C. Jr.; Sheikholislam, B.M.; Iwahashi-Hosoda, C.K.

    1982-01-01

    The capacities of normal and cystic fibrosis (CF) sera to bind to exogenous human (/sup 125/I)trypsin were compared. Sera from eight older CF patients bound significantly more exogenous human (/sup 125/I)trypsin than did sera from eight normal subjects (p less than 0.001). Disregarding the increased trypsin-binding (TB) of CF sera, serum immunoreactive trypsinogen (SIRT) levels were not detectable in these eight older CF patients. However, when SIRT levels were corrected for TB, four CF patients had normal SIRT concentrations and four had low but detectable SIRT levels. As compared to five normal newborns' sera, serum from a newborn with CF had normal TB and the SIRT levels were very high. In conclusion, increased TB in CF serum lowers results of SIRT assays. Therefore, unless SIRT levels are corrected for TB, results obtained from currently available SIRT kits may be invalid.

  20. Serum proteins are extracted along with monolayer cells in plasticware and interfere with protein analysis

    PubMed Central

    Hong, Xin; Meng, Yuling; Kalkanis, Steven N.

    2016-01-01

    Washing and lysing monolayer cells directly from cell culture plasticware is a commonly used method for protein extraction. We found that multiple protein bands were enriched in samples with low cell numbers from the 6-well plate cultures. These proteins contributed to the overestimation of cell proteins and led to the uneven protein loading in Western blotting analysis. In Coomassie blue stained SDS-PAGE gels, the main enriched protein band is about 69 kDa and it makes up 13.6% of total protein from 104 U251n cells. Analyzed by mass spectrometry, we identified two of the enriched proteins: bovine serum albumin and bovine serum transferrin. We further observed that serum proteins could be extracted from other cell culture plates, dishes and flasks even after washing the cells 3 times with PBS. A total of 2.3 mg of protein was collected from a single well of the 6-well plate. A trace amount of the protein band was still visible after washing the cells 5 times with PBS. Thus, serum proteins should be considered if extracting proteins from plasticware, especially for samples with low cell numbers. PMID:27631018

  1. Serum proteins are extracted along with monolayer cells in plasticware and interfere with protein analysis

    PubMed Central

    Hong, Xin; Meng, Yuling; Kalkanis, Steven N.

    2016-01-01

    Washing and lysing monolayer cells directly from cell culture plasticware is a commonly used method for protein extraction. We found that multiple protein bands were enriched in samples with low cell numbers from the 6-well plate cultures. These proteins contributed to the overestimation of cell proteins and led to the uneven protein loading in Western blotting analysis. In Coomassie blue stained SDS-PAGE gels, the main enriched protein band is about 69 kDa and it makes up 13.6% of total protein from 104 U251n cells. Analyzed by mass spectrometry, we identified two of the enriched proteins: bovine serum albumin and bovine serum transferrin. We further observed that serum proteins could be extracted from other cell culture plates, dishes and flasks even after washing the cells 3 times with PBS. A total of 2.3 mg of protein was collected from a single well of the 6-well plate. A trace amount of the protein band was still visible after washing the cells 5 times with PBS. Thus, serum proteins should be considered if extracting proteins from plasticware, especially for samples with low cell numbers.

  2. Minisatellite binding protein Msbp-1 is a sequence-specific single-stranded DNA-binding protein.

    PubMed Central

    Collick, A; Dunn, M G; Jeffreys, A J

    1991-01-01

    Msbp-1 is a minisatellite-specific DNA-binding protein. Using synthetic binding substrates, we now show that Msbp-1 binds not to double-stranded DNA, but exclusively to single-stranded DNA. Binding is specific to the guanine-rich strand of the minisatellite duplex, interactions with the cytosine-rich strand being undetectable by southwestern analysis. Furthermore, the binding site required for successful DNA-protein interactions appears to be two or more minisatellite repeat units. We have also isolated, by whole-genome PCR and cloning, one Msbp-1 binding site from the human genome. Again, the binding strand of this molecule contains a repetitive G-rich structure equivalent to that of a small minisatellite. These observations are discussed with respect to other single-stranded DNA-binding proteins known to play a role in recombination processes. Images PMID:1754375

  3. Investigation of ketoprofen binding to human serum albumin by spectral methods

    NASA Astrophysics Data System (ADS)

    Bi, Shuyun; Yan, Lili; Sun, Yantao; Zhang, Hanqi

    2011-01-01

    The binding of ketoprofen with human serum albumin (HSA) was studied by fluorescence and absorption spectroscopic methods. Quenching of fluorescence of HSA was found to be a static quenching process. At 288.15, 298.15, 308.15 and 318.15 K, the binding constants and binding sites were obtained. The effects of Cu 2+, Al 3+, Ca 2+, Pb 2+ and K + on the binding at 288.15 K were also studied. The thermodynamic parameters, Δ H, Δ G and Δ S were got and the main sort of acting force between ketoprofen and HSA was studied. Based on the Förster's theory of non-radiation energy transfer, the binding average distance, r, between the acceptor (ketoprofen) and the donor (HSA) was calculated.

  4. Conformity of RNAs that interact with tetranucleotide loop binding proteins.

    PubMed Central

    Zwieb, C

    1992-01-01

    A group of RNA binding proteins, termed tetraloop binding proteins, includes ribosomal protein S15 and protein SRP19 of signal recognition particle. They are primary RNA binding proteins, recognize RNA tetranucleotide loops with a GNAR consensus motif, and require a helical region located adjacent to the tetraloop. Closely related RNA structures that fit these criteria appear in helix 6 of SRP RNA, in helices 22 and 23A of 16 S ribosomal RNA, and, as a pseudoknot, in the regulatory region of the rpsO gene. Images PMID:1329024

  5. Identification and characterization of porcine mannan-binding lectin A (pMBL-A), and determination of serum concentration heritability.

    PubMed

    Juul-Madsen, Helle R; Krogh-Meibom, Thomas; Henryon, Mark; Palaniyar, Nades; Heegaard, Peter M H; Purup, Stig; Willis, Anthony C; Tornøe, Ida; Ingvartsen, Klaus L; Hansen, Søren; Holmskov, Uffe

    2006-04-01

    Mannan-binding lectin (MBL) is an innate immune collectin present in the serum of humans and many farm animals. This oligomeric pattern-recognition protein effectively binds to the glycoconjugate arrays present on the surfaces of microorganisms and activates the complement system to enhance pathogen killing and clearance. MBL deficiency is often associated with immunodeficiency in humans. Although two MBLs (MBL-A and MBL-C) have been characterized in various species, the identity of porcine MBL (pMBL) was not clearly defined. In this study, we purified an MBL from porcine serum by mannose affinity, ion exchange, and size exclusion chromatography and determined many of its characteristics. Based on the N-terminal sequence, multiple sequence alignment, and relative affinities to various carbohydrate ligands, we propose that the MBL purified in this study is pMBL-A. We have generated antibodies to this protein and established an immunoassay to quantify pMBL-A in serum. Using this assay, we found breed differences in pMBL-A concentration distributions and heritability estimates. In the Duroc breed (n=588), pMBL-A concentrations show a unimodal distribution with a mean of 9,125 ng/ml. In contrast, the pMBL-A concentration distributions in the Landrace breed (n=533) show three distinct mean values: 301, 2,385, and 11,507 ng/ml. Furthermore, heritability calculations based on an additive genetic variance model with no fixed effects indicate that serum pMBL-A concentration is highly heritable in the Landrace (h (2)=0.8) but not in the Duroc breed (h (2)=0.15). These genetic differences may be useful in selecting breeding pigs for improved disease resistance. PMID:16518621

  6. Crystal structure of CbpF, a bifunctional choline-binding protein and autolysis regulator from Streptococcus pneumoniae

    PubMed Central

    Molina, Rafael; González, Ana; Stelter, Meike; Pérez-Dorado, Inmaculada; Kahn, Richard; Morales, María; Campuzano, Susana; Campillo, Nuria E; Mobashery, Shahriar; García, José L; García, Pedro; Hermoso, Juan A

    2009-01-01

    Phosphorylcholine, a crucial component of the pneumococcal cell wall, is essential in bacterial physiology and in human pathogenesis because it binds to serum components of the immune system and acts as a docking station for the family of surface choline-binding proteins. The three-dimensional structure of choline-binding protein F (CbpF), one of the most abundant proteins in the pneumococcal cell wall, has been solved in complex with choline. CbpF shows a new modular structure composed both of consensus and non-consensus choline-binding repeats, distributed along its length, which markedly alter its shape, charge distribution and binding ability, and organizing the protein into two well-defined modules. The carboxy-terminal module is involved in cell wall binding and the amino-terminal module is crucial for inhibition of the autolytic LytC muramidase, providing a regulatory function for pneumococcal autolysis. PMID:19165143

  7. Probing the binding of an endocrine disrupting compound-Bisphenol F to human serum albumin: Insights into the interactions of harmful chemicals with functional biomacromolecules

    NASA Astrophysics Data System (ADS)

    Pan, Fang; Xu, Tianci; Yang, Lijun; Jiang, Xiaoqing; Zhang, Lei

    2014-11-01

    Bisphenol F (BPF) as an endocrine disrupting compounds (EDCs) pollutant in the environment poses a great threat to human health. To evaluate the toxicity of BPF at the protein level, the effects of BPF on human serum albumin (HSA) were investigated at three temperatures 283, 298, and 308 K by multiple spectroscopic techniques. The experimental results showed that BPF effectively quenched the intrinsic fluorescence of HSA via static quenching. The number of binding sites, the binding constant, the thermodynamic parameters and the binding subdomain were measured, and indicated that BPF could spontaneously bind with HSA on subdomain IIA through H-bond and van der Waals interactions. Furthermore, the conformation of HSA was demonstrably changed in the presence of BPF. The work provides accurate and full basic data for clarifying the binding mechanisms of BPF with HSA in vivo and is helpful for understanding its effect on protein function during its transportation and distribution in blood.

  8. Elucidation of binding mechanism and identification of binding site for an anti HIV drug, stavudine on human blood proteins.

    PubMed

    Sandhya, B; Hegde, Ashwini H; Seetharamappa, J

    2013-05-01

    The binding of stavudine (STV) to two human blood proteins [human hemoglobin (HHb) and human serum albumin (HSA)] was studied in vitro under simulated physiological conditions by spectroscopic methods viz., fluorescence, UV absorption, resonance light scattering, synchronous fluorescence, circular dichroism (CD) and three-dimensional fluorescence. The binding parameters of STV-blood protein were determined from fluorescence quenching studies. Stern-Volmer plots indicated the presence of static quenching mechanism in the interaction of STV with blood proteins. The values of n close to unity indicated that one molecule of STV bound to one molecule of blood protein. The binding process was found to be spontaneous. Analysis of thermodynamic parameters revealed the presence of hydrogen bond and van der Waals forces between protein and STV. Displacement experiments indicated the binding of STV to Sudlow's site I on HSA. Secondary structures of blood proteins have undergone changes upon interaction with STV as evident from the reduction of α-helices (from 46.11% in free HHb to 38.34% in STV-HHb, and from 66.44% in free HSA to 52.26% in STV-HSA). Further, the alterations in secondary structures of proteins in the presence of STV were confirmed by synchronous and 3D-fluorescence spectral data. The distance between the blood protein (donor) and acceptor (STV) was found to be 5.211 and 5.402 nm for STV-HHb and STV-HSA, respectively based on Föster's non-radiative energy transfer theory. Effect of some metal ions was also investigated. The fraction of STV bound to HSA was found to be 87.8%.

  9. A β-hairpin-binding protein for three different disease-related amyloidogenic proteins.

    PubMed

    Shaykhalishahi, Hamed; Mirecka, Ewa A; Gauhar, Aziz; Grüning, Clara S R; Willbold, Dieter; Härd, Torleif; Stoldt, Matthias; Hoyer, Wolfgang

    2015-02-01

    Amyloidogenic proteins share a propensity to convert to the β-structure-rich amyloid state that is associated with the progression of several protein-misfolding disorders. Here we show that a single engineered β-hairpin-binding protein, the β-wrapin AS10, binds monomers of three different amyloidogenic proteins, that is, amyloid-β peptide, α-synuclein, and islet amyloid polypeptide, with sub-micromolar affinity. AS10 binding inhibits the aggregation and toxicity of all three proteins. The results demonstrate common conformational preferences and related binding sites in a subset of the amyloidogenic proteins. These commonalities enable the generation of multispecific monomer-binding agents.

  10. Calmodulin Binding Proteins and Alzheimer’s Disease

    PubMed Central

    O’Day, Danton H.; Eshak, Kristeen; Myre, Michael A.

    2015-01-01

    Abstract The small, calcium-sensor protein, calmodulin, is ubiquitously expressed and central to cell function in all cell types. Here the literature linking calmodulin to Alzheimer’s disease is reviewed. Several experimentally-verified calmodulin-binding proteins are involved in the formation of amyloid-β plaques including amyloid-β protein precursor, β-secretase, presenilin-1, and ADAM10. Many others possess potential calmodulin-binding domains that remain to be verified. Three calmodulin binding proteins are associated with the formation of neurofibrillary tangles: two kinases (CaMKII, CDK5) and one protein phosphatase (PP2B or calcineurin). Many of the genes recently identified by genome wide association studies and other studies encode proteins that contain putative calmodulin-binding domains but only a couple (e.g., APOE, BIN1) have been experimentally confirmed as calmodulin binding proteins. At least two receptors involved in calcium metabolism and linked to Alzheimer’s disease (mAchR; NMDAR) have also been identified as calmodulin-binding proteins. In addition to this, many proteins that are involved in other cellular events intimately associated with Alzheimer’s disease including calcium channel function, cholesterol metabolism, neuroinflammation, endocytosis, cell cycle events, and apoptosis have been tentatively or experimentally verified as calmodulin binding proteins. The use of calmodulin as a potential biomarker and as a therapeutic target is discussed. PMID:25812852

  11. Protein Binding: Do We Ever Learn?▿

    PubMed Central

    Zeitlinger, Markus A.; Derendorf, Hartmut; Mouton, Johan W.; Cars, Otto; Craig, William A.; Andes, David; Theuretzbacher, Ursula

    2011-01-01

    Although the influence of protein binding (PB) on antibacterial activity has been reported for many antibiotics and over many years, there is currently no standardization for pharmacodynamic models that account for the impact of protein binding of antimicrobial agents in vitro. This might explain the somewhat contradictory results obtained from different studies. Simple in vitro models which compare the MIC obtained in protein-free standard medium versus a protein-rich medium are prone to methodological pitfalls and may lead to flawed conclusions. Within in vitro test systems, a range of test conditions, including source of protein, concentration of the tested antibiotic, temperature, pH, electrolytes, and supplements may influence the impact of protein binding. As new antibiotics with a high degree of protein binding are in clinical development, attention and action directed toward the optimization and standardization of testing the impact of protein binding on the activity of antibiotics in vitro become even more urgent. In addition, the quantitative relationship between the effects of protein binding in vitro and in vivo needs to be established, since the physiological conditions differ. General recommendations for testing the impact of protein binding in vitro are suggested. PMID:21537013

  12. Protein-Polyelectrolyte Coacervation: Morphology Diagram, Binding Affinity, and Protein Separation

    NASA Astrophysics Data System (ADS)

    Hoagland, David; Du, Xiaosong; Dubin, Paul

    2014-03-01

    For aqueous mixtures of negatively charged polysaccharide, hyaluronic acid (HA), and globular protein, either bovine serum albumin (BSA) or beta-lactoglobulin (BLG), a pH-ionic strength (I) morphology diagram, with regions of homogeneous solution, soluble complex, coacervation, precipitation, and redissolution, was developed by pH titrations performed at fixed I. The systems are models for coacervation, or liquid-liquid phase separation, between flexible and compact solutes of opposite charge. Protein charge here is tuned by pH, and titration keeps the mixtures close to equilibrium. At high I, only homogeneous solution is observed, as true at high and low pH. Diagrams for the proteins differ because HA affinity for BSA is higher than for BLG, traced to BSA's greater charge patchiness and higher net charge; isothermal solution titration calorimetry finds a factor of two difference in binding energy. Dependences of transition pH on protein charge Z and solution I offer additional insights into interactions underlying morphology transitions. At optimal conditions, the affinity disparity is sufficient to achieve highly selective BSA coacervation in a 1:1 protein mixture, suggesting coacervation to separate similar proteins under mild, non-denaturing conditions. Funding: NSF CBET-1133289, NSF (UMass MRSEC).

  13. A bone sialoprotein-binding protein from Staphylococcus aureus: a member of the staphylococcal Sdr family.

    PubMed Central

    Tung, H s; Guss, B; Hellman, U; Persson, L; Rubin, K; Rydén, C

    2000-01-01

    Staphylococcus aureus bacteria, isolated from bone and joint infections, specifically interact with bone sialoprotein (BSP), a glycoprotein of bone and dentine extracellular matrix, via a cell-surface protein of M(r) 97000 [Yacoub, Lindahl, Rubin, Wendel, Heinegârd and Rydén, (1994) Eur. J. Biochem. 222, 919-925]. Amino acid sequences of seven trypsin fragments from the 97000-M(r) BSP-binding protein were determined. A gene encoding a protein encompassing all seven peptide sequences was identified from chromosomal DNA isolated from S. aureus strain O24. This gene encodes a protein with 1171 amino acids, called BSP-binding protein (Bbp), which displays similarity to recently described proteins of the Sdr family from S. aureus. SdrC, SdrD and SdrE encode putative cell-surface proteins with no described ligand specificity. Bbp also shows similarity to a fibrinogen-binding protein from S. epidermidis called Fbe. A serine-aspartic acid repeat sequence was found close to the cell-wall-anchoring Leu-Pro-Xaa-Thr-Gly sequence in the C-terminal end of the protein. Escherichia coli cells were transformed with an expression vector containing a major part of the bbp gene fused to the gene for glutathione S-transferase. The affinity-purified fusion protein bound radiolabelled native BSP, and inhibited the binding of radiolabelled BSP to staphylococcal cells. Serum from patients suffering from bone and joint infection contained antibodies that reacted with the fusion protein of the BSP-binding protein, indicating that the protein is expressed during an infection and is immunogenic. The S. aureus Bbp protein may be important in the localization of bacteria to bone tissue, and thus might be of relevance in the pathogenicity of osteomyelitis. PMID:10642520

  14. Actin binding proteins, spermatid transport and spermiation.

    PubMed

    Qian, Xiaojing; Mruk, Dolores D; Cheng, Yan-Ho; Tang, Elizabeth I; Han, Daishu; Lee, Will M; Wong, Elissa W P; Cheng, C Yan

    2014-06-01

    The transport of germ cells across the seminiferous epithelium is composed of a series of cellular events during the epithelial cycle essential to the completion of spermatogenesis. Without the timely transport of spermatids during spermiogenesis, spermatozoa that are transformed from step 19 spermatids in the rat testis fail to reach the luminal edge of the apical compartment and enter the tubule lumen at spermiation, thereby arriving the epididymis for further maturation. Step 19 spermatids and/or sperms that remain in the epithelium beyond stage VIII of the epithelial cycle will be removed by the Sertoli cell via phagocytosis to form phagosomes and be degraded by lysosomes, leading to subfertility and/or infertility. However, the biology of spermatid transport, in particular the final events that lead to spermiation remain elusive. Based on recent data in the field, we critically evaluate the biology of spermiation herein by focusing on the actin binding proteins (ABPs) that regulate the organization of actin microfilaments at the Sertoli-spermatid interface, which is crucial for spermatid transport during this event. The hypothesis we put forth herein also highlights some specific areas of research that can be pursued by investigators in the years to come.

  15. Odorant-Binding Protein: Localization to Nasal Glands and Secretions

    NASA Astrophysics Data System (ADS)

    Pevsner, Jonathan; Sklar, Pamela B.; Snyder, Solomon H.

    1986-07-01

    An odorant-binding protein (OBP) was isolated from bovine olfactory and respiratory mucosa. We have produced polyclonal antisera to this protein and report its immunohistochemical localization to mucus-secreting glands of the olfactory and respiratory mucosa. Although OBP was originally isolated as a pyrazine binding protein, both rat and bovine OBP also bind the odorants [3H]methyldihydrojasmonate and 3,7-dimethyl-octan-1-ol as well as 2-isobutyl-3-[3H]methoxypyrazine. We detect substantial odorant-binding activity attributable to OBP in secreted rat nasal mucus and tears but not in saliva, suggesting a role for OBP in transporting or concentrating odorants.

  16. Therapeutic and analytical applications of arsenic binding to proteins.

    PubMed

    Chen, Beibei; Liu, Qingqing; Popowich, Aleksandra; Shen, Shengwen; Yan, Xiaowen; Zhang, Qi; Li, Xing-Fang; Weinfeld, Michael; Cullen, William R; Le, X Chris

    2015-01-01

    Arsenic binding to proteins plays a pivotal role in the health effects of arsenic. Further knowledge of arsenic binding to proteins will advance the development of bioanalytical techniques and therapeutic drugs. This review summarizes recent work on arsenic-based drugs, imaging of cellular events, capture and purification of arsenic-binding proteins, and biosensing of arsenic. Binding of arsenic to the promyelocytic leukemia fusion oncoprotein (PML-RARα) is a plausible mode of action leading to the successful treatment of acute promyelocytic leukemia (APL). Identification of other oncoproteins critical to other cancers and the development of various arsenicals and targeted delivery systems are promising approaches to the treatment of other types of cancers. Techniques for capture, purification, and identification of arsenic-binding proteins make use of specific binding between trivalent arsenicals and the thiols in proteins. Biarsenical probes, such as FlAsH-EDT2 and ReAsH-EDT2, coupled with tetracysteine tags that are genetically incorporated into the target proteins, are used for site-specific fluorescence labelling and imaging of the target proteins in living cells. These allow protein dynamics and protein-protein interactions to be studied. Arsenic affinity chromatography is useful for purification of thiol-containing proteins, and its combination with mass spectrometry provides a targeted proteomic approach for studying the interactions between arsenicals and proteins in cells. Arsenic biosensors evolved from the knowledge of arsenic resistance and arsenic binding to proteins in bacteria, and have now been developed into analytical techniques that are suitable for the detection of arsenic in the field. Examples in the four areas, arsenic-based drugs, imaging of cellular events, purification of specific proteins, and arsenic biosensors, demonstrate important therapeutic and analytical applications of arsenic protein binding. PMID:25356501

  17. RNA binding protein and binding site useful for expression of recombinant molecules

    DOEpatents

    Mayfield, Stephen P.

    2006-10-17

    The present invention relates to a gene expression system in eukaryotic and prokaryotic cells, preferably plant cells and intact plants. In particular, the invention relates to an expression system having a RB47 binding site upstream of a translation initiation site for regulation of translation mediated by binding of RB47 protein, a member of the poly(A) binding protein family. Regulation is further effected by RB60, a protein disulfide isomerase. The expression system is capable of functioning in the nuclear/cytoplasm of cells and in the chloroplast of plants. Translation regulation of a desired molecule is enhanced approximately 100 fold over that obtained without RB47 binding site activation.

  18. RNA binding protein and binding site useful for expression of recombinant molecules

    DOEpatents

    Mayfield, Stephen

    2000-01-01

    The present invention relates to a gene expression system in eukaryotic and prokaryotic cells, preferably plant cells and intact plants. In particular, the invention relates to an expression system having a RB47 binding site upstream of a translation initiation site for regulation of translation mediated by binding of RB47 protein, a member of the poly(A) binding protein family. Regulation is further effected by RB60, a protein disulfide isomerase. The expression system is capable of functioning in the nuclear/cytoplasm of cells and in the chloroplast of plants. Translation regulation of a desired molecule is enhanced approximately 100 fold over that obtained without RB47 binding site activation.

  19. Binding and hydrolysis of soman by human serum albumin.

    PubMed

    Li, Bin; Nachon, Florian; Froment, Marie-Thérèse; Verdier, Laurent; Debouzy, Jean-Claude; Brasme, Bernardo; Gillon, Emilie; Schopfer, Lawrence M; Lockridge, Oksana; Masson, Patrick

    2008-02-01

    Human plasma and fatty acid free human albumin were incubated with soman at pH 8.0 and 25 degrees C. Four methods were used to monitor the reaction of albumin with soman: progressive inhibition of the aryl acylamidase activity of albumin, the release of fluoride ion from soman, 31P NMR, and mass spectrometry. Inhibition (phosphonylation) was slow with a bimolecular rate constant of 15 +/- 3 M(-1) min (-1). MALDI-TOF and tandem mass spectrometry of the soman-albumin adduct showed that albumin was phosphonylated on tyrosine 411. No secondary dealkylation of the adduct (aging) occurred. Covalent docking simulations and 31P NMR experiments showed that albumin has no enantiomeric preference for the four stereoisomers of soman. Spontaneous reactivation at pH 8.0 and 25 degrees C, measured as regaining of aryl acylamidase activity and decrease of covalent adduct (pinacolyl methylphosphonylated albumin) by NMR, occurred at a rate of 0.0044 h (-1), indicating that the adduct is quite stable ( t1/2 = 6.5 days). At pH 7.4 and 22 degrees C, the covalent soman-albumin adduct, measured by MALDI-TOF mass spectrometry, was more stable ( t1/2 = 20 days). Though the concentration of albumin in plasma is very high (about 0.6 mM), its reactivity with soman (phosphonylation and phosphotriesterase activity) is too slow to play a major role in detoxification of the highly toxic organophosphorus compound soman. Increasing the bimolecular rate constant of albumin for organophosphates is a protein engineering challenge that could lead to a new class of bioscavengers to be used against poisoning by nerve agents. Soman-albumin adducts detected by mass spectrometry could be useful for the diagnosis of soman exposure. PMID:18163544

  20. Immobilized purified folate-binding protein: binding characteristics and use for quantifying folate in erythrocytes

    SciTech Connect

    Hansen, S.I.; Holm, J.; Nexo, E.

    1987-08-01

    Purified folate-binding protein from cow's milk was immobilized on monodisperse polymer particles (Dynospheres) activated by rho-toluenesulfonyl chloride. Leakage from the spheres was less than 0.1%, and the binding properties were similar to those of the soluble protein with regard to dissociation, pH optimum for binding pteroylglutamic acid, and specificity for binding various folate derivatives. We used the immobilized folate-binding protein as binding protein in an isotope-dilution assay for quantifying folate in erythrocytes. The detection limit was 50 nmol/L and the CV over a six-month period was 2.3% (means = 1.25 mumol/L, n = 15). The reference interval, for folate measured in erythrocytes of 43 blood donors, was 0.4-1.5 mumol/L.

  1. Affinity Purification of Sequence-Specific DNA Binding Proteins

    NASA Astrophysics Data System (ADS)

    Kadonaga, James T.; Tjian, Robert

    1986-08-01

    We describe a method for affinity purification of sequence-specific DNA binding proteins that is fast and effective. Complementary chemically synthesized oligodeoxynucleotides that contain a recognition site for a sequence-specific DNA binding protein are annealed and ligated to give oligomers. This DNA is then covalently coupled to Sepharose CL-2B with cyanogen bromide to yield the affinity resin. A partially purified protein fraction is combined with competitor DNA and subsequently passed through the DNA-Sepharose resin. The desired sequence-specific DNA binding protein is purified because it preferentially binds to the recognition sites in the affinity resin rather than to the nonspecific competitor DNA in solution. For example, a protein fraction that is enriched for transcription factor Sp1 can be further purified 500- to 1000-fold by two sequential affinity chromatography steps to give Sp1 of an estimated 90% homogeneity with 30% yield. In addition, the use of tandem affinity columns containing different protein binding sites allows the simultaneous purification of multiple DNA binding proteins from the same extract. This method provides a means for the purification of rare sequence-specific DNA binding proteins, such as Sp1 and CAAT-binding transcription factor.

  2. Serum protein adsorption and excretion pathways of metal nanoparticles

    PubMed Central

    Vinluan, Rodrigo D; Zheng, Jie

    2015-01-01

    While the synthesis of metal nanoparticles (NPs) with fascinating optical and electronic properties have progressed dramatically and their potential biomedical applications were also well demonstrated in the past decade, translation of metal NPs into the clinical practice still remains a challenge due to their severe accumulation in the body. Herein, we give a brief review on size-dependent material properties of metal NPs and their potential biomedical applications, followed by a summary of how structural parameters such as size, shape and charge influence their interactions with serum protein adsorption, cellular uptake and excretion pathways. Finally, the future challenges in minimizing serum protein adsorption and expediting clinical translation of metal NPs were also discussed. PMID:26377047

  3. Binding studies of L-tryptophan to human serum albumin with nanogold-structured sensor by piezoelectric quartz crystal impedance analysis.

    PubMed

    Long, Yumei; Yao, Shouzhuo; Chen, Jinhua

    2011-12-01

    Nanogold-modified sensor was constructed and applied to study the binding of L-tryptophan to human serum albumin (HSA) in situ by piezoelectric quartz crystal impedance (PQCI) analysis. It was interesting that the as-prepared nanogold modified sensor was more sensitive and biocompatible than bare gold electrode. The frequency changes due to protein adsorption on the nanogold-modified sensor might be described as a sum of two exponential functions and detailed explanation was given. Additionally, the kinetics of the binding process was also investigated. The binding constant (K) and the number of binding site (n) for the binding process without competitor are fitted to be 1.07 x 10(4) (mol l(-1))(-1) s(-1) and 1.13, respectively, and 2.24 x 10(3) (mol l-(1))(-1) s(-1) and 1.18, respectively for the binding process with competitor.

  4. Serum proteins of Canada goose (Branta canadensis) subspecies

    USGS Publications Warehouse

    Morgan, R.P.; Sulkin, S.T.; Henny, C.J.

    1977-01-01

    Serum proteins from nine subspecies of Canada Geese (Brunta canadensis) were analyzed through the use of column and slab acrylamide electrophoresis. Variation was minimal within a subspecies, although all the subspecies were closely related. B. c. leucopareia appeared to be the most distinct subspecies, while maxima and moffitti were the most similar. Our preliminary findings suggest that the electrophoresis techniques are sensitive enough to identify some of the subspecies; however, baseline data from breeding ranges of all subspecies are required.

  5. Chemical characterization of binding properties of opacity-associated protein II from Neisseria gonorrhoeae.

    PubMed Central

    Bessen, D; Gotschlich, E C

    1987-01-01

    Binding of an opacity-associated protein II (PIIop) from Neisseria gonorrhoeae to eucaryotic macromolecules was studied. HeLa cell extracts were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis and transferred to nitrocellulose, and purified PIIop bound to approximately 50 distinct molecular species. The binding of PIIop to HeLa cell components was stable in high salt and nonionic detergent and was not inhibited by a variety of monosaccharides and polyionic substances. PIIop binding behavior was compared with that of two model carbohydrate-binding proteins, wheat germ agglutinin (WGA) and concanavalin A (ConA). Model glycoproteins (ovomucoid, fetuin, mucin, ovalbumin) inhibited binding by PIIop, WGA, and ConA to various degrees. HeLa cell glycopeptides, generated by pronase digestion of chloroform-methanol-extracted cells, were tested for their ability to inhibit binding by PIIop to Western blots of HeLa cell macromolecules. HeLa cell extracts inhibited PIIop binding before pronase treatment, but inhibitory activity was lost as a result of pronase digestion. Direct binding to defined glycosylated and nonglycosylated proteins revealed that ConA and WGA bound only glycoproteins, whereas PIIop bound to proteins lacking carbohydrate as well. PIIop binding to human and bovine serum albumins was of high affinity and required partial unfolding of albumin; native albumin was not bound by PIIop; however, both the denatured, reduced form of albumin and the compact, nonreduced form of carboxymethylated albumin were bound strongly by PIIop. Albumin-PIIop interaction did not involve covalent bond formation through sulfhydryl groups. The predominant binding interactions of PIIop found in this study were with protein rather than carbohydrate, and the chemical nature of the interactions is more complex than involvement of purely ionic or hydrophobic forces. Images PMID:3098683

  6. Characterization of the DNA binding properties of polyomavirus capsid protein

    NASA Technical Reports Server (NTRS)

    Chang, D.; Cai, X.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    The DNA binding properties of the polyomavirus structural proteins VP1, VP2, and VP3 were studied by Southwestern analysis. The major viral structural protein VP1 and host-contributed histone proteins of polyomavirus virions were shown to exhibit DNA binding activity, but the minor capsid proteins VP2 and VP3 failed to bind DNA. The N-terminal first five amino acids (Ala-1 to Lys-5) were identified as the VP1 DNA binding domain by genetic and biochemical approaches. Wild-type VP1 expressed in Escherichia coli (RK1448) exhibited DNA binding activity, but the N-terminal truncated VP1 mutants (lacking Ala-1 to Lys-5 and Ala-1 to Cys-11) failed to bind DNA. The synthetic peptide (Ala-1 to Cys-11) was also shown to have an affinity for DNA binding. Site-directed mutagenesis of the VP1 gene showed that the point mutations at Pro-2, Lys-3, and Arg-4 on the VP1 molecule did not affect DNA binding properties but that the point mutation at Lys-5 drastically reduced DNA binding affinity. The N-terminal (Ala-1 to Lys-5) region of VP1 was found to be essential and specific for DNA binding, while the DNA appears to be non-sequence specific. The DNA binding domain and the nuclear localization signal are located in the same N-terminal region.

  7. An odorant-binding protein as a new allergen from Siberian hamster (Phodopus sungorus).

    PubMed

    Torres, J A; Pastor-Vargas, C; de las Heras, M; Vivanco, F; Cuesta, Javier; Sastre, J

    2012-01-01

    A case of anaphylaxis following a bite from a Siberian hamster (SH; Phodopus sungorus) is described. Skin prick tests with hair, urine and salivary gland extracts from SH were positive, while the tests were negative for hair extracts from other rodents. IgE immunoblotting with the patient serum revealed 3 IgE-binding bands of about 18, 21 and 23 kDa. When the patient's serum was preincubated with rabbit, mouse and gerbil hair extracts, no inhibition of the 3 SH IgE-binding bands was demonstrated. Proteins extracted from the 3 bands were analyzed by N-terminal sequencing and matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry, and peptides were sequenced. IgE-binding bands were identified as being an odorant-binding protein belonging to the lipocalin family. Analysis of the 3 IgE-binding bands found in the hair, urine and salivary glands of SH showed a new allergenic protein lacking cross-reactivity with allergens from other rodents. The 3 bands likely correspond to isoforms of a single allergen.

  8. Regulation of myostatin in vivo by growth and differentiation factor-associated serum protein-1: a novel protein with protease inhibitor and follistatin domains.

    PubMed

    Hill, Jennifer J; Qiu, Yongchang; Hewick, Rodney M; Wolfman, Neil M

    2003-06-01

    Myostatin, a member of the TGFbeta superfamily, is a potent and specific negative regulator of skeletal muscle mass. In serum, myostatin circulates as part of a latent complex containing myostatin propeptide and/or follistatin-related gene (FLRG). Here, we report the identification of an additional protein associated with endogenous myostatin in normal mouse and human serum, discovered by affinity purification and mass spectrometry. This protein, which we have named growth and differentiation factor-associated serum protein-1 (GASP-1), contains multiple domains associated with protease-inhibitory proteins, including a whey acidic protein domain, a Kazal domain, two Kunitz domains, and a netrin domain. GASP-1 also contains a domain homologous to the 10-cysteine repeat found in follistatin, a protein that binds and inhibits activin, another member of the TGFbeta superfamily. We have cloned mouse GASP-1 and shown that it inhibits the biological activity of mature myostatin, but not activin, in a luciferase reporter gene assay. Surprisingly, recombinant GASP-1 binds directly not only to mature myostatin, but also to the myostatin propeptide. Thus, GASP-1 represents a novel class of inhibitory TGFbeta binding proteins.

  9. Global discovery of protein kinases and other nucleotide-binding proteins by mass spectrometry.

    PubMed

    Xiao, Yongsheng; Wang, Yinsheng

    2016-09-01

    Nucleotide-binding proteins, such as protein kinases, ATPases and GTP-binding proteins, are among the most important families of proteins that are involved in a number of pivotal cellular processes. However, global study of the structure, function, and expression level of nucleotide-binding proteins as well as protein-nucleotide interactions can hardly be achieved with the use of conventional approaches owing to enormous diversity of the nucleotide-binding protein family. Recent advances in mass spectrometry (MS) instrumentation, coupled with a variety of nucleotide-binding protein enrichment methods, rendered MS-based proteomics a powerful tool for the comprehensive characterizations of the nucleotide-binding proteome, especially the kinome. Here, we review the recent developments in the use of mass spectrometry, together with general and widely used affinity enrichment approaches, for the proteome-wide capture, identification and quantification of nucleotide-binding proteins, including protein kinases, ATPases, GTPases, and other nucleotide-binding proteins. The working principles, advantages, and limitations of each enrichment platform in identifying nucleotide-binding proteins as well as profiling protein-nucleotide interactions are summarized. The perspectives in developing novel MS-based nucleotide-binding protein detection platform are also discussed. © 2014 Wiley Periodicals, Inc. Mass Spec Rev 35:601-619, 2016.

  10. In vitro, in silico and integrated strategies for the estimation of plasma protein binding. A review.

    PubMed

    Lambrinidis, George; Vallianatou, Theodosia; Tsantili-Kakoulidou, Anna

    2015-06-23

    Plasma protein binding (PPB) strongly affects drug distribution and pharmacokinetic behavior with consequences in overall pharmacological action. Extended plasma protein binding may be associated with drug safety issues and several adverse effects, like low clearance, low brain penetration, drug-drug interactions, loss of efficacy, while influencing the fate of enantiomers and diastereoisomers by stereoselective binding within the body. Therefore in holistic drug design approaches, where ADME(T) properties are considered in parallel with target affinity, considerable efforts are focused in early estimation of PPB mainly in regard to human serum albumin (HSA), which is the most abundant and most important plasma protein. The second critical serum protein α1-acid glycoprotein (AGP), although often underscored, plays also an important and complicated role in clinical therapy and thus the last years it has been studied thoroughly too. In the present review, after an overview of the principles of HSA and AGP binding as well as the structure topology of the proteins, the current trends and perspectives in the field of PPB predictions are presented and discussed considering both HSA and AGP binding. Since however for the latter protein systematic studies have started only the last years, the review focuses mainly to HSA. One part of the review highlights the challenge to develop rapid techniques for HSA and AGP binding simulation and their performance in assessment of PPB. The second part focuses on in silico approaches to predict HSA and AGP binding, analyzing and evaluating structure-based and ligand-based methods, as well as combination of both methods in the aim to exploit the different information and overcome the limitations of each individual approach. Ligand-based methods use the Quantitative Structure-Activity Relationships (QSAR) methodology to establish quantitate models for the prediction of binding constants from molecular descriptors, while they provide

  11. The effects of liver and renal disease on stereoselective serum binding of flurbiprofen.

    PubMed Central

    Blouin, R; Chaudhary, I; Nishihara, K; Cox, S

    1993-01-01

    Stereoselectivity in the serum binding of flurbiprofen, a non-steroidal anti-inflammatory drug which is highly bound to albumin, was studied in patients with liver and renal disease. Subjects with renal disease or liver disease with ascites had significantly lower serum albumin concentrations than normals, resulting in higher free fractions of both the R(-) and S(+) enantiomers of flurbiprofen as determined by equilibrium dialysis. The ratio (+/- s.d.) of R/S-flurbiprofen free fractions was lower in the subjects with ascites (0.714 +/- 0.298) than in those without ascites (0.796 +/- 0.090) (P < 0.05). PMID:8448071

  12. Protein stability induced by ligand binding correlates with changes in protein flexibility

    PubMed Central

    Celej, María Soledad; Montich, Guillermo G.; Fidelio, Gerardo D.

    2003-01-01

    The interaction between ligands and proteins usually induces changes in protein thermal stability with modifications in the midpoint denaturation temperature, enthalpy of unfolding, and heat capacity. These modifications are due to the coupling of unfolding with binding equilibrium. Furthermore, they can be attained by changes in protein structure and conformational flexibility induced by ligand interaction. To study these effects we have used bovine serum albumin (BSA) interacting with three different anilinonaphthalene sulfonate derivatives (ANS). These ligands have different effects on protein stability, conformation, and dynamics. Protein stability was studied by differential scanning calorimetry and fluorescence spectroscopy, whereas conformational changes were detected by circular dichroism and infrared spectroscopy including kinetics of hydrogen/deuterium exchange. The order of calorimetric midpoint of denaturation was: 1,8-ANS-BSA > 2,6-ANS-BSA > free BSA >> (nondetected) bis-ANS-BSA. Both 1,8-ANS and 2,6-ANS did not substantially modify the secondary structure of BSA, whereas bis-ANS induced a distorted α-helix conformation with an increase of disordered structure. Protein flexibility followed the order: 1,8-ANS-BSA < 2,6-ANS-BSA < free BSA << bis-ANS-BSA, indicating a clear correlation between stability and conformational flexibility. The structure induced by an excess of bis-ANS to BSA is compatible with a molten globule-like state. Within the context of the binding landscape model, we have distinguished five conformers (identified by subscript): BSA1,8-ANS, BSA2,6-ANS, BSAfree, BSAbis-ANS, and BSAunfolded among the large number of possible states of the conformational dynamic ensemble. The relative population of each distinguishable conformer depends on the type and concentration of ligand and the temperature of the system. PMID:12824495

  13. In vitro and in vivo interactions of selected nanoparticles with rodent serum proteins and their consequences in biokinetics

    PubMed Central

    Fertsch-Gapp, Stefanie; Schäffler, Martin; Johnston, Blair D; Haberl, Nadine; Pfeiffer, Christian; Diendorf, Jörg; Schleh, Carsten; Hirn, Stephanie; Semmler-Behnke, Manuela; Epple, Matthias; Parak, Wolfgang J

    2014-01-01

    Summary When particles incorporated within a mammalian organism come into contact with body fluids they will bind to soluble proteins or those within cellular membranes forming what is called a protein corona. This binding process is very complex and highly dynamic due to the plethora of proteins with different affinities and fractions in different body fluids and the large variation of compounds and structures of the particle surface. Interestingly, in the case of nanoparticles (NP) this protein corona is well suited to provide a guiding vehicle of translocation within body fluids and across membranes. This NP translocation may subsequently lead to accumulation in various organs and tissues and their respective cell types that are not expected to accumulate such tiny foreign bodies. Because of this unprecedented NP accumulation, potentially adverse biological responses in tissues and cells cannot be neglected a priori but require thorough investigations. Therefore, we studied the interactions and protein binding kinetics of blood serum proteins with a number of engineered NP as a function of their physicochemical properties. Here we show by in vitro incubation tests that the binding capacity of different engineered NP (polystyrene, elemental carbon) for selected serum proteins depends strongly on the NP size and the properties of engineered surface modifications. In the following attempt, we studied systematically the effect of the size (5, 15, 80 nm) of gold spheres (AuNP), surface-modified with the same ionic ligand; as well as 5 nm AuNP with five different surface modifications on the binding to serum proteins by using proteomics analyses. We found that the binding of numerous serum proteins depended strongly on the physicochemical properties of the AuNP. These in vitro results helped us substantially in the interpretation of our numerous in vivo biokinetics studies performed in rodents using the same NP. These had shown that not only the physicochemical

  14. The metallomics approach: use of Fe(II) and Cu(II) footprinting to examine metal binding sites on serum albumins.

    PubMed

    Duff, Michael R; Kumar, Challa V

    2009-11-01

    Metal binding to serum albumins is examined by oxidative protein-cleavage chemistry, and relative affinities of multiple metal ions to particular sites on these proteins were identified using a fast and reliable chemical footprinting approach. Fe(ii) and Cu(ii), for example, mediate protein cleavage at their respective binding sites on serum albumins, in the presence of hydrogen peroxide and ascorbate. This metal-mediated protein-cleavge reaction is used to evaluate the binding of metal ions, Na(+), Mg(2+), Ca(2+), Al(3+), Cr(3+), Mn(2+), Co(2+), Ni(2+), Zn(2+), Cd(2+), Hg(2+), Pb(2+), and Ce(3+) to albumins, and the relative affinities (selectivities) of the metal ions are rapidly evaluated by examining the extent of inhibition of protein cleavage. Four distinct systems Fe(II)/BSA, Cu(II)/BSA, Fe(II)/HSA and Cu(II)/HSA are examined using the above strategy. This metallomics approach is novel, even though the cleavage of serum albumins by Fe(II)/Cu(II) has been reported previously by this laboratory and many others. The protein cleavage products were analyzed by SDS PAGE, and the intensities of the product bands quantified to evaluate the extent of inhibition of the cleavage and thereby evaluate the relative binding affinities of specific metal ions to particular sites on albumins. The data show that Co(II) and Cr(III) showed the highest degree of inhibition, across the table, followed by Mn(II) and Ce(III). Alakali metal ions and alkaline earth metal ions showed very poor affinity for these metal sites on albumins. Thus, metal binding profiles for particular sites on proteins can be obtained quickly and accurately, using the metallomics approach.

  15. Unraveling the binding mechanism of asiatic acid with human serum albumin and its biological implications.

    PubMed

    Gokara, Mahesh; Malavath, Tirupathi; Kalangi, Suresh Kumar; Reddana, Pallu; Subramanyam, Rajagopal

    2014-01-01

    Asiatic acid (AsA), a naturally occurring pentacyclictriterpenoid found in Centella asiatica, plays a major role in neuroprotection, anticancer, antioxidant, and hepatoprotective activities. Human serum albumin (HSA), a blood plasma protein, participates in the regulation of plasma osmotic pressure and transports endogenous and exogenous substances. The study undertaken to analyze the drug-binding mechanisms of HSA is crucial in understanding the bioavailability of drugs. In this study, we analyzed the cytotoxic activity of AsA on HepG2 (human hepatocellular carcinoma) cell lines and its binding, conformational, docking, molecular simulation studies with HSA under physiological pH 7.2. These studies revealed a clear decrease in the viability of HepG2 cells upon exposure to AsA in a dose-dependent manner with an IC50 of 45 μM. Further studies showed the quenching of intrinsic fluorescence of HSA by AsA with a binding constant of KAsA = 3.86 ± 0.01 × 10(4) M(-1), which corresponds to the free energy of (ΔG) -6.3 kcal M(-1) at 25 °C. Circular dichroism (CD) studies revealed that there is a clear decrease in the α-helical content from 57.50 ± 2.4 to 50% ± 2.3 and an increase in the β-turns from 25 ± 0.65 to 29% ± 0.91 and random coils from 17.5% ± 0.95 to 21% ± 1.2, suggesting partial unfolding of HSA. Autodock studies revealed that the AsA is bound to the subdomain IIA with hydrophobic and hydrophilic interactions. From molecular dynamics, simulation data (RMSD, Rg and RMSF) emphasized the local conformational changes and rigidity of the residues of both HSA and HSA-AsA complexes. PMID:23844909

  16. Phosphorylation of platelet actin-binding protein during platelet activation

    SciTech Connect

    Carroll, R.C.; Gerrard, J.M.

    1982-03-01

    In this study we have followed the 32P-labeling of actin-binding protein as a function of platelet activation. Utilizing polyacrylamide-sodium dodecyl sulfate gel electrophoresis to resolve total platelet protein samples, we found 2 to 3-fold labeling increases in actin-binding protein 30 to 60 sec after thrombin stimulation. Somewhat larger increases were observed for 40,000 and 20,000 apparent molecular weight peptides. The actin-binding protein was identified on the gels by coelectrophoresis with purified actin-binding protein, its presence in cytoskeletal cores prepared by detergent extraction of activated 32P-labeled platelets, and by direct immunoprecipitation with antibodies against guinea pig vas deferens filamin (actin-binding protein). In addition, these cytoskeletal cores indicated that the 32P-labeled actin-binding protein was closely associated with the activated platelet's cytoskeleton. Following the 32P-labeling of actin-binding protein over an 8-min time course revealed that in aggregating platelet samples rapid dephosphorylation to almost initial levels occurred between 3 and 5 min. A similar curve was obtained for the 20,000 apparent molecular weight peptide. However, rapid dephosphorylation was not observed if platelet aggregation was prevented by chelating external calcium or by using thrombasthenic platelets lacking the aggregation response. Thus, cell-cell contact would seem to be crucial in initiating the rapid dephosphorylation response.

  17. Concentration-dependent Cu(II) binding to prion protein

    NASA Astrophysics Data System (ADS)

    Hodak, Miroslav; Lu, Wenchang; Bernholc, Jerry

    2008-03-01

    The prion protein plays a causative role in several neurodegenerative diseases, including mad cow disease in cattle and Creutzfeldt-Jakob disease in humans. The normal function of the prion protein is unknown, but it has been linked to its ability to bind copper ions. Experimental evidence suggests that copper can be bound in three distinct modes depending on its concentration, but only one of those binding modes has been fully characterized experimentally. Using a newly developed hybrid DFT/DFT method [1], which combines Kohn-Sham DFT with orbital-free DFT, we have examined all the binding modes and obtained their detailed binding geometries and copper ion binding energies. Our results also provide explanation for experiments, which have found that when the copper concentration increases the copper binding mode changes, surprisingly, from a stronger to a weaker one. Overall, our results indicate that prion protein can function as a copper buffer. 1. Hodak, Lu, Bernholc, JCP, in press.

  18. Serum antibody immunoreactivity to equine zona protein after SpayVac vaccination.

    PubMed

    Mask, Tracy A; Schoenecker, Kathryn A; Kane, Albert J; Ransom, Jason I; Bruemmer, Jason E

    2015-07-15

    Immunocontraception with porcine ZP (pZP) can be an effective means of fertility control in feral horses. Previous studies suggest that antibodies produced after pZP vaccination may both inhibit fertilization and cause follicular dysgenesis. Zonastat-H, PZP-22, and SpayVac are three pZP vaccines proposed for use in horses. Although all these vaccines contain the pZP antigen, variations in antigen preparation and vaccine formulation lead to differences in antigenic properties among them. Likewise, despite numerous efficacy and safety studies of Zonastat-H and PZP-22, the contraceptive mechanisms of SpayVac remain unclear. The preparation of pZP for SpayVac is thought to include more nonzona proteins, making it less pure than the other two vaccines. This may result in increased antigenicity of the vaccine. We therefore investigated the immunoreactivity of serum antibodies from SpayVac-vaccinated mares to equine zona protein. Western blot analyses revealed an immunoreactivity of these antibodies to protein isolated from mature equine oocytes, ZP, follicular tissues, and ovarian tissues. Immunohistochemical analyses were used to locate the binding of serum antibodies to the ZP of immature oocytes in ovarian stromal tissue. We also found serum antibodies from SpayVac-treated mares to be predominantly specific for zona protein 3. Collectively, our results suggest a model where serum antibodies produced in response to SpayVac vaccination are immunoreactive to equine zona protein in vitro. Our study lends insight into the contraceptive mechanisms underlying the infertility observed after SpayVac vaccination.

  19. The distribution of iron between the metal-binding sites of transferrin human serum.

    PubMed

    Williams, J; Moreton, K

    1980-02-01

    The Makey & Seal [(1976) Biochim. Biophys. Acta 453, 250--256] method of polyacrylamide-gel electrophoresis in buffer containing 6 M-urea was used to determine the distribution of iron between the N-terminal and C-terminal iron-binding sites of transferrin in human serum. In fresh serum the two sites are unequally occupied; there is preferential occupation of the N-terminal site. On incubation of the serum at 37 degrees C the preference of iron for the N-terminal site becomes more marked. On storage of serum at -15 degrees C the iron distribution changes so that there is a marked preference for the C-terminal site. Dialysis of serum against buffer at pH 7.4 also causes iron to be bound much more strongly by the C-terminal than by the N-terminal site. The original preference for the N-terminal site can be resroted to the dialysed serum by addition of the diffusible fraction.

  20. The distribution of iron between the metal-binding sites of transferrin human serum.

    PubMed Central

    Williams, J; Moreton, K

    1980-01-01

    The Makey & Seal [(1976) Biochim. Biophys. Acta 453, 250--256] method of polyacrylamide-gel electrophoresis in buffer containing 6 M-urea was used to determine the distribution of iron between the N-terminal and C-terminal iron-binding sites of transferrin in human serum. In fresh serum the two sites are unequally occupied; there is preferential occupation of the N-terminal site. On incubation of the serum at 37 degrees C the preference of iron for the N-terminal site becomes more marked. On storage of serum at -15 degrees C the iron distribution changes so that there is a marked preference for the C-terminal site. Dialysis of serum against buffer at pH 7.4 also causes iron to be bound much more strongly by the C-terminal than by the N-terminal site. The original preference for the N-terminal site can be resroted to the dialysed serum by addition of the diffusible fraction. Images Fig. 1. PMID:7396826

  1. Cooperative binding modes of Cu(II) in prion protein

    NASA Astrophysics Data System (ADS)

    Hodak, Miroslav; Chisnell, Robin; Lu, Wenchang; Bernholc, Jerry

    2007-03-01

    The misfolding of the prion protein, PrP, is responsible for a group of neurodegenerative diseases including mad cow disease and Creutzfeldt-Jakob disease. It is known that the PrP can efficiently bind copper ions; four high-affinity binding sites located in the octarepeat region of PrP are now well known. Recent experiments suggest that at low copper concentrations new binding modes, in which one copper ion is shared between two or more binding sites, are possible. Using our hybrid Thomas-Fermi/DFT computational scheme, which is well suited for simulations of biomolecules in solution, we investigate the geometries and energetics of two, three and four binding sites cooperatively binding one copper ion. These geometries are then used as inputs for classical molecular dynamics simulations. We find that copper binding affects the secondary structure of the PrP and that it stabilizes the unstructured (unfolded) part of the protein.

  2. Identification of transferrin as the main binding site for protactinium in rat blood serum.

    PubMed

    Taylor, D M; Farrow, L C

    1987-01-01

    The distribution of 233Pa in rat serum at periods between 5 and 50 min after i.v. injection of a solution of protactinium chloride was studied by gel chromatography. Sequential analysis of sera on Sephacryl S-300 and DEAE-Sephadex showed that 233Pa was associated only with the transferrin fraction of the serum proteins. This finding was confirmed by iso-electric focusing electrophoresis. In the cytosol fractions prepared from the liver and kidneys of the 233Pa injected rats the nuclide was also shown to be protein bound.

  3. Identification of transferrin as the main binding site for protactinium in rat blood serum.

    PubMed

    Taylor, D M; Farrow, L C

    1987-01-01

    The distribution of 233Pa in rat serum at periods between 5 and 50 min after i.v. injection of a solution of protactinium chloride was studied by gel chromatography. Sequential analysis of sera on Sephacryl S-300 and DEAE-Sephadex showed that 233Pa was associated only with the transferrin fraction of the serum proteins. This finding was confirmed by iso-electric focusing electrophoresis. In the cytosol fractions prepared from the liver and kidneys of the 233Pa injected rats the nuclide was also shown to be protein bound. PMID:3583752

  4. Leukocyte protease binding to nucleic acids promotes nuclear localization and cleavage of nucleic acid binding proteins.

    PubMed

    Thomas, Marshall P; Whangbo, Jennifer; McCrossan, Geoffrey; Deutsch, Aaron J; Martinod, Kimberly; Walch, Michael; Lieberman, Judy

    2014-06-01

    Killer lymphocyte granzyme (Gzm) serine proteases induce apoptosis of pathogen-infected cells and tumor cells. Many known Gzm substrates are nucleic acid binding proteins, and the Gzms accumulate in the target cell nucleus by an unknown mechanism. In this study, we show that human Gzms bind to DNA and RNA with nanomolar affinity. Gzms cleave their substrates most efficiently when both are bound to nucleic acids. RNase treatment of cell lysates reduces Gzm cleavage of RNA binding protein targets, whereas adding RNA to recombinant RNA binding protein substrates increases in vitro cleavage. Binding to nucleic acids also influences Gzm trafficking within target cells. Preincubation with competitor DNA and DNase treatment both reduce Gzm nuclear localization. The Gzms are closely related to neutrophil proteases, including neutrophil elastase (NE) and cathepsin G. During neutrophil activation, NE translocates to the nucleus to initiate DNA extrusion into neutrophil extracellular traps, which bind NE and cathepsin G. These myeloid cell proteases, but not digestive serine proteases, also bind DNA strongly and localize to nuclei and neutrophil extracellular traps in a DNA-dependent manner. Thus, high-affinity nucleic acid binding is a conserved and functionally important property specific to leukocyte serine proteases. Furthermore, nucleic acid binding provides an elegant and simple mechanism to confer specificity of these proteases for cleavage of nucleic acid binding protein substrates that play essential roles in cellular gene expression and cell proliferation.

  5. Evaluation of enantioselective binding of propanocaine to human serum albumin by ultrafiltration and electrokinetic chromatography under intermediate precision conditions.

    PubMed

    Martínez-Gómez, María Amparo; Escuder-Gilabert, Laura; Villanueva-Camañas, Rosa María; Sagrado, Salvador; Medina-Hernández, María José

    2012-03-15

    Stereoselectivity in protein binding can have a significant effect on the pharmacokinetic and pharmacodynamic properties of chiral drugs. In this paper, the enantioselective binding of propanocaine (PRO) enantiomers to human serum albumin (HSA), the most relevant plasmatic protein in view of stereoselectivity, has been evaluated by incubation and ultrafiltration of racemic PRO-HSA mixtures and chiral analysis of the bound and unbound fractions by electrokinetic chromatography using HSA as chiral selector. Experimental conditions for the separation of PRO enantiomers using HSA as chiral selector and electrokinetic chromatography have been optimised. Affinity constants and protein binding in percentage (PB) were obtained for both enantiomers of PRO, as well as the enantioselectivity (ES) to HSA. Data were obtained in two independent working sessions (days). The influence of the session and fraction processed factors were examined. A univariate direct-estimation approach was used facilitating outliers' identification and statistical comparison. Non-linear fitting of data was used to verify the stoichiometry and affinity estimations obtained by the direct approach. Robust statistics were applied to obtain reliable estimations of uncertainty, accounting for the factors (day and processed fraction), thus representing intermediate precision conditions. Mimicking in vivo experimental conditions, information unapproachable by in vivo experiments was obtained for PRO enantiomers interacting with HSA. For the first (E1) and the second (E2) eluted PRO enantiomers the results were: 1:1 stoichiometry, medium affinity constants, logK(E1)=3.20±0.16 and log K(E2)=3.40±0.14, medium protein binding percentage, PB=48.7 and 60.1% for E1 and E2, respectively, and moderate but significant enantioselectivity, ES=K(E2)/K(E1)=1.5±0.3.

  6. Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site

    PubMed Central

    Gangi Setty, Thanuja; Cho, Christine; Govindappa, Sowmya; Apicella, Michael A.; Ramaswamy, S.

    2014-01-01

    Sialic acids are a family of related nine-carbon sugar acids that play important roles in both eukaryotes and prokaryotes. These sialic acids are incorporated/decorated onto lipooligosaccharides as terminal sugars in multiple bacteria to evade the host immune system. Many pathogenic bacteria scavenge sialic acids from their host and use them for molecular mimicry. The first step of this process is the transport of sialic acid to the cytoplasm, which often takes place using a tripartite ATP-independent transport system consisting of a periplasmic binding protein and a membrane transporter. In this paper, the structural characterization of periplasmic binding proteins from the pathogenic bacteria Fusobacterium nucleatum, Pasteurella multocida and Vibrio cholerae and their thermodynamic characterization are reported. The binding affinities of several mutations in the Neu5Ac binding site of the Haemophilus influenzae protein are also reported. The structure and the thermodynamics of the binding of sugars suggest that all of these proteins have a very well conserved binding pocket and similar binding affinities. A significant conformational change occurs when these proteins bind the sugar. While the C1 carboxylate has been identified as the primary binding site, a second conserved hydrogen-bonding network is involved in the initiation and stabilization of the conformational states. PMID:25004958

  7. Genetic effects on serum testosterone and sex hormone-binding globulin in men: a Korean twin and family study

    PubMed Central

    Sung, Joohon; Song, Yun-Mi

    2016-01-01

    We conducted a community-based cross-sectional study to evaluate the role of genetics in determining the individual difference in total testosterone and sex hormone-binding globulin levels. Study participants comprised 730 Korean men consisting of 142 pairs of monozygotic twins, 191 pairs of siblings, and 259 father-offspring pairs from 270 families who participated in the Healthy Twin study. Serum concentration of total testosterone and sex hormone-binding globulin were measured by chemiluminescence immunoassay, and free testosterone and bioavailable testosterone were calculated using Vermeulen's method. Quantitative genetic analysis based on a variance decomposition model showed that the heritability of total testosterone, free testosterone, bioavailable testosterone, and sex hormone-binding globulin were 0.56, 0.45, 0.44, and 0.69, respectively after accounting for age and body mass index. Proportions of variance explained by age and body mass index varied across different traits, from 8% for total testosterone to 31% for sex hormone-binding globulin. Bivariate analysis showed a high degree of additive genetic correlation (ρG = 0.67) and a moderate degree of individual-specific environmental correlation (ρE = 0.42) between total testosterone and sex hormone-binding globulin. The findings confirmed the important role of genetics in determining the individually different levels of testosterone and sex hormone-binding globulin during adulthood in Korean men as found in non-Asian populations, which may suggest that common biologic control for determining testosterone level directly or indirectly through binding protein are largely shared among different populations. PMID:26486061

  8. Structure of the methyl orange-binding site on human serum albumin and its color-change mechanism.

    PubMed

    Ito, Shigenori; Yamamoto, Daisuke

    2015-01-01

    The goal in this study was to clarify the color-change mechanisms of methyl orange (MO) bound to human serum albumin (HSA) and the structure of the binding site. The absorbance of the MOHSA complex was measured at 560 nm in solutions of varying pH (pH 2.4-6.6). The obtained pH-dependent experimental data were consistent with the data calculated using the Henderson-Hasselbalch equation and pKa values (3.8, MO; 1.4, carboxyl group). The extent of the binding of MO to an HSA molecule was determined to be 1-4 by performing surface plasmon resonance analysis. Furthermore, the binding of MO to HSA was inhibited by warfarin. A fitting model of MO to HSA was created to evaluate these results based on PDB data (warfarin-HSA complex: 2BXD) and protein-structure analysis. The color-change mechanism of the MO-HSA complex appears to be as follows: the dissociated sulfo group of MO binds to Arg218/Lys444 sidechains through electrostatic interaction in the warfarin-binding site, and, subsequently, the color change occurs through a proton exchange between the diazenyl group and the γ-carboxyl group of Glu292. The color-changed MO is fixed in the warfarin-binding site. These results could support the development of a reliable dye-binding method and of a new method for staining diverse tissues that is based on a validated mechanism. PMID:26299483

  9. Induced circular dichroism as a tool to investigate the binding of drugs to carrier proteins: Classic approaches and new trends.

    PubMed

    Tedesco, Daniele; Bertucci, Carlo

    2015-09-10

    Induced circular dichroism (ICD) is a spectroscopic phenomenon that provides versatile and useful methods for characterizing the structural and dynamic properties of the binding of drugs to target proteins. The understanding of biorecognition processes at the molecular level is essential to discover and validate new pharmacological targets, and to design and develop new potent and selective drugs. The present article reviews the main applications of ICD to drug binding studies on serum carrier proteins, going from the classic approaches for the derivation of drug binding parameters and the identification of binding sites, to an overview of the emerging trends for the characterization of binding modes by means of quantum chemical (QC) techniques. The advantages and limits of the ICD methods for the determination of binding parameters are critically reviewed; the capability to investigate the binding interactions of drugs and metabolites to their target proteins is also underlined, as well as the possibility of characterizing the binding sites to obtain a complete picture of the binding mechanism and dynamics. The new applications of ICD methods to identify stereoselective binding modes of drug/protein complexes are then reviewed with relevant examples. The combined application of experimental ICD spectroscopy and QC calculations is shown to identify qualitatively the bound conformations of ligands to target proteins even in the absence of a detailed structure of the binding sites, either obtained from experimental X-ray crystallography and NMR measurements or from computational models of the complex.

  10. The RNA-binding protein Gemin5 binds directly to the ribosome and regulates global translation

    PubMed Central

    Francisco-Velilla, Rosario; Fernandez-Chamorro, Javier; Ramajo, Jorge; Martinez-Salas, Encarnación

    2016-01-01

    RNA-binding proteins (RBPs) play crucial roles in all organisms. The protein Gemin5 harbors two functional domains. The N-terminal domain binds to snRNAs targeting them for snRNPs assembly, while the C-terminal domain binds to IRES elements through a non-canonical RNA-binding site. Here we report a comprehensive view of the Gemin5 interactome; most partners copurified with the N-terminal domain via RNA bridges. Notably, Gemin5 sediments with the subcellular ribosome fraction, and His-Gemin5 binds to ribosome particles via its N-terminal domain. The interaction with the ribosome was lost in F381A and Y474A Gemin5 mutants, but not in W14A and Y15A. Moreover, the ribosomal proteins L3 and L4 bind directly with Gemin5, and conversely, Gemin5 mutants impairing the binding to the ribosome are defective in the interaction with L3 and L4. The overall polysome profile was affected by Gemin5 depletion or overexpression, concomitant to an increase or a decrease, respectively, of global protein synthesis. Gemin5, and G5-Nter as well, were detected on the polysome fractions. These results reveal the ribosome-binding capacity of the N-ter moiety, enabling Gemin5 to control global protein synthesis. Our study uncovers a crosstalk between this protein and the ribosome, and provides support for the view that Gemin5 may control translation elongation. PMID:27507887

  11. Dye-promoted precipitation of serum proteins. Mechanism and application.

    PubMed

    Birkenmeier, G; Kopperschläger, G

    1991-11-01

    Immobilized dyes have been used primarily for purification of nucleotide dependent enzymes and proteins from plasma and other sources. Due to their low costs, high protein binding capacity and resistance to degradation dyes bear the potential as ligand for affinity separation of proteins on a large scale. In this paper dyes have been used for precipitation of proteins. Using albumin, prealbumin, alpha 1-acid glycoprotein and immunoglobulin G as model proteins we could demonstrate that dye-promoted precipitation depends on several factors which include the structure of the dye, the pH of the solution, the dye/protein molar ratio and the intrinsic properties of the proteins. It revealed that most of the dyes tested were endowed with the precipitating potential. The efficacy of precipitation was found to increase with the complexity of the dye structure. However, the amount of a dye required for total precipitation was found to be different for a given protein. Electrostatic as well as hydrophobic forces are involved in the mechanism of precipitation. It was demonstrated that by optimizing the conditions, mixtures of proteins can be resolved by dye-promoted precipitation. The high sensitivity of the reaction offers the possibility of using this method for rapid concentration of very diluted protein solutions. PMID:1367693

  12. In-vitro study on the competitive binding of diflunisal and uraemic toxins to serum albumin and human plasma using a potentiometric ion-probe technique.

    PubMed

    Davilas, A; Koupparis, M; Macheras, P; Valsami, G

    2006-11-01

    The competitive binding of diflunisal and three well-known uraemic toxins (3-indoxyl sulfate, indole-3-acetic acid and hippuric acid) to bovine serum albumin (BSA), human serum albumin (HSA) and human plasma was studied by direct potentiometry. The method used the potentiometric drug ion-probe technique with a home-made ion sensor (electrode) selective to the drug anion. The site-oriented Scatchard model was used to describe the binding of diflunisal to BSA, HSA and human plasma, while the general competitive binding model was used to calculate the binding parameters of the three uraemic toxins to BSA. Diflunisal binding parameters, number of binding sites, n(i) and association constants for each class of binding site, K(i), were calculated in the absence and presence of uraemic toxins. Although diflunisal exhibits high binding affinity for site I of HSA and the three uraemic toxins bind primarily to site II, strong interaction was observed between the drug and the three toxins, which were found to affect the binding of diflunisal on its primary class of binding sites on both BSA and HSA molecules and on human plasma. These results are strong evidence that the decreased binding of diflunisal that occurs in uraemic plasma may not be solely attributed to the lower albumin concentration observed in many patients with renal failure. The uraemic toxins that accumulate in uraemic plasma may displace the drug from its specific binding sites on plasma proteins, resulting in increased free drug plasma concentration in uraemic patients. PMID:17132209

  13. Antigenicity of Recombinant Maltose Binding Protein-Mycobacterium avium subsp. paratuberculosis Fusion Proteins with and without Factor Xa Cleaving

    PubMed Central

    Begg, Douglas J.; Purdie, Auriol C.; Bannantine, John P.; Whittington, Richard J.

    2013-01-01

    Mycobacterium avium subsp. paratuberculosis causes Johne's disease (JD) in ruminants. Proteomic studies have shown that M. avium subsp. paratuberculosis expresses certain proteins when exposed to in vitro physiological stress conditions similar to the conditions experienced within a host during natural infection. Such proteins are hypothesized to be expressed in vivo, are recognized by the host immune system, and may be of potential use in the diagnosis of JD. In this study, 50 recombinant maltose binding protein (MBP)-M. avium subsp. paratuberculosis fusion proteins were evaluated using serum samples from sheep infected with M. avium subsp. paratuberculosis, and 29 (58%) were found to be antigenic. Among 50 fusion proteins, 10 were evaluated in MBP fusion and factor Xa-cleaved forms. A total of 31 proteins (62%) were found to be antigenic in either MBP fusion or factor Xa-cleaved forms. Antigenicity after cleavage and removal of the MBP tag was marginally enhanced. PMID:24132604

  14. Suppression of serum iron-binding capacity and bone marrow cellularity in pigs fed aflatoxin

    SciTech Connect

    Harvey, R.B.; Clark, D.E.; Huff, W.E.; Kubena, L.F.; Corrier, D.E.; Phillips, I.D.

    1988-04-01

    Flavus-parasiticus species of the genus Aspergillus are recognized as the primary producers of aflatoxins B/sub 1/, B/sup 2/, G/sup 1/, and G/sup 2/, hereafter referred to as aflatoxin (AF). The effects of feeding AF-contaminated diets to growing and finishing pigs have been described with changes in clinical performance, serum biochemistry, histology, and hematology attributed to aflatoxicosis. However, most of these studies evaluated AF-induced changes for a single AF dosage at a given point in time. The present study was designed to characterize how various AF dosages influence bone marrow histology, hematology, prothrombin and activated thromboplastin times, serum amino acids, and serum iron binding capacity during aflatoxicosis in growing pigs.

  15. Suppression of serum iron-binding capacity and bone marrow cellularity in pigs fed aflatoxin

    SciTech Connect

    Harvey, R.B.; Clark, D.E.; Huff, W.E.; Kubena, L.F.; Corrier, D.E. ); Phillips, T.D. )

    1988-05-01

    Flavus-parasiticus species of the genus Aspergillus are recognized as the primary producers of aflatoxins B{sub 1}, B{sub 2}, G{sub 1}, and G{sub 2}, hereafter referred to as aflatoxin (AF). The effects of feeding AF-contaminated diets to growing and finishing pigs have been described with changes in clinical performance, serum biochemistry, histology, and hematology attributed to aflatoxicosis. However, most of these studies evaluated AF-induced changes for a single AF dosage at a given point in time. The present study was designed to characterize how various AF dosages influence bone marrow histology, hematology, prothrombin and activated thromboplastin times, serum amino acids, and serum iron binding capacity during aflatoxicosis in growing pigs.

  16. Salt modulates the stability and lipid binding affinity of the adipocyte lipid-binding proteins

    NASA Technical Reports Server (NTRS)

    Schoeffler, Allyn J.; Ruiz, Carmen R.; Joubert, Allison M.; Yang, Xuemei; LiCata, Vince J.

    2003-01-01

    Adipocyte lipid-binding protein (ALBP or aP2) is an intracellular fatty acid-binding protein that is found in adipocytes and macrophages and binds a large variety of intracellular lipids with high affinity. Although intracellular lipids are frequently charged, biochemical studies of lipid-binding proteins and their interactions often focus most heavily on the hydrophobic aspects of these proteins and their interactions. In this study, we have characterized the effects of KCl on the stability and lipid binding properties of ALBP. We find that added salt dramatically stabilizes ALBP, increasing its Delta G of unfolding by 3-5 kcal/mol. At 37 degrees C salt can more than double the stability of the protein. At the same time, salt inhibits the binding of the fluorescent lipid 1-anilinonaphthalene-8-sulfonate (ANS) to the protein and induces direct displacement of the lipid from the protein. Thermodynamic linkage analysis of the salt inhibition of ANS binding shows a nearly 1:1 reciprocal linkage: i.e. one ion is released from ALBP when ANS binds, and vice versa. Kinetic experiments show that salt reduces the rate of association between ANS and ALBP while simultaneously increasing the dissociation rate of ANS from the protein. We depict and discuss the thermodynamic linkages among stability, lipid binding, and salt effects for ALBP, including the use of these linkages to calculate the affinity of ANS for the denatured state of ALBP and its dependence on salt concentration. We also discuss the potential molecular origins and potential intracellular consequences of the demonstrated salt linkages to stability and lipid binding in ALBP.

  17. Recognition and binding of β-lactam antibiotics to bovine serum albumin by frontal affinity chromatography in combination with spectroscopy and molecular docking.

    PubMed

    Li, Qian; Zhang, Tianlong; Bian, Liujiao

    2016-03-01

    Serum albumins are the most abundant carrier proteins in blood plasma and participate in the binding and transportation of various exogenous and endogenous compounds in the body. This work was designed to investigate the recognition and binding of three typical β-lactam antibiotics including penicillin G (Pen G), penicillin V (Pen V) and cefalexin (Cef) with bovine serum albumin (BSA) by frontal affinity chromatography in combination with UV-vis absorption spectra, fluorescence emission spectra, binding site marker competitive experiment and molecular docking under simulated physiological conditions. The results showed that a BSA only bound with one antibiotic molecule in the binding process, and the binding constants for Pen G-BSA, Pen V-BSA and Cef-BSA complexes were 4.22×10(1), 4.86×10(2) and 3.32×10(3) (L/mol), respectively. All the three β-lactam antibiotics were mainly inserted into the subdomain IIA (binding site 1) of BSA by hydrogen bonds and Van der Waals forces. The binding capacity between the antibiotics and BSA was closely related to the functional groups and flexibility of side chains in antibiotics. This study provided an important insight into the molecular recognition and binding interaction of BSA with β-lactam antibiotics, which may be a useful guideline for the innovative clinical medications and new antibiotic designs with effective pharmacological properties. PMID:26882128

  18. The Acute-Phase Proteins Serum Amyloid A and C Reactive Protein in Transudates and Exudates

    PubMed Central

    Okino, Alessandra M.; Bürger, Cristiani; Cardoso, Jefferson R.; Lavado, Edson L.; Lotufo, Paulo A.; Campa, Ana

    2006-01-01

    The distinction between exudates and transudates is very important in the patient management. Here we evaluate whether the acute-phase protein serum amyloid A (SAA), in comparison with C reactive protein (CRP) and total protein (TP), can be useful in this discrimination. CRP, SAA, and TP were determined in 36 exudate samples (27 pleural and 9 ascitic) and in 12 transudates (9 pleural and 3 ascitic). CRP, SAA, and TP were measured. SAA present in the exudate corresponded to 10% of the amount found in serum, that is, the exudate/serum ratio (E/S) was 0.10 ± 0.13. For comparison, the exudate/serum ratio for CRP and TP was 0.39 ± 0.37 and 0.68 ± 0.15, respectively. There was a strong positive correlation between serum and exudate SAA concentration (r = 0.764;p < 0.0001). The concentration of SAA in transudates was low and did not overlap with that found in exudates (0.02-0.21 versus 0.8–360.5 g/mL). SAA in pleural and ascitic exudates results mainly from leakage of the serum protein via the inflamed membrane. A comparison of the E/S ratio of SAA and CRP points SAA as a very good marker in discriminating between exudates and transudates. PMID:16864904

  19. A spectroscopic investigations of anticancer drugs binding to bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Bakkialakshmi, S.; Chandrakala, D.

    2012-03-01

    The binding of anticancer drugs (i) Uracil (U), (ii) 5-Fluorouracil (5FU) and (iii) 5-Chlorouracil (5ClU), to bovine serum albumin (BSA) at two levels of temperature was studied by the fluorescence of quenching method. UV/Vis, time-resolved fluorescence, Fourier transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance (1H NMR) and scanning electron microscope (SEM) analyses were also made. Binding constants (Ka) and binding sites (n) at various levels of temperature were calculated. The obtained binding sites were found to be equal to one for all the three quenchers (U, 5FU and 5ClU) at two different temperature levels. Thermodynamic parameters ΔH, ΔG and ΔS have been calculated and were presented in tables. Change in FTIR absorption intensity shows strong binding of anticancer drugs to BSA. Changes in chemical shifts of NMR and fluorescence lifetimes of the drugs indicate the presence of interaction and binding of BSA to anticancer drugs. 1H NMR spectra and SEM photographs also conform this binding.

  20. Binding of oxprenolol and propranolol to serum, albumin and alpha 1-acid glycoprotein in man and other species.

    PubMed

    Belpaire, F M; Braeckman, R A; Bogaert, M G

    1984-07-01

    Species differences in binding of basic drugs have only occasionally been studied and we have therefore measured the binding of the beta-adrenergic blockers oxprenolol and propranolol in (1) serum of healthy humans, dogs, rats and rabbits and of rabbits with experimental arthritis, (2) a solution of albumin of these species and (3) a solution of human alpha 1-AGP. In humans, dogs, rats and arthritic rabbits, binding of oxprenolol and propranolol was much higher in serum than in albumin solution; in healthy rabbits serum binding was very low and not different from albumin binding. For both drugs, concentration-dependency was seen in serum of dogs, humans and rats and of arthritic rabbits; a similar concentration-dependency was found for human alpha 1-AGP solution, but not for human albumin and for serum of healthy rabbits. Tris (2-butoxyethyl)-phosphate (TBEP), a known displacer of drugs from alpha 1-AGP in humans, decreased binding in serum of all species except the rabbit. For both beta-blockers, species differences in capacity constants were found; species differences in affinity constants were present only for propranolol. These results suggest that in humans, dog and rat, but much less in rabbits, oxprenolol and propranolol bind mainly to alpha 1-AGP and that binding to alpha 1-AGP is more important for oxprenolol than for propranolol. PMID:6743355

  1. The importance of selecting a proper biological milieu for protein corona analysis in vitro: Human plasma versus human serum.

    PubMed

    Mirshafiee, Vahid; Kim, Raehyun; Mahmoudi, Morteza; Kraft, Mary L

    2016-06-01

    Nanoparticle (NP) exposure to biological fluids in the body results in protein binding to the NP surface, which forms a protein coating that is called the "protein corona". To simplify studies of protein-NP interactions and protein corona formation, NPs are incubated with biological solutions, such as human serum or human plasma, and the effects of this exposure are characterized in vitro. Yet, how NP exposure to these two different biological milieus affects protein corona composition and cell response has not been investigated. Here, we explore the differences between the protein coronas that form when NPs are incubated in human serum versus human plasma. NP characterization indicated that NPs that were exposed to human plasma had higher amounts of proteins bound to their surfaces, and were slightly larger in size than those exposed to human serum. In addition, significant differences in corona composition were also detected with gel electrophoresis and liquid chromatography-mass spectrometry/mass spectrometry, where a higher fraction of coagulation proteins and complement factors were found on the plasma-exposed NPs. Flow cytometry and confocal microscopy showed that the uptake of plasma-exposed NPs was higher than that of serum-exposed NPs by RAW 264.7 macrophage immune cells, but not by NIH 3T3 fibroblast cells. This difference is likely due to the elevated amounts of opsonins, such as fibrinogen, on the surfaces of the NPs exposed to plasma, but not serum, because these components trigger NP internalization by immune cells. As the human plasma better mimics the composition of the in vivo environment, namely blood, in vitro protein corona studies should employ human plasma, and not human serum, so the biological phenomena that is observed is more similar to that occurring in vivo.

  2. Guardian of Genetic Messenger-RNA-Binding Proteins

    PubMed Central

    Anji, Antje; Kumari, Meena

    2016-01-01

    RNA in cells is always associated with RNA-binding proteins that regulate all aspects of RNA metabolism including RNA splicing, export from the nucleus, RNA localization, mRNA turn-over as well as translation. Given their diverse functions, cells express a variety of RNA-binding proteins, which play important roles in the pathologies of a number of diseases. In this review we focus on the effect of alcohol on different RNA-binding proteins and their possible contribution to alcohol-related disorders, and discuss the role of these proteins in the development of neurological diseases and cancer. We further discuss the conventional methods and newer techniques that are employed to identify RNA-binding proteins. PMID:26751491

  3. Cu(II) Bis(thiosemicarbazone) Radiopharmaceutical Binding to Serum Albumin: Further Definition of Species-Dependence and Associated Substituent Effects

    PubMed Central

    Basken, Nathan E.; Green, Mark A.

    2009-01-01

    Introduction The Cu-PTSM (pyruvaldehyde bis(N4-methylthiosemicarbazonato)copper(II)) and Cu-ATSM (diacetyl bis(N4-methylthiosemicarbazonato)copper(II)) radiopharmaceuticals exhibit strong, species-dependent binding to the IIA site of human serum albumin (HSA), while the related Cu-ETS (ethylglyoxal bis(thiosemicarbazonato)copper(II)) radiopharmaceutical appears to only exhibit non-specific binding to human and animal serum albumins. Methods To further probe the structural basis for the species-dependence of this albumin binding interaction, protein binding of these three radiopharmaceuticals was examined in solutions of albumin and/or serum from a broader array of mammalian species (rat, sheep, donkey, rabbit, cow, pig, dog, baboon, mouse, cat, elephant). We also evaluated the albumin binding of several copper(II) bis(thiosemicarbazone) chelates offering more diverse substitution of the ligand backbone. Results Cu-PTSM and Cu-ATSM exhibit a strong interaction with HSA that is not apparent with the albumins of other species, while the binding of Cu-ETS to albumin is much less species-dependent. The strong interaction of Cu-PTSM with HSA does not appear to simply correlate with variation, relative to the animal albumins, of a single amino acid lining HSA's IIA site. Those agents that selectively interact with HSA share the common feature of only methyl or hydrogen substitution at the carbon atoms of the diimine fragment of the ligand backbone. Conclusions The interspecies variations in albumin binding of Cu-PTSM and Cu-ATSM are not simply explained by unique amino acid substitutions in the IIA binding pocket of the serum albumins. However, the specific affinity for this region of HSA is disrupted when substituents bulkier than a methyl group appear on the imine carbons of the copper bis(thiosemicarbazone) chelate. PMID:19520290

  4. Studies on the synthesis, characterization, human serum albumin binding and biological activity of single chain surfactant-cobalt(III) complexes.

    PubMed

    Vignesh, G; Sugumar, K; Arunachalam, S; Vignesh, S; Arthur James, R; Arun, R; Premkumar, K

    2016-03-01

    The interaction of surfactant-cobalt(III) complexes [Co(bpy)(dien)TA](ClO4)3 · 3H2O (1) and [Co(dien)(phen)TA](ClO4)3 · 4H2O (2), where bpy = 2,2'-bipyridine, dien = diethylenetriamine, phen = 1,10-phenanthroline and TA = tetradecylamine with human serum albumin (HSA) under physiological conditions was analyzed using steady state, synchronous, 3D fluorescence, UV/visabsorption and circular dichroism spectroscopic techniques. The results show that these complexes cause the fluorescence quenching of HSA through a static mechanism. The binding constant (Kb ) and number of binding-sites (n) were obtained at different temperatures. The corresponding thermodynamic parameters (∆G°, ∆H° and ∆S°) and Ea were also obtained. According to Förster's non-radiation energy transfer theory, the binding distance (r) between the complexes and HSA were calculated. The results of synchronous and 3D fluorescence spectroscopy indicate that the binding process has changed considerably the polarity around the fluorophores, along with changes in the conformation of the protein. The antimicrobial and anticancer activities of the complexes were tested and the results show that the complexes have good activities against pathogenic microorganisms and cancer cells. PMID:26250655

  5. Metallothionein gene expression is regulated by serum factors and activators of protein kinase C.

    PubMed Central

    Imbra, R J; Karin, M

    1987-01-01

    The exact physiological role of metallothionein (MT) is not clear. It has been suggested that these low-molecular-weight, highly inducible, heavy-metal-binding proteins serve in the regulation of intracellular Zn metabolism. Among the Zn-requiring systems are several enzymes involved in DNA replication and repair. Therefore, during periods of active DNA synthesis there is likely to be an increased demand for Zn, which could be met by elevated MT synthesis. For that reason, we examined whether stimulation of cellular proliferation leads to increased expression of MT. We report here that treatment of cultured mammalian cells with serum growth factors and activators of protein kinase C, all of which are known to have growth stimulatory activity, led to induction of MT mRNA. One of the required steps in the signal transduction pathways triggered by these agents, ending in MT induction, appears to be the activation of protein kinase C. Images PMID:3600629

  6. Identification of AOSC-binding proteins in neurons

    NASA Astrophysics Data System (ADS)

    Liu, Ming; Nie, Qin; Xin, Xianliang; Geng, Meiyu

    2008-11-01

    Acidic oligosaccharide sugar chain (AOSC), a D-mannuronic acid oligosaccharide, derived from brown algae polysaccharide, has been completed Phase I clinical trial in China as an anti-Alzheimer’s Disease (AD) drug candidate. The identification of AOSC-binding protein(s) in neurons is very important for understanding its action mechanism. To determine the binding protein(s) of AOSC in neurons mediating its anti-AD activities, confocal microscopy, affinity chromatography, and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis were used. Confocal microscopy analysis shows that AOSC binds to SH-SY5Y cells in concentration-, time-, and temperature-dependent fashions. The AOSC binding proteins were purified by affinity chromatography and identified by LC-MS/MS analysis. The results showed that there are 349 proteins binding AOSC, including clathrin, adaptor protein-2 (AP-2) and amyloid precursor protein (APP). These results suggest that the binding/entrance of AOSC to neurons is probably responsible for anti-AD activities.

  7. Photoinduced covalent binding of frusemide and frusemide glucuronide to human serum albumin

    PubMed Central

    Mizuma, Takashi; McDonagh, Antony F; Lin, Emil T; Benet, Leslie Z

    1999-01-01

    Aims To study reaction of photoactivated frusemide (F) and F glucuronide (Fgnd metabolite) with human serum albumin in order to find a clue to clarify a mechanism of phototoxic blisters from high frusemide dosage. Methods F was exposed to light in the presence of human serum albumin (HSA). HSA treated with this method (TR-HSA) was characterized by fluorescence spectroscopic experiment, alkali treatment and reversible binding experiment. Results Less 4-hydroxyl-N-furfuryl-5-sulphamoylanthranilic acid (4HFSA, a photodegradation product of F) was formed in the presence of HSA than in the absence of HSA. A new fluorescence spectrum excited at 320 nm was observed for TR-HSA. Alkali treatment of TR-HSA released 4HFSA. Quenching of the fluorescence due to the lone tryptophan near the warfarin-binding site of HSA was observed in TR-HSA. The reversible binding of F or naproxen to the warfarin-binding site of TR-HSA was less than to that of native HSA. These results indicate the photoactivated F was covalently bound to the warfarin-binding site of HSA. The covalent binding of Fgnd, which is also reversibly bound to the wafarin-binding site of HSA, was also induced by exposure to sunlight. Fgnd was more photoactive than F, indicating that F could be activated by glucuronidation to become a more photoactive compound. Conclusions The reactivity of photoactivated F and Fgnd to HSA and/or to other endogenous compounds may cause the phototoxic blisters that result at high F dosage. PMID:10383564

  8. Echinococcus granulosus fatty acid binding proteins subcellular localization.

    PubMed

    Alvite, Gabriela; Esteves, Adriana

    2016-05-01

    Two fatty acid binding proteins, EgFABP1 and EgFABP2, were isolated from the parasitic platyhelminth Echinococcus granulosus. These proteins bind fatty acids and have particular relevance in flatworms since de novo fatty acids synthesis is absent. Therefore platyhelminthes depend on the capture and intracellular distribution of host's lipids and fatty acid binding proteins could participate in lipid distribution. To elucidate EgFABP's roles, we investigated their intracellular distribution in the larval stage by a proteomic approach. Our results demonstrated the presence of EgFABP1 isoforms in cytosolic, nuclear, mitochondrial and microsomal fractions, suggesting that these molecules could be involved in several cellular processes.

  9. HTLV-1 Tax Protein Stimulation of DNA Binding of bZIP Proteins by Enhancing Dimerization

    NASA Astrophysics Data System (ADS)

    Wagner, Susanne; Green, Michael R.

    1993-10-01

    The Tax protein of human T cell leukemia virus type-1 (HTLV-I) transcriptionally activates the HTLV-I promoter. This activation requires binding sites for activating transcription factor (ATF) proteins, a family of cellular proteins that contain basic region-leucine zipper (bZIP) DNA binding domains. Data are presented showing that Tax increases the in vitro DNA binding activity of multiple ATF proteins. Tax also stimulated DNA binding by other bZIP proteins, but did not affect DNA binding proteins that lack a bZIP domain. The increase in DNA binding occurred because Tax promotes dimerization of the bZIP domain in the absence of DNA, and the elevated concentration of the bZIP homodimer then facilitates the DNA binding reaction. These results help explain how Tax activates viral transcription and transforms cells.

  10. Cloning, expression, and characterization of a novel Opisthorchis viverrini calcium-binding EF-hand protein.

    PubMed

    Senawong, Gulsiri; Laha, Thewarach; Loukas, Alex; Brindley, Paul J; Sripa, Banchob

    2012-03-01

    A novel 22.8 kDa of Opisthorchis viverrini (Ov) calcium-binding EF-hand protein (Ov CaBP) was identified and isolated from an immunoscreening of the adult stage Ov cDNA library by using a human cholangiocarcinoma (CCA) serum. This protein was related to other calcium-binding proteins and conserved among the trematodes. Ov CaBP shared 98% amino acid identity to 22.8 kDa of Clonorchis sinensis CaBP and both were classified as a new group of CaBP EF-hand protein by multiple sequence alignment and phylogenetic tree analysis. The open reading frame of Ov CaBP was 585 bp which encoded for 194 amino acids. The N-terminal part is composed of two calcium-binding EF-hand motifs whereas the C-terminal part contains a dynein light chain motif (DLC). In addition, transcription analysis by RT-PCR revealed that it was constitutively transcribed in all stages, including metacercariae, juvenile, and adult. Furthermore, recombinant Ov CaBP protein (rOv CaBP) was expressed as a soluble protein and antibody generated against this rOv CaBP protein was capable of detecting Ov CaBP in the Ov somatic extracts but not in Ov ES products. This anti-rOv CaBP serum was also used to localize Ov CaBP in Ov infected hamster's liver sections which the distribution of Ov CaBP was located in gut epithelium, miracidia in eggs and slightly in parenchyma. Moreover, rOv CaBP protein showed a calcium-binding property in non-denaturing gel mobility shift assay. PMID:21782972

  11. Protein surface-distribution and protein-protein interactions in the binding of peripheral proteins to charged lipid membranes.

    PubMed Central

    Heimburg, T; Marsh, D

    1995-01-01

    The binding of native cytochrome c to negatively charged lipid dispersions of dioleoyl phosphatidylglycerol has been studied over a wide range of ionic strengths. Not only is the strength of protein binding found to decrease rapidly with increasing ionic strength, but also the binding curves reach an apparent saturation level that decreases rapidly with increasing ionic strength. Analysis of the binding isotherms with a general statistical thermodynamic model that takes into account not only the free energy of the electrostatic double layer, but also the free energy of the surface distribution of the protein, demonstrates that the apparent saturation effects could arise from a competition between the out-of-plane binding reaction and the lateral in-plane interactions between proteins at the surface. It is found that association with nonlocalized sites results in binding isotherms that display the apparent saturation effect to a much more pronounced extent than does the Langmuir adsorption isotherm for binding to localized sites. With the model for nonlocalized sites, the binding isotherms of native cytochrome c can be described adequately by taking into account only the entropy of the surface distribution of the protein, without appreciable enthalpic interactions between the bound proteins. The binding of cytochrome c to dioleoyl phosphatidylglycerol dispersions at a temperature at which the bound protein is denatured on the lipid surface, but is nondenatured when free in solution, has also been studied. The binding curves for the surface-denatured protein differ from those for the native protein in that the apparent saturation at high ionic strength is less pronounced. This indicates the tendency of the denatured protein to aggregate on the lipid surface, and can be described by the binding isotherms for nonlocalized sites only if attractive interactions between the surface-bound proteins are included in addition to the distributional entropic terms. Additionally

  12. Contribution of Chondroitin Sulfate A to the Binding of Complement Proteins to Activated Platelets

    PubMed Central

    Lasaosa, Maria; Ricklin, Daniel; Lambris, John D.; Nilsson, Bo; Nilsson Ekdahl, Kristina

    2010-01-01

    Background Exposure of chondroitin sulfate A (CS-A) on the surface of activated platelets is well established. The aim of the present study was to investigate to what extent CS-A contributes to the binding of the complement recognition molecule C1q and the complement regulators C1 inhibitor (C1INH), C4b-binding protein (C4BP), and factor H to platelets. Principal Findings Human blood serum was passed over Sepharose conjugated with CS-A, and CS-A-specific binding proteins were identified by Western blotting and mass spectrometric analysis. C1q was shown to be the main protein that specifically bound to CS-A, but C4BP and factor H were also shown to interact. Binding of C1INH was dependent of the presence of C1q and then not bound to CS-A from C1q-depleted serum. The specific interactions observed of these proteins with CS-A were subsequently confirmed by surface plasmon resonance analysis using purified proteins. Importantly, C1q, C4BP, and factor H were also shown to bind to activated platelets and this interaction was inhibited by a CS-A-specific monoclonal antibody, thereby linking the binding of C1q, C4BP, and factor H to exposure of CS-A on activated platelets. CS-A-bound C1q was also shown to amplify the binding of model immune complexes to both microtiter plate-bound CS-A and to activated platelets. Conclusions This study supports the concept that CS-A contributes to the binding of C1q, C4BP, and factor H to platelets, thereby adding CS-A to the previously reported binding sites for these proteins on the platelet surface. CS-A-bound C1q also seems to amplify the binding of immune complexes to activated platelets, suggesting a role for this molecule in immune complex diseases. PMID:20886107

  13. Fibronectin-binding protein of Streptococcus equi subsp. zooepidemicus.

    PubMed Central

    Lindmark, H; Jacobsson, K; Frykberg, L; Guss, B

    1996-01-01

    By screening a genomic lambda library of Streptococcus equi subsp. zooepidemicus, we have cloned and sequenced a gene, termed fnz, encoding a fibronectin (Fn)-binding protein called FNZ. On the basis of the deduced amino acid sequence of FNZ, the mature protein has a molecular mass of approximately 61 kDa. Analysis of FNZ reveals a structural organization similar to that of other cell surface proteins from streptococci and staphylococci. The Fn-binding activity is localized to two domains in the C-terminal part of FNZ. One domain is composed of five repeats, which contain a motif similar to what has earlier been found in other Fn-binding proteins in streptococci and staphylococci. The first and second repeats are separated by a short stretch of amino acids, including the motif LAGESGET, which is an important part of the second Fn-binding domain. This motif is also present in an Fn-binding domain (UR) in protein F of Streptococcus pyogenes. A fusion protein covering the Fn-binding domain of FNZ inhibits the binding of the 29-kDa N-terminal fragment of Fn to cells of various streptococcal species as well as to Staphylococcus aureus. PMID:8926060

  14. Paramagnetic Ligand Tagging To Identify Protein Binding Sites

    PubMed Central

    2015-01-01

    Transient biomolecular interactions are the cornerstones of the cellular machinery. The identification of the binding sites for low affinity molecular encounters is essential for the development of high affinity pharmaceuticals from weakly binding leads but is hindered by the lack of robust methodologies for characterization of weakly binding complexes. We introduce a paramagnetic ligand tagging approach that enables localization of low affinity protein–ligand binding clefts by detection and analysis of intermolecular protein NMR pseudocontact shifts, which are invoked by the covalent attachment of a paramagnetic lanthanoid chelating tag to the ligand of interest. The methodology is corroborated by identification of the low millimolar volatile anesthetic interaction site of the calcium sensor protein calmodulin. It presents an efficient route to binding site localization for low affinity complexes and is applicable to rapid screening of protein–ligand systems with varying binding affinity. PMID:26289584

  15. Niobium Uptake and Release by Bacterial Ferric Ion Binding Protein

    PubMed Central

    Shi, Yanbo; Harvey, Ian; Campopiano, Dominic; Sadler, Peter J.

    2010-01-01

    Ferric ion binding proteins (Fbps) transport FeIII across the periplasm and are vital for the virulence of many Gram negative bacteria. Iron(III) is tightly bound in a hinged binding cleft with octahedral coordination geometry involving binding to protein side chains (including tyrosinate residues) together with a synergistic anion such as phosphate. Niobium compounds are of interest for their potential biological activity, which has been little explored. We have studied the binding of cyclopentadienyl and nitrilotriacetato NbV complexes to the Fbp from Neisseria gonorrhoeae by UV-vis spectroscopy, chromatography, ICP-OES, mass spectrometry, and Nb K-edge X-ray absorption spectroscopy. These data suggest that NbV binds strongly to Fbp and that a dinuclear NbV centre can be readily accommodated in the interdomain binding cleft. The possibility of designing niobium-based antibiotics which block iron uptake by pathogenic bacteria is discussed. PMID:20445753

  16. Acute phase serum proteins in syngeneic and allogeneic mouse pregnancy.

    PubMed Central

    Waites, G T; Bell, A M; Bell, S C

    1983-01-01

    The levels of two murine acute phase proteins, serum amyloid P component (SAP) and haptoglobin, have been measured in the serum of C57BL/10 female mice during syngeneic and allogeneic pregnancy. Both syngeneic and allogeneic pregnancy resulted in alterations in the levels of these proteins as compared to those observed in virgin females. Syngeneic mating resulted in an increase in concentration of both proteins during the final 3 days of pregnancy. During allogeneic pregnancy, SAP levels, after a transient increase on day 4, rose from days 6-8 and, after remaining relatively stable, increased from day 12 to reach maximum levels on day 18 of pregnancy. Levels fell dramatically during the immediate post-partum period. In contrast, although levels of haptoglobin also increased from days 6-8, for the remainder of pregnancy these increased levels remained stable. The implications of these findings are discussed in relation to the mechanisms of regulation of acute phase reactants and the immunological relationship between the mother and fetus. PMID:6409477

  17. Exchange Kinetics of a Hydrophobic Ligand Binding Protein

    NASA Astrophysics Data System (ADS)

    Vaughn, Jeff; Stone, Martin

    2002-03-01

    Conformational fluctuations of proteins are thought to be important for determining the functional roles in biological activity. In some cases, the rates of these conformational changes may be directly correlated to, for example, the rates of catalysis or ligand binding. We are studying the role of conformational fluctuations in the binding of small volatile hydrophobic pheromones by the mouse major urinary proteins (MUPs). Communication among mice occurs, in part, with the MUP-1 protein. This urinary protein binds pheromones as a way to increase the longevity of the pheromone in an extracellular environment. Of interest is that the crystal structure of MUP-1 with a pheromone ligand shows the ligand to be completely occluded from the solvent with no obvious pathway to enter or exit. This suggests that conformational exchange of the protein may be required for ligand binding and release to occur. We hypothesize that the rate of conformational exchange may be a limiting factor determining the rate of ligand association and dissociation. By careful measurement of the on- and off-rates of ligand binding and the rates of conformational changes of the protein, a more defined picture of the interplay between protein structure and function can be obtained. To this end, heteronuclear saturation transfer, ^15N-exchange and ^15N dynamics experiments have been employed to probe the kinetics of ligand binding to MUP-1.

  18. Estradiol binding to nuclear matrix protein of pig adrenal cortex

    SciTech Connect

    Ungar, F.; Johnson, S.R.; Johnston, J.A.

    1987-05-01

    Binding of TH-estradiol can be shown in vitro after incubation with purified washed nuclei of sow adrenal cortex or with the insoluble nuclear matrix protein isolated from nuclei. The procedure modified after Berezney and Coffey treated washed nuclei sequentially with 1% Triton-X100, DNase, RNase and 2M NaCl to give an insoluble nuclear matrix protein preparation in which most of the phospholipid, DNA, RNA and protein was removed. Reagents were added to 10 mM Tris buffer containing 1 mM phenylmethyl sulfonyl fluoride, dithiothreitol and 0.2 mM or 5.0 mM MgCl2. Each treatment and washes were centrifuged at 4C. Suspensions of nuclei and nuclear matrix protein were incubated at 4C for 24 hrs. with 0.25 to 3.0 ng of TH-estradiol in 0.5 ml 10 mM Tris buffer with 5 mM MgCl2. Scatchard analysis of binding in duplicate or triplicate tubes with or without excess unlabeled estradiol gave specific binding for sow adrenal nuclei and for nuclear matrix protein. Total binding sites varied between 780 to 1380 fmoles/mg protein. Estradiol binding was not shown in the fetal adrenal matrix nor in mitochondria. Noncompetitive controls included progesterone and pregnenolone. Nuclear matrix protein binding of estradiol may have significance in functional or morphological changes of the adrenal cortex in fetal, neonatal, or pubertal development.

  19. General RNA binding proteins render translation cap dependent.

    PubMed Central

    Svitkin, Y V; Ovchinnikov, L P; Dreyfuss, G; Sonenberg, N

    1996-01-01

    Translation in rabbit reticulocyte lysate is relatively independent of the presence of the mRNA m7G cap structure and the cap binding protein, eIF-4E. In addition, initiation occurs frequently at spurious internal sites. Here we show that a critical parameter which contributes to cap-dependent translation is the amount of general RNA binding proteins in the extract. Addition of several general RNA binding proteins, such as hnRNP A1, La autoantigen, pyrimidine tract binding protein (hnRNP I/PTB) and the major core protein of cytoplasmic mRNP (p50), rendered translation in a rabbit reticulocyte lysate cap dependent. These proteins drastically inhibited the translation of an uncapped mRNA, but had no effect on translation of a capped mRNA. Based on these and other results, we suggest that one function of general mRNA binding proteins in the cytoplasm is to promote ribosome binding by a 5' end, cap-mediated mechanism, and prevent spurious initiations at aberrant translation start sites. Images PMID:9003790

  20. Diversity of Cyclic Di-GMP-Binding Proteins and Mechanisms.

    PubMed

    Chou, Shan-Ho; Galperin, Michael Y

    2016-01-01

    Cyclic di-GMP (c-di-GMP) synthetases and hydrolases (GGDEF, EAL, and HD-GYP domains) can be readily identified in bacterial genome sequences by using standard bioinformatic tools. In contrast, identification of c-di-GMP receptors remains a difficult task, and the current list of experimentally characterized c-di-GMP-binding proteins is likely incomplete. Several classes of c-di-GMP-binding proteins have been structurally characterized; for some others, the binding sites have been identified; and for several potential c-di-GMP receptors, the binding sites remain to be determined. We present here a comparative structural analysis of c-di-GMP-protein complexes that aims to discern the common themes in the binding mechanisms that allow c-di-GMP receptors to bind it with (sub)micromolar affinities despite the 1,000-fold excess of GTP. The available structures show that most receptors use their Arg and Asp/Glu residues to bind c-di-GMP monomers, dimers, or tetramers with stacked guanine bases. The only exception is the EAL domains that bind c-di-GMP monomers in an extended conformation. We show that in c-di-GMP-binding signature motifs, Arg residues bind to the O-6 and N-7 atoms at the Hoogsteen edge of the guanine base, while Asp/Glu residues bind the N-1 and N-2 atoms at its Watson-Crick edge. In addition, Arg residues participate in stacking interactions with the guanine bases of c-di-GMP and the aromatic rings of Tyr and Phe residues. This may account for the presence of Arg residues in the active sites of every receptor protein that binds stacked c-di-GMP. We also discuss the implications of these structural data for the improved understanding of the c-di-GMP signaling mechanisms.

  1. Diversity of Cyclic Di-GMP-Binding Proteins and Mechanisms

    PubMed Central

    2015-01-01

    ABSTRACT Cyclic di-GMP (c-di-GMP) synthetases and hydrolases (GGDEF, EAL, and HD-GYP domains) can be readily identified in bacterial genome sequences by using standard bioinformatic tools. In contrast, identification of c-di-GMP receptors remains a difficult task, and the current list of experimentally characterized c-di-GMP-binding proteins is likely incomplete. Several classes of c-di-GMP-binding proteins h