Code of Federal Regulations, 2010 CFR
2010-10-01
... licenses will serve as a prerequisite for registering individual fixed and base stations. A licensee cannot operate a fixed or base station before registering it under its license and licensees must delete registrations for unused fixed and base stations. ...
47 CFR 76.55 - Definitions applicable to the must-carry rules.
Code of Federal Regulations, 2010 CFR
2010-10-01
... television station with five watts or higher power serving the franchise area, (ii) A full-service station or... the purposes of § 76.55(a), “serving the franchise area” will be based on the predicted protected... all obligations and requirements applicable to full power television broadcast stations under part 73...
Dynamic Termination On Radiating Coaxial Cable
NASA Technical Reports Server (NTRS)
Lombardi, Robert; Stern, Jon; Rassweiler, George
1993-01-01
Radiation pattern dithered to reduce adverse effect of nulls. In improved system for radio communication between base station and portable units within building, tunnel, ship, or other large structure, radiating or "leaky" coaxial cable serves as base-station antenna, and radiation pattern of cable dithered by dithering impedance of termination at end of cable remote from base station.
NASA Technical Reports Server (NTRS)
1983-01-01
Representative space based orbital transfer vehicles (OTV), ground based vehicle turnaround assessment, functional operational requirements and facilities, mission turnaround operations, a comparison of ground based versus space based tasks, activation of servicing facilities prior to IOC, fleet operations requirements, maintenance facilities, OTV servicing facilities, space station support requirements, and packaging for delivery are discussed.
45 CFR 2552.61 - May a sponsor serve as a volunteer station?
Code of Federal Regulations, 2012 CFR
2012-10-01
... 45 Public Welfare 4 2012-10-01 2012-10-01 false May a sponsor serve as a volunteer station? 2552... NATIONAL AND COMMUNITY SERVICE FOSTER GRANDPARENT PROGRAM Responsibilities of a Volunteer Station § 2552.61 May a sponsor serve as a volunteer station? Yes, a sponsor may serve as a volunteer station, provided...
45 CFR 2551.61 - May a sponsor serve as a volunteer station?
Code of Federal Regulations, 2011 CFR
2011-10-01
... 45 Public Welfare 4 2011-10-01 2011-10-01 false May a sponsor serve as a volunteer station? 2551... NATIONAL AND COMMUNITY SERVICE SENIOR COMPANION PROGRAM Responsibilities of a Volunteer Station § 2551.61 May a sponsor serve as a volunteer station? Yes, a sponsor may serve as a volunteer station, provided...
45 CFR 2552.61 - May a sponsor serve as a volunteer station?
Code of Federal Regulations, 2013 CFR
2013-10-01
... 45 Public Welfare 4 2013-10-01 2013-10-01 false May a sponsor serve as a volunteer station? 2552... NATIONAL AND COMMUNITY SERVICE FOSTER GRANDPARENT PROGRAM Responsibilities of a Volunteer Station § 2552.61 May a sponsor serve as a volunteer station? Yes, a sponsor may serve as a volunteer station, provided...
45 CFR 2552.61 - May a sponsor serve as a volunteer station?
Code of Federal Regulations, 2014 CFR
2014-10-01
... 45 Public Welfare 4 2014-10-01 2014-10-01 false May a sponsor serve as a volunteer station? 2552... NATIONAL AND COMMUNITY SERVICE FOSTER GRANDPARENT PROGRAM Responsibilities of a Volunteer Station § 2552.61 May a sponsor serve as a volunteer station? Yes, a sponsor may serve as a volunteer station, provided...
45 CFR 2551.61 - May a sponsor serve as a volunteer station?
Code of Federal Regulations, 2013 CFR
2013-10-01
... 45 Public Welfare 4 2013-10-01 2013-10-01 false May a sponsor serve as a volunteer station? 2551... NATIONAL AND COMMUNITY SERVICE SENIOR COMPANION PROGRAM Responsibilities of a Volunteer Station § 2551.61 May a sponsor serve as a volunteer station? Yes, a sponsor may serve as a volunteer station, provided...
45 CFR 2551.61 - May a sponsor serve as a volunteer station?
Code of Federal Regulations, 2014 CFR
2014-10-01
... 45 Public Welfare 4 2014-10-01 2014-10-01 false May a sponsor serve as a volunteer station? 2551... NATIONAL AND COMMUNITY SERVICE SENIOR COMPANION PROGRAM Responsibilities of a Volunteer Station § 2551.61 May a sponsor serve as a volunteer station? Yes, a sponsor may serve as a volunteer station, provided...
45 CFR 2551.61 - May a sponsor serve as a volunteer station?
Code of Federal Regulations, 2012 CFR
2012-10-01
... 45 Public Welfare 4 2012-10-01 2012-10-01 false May a sponsor serve as a volunteer station? 2551... NATIONAL AND COMMUNITY SERVICE SENIOR COMPANION PROGRAM Responsibilities of a Volunteer Station § 2551.61 May a sponsor serve as a volunteer station? Yes, a sponsor may serve as a volunteer station, provided...
45 CFR 2551.61 - May a sponsor serve as a volunteer station?
Code of Federal Regulations, 2010 CFR
2010-10-01
... 45 Public Welfare 4 2010-10-01 2010-10-01 false May a sponsor serve as a volunteer station? 2551... NATIONAL AND COMMUNITY SERVICE SENIOR COMPANION PROGRAM Responsibilities of a Volunteer Station § 2551.61 May a sponsor serve as a volunteer station? Yes, a sponsor may serve as a volunteer station, provided...
45 CFR 2552.61 - May a sponsor serve as a volunteer station?
Code of Federal Regulations, 2011 CFR
2011-10-01
... 45 Public Welfare 4 2011-10-01 2011-10-01 false May a sponsor serve as a volunteer station? 2552... NATIONAL AND COMMUNITY SERVICE FOSTER GRANDPARENT PROGRAM Responsibilities of a Volunteer Station § 2552.61 May a sponsor serve as a volunteer station? Yes, a sponsor may serve as a volunteer station, provided...
45 CFR 2552.61 - May a sponsor serve as a volunteer station?
Code of Federal Regulations, 2010 CFR
2010-10-01
... 45 Public Welfare 4 2010-10-01 2010-10-01 false May a sponsor serve as a volunteer station? 2552... NATIONAL AND COMMUNITY SERVICE FOSTER GRANDPARENT PROGRAM Responsibilities of a Volunteer Station § 2552.61 May a sponsor serve as a volunteer station? Yes, a sponsor may serve as a volunteer station, provided...
Eclipse of the Floating Orbs: Controlling Robots on the International Space Station
NASA Technical Reports Server (NTRS)
Wheeler, D. W.
2017-01-01
I will describe the Control Station for a free-flying robot called Astrobee. Astrobee will serve as a mobile camera, sensor platform, and research testbed when it is launched to the International Space Station (ISS)in 2017. Astronauts on the ISS as well as ground-based users will control Astrobee using the Eclipse-based Astrobee Control Station. Designing theControl Station for use in space presented unique challenges, such as allowing the intuitive input of 3D information without a mouse or trackpad. Come to this talk to learn how Eclipse is used in an environment few humans have the chance to visit.
45 CFR 2553.61 - When may a sponsor serve as a volunteer station?
Code of Federal Regulations, 2012 CFR
2012-10-01
... 45 Public Welfare 4 2012-10-01 2012-10-01 false When may a sponsor serve as a volunteer station... FOR NATIONAL AND COMMUNITY SERVICE THE RETIRED AND SENIOR VOLUNTEER PROGRAM Responsibilities of a Volunteer Station § 2553.61 When may a sponsor serve as a volunteer station? The sponsor may function as a...
45 CFR 2553.61 - When may a sponsor serve as a volunteer station?
Code of Federal Regulations, 2014 CFR
2014-10-01
... 45 Public Welfare 4 2014-10-01 2014-10-01 false When may a sponsor serve as a volunteer station... FOR NATIONAL AND COMMUNITY SERVICE THE RETIRED AND SENIOR VOLUNTEER PROGRAM Responsibilities of a Volunteer Station § 2553.61 When may a sponsor serve as a volunteer station? The sponsor may function as a...
45 CFR 2553.61 - When may a sponsor serve as a volunteer station?
Code of Federal Regulations, 2013 CFR
2013-10-01
... 45 Public Welfare 4 2013-10-01 2013-10-01 false When may a sponsor serve as a volunteer station... FOR NATIONAL AND COMMUNITY SERVICE THE RETIRED AND SENIOR VOLUNTEER PROGRAM Responsibilities of a Volunteer Station § 2553.61 When may a sponsor serve as a volunteer station? The sponsor may function as a...
45 CFR 2553.61 - When may a sponsor serve as a volunteer station?
Code of Federal Regulations, 2010 CFR
2010-10-01
... 45 Public Welfare 4 2010-10-01 2010-10-01 false When may a sponsor serve as a volunteer station... FOR NATIONAL AND COMMUNITY SERVICE THE RETIRED AND SENIOR VOLUNTEER PROGRAM Responsibilities of a Volunteer Station § 2553.61 When may a sponsor serve as a volunteer station? The sponsor may function as a...
45 CFR 2553.61 - When may a sponsor serve as a volunteer station?
Code of Federal Regulations, 2011 CFR
2011-10-01
... 45 Public Welfare 4 2011-10-01 2011-10-01 false When may a sponsor serve as a volunteer station... FOR NATIONAL AND COMMUNITY SERVICE THE RETIRED AND SENIOR VOLUNTEER PROGRAM Responsibilities of a Volunteer Station § 2553.61 When may a sponsor serve as a volunteer station? The sponsor may function as a...
Wireless Headset Communication System
NASA Technical Reports Server (NTRS)
Lau, Wilfred K.; Swanson, Richard; Christensen, Kurt K.
1995-01-01
System combines features of pagers, walkie-talkies, and cordless telephones. Wireless headset communication system uses digital modulation on spread spectrum to avoid interference among units. Consists of base station, 4 radio/antenna modules, and as many as 16 remote units with headsets. Base station serves as network controller, audio-mixing network, and interface to such outside services as computers, telephone networks, and other base stations. Developed for use at Kennedy Space Center, system also useful in industrial maintenance, emergency operations, construction, and airport operations. Also, digital capabilities exploited; by adding bar-code readers for use in taking inventories.
MERI: an ultra-long-baseline Moon-Earth radio interferometer.
NASA Astrophysics Data System (ADS)
Burns, J. O.
Radiofrequency aperture synthesis, pioneered by Ryle and his colleagues at Cambridge in the 1960's, has evolved to ever longer baselines and larger arrays in recent years. The limiting resolution at a given frequency for modern ground-based very-long-baseline interferometry is simply determined by the physical diameter of the Earth. A second-generation, totally space-based VLB network was proposed recently by a group at the Naval Research Laboratory. The next logical extension of space-based VLBI would be a station or stations on the Moon. The Moon could serve as an outpost or even the primary correlator station for an extended array of space-based antennas.
Crewmember activity in the middeck and Mir Space Station Base Block
2016-08-24
STS091-361-034 (2-12 June 1998) --- Andrew S.W. Thomas signs a plaque containing the names of all the visitors to Russia's Mir space station. Thomas is the final of seven NASA astronauts to serve as a guest cosmonaut researcher aboard Mir as part of International Space Station (ISS) Phase I. Looking on in the background are astronauts Franklin R. Chang-Diaz, payload commander; and Janet L. Kavandi, mission specialist.
47 CFR 73.21 - Classes of AM broadcast channels and stations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... stations. (a) Clear channel. A clear channel is one on which stations are assigned to serve wide areas... equivalent RMS antenna field of less than 141 mV/m at one km. Class D stations shall operate with daytime... regional channel is one on which Class B and Class D stations may operate and serve primarily a principal...
Bibliography of the Northeastern and Allegheny Forest Experiment Stations 1923-1949
V. L. Harper
1950-01-01
This bibliography lists the contributions to forest-research literature of the Federal forest experiment stations that have served the Northeast during the period 1923-49. At one time two such stations served the region: the Northeastern Forest Experiment Station, established in 1923 at Amherst, Mass., later moved to New Haven, Conn., and the Allegheny Forest...
An Efficient Scheduling Scheme on Charging Stations for Smart Transportation
NASA Astrophysics Data System (ADS)
Kim, Hye-Jin; Lee, Junghoon; Park, Gyung-Leen; Kang, Min-Jae; Kang, Mikyung
This paper proposes a reservation-based scheduling scheme for the charging station to decide the service order of multiple requests, aiming at improving the satisfiability of electric vehicles. The proposed scheme makes it possible for a customer to reduce the charge cost and waiting time, while a station can extend the number of clients it can serve. A linear rank function is defined based on estimated arrival time, waiting time bound, and the amount of needed power, reducing the scheduling complexity. Receiving the requests from the clients, the power station decides the charge order by the rank function and then replies to the requesters with the waiting time and cost it can guarantee. Each requester can decide whether to charge at that station or try another station. This scheduler can evolve to integrate a new pricing policy and services, enriching the electric vehicle transport system.
Reflective electroabsorption modular for compact base station radio-over-fiber systems
NASA Astrophysics Data System (ADS)
Wu, Yang; Chang, Wei-Xi; Yu, Paul K. L.
2003-07-01
A Radio-over-Fiber system with simplified Base Station (BS) is proposed in which a single chip DBR Reflective Electro-absorption Modulator (REAM) serves both as an optical transceiver and as a mixer at the BS. It enables full duplex optical transmission for base band and RF band services simultaneously due to good isolation between uplink and downlink at the same chip. Grating structure is incorporated into the EA modulator for the sake of system design. It also improves yield and efficiency of high-speed devices.
ERIC Educational Resources Information Center
Jih, Huecyhing Janice; Lin, Yenjen; Wu, Szuchien Sofia
The K-12 Gas Station is a national World Wide Web site in Taiwan that serves as the educational portal that provides teachers, parents, pupils, and public communities with rich content for all subject matters in grades K-12. The K-12 Gas Station plays a critical role in the efforts to build up a technology-based learning environment to help…
Dexterous Orbital Servicing System (DOSS)
NASA Technical Reports Server (NTRS)
Price, Charles R.; Berka, Reginald B.; Chladek, John T.
1994-01-01
The Dexterous Orbiter Servicing System (DOSS) is a dexterous robotic spaceflight system that is based on the manipulator designed as part of the Flight Telerobotics Servicer program for the Space Station Freedom and built during a 'technology capture' effort that was commissioned when the FTS was cancelled from the Space Station Freedom program. The FTS technology capture effort yielded one flight manipulator and the 1 g hydraulic simulator that had been designed as an integrated test tool and crew trainer. The DOSS concept was developed to satisfy needs of the telerobotics research community, the space shuttle, and the space station. As a flight testbed, DOSS would serve as a baseline reference for testing the performance of advanced telerobotics and intelligent robotics components. For shuttle, the DOSS, configured as a movable dexterous tool, would be used to provide operational flexibility for payload operations and contingency operations. As a risk mitigation flight demonstration, the DOSS would serve the International Space Station to characterize the end to end system performance of the Special Purpose Dexterous Manipulator performing assembly and maintenance tasks with actual ISSA orbital replacement units. Currently, the most likely entrance of the DOSS into spaceflight is a risk mitigation flight experiment for the International Space Station.
Internal seismological stations for monitoring a comprehensive test ban theory
NASA Astrophysics Data System (ADS)
Dahlman, O.; Israelson, H.
1980-06-01
Verification of the compliance with a Comprehensive Test Ban on nuclear explosions is expected to be carried out by a seismological verification system of some fifty globally distributed teleseismic stations designed to monitor underground explosions at large distances (beyond 2000 km). It is attempted to assess various technical purposes that such internal stations might serve in relation to a global network of seismological stations. The assessment is based on estimates of the detection capabilities of hypothetical networks of internal stations. Estimates pertaining to currently used detection techniques (P waves) indicate that a limited number (less than 30) of such stations would not improve significantly upon the detection capability that a global network of stations would have throughout the territories of the US and the USSR. Recently available and not yet fully analyzed data indicate however that very high detection capabilities might be obtained in certain regions.
Logistics resupply and emergency crew return system for Space Station Freedom
NASA Technical Reports Server (NTRS)
Ahne, D.; Caldwell, D.; Davis, K.; Delmedico, S.; Heinen, E.; Ismail, S.; Sumner, C.; Bock, J.; Buente, B.; Gliane, R.
1989-01-01
Sometime in the late 1990's, if all goes according to plan, Space Station Freedom will allow the United States and its cooperating partners to maintain a permanent presence in space. Acting as a scientific base of operations, it will also serve as a way station for future explorations of the Moon and perhaps even Mars. Systems onboard the station will have longer lifetimes, higher reliability, and lower maintenance requirements than seen on any previous space flight vehicle. Accordingly, the station will have to be resupplied with consumables (air, water, food, etc.) and other equipment changeouts (experiments, etc.) on a periodic basis. Waste materials and other products will also be removed from the station for return to Earth. The availability of a Logistics Resupply Module (LRM), akin to the Soviet's Progress vehicle, would help to accomplish these tasks. Riding into orbit on an expendable launch vehicle, the LRM would be configured to rendezvous autonomously and dock with the space station. After the module is emptied of its cargo, waste material from the space station would be loaded back into it. The module would then begin its descent to a recovery point on Earth. Logistics Resupply Modules could be configured in a variety of forms depending on the type of cargo being transferred. If the LRM's were cycled to the space station in such a way that at least one vehicle remained parked at the station at all times, the modules could serve double duty as crew emergency return capsules. A pressurized LRM could then bring two or more crew-persons requiring immediate return (because of health problems, system failure, or unavoidable catastrophes) back to Earth. Large cost savings would be accrued by combining the crew return function with a logistics resupply system.
DOT National Transportation Integrated Search
2011-01-01
Intermodal connections with other scheduled public trans- : portation modes are available at 70 percent of all stations : served by commuter rail trains. Commuter rail passengers : are able to connect to other transportation modes at 8121 of : the 1,...
33-Foot-Diameter Space Station Leading to Space Base
NASA Technical Reports Server (NTRS)
1969-01-01
This picture illustrates a concept of a 33-Foot-Diameter Space Station Leading to a Space Base. In-house work of the Marshall Space Flight Center, as well as a Phase B contract with the McDornel Douglas Astronautics Company, resulted in a preliminary design for a space station in 1969 and l970. The Marshall-McDonnel Douglas approach envisioned the use of two common modules as the core configuration of a 12-man space station. Each common module was 33 feet in diameter and 40 feet in length and provided the building blocks, not only for the space station, but also for a 50-man space base. Coupled together, the two modules would form a four-deck facility: two decks for laboratories and two decks for operations and living quarters. Zero-gravity would be the normal mode of operation, although the station would have an artificial gravity capability. This general-purpose orbital facility was to provide wide-ranging research capabilities. The design of the facility was driven by the need to accommodate a broad spectrum of activities in support of astronomy, astrophysics, aerospace medicine, biology, materials processing, space physics, and space manufacturing. To serve the needs of Earth observations, the station was to be placed in a 242-nautical-mile orbit at a 55-degree inclination. An Intermediate-21 vehicle (comprised of Saturn S-IC and S-II stages) would have launched the station in 1977.
47 CFR 74.1265 - Posting of station license.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Translator Stations and FM Broadcast Booster Stations § 74.1265 Posting of station license. (a) The station...) The call sign of the translator or booster together with the name, address, and telephone number of... served by the translator or booster, and the name and address of a person and place where station records...
47 CFR 74.1265 - Posting of station license.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Translator Stations and FM Broadcast Booster Stations § 74.1265 Posting of station license. (a) The station...) The call sign of the translator or booster together with the name, address, and telephone number of... served by the translator or booster, and the name and address of a person and place where station records...
47 CFR 74.1265 - Posting of station license.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Translator Stations and FM Broadcast Booster Stations § 74.1265 Posting of station license. (a) The station...) The call sign of the translator or booster together with the name, address, and telephone number of... served by the translator or booster, and the name and address of a person and place where station records...
47 CFR 74.1265 - Posting of station license.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Translator Stations and FM Broadcast Booster Stations § 74.1265 Posting of station license. (a) The station...) The call sign of the translator or booster together with the name, address, and telephone number of... served by the translator or booster, and the name and address of a person and place where station records...
47 CFR 74.1265 - Posting of station license.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Translator Stations and FM Broadcast Booster Stations § 74.1265 Posting of station license. (a) The station...) The call sign of the translator or booster together with the name, address, and telephone number of... served by the translator or booster, and the name and address of a person and place where station records...
Code of Federal Regulations, 2011 CFR
2011-01-01
... PUBLIC TELEVISION STATION DIGITAL TRANSITION GRANT PROGRAM Public Television Station Digital Transition... Station Digital Transition Grant Program (Grant Program) is to enable public television stations serving rural areas to transition from broadcasting in analog to digital, as required under the Federal...
Code of Federal Regulations, 2010 CFR
2010-01-01
... PUBLIC TELEVISION STATION DIGITAL TRANSITION GRANT PROGRAM Public Television Station Digital Transition... Station Digital Transition Grant Program (Grant Program) is to enable public television stations serving rural areas to transition from broadcasting in analog to digital, as required under the Federal...
Cache-enabled small cell networks: modeling and tradeoffs.
Baştuǧ, Ejder; Bennis, Mehdi; Kountouris, Marios; Debbah, Mérouane
We consider a network model where small base stations (SBSs) have caching capabilities as a means to alleviate the backhaul load and satisfy users' demand. The SBSs are stochastically distributed over the plane according to a Poisson point process (PPP) and serve their users either (i) by bringing the content from the Internet through a finite rate backhaul or (ii) by serving them from the local caches. We derive closed-form expressions for the outage probability and the average delivery rate as a function of the signal-to-interference-plus-noise ratio (SINR), SBS density, target file bitrate, storage size, file length, and file popularity. We then analyze the impact of key operating parameters on the system performance. It is shown that a certain outage probability can be achieved either by increasing the number of base stations or the total storage size. Our results and analysis provide key insights into the deployment of cache-enabled small cell networks (SCNs), which are seen as a promising solution for future heterogeneous cellular networks.
47 CFR 74.1232 - Eligibility and licensing requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Translator Stations and FM Broadcast Booster Stations § 74.1232 Eligibility and licensing requirements. (a... adjustments to equipment. (f) An FM broadcast booster station will be authorized only to the licensee or permittee of the FM radio broadcast station whose signals the booster station will retransmit, to serve...
Predictors of suicide and suicide attempt in subway stations: a population-based ecological study.
Niederkrotenthaler, Thomas; Sonneck, Gernot; Dervic, Kanita; Nader, Ingo W; Voracek, Martin; Kapusta, Nestor D; Etzersdorfer, Elmar; Mittendorfer-Rutz, Ellenor; Dorner, Thomas
2012-04-01
Suicidal behavior on the subway often involves young people and has a considerable impact on public life, but little is known about factors associated with suicides and suicide attempts in specific subway stations. Between 1979 and 2009, 185 suicides and 107 suicide attempts occurred on the subway in Vienna, Austria. Station-specific suicide and suicide attempt rates (defined as the frequency of suicidal incidents per time period) were modeled as the outcome variables in bivariate and multivariate Poisson regression models. Structural station characteristics (presence of a surveillance unit, train types used, and construction on street level versus other construction), contextual station characteristics (neighborhood to historical sites, size of the catchment area, and in operation during time period of extensive media reporting on subway suicides), and passenger-based characteristics (number of passengers getting on the trains per day, use as meeting point by drug users, and socioeconomic status of the population in the catchment area) were used as the explanatory variables. In the multivariate analyses, subway suicides increased when stations were served by the faster train type. Subway suicide attempts increased with the daily number of passengers getting on the trains and with the stations' use as meeting points by drug users. The findings indicate that there are some differences between subway suicides and suicide attempts. Completed suicides seem to vary most with train type used. Suicide attempts seem to depend mostly on passenger-based characteristics, specifically on the station's crowdedness and on its use as meeting point by drug users. Suicide-preventive interventions should concentrate on crowded stations and on stations frequented by risk groups.
Xu, Shuhang; Feng, Lingling; Chen, Yongming; Sun, Ying; Lu, Yao; Huang, Shaomin; Fu, Yang; Zheng, Rongqin; Zhang, Yujing; Zhang, Rong
2017-06-20
In order to refine the location and metastasis-risk density of 16 lymph node stations of gastric cancer for neoadjuvant radiotherapy, we retrospectively reviewed the initial images and pathological reports of 255 gastric cancer patients with lymphatic metastasis. Metastatic lymph nodes identified in the initial computed tomography images were investigated by two radiologists with gastrointestinal specialty. A circle with a diameter of 5 mm was used to identify the central position of each metastatic lymph node, defined as the LNc (the central position of the lymph node). The LNc was drawn at the equivalent location on the reference images of a standard patient based on the relative distances to the same reference vessels and the gastric wall using a Monaco® version 5.0 workstation. The image manipulation software Medi-capture was programmed for image analysis to produce a contour and density atlas of 16 lymph node stations. Based on a total of 2846 LNcs contoured (31-599 per lymph node station), we created a density distribution map of 16 lymph node drainage stations of the stomach on computed tomography images, showing the detailed radiographic delineation of each lymph node station as well as high-risk areas for lymph node metastasis. Our mapping can serve as a template for the delineation of gastric lymph node stations when defining clinical target volume in pre-operative radiotherapy for gastric cancer.
Cooperating Expert Systems For Space Station Power Distribution Management
NASA Astrophysics Data System (ADS)
Nguyen, T. A.; Chiou, W. C.
1987-02-01
In a complex system such as the manned Space Station, it is deem necessary that many expert systems must perform tasks in a concurrent and cooperative manner. An important question arise is: what cooperative-task-performing models are appropriate for multiple expert systems to jointly perform tasks. The solution to this question will provide a crucial automation design criteria for the Space Station complex systems architecture. Based on a client/server model for performing tasks, we have developed a system that acts as a front-end to support loosely-coupled communications between expert systems running on multiple Symbolics machines. As an example, we use two ART*-based expert systems to demonstrate the concept of parallel symbolic manipulation for power distribution management and dynamic load planner/scheduler in the simulated Space Station environment. This on-going work will also explore other cooperative-task-performing models as alternatives which can evaluate inter and intra expert system communication mechanisms. It will be served as a testbed and a bench-marking tool for other Space Station expert subsystem communication and information exchange.
Application of a space station to communications satellites
NASA Technical Reports Server (NTRS)
Ramler, J. R.
1983-01-01
The economic benefits of a space station relative to communications satellites are discussed in terms of technology experiments, spacecraft checkout, repair, servicing, and refurbishment (RSR), and mating an OTV with satellites for boost to GEO. The zero gravity, vacuum conditions, and atmosphere free long ranges are environmental features that can be used for testing large, flexible antennas and laser communications devices. Some resistance might be encountered to checkout in LEO due to the substantial success of launches to GEO without LEO checkout. However, new generations of larger, more complex satellites may warrant the presence of a space station to verify performance of new spacecraft. One RSR positive aspect for a space station is as a storage site for propellant, as well as for reusable OTV booster engines. Also, the space station can serve as a base for manned or unmanned repair spacecraft which will travel to GEO to fix malfunctions in geostationary satellites.
45 CFR 2552.62 - What are the responsibilities of a volunteer station?
Code of Federal Regulations, 2010 CFR
2010-10-01
...) Provide Foster Grandparents serving the station with: (1) Orientation to the station and any in-service...) CORPORATION FOR NATIONAL AND COMMUNITY SERVICE FOSTER GRANDPARENT PROGRAM Responsibilities of a Volunteer...
45 CFR 2551.62 - What are the responsibilities of a volunteer station?
Code of Federal Regulations, 2010 CFR
2010-10-01
...) Provide Senior Companions serving the station with: (1) Orientation to the station and any in-service...) CORPORATION FOR NATIONAL AND COMMUNITY SERVICE SENIOR COMPANION PROGRAM Responsibilities of a Volunteer...
47 CFR 101.503 - Digital Electronic Message Service Nodal Stations.
Code of Federal Regulations, 2013 CFR
2013-10-01
... DEMS Nodal Station licenses should specify the maximum number of 10.6 GHz DEMS User Stations to be served by that nodal station. Any increase in that number must be applied for pursuant to § 1.913 of this... Stations. 101.503 Section 101.503 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY...
47 CFR 73.1870 - Chief operators.
Code of Federal Regulations, 2011 CFR
2011-10-01
... to be an employee of the station on duty for whatever number of hours each week the station licensee... Rules Applicable to All Broadcast Stations § 73.1870 Chief operators. (a) The licensee of each AM, FM, TV or Class A TV broadcast station must designate a person to serve as the station's chief operator...
47 CFR 73.1870 - Chief operators.
Code of Federal Regulations, 2010 CFR
2010-10-01
... to be an employee of the station on duty for whatever number of hours each week the station licensee... Rules Applicable to All Broadcast Stations § 73.1870 Chief operators. (a) The licensee of each AM, FM, TV or Class A TV broadcast station must designate a person to serve as the station's chief operator...
47 CFR 101.503 - Digital Electronic Message Service Nodal Stations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... DEMS Nodal Station licenses should specify the maximum number of 10.6 GHz DEMS User Stations to be served by that nodal station. Any increase in that number must be applied for pursuant to § 1.913 of this... Stations. 101.503 Section 101.503 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY...
47 CFR 101.503 - Digital Electronic Message Service Nodal Stations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... DEMS Nodal Station licenses should specify the maximum number of 10.6 GHz DEMS User Stations to be served by that nodal station. Any increase in that number must be applied for pursuant to § 1.913 of this... Stations. 101.503 Section 101.503 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY...
47 CFR 73.1870 - Chief operators.
Code of Federal Regulations, 2014 CFR
2014-10-01
... to be an employee of the station on duty for whatever number of hours each week the station licensee... Rules Applicable to All Broadcast Stations § 73.1870 Chief operators. (a) The licensee of each AM, FM, TV or Class A TV broadcast station must designate a person to serve as the station's chief operator...
47 CFR 73.1870 - Chief operators.
Code of Federal Regulations, 2013 CFR
2013-10-01
... to be an employee of the station on duty for whatever number of hours each week the station licensee... Rules Applicable to All Broadcast Stations § 73.1870 Chief operators. (a) The licensee of each AM, FM, TV or Class A TV broadcast station must designate a person to serve as the station's chief operator...
47 CFR 101.503 - Digital Electronic Message Service Nodal Stations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... DEMS Nodal Station licenses should specify the maximum number of 10.6 GHz DEMS User Stations to be served by that nodal station. Any increase in that number must be applied for pursuant to § 1.913 of this... Stations. 101.503 Section 101.503 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY...
47 CFR 73.1870 - Chief operators.
Code of Federal Regulations, 2012 CFR
2012-10-01
... to be an employee of the station on duty for whatever number of hours each week the station licensee... Rules Applicable to All Broadcast Stations § 73.1870 Chief operators. (a) The licensee of each AM, FM, TV or Class A TV broadcast station must designate a person to serve as the station's chief operator...
Space Station - Government and industry launch joint venture
NASA Astrophysics Data System (ADS)
Nichols, R. G.
1985-04-01
After the development of the space transportation system over the last decade, the decision to launch a permanently manned space station was announced by President Reagan in his 1984 State of the Union Address. As a result of work performed by the Space Station Task Force created in 1982, NASA was able to present Congress with a plan for achieving the President's objective. The plan envisions a space station which would cost about $8 billion and be operational as early as 1992. The functions of the Space Station would include the servicing of satellites. In addition, the station would serve as a base for the construction of large space structures, and provide facilities for research and development. The Space Station design selected by NASA is the 'Power Tower', a 450-foot-long truss structure which will travel in orbit with its main axis perpendicular to the earth's surface. Attention is given to the living and working quarters for the crew, the location of earth observation equipment and astronomical instruments, and details regarding the employment of the Station.
47 CFR 74.1232 - Eligibility and licensing requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Translator Stations and FM Broadcast Booster Stations § 74.1232 Eligibility and licensing requirements. (a... incurred by installing, repairing, or making adjustments to equipment. (f) An FM broadcast booster station... the booster station will retransmit, to serve areas within the protected contour of the primary...
47 CFR 74.1232 - Eligibility and licensing requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Translator Stations and FM Broadcast Booster Stations § 74.1232 Eligibility and licensing requirements. (a... incurred by installing, repairing, or making adjustments to equipment. (f) An FM broadcast booster station... the booster station will retransmit, to serve areas within the protected contour of the primary...
47 CFR 74.1232 - Eligibility and licensing requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Translator Stations and FM Broadcast Booster Stations § 74.1232 Eligibility and licensing requirements. (a... incurred by installing, repairing, or making adjustments to equipment. (f) An FM broadcast booster station... the booster station will retransmit, to serve areas within the protected contour of the primary...
76 FR 14297 - The Establishment of Policies and Service Rules for the Broadcasting-Satellite Service
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-16
...- served licensing process to applications for geostationary satellite orbit (GSO)-like space stations in... spacing between geostationary space stations. The 17/24 GHz BSS service rules allow space station...
1969-01-01
This picture illustrates a concept of a 33-Foot-Diameter Space Station Leading to a Space Base. In-house work of the Marshall Space Flight Center, as well as a Phase B contract with the McDornel Douglas Astronautics Company, resulted in a preliminary design for a space station in 1969 and l970. The Marshall-McDonnel Douglas approach envisioned the use of two common modules as the core configuration of a 12-man space station. Each common module was 33 feet in diameter and 40 feet in length and provided the building blocks, not only for the space station, but also for a 50-man space base. Coupled together, the two modules would form a four-deck facility: two decks for laboratories and two decks for operations and living quarters. Zero-gravity would be the normal mode of operation, although the station would have an artificial gravity capability. This general-purpose orbital facility was to provide wide-ranging research capabilities. The design of the facility was driven by the need to accommodate a broad spectrum of activities in support of astronomy, astrophysics, aerospace medicine, biology, materials processing, space physics, and space manufacturing. To serve the needs of Earth observations, the station was to be placed in a 242-nautical-mile orbit at a 55-degree inclination. An Intermediate-21 vehicle (comprised of Saturn S-IC and S-II stages) would have launched the station in 1977.
47 CFR 80.373 - Private communications frequencies.
Code of Federal Regulations, 2010 CFR
2010-10-01
... band for medical advisory communications. (1) Private coast stations may be authorized to use any... stations of radiotelephony frequencies in the 2000-27500 kHz band are subject to the following: (1) Private... stations serving lakes or rivers are not authorized on the 2000-2850 kHz band. (4) Private coast stations...
NASA Technical Reports Server (NTRS)
1970-01-01
This is an illustration of the Space Base concept. In-house work of the Marshall Space Flight Center, as well as a Phase B contract with the McDornel Douglas Astronautics Company, resulted in a preliminary design for a space station in 1969 and l970. The Marshall-McDonnel Douglas approach envisioned the use of two common modules as the core configuration of a 12-man space station. Each common module was 33 feet in diameter and 40 feet in length and provided the building blocks, not only for the space station, but also for a 50-man space base. Coupled together, the two modules would form a four-deck facility: two decks for laboratories and two decks for operations and living quarters. Zero-gravity would be the normal mode of operation, although the station would have an artificial-gravity capability. This general-purpose orbital facility was to provide wide-ranging research capabilities. The design of the facility was driven by the need to accommodate a broad spectrum of activities in support of astronomy, astrophysics, aerospace medicine, biology, materials processing, space physics, and space manufacturing. To serve the needs of Earth observations, the station was to be placed in a 242-nautical-mile orbit at a 55-degree inclination. An Intermediate-21 vehicle (comprised of Saturn S-IC and S-II stages) would have launched the station in 1977.
The Foundation GPS Water Vapor Inversion and its Application Research
NASA Astrophysics Data System (ADS)
Liu, R.; Lee, T.; Lv, H.; Fan, C.; Liu, Q.
2018-04-01
Using GPS technology to retrieve atmospheric water vapor is a new water vapor detection method, which can effectively compensate for the shortcomings of conventional water vapor detection methods, to provide high-precision, large-capacity, near real-time water vapor information. In-depth study of ground-based GPS detection of atmospheric water vapor technology aims to further improve the accuracy and practicability of GPS inversion of water vapor and to explore its ability to detect atmospheric water vapor information to better serve the meteorological services. In this paper, the influence of the setting parameters of initial station coordinates, satellite ephemeris and solution observation on the total delay accuracy of the tropospheric zenith is discussed based on the observed data. In this paper, the observations obtained from the observation network consisting of 8 IGS stations in China in June 2013 are used to inverse the water vapor data of the 8 stations. The data of Wuhan station is further selected and compared with the data of Nanhu Sounding Station in Wuhan The error between the two data was between -6mm-6mm, and the trend of the two was almost the same, the correlation reached 95.8 %. The experimental results also verify the reliability of ground-based GPS inversion of water vapor technology.
Weather Stations as Educational and Hazard-Forecasting Tools
NASA Astrophysics Data System (ADS)
Bowman, L. J.; Gierke, J. S.; Gochis, E. E.; Dominguez, R.; Mayer, A. S.
2014-12-01
Small, relatively inexpensive (<$1000 USD) weather stations can be valuable tools for enhancing inquiry-based educational opportunities at all grade levels, while also facilitating compilation of climate data for longer term research. Weather stations and networks of stations have been installed both locally and abroad in mostly rural and resource-limited settings. The data are being used either in the classroom to engage students in place-based, scientific investigations and/or research to improve hydrometeorological hazard forecasting, including water scarcity. The San Vicente (El Salvador) Network of six stations monitors rainfall to aid warning and evacuations for landslide and flooding hazards. Other parameters are used in modeling the watershed hydrology. A station installed in Hermosillo, Mexico is used in both Geography and Ecology Classes. Trends in temperature and rainfall are graphed and compared to historic data gathered over the last 30 years by CONAGUA. These observations are linked to local water-related problems, including well salinization, diminished agriculture, depleted aquifers, and social conflict regarding access to water. Two weather stations were installed at the Hannahville Indian Community School (Nah Tah Wahsh) in Michigan for educational purposes of data collection, analysis, and presentation. Through inquiry-based explorations of local hydrological processes, students are introduced to how meteorological data are used in understanding watershed hydrology and the sustainable management of groundwater resources. Several Michigan Technological University Peace Corps Masters International students have deployed weather stations in and around the communities where they serve, and the data are used in research to help in understanding water resource availability and irrigation needs.
A New Reactive FMIPv6 Mechanism for Minimizing Packet Loss
NASA Astrophysics Data System (ADS)
Kim, Pyungsoo
This paper considers a new reactive fast handover MIPv6 (FMIPv6) mechanism to minimize packet loss of the existing mechanism. The primary idea of the proposed reactive FMIPv6 mechanism is that the serving access router buffers packets toward the mobile node (MN) as soon as the link layer between MN and serving base station is disconnected. To implement the proposed mechanism, the router discovery message exchanged between MN and serving access router is extended. In addition, the IEEE 802.21 Media Independent Handover Function event service message is defined newly. Through analytic performance evaluation and experiments, the proposed reactive FMIPv6 mechanism can be shown to minimize packet loss much than the existing mechanism.
NASA space station software standards issues
NASA Technical Reports Server (NTRS)
Tice, G. D., Jr.
1985-01-01
The selection and application of software standards present the NASA Space Station Program with the opportunity to serve as a pacesetter for the United States software in the area of software standards. The strengths and weaknesses of each of the NASA defined software standards issues are summerized and discussed. Several significant standards issues are offered for NASA consideration. A challenge is presented for the NASA Space Station Program to serve as a pacesetter for the U.S. Software Industry through: (1) Management commitment to software standards; (2) Overall program participation in software standards; and (3) Employment of the best available technology to support software standards
1970-01-01
This is an illustration of the Space Base concept. In-house work of the Marshall Space Flight Center, as well as a Phase B contract with the McDornel Douglas Astronautics Company, resulted in a preliminary design for a space station in 1969 and l970. The Marshall-McDonnel Douglas approach envisioned the use of two common modules as the core configuration of a 12-man space station. Each common module was 33 feet in diameter and 40 feet in length and provided the building blocks, not only for the space station, but also for a 50-man space base. Coupled together, the two modules would form a four-deck facility: two decks for laboratories and two decks for operations and living quarters. Zero-gravity would be the normal mode of operation, although the station would have an artificial-gravity capability. This general-purpose orbital facility was to provide wide-ranging research capabilities. The design of the facility was driven by the need to accommodate a broad spectrum of activities in support of astronomy, astrophysics, aerospace medicine, biology, materials processing, space physics, and space manufacturing. To serve the needs of Earth observations, the station was to be placed in a 242-nautical-mile orbit at a 55-degree inclination. An Intermediate-21 vehicle (comprised of Saturn S-IC and S-II stages) would have launched the station in 1977.
NASA Technical Reports Server (NTRS)
1989-01-01
Project Argo is the design of a manned Space Transportation Vehicle (STV) that would transport payloads between LEO (altitude lying between 278 to 500 km above the Earth) and GEO (altitude is approximately 35,800 km above the Earth) and would be refueled and refurbished at the Space Station Freedom. Argo would be man's first space-based manned vehicle and would provide a crucial link to geosynchronous orbit where the vast majority of satellites are located. The vehicle could be built and launched shortly after the space station and give invaluable space experience while serving as a workhorse to deliver and repair satellites. Eventually, if a manned space station is established in GEO, then Argo could serve as the transport between the Space Station Freedom and a Geostation. If necessary, modifications could be made to allow the vehicle to reach the moon or possibly Mars. Project Argo is unique in that it consists of the design and comparison of two different concepts to accomplish the same mission. The first is an all-propulsive vehicle which uses chemical propulsion for all of its major maneuvers between LEO and GEO. The second is a vehicle that uses aeroassisted braking during its return from GEO to LEO by passing through the upper portions of the atmosphere.
Space Station Freedom operations planning
NASA Technical Reports Server (NTRS)
Smith, Kevin J.
1988-01-01
This paper addresses the development of new planning methodologies which will evolve to serve the Space Station Freedom program; these planning processes will focus on the complex task of effectively managing the resources provided by the Space Station Freedom and will be made available to the diverse international community of space station users in support of their ongoing investigative activities.
Advancing automation and robotics technology for the space station and for the US economy
NASA Technical Reports Server (NTRS)
Nunamaker, Robert
1988-01-01
In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on the Space Station. This material was documented in the initial report (NASA Technical Memo 87566). A further requirement of the law was that ATAC follow NASA's progress in this area and report to Congress semiannually. This report is the sixth in a series of progress updates and covers the period between October 1, 1987 and March 1, 1988. NASA has accepted the basic recommendations of ATAC for its Space Station efforts. ATAC and NASA agree that the thrust of Congress is to build an advanced automation and robotics technology base that will support an evolutionary Space Station program and serve as a highly visible stimulator affecting the U.S. long-term economy. The progress report identifies the work of NASA and the Space Station study contractors, research in progress, and issues connected with the advancement of automation and robotics technology on the Space Station.
Advancing automation and robotics technology for the space station and for the US economy
NASA Technical Reports Server (NTRS)
1986-01-01
In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on the Space Station. This material was documented in the initial report (NASA Technical Memorandum 87566). A further requirement of the Law was that ATAC follow NASA's progress in this area and report to Congress semiannually. This report is the second in a series of progress updates and covers the period between October 4, 1985, and March 31, l986. NASA has accepted the basic recommendations of ATAC for its Space Station efforts. ATAC and NASA agree that thrust of Congress is to build an advanced automation and robotics technology base that will support an evolutionary Space Station Program and serve as a highly visible stimulator effecting the U.S. long-term economy. The progress report identifies the work of NASA and the Space Station study contractors, research in progress, and issues connected with the advancement of automation and robotics technology on the Space Station.
Satta, G; Mascia, N; Serra, T; Salis, A; Saba, L; Sanna, S; Zucca, M G; Angelucci, E; Gabbas, A; Culurgioni, F; Pili, P; Mura, E; Cappai, M; Ennas, M G; Cocco, P
2018-05-01
We investigated the association between environmental exposure to radiofrequency electromagnetic fields (RF-EMF) and risk of lymphoma subtypes in a case-control study comprised of 322 patients and 444 individuals serving as controls in Sardinia, Italy in 1998-2004. Questionnaire information included the self-reported distance of the three longest held residential addresses from fixed radio-television transmitters and mobile phone base stations. We georeferenced the residential addresses of all study subjects and obtained the spatial coordinates of mobile phone base stations. For each address within a 500-meter radius from a mobile phone base station, we estimated the RF-EMF intensity using predictions from spatial models, and we performed RF-EMF measurements at the door in the subset of the longest held addresses within a 250-meter radius. We calculated risk of lymphoma and its major subtypes associated with the RF-EMF exposure metrics with unconditional logistic regression, adjusting by age, gender and years of education. In the analysis of self-reported data, risk associated with residence in proximity (within 50 meters) to fixed radio-television transmitters was likewise elevated for lymphoma overall [odds ratio = 2.7, 95% confidence interval = 1.5-4.6], and for the major lymphoma subtypes. With reference to mobile phone base stations, we did not observe an association with either the self-reported, or the geocoded distance from mobile phone base stations. RF-EMF measurements did not vary by case-control status. By comparing the self-reports to the geocoded data, we discovered that the cases tended to underestimate the distance from mobile phone base stations differentially from the controls ( P = 0.073). The interpretation of our findings is compromised by the limited study size, particularly in the analysis of the individual lymphoma subtypes, and the unavailability of the spatial coordinates of radio-television transmitters. Nonetheless, our results do not support the hypothesis of a link between environmental exposure to RF-EMF from mobile phone base stations and risk of lymphoma subtypes.
A Seed-Based Plant Propagation Algorithm: The Feeding Station Model
Salhi, Abdellah
2015-01-01
The seasonal production of fruit and seeds is akin to opening a feeding station, such as a restaurant. Agents coming to feed on the fruit are like customers attending the restaurant; they arrive at a certain rate and get served at a certain rate following some appropriate processes. The same applies to birds and animals visiting and feeding on ripe fruit produced by plants such as the strawberry plant. This phenomenon underpins the seed dispersion of the plants. Modelling it as a queuing process results in a seed-based search/optimisation algorithm. This variant of the Plant Propagation Algorithm is described, analysed, tested on nontrivial problems, and compared with well established algorithms. The results are included. PMID:25821858
Code of Federal Regulations, 2014 CFR
2014-10-01
... for ground vehicle identification and collision avoidance; (3) No more than two hundred 1090 MHz... utility station at an airport served by a control tower, RCO or FAA flight service station is the frequency used by the control tower for ground traffic control or by the flight service station for...
UHF Television: Breaking the Monolith
ERIC Educational Resources Information Center
Oppenheim, Jerrold
1975-01-01
Advocates that the Federal Communications Council should remove unnecessary UHF restrictions to dramatically increase the number of UHF stations, put all existing stations on the UHF band, and license new low-power stations on the UHF channels, arguing that television fails to serve a sizable number of viewers. (Author/JM)
ISS Benefits for Humanity: Serving the World
2015-10-06
Published on Oct 6, 2015 A picture is worth a thousand words, but in the case of International Space Station imagery, a picture also may be worth a thousand lives. An imaging system aboard the station, ISS SERVIR Environmental Research and Visualization System (ISERV), captured photographs of Earth from space for use in developing countries affected by natural disasters This is yet another way the orbiting laboratory is serving humanity Off the Earth, For the Earth.
A knowledge-based decision support system for payload scheduling
NASA Technical Reports Server (NTRS)
Floyd, Stephen; Ford, Donnie
1988-01-01
The role that artificial intelligence/expert systems technologies play in the development and implementation of effective decision support systems is illustrated. A recently developed prototype system for supporting the scheduling of subsystems and payloads/experiments for NASA's Space Station program is presented and serves to highlight various concepts. The potential integration of knowledge based systems and decision support systems which has been proposed in several recent articles and presentations is illustrated.
Command and Control of Space Assets Through Internet-Based Technologies Demonstrated
NASA Technical Reports Server (NTRS)
Foltz, David A.
2002-01-01
The NASA Glenn Research Center successfully demonstrated a transmission-control-protocol/ Internet-protocol- (TCP/IP) based approach to the command and control of onorbit assets over a secure network. This is a significant accomplishment because future NASA missions will benefit by using Internet-standards-based protocols. Benefits of this Internet-based space command and control system architecture include reduced mission costs and increased mission efficiency. The demonstration proved that this communications architecture is viable for future NASA missions. This demonstration was a significant feat involving multiple NASA organizations and industry. Phillip Paulsen, from Glenn's Project Development and Integration Office, served as the overall project lead, and David Foltz, from Glenn's Satellite Networks and Architectures Branch, provided the hybrid networking support for the required Internet connections. The goal was to build a network that would emulate a connection between a space experiment on the International Space Station and a researcher accessing the experiment from anywhere on the Internet, as shown. The experiment was interfaced to a wireless 802.11 network inside the demonstration area. The wireless link provided connectivity to the Tracking and Data Relay Satellite System (TDRSS) Internet Link Terminal (TILT) satellite uplink terminal located 300 ft away in a parking lot on top of a panel van. TILT provided a crucial link in this demonstration. Leslie Ambrose, NASA Goddard Space Flight Center, provided the TILT/TDRSS support. The TILT unit transmitted the signal to TDRS 6 and was received at the White Sands Second TDRSS Ground Station. This station provided the gateway to the Internet. Coordination also took place at the White Sands station to install a Veridian Firewall and automated security incident measurement (ASIM) system to the Second TDRSS Ground Station Internet gateway. The firewall provides a trusted network for the simulated space experiment. A second Internet connection at the demonstration area was implemented to provide Internet connectivity to a group of workstations to serve as platforms for controlling the simulated space experiment. Installation of this Internet connection was coordinated with an Internet service provider (ISP) and local NASA Johnson Space Center personnel. Not only did this TCP/IP-based architecture prove that a principal investigator on the Internet can securely command and control on-orbit assets, it also demonstrated that valuable virtual testing of planned on-orbit activities can be conducted over the Internet prior to actual deployment in space.
ERIC Educational Resources Information Center
Sauls, Samuel J.
As with commercial stations, the underlying premise of the college radio station is to serve the community, whether it be the campus community or the community at large, but in unique ways often geared to underserved niches of the population. Much of college radio's charm lies in its unpredictable nature and constant mutations. The stations give…
47 CFR 27.1236 - Self-transitions.
Code of Federal Regulations, 2011 CFR
2011-10-01
... station or booster serving each EBS receive site entitled to protection, including: (i) The make and model of the antenna for that main station or booster, along with the radiation pattern if it is not... building or antenna supporting structure on which the main station or booster transmission antenna is...
47 CFR 27.1236 - Self-transitions.
Code of Federal Regulations, 2012 CFR
2012-10-01
... station or booster serving each EBS receive site entitled to protection, including: (i) The make and model of the antenna for that main station or booster, along with the radiation pattern if it is not... building or antenna supporting structure on which the main station or booster transmission antenna is...
47 CFR 27.1236 - Self-transitions.
Code of Federal Regulations, 2014 CFR
2014-10-01
... station or booster serving each EBS receive site entitled to protection, including: (i) The make and model of the antenna for that main station or booster, along with the radiation pattern if it is not... building or antenna supporting structure on which the main station or booster transmission antenna is...
47 CFR 27.1236 - Self-transitions.
Code of Federal Regulations, 2013 CFR
2013-10-01
... station or booster serving each EBS receive site entitled to protection, including: (i) The make and model of the antenna for that main station or booster, along with the radiation pattern if it is not... building or antenna supporting structure on which the main station or booster transmission antenna is...
47 CFR 27.1236 - Self-transitions.
Code of Federal Regulations, 2010 CFR
2010-10-01
... station or booster serving each EBS receive site entitled to protection, including: (i) The make and model of the antenna for that main station or booster, along with the radiation pattern if it is not... building or antenna supporting structure on which the main station or booster transmission antenna is...
76 FR 16375 - Petition for Reconsideration of Action of Rulemaking Proceeding
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-23
... Amateur Service Rules Governing Vanity and Club Station Call Signs). In the Rulemaking proceeding, the Commission amended the rules governing amateur radio service vanity and club station call signs to, among other things, limit club stations to holding one vanity call sign and limit individuals to serving as...
Unidirectional Magneto-Electric Dipole Antenna for Base Station: A Review
NASA Astrophysics Data System (ADS)
Idayachandran, Govindanarayanan; Nakkeeran, Rangaswamy
2018-04-01
Unidirectional base station antenna design using Magneto-Electric Dipole (MED) has created enormous interest among the researchers due to its excellent radiation characteristics like low back radiation, symmetrical radiation at E-plane and H-plane compared to conventional patch antenna. Generally, dual polarized antennas are used to increase channel capacity and reliability of the communication systems. In order to serve the evolving mobile communication standards like long term evolution LTE and beyond, unidirectional dual polarized MED antenna are required to have broad impedance bandwidth, broad half power beamwidth, high port isolation, low cross polarization level, high front to back ratio and high gain. In this paper, the critical electrical requirements of the base station antenna and frequently used frequency bands for modern mobile communication have been presented. It is followed by brief review on broadband patch antenna and discussion on complementary antenna concepts. Finally, the performance of linearly polarized and dual polarized magneto-electric dipole antennas along with their feeding techniques are discussed and summarized. Also, design and modeling of developed MED antenna is presented.
A Model Marine Science Laboratory, North Kitsap Marine Environmental Center.
ERIC Educational Resources Information Center
Driscoll, Andrew L.; And Others
The project had two overall goals: (1) to establish and maintain a model marine science facility to be used as a teaching station and a base for research; and (2) to increase student and public awareness about the oceans and the important role they will play in man's future. The project served all the school districts in Kitsap County (Washington)…
47 CFR 101.525 - 24 GHz system operations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... operations. (a) A licensee using the 24 GHz band may construct and operate any number of fixed stations anywhere within the area authorized to serve without prior authorization, except as follows: (1) A station...) Submission of an Environmental Assessment is required under § 1.1307 of this chapter; (iii) The station would...
2008-06-18
CAPE CANAVERAL, Fla. – The Cupola, another module built in Italy for the United States segment of the International Space Station, resides in the Space Station Processing Facility. With 360-degree windows, it will serve as a literal skylight to control some of the most sophisticated robotics ever built. The space station crew will use Cupola windows, six around the sides and one on the top, for line-of-sight monitoring of outside activities, including spacewalks, docking operations and exterior equipment surveys. The Cupola will be used specifically to monitor the approach and berthing of the Japanese H-2 supply spacecraft and other visiting vehicles. The Cupola also will serve as the primary location for controlling Canadarm2, the 60-foot space station robotic arm. Space station crews currently use two robotic control workstations in the Destiny laboratory to operate the arm. One of the robotic control stations will be placed inside the Cupola. The view from the Cupola will enhance an arm operator's situational awareness, supplementing television cameras and graphics. The Cupola is scheduled to launch on a future space station assembly mission. It will be installed on the forward port of Node 3, a connecting module to be installed as well. Photo credit: NASA/Kim Shiflett
2008-06-18
CAPE CANAVERAL, Fla. – The Cupola, another module built in Italy for the United States segment of the International Space Station, resides in the Space Station Processing Facility. With 360-degree windows, it will serve as a literal skylight to control some of the most sophisticated robotics ever built. The space station crew will use Cupola windows, six around the sides and one on the top, for line-of-sight monitoring of outside activities, including spacewalks, docking operations and exterior equipment surveys. The Cupola will be used specifically to monitor the approach and berthing of the Japanese H-2 supply spacecraft and other visiting vehicles. The Cupola also will serve as the primary location for controlling Canadarm2, the 60-foot space station robotic arm. Space station crews currently use two robotic control workstations in the Destiny laboratory to operate the arm. One of the robotic control stations will be placed inside the Cupola. The view from the Cupola will enhance an arm operator's situational awareness, supplementing television cameras and graphics. The Cupola is scheduled to launch on a future space station assembly mission. It will be installed on the forward port of Node 3, a connecting module to be installed as well. Photo credit: NASA/Kim Shiflett
2008-06-18
CAPE CANAVERAL, Fla. – The Cupola, another module built in Italy for the United States segment of the International Space Station, resides in the Space Station Processing Facility. With 360-degree windows, it will serve as a literal skylight to control some of the most sophisticated robotics ever built. The space station crew will use Cupola windows, six around the sides and one on the top, for line-of-sight monitoring of outside activities, including spacewalks, docking operations and exterior equipment surveys. The Cupola will be used specifically to monitor the approach and berthing of the Japanese H-2 supply spacecraft and other visiting vehicles. The Cupola also will serve as the primary location for controlling Canadarm2, the 60-foot space station robotic arm. Space station crews currently use two robotic control workstations in the Destiny laboratory to operate the arm. One of the robotic control stations will be placed inside the Cupola. The view from the Cupola will enhance an arm operator's situational awareness, supplementing television cameras and graphics. The Cupola is scheduled to launch on a future space station assembly mission. It will be installed on the forward port of Node 3, a connecting module to be installed as well. Photo credit: NASA/Kim Shiflett
Huberman, S.; Slater, James; Condes, A.
1985-01-01
INTRODUCTION Since 1909, the United States of America (U.S.A.) and Canada have employed a system of monitoring stream-flow and water levels for shared waters based upon professionalism, trust and goodwill. This document has been prepared in considerable detail for use by managers and field officers at all levels of government in Canada and the United States. Its purpose is to serve as a guide in attaining uniform procedures in the designation and operation of International Gauging Stations. For special situations where these procedures do not apply, specific mention is made in appropriate sections of the guide. This guide supersedes that of November 4, 1969, and the guide entitled 'The Procedural Guide for Operation of International Gauging Stations, St. Mary- Milk Rivers,' dated March 12, 1979.
Space station Simulation Computer System (SCS) study for NASA/MSFC. Volume 1: Overview and summary
NASA Technical Reports Server (NTRS)
1989-01-01
NASA's Space Station Freedom Program (SSFP) planning efforts have identified a need for a payload training simulator system to serve as both a training facility and as a demonstrator to validate operational concepts. The envisioned Marshall Space Flight Center (MSFC) Payload Training Complex (PTC) required to meet this need will train the space station payload scientists, station scientists, and ground controllers to operate the wide variety of experiments that will be onboard the Space Station Freedom. The Simulation Computer System (SCS) is the computer hardware, software, and workstations that will support the Payload Training Complex at MSFC. The purpose of this SCS study is to investigate issues related to the SCS, alternative requirements, simulator approaches, and state-of-the-art technologies to develop candidate concepts and designs. This study was performed August 1988 to October 1989. Thus, the results are based on the SSFP August 1989 baseline, i.e., pre-Langley configuration/budget review (C/BR) baseline. Some terms, e.g., combined trainer, are being redefined. An overview of the study activities and a summary of study results are given here.
NASA Technical Reports Server (NTRS)
1987-01-01
In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on the space station. This material was documented in the initial report (NASA Technical Memorandum 87566). A further requirement of the Law was that ATAC follow NASA's progress in this area and report to Congress semiannually. This report is the fourth in a series of progress updates and covers the period October 1, 1986 to May 15, 1987. NASA has accepted the basic recommendations of ATAC for its space station efforts. ATAC and NASA agree that the will of Congress is to build an advanced automation and robotics technology base that will support an evolutionary space station program and serve as a highly visible stimulator affecting the long-term U.S. economy. The progress report identifies the work of NASA and the space station study contractors, research in progress, and issues connected with the advancement of automation and robotics technology on the space station.
NASA Technical Reports Server (NTRS)
1986-01-01
In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committer (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on the space station. This material was documented in the initial report (NASA Technical Memorandum 87566). A further requirement of the Law was that ATAC follow NASA's progress in this area and report to Congress semiannually. This report is the third in a series of progress updates and covers the period between April 1, 1986 and September 30, 1986. NASA has accepted the basic recommendations of ATAC for its space station efforts. ATAC and NASA agree that the will of Congress is to build an advanced automation and robotics technology base that will support an evolutionary space station program and serve as a highly visible stimulater affecting the long-term U.S. economy. The progress report identifies the work of NASA and the space station study contractors, research in progress, and issues connected with the advancement of automation and robotics technology on the space station.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This report presents the results of the Community Environmental Response Facilitation Act (CERFA) Investigation Conducted by Environmental Resources Management (ERM) at Cameron Station, A U.S. Government property selected for closure by the Base Realignment and Closure (BRAC) Commission. Under CERFA, Federal agencies are required to identify expeditiously real property that can be immediately reused and redeveloped. Satisfying this objective requires the identification of real property where no hazardous substances or petroleum products, regulated by the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), were stored for one year or more, known to have been released, or disposed. Cameron Station ismore » 169-acre site located in Alexandria, Virginia. Cameron Station was purchased by the Federal Government at the start of World War II. It has served primarily as a supply and administrative facility. The current mission is to provide support to the Commanding General of the Military District of Washington (MDW). Support functions of environmental significance include vehicle maintenance, print and paintshops, and photographic laboratories.« less
Knowledge-based assistance in costing the space station DMS
NASA Technical Reports Server (NTRS)
Henson, Troy; Rone, Kyle
1988-01-01
The Software Cost Engineering (SCE) methodology developed over the last two decades at IBM Systems Integration Division (SID) in Houston is utilized to cost the NASA Space Station Data Management System (DMS). An ongoing project to capture this methodology, which is built on a foundation of experiences and lessons learned, has resulted in the development of an internal-use-only, PC-based prototype that integrates algorithmic tools with knowledge-based decision support assistants. This prototype Software Cost Engineering Automation Tool (SCEAT) is being employed to assist in the DMS costing exercises. At the same time, DMS costing serves as a forcing function and provides a platform for the continuing, iterative development, calibration, and validation and verification of SCEAT. The data that forms the cost engineering database is derived from more than 15 years of development of NASA Space Shuttle software, ranging from low criticality, low complexity support tools to highly complex and highly critical onboard software.
NASA Technical Reports Server (NTRS)
Richardson, Keith; Wong, Carla
1988-01-01
The role of verification and validation (V and V) in software has been to support and strengthen the software lifecycle and to ensure that the resultant code meets the standards of the requirements documents. Knowledge Based System (KBS) V and V should serve the same role, but the KBS lifecycle is ill-defined. The rationale of a simple form of the KBS lifecycle is presented, including accommodation to certain critical KBS differences from software development.
Flow Boiling and Condensation Experiment (FBCE) for the International Space Station
NASA Technical Reports Server (NTRS)
Mudawar, Issam; Hasan, Mohammad M.; Kharangate, Chirag; O'Neill, Lucas; Konishi, Chris; Nahra, Henry; Hall, Nancy; Balasubramaniam, R.; Mackey, Jeffrey
2015-01-01
The proposed research aims to develop an integrated two-phase flow boiling/condensation facility for the International Space Station (ISS) to serve as primary platform for obtaining two-phase flow and heat transfer data in microgravity.
International Space Station (ISS)
2001-03-01
Pilot James M. Kelly (left) and Commander James D. Wetherbee for the STS-102 mission, participate in the movement of supplies inside Leonardo, the Italian Space Agency built Multipurpose Logistics Module (MPLM). In this particular photograph, the two are handling a film magazine for the IMAX cargo bay camera. The primary cargo of the STS-102 mission, the Leonardo MPLM is the first of three such pressurized modules that will serve as the International Space Station's (ISS') moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. The eighth station assembly flight, the STS-102 mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.
International Space Station (ISS)
2001-03-08
STS-102 astronaut and mission specialist, Andrew S.W. Thomas, gazes through an aft window of the Space Shuttle Orbiter Discovery as it approaches the docking bay of the International Space Station (ISS). Launched March 8, 2001, STS-102's primary cargo was the Leonardo, the Italian Space Agency-built Multipurpose Logistics Module (MPLM). The Leonardo MPLM is the first of three such pressurized modules that will serve as the ISS's moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. NASA's 103rd overall mission and the 8th Space Station Assembly Flight, STS-102 mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.
International Space Station (ISS)
2001-03-01
A crewmember of Expedition One, cosmonaut Yuri P. Gidzenko, is dwarfed by transient hardware aboard Leonardo, the Italian Space Agency-built Multi-Purpose Logistics Module (MPLM), a primary cargo of the STS-102 mission. The Leonardo MPLM is the first of three such pressurized modules that will serve as the International Space Station's (ISS's) moving vans, carrying laboratory racks filled with equipment, experiments and supplies to and from the Space Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo into 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. The eighth Shuttle mission to visit the ISS, the STS-102 mission served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.
NASA Technical Reports Server (NTRS)
Cameron, Richard
2012-01-01
Dr. Cameron joined the Arctic Institute of North America in 1956 to participate in IGY-related activities in Antarctica. He served as Chief Glaciologist at Wilkes Station, on the coast of East Antarctica. This was a joint Navy-civilian operation consisting of 17 Navy personnel and 10 scientists. Specifically, his glaciological team consisted of two colleagues with whom he had worked before - Olav Loken in Norway in the summer of 1953, and John Molholm in Greenland in the summer of 1954. This team spent much of its time at a remote station established 80 kilometers (50 miles) inland, where they conducted both meteorological and glaciological studies. One of the glaciological studies entailed digging a 35-meter (approx.115-foot) vertical pit to study snow densification and stratigraphy. The assignment for the Navy Seabees was to first establish a joint US-NZ base at Cape Hallett and then go along the coast of East Antarctica and set up Wilkes Station.
Concrete: Potential material for Space Station
NASA Technical Reports Server (NTRS)
Lin, T. D.
1992-01-01
To build a permanent orbiting space station in the next decade is NASA's most challenging and exciting undertaking. The space station will serve as a center for a vast number of scientific products. As a potential material for the space station, reinforced concrete was studied, which has many material and structural merits for the proposed space station. Its cost-effectiveness depends on the availability of lunar materials. With such materials, only 1 percent or less of the mass of a concrete space structure would have to be transported from earth.
The Air Force in Space, Fiscal Year 1962
1966-06-01
station was, of course, not unique to the Air Force, it being first introduced into scientific litera- ture by the German theorist, Hermann Oberth . In his...pioneering work on space flight published in 1923, Oberth suggested launching nobserving stations,’ into orbit from which man would be able nto see...serving as refuel- ing stations for extraterrestrial flight. In case of war, Oberth said, the stations would have nstrategie value.„ 37 (U) °berth’s ideas
A bounding-based solution approach for the continuous arc covering problem
NASA Astrophysics Data System (ADS)
Wei, Ran; Murray, Alan T.; Batta, Rajan
2014-04-01
Road segments, telecommunication wiring, water and sewer pipelines, canals and the like are important features of the urban environment. They are often conceived of and represented as network-based arcs. As a result of the usefulness and significance of arc-based features, there is a need to site facilities along arcs to serve demand. Examples of such facilities include surveillance equipment, cellular towers, refueling centers and emergency response stations, with the intent of being economically efficient as well as providing good service along the arcs. While this amounts to a continuous location problem by nature, various discretizations are generally relied upon to solve such problems. The result is potential for representation errors that negatively impact analysis and decision making. This paper develops a solution approach for the continuous arc covering problem that theoretically eliminates representation errors. The developed approach is applied to optimally place acoustic sensors and cellular base stations along a road network. The results demonstrate the effectiveness of this approach for ameliorating any error and uncertainty in the modeling process.
Future Photovoltaic Power Generation for Space-Based Power Utilities
NASA Technical Reports Server (NTRS)
Bailey, Sheila; Landis, Geoffrey; Hepp, Aloysius; Raffaelle, Ryne
2002-01-01
This paper discusses requirements for large earth orbiting power stations that can serve as central utilities for other orbiting spacecraft, or for beaming power to the earth itself. The current state of the art of space solar cells, and a variety of both evolving thin film cells as well as new technologies that may impact the future choice of space solar cells for high power mission applications are addressed.
Albuquerque Seismological Laboratory--50 years of global seismology
Hutt, C.R.; Peterson, Jon; Gee, Lind; Derr, John; Ringler, Adam; Wilson, David
2011-01-01
The U.S. Geological Survey Albuquerque Seismological Laboratory is about 15 miles southeast of Albuquerque on the Pueblo of Isleta, adjacent to Kirtland Air Force Base. The Albuquerque Seismological Laboratory supports the Global Seismographic Network Program and the Advanced National Seismic System through the installation, operation, and maintenance of seismic stations around the world and serves as the premier seismological instrumentation test facility for the U.S. Government.
Balloon-borne air traffic management (ATM) as a precursor to space-based ATM
NASA Astrophysics Data System (ADS)
Brodsky, Yuval; Rieber, Richard; Nordheim, Tom
2012-01-01
The International Space University—Balloon Air traffic control Technology Experiment (I-BATE ) has flown on board two stratospheric balloons and has tracked nearby aircraft by receiving their Automatic Dependent Surveillance-Broadcast (ADS-B) transmissions. Air traffic worldwide is facing increasing congestion. It is predicted that daily European flight volumes will more than double by 2030 compared to 2009 volumes. ADS-B is an air traffic management system being used to mitigate air traffic congestion. Each aircraft is equipped with both a GPS receiver and an ADS-B transponder. The transponder transmits an equipped aircraft's unique identifier, position, heading, and velocity once per second. The ADS-B transmissions can then be received by ground stations for use in traditional air traffic management. Airspace not monitored by these ground stations or other traditional means remains uncontrolled and poorly monitored. A constellation of space-based ADS-B receivers could close these gaps and provide global air traffic monitoring. By flying an ADS-B receiver on a stratospheric balloon, I-BATE has served as a precursor to a constellation of ADS-B-equipped Earth-orbiting satellites. From the ˜30 km balloon altitude, I-BATE tracked aircraft ranging up to 850 km. The experiment has served as a proof of concept for space-based air traffic management and supports a technology readiness level 6 of space-based ADS-B reception. I-BATE: International Space University—Balloon Air traffic control Technology Experiment.
NASA Technical Reports Server (NTRS)
1995-01-01
A full-scale mockup of Russia's Space Station serves as one of the several training aids for cosmonaut flights aboard the orbiting laboratory. The core module - called Mir, for world of space - was launched in February 1986 and now serves as the main livi
2001-01-01
JSC2001-E-26680 --- One of a series of three photos of the next station module that will launch--the Russian Docking Compartment, named Pirs, the Russian word for pier. The module is planned for launch from Baikonur Sept. 14, and to dock with the station on Sept. 16. It will serve as a Russian airlock for the station and also will provide a docking port for Soyuz or Progress craft arriving at the station. This image shows the Pirs under construction at Energia in Moscow.
2001-01-01
JSC2001-E-26679 --- One of a series of three photos of the next station module that will launch--the Russian Docking Compartment, named Pirs, the Russian word for pier. The module is planned for launch from Baikonur Sept. 14, and to dock with the station on Sept. 16. It will serve as a Russian airlock for the station and also will provide a docking port for Soyuz or Progress craft arriving at the station. This image shows the Pirs under construction at Energia in Moscow.
2001-03-29
In the Space Station Processing Facility, workers line up containers removed from the Multi-Purpose Logistics Module Leonardo. The containers have returned from the International Space Station on mission STS-102. . The MPLM brought back to KSC nearly a ton of trash and excess equipment from the Space Station. Leonardo is one of three MPLMs built by the Italian Space Agency to serve as “cargo vans” to the Station, carrying supplies and equipment. In the SSPF, Leonardo will be prepared for a future mission
2001-03-29
KENNEDY SPACE CENTER, FLA. -- Inside the Multi-Purpose Logistics Module Leonardo, which is in the Space Station Processing Facility, workers begin removing the containers returned from the International Space Station on mission STS-102. The MPLM brought back to KSC nearly a ton of trash and excess equipment from the Space Station. Leonardo is one of three MPLMs built by the Italian Space Agency to serve as “cargo vans” to the Station, carrying supplies and equipment. In the SSPF, Leonardo will be prepared for a future mission
2001-03-29
KENNEDY SPACE CENTER, FLA. -- Inside the Multi-Purpose Logistics Module Leonardo, which is in the Space Station Processing Facility, workers remove one of the containers returned from the International Space Station on mission STS-102. The MPLM brought back to KSC nearly a ton of trash and excess equipment from the Space Station. Leonardo is one of three MPLMs built by the Italian Space Agency to serve as “cargo vans” to the Station, carrying supplies and equipment. In the SSPF, Leonardo will be prepared for a future mission
2001-03-29
KENNEDY SPACE CENTER, FLA. -- Inside the Multi-Purpose Logistics Module Leonardo, which is in the Space Station Processing Facility, workers look over containers returned from the International Space Station on mission STS-102. The MPLM brought back to KSC nearly a ton of trash and excess equipment from the Space Station. Leonardo is one of three MPLMs built by the Italian Space Agency to serve as “cargo vans” to the Station, carrying supplies and equipment. In the SSPF, Leonardo will be prepared for a future mission
NASA Technical Reports Server (NTRS)
1990-01-01
In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on the Space Station Freedom. This material was documented in the initial report (NASA Technical Memorandum 87566). A further requirement of the law was that ATAC follow NASA's progress in this area and report to Congress semiannually. This report is the ninth in a series of progress updates and covers the period between February 24, 1989, and July 12, 1989. NASA has accepted the basic recommendation of ATAC for its Space Station Freedom efforts. ATAC and NASA agree that the thrust of Congress is to build an advanced automation and robotics technology base that will support an evolutionary Space Station program and serve as a highly visible stimulator, affecting the U.S. long-term economy. The work of NASA and the Freedom contractors, e.g., Work Packages, as well as the Flight Telerobotic Servicer is identified. Research in progress is also described and assessments of the advancement of automation and robotics technology on the Space Station Freedom are given.
Advancing automation and robotics technology for the space station Freedom and for the US economy
NASA Technical Reports Server (NTRS)
Creedon, Jeremiah F.
1989-01-01
In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on the Freedom space station. This material was documented in the initial report (NASA Technical Memorandum 87566). A further requirement of the law was that ATAC follow NASA's progress in this area and report to Congress semiannually. This report is the eighth in a series of progress updates and covers the period between October 1, 1988, and March 31, 1989. NASA has accepted the basic recommendations of ATAC for its Space Station Freedom efforts. ATAC and NASA agree that the thrust of Congress is to build an advanced automation and robotics technology base that will support an evolutionary Space Station Freedom program and serve as a highly visible stimulator, affecting the U.S. long-term economy. The progress report identifies the work of NASA and the Freedom study contractors. It also describes research in progress, and it makes assessments of the advancement of automation and robotics technology on the Freedom space station.
Advancing automation and robotics technology for the Space Station Freedom and for the US economy
NASA Technical Reports Server (NTRS)
1988-01-01
In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on the Freedom space station. This material was documented in the initial report (NASA Technical Memorandum 87566). A further requirement of the law was that ATAC follow NASA's progress in this area and report to Congress semiannually. This report is the seventh in a series of progress updates and covers the period between April 1, 1988 and September 30, 1988. NASA has accepted the basic recommendations of ATAC for its Space Station Freedom efforts. ATAC and NASA agree that the thrust of Congress is to build an advanced automation and robotics technology base that will support an evolutionary Space Station Freedom program and serve as a highly visible stimulator, affecting the U.S. long-term economy. The progress report identifies the work of NASA and the Freedom study contractors. It also describes research in progress, and it makes assessments of the advancement of automation and robotics technology on the Freedom space station.
International Space Station (ISS)
2001-02-16
The International Space Station (ISS), with its newly attached U.S. Laboratory, Destiny, was photographed by a crew member aboard the Space Shuttle Orbiter Atlantis during a fly-around inspection after Atlantis separated from the Space Station. The Laboratory is shown in the foreground of this photograph. The American-made Destiny module is the cornerstone for space-based research aboard the orbiting platform and the centerpiece of the International Space Station (ISS), where unprecedented science experiments will be performed in the near-zero gravity of space. Destiny will also serve as the command and control center for the ISS. The aluminum module is 8.5-meters (28-feet) long and 4.3-meters (14-feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 15 locations especially designed to support experiments. The Destiny module was built by the Boeing Company under the direction of the Marshall Space Flight Center.
International Space Station (ISS)
2001-02-16
With its new U.S. Laboratory, Destiny, contrasted over a blue and white Earth, the International Space Station (ISS) was photographed by one of the STS-98 crew members aboard the Space Shuttle Atlantis following separation of the Shuttle and Station. The Laboratory is shown at the lower right of the Station. The American-made Destiny module is the cornerstone for space-based research aboard the orbiting platform and the centerpiece of the ISS, where unprecedented science experiments will be performed in the near-zero gravity of space. Destiny will also serve as the command and control center for the ISS. The aluminum module is 8.5- meters (28-feet) long and 4.3-meters (14-feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 15 locations especially designed to support experiments. The Destiny module was built by the Boeing Company under the direction of the Marshall Space Flight Center.
The proposed monitoring system for the Fermilab D0 colliding beams detector
NASA Astrophysics Data System (ADS)
Goodwin, Robert; Florian, Robert; Johnson, Marvin; Jones, Alan; Shea, Mike
1986-06-01
The Fermilab D0 Detector is a collaborative effort that includes seventeen universities and national laboratories. The monitoring and control system for this detector will be separate from the online detector data system. A distributed, stand-alone, microprocessor-based system is being designed to allow monitoring and control functions to be available to the collaborators at their home institutions during the design, fabrication, and testing phases of the project. Individual stations are VMEbus-based 68000 systems that are networked together during installation using an ARCnet (by Datapoint Corporation) Local Area Network. One station, perhaps a MicroVAX, would have a hard disk to store a backup copy of the distributed database located in non-volatile RAM in the local stations. This station would also serve as a gateway to the online system, so that data from the control system will be available for logging with the detector data. Apple Macintosh personal computers are being developed for use as the local control consoles. Each would be interfaced to ARCnet to provide access to all control system data. Through the use of bit-mapped graphics with multiple windows and pull-down menus, a cost effective, flexible display system can be provided, taking advantage of familiar modern software tools to support the operator interface.
Code of Federal Regulations, 2011 CFR
2011-01-01
... stations. (15) Museums attended by the public. (16) Libraries, serving free all residents of a community... subsection (b) of that section, notwithstanding the number of hours that the historic light station is open...
Code of Federal Regulations, 2010 CFR
2010-07-01
... stations. (15) Museums attended by the public. (16) Libraries, serving free all residents of a community... subsection (b) of that section, notwithstanding the number of hours that the historic light station is open...
International Space Station (ISS)
2001-03-11
STS-102 mission astronaut Susan J. Helms translates along the longerons of the Space Shuttle Discovery during the first of two space walks. During this walk, the Pressurized Mating Adapter 3 was prepared for repositioning from the Unity Module's Earth-facing berth to its port-side berth to make room for the Leonardo multipurpose Logistics Module (MPLM), supplied by the Italian Space Agency. The Leonardo MPLM is the first of three such pressurized modules that will serve as the International Space Station's (ISS') moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. NASA's 103rd overall mission and the 8th Space Station Assembly Flight, STS-102 mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.
A general-purpose development environment for intelligent computer-aided training systems
NASA Technical Reports Server (NTRS)
Savely, Robert T.
1990-01-01
Space station training will be a major task, requiring the creation of large numbers of simulation-based training systems for crew, flight controllers, and ground-based support personnel. Given the long duration of space station missions and the large number of activities supported by the space station, the extension of space shuttle training methods to space station training may prove to be impractical. The application of artificial intelligence technology to simulation training can provide the ability to deliver individualized training to large numbers of personnel in a distributed workstation environment. The principal objective of this project is the creation of a software development environment which can be used to build intelligent training systems for procedural tasks associated with the operation of the space station. Current NASA Johnson Space Center projects and joint projects with other NASA operational centers will result in specific training systems for existing space shuttle crew, ground support personnel, and flight controller tasks. Concurrently with the creation of these systems, a general-purpose development environment for intelligent computer-aided training systems will be built. Such an environment would permit the rapid production, delivery, and evolution of training systems for space station crew, flight controllers, and other support personnel. The widespread use of such systems will serve to preserve task and training expertise, support the training of many personnel in a distributed manner, and ensure the uniformity and verifiability of training experiences. As a result, significant reductions in training costs can be realized while safety and the probability of mission success can be enhanced.
NASA Astrophysics Data System (ADS)
Liao, Wei-Cheng; Hong, Mingyi; Liu, Ya-Feng; Luo, Zhi-Quan
2014-08-01
In a densely deployed heterogeneous network (HetNet), the number of pico/micro base stations (BS) can be comparable with the number of the users. To reduce the operational overhead of the HetNet, proper identification of the set of serving BSs becomes an important design issue. In this work, we show that by jointly optimizing the transceivers and determining the active set of BSs, high system resource utilization can be achieved with only a small number of BSs. In particular, we provide formulations and efficient algorithms for such joint optimization problem, under the following two common design criteria: i) minimization of the total power consumption at the BSs, and ii) maximization of the system spectrum efficiency. In both cases, we introduce a nonsmooth regularizer to facilitate the activation of the most appropriate BSs. We illustrate the efficiency and the efficacy of the proposed algorithms via extensive numerical simulations.
International Space Station (ISS)
2001-03-13
Astronaut Paul W. Richards, STS-102 mission specialist, works in the cargo bay of the Space Shuttle Discovery during the second of two scheduled space walks. Richards, along with astronaut Andy Thomas, spent 6.5 hours outside the International Space Station (ISS), continuing work to outfit the station and prepare for delivery of its robotic arm. STS-102 delivered the first Multipurpose Logistics Modules (MPLM) named Leonardo, which was filled with equipment and supplies to outfit the U.S. Destiny Laboratory Module. The Leonardo MPLM is the first of three such pressurized modules that will serve as the ISS' moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. NASA's 103rd overall mission and the 8th Space Station Assembly Flight, STS-102 mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.
STS-102 Onboard Photograph Inside Multipurpose Logistics Module, Leonardo
NASA Technical Reports Server (NTRS)
2001-01-01
Pilot James M. Kelly (left) and Commander James D. Wetherbee for the STS-102 mission, participate in the movement of supplies inside Leonardo, the Italian Space Agency built Multipurpose Logistics Module (MPLM). In this particular photograph, the two are handling a film magazine for the IMAX cargo bay camera. The primary cargo of the STS-102 mission, the Leonardo MPLM is the first of three such pressurized modules that will serve as the International Space Station's (ISS') moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. The eighth station assembly flight, the STS-102 mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.
2005-05-24
of Intent to Dispose of Soil Contaminated by Virgin Petroleum or equivalent form would be completed. The proposed Wing HQ Facility would include the...quadrant of the base. The overhead feeder, which includes some underground segments , is operated as a closed double loop system and serves the...weekends, weather, and holidays ). Using data from the National Oceanic and Atmospheric Administration, the average soil percent moisture was estimated
75 FR 8895 - Basin Electric Power Cooperative: Deer Creek Station
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-26
.... The purpose of the proposed Project is to help serve increased load demand for electric power in the... Basin Electric Power Cooperative: Deer Creek Station AGENCY: Rural Utilities Service, USDA. ACTION...) and the Western Area Power Administration (Western) have issued a Draft Environmental Impact Statement...
7. Credit USAF, ca. 1952. Original housed in the Photograph ...
7. Credit USAF, ca. 1952. Original housed in the Photograph Files, AFFTC/HO, Edwards AFB, California. Oblique aerial view of North Base AFFTC (Air Force Flight Test Center) looking west northwest. The flight line at the edge of Rogers Dry Lake appears in the foreground, served by the facility's four hangars. Temporary structures beyond the hangars were demolished later in the 1950s. The fence that formerly surrounded the swimming pool in earlier photos has been taken down. In the distance lies the Jet Propulsion Laboratory Edwards Test Station, in its pre-1953 configuration. - Edwards Air Force Base, North Base, North Base Road, Boron, Kern County, CA
STS-102 Onboard Photograph-Multi-Purpose Logistics Module, Leonardo
NASA Technical Reports Server (NTRS)
2001-01-01
A crewmember of Expedition One, cosmonaut Yuri P. Gidzenko, is dwarfed by transient hardware aboard Leonardo, the Italian Space Agency-built Multi-Purpose Logistics Module (MPLM), a primary cargo of the STS-102 mission. The Leonardo MPLM is the first of three such pressurized modules that will serve as the International Space Station's (ISS's) moving vans, carrying laboratory racks filled with equipment, experiments and supplies to and from the Space Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo into 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. The eighth Shuttle mission to visit the ISS, the STS-102 mission served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.
Space station: A step into the future
NASA Technical Reports Server (NTRS)
Stofan, Andrew J.
1989-01-01
The Space Station is an essential element of NASA's ongoing program to recover from the loss of the Challenger and to regain for the United States its position of leadership in space. The Space Station Program has made substantial progress and some of the major efforts undertaken are discussed briefly. A few of the Space Station policies which have shaped the program are reviewed. NASA is dedicated to building a Station that, in serving science, technology, and commerce assured the United States a future in space as exciting and rewarding as the past. In cooperation with partners in the industry and abroad, the intent is to develop a Space Station that is intellectually productive, technically demanding, and genuinely useful.
Status of NGS CORS Network and Its Contribution to the GGOS Infrastructure
NASA Astrophysics Data System (ADS)
Choi, K. K.; Haw, D.; Sun, L.
2017-12-01
Recent advancement of Satellite Geodesy techniques can now contribute to the global frame realization needed to improve worldwide accuracies. These techniques rely on coordinates computed using continuously observed GPS data and corresponding satellite orbits. The GPS-based reference system continues to depend on the physical stability of a ground-based network of points as the primary foundation for these observations. NOAA's National Geodetic Survey (NGS) has been operating Continuously Operating Reference Stations (CORS) to provide direct access to the National Spatial Reference System (NSRS). By virtue of NGS' scientific reputation and leadership in national and international geospatial issues, NGS has determined to increase its participation in the maintenance of the U.S. component of the global GPS tracking network in order to realize a long-term stable national terrestrial reference frame. NGS can do so by leveraging its national leadership role coupled with NGS' scientific expertise, in designating and upgrading a subset of the current tracking network for this purpose. This subset of stations must have the highest operational standards to serve the dual functions: being the U.S. contribution to the international frame, along with providing the link to the national datum. These stations deserve special attention to ensure that the highest possible levels of quality and stability are maintained. To meet this need, NGS is working with the international scientific groups to add and designate these reference stations based on scientific merit such as: colocation with other geodetic techniques, geographic area, and monumentation stability.
Design of limited-stop service based on the degree of unbalance of passenger demand
2018-01-01
This paper presents a limited-stop service for a bus fleet to meet the unbalanced demand of passengers on a bus route and to improve the transit service of the bus route. This strategy includes two parts: a degree assessment of unbalanced passenger demand and an optimization of the limited-stop service. The degree assessment of unbalanced passenger demand, which is based on the different passenger demand between stations and the unbalance of passengers within the station, is used to judge whether implementing the limited-stop service is necessary for a bus route. The optimization of limited-stop service considers the influence of stop skipping action and bus capacity on the left-over passengers to determine the proper skipping stations for the bus fleet serving the entire route by minimizing both the waiting time and in-vehicle time of passengers and the running time of vehicles. A solution algorithm based on genetic algorithm is also presented to evaluate the degree of unbalanced passenger demand and optimize the limited-stop scheme. Then, the proper strategy is tested on a bus route in Changchun city of China. The threshold of degree assessment of unbalanced passenger demand can be calibrated and adapted to different passenger demands. PMID:29505585
Design of limited-stop service based on the degree of unbalance of passenger demand.
Zhang, Hu; Zhao, Shuzhi; Liu, Huasheng; Liang, Shidong
2018-01-01
This paper presents a limited-stop service for a bus fleet to meet the unbalanced demand of passengers on a bus route and to improve the transit service of the bus route. This strategy includes two parts: a degree assessment of unbalanced passenger demand and an optimization of the limited-stop service. The degree assessment of unbalanced passenger demand, which is based on the different passenger demand between stations and the unbalance of passengers within the station, is used to judge whether implementing the limited-stop service is necessary for a bus route. The optimization of limited-stop service considers the influence of stop skipping action and bus capacity on the left-over passengers to determine the proper skipping stations for the bus fleet serving the entire route by minimizing both the waiting time and in-vehicle time of passengers and the running time of vehicles. A solution algorithm based on genetic algorithm is also presented to evaluate the degree of unbalanced passenger demand and optimize the limited-stop scheme. Then, the proper strategy is tested on a bus route in Changchun city of China. The threshold of degree assessment of unbalanced passenger demand can be calibrated and adapted to different passenger demands.
The Future Mission Tasking and Resourcing of the U.S. Coast Guard Auxiliary
2012-09-01
Time Between Overhaul TC Transport Canada USPS U.S. Power Squadrons VE Vessel Examination VISAR Virgin Islands Search and Rescue VSC...70% of the nation’s search and rescue with 1,800 volunteers who serve at 66 stations and operate 160 lifeboats.52 (7) The (British) Virgin Islands...Search and Rescue (VISAR). It was modeled after RNLI and operates two rescue boats, one based on Tortola, and the other Virgin Gorda. The
NASA Technical Reports Server (NTRS)
Gazda, Daniel B.; Nolan, Daniel J.; Rutz, Jeffrey A.; Shcultz, John R.; Siperko, Lorraine M.; Porter, Marc D,; Lipert, Robert J.; Limardo, Jose G.; McCoy, J. Torin
2009-01-01
Scientists and engineers from the Wyle Integrated Science and Engineering Group are working with researchers at the University of Utah and Iowa State University to develop and certify an experimental water quality monitoring kit based on Colorimetric Solid Phase Extraction (CSPE). The kit will be launched as a Station Development Test Objective (SDTO) experiment and evaluated on the International Space Station (ISS) to determine the acceptability of CSPE technology for routine inflight water quality monitoring. Iodine and silver, the biocides used in the US and Russian on-orbit water systems, will serve as test analytes for the technology evaluation. This manuscript provides an overview of the CSPE SDTO experiment and details the development and certification of the experimental water quality monitoring kit. Initial results from reagent and standard solution stability testing and environmental testing performed on the kit hardware are also reported.
International Space Station (ISS)
2001-02-11
This STS-98 mission photograph shows astronauts Thomas D. Jones (foreground) and Kerneth D. Cockrell floating inside the newly installed Laboratory aboard the International Space Station (ISS). The American-made Destiny module is the cornerstone for space-based research aboard the orbiting platform and the centerpiece of the ISS, where unprecedented science experiments will be performed in the near-zero gravity of space. Destiny will also serve as the command and control center for the ISS. The aluminum module is 8.5-meters (28-feet) long and 4.3-meters (14-feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 15 locations especially designed to support experiments. The Destiny module was built by the Boeing Company under the direction of the Marshall Space Flight Center.
International Space Station (ISS)
2001-03-10
STS-102 mission astronauts James S. Voss and James D. Weatherbee share a congratulatory handshake as the Space Shuttle Orbiter Discovery successfully docks with the International Space Station (ISS). Photographed from left to right are: Astronauts Susan J. Helms, mission specialist; James S. Voss, Expedition 2 crew member; James D. Weatherbee, mission commander; Andrew S.W. Thomas, mission specialist; and nearly out of frame is James M. Kelley, Pilot. Launched March 8, 2001, STS-102's primary cargo was the Leonardo, the Italian Space Agency-built Multipurpose Logistics Module (MPLM). The Leonardo MPLM is the first of three such pressurized modules that will serve as ISS' moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. NASA's 103rd overall mission and the 8th Space Station Assembly Flight, STS-102 mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.
STS-102 Astronaut Paul Richards Participates in Space Walk
NASA Technical Reports Server (NTRS)
2001-01-01
Astronaut Paul W. Richards, STS-102 mission specialist, works in the cargo bay of the Space Shuttle Discovery during the second of two scheduled space walks. Richards, along with astronaut Andy Thomas, spent 6.5 hours outside the International Space Station (ISS), continuing work to outfit the station and prepare for delivery of its robotic arm. STS-102 delivered the first Multipurpose Logistics Modules (MPLM) named Leonardo, which was filled with equipment and supplies to outfit the U.S. Destiny Laboratory Module. The Leonardo MPLM is the first of three such pressurized modules that will serve as the ISS' moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. NASA's 103rd overall mission and the 8th Space Station Assembly Flight, STS-102 mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.
3. DISTANT VIEW (TO THE NORTHEAST) OF THE POWER STATION ...
3. DISTANT VIEW (TO THE NORTHEAST) OF THE POWER STATION (FAR LEFT, WOOD SHED, AND CHANGE HOUSE (CENTER). THE SMALLER ATTACHED SECTION ON THE CHANGE HOUSE SERVED AS THE MINE OFFICE AND RECORDS STORAGE ROOM. - Foster Gulch Mine, Bear Creek 1 mile Southwest of Town of Bear Creek, Red Lodge, Carbon County, MT
NASA's New Orbital Space Plane: A Bridge to the Future
NASA Technical Reports Server (NTRS)
Davis, Stephan R.; Engler, Leah M.; Fisher, Mark F.; Dumbacher, Dan L.; Boswell, Barry E.
2003-01-01
NASA is developing a new spacecraft system called the Orbital Space Plane (OSP). The OSP will be launched on an expendable launch vehicle and serve to augment the shuttle in support of the International Space Station by transporting astronauts to and from the International Space Station and by providing a crew rescue system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
The home that won a Production Builder award in the 2014 Housing Innovation Awards serves as a model for this builder, showcasing high-tech features including an electric car charging station; a compressed natural gas (CNG) car fueling station; a greywater recycling system that filters shower, sink, and clothes washer water for yard irrigation; smart appliances; and an electronic energy management system.
Rocky Mountain Research Station: 2005 Research Accomplishments
Rick Fletcher
2006-01-01
During 2005, the USDA Forest Service celebrated its Centennial, recognizing 100 years of successfully caring for the land and serving people. The Rocky Mountain Research Station has been, and continues to be, an integral part of the Forest Service mission, dating back to the Agency's beginning, with the establishment of the Santa Rita Experimental Range near...
International Space Station (ISS)
2003-05-03
Expedition Seven photographed the Soyez TMA-1 Capsule through a window of the International Space Station (ISS) as it departed for Earth. Aboard were Expedition Six crew members, astronauts Kerneth D. Bowersox and Donald R. Pettit, and cosmonaut Nikolai M. Budarin. Expedition Six served a 5 and 1/2 month stay aboard the ISS, the longest stay to date.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-04
...: Control Number: 3060-0031. Title: Application for Consent to Assignment of Broadcast Station Construction... Station Construction Permit or License, FCC Form 315; Section 73.3580, Local Public Notice of Filing of... construction permits designed primarily to serve Tribal Lands (the ``Tribal Priority''). Tribal affiliated...
History of the Priest River Experiment Station
Kathleen L. Graham
2004-01-01
In 1911, the U.S. Forest Service established the Priest River Experimental Forest near Priest River, Idaho. The Forest served as headquarters for the Priest River Forest Experiment Station and continues to be used for forest research critical to understanding forest development and the many processes, structures, and functions occurring in them. At...
77 FR 29589 - Announcement of Grant Application Deadlines and Funding Levels
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-18
... transition of their stations across all equipment. Rural stations often have translators serving small or... not apply to translators, and only recently in 2011 the FCC adopted a final deadline for analog-to-digital conversion of all translators by September 1, 2015. Because of this, translators have been allowed...
Haighton, C; Halligan, J; Scott, S
2017-04-20
There is concern around alcohol consumption in mid to later life yet little understanding about what influences this behaviour. No previous research has explored the extent to which adults in mid to later life may be exposed to alcohol references in the media. This project aimed to determine the frequency of alcohol references on radio stations with a high proportion of listeners in mid to later life. Content analysis of alcohol references on four popular UK music-based radio stations with a high proportion of listeners aged 55-64 years over three time points. Alcohol references occur frequently, but vary by time of year and type of radio station. When alcohol is mentioned its consumption is portrayed as the norm, without negative consequences. On three commercial stations, the majority of mentions came from advertising, whereas on BBC Radio 2 nearly all references were talk-based. All adverts for direct promotion of alcohol were by supermarkets. Alcohol was frequently associated with celebrations, socializing or something to consume for its own sake. Adults in the age group 55-64 may be exposed to references to alcohol that could serve to reinforce norms of consumption of alcohol and promote purchases of cheap alcohol. © The Author 2017. Published by Oxford University Press on behalf of Faculty of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garlapati, Shravan; Kuruganti, Teja; Buehrer, Michael R.
The utilization of state-of-the-art 3G cellular CDMA technologies in a utility owned AMI network results in a large amount of control traffic relative to data traffic, increases the average packet delay and hence are not an appropriate choice for smart grid distribution applications. Like the CDG, we consider a utility owned cellular like CDMA network for smart grid distribution applications and classify the distribution smart grid data as scheduled data and random data. Also, we propose SMAC protocol, which changes its mode of operation based on the type of the data being collected to reduce the data collection latency andmore » control overhead when compared to 3G cellular CDMA2000 MAC. The reduction in the data collection latency and control overhead aids in increasing the number of smart meters served by a base station within the periodic data collection interval, which further reduces the number of base stations needed by a utility or reduces the bandwidth needed to collect data from all the smart meters. The reduction in the number of base stations and/or the reduction in the data transmission bandwidth reduces the CAPital EXpenditure (CAPEX) and OPerational EXpenditure (OPEX) of the AMI network. Finally, the proposed SMAC protocol is analyzed using markov chain, analytical expressions for average throughput and average packet delay are derived, and simulation results are also provided to verify the analysis.« less
Performance Trials of an Integrated Loran/GPS/IMU Navigation System, Part 1
2005-01-27
differences are used to correct the grid values in the absence of a local ASF monitor station . Performance of the receiver using different ASF grids...United States is served by the North American Loran-C system made up of 29 stations organized into 10 chains (see Figure 1). Loran coverage is...the absence of a local ASF monitor station . Performance of the receiver using different ASF grids and interpolation techniques and corrected using the
STS-102 Astronaut Susan Helms Participates in Space Walk
NASA Technical Reports Server (NTRS)
2001-01-01
STS-102 mission astronaut Susan J. Helms translates along the longerons of the Space Shuttle Discovery during the first of two space walks. During this walk, the Pressurized Mating Adapter 3 was prepared for repositioning from the Unity Module's Earth-facing berth to its port-side berth to make room for the Leonardo multipurpose Logistics Module (MPLM), supplied by the Italian Space Agency. The Leonardo MPLM is the first of three such pressurized modules that will serve as the International Space Station's (ISS') moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. NASA's 103rd overall mission and the 8th Space Station Assembly Flight, STS-102 mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.
NASA Technical Reports Server (NTRS)
Taylor, R. E.; Sennott, J. W. (Inventor)
1984-01-01
In a global positioning system (GPS), such as the NAVSTAR/GPS system, wherein the position coordinates of user terminals are obtained by processing multiple signals transmitted by a constellation of orbiting satellites, an acquisition-aiding signal generated by an earth-based control station is relayed to user terminals via a geostationary satellite to simplify user equipment. The aiding signal is FSK modulated on a reference channel slightly offset from the standard GPS channel. The aiding signal identifies satellites in view having best geometry and includes Doppler prediction data as well as GPS satellite coordinates and identification data associated with user terminals within an area being served by the control station and relay satellite. The aiding signal significantly reduces user equipment by simplifying spread spectrum signal demodulation and reducing data processing functions previously carried out at the user terminals.
NASA Technical Reports Server (NTRS)
Blacic, J. D.
1986-01-01
Two Mars surface based build-up scenarios are presented in order to help visualize the mission and to serve as a basis for trade studies. In the first scenario, direct manned landings on the Martian surface occur early in the missions and scientific investigation is the main driver and rationale. In the second senario, Earth development of an infrastructure to exploit the volatile resources of the Martian moons for economic purposes is emphasized. Scientific exploration of the surface is delayed at first in this scenario relative to the first, but once begun develops rapidly, aided by the presence of a permanently manned orbital station.
STS-98 Onboard Photograph-U.S. Laboratory, Destiny
NASA Technical Reports Server (NTRS)
2001-01-01
With its new U.S. Laboratory, Destiny, contrasted over a blue and white Earth, the International Space Station (ISS) was photographed by one of the STS-98 crew members aboard the Space Shuttle Atlantis following separation of the Shuttle and Station. The Laboratory is shown at the lower right of the Station. The American-made Destiny module is the cornerstone for space-based research aboard the orbiting platform and the centerpiece of the ISS, where unprecedented science experiments will be performed in the near-zero gravity of space. Destiny will also serve as the command and control center for the ISS. The aluminum module is 8.5- meters (28-feet) long and 4.3-meters (14-feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 15 locations especially designed to support experiments. The Destiny module was built by the Boeing Company under the direction of the Marshall Space Flight Center.
Using Spacelab as a precursor of science operations for the Space Station
NASA Technical Reports Server (NTRS)
Marmann, R. A.
1997-01-01
For more than 15 years, Spacelab, has provided a laboratory in space for an international array of experiments, facilities, and experimenters. In addition to continuing this important work, Spacelab is now serving as a crucial stepping-stone to the improved science, improved operations, and rapid access to space that will characterize International Space Station. In the Space Station era, science operations will depend primarily on distributed/remote operations that will allow investigators to direct science activities from their universities, facilities, or home bases. Spacelab missions are a crucial part of preparing for these activities, having been used to test, prove, and refine remote operations over several missions. The knowledge gained from preparing these Missions is also playing a crucial role in reducing the time required to put an experiment into orbit, from revolutionizing the processes involved to testing the hardware needed for these more advanced operations. This paper discusses the role of the Spacelab program and the NASA Marshall Space Flight Center- (MSFC-) managed missions in developing and refining remote operations, new hardware and facilities for use on Space Station, and procedures that dramatically reduce preparation time for flight.
STS-29 Commander Coats in JSC fixed base (FB) shuttle mission simulator (SMS)
1986-02-11
S86-28458 (28 Feb. 1986) --- Astronaut Michael L. Coats participates in a rehearsal for his assigned flight at the commander's station of the Shuttle Mission Simulator (SMS) at the Johnson Space Center (JSC). NOTE: Coats, a veteran of spaceflight, originally trained for STS 61-H, which was cancelled in the wake of the Challenger accident. Following the Janaury 1986 accident he was named to serve on a mock crew (STS-61M) for personnel training and simulation purposes. Photo credit: NASA
Soyuz TMA-03M Docking Mechanism
2012-07-01
ISS032-E-005028 (1 July 2012) --- This close-up view shows the docking mechanism of the Soyuz TMA-03M spacecraft as it undocks from the International Space Station?s Rassvet Mini-Research Module 1 (MRM-1) on July 1, 2012. Russian cosmonaut Oleg Kononenko, Expedition 31 commander; along with European Space Agency astronaut Andre Kuipers and NASA astronaut Don Pettit, both flight engineers, are returning from more than six months aboard the space station where they served as members of the Expedition 30 and 31 crews.
Soyuz TMA-03M Docking Mechanism
2012-07-01
ISS032-E-005023 (1 July 2012) --- This close-up view shows the docking mechanism of the Soyuz TMA-03M spacecraft as it undocks from the International Space Station?s Rassvet Mini-Research Module 1 (MRM-1) on July 1, 2012. Russian cosmonaut Oleg Kononenko, Expedition 31 commander; along with European Space Agency astronaut Andre Kuipers and NASA astronaut Don Pettit, both flight engineers, are returning from more than six months aboard the space station where they served as members of the Expedition 30 and 31 crews.
SMAC: A soft MAC to reduce control overhead and latency in CDMA-based AMI networks
Garlapati, Shravan; Kuruganti, Teja; Buehrer, Michael R.; ...
2015-10-26
The utilization of state-of-the-art 3G cellular CDMA technologies in a utility owned AMI network results in a large amount of control traffic relative to data traffic, increases the average packet delay and hence are not an appropriate choice for smart grid distribution applications. Like the CDG, we consider a utility owned cellular like CDMA network for smart grid distribution applications and classify the distribution smart grid data as scheduled data and random data. Also, we propose SMAC protocol, which changes its mode of operation based on the type of the data being collected to reduce the data collection latency andmore » control overhead when compared to 3G cellular CDMA2000 MAC. The reduction in the data collection latency and control overhead aids in increasing the number of smart meters served by a base station within the periodic data collection interval, which further reduces the number of base stations needed by a utility or reduces the bandwidth needed to collect data from all the smart meters. The reduction in the number of base stations and/or the reduction in the data transmission bandwidth reduces the CAPital EXpenditure (CAPEX) and OPerational EXpenditure (OPEX) of the AMI network. Finally, the proposed SMAC protocol is analyzed using markov chain, analytical expressions for average throughput and average packet delay are derived, and simulation results are also provided to verify the analysis.« less
An approach for delivering research results in the Southern United States
Carol Whitlock; H. Michael Rauscher
2008-01-01
The USDA Forest Service research and development program (R&D) consists of five regional stations, a forest products laboratory, and a tropical forestry institute that, taken together, comprise the largest network of natural resource research organizations in the world. Within this network is the Southern Research Station, which serves a 500-million acre (202-...
Broadcasting Student Internships: Put Them in Writing.
ERIC Educational Resources Information Center
Ware, P. Dale
A written broadcasting internship contract has proved to serve the best interests of the intern, the school, and the radio or television station. Among other things, such a contract can specify the commitments of the intern and the advisors, the hours and times of station work, the academic credit to be earned, and the learning experiences to be…
Natural Gas Compressor Stations on the Interstate Pipeline Network: Developments Since 1996
2007-01-01
This special report looks at the use of natural gas pipeline compressor stations on the interstate natural gas pipeline network that serves the lower 48 states. It examines the compression facilities added over the past 10 years and how the expansions have supported pipeline capacity growth intended to meet the increasing demand for natural gas.
BOILING NUCLEAR SUPERHEATER (BONUS) POWER STATION. Final Summary Design Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1962-05-01
The design and construction of the Boiling Nuclear Superheater (BONUS) Power Station at Punta Higuera on the seacoast at the westernmost tip of Puerto Rico are described. The reactor has an output of 17.5 Mw(e). This report will serve as a source of information for personnel engaged in management, evaluation, and training. (N.W.R.)
What are undergraduates doing at biological field stations and marine laboratories?
Janet Hodder
2009-01-01
Biological field stations and marine laboratories (FSMLs) serve as places to study the natural environment in a variety of ways, from the level of the molecule to the globe. Undergraduate opportunities at FSMLs reflect the diversity of study options -- formal courses, research and service internships, and field-trip experiences -- and students are responding to those...
47 CFR 73.3571 - Processing of AM broadcast station applications.
Code of Federal Regulations, 2010 CFR
2010-10-01
... interest, convenience and necessity will be served by the granting of an application, the same will be... with the facilities it is licensed to start using at local sunrise, using the power stated in the Order... examination, the FCC finds that the public interest, convenience and necessity will be served by the granting...
47 CFR 27.1202 - Cable/BRS cross-ownership.
Code of Federal Regulations, 2014 CFR
2014-10-01
... portion of the franchise area actually served by the cable operator's cable system and the cable operator... franchise area actually served by the cable operator's cable system the cable operator will use the BRS... that no portion of the GSA of the BRS station is within the portion of the franchise area actually...
47 CFR 27.1202 - Cable/BRS cross-ownership.
Code of Federal Regulations, 2011 CFR
2011-10-01
... portion of the franchise area actually served by the cable operator's cable system and the cable operator... franchise area actually served by the cable operator's cable system the cable operator will use the BRS... that no portion of the GSA of the BRS station is within the portion of the franchise area actually...
47 CFR 27.1202 - Cable/BRS cross-ownership.
Code of Federal Regulations, 2012 CFR
2012-10-01
... portion of the franchise area actually served by the cable operator's cable system and the cable operator... franchise area actually served by the cable operator's cable system the cable operator will use the BRS... that no portion of the GSA of the BRS station is within the portion of the franchise area actually...
47 CFR 27.1202 - Cable/BRS cross-ownership.
Code of Federal Regulations, 2013 CFR
2013-10-01
... portion of the franchise area actually served by the cable operator's cable system and the cable operator... franchise area actually served by the cable operator's cable system the cable operator will use the BRS... that no portion of the GSA of the BRS station is within the portion of the franchise area actually...
Code of Federal Regulations, 2010 CFR
2010-10-01
... available for assignment to serve domestic air routes in the Alaska area: (i) Throughout Alaska: Shared with...) available to enroute stations serving international flight operations on the Major World Air Route Areas...): kHz 2854.0 8861.0 2935.0 11291.0 3452.0 13315.0 5565.0 13357.0 6535.0 17955.0 (9) Southeast Asia...
Space Station Freedom: a unique laboratory for gravitational biology research
NASA Technical Reports Server (NTRS)
Phillips, R. W.; Cowing, K. L.
1993-01-01
The advent of Space Station Freedom (SSF) will provide a permanent laboratory in space with unparalleled opportunities to perform biological research. As with any spacecraft there will also be limitations. It is our intent to describe this space laboratory and present a picture of how scientists will conduct research in this unique environment we call space. SSF is an international venture which will continue to serve as a model for other peaceful international efforts. It is hoped that as the human race moves out from this planet back to the moon and then on to Mars that SSF can serve as a successful example of how things can and should be done.
Multisensor Equipped Uav/ugv for Automated Exploration
NASA Astrophysics Data System (ADS)
Batzdorfer, S.; Bobbe, M.; Becker, M.; Harms, H.; Bestmann, U.
2017-08-01
The usage of unmanned systems for exploring disaster scenarios has become more and more important in recent times as a supporting system for action forces. These systems have to offer a well-balanced relationship between the quality of support and additional workload. Therefore within the joint research project ANKommEn - german acronym for Automated Navigation and Communication for Exploration - a system for exploration of disaster scenarios is build-up using multiple UAV und UGV controlled via a central ground station. The ground station serves as user interface for defining missions and tasks conducted by the unmanned systems, equipped with different environmental sensors like cameras - RGB as well as IR - or LiDAR. Depending on the exploration task results, in form of pictures, 2D stitched orthophoto or LiDAR point clouds will be transmitted via datalinks and displayed online at the ground station or will be processed in short-term after a mission, e.g. 3D photogrammetry. For mission planning and its execution, UAV/UGV monitoring and georeferencing of environmental sensor data, reliable positioning and attitude information is required. This is gathered using an integrated GNSS/IMU positioning system. In order to increase availability of positioning information in GNSS challenging scenarios, a GNSS-Multiconstellation based approach is used, amongst others. The present paper focuses on the overall system design including the ground station and sensor setups on the UAVs and UGVs, the underlying positioning techniques as well as 2D and 3D exploration based on a RGB camera mounted on board the UAV and its evaluation based on real world field tests.
LMSS communication network design
NASA Technical Reports Server (NTRS)
1982-01-01
The architecture of the telecommunication network as the first step in the design of the LMSS system is described. A set of functional requirements including the total number of users to be served by the LMSS are hypothesized. The design parameters are then defined at length and are systematically selected such that the resultant system is capable of serving the hypothesized number of users. The design of the backhaul link is presented. The number of multiple backhaul beams required for communication to the base stations is determined. A conceptual procedure for call-routing and locating a mobile subscriber within the LMSS network is presented. The various steps in placing a call are explained, and the relationship between the two sets of UHF and S-band multiple beams is developed. A summary of the design parameters is presented.
The latitudinal distribution of ozone to 35 km altitude from ECC ozonesonde observations, 1982-1990
NASA Technical Reports Server (NTRS)
Komhyr, W. D.; Oltmans, S. J.; Lathrop, J. A.; Kerr, J. B.; Matthews, W. A.
1994-01-01
Electrochemical concentration cell (ECC) ozone-sonde observations, made in recent years at ten stations whose locations range from the Arctic to Antarctica, have yielded a self-consistent ozone data base from which mean seasonal and annual latitudinal ozone vertical distributions to 35 km have been derived. Ozone measurement uncertainties are estimated, and results are presented in the Bass-Paur (1985) ozone absorption coefficient scale adopted for use with Dobson ozone spectrophotometers January 1, 1992. The data should be useful for comparison with model calculations of the global distribution of atmospheric ozone, for serving as apriori statistical information in deriving ozone vertical distributions from satellite and Umkehr observations, and for improving the satellite and Umkehr ozone inversion algorithms. Attention is drawn to similar results based on a less comprehensive data set published in Ozone in the Atmosphere, Proceedings of the 1988 Quadrennial Ozone Symposium where errors in data tabulations occurred for three of the stations due to inadvertent transposition of ozone partial pressure and air temperature values.
Space Station Simulation Computer System (SCS) study for NASA/MSFC. Concept document
NASA Technical Reports Server (NTRS)
1990-01-01
NASA's Space Station Freedom Program (SSFP) planning efforts have identified a need for a payload training simulator system to serve as both a training facility and as a demonstrator to validate operational concepts. The envisioned MSFC Payload Training Complex (PTC) required to meet this need will train the Space Station Payload of experiments that will be onboard the Space Station Freedom. The simulation will support the Payload Training Complex at MSFC. The purpose of this SCS Study is to investigate issues related to the SCS, alternative requirements, simulator approaches, and state-of-the-art technologies to develop candidate concepts and designs.
1970-08-03
A .......... .. 7.-.. (J ATA TRUCES5U46 OV1sp0N4 u Ar ETA q U UWj F CEILING VERSUS VISIBILITY4 AI WATHER TYtEM TI930 CAMP 00 GLAS W$CONS MlVItK FLU...CESSINC, DIVISIOIN IJNAI ETAC4 AIR WATHER W CEILING VERSUS VISIBILITY , i 94t30 CAMP DOUGLAS W CJN5IN/V/LK FLO 64-_67 _____ " STATION STATION AME YEAS...TA c O PSYCHROMETRIC SUMMARY AIR WATHER SERV~q6MAC 94930__ CA)YIP 0fUGLAS WISCONStI4/VLK FLO 65-68 ______________ f , STATION STATION NAME YEARS
1997-07-26
The first of two Pressurized Mating Adapters, or PMAs, for the International Space Station arrive in KSC’s Space Station Processing Facility in July. A PMA is a cone-shaped connector that will be attached to Node 1, the space station’s structural building block, during ground processing. The adapter will house space station computers and various electrical support equipment and eventually will serve as the passageway for astronauts between the node and the U.S-financed, Russian-built Functional Cargo Block. Node 1 with two adapters attached will be the first element of the station to be launched aboard the Space Shuttle Endeavour on STS-88 in July 1998
1997-07-26
The first of two Pressurized Mating Adapters, or PMAs, for the International Space Station arrive in KSC’s Space Station Processing Facility in July. A PMA is a cone-shaped connector that will be attached to Node 1, the space station’s structural building block, during ground processing. The adapter will house space station computers and various electrical support equipment and eventually will serve as the passageway for astronauts between the node and the U.S-financed, Russian-built Functional Cargo Block. Node 1 with two adapters attached will be the first element of the station to be launched aboard the Space Shuttle Endeavour on STS-88 in July 1998
Critical Phenomena of Rainfall in Ecuador
NASA Astrophysics Data System (ADS)
Serrano, Sh.; Vasquez, N.; Jacome, P.; Basile, L.
2014-02-01
Self-organized criticality (SOC) is characterized by a power law behavior over complex systems like earthquakes and avalanches. We study rainfall using data of one day, 3 hours and 10 min temporal resolution from INAMHI (Instituto Nacional de Meteorologia e Hidrologia) station at Izobamba, DMQ (Metropolitan District of Quito), satellite data over Ecuador from Tropical Rainfall Measure Mission (TRMM,) and REMMAQ (Red Metropolitana de Monitoreo Atmosferico de Quito) meteorological stations over, respectively. Our results show a power law behavior of the number of rain events versus mm of rainfall measured for the high resolution case (10 min), and as the resolution decreases this behavior gets lost. This statistical property is the fingerprint of a self-organized critical process (Peter and Christensen, 2002) and may serve as a benchmark for models of precipitation based in phase transitions between water vapor and precipitation (Peter and Neeling, 2006).
The SeaQuest Spectrometer at Fermilab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aidala, C.A.; et al.
The SeaQuest spectrometer at Fermilab was designed to detect oppositely-charged pairs of muons (dimuons) produced by interactions between a 120 GeV proton beam and liquid hydrogen, liquid deuterium and solid nuclear targets. The primary physics program uses the Drell-Yan process to probe antiquark distributions in the target nucleon. The spectrometer consists of a target system, two dipole magnets and four detector stations. The upstream magnet is a closed-aperture solid iron magnet which also serves as the beam dump, while the second magnet is an open aperture magnet. Each of the detector stations consists of scintillator hodoscopes and a high-resolution trackingmore » device. The FPGA-based trigger compares the hodoscope signals to a set of pre-programmed roads to determine if the event contains oppositely-signed, high-mass muon pairs.« less
On the use of Space Station Freedom in support of the SEI - Life science research
NASA Technical Reports Server (NTRS)
Leath, K.; Volosin, J.; Cookson, S.
1992-01-01
The use of the Space Station Freedom (SSF) for life sciences research is evaluated from the standpoint of requirements for the Space Exploration Initiative (SEI). SEI life sciences research encompasses: (1) biological growth and development in space; (2) life support and environmental health; (3) physiological/psychological factors of extended space travel; and (4) space environmental factors. The platforms required to support useful study in these areas are listed and include ground-based facilities, permanently manned spacecraft, and the Space Shuttle. The SSF is shown to be particularly applicable to the areas of research because its facilities can permit the study of gravitational biology, life-support systems, and crew health. The SSF can serve as an experimental vehicle to derive the required knowledge needed to establish a commitment to manned Mars missions and colonization plans.
A global spacecraft control network for spacecraft autonomy research
NASA Technical Reports Server (NTRS)
Kitts, Christopher A.
1996-01-01
The development and implementation of the Automated Space System Experimental Testbed (ASSET) space operations and control network, is reported on. This network will serve as a command and control architecture for spacecraft operations and will offer a real testbed for the application and validation of advanced autonomous spacecraft operations strategies. The proposed network will initially consist of globally distributed amateur radio ground stations at locations throughout North America and Europe. These stations will be linked via Internet to various control centers. The Stanford (CA) control center will be capable of human and computer based decision making for the coordination of user experiments, resource scheduling and fault management. The project's system architecture is described together with its proposed use as a command and control system, its value as a testbed for spacecraft autonomy research, and its current implementation.
Test and calibration of the Digital World-Wide Standardized Seismograph
Peterson, Jon; Hutt, Charles R.
1982-01-01
During the past decade there has been steady progress in the modernization of the global seismograph network operated by the U.S. Geological Survey (USGS). The World-Wide Standardized Seismograph Network (WWSSN) has been augmented by new stations with advanced instrumentation, including the Seismic Research Observatories (SRO) and the modified High-Gain Long-Period (ASRO) stations. One goal in the modernization effort has been to improve signal resolution in the long-period band. A second goal has been to generate a global digital data base to support contemporary computer-based analysis and research. In 1976, a Panel on Seismograph Networks was established by the Committee on Seismology of the National Academy of Sciences to review progress in network seismology and recommend actions that would lead to an improved global data base for seismology. One recommendation in the Panel report (Engdahl, 1977) called for upgrading selected WWSSN stations by the installation of digital recorders. This was viewed as an economical way of expanding the digital network, which had proven itself to be a very promising new tool for earthquake and explosion research. Funds for the development and assembly of 15 digital recorders were provided to the USGS by the Defense Advanced Research Projects Agency and an ad Inoc panel of scientists was convened by the Committee on Seismology to advise the USGS on the selection of stations to be upgraded and on data recording requirements, A total of 19 digital World-Wide Standardized Seismograph (DWWSS) systems will be operational when all are installed. The additional systems were made available through purchase by the USGS and other organizations; for example, the University of Bergen purchased and installed a DWWSS-type recorder and agreed to furnish the USGS with the data. A list of operational and planned DWWSS network stations is given in Table 1.1.As one might expect, the digital recorder turned out to be somewhat more sophisticated than the original concept. It was decided to record three components of long-period data continuously, three components of intermediateperiod data in an event mode, and the vertical-component short-period data in and event mode (with the capability of adding short-period horizontal channels in the future). Special amplifiers were developed for use with the WWSS seismometers, and a 16-bit fixed-point analog-to-digital converter was chosen to provide increased resolution (as opposed to a 16-bit gain-ranged encoder). The microprocessor-based digital recording systems were developed and assembled at the USGS Albuquerque Seismological Laboratory (ASL) and ASL-based technicians began installation at WWSSN stations in 1980.The current and proposed locations of the DWWSSN stations, together with other stations in the Global Digital Seismograph Network (GDSN), are shown on the map in Figure 1.1. A system was operated at Albuquerque for about 18 months, serving as a test bed for evaluation studies. Although the network hardware has been available for some time, the installation of the DWWSSN has proceeded slowly. The National Science Foundation supported installation of six stations and the USGS is funding installation of most of the others; however, the network completion date is conjectural because of funding uncertainties.The DWWSSN stations are supported with supplies and technical assistance from ASL (subject to availability of funds). Data recorded on magnetic tapes are mailed to ASL where they are reviewed for quality, then merged with other GDSN station data on the network-day tapes. Hoffman (1980) provides a description of the network-day tape format. Zirbes and Buland (1981) have developed and published user software for reading and interpreting the day tapes. This report will serve several purposes. One is to provide nominal system transfer functions and calibration information that are needed in the analysis of DWWSSN data. A second purpose is to report on an evaluation of operating characteristics (calibration stability, noise levels, and linearity) that may limit the usefulness of the data and to determine if modifications may be needed to improve the data. It is not an exhaustive study in this respect. We continue to depend mostly on data user feedback to point out deficiencies and we solicit comments whenever anomalies are observed in the data.
NASA Technical Reports Server (NTRS)
Goodman, Jerry Ronald
2006-01-01
This thesis presents a frame work for a crew station handbook and includes samples of the broader areas which such a handbook should cover. The completed sections of this thesis serve as extensive treatments of the topics covered. The content of the individual sections of Chapters I and II varied with my experience and knowledge.
Telescience Testbed Pilot Program
NASA Technical Reports Server (NTRS)
Gallagher, Maria L. (Editor); Leiner, Barry M. (Editor)
1988-01-01
The Telescience Testbed Pilot Program (TTPP) is intended to develop initial recommendations for requirements and design approaches for the information system of the Space Station era. Multiple scientific experiments are being performed, each exploring advanced technologies and technical approaches and each emulating some aspect of Space Station era science. The aggregate results of the program will serve to guide the development of future NASA information systems.
2004-02-13
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, workers confirm the Multi-Purpose Logistics Module Donatello is safely in place on a work stand. Previously housed in the Operations and Checkout Building, Donatello was brought into the SSPF for routine testing. This is the first time all three MPLMs (Donatello, Raffaello and Leonardo) are in the SSPF. The MPLMs were built by the Italian Space Agency, to serve as reusable logistics carriers and the primary delivery system to resupply and return station cargo requiring a pressurized environment. The third MPLM, Raffaello, is scheduled to fly on Space Shuttle Atlantis on mission STS-114.
2004-02-13
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, the Multi-Purpose Logistics Module Donatello is slowly lowered toward a work stand. Previously housed in the Operations and Checkout Building, Donatello was brought into the SSPF for routine testing. This is the first time all three MPLMs (Donatello, Raffaello and Leonardo) are in the SSPF. The MPLMs were built by the Italian Space Agency, to serve as reusable logistics carriers and the primary delivery system to resupply and return station cargo requiring a pressurized environment. The third MPLM, Raffaello is scheduled to fly on Space Shuttle Atlantis on mission STS-114.
2004-02-18
KENNEDY SPACE CENTER, FLA. - All three Multi-Purpose Logistics Modules are on the floor of the Space Station Processing Facility. This is the first time the three - Leonardo, Raffaello and Donatello -- have been in one location. Donatello has been stored in the Operations and Checkout Building since its arrival at KSC and was brought into the SSPF for routine testing. The MPLMs were built by the Italian Space Agency, to serve as reusable logistics carriers and the primary delivery system to resupply and return station cargo requiring a pressurized environment. Raffaello is scheduled to fly on Space Shuttle Atlantis on mission STS-114.
2004-02-13
KENNEDY SPACE CENTER, FLA. - The Multi-Purpose Logistics Module Donatello is moved away from the payload canister in the Space Station Processing Facility. Previously housed in the Operations and Checkout Building, Donatello was brought into the SSPF for routine testing. This is the first time all three MPLMs (Donatello, Raffaello and Leonardo) are in the SSPF. The MPLMs were built by the Italian Space Agency, to serve as reusable logistics carriers and the primary delivery system to resupply and return station cargo requiring a pressurized environment. The third MPLM, Raffaello is scheduled to fly on Space Shuttle Atlantis on mission STS-114.
2004-02-13
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, workers help the Multi-Purpose Logistics Module Donatello settle onto a work stand. Previously housed in the Operations and Checkout Building, Donatello was brought into the SSPF for routine testing. This is the first time all three MPLMs (Donatello, Raffaello and Leonardo) are in the SSPF. The MPLMs were built by the Italian Space Agency, to serve as reusable logistics carriers and the primary delivery system to resupply and return station cargo requiring a pressurized environment. The third MPLM, Raffaello, is scheduled to fly on Space Shuttle Atlantis on mission STS-114.
2004-02-13
KENNEDY SPACE CENTER, FLA. - The Multi-Purpose Logistics Module Donatello is suspended by cables over the payload canister in the Space Station Processing Facility. Previously housed in the Operations and Checkout Building, Donatello was brought into the SSPF for routine testing. This is the first time all three MPLMs (Donatello, Raffaello and Leonardo) are in the SSPF. The MPLMs were built by the Italian Space Agency, to serve as reusable logistics carriers and the primary delivery system to resupply and return station cargo requiring a pressurized environment. The third MPLM, Raffaello is scheduled to fly on Space Shuttle Atlantis on mission STS-114.
2004-02-18
KENNEDY SPACE CENTER, FLA. - This view reveals all three Multi-Purpose Logistics Modules on the floor of the Space Station Processing Facility. This is the first time all three - Leonardo, Raffaello and Donatello -- have been in one location. Donatello has been stored in the Operations and Checkout Building since its arrival at KSC and was brought into the SSPF for routine testing. The MPLMs were built by the Italian Space Agency, to serve as reusable logistics carriers and the primary delivery system to resupply and return station cargo requiring a pressurized environment. Raffaello is scheduled to fly on Space Shuttle Atlantis on mission STS-114.
31. Tower interior, second story level, which served as tiny ...
31. Tower interior, second story level, which served as tiny bedroom for station operator; frame visible at far left originally housed cooler vented to exterior via louvers placed in window fenestration; view to northeast, 65mm lens with electronic flash illumination. - Southern Pacific Depot, 559 El Camino Real, San Carlos, San Mateo County, CA
2009-03-20
ISS018-E-041340 (20 March 2009) --- Expedition 18 crewmembers pose for a group photo in the Harmony node of the International Space Station while Space Shuttle Discovery (STS-119) remains docked with the station. From the right are NASA astronaut Michael Fincke, commander; Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata and cosmonaut Yury Lonchakov, both flight engineers; along with NASA astronaut Sandra Magnus, STS-119 mission specialist. Magnus flew to the station on STS-126 to serve as a flight engineer for Expedition 18, and will return to Earth as mission specialist with the STS-119 crew.
Advancing Materials Science using Neutrons at Oak Ridge National Laboratory
Carpenter, John
2018-02-14
Jack Carpenter, pioneer of accelerator-based pulsed spallation neutron sources, talks about neutron science at Oak Ridge National Laboratory (ORNL) and a need for a second target station at the Spallation Neutron Source (SNS). ORNL is the Department of Energy's largest multiprogram science and energy laboratory, and is home to two scientific user facilities serving the neutron science research community: the High Flux Isotope Reactor (HFIR) and SNS. HFIR and SNS provide researchers with unmatched capabilities for understanding the structure and properties of materials, macromolecular and biological systems, and the fundamental physics of the neutron. Neutrons provide a window through which to view materials at a microscopic level that allow researchers to develop better materials and better products. Neutrons enable us to understand materials we use in everyday life. Carpenter explains the need for another station to produce long wavelength neutrons, or cold neutrons, to answer questions that are addressed only with cold neutrons. The second target station is optimized for that purpose. Modern technology depends more and more upon intimate atomic knowledge of materials, and neutrons are an ideal probe.
Quang, Ngo Xuan; Chau, Nguyen Ngoc; Smol, Nic; Prozorova, Larisa; Vanreusel, Ann
2016-02-01
Nematode communities in eight Mekong estuaries were investigated during the dry season. The aim of the study was to identify the structure and the diversity of the communities in relation to the main environmental characteristics. In each estuary, three to four intertidal sampling stations were identified at regular distances from the mouth to up to 45 km land inward. The nematode communities showed a strong correlation with sediment composition and to a lesser degree with chlorophyll a concentrations. Multivariate analysis resulted in the identification of four types of communities. We identified two types of Desmodora communities in the sandy mouth stations and two types of Parodontophora communities in the silty sand stations. One of the silt associated communities showed a preference for higher chlorophyll a concentrations, resulting in higher densities and higher diversity, mainly of monhysterid species. Because of the strong association between community structure and sediment composition, nematodes are a meaningful tool for monitoring changes in their environment. In case their community deviates from what is expected based on sediment, it may serve as an early warning for disturbance.
The space station assembly phase: System design trade-offs for the flight telerobotic servicer
NASA Technical Reports Server (NTRS)
Smith, Jeffrey H.; Gyamfi, Max; Volkmer, Kent; Zimmerman, Wayne
1988-01-01
The effects of a recent study aimed at identifying key issues and trade-offs associated with using a Flight Telerobotic Servicer (FTS) to aid in Space Station assembly-phase tasks is described. The use of automation and robotic (A and R) technologies for large space systems often involves a substitution of automation capabilities for human EVA or IVA activities. A methodology is presented that incorporates assessment of candidate assembly-phase tasks, telerobotic performance capabilities, development costs, and effects of operational constaints. Changes in the region of cost-effectiveness are examined under a variety of system design assumptions. A discussion of issues is presented with focus on three roles the FTS might serve: as a research-oriented test bed to learn more about space usage of telerobotics; as a research based test bed having an experimental demonstration orientation with limited assembly and servicing applications; or as an operational system to augment EVA and to aid construction of the Space Station and to reduce the program (schedule) risk by increasing the flexibility of mission operations.
Requirements for a mobile communications satellite system. Volume 2: Technical report
NASA Technical Reports Server (NTRS)
Horstein, M.
1983-01-01
Three types of satellite aided mobile communications are considered for users in areas not served by (terrestrial) cellular radio systems. In system 1, mobile units are provided a direct satellite link to a gateway station, which serves as the interface to the terrestrial toll network. In system 2, a terrestrial radio link similar to those in cellular systems connects the mobile unit to a translator station; each translator relays the traffic from mobile units in its vicinity, via satellite, to the regional gateway. It is not feasible for system 2 to provide obiquitous coverage. Therefore, system 3 is introduced, in which the small percentage of users not within range of a translator are provided a direct satellite link as in system 1.
NASA Astrophysics Data System (ADS)
Retscher, G.
2017-09-01
Positioning of mobile users in indoor environments with Wireless Fidelity (Wi-Fi) has become very popular whereby location fingerprinting and trilateration are the most commonly employed methods. In both the received signal strength (RSS) of the surrounding access points (APs) are scanned and used to estimate the user's position. Within the scope of this study the advantageous qualities of both methods are identified and selected to benefit their combination. By a fusion of these technologies a higher performance for Wi-Fi positioning is achievable. For that purpose, a novel approach based on the well-known Differential GPS (DGPS) principle of operation is developed and applied. This approach for user localization and tracking is termed Differential Wi-Fi (DWi-Fi) by analogy with DGPS. From reference stations deployed in the area of interest differential measurement corrections are derived and applied at the mobile user side. Hence, range or coordinate corrections can be estimated from a network of reference station observations as it is done in common CORS GNSS networks. A low-cost realization with Raspberry Pi units is employed for these reference stations. These units serve at the same time as APs broadcasting Wi-Fi signals as well as reference stations scanning the receivable Wi-Fi signals of the surrounding APs. As the RSS measurements are carried out continuously at the reference stations dynamically changing maps of RSS distributions, so-called radio maps, are derived. Similar as in location fingerprinting this radio maps represent the RSS fingerprints at certain locations. From the areal modelling of the correction parameters in combination with the dynamically updated radio maps the location of the user can be estimated in real-time. The novel approach is presented and its performance demonstrated in this paper.
Waterman, Stephen H; Escobedo, Miguel; Wilson, Todd; Edelson, Paul J; Bethel, Jeffrey W; Fishbein, Daniel B
2009-01-01
The Institute of Medicine (IOM) report Quarantine Stations at Ports of Entry: Protecting the Public's Health focused almost exclusively on U.S. airports and seaports, which served 106 million entries in 2005. IOM concluded that the primary function of these quarantine stations (QSs) should shift from providing inspection to providing strategic national public health leadership. The large expanse of our national borders, large number of crossings, sparse federal resources, and decreased regulation regarding conveyances crossing these borders make land borders more permeable to a variety of threats. To address the health challenges related to land borders, the QSs serving such borders must assume unique roles and partnerships to achieve the strategic leadership and public health research roles envisioned by the IOM. In this article, we examine how the IOM recommendations apply to the QSs that serve the land borders through which more than 319 million travelers, immigrants, and refugees entered the U.S. in 2005.
Okokon, Enembe Oku; Roivainen, Päivi; Kheifets, Leeka; Mezei, Gabor; Juutilainen, Jukka
2014-01-01
Previous studies have shown that populations of multiapartment buildings with indoor transformer stations may serve as a basis for improved epidemiological studies on the relationship between childhood leukaemia and extremely-low-frequency (ELF) magnetic fields (MFs). This study investigated whether classification based on structural characteristics of the transformer stations would improve ELF MF exposure assessment. The data included MF measurements in apartments directly above transformer stations ("exposed" apartments) in 30 buildings in Finland, and reference apartments in the same buildings. Transformer structural characteristics (type and location of low-voltage conductors) were used to classify exposed apartments into high-exposure (HE) and intermediate-exposure (IE) categories. An exposure gradient was observed: both the time-average MF and time above a threshold (0.4 μT) were highest in the HE apartments and lowest in the reference apartments, showing a statistically significant trend. The differences between HE and IE apartments, however, were not statistically significant. A simulation exercise showed that the three-category classification did not perform better than a two-category classification (exposed and reference apartments) in detecting the existence of an increased risk. However, data on the structural characteristics of transformers is potentially useful for evaluating exposure-response relationship.
NASA Technical Reports Server (NTRS)
1990-01-01
NASA's Space Station Freedom Program (SSFP) planning efforts have identified a need for a payload training simulator system to serve as both a training facility and as a demonstrator to validate operational concepts. The envisioned MSFC Payload Training Complex (PTC) required to meet this need will train the Space Station payload scientists, station scientists, and ground controllers to operate the wide variety of experiments that will be onboard the Space Station Freedom. The Simulation Computer System (SCS) is the computer hardware, software, and workstations that will support the Payload Training Complex at MSFC. The purpose of this SCS Study is to investigate issues related to the SCS, alternative requirements, simulator approaches, and state-of-the-art technologies to develop candidate concepts and designs.
Space Station Simulation Computer System (SCS) study for NASA/MSFC. Phased development plan
NASA Technical Reports Server (NTRS)
1990-01-01
NASA's Space Station Freedom Program (SSFP) planning efforts have identified a need for a payload training simulator system to serve as both a training facility and as a demonstrator to validate operational concepts. The envisioned MSFC Payload Training Complex (PTC) required to meet this need will train the Space Station payload scientists, station scientists and ground controllers to operate the wide variety of experiments that will be onboard the Space Station Freedom. The Simulation Computer System (SCS) is made up of computer hardware, software, and workstations that will support the Payload Training Complex at MSFC. The purpose of this SCS Study is to investigate issues related to the SCS, alternative requirements, simulator approaches, and state-of-the-art technologies to develop candidate concepts and designs.
NASA Technical Reports Server (NTRS)
1990-01-01
NASA's Space Station Freedom Program (SSFP) planning efforts have identified a need for a payload training simulator system to serve as both a training facility and as a demonstrator to validate operational concepts. The envisioned MSFC Payload Training Complex (PTC) required to meet this need will train the Space Station payload scientists, station scientists, and ground controllers to operate the wide variety of experiments that will be onboard the Space Station Freedom. The Simulation Computer System (SCS) is made up of the computer hardware, software, and workstations that will support the Payload Training Complex at MSFC. The purpose of this SCS Study is to investigate issues related to the SCS, alternative requirements, simulator approaches, and state-of-the-art technologies to develop candidate concepts and designs.
Space Station Simulation Computer System (SCS) study for NASA/MSFC. Operations concept report
NASA Technical Reports Server (NTRS)
1990-01-01
NASA's Space Station Freedom Program (SSFP) planning efforts have identified a need for a payload training simulator system to serve as both a training facility and as a demonstrator to validate operational concepts. The envisioned MSFC Payload Training Complex (PTC) required to meet this need will train the Space Station payload scientists, station scientists, and ground controllers to operate the wide variety of experiments that will be onboard the Space Station Freedom. The Simulation Computer System (SCS) is made up of computer hardware, software, and workstations that will support the Payload Training Complex at MSFC. The purpose of this SCS Study is to investigate issues related to the SCS, alternative requirements, simulator approaches, and state-of-the-art technologies to develop candidate concepts and designs.
Selected tether applications in space: An analysis of five selected concepts
NASA Technical Reports Server (NTRS)
1984-01-01
Ground rules and assumptions; operations; orbit considerations/dynamics; tether system design and dynamics; functional requirements; hardware concepts; and safety factors are examined for five scenarios: tethered effected separation of an Earth bound shuttle from the space station; tether effected orbit boost of a spacecraft (AXAF) into its operational orbit from the shuttle; an operational science/technology platform tether deployed from space station; a tether mediated rendezvous involving an OMV tether deployed from space station to rendezvous with an aerobraked OTV returning to geosynchronous orbit from a payload delivery mission; and an electrodynamic tether used in a dual motor/generator mode to serve as the primary energy storage facility for space station.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weeks, R.; Briggs, M.; Gyenes, L.
A study carried out to assist the design of an infrastructure for refuelling battery electric cars is described. A one-week survey by questionnaire of all filling stations in the area yielded estimates of petrol sales at individual stations together with number of customers served and quantities purchased per customer. A computer simulation of traffic flow attempted to predict weekly petrol sales in nine sectors of the town. A one-day count of traffic and petrol buyers at a single filling station was related to the traffic flows in the whole town to give a typical daily pattern of petrol buyers. Finallymore » a simulation procedure was developed to investigate the effects of demand on queue length at battery exchange stations.« less
Development of a car-borne γ-ray survey system, KURAMA
NASA Astrophysics Data System (ADS)
Tanigaki, M.; Okumura, R.; Takamiya, K.; Sato, N.; Yoshino, H.; Yamana, H.
2013-10-01
A compact radiometric survey system, named KURAMA (Kyoto University RAdiation MApping system), has been developed as a response to the nuclear disaster of Fukushima Daiichi nuclear power plant. KURAMA is based on GPS (Global Positioning System) and network technology, and intended for the realtime data accumulation of multiple mobile monitoring stations, such as monitoring cars. KURAMA now serves for the car-borne surveys in Fukushima and surrounding prefectures by the Japanese Government and local authorities. An outline of KURAMA and discussions on car-borne γ-ray surveys using KURAMA are introduced.
2017-06-09
Institutes of Health OCONUS Outside the Continental United States PCS Permanent Change of Station PEB Physical Evaluation Board PEP Post-Exposure...a Physical Evaluation Board (PEB) (DA 2014a 14; DA 2016, 23). “For Active Army Soldiers and RC Soldiers on active duty for more than 30 days...based upon the information from the MEB (Kem 2017). This includes assessing if the Soldier is physically capable of performing their MOS duties and
Crew Member Interface with Space Station Furnace Facility
NASA Technical Reports Server (NTRS)
Cash, Martha B.
1997-01-01
The Space Station Furnace Facility (SSFF) is a facility located in the International Space Station United States Laboratory (ISS US Lab) for materials research in the microgravity environment. The SSFF will accommodate basic research, commercial applications, and studies of phenomena of metals and alloys, electronic and photonic materials, and glasses and ceramics. To support this broad base of research requirements, the SSFF will operate, regulate, and support a variety of Experiment Modules (EMs). To meet station requirements concerning the microgravity level needed for experiments, station is providing an active vibration isolation system, and SSFF provides the interface. SSFF physically consists of a Core Rack and two instrument racks (IRs) that occupy three adjacent ISS US Lab rack locations within the International Space Station (ISS). All SSFF racks are modified International Standard Payload Racks (ISPR). SSFF racks will have a 50% larger pass through area on the lower sides than ISPRs to accommodate the many rack to rack interconnections. The Instrument Racks are further modified with lowered floors and an additional removable panel (15" x 22") on top of the rack for access if needed. The Core Rack shall contain all centralized Core subsystems and ISS subsystem equipment. The two Instrument Racks shall contain the distributed Core subsystem equipment, ISS subsystem equipment, and the EMs. The Core System, which includes the Core Rack, the IR structures, and subsystem components located in the IRs serves as the central control and management for the IRs and the EMs. The Core System receives the resources provided by the International Space Station (ISS) and modifies, allocates, and distributes these resources to meet the operational requirements of the furnace. The Core System is able to support a total of four EMs and can control, support, and activate/deactivate the operations of two EMs, simultaneously. The IRs can be configured to house two small EMs or one tall vertical EM, and serve as the interface between the Core and the respective EM. The Core Rack and an adjacent Instrument Rack (containing one or more furnaces) will be delivered to the ISS in one launch. This is Integrated Configuration One (ICI). The Core Rack and IRI will be passive during transport in the Mini Pressurized Logistics Module (MPLM): Any subsequent EMs to operate within IRI are installed on-orbit. The second IR (containing one or more furnaces) is delivered to ISS on a subsequent launch which will establish Integrated Configuration Two (IC2). Additional integrated configurations will be established with the replacement of EMs or Instrument Racks.
Semipermanent GPS (SPGPS) as a volcano monitoring tool: Rationale, method, and applications
Dzurisin, Daniel; Lisowski, Michael; Wicks, Charles W.
2017-01-01
Semipermanent GPS (SPGPS) is an alternative to conventional campaign or survey-mode GPS (SGPS) and to continuous GPS (CGPS) that offers several advantages for monitoring ground deformation. Unlike CGPS installations, SPGPS stations can be deployed quickly in response to changing volcanic conditions or earthquake activity such as a swarm or aftershock sequence. SPGPS networks can be more focused or more extensive than CGPS installations, because SPGPS equipment can be moved from station to station quickly to increase the total number of stations observed in a given time period. SPGPS networks are less intrusive on the landscape than CGPS installations, which makes it easier to satisfy land-use restrictions in ecologically sensitive areas. SPGPS observations are preferred over SGPS measurements because they provide better precision with only a modest increase in the amount of time, equipment, and personnel required in the field. We describe three applications of the SPGPS method that demonstrate its utility and flexibility. At the Yellowstone caldera, Wyoming, a 9-station SPGPS network serves to densify larger preexisting networks of CGPS and SGPS stations. At the Three Sisters volcanic center, Oregon, a 14-station SPGPS network complements an SGPS network and extends the geographic coverage provided by 3 CGPS stations permitted under wilderness land-use restrictions. In the Basin and Range province in northwest Nevada, a 6-station SPGPS network has been established in response to a prolonged earthquake swarm in an area with only sparse preexisting geodetic coverage. At Three Sisters, the estimated precision of station velocities based on annual ~ 3 month summertime SPGPS occupations from 2009 to 2015 is approximately half that for nearby CGPS stations. Conversely, SPGPS-derived station velocities are about twice as precise as those based on annual ~ 1 week SGPS measurements. After 5 years of SPGPS observations at Three Sisters, the precision of velocity determinations is estimated to be 0.5 mm/yr in longitude, 0.6 mm/yr in latitude, and 0.8 mm/yr in height. We conclude that an optimal approach to monitoring volcano deformation includes complementary CGPS and SPGPS networks, periodic InSAR observations, and measurements from in situ borehole sensors such as tiltmeters or strainmeters. This comprehensive approach provides the spatial and temporal detail necessary to adequately characterize a complex and evolving deformation pattern. Such information is essential to multi-parameter models of magmatic or tectonic processes that can help to guide research efforts, and also to inform hazards assessments and land-use planning decisions.
Semipermanent GPS (SPGPS) as a volcano monitoring tool: Rationale, method, and applications
NASA Astrophysics Data System (ADS)
Dzurisin, Daniel; Lisowski, Michael; Wicks, Charles W.
2017-09-01
Semipermanent GPS (SPGPS) is an alternative to conventional campaign or survey-mode GPS (SGPS) and to continuous GPS (CGPS) that offers several advantages for monitoring ground deformation. Unlike CGPS installations, SPGPS stations can be deployed quickly in response to changing volcanic conditions or earthquake activity such as a swarm or aftershock sequence. SPGPS networks can be more focused or more extensive than CGPS installations, because SPGPS equipment can be moved from station to station quickly to increase the total number of stations observed in a given time period. SPGPS networks are less intrusive on the landscape than CGPS installations, which makes it easier to satisfy land-use restrictions in ecologically sensitive areas. SPGPS observations are preferred over SGPS measurements because they provide better precision with only a modest increase in the amount of time, equipment, and personnel required in the field. We describe three applications of the SPGPS method that demonstrate its utility and flexibility. At the Yellowstone caldera, Wyoming, a 9-station SPGPS network serves to densify larger preexisting networks of CGPS and SGPS stations. At the Three Sisters volcanic center, Oregon, a 14-station SPGPS network complements an SGPS network and extends the geographic coverage provided by 3 CGPS stations permitted under wilderness land-use restrictions. In the Basin and Range province in northwest Nevada, a 6-station SPGPS network has been established in response to a prolonged earthquake swarm in an area with only sparse preexisting geodetic coverage. At Three Sisters, the estimated precision of station velocities based on annual 3 month summertime SPGPS occupations from 2009 to 2015 is approximately half that for nearby CGPS stations. Conversely, SPGPS-derived station velocities are about twice as precise as those based on annual 1 week SGPS measurements. After 5 years of SPGPS observations at Three Sisters, the precision of velocity determinations is estimated to be 0.5 mm/yr in longitude, 0.6 mm/yr in latitude, and 0.8 mm/yr in height. We conclude that an optimal approach to monitoring volcano deformation includes complementary CGPS and SPGPS networks, periodic InSAR observations, and measurements from in situ borehole sensors such as tiltmeters or strainmeters. This comprehensive approach provides the spatial and temporal detail necessary to adequately characterize a complex and evolving deformation pattern. Such information is essential to multi-parameter models of magmatic or tectonic processes that can help to guide research efforts, and also to inform hazards assessments and land-use planning decisions.
Operation of hydrologic data collection stations by the U.S. Geological Survey in 1987
Condes de la Torre, Alberto
1987-01-01
The U.S. Geological Survey operates hydrologic data collection stations nationwide which serve the needs of all levels of government, the private sector, and the general public, for water resources information. During fiscal year 1987, surface water discharge was determined at 10,624 stations; stage data on streams, reservoirs, and lakes were recorded at 1,806 stations; and various surface water quality characteristics were determined at 2,901 stations. In addition, groundwater levels were measured at 32,588 stations, and the quality of groundwater was determined at 9,120 stations. Data on sediment were collected daily at 174 stations and on a periodic basis at 878 stations. Information on precipitation quantity was collected at 909 stations, and the quality of precipitation was analyzed at 78 stations. Data collection platforms for satellite telemetry of hydrologic information were used at 2,292 Geological Survey stations. Funding for the hydrologic stations was derived, either solely or from a combination, from three major sources - the Geological Survey 's Federal Program appropriation, the Federal-State Cooperative Program, and reimbursements from other Federal agencies. The number of hydrologic stations operated by the Geological Survey declined from fiscal year 1983 to 1987. The number of surface water discharge stations were reduced by 452 stations; surface water quality stations declined by 925 stations; groundwater level stations declined by 1,051 stations; while groundwater quality stations increased by 1,472 stations. (Author 's abstract)
NASA Technical Reports Server (NTRS)
Stuhr, F. V.; Kent, S. S.; Galvez, J. L.; Luaces, B. G.; Pasero, G. R.; Urech, J. M.
1976-01-01
In support of the ongoing NASA-European Space Agency (ESA) effort to understand and control possible interference between missions, testing was conducted at the Madrid Deep Space Station from July 1975 to February 1976 to characterize the effect on Viking 1975 telecommunication link performance of Geodetic Earth-Orbiting Satellite (GEOS) downlink signals. The prime use of the data was to develop a capability to predict GEOS interference effects for evaluation of Viking 1975 mission impacts and possible temporary GEOS shutdown. Also, the data would serve as a basis for assessment of the GEOS impact on missions other than Viking as well as for more general interference applications. Performances of the reference receiver, telemetry, and planetary ranging were measured in the presence of various types of GEOS-related interference, including an unmodulated GEOS carrier and simulation of the actual spectrum by an ESA-supplied GEOS suitcase model.
Operational development of small plant growth systems
NASA Technical Reports Server (NTRS)
Scheld, H. W.; Magnuson, J. W.; Sauer, R. L.
1986-01-01
The results of a study undertaken on the first phase of an empricial effort in the development of small plant growth chambers for production of salad type vegetables on space shuttle or space station are discussed. The overall effort is visualized as providing the underpinning of practical experience in handling of plant systems in space which will provide major support for future efforts in planning, design, and construction of plant-based (phytomechanical) systems for support of human habitation in space. The assumptions underlying the effort hold that large scale phytomechanical habitability support systems for future space stations must evolve from the simple to the complex. The highly complex final systems will be developed from the accumulated experience and data gathered from repetitive tests and trials of fragments or subsystems of the whole in an operational mode. These developing system components will, meanwhile, serve a useful operational function in providing psychological support and diversion for the crews.
2012-07-10
ISS039-S-001 (April 2013) --- Increment 39 of the International Space Station Program marks the 15th year of operation since the start of the space laboratory assembly. Today, the U.S., Russia, Japan, Canada and the European Space Agency are partnering in the operation of the largest ever orbital outpost managed by humankind. The names of the six crew members are depicted in their native languages. For Expedition 39, the Soyuz spacecraft serves as transport vehicle for the crew members to and from the station. During this expedition, the ISS will serve as a platform for scientific research, Earth and astronomical observation, education, as well as a stage for the development of new technologies used for the exploration beyond low Earth orbit. The star above the complex signifies human space exploration towards new frontiers. The crew members added these words: "The crew of Expedition 39 is proud to serve the international community in furthering our scientific knowledge and in expanding human presence in space." Photo credit: NASA The NASA insignia design for shuttle and space station flights is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the form of illustrations by the various news media. When and if there is any change in this policy, which is not anticipated, it will be publicly announced.
2012-09-17
Expedition 32 NASA Flight Engineer Joe Acaba is helped from a Russian Search and Rescue all terrain vehicle (ATV) to his helicopter after he and Expedition 32 Commander Gennady Padalka and Flight Engineer Sergei Revin returned from the International Space Station on Monday, Sept. 17, 2012. Acaba, Padalka and Revin returned from five months onboard the International Space Station where they served as members of the Expedition 31 and 32 crews. Photo Credit: (NASA/Carla Cioffi)
2012-09-17
Expedition 32 NASA Flight Engineer Joe Acaba is helped from a Russian Search and Rescue all terrain vehicle (ATV) after he and Expedition 32 Commander Gennady Padalka and Flight Engineer Sergei Revin returned from the International Space Station on Monday, Sept. 17, 2012. Acaba, Padalka and Revin returned from five months onboard the International Space Station where they served as members of the Expedition 31 and 32 crews. Photo Credit: (NASA/Carla Cioffi)
2017-09-08
Expedition 52, as simple as 1-2-3: the first International Space Station science officer who was also the second woman to serve as a station crewmember has now finished her third long-duration mission…and that’s just for starters. Last week’s crew return to Earth puts Expedition 52 in the record books; we peeked inside and pulled out some of the best numbers to sum up the flight.
2004-02-10
KENNEDY SPACE CENTER, FLA. - The Multi-Purpose Logistics Module Raffaello moves away from its stand in the Space Station Processing Facility. Raffaello is the second MPLM built by the Italian Space Agency, serving as a reusable logistics carrier and primary delivery system to resupply and return station cargo requiring a pressurized environment. It is being moved to allow the third MPLM, Donatello, to be brought in for routine testing. Donatello has been stored in the Operations and Checkout Building. This is the first time all three MPLMs are in the SSPF; the other one is the Leonardo. Raffaello is scheduled to fly on Space Shuttle Atlantis on mission STS-114.
2004-02-13
KENNEDY SPACE CENTER, FLA. - Overhead cables carry the Multi-Purpose Logistics Module Donatello from the payload canister (lower right) to a work stand in the Space Station Processing Facility. Previously housed in the Operations and Checkout Building, Donatello was brought into the SSPF for routine testing. This is the first time all three MPLMs (Donatello, Raffaello and Leonardo) are in the SSPF. The MPLMs were built by the Italian Space Agency, to serve as reusable logistics carriers and the primary delivery system to resupply and return station cargo requiring a pressurized environment. The third MPLM, Raffaello is scheduled to fly on Space Shuttle Atlantis on mission STS-114.
2004-02-10
KENNEDY SPACE CENTER, FLA. - Workers in the Space Station Processing Facility secure the Multi-Purpose Logistics Module Raffaello onto a new work stand. Raffaello is the second MPLM built by the Italian Space Agency, serving as a reusable logistics carrier and primary delivery system to resupply and return station cargo requiring a pressurized environment. It has been moved to allow the third MPLM, Donatello, to be brought in for routine testing. Donatello has been stored in the Operations and Checkout Building. This is the first time all three MPLMs are in the SSPF; the other one is the Leonardo. Raffaello is scheduled to fly on Space Shuttle Atlantis on mission STS-114.
2004-02-13
KENNEDY SPACE CENTER, FLA. - Workers on the floor of the Space Station Processing Facility watch as overhead cables carry the Multi-Purpose Logistics Module Donatello to a work stand. Previously housed in the Operations and Checkout Building, Donatello was brought into the SSPF for routine testing. This is the first time all three MPLMs (Donatello, Raffaello and Leonardo) are in the SSPF. The MPLMs were built by the Italian Space Agency, to serve as reusable logistics carriers and the primary delivery system to resupply and return station cargo requiring a pressurized environment. The third MPLM, Raffaello is scheduled to fly on Space Shuttle Atlantis on mission STS-114.
Mohammed, Ibrahim Nourein; Bolten, John D; Srinivasan, Raghavan; Lakshmi, Venkat
2018-06-01
Multiple satellite-based earth observations and traditional station data along with the Soil & Water Assessment Tool (SWAT) hydrologic model were employed to enhance the Lower Mekong River Basin region's hydrological decision support system. A nearest neighbor approximation methodology was introduced to fill the Integrated Multi-satellite Retrieval for the Global Precipitation Measurement mission (IMERG) grid points from 2001 to 2014, together with the Tropical Rainfall Measurement Mission (TRMM) data points for continuous precipitation forcing for our hydrological decision support system. A software tool to access and format satellite-based earth observation systems of precipitation and minimum and maximum air temperatures was developed and is presented. Our results suggest that the model-simulated streamflow utilizing TRMM and IMERG forcing data was able to capture the variability of the observed streamflow patterns in the Lower Mekong better than model-simulated streamflow with in-situ precipitation station data. We also present satellite-based and in-situ precipitation adjustment maps that can serve to correct precipitation data for the Lower Mekong region for use in other applications. The inconsistency, scarcity, poor spatial representation, difficult access and incompleteness of the available in-situ precipitation data for the Mekong region make it imperative to adopt satellite-based earth observations to pursue hydrologic modeling.
Mohammed, Ibrahim Nourein; Bolten, John D.; Srinivasan, Raghavan; Lakshmi, Venkat
2018-01-01
Multiple satellite-based earth observations and traditional station data along with the Soil & Water Assessment Tool (SWAT) hydrologic model were employed to enhance the Lower Mekong River Basin region’s hydrological decision support system. A nearest neighbor approximation methodology was introduced to fill the Integrated Multi-satellite Retrieval for the Global Precipitation Measurement mission (IMERG) grid points from 2001 to 2014, together with the Tropical Rainfall Measurement Mission (TRMM) data points for continuous precipitation forcing for our hydrological decision support system. A software tool to access and format satellite-based earth observation systems of precipitation and minimum and maximum air temperatures was developed and is presented. Our results suggest that the model-simulated streamflow utilizing TRMM and IMERG forcing data was able to capture the variability of the observed streamflow patterns in the Lower Mekong better than model-simulated streamflow with in-situ precipitation station data. We also present satellite-based and in-situ precipitation adjustment maps that can serve to correct precipitation data for the Lower Mekong region for use in other applications. The inconsistency, scarcity, poor spatial representation, difficult access and incompleteness of the available in-situ precipitation data for the Mekong region make it imperative to adopt satellite-based earth observations to pursue hydrologic modeling. PMID:29938116
2009-03-20
ISS018-E-041334 (20 March 2009) --- Expedition 18 crewmembers pose for a group photo in the Harmony node of the International Space Station while Space Shuttle Discovery (STS-119) remains docked with the station. From the left (front row) are cosmonaut Yury Lonchakov and Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, both flight engineers. From the left (back row) are NASA astronauts Sandra Magnus, STS-119 mission specialist, and Michael Fincke, commander. Magnus flew to the station on STS-126 to serve as a flight engineer for Expedition 18, and will return to Earth as mission specialist with the STS-119 crew.
2007-04-17
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, Scott Higginbotham, payload manager for the International Space Station, stands in front of the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module. The module will be delivered to the space station on mission STS-123. Earlier, NASA and Japanese Aerospace and Exploration Agency (JAXA) officials welcomed the arrival of the logistics module. The module will serve as an on-orbit storage area for materials, tools and supplies. It can hold up to eight experiment racks and will attach to the top of another larger pressurized module. Photo credit: NASA/George Shelton
KSC Space Station Operations Language (SSOL)
NASA Technical Reports Server (NTRS)
1985-01-01
The Space Station Operations Language (SSOL) will serve a large community of diverse users dealing with the integration and checkout of Space Station modules. Kennedy Space Center's plan to achieve Level A specification of the SSOL system, encompassing both its language and its automated support environment, is presented in the format of a briefing. The SSOL concept is a collection of fundamental elements that span languages, operating systems, software development, software tools and several user classes. The approach outlines a thorough process that combines the benefits of rapid prototyping with a coordinated requirements gathering effort, yielding a Level A specification of the SSOL requirements.
Laboratory racks are installed in the MPLM Leonardo
NASA Technical Reports Server (NTRS)
2000-01-01
Workers in the Space Station Processing Facility watch as a laboratory rack moves into the Multi-Purpose Logistics Module Leonardo. The MPLM is the first of three such pressurized modules that will serve as the International Space Station's '''moving vans,''' carrying laboratory racks filled with equipment, experiments and supplies to and from the Space Station aboard the Space Shuttle. Leonardo will be launched March 1, 2001, on Shuttle mission STS-102 On that flight, Leonardo will be filled with equipment and supplies to outfit the U.S. laboratory module, being carried to the ISS on the Jan. 19, 2001, launch of STS-98.
NASA Astrophysics Data System (ADS)
Eakins, J. A.; Vernon, F.; Astiz, L.; Davis, G. A.; Reyes, J. C.; Martynov, V. G.; Tytell, J.; Cox, T. A.; Meyer, J.
2013-12-01
Since 2004, the Array Network Facility (ANF) has been responsible for generation and delivery of the metadata as well as collection and initial quality control and the transmission of the seismic, and more recently infrasound and meteorological data, for the Earthscope USArray Transportable Array. As of August 2013, we have managed data from over 1600 stations. Personnel at the ANF provide immediate eyes on the data to improve quality control as well as interact with the individual stations via calibrations, mass recentering, baler data retrieval and event analysis. Web-based tools have been developed, and rewritten over the years, to serve the needs of both station engineers and the public. Many lessons on the needs for scalability have been learned. Analysts continue to review all seismic events recorded on 7 or more TA stations making associations against externally available bulletins and/or generating ANF authored locations which are available at both the ANF and IRIS-DMC. The US Array pressure data have several unique characteristics that are allowing us to conduct a rigorous analysis of the spatio-temporal variations in the pressure field on time scales of less than an hour across the eastern United States. With the installation of the infrasound and atmospheric pressure sensors, starting in 2010, observations of gust fronts, near misses of tornados at individual stations, and of the mesoscale gravity waves showing the value and utility of the US Array pressure data will be presented.
International Space Station (ISS)
2001-02-01
These 10 astronauts and cosmonauts represent the base STS-102 space travelers, as well as the crew members for the station crews switching out turns aboard the outpost. Those astronauts wearing orange represent the STS-102 crew members. In the top photo, from left to right are: James M. Kelly, pilot; Andrew S.W. Thomas, mission specialist; James D. Wetherbee, commander; and Paul W. Richards, mission specialist. The group pictured in the lower right portion of the portrait are STS-members as well as Expedition Two crew members (from left): mission specialist and flight engineer James S. Voss; cosmonaut Yury V. Usachev, Expedition Two Commander; and mission specialist and flight engineer Susan Helms. The lower left inset are the 3 man crew of Expedition One (pictured from left): Cosmonaut Sergei K. Krikalev, flight engineer; astronaut William M. (Bill) Shepherd, commander; and cosmonaut Yuri P. Gidzenko, Soyuz commander. The main objective of the STS-102 mission was the first Expedition Crew rotation and the primary cargo was the Leonardo, the Italian Space Agency-built Multipurpose Logistics Module (MPLM). The Leonardo MPLM is the first of three such pressurized modules that will serve as the International Space Station's (ISS') moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. NASA's 103rd overall mission and the 8th Space Station Assembly Flight, STS-102 mission launched on March 8, 2001 aboard the Space Shuttle Orbiter Discovery.
Orion Navigation Sensitivities to Ground Station Infrastructure for Lunar Missions
NASA Technical Reports Server (NTRS)
Getchius, Joel; Kukitschek, Daniel; Crain, Timothy
2008-01-01
The Orion Crew Exploration Vehicle (CEV) will replace the Space Shuttle and serve as the next-generation spaceship to carry humans to the International Space Station and back to the Moon for the first time since the Apollo program. As in the Apollo and Space Shuttle programs, the Mission Control Navigation team will utilize radiometric measurements to determine the position and velocity of the CEV. In the case of lunar missions, the ground station infrastructure consisting of approximately twelve stations distributed about the Earth and known as the Apollo Manned Spaceflight Network, no longer exists. Therefore, additional tracking resources will have to be allocated or constructed to support mission operations for Orion lunar missions. This paper examines the sensitivity of Orion navigation for lunar missions to the number and distribution of tracking sites that form the ground station infrastructure.
2009-06-07
ISS020-E-007383 (FOR RELEASE 21 JULY 2009) --- A moon rock brought to Earth by Apollo 11, humans? first landing on the moon in July 1969, is shown as it floats aboard the International Space Station. Part of Earth and a section of a station solar panel can be seen through the window. The 3.6 billion year-old lunar sample was flown to the station aboard Space Shuttle mission STS-119 in April 2009 in honor of the July 2009 40th anniversary of the historic first moon landing. The rock, lunar sample 10072, was flown to the station to serve as a symbol of the nation?s resolve to continue the exploration of space. It will be returned on shuttle mission STS-128 to be publicly displayed.
Halfway point of the one year mission on This Week @NASA – September 18, 2015
2015-09-18
Sept. 15 marked the halfway point in the yearlong mission on the International Space Station with NASA astronaut Scott Kelly and Russian cosmonaut Mikhail Kornienko. An event the day before at the National Press Club in Washington included a discussion about the biomedical research conducted on the station, to help formulate future human missions to Mars. Kelly participated from the space station. His identical twin, retired NASA astronaut Mark Kelly, and NASA astronaut Terry Virts, who served as commander of Expedition 43, participated from the press club. Also, I spy the space station: Live!, Expedition 43 post-flight visit, Key milestone for Orion spacecraft, Global ocean on Enceladus, Connecting space to village and more!
International Space Station (ISS)
2001-03-11
STS-102 mission astronaut Susan J. Helms works outside the International Space Station (ISS) while holding onto a rigid umbilical and her feet anchored to the Remote Manipulator System (RMS) robotic arm on the Space Shuttle Discovery during the first of two space walks. During this space walk, the longest to date in space shuttle history, Helms in tandem with James S. Voss (out of frame), prepared the Pressurized Mating Adapter 3 for repositioning from the Unity Module's Earth-facing berth to its port-side berth to make room for the Leonardo Multipurpose Logistics Module (MPLM) supplied by the Italian Space Agency. The Leonardo MPLM is the first of three such pressurized modules that will serve as the ISS's moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. Launched on May 8, 2001 for nearly 13 days in space, STS-102 mission was the 8th spacecraft assembly flight to the ISS and NASA's 103rd overall mission. The mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.
International Space Station (ISS)
2001-03-11
STS-102 astronaut and mission specialist James S. Voss works outside Destiny, the U.S. Laboratory (shown in lower frame) on the International Space Station (ISS), while anchored to the Remote Manipulator System (RMS) robotic arm on the Space Shuttle Discovery during the first of two space walks. During this space walk, the longest to date in space shuttle history, Voss in tandem with Susan Helms (out of frame), prepared the Pressurized Mating Adapter 3 for repositioning from the Unity Module's Earth-facing berth to its port-side berth to make room for the Leonardo Multipurpose Logistics Module (MPLM) supplied by the Italian Space Agency. The The Leonardo MPLM is the first of three such pressurized modules that will serve as the ISS' moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. Launched on May 8, 2001 for nearly 13 days in space, the STS-102 mission was the 8th spacecraft assembly flight to the ISS and NASA's 103rd overall mission. The mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.
2000-05-02
The preliminary design for the Space Experiment Research and Processing Laboratory (SERPL) at Kennedy Space Center is shown in this artist's rendition. The SERPL is a planned 100,000-square-foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for a planned 400-acre Space Station Commerce Park
Astrobee: Space Station Robotic Free Flyer
NASA Technical Reports Server (NTRS)
Provencher, Chris; Bualat, Maria G.; Barlow, Jonathan; Fong, Terrence W.; Smith, Marion F.; Smith, Ernest E.; Sanchez, Hugo S.
2016-01-01
Astrobee is a free flying robot that will fly inside the International Space Station and primarily serve as a research platform for robotics in zero gravity. Astrobee will also provide mobile camera views to ISS flight and payload controllers, and collect various sensor data within the ISS environment for the ISS Program. Astrobee consists of two free flying robots, a dock, and ground data system. This presentation provides an overview, high level design description, and project status.
Stowage bags in FGB/Zarya module
2005-07-31
S114-E-5945 (31 July 2005) --- This scene in Zarya, the functional cargo block for the International Space Station, serves witness to the primary current emphasis onboard the orbital outpost. Transfers of additional water and supplies to the International Space Station continues on this Sunday as the crew aboard Space Shuttle Discovery begins Flight Day 6. Cosmonaut Sergei Krikalev of Russia's Federal Space Agency can be seen at the far end of the cluttered hallway.
NASA Technical Reports Server (NTRS)
Wiley, Lowell F.
1985-01-01
A work breakdown structure for the Space Station Life Sciences Research Facility (LSRF) is presented up to level 5. The purpose is to provide the framework for task planning and control and to serve as a basis for budgeting, task assignment, cost collection and report, and contractual performance measurement and tracking of the Full Scale Development Phase tasks.
Code of Federal Regulations, 2010 CFR
2010-07-01
... transferred to/from Alaska or Hawaii? 302-3.515 Section 302-3.515 Public Contracts and Property Management... transferred to/from Alaska or Hawaii? The following rules apply: (a) If on September 8, 1982 the employee was serving or committed to serve a tour of duty in Alaska or Hawaii then the employee shall continue to...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Behrend, Dirk; Imfeld, Hans L.; /SLAC
2005-08-17
The Alignment Engineering Group (AEG) makes use of GPS technology for fulfilling part of its above ground surveying tasks at SLAC since early 2002. A base station (SLAC M40) has been set up at a central location of the SLAC campus serving both as master station for real-time kinematic (RTK) operations and as datum point for local GPS campaigns. The Leica RS500 system is running continuously and the GPS data are collected both externally (logging PC) and internally (receiver flashcard). The external logging is facilitated by a serial to Ethernet converter and an Ethernet connection at the station. Internal loggingmore » (ring buffer) is done for data security purposes. The weatherproof boxes for the instrumentation are excellent shelters against rain and wind, but do heat up considerably in sun light. Whereas the GPS receiver showed no problems, the Pacific Crest PDL 35 radio shut down several times due to overheating disrupting the RTK operations. In order to prevent heat-induced shutdowns, a protection against direct sun exposure (shading) and a constant air circulation system (ventilation) were installed. As no further shutdowns have occurred so far, it appears that the two measures successfully mended the heat problem.« less
International Space Station (ISS)
2001-02-01
In the grasp of the Shuttle's Remote Manipulator System (RMS) robot arm, the U.S. Laboratory, Destiny, is moved from its stowage position in the cargo bay of the Space Shuttle Atlantis. This photograph was taken by astronaut Thomas D. Jones during his Extravehicular Activity (EVA). The American-made Destiny module is the cornerstone for space-based research aboard the orbiting platform and the centerpiece of the International Space Station (ISS), where unprecedented science experiments will be performed in the near-zero gravity of space. Destiny will also serve as the command and control center for the ISS. The aluminum module is 8.5- meters (28-feet) long and 4.3-meters (14-feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 15 locations especially designed to support experiments. The Destiny module was built by the Boeing Company under the direction of the Marshall Space Flight Center.
International Space Station (ISS)
2001-02-01
In the grasp of the Shuttle's Remote Manipulator System (RMS) robot arm, the U.S. Laboratory, Destiny, is moved from its stowage position in the cargo bay of the Space Shuttle Atlantis. This photograph was taken by astronaut Thomas D. Jones during his Extravehicular Activity (EVA). The American-made Destiny module is the cornerstone for space-based research aboard the orbiting platform and the centerpiece of the International Space Station (ISS), where unprecedented science experiments will be performed in the near-zero gravity of space. Destiny will also serve as the command and control center for the ISS. The aluminum module is 8.5- meters (28-feet) long and 4.3-meters (14-feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 15 locations especially designed to support experiments. The Destiny module was built by the Boeing Company under the direction of the Marshall Space Flight Center.
Geiger, Linda H.
1983-01-01
The report is an update of U.S. Geological Survey Open-File Report 77-703, which described a retrieval program for administrative index of active data-collection sites in Florida. Extensive changes to the Findex system have been made since 1977 , making the previous report obsolete. A description of the data base and computer programs that are available in the Findex system are documented in this report. This system serves a vital need in the administration of the many and diverse water-data collection activities. District offices with extensive data-collection activities will benefit from the documentation of the system. Largely descriptive, the report tells how a file of computer card images has been established which contains entries for all sites in Florida at which there is currently a water-data collection activity. Entries include information such as identification number, station name, location, type of site, county, frequency of data collection, funding, and other pertinent details. The computer program FINDEX selectively retrieves entries and lists them in a format suitable for publication. The index is updated routinely. (USGS)
NASA Technical Reports Server (NTRS)
Smith, Jeffrey H.; Gyanfi, Max; Volkmer, Kent; Zimmerman, Wayne
1988-01-01
The efforts of a recent study aimed at identifying key issues and trade-offs associated with using a Flight Telerobotic Servicer (FTS) to aid in Space Station assembly-phase tasks is described. The use of automation and robotic (A and R) technologies for large space systems would involve a substitution of automation capabilities for human extravehicular or intravehicular activities (EVA, IVA). A methodology is presented that incorporates assessment of candidate assembly-phase tasks, telerobotic performance capabilities, development costs, and effect of operational constraints (space transportation system (STS), attached payload, and proximity operations). Changes in the region of cost-effectiveness are examined under a variety of systems design assumptions. A discussion of issues is presented with focus on three roles the FTS might serve: (1) as a research-oriented testbed to learn more about space usage of telerobotics; (2) as a research based testbed having an experimental demonstration orientation with limited assembly and servicing applications; or (3) as an operational system to augment EVA and to aid the construction of the Space Station and to reduce the programmatic (schedule) risk by increasing the flexibility of mission operations.
Operating a global seismic network - perspectives from the USGS GSN
NASA Astrophysics Data System (ADS)
Gee, L. S.; Derr, J. S.; Hutt, C. R.; Bolton, H.; Ford, D.; Gyure, G. S.; Storm, T.; Leith, W.
2007-05-01
The Global Seismographic Network (GSN) is a permanent digital network of state-of-the-art seismological and geophysical sensors connected by a global telecommunications network, serving as a multi-use scientific facility used for seismic monitoring for response applications, basic and applied research in solid earthquake geophysics, and earth science education. A joint program of the U.S. Geological Survey (USGS), the National Science Foundation, and Incorporated Research Institutions in Seismology (IRIS), the GSN provides near- uniform, worldwide monitoring of the Earth through 144 modern, globally distributed seismic stations. The USGS currently operates 90 GSN or GSN-affiliate stations. As a US government program, the USGS GSN is evaluated on several performance measures including data availability, data latency, and cost effectiveness. The USGS-component of the GSN, like the GSN as a whole, is in transition from a period of rapid growth to steady- state operations. The program faces challenges of aging equipment and increased operating costs at the same time that national and international earthquake and tsunami monitoring agencies place an increased reliance on GSN data. Data acquisition of the USGS GSN is based on the Quanterra Q680 datalogger, a workhorse system that is approaching twenty years in the field, often in harsh environments. An IRIS instrumentation committee recently selected the Quanterra Q330 HR as the "next generation" GSN data acquisition system, and the USGS will begin deploying the new equipment in the middle of 2007. These new systems will address many of the issues associated with the ageing Q680 while providing a platform for interoperability across the GSN.. In order to address the challenge of increasing operational costs, the USGS employs several tools. First, the USGS benefits from the contributions of local host institutions. The station operators are the first line of defense when a station experiences problems, changing boards, swapping cables, and re-centering sensors. In order to facilitate this effort, the USGS maintains supplies of on-site spares at a number of stations, primarily at those with difficult shipping or travel logistics. In addition, the USGS is moving toward the GSN standard of installing a secondary broadband sensor at each site, to serve as a backup in case of failure of the primary broadband sensor. The recent transition to real-time telemetry has been an enormous boon for station operations as well as for earthquake and tsunami monitoring. For example, the USGS examines waveforms daily for data dropouts (gaps), out-of-nominal range data values, and overall noise levels. Higher level quality control focuses on problems in sensitivity, timing, polarity, orientation, and general instrument behavior. The quality control operations are essential for quickly identifying problems with stations, allowing for remedial or preventive maintenance that preserves data continuity and quality and minimizes catastrophic failure of the station or significant loss of data. The USGS tracks network performance using a variety of tools. Through Web pages with plots of waveforms (heliplots), data latency, and data availability, quick views of station status are available. The USGS has recently implemented other monitoring tools, such as SeisNetWatch, for evaluating station state of health.
Mir 21 crew and Astronaut Lucid stowing equipment
1996-03-01
NM21-386-024 (March 1996) --- Onboard the Base Block Module of Russias Mir Space Station, as two members of the Mir-21 crew prepare to move supplies to their proper stowage places. Astronaut Shannon W. Lucid, recently dropped off by the STS-76 Space Shuttle Atlantis crew members and now serving as a cosmonaut guest researcher, works with Yury V. Usachev, flight engineer. She went on to spend a total of 188 consecutive days in space before returning to Earth with the STS-79 crew. She worked with a total of five cosmonauts at various times during that stay.
2000-03-01
KENNEDY SPACE CENTER, FLA. -- The Space Station Processing Facility is filled with hardware, components for the International Space Station. Lined up (left to right) are the Multi-Purpose Logistics Modules Raffaello and Leonardo and the Pressurized Mating Adapter-3 (PMA-3). Italy's major contributions to the ISS program, Raffaello and Leonardo are reusable logistics carriers to resupply and return station cargo requiring a pressurized environment. They are slated as payloads on missions STS-102 and STS-100, respectively. Dates have not yet been determined for the two missions. The PMA-3, once launched, will be mated to Node 1, a connecting passageway to the living and working areas of the Space Station. The primary purpose of PMA-3 is to serve as a Shuttle docking port through which crew members and equipment will transfer to the Space Station during later assembly missions. PMA-3 is scheduled as payload on mission STS-92, whose date for launch is not yet determined.
2000-03-01
KENNEDY SPACE CENTER, FLA. -- The Space Station Processing Facility is filled with hardware, components for the International Space Station. Lined up (left to right) are the Multi-Purpose Logistics Modules Raffaello and Leonardo and the Pressurized Mating Adapter-3 (PMA-3). Italy's major contributions to the ISS program, Raffaello and Leonardo are reusable logistics carriers to resupply and return station cargo requiring a pressurized environment. They are slated as payloads on missions STS-102 and STS-100, respectively. Dates have not yet been determined for the two missions. The PMA-3, once launched, will be mated to Node 1, a connecting passageway to the living and working areas of the Space Station. The primary purpose of PMA-3 is to serve as a Shuttle docking port through which crew members and equipment will transfer to the Space Station during later assembly missions. PMA-3 is scheduled as payload on mission STS-92, whose date for launch is not yet determined.
2000-07-12
A Russian 3-stage Proton rocket blasts into the sky at 12:56 a.m. EDT with the Russian-built Zvezda module in a successful launch from Baikonur Cosmodrome, Kazakhstan. Zvezda is the primary Russian contribution to the International Space Station, serving as the early Station living quarters. It will also provide early propulsive attitude control and reboost capabilities and be the main docking port for Russian Progress cargo resupply vehicles. The third Station component, Zvezda will dock by remote control with the already orbiting Zarya and Unity modules at an altitude of about 245 by 230 statute miles. (Image taken with Nikon D1 digital camera.)
Project WISH: The Emerald City
NASA Technical Reports Server (NTRS)
1990-01-01
When Project WISH (Wandering Interplanetary Space Harbor) was initiated as a multi-year project, several design requirements were specified. The space station must have a lifetime of at least 50 years, be autonomous and independent of Earth resources, be capable of traveling throughout the solar system within a maximum flight time of three years, and have a population of 500 to 1000 people. The purpose of the station is to provide a permanent home for space colonists and to serve as a service station for space missions. The orbital mechanics, propulsion system, vehicle dynamics and control, life support system, communication system, power system, and thermal system are discussed.
Vibrations and structureborne noise in space station
NASA Technical Reports Server (NTRS)
Vaicaitis, R.
1985-01-01
Theoretical models were developed capable of predicting structural response and noise transmission to random point mechanical loads. Fiber reinforced composite and aluminum materials were considered. Cylindrical shells and circular plates were taken as typical representatives of structural components for space station habitability modules. Analytical formulations include double wall and single wall constructions. Pressurized and unpressurized models were considered. Parametric studies were conducted to determine the effect on structural response and noise transmission due to fiber orientation, point load location, damping in the core and the main load carrying structure, pressurization, interior acoustic absorption, etc. These analytical models could serve as preliminary tools for assessing noise related problems, for space station applications.
NASA Technical Reports Server (NTRS)
Rieker, Lorra L.; Haraburda, Francis M.
1989-01-01
Information is presented on how the concept of commonality is being implemented with respect to electric power system hardware for the Space Station Freedom and the U.S. Polar Platform. Included is a historical account of the candidate common items which have the potential to serve the same power system functions on both Freedom and the Polar Platform. The Space Station program and objectives are described, focusing on the test and development responsibilities. The program definition and preliminary design phase and the design and development phase are discussed. The goal of this work is to reduce the program cost.
Laboratory racks are installed in the MPLM Leonardo
NASA Technical Reports Server (NTRS)
2000-01-01
A worker in the Space Station Processing Facility watches as a laboratory rack moves into the Multi-Purpose Logistics Module Leonardo. The MPLM is the first of three such pressurized modules that will serve as the International Space Station's '''moving vans,''' carrying laboratory racks filled with equipment, experiments and supplies to and from the Space Station aboard the Space Shuttle. Leonardo will be launched March 1, 2001, on Shuttle mission STS-102 On that flight, Leonardo will be filled with equipment and supplies to outfit the U.S. laboratory module, being carried to the ISS on the Jan. 19, 2001, launch of STS-98.
A strawman SLR program plan for the 1990s
NASA Technical Reports Server (NTRS)
Degnan, John J.
1994-01-01
A series of programmatic and technical goals for the satellite laser ranging (SLR) network are presented. They are: (1) standardize the performance of the global SLR network; (2) improve the geographic distribution of stations; (3) reduce costs of field operations and data processing; (4) expand the 24 hour temporal coverage to better serve the growing constellation of satellites; (5) improve absolute range accuracy to 2 mm at key stations; (6) improve satellite force, radiative propagation, and station motion models and investigate alternative geodetic analysis techniques; (7) support technical intercomparison and the Terrestrial Reference Frame through global collocations; (8) investigate potential synergisms between GPS and SLR.
2000-05-02
Researchers perform tests at Kennedy Space Center. New facilities for such research will be provided at the Space Experiment Research Procession Laboratory (SERPL). The SERPL is a planned 100,000-square-foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for a planned 400-acre Space Station Commerce Park
2000-05-02
Researchers perform tests at Kennedy Space Center. New facilities for such research will be provided at the Space Experiment Research Procession Laboratory (SERPL). The SERPL is a planned 100,000-square-foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for a planned 400-acre Space Station Commerce Park
Social factors in space station interiors
NASA Technical Reports Server (NTRS)
Cranz, Galen; Eichold, Alice; Hottes, Klaus; Jones, Kevin; Weinstein, Linda
1987-01-01
Using the example of the chair, which is often written into space station planning but which serves no non-cultural function in zero gravity, difficulties in overcoming cultural assumptions are discussed. An experimental approach is called for which would allow designers to separate cultural assumptions from logistic, social and psychological necessities. Simulations, systematic doubt and monitored brainstorming are recommended as part of basic research so that the designer will approach the problems of space module design with a complete program.
Omega Navigation System Course Book. Volume 1.
1994-07-01
France, Great Britain (including Criggion and Rugby ), and the U.S. (Annapolis, Maryland; Summit, Canal Zone; and Haiku, Hawaii). Eventually, commercial...precise crystal oscillator* known as a ring oscillator to stabi- lize the LF and VLF transmissions from the Rugby station in the U.K. In 1953, J.A...was built during World War II to serve as a back-up to the VLF communication station at Rugby (GBR). The British feared that the Axis powers might
2002-05-02
This diagram shows the planned locations of the Space Experiment Research and Processing Laboratory (SERPL) and the Space Station Commerce Park at Kennedy Space Center. The SERPL is a planned 100,000-square-foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for the planned 400-acre Commerce Park.
2004-02-10
KENNEDY SPACE CENTER, FLA. - Workers watch as the Multi-Purpose Logistics Module Raffaello is lowered toward a work stand in the Space Station Processing Facility. Raffaello is the second MPLM built by the Italian Space Agency, serving as a reusable logistics carrier and primary delivery system to resupply and return station cargo requiring a pressurized environment. It has been moved across the floor to allow the third MPLM, Donatello, to be brought in for routine testing. Donatello has been stored in the Operations and Checkout Building. This is the first time all three MPLMs are in the SSPF; the other one is the Leonardo. Raffaello is scheduled to fly on Space Shuttle Atlantis on mission STS-114.
2004-02-10
KENNEDY SPACE CENTER, FLA. - The Multi-Purpose Logistics Module Raffaello is lifted from its stand in the Space Station Processing Facility to move to another work stand. Raffaello is the second MPLM built by the Italian Space Agency, serving as a reusable logistics carrier and primary delivery system to resupply and return station cargo requiring a pressurized environment. It is being moved to allow the third MPLM, Donatello, to be brought in for routine testing. Donatello has been stored in the Operations and Checkout Building. This is the first time all three MPLMs are in the SSPF; the other one is the Leonardo. Raffaello is scheduled to fly on Space Shuttle Atlantis on mission STS-114.
2004-02-10
KENNEDY SPACE CENTER, FLA. - A worker on the floor watches as the Multi-Purpose Logistics Module Raffaello moves toward another work stand in the Space Station Processing Facility. Raffaello is the second MPLM built by the Italian Space Agency, serving as a reusable logistics carrier and primary delivery system to resupply and return station cargo requiring a pressurized environment. It has been moved across the floor to allow the third MPLM, Donatello, to be brought in for routine testing. Donatello has been stored in the Operations and Checkout Building. This is the first time all three MPLMs are in the SSPF; the other one is the Leonardo. Raffaello is scheduled to fly on Space Shuttle Atlantis on mission STS-114.
2004-02-10
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, the Multi-Purpose Logistics Module Raffaello glides above the floor as it moves to another stand on the other side. Raffaello is the second MPLM built by the Italian Space Agency, serving as a reusable logistics carrier and primary delivery system to resupply and return station cargo requiring a pressurized environment. It is being moved to allow the third MPLM, Donatello, to be brought in for routine testing. Donatello has been stored in the Operations and Checkout Building. This is the first time all three MPLMs are in the SSPF; the other one is the Leonardo. Raffaello is scheduled to fly on Space Shuttle Atlantis on mission STS-114.
2004-02-10
KENNEDY SPACE CENTER, FLA. - An overhead crane is attached to the Multi-Purpose Logistics Module Raffaello in order to move it to another work stand in the Space Station Processing Facility. Raffaello is the second MPLM built by the Italian Space Agency, serving as a reusable logistics carrier and primary delivery system to resupply and return station cargo requiring a pressurized environment. It is being moved to allow the third MPLM, Donatello, to be brought in for routine testing. Donatello has been stored in the Operations and Checkout Building. This is the first time all three MPLMs are in the SSPF; the other one is the Leonardo. Raffaello is scheduled to fly on Space Shuttle Atlantis on mission STS-114.
2004-02-10
KENNEDY SPACE CENTER, FLA. - Workers in the Space Station Processing Facility prepare to release the overhead crane from the Multi-Purpose Logistics Module Raffaello now secure on a new work stand. Raffaello is the second MPLM built by the Italian Space Agency, serving as a reusable logistics carrier and primary delivery system to resupply and return station cargo requiring a pressurized environment. It has been moved to allow the third MPLM, Donatello, to be brought in for routine testing. Donatello has been stored in the Operations and Checkout Building. This is the first time all three MPLMs are in the SSPF; the other one is the Leonardo. Raffaello is scheduled to fly on Space Shuttle Atlantis on mission STS-114.
Space Station Biological Research Project: Reference Experiment Book
NASA Technical Reports Server (NTRS)
Johnson, Catherine (Editor); Wade, Charles (Editor)
1996-01-01
The Space Station Biological Research Project (SSBRP), which is the combined efforts of the Centrifuge Facility (CF) and the Gravitational Biology Facility (GBF), is responsible for the development of life sciences hardware to be used on the International Space Station to support cell, developmental, and plant biology research. The SSBRP Reference Experiment Book was developed to use as a tool for guiding this development effort. The reference experiments characterize the research interests of the international scientific community and serve to identify the hardware capabilities and support equipment needed to support such research. The reference experiments also serve as a tool for understanding the operational aspects of conducting research on board the Space Station. This material was generated by the science community by way of their responses to reference experiment solicitation packages sent to them by SSBRP scientists. The solicitation process was executed in two phases. The first phase was completed in February of 1992 and the second phase completed in November of 1995. Representing these phases, the document is subdivided into a Section 1 and a Section 2. The reference experiments contained in this document are only representative microgravity experiments. They are not intended to define actual flight experiments. Ground and flight experiments will be selected through the formal NASA Research Announcement (NRA) and Announcement of Opportunity (AO) experiment solicitation, review, and selection process.
2009-01-13
Stennis Space Center Director Gene Goldman (center) stands with astronauts Christopher Ferguson (right) and Heidemarie Stefanyshyn-Piper in front of the A-2 Test Stand during the space shuttle crew members' visit to NASA's rocket engine testing facility Jan. 13. During their visit, Ferguson and Stefanyshyn-Piper reported on the STS-126 space shuttle delivery and servicing mission to the International Space Station. Ferguson served as commander of the mission. Stefanyshyn-Piper served as a mission specialist.
NASA Technical Reports Server (NTRS)
2009-01-01
Stennis Space Center Director Gene Goldman (center) stands with astronauts Christopher Ferguson (right) and Heidemarie Stefanyshyn-Piper in front of the A-2 Test Stand during the space shuttle crew members' visit to NASA's rocket engine testing facility Jan. 13. During their visit, Ferguson and Stefanyshyn-Piper reported on the STS-126 space shuttle delivery and servicing mission to the International Space Station. Ferguson served as commander of the mission. Stefanyshyn-Piper served as a mission specialist.
NASA Astrophysics Data System (ADS)
Cabral-Cano, E.; Salazar-Tlaczani, L.; Adams, D. K.; Vivoni, E. R.; Grutter, M.; Serra, Y. L.; DeMets, C.; Galetzka, J.; Feaux, K.; Mattioli, G. S.; Miller, M. M.
2017-12-01
TLALOCNet is a network of continuous GPS and meteorology stations in Mexico to study atmospheric and solid earth processes. This recently completed network spans most of Mexico with a strong coverage emphasis on southern and western Mexico. This network, funded by NSF, CONACyT and UNAM, recently built 40 cGPS-Met sites to EarthScope Plate Boundary Observatory standards and upgraded 25 additional GPS stations. TLALOCNet provides open and freely available raw GPS data, and high frequency surface meteorology measurements, and time series of daily positions. This is accomplished through the development of the TLALOCNet data center (http://tlalocnet.udg.mx) that serves as a collection and distribution point. This data center is based on UNAVCO's Dataworks-GSAC software and also works as part of UNAVCO's seamless archive for discovery, sharing, and access to GPS data. The TLALOCNet data center also contains contributed data from several regional GPS networks in Mexico for a total of 100+ stations. By using the same protocols and structure as the UNAVCO and other COCONet regional data centers, the scientific community has the capability of accessing data from the largest Mexican GPS network. This archive provides a fully queryable and scriptable GPS and Meteorological data retrieval point. In addition, real-time 1Hz streams from selected TLALOCNet stations are available in BINEX, RTCM 2.3 and RTCM 3.1 formats via the Networked Transport of RTCM via Internet Protocol (NTRIP) for real-time seismic and weather forecasting applications. TLALOCNet served as a GPS-Met backbone for the binational Mexico-US North American Monsoon GPS Hydrometeorological Network 2017 campaign experiment. This innovative experiment attempts to address water vapor source regions and land-surface water vapor flux contributions to precipitation (i.e., moisture recycling) during the 2017 North American Monsoon in Baja California, Sonora, Chihuahua, and Arizona. Models suggest that moisture recycling is a large contributor to summer rainfall. This experiment represents a first attempt to quantify the surface water vapor flux contribution to GPS-derived precipitable water vapor. Preliminary results from this campaign are presented.
Biomass power for rural development. Technical progress report, May 1, 1996--December 31, 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neuhauser, E.
Developing commercial energy crops for power generation by the year 2000 is the focus of the DOE/USDA sponsored Biomass Power for Rural Development project. The New York based Salix Consortium project is a multi-partner endeavor, implemented in three stages. Phase-I, Final Design and Project Development, will conclude with the preparation of construction and/or operating permits, feedstock production plans, and contracts ready for signature. Field trials of willow (Salix) have been initiated at several locations in New York (Tully, Lockport, King Ferry, La Facette, Massena, and Himrod) and co-firing tests are underway at Greenidge Station (NYSEG). Phase-II of the project willmore » focus on scale-up of willow crop acreage, construction of co-firing facilities at Dunkirk Station (NMPC), and final modifications for Greenidge Station. There will be testing of the energy crop as part of the gasification trials expected to occur at BED`s McNeill power station and potentially at one of GPU`s facilities. Phase-III will represent full-scale commercialization of the energy crop and power generation on a sustainable basis. Willow has been selected as the energy crop of choice for many reasons. Willow is well suited to the climate of the Northeastern United States, and initial field trials have demonstrated that the yields required for the success of the project are obtainable. Like other energy crops, willow has rural development benefits and could serve to diversify local crop production, provide new sources of income for participating growers, and create new jobs. Willow could be used to put a large base of idle acreage back into crop production. Additionally, the willow coppicing system integrates well with current farm operations and utilizes agricultural practices that are already familiar to farmers.« less
Wallace, Denise; Eltiti, Stacy; Ridgewell, Anna; Garner, Kelly; Russo, Riccardo; Sepulveda, Francisco; Walker, Stuart; Quinlan, Terence; Dudley, Sandra; Maung, Sithu; Deeble, Roger; Fox, Elaine
2010-06-01
"Airwave" is the new communication system currently being rolled out across the United Kingdom for the police and emergency services, based on the Terrestrial Trunked Radio Telecommunications System (TETRA). Some police officers have complained about skin rashes, nausea, headaches, and depression as a consequence of using their Airwave handsets. In addition, a small subgroup in the population self-report being sensitive to electromagnetic fields (EMFs) in general. We conducted a randomized double-blind provocation study to establish whether short-term exposure to a TETRA base station signal has an impact on the health and well-being of individuals with self-reported "electrosensitivity" and of participants who served as controls. Fifty-one individuals with self-reported electrosensitivity and 132 age- and sex-matched controls participated in an open provocation test; 48 sensitive and 132 control participants went on to complete double-blind tests in a fully screened semianechoic chamber. Heart rate, skin conductance, and blood pressure readings provided objective indices of short-term physiological response. Visual analog scales and symptom scales provided subjective indices of well-being. We found no differences on any measure between TETRA and sham (no signal) under double-blind conditions for either controls or electrosensitive participants, and neither group could detect the presence of a TETRA signal at rates greater than chance (50%). When conditions were not double blind, however, the self-reported electrosensitive individuals did report feeling worse and experienced more severe symptoms during TETRA compared with sham. Our findings suggest that the adverse symptoms experienced by electrosensitive individuals are due to the belief of harm from TETRA base stations rather than to the low-level EMF exposure itself.
Wallace, Denise; Eltiti, Stacy; Ridgewell, Anna; Garner, Kelly; Russo, Riccardo; Sepulveda, Francisco; Walker, Stuart; Quinlan, Terence; Dudley, Sandra; Maung, Sithu; Deeble, Roger; Fox, Elaine
2010-01-01
Background “Airwave” is the new communication system currently being rolled out across the United Kingdom for the police and emergency services, based on the Terrestrial Trunked Radio Telecommunications System (TETRA). Some police officers have complained about skin rashes, nausea, headaches, and depression as a consequence of using their Airwave handsets. In addition, a small subgroup in the population self-report being sensitive to electromagnetic fields (EMFs) in general. Objectives We conducted a randomized double-blind provocation study to establish whether short-term exposure to a TETRA base station signal has an impact on the health and well-being of individuals with self-reported “electrosensitivity” and of participants who served as controls. Methods Fifty-one individuals with self-reported electrosensitivity and 132 age- and sex-matched controls participated in an open provocation test; 48 sensitive and 132 control participants went on to complete double-blind tests in a fully screened semianechoic chamber. Heart rate, skin conductance, and blood pressure readings provided objective indices of short-term physiological response. Visual analog scales and symptom scales provided subjective indices of well-being. Results We found no differences on any measure between TETRA and sham (no signal) under double-blind conditions for either controls or electrosensitive participants, and neither group could detect the presence of a TETRA signal at rates greater than chance (50%). When conditions were not double blind, however, the self-reported electrosensitive individuals did report feeling worse and experienced more severe symptoms during TETRA compared with sham. Conclusions Our findings suggest that the adverse symptoms experienced by electrosensitive individuals are due to the belief of harm from TETRA base stations rather than to the low-level EMF exposure itself. PMID:20075020
NASA Astrophysics Data System (ADS)
Sana, Ajaz; Saddawi, Samir; Moghaddassi, Jalil; Hussain, Shahab; Zaidi, Syed R.
2010-01-01
In this research paper we propose a novel Passive Optical Network (PON) based Mobile Worldwide Interoperability for Microwave Access (WiMAX) access network architecture to provide high capacity and performance multimedia services to mobile WiMAX users. Passive Optical Networks (PON) networks do not require powered equipment; hence they cost lower and need less network management. WiMAX technology emerges as a viable candidate for the last mile solution. In the conventional WiMAX access networks, the base stations and Multiple Input Multiple Output (MIMO) antennas are connected by point to point lines. Ideally in theory, the Maximum WiMAX bandwidth is assumed to be 70 Mbit/s over 31 miles. In reality, WiMAX can only provide one or the other as when operating over maximum range, bit error rate increases and therefore it is required to use lower bit rate. Lowering the range allows a device to operate at higher bit rates. Our focus in this research paper is to increase both range and bit rate by utilizing distributed cluster of MIMO antennas connected to WiMAX base stations with PON based topologies. A novel quality of service (QoS) algorithm is also proposed to provide admission control and scheduling to serve classified traffic. The proposed architecture presents flexible and scalable system design with different performance requirements and complexity.
Artist rendition of the planned Space Experiment Research and Processing Laboratory
NASA Technical Reports Server (NTRS)
2000-01-01
The preliminary design for the Space Experiment Research and Processing Laboratory (SERPL) at Kennedy Space Center is shown in this artist's rendition. The SERPL is a planned 100,000-square- foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for a planned 400-acre Space Station Commerce Park.
Location for the planned Space Experiment Research and Processing Laboratory
NASA Technical Reports Server (NTRS)
2000-01-01
This diagram shows the planned locations of the Space Experiment Research and Processing Laboratory (SERPL) and the Space Station Commerce Park at Kennedy Space Center. The SERPL is a planned 100,000-square-foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for the planned 400- acre commerce park.
Research and the planned Space Experiment Research and Processing Laboratory
NASA Technical Reports Server (NTRS)
2000-01-01
Researchers perform tests at Kennedy Space Center. New facilities for such research will be provided at the Space Experiment Research Procession Laboratory (SERPL). The SERPL is a planned 100,000-square-foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for a planned 400-acre Space Station Commerce Park.
2012-09-17
Expedition 32 NASA Flight Engineer Joe Acaba rests on the Russian Search and Rescue helicopter that is carrying him from the Soyuz TMA-04M landing site in a remote area outside Arkalyk, Kazakhstan to Kostanay, Kazakhstan shortly after he and Expedition 32 Commander Gennady Padalka and Flight Engineer Sergei Revin returned from the International Space Station on Monday, Sept. 17, 2012. Acaba, Padalka and Revin returned from five months onboard the International Space Station where they served as members of the Expedition 31 and 32 crews. Photo Credit: (NASA/Carla Cioffi)
2012-09-17
A view inside inside the Russian Search and Rescue helicopter that will carry Expedition 32 Flight Engineer Joe Acaba from the Soyuz TMA-04M landing site in a remote area outside Arkalyk, Kazakhstan to Kostanay, Kazakhstan shortly after he and Expedition 32 Commander Gennady Padalka and Flight Engineer Sergei Revin returned from the International Space Station on Monday, Sept. 17, 2012. Acaba, Padalka and Revin returned from five months onboard the International Space Station where they served as members of the Expedition 31 and 32 crews. Photo Credit: (NASA/Carla Cioffi)
Wakata with Glacier on Middeck (MDDK)
2009-03-20
S119-E-006764 (20 March 2009) --- Japan Aerospace Exploration Agency astronaut Koichi Wakata is pictured on Discovery's middeck with the General Laboratory Active Cryogenic ISS Experiment Refrigerator (GLACIER). The astronauts changed out the International Space Station's glacier with a new one on March 20 to return urine, saliva, and blood samples from the Expedition 18 crew to Earth with Discovery's STS-119 astronauts. Wakata will be serving with both the current (Expedition 18) and the following (Expedition 19) crews aboard the station.
Food Acquisition: Food Ingredients, Raw Materials and Supply
NASA Technical Reports Server (NTRS)
Wheat, D. W.
1984-01-01
The kind of food supply system that will serve the space station in coming years is considered. The direction and rate of evolution of space food service systems is also considered and what is needed to supply appropriate food to space station crews. Innovations in food sourcing, recipe development, pre-preparation, packaging, preservation, presentation, consumption and waste disposal are discussed. The development and validation of preparation systems and ingredients which minimize demands on crew time and provide maximum eating enjoyment is outlined.
International Space Station Electrodynamic Tether Reboost Study
NASA Technical Reports Server (NTRS)
Johnson, L.; Herrmann, M.
1998-01-01
The International Space Station (ISS) will require periodic reboost due to atmospheric aerodynamic drag. This is nominally achieved through the use of thruster firings by the attached Progress M spacecraft. Many Progress flights to the ISS are required annually. Electrodynamic tethers provide an attractive alternative in that they can provide periodic reboost or continuous drag cancellation using no consumables, propellant, nor conventional propulsion elements. The system could also serve as an emergency backup reboost system used only in the event resupply and reboost are delayed for some reason.
2000-09-21
This camper-equipped truck known as “Old Blue” served as mobile field command center for the Emergency Preparedness team at KSC. It has been replaced with a larger vehicle that includes a conference room, computer work stations, mobile telephones and a fax machine, plus its own onboard generator. Besides being ready to respond in case of emergencies during launches, the vehicle must be ready to help address fires, security threats, chemical spills, terrorist attaches, weather damage or other critical situations that might face KSC or Cape Canaveral Air Force Station
2000-09-21
This new specially equipped vehicle serves as a mobile command center for emergency preparedness staff and other support personnel when needed at KSC or Cape Canaveral Air Force Station. It features a conference room, computer work stations, mobile telephones and a fax machine. It also can generate power with its onboard generator. Besides being ready to respond in case of emergencies during launches, the vehicle must be ready to help address fires, security threats, chemical spills, terrorist attaches, weather damage or other critical situations that might face KSC or CCAFS
2000-09-21
This new specially equipped vehicle serves as a mobile command center for emergency preparedness staff and other support personnel when needed at KSC or Cape Canaveral Air Force Station. It features a conference room, computer work stations, mobile telephones and a fax machine. It also can generate power with its onboard generator. Besides being ready to respond in case of emergencies during launches, the vehicle must be ready to help address fires, security threats, chemical spills, terrorist attaches, weather damage or other critical situations that might face KSC or CCAFS
2000-09-21
This camper-equipped truck known as “Old Blue” served as mobile field command center for the Emergency Preparedness team at KSC. It has been replaced with a larger vehicle that includes a conference room, computer work stations, mobile telephones and a fax machine, plus its own onboard generator. Besides being ready to respond in case of emergencies during launches, the vehicle must be ready to help address fires, security threats, chemical spills, terrorist attaches, weather damage or other critical situations that might face KSC or Cape Canaveral Air Force Station
GEONETCast Americas - Architecture
Publications Register To better serve you, please visit NOAA's Satellite Ground Station Customer Questionnaire Sustainability; Disaster Resilience; Energy and Mineral Resources Management; Food Security and Sustainable Agriculture; Infrastructure and Transportation Management; Public Health Surveillance; Sustainable Urban
NASA Technical Reports Server (NTRS)
Rappole, C. L.; Louvier, S. A.
1985-01-01
A study to design a food service system using current technology to serve a small scale Space Station was conducted. The psychological, sociological and nutritional factors affecting feeding in microgravity conditions was investigated. The logistics of the food service system was defined.
NASA Astrophysics Data System (ADS)
Chen, Kyle Dakai
Since the market for semiconductor products has become more lucrative and competitive, research into improving yields for semiconductor fabrication lines has lately received a tremendous amount of attention. One of the most critical tasks in achieving such yield improvements is to plan the in-line inspection sampling efficiently so that any potential yield problems can be detected early and eliminated quickly. We formulate a multi-stage inspection planning model based on configurations in actual semiconductor fabrication lines, specifically taking into account both the capacity constraint and the congestion effects at the inspection station. We propose a new mixed First-Come-First-Serve (FCFS) and Last-Come-First-Serve (LCFS) discipline for serving the inspection samples to expedite the detection of potential yield problems. Employing this mixed FCFS and LCFS discipline, we derive approximate expressions for the queueing delays in yield problem detection time and develop near-optimal algorithms to obtain the inspection logistics planning policies. We also investigate the queueing performance with this mixed type of service discipline under different assumptions and configurations. In addition, we conduct numerical tests and generate managerial insights based on input data from actual semiconductor fabrication lines. To the best of our knowledge, this research is novel in developing, for the first time in the literature, near-optimal results for inspection logistics planning in multi-stage production systems with congestion effects explicitly considered.
2004-03-05
KENNEDY SPACE CENTER, FLA. - Members of the STS-114 crew spend time becoming familiar with Shuttle and mission equipment. Mission Specialists Soichi Noguchi (left) and Andrew Thomas (center) look at an engine eyelet, which serves as part of the thermal protection system on an orbiter. Noguchi is with the Japanese Aerospace Exploration Agency (JAXA). The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment and the external stowage platform to the International Space Station.
2004-03-05
KENNEDY SPACE CENTER, FLA. - Members of the STS-114 crew spend time in the Orbiter Processing Facility becoming familiar with Shuttle and mission equipment. Mission Specialists Stephen Robinson (left) and Wendy Lawrence (right) look at an engine eyelet, which serves as part of the thermal protection system on an orbiter. The STS-114 mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment and the external stowage platform to the International Space Station.
STS-98 Onboard Photograph-U.S. Laboratory, Destiny
NASA Technical Reports Server (NTRS)
2001-01-01
This STS-98 Shuttle mission image shows an overall interior view of the newly attached U.S. Laboratory, Destiny. The American-made Destiny module is the cornerstone for space-based research aboard the orbiting platform and the centerpiece of the International Space Station (ISS), where unprecedented science experiments will be performed in the near-zero gravity of space. Destiny will also serve as the command and control center for the ISS. The aluminum module is 8.5-meters (28-feet) long and 4.3-meters (14-feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 15 locations especially designed to support experiments. The Destiny module was built by the Boeing Company under the direction of the Marshall Space Flight Center.
Evaluation of a voice recognition system for the MOTAS pseudo pilot station function
NASA Technical Reports Server (NTRS)
Houck, J. A.
1982-01-01
The Langley Research Center has undertaken a technology development activity to provide a capability, the mission oriented terminal area simulation (MOTAS), wherein terminal area and aircraft systems studies can be performed. An experiment was conducted to evaluate state-of-the-art voice recognition technology and specifically, the Threshold 600 voice recognition system to serve as an aircraft control input device for the MOTAS pseudo pilot station function. The results of the experiment using ten subjects showed a recognition error of 3.67 percent for a 48-word vocabulary tested against a programmed vocabulary of 103 words. After the ten subjects retrained the Threshold 600 system for the words which were misrecognized or rejected, the recognition error decreased to 1.96 percent. The rejection rates for both cases were less than 0.70 percent. Based on the results of the experiment, voice recognition technology and specifically the Threshold 600 voice recognition system were chosen to fulfill this MOTAS function.
X-38 vehicle #131R arrives at NASA Dryden via NASA'S Super Guppy transport aircraft
NASA Technical Reports Server (NTRS)
2000-01-01
NASA's Super Guppy transport aircraft landed at Edwards Air Force Base, Calif. on July 11, 2000, to deliver the latest version of the X-38 drop vehicle to Dryden. The X-38s are intended as prototypes for a possible 'crew lifeboat' for the International Space Station. The X-38 vehicle 131R will demonstrate a huge 7,500 square-foot parafoil that will that will enable the potential crew return vehicle to land on the length of a football field after returning from space. The crew return vehicle is intended to serve as a possible emergency transport to carry a crew to safety in the event of problems with the International Space Station. The Super Guppy evolved from the 1960s-vintage Pregnant Guppy, used for transporting outsized sections of the Apollo moon rocket. The Super Guppy was modified from 1950s-vintage Boeing C-97. NASA acquired its Super Guppy from the European Space Agency in 1997.
The environmental status of coal ash produced in Israel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Metzger, L.A.
1996-12-31
From the 6.1 million tons of coal ash produced by Israeli power stations during the 1982--95 period, 65% were utilized for cement production, 18% served to construct embankments around the Hadera coastal power station, and the remaining 17% were disposed to the sea, according to permits issued by the governmental authorities. The coal imported to Israel is typically low-sulfur, beneficiated bituminous coal, and ash produced from it is alkaline and characterized by low concentrations of trace elements. According to the results of leaching tests, the potential release of trace elements from the ash is low, thus there is only amore » minor risk of contaminating groundwater under disposal or utilization sites. However, while the annual ash production increases and is planned to reach one million tons in the year 2000, the promotion of ash employment for new applications, for example as a road base material or for shore extension projects, is still prevented by the absence of regulations fixing the environmental status of coal ash.« less
NASA Astrophysics Data System (ADS)
O, Sungmin; Foelsche, U.; Kirchengast, G.; Fuchsberger, J.
2018-01-01
Eight years of daily rainfall data from WegenerNet were analyzed by comparison with data from Austrian national weather stations. WegenerNet includes 153 ground level weather stations in an area of about 15 km × 20 km in the Feldbach region in southeast Austria. Rainfall has been measured by tipping bucket gauges at 150 stations of the network since the beginning of 2007. Since rain gauge measurements are considered close to true rainfall, there are increasing needs for WegenerNet data for the validation of rainfall data products such as remote sensing based estimates or model outputs. Serving these needs, this paper aims at providing a clearer interpretation on WegenerNet rainfall data for users in hydro-meteorological communities. Five clusters - a cluster consists of one national weather station and its four closest WegenerNet stations - allowed us close comparison of datasets between the stations. Linear regression analysis and error estimation with statistical indices were conducted to quantitatively evaluate the WegenerNet daily rainfall data. It was found that rainfall data between the stations show good linear relationships with an average correlation coefficient (r) of 0.97 , while WegenerNet sensors tend to underestimate rainfall according to the regression slope (0.87). For the five clusters investigated, the bias and relative bias were - 0.97 mm d-1 and - 11.5 % on average (except data from new sensors). The average of bias and relative bias, however, could be reduced by about 80 % through a simple linear regression-slope correction, with the assumption that the underestimation in WegenerNet data was caused by systematic errors. The results from the study have been employed to improve WegenerNet data for user applications so that a new version of the data (v5) is now available at the WegenerNet data portal (www.wegenernet.org).
2009-06-24
ISS020-E-14200 (FOR RELEASE 21 JULY 2009) --- A moon rock brought to Earth by Apollo 11, humans? first landing on the moon in July 1969, is shown as it floats aboard the International Space Station. Part of Earth can be seen through the window. The 3.6 billion year-old lunar sample was flown to the station aboard Space Shuttle mission STS-119 in April 2009 in honor of the July 2009 40th anniversary of the historic first moon landing. The rock, lunar sample 10072, was flown to the station to serve as a symbol of the nation?s resolve to continue the exploration of space. It will be returned on shuttle mission STS-128 to be publicly displayed.
2009-06-24
ISS020-E-014193 (FOR RELEASE 21 JULY 2009) --- A moon rock brought to Earth by Apollo 11, humans? first landing on the moon in July 1969, is shown as it floats aboard the International Space Station. Part of Earth can be seen through the window. The 3.6 billion year-old lunar sample was flown to the station aboard Space Shuttle mission STS-119 in April 2009 in honor of the July 2009 40th anniversary of the historic first moon landing. The rock, lunar sample 10072, was flown to the station to serve as a symbol of the nation?s resolve to continue the exploration of space. It will be returned on shuttle mission STS-128 to be publicly displayed.
2009-06-24
ISS020-E-14196 (FOR RELEASE 21 JULY 2009) --- A moon rock brought to Earth by Apollo 11, humans? first landing on the moon in July 1969, is shown as it floats aboard the International Space Station. Part of Earth can be seen through the window. The 3.6 billion year-old lunar sample was flown to the station aboard Space Shuttle mission STS-119 in April 2009 in honor of the July 2009 40th anniversary of the historic first moon landing. The rock, lunar sample 10072, was flown to the station to serve as a symbol of the nation?s resolve to continue the exploration of space. It will be returned on shuttle mission STS-128 to be publicly displayed.
Officials welcome the arrival of the Japanese Experiment Module
2007-04-17
In the Space Station Processing Facility, Scott Higginbotham, payload manager for the International Space Station, discusses the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module (JEM), with Dr. Hidetaka Tanaka, the JEM Project Team resident manager at KSC for the Japanese Aerospace and Exploration Agency (JAXA). Earlier, NASA and JAXA officials welcomed the arrival of the module. The new International Space Station component arrived at Kennedy March 12 to begin preparations for its future launch on mission STS-123. It will serve as an on-orbit storage area for materials, tools and supplies. It can hold up to eight experiment racks and will attach to the top of another larger pressurized module.
2007-04-17
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, Scott Higginbotham, payload manager for the International Space Station, discusses the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module (JEM), with Dr. Hidetaka Tanaka, the JEM Project Team resident manager at KSC for the Japanese Aerospace and Exploration Agency (JAXA). Earlier, NASA and JAXA officials welcomed the arrival of the module. The new International Space Station component arrived at Kennedy March 12 to begin preparations for its future launch on mission STS-123. It will serve as an on-orbit storage area for materials, tools and supplies. It can hold up to eight experiment racks and will attach to the top of another larger pressurized module. Photo credit: NASA/George Shelton
NASA Technical Reports Server (NTRS)
Rieker, Lorra L.; Haraburda, Francis M.
1989-01-01
The National Aeronautics and Space Administration has adopted the policy to achieve the maximum practical level of commonality for the Space Station Freedom program in order to significantly reduce life cycle costs. Commonality means using identical or similar hardware/software for meeting common sets of functionally similar requirements. Information on how the concept of commonality is being implemented with respect to electric power system hardware for the Space Station Freedom and the U.S. Polar Platform is presented. Included is a historical account of the candidate common items which have the potential to serve the same power system functions on both Freedom and the Polar Platform.
A rack is installed in MPLM Leonardo
NASA Technical Reports Server (NTRS)
2000-01-01
Workers (right, left and center) in the Space Station Processing Facility wait to install a laboratory rack in the Multi-Purpose Logistics Module Leonardo (background). Leonardo is the first of three such pressurized modules that will serve as the International Space Station's '''moving vans,''' carrying laboratory racks filled with equipment, experiments and supplies to and from the Space Station aboard the Space Shuttle. Approximately 21 feet long and 15 feet in diameter, Leonardo will be launched on Shuttle mission STS-102 March 1, 2001. On that flight, Leonardo will be filled with equipment and supplies to outfit the U.S. laboratory module, being carried to the ISS on the Jan. 19, 2001, launch of STS-98.
A rack is installed in MPLM Leonardo
NASA Technical Reports Server (NTRS)
2000-01-01
In the Space Station Processing Facility, the Multi-Purpose Logistics Module Leonardo (right) is ready for installation of a laboratory rack (left center). Leonardo is the first of three such pressurized modules that will serve as the International Space Station's '''moving vans,''' carrying laboratory racks filled with equipment, experiments and supplies to and from the Space Station aboard the Space Shuttle. Approximately 21 feet long and 15 feet in diameter, Leonardo will be launched on Shuttle mission STS-102 March 1, 2001. On that flight, Leonardo will be filled with equipment and supplies to outfit the U.S. laboratory module, being carried to the ISS on the Jan. 19, 2001, launch of STS-98.
Laboratory racks are installed in the MPLM Leonardo
NASA Technical Reports Server (NTRS)
2000-01-01
In the Space Station Processing Facility, the Rack Insertion Unit lifts another laboratory rack to the Multi-Purpose Logistics Module Leonardo, in the background. The MPLM is the first of three such pressurized modules that will serve as the International Space Station's '''moving vans,''' carrying laboratory racks filled with equipment, experiments and supplies to and from the International Space Station aboard the Space Shuttle. Leonardo will be launched for the first time March 1, 2001, on Shuttle mission STS-102. On that flight, Leonardo will be filled with equipment and supplies to outfit the U.S. laboratory module, being carried to the ISS on the Jan. 19, 2001, launch of STS-98.
Morin, Robert L.; Glen, Jonathan M.G.
2003-01-01
Gravity data were collected between 1999 and 2002 along transects in the Talkeetna Mountains of south-central Alaska as part of a geological and geophysical study of the framework geology of the region. The study area lies between 61° 30’ and 63° 45’ N. latitude and 145° and 151° W. longitude. This data set includes 408 gravity stations. These data, combined with the pre-existing 3,286 stations, brings the total data in this area to 3,694 gravity stations. Principal facts for the 408 new gravity stations and the 15 gravity base stations used for control are listed in this report. During the summer of 1999, a gravity survey was conducted in the western Talkeetna Mountains. Measurements at 55 gravity stations were made. One gravity base station was used for control for this survey. This base station, STEP, is located at the Stephan Lake Lodge on Stephan Lake. The observed gravity of this station was calculated based on an indirect tie to base station ANCL in Anchorage. The temporary base used to tie between STEP and ANCL was REGL in Anchorage. During the summer of 2000, a gravity survey was conducted in the western Talkeetna Mountains. Measurements at 56 gravity stations were made. One gravity base station was used for control for this survey. This base station, GRHS, is located at the Gracious House Lodge on the Denali Highway. The observed gravity of this station was calculated based on multiple ties to base stations D87, and D57 along the Denali Highway. During the summer of 2001, a gravity survey was conducted in the western Talkeetna Mountains. Measurements at 90 gravity stations were made. One gravity base station was used for control for this survey. This base station, HLML, is located at the High Lake Lodge. The observed gravity of this station was calculated based on multiple ties to base stations ANCU in Anchorage, PALH in Palmer, WASA in Wasilla, and TLKM in Talkeetna. Also during the summer of 2001, a gravity survey was conducted in the vicinity of Tangle Lakes. Measurements at 86 gravity stations were made. The Tangle Lakes area is located about 25 km west of Paxson and north of the Denali Highway. One gravity base station was used for control for this survey. This base station, TLIN, is located at the Tangle Lakes Inn. The observed gravity of this station was calculated based on multiple ties to base stations ANCU in Anchorage, PALH in Palmer, BD27 in Gulkana, B-07 on the Richardson Highway, and base stations D42, and D57 along the Denali Highway. During the summer of 2002, measurements at an additional 107 gravity stations were made in the vicinity of Tangle Lakes. Base station TLIN at the Tangle Lakes Inn was again used for control. Additional ties to base stations ANCU and B-07 were made.
Space Station communications and tracking systems modeling and RF link simulation
NASA Technical Reports Server (NTRS)
Tsang, Chit-Sang; Chie, Chak M.; Lindsey, William C.
1986-01-01
In this final report, the effort spent on Space Station Communications and Tracking System Modeling and RF Link Simulation is described in detail. The effort is mainly divided into three parts: frequency division multiple access (FDMA) system simulation modeling and software implementation; a study on design and evaluation of a functional computerized RF link simulation/analysis system for Space Station; and a study on design and evaluation of simulation system architecture. This report documents the results of these studies. In addition, a separate User's Manual on Space Communications Simulation System (SCSS) (Version 1) documents the software developed for the Space Station FDMA communications system simulation. The final report, SCSS user's manual, and the software located in the NASA JSC system analysis division's VAX 750 computer together serve as the deliverables from LinCom for this project effort.
Park, Yoen Ju; Chen, Jinru
2009-12-01
This study was undertaken to evaluate the microbial quality of the soft drinks served by fast food restaurants and gas station convenience stores in Griffin, GA, and surrounding areas. The soft drinks were collected from the dispensing machines in 8 fast food restaurants or gas station convenience stores in 2005 (n = 25) and in 10 fast food restaurants or gas station convenience stores in 2006 (n = 43) and 2007 (n = 43). One hundred milliliters of each soft drink was filtered through a hydrophobic grid membrane filter. The remaining portion of the soft drink was kept at room temperature for 4 h before sampling in order to mimic the possible holding time between purchase and consumption. The membrane filters were sampled for total aerobic bacteria, Enterobacteriaceae, lactic acid bacteria, and yeasts and molds. The microbial counts in the 2006 samples were numerically higher than the counts in the 2007 samples except for the average lactic acid bacteria counts, and were either significantly or numerically higher than the counts in the 2005 samples. Soft drinks sampled after the 4-h holding period had relatively higher counts than those sampled initially, with a few exceptions. Some soft drinks had over 4 log CFU/100 ml of total aerobic bacteria, Enterobacteriaceae, lactic acid bacteria, and yeast and mold cells. The study revealed the microbial quality of soft drinks served by dispensing machines in Griffin, GA, and surrounding areas, emphasizing the importance of effective sanitizing practice in retail settings.
Coupled Gravity and Elevation Measurements of Ice Sheet Mass Change
NASA Technical Reports Server (NTRS)
Jezek, K. C.
2005-01-01
We measured surface gravity and position at ten locations about two glaciological measurement networks located on the South-central Greenland Ice during June 2004. Six of the individual sites of the first network were occupied the previous year. At the repeat sites we were able to measure annual accumulation rate and surface displacement by referencing measurements to aluminum poles left in the firn the previous year. We occupied 4 additional sites at a second measurement network for the first time since initial observations were last made at the network in 1981. At each individual site, we operated a GPS unit for 90 minutes - the unit was operated simultaneously with a base station unit in Sondrestrom Fjord so as to enable differential, post-processing of the data. We installed an aluminum, accumulation-rate-pole at each site. The base section of the pole also served as the mount for the GPS antenna. A new, Scintrex gravimeter was used at each site and relative gravity measurements were tied to the network of absolute gravity stations in Sondrestrom. We measured snow physical properties in two shallow pits. This report summarizes our observations and data analysis.
NASA Technical Reports Server (NTRS)
Ruttley, Tara M.; Robinson, Julie A.
2010-01-01
Ground-based space analog projects such as the NASA Extreme Environment Mission Operations (NEEMO) can be valuable test beds for evaluation of experimental design and hardware feasibility before actually being implemented on orbit. The International Space Station (ISS) is an closed-system laboratory that orbits 240 miles above the Earth, and is the ultimate extreme environment. Its inhabitants spend hours performing research that spans from fluid physics to human physiology, yielding results that have implications for Earth-based improvements in medicine and health, as well as those that will help facilitate the mitigation of risks to the human body associated with exploration-class space missions. ISS health and medical experiments focus on pre-flight and in-flight prevention, in-flight treatment, and postflight recovery of health problems associated with space flight. Such experiments include those on enhanced medical monitoring, bone and muscle loss prevention, cardiovascular health, immunology, radiation and behavior. Lessons learned from ISS experiments may not only be applicable to other extreme environments that face similar capability limitations, but also serve to enhance standards of care for everyday use on Earth.
STS-102 Astronaut James Voss Participates in Space Walk
NASA Technical Reports Server (NTRS)
2001-01-01
STS-102 astronaut and mission specialist James S. Voss works outside Destiny, the U.S. Laboratory (shown in lower frame) on the International Space Station (ISS), while anchored to the Remote Manipulator System (RMS) robotic arm on the Space Shuttle Discovery during the first of two space walks. During this space walk, the longest to date in space shuttle history, Voss in tandem with Susan Helms (out of frame), prepared the Pressurized Mating Adapter 3 for repositioning from the Unity Module's Earth-facing berth to its port-side berth to make room for the Leonardo Multipurpose Logistics Module (MPLM) supplied by the Italian Space Agency. The The Leonardo MPLM is the first of three such pressurized modules that will serve as the ISS' moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. Launched on May 8, 2001 for nearly 13 days in space, the STS-102 mission was the 8th spacecraft assembly flight to the ISS and NASA's 103rd overall mission. The mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.
STS-102 Astronaut Susan Helms Participates in Space Walk
NASA Technical Reports Server (NTRS)
2001-01-01
STS-102 mission astronaut Susan J. Helms works outside the International Space Station (ISS) while holding onto a rigid umbilical and her feet anchored to the Remote Manipulator System (RMS) robotic arm on the Space Shuttle Discovery during the first of two space walks. During this space walk, the longest to date in space shuttle history, Helms in tandem with James S. Voss (out of frame), prepared the Pressurized Mating Adapter 3 for repositioning from the Unity Module's Earth-facing berth to its port-side berth to make room for the Leonardo Multipurpose Logistics Module (MPLM) supplied by the Italian Space Agency. The Leonardo MPLM is the first of three such pressurized modules that will serve as the ISS's moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. Launched on May 8, 2001 for nearly 13 days in space, STS-102 mission was the 8th spacecraft assembly flight to the ISS and NASA's 103rd overall mission. The mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.
View of the MPLM, Destiny and the UHF antenna taken during the second EVA of STS-100
2001-04-24
STS100-398-017 (19 April-1 May 2001) --- Backdropped by the Earth with partial cloud cover, the Raffaello Multi-Purpose Logistics Module (MPLM) and the Ultra High Frequency (UHF) antenna are photographed by a crewmember during this STS-100 mission to the International Space Station (ISS). The Raffaello, which was built by the Italian Space Agency (ASI), is the second of three such pressurized modules that will serve as ISS "moving vans", carrying laboratory racks filled with equipment, experiments and supplies to and from the station aboard the space shuttle. The UHF antenna was attached to the station's U.S. Laboratory Destiny by space walking astronauts Chris A. Hadfield and Scott E. Parazynski during the mission's first spacewalk. The antenna, on a 1.2-meter (4-foot) boom, is part of the UHF Communications Subsystem of the station. It will interact with systems already aboard the station, including the Space-to-Space Station Radio transceivers. A second antenna will be delivered on the STS-115/11A next year.
International Space Station (ISS)
2001-03-10
This in-orbit close up shows the Italian Space Agency-built multipurpose Logistics Module (MPLM), Leonardo, the primary cargo of the STS-102 mission, resting in the payload bay of the Space Shuttle Orbiter Discovery. The Leonardo MPLM is the first of three such pressurized modules that will serve as the International Space Station's (ISS') moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. The eighth station assembly flight and NASA's 103rd overall flight, STS-102 launched March 8, 2001 for an almost 13 day mission.
Dengue outbreak in a large military station: Have we learnt any lesson?
Kunwar, R; Prakash, R
2015-01-01
An outbreak was reported from a large military station located in South India in 2013. In spite of instituting the preventive measures early, it took more than 2 months to bring the outbreak under control. This paper brings out lessons learnt and suggests strategy for controlling similar outbreak in future. The Military station comprises of 6 large Regimental Centres and many smaller units. The approximate strength of the serving personnel and their families is 25,000. Besides the unit Regimental Medical Officers, a large tertiary care hospital and a Station Health Organization is available to provide health care. A total of 266 patients including 192 serving personnel and 74 of their dependents were hospitalized for dengue between 15 May 2013 and 28 Jul 2013. Many dependents not having severe symptoms, were not hospitalized and treated on outpatient basis. Health advisories and instructions for constituting Dengue Task Force (DTF) were issued well in advance. Preventive measures were instituted early. But the outbreak was controlled only after intervention from higher administrative authorities. Lessons learnt included correct and timely perception of threat is essential; behavioural change of individuals is desired; availability of adequate health functionaries is mandatory; and complete dataset helps correct perception. Future strategy for control of dengue outbreak should include repeated and timely survey of entire area for correct risk perception, assessment of behavioural change among individuals; operational research to assess the impact of ongoing public health campaign.
Integration Of An MR Image Network Into A Clinical PACS
NASA Astrophysics Data System (ADS)
Ratib, Osman M.; Mankovich, Nicholas J.; Taira, Ricky K.; Cho, Paul S.; Huang, H. K.
1988-06-01
A direct link between a clinical pediatric PACS module and a FONAR MRI image network was implemented. The original MR network combines together the MR scanner, a remote viewing station and a central archiving station. The pediatric PACS directly connects to the archiving unit through an Ethernet TCP-IP network adhering to FONAR's protocol. The PACS communication software developed supports the transfer of patient studies and the patient information directly from the MR archive database to the pediatric PACS. In the first phase of our project we developed a package to transfer data between a VAX-111750 and the IBM PC I AT-based MR archive database through the Ethernet network. This system served as a model for PACS-to-modality network communication. Once testing was complete on this research network, the software and network hardware was moved to the clinical pediatric VAX for full PACS integration. In parallel to the direct transmission of digital images to the Pediatric PACS, a broadband communication system in video format was developed for real-time broadcasting of images originating from the MR console to 8 remote viewing stations distributed in the radiology department. These analog viewing stations allow the radiologists to directly monitor patient positioning and to select the scan levels during a patient examination from remote locations in the radiology department. This paper reports (1) the technical details of this implementation, (2) the merits of this network development scheme, and (3) the performance statistics of the network-to-PACS interface.
NASA Astrophysics Data System (ADS)
Xiao, X.; Wen, L.
2017-12-01
As a typical active intracontinental mountain range in Central Asia, Tian Shan Mt serves as the prototype in studying geodynamic processes and mechanism of intracontinental mountain building. We study 3D crust and the uppermost mantle structure beneath Tian Shan region using ambient noise and earthquake surface waves. Our dataset includes vertical component records of 62 permanent broadband seismic stations operated by the Earthquake Administration of China. Firstly, we calculate two-year stacked Cross-Correlation Functions (CCFs) of ambient noise records between the stations. The CCFs are treated as the Empirical Green's Functions (EGFs) of each station pair, from which we measured phase velocities of fundamental-mode Rayleigh wave in the period of 3-40 s using a frequency-time analysis method. Secondly, we collect surface wave data from tele-seismic events with Mw > 5.5 and depth shallower than 200 km and measure phase velocities of the fundamental-mode of Rayleigh wave in the period of 30-150 s using a two-station method. Finally, we combine the phase velocity measurements from ambient noise and earthquake surface waves, obtain lateral isotropic phase velocity maps at different periods based on tomography and invert a 3D Vsv model of crust and uppermost mantle down to about 150 km using a Monte Carlo Inversion method. We will discuss our inversion results in detail, as well as their implications to the tectonics in the region.
2003-07-23
The Space Experiment Research and Processing Laboratory (SERPL) is a major new research facility under construction at the International Space Research Park located on KSC. Being developed as a partnership between KSC and the State of Florida, it will serve as the primary gateway to the International Space Station for science experiments and as a world-class home to ground-based investigations in fundamental and applied biological science. NASA’s life sciences contractor will be the primary tenant of the facility, leasing space to conduct flight experiment processing and NASA-sponsored research. About 20 percent of the facility will be available for use by Florida’s university researchers through the Florida Space Research Institute.
Application of space technology to crustal dynamics and earthquake research
NASA Technical Reports Server (NTRS)
1979-01-01
In cooperation with other Federal government agencies, and the governments of other countries, NASA is undertaking a program of research in geodynamics. The present program activities and plans for extension of these activities in the time period 1979-1985 are described. The program includes operation of observatories for laser ranging to the Moon and to artificial satellites, and radio observatories for very long baseline microwave interferometry (VLBI). These observatories are used to measure polar motion, earth rotation, and tectonic plate movement, and serve as base stations for mobile facilities. The mobile laser ranging and VLBI facilities are used to measure crustal deformation in tectonically active areas.
Officials welcome the arrival of the Japanese Experiment Module
2007-04-17
In the Space Station Processing Facility, NASA and Japanese Aerospace and Exploration Agency (JAXA) officials welcome the arrival of the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module, or JEM, to the Kennedy Space Center. At the podium is Russ Romanella, director of International Space Station and Spacecraft Processing. Seated at right are Bill Parsons, director of Kennedy Space Center; Dr. Kichiro Imagawa, project manager of the JEM Development Project Team for JAXA; Melanie Saunders, associate manager of the International Space Station Program at Johnson Space Center; and Dominic Gorie, commander on mission STS-123 that will deliver the module to the space station. The new International Space Station component arrived at Kennedy March 12 to begin preparations for its future launch on mission STS-123. It will serve as an on-orbit storage area for materials, tools and supplies. It can hold up to eight experiment racks and will attach to the top of another larger pressurized module.
Members of the STS-100 crew look over hardware in SSPF during CEIT
NASA Technical Reports Server (NTRS)
2000-01-01
STS-100 Commander Kent Rominger and Mission Specialist Umberto Guidoni (right), with the European Space Agency, pose for a photo during Crew Equipment Interface Test activities in the Space Station Processing Facility. Behind them is the Space Station Remote Manipulator System (SSRMS), also known as the Canadian arm, which is part of the payload on their mission. The SSRMS is the primary means of transferring payloads between the orbiter payload bay and the International Space Station for assembly. The 56-foot-long robotic arm includes two 12-foot booms joined by a hinge. Seven joints on the arm allow highly flexible and precise movement. The payload also includes the Multi-Purpose Logistics Module (MPLM) Raffaello. MPLMs are pressurized modules that will serve as the International Space Station's '''moving vans,''' carrying laboratory racks filled with equipment, experiments and supplies to and from the station aboard the Space Shuttle. Mission STS-100 is scheduled to launch April 19, 2001.
Officials welcome the arrival of the Japanese Experiment Module
2007-04-17
In the Space Station Processing Facility, NASA and Japanese Aerospace and Exploration Agency (JAXA) officials welcome the arrival of the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module, or JEM, to the Kennedy Space Center. At the podium is Bill Parsons, director of Kennedy Space Center. Seated at right are Russ Romanella, director of International Space Station and Spacecraft Processing; Dr. Kichiro Imagawa, project manager of the JEM Development Project Team for JAXA; Melanie Saunders, associate manager of the International Space Station Program at Johnson Space Center; and Dominic Gorie, commander on mission STS-123 that will deliver the module to the space station. The new International Space Station component arrived at Kennedy March 12 to begin preparations for its future launch on mission STS-123. It will serve as an on-orbit storage area for materials, tools and supplies. It can hold up to eight experiment racks and will attach to the top of another larger pressurized module.
MODEL-BASED HYDROACOUSTIC BLOCKAGE ASSESSMENT AND DEVELOPMENT OF AN EXPLOSIVE SOURCE DATABASE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matzel, E; Ramirez, A; Harben, P
2005-07-11
We are continuing the development of the Hydroacoustic Blockage Assessment Tool (HABAT) which is designed for use by analysts to predict which hydroacoustic monitoring stations can be used in discrimination analysis for any particular event. The research involves two approaches (1) model-based assessment of blockage, and (2) ground-truth data-based assessment of blockage. The tool presents the analyst with a map of the world, and plots raypath blockages from stations to sources. The analyst inputs source locations and blockage criteria, and the tool returns a list of blockage status from all source locations to all hydroacoustic stations. We are currently usingmore » the tool in an assessment of blockage criteria for simple direct-path arrivals. Hydroacoustic data, predominantly from earthquake sources, are read in and assessed for blockage at all available stations. Several measures are taken. First, can the event be observed at a station above background noise? Second, can we establish backazimuth from the station to the source. Third, how large is the decibel drop at one station relative to other stations. These observational results are then compared with model estimates to identify the best set of blockage criteria and used to create a set of blockage maps for each station. The model-based estimates are currently limited by the coarse bathymetry of existing databases and by the limitations inherent in the raytrace method. In collaboration with BBN Inc., the Hydroacoustic Coverage Assessment Model (HydroCAM) that generates the blockage files that serve as input to HABAT, is being extended to include high-resolution bathymetry databases in key areas that increase model-based blockage assessment reliability. An important aspect of this capability is to eventually include reflected T-phases where they reliably occur and to identify the associated reflectors. To assess how well any given hydroacoustic discriminant works in separating earthquake and in-water explosion populations it is necessary to have both a database of reference earthquake events and of reference in-water explosive events. Although reference earthquake events are readily available, explosive reference events are not. Consequently, building an in-water explosion reference database requires the compilation of events from many sources spanning a long period of time. We have developed a database of small implosive and explosive reference events from the 2003 Indian Ocean Cruise data. These events were recorded at some or all of the IMS Indian Ocean hydroacoustic stations: Diego Garcia, Cape Leeuwin, and Crozet Island. We have also reviewed many historical large in-water explosions and identified five that have adequate source information and can be positively associated to the hydrophone recordings. The five events are: Cannekin, Longshot, CHASE-3, CHASE-5, and IITRI-1. Of these, the first two are nuclear tests on land but near water. The latter three are in-water conventional explosive events with yields from ten to hundreds of tons TNT equivalent. The objective of this research is to enhance discrimination capabilities for events located in the world's oceans. Two research and development efforts are needed to achieve this: (1) improvement in discrimination algorithms and their joint statistical application to events, and (2) development of an automated and accurate blockage prediction capability that will identify all stations and phases (direct and reflected) from a given event that will have adequate signal to be used in a discrimination analysis. The strategy for improving blockage prediction in the world's oceans is to improve model-based prediction of blockage and to develop a ground-truth database of reference events to assess blockage. Currently, research is focused on the development of a blockage assessment software tool. The tool is envisioned to develop into a sophisticated and unifying package that optimally and automatically assesses both model and data based blockage predictions in all ocean basins, for all NDC stations, and accounting for reflected phases (Pulli et al., 2000). Currently, we have focused our efforts on the Diego Garcia, Cape Leeuwin and Crozet Island hydroacoustic stations in the Indian Ocean.« less
International Space Station (ISS)
2001-02-16
The International Space Station (ISS), with the newly installed U.S. Laboratory, Destiny, is backdropped over clouds, water and land in South America. South Central Chile shows up at the bottom of the photograph. Just below the Destiny, the Chacao Charnel separates the large island of Chile from the mainland and connects the Gulf of Coronado on the Pacific side with the Gulf of Ancud, southwest of the city of Puerto Montt. The American-made Destiny module is the cornerstone for space-based research aboard the orbiting platform and the centerpiece of the ISS, where unprecedented science experiments will be performed in the near-zero gravity of space. Destiny will also serve as the command and control center for the ISS. The aluminum module is 8.5-meters (28-feet) long and 4.3-meters (14-feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 15 locations especially designed to support experiments. The Destiny module was built by the Boeing Company under the direction of the Marshall Space Flight Center.
2007-04-17
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, NASA and Japanese Aerospace and Exploration Agency (JAXA) officials welcome the arrival of the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module, or JEM, to the Kennedy Space Center. At the podium is Dr. Kichiro Imagawa, project manager of the JEM Development Project Team for JAXA. Seated at right are Russ Romanella, director of International Space Station and Spacecraft Processing; Bill Parsons, director of Kennedy Space Center; Melanie Saunders, associate manager of the International Space Station Program at Johnson Space Center; and Dominic Gorie, commander on mission STS-123 that will deliver the module to the space station. The logistics module will serve as an on-orbit storage area for materials, tools and supplies. It can hold up to eight experiment racks and will attach to the top of another larger pressurized module. Photo credit: NASA/George Shelton
2007-06-08
STS117-S-020 (8 June 2007) --- The Space Shuttle Atlantis and its seven-member STS-117 crew head toward Earth-orbit and a scheduled link-up with the International Space Station. Liftoff from Kennedy Space Center's launch pad 39A occurred at 7:38 p.m. (EDT) on June 8, 2007. Onboard are astronauts Rick Sturckow, commander; Lee Archambault, pilot; Jim Reilly, Patrick Forrester, John "Danny" Olivas, Steven Swanson and Clayton Anderson, all mission specialists. Anderson will join Expedition 15 in progress to serve as a flight engineer aboard the station. Atlantis will dock with the orbital outpost on Sunday, June 10, to begin a joint mission that will increase the complex's power generation capability. Using the shuttle and station robotic arms and conducting three scheduled spacewalks, the astronauts will install another set of giant solar array wings on the station and retract another array, preparing it for a future move.
2007-06-08
STS117-S-009 (8 June 2007) --- The Space Shuttle Atlantis and its seven-member STS-117 crew head toward Earth-orbit and a scheduled link-up with the International Space Station. Liftoff from Kennedy Space Center's launch pad 39A occurred at 7:38 p.m. (EDT) on June 8, 2007. Onboard are astronauts Rick Sturckow, commander; Lee Archambault, pilot; Jim Reilly, Patrick Forrester, John "Danny" Olivas, Steven Swanson and Clayton Anderson, all mission specialists. Anderson will join Expedition 15 in progress to serve as a flight engineer aboard the station. Atlantis will dock with the orbital outpost on Sunday, June 10, to begin a joint mission that will increase the complex's power generation capability. Using the shuttle and station robotic arms and conducting three scheduled spacewalks, the astronauts will install another set of giant solar array wings on the station and retract another array, preparing it for a future move.
2007-06-08
STS117-S-011 (8 June 2007) --- The Space Shuttle Atlantis and its seven-member STS-117 crew head toward Earth-orbit and a scheduled link-up with the International Space Station. Liftoff from Kennedy Space Center's launch pad 39A occurred at 7:38 p.m. (EDT) on June 8, 2007. Onboard are astronauts Rick Sturckow, commander; Lee Archambault, pilot; Jim Reilly, Patrick Forrester, John "Danny" Olivas, Steven Swanson and Clayton Anderson, all mission specialists. Anderson will join Expedition 15 in progress to serve as a flight engineer aboard the station. Atlantis will dock with the orbital outpost on Sunday, June 10, to begin a joint mission that will increase the complex's power generation capability. Using the shuttle and station robotic arms and conducting three scheduled spacewalks, the astronauts will install another set of giant solar array wings on the station and retract another array, preparing it for a future move.
2007-06-08
STS117-S-017 (8 June 2007) --- The Space Shuttle Atlantis and its seven-member STS-117 crew head toward Earth-orbit and a scheduled link-up with the International Space Station. Liftoff from Kennedy Space Center's launch pad 39A occurred at 7:38 p.m. (EDT) on June 8, 2007. Onboard are astronauts Rick Sturckow, commander; Lee Archambault, pilot; Jim Reilly, Patrick Forrester, John "Danny" Olivas, Steven Swanson and Clayton Anderson, all mission specialists. Anderson will join Expedition 15 in progress to serve as a flight engineer aboard the station. Atlantis will dock with the orbital outpost on Sunday, June 10, to begin a joint mission that will increase the complex's power generation capability. Using the shuttle and station robotic arms and conducting three scheduled spacewalks, the astronauts will install another set of giant solar array wings on the station and retract another array, preparing it for a future move.
2007-06-08
STS117-S-039 (8 June 2007) --- The Space Shuttle Atlantis and its seven-member STS-117 crew head toward Earth-orbit and a scheduled link-up with the International Space Station. Liftoff from Kennedy Space Center's launch pad 39A occurred at 7:38 p.m. (EDT) on June 8, 2007. Onboard are astronauts Rick Sturckow, commander; Lee Archambault, pilot; Jim Reilly, Patrick Forrester, John "Danny" Olivas, Steven Swanson and Clayton Anderson, all mission specialists. Anderson will join Expedition 15 in progress to serve as a flight engineer aboard the station. Atlantis will dock with the orbital outpost on Sunday, June 10, to begin a joint mission that will increase the complex's power generation capability. Using the shuttle and station robotic arms and conducting three scheduled spacewalks, the astronauts will install another set of giant solar array wings on the station and retract another array, preparing it for a future move.
2007-06-08
STS117-S-016 (8 June 2007) --- The Space Shuttle Atlantis and its seven-member STS-117 crew head toward Earth-orbit and a scheduled link-up with the International Space Station. Liftoff from Kennedy Space Center's launch pad 39A occurred at 7:38 p.m. (EDT) on June 8, 2007. Onboard are astronauts Rick Sturckow, commander; Lee Archambault, pilot; Jim Reilly, Patrick Forrester, John "Danny" Olivas, Steven Swanson and Clayton Anderson, all mission specialists. Anderson will join Expedition 15 in progress to serve as a flight engineer aboard the station. Atlantis will dock with the orbital outpost on Sunday, June 10, to begin a joint mission that will increase the complex's power generation capability. Using the shuttle and station robotic arms and conducting three scheduled spacewalks, the astronauts will install another set of giant solar array wings on the station and retract another array, preparing it for a future move.
2007-06-08
STS117-S-019 (8 June 2007) --- The Space Shuttle Atlantis and its seven-member STS-117 crew head toward Earth-orbit and a scheduled link-up with the International Space Station. Liftoff from Kennedy Space Center's launch pad 39A occurred at 7:38 p.m. (EDT) on June 8, 2007. Onboard are astronauts Rick Sturckow, commander; Lee Archambault, pilot; Jim Reilly, Patrick Forrester, John "Danny" Olivas, Steven Swanson and Clayton Anderson, all mission specialists. Anderson will join Expedition 15 in progress to serve as a flight engineer aboard the station. Atlantis will dock with the orbital outpost on Sunday, June 10, to begin a joint mission that will increase the complex's power generation capability. Using the shuttle and station robotic arms and conducting three scheduled spacewalks, the astronauts will install another set of giant solar array wings on the station and retract another array, preparing it for a future move.
2007-06-08
STS117-S-006 (8 June 2007) --- After suiting up, the STS-117 crewmembers exit the Operations and Checkout Building to board the Astrovan, which will take them to launch pad 39A at Kennedy Space Center. On the right (front to back) are astronauts Rick Sturckow, commander; Steven Swanson, Clayton Anderson and Jim Reilly (center back), all mission specialists. On the left (front to back) are astronauts Lee Archambault, pilot; Patrick Forrester and John "Danny" Olivas, both mission specialists. Anderson will join Expedition 15 in progress to serve as a flight engineer aboard the International Space Station. Atlantis will link up with the International Space Station on Sunday, June 10, to begin a joint mission that will increase the complex's power generation capability. Using the shuttle and station robotic arms and conducting three scheduled spacewalks, the astronauts will install another set of giant solar array wings on the station and retract another array, preparing it for a future move.
2007-06-08
STS117-S-030 (8 June 2007) --- The Space Shuttle Atlantis and its seven-member STS-117 crew head toward Earth-orbit and a scheduled link-up with the International Space Station. Liftoff from Kennedy Space Center's launch pad 39A occurred at 7:38 p.m. (EDT) on June 8, 2007. Onboard are astronauts Rick Sturckow, commander; Lee Archambault, pilot; Jim Reilly, Patrick Forrester, John "Danny" Olivas, Steven Swanson and Clayton Anderson, all mission specialists. Anderson will join Expedition 15 in progress to serve as a flight engineer aboard the station. Atlantis will dock with the orbital outpost on Sunday, June 10, to begin a joint mission that will increase the complex's power generation capability. Using the shuttle and station robotic arms and conducting three scheduled spacewalks, the astronauts will install another set of giant solar array wings on the station and retract another array, preparing it for a future move.
2007-06-08
STS117-S-027 (8 June 2007) --- The Space Shuttle Atlantis and its seven-member STS-117 crew head toward Earth-orbit and a scheduled link-up with the International Space Station. Liftoff from Kennedy Space Center's launch pad 39A occurred at 7:38 p.m. (EDT) on June 8, 2007. Onboard are astronauts Rick Sturckow, commander; Lee Archambault, pilot; Jim Reilly, Patrick Forrester, John "Danny" Olivas, Steven Swanson and Clayton Anderson, all mission specialists. Anderson will join Expedition 15 in progress to serve as a flight engineer aboard the station. Atlantis will dock with the orbital outpost on Sunday, June 10, to begin a joint mission that will increase the complex's power generation capability. Using the shuttle and station robotic arms and conducting three scheduled spacewalks, the astronauts will install another set of giant solar array wings on the station and retract another array, preparing it for a future move.
2007-06-08
STS117-S-008 (8 June 2007) --- The Space Shuttle Atlantis and its seven-member STS-117 crew head toward Earth-orbit and a scheduled link-up with the International Space Station. Liftoff from Kennedy Space Center's launch pad 39A occurred at 7:38 p.m. (EDT) on June 8, 2007. Onboard are astronauts Rick Sturckow, commander; Lee Archambault, pilot; Jim Reilly, Patrick Forrester, John "Danny" Olivas, Steven Swanson and Clayton Anderson, all mission specialists. Anderson will join Expedition 15 in progress to serve as a flight engineer aboard the station. Atlantis will dock with the orbital outpost on Sunday, June 10, to begin a joint mission that will increase the complex's power generation capability. Using the shuttle and station robotic arms and conducting three scheduled spacewalks, the astronauts will install another set of giant solar array wings on the station and retract another array, preparing it for a future move.
2007-06-08
STS117-S-007 (8 June 2007) --- After suiting up, the STS-117 crewmembers exit the Operations and Checkout Building to board the Astrovan, which will take them to launch pad 39A at Kennedy Space Center. On the right (front to back) are astronauts Rick Sturckow, commander; Steven Swanson, Clayton Anderson and Jim Reilly, all mission specialists. On the left (front to back) are astronauts Lee Archambault, pilot; Patrick Forrester and John "Danny" Olivas, both mission specialists. Anderson will join Expedition 15 in progress to serve as a flight engineer aboard the International Space Station. Atlantis will link up with the International Space Station on Sunday, June 10, to begin a joint mission that will increase the complex's power generation capability. Using the shuttle and station robotic arms and conducting three scheduled spacewalks, the astronauts will install another set of giant solar array wings on the station and retract another array, preparing it for a future move.
2007-06-08
STS117-S-018 (8 June 2007) --- The Space Shuttle Atlantis and its seven-member STS-117 crew head toward Earth-orbit and a scheduled link-up with the International Space Station. Liftoff from Kennedy Space Center's launch pad 39A occurred at 7:38 p.m. (EDT) on June 8, 2007. Onboard are astronauts Rick Sturckow, commander; Lee Archambault, pilot; Jim Reilly, Patrick Forrester, John "Danny" Olivas, Steven Swanson and Clayton Anderson, all mission specialists. Anderson will join Expedition 15 in progress to serve as a flight engineer aboard the station. Atlantis will dock with the orbital outpost on Sunday, June 10, to begin a joint mission that will increase the complex's power generation capability. Using the shuttle and station robotic arms and conducting three scheduled spacewalks, the astronauts will install another set of giant solar array wings on the station and retract another array, preparing it for a future move.
2007-06-08
STS117-S-010 (8 June 2007) --- The Space Shuttle Atlantis and its seven-member STS-117 crew head toward Earth-orbit and a scheduled link-up with the International Space Station. Liftoff from Kennedy Space Center's launch pad 39A occurred at 7:38 p.m. (EDT) on June 8, 2007. Onboard are astronauts Rick Sturckow, commander; Lee Archambault, pilot; Jim Reilly, Patrick Forrester, John "Danny" Olivas, Steven Swanson and Clayton Anderson, all mission specialists. Anderson will join Expedition 15 in progress to serve as a flight engineer aboard the station. Atlantis will dock with the orbital outpost on Sunday, June 10, to begin a joint mission that will increase the complex's power generation capability. Using the shuttle and station robotic arms and conducting three scheduled spacewalks, the astronauts will install another set of giant solar array wings on the station and retract another array, preparing it for a future move.
2007-06-08
STS117-S-034 (8 June 2007) --- The Space Shuttle Atlantis and its seven-member STS-117 crew head toward Earth-orbit and a scheduled link-up with the International Space Station. Liftoff from Kennedy Space Center's launch pad 39A occurred at 7:38 p.m. (EDT) on June 8, 2007. Onboard are astronauts Rick Sturckow, commander; Lee Archambault, pilot; Jim Reilly, Patrick Forrester, John "Danny" Olivas, Steven Swanson and Clayton Anderson, all mission specialists. Anderson will join Expedition 15 in progress to serve as a flight engineer aboard the station. Atlantis will dock with the orbital outpost on Sunday, June 10, to begin a joint mission that will increase the complex's power generation capability. Using the shuttle and station robotic arms and conducting three scheduled spacewalks, the astronauts will install another set of giant solar array wings on the station and retract another array, preparing it for a future move.
2007-06-08
STS117-S-028 (8 June 2007) --- The Space Shuttle Atlantis and its seven-member STS-117 crew head toward Earth-orbit and a scheduled link-up with the International Space Station. Liftoff from Kennedy Space Center's launch pad 39A occurred at 7:38 p.m. (EDT) on June 8, 2007. Onboard are astronauts Rick Sturckow, commander; Lee Archambault, pilot; Jim Reilly, Patrick Forrester, John "Danny" Olivas, Steven Swanson and Clayton Anderson, all mission specialists. Anderson will join Expedition 15 in progress to serve as a flight engineer aboard the station. Atlantis will dock with the orbital outpost on Sunday, June 10, to begin a joint mission that will increase the complex's power generation capability. Using the shuttle and station robotic arms and conducting three scheduled spacewalks, the astronauts will install another set of giant solar array wings on the station and retract another array, preparing it for a future move.
2007-06-08
STS117-S-026 (8 June 2007) --- The Space Shuttle Atlantis and its seven-member STS-117 crew head toward Earth-orbit and a scheduled link-up with the International Space Station. Liftoff from Kennedy Space Center's launch pad 39A occurred at 7:38 p.m. (EDT) on June 8, 2007. Onboard are astronauts Rick Sturckow, commander; Lee Archambault, pilot; Jim Reilly, Patrick Forrester, John "Danny" Olivas, Steven Swanson and Clayton Anderson, all mission specialists. Anderson will join Expedition 15 in progress to serve as a flight engineer aboard the station. Atlantis will dock with the orbital outpost on Sunday, June 10, to begin a joint mission that will increase the complex's power generation capability. Using the shuttle and station robotic arms and conducting three scheduled spacewalks, the astronauts will install another set of giant solar array wings on the station and retract another array, preparing it for a future move.
2007-06-08
STS117-S-033 (8 June 2007) --- The Space Shuttle Atlantis and its seven-member STS-117 crew head toward Earth-orbit and a scheduled link-up with the International Space Station. Liftoff from Kennedy Space Center's launch pad 39A occurred at 7:38 p.m. (EDT) on June 8, 2007. Onboard are astronauts Rick Sturckow, commander; Lee Archambault, pilot; Jim Reilly, Patrick Forrester, John "Danny" Olivas, Steven Swanson and Clayton Anderson, all mission specialists. Anderson will join Expedition 15 in progress to serve as a flight engineer aboard the station. Atlantis will dock with the orbital outpost on Sunday, June 10, to begin a joint mission that will increase the complex's power generation capability. Using the shuttle and station robotic arms and conducting three scheduled spacewalks, the astronauts will install another set of giant solar array wings on the station and retract another array, preparing it for a future move.
2007-06-08
STS117-S-031 (8 June 2007) --- The Space Shuttle Atlantis and its seven-member STS-117 crew head toward Earth-orbit and a scheduled link-up with the International Space Station. Liftoff from Kennedy Space Center's launch pad 39A occurred at 7:38 p.m. (EDT) on June 8, 2007. Onboard are astronauts Rick Sturckow, commander; Lee Archambault, pilot; Jim Reilly, Patrick Forrester, John "Danny" Olivas, Steven Swanson and Clayton Anderson, all mission specialists. Anderson will join Expedition 15 in progress to serve as a flight engineer aboard the station. Atlantis will dock with the orbital outpost on Sunday, June 10, to begin a joint mission that will increase the complex's power generation capability. Using the shuttle and station robotic arms and conducting three scheduled spacewalks, the astronauts will install another set of giant solar array wings on the station and retract another array, preparing it for a future move.
2007-06-08
STS117-S-037 (8 June 2007) --- The Space Shuttle Atlantis and its seven-member STS-117 crew head toward Earth-orbit and a scheduled link-up with the International Space Station. Liftoff from Kennedy Space Center's launch pad 39A occurred at 7:38 p.m. (EDT) on June 8, 2007. Onboard are astronauts Rick Sturckow, commander; Lee Archambault, pilot; Jim Reilly, Patrick Forrester, John "Danny" Olivas, Steven Swanson and Clayton Anderson, all mission specialists. Anderson will join Expedition 15 in progress to serve as a flight engineer aboard the station. Atlantis will dock with the orbital outpost on Sunday, June 10, to begin a joint mission that will increase the complex's power generation capability. Using the shuttle and station robotic arms and conducting three scheduled spacewalks, the astronauts will install another set of giant solar array wings on the station and retract another array, preparing it for a future move.
2007-06-08
STS117-S-035 (8 June 2007) --- The Space Shuttle Atlantis and its seven-member STS-117 crew head toward Earth-orbit and a scheduled link-up with the International Space Station. Liftoff from Kennedy Space Center's launch pad 39A occurred at 7:38 p.m. (EDT) on June 8, 2007. Onboard are astronauts Rick Sturckow, commander; Lee Archambault, pilot; Jim Reilly, Patrick Forrester, John "Danny" Olivas, Steven Swanson and Clayton Anderson, all mission specialists. Anderson will join Expedition 15 in progress to serve as a flight engineer aboard the station. Atlantis will dock with the orbital outpost on Sunday, June 10, to begin a joint mission that will increase the complex's power generation capability. Using the shuttle and station robotic arms and conducting three scheduled spacewalks, the astronauts will install another set of giant solar array wings on the station and retract another array, preparing it for a future move.
2007-06-08
STS117-S-036 (8 June 2007) --- The Space Shuttle Atlantis and its seven-member STS-117 crew head toward Earth-orbit and a scheduled link-up with the International Space Station. Liftoff from Kennedy Space Center's launch pad 39A occurred at 7:38 p.m. (EDT) on June 8, 2007. Onboard are astronauts Rick Sturckow, commander; Lee Archambault, pilot; Jim Reilly, Patrick Forrester, John "Danny" Olivas, Steven Swanson and Clayton Anderson, all mission specialists. Anderson will join Expedition 15 in progress to serve as a flight engineer aboard the station. Atlantis will dock with the orbital outpost on Sunday, June 10, to begin a joint mission that will increase the complex's power generation capability. Using the shuttle and station robotic arms and conducting three scheduled spacewalks, the astronauts will install another set of giant solar array wings on the station and retract another array, preparing it for a future move.
2007-06-08
STS117-S-023 (8 June 2007) --- The Space Shuttle Atlantis and its seven-member STS-117 crew head toward Earth-orbit and a scheduled link-up with the International Space Station. Liftoff from Kennedy Space Center's launch pad 39A occurred at 7:38 p.m. (EDT) on June 8, 2007. Onboard are astronauts Rick Sturckow, commander; Lee Archambault, pilot; Jim Reilly, Patrick Forrester, John "Danny" Olivas, Steven Swanson and Clayton Anderson, all mission specialists. Anderson will join Expedition 15 in progress to serve as a flight engineer aboard the station. Atlantis will dock with the orbital outpost on Sunday, June 10, to begin a joint mission that will increase the complex's power generation capability. Using the shuttle and station robotic arms and conducting three scheduled spacewalks, the astronauts will install another set of giant solar array wings on the station and retract another array, preparing it for a future move.
2007-06-08
STS117-S-038 (8 June 2007) --- The Space Shuttle Atlantis and its seven-member STS-117 crew head toward Earth-orbit and a scheduled link-up with the International Space Station. Liftoff from Kennedy Space Center's launch pad 39A occurred at 7:38 p.m. (EDT) on June 8, 2007. Onboard are astronauts Rick Sturckow, commander; Lee Archambault, pilot; Jim Reilly, Patrick Forrester, John "Danny" Olivas, Steven Swanson and Clayton Anderson, all mission specialists. Anderson will join Expedition 15 in progress to serve as a flight engineer aboard the station. Atlantis will dock with the orbital outpost on Sunday, June 10, to begin a joint mission that will increase the complex's power generation capability. Using the shuttle and station robotic arms and conducting three scheduled spacewalks, the astronauts will install another set of giant solar array wings on the station and retract another array, preparing it for a future move.
2007-06-08
STS117-S-015 (8 June 2007) --- The Space Shuttle Atlantis and its seven-member STS-117 crew head toward Earth-orbit and a scheduled link-up with the International Space Station. Liftoff from Kennedy Space Center's launch pad 39A occurred at 7:38 p.m. (EDT) on June 8, 2007. Onboard are astronauts Rick Sturckow, commander; Lee Archambault, pilot; Jim Reilly, Patrick Forrester, John "Danny" Olivas, Steven Swanson and Clayton Anderson, all mission specialists. Anderson will join Expedition 15 in progress to serve as a flight engineer aboard the station. Atlantis will dock with the orbital outpost on Sunday, June 10, to begin a joint mission that will increase the complex's power generation capability. Using the shuttle and station robotic arms and conducting three scheduled spacewalks, the astronauts will install another set of giant solar array wings on the station and retract another array, preparing it for a future move.
2007-06-08
STS117-S-024 (8 June 2007) --- The Space Shuttle Atlantis and its seven-member STS-117 crew head toward Earth-orbit and a scheduled link-up with the International Space Station. Liftoff from Kennedy Space Center's launch pad 39A occurred at 7:38 p.m. (EDT) on June 8, 2007. Onboard are astronauts Rick Sturckow, commander; Lee Archambault, pilot; Jim Reilly, Patrick Forrester, John "Danny" Olivas, Steven Swanson and Clayton Anderson, all mission specialists. Anderson will join Expedition 15 in progress to serve as a flight engineer aboard the station. Atlantis will dock with the orbital outpost on Sunday, June 10, to begin a joint mission that will increase the complex's power generation capability. Using the shuttle and station robotic arms and conducting three scheduled spacewalks, the astronauts will install another set of giant solar array wings on the station and retract another array, preparing it for a future move.
2007-06-08
STS117-S-025 (8 June 2007) --- The Space Shuttle Atlantis and its seven-member STS-117 crew head toward Earth-orbit and a scheduled link-up with the International Space Station. Liftoff from Kennedy Space Center's launch pad 39A occurred at 7:38 p.m. (EDT) on June 8, 2007. Onboard are astronauts Rick Sturckow, commander; Lee Archambault, pilot; Jim Reilly, Patrick Forrester, John "Danny" Olivas, Steven Swanson and Clayton Anderson, all mission specialists. Anderson will join Expedition 15 in progress to serve as a flight engineer aboard the station. Atlantis will dock with the orbital outpost on Sunday, June 10, to begin a joint mission that will increase the complex's power generation capability. Using the shuttle and station robotic arms and conducting three scheduled spacewalks, the astronauts will install another set of giant solar array wings on the station and retract another array, preparing it for a future move.
International Space Station (ISS)
1997-06-01
This Boeing photograph shows the Node 1, Unity module, Flight Article (at right) and the U.S. Laboratory module, Destiny, Flight Article for the International Space Station (ISS) being manufactured in the High Bay Clean Room of the Space Station Manufacturing Facility at the Marshall Space Flight Center. The Node 1, or Unity, serves as a cornecting passageway to Space Station modules. The U.S. built Unity module was launched aboard the orbiter Endeavour (STS-88 mission) on December 4, 1998 and connected to the Zarya, the Russian-built Functional Energy Block (FGB). The U.S. Laboratory (Destiny) module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity of space. The U.S. Laboratory/Destiny was launched aboard the orbiter Atlantis (STS-98 mission) on February 7, 2001. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.
Baily's Beads Atlas in 2005 - 2008 Eclipses
NASA Astrophysics Data System (ADS)
Sigismondi, C.; Dunham, D. W.; Guhl, K.; Andersson, S.; Bode, H.; Canales, O.; Colona, P.; Farago, O.; Fernández-Ocaña, M.; Gabel, A.; Haupt, M.; Herold, C.; Nugent, R.; Oliva, P.; Patel, M.; Perello, C.; Rothe, W.; Rovira, J.; Schaefer, T.; Schnabel, C.; Schwartz, D.; Selva, A.; Strickling, W.; Tegtmeier, A.; Tegtmeier, C.; Thome, B.; Warren, W. H.
2009-09-01
In the annular or total eclipses of 3 October 2005, 29 March 2006, 22 September 2006, and 1 August 2008, observational campaigns were organized to record the phenomenon of Baily’s beads. These campaigns were internationally coordinated through the International Occultation Timing Association (IOTA) at both its American and European sections. From the stations in the northern and southern zones of grazing eclipse, the eclipses have been recorded on video. Afterward, as many beads as possible have been identified by analyzing the video data of each observing station. The atlas presented in this paper includes 598 data points, obtained by 23 observers operating at 28 different observing stations. The atlas lists the geographic positions of the observing stations and the observed time instants of disappearance or reappearance of beads, identified by an angle measured relative to the Moon’s axis of rotation. The atlas will serve as a basis for determining the solar diameter.
47 CFR 90.305 - Location of stations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... stations. (a) The transmitter site(s) for base station(s), including mobile relay stations, shall be.... (b) Mobile units shall be operated within 48 km. (30 mi.) of their associated base station or...). (c) Control stations must be located within the area of operation of the mobile units. (d) Base and...
Teh, S.J.; Clark, S.L.; Brown, C.L.; Luoma, S.N.; Hinton, D.E.
1999-01-01
Enzymatic and histopathologic alterations of the digestive gland, gill, gonad, and kidney were studied in Asian clam (Potamocorbula amurensis) in April, 1997 from each of four United States Geological Survey (USGS) stations in the San Francisco Estuary. Stations were selected based on differing body burdens of metallic contaminants in clams (Stn 4.1>6.1>8.1>12.5) observed over 7 years. Because no pristine sites are known within the estuary and because no laboratory-reared stocks of P. amurensis were available, clams from station 12.5 served as reference animals. Histopathologic analysis revealed no lesions in clams collected from station 12.5. Mild digestive gland atrophy and moderate distal kidney tubular vacuolation were seen in clams collected from station 8.1. Mild digestive gland atrophy, moderate kidney tubular atrophy, and moderate gill inflammation were seen in clams collected from station 6.1. Lesions found only in clams from station 4.1 were: (1) severe inflammation and moderate atrophy of primary ducts and diverticula, and decreased numbers of heterophagosomes and heterolysosomes in diverticula of the digestive gland; (2) severe gill inflammation; (3) severe kidney tubular atrophy; (4) severe ovarian and testicular inflammation and necrosis (5) decreased numbers of mature ova; and (6) decreased number of glycogen storage cells in the ovary and testis. Localization of specific enzymes including adenosine triphosphatase (ATP), acid phosphatase (ACP), alkaline phosphatase (ALKP), gamma-glutamyl transpeptidase (GGT), and glucose-6-phosphate dehydrogenase (G6PDH) was performed and correlated, in serial sections with glycogen (PAS) and haematoxylin and eosin stains. Enzymatic analysis revealed: (1) increased digestive diverticula ATP in stations 6.1 and 4.1; (2) decreased digestive diverticula ACP in stations 6.1 and 4.1 and proximal kidney tubular ACP deficiency in station 4.1; (3) no ALKP differences among stations; (4) increased distal kidney tubular GGT at station 12.5 and decreased distal kidney tubular GGT at station 4.1; (5) decreased digestive diverticula G6PDH G6PDH in all stations except 12.5 and decreased proximal kidney tubular G6PDH in stations 8.1 and 6.1. It is possible that other anthropogenic and natural stressors may have affected the results in this study. However, the prevalence and increased severity of lesions in clams with highest metal body burden suggests a contaminant- associated etiology. Enzymatic and histopathologic biomarker alterations identified in this study were positively correlated with the metal body burden. Clams with the higher prevalence of diseases and enzyme alterations also showed a lower condition index and glycogen content in the month when histopathological assessment was performed. Further study will seek to develop enzymatic and histopathologic biomarkers for use in controlled laboratory conditions to help validate the field study.
2009-11-12
ISS021-E-024527 (12 Nov. 2009) --- The new unpiloted Russian Mini-Research Module 2 (MRM2), also known as Poisk, approaches the International Space Station. The MRM2 docked to the space-facing port of the Zvezda Service Module at 9:41 a.m. (CST) on Nov. 12, 2009. It began its trip to the station when it was launched aboard a Soyuz rocket from the Baikonur Cosmodrome in Kazakhstan on Nov. 10. Poisk is a Russian term that translates to search, seek and explore. It will provide an additional docking port for visiting Russian spacecrafts and will serve as an extra airlock for spacewalkers wearing Russian Orlan spacesuits. Poisk joins a Russian Progress resupply vehicle and two Russian Soyuz spacecraft currently docked at the station.
Officials welcome the arrival of the Japanese Experiment Module
2007-04-17
In the Space Station Processing Facility, NASA and Japanese Aerospace and Exploration Agency (JAXA) officials welcome the arrival of the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module, or JEM, to the Kennedy Space Center. Seen here at right are JAXA representatives, including Japanese astronaut Takao Doi (center of front row), who is a crew member for mission STS-123 that will deliver the module to the space station. The new International Space Station component arrived at Kennedy March 12 to begin preparations for its future launch on mission STS-123. It will serve as an on-orbit storage area for materials, tools and supplies. It can hold up to eight experiment racks and will attach to the top of another larger pressurized module.
Development of a Medical Cyclotron Production Facility
NASA Astrophysics Data System (ADS)
Allen, Danny R.
2003-08-01
Development of a Cyclotron manufacturing facility begins with a business plan. Geographics, the size and activity of the medical community, the growth potential of the modality being served, and other business connections are all considered. This business used the customer base established by NuTech, Inc., an independent centralized nuclear pharmacy founded by Danny Allen. With two pharmacies in operation in Tyler and College Station and a customer base of 47 hospitals and clinics the existing delivery system and pharmacist staff is used for the cyclotron facility. We then added cyclotron products to contracts with these customers to guarantee a supply. We partnered with a company in the process of developing PET imaging centers. We then built an independent imaging center attached to the cyclotron facility to allow for the use of short-lived isotopes.
STS-116 and Expedition 12 Preflight Training, VR Lab Bldg. 9.
2005-05-06
JSC2005-E-18147 (6 May 2005) --- Astronauts Sunita L. Williams (left), Expedition 14 flight engineer, and Joan E. Higginbotham, STS-116 mission specialist, use the virtual reality lab at the Johnson Space Center to train for their duties aboard the space shuttle. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare the entire team for dealing with space station elements. Williams will join Expedition 14 in progress and serve as a flight engineer after traveling to the station on space shuttle mission STS-116.
The new Mobile Command Center at KSC is important addition to emergency preparedness
NASA Technical Reports Server (NTRS)
2000-01-01
This new specially equipped vehicle serves as a mobile command center for emergency preparedness staff and other support personnel when needed at KSC or Cape Canaveral Air Force Station. It features a conference room, computer work stations, mobile telephones and a fax machine. It also can generate power with its onboard generator. Besides being ready to respond in case of emergencies during launches, the vehicle must be ready to help address fires, security threats, chemical spills, terrorist attaches, weather damage or other critical situations that might face KSC or CCAFS.
In-space research, technology and engineering experiments and Space Station
NASA Technical Reports Server (NTRS)
Tyson, Richard; Gartrell, Charles F.
1988-01-01
The NASA Space Station will serve as a technology research laboratory, a payload-servicing facility, and a large structure fabrication and assembly facility. Space structures research will encompass advanced structural concepts and their dynamics, advanced control concepts, sensors, and actuators. Experiments dealing with fluid management will gather data on such fundamentals as multiphase flow phenomena. As requirements for power systems and thermal management grow, experiments quantifying the performance of energy systems and thermal management concepts will be undertaken, together with expanded efforts in the fields of information systems, automation, and robotics.
X-38 vehicle #131R during pre-launch with B-52 008 mothership and F-18 chase aircraft
2000-11-02
The X-38 prototypes are intended to perfect a "crew lifeboat" for the International Space Station. The X-38 vehicle 131R demonstrates a huge 7,500 square-foot parafoil that will that will enable the Crew Return Vehicle (CRV) to land on the length of a football field after returning from space. The CRV is intended to serve as an emergency transport to carry a crew to safety in the event of problems with the International Space Station.
2007-04-17
KENNEDY SPACE CENTER, FLA. -- The Experiment Logistics Module Pressurized Section of the Japanese Experiment Module sits on top of a stand in the Space Station Processing Facility. Earlier, NASA and Japanese Space Agency (JAXA) officials welcomed the arrival of the logistics module, which will be delivered to the space station on mission STS-123. The module will serve as an on-orbit storage area for materials, tools and supplies. It can hold up to eight experiment racks and will attach to the top of another larger pressurized module. Photo credit: NASA/George Shelton
2007-04-17
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, Scott Higginbotham and Chuong Nguyen, payload manager and deputy payload manager respectively for the International Space Station, stand in front of the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module. Earlier, NASA and Japanese Aerospace and Exploration Agency (JAXA) officials welcomed the arrival of the logistics module. The module will serve as an on-orbit storage area for materials, tools and supplies. It can hold up to eight experiment racks and will attach to the top of another larger pressurized module. Photo credit: NASA/George Shelton
X-38 vehicle #131R during pre-launch with B-52 008 mothership and F-18 chase aircraft
NASA Technical Reports Server (NTRS)
2000-01-01
The X-38 prototypes are intended to perfect a 'crew lifeboat' for the International Space Station. The X-38 vehicle 131R demonstrates a huge 7,500 square-foot parafoil that will that will enable the Crew Return Vehicle (CRV) to land on the length of a football field after returning from space. The CRV is intended to serve as an emergency transport to carry a crew to safety in the event of problems with the International Space Station.
The new Mobile Command Center at KSC is important addition to emergency preparedness
NASA Technical Reports Server (NTRS)
2000-01-01
This camper-equipped truck known as '''Old Blue''' served as mobile field command center for the Emergency Preparedness team at KSC. It has been replaced with a larger vehicle that includes a conference room, computer work stations, mobile telephones and a fax machine, plus its own onboard generator. Besides being ready to respond in case of emergencies during launches, the vehicle must be ready to help address fires, security threats, chemical spills, terrorist attaches, weather damage or other critical situations that might face KSC or Cape Canaveral Air Force Station.
DTN Implementation and Utilization Options on the International Space Station
NASA Technical Reports Server (NTRS)
Nichols, Kelvin; Holbrook, Mark; Pitts, Lee; Gifford, Kevin; Jenkins, Andrew; Kuzminsky, Sebastian
2010-01-01
This slide presentation reviews the implementation and future uses of Delay/Disruption Tolerant Networking (DTN) for space communication, using the International Space Station as the primary example. The presentation includes: (1) A brief introduction of the current communications architecture of the ISS (2) How current payload operations are handled in the non-DTN environment (3) Making the case to implement DTN into the current payload science operations model (4) Phase I DTN Operations: early implementation with BioServe's CGBA Payload (5) Phase II DTN Operations: Developing the HOSC DTN Gateway
47 CFR 95.139 - Adding a small base station or a small control station.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 5 2010-10-01 2010-10-01 false Adding a small base station or a small control... base station or a small control station. (a) Except for a GMRS system licensed to a non-individual, one or more small base stations or a small control station may be added to a GMRS system at any point...
14 CFR 145.3 - Definition of terms.
Code of Federal Regulations, 2011 CFR
2011-01-01
... maintenance resulting from unforeseen events; or (2) Scheduled checks that contain servicing and/or... regulations and serving as the primary contact with the FAA. (b) Article means an aircraft, airframe, aircraft... for the work of a certificated repair station that performs maintenance, preventive maintenance...
14 CFR 145.3 - Definition of terms.
Code of Federal Regulations, 2013 CFR
2013-01-01
... maintenance resulting from unforeseen events; or (2) Scheduled checks that contain servicing and/or... regulations and serving as the primary contact with the FAA. (b) Article means an aircraft, airframe, aircraft... for the work of a certificated repair station that performs maintenance, preventive maintenance...
14 CFR 145.3 - Definition of terms.
Code of Federal Regulations, 2012 CFR
2012-01-01
... maintenance resulting from unforeseen events; or (2) Scheduled checks that contain servicing and/or... regulations and serving as the primary contact with the FAA. (b) Article means an aircraft, airframe, aircraft... for the work of a certificated repair station that performs maintenance, preventive maintenance...
14 CFR 145.3 - Definition of terms.
Code of Federal Regulations, 2014 CFR
2014-01-01
... maintenance resulting from unforeseen events; or (2) Scheduled checks that contain servicing and/or... regulations and serving as the primary contact with the FAA. (b) Article means an aircraft, airframe, aircraft... for the work of a certificated repair station that performs maintenance, preventive maintenance...
14 CFR 145.3 - Definition of terms.
Code of Federal Regulations, 2010 CFR
2010-01-01
... maintenance resulting from unforeseen events; or (2) Scheduled checks that contain servicing and/or... regulations and serving as the primary contact with the FAA. (b) Article means an aircraft, airframe, aircraft... for the work of a certificated repair station that performs maintenance, preventive maintenance...
Social Science Research Serving Rural America.
ERIC Educational Resources Information Center
Miron, Mary, Ed.
This collection of articles provides an overview of some of the recent social science research projects performed by state agricultural experiment stations. The examples highlight social science's contribution to problem-solving in rural business, industry, farming, communities, government, education, and families. The following programs are…
2016-05-10
ISS047e111084 (05/10/2016) --- NASA astronaut Tim Kopra poses inside the cupola module onboard the International Space Station. Kopra, who was born in Austin, Texas, is the commander of Expedition 47 and previously served as a flight engineer during Expeditions 46 and 20.
Simulation model for port shunting yards
NASA Astrophysics Data System (ADS)
Rusca, A.; Popa, M.; Rosca, E.; Rosca, M.; Dragu, V.; Rusca, F.
2016-08-01
Sea ports are important nodes in the supply chain, joining two high capacity transport modes: rail and maritime transport. The huge cargo flows transiting port requires high capacity construction and installation such as berths, large capacity cranes, respectively shunting yards. However, the port shunting yards specificity raises several problems such as: limited access since these are terminus stations for rail network, the in-output of large transit flows of cargo relatively to the scarcity of the departure/arrival of a ship, as well as limited land availability for implementing solutions to serve these flows. It is necessary to identify technological solutions that lead to an answer to these problems. The paper proposed a simulation model developed with ARENA computer simulation software suitable for shunting yards which serve sea ports with access to the rail network. Are investigates the principal aspects of shunting yards and adequate measures to increase their transit capacity. The operation capacity for shunting yards sub-system is assessed taking in consideration the required operating standards and the measure of performance (e.g. waiting time for freight wagons, number of railway line in station, storage area, etc.) of the railway station are computed. The conclusion and results, drawn from simulation, help transports and logistics specialists to test the proposals for improving the port management.
Landsat's international partners
Byrnes, Raymond A.
2012-01-01
Since the launch of the first Landsat satellite 40 years ago, International Cooperators (ICs) have formed a key strategic alliance with the U.S. Geological Survey (USGS) to not only engage in Landsat data downlink services but also to enable a foundation for scientific and technical collaboration. The map below shows the locations of all ground stations operated by the United States and IC ground station network for the direct downlink and distribution of Landsat 5 (L5) and Landsat 7 (L7) image data. The circles show the approximate area over which each station has the capability for direct reception of Landsat data. The red circles show the components of the L5 ground station network, the green circles show components of the L7 station network, and the dashed circles show stations with dual (L5 and L7) status. The yellow circles show L5 short-term ("campaign") stations that contribute to the USGS Landsat archive. Ground stations in South Dakota and Australia currently serve as the primary data capture facilities for the USGS Landsat Ground Network (LGN). The Landsat Ground Station (LGS) is located at the USGS Earth Resources Observation and Science (EROS) Center in Sioux Falls, South Dakota. The Alice Springs (ASN) ground station is located at the Geoscience Australia facility in Alice Springs, Australia. These sites receive the image data, via X-band Radio Frequency (RF) link, and the spacecraft housekeeping data, via S-band RF link. LGS also provides tracking services and a command link to the spacecrafts.
NASA Astrophysics Data System (ADS)
Dominguez, A.; Kleissl, J.; Farhadi, M.; Kim, D.; Liu, W.; Mao, Y.; Nguyen, H. T.; Roshandell, M.; Sankur, M.; Shiga, Y.; Linden, P.; Hodgkiss, W.
2007-12-01
Meteorological conditions have important implications on human activities. They affect human comfort, productivity, and health, and contribute to material wear and tear. The University of California, San Diego (UCSD)'s proximity to the Pacific Ocean places it in a temperate microclimate which has unique advantages and disadvantages for campus water and energy use and air quality. In particular, the daily sea-breezes provide cool, moist, and salt-laden air to campus. For the Decision-Making Using Real-Time Observations for Environmental Sustainability (DEMROES) project a heterogeneous wireless network of monitoring stations is being set up across the UCSD campus and beyond. Conditions to be monitored include temperature, humidity, wind speed and direction, surface temperatures, solar radiation, particulate matter, CO, NO2, rainfall, and soil moisture. Stations are strategically placed on rooftops and lampposts across campus, as well as select off-campus locations and will transmit data over the UCSD 802.11 wireless network. In addition to rooftop and lamppost stations, mobile stations will be deployed via remotely controlled ground and air units, and stations affixed to campus shuttle busses. These mobile stations will allow for greater spatial resolution of the environmental conditions across campus and inter-sensor calibration. The hardware consists of meteorological, hydrological, and air quality sensors connected to (a) commercial Campbell datalogging systems with serial2IP modules and wireless bridges, and (b) sensor and 802.11 boards based on the dpac technology developed in-house. The measurements will serve campus facilities management with information to feed the energy management system (EMS) for building operation and energy conservation, and irrigation management. The technology developed for this project can be applied elsewhere thereby contributing to hydrologic and ecologic observatories. Through extensive student involvement a new generation of environmental scientists and engineers will be trained to work on the planning and execution of national observatories.
47 CFR 97.5 - Station license required.
Code of Federal Regulations, 2010 CFR
2010-10-01
... custodian designated by the official responsible for the governmental agency served by that civil defense organization. The custodian must be the civil defense official responsible for coordination of all civil defense activities in the area concerned. The custodian must not be a representative of a foreign...
NASA Technical Reports Server (NTRS)
Perry, J. L.
2016-01-01
As the Space Station Freedom program transitioned to become the International Space Station (ISS), uncertainty existed concerning the performance capabilities for U.S.- and Russian-provided trace contaminant control (TCC) equipment. In preparation for the first dialogue between NASA and Russian Space Agency personnel in Moscow, Russia, in late April 1994, an engineering analysis was conducted to serve as a basis for discussing TCC equipment engineering assumptions as well as relevant assumptions on equipment offgassing and cabin air quality standards. The analysis presented was conducted as part of the efforts to integrate Russia into the ISS program via the early ISS Multilateral Medical Operations Panel's Air Quality Subgroup deliberations. This analysis, served as a basis for technical deliberations that established a framework for TCC system design and operations among the ISS program's international partners that has been instrumental in successfully managing the ISS common cabin environment.
STS-86 crew members (Parazynski, Wolf, Lawrence) in slidewire basket
NASA Technical Reports Server (NTRS)
1997-01-01
STS-86 Mission Specialists Scott E. Parazynski, at left, David A. Wolf, and Wendy B. Lawrence, at right, participate in emergency egress training at Launch Pad 39A as part of Terminal Countdown Demonstration Test (TCDT) activities. They are the three U.S. astronauts who will serve as mission specialists during the planned 10-day flight to the Russian Space Station Mir. Also serving as mission specialists will be Vladimir Georgievich Titov of the Russian Space Agency and Jean-Loup J.M. Chretien of the French Space Agency, CNES. STS-86 will be the seventh docking of the Space Shuttle with the Mir. During the docking, Wolf will transfer to the orbiting Russian station and become a member of the Mir 24 crew, replacing U.S. astronaut C. Michael Foale, who has been on the Mir since the last docking mission, STS-84, in May. Launch of Mission STS-86 aboard the Space Shuttle Atlantis is targeted for Sept. 25.
47 CFR 95.621 - GMRS transmitter channel frequencies.
Code of Federal Regulations, 2010 CFR
2010-10-01
... only for certain station classes and station locations. See part 95, subpart A. (b) Each GMRS transmitter for mobile station, small base station and control station operation must be maintained within a frequency tolerance of 0.0005%. Each GMRS transmitter for base station (except small base), mobile relay...
Satellite laser ranging to low Earth orbiters: orbit and network validation
NASA Astrophysics Data System (ADS)
Arnold, Daniel; Montenbruck, Oliver; Hackel, Stefan; Sośnica, Krzysztof
2018-04-01
Satellite laser ranging (SLR) to low Earth orbiters (LEOs) provides optical distance measurements with mm-to-cm-level precision. SLR residuals, i.e., differences between measured and modeled ranges, serve as a common figure of merit for the quality assessment of orbits derived by radiometric tracking techniques. We discuss relevant processing standards for the modeling of SLR observations and highlight the importance of line-of-sight-dependent range corrections for the various types of laser retroreflector arrays. A 1-3 cm consistency of SLR observations and GPS-based precise orbits is demonstrated for a wide range of past and present LEO missions supported by the International Laser Ranging Service (ILRS). A parameter estimation approach is presented to investigate systematic orbit errors and it is shown that SLR validation of LEO satellites is not only able to detect radial but also along-track and cross-track offsets. SLR residual statistics clearly depend on the employed precise orbit determination technique (kinematic vs. reduced-dynamic, float vs. fixed ambiguities) but also reveal pronounced differences in the ILRS station performance. Using the residual-based parameter estimation approach, corrections to ILRS station coordinates, range biases, and timing offsets are derived. As a result, root-mean-square residuals of 5-10 mm have been achieved over a 1-year data arc in 2016 using observations from a subset of high-performance stations and ambiguity-fixed orbits of four LEO missions. As a final contribution, we demonstrate that SLR can not only validate single-satellite orbit solutions but also precise baseline solutions of formation flying missions such as GRACE, TanDEM-X, and Swarm.
Space Station-Baseline Configuration
NASA Technical Reports Server (NTRS)
1989-01-01
In response to President Reagan's directive to NASA to develop a permanent marned Space Station within a decade, part of the State of the Union message to Congress on January 25, 1984, NASA and the Administration adopted a phased approach to Station development. This approach provided an initial capability at reduced costs, to be followed by an enhanced Space Station capability in the future. This illustration depicts the baseline configuration, which features a 110-meter-long horizontal boom with four pressurized modules attached in the middle. Located at each end are four photovoltaic arrays generating a total of 75-kW of power. Two attachment points for external payloads are provided along this boom. The four pressurized modules include the following: A laboratory and habitation module provided by the United States; two additional laboratories, one each provided by the European Space Agency (ESA) and Japan; and an ESA-provided Man-Tended Free Flyer, a pressurized module capable of operations both attached to and separate from the Space Station core. Canada was expected to provide the first increment of a Mobile Serving System.
Space Station-Baseline Configuration With Callouts
NASA Technical Reports Server (NTRS)
1989-01-01
In response to President Reagan's directive to NASA to develop a permanent marned Space Station within a decade, part of the State of the Union message to Congress on January 25, 1984, NASA and the Administration adopted a phased approach to Station development. This approach provided an initial capability at reduced costs, to be followed by an enhanced Space Station capability in the future. This illustration depicts the baseline configuration, which features a 110-meter-long horizontal boom with four pressurized modules attached in the middle. Located at each end are four photovoltaic arrays generating a total of 75-kW of power. Two attachment points for external payloads are provided along this boom. The four pressurized modules include the following: A laboratory and habitation module provided by the United States; two additional laboratories, one each provided by the European Space Agency (ESA) and Japan; and an ESA-provided Man-Tended Free Flyer, a pressurized module capable of operations both attached to and separate from the Space Station core. Canada was expected to provide the first increment of a Mobile Serving System.
Multipurpose Logistics Module, Leonardo, Rests in Discovery's Payload Bay
NASA Technical Reports Server (NTRS)
2001-01-01
This in-orbit close up shows the Italian Space Agency-built multipurpose Logistics Module (MPLM), Leonardo, the primary cargo of the STS-102 mission, resting in the payload bay of the Space Shuttle Orbiter Discovery. The Leonardo MPLM is the first of three such pressurized modules that will serve as the International Space Station's (ISS') moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. The eighth station assembly flight and NASA's 103rd overall flight, STS-102 launched March 8, 2001 for an almost 13 day mission.
1989-08-01
In response to President Reagan's directive to NASA to develop a permanent marned Space Station within a decade, part of the State of the Union message to Congress on January 25, 1984, NASA and the Administration adopted a phased approach to Station development. This approach provided an initial capability at reduced costs, to be followed by an enhanced Space Station capability in the future. This illustration depicts the baseline configuration, which features a 110-meter-long horizontal boom with four pressurized modules attached in the middle. Located at each end are four photovoltaic arrays generating a total of 75-kW of power. Two attachment points for external payloads are provided along this boom. The four pressurized modules include the following: A laboratory and habitation module provided by the United States; two additional laboratories, one each provided by the European Space Agency (ESA) and Japan; and an ESA-provided Man-Tended Free Flyer, a pressurized module capable of operations both attached to and separate from the Space Station core. Canada was expected to provide the first increment of a Mobile Serving System.
Optimization of rainfall networks using information entropy and temporal variability analysis
NASA Astrophysics Data System (ADS)
Wang, Wenqi; Wang, Dong; Singh, Vijay P.; Wang, Yuankun; Wu, Jichun; Wang, Lachun; Zou, Xinqing; Liu, Jiufu; Zou, Ying; He, Ruimin
2018-04-01
Rainfall networks are the most direct sources of precipitation data and their optimization and evaluation are essential and important. Information entropy can not only represent the uncertainty of rainfall distribution but can also reflect the correlation and information transmission between rainfall stations. Using entropy this study performs optimization of rainfall networks that are of similar size located in two big cities in China, Shanghai (in Yangtze River basin) and Xi'an (in Yellow River basin), with respect to temporal variability analysis. Through an easy-to-implement greedy ranking algorithm based on the criterion called, Maximum Information Minimum Redundancy (MIMR), stations of the networks in the two areas (each area is further divided into two subareas) are ranked during sliding inter-annual series and under different meteorological conditions. It is found that observation series with different starting days affect the ranking, alluding to the temporal variability during network evaluation. We propose a dynamic network evaluation framework for considering temporal variability, which ranks stations under different starting days with a fixed time window (1-year, 2-year, and 5-year). Therefore, we can identify rainfall stations which are temporarily of importance or redundancy and provide some useful suggestions for decision makers. The proposed framework can serve as a supplement for the primary MIMR optimization approach. In addition, during different periods (wet season or dry season) the optimal network from MIMR exhibits differences in entropy values and the optimal network from wet season tended to produce higher entropy values. Differences in spatial distribution of the optimal networks suggest that optimizing the rainfall network for changing meteorological conditions may be more recommended.
NASA Technical Reports Server (NTRS)
Robinson, Daryl C.; Konangi, Vijay K.; Wallett, Thomas M.
1998-01-01
A network comprised of a terrestrial site, a constellation of three GEO satellites and a LEO satellite is modeled and simulated. Continuous communication between the terrestrial site and the LEO satellite is facilitated by the GEO satellites. The LEO satellite has the orbital characteristics of the International Space Station. Communication in the network is based on TCP/IP over ATM, with the ABR service category providing the QoS, at OC-3 data rate. The OSPF protocol is used for routing. We simulate FTP file transfers, with the terrestrial site serving as the client and the LEO satellite being the server. The performance characteristics are presented.
Synchrotron-based EUV lithography illuminator simulator
Naulleau, Patrick P.
2004-07-27
A lithographic illuminator to illuminate a reticle to be imaged with a range of angles is provided. The illumination can be employed to generate a pattern in the pupil of the imaging system, where spatial coordinates in the pupil plane correspond to illumination angles in the reticle plane. In particular, a coherent synchrotron beamline is used along with a potentially decoherentizing holographic optical element (HOE), as an experimental EUV illuminator simulation station. The pupil fill is completely defined by a single HOE, thus the system can be easily modified to model a variety of illuminator fill patterns. The HOE can be designed to generate any desired angular spectrum and such a device can serve as the basis for an illuminator simulator.
Aerobraking orbital transfer vehicle
NASA Technical Reports Server (NTRS)
Scott, Carl D. (Inventor); Nagy, Kornel (Inventor); Roberts, Barney B. (Inventor); Ried, Robert C. (Inventor); Kroll, Kenneth R. (Inventor); Gamble, Joe (Inventor)
1989-01-01
An aerobraking orbital transfer vehicle which includes an aerobraking device which also serves as a heat shield in the shape of a raked-off elliptic or circular cone with a circular or elliptical base, and with an ellipsoid or other blunt shape nose. The aerobraking device is fitted with a toroid-like skirt and is integral with the support structure of the propulsion system and other systems of the space vehicle. The vehicle is intended to be transported in components to a space station in lower earth orbit where it is assembled for use as a transportation system from low earth orbit to geosynchronous earth orbit and return. Conventional guidance means are included for autonomous flight.
2009-11-12
ISS021-E-024524 (12 Nov. 2009) --- Backdropped by a blue and white part of Earth, the new unpiloted Russian Mini-Research Module 2 (MRM2), also known as Poisk, approaches the International Space Station. The MRM2 docked to the space-facing port of the Zvezda Service Module at 9:41 a.m. (CST) on Nov. 12, 2009. It began its trip to the station when it was launched aboard a Soyuz rocket from the Baikonur Cosmodrome in Kazakhstan on Nov. 10. Poisk is a Russian term that translates to search, seek and explore. It will provide an additional docking port for visiting Russian spacecrafts and will serve as an extra airlock for spacewalkers wearing Russian Orlan spacesuits. Poisk joins a Russian Progress resupply vehicle and two Russian Soyuz spacecraft currently docked at the station.
2009-11-12
ISS021-E-024520 (12 Nov. 2009) --- Backdropped by a blue and white part of Earth, the new unpiloted Russian Mini-Research Module 2 (MRM2), also known as Poisk, approaches the International Space Station. The MRM2 docked to the space-facing port of the Zvezda Service Module at 9:41 a.m. (CST) on Nov. 12, 2009. It began its trip to the station when it was launched aboard a Soyuz rocket from the Baikonur Cosmodrome in Kazakhstan on Nov. 10. Poisk is a Russian term that translates to search, seek and explore. It will provide an additional docking port for visiting Russian spacecrafts and will serve as an extra airlock for spacewalkers wearing Russian Orlan spacesuits. Poisk joins a Russian Progress resupply vehicle and two Russian Soyuz spacecraft currently docked at the station.
2009-11-12
ISS021-E-024531 (12 Nov. 2009) --- Backdropped by Earth’s horizon and the blackness of space, the new unpiloted Russian Mini-Research Module 2 (MRM2), also known as Poisk, approaches the International Space Station. The MRM2 docked to the space-facing port of the Zvezda Service Module at 9:41 a.m. (CST) on Nov. 12, 2009. It began its trip to the station when it was launched aboard a Soyuz rocket from the Baikonur Cosmodrome in Kazakhstan on Nov. 10. Poisk is a Russian term that translates to search, seek and explore. It will provide an additional docking port for visiting Russian spacecrafts and will serve as an extra airlock for spacewalkers wearing Russian Orlan spacesuits. Poisk joins a Russian Progress resupply vehicle and two Russian Soyuz spacecraft currently docked at the station.
2009-11-12
ISS021-E-024522 (12 Nov. 2009) --- Backdropped by a blue and white part of Earth, the new unpiloted Russian Mini-Research Module 2 (MRM2), also known as Poisk, approaches the International Space Station. The MRM2 docked to the space-facing port of the Zvezda Service Module at 9:41 a.m. (CST) on Nov. 12, 2009. It began its trip to the station when it was launched aboard a Soyuz rocket from the Baikonur Cosmodrome in Kazakhstan on Nov. 10. Poisk is a Russian term that translates to search, seek and explore. It will provide an additional docking port for visiting Russian spacecrafts and will serve as an extra airlock for spacewalkers wearing Russian Orlan spacesuits. Poisk joins a Russian Progress resupply vehicle and two Russian Soyuz spacecraft currently docked at the station.
2009-11-12
ISS021-E-024534 (12 Nov. 2009) --- Backdropped by Earth’s horizon and the blackness of space, the new unpiloted Russian Mini-Research Module 2 (MRM2), also known as Poisk, approaches the International Space Station. The MRM2 docked to the space-facing port of the Zvezda Service Module at 9:41 a.m. (CST) on Nov. 12, 2009. It began its trip to the station when it was launched aboard a Soyuz rocket from the Baikonur Cosmodrome in Kazakhstan on Nov. 10. Poisk is a Russian term that translates to search, seek and explore. It will provide an additional docking port for visiting Russian spacecrafts and will serve as an extra airlock for spacewalkers wearing Russian Orlan spacesuits. Poisk joins a Russian Progress resupply vehicle and two Russian Soyuz spacecraft currently docked at the station.
2009-11-12
ISS021-E-024517 (12 Nov. 2009) --- Backdropped by a blue and white part of Earth, the new unpiloted Russian Mini-Research Module 2 (MRM2), also known as Poisk, approaches the International Space Station. The MRM2 docked to the space-facing port of the Zvezda Service Module at 9:41 a.m. (CST) on Nov. 12, 2009. It began its trip to the station when it was launched aboard a Soyuz rocket from the Baikonur Cosmodrome in Kazakhstan on Nov. 10. Poisk is a Russian term that translates to search, seek and explore. It will provide an additional docking port for visiting Russian spacecrafts and will serve as an extra airlock for spacewalkers wearing Russian Orlan spacesuits. Poisk joins a Russian Progress resupply vehicle and two Russian Soyuz spacecraft currently docked at the station.
2009-11-12
ISS021-E-024516 (12 Nov. 2009) --- Backdropped by a blue and white part of Earth, the new unpiloted Russian Mini-Research Module 2 (MRM2), also known as Poisk, approaches the International Space Station. The MRM2 docked to the space-facing port of the Zvezda Service Module at 9:41 a.m. (CST) on Nov. 12, 2009. It began its trip to the station when it was launched aboard a Soyuz rocket from the Baikonur Cosmodrome in Kazakhstan on Nov. 10. Poisk is a Russian term that translates to search, seek and explore. It will provide an additional docking port for visiting Russian spacecrafts and will serve as an extra airlock for spacewalkers wearing Russian Orlan spacesuits. Poisk joins a Russian Progress resupply vehicle and two Russian Soyuz spacecraft currently docked at the station.
2009-11-12
ISS021-E-024518 (12 Nov. 2009) --- Backdropped by a blue and white part of Earth, the new unpiloted Russian Mini-Research Module 2 (MRM2), also known as Poisk, approaches the International Space Station. The MRM2 docked to the space-facing port of the Zvezda Service Module at 9:41 a.m. (CST) on Nov. 12, 2009. It began its trip to the station when it was launched aboard a Soyuz rocket from the Baikonur Cosmodrome in Kazakhstan on Nov. 10. Poisk is a Russian term that translates to search, seek and explore. It will provide an additional docking port for visiting Russian spacecrafts and will serve as an extra airlock for spacewalkers wearing Russian Orlan spacesuits. Poisk joins a Russian Progress resupply vehicle and two Russian Soyuz spacecraft currently docked at the station.
2007-04-17
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, astronaut Takao Doi (left) and Commander Dominic Gorie pose in front of the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module, or JEM, that recently arrived at Kennedy. Doi and Gorie are crew members for mission STS-123 that will deliver the logistics module to the International Space Station. Earlier, NASA and Japanese Aerospace and Exploration Agency (JAXA) officials welcomed the arrival of the module. The new International Space Station component arrived at Kennedy March 12 to begin preparations for its future launch on mission STS-123. It will serve as an on-orbit storage area for materials, tools and supplies. It can hold up to eight experiment racks and will attach to the top of another larger pressurized module. Photo credit: NASA/George Shelton
2007-04-17
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, astronaut Takao Doi (left) and Commander Dominic Gorie pose in front of the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module, or JEM, that recently arrived at Kennedy. Doi and Gorie are crew members for mission STS-123 that will deliver the logistics module to the International Space Station. Earlier, NASA and Japanese Aerospace and Exploration Agency (JAXA) officials welcomed the arrival of the module. The new International Space Station component arrived at Kennedy March 12 to begin preparations for its future launch on mission STS-123. It will serve as an on-orbit storage area for materials, tools and supplies. It can hold up to eight experiment racks and will attach to the top of another larger pressurized module. Photo credit: NASA/George Shelton
Officials welcome the arrival of the Japanese Experiment Module
2007-04-17
In the Space Station Processing Facility, astronaut Takao Doi (left) and Commander Dominic Gorie pose in front of the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module, or JEM, that recently arrived at Kennedy. Doi and Gorie are crew members for mission STS-123 that will deliver the logistics module to the International Space Station. Earlier, NASA and Japanese Aerospace and Exploration Agency (JAXA) officials welcomed the arrival of the module. The new International Space Station component arrived at Kennedy March 12 to begin preparations for its future launch on mission STS-123. It will serve as an on-orbit storage area for materials, tools and supplies. It can hold up to eight experiment racks and will attach to the top of another larger pressurized module.
International Space Station (ISS)
1997-01-01
This photograph, taken by the Boeing Company,shows Boeing technicians preparing to install one of six hatches or doors to the Node 1 (also called Unity), the first U.S. Module for the International Space Station (ISS). The Node 1, or Unity, serves as a cornecting passageway to Space Station modules and was manufactured by the Boeing Company at the Marshall Space Flight Center from 1994 to 1997. The U.S. built Unity module was launched aboard the orbiter Endeavour (STS-88 mission) on December 4, 1998 and connected to the Zarya, the Russian-built Functional Energy Block (FGB). The Zarya was launched on a Russian proton rocket prior to the launch of the Unity. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.
International Space Station (ISS)
1997-01-01
This photograph, taken by the Boeing Company, shows Boeing technicians preparing to install one of six hatches or doors to the Node 1 (also called Unity), the first U.S. Module for the International Space Station (ISS). The Node 1, or Unity, serves as a cornecting passageway to Space Station modules and was manufactured by the Boeing Company at the Marshall Space Flight Center from 1994 to 1997. The U.S. built Unity module was launched aboard the orbiter Endeavour (STS-88 mission) on December 4, 1998 and connected to the Zarya, the Russian-built Functional Energy Block (FGB). The Zarya was launched on a Russian proton rocket prior to the launch of the Unity. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.
The Node 1 (or Unity) Module for the International Space Station
NASA Technical Reports Server (NTRS)
1997-01-01
This photograph, taken by the Boeing Company, shows Node 1 (also called Unity), the first U.S. Module for the International Space Station (ISS), with its hatch door installed. The Node 1, or Unity, serves as a cornecting passageway to Space Station modules and was manufactured by the Boeing Company at the Marshall Space Flight Center from 1994 to 1997. The U.S. built Unity module was launched aboard the orbiter Endeavour (STS-88 mission) on December 4, 1998 and connected to the Zarya, the Russian-built Functional Energy Block (FGB). The Zarya was launched on a Russian proton rocket prior to the launch of the Unity. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.
2009-03-15
STS119-S-023 (15 March 2009) --- The Space Shuttle Discovery and its seven-member STS-119 crew head toward Earth orbit and a scheduled link-up with the International Space Station. Liftoff was on time at 7:43 p.m. (EDT) on March 15, 2009 from launch pad 39A at NASA’s Kennedy Space Center. Onboard are astronauts Lee Archambault, commander; Tony Antonelli, pilot; Joseph Acaba, Steve Swanson, Richard Arnold, John Phillips and Japan Aerospace Exploration Agency’s Koichi Wakata, all mission specialists. Wakata will join Expedition 18 in progress to serve as a flight engineer aboard the space station. Discovery will deliver the final pair of power-generating solar array wings and the S6 truss segment. Installation of S6 will signal the station's readiness to house a six-member crew for conducting increased science.
2009-03-15
STS119-S-020 (15 March 2009) --- The Space Shuttle Discovery and its seven-member STS-119 crew head toward Earth orbit and a scheduled link-up with the International Space Station. Liftoff was on time at 7:43 p.m. (EDT) on March 15, 2009 from launch pad 39A at NASA’s Kennedy Space Center. Onboard are astronauts Lee Archambault, commander; Tony Antonelli, pilot; Joseph Acaba, Steve Swanson, Richard Arnold, John Phillips and Japan Aerospace Exploration Agency’s Koichi Wakata, all mission specialists. Wakata will join Expedition 18 in progress to serve as a flight engineer aboard the space station. Discovery will deliver the final pair of power-generating solar array wings and the S6 truss segment. Installation of S6 will signal the station's readiness to house a six-member crew for conducting increased science.
2009-03-15
STS119-S-028 (15 March 2009) --- The Space Shuttle Discovery and its seven-member STS-119 crew head toward Earth orbit and a scheduled link-up with the International Space Station. Liftoff was on time at 7:43 p.m. (EDT) on March 15, 2009 from launch pad 39A at NASA’s Kennedy Space Center. Onboard are astronauts Lee Archambault, commander; Tony Antonelli, pilot; Joseph Acaba, Steve Swanson, Richard Arnold, John Phillips and Japan Aerospace Exploration Agency’s Koichi Wakata, all mission specialists. Wakata will join Expedition 18 in progress to serve as a flight engineer aboard the space station. Discovery will deliver the final pair of power-generating solar array wings and the S6 truss segment. Installation of S6 will signal the station's readiness to house a six-member crew for conducting increased science.
2009-03-15
STS119-S-038 (15 March 2009) --- The Space Shuttle Discovery and its seven-member STS-119 crew head toward Earth orbit and a scheduled link-up with the International Space Station. Liftoff was on time at 7:43 p.m. (EDT) on March 15, 2009 from launch pad 39A at NASA’s Kennedy Space Center. Onboard are astronauts Lee Archambault, commander; Tony Antonelli, pilot; Joseph Acaba, Steve Swanson, Richard Arnold, John Phillips and Japan Aerospace Exploration Agency’s Koichi Wakata, all mission specialists. Wakata will join Expedition 18 in progress to serve as a flight engineer aboard the space station. Discovery will deliver the final pair of power-generating solar array wings and the S6 truss segment. Installation of S6 will signal the station's readiness to house a six-member crew for conducting increased science.
2009-03-15
STS119-S-033 (15 March 2009) --- The Space Shuttle Discovery and its seven-member STS-119 crew head toward Earth orbit and a scheduled link-up with the International Space Station. Liftoff was on time at 7:43 p.m. (EDT) on March 15, 2009 from launch pad 39A at NASA’s Kennedy Space Center. Onboard are astronauts Lee Archambault, commander; Tony Antonelli, pilot; Joseph Acaba, Steve Swanson, Richard Arnold, John Phillips and Japan Aerospace Exploration Agency’s Koichi Wakata, all mission specialists. Wakata will join Expedition 18 in progress to serve as a flight engineer aboard the space station. Discovery will deliver the final pair of power-generating solar array wings and the S6 truss segment. Installation of S6 will signal the station's readiness to house a six-member crew for conducting increased science.
2009-03-15
STS119-S-035 (15 March 2009) --- The Space Shuttle Discovery and its seven-member STS-119 crew head toward Earth orbit and a scheduled link-up with the International Space Station. Liftoff was on time at 7:43 p.m. (EDT) on March 15, 2009 from launch pad 39A at NASA’s Kennedy Space Center. Onboard are astronauts Lee Archambault, commander; Tony Antonelli, pilot; Joseph Acaba, Steve Swanson, Richard Arnold, John Phillips and Japan Aerospace Exploration Agency’s Koichi Wakata, all mission specialists. Wakata will join Expedition 18 in progress to serve as a flight engineer aboard the space station. Discovery will deliver the final pair of power-generating solar array wings and the S6 truss segment. Installation of S6 will signal the station's readiness to house a six-member crew for conducting increased science.
2009-03-15
STS119-S-018 (15 March 2009) --- The Space Shuttle Discovery and its seven-member STS-119 crew head toward Earth orbit and a scheduled link-up with the International Space Station. Liftoff was on time at 7:43 p.m. (EDT) on March 15, 2009 from launch pad 39A at NASA’s Kennedy Space Center. Onboard are astronauts Lee Archambault, commander; Tony Antonelli, pilot; Joseph Acaba, Steve Swanson, Richard Arnold, John Phillips and Japan Aerospace Exploration Agency’s Koichi Wakata, all mission specialists. Wakata will join Expedition 18 in progress to serve as a flight engineer aboard the space station. Discovery will deliver the final pair of power-generating solar array wings and the S6 truss segment. Installation of S6 will signal the station's readiness to house a six-member crew for conducting increased science.
2009-03-15
STS119-S-032 (15 March 2009) --- The Space Shuttle Discovery and its seven-member STS-119 crew head toward Earth orbit and a scheduled link-up with the International Space Station. Liftoff was on time at 7:43 p.m. (EDT) on March 15, 2009 from launch pad 39A at NASA’s Kennedy Space Center. Onboard are astronauts Lee Archambault, commander; Tony Antonelli, pilot; Joseph Acaba, Steve Swanson, Richard Arnold, John Phillips and Japan Aerospace Exploration Agency’s Koichi Wakata, all mission specialists. Wakata will join Expedition 18 in progress to serve as a flight engineer aboard the space station. Discovery will deliver the final pair of power-generating solar array wings and the S6 truss segment. Installation of S6 will signal the station's readiness to house a six-member crew for conducting increased science.
2009-03-15
STS119-S-037 (15 March 2009) --- The Space Shuttle Discovery and its seven-member STS-119 crew head toward Earth orbit and a scheduled link-up with the International Space Station. Liftoff was on time at 7:43 p.m. (EDT) on March 15, 2009 from launch pad 39A at NASA’s Kennedy Space Center. Onboard are astronauts Lee Archambault, commander; Tony Antonelli, pilot; Joseph Acaba, Steve Swanson, Richard Arnold, John Phillips and Japan Aerospace Exploration Agency’s Koichi Wakata, all mission specialists. Wakata will join Expedition 18 in progress to serve as a flight engineer aboard the space station. Discovery will deliver the final pair of power-generating solar array wings and the S6 truss segment. Installation of S6 will signal the station's readiness to house a six-member crew for conducting increased science.
2009-03-15
STS119-S-019 (15 March 2009) --- The Space Shuttle Discovery and its seven-member STS-119 crew head toward Earth orbit and a scheduled link-up with the International Space Station. Liftoff was on time at 7:43 p.m. (EDT) on March 15, 2009 from launch pad 39A at NASA’s Kennedy Space Center. Onboard are astronauts Lee Archambault, commander; Tony Antonelli, pilot; Joseph Acaba, Steve Swanson, Richard Arnold, John Phillips and Japan Aerospace Exploration Agency’s Koichi Wakata, all mission specialists. Wakata will join Expedition 18 in progress to serve as a flight engineer aboard the space station. Discovery will deliver the final pair of power-generating solar array wings and the S6 truss segment. Installation of S6 will signal the station's readiness to house a six-member crew for conducting increased science.
2009-03-15
STS119-S-034 (15 March 2009) --- The Space Shuttle Discovery and its seven-member STS-119 crew head toward Earth orbit and a scheduled link-up with the International Space Station. Liftoff was on time at 7:43 p.m. (EDT) on March 15, 2009 from launch pad 39A at NASA’s Kennedy Space Center. Onboard are astronauts Lee Archambault, commander; Tony Antonelli, pilot; Joseph Acaba, Steve Swanson, Richard Arnold, John Phillips and Japan Aerospace Exploration Agency’s Koichi Wakata, all mission specialists. Wakata will join Expedition 18 in progress to serve as a flight engineer aboard the space station. Discovery will deliver the final pair of power-generating solar array wings and the S6 truss segment. Installation of S6 will signal the station's readiness to house a six-member crew for conducting increased science.
2009-03-15
STS119-S-009 (15 March 2009) --- The Space Shuttle Discovery and its seven-member STS-119 crew head toward Earth orbit and a scheduled link-up with the International Space Station. Liftoff was on time at 7:43 p.m. (EDT) on March 15, 2009 from launch pad 39A at NASA’s Kennedy Space Center. Onboard are astronauts Lee Archambault, commander; Tony Antonelli, pilot; Joseph Acaba, Steve Swanson, Richard Arnold, John Phillips and Japan Aerospace Exploration Agency’s Koichi Wakata, all mission specialists. Wakata will join Expedition 18 in progress to serve as a flight engineer aboard the space station. Discovery will deliver the final pair of power-generating solar array wings and the S6 truss segment. Installation of S6 will signal the station's readiness to house a six-member crew for conducting increased science.
2009-03-15
STS119-S-022 (15 March 2009) --- The Space Shuttle Discovery and its seven-member STS-119 crew head toward Earth orbit and a scheduled link-up with the International Space Station. Liftoff was on time at 7:43 p.m. (EDT) on March 15, 2009 from launch pad 39A at NASA’s Kennedy Space Center. Onboard are astronauts Lee Archambault, commander; Tony Antonelli, pilot; Joseph Acaba, Steve Swanson, Richard Arnold, John Phillips and Japan Aerospace Exploration Agency’s Koichi Wakata, all mission specialists. Wakata will join Expedition 18 in progress to serve as a flight engineer aboard the space station. Discovery will deliver the final pair of power-generating solar array wings and the S6 truss segment. Installation of S6 will signal the station's readiness to house a six-member crew for conducting increased science.
2009-03-15
STS119-S-029 (15 March 2009) --- The Space Shuttle Discovery and its seven-member STS-119 crew head toward Earth orbit and a scheduled link-up with the International Space Station. Liftoff was on time at 7:43 p.m. (EDT) on March 15, 2009 from launch pad 39A at NASA’s Kennedy Space Center. Onboard are astronauts Lee Archambault, commander; Tony Antonelli, pilot; Joseph Acaba, Steve Swanson, Richard Arnold, John Phillips and Japan Aerospace Exploration Agency’s Koichi Wakata, all mission specialists. Wakata will join Expedition 18 in progress to serve as a flight engineer aboard the space station. Discovery will deliver the final pair of power-generating solar array wings and the S6 truss segment. Installation of S6 will signal the station's readiness to house a six-member crew for conducting increased science.
2009-03-15
STS119-S-027 (15 March 2009) --- The Space Shuttle Discovery and its seven-member STS-119 crew head toward Earth orbit and a scheduled link-up with the International Space Station. Liftoff was on time at 7:43 p.m. (EDT) on March 15, 2009 from launch pad 39A at NASA’s Kennedy Space Center. Onboard are astronauts Lee Archambault, commander; Tony Antonelli, pilot; Joseph Acaba, Steve Swanson, Richard Arnold, John Phillips and Japan Aerospace Exploration Agency’s Koichi Wakata, all mission specialists. Wakata will join Expedition 18 in progress to serve as a flight engineer aboard the space station. Discovery will deliver the final pair of power-generating solar array wings and the S6 truss segment. Installation of S6 will signal the station's readiness to house a six-member crew for conducting increased science.
2009-03-15
STS119-S-030 (15 March 2009) --- The Space Shuttle Discovery and its seven-member STS-119 crew head toward Earth orbit and a scheduled link-up with the International Space Station. Liftoff was on time at 7:43 p.m. (EDT) on March 15, 2009 from launch pad 39A at NASA’s Kennedy Space Center. Onboard are astronauts Lee Archambault, commander; Tony Antonelli, pilot; Joseph Acaba, Steve Swanson, Richard Arnold, John Phillips and Japan Aerospace Exploration Agency’s Koichi Wakata, all mission specialists. Wakata will join Expedition 18 in progress to serve as a flight engineer aboard the space station. Discovery will deliver the final pair of power-generating solar array wings and the S6 truss segment. Installation of S6 will signal the station's readiness to house a six-member crew for conducting increased science.
2009-03-15
STS119-S-036 (15 March 2009) --- The Space Shuttle Discovery and its seven-member STS-119 crew head toward Earth orbit and a scheduled link-up with the International Space Station. Liftoff was on time at 7:43 p.m. (EDT) on March 15, 2009 from launch pad 39A at NASA’s Kennedy Space Center. Onboard are astronauts Lee Archambault, commander; Tony Antonelli, pilot; Joseph Acaba, Steve Swanson, Richard Arnold, John Phillips and Japan Aerospace Exploration Agency’s Koichi Wakata, all mission specialists. Wakata will join Expedition 18 in progress to serve as a flight engineer aboard the space station. Discovery will deliver the final pair of power-generating solar array wings and the S6 truss segment. Installation of S6 will signal the station's readiness to house a six-member crew for conducting increased science.
2009-03-15
STS119-S-024 (15 March 2009) --- The Space Shuttle Discovery and its seven-member STS-119 crew head toward Earth orbit and a scheduled link-up with the International Space Station. Liftoff was on time at 7:43 p.m. (EDT) on March 15, 2009 from launch pad 39A at NASA’s Kennedy Space Center. Onboard are astronauts Lee Archambault, commander; Tony Antonelli, pilot; Joseph Acaba, Steve Swanson, Richard Arnold, John Phillips and Japan Aerospace Exploration Agency’s Koichi Wakata, all mission specialists. Wakata will join Expedition 18 in progress to serve as a flight engineer aboard the space station. Discovery will deliver the final pair of power-generating solar array wings and the S6 truss segment. Installation of S6 will signal the station's readiness to house a six-member crew for conducting increased science.
2009-03-15
STS119-S-039 (15 March 2009) --- The Space Shuttle Discovery and its seven-member STS-119 crew head toward Earth orbit and a scheduled link-up with the International Space Station. Liftoff was on time at 7:43 p.m. (EDT) on March 15, 2009 from launch pad 39A at NASA’s Kennedy Space Center. Onboard are astronauts Lee Archambault, commander; Tony Antonelli, pilot; Joseph Acaba, Steve Swanson, Richard Arnold, John Phillips and Japan Aerospace Exploration Agency’s Koichi Wakata, all mission specialists. Wakata will join Expedition 18 in progress to serve as a flight engineer aboard the space station. Discovery will deliver the final pair of power-generating solar array wings and the S6 truss segment. Installation of S6 will signal the station's readiness to house a six-member crew for conducting increased science.
2009-03-15
STS119-S-021 (15 March 2009) --- The Space Shuttle Discovery and its seven-member STS-119 crew head toward Earth orbit and a scheduled link-up with the International Space Station. Liftoff was on time at 7:43 p.m. (EDT) on March 15, 2009 from launch pad 39A at NASA’s Kennedy Space Center. Onboard are astronauts Lee Archambault, commander; Tony Antonelli, pilot; Joseph Acaba, Steve Swanson, Richard Arnold, John Phillips and Japan Aerospace Exploration Agency’s Koichi Wakata, all mission specialists. Wakata will join Expedition 18 in progress to serve as a flight engineer aboard the space station. Discovery will deliver the final pair of power-generating solar array wings and the S6 truss segment. Installation of S6 will signal the station's readiness to house a six-member crew for conducting increased science.
2007-04-17
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, NASA and Japanese Aerospace and Exploration Agency (JAXA) officials welcome the arrival of the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module, or JEM, to the Kennedy Space Center. Seen here at right are JAXA representatives, including Japanese astronaut Takao Doi (center of front row), who is a crew member for mission STS-123 that will deliver the module to the space station. The new International Space Station component arrived at Kennedy March 12 to begin preparations for its future launch on mission STS-123. It will serve as an on-orbit storage area for materials, tools and supplies. It can hold up to eight experiment racks and will attach to the top of another larger pressurized module. Photo credit: NASA/George Shelton
The International Space Station: A National Science Laboratory
NASA Technical Reports Server (NTRS)
Giblin, Timothy W.
2011-01-01
After more than a decade of assembly missions and on the heels of the final voyage of Space Shuttle Discovery, the International Space Station (ISS) has reached assembly completion. With visiting spacecraft now docking with the ISS on a regular basis, the Station now serves as a National Laboratory to scientists back on Earth. ISS strengthens relationships among NASA, other Federal entities, higher educational institutions, and the private sector in the pursuit of national priorities for the advancement of science, technology, engineering, and mathematics. In this lecture we will explore the various areas of research onboard ISS to promote this advancement: (1) Human Research, (2) Biology & Biotechnology, (3) Physical & Material Sciences, (4) Technology, and (5) Earth & Space Science. The ISS National Laboratory will also open new paths for the exploration and economic development of space.
Long, Jennifer K; Murphy, Suzanne P; Weiss, Robert E; Nyerere, Susan; Bwibo, Nimrod O; Neumann, Charlotte G
2012-06-01
To examine the effects of animal-source foods on toddler growth. A 5-month comparison feeding intervention study with one of three millet-based porridges randomized to eighteen feeding stations serving 303 children aged 11-40 months. Feeding stations served plain millet porridge (Plain group), porridge with milk (Milk group) or porridge with beef (Meat group). Anthropometry, morbidity and food intake were measured at baseline and regular intervals. Longitudinal mixed models were used to analyse growth. Embu, Kenya. Two hundred and seventy-four children were included in final analyses. Linear growth was significantly greater for the Milk group than the Meat group (P = 0·0025). Slope of growth of mid-arm muscle area of the Plain group was significantly greater than in the Meat group (P = 0·0046), while the Milk group's mid-upper arm circumference growth rate was significantly greater than the Meat group's (P = 0·0418). The Milk and Plain groups' measures did not differ. Milk and meat porridges did not have a significantly greater effect on growth than plain porridge in this undernourished population. Linear growth was influenced by more than energy intakes, as the Plain group's total body weight-adjusted energy intakes were significantly greater than the Meat group's, although linear growth did not differ. Energy intakes may be more important for growth in arm muscle. The diverse age distribution in the study makes interpretation difficult. A longer study period, larger sample size and more focused age group would improve clarity of the results.
Writer, J V; DeFraites, R F; Brundage, J F
1996-01-10
To determine cause-specific mortality rates among US troops stationed in the Persian Gulf region and compare them with those of US troops serving elsewhere during Operations Desert Shield and Desert Storm. Retrospective cohort. US men and women on active duty from August 1, 1990, through July 31, 1991. Deaths occurring among all active-duty US military persons during the 1-year study period. Age-adjusted mortality rates among US troops stationed in the Persian Gulf region were compared with rates projected from mortality rates among troops on active duty elsewhere. A total of 1769 active-duty persons died during the study period, 372 in the Persian Gulf region and 1397 elsewhere. Of the 372 deaths in the Persian Gulf region, 147 (39.5%) occurred as a direct result of combat during the war, 194 (52.2%) resulted from injuries not incurred in battle, and 30 (8%) resulted from illness. Twenty-three of the deaths due to illness were considered unexpected or cardiovascular deaths. Based on age-adjusted mortality rates observed among US troops on active duty outside the Persian Gulf region, 165 deaths from unintentional injury and 32 deaths from illness (20 of which were unexpected or cardiovascular) would have been anticipated among Persian Gulf troops. Except for deaths from unintentional injury, US troops in the Persian Gulf region did not experience significantly higher mortality rates than US troops serving elsewhere. There were no clusters of unexplained deaths. The number and circumstances of nonbattle deaths among Persian Gulf troops were typical for the US military population.
STS-98 Onboard Photograph-U.S. Laboratory, Destiny
NASA Technical Reports Server (NTRS)
2001-01-01
This STS-98 mission photograph shows astronauts Thomas D. Jones (foreground) and Kerneth D. Cockrell floating inside the newly installed Laboratory aboard the International Space Station (ISS). The American-made Destiny module is the cornerstone for space-based research aboard the orbiting platform and the centerpiece of the ISS, where unprecedented science experiments will be performed in the near-zero gravity of space. Destiny will also serve as the command and control center for the ISS. The aluminum module is 8.5-meters (28-feet) long and 4.3-meters (14-feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 15 locations especially designed to support experiments. The Destiny module was built by the Boeing Company under the direction of the Marshall Space Flight Center.
STS-98 Onboard Photograph-U.S. Laboratory, Destiny
NASA Technical Reports Server (NTRS)
2001-01-01
This closer image of the International Space Station (ISS) showing the newly installed U.S. Laboratory, Destiny (left), was taken from the departing Space Shuttle Atlantis. The American-made Destiny module is the cornerstone for space-based research aboard the orbiting platform and the centerpiece of the ISS, where unprecedented science experiments will be performed in the near-zero gravity of space. Destiny will also serve as the command and control center for the ISS. The aluminum module is 8.5-meters (28-feet) long and 4.3-meters (14-feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 15 locations especially designed to support experiments. The Destiny module was built by the Boeing Company under the direction of the Marshall Space Flight Center.
Code of Federal Regulations, 2011 CFR
2011-10-01
... foster care; adjudicated youth; homeless youths; teen-age parents; and children in need of protective... station, the sponsor and the parent or persons legally responsible for the child served by the Foster... parent, such as a guardian, a child's natural grandparent, or a step-parent with whom the child lives...
Code of Federal Regulations, 2012 CFR
2012-10-01
... foster care; adjudicated youth; homeless youths; teen-age parents; and children in need of protective... station, the sponsor and the parent or persons legally responsible for the child served by the Foster... parent, such as a guardian, a child's natural grandparent, or a step-parent with whom the child lives...
Code of Federal Regulations, 2014 CFR
2014-10-01
... foster care; adjudicated youth; homeless youths; teen-age parents; and children in need of protective... station, the sponsor and the parent or persons legally responsible for the child served by the Foster... parent, such as a guardian, a child's natural grandparent, or a step-parent with whom the child lives...
Code of Federal Regulations, 2013 CFR
2013-10-01
... foster care; adjudicated youth; homeless youths; teen-age parents; and children in need of protective... station, the sponsor and the parent or persons legally responsible for the child served by the Foster... parent, such as a guardian, a child's natural grandparent, or a step-parent with whom the child lives...
The Design and Development of a Post-Mortem Room Complex
ERIC Educational Resources Information Center
Osborne, A. D.
1977-01-01
The design of a post-mortem room complex to serve the needs of three separate organizations on the campus of the University of Bristol's Veterinary Field Station is described. Comments are made on disadvantages that have become apparent during eight years of use. (Author/LBH)
41 CFR 302-3.514 - Under what conditions must we pay for tour renewal agreement travel?
Code of Federal Regulations, 2010 CFR
2010-07-01
... employee has agreed to serve another OCONUS tour of duty at the same or different duty station; and (c) You have determined that the employee meets the special rules under § 302-3.515 for Alaska or Hawaii. ...
ERIC Educational Resources Information Center
LASTRA, YOLANDA
INTENDED AS FOLLOWUP MATERIAL AFTER THE COMPLETION OF THE TWO-VOLUME SPOKEN COCHABAMBA COURSE, THIS READER CONSISTS OF A SINGLE LONG STORY, "JUANITO," WRITTEN BY OSCAR TERAN. IT HAS BEEN USED AS A RADIO SCRIPT FOR A SERIES OF BROADCASTS FROM A COCHABAMBA STATION WHICH SERVES THE SURROUNDING INDIGENOUS POPULATION. THE MATERIAL IS…
SPRUCE Environmental Monitoring Data: 2010-2016
Hanson, P. J. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A; Riggs, J. S. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A; Forrance, C. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A; Nettles, W. R. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A; Hook, L. A. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A
2015-11-01
This data set reports selected ambient environmental monitoring data (public) from the S1 bog for the period June 2010 through 2016. Measurements of the environmental conditions at these stations will serve as a pre-treatment baseline for experimental treatments and provide driver data for future modeling activities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, J; Balter, P; Court, L
Purpose: To evaluate the performance of commercially available automatic segmentation tools built into treatment planning systems (TPS) in terms of their segmentation accuracy and flexibility in customization. Methods: Twelve head-and-neck cancer patients and twelve thoracic cancer patients were retrospectively selected to benchmark the model-based segmentation (MBS) and atlas-based segmentation (ABS) in RayStation TPS and the Smart Probabilistic Image Contouring Engine (SPICE) in Pinnacle TPS. Multi-atlas contouring service (MACS) that was developed in-house as a plug-in of Pinnacle TPS was evaluated as well. Manual contours used in clinic were reviewed and modified for consistency and served as ground truth for themore » evaluation. Head-and-neck evaluation included six regions of interest (ROIs): left and right parotid glands, brainstem, spinal cord, mandible, and submandibular glands. Thoracic evaluation includes seven ROIs: left and right lungs, spinal cord, heart, esophagus, and left and right brachial plexus. Auto-segmented contours were compared with the manual contours using the Dice similarity coefficient (DSC) and the mean surface distance (MSD). Results: In head- and-neck evaluation, only mandible has a high accuracy in all segmentations (DSC>85%); SPICE achieved DSC>70% for parotid glands; MACS achieved this for both parotid glands and submandibular glands; and RayStation ABS achieved this for spinal cord. In thoracic evaluation, SPICE achieved the best in lung and heart segmentation, while MACS achieved the best for all other structures. The less distinguishable structures on CT images, such as brainstem, spinal cord, parotid glands, submandibular glands, esophagus, and brachial plexus, showed great variability in different segmentation tools (mostly DSC<70% and MSD>3mm). The template for RayStation ABS can be easily customized by users, while RayStation MBS and SPICE rely on the vendors to provide the templates/models. Conclusion: Great variability was observed in different segmentation tools applied to different structures. These commercially-available segmentation tools should be carefully evaluated before clinical use.« less
The North Alabama Lightning Mapping Array (LMA): A Network Overview
NASA Technical Reports Server (NTRS)
Blakeslee, R. J.; Bailey, J.; Buechler, D.; Goodman, S. J.; McCaul, E. W., Jr.; Hall, J.
2005-01-01
The North Alabama Lightning Mapping Array (LMA) is s a 3-D VHF regional lightning detection system that provides on-orbit algorithm validation and instrument performance assessments for the NASA Lightning Imaging Sensor, as well as information on storm kinematics and updraft evolution that offers the potential to improve severe storm warning lead time by up t o 50% and decrease te false alarm r a t e ( for non-tornado producing storms). In support of this latter function, the LMA serves as a principal component of a severe weather test bed to infuse new science and technology into the short-term forecasting of severe and hazardous weather, principally within nearby National Weather Service forecast offices. The LMA, which became operational i n November 2001, consists of VHF receivers deployed across northern Alabama and a base station located at the National Space Science and Technology Center (NSSTC), which is on t h e campus of the University of Alabama in Huntsville. The LMA system locates the sources of impulsive VHF radio signals s from lightning by accurately measuring the time that the signals aririve at the different receiving stations. Each station's records the magnitude and time of the peak lightning radiation signal in successive 80 ms intervals within a local unused television channel (channel 5, 76-82 MHz in our case ) . Typically hundreds of sources per flash can be reconstructed, which i n t u r n produces accurate 3-dimensional lightning image maps (nominally <50 m error within 150 la. range). The data are transmitted back t o a base station using 2.4 GHz wireless Ethernet data links and directional parabolic grid antennas. There are four repeaters in the network topology and the links have an effective data throughput rate ranging from 600 kbits s -1 t o 1.5 %its s -1. This presentation provides an overview of t h e North Alabama network, the data processing (both real-time and post processing) and network statistics.
47 CFR 95.29 - Channels available.
Code of Federal Regulations, 2010 CFR
2010-10-01
... SERVICES General Mobile Radio Service (GMRS) § 95.29 Channels available. (a) For a base station, fixed station, mobile station, or repeater station (a GMRS station that simultaneously retransmits the... non-individual, a mobile station or a small base station operating in the simplex mode may transmit on...
2000-06-18
At Launch Pad 36A, Cape Canaveral Air Force Station, workers (at left) oversee the lifting of the nose fairing covering the Tracking and Data Relay Satellite (TDRS-H). Once at the top, the fairing will be mated with the Atlas IIA/Centaur rocket, which is already stacked, for launch on June 29. The satellite will augment the TDRS system’s existing Sand Ku-band frequencies by adding Ka-band capability. TDRS will serve as the sole means of continuous, high-data-rate communication with the Space Shuttle, with the International Space Station upon its completion, and with dozens of unmanned scientific satellites in low earth orbit
2000-06-18
The nose fairing covering the Tracking and Data Relay Satellite (TDRS-H) is close to the top of the launch tower at Launch Pad 36A, Cape Canaveral Air Force Station. It is being lifted to mate with the Atlas IIA/Centaur rocket, which is already stacked, for launch on June 29. The satellite will augment the TDRS system’s existing Sand Ku-band frequencies by adding Ka-band capability. TDRS will serve as the sole means of continuous, high-data-rate communication with the Space Shuttle, with the International Space Station upon its completion, and with dozens of unmanned scientific satellites in low earth orbit
2000-06-18
At Launch Pad 36A, Cape Canaveral Air Force Station, workers (at left) oversee the lifting of the nose fairing covering the Tracking and Data Relay Satellite (TDRS-H). Once at the top, the fairing will be mated with the Atlas IIA/Centaur rocket, which is already stacked, for launch on June 29. The satellite will augment the TDRS system’s existing Sand Ku-band frequencies by adding Ka-band capability. TDRS will serve as the sole means of continuous, high-data-rate communication with the Space Shuttle, with the International Space Station upon its completion, and with dozens of unmanned scientific satellites in low earth orbit
2000-06-18
The nose fairing covering the Tracking and Data Relay Satellite (TDRS-H) is close to the top of the launch tower at Launch Pad 36A, Cape Canaveral Air Force Station. It is being lifted to mate with the Atlas IIA/Centaur rocket, which is already stacked, for launch on June 29. The satellite will augment the TDRS system’s existing Sand Ku-band frequencies by adding Ka-band capability. TDRS will serve as the sole means of continuous, high-data-rate communication with the Space Shuttle, with the International Space Station upon its completion, and with dozens of unmanned scientific satellites in low earth orbit
Scheduling of an aircraft fleet
NASA Technical Reports Server (NTRS)
Paltrinieri, Massimo; Momigliano, Alberto; Torquati, Franco
1992-01-01
Scheduling is the task of assigning resources to operations. When the resources are mobile vehicles, they describe routes through the served stations. To emphasize such aspect, this problem is usually referred to as the routing problem. In particular, if vehicles are aircraft and stations are airports, the problem is known as aircraft routing. This paper describes the solution to such a problem developed in OMAR (Operative Management of Aircraft Routing), a system implemented by Bull HN for Alitalia. In our approach, aircraft routing is viewed as a Constraint Satisfaction Problem. The solving strategy combines network consistency and tree search techniques.
2015-03-28
ISS043E056045 (03/28/2015) --- Russian cosmonaut Gennady Padalka of the Russian Federal Space Agency (Roscosmos) is first through the hatch of the Soyuz TMA-16M spacecraft into the International Space Station after launching from the Baikonur Cosmodrome in Kazakhstan. He is welcomed aboard by Expedition 43 Commander and NASA astronaut Terry Virts. Padalka will serve a normal length tour of duty on the station but his two crewmembers arriving with him, Russian cosmonaut Mikhail Kornienko and NASA astronaut Scott Kelly, will spend a year in space and return to Earth on Soyuz TMA-18M in March 2016.
Estimate of Space Radiation-Induced Cancer Risks for International Space Station Orbits
NASA Technical Reports Server (NTRS)
Wu, Honglu; Atwell, William; Cucinotta, Francis A.; Yang, Chui-hsu
1996-01-01
Excess cancer risks from exposures to space radiation are estimated for various orbits of the International Space Station (ISS). Organ exposures are computed with the transport codes, BRYNTRN and HZETRN, and the computerized anatomical male and computerized anatomical female models. Cancer risk coefficients in the National Council on Radiation Protection and Measurements report No. 98 are used to generate lifetime excess cancer incidence and cancer mortality after a one-month mission to ISS. The generated data are tabulated to serve as a quick reference for assessment of radiation risk to astronauts on ISS missions.
View of an eyebolt seen as foreign object debris (FOD) during Expedition 8
2004-02-15
ISS008-E-15890 (15 February 2004) --- This image was taken from the International Space Station (ISS) Feb 15 and shows a small piece of debris reported by the Expedition 8 crew. The debris, which has been identified as a two-inch "eyebolt" from a solar array on the Progress cargo craft that recently docked with the Station, drifted slowly away and posed no problems for the complex. The eyebolt is from a system that is used with the arrays during the Progress' launch and serves no function after the arrays are deployed in orbit.
2007-04-17
KENNEDY SPACE CENTER, FLA. -- The Japanese Experiment Module (JEM) sits on top of a stand in the Space Station Processing Facility. Earlier, NASA and Japanese Aerospace and Exploration Agency (JAXA) officials welcomed the arrival of the Experiment Logistics Module Pressurized Section of the JEM, which will be delivered to the space station on mission STS-123. The JEM will fly on mission STS-124. The module will serve as an on-orbit storage area for materials, tools and supplies. It can hold up to eight experiment racks and will attach to the top of another larger pressurized module. Photo credit: NASA/George Shelton
2007-04-17
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, journalists and photographers ask Japanese astronaut Takao Doi about the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module, or JEM, that he will accompany on mission STS-123 to the International Space Station. Earlier, NASA and Japanese Aerospace and Exploration Agency (JAXA) officials welcomed the arrival of the logistics module. The logistics module will serve as an on-orbit storage area for materials, tools and supplies. It can hold up to eight experiment racks and will attach to the top of another larger pressurized module. Photo credit: NASA/George Shelton
Expedition 53 Soyuz MS-05 Landing
2017-12-14
NASA astronaut Randy Bresnik is carried to the medical tent by, Deputy Manager of the International Space Station Program Joel Montalbano, left, and NASA astronaut Reid Wiseman, right, shortly after he and ESA (European Space Agency) astronaut Paolo Nespoli, and Roscosmos cosmonaut Sergey Ryazanskiy landed in their Soyuz MS-05 spacecraft in a remote area near the town of Zhezkazgan, Kazakhstan on Thursday, Dec. 14, 2017. Bresnik, Nespoli and Ryazanskiy are returning after 139 days in space where they served as members of the Expedition 52 and 53 crews onboard the International Space Station. Photo Credit: (NASA/Bill Ingalls)
Orbiter utilization as an ACRV
NASA Technical Reports Server (NTRS)
Cruz, Jonathan N.; Heck, Michael L.; Kumar, Renjith R.; Mazanek, Daniel D.; Troutman, Patrick A.
1990-01-01
Assuming that a Shuttle Orbiter could be qualified to serve long duration missions attached to Space Station Freedom in the capacity as an Assured Crew Return Vehicle (ACRV), a study was conducted to identify and examine candidate attach locations. Baseline, modified hardware, and new hardware design configurations were considered. Dual simultaneous Orbiter docking accommodation were required. Resulting flight characteristics analyzed included torque equilibrium attitude (TEA), microgravity environment, attitude controllability, and reboost fuel requirements. The baseline Station could not accommodate two Orbiters. Modified hardware configurations analyzed had large TEA's. The utilization of an oblique docking mechanism best accommodated an Orbiter as an ACRV.
NASA Technical Reports Server (NTRS)
Deacetis, Louis A.
1987-01-01
The elements of a simulation program written in Ada were developed. The program will eventually serve as a data generator of typical readings from various space station equipment involved with Communications and Tracking, and will simulate various scenarios that may arise due to equipment malfunction or failure, power failure, etc. In addition, an evaluation of the Ada language was made from the viewpoint of a FORTRAN programmer learning Ada for the first time. Various strengths and difficulties associated with the learning and use of Ada are considered.
Laboratory racks are installed in the MPLM Leonardo
NASA Technical Reports Server (NTRS)
2000-01-01
Workers inside the Multi-Purpose Logistics Module Leonardo complete installation of a laboratory rack. The MPLM is the first of three such pressurized modules that will serve as the International Space Station's '''moving vans,''' carrying laboratory racks filled with equipment, experiments and supplies to and from the Space Station aboard the Space Shuttle. Leonardo will be launched March 1, 2001, on Shuttle mission STS-102 On that flight, Leonardo will be filled with equipment and supplies to outfit the U.S. laboratory module, being carried to the ISS on the Jan. 19, 2001, launch of STS-98.
Laboratory racks are installed in the MPLM Leonardo
NASA Technical Reports Server (NTRS)
2000-01-01
Workers inside the Multi-Purpose Logistics Module Leonardo oversee installation of a laboratory rack. The MPLM is the first of three such pressurized modules that will serve as the International Space Station's '''moving vans,''' carrying laboratory racks filled with equipment, experiments and supplies to and from the Space Station aboard the Space Shuttle. Leonardo will be launched March 1, 2001, on Shuttle mission STS-102 On that flight, Leonardo will be filled with equipment and supplies to outfit the U.S. laboratory module, being carried to the ISS on the Jan. 19, 2001, launch of STS-98.
Laboratory racks are installed in the MPLM Leonardo
NASA Technical Reports Server (NTRS)
2000-01-01
Inside the Multi-Purpose Logistics Module Leonardo, a worker looks at the placement of a laboratory rack. The MPLM is the first of three such pressurized modules that will serve as the International Space Station's '''moving vans,''' carrying laboratory racks filled with equipment, experiments and supplies to and from the Space Station aboard the Space Shuttle. Leonardo will be launched March 1, 2001, on Shuttle mission STS-102 On that flight, Leonardo will be filled with equipment and supplies to outfit the U.S. laboratory module, being carried to the ISS on the Jan. 19, 2001, launch of STS-98.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. In the Space Station Processing Facility, workers watch the progress of the Multi-Purpose Logistics Module Leonardo as it moves across the building to the Cargo Element Work Stand that Raffaello recently vacated. The payload canister was a temporary location during the switch. At right is the MPLM Raffaello, temporarily occupying the Element Rotation Stand formerly holding Leonardo. Three MPLMs were built by the Italian Space Agency Donatello, Leonardo and Raffaello to serve as a reusable logistics carrier and primary delivery system to resupply and return cargo requiring a pressurized environment to the International Space Station.
International Space Station (ISS)
2001-12-01
This is the official STS-110 crew portrait. In front, from the left, are astronauts Stephen N. Frick, pilot; Ellen Ochoa, flight engineer; and Michael J. Bloomfield, mission commander; In the back, from left, are astronauts Steven L. Smith, Rex J. Walheim, Jerry L. Ross and Lee M.E. Morin, all mission specialists. Launched aboard the Space Shuttle Orbiter Atlantis on April 8, 2002, the STS-110 mission crew prepared the International Space Station (ISS) for future space walks by installing and outfitting a 43-foot-long Starboard side S0 truss and preparing the Mobile Transporter. The mission served as the 8th ISS assembly flight.
1998-05-26
A SPACEHAB Single Module (top) and the Alpha Magnetic Spectrometer (AMS) experiment are secure in Discovery's payload bay shortly before the payload bay doors are closed for the flight of STS-91 at Launch Pad 39A. Launch is planned for June 2 with a window opening around 6:10 p.m. EDT. The single SPACEHAB module houses experiments to be performed by the astronauts and serves as a cargo carrier for items to be transferred to and from the Russian Space Station Mir. The AMS experiment is the first of a new generation of space-based experiments which will use particles, instead of light, to study the Universe and will search for both antimatter and "dark matter," as well as measure normal matter cosmic and gamma rays. STS-91 will also feature the ninth Shuttle docking with the Russian Space Station Mir, the first Mir docking for Discovery, the conclusion of Phase I of the joint U.S.-Russian International Space Station Program, and the first flight of the new Space Shuttle super lightweight external tank. The STS-91 flight crew includes Commander Charles Precourt; Pilot Dominic Gorie; and Mission Specialists Wendy B. Lawrence; Franklin Chang-Diaz, Ph.D.; Janet Kavandi, Ph.D.; and Valery Ryumin, with the Russian Space Agency. Andrew Thomas, Ph.D., will be returning to Earth with the crew after living more than four months aboard Mir
Development of a Medical Cyclotron Production Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, Danny R.
Development of a Cyclotron manufacturing facility begins with a business plan. Geographics, the size and activity of the medical community, the growth potential of the modality being served, and other business connections are all considered. This business used the customer base established by NuTech, Inc., an independent centralized nuclear pharmacy founded by Danny Allen. With two pharmacies in operation in Tyler and College Station and a customer base of 47 hospitals and clinics the existing delivery system and pharmacist staff is used for the cyclotron facility. We then added cyclotron products to contracts with these customers to guarantee a supply.more » We partnered with a company in the process of developing PET imaging centers. We then built an independent imaging center attached to the cyclotron facility to allow for the use of short-lived isotopes.« less
Nutrition in Space: Benefits on Earth
NASA Technical Reports Server (NTRS)
Smith, Scott M.
2006-01-01
History has often proven the criticality for adequate nutrition to ensure expedition success. Space exploration will be no different, with the exception of the certainty that food will not be found along the journey. Ensuring the health and safety of astronauts is critical and nutrition will serve several functions to that end. Nutritional assessment of International Space Station (ISS) crewmembers not only serves to evaluate the nutritional health of individuals, but also allows a better understanding of how space flight affects nutritional requirements, and how nutrition can serve in mitigating the negative effects of weightlessness on the human. Available data suggest that the nutritional status of astronauts is compromised during and after flight. Inadequate dietary intake and subsequent weight loss are often considered hallmarks of space flight, although exceptions to this do exist, and provide hope. However, beyond energy intake, specific nutrient issues also exist. Several vitamins, including D and folate, are affected in space travelers. Hematological and antioxidant defense systems are impacted, with increased iron storage, and increased markers of oxidative damage. Bone loss during space flight remains a critical challenge. Ground-based studies have proven that nutrition is a potent modulator of the bone response to simulated weightlessness. Protein and sodium are two nutrients which tend to exacerbate bone resorption and loss, likely mediated through acid base balance. Defining nutrient requirements, and being able to provide and maintain those nutrients on exploration missions, will be critical for maintaining crew member health. Both flight and ground-based research provide a unique situation, one where healthy individuals are put in a unique and challenging environment. A full understanding of the role of nutrition during space flight will not only enhance crew health and safety during flight, but will also expand our understanding of the role of nutrition in health of those remaining on Earth.
NASA Astrophysics Data System (ADS)
Boyce, E. S.; Bierma, R. M.; Willoughby, H.; Feaux, K.; Mattioli, G. S.; Enders, M.; Busby, R. W.
2014-12-01
EarthScope's geodetic component in Alaska, the UNAVCO-operated Plate Boundary Observatory (PBO) network, includes 139 continuous GPS sites and 41 supporting telemetry relays. These are spread across a vast area, from northern AK to the Aleutians. Forty-five of these stations were installed or have been upgraded in cooperation with various partner agencies and currently provide data collection and transmission for more than one group. Leveraging existing infrastructure normally has multiple benefits, such as easier permitting requirements and costs savings through reduced overall construction and maintenance expenses. At some sites, PBO-AK power and communications systems have additional capacity beyond that which is needed for reliable acquisition of GPS data. Where permits allow, such stations could serve as platforms for additional instrumentation or real-time observing needs. With the expansion of the Transportable Array (TA) into Alaska, there is increased interest to leverage existing EarthScope resources for station co-location and telemetry integration. Because of the complexity and difficulty of long-term O&M at PBO sites, however, actual integration of GPS and seismic equipment must be considered on a case-by-case basis. UNAVCO currently operates two integrated GPS/seismic stations in collaboration with the Alaska Earthquake Center, and three with the Alaska Volcano Observatory. By the end of 2014, PBO and TA plan to install another four integrated and/or co-located geodetic and seismic systems. While three of these are designed around existing PBO stations, one will be a completely new TA installation, providing PBO with an opportunity to expand geodetic data collection in Alaska within the limited operations and maintenance phase of the project. We will present some of the design considerations, outcomes, and lessons learned from past and ongoing projects to integrate seismometers and other instrumentation at PBO-Alaska stations. Developing the PBO network as a platform for ongoing research and hazard monitoring equipment may also continue to serve the needs of the research community and the public beyond the sun-setting and completion of EarthScope science plan in 2018.
Earth Observations taken by the Expedition 10 crew
2005-04-02
ISS010-E-22495 (2 April 2005) --- Numerous recognizable features appear in this detailed view of London, United Kingdom, photographed by an Expedition 10 crewmember on the International Space Station (ISS). The photographer had to look back along track for the shot, from a position over northern Germany. The most striking visual features are green open spaces such as Regents Park, Hyde Park and St. Jamess Park east of Buckingham Palace. Many smaller parks indicate why Londoners are proud of being able to walk miles through the city mainly on grass. The River Thameswith its bridges and barges (some of the more than 14,000 craft registered to sail the Thames)is the axis upon which the city was founded in Roman times. The relatively small area known as the City of London coincides with the ancient walled Roman city of Londinium on the north bank of the river (the line of the wall is marked closely for almost its entire length by modern streets), and includes St. Pauls Cathedral near where the Roman temple stood. For scale, the river is 265 meters wide near St. Pauls. The City is the financial center while Westminster is the center of government, including the Houses of Parliament and Downing Street, where the British Prime Minister lives. Several large structures visible in this image are railroad stations; three serving areas north of London (Euston, St. Pancras and Kings Cross), and Waterloo Station serving southern Britain. The London Eye, a famous Ferris wheel 140 meters high, is situated on an oval island in the River Thames, visible just west of Waterloo Station. Many larger buildings can also be identified, partly because they cast shadowsBuckingham Palace, St Pauls Cathedral, and the Tate Modern art museum (a converted power station, the 99-meter chimney was designed to fall just short of the crest of St Pauls dome).
NASA Technical Reports Server (NTRS)
Barlow, Jonathan; Benavides, Jose; Provencher, Chris; Bualat, Maria; Smith, Marion F.; Mora Vargas, Andres
2017-01-01
At the end of 2017, Astrobee will launch three free-flying robots that will navigate the entire US segment of the ISS (International Space Station) and serve as a payload facility. These robots will provide guest science payloads with processor resources, space within the robot for physical attachment, power, communication, propulsion, and human interfaces.
Media Selection for Public TV Advertisements.
ERIC Educational Resources Information Center
Hallstead, William F.
Since limited funds restrict advertising by Public Broadcasting System (PBS) stations, and since PBS serves a variety of audiences, the selection of appropriate advertising media for PBS programs is difficult. It is further complicated by conflicting research reports on the public use of the daily papers. Availability to the target audience should…
75 FR 4037 - FM TABLE OF ALLOTMENTS, BRACKETTVILLE, TX
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-26
.... SUMMARY: The Audio Division seeks comments on a petition for rulemaking filed by RF Services, Inc..., modification of the new FM station authorization. See File No. BNPH-20091019AFF. The reference coordinates for... should serve the petitioner, as follows: Greg Shaipro, Treasurer, RF Services, Inc., 7301 Ranch Road 620...
Code of Federal Regulations, 2011 CFR
2011-07-01
... be enhanced by the use of radar beacons (racons). Racons, when triggered by a radar signal, will transmit a coded reply to the interrogating radar. This reply serves to identify the aid station by exhibiting a series of dots and dashes which appear on the radar display in a line emanating radially from...
Code of Federal Regulations, 2010 CFR
2010-07-01
... be enhanced by the use of radar beacons (racons). Racons, when triggered by a radar signal, will transmit a coded reply to the interrogating radar. This reply serves to identify the aid station by exhibiting a series of dots and dashes which appear on the radar display in a line emanating radially from...
A Guide to Native Organizations in Alberta.
ERIC Educational Resources Information Center
Alberta Dept. of Native Affairs, Edmonton.
Names, addresses, names of directors, and telephone numbers for 182 organizations formed by or serving Canada Natives in Alberta are presented, grouped by their area of interest. Listed are 17 arts and crafts organizations, 10 business and employment development services, 8 radio stations and newspapers, 12 cultural groups, 19 educational…
NASA Technical Reports Server (NTRS)
1987-01-01
In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on the space station. This material was documented in the initial report (NASA Technical Memorandum 87566). A further requirement of the Law was that ATAC follow NASA's progress in this area and report to Congress semiannually. This report is the fifth in a series of progress updates and covers the period between 16 May 1987 and 30 September 1987. NASA has accepted the basic recommendations of ATAC for its space station efforts. ATAC and NASA agree that the mandate of Congress is that an advanced automation and robotics technology be built to support an evolutionary space station program and serve as a highly visible stimulator affecting the long-term U.S. economy.
Incorporation of privacy elements in space station design
NASA Technical Reports Server (NTRS)
Harrison, Albert A.; Caldwell, Barrett; Struthers, Nancy J.
1988-01-01
Privacy exists to the extent that individuals can control the degree of social contact that they have with one another. The opportunity to withdraw from other people serves a number of important psychological and social functions, and is in the interests of safety, high performance, and high quality of human life. Privacy requirements for Space Station crew members are reviewed, and architectual and other guidelines for helping astronauts achieve desired levels of privacy are suggested. In turn, four dimensions of privacy are discussed: the separation of activities by areas within the Space Station, controlling the extent to which astronauts have visual contact with one another, controlling the extent to which astronauts have auditory contact with one another, and odor control. Each section presents a statement of the problem, a review of general solutions, and specific recommendations. The report is concluded with a brief consideration of how selection, training, and other procedures can also help Space Station occupants achieve satisfactory levels of seclusion.
2007-06-08
STS117-S-029 (8 June 2007) --- The drifting smoke plumes from the launch of Space Shuttle Atlantis (out of frame) swirl above the Vehicle Assembly Building near sunset. Atlantis and its seven-member STS-117 crew head toward Earth-orbit and a scheduled link-up with the International Space Station. Liftoff from Kennedy Space Center's launch pad 39A occurred at 7:38 p.m. (EDT) on June 8, 2007. Onboard are astronauts Rick Sturckow, commander; Lee Archambault, pilot; Jim Reilly, Patrick Forrester, John "Danny" Olivas, Steven Swanson and Clayton Anderson, all mission specialists. Anderson will join Expedition 15 in progress to serve as a flight engineer aboard the station. Atlantis will dock with the orbital outpost on Sunday, June 10, to begin a joint mission that will increase the complex's power generation capability. Using the shuttle and station robotic arms and conducting three scheduled spacewalks, the astronauts will install another set of giant solar array wings on the station and retract another array, preparing it for a future move.
2007-06-08
STS117-S-014 (8 June 2007) --- Through the large windows in the Launch Control Center, NASA officials watch the launch of Space Shuttle Atlantis on mission STS-117. Atlantis and its seven-member crew head toward Earth-orbit and a scheduled link-up with the International Space Station. Liftoff from Kennedy Space Center's launch pad 39A occurred at 7:38 p.m. (EDT) on June 8, 2007. Onboard are astronauts Rick Sturckow, commander; Lee Archambault, pilot; Jim Reilly, Patrick Forrester, John "Danny" Olivas, Steven Swanson and Clayton Anderson, all mission specialists. Anderson will join Expedition 15 in progress to serve as a flight engineer aboard the station. Atlantis will dock with the orbital outpost on Sunday, June 10, to begin a joint mission that will increase the complex's power generation capability. Using the shuttle and station robotic arms and conducting three scheduled spacewalks, the astronauts will install another set of giant solar array wings on the station and retract another array, preparing it for a future move.
ISS GN and C - First Year Surprises
NASA Technical Reports Server (NTRS)
Begley, Michael
2002-01-01
Assembly of the International Space Station (ISS) began in late 1998 with the joining of the first two US and Russ ian elements. For more than two years, the outpost was served by two Russian Guidance, Navigation, and Control (GN&C) systems. The station requires orbital translation and attitude control functions for its 100+ configurations, from the nascent two-module station to the half million kilogram completed station owned and operated by seventeen nations. With the launch of the US Laboratory module in February 2001, the integration of the US GN&C system with its Russian counterpart laid the foundation for such a robust system. In its first year of combined operation, the ISS GN&C system has performed admirably, even better than many expected, but there have been surprises. Loss of command capability, loss of communication between segments, a control system force-fight, and "non-propulsive vents" that weren't - such events have repeatedly underscored the importance of thorough program integration, testing, and operation, both across subsystem boundaries and across international borders.
47 CFR 90.539 - Frequency stability.
Code of Federal Regulations, 2010 CFR
2010-10-01
... base station signal. (b) The frequency stability of base transmitters operating in the narrowband... is locked to the base station. When AFC is not locked to the base station, the frequency stability... base station, and 5 parts per million or better when AFC is not locked. [63 FR 58651, Nov. 2, 1998, as...
Simple, Scalable, Script-Based Science Processor (S4P)
NASA Technical Reports Server (NTRS)
Lynnes, Christopher; Vollmer, Bruce; Berrick, Stephen; Mack, Robert; Pham, Long; Zhou, Bryan; Wharton, Stephen W. (Technical Monitor)
2001-01-01
The development and deployment of data processing systems to process Earth Observing System (EOS) data has proven to be costly and prone to technical and schedule risk. Integration of science algorithms into a robust operational system has been difficult. The core processing system, based on commercial tools, has demonstrated limitations at the rates needed to produce the several terabytes per day for EOS, primarily due to job management overhead. This has motivated an evolution in the EOS Data Information System toward a more distributed one incorporating Science Investigator-led Processing Systems (SIPS). As part of this evolution, the Goddard Earth Sciences Distributed Active Archive Center (GES DAAC) has developed a simplified processing system to accommodate the increased load expected with the advent of reprocessing and launch of a second satellite. This system, the Simple, Scalable, Script-based Science Processor (S42) may also serve as a resource for future SIPS. The current EOSDIS Core System was designed to be general, resulting in a large, complex mix of commercial and custom software. In contrast, many simpler systems, such as the EROS Data Center AVHRR IKM system, rely on a simple directory structure to drive processing, with directories representing different stages of production. The system passes input data to a directory, and the output data is placed in a "downstream" directory. The GES DAAC's Simple Scalable Script-based Science Processing System is based on the latter concept, but with modifications to allow varied science algorithms and improve portability. It uses a factory assembly-line paradigm: when work orders arrive at a station, an executable is run, and output work orders are sent to downstream stations. The stations are implemented as UNIX directories, while work orders are simple ASCII files. The core S4P infrastructure consists of a Perl program called stationmaster, which detects newly arrived work orders and forks a job to run the appropriate executable (registered in a configuration file for that station). Although S4P is written in Perl, the executables associated with a station can be any program that can be run from the command line, i.e., non-interactively. An S4P instance is typically monitored using a simple Graphical User Interface. However, the reliance of S4P on UNIX files and directories also allows visibility into the state of stations and jobs using standard operating system commands, permitting remote monitor/control over low-bandwidth connections. S4P is being used as the foundation for several small- to medium-size systems for data mining, on-demand subsetting, processing of direct broadcast Moderate Resolution Imaging Spectroradiometer (MODIS) data, and Quick-Response MODIS processing. It has also been used to implement a large-scale system to process MODIS Level 1 and Level 2 Standard Products, which will ultimately process close to 2 TB/day.
47 CFR 90.419 - Points of communication.
Code of Federal Regulations, 2010 CFR
2010-10-01
... communicate between associated mobile stations and associated base stations of the licensee. Accordingly, operations between base stations at fixed locations are permitted only in the following situations: (a) Base... frequencies below 450 MHz, may communicate on a secondary basis with other base stations, operational fixed...
47 CFR 90.745 - Phase I licensee service areas.
Code of Federal Regulations, 2010 CFR
2010-10-01
... be defined by the predicted 38 dBu service contour of its authorized base station or fixed station... its license to relocate its initially authorized base station. The Phase I licensee's predicted 38 dBu...'s base station or fixed station. Phase I licensees are permitted to add, remove, or modify...
47 CFR 90.767 - Construction and implementation of EA and Regional licenses.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) An EA or Regional licensee must construct a sufficient number of base stations (i.e., base stations... all of their base stations or fixed stations. [69 FR 75172, Dec. 15, 2004] ... constructed stations. (d) EA and Regional licensees will not be permitted to count the resale of the services...
47 CFR 90.769 - Construction and implementation of Phase II nationwide licenses.
Code of Federal Regulations, 2010 CFR
2010-10-01
.... (a) A nationwide licensee must construct a sufficient number of base stations (i.e., base stations... their authorized channels at all of their base stations or fixed stations. [69 FR 75173, Dec. 15, 2004] ... will not be converted to individual, site-by-site authorizations for already constructed stations. (d...
47 CFR 74.431 - Special rules applicable to remote pickup stations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... system. (b) Remote pickup mobile or base stations may be used for communications related to production... pickup mobile or base stations may communicate with any other station licensed under this subpart. (d... additional frequency is limited to 2.5 watts. (f) Remote pickup base and mobile stations in Alaska, Guam...
GNSS Network Time Series Analysis
NASA Astrophysics Data System (ADS)
Balodis, J.; Janpaule, I.; Haritonova, D.; Normand, M.; Silabriedis, G.; Zarinjsh, A.; Zvirgzds, J.
2012-04-01
Time series of GNSS station results of both the EUPOS®-RIGA and LATPOS networks has been developed at the Institute of Geodesy and Geoinformation (University of Latvia) using Bernese v.5.0 software. The base stations were selected among the EPN and IGS stations in surroundings of Latvia. In various day solutions the base station selection has been miscellaneous. Most frequently 5 - 8 base stations were selected from a set of stations {BOR1, JOEN, JOZE, MDVJ, METS, POLV, PULK, RIGA, TORA, VAAS, VISO, VLNS}. The rejection of "bad base stations" was performed by Bernese software depending on the quality of proper station data in proper day. This caused a reason of miscellaneous base station selection in various days. The results of time series are analysed. The question aroused on the nature of some outlying situations. The seasonal effect of the behaviour of the network has been identified when distance and elevation changes between stations has been analysed. The dependence from various influences has been recognised.
47 CFR 90.1333 - Restrictions on the operation of mobile and portable stations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... transmitted by a base station. (b) Any mobile/portable stations may communicate with any other mobile/portable... by a base station. (c) Airborne operations by mobile/portable stations is prohibited. ... portable stations. 90.1333 Section 90.1333 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED...
Binary Colloidal Alloy Test-3 (BCAT-3) Tabletop Space Station Experiment Continues
NASA Technical Reports Server (NTRS)
Meyer, William V.
2005-01-01
"As above, so below," thus begins the Emerald Tablet that was inscribed in 300 B.C., long before we could look into the heavens and see a space station that might serve as a platform for exploring other worlds and for exploring the natural ways that order arises out of chaos. To raze the ancient intent of this quote (and lift it out of context), we note that the effects of gravity would be balanced (removed) at the center of the Earth (below) and that this is also the case aboard the International Space Station (above). Yet, those of us on Earth are caught in the middle, where the effects of gravity are profound and disturbing for observers wanting to study nature s self-organizing tendencies, tendencies that are masked by sedimentation and convection on Earth.
2013-07-27
CAPE CANAVERAL, Fla. – At the Kennedy Space Center's Apollo/Saturn V Center, former NASA astronaut Alan Bean speaks to guests at the Astronaut Scholarship Foundation's event celebrating the 40th anniversary of Skylab. Bean served as commander of Skylab 3, the second piloted mission to the space station. In 1969, Bean was lunar module pilot on Apollo 12, the second mission to land on the moon. The gala commemorating the 40th anniversary of Skylab included six of the nine astronauts who flew missions to America's first space station. The orbiting laboratory was launched unpiloted from Kennedy on May 14, 1973. Between May 25, 1973 and Feb. 8, 1974, crews of three spent 28, 59 and 84 days living and working in low-Earth orbit aboard the station. For more information, visit http://www.nasa.gov/mission_pages/skylab/ Photo credit: NASA/Kim Shiflett
1998-05-05
Pressurized Mating Adapter (PMA)-2 is in the process of being mated to Node 1 of the International Space Station (ISS) under the supervision of Boeing technicians in KSC's Space Station Processing Facility (SSPF). The node is the first element of the ISS to be manufactured in the United States and is currently scheduled to lift off aboard the Space Shuttle Endeavour on STS-88 later this year, along with PMAs 1 and 2. This PMA is a cone-shaped connector to Node 1, which will have two PMAs attached once this mate is completed. Once in space, Node 1 will function as a connecting passageway to the living and working areas of the ISS. It has six hatches that will serve as docking ports to the U.S. laboratory module, U.S. habitation module, an airlock and other space station elements
The Node 1 (or Unity) Module for the International Space Station
NASA Technical Reports Server (NTRS)
1997-01-01
This photograph, taken by the Boeing Company,shows Boeing technicians preparing to install one of six hatches or doors to the Node 1 (also called Unity), the first U.S. Module for the International Space Station (ISS). The Node 1, or Unity, serves as a cornecting passageway to Space Station modules and was manufactured by the Boeing Company at the Marshall Space Flight Center from 1994 to 1997. The U.S. built Unity module was launched aboard the orbiter Endeavour (STS-88 mission) on December 4, 1998 and connected to the Zarya, the Russian-built Functional Energy Block (FGB). The Zarya was launched on a Russian proton rocket prior to the launch of the Unity. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.
The Node 1 (or Unity) Module for the International Space Station
NASA Technical Reports Server (NTRS)
1997-01-01
This photograph, taken by the Boeing Company, shows Boeing technicians preparing to install one of six hatches or doors to the Node 1 (also called Unity), the first U.S. Module for the International Space Station (ISS). The Node 1, or Unity, serves as a cornecting passageway to Space Station modules and was manufactured by the Boeing Company at the Marshall Space Flight Center from 1994 to 1997. The U.S. built Unity module was launched aboard the orbiter Endeavour (STS-88 mission) on December 4, 1998 and connected to the Zarya, the Russian-built Functional Energy Block (FGB). The Zarya was launched on a Russian proton rocket prior to the launch of the Unity. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.
Boeing technicians discuss mating PMA-2 to Node 1 in the SSPF as STS-88 launch preparations continue
NASA Technical Reports Server (NTRS)
1998-01-01
Boeing technicians discuss mating Pressurized Mating Adapter (PMA)-2 to Node 1 of the International Space Station (ISS) in KSC's Space Station Processing Facility (SSPF). The node is the first element of the ISS to be manufactured in the United States and is currently scheduled to lift off aboard the Space Shuttle Endeavour on STS-88 later this year, along with PMAs 1 and 2. This PMA is a cone-shaped connector to Node 1, which will have two PMAs attached once this mate is completed. Once in space, Node 1 will function as a connecting passageway to the living and working areas of the ISS. It has six hatches that will serve as docking ports to the U.S. laboratory module, U.S. habitation module, an airlock and other space station elements.
The International Space Station: A Pathway to the Future
NASA Technical Reports Server (NTRS)
Kitmacher, Gary H.; Gerstenmaier, William H.; Bartoe, John-David F.; Mustachio, Nicholas
2004-01-01
Nearly six years after the launch of the first International Space Station element, and four years after its initial occupation, the United States and our 16 international partners have made great strides in operating this impressive Earth orbiting research facility. This past year we have done so in the face of the adversity of operating without the benefit of the Space Shuttle. In his January 14, 2004, speech announcing a new vision for America's space program, President Bush affirmed the United States' commitment to completing construction of the International Space Station by 2010. The President also stated that we would focus our future research aboard the Station on the longterm effects of space travel on human biology. This research will help enable human crews to venture through the vast voids of space for months at a time. In addition, ISS affords a unique opportunity to serve as an engineering test bed for hardware and operations critical to the exploration tasks. NASA looks forward to working with our partners on International Space Station research that will help open up new pathways for future exploration and discovery beyond low Earth orbit. This paper provides an overview of the International Space Station Program focusing on a review of the events of the past year, as well as plans for next year and the future.