SEURAT: visual analytics for the integrated analysis of microarray data.
Gribov, Alexander; Sill, Martin; Lück, Sonja; Rücker, Frank; Döhner, Konstanze; Bullinger, Lars; Benner, Axel; Unwin, Antony
2010-06-03
In translational cancer research, gene expression data is collected together with clinical data and genomic data arising from other chip based high throughput technologies. Software tools for the joint analysis of such high dimensional data sets together with clinical data are required. We have developed an open source software tool which provides interactive visualization capability for the integrated analysis of high-dimensional gene expression data together with associated clinical data, array CGH data and SNP array data. The different data types are organized by a comprehensive data manager. Interactive tools are provided for all graphics: heatmaps, dendrograms, barcharts, histograms, eventcharts and a chromosome browser, which displays genetic variations along the genome. All graphics are dynamic and fully linked so that any object selected in a graphic will be highlighted in all other graphics. For exploratory data analysis the software provides unsupervised data analytics like clustering, seriation algorithms and biclustering algorithms. The SEURAT software meets the growing needs of researchers to perform joint analysis of gene expression, genomical and clinical data.
SEURAT: Visual analytics for the integrated analysis of microarray data
2010-01-01
Background In translational cancer research, gene expression data is collected together with clinical data and genomic data arising from other chip based high throughput technologies. Software tools for the joint analysis of such high dimensional data sets together with clinical data are required. Results We have developed an open source software tool which provides interactive visualization capability for the integrated analysis of high-dimensional gene expression data together with associated clinical data, array CGH data and SNP array data. The different data types are organized by a comprehensive data manager. Interactive tools are provided for all graphics: heatmaps, dendrograms, barcharts, histograms, eventcharts and a chromosome browser, which displays genetic variations along the genome. All graphics are dynamic and fully linked so that any object selected in a graphic will be highlighted in all other graphics. For exploratory data analysis the software provides unsupervised data analytics like clustering, seriation algorithms and biclustering algorithms. Conclusions The SEURAT software meets the growing needs of researchers to perform joint analysis of gene expression, genomical and clinical data. PMID:20525257
From Seurat to Snapshots: What the Visual Arts Could Contribute to Education.
ERIC Educational Resources Information Center
Duncum, Paul
1996-01-01
Advocates reconceptualizing visual arts as a core subject embodying key elements of experiential learning and critical thinking through an interdisciplinary approach. Illustrates this approach with a discussion of the interconnected issues surrounding family snapshots (social history, aesthetics, technological advancement). Discusses issues of…
SEURAT: SPH scheme extended with ultraviolet line radiative transfer
NASA Astrophysics Data System (ADS)
Abe, Makito; Suzuki, Hiroyuki; Hasegawa, Kenji; Semelin, Benoit; Yajima, Hidenobu; Umemura, Masayuki
2018-05-01
We present a novel Lyman alpha (Ly α) radiative transfer code, SEURAT (SPH scheme Extended with Ultraviolet line RAdiative Transfer), where line scatterings are solved adaptively with the resolution of the smoothed particle hydrodynamics (SPH). The radiative transfer method implemented in SEURAT is based on a Monte Carlo algorithm in which the scattering and absorption by dust are also incorporated. We perform standard test calculations to verify the validity of the code; (i) emergent spectra from a static uniform sphere, (ii) emergent spectra from an expanding uniform sphere, and (iii) escape fraction from a dusty slab. Thereby, we demonstrate that our code solves the {Ly} α radiative transfer with sufficient accuracy. We emphasize that SEURAT can treat the transfer of {Ly} α photons even in highly complex systems that have significantly inhomogeneous density fields. The high adaptivity of SEURAT is desirable to solve the propagation of {Ly} α photons in the interstellar medium of young star-forming galaxies like {Ly} α emitters (LAEs). Thus, SEURAT provides a powerful tool to model the emergent spectra of {Ly} α emission, which can be compared to the observations of LAEs.
The development of non-animal methodology to evaluate the potential for a chemical to cause systemic toxicity is one of the grand challenges of modern science. The European research programme SEURAT is active in this field and will conclude its first phase, SEURAT-1, in December ...
Spatial reconstruction of single-cell gene expression data.
Satija, Rahul; Farrell, Jeffrey A; Gennert, David; Schier, Alexander F; Regev, Aviv
2015-05-01
Spatial localization is a key determinant of cellular fate and behavior, but methods for spatially resolved, transcriptome-wide gene expression profiling across complex tissues are lacking. RNA staining methods assay only a small number of transcripts, whereas single-cell RNA-seq, which measures global gene expression, separates cells from their native spatial context. Here we present Seurat, a computational strategy to infer cellular localization by integrating single-cell RNA-seq data with in situ RNA patterns. We applied Seurat to spatially map 851 single cells from dissociated zebrafish (Danio rerio) embryos and generated a transcriptome-wide map of spatial patterning. We confirmed Seurat's accuracy using several experimental approaches, then used the strategy to identify a set of archetypal expression patterns and spatial markers. Seurat correctly localizes rare subpopulations, accurately mapping both spatially restricted and scattered groups. Seurat will be applicable to mapping cellular localization within complex patterned tissues in diverse systems.
Integrating single-cell transcriptomic data across different conditions, technologies, and species.
Butler, Andrew; Hoffman, Paul; Smibert, Peter; Papalexi, Efthymia; Satija, Rahul
2018-06-01
Computational single-cell RNA-seq (scRNA-seq) methods have been successfully applied to experiments representing a single condition, technology, or species to discover and define cellular phenotypes. However, identifying subpopulations of cells that are present across multiple data sets remains challenging. Here, we introduce an analytical strategy for integrating scRNA-seq data sets based on common sources of variation, enabling the identification of shared populations across data sets and downstream comparative analysis. We apply this approach, implemented in our R toolkit Seurat (http://satijalab.org/seurat/), to align scRNA-seq data sets of peripheral blood mononuclear cells under resting and stimulated conditions, hematopoietic progenitors sequenced using two profiling technologies, and pancreatic cell 'atlases' generated from human and mouse islets. In each case, we learn distinct or transitional cell states jointly across data sets, while boosting statistical power through integrated analysis. Our approach facilitates general comparisons of scRNA-seq data sets, potentially deepening our understanding of how distinct cell states respond to perturbation, disease, and evolution.
Daston, George; Knight, Derek J; Schwarz, Michael; Gocht, Tilman; Thomas, Russell S; Mahony, Catherine; Whelan, Maurice
2015-01-01
The development of non-animal methodology to evaluate the potential for a chemical to cause systemic toxicity is one of the grand challenges of modern science. The European research programme SEURAT is active in this field and will conclude its first phase, SEURAT-1, in December 2015. Drawing on the experience gained in SEURAT-1 and appreciating international advancement in both basic and regulatory science, we reflect here on how SEURAT should evolve and propose that further research and development should be directed along two complementary and interconnecting work streams. The first work stream would focus on developing new 'paradigm' approaches for regulatory science. The goal here is the identification of 'critical biological targets' relevant for toxicity and to test their suitability to be used as anchors for predicting toxicity. The second work stream would focus on integration and application of new approach methods for hazard (and risk) assessment within the current regulatory 'paradigm', aiming for acceptance of animal-free testing strategies by regulatory authorities (i.e. translating scientific achievements into regulation). Components for both work streams are discussed and may provide a structure for a future research programme in the field of predictive toxicology.
Spatial reconstruction of single-cell gene expression
Satija, Rahul; Farrell, Jeffrey A.; Gennert, David; Schier, Alexander F.; Regev, Aviv
2015-01-01
Spatial localization is a key determinant of cellular fate and behavior, but spatial RNA assays traditionally rely on staining for a limited number of RNA species. In contrast, single-cell RNA-seq allows for deep profiling of cellular gene expression, but established methods separate cells from their native spatial context. Here we present Seurat, a computational strategy to infer cellular localization by integrating single-cell RNA-seq data with in situ RNA patterns. We applied Seurat to spatially map 851 single cells from dissociated zebrafish (Danio rerio) embryos, inferring a transcriptome-wide map of spatial patterning. We confirmed Seurat’s accuracy using several experimental approaches, and used it to identify a set of archetypal expression patterns and spatial markers. Additionally, Seurat correctly localizes rare subpopulations, accurately mapping both spatially restricted and scattered groups. Seurat will be applicable to mapping cellular localization within complex patterned tissues in diverse systems. PMID:25867923
The SEURAT-1 Approach towards Animal Free Human Safety Assessment
SEURAT-1 is a European public-private research consortium that is working towards animal-free testing of chemical compounds and the highest level of consumer protection. A research strategy was formulated based on the guiding principle to adopt a toxicological mode-of-action fram...
Quentin, J C; Seguignes, M
1979-01-01
The Gongylonematid Nematode parasite of the Tunisian hedge-hog has been identified as Gongylonema mucronatum Seurat, 1916. The infective larva has been obtained from Locusta migratoria as intermediate host. The larval characters of this Gongylonema link it to the species G. pulchrum.
[Optic mixing of colours in Seurat's painting].
Cernea, Paul
2002-01-01
Georges Seurat is the initiator and master of the divisionism. He founds the neoimpressionism current that tries to reproduce the nature exclusively through coloured vibration. Seurat applies the colours in small touches uniformly distributed on the canvas; the colours merge if they are looked by a certain distance, through optical interference. When the spectator approaches from the picture, the special frequency decreases, the optical merging does not appear and the onlooker looks a lot of coloured spots. When the spectator moves away from the picture, the optical interference appears and the clarity of the image becomes perfectly. This current opened the way of the future's modern painting performed by Cézanne, Renoir, Van Gogh.
Complete Genome Sequence of Enterotoxigenic Escherichia coli Siphophage Seurat
Doan, Dung P.; Lessor, Lauren E.; Hernandez, Adriana C.
2015-01-01
Enterotoxigenic Escherichia coli (ETEC) is one of the leading causes of diarrhea in developing countries. Bacteriophage therapy has the potential to aid in the prevention and treatment of ETEC-related illness. To that end, we present here the complete genome of ETEC siphophage Seurat and describe its major features. PMID:25720682
[Report of Micipsella numidica (Seurat, 1917) in Italy].
Cancrini, G; Poglayen, G; Vecchi, G
1988-01-01
The first record in Italy of Micipsella numidica (Seurat, 1917) is reported. The parasite was collected from the portal vein of two rabbits (Oryctolagus cuniculus). Morphological features of the worms (4 females, 3 males and microfilariae from uterus) are described and compared with those reported for African, European and Asiatic specimens found in hares.
Complete Genome Sequence of Enterotoxigenic Escherichia coli Siphophage Seurat.
Doan, Dung P; Lessor, Lauren E; Hernandez, Adriana C; Kuty Everett, Gabriel F
2015-02-26
Enterotoxigenic Escherichia coli (ETEC) is one of the leading causes of diarrhea in developing countries. Bacteriophage therapy has the potential to aid in the prevention and treatment of ETEC-related illness. To that end, we present here the complete genome of ETEC siphophage Seurat and describe its major features. Copyright © 2015 Doan et al.
Artists Paint ... Summer: Grade 2
ERIC Educational Resources Information Center
Herberholz, Barbara
2012-01-01
A humid summer haze covers the River Seine and the grassy bank where young men and boys go swimming on Sunday. Everything seems so quiet, still, and very hot. They wear hats to protect them from the hot sun. The artist Georges Seurat used warm tones to give viewers the feeling of the hot sun. Seurat was trying to catch the dazzle of hot sunlight…
al-Deen, A; al-Shareef, M F
1996-12-01
With the aid of scanning electron microscopy certain morphological features (e.g.lateral alae, posterior end of male and cuticular surface) are used as principal pilars in the description of the nematode Moaciria icosiensis (Seurat, 1917) from Chalcides ocellatus (Forsk). Cuticular surface is distinguished by minute striations. Lateral alae are smooth and showing undulation. The posterior end of the male is curved and carries specific papillae. These morphological features are specific and aid in proper identification of Moaciria icosiensis.
The SEURAT-1 approach towards animal free human safety assessment.
Gocht, Tilman; Berggren, Elisabet; Ahr, Hans Jürgen; Cotgreave, Ian; Cronin, Mark T D; Daston, George; Hardy, Barry; Heinzle, Elmar; Hescheler, Jürgen; Knight, Derek J; Mahony, Catherine; Peschanski, Marc; Schwarz, Michael; Thomas, Russell S; Verfaillie, Catherine; White, Andrew; Whelan, Maurice
2015-01-01
SEURAT-1 is a European public-private research consortium that is working towards animal-free testing of chemical compounds and the highest level of consumer protection. A research strategy was formulated based on the guiding principle to adopt a toxicological mode-of-action framework to describe how any substance may adversely affect human health.The proof of the initiative will be in demonstrating the applicability of the concepts on which SEURAT-1 is built on three levels:(i) Theoretical prototypes for adverse outcome pathways are formulated based on knowledge already available in the scientific literature on investigating the toxicological mode-of-actions leading to adverse outcomes (addressing mainly liver toxicity);(ii)adverse outcome pathway descriptions are used as a guide for the formulation of case studies to further elucidate the theoretical model and to develop integrated testing strategies for the prediction of certain toxicological effects (i.e., those related to the adverse outcome pathway descriptions);(iii) further case studies target the application of knowledge gained within SEURAT-1 in the context of safety assessment. The ultimate goal would be to perform ab initio predictions based on a complete understanding of toxicological mechanisms. In the near-term, it is more realistic that data from innovative testing methods will support read-across arguments. Both scenarios are addressed with case studies for improved safety assessment. A conceptual framework for a rational integrated assessment strategy emerged from designing the case studies and is discussed in the context of international developments focusing on alternative approaches for evaluating chemicals using the new 21st century tools for toxicity testing.
Quentin, J C; Verdier, J M
1979-01-01
The life cycle of Maupasina weissi Seurat, 1913, the parasite of the elephant shrew, has been experimentally obtained from the intermediate host Locusta migratoria. The biology of this Nematoda is considered as being more primitive than the Subuluridae: -- egg maturation in external environment is in fact necessary to the Maupasina larvae to penetrate into the insect, -- The different localizations of the infective larvae, such as mesenteron regeneration crypta, fat body, demonstrate that the parasite is not completely adaptated to its intermediate host, -- the ontogenesis of cephalic structures is characterized by an hypertrophy of the archaic structures mainly from cuticular origin.
Bouamer, S; Morand, S; Bourgat, R
2001-02-01
The generic diagnosis of Alaeuris is emended based on the study and redescription of Alaeuris numidica from the cecum of Testudo graeca collected in Settat, Morocco and of Testudo hermanni collected in Catalonia, Spain. Scanning electron microscopy studies revealed that the papillae previously described as adanal are simple lobes because of the lack of terminal nerves, and that both preanal and postanal papillae are pedunculate. These new findings allowed us to emend the diagnosis of the genus and the species. A list of species of Alaeuris with biogeographic regions and hosts is provided.
Quentin, J C; Seureau, C; Railhac, C
1983-01-01
A habronemid nematode in birds of prey, Milvus migrans Bonaparti and Accipiter badius Linné, in Togo, is identified as Cyrnea (Procyrnea) mansioni (Seurat, 1914). Larval development is experimentally studied in the orthopteran Acrididae Tylotropidius patagiatus Karsch. The first three larval stages are described and illustrated. The biology of this spiruroid nematode is distinguished by the unusual rapidity of larval development (infective larvae at 10 days). Comparison of the life cycle of C. mansioni with life cycles of other Habronemid Nematodes parasitizing birds, points out an evolution of larvae from primitive forms of large size and slow development to evolved forms of small size and rapid development. Observations concerning the encapsulation of infective larvae in the intermediate host confirm this larval evolution.
Bouamer, S; Morand, S; Bourgat, R
2001-01-01
The generic diagnosis of Mehdiella Seurat, 1918 is emended based on study and redescription of Mehdiella microstoma (Drasche, 1884) from the caecum of Testudo graeca Linnaeus, 1758 collected in Settat, Morocco and on study and description of a new species, Mehdiella petterae sp. n., from the large intestine of Testudo hermanni (Gmelin, 1789) collected in Catalonia, Spain. Scanning electron microscopy (SEM) studies revealed substantial differences in the structure of the mouth and the caudal end, and made possible to differentiate the new species from the others. SEM studies showed the real and sound characteristics of the genus Mehdiella, namely number of anal papillae 2 instead of 3, post-anal papillae pedunculate or sessile instead sessile.
Seureau, C; Quentin, J C
1983-01-01
Larval biology of the habronemid nematode Cyrnea (Cyrnea) eurycerca Seurat, 1914, parasite of the Double-spurred Francolin Francolinus bicalcaratus, in Togo, is experimentally studied with the orthopteran Acrididae Tylotropidius patagiatus Karsch as intermediate host. The first three larval stages are described and illustrated. Infective larvae, which occur after two weeks of development at 30 degrees C, are unusually large (3 mm). The biology of this habronemid nematode is compared with the biology of the other Spirurids. It differs by: --an asynchronous penetration of the first stage larvae in the insect adipose tissue, --a short stay in this tissue (about 5 days) with a cell reaction of encapsulation, followed by an active escape of second stage larvae out of their capsule, --free and movable infective larvae in the hemocoele of the insect.
Berggren, Elisabet; Amcoff, Patric; Benigni, Romualdo; Blackburn, Karen; Carney, Edward; Cronin, Mark; Deluyker, Hubert; Gautier, Francoise; Judson, Richard S; Kass, Georges E N; Keller, Detlef; Knight, Derek; Lilienblum, Werner; Mahony, Catherine; Rusyn, Ivan; Schultz, Terry; Schwarz, Michael; Schüürmann, Gerrit; White, Andrew; Burton, Julien; Lostia, Alfonso M; Munn, Sharon; Worth, Andrew
2015-12-01
Safety assessment for repeated dose toxicity is one of the largest challenges in the process to replace animal testing. This is also one of the proof of concept ambitions of SEURAT-1, the largest ever European Union research initiative on alternative testing, co-funded by the European Commission and Cosmetics Europe. This review is based on the discussion and outcome of a workshop organized on initiative of the SEURAT-1 consortium joined by a group of international experts with complementary knowledge to further develop traditional read-across and include new approach data. The aim of the suggested strategy for chemical read-across is to show how a traditional read-across based on structural similarities between source and target substance can be strengthened with additional evidence from new approach data--for example, information from in vitro molecular screening, "-omics" assays and computational models--to reach regulatory acceptance. We identified four read-across scenarios that cover typical human health assessment situations. For each such decision context, we suggested several chemical groups as examples to prove when read-across between group members is possible, considering both chemical and biological similarities. We agreed to carry out the complete read-across exercise for at least one chemical category per read-across scenario in the context of SEURAT-1, and the results of this exercise will be completed and presented by the end of the research initiative in December 2015.
2013-01-01
Background The field of cancer genomics has rapidly adopted next-generation sequencing (NGS) in order to study and characterize malignant tumors with unprecedented resolution. In particular for cancer, one is often trying to identify somatic mutations – changes specific to a tumor and not within an individual’s germline. However, false positive and false negative detections often result from lack of sufficient variant evidence, contamination of the biopsy by stromal tissue, sequencing errors, and the erroneous classification of germline variation as tumor-specific. Results We have developed a generalized Bayesian analysis framework for matched tumor/normal samples with the purpose of identifying tumor-specific alterations such as single nucleotide mutations, small insertions/deletions, and structural variation. We describe our methodology, and discuss its application to other types of paired-tissue analysis such as the detection of loss of heterozygosity as well as allelic imbalance. We also demonstrate the high level of sensitivity and specificity in discovering simulated somatic mutations, for various combinations of a) genomic coverage and b) emulated heterogeneity. Conclusion We present a Java-based implementation of our methods named Seurat, which is made available for free academic use. We have demonstrated and reported on the discovery of different types of somatic change by applying Seurat to an experimentally-derived cancer dataset using our methods; and have discussed considerations and practices regarding the accurate detection of somatic events in cancer genomes. Seurat is available at https://sites.google.com/site/seuratsomatic. PMID:23642077
Christoforides, Alexis; Carpten, John D; Weiss, Glen J; Demeure, Michael J; Von Hoff, Daniel D; Craig, David W
2013-05-04
The field of cancer genomics has rapidly adopted next-generation sequencing (NGS) in order to study and characterize malignant tumors with unprecedented resolution. In particular for cancer, one is often trying to identify somatic mutations--changes specific to a tumor and not within an individual's germline. However, false positive and false negative detections often result from lack of sufficient variant evidence, contamination of the biopsy by stromal tissue, sequencing errors, and the erroneous classification of germline variation as tumor-specific. We have developed a generalized Bayesian analysis framework for matched tumor/normal samples with the purpose of identifying tumor-specific alterations such as single nucleotide mutations, small insertions/deletions, and structural variation. We describe our methodology, and discuss its application to other types of paired-tissue analysis such as the detection of loss of heterozygosity as well as allelic imbalance. We also demonstrate the high level of sensitivity and specificity in discovering simulated somatic mutations, for various combinations of a) genomic coverage and b) emulated heterogeneity. We present a Java-based implementation of our methods named Seurat, which is made available for free academic use. We have demonstrated and reported on the discovery of different types of somatic change by applying Seurat to an experimentally-derived cancer dataset using our methods; and have discussed considerations and practices regarding the accurate detection of somatic events in cancer genomes. Seurat is available at https://sites.google.com/site/seuratsomatic.
Evaluating and assessing impacts to development is an Agency priority (EPA’s Children’s Environmental Health Research Roadmap); however, the quantity of chemicals needing assessment and challenges of species extrapolation require alternative approaches to traditional animal studi...
Arts-Based School Reform: A Whole School Studies One Painting.
ERIC Educational Resources Information Center
Short, Georgianna
2001-01-01
Describes arts-based, anchored instruction at Fair Arts IMPACT Elementary School (Columbus, Ohio), a five-week program centered around "Sunday Afternoon on the Island of La Grande Jatte" (Georges Seurat). Addresses unit objectives such as understanding social climate with respect to race/gender discrimination and examining why people…
Arabism and Islam: Stateless Nations and Nationless States
1990-07-01
Notes 1. NationalGeographic, vol. 119, no. 1 (January 1961), p. 84. 2. Michel Foucault , quoted in translation from Keith Michael Baker, "Memory...Islamic Jihad released a photograph of the corpse o f French hostage Michel Seurat, a respected scholar of the Arab-Muslim world. Terry Ander
Intestinal Helminths in Different Species of Rodents in North Khorasan Province, Northeast of Iran
ARZAMANI, Kourosh; SALEHI, Mitra; MOBEDI, Iraj; ADINEZADE, Amir; HASANPOUR, Hamid; ALAVINIA, Mohammad; DARVISH, Jamshid; SHIRZADI, Mohammad Reza; MOHAMMADI, Zeinolabedin
2017-01-01
Background: Rodents are an important source of zoonotic diseases for human. The aim of this study was to determine the infectivity of rodents with intestinal helminths in North Khorasan Province, Iran. Methods: One hundred and thirteen rodents were collected using different collection methods such as kill and live traps, digging of their burrow, filling of their hiding places with water and hand net during 2011–2013. Their alimentary canals were removed in the laboratory and helminths were determined in the department of parasitology, Tehran University of Medical Sciences. Results: Thirteen species of helminths parasites were found in 13 species of rodents, including Aspiculuris tetraptera, Hymenolepis diminuta, Nippostrongylus brasiliensis, Protospirura Seurat, Rictolaria ratti, Skrjabinitaenia lobata, Streptopharagus kuntzi, Syphacia obvelata, Taenia taeniaeformis, Trichuris muris, Cysticercus fasciolaris, Acanthocephal. spp and Trichuris spp. Some of them were reported for the first time in new host in Iran. S. obvelata and A. tetraptera were the most frequent parasites and P. Seurat, R. ratti and C. fasciolaris were found only in one rodent. Conclusion: This is the first study to investigate the intestinal parasites in rodents in this area. Among different species identified, some of helminths were reported in new host. PMID:28761488
Intestinal Helminths in Different Species of Rodents in North Khorasan Province, Northeast of Iran.
Arzamani, Kourosh; Salehi, Mitra; Mobedi, Iraj; Adinezade, Amir; Hasanpour, Hamid; Alavinia, Mohammad; Darvish, Jamshid; Shirzadi, Mohammad Reza; Mohammadi, Zeinolabedin
2017-01-01
Rodents are an important source of zoonotic diseases for human. The aim of this study was to determine the infectivity of rodents with intestinal helminths in North Khorasan Province, Iran. One hundred and thirteen rodents were collected using different collection methods such as kill and live traps, digging of their burrow, filling of their hiding places with water and hand net during 2011-2013. Their alimentary canals were removed in the laboratory and helminths were determined in the department of parasitology, Tehran University of Medical Sciences. Thirteen species of helminths parasites were found in 13 species of rodents, including Aspiculuris tetraptera, Hymenolepis diminuta, Nippostrongylus brasiliensis, Protospirura Seurat, Rictolaria ratti, Skrjabinitaenia lobata, Streptopharagus kuntzi, Syphacia obvelata, Taenia taeniaeformis, Trichuris muris, Cysticercus fasciolaris, Acanthocephal. spp and Trichuris spp . Some of them were reported for the first time in new host in Iran. S. obvelata and A. tetraptera were the most frequent parasites and P. Seurat, R. ratti and C. fasciolaris were found only in one rodent. This is the first study to investigate the intestinal parasites in rodents in this area. Among different species identified, some of helminths were reported in new host.
Chen, Hui-Xia; Zhang, Kuang; Zhang, Lu-Ping; Li, Liang
2018-03-26
Seuratascaris numidica (Seurat, 1917) is a specialized nematode species parasitizing amphibians only. In the present study, the detailed morphology of this poorly known species was studied using light and scanning electron microscopy based on the newly material collected from Hoplobatrachus chinensis (Osbeck) (Amphibia: Anura) in China. We found that the relative length of intestinal caecum in our male specimens (representing 68.4-71.1% of oesophageal length) is slighter longer than the previously reported data (not over 60.0% of oesophageal length). Our SEM observations also revealed the presence of ca. 64-76 small conical denticles on each lip. In addition, Angusticaecum wuyiensis Wang, 1981, collected from Rana schmackeri Boettger (Amphibia: Anura) from Wuyi Mountain in Fujian Province, China was considered as a new synonym of S. numidica. The ITS and cox1 sequences of S. numidica were also sequenced for the first time and there is no nucleotide variability detected in both regions. The present supplementary morphological and molecular data (especially the ITS and cox1 sequences) obtained herein is extremely important and useful to determine the morphological variability, population genetics and phylogenetic position of S. numidica in the future.
At the Crossroads of Art and Science: A New Course for University Non-Science Majors
NASA Astrophysics Data System (ADS)
Blatt, S. Leslie
2004-03-01
How much did Seurat know about the physics, physiology, and perceptual science of color mixing when he began his experiments in pointillism? Did Vermeer have a camera obscura built into his studio to create the perfect perspective and luminous effects of his canvases? Early in the 20th century, consequences of the idea that "no single reference point is to be preferred above any other" were worked out in physics by Einstein (special and general relativity), in art by Picasso (early cubism), and in music by Schoenberg (12-tone compositions); did this same paradigm-shifting concept arise, in three disparate fields, merely by coincidence? We are developing a new course, aimed primarily at non-science majors, that addresses questions like these through a combination of hands-on experiments on the physics of light, investigations in visual perception, empirical tests of various drawing and painting techniques, and field trips to nearby museums. We will show a few examples of the kinds of art/science intersections our students will be exploring, and present a working outline for the course.
Progressive Visual Analytics: User-Driven Visual Exploration of In-Progress Analytics.
Stolper, Charles D; Perer, Adam; Gotz, David
2014-12-01
As datasets grow and analytic algorithms become more complex, the typical workflow of analysts launching an analytic, waiting for it to complete, inspecting the results, and then re-Iaunching the computation with adjusted parameters is not realistic for many real-world tasks. This paper presents an alternative workflow, progressive visual analytics, which enables an analyst to inspect partial results of an algorithm as they become available and interact with the algorithm to prioritize subspaces of interest. Progressive visual analytics depends on adapting analytical algorithms to produce meaningful partial results and enable analyst intervention without sacrificing computational speed. The paradigm also depends on adapting information visualization techniques to incorporate the constantly refining results without overwhelming analysts and provide interactions to support an analyst directing the analytic. The contributions of this paper include: a description of the progressive visual analytics paradigm; design goals for both the algorithms and visualizations in progressive visual analytics systems; an example progressive visual analytics system (Progressive Insights) for analyzing common patterns in a collection of event sequences; and an evaluation of Progressive Insights and the progressive visual analytics paradigm by clinical researchers analyzing electronic medical records.
Amcoff, Patric; Benigni, Romualdo; Blackburn, Karen; Carney, Edward; Cronin, Mark; Deluyker, Hubert; Gautier, Francoise; Judson, Richard S.; Kass, Georges E.N.; Keller, Detlef; Knight, Derek; Lilienblum, Werner; Mahony, Catherine; Rusyn, Ivan; Schultz, Terry; Schwarz, Michael; Schüürmann, Gerrit; White, Andrew; Burton, Julien; Lostia, Alfonso M.; Munn, Sharon; Worth, Andrew
2015-01-01
Background Safety assessment for repeated dose toxicity is one of the largest challenges in the process to replace animal testing. This is also one of the proof of concept ambitions of SEURAT-1, the largest ever European Union research initiative on alternative testing, co-funded by the European Commission and Cosmetics Europe. This review is based on the discussion and outcome of a workshop organized on initiative of the SEURAT-1 consortium joined by a group of international experts with complementary knowledge to further develop traditional read-across and include new approach data. Objectives The aim of the suggested strategy for chemical read-across is to show how a traditional read-across based on structural similarities between source and target substance can be strengthened with additional evidence from new approach data—for example, information from in vitro molecular screening, “-omics” assays and computational models—to reach regulatory acceptance. Methods We identified four read-across scenarios that cover typical human health assessment situations. For each such decision context, we suggested several chemical groups as examples to prove when read-across between group members is possible, considering both chemical and biological similarities. Conclusions We agreed to carry out the complete read-across exercise for at least one chemical category per read-across scenario in the context of SEURAT-1, and the results of this exercise will be completed and presented by the end of the research initiative in December 2015. Citation Berggren E, Amcoff P, Benigni R, Blackburn K, Carney E, Cronin M, Deluyker H, Gautier F, Judson RS, Kass GE, Keller D, Knight D, Lilienblum W, Mahony C, Rusyn I, Schultz T, Schwarz M, Schüürmann G, White A, Burton J, Lostia AM, Munn S, Worth A. 2015. Chemical safety assessment using read-across: assessing the use of novel testing methods to strengthen the evidence base for decision making. Environ Health Perspect 123:1232–1240; http://dx.doi.org/10.1289/ehp.1409342 PMID:25956009
Pazoki, Samaneh; Rahimian, Hassan
2014-11-01
As part of a faunistic study on helminth parasites of Iranian lizards collected from localities in the north of Isfahan province in Iran, two new nematode species belonging to two different families, Pharyngodonidae Travassos, 1919 and Physalopteroidae Railliet, 1893, were found and are, hereby, described. Spauligodon persiensis n. sp. from the large intestine of Cyrtopodion scabrum Heyden is characterised by its imperceptible lateral alae, lack of spicule, different shape of the genital curtain, position of last pair of papillae, aspinose tail in males, position of the vulva and excretory pore, and a tail filament with six to nine spines in females. Thubunea mobedii n. sp. from the stomach of Laudakia nupta nupta (De Filipi) differs from the other species in the genus by possessing a vulva at level of the posterior portion of the oesophageal-intestinal junction in females, lacking spicules, and having a different number of papillae in males. The present paper provides the results of detailed morphological examination of the two new nematode species, using both light and scanning electron microscopy. Taxonomically important characteristics for the members of the two nematode genera, Spauligodon Skrjabin, Schikhobalova & Lagodovskaja, 1960 and Thubunea Seurat, 1914, are also reviewed.
Desprez, Bertrand; Dent, Matt; Keller, Detlef; Klaric, Martina; Ouédraogo, Gladys; Cubberley, Richard; Duplan, Hélène; Eilstein, Joan; Ellison, Corie; Grégoire, Sébastien; Hewitt, Nicola J; Jacques-Jamin, Carine; Lange, Daniela; Roe, Amy; Rothe, Helga; Blaauboer, Bas J; Schepky, Andreas; Mahony, Catherine
2018-08-01
When performing safety assessment of chemicals, the evaluation of their systemic toxicity based only on non-animal approaches is a challenging objective. The Safety Evaluation Ultimately Replacing Animal Test programme (SEURAT-1) addressed this question from 2011 to 2015 and showed that further research and development of adequate tools in toxicokinetic and toxicodynamic are required for performing non-animal safety assessments. It also showed how to implement tools like thresholds of toxicological concern (TTCs) and read-across in this context. This paper shows a tiered scientific workflow and how each tier addresses the four steps of the risk assessment paradigm. Cosmetics Europe established its Long Range Science Strategy (LRSS) programme, running from 2016 to 2020, based on the outcomes of SEURAT-1 to implement this workflow. Dedicated specific projects address each step of this workflow, which is introduced here. It tackles the question of evaluating the internal dose when systemic exposure happens. The applicability of the workflow will be shown through a series of case studies, which will be published separately. Even if the LRSS puts the emphasis on safety assessment of cosmetic relevant chemicals, it remains applicable to any type of chemical. Copyright © 2018. Published by Elsevier Ltd.
The Human is the Loop: New Directions for Visual Analytics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Endert, Alexander; Hossain, Shahriar H.; Ramakrishnan, Naren
2014-01-28
Visual analytics is the science of marrying interactive visualizations and analytic algorithms to support exploratory knowledge discovery in large datasets. We argue for a shift from a ‘human in the loop’ philosophy for visual analytics to a ‘human is the loop’ viewpoint, where the focus is on recognizing analysts’ work processes, and seamlessly fitting analytics into that existing interactive process. We survey a range of projects that provide visual analytic support contextually in the sensemaking loop, and outline a research agenda along with future challenges.
Visual analytics for aviation safety: A collaborative approach to sensemaking
NASA Astrophysics Data System (ADS)
Wade, Andrew
Visual analytics, the "science of analytical reasoning facilitated by interactive visual interfaces", is more than just visualization. Understanding the human reasoning process is essential for designing effective visualization tools and providing correct analyses. This thesis describes the evolution, application and evaluation of a new method for studying analytical reasoning that we have labeled paired analysis. Paired analysis combines subject matter experts (SMEs) and tool experts (TE) in an analytic dyad, here used to investigate aircraft maintenance and safety data. The method was developed and evaluated using interviews, pilot studies and analytic sessions during an internship at the Boeing Company. By enabling a collaborative approach to sensemaking that can be captured by researchers, paired analysis yielded rich data on human analytical reasoning that can be used to support analytic tool development and analyst training. Keywords: visual analytics, paired analysis, sensemaking, boeing, collaborative analysis.
VAST Challenge 2016: Streaming Visual Analytics
2016-10-25
understand rapidly evolving situations. To support such tasks, visual analytics solutions must move well beyond systems that simply provide real-time...received. Mini-Challenge 1: Design Challenge Mini-Challenge 1 focused on systems to support security and operational analytics at the Euybia...Challenge 1 was to solicit novel approaches for streaming visual analytics that push the boundaries for what constitutes a visual analytics system , and to
Developing Guidelines for Assessing Visual Analytics Environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scholtz, Jean
2011-07-01
In this paper, we develop guidelines for evaluating visual analytic environments based on a synthesis of reviews for the entries to the 2009 Visual Analytics Science and Technology (VAST) Symposium Challenge and from a user study with professional intelligence analysts. By analyzing the 2009 VAST Challenge reviews we gained a better understanding of what is important to our reviewers, both visualization researchers and professional analysts. We also report on a small user study with professional analysts to determine the important factors that they use in evaluating visual analysis systems. We then looked at guidelines developed by researchers in various domainsmore » and synthesized these into an initial set for use by others in the community. In a second part of the user study, we looked at guidelines for a new aspect of visual analytic systems – the generation of reports. Future visual analytic systems have been challenged to help analysts generate their reports. In our study we worked with analysts to understand the criteria they used to evaluate the quality of analytic reports. We propose that this knowledge will be useful as researchers look at systems to automate some of the report generation.1 Based on these efforts, we produced some initial guidelines for evaluating visual analytic environment and for evaluation of analytic reports. It is important to understand that these guidelines are initial drafts and are limited in scope because of the type of tasks for which the visual analytic systems used in the studies in this paper were designed. More research and refinement is needed by the Visual Analytics Community to provide additional evaluation guidelines for different types of visual analytic environments.« less
2011-01-01
The goal of visual analytics is to facilitate the discourse between the user and the data by providing dynamic displays and versatile visual interaction opportunities with the data that can support analytical reasoning and the exploration of data from multiple user-customisable aspects. This paper introduces geospatial visual analytics, a specialised subtype of visual analytics, and provides pointers to a number of learning resources about the subject, as well as some examples of human health, surveillance, emergency management and epidemiology-related geospatial visual analytics applications and examples of free software tools that readers can experiment with, such as Google Public Data Explorer. The authors also present a practical demonstration of geospatial visual analytics using partial data for 35 countries from a publicly available World Health Organization (WHO) mortality dataset and Microsoft Live Labs Pivot technology, a free, general purpose visual analytics tool that offers a fresh way to visually browse and arrange massive amounts of data and images online and also supports geographic and temporal classifications of datasets featuring geospatial and temporal components. Interested readers can download a Zip archive (included with the manuscript as an additional file) containing all files, modules and library functions used to deploy the WHO mortality data Pivot collection described in this paper. PMID:21410968
Kamel Boulos, Maged N; Viangteeravat, Teeradache; Anyanwu, Matthew N; Ra Nagisetty, Venkateswara; Kuscu, Emin
2011-03-16
The goal of visual analytics is to facilitate the discourse between the user and the data by providing dynamic displays and versatile visual interaction opportunities with the data that can support analytical reasoning and the exploration of data from multiple user-customisable aspects. This paper introduces geospatial visual analytics, a specialised subtype of visual analytics, and provides pointers to a number of learning resources about the subject, as well as some examples of human health, surveillance, emergency management and epidemiology-related geospatial visual analytics applications and examples of free software tools that readers can experiment with, such as Google Public Data Explorer. The authors also present a practical demonstration of geospatial visual analytics using partial data for 35 countries from a publicly available World Health Organization (WHO) mortality dataset and Microsoft Live Labs Pivot technology, a free, general purpose visual analytics tool that offers a fresh way to visually browse and arrange massive amounts of data and images online and also supports geographic and temporal classifications of datasets featuring geospatial and temporal components. Interested readers can download a Zip archive (included with the manuscript as an additional file) containing all files, modules and library functions used to deploy the WHO mortality data Pivot collection described in this paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scholtz, Jean
A new field of research, visual analytics, has recently been introduced. This has been defined as “the science of analytical reasoning facilitated by visual interfaces." Visual analytic environments, therefore, support analytical reasoning using visual representations and interactions, with data representations and transformation capabilities, to support production, presentation and dissemination. As researchers begin to develop visual analytic environments, it will be advantageous to develop metrics and methodologies to help researchers measure the progress of their work and understand the impact their work will have on the users who will work in such environments. This paper presents five areas or aspects ofmore » visual analytic environments that should be considered as metrics and methodologies for evaluation are developed. Evaluation aspects need to include usability, but it is necessary to go beyond basic usability. The areas of situation awareness, collaboration, interaction, creativity, and utility are proposed as areas for initial consideration. The steps that need to be undertaken to develop systematic evaluation methodologies and metrics for visual analytic environments are outlined.« less
Quentin, J C; Seureau, C
1978-01-01
Its larval form obtained from experimentally infected intermediate hosts, differs from those of other Gongylonematids. In the genus Gongylonema four types of larvae were recognized. They are characterized by the size and the cephalic and caudal structures of the larvae. The cellular reactions caused by the larvae of G. brevispiculum in the insect muscles are similar to those caused by infections with larvae of Acuarid nematodes.
Kohonen, Pekka; Benfenati, Emilio; Bower, David; Ceder, Rebecca; Crump, Michael; Cross, Kevin; Grafström, Roland C; Healy, Lyn; Helma, Christoph; Jeliazkova, Nina; Jeliazkov, Vedrin; Maggioni, Silvia; Miller, Scott; Myatt, Glenn; Rautenberg, Michael; Stacey, Glyn; Willighagen, Egon; Wiseman, Jeff; Hardy, Barry
2013-01-01
The aim of the SEURAT-1 (Safety Evaluation Ultimately Replacing Animal Testing-1) research cluster, comprised of seven EU FP7 Health projects co-financed by Cosmetics Europe, is to generate a proof-of-concept to show how the latest technologies, systems toxicology and toxicogenomics can be combined to deliver a test replacement for repeated dose systemic toxicity testing on animals. The SEURAT-1 strategy is to adopt a mode-of-action framework to describe repeated dose toxicity, combining in vitro and in silico methods to derive predictions of in vivo toxicity responses. ToxBank is the cross-cluster infrastructure project whose activities include the development of a data warehouse to provide a web-accessible shared repository of research data and protocols, a physical compounds repository, reference or "gold compounds" for use across the cluster (available via wiki.toxbank.net), and a reference resource for biomaterials. Core technologies used in the data warehouse include the ISA-Tab universal data exchange format, REpresentational State Transfer (REST) web services, the W3C Resource Description Framework (RDF) and the OpenTox standards. We describe the design of the data warehouse based on cluster requirements, the implementation based on open standards, and finally the underlying concepts and initial results of a data analysis utilizing public data related to the gold compounds. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Data Analytics and Visualization for Large Army Testing Data
2013-09-01
and relationships in the data that would otherwise remain hidden. 7 Bibliography 1. Goodall , J. R.; Tesone, D. R. Visual Analytics for Network...Software Visualization, 2003, pp 143–149. 3. Goodall , J. R.; Sowul, M. VIAssist: Visual Analytics for Cyber Defense, IEEE Conference on Technologies
Dasgupta, Aritra; Lee, Joon-Yong; Wilson, Ryan; Lafrance, Robert A; Cramer, Nick; Cook, Kristin; Payne, Samuel
2017-01-01
Combining interactive visualization with automated analytical methods like statistics and data mining facilitates data-driven discovery. These visual analytic methods are beginning to be instantiated within mixed-initiative systems, where humans and machines collaboratively influence evidence-gathering and decision-making. But an open research question is that, when domain experts analyze their data, can they completely trust the outputs and operations on the machine-side? Visualization potentially leads to a transparent analysis process, but do domain experts always trust what they see? To address these questions, we present results from the design and evaluation of a mixed-initiative, visual analytics system for biologists, focusing on analyzing the relationships between familiarity of an analysis medium and domain experts' trust. We propose a trust-augmented design of the visual analytics system, that explicitly takes into account domain-specific tasks, conventions, and preferences. For evaluating the system, we present the results of a controlled user study with 34 biologists where we compare the variation of the level of trust across conventional and visual analytic mediums and explore the influence of familiarity and task complexity on trust. We find that despite being unfamiliar with a visual analytic medium, scientists seem to have an average level of trust that is comparable with the same in conventional analysis medium. In fact, for complex sense-making tasks, we find that the visual analytic system is able to inspire greater trust than other mediums. We summarize the implications of our findings with directions for future research on trustworthiness of visual analytic systems.
Multimedia Analysis plus Visual Analytics = Multimedia Analytics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chinchor, Nancy; Thomas, James J.; Wong, Pak C.
2010-10-01
Multimedia analysis has focused on images, video, and to some extent audio and has made progress in single channels excluding text. Visual analytics has focused on the user interaction with data during the analytic process plus the fundamental mathematics and has continued to treat text as did its precursor, information visualization. The general problem we address in this tutorial is the combining of multimedia analysis and visual analytics to deal with multimedia information gathered from different sources, with different goals or objectives, and containing all media types and combinations in common usage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scholtz, Jean; Burtner, Edwin R.; Cook, Kristin A.
This course will introduce the field of Visual Analytics to HCI researchers and practitioners highlighting the contributions they can make to this field. Topics will include a definition of visual analytics along with examples of current systems, types of tasks and end users, issues in defining user requirements, design of visualizations and interactions, guidelines and heuristics, the current state of user-centered evaluations, and metrics for evaluation. We encourage designers, HCI researchers, and HCI practitioners to attend to learn how their skills can contribute to advancing the state of the art of visual analytics
NASA Astrophysics Data System (ADS)
Mirel, Barbara; Kumar, Anuj; Nong, Paige; Su, Gang; Meng, Fan
2016-02-01
Life scientists increasingly use visual analytics to explore large data sets and generate hypotheses. Undergraduate biology majors should be learning these same methods. Yet visual analytics is one of the most underdeveloped areas of undergraduate biology education. This study sought to determine the feasibility of undergraduate biology majors conducting exploratory analysis using the same interactive data visualizations as practicing scientists. We examined 22 upper level undergraduates in a genomics course as they engaged in a case-based inquiry with an interactive heat map. We qualitatively and quantitatively analyzed students' visual analytic behaviors, reasoning and outcomes to identify student performance patterns, commonly shared efficiencies and task completion. We analyzed students' successes and difficulties in applying knowledge and skills relevant to the visual analytics case and related gaps in knowledge and skill to associated tool designs. Findings show that undergraduate engagement in visual analytics is feasible and could be further strengthened through tool usability improvements. We identify these improvements. We speculate, as well, on instructional considerations that our findings suggested may also enhance visual analytics in case-based modules.
Kumar, Anuj; Nong, Paige; Su, Gang; Meng, Fan
2016-01-01
Life scientists increasingly use visual analytics to explore large data sets and generate hypotheses. Undergraduate biology majors should be learning these same methods. Yet visual analytics is one of the most underdeveloped areas of undergraduate biology education. This study sought to determine the feasibility of undergraduate biology majors conducting exploratory analysis using the same interactive data visualizations as practicing scientists. We examined 22 upper level undergraduates in a genomics course as they engaged in a case-based inquiry with an interactive heat map. We qualitatively and quantitatively analyzed students’ visual analytic behaviors, reasoning and outcomes to identify student performance patterns, commonly shared efficiencies and task completion. We analyzed students’ successes and difficulties in applying knowledge and skills relevant to the visual analytics case and related gaps in knowledge and skill to associated tool designs. Findings show that undergraduate engagement in visual analytics is feasible and could be further strengthened through tool usability improvements. We identify these improvements. We speculate, as well, on instructional considerations that our findings suggested may also enhance visual analytics in case-based modules. PMID:26877625
ERIC Educational Resources Information Center
Vlacholia, Maria; Vosniadou, Stella; Roussos, Petros; Salta, Katerina; Kazi, Smaragda; Sigalas, Michael; Tzougraki, Chryssa
2017-01-01
We present two studies that investigated the adoption of visual/spatial and analytic strategies by individuals at different levels of expertise in the area of organic chemistry, using the Visual Analytic Chemistry Task (VACT). The VACT allows the direct detection of analytic strategy use without drawing inferences about underlying mental…
User-Centered Evaluation of Visual Analytics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scholtz, Jean C.
Visual analytics systems are becoming very popular. More domains now use interactive visualizations to analyze the ever-increasing amount and heterogeneity of data. More novel visualizations are being developed for more tasks and users. We need to ensure that these systems can be evaluated to determine that they are both useful and usable. A user-centered evaluation for visual analytics needs to be developed for these systems. While many of the typical human-computer interaction (HCI) evaluation methodologies can be applied as is, others will need modification. Additionally, new functionality in visual analytics systems needs new evaluation methodologies. There is a difference betweenmore » usability evaluations and user-centered evaluations. Usability looks at the efficiency, effectiveness, and user satisfaction of users carrying out tasks with software applications. User-centered evaluation looks more specifically at the utility provided to the users by the software. This is reflected in the evaluations done and in the metrics used. In the visual analytics domain this is very challenging as users are most likely experts in a particular domain, the tasks they do are often not well defined, the software they use needs to support large amounts of different kinds of data, and often the tasks last for months. These difficulties are discussed more in the section on User-centered Evaluation. Our goal is to provide a discussion of user-centered evaluation practices for visual analytics, including existing practices that can be carried out and new methodologies and metrics that need to be developed and agreed upon by the visual analytics community. The material provided here should be of use for both researchers and practitioners in the field of visual analytics. Researchers and practitioners in HCI and interested in visual analytics will find this information useful as well as a discussion on changes that need to be made to current HCI practices to make them more suitable to visual analytics. A history of analysis and analysis techniques and problems is provided as well as an introduction to user-centered evaluation and various evaluation techniques for readers from different disciplines. The understanding of these techniques is imperative if we wish to support analysis in the visual analytics software we develop. Currently the evaluations that are conducted and published for visual analytics software are very informal and consist mainly of comments from users or potential users. Our goal is to help researchers in visual analytics to conduct more formal user-centered evaluations. While these are time-consuming and expensive to carryout, the outcomes of these studies will have a defining impact on the field of visual analytics and help point the direction for future features and visualizations to incorporate. While many researchers view work in user-centered evaluation as a less-than-exciting area to work, the opposite is true. First of all, the goal is user-centered evaluation is to help visual analytics software developers, researchers, and designers improve their solutions and discover creative ways to better accommodate their users. Working with the users is extremely rewarding as well. While we use the term “users” in almost all situations there are a wide variety of users that all need to be accommodated. Moreover, the domains that use visual analytics are varied and expanding. Just understanding the complexities of a number of these domains is exciting. Researchers are trying out different visualizations and interactions as well. And of course, the size and variety of data are expanding rapidly. User-centered evaluation in this context is rapidly changing. There are no standard processes and metrics and thus those of us working on user-centered evaluation must be creative in our work with both the users and with the researchers and developers.« less
The case for visual analytics of arsenic concentrations in foods.
Johnson, Matilda O; Cohly, Hari H P; Isokpehi, Raphael D; Awofolu, Omotayo R
2010-05-01
Arsenic is a naturally occurring toxic metal and its presence in food could be a potential risk to the health of both humans and animals. Prolonged ingestion of arsenic contaminated water may result in manifestations of toxicity in all systems of the body. Visual Analytics is a multidisciplinary field that is defined as the science of analytical reasoning facilitated by interactive visual interfaces. The concentrations of arsenic vary in foods making it impractical and impossible to provide regulatory limit for each food. This review article presents a case for the use of visual analytics approaches to provide comparative assessment of arsenic in various foods. The topics covered include (i) metabolism of arsenic in the human body; (ii) arsenic concentrations in various foods; (ii) factors affecting arsenic uptake in plants; (ii) introduction to visual analytics; and (iv) benefits of visual analytics for comparative assessment of arsenic concentration in foods. Visual analytics can provide an information superstructure of arsenic in various foods to permit insightful comparative risk assessment of the diverse and continually expanding data on arsenic in food groups in the context of country of study or origin, year of study, method of analysis and arsenic species.
The Case for Visual Analytics of Arsenic Concentrations in Foods
Johnson, Matilda O.; Cohly, Hari H.P.; Isokpehi, Raphael D.; Awofolu, Omotayo R.
2010-01-01
Arsenic is a naturally occurring toxic metal and its presence in food could be a potential risk to the health of both humans and animals. Prolonged ingestion of arsenic contaminated water may result in manifestations of toxicity in all systems of the body. Visual Analytics is a multidisciplinary field that is defined as the science of analytical reasoning facilitated by interactive visual interfaces. The concentrations of arsenic vary in foods making it impractical and impossible to provide regulatory limit for each food. This review article presents a case for the use of visual analytics approaches to provide comparative assessment of arsenic in various foods. The topics covered include (i) metabolism of arsenic in the human body; (ii) arsenic concentrations in various foods; (ii) factors affecting arsenic uptake in plants; (ii) introduction to visual analytics; and (iv) benefits of visual analytics for comparative assessment of arsenic concentration in foods. Visual analytics can provide an information superstructure of arsenic in various foods to permit insightful comparative risk assessment of the diverse and continually expanding data on arsenic in food groups in the context of country of study or origin, year of study, method of analysis and arsenic species. PMID:20623005
Scalable Visual Analytics of Massive Textual Datasets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishnan, Manoj Kumar; Bohn, Shawn J.; Cowley, Wendy E.
2007-04-01
This paper describes the first scalable implementation of text processing engine used in Visual Analytics tools. These tools aid information analysts in interacting with and understanding large textual information content through visual interfaces. By developing parallel implementation of the text processing engine, we enabled visual analytics tools to exploit cluster architectures and handle massive dataset. The paper describes key elements of our parallelization approach and demonstrates virtually linear scaling when processing multi-gigabyte data sets such as Pubmed. This approach enables interactive analysis of large datasets beyond capabilities of existing state-of-the art visual analytics tools.
Beyond Control Panels: Direct Manipulation for Visual Analytics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Endert, Alexander; Bradel, Lauren; North, Chris
2013-07-19
Information Visualization strives to provide visual representations through which users can think about and gain insight into information. By leveraging the visual and cognitive systems of humans, complex relationships and phenomena occurring within datasets can be uncovered by exploring information visually. Interaction metaphors for such visualizations are designed to enable users direct control over the filters, queries, and other parameters controlling how the data is visually represented. Through the evolution of information visualization, more complex mathematical and data analytic models are being used to visualize relationships and patterns in data – creating the field of Visual Analytics. However, the expectationsmore » for how users interact with these visualizations has remained largely unchanged – focused primarily on the direct manipulation of parameters of the underlying mathematical models. In this article we present an opportunity to evolve the methodology for user interaction from the direct manipulation of parameters through visual control panels, to interactions designed specifically for visual analytic systems. Instead of focusing on traditional direct manipulation of mathematical parameters, the evolution of the field can be realized through direct manipulation within the visual representation – where users can not only gain insight, but also interact. This article describes future directions and research challenges that fundamentally change the meaning of direct manipulation with regards to visual analytics, advancing the Science of Interaction.« less
Interaction Junk: User Interaction-Based Evaluation of Visual Analytic Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Endert, Alexander; North, Chris
2012-10-14
With the growing need for visualization to aid users in understanding large, complex datasets, the ability for users to interact and explore these datasets is critical. As visual analytic systems have advanced to leverage powerful computational models and data analytics capabilities, the modes by which users engage and interact with the information are limited. Often, users are taxed with directly manipulating parameters of these models through traditional GUIs (e.g., using sliders to directly manipulate the value of a parameter). However, the purpose of user interaction in visual analytic systems is to enable visual data exploration – where users can focusmore » on their task, as opposed to the tool or system. As a result, users can engage freely in data exploration and decision-making, for the purpose of gaining insight. In this position paper, we discuss how evaluating visual analytic systems can be approached through user interaction analysis, where the goal is to minimize the cognitive translation between the visual metaphor and the mode of interaction (i.e., reducing the “Interactionjunk”). We motivate this concept through a discussion of traditional GUIs used in visual analytics for direct manipulation of model parameters, and the importance of designing interactions the support visual data exploration.« less
de Oca, Edgar Uriel Garduño-Montes; López-Caballero, Jorge D.; Mata-López, Rosario
2017-01-01
Abstract A total of 61 specimens of the Red-headed Spiny Lizard Sceloporus pyrocephalus Cope (Phrynosomatidae) collected during the breeding season (June/July 2003, 2004 and 2005) from Western Mexico were examined for helminths. The morphological characterization of the helminths found was made through light microscopy and scanning electron microscopy. Nine taxa of helminths were identified, two cestodes: Mesocestoides sp. and Oochoristica sp., and seven nematodes: Parapharyngodon ayotzinapaensis Garduño-Montes de Oca, Mata-López & León-Règagnon, 2016, Parapharyngodon tikuinii Garduño-Montes de Oca, Mata-López & León-Règagnon, 2016, Parapharyngodon sp., Physalopterinae gen. sp., Skrjabinoptera scelopori Caballero-Rodríguez, 1971, Strongyluris similis Caballero, 1938 and a new species of Thubunaea Seurat, 1914. Larvae of Mesocestoides sp. and Physalopterinae gen. sp. were found in the body cavity and digestive tract, respectively. Excluding the species of Parapharyngodon Chatterji, 1933, S. pyrocephalus is recorded for the first time as a host of the remaining seven taxa of helminths. Additionally, Thubunaea leonregagnonae sp. n. is described and illustrated as a new nematode species, parasite of S. pyrocephalus from Mexico. This new species can be differentiated from the majority of its congeners by the absence of spicules, the particular pattern of caudal papillae in males and the small ratio of oesophagus length:male total body length (0.1–0.16). PMID:29290707
de Oca, Edgar Uriel Garduño-Montes; López-Caballero, Jorge D; Mata-López, Rosario
2017-01-01
A total of 61 specimens of the Red-headed Spiny Lizard Sceloporus pyrocephalus Cope (Phrynosomatidae) collected during the breeding season (June/July 2003, 2004 and 2005) from Western Mexico were examined for helminths. The morphological characterization of the helminths found was made through light microscopy and scanning electron microscopy. Nine taxa of helminths were identified, two cestodes: Mesocestoides sp. and Oochoristica sp., and seven nematodes: Parapharyngodon ayotzinapaensis Garduño-Montes de Oca, Mata-López & León-Règagnon, 2016, Parapharyngodon tikuinii Garduño-Montes de Oca, Mata-López & León-Règagnon, 2016, Parapharyngodon sp., Physalopterinae gen. sp., Skrjabinoptera scelopori Caballero-Rodríguez, 1971, Strongyluris similis Caballero, 1938 and a new species of Thubunaea Seurat, 1914. Larvae of Mesocestoides sp. and Physalopterinae gen. sp. were found in the body cavity and digestive tract, respectively. Excluding the species of Parapharyngodon Chatterji, 1933, S. pyrocephalus is recorded for the first time as a host of the remaining seven taxa of helminths. Additionally, Thubunaea leonregagnonae sp. n. is described and illustrated as a new nematode species, parasite of S. pyrocephalus from Mexico. This new species can be differentiated from the majority of its congeners by the absence of spicules, the particular pattern of caudal papillae in males and the small ratio of oesophagus length:male total body length (0.1-0.16).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dowson, Scott T.; Bruce, Joseph R.; Best, Daniel M.
2009-04-14
This paper presents key components of the Law Enforcement Information Framework (LEIF) that provides communications, situational awareness, and visual analytics tools in a service-oriented architecture supporting web-based desktop and handheld device users. LEIF simplifies interfaces and visualizations of well-established visual analytical techniques to improve usability. Advanced analytics capability is maintained by enhancing the underlying processing to support the new interface. LEIF development is driven by real-world user feedback gathered through deployments at three operational law enforcement organizations in the US. LEIF incorporates a robust information ingest pipeline supporting a wide variety of information formats. LEIF also insulates interface and analyticalmore » components from information sources making it easier to adapt the framework for many different data repositories.« less
Kang, Youn-Ah; Stasko, J
2012-12-01
While the formal evaluation of systems in visual analytics is still relatively uncommon, particularly rare are case studies of prolonged system use by domain analysts working with their own data. Conducting case studies can be challenging, but it can be a particularly effective way to examine whether visual analytics systems are truly helping expert users to accomplish their goals. We studied the use of a visual analytics system for sensemaking tasks on documents by six analysts from a variety of domains. We describe their application of the system along with the benefits, issues, and problems that we uncovered. Findings from the studies identify features that visual analytics systems should emphasize as well as missing capabilities that should be addressed. These findings inform design implications for future systems.
The forensic validity of visual analytics
NASA Astrophysics Data System (ADS)
Erbacher, Robert F.
2008-01-01
The wider use of visualization and visual analytics in wide ranging fields has led to the need for visual analytics capabilities to be legally admissible, especially when applied to digital forensics. This brings the need to consider legal implications when performing visual analytics, an issue not traditionally examined in visualization and visual analytics techniques and research. While digital data is generally admissible under the Federal Rules of Evidence [10][21], a comprehensive validation of the digital evidence is considered prudent. A comprehensive validation requires validation of the digital data under rules for authentication, hearsay, best evidence rule, and privilege. Additional issues with digital data arise when exploring digital data related to admissibility and the validity of what information was examined, to what extent, and whether the analysis process was sufficiently covered by a search warrant. For instance, a search warrant generally covers very narrow requirements as to what law enforcement is allowed to examine and acquire during an investigation. When searching a hard drive for child pornography, how admissible is evidence of an unrelated crime, i.e. drug dealing. This is further complicated by the concept of "in plain view". When performing an analysis of a hard drive what would be considered "in plain view" when analyzing a hard drive. The purpose of this paper is to discuss the issues of digital forensics and the related issues as they apply to visual analytics and identify how visual analytics techniques fit into the digital forensics analysis process, how visual analytics techniques can improve the legal admissibility of digital data, and identify what research is needed to further improve this process. The goal of this paper is to open up consideration of legal ramifications among the visualization community; the author is not a lawyer and the discussions are not meant to be inclusive of all differences in laws between states and countries.
NASA Astrophysics Data System (ADS)
Dale, Daniel A.; Bailey, Brenae L.
2003-02-01
Parisian artist Paul Signac met the impressionists Claude Monet and Georges Seurat in 1884. Their influence spurred his work in pointillism (or, where the juxtaposition of small dots of color in conjunction with the limited resolving power of the human eye lead to the impression of color coalescence).1-4 To stimulate a cross-disciplinary appreciation of science and art, we used the University of Wyoming Art Museum's Signac painting "Barques de Pêche à Marseilles" (see Fig. 1) to explore diffraction theory and the anatomical limitations to our vision during an optics exercise done in the museum.
Web-based Visual Analytics for Extreme Scale Climate Science
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steed, Chad A; Evans, Katherine J; Harney, John F
In this paper, we introduce a Web-based visual analytics framework for democratizing advanced visualization and analysis capabilities pertinent to large-scale earth system simulations. We address significant limitations of present climate data analysis tools such as tightly coupled dependencies, ineffi- cient data movements, complex user interfaces, and static visualizations. Our Web-based visual analytics framework removes critical barriers to the widespread accessibility and adoption of advanced scientific techniques. Using distributed connections to back-end diagnostics, we minimize data movements and leverage HPC platforms. We also mitigate system dependency issues by employing a RESTful interface. Our framework embraces the visual analytics paradigm via newmore » visual navigation techniques for hierarchical parameter spaces, multi-scale representations, and interactive spatio-temporal data mining methods that retain details. Although generalizable to other science domains, the current work focuses on improving exploratory analysis of large-scale Community Land Model (CLM) and Community Atmosphere Model (CAM) simulations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gillen, David S.
Analysis activities for Nonproliferation and Arms Control verification require the use of many types of data. Tabular structured data, such as Excel spreadsheets and relational databases, have traditionally been used for data mining activities, where specific queries are issued against data to look for matching results. The application of visual analytics tools to structured data enables further exploration of datasets to promote discovery of previously unknown results. This paper discusses the application of a specific visual analytics tool to datasets related to the field of Arms Control and Nonproliferation to promote the use of visual analytics more broadly in thismore » domain. Visual analytics focuses on analytical reasoning facilitated by interactive visual interfaces (Wong and Thomas 2004). It promotes exploratory analysis of data, and complements data mining technologies where known patterns can be mined for. Also with a human in the loop, they can bring in domain knowledge and subject matter expertise. Visual analytics has not widely been applied to this domain. In this paper, we will focus on one type of data: structured data, and show the results of applying a specific visual analytics tool to answer questions in the Arms Control and Nonproliferation domain. We chose to use the T.Rex tool, a visual analytics tool developed at PNNL, which uses a variety of visual exploration patterns to discover relationships in structured datasets, including a facet view, graph view, matrix view, and timeline view. The facet view enables discovery of relationships between categorical information, such as countries and locations. The graph tool visualizes node-link relationship patterns, such as the flow of materials being shipped between parties. The matrix visualization shows highly correlated categories of information. The timeline view shows temporal patterns in data. In this paper, we will use T.Rex with two different datasets to demonstrate how interactive exploration of the data can aid an analyst with arms control and nonproliferation verification activities. Using a dataset from PIERS (PIERS 2014), we will show how container shipment imports and exports can aid an analyst in understanding the shipping patterns between two countries. We will also use T.Rex to examine a collection of research publications from the IAEA International Nuclear Information System (IAEA 2014) to discover collaborations of concern. We hope this paper will encourage the use of visual analytics structured data analytics in the field of nonproliferation and arms control verification. Our paper outlines some of the challenges that exist before broad adoption of these kinds of tools can occur and offers next steps to overcome these challenges.« less
An Analysis of Machine- and Human-Analytics in Classification.
Tam, Gary K L; Kothari, Vivek; Chen, Min
2017-01-01
In this work, we present a study that traces the technical and cognitive processes in two visual analytics applications to a common theoretic model of soft knowledge that may be added into a visual analytics process for constructing a decision-tree model. Both case studies involved the development of classification models based on the "bag of features" approach. Both compared a visual analytics approach using parallel coordinates with a machine-learning approach using information theory. Both found that the visual analytics approach had some advantages over the machine learning approach, especially when sparse datasets were used as the ground truth. We examine various possible factors that may have contributed to such advantages, and collect empirical evidence for supporting the observation and reasoning of these factors. We propose an information-theoretic model as a common theoretic basis to explain the phenomena exhibited in these two case studies. Together we provide interconnected empirical and theoretical evidence to support the usefulness of visual analytics.
A reference web architecture and patterns for real-time visual analytics on large streaming data
NASA Astrophysics Data System (ADS)
Kandogan, Eser; Soroker, Danny; Rohall, Steven; Bak, Peter; van Ham, Frank; Lu, Jie; Ship, Harold-Jeffrey; Wang, Chun-Fu; Lai, Jennifer
2013-12-01
Monitoring and analysis of streaming data, such as social media, sensors, and news feeds, has become increasingly important for business and government. The volume and velocity of incoming data are key challenges. To effectively support monitoring and analysis, statistical and visual analytics techniques need to be seamlessly integrated; analytic techniques for a variety of data types (e.g., text, numerical) and scope (e.g., incremental, rolling-window, global) must be properly accommodated; interaction, collaboration, and coordination among several visualizations must be supported in an efficient manner; and the system should support the use of different analytics techniques in a pluggable manner. Especially in web-based environments, these requirements pose restrictions on the basic visual analytics architecture for streaming data. In this paper we report on our experience of building a reference web architecture for real-time visual analytics of streaming data, identify and discuss architectural patterns that address these challenges, and report on applying the reference architecture for real-time Twitter monitoring and analysis.
Visual Analytics in Public Safety: Example Capabilities for Example Government Agencies
2011-10-01
is not limited to: the Police Records Information Management Environment for British Columbia (PRIME-BC), the Police Reporting and Occurrence System...and filtering for rapid identification of relevant documents - Graphical environment for visual evidence marshaling - Interactive linking and...analytical reasoning facilitated by interactive visual interfaces and integration with computational analytics. Indeed, a wide variety of technologies
TimeBench: a data model and software library for visual analytics of time-oriented data.
Rind, Alexander; Lammarsch, Tim; Aigner, Wolfgang; Alsallakh, Bilal; Miksch, Silvia
2013-12-01
Time-oriented data play an essential role in many Visual Analytics scenarios such as extracting medical insights from collections of electronic health records or identifying emerging problems and vulnerabilities in network traffic. However, many software libraries for Visual Analytics treat time as a flat numerical data type and insufficiently tackle the complexity of the time domain such as calendar granularities and intervals. Therefore, developers of advanced Visual Analytics designs need to implement temporal foundations in their application code over and over again. We present TimeBench, a software library that provides foundational data structures and algorithms for time-oriented data in Visual Analytics. Its expressiveness and developer accessibility have been evaluated through application examples demonstrating a variety of challenges with time-oriented data and long-term developer studies conducted in the scope of research and student projects.
Rethinking Visual Analytics for Streaming Data Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crouser, R. Jordan; Franklin, Lyndsey; Cook, Kris
In the age of data science, the use of interactive information visualization techniques has become increasingly ubiquitous. From online scientific journals to the New York Times graphics desk, the utility of interactive visualization for both storytelling and analysis has become ever more apparent. As these techniques have become more readily accessible, the appeal of combining interactive visualization with computational analysis continues to grow. Arising out of a need for scalable, human-driven analysis, primary objective of visual analytics systems is to capitalize on the complementary strengths of human and machine analysis, using interactive visualization as a medium for communication between themore » two. These systems leverage developments from the fields of information visualization, computer graphics, machine learning, and human-computer interaction to support insight generation in areas where purely computational analyses fall short. Over the past decade, visual analytics systems have generated remarkable advances in many historically challenging analytical contexts. These include areas such as modeling political systems [Crouser et al. 2012], detecting financial fraud [Chang et al. 2008], and cybersecurity [Harrison et al. 2012]. In each of these contexts, domain expertise and human intuition is a necessary component of the analysis. This intuition is essential to building trust in the analytical products, as well as supporting the translation of evidence into actionable insight. In addition, each of these examples also highlights the need for scalable analysis. In each case, it is infeasible for a human analyst to manually assess the raw information unaided, and the communication overhead to divide the task between a large number of analysts makes simple parallelism intractable. Regardless of the domain, visual analytics tools strive to optimize the allocation of human analytical resources, and to streamline the sensemaking process on data that is massive, complex, incomplete, and uncertain in scenarios requiring human judgment.« less
Visual and Analytic Strategies in Geometry
ERIC Educational Resources Information Center
Kospentaris, George; Vosniadou, Stella; Kazic, Smaragda; Thanou, Emilian
2016-01-01
We argue that there is an increasing reliance on analytic strategies compared to visuospatial strategies, which is related to geometry expertise and not on individual differences in cognitive style. A Visual/Analytic Strategy Test (VAST) was developed to investigate the use of visuo-spatial and analytic strategies in geometry in 30 mathematics…
Buonfiglio, Marzia; Toscano, M; Puledda, F; Avanzini, G; Di Clemente, L; Di Sabato, F; Di Piero, V
2015-03-01
Habituation is considered one of the most basic mechanisms of learning. Habituation deficit to several sensory stimulations has been defined as a trait of migraine brain and also observed in other disorders. On the other hand, analytic information processing style is characterized by the habit of continually evaluating stimuli and it has been associated with migraine. We investigated a possible correlation between lack of habituation of evoked visual potentials and analytic cognitive style in healthy subjects. According to Sternberg-Wagner self-assessment inventory, 15 healthy volunteers (HV) with high analytic score and 15 HV with high global score were recruited. Both groups underwent visual evoked potentials recordings after psychological evaluation. We observed significant lack of habituation in analytical individuals compared to global group. In conclusion, a reduced habituation of visual evoked potentials has been observed in analytic subjects. Our results suggest that further research should be undertaken regarding the relationship between analytic cognitive style and lack of habituation in both physiological and pathophysiological conditions.
Mixed Initiative Visual Analytics Using Task-Driven Recommendations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, Kristin A.; Cramer, Nicholas O.; Israel, David
2015-12-07
Visual data analysis is composed of a collection of cognitive actions and tasks to decompose, internalize, and recombine data to produce knowledge and insight. Visual analytic tools provide interactive visual interfaces to data to support tasks involved in discovery and sensemaking, including forming hypotheses, asking questions, and evaluating and organizing evidence. Myriad analytic models can be incorporated into visual analytic systems, at the cost of increasing complexity in the analytic discourse between user and system. Techniques exist to increase the usability of interacting with such analytic models, such as inferring data models from user interactions to steer the underlying modelsmore » of the system via semantic interaction, shielding users from having to do so explicitly. Such approaches are often also referred to as mixed-initiative systems. Researchers studying the sensemaking process have called for development of tools that facilitate analytic sensemaking through a combination of human and automated activities. However, design guidelines do not exist for mixed-initiative visual analytic systems to support iterative sensemaking. In this paper, we present a candidate set of design guidelines and introduce the Active Data Environment (ADE) prototype, a spatial workspace supporting the analytic process via task recommendations invoked by inferences on user interactions within the workspace. ADE recommends data and relationships based on a task model, enabling users to co-reason with the system about their data in a single, spatial workspace. This paper provides an illustrative use case, a technical description of ADE, and a discussion of the strengths and limitations of the approach.« less
A graph algebra for scalable visual analytics.
Shaverdian, Anna A; Zhou, Hao; Michailidis, George; Jagadish, Hosagrahar V
2012-01-01
Visual analytics (VA), which combines analytical techniques with advanced visualization features, is fast becoming a standard tool for extracting information from graph data. Researchers have developed many tools for this purpose, suggesting a need for formal methods to guide these tools' creation. Increased data demands on computing requires redesigning VA tools to consider performance and reliability in the context of analysis of exascale datasets. Furthermore, visual analysts need a way to document their analyses for reuse and results justification. A VA graph framework encapsulated in a graph algebra helps address these needs. Its atomic operators include selection and aggregation. The framework employs a visual operator and supports dynamic attributes of data to enable scalable visual exploration of data.
Martinez, Ramon; Ordunez, Pedro; Soliz, Patricia N; Ballesteros, Michael F
2016-01-01
Background The complexity of current injury-related health issues demands the usage of diverse and massive data sets for comprehensive analyses, and application of novel methods to communicate data effectively to the public health community, decision-makers and the public. Recent advances in information visualisation, availability of new visual analytic methods and tools, and progress on information technology provide an opportunity for shaping the next generation of injury surveillance. Objective To introduce data visualisation conceptual bases, and propose a visual analytic and visualisation platform in public health surveillance for injury prevention and control. Methods The paper introduces data visualisation conceptual bases, describes a visual analytic and visualisation platform, and presents two real-world case studies illustrating their application in public health surveillance for injury prevention and control. Results Application of visual analytic and visualisation platform is presented as solution for improved access to heterogeneous data sources, enhance data exploration and analysis, communicate data effectively, and support decision-making. Conclusions Applications of data visualisation concepts and visual analytic platform could play a key role to shape the next generation of injury surveillance. Visual analytic and visualisation platform could improve data use, the analytic capacity, and ability to effectively communicate findings and key messages. The public health surveillance community is encouraged to identify opportunities to develop and expand its use in injury prevention and control. PMID:26728006
DOT National Transportation Integrated Search
2012-03-01
This report introduces the design and implementation of a Web-based bridge information visual analytics system. This : project integrates Internet, multiple databases, remote sensing, and other visualization technologies. The result : combines a GIS ...
Visualisation and Analytic Strategies for Anticipating the Folding of Nets
ERIC Educational Resources Information Center
Wright, Vince
2016-01-01
Visual and analytic strategies are features of students' schemes for spatial tasks. The strategies used by six students to anticipate the folding of nets were investigated. Evidence suggested that visual and analytic strategies were strongly connected in competent performance.
Visual analytics of brain networks.
Li, Kaiming; Guo, Lei; Faraco, Carlos; Zhu, Dajiang; Chen, Hanbo; Yuan, Yixuan; Lv, Jinglei; Deng, Fan; Jiang, Xi; Zhang, Tuo; Hu, Xintao; Zhang, Degang; Miller, L Stephen; Liu, Tianming
2012-05-15
Identification of regions of interest (ROIs) is a fundamental issue in brain network construction and analysis. Recent studies demonstrate that multimodal neuroimaging approaches and joint analysis strategies are crucial for accurate, reliable and individualized identification of brain ROIs. In this paper, we present a novel approach of visual analytics and its open-source software for ROI definition and brain network construction. By combining neuroscience knowledge and computational intelligence capabilities, visual analytics can generate accurate, reliable and individualized ROIs for brain networks via joint modeling of multimodal neuroimaging data and an intuitive and real-time visual analytics interface. Furthermore, it can be used as a functional ROI optimization and prediction solution when fMRI data is unavailable or inadequate. We have applied this approach to an operation span working memory fMRI/DTI dataset, a schizophrenia DTI/resting state fMRI (R-fMRI) dataset, and a mild cognitive impairment DTI/R-fMRI dataset, in order to demonstrate the effectiveness of visual analytics. Our experimental results are encouraging. Copyright © 2012 Elsevier Inc. All rights reserved.
Optical fusions and proportional syntheses
NASA Astrophysics Data System (ADS)
Albert-Vanel, Michel
2002-06-01
A tragic error is being made in the literature concerning matters of color when dealing with optical fusions. They are still considered to be of additive nature, whereas experience shows us somewhat different results. The goal of this presentation is to show that fusions are, in fact, of 'proportional' nature, tending to be additive or subtractive, depending on each individual case. Using the pointillist paintings done in the manner of Seurat, or the spinning discs experiment could highlight this intermediate sector of the proportional. So, let us try to examine more closely what occurs in fact, by reviewing additive, subtractive and proportional syntheses.
High Performance Visualization using Query-Driven Visualizationand Analytics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bethel, E. Wes; Campbell, Scott; Dart, Eli
2006-06-15
Query-driven visualization and analytics is a unique approach for high-performance visualization that offers new capabilities for knowledge discovery and hypothesis testing. The new capabilities akin to finding needles in haystacks are the result of combining technologies from the fields of scientific visualization and scientific data management. This approach is crucial for rapid data analysis and visualization in the petascale regime. This article describes how query-driven visualization is applied to a hero-sized network traffic analysis problem.
Martinez, Ramon; Ordunez, Pedro; Soliz, Patricia N; Ballesteros, Michael F
2016-04-01
The complexity of current injury-related health issues demands the usage of diverse and massive data sets for comprehensive analyses, and application of novel methods to communicate data effectively to the public health community, decision-makers and the public. Recent advances in information visualisation, availability of new visual analytic methods and tools, and progress on information technology provide an opportunity for shaping the next generation of injury surveillance. To introduce data visualisation conceptual bases, and propose a visual analytic and visualisation platform in public health surveillance for injury prevention and control. The paper introduces data visualisation conceptual bases, describes a visual analytic and visualisation platform, and presents two real-world case studies illustrating their application in public health surveillance for injury prevention and control. Application of visual analytic and visualisation platform is presented as solution for improved access to heterogeneous data sources, enhance data exploration and analysis, communicate data effectively, and support decision-making. Applications of data visualisation concepts and visual analytic platform could play a key role to shape the next generation of injury surveillance. Visual analytic and visualisation platform could improve data use, the analytic capacity, and ability to effectively communicate findings and key messages. The public health surveillance community is encouraged to identify opportunities to develop and expand its use in injury prevention and control. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
We describe the development and implementation of a Physiological and Anatomical Visual Analytics tool (PAVA), a web browser-based application, used to visualize experimental/simulated chemical time-course data (dosimetry), epidemiological data and Physiologically-Annotated Data ...
A Visual Analytics Paradigm Enabling Trillion-Edge Graph Exploration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, Pak C.; Haglin, David J.; Gillen, David S.
We present a visual analytics paradigm and a system prototype for exploring web-scale graphs. A web-scale graph is described as a graph with ~one trillion edges and ~50 billion vertices. While there is an aggressive R&D effort in processing and exploring web-scale graphs among internet vendors such as Facebook and Google, visualizing a graph of that scale still remains an underexplored R&D area. The paper describes a nontraditional peek-and-filter strategy that facilitates the exploration of a graph database of unprecedented size for visualization and analytics. We demonstrate that our system prototype can 1) preprocess a graph with ~25 billion edgesmore » in less than two hours and 2) support database query and visualization on the processed graph database afterward. Based on our computational performance results, we argue that we most likely will achieve the one trillion edge mark (a computational performance improvement of 40 times) for graph visual analytics in the near future.« less
Vaitsis, Christos; Nilsson, Gunnar; Zary, Nabil
2015-01-01
The medical curriculum is the main tool representing the entire undergraduate medical education. Due to its complexity and multilayered structure it is of limited use to teachers in medical education for quality improvement purposes. In this study we evaluated three visualizations of curriculum data from a pilot course, using teachers from an undergraduate medical program and applying visual analytics methods. We found that visual analytics can be used to positively impacting analytical reasoning and decision making in medical education through the realization of variables capable to enhance human perception and cognition on complex curriculum data. The positive results derived from our evaluation of a medical curriculum and in a small scale, signify the need to expand this method to an entire medical curriculum. As our approach sustains low levels of complexity it opens a new promising direction in medical education informatics research.
Applying Pragmatics Principles for Interaction with Visual Analytics.
Hoque, Enamul; Setlur, Vidya; Tory, Melanie; Dykeman, Isaac
2018-01-01
Interactive visual data analysis is most productive when users can focus on answering the questions they have about their data, rather than focusing on how to operate the interface to the analysis tool. One viable approach to engaging users in interactive conversations with their data is a natural language interface to visualizations. These interfaces have the potential to be both more expressive and more accessible than other interaction paradigms. We explore how principles from language pragmatics can be applied to the flow of visual analytical conversations, using natural language as an input modality. We evaluate the effectiveness of pragmatics support in our system Evizeon, and present design considerations for conversation interfaces to visual analytics tools.
Transformation of an uncertain video search pipeline to a sketch-based visual analytics loop.
Legg, Philip A; Chung, David H S; Parry, Matthew L; Bown, Rhodri; Jones, Mark W; Griffiths, Iwan W; Chen, Min
2013-12-01
Traditional sketch-based image or video search systems rely on machine learning concepts as their core technology. However, in many applications, machine learning alone is impractical since videos may not be semantically annotated sufficiently, there may be a lack of suitable training data, and the search requirements of the user may frequently change for different tasks. In this work, we develop a visual analytics systems that overcomes the shortcomings of the traditional approach. We make use of a sketch-based interface to enable users to specify search requirement in a flexible manner without depending on semantic annotation. We employ active machine learning to train different analytical models for different types of search requirements. We use visualization to facilitate knowledge discovery at the different stages of visual analytics. This includes visualizing the parameter space of the trained model, visualizing the search space to support interactive browsing, visualizing candidature search results to support rapid interaction for active learning while minimizing watching videos, and visualizing aggregated information of the search results. We demonstrate the system for searching spatiotemporal attributes from sports video to identify key instances of the team and player performance.
Mazumdar, Debapriya; Liu, Juewen; Lu, Yi
2010-09-21
An analytical test for an analyte comprises (a) a base, having a reaction area and a visualization area, (b) a capture species, on the base in the visualization area, comprising nucleic acid, and (c) analysis chemistry reagents, on the base in the reaction area. The analysis chemistry reagents comprise (i) a substrate comprising nucleic acid and a first label, and (ii) a reactor comprising nucleic acid. The analysis chemistry reagents can react with a sample comprising the analyte and water, to produce a visualization species comprising nucleic acid and the first label, and the capture species can bind the visualization species.
Fernando, Ruani N; Chaudhari, Umesh; Escher, Sylvia E; Hengstler, Jan G; Hescheler, Jürgen; Jennings, Paul; Keun, Hector C; Kleinjans, Jos C S; Kolde, Raivo; Kollipara, Laxmikanth; Kopp-Schneider, Annette; Limonciel, Alice; Nemade, Harshal; Nguemo, Filomain; Peterson, Hedi; Prieto, Pilar; Rodrigues, Robim M; Sachinidis, Agapios; Schäfer, Christoph; Sickmann, Albert; Spitkovsky, Dimitry; Stöber, Regina; van Breda, Simone G J; van de Water, Bob; Vivier, Manon; Zahedi, René P; Vinken, Mathieu; Rogiers, Vera
2016-06-01
SEURAT-1 is a joint research initiative between the European Commission and Cosmetics Europe aiming to develop in vitro- and in silico-based methods to replace the in vivo repeated dose systemic toxicity test used for the assessment of human safety. As one of the building blocks of SEURAT-1, the DETECTIVE project focused on a key element on which in vitro toxicity testing relies: the development of robust and reliable, sensitive and specific in vitro biomarkers and surrogate endpoints that can be used for safety assessments of chronically acting toxicants, relevant for humans. The work conducted by the DETECTIVE consortium partners has established a screening pipeline of functional and "-omics" technologies, including high-content and high-throughput screening platforms, to develop and investigate human biomarkers for repeated dose toxicity in cellular in vitro models. Identification and statistical selection of highly predictive biomarkers in a pathway- and evidence-based approach constitute a major step in an integrated approach towards the replacement of animal testing in human safety assessment. To discuss the final outcomes and achievements of the consortium, a meeting was organized in Brussels. This meeting brought together data-producing and supporting consortium partners. The presentations focused on the current state of ongoing and concluding projects and the strategies employed to identify new relevant biomarkers of toxicity. The outcomes and deliverables, including the dissemination of results in data-rich "-omics" databases, were discussed as were the future perspectives of the work completed under the DETECTIVE project. Although some projects were still in progress and required continued data analysis, this report summarizes the presentations, discussions and the outcomes of the project.
Grafström, Roland C; Nymark, Penny; Hongisto, Vesa; Spjuth, Ola; Ceder, Rebecca; Willighagen, Egon; Hardy, Barry; Kaski, Samuel; Kohonen, Pekka
2015-11-01
This paper outlines the work for which Roland Grafström and Pekka Kohonen were awarded the 2014 Lush Science Prize. The research activities of the Grafström laboratory have, for many years, covered cancer biology studies, as well as the development and application of toxicity-predictive in vitro models to determine chemical safety. Through the integration of in silico analyses of diverse types of genomics data (transcriptomic and proteomic), their efforts have proved to fit well into the recently-developed Adverse Outcome Pathway paradigm. Genomics analysis within state-of-the-art cancer biology research and Toxicology in the 21st Century concepts share many technological tools. A key category within the Three Rs paradigm is the Replacement of animals in toxicity testing with alternative methods, such as bioinformatics-driven analyses of data obtained from human cell cultures exposed to diverse toxicants. This work was recently expanded within the pan-European SEURAT-1 project (Safety Evaluation Ultimately Replacing Animal Testing), to replace repeat-dose toxicity testing with data-rich analyses of sophisticated cell culture models. The aims and objectives of the SEURAT project have been to guide the application, analysis, interpretation and storage of 'omics' technology-derived data within the service-oriented sub-project, ToxBank. Particularly addressing the Lush Science Prize focus on the relevance of toxicity pathways, a 'data warehouse' that is under continuous expansion, coupled with the development of novel data storage and management methods for toxicology, serve to address data integration across multiple 'omics' technologies. The prize winners' guiding principles and concepts for modern knowledge management of toxicological data are summarised. The translation of basic discovery results ranged from chemical-testing and material-testing data, to information relevant to human health and environmental safety. 2015 FRAME.
Fernando, Ruani N.; Chaudhari, Umesh; Escher, Sylvia E.; Hengstler, Jan G.; Hescheler, Jürgen; Jennings, Paul; Keun, Hector C.; Kleinjans, Jos C. S.; Kolde, Raivo; Kollipara, Laxmikanth; Kopp-Schneider, Annette; Limonciel, Alice; Nemade, Harshal; Nguemo, Filomain; Peterson, Hedi; Prieto, Pilar; Rodrigues, Robim M.; Sachinidis, Agapios; Schäfer, Christoph; Sickmann, Albert; Spitkovsky, Dimitry; Stöber, Regina; van Breda, Simone G.J.; van de Water, Bob; Vivier, Manon; Zahedi, René P.
2017-01-01
SEURAT-1 is a joint research initiative between the European Commission and Cosmetics Europe aiming to develop in vitro and in silico based methods to replace the in vivo repeated dose systemic toxicity test used for the assessment of human safety. As one of the building blocks of SEURAT-1, the DETECTIVE project focused on a key element on which in vitro toxicity testing relies: the development of robust and reliable, sensitive and specific in vitro biomarkers and surrogate endpoints that can be used for safety assessments of chronically acting toxicants, relevant for humans. The work conducted by the DETECTIVE consortium partners has established a screening pipeline of functional and “-omics” technologies, including high-content and high-throughput screening platforms, to develop and investigate human biomarkers for repeated dose toxicity in cellular in vitro models. Identification and statistical selection of highly predictive biomarkers in a pathway- and evidence-based approach constitutes a major step in an integrated approach towards the replacement of animal testing in human safety assessment. To discuss the final outcomes and achievements of the consortium, a meeting was organized in Brussels. This meeting brought together data-producing and supporting consortium partners. The presentations focused on the current state of ongoing and concluding projects and the strategies employed to identify new relevant biomarkers of toxicity. The outcomes and deliverables, including the dissemination of results in data-rich “-omics” databases, were discussed as were the future perspectives of the work completed under the DETECTIVE project. Although some projects were still in progress and required continued data analysis, this report summarizes the presentations, discussions and the outcomes of the project. PMID:27129694
Vinken, Mathieu; Pauwels, Marleen; Ates, Gamze; Vivier, Manon; Vanhaecke, Tamara; Rogiers, Vera
2012-03-01
Alternative methods, replacing animal testing, are urgently needed in view of the European regulatory changes in the field of cosmetic products and their ingredients. In this context, a joint research initiative called SEURAT was recently raised by the European Commission and COLIPA, representing the European cosmetics industry, with the overall goal of developing an animal-free repeated dose toxicity testing strategy for human safety assessment purposes. Although cosmetic ingredients are usually harmless for the consumer, one of the initial tasks of this research consortium included the identification of organs that could potentially be affected by cosmetic ingredients upon systemic exposure. The strategy that was followed hereof is described in the present paper and relies on the systematic evaluation, by using a self-generated electronic databank, of published reports issued by the scientific committee of DG SANCO responsible for the safety of cosmetic ingredients. By screening of the repeated dose toxicity studies present in these reports, it was found that the liver is potentially the most frequently targeted organ by cosmetic ingredients when orally administered to experimental animals, followed by the kidney and the spleen. Combined listing of altered morphological, histopathological, and biochemical parameters subsequently indicated the possible occurrence of hepatotoxicity, including steatosis and cholestasis, triggered by a limited number of cosmetic compounds. These findings are not only of relevance for the in vitro modeling efforts and choice of compounds to be tested in the SEURAT project cluster, but also demonstrate the importance of using previously generated toxicological data through an electronic databank for addressing specific questions regarding the safety evaluation of cosmetic ingredients.
Visual Analytics and Storytelling through Video
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, Pak C.; Perrine, Kenneth A.; Mackey, Patrick S.
2005-10-31
This paper supplements a video clip submitted to the Video Track of IEEE Symposium on Information Visualization 2005. The original video submission applies a two-way storytelling approach to demonstrate the visual analytics capabilities of a new visualization technique. The paper presents our video production philosophy, describes the plot of the video, explains the rationale behind the plot, and finally, shares our production experiences with our readers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dasgupta, Aritra; Poco, Jorge; Bertini, Enrico
2016-01-01
The gap between large-scale data production rate and the rate of generation of data-driven scientific insights has led to an analytical bottleneck in scientific domains like climate, biology, etc. This is primarily due to the lack of innovative analytical tools that can help scientists efficiently analyze and explore alternative hypotheses about the data, and communicate their findings effectively to a broad audience. In this paper, by reflecting on a set of successful collaborative research efforts between with a group of climate scientists and visualization researchers, we introspect how interactive visualization can help reduce the analytical bottleneck for domain scientists.
DOT National Transportation Integrated Search
2009-12-01
The goals of integration should be: Supporting domain oriented data analysis through the use of : knowledge augmented visual analytics system. In this project, we focus on: : Providing interactive data exploration for bridge managements. : ...
Human Factors in Streaming Data Analysis: Challenges and Opportunities for Information Visualization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dasgupta, Aritra; Arendt, Dustin L.; Franklin, Lyndsey
State-of-the-art visual analytics models and frameworks mostly assume a static snapshot of the data, while in many cases it is a stream with constant updates and changes. Exploration of streaming data poses unique challenges as machine-level computations and abstractions need to be synchronized with the visual representation of the data and the temporally evolving human insights. In the visual analytics literature, we lack a thorough characterization of streaming data and analysis of the challenges associated with task abstraction, visualization design, and adaptation of the role of human-in-the-loop for exploration of data streams. We aim to fill this gap by conductingmore » a survey of the state-of-the-art in visual analytics of streaming data for systematically describing the contributions and shortcomings of current techniques and analyzing the research gaps that need to be addressed in the future. Our contributions are: i) problem characterization for identifying challenges that are unique to streaming data analysis tasks, ii) a survey and analysis of the state-of-the-art in streaming data visualization research with a focus on the visualization design space for dynamic data and the role of the human-in-the-loop, and iii) reflections on the design-trade-offs for streaming visual analytics techniques and their practical applicability in real-world application scenarios.« less
The generation of criteria for selecting analytical tools for landscape management
Marilyn Duffey-Armstrong
1979-01-01
This paper presents an approach to generating criteria for selecting the analytical tools used to assess visual resources for various landscape management tasks. The approach begins by first establishing the overall parameters for the visual assessment task, and follows by defining the primary requirements of the various sets of analytical tools to be used. Finally,...
The helminth community of the skink Chalcides sexlineatus from Gran Canaria (Canary Islands).
Roca, V; Carretero, M A; Jorge, F; Perera, A; Ferrero, A; Rodríguez-Reina, S
2012-06-01
A survey of the gastrointestinal helminth communities of a population of Chalcides sexlineatus Steindachner, a small skink endemic to Gran Canaria island (Canary Archipelago, Spain), was conducted to determine the prevalence, abundance and species diversity of intestinal parasites in these reptiles. Only three parasite species were found, one cestode, Oochoristica agamae Baylis, 1919 and two nematodes, Parapharyngodon micipsae (Seurat, 1917) and Pharyngodonidae gen. sp. Helminth infracommunities of C. sexlineatus showed low values of abundance and species richness and diversity, being more similar to the helminth community of Tarentola boettgeri boettgeri (Steindachner) rather than those of Gallotia stehlini (Schenkel), both syntopic with the sampled host.
Buchanan, Verica; Lu, Yafeng; McNeese, Nathan; Steptoe, Michael; Maciejewski, Ross; Cooke, Nancy
2017-03-01
Historically, domains such as business intelligence would require a single analyst to engage with data, develop a model, answer operational questions, and predict future behaviors. However, as the problems and domains become more complex, organizations are employing teams of analysts to explore and model data to generate knowledge. Furthermore, given the rapid increase in data collection, organizations are struggling to develop practices for intelligence analysis in the era of big data. Currently, a variety of machine learning and data mining techniques are available to model data and to generate insights and predictions, and developments in the field of visual analytics have focused on how to effectively link data mining algorithms with interactive visuals to enable analysts to explore, understand, and interact with data and data models. Although studies have explored the role of single analysts in the visual analytics pipeline, little work has explored the role of teamwork and visual analytics in the analysis of big data. In this article, we present an experiment integrating statistical models, visual analytics techniques, and user experiments to study the role of teamwork in predictive analytics. We frame our experiment around the analysis of social media data for box office prediction problems and compare the prediction performance of teams, groups, and individuals. Our results indicate that a team's performance is mediated by the team's characteristics such as openness of individual members to others' positions and the type of planning that goes into the team's analysis. These findings have important implications for how organizations should create teams in order to make effective use of information from their analytic models.
ERIC Educational Resources Information Center
Mirel, Barbara; Kumar, Anuj; Nong, Paige; Su, Gang; Meng, Fan
2016-01-01
Life scientists increasingly use visual analytics to explore large data sets and generate hypotheses. Undergraduate biology majors should be learning these same methods. Yet visual analytics is one of the most underdeveloped areas of undergraduate biology education. This study sought to determine the feasibility of undergraduate biology majors…
Literature and Product Review of Visual Analytics for Maritime Awareness
2009-10-28
the user’s knowledge and experience. • Riveiro et al [107] provide a useful discussion of the cognitive process of anomaly detection based on...changes over time can be seen visually. • Wilkinson et al [140] suggests that we need visual analytics for three principal purposes: checking raw data...Predictions within the Current Plot • Yue et al [146] describe an AI blackboard-based agent that leverages interactive visualization and mixed
Big data in medical informatics: improving education through visual analytics.
Vaitsis, Christos; Nilsson, Gunnar; Zary, Nabil
2014-01-01
A continuous effort to improve healthcare education today is currently driven from the need to create competent health professionals able to meet healthcare demands. Limited research reporting how educational data manipulation can help in healthcare education improvement. The emerging research field of visual analytics has the advantage to combine big data analysis and manipulation techniques, information and knowledge representation, and human cognitive strength to perceive and recognise visual patterns. The aim of this study was therefore to explore novel ways of representing curriculum and educational data using visual analytics. Three approaches of visualization and representation of educational data were presented. Five competencies at undergraduate medical program level addressed in courses were identified to inaccurately correspond to higher education board competencies. Different visual representations seem to have a potential in impacting on the ability to perceive entities and connections in the curriculum data.
Physiological and Anatomical Visual Analytics (PAVA) Background
The need to efficiently analyze human chemical disposition data from in vivo studies or in silico PBPK modeling efforts, and to see complex disposition data in a logical manner, has created a unique opportunity for visual analytics applid to PAD.
IBM Watson Analytics: Automating Visualization, Descriptive, and Predictive Statistics
2016-01-01
Background We live in an era of explosive data generation that will continue to grow and involve all industries. One of the results of this explosion is the need for newer and more efficient data analytics procedures. Traditionally, data analytics required a substantial background in statistics and computer science. In 2015, International Business Machines Corporation (IBM) released the IBM Watson Analytics (IBMWA) software that delivered advanced statistical procedures based on the Statistical Package for the Social Sciences (SPSS). The latest entry of Watson Analytics into the field of analytical software products provides users with enhanced functions that are not available in many existing programs. For example, Watson Analytics automatically analyzes datasets, examines data quality, and determines the optimal statistical approach. Users can request exploratory, predictive, and visual analytics. Using natural language processing (NLP), users are able to submit additional questions for analyses in a quick response format. This analytical package is available free to academic institutions (faculty and students) that plan to use the tools for noncommercial purposes. Objective To report the features of IBMWA and discuss how this software subjectively and objectively compares to other data mining programs. Methods The salient features of the IBMWA program were examined and compared with other common analytical platforms, using validated health datasets. Results Using a validated dataset, IBMWA delivered similar predictions compared with several commercial and open source data mining software applications. The visual analytics generated by IBMWA were similar to results from programs such as Microsoft Excel and Tableau Software. In addition, assistance with data preprocessing and data exploration was an inherent component of the IBMWA application. Sensitivity and specificity were not included in the IBMWA predictive analytics results, nor were odds ratios, confidence intervals, or a confusion matrix. Conclusions IBMWA is a new alternative for data analytics software that automates descriptive, predictive, and visual analytics. This program is very user-friendly but requires data preprocessing, statistical conceptual understanding, and domain expertise. PMID:27729304
IBM Watson Analytics: Automating Visualization, Descriptive, and Predictive Statistics.
Hoyt, Robert Eugene; Snider, Dallas; Thompson, Carla; Mantravadi, Sarita
2016-10-11
We live in an era of explosive data generation that will continue to grow and involve all industries. One of the results of this explosion is the need for newer and more efficient data analytics procedures. Traditionally, data analytics required a substantial background in statistics and computer science. In 2015, International Business Machines Corporation (IBM) released the IBM Watson Analytics (IBMWA) software that delivered advanced statistical procedures based on the Statistical Package for the Social Sciences (SPSS). The latest entry of Watson Analytics into the field of analytical software products provides users with enhanced functions that are not available in many existing programs. For example, Watson Analytics automatically analyzes datasets, examines data quality, and determines the optimal statistical approach. Users can request exploratory, predictive, and visual analytics. Using natural language processing (NLP), users are able to submit additional questions for analyses in a quick response format. This analytical package is available free to academic institutions (faculty and students) that plan to use the tools for noncommercial purposes. To report the features of IBMWA and discuss how this software subjectively and objectively compares to other data mining programs. The salient features of the IBMWA program were examined and compared with other common analytical platforms, using validated health datasets. Using a validated dataset, IBMWA delivered similar predictions compared with several commercial and open source data mining software applications. The visual analytics generated by IBMWA were similar to results from programs such as Microsoft Excel and Tableau Software. In addition, assistance with data preprocessing and data exploration was an inherent component of the IBMWA application. Sensitivity and specificity were not included in the IBMWA predictive analytics results, nor were odds ratios, confidence intervals, or a confusion matrix. IBMWA is a new alternative for data analytics software that automates descriptive, predictive, and visual analytics. This program is very user-friendly but requires data preprocessing, statistical conceptual understanding, and domain expertise.
NASA Astrophysics Data System (ADS)
Anantharaj, V. G.; Venzke, J.; Lingerfelt, E.; Messer, B.
2015-12-01
Climate model simulations are used to understand the evolution and variability of earth's climate. Unfortunately, high-resolution multi-decadal climate simulations can take days to weeks to complete. Typically, the simulation results are not analyzed until the model runs have ended. During the course of the simulation, the output may be processed periodically to ensure that the model is preforming as expected. However, most of the data analytics and visualization are not performed until the simulation is finished. The lengthy time period needed for the completion of the simulation constrains the productivity of climate scientists. Our implementation of near real-time data visualization analytics capabilities allows scientists to monitor the progress of their simulations while the model is running. Our analytics software executes concurrently in a co-scheduling mode, monitoring data production. When new data are generated by the simulation, a co-scheduled data analytics job is submitted to render visualization artifacts of the latest results. These visualization output are automatically transferred to Bellerophon's data server located at ORNL's Compute and Data Environment for Science (CADES) where they are processed and archived into Bellerophon's database. During the course of the experiment, climate scientists can then use Bellerophon's graphical user interface to view animated plots and their associated metadata. The quick turnaround from the start of the simulation until the data are analyzed permits research decisions and projections to be made days or sometimes even weeks sooner than otherwise possible! The supercomputer resources used to run the simulation are unaffected by co-scheduling the data visualization jobs, so the model runs continuously while the data are visualized. Our just-in-time data visualization software looks to increase climate scientists' productivity as climate modeling moves into exascale era of computing.
SeeDB: Efficient Data-Driven Visualization Recommendations to Support Visual Analytics
Vartak, Manasi; Rahman, Sajjadur; Madden, Samuel; Parameswaran, Aditya; Polyzotis, Neoklis
2015-01-01
Data analysts often build visualizations as the first step in their analytical workflow. However, when working with high-dimensional datasets, identifying visualizations that show relevant or desired trends in data can be laborious. We propose SeeDB, a visualization recommendation engine to facilitate fast visual analysis: given a subset of data to be studied, SeeDB intelligently explores the space of visualizations, evaluates promising visualizations for trends, and recommends those it deems most “useful” or “interesting”. The two major obstacles in recommending interesting visualizations are (a) scale: evaluating a large number of candidate visualizations while responding within interactive time scales, and (b) utility: identifying an appropriate metric for assessing interestingness of visualizations. For the former, SeeDB introduces pruning optimizations to quickly identify high-utility visualizations and sharing optimizations to maximize sharing of computation across visualizations. For the latter, as a first step, we adopt a deviation-based metric for visualization utility, while indicating how we may be able to generalize it to other factors influencing utility. We implement SeeDB as a middleware layer that can run on top of any DBMS. Our experiments show that our framework can identify interesting visualizations with high accuracy. Our optimizations lead to multiple orders of magnitude speedup on relational row and column stores and provide recommendations at interactive time scales. Finally, we demonstrate via a user study the effectiveness of our deviation-based utility metric and the value of recommendations in supporting visual analytics. PMID:26779379
SeeDB: Efficient Data-Driven Visualization Recommendations to Support Visual Analytics.
Vartak, Manasi; Rahman, Sajjadur; Madden, Samuel; Parameswaran, Aditya; Polyzotis, Neoklis
2015-09-01
Data analysts often build visualizations as the first step in their analytical workflow. However, when working with high-dimensional datasets, identifying visualizations that show relevant or desired trends in data can be laborious. We propose SeeDB, a visualization recommendation engine to facilitate fast visual analysis: given a subset of data to be studied, SeeDB intelligently explores the space of visualizations, evaluates promising visualizations for trends, and recommends those it deems most "useful" or "interesting". The two major obstacles in recommending interesting visualizations are (a) scale : evaluating a large number of candidate visualizations while responding within interactive time scales, and (b) utility : identifying an appropriate metric for assessing interestingness of visualizations. For the former, SeeDB introduces pruning optimizations to quickly identify high-utility visualizations and sharing optimizations to maximize sharing of computation across visualizations. For the latter, as a first step, we adopt a deviation-based metric for visualization utility, while indicating how we may be able to generalize it to other factors influencing utility. We implement SeeDB as a middleware layer that can run on top of any DBMS. Our experiments show that our framework can identify interesting visualizations with high accuracy. Our optimizations lead to multiple orders of magnitude speedup on relational row and column stores and provide recommendations at interactive time scales. Finally, we demonstrate via a user study the effectiveness of our deviation-based utility metric and the value of recommendations in supporting visual analytics.
ERIC Educational Resources Information Center
Kösa, Temel
2016-01-01
The purpose of this study was to investigate the effects of using dynamic geometry software on preservice mathematics teachers' spatial visualization skills and to determine whether spatial visualization skills can be a predictor of success in learning analytic geometry of space. The study used a quasi-experimental design with a control group.…
Visual Information for the Desktop, version 1.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
2006-03-29
VZIN integrates visual analytics capabilities into popular desktop tools to aid a user in searching and understanding an information space. VZIN allows users to Drag-Drop-Visualize-Explore-Organize information within tools such as Microsoft Office, Windows Explorer, Excel, and Outlook. VZIN is tailorable to specific client or industry requirements. VZIN follows the desktop metaphors so that advanced analytical capabilities are available with minimal user training.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dasgupta, Aritra; Burrows, Susannah M.; Han, Kyungsik
2017-05-08
Scientists often use specific data analysis and presentation methods familiar within their domain. But does high familiarity drive better analytical judgment? This question is especially relevant when familiar methods themselves can have shortcomings: many visualizations used conventionally for scientific data analysis and presentation do not follow established best practices. This necessitates new methods that might be unfamiliar yet prove to be more effective. But there is little empirical understanding of the relationships between scientists’ subjective impressions about familiar and unfamiliar visualizations and objective measures of their visual analytic judgments. To address this gap and to study these factors, we focusmore » on visualizations used for comparison of climate model performance. We report on a comprehensive survey-based user study with 47 climate scientists and present an analysis of : i) relationships among scientists’ familiarity, their perceived lev- els of comfort, confidence, accuracy, and objective measures of accuracy, and ii) relationships among domain experience, visualization familiarity, and post-study preference.« less
Mausfeld, Rainer; Andres, Johannes
2002-01-01
We argue, from an ethology-inspired perspective, that the internal concepts 'surface colours' and 'illumination colours' are part of the data format of two different representational primitives. Thus, the internal concept of 'colour' is not a unitary one but rather refers to two different types of 'data structure', each with its own proprietary types of parameters and relations. The relation of these representational structures is modulated by a class of parameterised transformations whose effects are mirrored in the idealised computational achievements of illumination invariance of colour codes, on the one hand, and scene invariance, on the other hand. Because the same characteristics of a light array reaching the eye can be physically produced in many different ways, the visual system, then, has to make an 'inference' whether a chromatic deviation of the space-averaged colour codes from the neutral point is due to a 'non-normal', ie chromatic, illumination or due to an imbalanced spectral reflectance composition. We provide evidence that the visual system uses second-order statistics of chromatic codes of a single view of a scene in order to modulate corresponding transformations. In our experiments we used centre surround configurations with inhomogeneous surrounds given by a random structure of overlapping circles, referred to as Seurat configurations. Each family of surrounds has a fixed space-average of colour codes, but differs with respect to the covariance matrix of colour codes of pixels that defines the chromatic variance along some chromatic axis and the covariance between luminance and chromatic channels. We found that dominant wavelengths of red-green equilibrium settings of the infield exhibited a stable and strong dependence on the chromatic variance of the surround. High variances resulted in a tendency towards 'scene invariance', low variances in a tendency towards 'illumination invariance' of the infield.
NASA Astrophysics Data System (ADS)
Sarni, W.
2017-12-01
Water scarcity and poor quality impacts economic development, business growth, and social well-being. Water has become, in our generation, the foremost critical local, regional, and global issue of our time. Despite these needs, there is no water hub or water technology accelerator solely dedicated to water data and tools. There is a need by the public and private sectors for vastly improved data management and visualization tools. This is the WetDATA opportunity - to develop a water data tech hub dedicated to water data acquisition, analytics, and visualization tools for informed policy and business decisions. WetDATA's tools will help incubate disruptive water data technologies and accelerate adoption of current water data solutions. WetDATA is a Colorado-based (501c3), global hub for water data analytics and technology innovation. WetDATA's vision is to be a global leader in water information, data technology innovation and collaborate with other US and global water technology hubs. ROADMAP * Portal (www.wetdata.org) to provide stakeholders with tools/resources to understand related water risks. * The initial activities will provide education, awareness and tools to stakeholders to support the implementation of the Colorado State Water Plan. * Leverage the Western States Water Council Water Data Exchange database. * Development of visualization, predictive analytics and AI tools to engage with stakeholders and provide actionable data and information. TOOLS Education: Provide information on water issues and risks at the local, state, national and global scale. Visualizations: Development of data analytics and visualization tools based upon the 2030 Water Resources Group methodology to support the implementation of the Colorado State Water Plan. Predictive Analytics: Accessing publically available water databases and using machine learning to develop water availability forecasting tools, and time lapse images to support city / urban planning.
Visualization and Analytics Software Tools for Peregrine System |
R is a language and environment for statistical computing and graphics. Go to the R web site for System Visualization and Analytics Software Tools for Peregrine System Learn about the available visualization for OpenGL-based applications. For more information, please go to the FastX page. ParaView An open
Mafra, A C; Lanfredi, R M
1998-06-01
This study was undertaken to clarify several aspects of morphological and taxonomic characters of Physaloptera bispiculata Vaz and Pereira, 1935, a parasite of the water rat, Nectomys squamipes. The cephalic structures (including lips, papillae, teeth, amphids, and porous areas) and details of the posterior end of male and female adult worms were examined by scanning electron microscopy, leading to the addition of new taxonomic characters for this species. We consider P. bispiculata a valid species, based on a comparative analysis of the specific characters for P. bispiculata and P. getula Seurat, 1917, including the morphology and morphometry of body structures as well as number and disposition of caudal papillae of the males.
Jobet, E; Bougnoux, M E; Morand, S; Rivault, C; Cloarec, A; Hugot, J P
1998-03-01
Random amplified DNA markers (RAPD; Williams et al., 1990) were used to obtained specific RAPD fragments characterising different species of oxyuroids. We tested six species of worms parasitizing vertebrates or invertebrates: Passalurus ambiguus Rudolphi, 1819, parasite of Leporids; Syphacia obvelata (Rudolphi, 1802) Seurat, 1916, a parasite of rodents; Blatticola blattae (Graeffe, 1860) Chitwood, 1932 parasite of the cockroach Blattella germanica; Hammerschmidtiella diesingi (Hammerschmidt, 1838) Chitwood, 1932 and Thelastoma bulhoesi (Magalhaes, 1990) Travassos, 1929, parasites of the cockroach Periplaneta americana, and an undescribed parasite species of a passalid insect from New Caledonia. Among 15 oligonucleotides tested, nine produced several specific bands allowing the interspecific discrimination.
Sou, Sujan K; Bursey, Charles R
2017-03-01
Studies on nematode parasites from anuran hosts from Eastern India, particularly West Bengal, are rare. To our knowledge, there is a report of larvae of Monhysterides sp. (a fish parasite) from cysts within the body cavity and musculature of Duttaphrynus melanostictus, Hoplobatrachus tigerinus and Euphlyctis hexadactylus as well as descriptions of Aplectana duttaphryni from D. melanostictus , Aplectana dubrajpuri from H. tigerinus , Cosmocerca microhylae from Microhyla rubra and Rhabdias bulbicauda from D. melanostictus . Here, we report mature individuals of typical anuran parasites, Diplodiscus amphichrus and Seuratascaris numidica , from H. tigerinus and larvae of Acuariidae (a bird parasite) from Fejervarya limnocharis collected in Kulti, West Bengal.
Visual Analytics for MOOC Data.
Qu, Huamin; Chen, Qing
2015-01-01
With the rise of massive open online courses (MOOCs), tens of millions of learners can now enroll in more than 1,000 courses via MOOC platforms such as Coursera and edX. As a result, a huge amount of data has been collected. Compared with traditional education records, the data from MOOCs has much finer granularity and also contains new pieces of information. It is the first time in history that such comprehensive data related to learning behavior has become available for analysis. What roles can visual analytics play in this MOOC movement? The authors survey the current practice and argue that MOOCs provide an opportunity for visualization researchers and that visual analytics systems for MOOCs can benefit a range of end users such as course instructors, education researchers, students, university administrators, and MOOC providers.
Waaijer, Cathelijn J F; Palmblad, Magnus
2015-01-01
In this Feature we use automatic bibliometric mapping tools to visualize the history of analytical chemistry from the 1920s until the present. In particular, we have focused on the application of mass spectrometry in different fields. The analysis shows major shifts in research focus and use of mass spectrometry. We conclude by discussing the application of bibliometric mapping and visualization tools in analytical chemists' research.
Collaborative visual analytics of radio surveys in the Big Data era
NASA Astrophysics Data System (ADS)
Vohl, Dany; Fluke, Christopher J.; Hassan, Amr H.; Barnes, David G.; Kilborn, Virginia A.
2017-06-01
Radio survey datasets comprise an increasing number of individual observations stored as sets of multidimensional data. In large survey projects, astronomers commonly face limitations regarding: 1) interactive visual analytics of sufficiently large subsets of data; 2) synchronous and asynchronous collaboration; and 3) documentation of the discovery workflow. To support collaborative data inquiry, we present encube, a large-scale comparative visual analytics framework. encube can utilise advanced visualization environments such as the CAVE2 (a hybrid 2D and 3D virtual reality environment powered with a 100 Tflop/s GPU-based supercomputer and 84 million pixels) for collaborative analysis of large subsets of data from radio surveys. It can also run on standard desktops, providing a capable visual analytics experience across the display ecology. encube is composed of four primary units enabling compute-intensive processing, advanced visualisation, dynamic interaction, parallel data query, along with data management. Its modularity will make it simple to incorporate astronomical analysis packages and Virtual Observatory capabilities developed within our community. We discuss how encube builds a bridge between high-end display systems (such as CAVE2) and the classical desktop, preserving all traces of the work completed on either platform - allowing the research process to continue wherever you are.
Streaming Visual Analytics Workshop Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, Kristin A.; Burtner, Edwin R.; Kritzstein, Brian P.
How can we best enable users to understand complex emerging events and make appropriate assessments from streaming data? This was the central question addressed at a three-day workshop on streaming visual analytics. This workshop was organized by Pacific Northwest National Laboratory for a government sponsor. It brought together forty researchers and subject matter experts from government, industry, and academia. This report summarizes the outcomes from that workshop. It describes elements of the vision for a streaming visual analytic environment and set of important research directions needed to achieve this vision. Streaming data analysis is in many ways the analysis andmore » understanding of change. However, current visual analytics systems usually focus on static data collections, meaning that dynamically changing conditions are not appropriately addressed. The envisioned mixed-initiative streaming visual analytics environment creates a collaboration between the analyst and the system to support the analysis process. It raises the level of discourse from low-level data records to higher-level concepts. The system supports the analyst’s rapid orientation and reorientation as situations change. It provides an environment to support the analyst’s critical thinking. It infers tasks and interests based on the analyst’s interactions. The system works as both an assistant and a devil’s advocate, finding relevant data and alerts as well as considering alternative hypotheses. Finally, the system supports sharing of findings with others. Making such an environment a reality requires research in several areas. The workshop discussions focused on four broad areas: support for critical thinking, visual representation of change, mixed-initiative analysis, and the use of narratives for analysis and communication.« less
Semantic Interaction for Sensemaking: Inferring Analytical Reasoning for Model Steering.
Endert, A; Fiaux, P; North, C
2012-12-01
Visual analytic tools aim to support the cognitively demanding task of sensemaking. Their success often depends on the ability to leverage capabilities of mathematical models, visualization, and human intuition through flexible, usable, and expressive interactions. Spatially clustering data is one effective metaphor for users to explore similarity and relationships between information, adjusting the weighting of dimensions or characteristics of the dataset to observe the change in the spatial layout. Semantic interaction is an approach to user interaction in such spatializations that couples these parametric modifications of the clustering model with users' analytic operations on the data (e.g., direct document movement in the spatialization, highlighting text, search, etc.). In this paper, we present results of a user study exploring the ability of semantic interaction in a visual analytic prototype, ForceSPIRE, to support sensemaking. We found that semantic interaction captures the analytical reasoning of the user through keyword weighting, and aids the user in co-creating a spatialization based on the user's reasoning and intuition.
Big data and visual analytics in anaesthesia and health care.
Simpao, A F; Ahumada, L M; Rehman, M A
2015-09-01
Advances in computer technology, patient monitoring systems, and electronic health record systems have enabled rapid accumulation of patient data in electronic form (i.e. big data). Organizations such as the Anesthesia Quality Institute and Multicenter Perioperative Outcomes Group have spearheaded large-scale efforts to collect anaesthesia big data for outcomes research and quality improvement. Analytics--the systematic use of data combined with quantitative and qualitative analysis to make decisions--can be applied to big data for quality and performance improvements, such as predictive risk assessment, clinical decision support, and resource management. Visual analytics is the science of analytical reasoning facilitated by interactive visual interfaces, and it can facilitate performance of cognitive activities involving big data. Ongoing integration of big data and analytics within anaesthesia and health care will increase demand for anaesthesia professionals who are well versed in both the medical and the information sciences. © The Author 2015. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Nilsson, Gunnar; Zary, Nabil
2014-01-01
Introduction. The big data present in the medical curriculum that informs undergraduate medical education is beyond human abilities to perceive and analyze. The medical curriculum is the main tool used by teachers and directors to plan, design, and deliver teaching and assessment activities and student evaluations in medical education in a continuous effort to improve it. Big data remains largely unexploited for medical education improvement purposes. The emerging research field of visual analytics has the advantage of combining data analysis and manipulation techniques, information and knowledge representation, and human cognitive strength to perceive and recognize visual patterns. Nevertheless, there is a lack of research on the use and benefits of visual analytics in medical education. Methods. The present study is based on analyzing the data in the medical curriculum of an undergraduate medical program as it concerns teaching activities, assessment methods and learning outcomes in order to explore visual analytics as a tool for finding ways of representing big data from undergraduate medical education for improvement purposes. Cytoscape software was employed to build networks of the identified aspects and visualize them. Results. After the analysis of the curriculum data, eleven aspects were identified. Further analysis and visualization of the identified aspects with Cytoscape resulted in building an abstract model of the examined data that presented three different approaches; (i) learning outcomes and teaching methods, (ii) examination and learning outcomes, and (iii) teaching methods, learning outcomes, examination results, and gap analysis. Discussion. This study identified aspects of medical curriculum that play an important role in how medical education is conducted. The implementation of visual analytics revealed three novel ways of representing big data in the undergraduate medical education context. It appears to be a useful tool to explore such data with possible future implications on healthcare education. It also opens a new direction in medical education informatics research. PMID:25469323
Vaitsis, Christos; Nilsson, Gunnar; Zary, Nabil
2014-01-01
Introduction. The big data present in the medical curriculum that informs undergraduate medical education is beyond human abilities to perceive and analyze. The medical curriculum is the main tool used by teachers and directors to plan, design, and deliver teaching and assessment activities and student evaluations in medical education in a continuous effort to improve it. Big data remains largely unexploited for medical education improvement purposes. The emerging research field of visual analytics has the advantage of combining data analysis and manipulation techniques, information and knowledge representation, and human cognitive strength to perceive and recognize visual patterns. Nevertheless, there is a lack of research on the use and benefits of visual analytics in medical education. Methods. The present study is based on analyzing the data in the medical curriculum of an undergraduate medical program as it concerns teaching activities, assessment methods and learning outcomes in order to explore visual analytics as a tool for finding ways of representing big data from undergraduate medical education for improvement purposes. Cytoscape software was employed to build networks of the identified aspects and visualize them. Results. After the analysis of the curriculum data, eleven aspects were identified. Further analysis and visualization of the identified aspects with Cytoscape resulted in building an abstract model of the examined data that presented three different approaches; (i) learning outcomes and teaching methods, (ii) examination and learning outcomes, and (iii) teaching methods, learning outcomes, examination results, and gap analysis. Discussion. This study identified aspects of medical curriculum that play an important role in how medical education is conducted. The implementation of visual analytics revealed three novel ways of representing big data in the undergraduate medical education context. It appears to be a useful tool to explore such data with possible future implications on healthcare education. It also opens a new direction in medical education informatics research.
An investigation of multispectral imaging for the mapping of pigments in paintings
NASA Astrophysics Data System (ADS)
Zhao, Yonghui; Berns, Roy S.; Taplin, Lawrence A.; Coddington, James
2008-02-01
Compared with colorimetric imaging, multispectral imaging has the advantage of retrieving spectral reflectance factor of each pixel of a painting. Using this spectral information, pigment mapping is concerned with decomposing the spectrum into its constituent pigments and their relative contributions. The output of pigment mapping is a series of spatial concentration maps of the pigments comprising the painting. This approach was used to study Vincent van Gogh's The Starry Night. The artist's palette was approximated using ten oil pigments, selected from a large database of pigments used in oil paintings and a priori analytical research on one of his self portraits, executed during the same time period. The pigment mapping was based on single-constant Kubelka-Munk theory. It was found that the region of blue sky where the stars were located contained, predominantly, ultramarine blue while the swirling sky and region surrounding the moon contained, predominantly, cobalt blue. Emerald green, used in light bluish-green brushstrokes surrounding the moon, was not used to create the dark green in the cypresses. A measurement of lead white from Georges Seurat's La Grande Jatte was used as the white when mapping The Starry Night. The absorption and scattering properties of this white were replaced with a modern dispersion of lead white in linseed oil and used to simulate the painting's appearance before the natural darkening and yellowing of lead white oil paint. Pigment mapping based on spectral imaging was found to be a viable and practical approach for analyzing pigment composition, providing new insight into an artist's working method, the possibility for aiding in restorative inpainting, and lighting design.
SOCRAT Platform Design: A Web Architecture for Interactive Visual Analytics Applications
Kalinin, Alexandr A.; Palanimalai, Selvam; Dinov, Ivo D.
2018-01-01
The modern web is a successful platform for large scale interactive web applications, including visualizations. However, there are no established design principles for building complex visual analytics (VA) web applications that could efficiently integrate visualizations with data management, computational transformation, hypothesis testing, and knowledge discovery. This imposes a time-consuming design and development process on many researchers and developers. To address these challenges, we consider the design requirements for the development of a module-based VA system architecture, adopting existing practices of large scale web application development. We present the preliminary design and implementation of an open-source platform for Statistics Online Computational Resource Analytical Toolbox (SOCRAT). This platform defines: (1) a specification for an architecture for building VA applications with multi-level modularity, and (2) methods for optimizing module interaction, re-usage, and extension. To demonstrate how this platform can be used to integrate a number of data management, interactive visualization, and analysis tools, we implement an example application for simple VA tasks including raw data input and representation, interactive visualization and analysis. PMID:29630069
SOCRAT Platform Design: A Web Architecture for Interactive Visual Analytics Applications.
Kalinin, Alexandr A; Palanimalai, Selvam; Dinov, Ivo D
2017-04-01
The modern web is a successful platform for large scale interactive web applications, including visualizations. However, there are no established design principles for building complex visual analytics (VA) web applications that could efficiently integrate visualizations with data management, computational transformation, hypothesis testing, and knowledge discovery. This imposes a time-consuming design and development process on many researchers and developers. To address these challenges, we consider the design requirements for the development of a module-based VA system architecture, adopting existing practices of large scale web application development. We present the preliminary design and implementation of an open-source platform for Statistics Online Computational Resource Analytical Toolbox (SOCRAT). This platform defines: (1) a specification for an architecture for building VA applications with multi-level modularity, and (2) methods for optimizing module interaction, re-usage, and extension. To demonstrate how this platform can be used to integrate a number of data management, interactive visualization, and analysis tools, we implement an example application for simple VA tasks including raw data input and representation, interactive visualization and analysis.
Immersive Visual Analytics for Transformative Neutron Scattering Science
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steed, Chad A; Daniel, Jamison R; Drouhard, Margaret
The ORNL Spallation Neutron Source (SNS) provides the most intense pulsed neutron beams in the world for scientific research and development across a broad range of disciplines. SNS experiments produce large volumes of complex data that are analyzed by scientists with varying degrees of experience using 3D visualization and analysis systems. However, it is notoriously difficult to achieve proficiency with 3D visualizations. Because 3D representations are key to understanding the neutron scattering data, scientists are unable to analyze their data in a timely fashion resulting in inefficient use of the limited and expensive SNS beam time. We believe a moremore » intuitive interface for exploring neutron scattering data can be created by combining immersive virtual reality technology with high performance data analytics and human interaction. In this paper, we present our initial investigations of immersive visualization concepts as well as our vision for an immersive visual analytics framework that could lower the barriers to 3D exploratory data analysis of neutron scattering data at the SNS.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, Kristin A.; Scholtz, Jean; Whiting, Mark A.
The VAST Challenge has been a popular venue for academic and industry participants for over ten years. Many participants comment that the majority of their time in preparing VAST Challenge entries is discovering elements in their software environments that need to be redesigned in order to solve the given task. Fortunately, there is no need to wait until the VAST Challenge is announced to test out software systems. The Visual Analytics Benchmark Repository contains all past VAST Challenge tasks, data, solutions and submissions. This paper details the various types of evaluations that may be conducted using the Repository information. Inmore » this paper we describe how developers can do informal evaluations of various aspects of their visual analytics environments using VAST Challenge information. Aspects that can be evaluated include the appropriateness of the software for various tasks, the various data types and formats that can be accommodated, the effectiveness and efficiency of the process supported by the software, and the intuitiveness of the visualizations and interactions. Researchers can compare their visualizations and interactions to those submitted to determine novelty. In addition, the paper provides pointers to various guidelines that software teams can use to evaluate the usability of their software. While these evaluations are not a replacement for formal evaluation methods, this information can be extremely useful during the development of visual analytics environments.« less
SmartAdP: Visual Analytics of Large-scale Taxi Trajectories for Selecting Billboard Locations.
Liu, Dongyu; Weng, Di; Li, Yuhong; Bao, Jie; Zheng, Yu; Qu, Huamin; Wu, Yingcai
2017-01-01
The problem of formulating solutions immediately and comparing them rapidly for billboard placements has plagued advertising planners for a long time, owing to the lack of efficient tools for in-depth analyses to make informed decisions. In this study, we attempt to employ visual analytics that combines the state-of-the-art mining and visualization techniques to tackle this problem using large-scale GPS trajectory data. In particular, we present SmartAdP, an interactive visual analytics system that deals with the two major challenges including finding good solutions in a huge solution space and comparing the solutions in a visual and intuitive manner. An interactive framework that integrates a novel visualization-driven data mining model enables advertising planners to effectively and efficiently formulate good candidate solutions. In addition, we propose a set of coupled visualizations: a solution view with metaphor-based glyphs to visualize the correlation between different solutions; a location view to display billboard locations in a compact manner; and a ranking view to present multi-typed rankings of the solutions. This system has been demonstrated using case studies with a real-world dataset and domain-expert interviews. Our approach can be adapted for other location selection problems such as selecting locations of retail stores or restaurants using trajectory data.
The Role of Visual Learning in Improving Students' High-Order Thinking Skills
ERIC Educational Resources Information Center
Raiyn, Jamal
2016-01-01
Various concepts have been introduced to improve students' analytical thinking skills based on problem based learning (PBL). This paper introduces a new concept to increase student's analytical thinking skills based on a visual learning strategy. Such a strategy has three fundamental components: a teacher, a student, and a learning process. The…
A Graphics Design Framework to Visualize Multi-Dimensional Economic Datasets
ERIC Educational Resources Information Center
Chandramouli, Magesh; Narayanan, Badri; Bertoline, Gary R.
2013-01-01
This study implements a prototype graphics visualization framework to visualize multidimensional data. This graphics design framework serves as a "visual analytical database" for visualization and simulation of economic models. One of the primary goals of any kind of visualization is to extract useful information from colossal volumes of…
Unlocking Proteomic Heterogeneity in Complex Diseases through Visual Analytics
Bhavnani, Suresh K.; Dang, Bryant; Bellala, Gowtham; Divekar, Rohit; Visweswaran, Shyam; Brasier, Allan; Kurosky, Alex
2015-01-01
Despite years of preclinical development, biological interventions designed to treat complex diseases like asthma often fail in phase III clinical trials. These failures suggest that current methods to analyze biomedical data might be missing critical aspects of biological complexity such as the assumption that cases and controls come from homogeneous distributions. Here we discuss why and how methods from the rapidly evolving field of visual analytics can help translational teams (consisting of biologists, clinicians, and bioinformaticians) to address the challenge of modeling and inferring heterogeneity in the proteomic and phenotypic profiles of patients with complex diseases. Because a primary goal of visual analytics is to amplify the cognitive capacities of humans for detecting patterns in complex data, we begin with an overview of the cognitive foundations for the field of visual analytics. Next, we organize the primary ways in which a specific form of visual analytics called networks have been used to model and infer biological mechanisms, which help to identify the properties of networks that are particularly useful for the discovery and analysis of proteomic heterogeneity in complex diseases. We describe one such approach called subject-protein networks, and demonstrate its application on two proteomic datasets. This demonstration provides insights to help translational teams overcome theoretical, practical, and pedagogical hurdles for the widespread use of subject-protein networks for analyzing molecular heterogeneities, with the translational goal of designing biomarker-based clinical trials, and accelerating the development of personalized approaches to medicine. PMID:25684269
Xu, Shen; Rogers, Toby; Fairweather, Elliot; Glenn, Anthony; Curran, James; Curcin, Vasa
2018-01-01
Data provenance is a technique that describes the history of digital objects. In health data settings, it can be used to deliver auditability and transparency, and to achieve trust in a software system. However, implementing data provenance in analytics software at an enterprise level presents a different set of challenges from the research environments where data provenance was originally devised. In this paper, the challenges of reporting provenance information to the user is presented. Provenance captured from analytics software can be large and complex and visualizing a series of tasks over a long period can be overwhelming even for a domain expert, requiring visual aggregation mechanisms that fit with complex human cognitive activities involved in the process. This research studied how provenance-based reporting can be integrated into a health data analytics software, using the example of Atmolytics visual reporting tool. PMID:29888084
The science of visual analysis at extreme scale
NASA Astrophysics Data System (ADS)
Nowell, Lucy T.
2011-01-01
Driven by market forces and spanning the full spectrum of computational devices, computer architectures are changing in ways that present tremendous opportunities and challenges for data analysis and visual analytic technologies. Leadership-class high performance computing system will have as many as a million cores by 2020 and support 10 billion-way concurrency, while laptop computers are expected to have as many as 1,000 cores by 2015. At the same time, data of all types are increasing exponentially and automated analytic methods are essential for all disciplines. Many existing analytic technologies do not scale to make full use of current platforms and fewer still are likely to scale to the systems that will be operational by the end of this decade. Furthermore, on the new architectures and for data at extreme scales, validating the accuracy and effectiveness of analytic methods, including visual analysis, will be increasingly important.
Developing Visual Thinking in the Electronic Health Record.
Boyd, Andrew D; Young, Christine D; Amatayakul, Margret; Dieter, Michael G; Pawola, Lawrence M
2017-01-01
The purpose of this vision paper is to identify how data visualization could transform healthcare. Electronic Health Records (EHRs) are maturing with new technology and tools being applied. Researchers are reaping the benefits of data visualization to better access compilations of EHR data for enhanced clinical research. Data visualization, while still primarily the domain of clinical researchers, is beginning to show promise for other stakeholders. A non-exhaustive review of the literature indicates that respective to the growth and development of the EHR, the maturity of data visualization in healthcare is in its infancy. Visual analytics has been only cursorily applied to healthcare. A fundamental issue contributing to fragmentation and poor coordination of healthcare delivery is that each member of the healthcare team, including patients, has a different view. Summarizing all of this care comprehensively for any member of the healthcare team is a "wickedly hard" visual analytics and data visualization problem to solve.
Matisse: A Visual Analytics System for Exploring Emotion Trends in Social Media Text Streams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steed, Chad A; Drouhard, Margaret MEG G; Beaver, Justin M
Dynamically mining textual information streams to gain real-time situational awareness is especially challenging with social media systems where throughput and velocity properties push the limits of a static analytical approach. In this paper, we describe an interactive visual analytics system, called Matisse, that aids with the discovery and investigation of trends in streaming text. Matisse addresses the challenges inherent to text stream mining through the following technical contributions: (1) robust stream data management, (2) automated sentiment/emotion analytics, (3) interactive coordinated visualizations, and (4) a flexible drill-down interaction scheme that accesses multiple levels of detail. In addition to positive/negative sentiment prediction,more » Matisse provides fine-grained emotion classification based on Valence, Arousal, and Dominance dimensions and a novel machine learning process. Information from the sentiment/emotion analytics are fused with raw data and summary information to feed temporal, geospatial, term frequency, and scatterplot visualizations using a multi-scale, coordinated interaction model. After describing these techniques, we conclude with a practical case study focused on analyzing the Twitter sample stream during the week of the 2013 Boston Marathon bombings. The case study demonstrates the effectiveness of Matisse at providing guided situational awareness of significant trends in social media streams by orchestrating computational power and human cognition.« less
SmartR: an open-source platform for interactive visual analytics for translational research data
Herzinger, Sascha; Gu, Wei; Satagopam, Venkata; Eifes, Serge; Rege, Kavita; Barbosa-Silva, Adriano; Schneider, Reinhard
2017-01-01
Abstract Summary: In translational research, efficient knowledge exchange between the different fields of expertise is crucial. An open platform that is capable of storing a multitude of data types such as clinical, pre-clinical or OMICS data combined with strong visual analytical capabilities will significantly accelerate the scientific progress by making data more accessible and hypothesis generation easier. The open data warehouse tranSMART is capable of storing a variety of data types and has a growing user community including both academic institutions and pharmaceutical companies. tranSMART, however, currently lacks interactive and dynamic visual analytics and does not permit any post-processing interaction or exploration. For this reason, we developed SmartR, a plugin for tranSMART, that equips the platform not only with several dynamic visual analytical workflows, but also provides its own framework for the addition of new custom workflows. Modern web technologies such as D3.js or AngularJS were used to build a set of standard visualizations that were heavily improved with dynamic elements. Availability and Implementation: The source code is licensed under the Apache 2.0 License and is freely available on GitHub: https://github.com/transmart/SmartR. Contact: reinhard.schneider@uni.lu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:28334291
SmartR: an open-source platform for interactive visual analytics for translational research data.
Herzinger, Sascha; Gu, Wei; Satagopam, Venkata; Eifes, Serge; Rege, Kavita; Barbosa-Silva, Adriano; Schneider, Reinhard
2017-07-15
In translational research, efficient knowledge exchange between the different fields of expertise is crucial. An open platform that is capable of storing a multitude of data types such as clinical, pre-clinical or OMICS data combined with strong visual analytical capabilities will significantly accelerate the scientific progress by making data more accessible and hypothesis generation easier. The open data warehouse tranSMART is capable of storing a variety of data types and has a growing user community including both academic institutions and pharmaceutical companies. tranSMART, however, currently lacks interactive and dynamic visual analytics and does not permit any post-processing interaction or exploration. For this reason, we developed SmartR , a plugin for tranSMART, that equips the platform not only with several dynamic visual analytical workflows, but also provides its own framework for the addition of new custom workflows. Modern web technologies such as D3.js or AngularJS were used to build a set of standard visualizations that were heavily improved with dynamic elements. The source code is licensed under the Apache 2.0 License and is freely available on GitHub: https://github.com/transmart/SmartR . reinhard.schneider@uni.lu. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.
Visual Analytics of Surveillance Data on Foodborne Vibriosis, United States, 1973–2010
Sims, Jennifer N.; Isokpehi, Raphael D.; Cooper, Gabrielle A.; Bass, Michael P.; Brown, Shyretha D.; St John, Alison L.; Gulig, Paul A.; Cohly, Hari H.P.
2011-01-01
Foodborne illnesses caused by microbial and chemical contaminants in food are a substantial health burden worldwide. In 2007, human vibriosis (non-cholera Vibrio infections) became a notifiable disease in the United States. In addition, Vibrio species are among the 31 major known pathogens transmitted through food in the United States. Diverse surveillance systems for foodborne pathogens also track outbreaks, illnesses, hospitalization and deaths due to non-cholera vibrios. Considering the recognition of vibriosis as a notifiable disease in the United States and the availability of diverse surveillance systems, there is a need for the development of easily deployed visualization and analysis approaches that can combine diverse data sources in an interactive manner. Current efforts to address this need are still limited. Visual analytics is an iterative process conducted via visual interfaces that involves collecting information, data preprocessing, knowledge representation, interaction, and decision making. We have utilized public domain outbreak and surveillance data sources covering 1973 to 2010, as well as visual analytics software to demonstrate integrated and interactive visualizations of data on foodborne outbreaks and surveillance of Vibrio species. Through the data visualization, we were able to identify unique patterns and/or novel relationships within and across datasets regarding (i) causative agent; (ii) foodborne outbreaks and illness per state; (iii) location of infection; (iv) vehicle (food) of infection; (v) anatomical site of isolation of Vibrio species; (vi) patients and complications of vibriosis; (vii) incidence of laboratory-confirmed vibriosis and V. parahaemolyticus outbreaks. The additional use of emerging visual analytics approaches for interaction with data on vibriosis, including non-foodborne related disease, can guide disease control and prevention as well as ongoing outbreak investigations. PMID:22174586
SnapShot: Visualization to Propel Ice Hockey Analytics.
Pileggi, H; Stolper, C D; Boyle, J M; Stasko, J T
2012-12-01
Sports analysts live in a world of dynamic games flattened into tables of numbers, divorced from the rinks, pitches, and courts where they were generated. Currently, these professional analysts use R, Stata, SAS, and other statistical software packages for uncovering insights from game data. Quantitative sports consultants seek a competitive advantage both for their clients and for themselves as analytics becomes increasingly valued by teams, clubs, and squads. In order for the information visualization community to support the members of this blossoming industry, it must recognize where and how visualization can enhance the existing analytical workflow. In this paper, we identify three primary stages of today's sports analyst's routine where visualization can be beneficially integrated: 1) exploring a dataspace; 2) sharing hypotheses with internal colleagues; and 3) communicating findings to stakeholders.Working closely with professional ice hockey analysts, we designed and built SnapShot, a system to integrate visualization into the hockey intelligence gathering process. SnapShot employs a variety of information visualization techniques to display shot data, yet given the importance of a specific hockey statistic, shot length, we introduce a technique, the radial heat map. Through a user study, we received encouraging feedback from several professional analysts, both independent consultants and professional team personnel.
Towards a Web-Enabled Geovisualization and Analytics Platform for the Energy and Water Nexus
NASA Astrophysics Data System (ADS)
Sanyal, J.; Chandola, V.; Sorokine, A.; Allen, M.; Berres, A.; Pang, H.; Karthik, R.; Nugent, P.; McManamay, R.; Stewart, R.; Bhaduri, B. L.
2017-12-01
Interactive data analytics are playing an increasingly vital role in the generation of new, critical insights regarding the complex dynamics of the energy/water nexus (EWN) and its interactions with climate variability and change. Integration of impacts, adaptation, and vulnerability (IAV) science with emerging, and increasingly critical, data science capabilities offers a promising potential to meet the needs of the EWN community. To enable the exploration of pertinent research questions, a web-based geospatial visualization platform is being built that integrates a data analysis toolbox with advanced data fusion and data visualization capabilities to create a knowledge discovery framework for the EWN. The system, when fully built out, will offer several geospatial visualization capabilities including statistical visual analytics, clustering, principal-component analysis, dynamic time warping, support uncertainty visualization and the exploration of data provenance, as well as support machine learning discoveries to render diverse types of geospatial data and facilitate interactive analysis. Key components in the system architecture includes NASA's WebWorldWind, the Globus toolkit, postgresql, as well as other custom built software modules.
Visualization techniques for computer network defense
NASA Astrophysics Data System (ADS)
Beaver, Justin M.; Steed, Chad A.; Patton, Robert M.; Cui, Xiaohui; Schultz, Matthew
2011-06-01
Effective visual analysis of computer network defense (CND) information is challenging due to the volume and complexity of both the raw and analyzed network data. A typical CND is comprised of multiple niche intrusion detection tools, each of which performs network data analysis and produces a unique alerting output. The state-of-the-practice in the situational awareness of CND data is the prevalent use of custom-developed scripts by Information Technology (IT) professionals to retrieve, organize, and understand potential threat events. We propose a new visual analytics framework, called the Oak Ridge Cyber Analytics (ORCA) system, for CND data that allows an operator to interact with all detection tool outputs simultaneously. Aggregated alert events are presented in multiple coordinated views with timeline, cluster, and swarm model analysis displays. These displays are complemented with both supervised and semi-supervised machine learning classifiers. The intent of the visual analytics framework is to improve CND situational awareness, to enable an analyst to quickly navigate and analyze thousands of detected events, and to combine sophisticated data analysis techniques with interactive visualization such that patterns of anomalous activities may be more easily identified and investigated.
How Can Visual Analytics Assist Investigative Analysis? Design Implications from an Evaluation.
Youn-Ah Kang; Görg, Carsten; Stasko, John
2011-05-01
Despite the growing number of systems providing visual analytic support for investigative analysis, few empirical studies of the potential benefits of such systems have been conducted, particularly controlled, comparative evaluations. Determining how such systems foster insight and sensemaking is important for their continued growth and study, however. Furthermore, studies that identify how people use such systems and why they benefit (or not) can help inform the design of new systems in this area. We conducted an evaluation of the visual analytics system Jigsaw employed in a small investigative sensemaking exercise, and compared its use to three other more traditional methods of analysis. Sixteen participants performed a simulated intelligence analysis task under one of the four conditions. Experimental results suggest that Jigsaw assisted participants to analyze the data and identify an embedded threat. We describe different analysis strategies used by study participants and how computational support (or the lack thereof) influenced the strategies. We then illustrate several characteristics of the sensemaking process identified in the study and provide design implications for investigative analysis tools based thereon. We conclude with recommendations on metrics and techniques for evaluating visual analytics systems for investigative analysis.
A Paper-Based Electrochromic Array for Visualized Electrochemical Sensing.
Zhang, Fengling; Cai, Tianyi; Ma, Liang; Zhan, Liyuan; Liu, Hong
2017-01-31
We report a battery-powered, paper-based electrochromic array for visualized electrochemical sensing. The paper-based sensing system consists of six parallel electrochemical cells, which are powered by an aluminum-air battery. Each single electrochemical cell uses a Prussian Blue spot electrodeposited on an indium-doped tin oxide thin film as the electrochromic indicator. Each electrochemical cell is preloaded with increasing amounts of analyte. The sample activates the battery for the sensing. Both the preloaded analyte and the analyte in the sample initiate the color change of Prussian Blue to Prussian White. With a reaction time of 60 s, the number of electrochemical cells with complete color changes is correlated to the concentration of analyte in the sample. As a proof-of-concept analyte, lactic acid was detected semi-quantitatively using the naked eye.
Insight solutions are correct more often than analytic solutions
Salvi, Carola; Bricolo, Emanuela; Kounios, John; Bowden, Edward; Beeman, Mark
2016-01-01
How accurate are insights compared to analytical solutions? In four experiments, we investigated how participants’ solving strategies influenced their solution accuracies across different types of problems, including one that was linguistic, one that was visual and two that were mixed visual-linguistic. In each experiment, participants’ self-judged insight solutions were, on average, more accurate than their analytic ones. We hypothesised that insight solutions have superior accuracy because they emerge into consciousness in an all-or-nothing fashion when the unconscious solving process is complete, whereas analytic solutions can be guesses based on conscious, prematurely terminated, processing. This hypothesis is supported by the finding that participants’ analytic solutions included relatively more incorrect responses (i.e., errors of commission) than timeouts (i.e., errors of omission) compared to their insight responses. PMID:27667960
Review: visual analytics of climate networks
NASA Astrophysics Data System (ADS)
Nocke, T.; Buschmann, S.; Donges, J. F.; Marwan, N.; Schulz, H.-J.; Tominski, C.
2015-09-01
Network analysis has become an important approach in studying complex spatiotemporal behaviour within geophysical observation and simulation data. This new field produces increasing numbers of large geo-referenced networks to be analysed. Particular focus lies currently on the network analysis of the complex statistical interrelationship structure within climatological fields. The standard procedure for such network analyses is the extraction of network measures in combination with static standard visualisation methods. Existing interactive visualisation methods and tools for geo-referenced network exploration are often either not known to the analyst or their potential is not fully exploited. To fill this gap, we illustrate how interactive visual analytics methods in combination with geovisualisation can be tailored for visual climate network investigation. Therefore, the paper provides a problem analysis relating the multiple visualisation challenges to a survey undertaken with network analysts from the research fields of climate and complex systems science. Then, as an overview for the interested practitioner, we review the state-of-the-art in climate network visualisation and provide an overview of existing tools. As a further contribution, we introduce the visual network analytics tools CGV and GTX, providing tailored solutions for climate network analysis, including alternative geographic projections, edge bundling, and 3-D network support. Using these tools, the paper illustrates the application potentials of visual analytics for climate networks based on several use cases including examples from global, regional, and multi-layered climate networks.
Review: visual analytics of climate networks
NASA Astrophysics Data System (ADS)
Nocke, T.; Buschmann, S.; Donges, J. F.; Marwan, N.; Schulz, H.-J.; Tominski, C.
2015-04-01
Network analysis has become an important approach in studying complex spatiotemporal behaviour within geophysical observation and simulation data. This new field produces increasing amounts of large geo-referenced networks to be analysed. Particular focus lies currently on the network analysis of the complex statistical interrelationship structure within climatological fields. The standard procedure for such network analyses is the extraction of network measures in combination with static standard visualisation methods. Existing interactive visualisation methods and tools for geo-referenced network exploration are often either not known to the analyst or their potential is not fully exploited. To fill this gap, we illustrate how interactive visual analytics methods in combination with geovisualisation can be tailored for visual climate network investigation. Therefore, the paper provides a problem analysis, relating the multiple visualisation challenges with a survey undertaken with network analysts from the research fields of climate and complex systems science. Then, as an overview for the interested practitioner, we review the state-of-the-art in climate network visualisation and provide an overview of existing tools. As a further contribution, we introduce the visual network analytics tools CGV and GTX, providing tailored solutions for climate network analysis, including alternative geographic projections, edge bundling, and 3-D network support. Using these tools, the paper illustrates the application potentials of visual analytics for climate networks based on several use cases including examples from global, regional, and multi-layered climate networks.
Collaborative Visual Analytics: A Health Analytics Approach to Injury Prevention
Fisher, Brian; Smith, Jennifer; Pike, Ian
2017-01-01
Background: Accurate understanding of complex health data is critical in order to deal with wicked health problems and make timely decisions. Wicked problems refer to ill-structured and dynamic problems that combine multidimensional elements, which often preclude the conventional problem solving approach. This pilot study introduces visual analytics (VA) methods to multi-stakeholder decision-making sessions about child injury prevention; Methods: Inspired by the Delphi method, we introduced a novel methodology—group analytics (GA). GA was pilot-tested to evaluate the impact of collaborative visual analytics on facilitating problem solving and supporting decision-making. We conducted two GA sessions. Collected data included stakeholders’ observations, audio and video recordings, questionnaires, and follow up interviews. The GA sessions were analyzed using the Joint Activity Theory protocol analysis methods; Results: The GA methodology triggered the emergence of ‘common ground’ among stakeholders. This common ground evolved throughout the sessions to enhance stakeholders’ verbal and non-verbal communication, as well as coordination of joint activities and ultimately collaboration on problem solving and decision-making; Conclusions: Understanding complex health data is necessary for informed decisions. Equally important, in this case, is the use of the group analytics methodology to achieve ‘common ground’ among diverse stakeholders about health data and their implications. PMID:28895928
Collaborative Visual Analytics: A Health Analytics Approach to Injury Prevention.
Al-Hajj, Samar; Fisher, Brian; Smith, Jennifer; Pike, Ian
2017-09-12
Background : Accurate understanding of complex health data is critical in order to deal with wicked health problems and make timely decisions. Wicked problems refer to ill-structured and dynamic problems that combine multidimensional elements, which often preclude the conventional problem solving approach. This pilot study introduces visual analytics (VA) methods to multi-stakeholder decision-making sessions about child injury prevention; Methods : Inspired by the Delphi method, we introduced a novel methodology-group analytics (GA). GA was pilot-tested to evaluate the impact of collaborative visual analytics on facilitating problem solving and supporting decision-making. We conducted two GA sessions. Collected data included stakeholders' observations, audio and video recordings, questionnaires, and follow up interviews. The GA sessions were analyzed using the Joint Activity Theory protocol analysis methods; Results : The GA methodology triggered the emergence of ' common g round ' among stakeholders. This common ground evolved throughout the sessions to enhance stakeholders' verbal and non-verbal communication, as well as coordination of joint activities and ultimately collaboration on problem solving and decision-making; Conclusion s : Understanding complex health data is necessary for informed decisions. Equally important, in this case, is the use of the group analytics methodology to achieve ' common ground' among diverse stakeholders about health data and their implications.
Leveraging multidisciplinarity in a visual analytics graduate course.
Elmqvist, Niklas; Ebert, David S
2012-01-01
Demand is growing in engineering, business, science, research, and industry for students with visual analytics expertise. However, teaching VA is challenging owing to the multidisciplinary nature of the topic, students' diverse backgrounds, and the corresponding requirements for instructors. This article reports best practices from a VA graduate course at Purdue University, where instructors leveraged these challenges to their advantage instead of trying to mitigate them.
ERIC Educational Resources Information Center
Jolley, Dianne F.; Wilson, Stephen R.; Kelso, Celine; O'Brien, Glennys; Mason, Claire E.
2016-01-01
This project utilizes visual and critical thinking approaches to develop a higher-education synergistic prelab training program for a large second-year undergraduate analytical chemistry class, directing more of the cognitive learning to the prelab phase. This enabled students to engage in more analytical thinking prior to engaging in the…
Linnorm: improved statistical analysis for single cell RNA-seq expression data
Yip, Shun H.; Wang, Panwen; Kocher, Jean-Pierre A.; Sham, Pak Chung
2017-01-01
Abstract Linnorm is a novel normalization and transformation method for the analysis of single cell RNA sequencing (scRNA-seq) data. Linnorm is developed to remove technical noises and simultaneously preserve biological variations in scRNA-seq data, such that existing statistical methods can be improved. Using real scRNA-seq data, we compared Linnorm with existing normalization methods, including NODES, SAMstrt, SCnorm, scran, DESeq and TMM. Linnorm shows advantages in speed, technical noise removal and preservation of cell heterogeneity, which can improve existing methods in the discovery of novel subtypes, pseudo-temporal ordering of cells, clustering analysis, etc. Linnorm also performs better than existing DEG analysis methods, including BASiCS, NODES, SAMstrt, Seurat and DESeq2, in false positive rate control and accuracy. PMID:28981748
A Visual Analytics Approach for Station-Based Air Quality Data
Du, Yi; Ma, Cuixia; Wu, Chao; Xu, Xiaowei; Guo, Yike; Zhou, Yuanchun; Li, Jianhui
2016-01-01
With the deployment of multi-modality and large-scale sensor networks for monitoring air quality, we are now able to collect large and multi-dimensional spatio-temporal datasets. For these sensed data, we present a comprehensive visual analysis approach for air quality analysis. This approach integrates several visual methods, such as map-based views, calendar views, and trends views, to assist the analysis. Among those visual methods, map-based visual methods are used to display the locations of interest, and the calendar and the trends views are used to discover the linear and periodical patterns. The system also provides various interaction tools to combine the map-based visualization, trends view, calendar view and multi-dimensional view. In addition, we propose a self-adaptive calendar-based controller that can flexibly adapt the changes of data size and granularity in trends view. Such a visual analytics system would facilitate big-data analysis in real applications, especially for decision making support. PMID:28029117
A Visual Analytics Approach for Station-Based Air Quality Data.
Du, Yi; Ma, Cuixia; Wu, Chao; Xu, Xiaowei; Guo, Yike; Zhou, Yuanchun; Li, Jianhui
2016-12-24
With the deployment of multi-modality and large-scale sensor networks for monitoring air quality, we are now able to collect large and multi-dimensional spatio-temporal datasets. For these sensed data, we present a comprehensive visual analysis approach for air quality analysis. This approach integrates several visual methods, such as map-based views, calendar views, and trends views, to assist the analysis. Among those visual methods, map-based visual methods are used to display the locations of interest, and the calendar and the trends views are used to discover the linear and periodical patterns. The system also provides various interaction tools to combine the map-based visualization, trends view, calendar view and multi-dimensional view. In addition, we propose a self-adaptive calendar-based controller that can flexibly adapt the changes of data size and granularity in trends view. Such a visual analytics system would facilitate big-data analysis in real applications, especially for decision making support.
Visualization Techniques for Computer Network Defense
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beaver, Justin M; Steed, Chad A; Patton, Robert M
2011-01-01
Effective visual analysis of computer network defense (CND) information is challenging due to the volume and complexity of both the raw and analyzed network data. A typical CND is comprised of multiple niche intrusion detection tools, each of which performs network data analysis and produces a unique alerting output. The state-of-the-practice in the situational awareness of CND data is the prevalent use of custom-developed scripts by Information Technology (IT) professionals to retrieve, organize, and understand potential threat events. We propose a new visual analytics framework, called the Oak Ridge Cyber Analytics (ORCA) system, for CND data that allows an operatormore » to interact with all detection tool outputs simultaneously. Aggregated alert events are presented in multiple coordinated views with timeline, cluster, and swarm model analysis displays. These displays are complemented with both supervised and semi-supervised machine learning classifiers. The intent of the visual analytics framework is to improve CND situational awareness, to enable an analyst to quickly navigate and analyze thousands of detected events, and to combine sophisticated data analysis techniques with interactive visualization such that patterns of anomalous activities may be more easily identified and investigated.« less
TopicLens: Efficient Multi-Level Visual Topic Exploration of Large-Scale Document Collections.
Kim, Minjeong; Kang, Kyeongpil; Park, Deokgun; Choo, Jaegul; Elmqvist, Niklas
2017-01-01
Topic modeling, which reveals underlying topics of a document corpus, has been actively adopted in visual analytics for large-scale document collections. However, due to its significant processing time and non-interactive nature, topic modeling has so far not been tightly integrated into a visual analytics workflow. Instead, most such systems are limited to utilizing a fixed, initial set of topics. Motivated by this gap in the literature, we propose a novel interaction technique called TopicLens that allows a user to dynamically explore data through a lens interface where topic modeling and the corresponding 2D embedding are efficiently computed on the fly. To support this interaction in real time while maintaining view consistency, we propose a novel efficient topic modeling method and a semi-supervised 2D embedding algorithm. Our work is based on improving state-of-the-art methods such as nonnegative matrix factorization and t-distributed stochastic neighbor embedding. Furthermore, we have built a web-based visual analytics system integrated with TopicLens. We use this system to measure the performance and the visualization quality of our proposed methods. We provide several scenarios showcasing the capability of TopicLens using real-world datasets.
A results-based process for evaluation of diverse visual analytics tools
NASA Astrophysics Data System (ADS)
Rubin, Gary; Berger, David H.
2013-05-01
With the pervasiveness of still and full-motion imagery in commercial and military applications, the need to ingest and analyze these media has grown rapidly in recent years. Additionally, video hosting and live camera websites provide a near real-time view of our changing world with unprecedented spatial coverage. To take advantage of these controlled and crowd-sourced opportunities, sophisticated visual analytics (VA) tools are required to accurately and efficiently convert raw imagery into usable information. Whether investing in VA products or evaluating algorithms for potential development, it is important for stakeholders to understand the capabilities and limitations of visual analytics tools. Visual analytics algorithms are being applied to problems related to Intelligence, Surveillance, and Reconnaissance (ISR), facility security, and public safety monitoring, to name a few. The diversity of requirements means that a onesize- fits-all approach to performance assessment will not work. We present a process for evaluating the efficacy of algorithms in real-world conditions, thereby allowing users and developers of video analytics software to understand software capabilities and identify potential shortcomings. The results-based approach described in this paper uses an analysis of end-user requirements and Concept of Operations (CONOPS) to define Measures of Effectiveness (MOEs), test data requirements, and evaluation strategies. We define metrics that individually do not fully characterize a system, but when used together, are a powerful way to reveal both strengths and weaknesses. We provide examples of data products, such as heatmaps, performance maps, detection timelines, and rank-based probability-of-detection curves.
SOMFlow: Guided Exploratory Cluster Analysis with Self-Organizing Maps and Analytic Provenance.
Sacha, Dominik; Kraus, Matthias; Bernard, Jurgen; Behrisch, Michael; Schreck, Tobias; Asano, Yuki; Keim, Daniel A
2018-01-01
Clustering is a core building block for data analysis, aiming to extract otherwise hidden structures and relations from raw datasets, such as particular groups that can be effectively related, compared, and interpreted. A plethora of visual-interactive cluster analysis techniques has been proposed to date, however, arriving at useful clusterings often requires several rounds of user interactions to fine-tune the data preprocessing and algorithms. We present a multi-stage Visual Analytics (VA) approach for iterative cluster refinement together with an implementation (SOMFlow) that uses Self-Organizing Maps (SOM) to analyze time series data. It supports exploration by offering the analyst a visual platform to analyze intermediate results, adapt the underlying computations, iteratively partition the data, and to reflect previous analytical activities. The history of previous decisions is explicitly visualized within a flow graph, allowing to compare earlier cluster refinements and to explore relations. We further leverage quality and interestingness measures to guide the analyst in the discovery of useful patterns, relations, and data partitions. We conducted two pair analytics experiments together with a subject matter expert in speech intonation research to demonstrate that the approach is effective for interactive data analysis, supporting enhanced understanding of clustering results as well as the interactive process itself.
Learning Visualization Strategies: A qualitative investigation
NASA Astrophysics Data System (ADS)
Halpern, Daniel; Oh, Kyong Eun; Tremaine, Marilyn; Chiang, James; Bemis, Karen; Silver, Deborah
2015-12-01
The following study investigates the range of strategies individuals develop to infer and interpret cross-sections of three-dimensional objects. We focus on the identification of mental representations and problem-solving processes made by 11 individuals with the goal of building training applications that integrate the strategies developed by the participants in our study. Our results suggest that although spatial transformation and perspective-taking techniques are useful for visualizing cross-section problems, these visual processes are augmented by analytical thinking. Further, our study shows that participants employ general analytic strategies for extended periods which evolve through practice into a set of progressively more expert strategies. Theoretical implications are discussed and five main findings are recommended for integration into the design of education software that facilitates visual learning and comprehension.
ERIC Educational Resources Information Center
Connors, Sean P.
2012-01-01
Literacy educators might advocate using graphic novels to develop students' visual literacy skills, but teachers who lack a vocabulary for engaging in close analysis of visual texts may be reluctant to teach them. Recognizing this, teacher educators should equip preservice teachers with a vocabulary for analyzing visual texts. This article…
Application of Andrew's Plots to Visualization of Multidimensional Data
ERIC Educational Resources Information Center
Grinshpun, Vadim
2016-01-01
Importance: The article raises a point of visual representation of big data, recently considered to be demanded for many scientific and real-life applications, and analyzes particulars for visualization of multi-dimensional data, giving examples of the visual analytics-related problems. Objectives: The purpose of this paper is to study application…
Shebanova, A S; Bogdanov, A G; Ismagulova, T T; Feofanov, A V; Semenyuk, P I; Muronets, V I; Erokhina, M V; Onishchenko, G E; Kirpichnikov, M P; Shaitan, K V
2014-01-01
This work represents the results of the study on applicability of the modern methods of analytical transmission electron microscopy for detection, identification and visualization of localization of nanoparticles of titanium and cerium oxides in A549 cell, human lung adenocarcinoma cell line. A comparative analysis of images of the nanoparticles in the cells obtained in the bright field mode of transmission electron microscopy, under dark-field scanning transmission electron microscopy and high-angle annular dark field scanning transmission electron was performed. For identification of nanoparticles in the cells the analytical techniques, energy-dispersive X-ray spectroscopy and electron energy loss spectroscopy, were compared when used in the mode of obtaining energy spectrum from different particles and element mapping. It was shown that the method for electron tomography is applicable to confirm that nanoparticles are localized in the sample but not coated by contamination. The possibilities and fields of utilizing different techniques for analytical transmission electron microscopy for detection, visualization and identification of nanoparticles in the biological samples are discussed.
VAP/VAT: video analytics platform and test bed for testing and deploying video analytics
NASA Astrophysics Data System (ADS)
Gorodnichy, Dmitry O.; Dubrofsky, Elan
2010-04-01
Deploying Video Analytics in operational environments is extremely challenging. This paper presents a methodological approach developed by the Video Surveillance and Biometrics Section (VSB) of the Science and Engineering Directorate (S&E) of the Canada Border Services Agency (CBSA) to resolve these problems. A three-phase approach to enable VA deployment within an operational agency is presented and the Video Analytics Platform and Testbed (VAP/VAT) developed by the VSB section is introduced. In addition to allowing the integration of third party and in-house built VA codes into an existing video surveillance infrastructure, VAP/VAT also allows the agency to conduct an unbiased performance evaluation of the cameras and VA software available on the market. VAP/VAT consists of two components: EventCapture, which serves to Automatically detect a "Visual Event", and EventBrowser, which serves to Display & Peruse of "Visual Details" captured at the "Visual Event". To deal with Open architecture as well as with Closed architecture cameras, two video-feed capture mechanisms have been developed within the EventCapture component: IPCamCapture and ScreenCapture.
A Strategy for Uncertainty Visualization Design
2009-10-01
143–156, Magdeburg , Germany . [11] Thomson, J., Hetzler, E., MacEachren, A., Gahegan, M. and Pavel, M. (2005), A Typology for Visualizing Uncertainty...and Stasko [20] to bridge analytic gaps in visualization design, when tasks in the strategy overlap (and therefore complement) design frameworks
Dabek, Filip; Caban, Jesus J
2017-01-01
Despite the recent popularity of visual analytics focusing on big data, little is known about how to support users that use visualization techniques to explore multi-dimensional datasets and accomplish specific tasks. Our lack of models that can assist end-users during the data exploration process has made it challenging to learn from the user's interactive and analytical process. The ability to model how a user interacts with a specific visualization technique and what difficulties they face are paramount in supporting individuals with discovering new patterns within their complex datasets. This paper introduces the notion of visualization systems understanding and modeling user interactions with the intent of guiding a user through a task thereby enhancing visual data exploration. The challenges faced and the necessary future steps to take are discussed; and to provide a working example, a grammar-based model is presented that can learn from user interactions, determine the common patterns among a number of subjects using a K-Reversible algorithm, build a set of rules, and apply those rules in the form of suggestions to new users with the goal of guiding them along their visual analytic process. A formal evaluation study with 300 subjects was performed showing that our grammar-based model is effective at capturing the interactive process followed by users and that further research in this area has the potential to positively impact how users interact with a visualization system.
Urban Space Explorer: A Visual Analytics System for Urban Planning.
Karduni, Alireza; Cho, Isaac; Wessel, Ginette; Ribarsky, William; Sauda, Eric; Dou, Wenwen
2017-01-01
Understanding people's behavior is fundamental to many planning professions (including transportation, community development, economic development, and urban design) that rely on data about frequently traveled routes, places, and social and cultural practices. Based on the results of a practitioner survey, the authors designed Urban Space Explorer, a visual analytics system that utilizes mobile social media to enable interactive exploration of public-space-related activity along spatial, temporal, and semantic dimensions.
2D-Visualization of metabolic activity with planar optical chemical sensors (optodes)
NASA Astrophysics Data System (ADS)
Meier, R. J.; Liebsch, G.
2015-12-01
Microbia plays an outstandingly important role in many hydrologic compartments, such as e.g. the benthic community in sediments, or biologically active microorganisms in the capillary fringe, in ground water, or soil. Oxygen, pH, and CO2 are key factors and indicators for microbial activity. They can be measured using optical chemical sensors. These sensors record changing fluorescence properties of specific indicator dyes. The signals can be measured in a non-contact mode, even through transparent walls, which is important for many lab-experiments. They can measure in closed (transparent) systems, without sampling or intruding into the sample. They do not consume the analytes while measuring, are fully reversible and able to measure in non-stirred solutions. These sensors can be applied as high precision fiberoptic sensors (for profiling), robust sensor spots, or as planar sensors for 2D visualization (imaging). Imaging enables to detect thousands of measurement spots at the same time and generate 2D analyte maps over a region of interest. It allows for comparing different regions within one recorded image, visualizing spatial analyte gradients, or more important to identify hot spots of metabolic activity. We present ready-to-use portable imaging systems for the analytes oxygen, pH, and CO2. They consist of a detector unit, planar sensor foils and a software for easy data recording and evaluation. Sensors foils for various analytes and measurement ranges enable visualizing metabolic activity or analyte changes in the desired range. Dynamics of metabolic activity can be detected in one shot or over long time periods. We demonstrate the potential of this analytical technique by presenting experiments on benthic disturbance-recovery dynamics in sediments and microbial degradation of organic material in the capillary fringe. We think this technique is a new tool to further understand how microbial and geochemical processes are linked in (not solely) hydrologic systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steed, Chad A; Beaver, Justin M; BogenII, Paul L.
In this paper, we introduce a new visual analytics system, called Matisse, that allows exploration of global trends in textual information streams with specific application to social media platforms. Despite the potential for real-time situational awareness using these services, interactive analysis of such semi-structured textual information is a challenge due to the high-throughput and high-velocity properties. Matisse addresses these challenges through the following contributions: (1) robust stream data management, (2) automated sen- timent/emotion analytics, (3) inferential temporal, geospatial, and term-frequency visualizations, and (4) a flexible drill-down interaction scheme that progresses from macroscale to microscale views. In addition to describing thesemore » contributions, our work-in-progress paper concludes with a practical case study focused on the analysis of Twitter 1% sample stream information captured during the week of the Boston Marathon bombings.« less
Visual analytics as a translational cognitive science.
Fisher, Brian; Green, Tera Marie; Arias-Hernández, Richard
2011-07-01
Visual analytics is a new interdisciplinary field of study that calls for a more structured scientific approach to understanding the effects of interaction with complex graphical displays on human cognitive processes. Its primary goal is to support the design and evaluation of graphical information systems that better support cognitive processes in areas as diverse as scientific research and emergency management. The methodologies that make up this new field are as yet ill defined. This paper proposes a pathway for development of visual analytics as a translational cognitive science that bridges fundamental research in human/computer cognitive systems and design and evaluation of information systems in situ. Achieving this goal will require the development of enhanced field methods for conceptual decomposition of human/computer cognitive systems that maps onto laboratory studies, and improved methods for conducting laboratory investigations that might better map onto real-world cognitive processes in technology-rich environments. Copyright © 2011 Cognitive Science Society, Inc.
BiSet: Semantic Edge Bundling with Biclusters for Sensemaking.
Sun, Maoyuan; Mi, Peng; North, Chris; Ramakrishnan, Naren
2016-01-01
Identifying coordinated relationships is an important task in data analytics. For example, an intelligence analyst might want to discover three suspicious people who all visited the same four cities. Existing techniques that display individual relationships, such as between lists of entities, require repetitious manual selection and significant mental aggregation in cluttered visualizations to find coordinated relationships. In this paper, we present BiSet, a visual analytics technique to support interactive exploration of coordinated relationships. In BiSet, we model coordinated relationships as biclusters and algorithmically mine them from a dataset. Then, we visualize the biclusters in context as bundled edges between sets of related entities. Thus, bundles enable analysts to infer task-oriented semantic insights about potentially coordinated activities. We make bundles as first class objects and add a new layer, "in-between", to contain these bundle objects. Based on this, bundles serve to organize entities represented in lists and visually reveal their membership. Users can interact with edge bundles to organize related entities, and vice versa, for sensemaking purposes. With a usage scenario, we demonstrate how BiSet supports the exploration of coordinated relationships in text analytics.
Iontophoresis and Flame Photometry: A Hybrid Interdisciplinary Experiment
ERIC Educational Resources Information Center
Sharp, Duncan; Cottam, Linzi; Bradley, Sarah; Brannigan, Jeanie; Davis, James
2010-01-01
The combination of reverse iontophoresis and flame photometry provides an engaging analytical experiment that gives first-year undergraduate students a flavor of modern drug delivery and analyte extraction techniques while reinforcing core analytical concepts. The experiment provides a highly visual demonstration of the iontophoresis technique and…
Huang, Xiaoke; Zhao, Ye; Yang, Jing; Zhang, Chong; Ma, Chao; Ye, Xinyue
2016-01-01
We propose TrajGraph, a new visual analytics method, for studying urban mobility patterns by integrating graph modeling and visual analysis with taxi trajectory data. A special graph is created to store and manifest real traffic information recorded by taxi trajectories over city streets. It conveys urban transportation dynamics which can be discovered by applying graph analysis algorithms. To support interactive, multiscale visual analytics, a graph partitioning algorithm is applied to create region-level graphs which have smaller size than the original street-level graph. Graph centralities, including Pagerank and betweenness, are computed to characterize the time-varying importance of different urban regions. The centralities are visualized by three coordinated views including a node-link graph view, a map view and a temporal information view. Users can interactively examine the importance of streets to discover and assess city traffic patterns. We have implemented a fully working prototype of this approach and evaluated it using massive taxi trajectories of Shenzhen, China. TrajGraph's capability in revealing the importance of city streets was evaluated by comparing the calculated centralities with the subjective evaluations from a group of drivers in Shenzhen. Feedback from a domain expert was collected. The effectiveness of the visual interface was evaluated through a formal user study. We also present several examples and a case study to demonstrate the usefulness of TrajGraph in urban transportation analysis.
2015-01-01
Background Though cluster analysis has become a routine analytic task for bioinformatics research, it is still arduous for researchers to assess the quality of a clustering result. To select the best clustering method and its parameters for a dataset, researchers have to run multiple clustering algorithms and compare them. However, such a comparison task with multiple clustering results is cognitively demanding and laborious. Results In this paper, we present XCluSim, a visual analytics tool that enables users to interactively compare multiple clustering results based on the Visual Information Seeking Mantra. We build a taxonomy for categorizing existing techniques of clustering results visualization in terms of the Gestalt principles of grouping. Using the taxonomy, we choose the most appropriate interactive visualizations for presenting individual clustering results from different types of clustering algorithms. The efficacy of XCluSim is shown through case studies with a bioinformatician. Conclusions Compared to other relevant tools, XCluSim enables users to compare multiple clustering results in a more scalable manner. Moreover, XCluSim supports diverse clustering algorithms and dedicated visualizations and interactions for different types of clustering results, allowing more effective exploration of details on demand. Through case studies with a bioinformatics researcher, we received positive feedback on the functionalities of XCluSim, including its ability to help identify stably clustered items across multiple clustering results. PMID:26328893
Passman, Dina B.
2013-01-01
Objective The objective of this demonstration is to show conference attendees how they can integrate, analyze, and visualize diverse data type data from across a variety of systems by leveraging an off-the-shelf enterprise business intelligence (EBI) solution to support decision-making in disasters. Introduction Fusion Analytics is the data integration system developed by the Fusion Cell at the U.S. Department of Health and Human Services (HHS), Office of the Assistant Secretary for Preparedness and Response (ASPR). Fusion Analytics meaningfully augments traditional public and population health surveillance reporting by providing web-based data analysis and visualization tools. Methods Fusion Analytics serves as a one-stop-shop for the web-based data visualizations of multiple real-time data sources within ASPR. The 24-7 web availability makes it an ideal analytic tool for situational awareness and response allowing stakeholders to access the portal from any internet-enabled device without installing any software. The Fusion Analytics data integration system was built using off-the-shelf EBI software. Fusion Analytics leverages the full power of statistical analysis software and delivers reports to users in a secure web-based environment. Fusion Analytics provides an example of how public health staff can develop and deploy a robust public health informatics solution using an off-the shelf product and with limited development funding. It also provides the unique example of a public health information system that combines patient data for traditional disease surveillance with manpower and resource data to provide overall decision support for federal public health and medical disaster response operations. Conclusions We are currently in a unique position within public health. One the one hand, we have been gaining greater and greater access to electronic data of all kinds over the last few years. On the other, we are working in a time of reduced government spending to support leveraging this data for decision support with robust analytics and visualizations. Fusion Analytics provides an opportunity for attendees to see how various types of data are integrated into a single application for population health decision support. It also can provide them with ideas of how they can use their own staff to create analyses and reports that support their public health activities.
Visualization of the Mode Shapes of Pressure Oscillation in a Cylindrical Cavity
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Xin; Qi, Yunliang; Wang, Zhi
Our work describes a novel experimental method to visualize the mode shapes of pressure oscillation in a cylindrical cavity. Acoustic resonance in a cavity is a grand old problem that has been under investigation (using both analytical and numerical methods) for more than a century. In this article, a novel method based on high speed imaging of combustion chemiluminescence was presented to visualize the mode shapes of pressure oscillation in a cylindrical cavity. By generating high-temperature combustion gases and strong pressure waves simultaneously in a cylindrical cavity, the pressure oscillation can be inferred due to the chemiluminescence emissions of themore » combustion products. We can then visualized the mode shapes by reconstructing the images based on the amplitudes of the luminosity spectrum at the corresponding resonant frequencies. Up to 11 resonant mode shapes were clearly visualized, each matching very well with the analytical solutions.« less
Görg, Carsten; Liu, Zhicheng; Kihm, Jaeyeon; Choo, Jaegul; Park, Haesun; Stasko, John
2013-10-01
Investigators across many disciplines and organizations must sift through large collections of text documents to understand and piece together information. Whether they are fighting crime, curing diseases, deciding what car to buy, or researching a new field, inevitably investigators will encounter text documents. Taking a visual analytics approach, we integrate multiple text analysis algorithms with a suite of interactive visualizations to provide a flexible and powerful environment that allows analysts to explore collections of documents while sensemaking. Our particular focus is on the process of integrating automated analyses with interactive visualizations in a smooth and fluid manner. We illustrate this integration through two example scenarios: an academic researcher examining InfoVis and VAST conference papers and a consumer exploring car reviews while pondering a purchase decision. Finally, we provide lessons learned toward the design and implementation of visual analytics systems for document exploration and understanding.
Satagopam, Venkata; Gu, Wei; Eifes, Serge; Gawron, Piotr; Ostaszewski, Marek; Gebel, Stephan; Barbosa-Silva, Adriano; Balling, Rudi; Schneider, Reinhard
2016-01-01
Abstract Translational medicine is a domain turning results of basic life science research into new tools and methods in a clinical environment, for example, as new diagnostics or therapies. Nowadays, the process of translation is supported by large amounts of heterogeneous data ranging from medical data to a whole range of -omics data. It is not only a great opportunity but also a great challenge, as translational medicine big data is difficult to integrate and analyze, and requires the involvement of biomedical experts for the data processing. We show here that visualization and interoperable workflows, combining multiple complex steps, can address at least parts of the challenge. In this article, we present an integrated workflow for exploring, analysis, and interpretation of translational medicine data in the context of human health. Three Web services—tranSMART, a Galaxy Server, and a MINERVA platform—are combined into one big data pipeline. Native visualization capabilities enable the biomedical experts to get a comprehensive overview and control over separate steps of the workflow. The capabilities of tranSMART enable a flexible filtering of multidimensional integrated data sets to create subsets suitable for downstream processing. A Galaxy Server offers visually aided construction of analytical pipelines, with the use of existing or custom components. A MINERVA platform supports the exploration of health and disease-related mechanisms in a contextualized analytical visualization system. We demonstrate the utility of our workflow by illustrating its subsequent steps using an existing data set, for which we propose a filtering scheme, an analytical pipeline, and a corresponding visualization of analytical results. The workflow is available as a sandbox environment, where readers can work with the described setup themselves. Overall, our work shows how visualization and interfacing of big data processing services facilitate exploration, analysis, and interpretation of translational medicine data. PMID:27441714
Modeling and evaluating user behavior in exploratory visual analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reda, Khairi; Johnson, Andrew E.; Papka, Michael E.
Empirical evaluation methods for visualizations have traditionally focused on assessing the outcome of the visual analytic process as opposed to characterizing how that process unfolds. There are only a handful of methods that can be used to systematically study how people use visualizations, making it difficult for researchers to capture and characterize the subtlety of cognitive and interaction behaviors users exhibit during visual analysis. To validate and improve visualization design, however, it is important for researchers to be able to assess and understand how users interact with visualization systems under realistic scenarios. This paper presents a methodology for modeling andmore » evaluating the behavior of users in exploratory visual analysis. We model visual exploration using a Markov chain process comprising transitions between mental, interaction, and computational states. These states and the transitions between them can be deduced from a variety of sources, including verbal transcripts, videos and audio recordings, and log files. This model enables the evaluator to characterize the cognitive and computational processes that are essential to insight acquisition in exploratory visual analysis, and reconstruct the dynamics of interaction between the user and the visualization system. We illustrate this model with two exemplar user studies, and demonstrate the qualitative and quantitative analytical tools it affords.« less
Visualizing Qualitative Information
ERIC Educational Resources Information Center
Slone, Debra J.
2009-01-01
The abundance of qualitative data in today's society and the need to easily scrutinize, digest, and share this information calls for effective visualization and analysis tools. Yet, no existing qualitative tools have the analytic power, visual effectiveness, and universality of familiar quantitative instruments like bar charts, scatter-plots, and…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dasgupta, Aritra; Burrows, Susannah M.; Han, Kyungsik
Scientists working in a particular domain often adhere to conventional data analysis and presentation methods and this leads to familiarity with these methods over time. But does high familiarity always lead to better analytical judgment? This question is especially relevant when visualizations are used in scientific tasks, as there can be discrepancies between visualization best practices and domain conventions. However, there is little empirical evidence of the relationships between scientists’ subjective impressions about familiar and unfamiliar visualizations and objective measures of their effect on scientific judgment. To address this gap and to study these factors, we focus on the climatemore » science domain, specifically on visualizations used for comparison of model performance. We present a comprehensive user study with 47 climate scientists where we explored the following factors: i) relationships between scientists’ familiarity, their perceived levels of com- fort, confidence, accuracy, and objective measures of accuracy, and ii) relationships among domain experience, visualization familiarity, and post-study preference.« less
Thinking graphically: Connecting vision and cognition during graph comprehension.
Ratwani, Raj M; Trafton, J Gregory; Boehm-Davis, Deborah A
2008-03-01
Task analytic theories of graph comprehension account for the perceptual and conceptual processes required to extract specific information from graphs. Comparatively, the processes underlying information integration have received less attention. We propose a new framework for information integration that highlights visual integration and cognitive integration. During visual integration, pattern recognition processes are used to form visual clusters of information; these visual clusters are then used to reason about the graph during cognitive integration. In 3 experiments, the processes required to extract specific information and to integrate information were examined by collecting verbal protocol and eye movement data. Results supported the task analytic theories for specific information extraction and the processes of visual and cognitive integration for integrative questions. Further, the integrative processes scaled up as graph complexity increased, highlighting the importance of these processes for integration in more complex graphs. Finally, based on this framework, design principles to improve both visual and cognitive integration are described. PsycINFO Database Record (c) 2008 APA, all rights reserved
How I Learned to Swim: The Visual Journal as a Companion to Creative Inquiry
ERIC Educational Resources Information Center
Scott Shields, Sara
2016-01-01
In this paper, I discuss my engagement with a visual journal as a companion to creative research practice during my dissertation research. Grounded in arts based research methodologies; I explore visual journals in relationship to research, reflection and analytic processes. I begin with a discussion of the visual journal as an artifact of…
Penetrating the Fog: Analytics in Learning and Education
ERIC Educational Resources Information Center
Siemens, George; Long, Phil
2011-01-01
Attempts to imagine the future of education often emphasize new technologies--ubiquitous computing devices, flexible classroom designs, and innovative visual displays. But the most dramatic factor shaping the future of higher education is something that people cannot actually touch or see: "big data and analytics." Learning analytics is still in…
Be the Data: Embodied Visual Analytics
ERIC Educational Resources Information Center
Chen, Xin; Self, Jessica Zeitz; House, Leanna; Wenskovitch, John; Sun, Maoyuan; Wycoff, Nathan; Evia, Jane Robertson; Leman, Scotland; North, Chris
2018-01-01
With the rise of big data, it is becoming increasingly important to educate groups of students at many educational levels about data analytics. In particular, students without a strong mathematical background may have an unenthusiastic attitude towards high-dimensional data and find it challenging to understand relevant complex analytical methods,…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, Kris A.; Scholtz, Jean; Whiting, Mark A.
The VAST Challenge has been a popular venue for academic and industry participants for over ten years. Many participants comment that the majority of their time in preparing VAST Challenge entries is discovering elements in their software environments that need to be redesigned in order to solve the given task. Fortunately, there is no need to wait until the VAST Challenge is announced to test out software systems. The Visual Analytics Benchmark Repository contains all past VAST Challenge tasks, data, solutions and submissions. This paper details the various types of evaluations that may be conducted using the Repository information. Inmore » this paper we describe how developers can do informal evaluations of various aspects of their visual analytics environments using VAST Challenge information. Aspects that can be evaluated include the appropriateness of the software for various tasks, the various data types and formats that can be accommodated, the effectiveness and efficiency of the process supported by the software, and the intuitiveness of the visualizations and interactions. Researchers can compare their visualizations and interactions to those submitted to determine novelty. In addition, the paper provides pointers to various guidelines that software teams can use to evaluate the usability of their software. While these evaluations are not a replacement for formal evaluation methods, this information can be extremely useful during the development of visual analytics environments.« less
The Top 10 Challenges in Extreme-Scale Visual Analytics
Wong, Pak Chung; Shen, Han-Wei; Johnson, Christopher R.; Chen, Chaomei; Ross, Robert B.
2013-01-01
In this issue of CG&A, researchers share their R&D findings and results on applying visual analytics (VA) to extreme-scale data. Having surveyed these articles and other R&D in this field, we’ve identified what we consider the top challenges of extreme-scale VA. To cater to the magazine’s diverse readership, our discussion evaluates challenges in all areas of the field, including algorithms, hardware, software, engineering, and social issues. PMID:24489426
Linnorm: improved statistical analysis for single cell RNA-seq expression data.
Yip, Shun H; Wang, Panwen; Kocher, Jean-Pierre A; Sham, Pak Chung; Wang, Junwen
2017-12-15
Linnorm is a novel normalization and transformation method for the analysis of single cell RNA sequencing (scRNA-seq) data. Linnorm is developed to remove technical noises and simultaneously preserve biological variations in scRNA-seq data, such that existing statistical methods can be improved. Using real scRNA-seq data, we compared Linnorm with existing normalization methods, including NODES, SAMstrt, SCnorm, scran, DESeq and TMM. Linnorm shows advantages in speed, technical noise removal and preservation of cell heterogeneity, which can improve existing methods in the discovery of novel subtypes, pseudo-temporal ordering of cells, clustering analysis, etc. Linnorm also performs better than existing DEG analysis methods, including BASiCS, NODES, SAMstrt, Seurat and DESeq2, in false positive rate control and accuracy. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Characterisation of a novel enterobacteria phage, CAjan, isolated from rat faeces.
Carstens, Alexander B; Kot, Witold; Lametsch, Rene; Neve, Horst; Hansen, Lars H
2016-08-01
In this study, we describe the isolation and characterisation of the novel enterobacteria phage CAjan. This phage belongs to the order Caudovirales and the family Siphoviridae. The phage possesses a linear, double-stranded DNA genome consisting of 59,670 bp with a G+C content of 44.7 % and 91 predicted open reading frames (ORFs). Putative functions were assigned to 39 of the ORFs (37.4 %). The phage structural genes were furthermore functionally characterised by LC MS/MS. CAjan, together with Escherichia phage Seurat and Escherichia phage slur01, represent a novel and genetically distinct clade of Siphoviridae phages that could be considered to constitute a new phage genus. Despite limited sequence similarity, the phages in this group share a number of other common features, including genome structure and the presence of queuosine biosynthesis genes.
Bouamer, Salah; Morand, Serge
2002-10-01
The generic diagnosis of Tachygonetria Wedl, 1862 is modified based on the study and redescription of Tachygonetria vivipara Wedl, 1862 (collected from large intestine of Uromastyx acanthinurus Bell, from North Africa) and T. dentata (Drasche, 1883) (collected from large intestine of Testudo graeca Linnaeus in Settat, Morocco and T. hermanni Gmelin in Catalonia, Spain). The following taxa were redescribed: Tachygonetria conica (Drasche, 1883) and T. robusta (Drasche, 1883) (both from the large intestine of Testudo graeca collected in Settat, Morocco); the subspecies Tachygonetria conica nicollei (Seurat, 1918) is suppressed. A new species, T. combesi n. sp. is described from the large intestine of Testudo hermanni, which confirms the revision of the genus. Scanning electron microscopical studies revealed substantial interspecific differences in the structure of the caudal end.
Smales, L R; Harris, P D; Behnke, J M
2009-01-01
The spirurid nematode Protospirura muricola Gedoelst, 1916 is redescribed from Acomys dimidiatus (Desmarest) from the St Katherine Protectorate, Sinai, Egypt. Egyptian material closely resembled specimens of P. muricola from African mammals re-examined in this study, as well as conforming to published reports of this species. P. muricola with two denticles on each lateral lobe of the pseudolabia and six pairs of postanal papillae is closest to P. pseudomuris Yokohata & Abe, 1989, but can be readily distinguished in having the right spicule shorter than the left. The significance of the characteristics of the head and mouth, and of the male spicules, in characterising Protospirura Seurat, 1914 is evaluated. P. muricola, an African parasite of rodents, appears to have spread globally with synanthropic rat final hosts and possibly with the cosmopolitan dermapteran intermediate host Leucophaea maderae (Fabr.).
Prototyping Visual Learning Analytics Guided by an Educational Theory Informed Goal
ERIC Educational Resources Information Center
Hillaire, Garron; Rappolt-Schlichtmann, Gabrielle; Ducharme, Kim
2016-01-01
Prototype work can support the creation of data visualizations throughout the research and development process through paper prototypes with sketching, designed prototypes with graphic design tools, and functional prototypes to explore how the implementation will work. One challenging aspect of data visualization work is coordinating the expertise…
Encounter Detection Using Visual Analytics to Improve Maritime Domain Awareness
2015-06-01
assigned to be processed in a record set consisting of all the records within a one degree of latitude by one degree of longitude square box. For the case...0.002 3 30 185 0.001 4 30 370 0.002 37 a degree of latitude by a tenth of a degree of longitude . This prototype further reduces the processing ...STATEMENT Approved for public release; distribution is unlimited 12b. DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) A visual analytics process
DIVE: A Graph-based Visual Analytics Framework for Big Data
Rysavy, Steven J.; Bromley, Dennis; Daggett, Valerie
2014-01-01
The need for data-centric scientific tools is growing; domains like biology, chemistry, and physics are increasingly adopting computational approaches. As a result, scientists must now deal with the challenges of big data. To address these challenges, we built a visual analytics platform named DIVE: Data Intensive Visualization Engine. DIVE is a data-agnostic, ontologically-expressive software framework capable of streaming large datasets at interactive speeds. Here we present the technical details of the DIVE platform, multiple usage examples, and a case study from the Dynameomics molecular dynamics project. We specifically highlight our novel contributions to structured data model manipulation and high-throughput streaming of large, structured datasets. PMID:24808197
Planetary Surface Visualization and Analytics
NASA Astrophysics Data System (ADS)
Law, E. S.; Solar System Treks Team
2018-04-01
An introduction and update of the Solar System Treks Project which provides a suite of interactive visualization and analysis tools to enable users (engineers, scientists, public) to access large amounts of mapped planetary data products.
Analytic information processing style in epilepsy patients.
Buonfiglio, Marzia; Di Sabato, Francesco; Mandillo, Silvia; Albini, Mariarita; Di Bonaventura, Carlo; Giallonardo, Annateresa; Avanzini, Giuliano
2017-08-01
Relevant to the study of epileptogenesis is learning processing, given the pivotal role that neuroplasticity assumes in both mechanisms. Recently, evoked potential analyses showed a link between analytic cognitive style and altered neural excitability in both migraine and healthy subjects, regardless of cognitive impairment or psychological disorders. In this study we evaluated analytic/global and visual/auditory perceptual dimensions of cognitive style in patients with epilepsy. Twenty-five cryptogenic temporal lobe epilepsy (TLE) patients matched with 25 idiopathic generalized epilepsy (IGE) sufferers and 25 healthy volunteers were recruited and participated in three cognitive style tests: "Sternberg-Wagner Self-Assessment Inventory", the C. Cornoldi test series called AMOS, and the Mariani Learning style Questionnaire. Our results demonstrate a significant association between analytic cognitive style and both IGE and TLE and respectively a predominant auditory and visual analytic style (ANOVA: p values <0,0001). These findings should encourage further research to investigate information processing style and its neurophysiological correlates in epilepsy. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramanathan, Arvind; Pullum, Laura L; Steed, Chad A
In this position paper, we describe the design and implementation of the Oak Ridge Bio-surveillance Toolkit (ORBiT): a collection of novel statistical and machine learning tools implemented for (1) integrating heterogeneous traditional (e.g. emergency room visits, prescription sales data, etc.) and non-traditional (social media such as Twitter and Instagram) data sources, (2) analyzing large-scale datasets and (3) presenting the results from the analytics as a visual interface for the end-user to interact and provide feedback. We present examples of how ORBiT can be used to summarize ex- tremely large-scale datasets effectively and how user interactions can translate into the datamore » analytics process for bio-surveillance. We also present a strategy to estimate parameters relevant to dis- ease spread models from near real time data feeds and show how these estimates can be integrated with disease spread models for large-scale populations. We conclude with a perspective on how integrating data and visual analytics could lead to better forecasting and prediction of disease spread as well as improved awareness of disease susceptible regions.« less
Zhang, Wen-Ran
2003-01-01
Bipolar logic, bipolar sets, and equilibrium relations are proposed for bipolar cognitive mapping and visualization in online analytical processing (OLAP) and online analytical mining (OLAM). As cognitive models, cognitive maps (CMs) hold great potential for clustering and visualization. Due to the lack of a formal mathematical basis, however, CM-based OLAP and OLAM have not gained popularity. Compared with existing approaches, bipolar cognitive mapping has a number of advantages. First, bipolar CMs are formal logical models as well as cognitive models. Second, equilibrium relations (with polarized reflexivity, symmetry, and transitivity), as bipolar generalizations and fusions of equivalence relations, provide a theoretical basis for bipolar visualization and coordination. Third, an equilibrium relation or CM induces bipolar partitions that distinguish disjoint coalition subsets not involved in any conflict, disjoint coalition subsets involved in a conflict, disjoint conflict subsets, and disjoint harmony subsets. Finally, equilibrium energy analysis leads to harmony and stability measures for strategic decision and multiagent coordination. Thus, this work bridges a gap for CM-based clustering and visualization in OLAP and OLAM. Basic ideas are illustrated with example CMs in international relations.
The VAST Challenge: History, Scope, and Outcomes: An introduction to the Special Issue
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, Kristin A.; Grinstein, Georges; Whiting, Mark A.
2014-10-01
Visual analytics aims to facilitate human insight from complex data via a combination of visual representations, interaction techniques, and supporting algorithms. To create new tools and techniques that achieve this goal requires that researchers have an understanding of analytical questions to be addressed, data that illustrates the complexities and ambiguities found in realistic analytic settings, and methods for evaluating whether the plausible insights are gained through use of the new methods. However, researchers do not, generally speaking, have access to analysts who can articulate their problems or operational data that is used for analysis. To fill this gap, the Visualmore » Analytics Science and Technology (VAST) Challenge has been held annually since 2006. The VAST Challenge provides an opportunity for researchers to experiment with realistic but not real problems, using realistic synthetic data with known events embedded. Since its inception, the VAST Challenge has evolved along with the visual analytics research community to pose more complex challenges, ranging from text analysis to video analysis to large scale network log analysis. The seven years of the VAST Challenge have seen advancements in research and development, education, evaluation, and in the challenge process itself. This special issue of Information Visualization highlights some of the noteworthy advancements in each of these areas. Some of these papers focus on important research questions related to the challenge itself, and other papers focus on innovative research that has been shaped by participation in the challenge. This paper describes the VAST Challenge process and benefits in detail. It also provides an introduction to and context for the remaining papers in the issue.« less
Decision exploration lab: a visual analytics solution for decision management.
Broeksema, Bertjan; Baudel, Thomas; Telea, Arthur G; Crisafulli, Paolo
2013-12-01
We present a visual analytics solution designed to address prevalent issues in the area of Operational Decision Management (ODM). In ODM, which has its roots in Artificial Intelligence (Expert Systems) and Management Science, it is increasingly important to align business decisions with business goals. In our work, we consider decision models (executable models of the business domain) as ontologies that describe the business domain, and production rules that describe the business logic of decisions to be made over this ontology. Executing a decision model produces an accumulation of decisions made over time for individual cases. We are interested, first, to get insight in the decision logic and the accumulated facts by themselves. Secondly and more importantly, we want to see how the accumulated facts reveal potential divergences between the reality as captured by the decision model, and the reality as captured by the executed decisions. We illustrate the motivation, added value for visual analytics, and our proposed solution and tooling through a business case from the car insurance industry.
Chen, Jin; Roth, Robert E; Naito, Adam T; Lengerich, Eugene J; MacEachren, Alan M
2008-01-01
Background Kulldorff's spatial scan statistic and its software implementation – SaTScan – are widely used for detecting and evaluating geographic clusters. However, two issues make using the method and interpreting its results non-trivial: (1) the method lacks cartographic support for understanding the clusters in geographic context and (2) results from the method are sensitive to parameter choices related to cluster scaling (abbreviated as scaling parameters), but the system provides no direct support for making these choices. We employ both established and novel geovisual analytics methods to address these issues and to enhance the interpretation of SaTScan results. We demonstrate our geovisual analytics approach in a case study analysis of cervical cancer mortality in the U.S. Results We address the first issue by providing an interactive visual interface to support the interpretation of SaTScan results. Our research to address the second issue prompted a broader discussion about the sensitivity of SaTScan results to parameter choices. Sensitivity has two components: (1) the method can identify clusters that, while being statistically significant, have heterogeneous contents comprised of both high-risk and low-risk locations and (2) the method can identify clusters that are unstable in location and size as the spatial scan scaling parameter is varied. To investigate cluster result stability, we conducted multiple SaTScan runs with systematically selected parameters. The results, when scanning a large spatial dataset (e.g., U.S. data aggregated by county), demonstrate that no single spatial scan scaling value is known to be optimal to identify clusters that exist at different scales; instead, multiple scans that vary the parameters are necessary. We introduce a novel method of measuring and visualizing reliability that facilitates identification of homogeneous clusters that are stable across analysis scales. Finally, we propose a logical approach to proceed through the analysis of SaTScan results. Conclusion The geovisual analytics approach described in this manuscript facilitates the interpretation of spatial cluster detection methods by providing cartographic representation of SaTScan results and by providing visualization methods and tools that support selection of SaTScan parameters. Our methods distinguish between heterogeneous and homogeneous clusters and assess the stability of clusters across analytic scales. Method We analyzed the cervical cancer mortality data for the United States aggregated by county between 2000 and 2004. We ran SaTScan on the dataset fifty times with different parameter choices. Our geovisual analytics approach couples SaTScan with our visual analytic platform, allowing users to interactively explore and compare SaTScan results produced by different parameter choices. The Standardized Mortality Ratio and reliability scores are visualized for all the counties to identify stable, homogeneous clusters. We evaluated our analysis result by comparing it to that produced by other independent techniques including the Empirical Bayes Smoothing and Kafadar spatial smoother methods. The geovisual analytics approach introduced here is developed and implemented in our Java-based Visual Inquiry Toolkit. PMID:18992163
Chen, Jin; Roth, Robert E; Naito, Adam T; Lengerich, Eugene J; Maceachren, Alan M
2008-11-07
Kulldorff's spatial scan statistic and its software implementation - SaTScan - are widely used for detecting and evaluating geographic clusters. However, two issues make using the method and interpreting its results non-trivial: (1) the method lacks cartographic support for understanding the clusters in geographic context and (2) results from the method are sensitive to parameter choices related to cluster scaling (abbreviated as scaling parameters), but the system provides no direct support for making these choices. We employ both established and novel geovisual analytics methods to address these issues and to enhance the interpretation of SaTScan results. We demonstrate our geovisual analytics approach in a case study analysis of cervical cancer mortality in the U.S. We address the first issue by providing an interactive visual interface to support the interpretation of SaTScan results. Our research to address the second issue prompted a broader discussion about the sensitivity of SaTScan results to parameter choices. Sensitivity has two components: (1) the method can identify clusters that, while being statistically significant, have heterogeneous contents comprised of both high-risk and low-risk locations and (2) the method can identify clusters that are unstable in location and size as the spatial scan scaling parameter is varied. To investigate cluster result stability, we conducted multiple SaTScan runs with systematically selected parameters. The results, when scanning a large spatial dataset (e.g., U.S. data aggregated by county), demonstrate that no single spatial scan scaling value is known to be optimal to identify clusters that exist at different scales; instead, multiple scans that vary the parameters are necessary. We introduce a novel method of measuring and visualizing reliability that facilitates identification of homogeneous clusters that are stable across analysis scales. Finally, we propose a logical approach to proceed through the analysis of SaTScan results. The geovisual analytics approach described in this manuscript facilitates the interpretation of spatial cluster detection methods by providing cartographic representation of SaTScan results and by providing visualization methods and tools that support selection of SaTScan parameters. Our methods distinguish between heterogeneous and homogeneous clusters and assess the stability of clusters across analytic scales. We analyzed the cervical cancer mortality data for the United States aggregated by county between 2000 and 2004. We ran SaTScan on the dataset fifty times with different parameter choices. Our geovisual analytics approach couples SaTScan with our visual analytic platform, allowing users to interactively explore and compare SaTScan results produced by different parameter choices. The Standardized Mortality Ratio and reliability scores are visualized for all the counties to identify stable, homogeneous clusters. We evaluated our analysis result by comparing it to that produced by other independent techniques including the Empirical Bayes Smoothing and Kafadar spatial smoother methods. The geovisual analytics approach introduced here is developed and implemented in our Java-based Visual Inquiry Toolkit.
The Preference of Visualization in Teaching and Learning Absolute Value
ERIC Educational Resources Information Center
Konyalioglu, Alper Cihan; Aksu, Zeki; Senel, Esma Ozge
2012-01-01
Visualization is mostly despised although it complements and--sometimes--guides the analytical process. This study mainly investigates teachers' preferences concerning the use of the visualization method and determines the extent to which they encourage their students to make use of it within the problem-solving process. This study was conducted…
DIA2: Web-based Cyberinfrastructure for Visual Analysis of Funding Portfolios.
Madhavan, Krishna; Elmqvist, Niklas; Vorvoreanu, Mihaela; Chen, Xin; Wong, Yuetling; Xian, Hanjun; Dong, Zhihua; Johri, Aditya
2014-12-01
We present a design study of the Deep Insights Anywhere, Anytime (DIA2) platform, a web-based visual analytics system that allows program managers and academic staff at the U.S. National Science Foundation to search, view, and analyze their research funding portfolio. The goal of this system is to facilitate users' understanding of both past and currently active research awards in order to make more informed decisions of their future funding. This user group is characterized by high domain expertise yet not necessarily high literacy in visualization and visual analytics-they are essentially casual experts-and thus require careful visual and information design, including adhering to user experience standards, providing a self-instructive interface, and progressively refining visualizations to minimize complexity. We discuss the challenges of designing a system for casual experts and highlight how we addressed this issue by modeling the organizational structure and workflows of the NSF within our system. We discuss each stage of the design process, starting with formative interviews, prototypes, and finally live deployments and evaluation with stakeholders.
Interactive visual exploration and analysis of origin-destination data
NASA Astrophysics Data System (ADS)
Ding, Linfang; Meng, Liqiu; Yang, Jian; Krisp, Jukka M.
2018-05-01
In this paper, we propose a visual analytics approach for the exploration of spatiotemporal interaction patterns of massive origin-destination data. Firstly, we visually query the movement database for data at certain time windows. Secondly, we conduct interactive clustering to allow the users to select input variables/features (e.g., origins, destinations, distance, and duration) and to adjust clustering parameters (e.g. distance threshold). The agglomerative hierarchical clustering method is applied for the multivariate clustering of the origin-destination data. Thirdly, we design a parallel coordinates plot for visualizing the precomputed clusters and for further exploration of interesting clusters. Finally, we propose a gradient line rendering technique to show the spatial and directional distribution of origin-destination clusters on a map view. We implement the visual analytics approach in a web-based interactive environment and apply it to real-world floating car data from Shanghai. The experiment results show the origin/destination hotspots and their spatial interaction patterns. They also demonstrate the effectiveness of our proposed approach.
Real-Time Visualization of Network Behaviors for Situational Awareness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Best, Daniel M.; Bohn, Shawn J.; Love, Douglas V.
Plentiful, complex, and dynamic data make understanding the state of an enterprise network difficult. Although visualization can help analysts understand baseline behaviors in network traffic and identify off-normal events, visual analysis systems often do not scale well to operational data volumes (in the hundreds of millions to billions of transactions per day) nor to analysis of emergent trends in real-time data. We present a system that combines multiple, complementary visualization techniques coupled with in-stream analytics, behavioral modeling of network actors, and a high-throughput processing platform called MeDICi. This system provides situational understanding of real-time network activity to help analysts takemore » proactive response steps. We have developed these techniques using requirements gathered from the government users for which the tools are being developed. By linking multiple visualization tools to a streaming analytic pipeline, and designing each tool to support a particular kind of analysis (from high-level awareness to detailed investigation), analysts can understand the behavior of a network across multiple levels of abstraction.« less
ProteoLens: a visual analytic tool for multi-scale database-driven biological network data mining.
Huan, Tianxiao; Sivachenko, Andrey Y; Harrison, Scott H; Chen, Jake Y
2008-08-12
New systems biology studies require researchers to understand how interplay among myriads of biomolecular entities is orchestrated in order to achieve high-level cellular and physiological functions. Many software tools have been developed in the past decade to help researchers visually navigate large networks of biomolecular interactions with built-in template-based query capabilities. To further advance researchers' ability to interrogate global physiological states of cells through multi-scale visual network explorations, new visualization software tools still need to be developed to empower the analysis. A robust visual data analysis platform driven by database management systems to perform bi-directional data processing-to-visualizations with declarative querying capabilities is needed. We developed ProteoLens as a JAVA-based visual analytic software tool for creating, annotating and exploring multi-scale biological networks. It supports direct database connectivity to either Oracle or PostgreSQL database tables/views, on which SQL statements using both Data Definition Languages (DDL) and Data Manipulation languages (DML) may be specified. The robust query languages embedded directly within the visualization software help users to bring their network data into a visualization context for annotation and exploration. ProteoLens supports graph/network represented data in standard Graph Modeling Language (GML) formats, and this enables interoperation with a wide range of other visual layout tools. The architectural design of ProteoLens enables the de-coupling of complex network data visualization tasks into two distinct phases: 1) creating network data association rules, which are mapping rules between network node IDs or edge IDs and data attributes such as functional annotations, expression levels, scores, synonyms, descriptions etc; 2) applying network data association rules to build the network and perform the visual annotation of graph nodes and edges according to associated data values. We demonstrated the advantages of these new capabilities through three biological network visualization case studies: human disease association network, drug-target interaction network and protein-peptide mapping network. The architectural design of ProteoLens makes it suitable for bioinformatics expert data analysts who are experienced with relational database management to perform large-scale integrated network visual explorations. ProteoLens is a promising visual analytic platform that will facilitate knowledge discoveries in future network and systems biology studies.
Using Maps in Web Analytics to Evaluate the Impact of Web-Based Extension Programs
ERIC Educational Resources Information Center
Veregin, Howard
2015-01-01
Maps can be a valuable addition to the Web analytics toolbox for Extension programs that use the Web to disseminate information. Extension professionals use Web analytics tools to evaluate program impacts. Maps add a unique perspective through visualization and analysis of geographic patterns and their relationships to other variables. Maps can…
From Streaming Data to Streaming Insights: The Impact of Data Velocities on Mental Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Endert, Alexander; Pike, William A.; Cook, Kristin A.
The rise of Big Data has influenced the design and technical implementation of visual analytic tools required to handle the increased volumes, velocities, and varieties of data. This has required a set of data management and computational advancements to allow us to store and compute on such datasets. However, as the ultimate goal of visual analytic technology is to enable the discovery and creation of insights from the users, an under-explored area is understanding how these datasets impact their mental models. That is, how have the analytic processes and strategies of users changed? How have users changed their perception ofmore » how to leverage, and ask questions of, these datasets?« less
Slushy weightings for the optimal pilot model. [considering visual tracking task
NASA Technical Reports Server (NTRS)
Dillow, J. D.; Picha, D. G.; Anderson, R. O.
1975-01-01
A pilot model is described which accounts for the effect of motion cues in a well defined visual tracking task. The effect of visual and motion cues are accounted for in the model in two ways. First, the observation matrix in the pilot model is structured to account for the visual and motion inputs presented to the pilot. Secondly, the weightings in the quadratic cost function associated with the pilot model are modified to account for the pilot's perception of the variables he considers important in the task. Analytic results obtained using the pilot model are compared to experimental results and in general good agreement is demonstrated. The analytic model yields small improvements in tracking performance with the addition of motion cues for easily controlled task dynamics and large improvements in tracking performance with the addition of motion cues for difficult task dynamics.
Visual analytics techniques for large multi-attribute time series data
NASA Astrophysics Data System (ADS)
Hao, Ming C.; Dayal, Umeshwar; Keim, Daniel A.
2008-01-01
Time series data commonly occur when variables are monitored over time. Many real-world applications involve the comparison of long time series across multiple variables (multi-attributes). Often business people want to compare this year's monthly sales with last year's sales to make decisions. Data warehouse administrators (DBAs) want to know their daily data loading job performance. DBAs need to detect the outliers early enough to act upon them. In this paper, two new visual analytic techniques are introduced: The color cell-based Visual Time Series Line Charts and Maps highlight significant changes over time in a long time series data and the new Visual Content Query facilitates finding the contents and histories of interesting patterns and anomalies, which leads to root cause identification. We have applied both methods to two real-world applications to mine enterprise data warehouse and customer credit card fraud data to illustrate the wide applicability and usefulness of these techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramanathan, Arvind; Pullum, Laura L; Steed, Chad A
2013-01-01
n this paper, we present an overview of the big data chal- lenges in disease bio-surveillance and then discuss the use of visual analytics for integrating data and turning it into knowl- edge. We will explore two integration scenarios: (1) combining text and multimedia sources to improve situational awareness and (2) enhancing disease spread model data with real-time bio-surveillance data. Together, the proposed integration methodologies can improve awareness about when, where and how emerging diseases can affect wide geographic regions.
Semantic Interaction for Visual Analytics: Toward Coupling Cognition and Computation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Endert, Alexander
2014-07-01
The dissertation discussed in this article [1] was written in the midst of an era of digitization. The world is becoming increasingly instrumented with sensors, monitoring, and other methods for generating data describing social, physical, and natural phenomena. Thus, data exist with the potential of being analyzed to uncover, or discover, the phenomena from which it was created. However, as the analytic models leveraged to analyze these data continue to increase in complexity and computational capability, how can visualizations and user interaction methodologies adapt and evolve to continue to foster discovery and sensemaking?
Zapatero, C; Castaño, C; Zapatero, L M
1999-03-01
Pharyngodonid nematodes (Oxyuroidea) belonging to the genus Alaeuris Thapar, 1925, were collected from the posterior gut of Gallotia stehlini (Lacertidae) from Grand Canary Island. Two species Alaeuris stehlini n. sp. and Alaeuris numidica canariensis n. ssp. were identified. The new species is described in which the long thin males are characterized by narrow caudal alae, a rounded first pair of adanal papillae non pedunculate, the second pair attached and elongate, the three pair teated; a short narrow V plate and a relatively long caudal appendage. The females are also long and thin with a slightly salient vulva, a conical pointed caudal appendage, oesophageal length approximately one third of body, excretory pore below the oesophageal bulb. The new subspecies most closely resembles Alaeuris numidica numidica. (Seurat, 1918) Petter, 1966 and Alaeuris numidica madagascariensis Petter, 1966.
Bouamer, S; Morand, S; Kara, M
2003-12-01
Four species of the genus Mehdiella Seurat, 1918 are redescribed: M. cristata Petter, 1966 and M. stylosa dollfusi Petter, 1966, parasite of Pyxix arachnoides Bell, 1827 from Madagascar, M. s. stylosa (Thapar, 1925) and M. uncinata (Drasche, 1884), parasite of Testudo graeca Linneaus, 1758, Testudo hermanni Gmelin, 1789 and Testudo horsfieldii (Gray, 1844) from Palaearctic region. Light microscopy and scanning electron microscopy (SEM) studies revealed new informations on the morphology of these species. On the basis of this morphological study, the sub-species Mehdiella stylosa dollfusi and M. s. stylosa are raised to level of species. The position of Mehdiella cristata among the species of the genus Mehdiella and the relationships among the species of the genus Mehdiella are discussed. A key to the eight valid species Mehdiella is given.
Visual business ecosystem intelligence: lessons from the field.
Basole, Rahul C
2014-01-01
Macroscopic insight into business ecosystems is becoming increasingly important. With the emergence of new digital business data, opportunities exist to develop rich, interactive visual-analytics tools. Georgia Institute of Technology researchers have been developing and implementing visual business ecosystem intelligence tools in corporate settings. This article discusses the challenges they faced, the lessons learned, and opportunities for future research.
A Virtual World of Visualization
NASA Technical Reports Server (NTRS)
1998-01-01
In 1990, Sterling Software, Inc., developed the Flow Analysis Software Toolkit (FAST) for NASA Ames on contract. FAST is a workstation based modular analysis and visualization tool. It is used to visualize and animate grids and grid oriented data, typically generated by finite difference, finite element and other analytical methods. FAST is now available through COSMIC, NASA's software storehouse.
Storyline Visualizations of Eye Tracking of Movie Viewing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balint, John T.; Arendt, Dustin L.; Blaha, Leslie M.
Storyline visualizations offer an approach that promises to capture the spatio-temporal characteristics of individual observers and simultaneously illustrate emerging group behaviors. We develop a visual analytics approach to parsing, aligning, and clustering fixation sequences from eye tracking data. Visualization of the results captures the similarities and differences across a group of observers performing a common task. We apply our storyline approach to visualize gaze patterns of people watching dynamic movie clips. Storylines mitigate some of the shortcomings of existent spatio-temporal visualization techniques and, importantly, continue to highlight individual observer behavioral dynamics.
Fan Du; Shneiderman, Ben; Plaisant, Catherine; Malik, Sana; Perer, Adam
2017-06-01
The growing volume and variety of data presents both opportunities and challenges for visual analytics. Addressing these challenges is needed for big data to provide valuable insights and novel solutions for business, security, social media, and healthcare. In the case of temporal event sequence analytics it is the number of events in the data and variety of temporal sequence patterns that challenges users of visual analytic tools. This paper describes 15 strategies for sharpening analytic focus that analysts can use to reduce the data volume and pattern variety. Four groups of strategies are proposed: (1) extraction strategies, (2) temporal folding, (3) pattern simplification strategies, and (4) iterative strategies. For each strategy, we provide examples of the use and impact of this strategy on volume and/or variety. Examples are selected from 20 case studies gathered from either our own work, the literature, or based on email interviews with individuals who conducted the analyses and developers who observed analysts using the tools. Finally, we discuss how these strategies might be combined and report on the feedback from 10 senior event sequence analysts.
An Affordance-Based Framework for Human Computation and Human-Computer Collaboration.
Crouser, R J; Chang, R
2012-12-01
Visual Analytics is "the science of analytical reasoning facilitated by visual interactive interfaces". The goal of this field is to develop tools and methodologies for approaching problems whose size and complexity render them intractable without the close coupling of both human and machine analysis. Researchers have explored this coupling in many venues: VAST, Vis, InfoVis, CHI, KDD, IUI, and more. While there have been myriad promising examples of human-computer collaboration, there exists no common language for comparing systems or describing the benefits afforded by designing for such collaboration. We argue that this area would benefit significantly from consensus about the design attributes that define and distinguish existing techniques. In this work, we have reviewed 1,271 papers from many of the top-ranking conferences in visual analytics, human-computer interaction, and visualization. From these, we have identified 49 papers that are representative of the study of human-computer collaborative problem-solving, and provide a thorough overview of the current state-of-the-art. Our analysis has uncovered key patterns of design hinging on human and machine-intelligence affordances, and also indicates unexplored avenues in the study of this area. The results of this analysis provide a common framework for understanding these seemingly disparate branches of inquiry, which we hope will motivate future work in the field.
Pedrami, Farnoush; Asenso, Pamela; Devi, Sachin
2016-08-25
Objective. To identify trends in pharmacy education during last two decades using text mining. Methods. Articles published in the American Journal of Pharmaceutical Education (AJPE) in the past two decades were compiled in a database. Custom text analytics software was written using Visual Basic programming language in the Visual Basic for Applications (VBA) editor of Excel 2007. Frequency of words appearing in article titles was calculated using the custom VBA software. Data were analyzed to identify the emerging trends in pharmacy education. Results. Three educational trends emerged: active learning, interprofessional, and cultural competency. Conclusion. The text analytics program successfully identified trends in article topics and may be a useful compass to predict the future course of pharmacy education.
Survey of Network Visualization Tools
2007-12-01
Dimensionality • 2D Comments: Deployment Type: • Components for tool building • Standalone Tool OS: • Windows Extensibility • ActiveX ...Visual Basic Comments: Interoperability Daisy is fully compliant with Microsoft’s ActiveX , therefore, other Windows based programs can...other functions that improve analytic decision making. Available in ActiveX , C++, Java, and .NET editions. • Tom Sawyer Visualization: Enables you to
Viangteeravat, Teeradache; Nagisetty, Naga Satya V Rao
2014-01-01
Secondary use of large and open data sets provides researchers with an opportunity to address high-impact questions that would otherwise be prohibitively expensive and time consuming to study. Despite the availability of data, generating hypotheses from huge data sets is often challenging, and the lack of complex analysis of data might lead to weak hypotheses. To overcome these issues and to assist researchers in building hypotheses from raw data, we are working on a visual and analytical platform called PRD Pivot. PRD Pivot is a de-identified pediatric research database designed to make secondary use of rich data sources, such as the electronic health record (EHR). The development of visual analytics using Microsoft Live Labs Pivot makes the process of data elaboration, information gathering, knowledge generation, and complex information exploration transparent to tool users and provides researchers with the ability to sort and filter by various criteria, which can lead to strong, novel hypotheses.
Viangteeravat, Teeradache; Nagisetty, Naga Satya V. Rao
2014-01-01
Secondary use of large and open data sets provides researchers with an opportunity to address high-impact questions that would otherwise be prohibitively expensive and time consuming to study. Despite the availability of data, generating hypotheses from huge data sets is often challenging, and the lack of complex analysis of data might lead to weak hypotheses. To overcome these issues and to assist researchers in building hypotheses from raw data, we are working on a visual and analytical platform called PRD Pivot. PRD Pivot is a de-identified pediatric research database designed to make secondary use of rich data sources, such as the electronic health record (EHR). The development of visual analytics using Microsoft Live Labs Pivot makes the process of data elaboration, information gathering, knowledge generation, and complex information exploration transparent to tool users and provides researchers with the ability to sort and filter by various criteria, which can lead to strong, novel hypotheses. PMID:24808811
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scholtz, Jean; Plaisant, Catherine; Whiting, Mark A.
The evaluation of visual analytics environments was a topic in Illuminating the Path [Thomas 2005] as a critical aspect of moving research into practice. For a thorough understanding of the utility of the systems available, evaluation not only involves assessing the visualizations, interactions or data processing algorithms themselves, but also the complex processes that a tool is meant to support (such as exploratory data analysis and reasoning, communication through visualization, or collaborative data analysis [Lam 2012; Carpendale 2007]). Researchers and practitioners in the field have long identified many of the challenges faced when planning, conducting, and executing an evaluation ofmore » a visualization tool or system [Plaisant 2004]. Evaluation is needed to verify that algorithms and software systems work correctly and that they represent improvements over the current infrastructure. Additionally to effectively transfer new software into a working environment, it is necessary to ensure that the software has utility for the end-users and that the software can be incorporated into the end-user’s infrastructure and work practices. Evaluation test beds require datasets, tasks, metrics and evaluation methodologies. As noted in [Thomas 2005] it is difficult and expensive for any one researcher to setup an evaluation test bed so in many cases evaluation is setup for communities of researchers or for various research projects or programs. Examples of successful community evaluations can be found [Chinchor 1993; Voorhees 2007; FRGC 2012]. As visual analytics environments are intended to facilitate the work of human analysts, one aspect of evaluation needs to focus on the utility of the software to the end-user. This requires representative users, representative tasks, and metrics that measure the utility to the end-user. This is even more difficult as now one aspect of the test methodology is access to representative end-users to participate in the evaluation. In many cases the sensitive nature of data and tasks and difficult access to busy analysts puts even more of a burden on researchers to complete this type of evaluation. User-centered design goes beyond evaluation and starts with the user [Beyer 1997, Shneiderman 2009]. Having some knowledge of the type of data, tasks, and work practices helps researchers and developers know the correct paths to pursue in their work. When access to the end-users is problematic at best and impossible at worst, user-centered design becomes difficult. Researchers are unlikely to go to work on the type of problems faced by inaccessible users. Commercial vendors have difficulties evaluating and improving their products when they cannot observe real users working with their products. In well-established fields such as web site design or office software design, user-interface guidelines have been developed based on the results of empirical studies or the experience of experts. Guidelines can speed up the design process and replace some of the need for observation of actual users [heuristics review references]. In 2006 when the visual analytics community was initially getting organized, no such guidelines existed. Therefore, we were faced with the problem of developing an evaluation framework for the field of visual analytics that would provide representative situations and datasets, representative tasks and utility metrics, and finally a test methodology which would include a surrogate for representative users, increase interest in conducting research in the field, and provide sufficient feedback to the researchers so that they could improve their systems.« less
Integrated genome browser: visual analytics platform for genomics.
Freese, Nowlan H; Norris, David C; Loraine, Ann E
2016-07-15
Genome browsers that support fast navigation through vast datasets and provide interactive visual analytics functions can help scientists achieve deeper insight into biological systems. Toward this end, we developed Integrated Genome Browser (IGB), a highly configurable, interactive and fast open source desktop genome browser. Here we describe multiple updates to IGB, including all-new capabilities to display and interact with data from high-throughput sequencing experiments. To demonstrate, we describe example visualizations and analyses of datasets from RNA-Seq, ChIP-Seq and bisulfite sequencing experiments. Understanding results from genome-scale experiments requires viewing the data in the context of reference genome annotations and other related datasets. To facilitate this, we enhanced IGB's ability to consume data from diverse sources, including Galaxy, Distributed Annotation and IGB-specific Quickload servers. To support future visualization needs as new genome-scale assays enter wide use, we transformed the IGB codebase into a modular, extensible platform for developers to create and deploy all-new visualizations of genomic data. IGB is open source and is freely available from http://bioviz.org/igb aloraine@uncc.edu. © The Author 2016. Published by Oxford University Press.
ERIC Educational Resources Information Center
Pfeiffer, Mark G.; Scott, Paul G.
A fly-only group (N=16) of Navy replacement pilots undergoing fleet readiness training in the SH-3 helicopter was compared with groups pre-trained on Device 2F64C with: (1) visual only (N=13); (2) no visual/no motion (N=14); and (3) one visual plus motion group (N=19). Groups were compared for their SH-3 helicopter performance in the transition…
Liquid-to-gel transition for visual and tactile detection of biological analytes.
Fedotova, Tatiana A; Kolpashchikov, Dmitry M
2017-11-23
So far all visual and instrument-free methods have been based on a color change. However, colorimetric assays cannot be used by blind or color-blind people. Here we introduce a liquid-to-gel transition as a general output platform. The signal output (a piece of gel) can be unambiguously distinguished from liquid both visually and by touch. This approach promises to contribute to the development of an accessible environment for visually impaired persons.
Qualitative evaluation of water displacement in simulated analytical breaststroke movements.
Martens, Jonas; Daly, Daniel
2012-05-01
One purpose of evaluating a swimmer is to establish the individualized optimal technique. A swimmer's particular body structure and the resulting movement pattern will cause the surrounding water to react in differing ways. Consequently, an assessment method based on flow visualization was developed complimentary to movement analysis and body structure quantification. A fluorescent dye was used to make the water displaced by the body visible on video. To examine the hypothesis on the propulsive mechanisms applied in breaststroke swimming, we analyzed the movements of the surrounding water during 4 analytical breaststroke movements using the flow visualization technique.
Ali, M A; Ahsan, Z; Amin, M; Latif, S; Ayyaz, A; Ayyaz, M N
2016-05-01
Globally, disease surveillance systems are playing a significant role in outbreak detection and response management of Infectious Diseases (IDs). However, in developing countries like Pakistan, epidemic outbreaks are difficult to detect due to scarcity of public health data and absence of automated surveillance systems. Our research is intended to formulate an integrated service-oriented visual analytics architecture for ID surveillance, identify key constituents and set up a baseline for easy reproducibility of such systems in the future. This research focuses on development of ID-Viewer, which is a visual analytics decision support system for ID surveillance. It is a blend of intelligent approaches to make use of real-time streaming data from Emergency Departments (EDs) for early outbreak detection, health care resource allocation and epidemic response management. We have developed a robust service-oriented visual analytics architecture for ID surveillance, which provides automated mechanisms for ID data acquisition, outbreak detection and epidemic response management. Classification of chief-complaints is accomplished using dynamic classification module, which employs neural networks and fuzzy-logic to categorize syndromes. Standard routines by Center for Disease Control (CDC), i.e. c1-c3 (c1-mild, c2-medium and c3-ultra), and spatial scan statistics are employed for detection of temporal and spatio-temporal disease outbreaks respectively. Prediction of imminent disease threats is accomplished using support vector regression for early warnings and response planning. Geographical visual analytics displays are developed that allow interactive visualization of syndromic clusters, monitoring disease spread patterns, and identification of spatio-temporal risk zones. We analysed performance of surveillance framework using ID data for year 2011-2015. Dynamic syndromic classifier is able to classify chief-complaints to appropriate syndromes with high classification accuracy. Outbreak detection methods are able to detect the ID outbreaks in start of epidemic time zones. Prediction model is able to forecast dengue trend for 20 weeks ahead with nominal normalized root mean square error of 0.29. Interactive geo-spatiotemporal displays, i.e. heat-maps, and choropleth are shown in respective sections. The proposed framework will set a standard and provide necessary details for future implementation of such a system for resource-constrained regions. It will improve early outbreak detection attributable to natural and man-made biological threats, monitor spatio-temporal epidemic trends and provide assurance that an outbreak has, or has not occurred. Advanced analytics features will be beneficial in timely organization/formulation of health management policies, disease control activities and efficient health care resource allocation. Copyright © 2016 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jatnieks, Janis; De Lucia, Marco; Sips, Mike; Dransch, Doris
2015-04-01
Many geoscience applications can benefit from testing many combinations of input parameters for geochemical simulation models. It is, however, a challenge to screen the input and output data from the model to identify the significant relationships between input parameters and output variables. For addressing this problem we propose a Visual Analytics approach that has been developed in an ongoing collaboration between computer science and geoscience researchers. Our Visual Analytics approach uses visualization methods of hierarchical horizontal axis, multi-factor stacked bar charts and interactive semi-automated filtering for input and output data together with automatic sensitivity analysis. This guides the users towards significant relationships. We implement our approach as an interactive data exploration tool. It is designed with flexibility in mind, so that a diverse set of tasks such as inverse modeling, sensitivity analysis and model parameter refinement can be supported. Here we demonstrate the capabilities of our approach by two examples for gas storage applications. For the first example our Visual Analytics approach enabled the analyst to observe how the element concentrations change around previously established baselines in response to thousands of different combinations of mineral phases. This supported combinatorial inverse modeling for interpreting observations about the chemical composition of the formation fluids at the Ketzin pilot site for CO2 storage. The results indicate that, within the experimental error range, the formation fluid cannot be considered at local thermodynamical equilibrium with the mineral assemblage of the reservoir rock. This is a valuable insight from the predictive geochemical modeling for the Ketzin site. For the second example our approach supports sensitivity analysis for a reaction involving the reductive dissolution of pyrite with formation of pyrrothite in presence of gaseous hydrogen. We determine that this reaction is thermodynamically favorable under a broad range of conditions. This includes low temperatures and absence of microbial catalysators. Our approach has potential for use in other applications that involve exploration of relationships in geochemical simulation model data.
Visual Thinking and Gender Differences in High School Calculus
ERIC Educational Resources Information Center
Haciomeroglu, Erhan Selcuk; Chicken, Eric
2012-01-01
This study sought to examine calculus students' mathematical performances and preferences for visual or analytic thinking regarding derivative and antiderivative tasks presented graphically. It extends previous studies by investigating factors mediating calculus students' mathematical performances and their preferred modes of thinking. Data were…
Visual Basic programs for spreadsheet analysis.
Hunt, Bruce
2005-01-01
A collection of Visual Basic programs, entitled Function.xls, has been written for ground water spreadsheet calculations. This collection includes programs for calculating mathematical functions and for evaluating analytical solutions in ground water hydraulics and contaminant transport. Several spreadsheet examples are given to illustrate their use.
The broad topic of biomarker research has an often-overlooked component: the documentation and interpretation of the surrounding chemical environment and other meta-data, especially from visualization, analytical, and statistical perspectives (Pleil et al. 2014; Sobus et al. 2011...
The challenge of big data in public health: an opportunity for visual analytics.
Ola, Oluwakemi; Sedig, Kamran
2014-01-01
Public health (PH) data can generally be characterized as big data. The efficient and effective use of this data determines the extent to which PH stakeholders can sufficiently address societal health concerns as they engage in a variety of work activities. As stakeholders interact with data, they engage in various cognitive activities such as analytical reasoning, decision-making, interpreting, and problem solving. Performing these activities with big data is a challenge for the unaided mind as stakeholders encounter obstacles relating to the data's volume, variety, velocity, and veracity. Such being the case, computer-based information tools are needed to support PH stakeholders. Unfortunately, while existing computational tools are beneficial in addressing certain work activities, they fall short in supporting cognitive activities that involve working with large, heterogeneous, and complex bodies of data. This paper presents visual analytics (VA) tools, a nascent category of computational tools that integrate data analytics with interactive visualizations, to facilitate the performance of cognitive activities involving big data. Historically, PH has lagged behind other sectors in embracing new computational technology. In this paper, we discuss the role that VA tools can play in addressing the challenges presented by big data. In doing so, we demonstrate the potential benefit of incorporating VA tools into PH practice, in addition to highlighting the need for further systematic and focused research.
Process monitoring and visualization solutions for hot-melt extrusion: a review.
Saerens, Lien; Vervaet, Chris; Remon, Jean Paul; De Beer, Thomas
2014-02-01
Hot-melt extrusion (HME) is applied as a continuous pharmaceutical manufacturing process for the production of a variety of dosage forms and formulations. To ensure the continuity of this process, the quality of the extrudates must be assessed continuously during manufacturing. The objective of this review is to provide an overview and evaluation of the available process analytical techniques which can be applied in hot-melt extrusion. Pharmaceutical extruders are equipped with traditional (univariate) process monitoring tools, observing barrel and die temperatures, throughput, screw speed, torque, drive amperage, melt pressure and melt temperature. The relevance of several spectroscopic process analytical techniques for monitoring and control of pharmaceutical HME has been explored recently. Nevertheless, many other sensors visualizing HME and measuring diverse critical product and process parameters with potential use in pharmaceutical extrusion are available, and were thoroughly studied in polymer extrusion. The implementation of process analytical tools in HME serves two purposes: (1) improving process understanding by monitoring and visualizing the material behaviour and (2) monitoring and analysing critical product and process parameters for process control, allowing to maintain a desired process state and guaranteeing the quality of the end product. This review is the first to provide an evaluation of the process analytical tools applied for pharmaceutical HME monitoring and control, and discusses techniques that have been used in polymer extrusion having potential for monitoring and control of pharmaceutical HME. © 2013 Royal Pharmaceutical Society.
The Challenge of Big Data in Public Health: An Opportunity for Visual Analytics
Ola, Oluwakemi; Sedig, Kamran
2014-01-01
Public health (PH) data can generally be characterized as big data. The efficient and effective use of this data determines the extent to which PH stakeholders can sufficiently address societal health concerns as they engage in a variety of work activities. As stakeholders interact with data, they engage in various cognitive activities such as analytical reasoning, decision-making, interpreting, and problem solving. Performing these activities with big data is a challenge for the unaided mind as stakeholders encounter obstacles relating to the data’s volume, variety, velocity, and veracity. Such being the case, computer-based information tools are needed to support PH stakeholders. Unfortunately, while existing computational tools are beneficial in addressing certain work activities, they fall short in supporting cognitive activities that involve working with large, heterogeneous, and complex bodies of data. This paper presents visual analytics (VA) tools, a nascent category of computational tools that integrate data analytics with interactive visualizations, to facilitate the performance of cognitive activities involving big data. Historically, PH has lagged behind other sectors in embracing new computational technology. In this paper, we discuss the role that VA tools can play in addressing the challenges presented by big data. In doing so, we demonstrate the potential benefit of incorporating VA tools into PH practice, in addition to highlighting the need for further systematic and focused research. PMID:24678376
NASA Astrophysics Data System (ADS)
Song, Y.; Gui, Z.; Wu, H.; Wei, Y.
2017-09-01
Analysing spatiotemporal distribution patterns and its dynamics of different industries can help us learn the macro-level developing trends of those industries, and in turn provides references for industrial spatial planning. However, the analysis process is challenging task which requires an easy-to-understand information presentation mechanism and a powerful computational technology to support the visual analytics of big data on the fly. Due to this reason, this research proposes a web-based framework to enable such a visual analytics requirement. The framework uses standard deviational ellipse (SDE) and shifting route of gravity centers to show the spatial distribution and yearly developing trends of different enterprise types according to their industry categories. The calculation of gravity centers and ellipses is paralleled using Apache Spark to accelerate the processing. In the experiments, we use the enterprise registration dataset in Mainland China from year 1960 to 2015 that contains fine-grain location information (i.e., coordinates of each individual enterprise) to demonstrate the feasibility of this framework. The experiment result shows that the developed visual analytics method is helpful to understand the multi-level patterns and developing trends of different industries in China. Moreover, the proposed framework can be used to analyse any nature and social spatiotemporal point process with large data volume, such as crime and disease.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franklin, Lyndsey; Pirrung, Megan A.; Blaha, Leslie M.
Cyber network analysts follow complex processes in their investigations of potential threats to their network. Much research is dedicated to providing automated tool support in the effort to make their tasks more efficient, accurate, and timely. This tool support comes in a variety of implementations from machine learning algorithms that monitor streams of data to visual analytic environments for exploring rich and noisy data sets. Cyber analysts, however, often speak of a need for tools which help them merge the data they already have and help them establish appropriate baselines against which to compare potential anomalies. Furthermore, existing threat modelsmore » that cyber analysts regularly use to structure their investigation are not often leveraged in support tools. We report on our work with cyber analysts to understand they analytic process and how one such model, the MITRE ATT&CK Matrix [32], is used to structure their analytic thinking. We present our efforts to map specific data needed by analysts into the threat model to inform our eventual visualization designs. We examine data mapping for gaps where the threat model is under-supported by either data or tools. We discuss these gaps as potential design spaces for future research efforts. We also discuss the design of a prototype tool that combines machine-learning and visualization components to support cyber analysts working with this threat model.« less
Finding Waldo: Learning about Users from their Interactions.
Brown, Eli T; Ottley, Alvitta; Zhao, Helen; Quan Lin; Souvenir, Richard; Endert, Alex; Chang, Remco
2014-12-01
Visual analytics is inherently a collaboration between human and computer. However, in current visual analytics systems, the computer has limited means of knowing about its users and their analysis processes. While existing research has shown that a user's interactions with a system reflect a large amount of the user's reasoning process, there has been limited advancement in developing automated, real-time techniques that mine interactions to learn about the user. In this paper, we demonstrate that we can accurately predict a user's task performance and infer some user personality traits by using machine learning techniques to analyze interaction data. Specifically, we conduct an experiment in which participants perform a visual search task, and apply well-known machine learning algorithms to three encodings of the users' interaction data. We achieve, depending on algorithm and encoding, between 62% and 83% accuracy at predicting whether each user will be fast or slow at completing the task. Beyond predicting performance, we demonstrate that using the same techniques, we can infer aspects of the user's personality factors, including locus of control, extraversion, and neuroticism. Further analyses show that strong results can be attained with limited observation time: in one case 95% of the final accuracy is gained after a quarter of the average task completion time. Overall, our findings show that interactions can provide information to the computer about its human collaborator, and establish a foundation for realizing mixed-initiative visual analytics systems.
Teaching Science through Pictorial Models during Read-Alouds
ERIC Educational Resources Information Center
Oliveira, Alandeom W.; Rivera, Seema; Glass, Rory; Mastroianni, Michael; Wizner, Francine; Amodeo, Vincent
2013-01-01
This study examines how three elementary teachers refer to pictorial models (photographs, drawings, and cartoons) during science read-alouds. While one teacher used realistic photographs for the purpose of visually verifying facts about crystals, another employed analytical diagrams as heuristic tools to help students visualize complex target…
75 FR 53262 - Privacy Act of 1974; System of Records
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-31
... a new Privacy Act system of records, JUSTICE/FBI- 021, the Data Integration and Visualization System... Act system of records, the Data Integration and Visualization System (DIVS), Justice/FBI-021. The... investigative mission by enabling access, search, integration, and analytics across multiple existing databases...
The advent of new higher throughput analytical instrumentation has put a strain on interpreting and explaining the results from complex studies. Contemporary human, environmental, and biomonitoring data sets are comprised of tens or hundreds of analytes, multiple repeat measures...
Reimagining Khan Analytics for Student Coaches
ERIC Educational Resources Information Center
Cunningham, Jim
2015-01-01
In this paper, I describe preliminary work on a new research project in learning analytics at Arizona State University. In conjunction with an innovative remedial mathematics course using Khan Academy and student coaches, this study seeks to measure the effectiveness of visualized data in assisting student coaches as they help remedial math…
ERIC Educational Resources Information Center
Martinez-Maldonado, Roberto; Pardo, Abelardo; Mirriahi, Negin; Yacef, Kalina; Kay, Judy; Clayphan, Andrew
2015-01-01
Designing, validating, and deploying learning analytics tools for instructors or students is a challenge that requires techniques and methods from different disciplines, such as software engineering, human-computer interaction, computer graphics, educational design, and psychology. Whilst each has established its own design methodologies, we now…
Instrumentation: Photodiode Array Detectors in UV-VIS Spectroscopy. Part II.
ERIC Educational Resources Information Center
Jones, Dianna G.
1985-01-01
A previous part (Analytical Chemistry; v57 n9 p1057A) discussed the theoretical aspects of diode ultraviolet-visual (UV-VIS) spectroscopy. This part describes the applications of diode arrays in analytical chemistry, also considering spectroelectrochemistry, high performance liquid chromatography (HPLC), HPLC data processing, stopped flow, and…
Bring It to the Pitch: Combining Video and Movement Data to Enhance Team Sport Analysis.
Stein, Manuel; Janetzko, Halldor; Lamprecht, Andreas; Breitkreutz, Thorsten; Zimmermann, Philipp; Goldlucke, Bastian; Schreck, Tobias; Andrienko, Gennady; Grossniklaus, Michael; Keim, Daniel A
2018-01-01
Analysts in professional team sport regularly perform analysis to gain strategic and tactical insights into player and team behavior. Goals of team sport analysis regularly include identification of weaknesses of opposing teams, or assessing performance and improvement potential of a coached team. Current analysis workflows are typically based on the analysis of team videos. Also, analysts can rely on techniques from Information Visualization, to depict e.g., player or ball trajectories. However, video analysis is typically a time-consuming process, where the analyst needs to memorize and annotate scenes. In contrast, visualization typically relies on an abstract data model, often using abstract visual mappings, and is not directly linked to the observed movement context anymore. We propose a visual analytics system that tightly integrates team sport video recordings with abstract visualization of underlying trajectory data. We apply appropriate computer vision techniques to extract trajectory data from video input. Furthermore, we apply advanced trajectory and movement analysis techniques to derive relevant team sport analytic measures for region, event and player analysis in the case of soccer analysis. Our system seamlessly integrates video and visualization modalities, enabling analysts to draw on the advantages of both analysis forms. Several expert studies conducted with team sport analysts indicate the effectiveness of our integrated approach.
Analytic modeling of aerosol size distributions
NASA Technical Reports Server (NTRS)
Deepack, A.; Box, G. P.
1979-01-01
Mathematical functions commonly used for representing aerosol size distributions are studied parametrically. Methods for obtaining best fit estimates of the parameters are described. A catalog of graphical plots depicting the parametric behavior of the functions is presented along with procedures for obtaining analytical representations of size distribution data by visual matching of the data with one of the plots. Examples of fitting the same data with equal accuracy by more than one analytic model are also given.
Seeking Information with an Information Visualization System: A Study of Cognitive Styles
ERIC Educational Resources Information Center
Yuan, Xiaojun; Zhang, Xiangman; Chen, Chaomei; Avery, Joshua M.
2011-01-01
Introduction: This study investigated the effect of cognitive styles on users' information-seeking task performance using a knowledge domain information visualization system called CiteSpace. Method: Sixteen graduate students participated in a user experiment. Each completed an extended cognitive style analysis wholistic-analytic test (the…
Improving Student Performance Using Nudge Analytics
ERIC Educational Resources Information Center
Feild, Jacqueline
2015-01-01
Providing students with continuous and personalized feedback on their performance is an important part of encouraging self regulated learning. As part of our higher education platform, we built a set of data visualizations to provide feedback to students on their assignment performance. These visualizations give students information about how they…
Visualizing the Solute Vaporization Interference in Flame Atomic Absorption Spectroscopy
ERIC Educational Resources Information Center
Dockery, Christopher R.; Blew, Michael J.; Goode, Scott R.
2008-01-01
Every day, tens of thousands of chemists use analytical atomic spectroscopy in their work, often without knowledge of possible interferences. We present a unique approach to study these interferences by using modern response surface methods to visualize an interference in which aluminum depresses the calcium atomic absorption signal. Calcium…
Innovative Didactic Designs: Visual Analytics and Visual Literacy in School
ERIC Educational Resources Information Center
Stenliden, Linnéa; Nissen, Jörgen; Bodén, Ulrika
2017-01-01
In a world of massively mediated information and communication, students must learn to handle rapidly growing information volumes inside and outside school. Pedagogy attuned to processing this growing production and communication of information is needed. However, ordinary educational models often fail to support students, trialing neither…
The identification of van Hiele level students on the topic of space analytic geometry
NASA Astrophysics Data System (ADS)
Yudianto, E.; Sunardi; Sugiarti, T.; Susanto; Suharto; Trapsilasiwi, D.
2018-03-01
Geometry topics are still considered difficult by most students. Therefore, this study focused on the identification of students related to van Hiele levels. The task used from result of the development of questions related to analytical geometry of space. The results of the work involving 78 students who worked on these questions covered 11.54% (nine students) classified on a visual level; 5.13% (four students) on analysis level; 1.28% (one student) on informal deduction level; 2.56% (two students) on deduction and 2.56% (two students) on rigor level, and 76.93% (sixty students) classified on the pre-visualization level.
T.Rex Visual Analytics for Transactional Exploration
None
2018-01-16
T.Rex is PNNL's visual analytics tool that specializes in tabular structured data, like you might open with Excel. It's a client-server application, allowing the server to do a lot of the heavy lifting and the client to open spreadsheets with millions of rows. With datasets of that size, especially if you're unfamiliar with the contents, it's very hard to get a good grasp of what's in it using traditional tools. With T.Rex, the multiple views allow you to see categorical, temporal, numerical, relational, and summary data. The interactivity lets you look across your data and see how things relate to each other.
T.Rex Visual Analytics for Transactional Exploration
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2014-07-01
T.Rex is PNNL's visual analytics tool that specializes in tabular structured data, like you might open with Excel. It's a client-server application, allowing the server to do a lot of the heavy lifting and the client to open spreadsheets with millions of rows. With datasets of that size, especially if you're unfamiliar with the contents, it's very hard to get a good grasp of what's in it using traditional tools. With T.Rex, the multiple views allow you to see categorical, temporal, numerical, relational, and summary data. The interactivity lets you look across your data and see how things relate tomore » each other.« less
AUVA - Augmented Reality Empowers Visual Analytics to explore Medical Curriculum Data.
Nifakos, Sokratis; Vaitsis, Christos; Zary, Nabil
2015-01-01
Medical curriculum data play a key role in the structure and the organization of medical programs in Universities around the world. The effective processing and usage of these data may improve the educational environment of medical students. As a consequence, the new generation of health professionals would have improved skills from the previous ones. This study introduces the process of enhancing curriculum data by the use of augmented reality technology as a management and presentation tool. The final goal is to enrich the information presented from a visual analytics approach applied on medical curriculum data and to sustain low levels of complexity of understanding these data.
Steed, Chad A.; Halsey, William; Dehoff, Ryan; ...
2017-02-16
Flexible visual analysis of long, high-resolution, and irregularly sampled time series data from multiple sensor streams is a challenge in several domains. In the field of additive manufacturing, this capability is critical for realizing the full potential of large-scale 3D printers. Here, we propose a visual analytics approach that helps additive manufacturing researchers acquire a deep understanding of patterns in log and imagery data collected by 3D printers. Our specific goals include discovering patterns related to defects and system performance issues, optimizing build configurations to avoid defects, and increasing production efficiency. We introduce Falcon, a new visual analytics system thatmore » allows users to interactively explore large, time-oriented data sets from multiple linked perspectives. Falcon provides overviews, detailed views, and unique segmented time series visualizations, all with adjustable scale options. To illustrate the effectiveness of Falcon at providing thorough and efficient knowledge discovery, we present a practical case study involving experts in additive manufacturing and data from a large-scale 3D printer. The techniques described are applicable to the analysis of any quantitative time series, though the focus of this paper is on additive manufacturing.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steed, Chad A.; Halsey, William; Dehoff, Ryan
Flexible visual analysis of long, high-resolution, and irregularly sampled time series data from multiple sensor streams is a challenge in several domains. In the field of additive manufacturing, this capability is critical for realizing the full potential of large-scale 3D printers. Here, we propose a visual analytics approach that helps additive manufacturing researchers acquire a deep understanding of patterns in log and imagery data collected by 3D printers. Our specific goals include discovering patterns related to defects and system performance issues, optimizing build configurations to avoid defects, and increasing production efficiency. We introduce Falcon, a new visual analytics system thatmore » allows users to interactively explore large, time-oriented data sets from multiple linked perspectives. Falcon provides overviews, detailed views, and unique segmented time series visualizations, all with adjustable scale options. To illustrate the effectiveness of Falcon at providing thorough and efficient knowledge discovery, we present a practical case study involving experts in additive manufacturing and data from a large-scale 3D printer. The techniques described are applicable to the analysis of any quantitative time series, though the focus of this paper is on additive manufacturing.« less
Visual communication in the psychoanalytic situation.
Kanzer, M
1980-01-01
The relationship between verbal and visual aspects of the analytic proceedings shows them blended integrally in the experiences of both patient and analyst and in contributing to the insights derived during the treatment. Areas in which the admixture of the verbal and visual occur are delineated. Awareness of the visual aspects gives substance to the operations of empathy, intuition, acting out, working through, etc. Some typical features of visual 'language" are noted and related to the analytic situation. As such they can be translated with the use of logic and consciousness on the analyst's part, not mere random eruptions of intuition. The original significance of dreams as a royal road to the unconscious is confirmed-but we also find in them insights to be derived with higher mental processes. Finally, dyadic aspects of the formation and aims of dreams during analysis are pointed out, with important implications for the analyst's own self-supervision of his techniques and 'real personality" and their effects upon the patient. how remarkable that Dora's dreams, all too belatedly teaching Freud about their transference implications, still have so much more to communicate that derives from his capacity to record faithfully observations he was not yet ready to explain.
MemAxes: Visualization and Analytics for Characterizing Complex Memory Performance Behaviors.
Gimenez, Alfredo; Gamblin, Todd; Jusufi, Ilir; Bhatele, Abhinav; Schulz, Martin; Bremer, Peer-Timo; Hamann, Bernd
2018-07-01
Memory performance is often a major bottleneck for high-performance computing (HPC) applications. Deepening memory hierarchies, complex memory management, and non-uniform access times have made memory performance behavior difficult to characterize, and users require novel, sophisticated tools to analyze and optimize this aspect of their codes. Existing tools target only specific factors of memory performance, such as hardware layout, allocations, or access instructions. However, today's tools do not suffice to characterize the complex relationships between these factors. Further, they require advanced expertise to be used effectively. We present MemAxes, a tool based on a novel approach for analytic-driven visualization of memory performance data. MemAxes uniquely allows users to analyze the different aspects related to memory performance by providing multiple visual contexts for a centralized dataset. We define mappings of sampled memory access data to new and existing visual metaphors, each of which enabling a user to perform different analysis tasks. We present methods to guide user interaction by scoring subsets of the data based on known performance problems. This scoring is used to provide visual cues and automatically extract clusters of interest. We designed MemAxes in collaboration with experts in HPC and demonstrate its effectiveness in case studies.
PB-AM: An open-source, fully analytical linear poisson-boltzmann solver.
Felberg, Lisa E; Brookes, David H; Yap, Eng-Hui; Jurrus, Elizabeth; Baker, Nathan A; Head-Gordon, Teresa
2017-06-05
We present the open source distributed software package Poisson-Boltzmann Analytical Method (PB-AM), a fully analytical solution to the linearized PB equation, for molecules represented as non-overlapping spherical cavities. The PB-AM software package includes the generation of outputs files appropriate for visualization using visual molecular dynamics, a Brownian dynamics scheme that uses periodic boundary conditions to simulate dynamics, the ability to specify docking criteria, and offers two different kinetics schemes to evaluate biomolecular association rate constants. Given that PB-AM defines mutual polarization completely and accurately, it can be refactored as a many-body expansion to explore 2- and 3-body polarization. Additionally, the software has been integrated into the Adaptive Poisson-Boltzmann Solver (APBS) software package to make it more accessible to a larger group of scientists, educators, and students that are more familiar with the APBS framework. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Predicting the Development of Analytical and Creative Abilities in Upper Elementary Grades
ERIC Educational Resources Information Center
Gubbels, Joyce; Segers, Eliane; Verhoeven, Ludo
2017-01-01
In some models, intelligence has been described as a multidimensional construct comprising both analytical and creative abilities. In addition, intelligence is considered to be dynamic rather than static. A structural equation model was used to examine the predictive role of cognitive (visual short-term memory, verbal short-term memory, selective…
ERIC Educational Resources Information Center
Thoma, Volker; Hummel, John E.; Davidoff, Jules
2004-01-01
According to the hybrid theory of object recognition (J. E. Hummel, 2001), ignored object images are represented holistically, and attended images are represented both holistically and analytically. This account correctly predicts patterns of visual priming as a function of translation, scale (B. J. Stankiewicz & J. E. Hummel, 2002), and…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bradel, Lauren; Endert, Alexander; Koch, Kristen
2013-08-01
Large, high-resolution vertical displays carry the potential to increase the accuracy of collaborative sensemaking, given correctly designed visual analytics tools. From an exploratory user study using a fictional textual intelligence analysis task, we investigated how users interact with the display to construct spatial schemas and externalize information, as well as how they establish shared and private territories. We investigated the space management strategies of users partitioned by type of tool philosophy followed (visualization- or text-centric). We classified the types of territorial behavior exhibited in terms of how the users interacted with information on the display (integrated or independent workspaces). Next,more » we examined how territorial behavior impacted the common ground between the pairs of users. Finally, we offer design suggestions for building future co-located collaborative visual analytics tools specifically for use on large, high-resolution vertical displays.« less
Use of multiple colorimetric indicators for paper-based microfluidic devices.
Dungchai, Wijitar; Chailapakul, Orawon; Henry, Charles S
2010-08-03
We report here the use of multiple indicators for a single analyte for paper-based microfluidic devices (microPAD) in an effort to improve the ability to visually discriminate between analyte concentrations. In existing microPADs, a single dye system is used for the measurement of a single analyte. In our approach, devices are designed to simultaneously quantify analytes using multiple indicators for each analyte improving the accuracy of the assay. The use of multiple indicators for a single analyte allows for different indicator colors to be generated at different analyte concentration ranges as well as increasing the ability to better visually discriminate colors. The principle of our devices is based on the oxidation of indicators by hydrogen peroxide produced by oxidase enzymes specific for each analyte. Each indicator reacts at different peroxide concentrations and therefore analyte concentrations, giving an extended range of operation. To demonstrate the utility of our approach, the mixture of 4-aminoantipyrine and 3,5-dichloro-2-hydroxy-benzenesulfonic acid, o-dianisidine dihydrochloride, potassium iodide, acid black, and acid yellow were chosen as the indicators for simultaneous semi-quantitative measurement of glucose, lactate, and uric acid on a microPAD. Our approach was successfully applied to quantify glucose (0.5-20 mM), lactate (1-25 mM), and uric acid (0.1-7 mM) in clinically relevant ranges. The determination of glucose, lactate, and uric acid in control serum and urine samples was also performed to demonstrate the applicability of this device for biological sample analysis. Finally results for the multi-indicator and single indicator system were compared using untrained readers to demonstrate the improvements in accuracy achieved with the new system. 2010 Elsevier B.V. All rights reserved.
Exploratory Visual Analytics of a Dynamically Built Network of Nodes in a WebGL-Enabled Browser
2014-01-01
dimensionality reduction, feature extraction, high-dimensional data, t-distributed stochastic neighbor embedding, neighbor retrieval visualizer, visual...WebGL-enabled rendering is supported natively by browsers such as the latest Mozilla Firefox , Google Chrome, and Microsoft Internet Explorer 11. At the...appropriate names. The resultant 26-node network is displayed in a Mozilla Firefox browser in figure 2 (also see appendix B). 3 Figure 1. The
Advanced Video Activity Analytics (AVAA): Human Factors Evaluation
2015-05-01
video, and 3) creating and saving annotations (Fig. 11). (The logging program was updated after the pilot to also capture search clicks.) Playing and... visual search task and the auditory task together and thus automatically focused on the visual task. Alternatively, the operator may have intentionally...affect performance on the primary task; however, in the current test there was no apparent effect on the operator’s performance in the visual search task
HyFinBall: A Two-Handed, Hybrid 2D/3D Desktop VR Interface for Visualization
2013-01-01
user study . This is done in the context of a rich, visual analytics interface containing coordinated views with 2D and 3D visualizations and...the user interface (hardware and software), the design space, as well as preliminary results of a formal user study . This is done in the context of a ... virtual reality , user interface , two-handed interface , hybrid user interface , multi-touch, gesture,
What's Going on in This Picture? Visual Thinking Strategies and Adult Learning
ERIC Educational Resources Information Center
Landorf, Hilary
2006-01-01
The Visual Thinking Strategies (VTS) curriculum and teaching method uses art to help students think critically, listen attentively, communicate, and collaborate. VTS has been proven to enhance reading, writing, comprehension, and creative and analytical skills among students of all ages. The origins and procedures of the VTS curriculum are…
ERIC Educational Resources Information Center
Demmans Epp, Carrie; Bull, Susan
2015-01-01
Adding uncertainty information to visualizations is becoming increasingly common across domains since its addition helps ensure that informed decisions are made. This work has shown the difficulty that is inherent to representing uncertainty. Moreover, the representation of uncertainty has yet to be thoroughly explored in educational domains even…
ERIC Educational Resources Information Center
Sundeen, Todd H.; O'Neil, Kathleen; Fanselow, Stephanie A.
2017-01-01
Younger students' visual texts are statements and stories conveyed through drawings or other artwork and often convey meaning beyond the child's capability to communicate with written expression. Although opportunities for expression through drawing are routinely offered to children in the initial and middle stages of early childhood literacy…
Communicating Science Concepts through Art: 21st-Century Skills in Practice
ERIC Educational Resources Information Center
Buczynski, Sandy; Ireland, Kathleen; Reed, Sherri; Lacanienta, Evelyn
2012-01-01
There is a dynamic synergy between the visual arts and the natural sciences. For example, science relies heavily on individuals with visual-art skills to render detailed illustrations, depicting everything from atoms to zebras. Likewise, artists apply analytic, linear, and logical thinking to compose and scale their work of art. These parallel…
Domain Coloring and the Argument Principle
ERIC Educational Resources Information Center
Farris, Frank A.
2017-01-01
The "domain-coloring algorithm" allows us to visualize complex-valued functions on the plane in a single image--an alternative to before-and-after mapping diagrams. It helps us see when a function is analytic and aids in understanding contour integrals. The culmination of this article is a visual discovery and subsequent proof of the…
Explorative visual analytics on interval-based genomic data and their metadata.
Jalili, Vahid; Matteucci, Matteo; Masseroli, Marco; Ceri, Stefano
2017-12-04
With the wide-spreading of public repositories of NGS processed data, the availability of user-friendly and effective tools for data exploration, analysis and visualization is becoming very relevant. These tools enable interactive analytics, an exploratory approach for the seamless "sense-making" of data through on-the-fly integration of analysis and visualization phases, suggested not only for evaluating processing results, but also for designing and adapting NGS data analysis pipelines. This paper presents abstractions for supporting the early analysis of NGS processed data and their implementation in an associated tool, named GenoMetric Space Explorer (GeMSE). This tool serves the needs of the GenoMetric Query Language, an innovative cloud-based system for computing complex queries over heterogeneous processed data. It can also be used starting from any text files in standard BED, BroadPeak, NarrowPeak, GTF, or general tab-delimited format, containing numerical features of genomic regions; metadata can be provided as text files in tab-delimited attribute-value format. GeMSE allows interactive analytics, consisting of on-the-fly cycling among steps of data exploration, analysis and visualization that help biologists and bioinformaticians in making sense of heterogeneous genomic datasets. By means of an explorative interaction support, users can trace past activities and quickly recover their results, seamlessly going backward and forward in the analysis steps and comparative visualizations of heatmaps. GeMSE effective application and practical usefulness is demonstrated through significant use cases of biological interest. GeMSE is available at http://www.bioinformatics.deib.polimi.it/GeMSE/ , and its source code is available at https://github.com/Genometric/GeMSE under GPLv3 open-source license.
Ragan, Eric D; Endert, Alex; Sanyal, Jibonananda; Chen, Jian
2016-01-01
While the primary goal of visual analytics research is to improve the quality of insights and findings, a substantial amount of research in provenance has focused on the history of changes and advances throughout the analysis process. The term, provenance, has been used in a variety of ways to describe different types of records and histories related to visualization. The existing body of provenance research has grown to a point where the consolidation of design knowledge requires cross-referencing a variety of projects and studies spanning multiple domain areas. We present an organizational framework of the different types of provenance information and purposes for why they are desired in the field of visual analytics. Our organization is intended to serve as a framework to help researchers specify types of provenance and coordinate design knowledge across projects. We also discuss the relationships between these factors and the methods used to capture provenance information. In addition, our organization can be used to guide the selection of evaluation methodology and the comparison of study outcomes in provenance research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ragan, Eric; Alex, Endert; Sanyal, Jibonananda
While the primary goal of visual analytics research is to improve the quality of insights and findings, a substantial amount of research in provenance has focused on the history of changes and advances throughout the analysis process. The term, provenance, has been used in a variety of ways to describe different types of records and histories related to visualization. The existing body of provenance research has grown to a point where the consolidation of design knowledge requires cross-referencing a variety of projects and studies spanning multiple domain areas. We present an organizational framework of the different types of provenance informationmore » and purposes for why they are desired in the field of visual analytics. Our organization is intended to serve as a framework to help researchers specify types of provenance and coordinate design knowledge across projects. We also discuss the relationships between these factors and the methods used to capture provenance information. In addition, our organization can be used to guide the selection of evaluation methodology and the comparison of study outcomes in provenance research« less
Ragan, Eric; Alex, Endert; Sanyal, Jibonananda; ...
2016-01-01
While the primary goal of visual analytics research is to improve the quality of insights and findings, a substantial amount of research in provenance has focused on the history of changes and advances throughout the analysis process. The term, provenance, has been used in a variety of ways to describe different types of records and histories related to visualization. The existing body of provenance research has grown to a point where the consolidation of design knowledge requires cross-referencing a variety of projects and studies spanning multiple domain areas. We present an organizational framework of the different types of provenance informationmore » and purposes for why they are desired in the field of visual analytics. Our organization is intended to serve as a framework to help researchers specify types of provenance and coordinate design knowledge across projects. We also discuss the relationships between these factors and the methods used to capture provenance information. In addition, our organization can be used to guide the selection of evaluation methodology and the comparison of study outcomes in provenance research« less
Visual analytics of inherently noisy crowdsourced data on ultra high resolution displays
NASA Astrophysics Data System (ADS)
Huynh, Andrew; Ponto, Kevin; Lin, Albert Yu-Min; Kuester, Falko
The increasing prevalence of distributed human microtasking, crowdsourcing, has followed the exponential increase in data collection capabilities. The large scale and distributed nature of these microtasks produce overwhelming amounts of information that is inherently noisy due to the nature of human input. Furthermore, these inputs create a constantly changing dataset with additional information added on a daily basis. Methods to quickly visualize, filter, and understand this information over temporal and geospatial constraints is key to the success of crowdsourcing. This paper present novel methods to visually analyze geospatial data collected through crowdsourcing on top of remote sensing satellite imagery. An ultra high resolution tiled display system is used to explore the relationship between human and satellite remote sensing data at scale. A case study is provided that evaluates the presented technique in the context of an archaeological field expedition. A team in the field communicated in real-time with and was guided by researchers in the remote visual analytics laboratory, swiftly sifting through incoming crowdsourced data to identify target locations that were identified as viable archaeological sites.
Finding Waldo: Learning about Users from their Interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Eli T.; Ottley, Alvitta; Zhao, Helen
Visual analytics is inherently a collaboration between human and computer. However, in current visual analytics systems, the computer has limited means of knowing about its users and their analysis processes. While existing research has shown that a user’s interactions with a system reflect a large amount of the user’s reasoning process, there has been limited advancement in developing automated, real-time techniques that mine interactions to learn about the user. In this paper, we demonstrate that we can accurately predict a user’s task performance and infer some user personality traits by using machine learning techniques to analyze interaction data. Specifically, wemore » conduct an experiment in which participants perform a visual search task and we apply well-known machine learning algorithms to three encodings of the users interaction data. We achieve, depending on algorithm and encoding, between 62% and 96% accuracy at predicting whether each user will be fast or slow at completing the task. Beyond predicting performance, we demonstrate that using the same techniques, we can infer aspects of the user’s personality factors, including locus of control, extraversion, and neuroticism. Further analyses show that strong results can be attained with limited observation time, in some cases, 82% of the final accuracy is gained after a quarter of the average task completion time. Overall, our findings show that interactions can provide information to the computer about its human collaborator, and establish a foundation for realizing mixed- initiative visual analytics systems.« less
A visual analytics approach for pattern-recognition in patient-generated data.
Feller, Daniel J; Burgermaster, Marissa; Levine, Matthew E; Smaldone, Arlene; Davidson, Patricia G; Albers, David J; Mamykina, Lena
2018-06-13
To develop and test a visual analytics tool to help clinicians identify systematic and clinically meaningful patterns in patient-generated data (PGD) while decreasing perceived information overload. Participatory design was used to develop Glucolyzer, an interactive tool featuring hierarchical clustering and a heatmap visualization to help registered dietitians (RDs) identify associative patterns between blood glucose levels and per-meal macronutrient composition for individuals with type 2 diabetes (T2DM). Ten RDs participated in a within-subjects experiment to compare Glucolyzer to a static logbook format. For each representation, participants had 25 minutes to examine 1 month of diabetes self-monitoring data captured by an individual with T2DM and identify clinically meaningful patterns. We compared the quality and accuracy of the observations generated using each representation. Participants generated 50% more observations when using Glucolyzer (98) than when using the logbook format (64) without any loss in accuracy (69% accuracy vs 62%, respectively, p = .17). Participants identified more observations that included ingredients other than carbohydrates using Glucolyzer (36% vs 16%, p = .027). Fewer RDs reported feelings of information overload using Glucolyzer compared to the logbook format. Study participants displayed variable acceptance of hierarchical clustering. Visual analytics have the potential to mitigate provider concerns about the volume of self-monitoring data. Glucolyzer helped dietitians identify meaningful patterns in self-monitoring data without incurring perceived information overload. Future studies should assess whether similar tools can support clinicians in personalizing behavioral interventions that improve patient outcomes.
Evaluation of tools for highly variable gene discovery from single-cell RNA-seq data.
Yip, Shun H; Sham, Pak Chung; Wang, Junwen
2018-02-21
Traditional RNA sequencing (RNA-seq) allows the detection of gene expression variations between two or more cell populations through differentially expressed gene (DEG) analysis. However, genes that contribute to cell-to-cell differences are not discoverable with RNA-seq because RNA-seq samples are obtained from a mixture of cells. Single-cell RNA-seq (scRNA-seq) allows the detection of gene expression in each cell. With scRNA-seq, highly variable gene (HVG) discovery allows the detection of genes that contribute strongly to cell-to-cell variation within a homogeneous cell population, such as a population of embryonic stem cells. This analysis is implemented in many software packages. In this study, we compare seven HVG methods from six software packages, including BASiCS, Brennecke, scLVM, scran, scVEGs and Seurat. Our results demonstrate that reproducibility in HVG analysis requires a larger sample size than DEG analysis. Discrepancies between methods and potential issues in these tools are discussed and recommendations are made.
VisOHC: Designing Visual Analytics for Online Health Communities
Kwon, Bum Chul; Kim, Sung-Hee; Lee, Sukwon; Choo, Jaegul; Huh, Jina; Yi, Ji Soo
2015-01-01
Through online health communities (OHCs), patients and caregivers exchange their illness experiences and strategies for overcoming the illness, and provide emotional support. To facilitate healthy and lively conversations in these communities, their members should be continuously monitored and nurtured by OHC administrators. The main challenge of OHC administrators' tasks lies in understanding the diverse dimensions of conversation threads that lead to productive discussions in their communities. In this paper, we present a design study in which three domain expert groups participated, an OHC researcher and two OHC administrators of online health communities, which was conducted to find with a visual analytic solution. Through our design study, we characterized the domain goals of OHC administrators and derived tasks to achieve these goals. As a result of this study, we propose a system called VisOHC, which visualizes individual OHC conversation threads as collapsed boxes–a visual metaphor of conversation threads. In addition, we augmented the posters' reply authorship network with marks and/or beams to show conversation dynamics within threads. We also developed unique measures tailored to the characteristics of OHCs, which can be encoded for thread visualizations at the users' requests. Our observation of the two administrators while using VisOHC showed that it supports their tasks and reveals interesting insights into online health communities. Finally, we share our methodological lessons on probing visual designs together with domain experts by allowing them to freely encode measurements into visual variables. PMID:26529688
VisOHC: Designing Visual Analytics for Online Health Communities.
Kwon, Bum Chul; Kim, Sung-Hee; Lee, Sukwon; Choo, Jaegul; Huh, Jina; Yi, Ji Soo
2016-01-01
Through online health communities (OHCs), patients and caregivers exchange their illness experiences and strategies for overcoming the illness, and provide emotional support. To facilitate healthy and lively conversations in these communities, their members should be continuously monitored and nurtured by OHC administrators. The main challenge of OHC administrators' tasks lies in understanding the diverse dimensions of conversation threads that lead to productive discussions in their communities. In this paper, we present a design study in which three domain expert groups participated, an OHC researcher and two OHC administrators of online health communities, which was conducted to find with a visual analytic solution. Through our design study, we characterized the domain goals of OHC administrators and derived tasks to achieve these goals. As a result of this study, we propose a system called VisOHC, which visualizes individual OHC conversation threads as collapsed boxes-a visual metaphor of conversation threads. In addition, we augmented the posters' reply authorship network with marks and/or beams to show conversation dynamics within threads. We also developed unique measures tailored to the characteristics of OHCs, which can be encoded for thread visualizations at the users' requests. Our observation of the two administrators while using VisOHC showed that it supports their tasks and reveals interesting insights into online health communities. Finally, we share our methodological lessons on probing visual designs together with domain experts by allowing them to freely encode measurements into visual variables.
Visual analytics for semantic queries of TerraSAR-X image content
NASA Astrophysics Data System (ADS)
Espinoza-Molina, Daniela; Alonso, Kevin; Datcu, Mihai
2015-10-01
With the continuous image product acquisition of satellite missions, the size of the image archives is considerably increasing every day as well as the variety and complexity of their content, surpassing the end-user capacity to analyse and exploit them. Advances in the image retrieval field have contributed to the development of tools for interactive exploration and extraction of the images from huge archives using different parameters like metadata, key-words, and basic image descriptors. Even though we count on more powerful tools for automated image retrieval and data analysis, we still face the problem of understanding and analyzing the results. Thus, a systematic computational analysis of these results is required in order to provide to the end-user a summary of the archive content in comprehensible terms. In this context, visual analytics combines automated analysis with interactive visualizations analysis techniques for an effective understanding, reasoning and decision making on the basis of very large and complex datasets. Moreover, currently several researches are focused on associating the content of the images with semantic definitions for describing the data in a format to be easily understood by the end-user. In this paper, we present our approach for computing visual analytics and semantically querying the TerraSAR-X archive. Our approach is mainly composed of four steps: 1) the generation of a data model that explains the information contained in a TerraSAR-X product. The model is formed by primitive descriptors and metadata entries, 2) the storage of this model in a database system, 3) the semantic definition of the image content based on machine learning algorithms and relevance feedback, and 4) querying the image archive using semantic descriptors as query parameters and computing the statistical analysis of the query results. The experimental results shows that with the help of visual analytics and semantic definitions we are able to explain the image content using semantic terms and the relations between them answering questions such as what is the percentage of urban area in a region? or what is the distribution of water bodies in a city?
Two Geo-Arithmetic Representations of n[superscript 3]: Sum of Hex Numbers
ERIC Educational Resources Information Center
Unal, Husan
2009-01-01
Studies have shown that students' understanding is typically analytic and not visual. Two possible reasons for this are when the analytic mode, instead of the graphic mode, is most frequently used in instruction or, when students or teachers hold the belief that mathematics consists simply of skillful manipulation of symbols and numbers. The…
ERIC Educational Resources Information Center
Wilczek-Vera, Grazyna; Salin, Eric Dunbar
2011-01-01
An experiment on fluorescence spectroscopy suitable for an advanced analytical laboratory is presented. Its conceptual development used a combination of the expository and discovery styles. The "learn-as-you-go" and direct "hands-on" methodology applied ensures an active role for a student in the process of visualization and discovery of concepts.…
ERIC Educational Resources Information Center
Kim, Jeonghyun; Jo, Il-Hyun; Park, Yeonjeong
2016-01-01
The learning analytics dashboard (LAD) is a newly developed learning support tool for virtual classrooms that is believed to allow students to review their online learning behavior patterns intuitively through the provision of visual information. The purpose of this study was to empirically validate the effects of LAD. An experimental study was…
Transport of a decay chain in homogenous porous media: analytical solutions.
Bauer, P; Attinger, S; Kinzelbach, W
2001-06-01
With the aid of integral transforms, analytical solutions for the transport of a decay chain in homogenous porous media are derived. Unidirectional steady-state flow and radial steady-state flow in single and multiple porosity media are considered. At least in Laplace domain, all solutions can be written in closed analytical formulae. Partly, the solutions can also be inverted analytically. If not, analytical calculation of the steady-state concentration distributions, evaluation of temporal moments and numerical inversion are still possible. Formulae for several simple boundary conditions are given and visualized in this paper. The derived novel solutions are widely applicable and are very useful for the validation of numerical transport codes.
Interactive entity resolution in relational data: a visual analytic tool and its evaluation.
Kang, Hyunmo; Getoor, Lise; Shneiderman, Ben; Bilgic, Mustafa; Licamele, Louis
2008-01-01
Databases often contain uncertain and imprecise references to real-world entities. Entity resolution, the process of reconciling multiple references to underlying real-world entities, is an important data cleaning process required before accurate visualization or analysis of the data is possible. In many cases, in addition to noisy data describing entities, there is data describing the relationships among the entities. This relational data is important during the entity resolution process; it is useful both for the algorithms which determine likely database references to be resolved and for visual analytic tools which support the entity resolution process. In this paper, we introduce a novel user interface, D-Dupe, for interactive entity resolution in relational data. D-Dupe effectively combines relational entity resolution algorithms with a novel network visualization that enables users to make use of an entity's relational context for making resolution decisions. Since resolution decisions often are interdependent, D-Dupe facilitates understanding this complex process through animations which highlight combined inferences and a history mechanism which allows users to inspect chains of resolution decisions. An empirical study with 12 users confirmed the benefits of the relational context visualization on the performance of entity resolution tasks in relational data in terms of time as well as users' confidence and satisfaction.
Demons registration for in vivo and deformable laser scanning confocal endomicroscopy.
Chiew, Wei-Ming; Lin, Feng; Seah, Hock Soon
2017-09-01
A critical effect found in noninvasive in vivo endomicroscopic imaging modalities is image distortions due to sporadic movement exhibited by living organisms. In three-dimensional confocal imaging, this effect results in a dataset that is tilted across deeper slices. Apart from that, the sequential flow of the imaging-processing pipeline restricts real-time adjustments due to the unavailability of information obtainable only from subsequent stages. To solve these problems, we propose an approach to render Demons-registered datasets as they are being captured, focusing on the coupling between registration and visualization. To improve the acquisition process, we also propose a real-time visual analytics tool, which complements the imaging pipeline and the Demons registration pipeline with useful visual indicators to provide real-time feedback for immediate adjustments. We highlight the problem of deformation within the visualization pipeline for object-ordered and image-ordered rendering. Visualizations of critical information including registration forces and partial renderings of the captured data are also presented in the analytics system. We demonstrate the advantages of the algorithmic design through experimental results with both synthetically deformed datasets and actual in vivo, time-lapse tissue datasets expressing natural deformations. Remarkably, this algorithm design is for embedded implementation in intelligent biomedical imaging instrumentation with customizable circuitry. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
NASA Technical Reports Server (NTRS)
Chaudhary, Aashish; Votava, Petr; Nemani, Ramakrishna R.; Michaelis, Andrew; Kotfila, Chris
2016-01-01
We are developing capabilities for an integrated petabyte-scale Earth science collaborative analysis and visualization environment. The ultimate goal is to deploy this environment within the NASA Earth Exchange (NEX) and OpenNEX in order to enhance existing science data production pipelines in both high-performance computing (HPC) and cloud environments. Bridging of HPC and cloud is a fairly new concept under active research and this system significantly enhances the ability of the scientific community to accelerate analysis and visualization of Earth science data from NASA missions, model outputs and other sources. We have developed a web-based system that seamlessly interfaces with both high-performance computing (HPC) and cloud environments, providing tools that enable science teams to develop and deploy large-scale analysis, visualization and QA pipelines of both the production process and the data products, and enable sharing results with the community. Our project is developed in several stages each addressing separate challenge - workflow integration, parallel execution in either cloud or HPC environments and big-data analytics or visualization. This work benefits a number of existing and upcoming projects supported by NEX, such as the Web Enabled Landsat Data (WELD), where we are developing a new QA pipeline for the 25PB system.
Demons registration for in vivo and deformable laser scanning confocal endomicroscopy
NASA Astrophysics Data System (ADS)
Chiew, Wei Ming; Lin, Feng; Seah, Hock Soon
2017-09-01
A critical effect found in noninvasive in vivo endomicroscopic imaging modalities is image distortions due to sporadic movement exhibited by living organisms. In three-dimensional confocal imaging, this effect results in a dataset that is tilted across deeper slices. Apart from that, the sequential flow of the imaging-processing pipeline restricts real-time adjustments due to the unavailability of information obtainable only from subsequent stages. To solve these problems, we propose an approach to render Demons-registered datasets as they are being captured, focusing on the coupling between registration and visualization. To improve the acquisition process, we also propose a real-time visual analytics tool, which complements the imaging pipeline and the Demons registration pipeline with useful visual indicators to provide real-time feedback for immediate adjustments. We highlight the problem of deformation within the visualization pipeline for object-ordered and image-ordered rendering. Visualizations of critical information including registration forces and partial renderings of the captured data are also presented in the analytics system. We demonstrate the advantages of the algorithmic design through experimental results with both synthetically deformed datasets and actual in vivo, time-lapse tissue datasets expressing natural deformations. Remarkably, this algorithm design is for embedded implementation in intelligent biomedical imaging instrumentation with customizable circuitry.
Analytics and Visualization Pipelines for Big Data on the NASA Earth Exchange (NEX) and OpenNEX
NASA Astrophysics Data System (ADS)
Chaudhary, A.; Votava, P.; Nemani, R. R.; Michaelis, A.; Kotfila, C.
2016-12-01
We are developing capabilities for an integrated petabyte-scale Earth science collaborative analysis and visualization environment. The ultimate goal is to deploy this environment within the NASA Earth Exchange (NEX) and OpenNEX in order to enhance existing science data production pipelines in both high-performance computing (HPC) and cloud environments. Bridging of HPC and cloud is a fairly new concept under active research and this system significantly enhances the ability of the scientific community to accelerate analysis and visualization of Earth science data from NASA missions, model outputs and other sources. We have developed a web-based system that seamlessly interfaces with both high-performance computing (HPC) and cloud environments, providing tools that enable science teams to develop and deploy large-scale analysis, visualization and QA pipelines of both the production process and the data products, and enable sharing results with the community. Our project is developed in several stages each addressing separate challenge - workflow integration, parallel execution in either cloud or HPC environments and big-data analytics or visualization. This work benefits a number of existing and upcoming projects supported by NEX, such as the Web Enabled Landsat Data (WELD), where we are developing a new QA pipeline for the 25PB system.
NASA Astrophysics Data System (ADS)
Coughlin, J.; Mital, R.; Nittur, S.; SanNicolas, B.; Wolf, C.; Jusufi, R.
2016-09-01
Operational analytics when combined with Big Data technologies and predictive techniques have been shown to be valuable in detecting mission critical sensor anomalies that might be missed by conventional analytical techniques. Our approach helps analysts and leaders make informed and rapid decisions by analyzing large volumes of complex data in near real-time and presenting it in a manner that facilitates decision making. It provides cost savings by being able to alert and predict when sensor degradations pass a critical threshold and impact mission operations. Operational analytics, which uses Big Data tools and technologies, can process very large data sets containing a variety of data types to uncover hidden patterns, unknown correlations, and other relevant information. When combined with predictive techniques, it provides a mechanism to monitor and visualize these data sets and provide insight into degradations encountered in large sensor systems such as the space surveillance network. In this study, data from a notional sensor is simulated and we use big data technologies, predictive algorithms and operational analytics to process the data and predict sensor degradations. This study uses data products that would commonly be analyzed at a site. This study builds on a big data architecture that has previously been proven valuable in detecting anomalies. This paper outlines our methodology of implementing an operational analytic solution through data discovery, learning and training of data modeling and predictive techniques, and deployment. Through this methodology, we implement a functional architecture focused on exploring available big data sets and determine practical analytic, visualization, and predictive technologies.
ERIC Educational Resources Information Center
O'Halloran, Kay L.; Tan, Sabine; Pham, Duc-Son; Bateman, John; Vande Moere, Andrew
2018-01-01
This article demonstrates how a digital environment offers new opportunities for transforming qualitative data into quantitative data in order to use data mining and information visualization for mixed methods research. The digital approach to mixed methods research is illustrated by a framework which combines qualitative methods of multimodal…
Differences in Visual Analysis and Sequence Memory of Skilled and Poor Readers.
ERIC Educational Resources Information Center
Gildemeister, Joan E.; Friedman, Philip
Reading achievement tests have been used to identify deficiencies in inner city, poor readers; however, they often do not provide information about encoding strategies which lead some children to academic success. Immediate memory and visual analytic differences which contribute to the success of skilled readers are isolated in this study using 20…
Data Visualization: An Exploratory Study into the Software Tools Used by Businesses
ERIC Educational Resources Information Center
Diamond, Michael; Mattia, Angela
2017-01-01
Data visualization is a key component to business and data analytics, allowing analysts in businesses to create tools such as dashboards for business executives. Various software packages allow businesses to create these tools in order to manipulate data for making informed business decisions. The focus is to examine what skills employers are…
Interactive Visualization of a Thin Disc around a Schwarzschild Black Hole
ERIC Educational Resources Information Center
Muller, Thomas; Frauendiener, Jorg
2012-01-01
In a first course in general relativity, the Schwarzschild spacetime is the most discussed analytic solution to Einstein's field equations. Unfortunately, there is rarely enough time to study the optical consequences of the bending of light for some advanced examples. In this paper, we present how the visual appearance of a thin disc around a…
Cultural Parallax and Content Analysis: Images of Black Women in High School History Textbooks
ERIC Educational Resources Information Center
Woyshner, Christine; Schocker, Jessica B.
2015-01-01
This study investigates the representation of Black women in high school history textbooks. To examine the extent to which Black women are represented visually and to explore how they are portrayed, the authors use a mixed-methods approach that draws on analytical techniques in content analysis and from visual culture studies. Their findings…
Visual Images and Imagination in Pursuit of Mimesis and French Society.
ERIC Educational Resources Information Center
Santorini, George
1990-01-01
Focuses on activities that took place in courses on contemporary French society. In these courses, students and instructor attempted to develop a series of analytical tools from a systematic body of visual, oral, and textual materials in order to increase cultural understanding and speech styles of French-speaking communities or social groups.…
ERIC Educational Resources Information Center
Aguilar, Stephen J.
2018-01-01
This qualitative study focuses on capturing students' understanding two visualizations often utilized by learning analytics-based educational technologies: bar graphs, and line graphs. It is framed by Achievement Goal Theory--a prominent theory of students' academic motivation--and utilizes interviews (n = 60) to investigate how students at risk…
ERIC Educational Resources Information Center
Sadler-Smith, Eugene
2011-01-01
The study explored various facets of the intuitive style and its relevance to learning and education from a dual-processing perspective, namely how it relates to other style constructs (analytical; visual and verbal; local and global), gender, and superstitious reasoning and how these are likely to impact upon learning in educational and…
Data Visualization: An Exploratory Study into the Software Tools Used by Businesses
ERIC Educational Resources Information Center
Diamond, Michael; Mattia, Angela
2015-01-01
Data visualization is a key component to business and data analytics, allowing analysts in businesses to create tools such as dashboards for business executives. Various software packages allow businesses to create these tools in order to manipulate data for making informed business decisions. The focus is to examine what skills employers are…
Dissociable meta-analytic brain networks contribute to coordinated emotional processing.
Riedel, Michael C; Yanes, Julio A; Ray, Kimberly L; Eickhoff, Simon B; Fox, Peter T; Sutherland, Matthew T; Laird, Angela R
2018-06-01
Meta-analytic techniques for mining the neuroimaging literature continue to exert an impact on our conceptualization of functional brain networks contributing to human emotion and cognition. Traditional theories regarding the neurobiological substrates contributing to affective processing are shifting from regional- towards more network-based heuristic frameworks. To elucidate differential brain network involvement linked to distinct aspects of emotion processing, we applied an emergent meta-analytic clustering approach to the extensive body of affective neuroimaging results archived in the BrainMap database. Specifically, we performed hierarchical clustering on the modeled activation maps from 1,747 experiments in the affective processing domain, resulting in five meta-analytic groupings of experiments demonstrating whole-brain recruitment. Behavioral inference analyses conducted for each of these groupings suggested dissociable networks supporting: (1) visual perception within primary and associative visual cortices, (2) auditory perception within primary auditory cortices, (3) attention to emotionally salient information within insular, anterior cingulate, and subcortical regions, (4) appraisal and prediction of emotional events within medial prefrontal and posterior cingulate cortices, and (5) induction of emotional responses within amygdala and fusiform gyri. These meta-analytic outcomes are consistent with a contemporary psychological model of affective processing in which emotionally salient information from perceived stimuli are integrated with previous experiences to engender a subjective affective response. This study highlights the utility of using emergent meta-analytic methods to inform and extend psychological theories and suggests that emotions are manifest as the eventual consequence of interactions between large-scale brain networks. © 2018 Wiley Periodicals, Inc.
Special Issue of Selected Papers from Visualization and Data Analysis 2011
NASA Technical Reports Server (NTRS)
Kao, David L.; Wong, Pak Chung
2012-01-01
This special issue features the best papers that were selected from the 18th SPIE Conference on Visualization and Data Analysis (VDA 2011). This annual conference is a major international forum for researchers and practitioners interested in data visualization and analytics research, development, and applications. VDA 2011 received 42 high-quality submissions from around the world. Twenty-four papers were selected for full conference papers. The top five papers have been expanded and reviewed for this special issue.
Falcon: A Temporal Visual Analysis System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steed, Chad A.
2016-09-05
Flexible visible exploration of long, high-resolution time series from multiple sensor streams is a challenge in several domains. Falcon is a visual analytics approach that helps researchers acquire a deep understanding of patterns in log and imagery data. Falcon allows users to interactively explore large, time-oriented data sets from multiple linked perspectives. Falcon provides overviews, detailed views, and unique segmented time series visualizations with multiple levels of detail. These capabilities are applicable to the analysis of any quantitative time series.
ERIC Educational Resources Information Center
Pardos, Zachary A.; Whyte, Anthony; Kao, Kevin
2016-01-01
In this paper, we address issues of transparency, modularity, and privacy with the introduction of an open source, web-based data repository and analysis tool tailored to the Massive Open Online Course community. The tool integrates data request/authorization and distribution workflow features as well as provides a simple analytics module upload…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steed, Chad A
Interactive data visualization leverages human visual perception and cognition to improve the accuracy and effectiveness of data analysis. When combined with automated data analytics, data visualization systems orchestrate the strengths of humans with the computational power of machines to solve problems neither approach can manage in isolation. In the intelligent transportation system domain, such systems are necessary to support decision making in large and complex data streams. In this chapter, we provide an introduction to several key topics related to the design of data visualization systems. In addition to an overview of key techniques and strategies, we will describe practicalmore » design principles. The chapter is concluded with a detailed case study involving the design of a multivariate visualization tool.« less
Scalable Predictive Analysis in Critically Ill Patients Using a Visual Open Data Analysis Platform
Poucke, Sven Van; Zhang, Zhongheng; Schmitz, Martin; Vukicevic, Milan; Laenen, Margot Vander; Celi, Leo Anthony; Deyne, Cathy De
2016-01-01
With the accumulation of large amounts of health related data, predictive analytics could stimulate the transformation of reactive medicine towards Predictive, Preventive and Personalized (PPPM) Medicine, ultimately affecting both cost and quality of care. However, high-dimensionality and high-complexity of the data involved, prevents data-driven methods from easy translation into clinically relevant models. Additionally, the application of cutting edge predictive methods and data manipulation require substantial programming skills, limiting its direct exploitation by medical domain experts. This leaves a gap between potential and actual data usage. In this study, the authors address this problem by focusing on open, visual environments, suited to be applied by the medical community. Moreover, we review code free applications of big data technologies. As a showcase, a framework was developed for the meaningful use of data from critical care patients by integrating the MIMIC-II database in a data mining environment (RapidMiner) supporting scalable predictive analytics using visual tools (RapidMiner’s Radoop extension). Guided by the CRoss-Industry Standard Process for Data Mining (CRISP-DM), the ETL process (Extract, Transform, Load) was initiated by retrieving data from the MIMIC-II tables of interest. As use case, correlation of platelet count and ICU survival was quantitatively assessed. Using visual tools for ETL on Hadoop and predictive modeling in RapidMiner, we developed robust processes for automatic building, parameter optimization and evaluation of various predictive models, under different feature selection schemes. Because these processes can be easily adopted in other projects, this environment is attractive for scalable predictive analytics in health research. PMID:26731286
Scalable Predictive Analysis in Critically Ill Patients Using a Visual Open Data Analysis Platform.
Van Poucke, Sven; Zhang, Zhongheng; Schmitz, Martin; Vukicevic, Milan; Laenen, Margot Vander; Celi, Leo Anthony; De Deyne, Cathy
2016-01-01
With the accumulation of large amounts of health related data, predictive analytics could stimulate the transformation of reactive medicine towards Predictive, Preventive and Personalized (PPPM) Medicine, ultimately affecting both cost and quality of care. However, high-dimensionality and high-complexity of the data involved, prevents data-driven methods from easy translation into clinically relevant models. Additionally, the application of cutting edge predictive methods and data manipulation require substantial programming skills, limiting its direct exploitation by medical domain experts. This leaves a gap between potential and actual data usage. In this study, the authors address this problem by focusing on open, visual environments, suited to be applied by the medical community. Moreover, we review code free applications of big data technologies. As a showcase, a framework was developed for the meaningful use of data from critical care patients by integrating the MIMIC-II database in a data mining environment (RapidMiner) supporting scalable predictive analytics using visual tools (RapidMiner's Radoop extension). Guided by the CRoss-Industry Standard Process for Data Mining (CRISP-DM), the ETL process (Extract, Transform, Load) was initiated by retrieving data from the MIMIC-II tables of interest. As use case, correlation of platelet count and ICU survival was quantitatively assessed. Using visual tools for ETL on Hadoop and predictive modeling in RapidMiner, we developed robust processes for automatic building, parameter optimization and evaluation of various predictive models, under different feature selection schemes. Because these processes can be easily adopted in other projects, this environment is attractive for scalable predictive analytics in health research.
Cultural differences in attention: Eye movement evidence from a comparative visual search task.
Alotaibi, Albandri; Underwood, Geoffrey; Smith, Alastair D
2017-10-01
Individual differences in visual attention have been linked to thinking style: analytic thinking (common in individualistic cultures) is thought to promote attention to detail and focus on the most important part of a scene, whereas holistic thinking (common in collectivist cultures) promotes attention to the global structure of a scene and the relationship between its parts. However, this theory is primarily based on relatively simple judgement tasks. We compared groups from Great Britain (an individualist culture) and Saudi Arabia (a collectivist culture) on a more complex comparative visual search task, using simple natural scenes. A higher overall number of fixations for Saudi participants, along with longer search times, indicated less efficient search behaviour than British participants. Furthermore, intra-group comparisons of scan-path for Saudi participants revealed less similarity than within the British group. Together, these findings suggest that there is a positive relationship between an analytic cognitive style and controlled attention. Copyright © 2017 Elsevier Inc. All rights reserved.
Hawkeye and AMOS: visualizing and assessing the quality of genome assemblies
Schatz, Michael C.; Phillippy, Adam M.; Sommer, Daniel D.; Delcher, Arthur L.; Puiu, Daniela; Narzisi, Giuseppe; Salzberg, Steven L.; Pop, Mihai
2013-01-01
Since its launch in 2004, the open-source AMOS project has released several innovative DNA sequence analysis applications including: Hawkeye, a visual analytics tool for inspecting the structure of genome assemblies; the Assembly Forensics and FRCurve pipelines for systematically evaluating the quality of a genome assembly; and AMOScmp, the first comparative genome assembler. These applications have been used to assemble and analyze dozens of genomes ranging in complexity from simple microbial species through mammalian genomes. Recent efforts have been focused on enhancing support for new data characteristics brought on by second- and now third-generation sequencing. This review describes the major components of AMOS in light of these challenges, with an emphasis on methods for assessing assembly quality and the visual analytics capabilities of Hawkeye. These interactive graphical aspects are essential for navigating and understanding the complexities of a genome assembly, from the overall genome structure down to individual bases. Hawkeye and AMOS are available open source at http://amos.sourceforge.net. PMID:22199379
VisualUrText: A Text Analytics Tool for Unstructured Textual Data
NASA Astrophysics Data System (ADS)
Zainol, Zuraini; Jaymes, Mohd T. H.; Nohuddin, Puteri N. E.
2018-05-01
The growing amount of unstructured text over Internet is tremendous. Text repositories come from Web 2.0, business intelligence and social networking applications. It is also believed that 80-90% of future growth data is available in the form of unstructured text databases that may potentially contain interesting patterns and trends. Text Mining is well known technique for discovering interesting patterns and trends which are non-trivial knowledge from massive unstructured text data. Text Mining covers multidisciplinary fields involving information retrieval (IR), text analysis, natural language processing (NLP), data mining, machine learning statistics and computational linguistics. This paper discusses the development of text analytics tool that is proficient in extracting, processing, analyzing the unstructured text data and visualizing cleaned text data into multiple forms such as Document Term Matrix (DTM), Frequency Graph, Network Analysis Graph, Word Cloud and Dendogram. This tool, VisualUrText, is developed to assist students and researchers for extracting interesting patterns and trends in document analyses.
Social Media Visual Analytics for Events
NASA Astrophysics Data System (ADS)
Diakopoulos, Nicholas; Naaman, Mor; Yazdani, Tayebeh; Kivran-Swaine, Funda
For large-scale multimedia events such as televised debates and speeches, the amount of content on social media channels such as Facebook or Twitter can easily become overwhelming, yet still contain information that may aid and augment understanding of the multimedia content via individual social media items, or aggregate information from the crowd's response. In this work we discuss this opportunity in the context of a social media visual analytic tool, Vox Civitas, designed to help journalists, media professionals, or other researchers make sense of large-scale aggregations of social media content around multimedia broadcast events. We discuss the design of the tool, present and evaluate the text analysis techniques used to enable the presentation, and detail the visual and interaction design. We provide an exploratory evaluation based on a user study in which journalists interacted with the system to analyze and report on a dataset of over one 100 000 Twitter messages collected during the broadcast of the U.S. State of the Union presidential address in 2010.
Progressive Learning of Topic Modeling Parameters: A Visual Analytics Framework.
El-Assady, Mennatallah; Sevastjanova, Rita; Sperrle, Fabian; Keim, Daniel; Collins, Christopher
2018-01-01
Topic modeling algorithms are widely used to analyze the thematic composition of text corpora but remain difficult to interpret and adjust. Addressing these limitations, we present a modular visual analytics framework, tackling the understandability and adaptability of topic models through a user-driven reinforcement learning process which does not require a deep understanding of the underlying topic modeling algorithms. Given a document corpus, our approach initializes two algorithm configurations based on a parameter space analysis that enhances document separability. We abstract the model complexity in an interactive visual workspace for exploring the automatic matching results of two models, investigating topic summaries, analyzing parameter distributions, and reviewing documents. The main contribution of our work is an iterative decision-making technique in which users provide a document-based relevance feedback that allows the framework to converge to a user-endorsed topic distribution. We also report feedback from a two-stage study which shows that our technique results in topic model quality improvements on two independent measures.
Ulmer, Candice Z; Ragland, Jared M; Koelmel, Jeremy P; Heckert, Alan; Jones, Christina M; Garrett, Timothy J; Yost, Richard A; Bowden, John A
2017-12-19
As advances in analytical separation techniques, mass spectrometry instrumentation, and data processing platforms continue to spur growth in the lipidomics field, more structurally unique lipid species are detected and annotated. The lipidomics community is in need of benchmark reference values to assess the validity of various lipidomics workflows in providing accurate quantitative measurements across the diverse lipidome. LipidQC addresses the harmonization challenge in lipid quantitation by providing a semiautomated process, independent of analytical platform, for visual comparison of experimental results of National Institute of Standards and Technology Standard Reference Material (SRM) 1950, "Metabolites in Frozen Human Plasma", against benchmark consensus mean concentrations derived from the NIST Lipidomics Interlaboratory Comparison Exercise.
KOLAM: a cross-platform architecture for scalable visualization and tracking in wide-area imagery
NASA Astrophysics Data System (ADS)
Fraser, Joshua; Haridas, Anoop; Seetharaman, Guna; Rao, Raghuveer M.; Palaniappan, Kannappan
2013-05-01
KOLAM is an open, cross-platform, interoperable, scalable and extensible framework supporting a novel multi- scale spatiotemporal dual-cache data structure for big data visualization and visual analytics. This paper focuses on the use of KOLAM for target tracking in high-resolution, high throughput wide format video also known as wide-area motion imagery (WAMI). It was originally developed for the interactive visualization of extremely large geospatial imagery of high spatial and spectral resolution. KOLAM is platform, operating system and (graphics) hardware independent, and supports embedded datasets scalable from hundreds of gigabytes to feasibly petabytes in size on clusters, workstations, desktops and mobile computers. In addition to rapid roam, zoom and hyper- jump spatial operations, a large number of simultaneously viewable embedded pyramid layers (also referred to as multiscale or sparse imagery), interactive colormap and histogram enhancement, spherical projection and terrain maps are supported. The KOLAM software architecture was extended to support airborne wide-area motion imagery by organizing spatiotemporal tiles in very large format video frames using a temporal cache of tiled pyramid cached data structures. The current version supports WAMI animation, fast intelligent inspection, trajectory visualization and target tracking (digital tagging); the latter by interfacing with external automatic tracking software. One of the critical needs for working with WAMI is a supervised tracking and visualization tool that allows analysts to digitally tag multiple targets, quickly review and correct tracking results and apply geospatial visual analytic tools on the generated trajectories. One-click manual tracking combined with multiple automated tracking algorithms are available to assist the analyst and increase human effectiveness.
ERIC Educational Resources Information Center
Brossart, Daniel F.; Parker, Richard I.; Olson, Elizabeth A.; Mahadevan, Lakshmi
2006-01-01
This study explored some practical issues for single-case researchers who rely on visual analysis of graphed data, but who also may consider supplemental use of promising statistical analysis techniques. The study sought to answer three major questions: (a) What is a typical range of effect sizes from these analytic techniques for data from…
Steady-State Visual Evoked Potentials and Phase Synchronization in Migraine Patients
NASA Astrophysics Data System (ADS)
Angelini, L.; Tommaso, M. De; Guido, M.; Hu, K.; Ivanov, P. Ch.; Marinazzo, D.; Nardulli, G.; Nitti, L.; Pellicoro, M.; Pierro, C.; Stramaglia, S.
2004-07-01
We investigate phase synchronization in EEG recordings from migraine patients. We use the analytic signal technique, based on the Hilbert transform, and find that migraine brains are characterized by enhanced alpha band phase synchronization in the presence of visual stimuli. Our findings show that migraine patients have an overactive regulatory mechanism that renders them more sensitive to external stimuli.
Marvel, Skylar W; To, Kimberly; Grimm, Fabian A; Wright, Fred A; Rusyn, Ivan; Reif, David M
2018-03-05
Drawing integrated conclusions from diverse source data requires synthesis across multiple types of information. The ToxPi (Toxicological Prioritization Index) is an analytical framework that was developed to enable integration of multiple sources of evidence by transforming data into integrated, visual profiles. Methodological improvements have advanced ToxPi and expanded its applicability, necessitating a new, consolidated software platform to provide functionality, while preserving flexibility for future updates. We detail the implementation of a new graphical user interface for ToxPi (Toxicological Prioritization Index) that provides interactive visualization, analysis, reporting, and portability. The interface is deployed as a stand-alone, platform-independent Java application, with a modular design to accommodate inclusion of future analytics. The new ToxPi interface introduces several features, from flexible data import formats (including legacy formats that permit backward compatibility) to similarity-based clustering to options for high-resolution graphical output. We present the new ToxPi interface for dynamic exploration, visualization, and sharing of integrated data models. The ToxPi interface is freely-available as a single compressed download that includes the main Java executable, all libraries, example data files, and a complete user manual from http://toxpi.org .
NASA Astrophysics Data System (ADS)
Morton, A.; Stewart, R.; Held, E.; Piburn, J.; Allen, M. R.; McManamay, R.; Sanyal, J.; Sorokine, A.; Bhaduri, B. L.
2017-12-01
Spatiotemporal (ST) analytics applied to major spatio-temporal data sources from major vendors such as USGS, NOAA, World Bank and World Health Organization have tremendous value in shedding light on the evolution of physical, cultural, and geopolitical landscapes on a local and global level. Especially powerful is the integration of these physical and cultural datasets across multiple and disparate formats, facilitating new interdisciplinary analytics and insights. Realizing this potential first requires an ST data model that addresses challenges in properly merging data from multiple authors, with evolving ontological perspectives, semantical differences, changing attributes, and content that is textual, numeric, categorical, and hierarchical. Equally challenging is the development of analytical and visualization approaches that provide a serious exploration of this integrated data while remaining accessible to practitioners with varied backgrounds. The WSTAMP project at the Oak Ridge National Laboratory has yielded two major results in addressing these challenges: 1) development of the WSTAMP database, a significant advance in ST data modeling that integrates 16000+ attributes covering 200+ countries for over 50 years from over 30 major sources and 2) a novel online ST exploratory and analysis tool providing an array of modern statistical and visualization techniques for analyzing these data temporally, spatially, and spatiotemporally under a standard analytic workflow. We report on these advances, provide an illustrative case study, and inform how others may freely access the tool.
NASA Astrophysics Data System (ADS)
Vatcha, Rashna; Lee, Seok-Won; Murty, Ajeet; Tolone, William; Wang, Xiaoyu; Dou, Wenwen; Chang, Remco; Ribarsky, William; Liu, Wanqiu; Chen, Shen-en; Hauser, Edd
2009-05-01
Infrastructure management (and its associated processes) is complex to understand, perform and thus, hard to make efficient and effective informed decisions. The management involves a multi-faceted operation that requires the most robust data fusion, visualization and decision making. In order to protect and build sustainable critical assets, we present our on-going multi-disciplinary large-scale project that establishes the Integrated Remote Sensing and Visualization (IRSV) system with a focus on supporting bridge structure inspection and management. This project involves specific expertise from civil engineers, computer scientists, geographers, and real-world practitioners from industry, local and federal government agencies. IRSV is being designed to accommodate the essential needs from the following aspects: 1) Better understanding and enforcement of complex inspection process that can bridge the gap between evidence gathering and decision making through the implementation of ontological knowledge engineering system; 2) Aggregation, representation and fusion of complex multi-layered heterogeneous data (i.e. infrared imaging, aerial photos and ground-mounted LIDAR etc.) with domain application knowledge to support machine understandable recommendation system; 3) Robust visualization techniques with large-scale analytical and interactive visualizations that support users' decision making; and 4) Integration of these needs through the flexible Service-oriented Architecture (SOA) framework to compose and provide services on-demand. IRSV is expected to serve as a management and data visualization tool for construction deliverable assurance and infrastructure monitoring both periodically (annually, monthly, even daily if needed) as well as after extreme events.
van Delft, Sanne; Goedhart, Annelijn; Spigt, Mark; van Pinxteren, Bart; de Wit, Niek; Hopstaken, Rogier
2016-01-01
Objective Point-of-care testing (POCT) urinalysis might reduce errors in (subjective) reading, registration and communication of test results, and might also improve diagnostic outcome and optimise patient management. Evidence is lacking. In the present study, we have studied the analytical performance of automated urinalysis and visual urinalysis compared with a reference standard in routine general practice. Setting The study was performed in six general practitioner (GP) group practices in the Netherlands. Automated urinalysis was compared with visual urinalysis in these practices. Reference testing was performed in a primary care laboratory (Saltro, Utrecht, The Netherlands). Primary and secondary outcome measures Analytical performance of automated and visual urinalysis compared with the reference laboratory method was the primary outcome measure, analysed by calculating sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) and Cohen's κ coefficient for agreement. Secondary outcome measure was the user-friendliness of the POCT analyser. Results Automated urinalysis by experienced and routinely trained practice assistants in general practice performs as good as visual urinalysis for nitrite, leucocytes and erythrocytes. Agreement for nitrite is high for automated and visual urinalysis. κ's are 0.824 and 0.803 (ranked as very good and good, respectively). Agreement with the central laboratory reference standard for automated and visual urinalysis for leucocytes is rather poor (0.256 for POCT and 0.197 for visual, respectively, ranked as fair and poor). κ's for erythrocytes are higher: 0.517 (automated) and 0.416 (visual), both ranked as moderate. The Urisys 1100 analyser was easy to use and considered to be not prone to flaws. Conclusions Automated urinalysis performed as good as traditional visual urinalysis on reading of nitrite, leucocytes and erythrocytes in routine general practice. Implementation of automated urinalysis in general practice is justified as automation is expected to reduce human errors in patient identification and transcribing of results. PMID:27503860
van Delft, Sanne; Goedhart, Annelijn; Spigt, Mark; van Pinxteren, Bart; de Wit, Niek; Hopstaken, Rogier
2016-08-08
Point-of-care testing (POCT) urinalysis might reduce errors in (subjective) reading, registration and communication of test results, and might also improve diagnostic outcome and optimise patient management. Evidence is lacking. In the present study, we have studied the analytical performance of automated urinalysis and visual urinalysis compared with a reference standard in routine general practice. The study was performed in six general practitioner (GP) group practices in the Netherlands. Automated urinalysis was compared with visual urinalysis in these practices. Reference testing was performed in a primary care laboratory (Saltro, Utrecht, The Netherlands). Analytical performance of automated and visual urinalysis compared with the reference laboratory method was the primary outcome measure, analysed by calculating sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) and Cohen's κ coefficient for agreement. Secondary outcome measure was the user-friendliness of the POCT analyser. Automated urinalysis by experienced and routinely trained practice assistants in general practice performs as good as visual urinalysis for nitrite, leucocytes and erythrocytes. Agreement for nitrite is high for automated and visual urinalysis. κ's are 0.824 and 0.803 (ranked as very good and good, respectively). Agreement with the central laboratory reference standard for automated and visual urinalysis for leucocytes is rather poor (0.256 for POCT and 0.197 for visual, respectively, ranked as fair and poor). κ's for erythrocytes are higher: 0.517 (automated) and 0.416 (visual), both ranked as moderate. The Urisys 1100 analyser was easy to use and considered to be not prone to flaws. Automated urinalysis performed as good as traditional visual urinalysis on reading of nitrite, leucocytes and erythrocytes in routine general practice. Implementation of automated urinalysis in general practice is justified as automation is expected to reduce human errors in patient identification and transcribing of results. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
NASA Astrophysics Data System (ADS)
Chen, Xiaochun; Yu, Shaoming; Yang, Liang; Wang, Jianping; Jiang, Changlong
2016-07-01
The instant and on-site detection of trace aqueous fluoride ions is still a challenge for environmental monitoring and protection. This work demonstrates a new analytical method and its utility of a paper sensor for visual detection of F- on the basis of the fluorescence resonance energy transfer (FRET) between photoluminescent graphene oxide (GO) and silver nanoparticles (AgNPs) through the formation of cyclic esters between phenylborinic acid and diol. The fluorescence of GO was quenched by the AgNPs, and trace F- can recover the fluorescence of the quenched photoluminescent GO. The increase in fluorescence intensity is proportional to the concentration of F- in the range of 0.05-0.55 nM, along with a limit of detection (LOD) as low as 9.07 pM. Following the sensing mechanism, a paper-based sensor for the visual detection of aqueous F- has been successfully developed. The paper sensor showed high sensitivity for aqueous F-, and the LOD could reach as low as 0.1 μM as observed by the naked eye. The very simple and effective strategy reported here could be extended to the visual detection of a wide range of analytes in the environment by the construction of highly efficient FRET nanoprobes.The instant and on-site detection of trace aqueous fluoride ions is still a challenge for environmental monitoring and protection. This work demonstrates a new analytical method and its utility of a paper sensor for visual detection of F- on the basis of the fluorescence resonance energy transfer (FRET) between photoluminescent graphene oxide (GO) and silver nanoparticles (AgNPs) through the formation of cyclic esters between phenylborinic acid and diol. The fluorescence of GO was quenched by the AgNPs, and trace F- can recover the fluorescence of the quenched photoluminescent GO. The increase in fluorescence intensity is proportional to the concentration of F- in the range of 0.05-0.55 nM, along with a limit of detection (LOD) as low as 9.07 pM. Following the sensing mechanism, a paper-based sensor for the visual detection of aqueous F- has been successfully developed. The paper sensor showed high sensitivity for aqueous F-, and the LOD could reach as low as 0.1 μM as observed by the naked eye. The very simple and effective strategy reported here could be extended to the visual detection of a wide range of analytes in the environment by the construction of highly efficient FRET nanoprobes. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02878k
ERIC Educational Resources Information Center
Monroy, Carlos; Rangel, Virginia Snodgrass; Whitaker, Reid
2014-01-01
In this paper, we discuss a scalable approach for integrating learning analytics into an online K-12 science curriculum. A description of the curriculum and the underlying pedagogical framework is followed by a discussion of the challenges to be tackled as part of this integration. We include examples of data visualization based on teacher usage…
Visual representation of scientific information.
Wong, Bang
2011-02-15
Great technological advances have enabled researchers to generate an enormous amount of data. Data analysis is replacing data generation as the rate-limiting step in scientific research. With this wealth of information, we have an opportunity to understand the molecular causes of human diseases. However, the unprecedented scale, resolution, and variety of data pose new analytical challenges. Visual representation of data offers insights that can lead to new understanding, whether the purpose is analysis or communication. This presentation shows how art, design, and traditional illustration can enable scientific discovery. Examples will be drawn from the Broad Institute's Data Visualization Initiative, aimed at establishing processes for creating informative visualization models.
Visual Analytics for Power Grid Contingency Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, Pak C.; Huang, Zhenyu; Chen, Yousu
2014-01-20
Contingency analysis is the process of employing different measures to model scenarios, analyze them, and then derive the best response to remove the threats. This application paper focuses on a class of contingency analysis problems found in the power grid management system. A power grid is a geographically distributed interconnected transmission network that transmits and delivers electricity from generators to end users. The power grid contingency analysis problem is increasingly important because of both the growing size of the underlying raw data that need to be analyzed and the urgency to deliver working solutions in an aggressive timeframe. Failure tomore » do so may bring significant financial, economic, and security impacts to all parties involved and the society at large. The paper presents a scalable visual analytics pipeline that transforms about 100 million contingency scenarios to a manageable size and form for grid operators to examine different scenarios and come up with preventive or mitigation strategies to address the problems in a predictive and timely manner. Great attention is given to the computational scalability, information scalability, visual scalability, and display scalability issues surrounding the data analytics pipeline. Most of the large-scale computation requirements of our work are conducted on a Cray XMT multi-threaded parallel computer. The paper demonstrates a number of examples using western North American power grid models and data.« less
Visual Analytics for Heterogeneous Geoscience Data
NASA Astrophysics Data System (ADS)
Pan, Y.; Yu, L.; Zhu, F.; Rilee, M. L.; Kuo, K. S.; Jiang, H.; Yu, H.
2017-12-01
Geoscience data obtained from diverse sources have been routinely leveraged by scientists to study various phenomena. The principal data sources include observations and model simulation outputs. These data are characterized by spatiotemporal heterogeneity originated from different instrument design specifications and/or computational model requirements used in data generation processes. Such inherent heterogeneity poses several challenges in exploring and analyzing geoscience data. First, scientists often wish to identify features or patterns co-located among multiple data sources to derive and validate certain hypotheses. Heterogeneous data make it a tedious task to search such features in dissimilar datasets. Second, features of geoscience data are typically multivariate. It is challenging to tackle the high dimensionality of geoscience data and explore the relations among multiple variables in a scalable fashion. Third, there is a lack of transparency in traditional automated approaches, such as feature detection or clustering, in that scientists cannot intuitively interact with their analysis processes and interpret results. To address these issues, we present a new scalable approach that can assist scientists in analyzing voluminous and diverse geoscience data. We expose a high-level query interface that allows users to easily express their customized queries to search features of interest across multiple heterogeneous datasets. For identified features, we develop a visualization interface that enables interactive exploration and analytics in a linked-view manner. Specific visualization techniques such as scatter plots to parallel coordinates are employed in each view to allow users to explore various aspects of features. Different views are linked and refreshed according to user interactions in any individual view. In such a manner, a user can interactively and iteratively gain understanding into the data through a variety of visual analytics operations. We demonstrate with use cases how scientists can combine the query and visualization interfaces to enable a customized workflow facilitating studies using heterogeneous geoscience datasets.
VAiRoma: A Visual Analytics System for Making Sense of Places, Times, and Events in Roman History.
Cho, Isaac; Dou, Wewnen; Wang, Derek Xiaoyu; Sauda, Eric; Ribarsky, William
2016-01-01
Learning and gaining knowledge of Roman history is an area of interest for students and citizens at large. This is an example of a subject with great sweep (with many interrelated sub-topics over, in this case, a 3,000 year history) that is hard to grasp by any individual and, in its full detail, is not available as a coherent story. In this paper, we propose a visual analytics approach to construct a data driven view of Roman history based on a large collection of Wikipedia articles. Extracting and enabling the discovery of useful knowledge on events, places, times, and their connections from large amounts of textual data has always been a challenging task. To this aim, we introduce VAiRoma, a visual analytics system that couples state-of-the-art text analysis methods with an intuitive visual interface to help users make sense of events, places, times, and more importantly, the relationships between them. VAiRoma goes beyond textual content exploration, as it permits users to compare, make connections, and externalize the findings all within the visual interface. As a result, VAiRoma allows users to learn and create new knowledge regarding Roman history in an informed way. We evaluated VAiRoma with 16 participants through a user study, with the task being to learn about roman piazzas through finding relevant articles and new relationships. Our study results showed that the VAiRoma system enables the participants to find more relevant articles and connections compared to Web searches and literature search conducted in a roman library. Subjective feedback on VAiRoma was also very positive. In addition, we ran two case studies that demonstrate how VAiRoma can be used for deeper analysis, permitting the rapid discovery and analysis of a small number of key documents even when the original collection contains hundreds of thousands of documents.
VAUD: A Visual Analysis Approach for Exploring Spatio-Temporal Urban Data.
Chen, Wei; Huang, Zhaosong; Wu, Feiran; Zhu, Minfeng; Guan, Huihua; Maciejewski, Ross
2017-10-02
Urban data is massive, heterogeneous, and spatio-temporal, posing a substantial challenge for visualization and analysis. In this paper, we design and implement a novel visual analytics approach, Visual Analyzer for Urban Data (VAUD), that supports the visualization, querying, and exploration of urban data. Our approach allows for cross-domain correlation from multiple data sources by leveraging spatial-temporal and social inter-connectedness features. Through our approach, the analyst is able to select, filter, aggregate across multiple data sources and extract information that would be hidden to a single data subset. To illustrate the effectiveness of our approach, we provide case studies on a real urban dataset that contains the cyber-, physical-, and socialinformation of 14 million citizens over 22 days.
A Visual Analytic for Improving Human Terrain Understanding
2013-06-01
Kim, S., Minotra, D., Strater, L ., Cuevas, and Colombo, D. “Knowledge Visualization to Enhance Human-Agent Situation Awareness within a Computational...1971). A General Coefficient of Similarity and Some of Its Properties Biometrics, Vol. 27, No. 4, pp. 857-871. [14] Coppock, S. & Mazlack, L ...and allow human interpretation. HDPT Component Overview PostgreSQL DBS Apache Tomcat Web Server [’...... _./ Globa l Graph Web ~ Application
ERIC Educational Resources Information Center
Gumpel, Thomas P.; Nativ-Ari-Am, Hagit
2001-01-01
Two multiple baseline designs were used to evaluate a two-stage model for training four young adults with visual and cognitive impairments to grocery shop. A task-analytical flow chart of the behavioral skills involved in grocery shopping was used to increase completed skill steps and the number of correct items purchased. (Contains references.)…
A far-field-viewing sensor for making analytical measurements in remote locations.
Michael, K L; Taylor, L C; Walt, D R
1999-07-15
We demonstrate a far-field-viewing GRINscope sensor for making analytical measurements in remote locations. The GRINscope was fabricated by permanently affixing a micro-Gradient index (GRIN) lens on the distal face of a 350-micron-diameter optical imaging fiber. The GRINscope can obtain both chemical and visual information. In one application, a thin, pH-sensitive polymer layer was immobilized on the distal end of the GRINscope. The ability of the GRINscope to visually image its far-field surroundings and concurrently detect pH changes in a flowing stream was demonstrated. In a different application, the GRINscope was used to image pH- and O2-sensitive particles on a remote substrate and simultaneously measure their fluorescence intensity in response to pH or pO2 changes.
Liang, Linlin; Lan, Feifei; Yin, Xuemei; Ge, Shenguang; Yu, Jinghua; Yan, Mei
2017-09-15
Convenient biosensor for simultaneous multi-analyte detection was increasingly required in biological analysis. A novel flower-like silver (FLS)-enhanced fluorescence/visual bimodal platform for the ultrasensitive detection of multiple miRNAs was successfully constructed for the first time based on the principle of multi-channel microfluidic paper-based analytical devices (µPADs). Fluorophore-functionalized DNA 1 (DNA 1 -N-CDs) was combined with FLS, which was hybridized with quencher-carrying strand (DNA 2 -CeO 2 ) to form FLS-enhanced fluorescence biosensor. Upon the addition of the target miRNA, the fluorescent intensity of DNA 1 -N-CDs within the proximity of the FLS was strengthened. The disengaged DNA/CeO 2 complex could result in color change after joining H 2 O 2 , leading to real-time visual detection of miRNA firstly. If necessary, then the fluorescence method was applied for a accurate determination. In this strategy, the growth of FLS in µPADs not only reduced the background fluorescence but also provided an enrichment of "hot spots" for surface enhanced fluorescence detection of miRNAs. Results also showed versatility of the FLS in the enhancement of sensitivity and selectivity of the miRNA biosensor. Remarkably, this biosensor could detect as low as 0.03fM miRNA210 and 0.06fM miRNA21. Interestingly, the proposed biosensor also possessed good capability of recycling in three cycles upon change of the supplementation of DNA 2 -CeO 2 and visual substitutive device. This method opened new opportunities for further studies of miRNA related bioprocesses and will provide a new instrument for simultaneous detection of multiple low-level biomarkers. Copyright © 2017 Elsevier B.V. All rights reserved.
Visualizing statistical significance of disease clusters using cartograms.
Kronenfeld, Barry J; Wong, David W S
2017-05-15
Health officials and epidemiological researchers often use maps of disease rates to identify potential disease clusters. Because these maps exaggerate the prominence of low-density districts and hide potential clusters in urban (high-density) areas, many researchers have used density-equalizing maps (cartograms) as a basis for epidemiological mapping. However, we do not have existing guidelines for visual assessment of statistical uncertainty. To address this shortcoming, we develop techniques for visual determination of statistical significance of clusters spanning one or more districts on a cartogram. We developed the techniques within a geovisual analytics framework that does not rely on automated significance testing, and can therefore facilitate visual analysis to detect clusters that automated techniques might miss. On a cartogram of the at-risk population, the statistical significance of a disease cluster is determinate from the rate, area and shape of the cluster under standard hypothesis testing scenarios. We develop formulae to determine, for a given rate, the area required for statistical significance of a priori and a posteriori designated regions under certain test assumptions. Uniquely, our approach enables dynamic inference of aggregate regions formed by combining individual districts. The method is implemented in interactive tools that provide choropleth mapping, automated legend construction and dynamic search tools to facilitate cluster detection and assessment of the validity of tested assumptions. A case study of leukemia incidence analysis in California demonstrates the ability to visually distinguish between statistically significant and insignificant regions. The proposed geovisual analytics approach enables intuitive visual assessment of statistical significance of arbitrarily defined regions on a cartogram. Our research prompts a broader discussion of the role of geovisual exploratory analyses in disease mapping and the appropriate framework for visually assessing the statistical significance of spatial clusters.
Coastal On-line Assessment and Synthesis Tool 2.0
NASA Technical Reports Server (NTRS)
Brown, Richard; Navard, Andrew; Nguyen, Beth
2011-01-01
COAST (Coastal On-line Assessment and Synthesis Tool) is a 3D, open-source Earth data browser developed by leveraging and enhancing previous NASA open-source tools. These tools use satellite imagery and elevation data in a way that allows any user to zoom from orbit view down into any place on Earth, and enables the user to experience Earth terrain in a visually rich 3D view. The benefits associated with taking advantage of an open-source geo-browser are that it is free, extensible, and offers a worldwide developer community that is available to provide additional development and improvement potential. What makes COAST unique is that it simplifies the process of locating and accessing data sources, and allows a user to combine them into a multi-layered and/or multi-temporal visual analytical look into possible data interrelationships and coeffectors for coastal environment phenomenology. COAST provides users with new data visual analytic capabilities. COAST has been upgraded to maximize use of open-source data access, viewing, and data manipulation software tools. The COAST 2.0 toolset has been developed to increase access to a larger realm of the most commonly implemented data formats used by the coastal science community. New and enhanced functionalities that upgrade COAST to COAST 2.0 include the development of the Temporal Visualization Tool (TVT) plug-in, the Recursive Online Remote Data-Data Mapper (RECORD-DM) utility, the Import Data Tool (IDT), and the Add Points Tool (APT). With these improvements, users can integrate their own data with other data sources, and visualize the resulting layers of different data types (such as spatial and spectral, for simultaneous visual analysis), and visualize temporal changes in areas of interest.
WarpIV: In situ visualization and analysis of ion accelerator simulations
Rubel, Oliver; Loring, Burlen; Vay, Jean -Luc; ...
2016-05-09
The generation of short pulses of ion beams through the interaction of an intense laser with a plasma sheath offers the possibility of compact and cheaper ion sources for many applications--from fast ignition and radiography of dense targets to hadron therapy and injection into conventional accelerators. To enable the efficient analysis of large-scale, high-fidelity particle accelerator simulations using the Warp simulation suite, the authors introduce the Warp In situ Visualization Toolkit (WarpIV). WarpIV integrates state-of-the-art in situ visualization and analysis using VisIt with Warp, supports management and control of complex in situ visualization and analysis workflows, and implements integrated analyticsmore » to facilitate query- and feature-based data analytics and efficient large-scale data analysis. WarpIV enables for the first time distributed parallel, in situ visualization of the full simulation data using high-performance compute resources as the data is being generated by Warp. The authors describe the application of WarpIV to study and compare large 2D and 3D ion accelerator simulations, demonstrating significant differences in the acceleration process in 2D and 3D simulations. WarpIV is available to the public via https://bitbucket.org/berkeleylab/warpiv. The Warp In situ Visualization Toolkit (WarpIV) supports large-scale, parallel, in situ visualization and analysis and facilitates query- and feature-based analytics, enabling for the first time high-performance analysis of large-scale, high-fidelity particle accelerator simulations while the data is being generated by the Warp simulation suite. Furthermore, this supplemental material https://extras.computer.org/extra/mcg2016030022s1.pdf provides more details regarding the memory profiling and optimization and the Yee grid recentering optimization results discussed in the main article.« less
NASA Astrophysics Data System (ADS)
Stewart, R.; Piburn, J.; Sorokine, A.; Myers, A.; Moehl, J.; White, D.
2015-07-01
The application of spatiotemporal (ST) analytics to integrated data from major sources such as the World Bank, United Nations, and dozens of others holds tremendous potential for shedding new light on the evolution of cultural, health, economic, and geopolitical landscapes on a global level. Realizing this potential first requires an ST data model that addresses challenges in properly merging data from multiple authors, with evolving ontological perspectives, semantical differences, and changing attributes, as well as content that is textual, numeric, categorical, and hierarchical. Equally challenging is the development of analytical and visualization approaches that provide a serious exploration of this integrated data while remaining accessible to practitioners with varied backgrounds. The WSTAMP project at Oak Ridge National Laboratory has yielded two major results in addressing these challenges: 1) development of the WSTAMP database, a significant advance in ST data modeling that integrates 10,000+ attributes covering over 200 nation states spanning over 50 years from over 30 major sources and 2) a novel online ST exploratory and analysis tool providing an array of modern statistical and visualization techniques for analyzing these data temporally, spatially, and spatiotemporally under a standard analytic workflow. We discuss the status of this work and report on major findings.
NASA Astrophysics Data System (ADS)
Piburn, J.; Stewart, R.; Myers, A.; Sorokine, A.; Axley, E.; Anderson, D.; Burdette, J.; Biddle, C.; Hohl, A.; Eberle, R.; Kaufman, J.; Morton, A.
2017-10-01
Spatiotemporal (ST) analytics applied to major data sources such as the World Bank and World Health Organization has shown tremendous value in shedding light on the evolution of cultural, health, economic, and geopolitical landscapes on a global level. WSTAMP engages this opportunity by situating analysts, data, and analytics together within a visually rich and computationally rigorous online analysis environment. Since introducing WSTAMP at the First International Workshop on Spatiotemporal Computing, several transformative advances have occurred. Collaboration with human computer interaction experts led to a complete interface redesign that deeply immerses the analyst within a ST context, significantly increases visual and textual content, provides navigational crosswalks for attribute discovery, substantially reduce mouse and keyboard actions, and supports user data uploads. Secondly, the database has been expanded to include over 16,000 attributes, 50 years of time, and 200+ nation states and redesigned to support non-annual, non-national, city, and interaction data. Finally, two new analytics are implemented for analyzing large portfolios of multi-attribute data and measuring the behavioral stability of regions along different dimensions. These advances required substantial new approaches in design, algorithmic innovations, and increased computational efficiency. We report on these advances and inform how others may freely access the tool.
NASA Astrophysics Data System (ADS)
Tamkin, G.; Schnase, J. L.; Duffy, D.; Li, J.; Strong, S.; Thompson, J. H.
2017-12-01
NASA's efforts to advance climate analytics-as-a-service are making new capabilities available to the research community: (1) A full-featured Reanalysis Ensemble Service (RES) comprising monthly means data from multiple reanalysis data sets, accessible through an enhanced set of extraction, analytic, arithmetic, and intercomparison operations. The operations are made accessible through NASA's climate data analytics Web services and our client-side Climate Data Services Python library, CDSlib; (2) A cloud-based, high-performance Virtual Real-Time Analytics Testbed supporting a select set of climate variables. This near real-time capability enables advanced technologies like Spark and Hadoop-based MapReduce analytics over native NetCDF files; and (3) A WPS-compliant Web service interface to our climate data analytics service that will enable greater interoperability with next-generation systems such as ESGF. The Reanalysis Ensemble Service includes the following: - New API that supports full temporal, spatial, and grid-based resolution services with sample queries - A Docker-ready RES application to deploy across platforms - Extended capabilities that enable single- and multiple reanalysis area average, vertical average, re-gridding, standard deviation, and ensemble averages - Convenient, one-stop shopping for commonly used data products from multiple reanalyses including basic sub-setting and arithmetic operations (e.g., avg, sum, max, min, var, count, anomaly) - Full support for the MERRA-2 reanalysis dataset in addition to, ECMWF ERA-Interim, NCEP CFSR, JMA JRA-55 and NOAA/ESRL 20CR… - A Jupyter notebook-based distribution mechanism designed for client use cases that combines CDSlib documentation with interactive scenarios and personalized project management - Supporting analytic services for NASA GMAO Forward Processing datasets - Basic uncertainty quantification services that combine heterogeneous ensemble products with comparative observational products (e.g., reanalysis, observational, visualization) - The ability to compute and visualize multiple reanalysis for ease of inter-comparisons - Automated tools to retrieve and prepare data collections for analytic processing
The Effect of Multispectral Image Fusion Enhancement on Human Efficiency
2017-03-20
human visual system by applying a technique commonly used in visual percep- tion research : ideal observer analysis. Using this approach, we establish...applications, analytic tech- niques, and procedural methods used across studies. This paper uses ideal observer analysis to establish a frame- work that allows...augmented similarly to incorpo- rate research involving more complex stimulus content. Additionally, the ideal observer can be adapted for a number of
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zanella, Luciana; Casadio, Francesca; Gray, Kimberly A.
2012-03-14
The color darkening of selected brushstrokes of the masterpiece A Sunday on La Grande Jatte - 1884 (by Georges Seurat) has been attributed to the alteration of the chromate pigment zinc yellow. The pigment originally displays a bright greenish-yellow color but may undergo, after aging, darkening to a dull, ocher tone. We used XANES to probe the oxidation state of Cr on paint reconstructions, and show that color changes are associated with the reduction of Cr(VI) to Cr(III). Paint mixtures containing the pigment and linseed oil to mimic mixtures used in La Grande Jatte were subjected to artificial aging inmore » the presence of light, SO{sub 2}, and variable air humidity - 50 and 90% relative humidity. High relative humidity led to the largest degree of Cr(VI) reduction whereas low relative humidity promoted light-induced alterations. These results are corroborated by visible reflectance measurements on the same laboratory samples and contribute to a better understanding of the chemical reactivity of chromate pigments, which are present in many historical works of art.« less
Highlight report: Launch of a large integrated European in vitro toxicology project: EU-ToxRisk.
Daneshian, Mardas; Kamp, Hennicke; Hengstler, Jan; Leist, Marcel; van de Water, Bob
2016-05-01
The integrated European project, EU-ToxRisk, proudly sees itself as "flagship" exploring new alternative-to-animal approaches to chemical safety evaluation. It promotes mechanism-based toxicity testing and risk assessment according to the principles laid down for toxicology for the twenty-first century. The project was officially launched in January 2016 with a kickoff meeting in Egmond aan Zee, the Netherlands. Over 100 scientists representing academia and industry as well as regulatory authorities attended the inaugural meeting. The project will integrate advances in in vitro and in silico toxicology, read-across methods, and adverse outcome pathways. EU-ToxRisk will continue to make use of the case study strategy deployed in SEURAT-1, a FP7 initiative ended in December 2015. Even though the development of new non-animal methods is one target of EU-ToxRisk, the project puts special emphasis on their acceptance and implementation in regulatory contexts. This €30 million Horizon 2020 project involves 38 European partners and one from the USA. EU-ToxRisk aims at the "development of a new way of risk assessment."
Gabrielli, S; Galuppi, R; Fraulo, M; Savini, F; Morandi, B; Cancrini, G; Poglayen, G
2016-07-01
The genus Micipsella comprises three species of filariae to date identified in lagomorphs only, whereas the other genera belonging to the subfamily Splendidofilariinae are described as parasites of birds, reptiles and mammals. In the present study seven specimens of Micipsella numidica (Seurat, 1917), collected from the hare Lepus europaeus in Italy, were characterized genetically by molecular amplification of the mitochondrial genes (12S rDNA; cox1) and the 5S rDNA gene spacer region. Phylogenetic trees inferred using available sequences from filariae and those identified in this study evidenced a close relationship between M. numidica and Splendidofilariinae of other mammals and reptiles (Rumenfilaria andersoni and Madathamugadia hiepei). The present findings, apart from adding new data about the hosts in Italy, support the taxonomic position of M. numidica and highlight the substantial biological and molecular differences existing between Splendidofilariinae and other Onchocercidae. The study also contributes to our knowledge of the molecular/genetic diagnosis of filarial parasites of veterinary and medical concern in any vertebrate or invertebrate host.
Ensuring the Quality of Stem Cell-Derived In Vitro Models for Toxicity Testing.
Stacey, Glyn N; Coecke, Sandra; Price, Anna-Bal; Healy, Lyn; Jennings, Paul; Wilmes, Anja; Pinset, Christian; Ingelman-Sundberg, Magnus; Louisse, Jochem; Haupt, Simone; Kidd, Darren; Robitski, Andrea; Jahnke, Heinz-Georg; Lemaitre, Gilles; Myatt, Glenn
Quality control of cell cultures used in new in vitro toxicology assays is crucial to the provision of reliable, reproducible and accurate toxicity data on new drugs or constituents of new consumer products. This chapter explores the key scientific and ethical criteria that must be addressed at the earliest stages of developing toxicology assays based on human pluripotent stem cell (hPSC) lines. It also identifies key considerations for such assays to be acceptable for regulatory, laboratory safety and commercial purposes. Also addressed is the development of hPSC-based assays for the tissue and cell types of greatest interest in drug toxicology. The chapter draws on a range of expert opinion within the European Commission/Cosmetics Europe-funded alternative testing cluster SEURAT-1 and consensus from international groups delivering this guidance such as the International Stem Cell Banking Initiative. Accordingly, the chapter summarizes the most up-date best practices in the use and quality control of human Pluripotent Stem Cell lines in the development of in vitro toxicity assays from leading experts in the field.
User-Driven Sampling Strategies in Image Exploitation
Harvey, Neal R.; Porter, Reid B.
2013-12-23
Visual analytics and interactive machine learning both try to leverage the complementary strengths of humans and machines to solve complex data exploitation tasks. These fields overlap most significantly when training is involved: the visualization or machine learning tool improves over time by exploiting observations of the human-computer interaction. This paper focuses on one aspect of the human-computer interaction that we call user-driven sampling strategies. Unlike relevance feedback and active learning sampling strategies, where the computer selects which data to label at each iteration, we investigate situations where the user selects which data is to be labeled at each iteration. User-drivenmore » sampling strategies can emerge in many visual analytics applications but they have not been fully developed in machine learning. We discovered that in user-driven sampling strategies suggest new theoretical and practical research questions for both visualization science and machine learning. In this paper we identify and quantify the potential benefits of these strategies in a practical image analysis application. We find user-driven sampling strategies can sometimes provide significant performance gains by steering tools towards local minima that have lower error than tools trained with all of the data. Furthermore, in preliminary experiments we find these performance gains are particularly pronounced when the user is experienced with the tool and application domain.« less
Clustervision: Visual Supervision of Unsupervised Clustering.
Kwon, Bum Chul; Eysenbach, Ben; Verma, Janu; Ng, Kenney; De Filippi, Christopher; Stewart, Walter F; Perer, Adam
2018-01-01
Clustering, the process of grouping together similar items into distinct partitions, is a common type of unsupervised machine learning that can be useful for summarizing and aggregating complex multi-dimensional data. However, data can be clustered in many ways, and there exist a large body of algorithms designed to reveal different patterns. While having access to a wide variety of algorithms is helpful, in practice, it is quite difficult for data scientists to choose and parameterize algorithms to get the clustering results relevant for their dataset and analytical tasks. To alleviate this problem, we built Clustervision, a visual analytics tool that helps ensure data scientists find the right clustering among the large amount of techniques and parameters available. Our system clusters data using a variety of clustering techniques and parameters and then ranks clustering results utilizing five quality metrics. In addition, users can guide the system to produce more relevant results by providing task-relevant constraints on the data. Our visual user interface allows users to find high quality clustering results, explore the clusters using several coordinated visualization techniques, and select the cluster result that best suits their task. We demonstrate this novel approach using a case study with a team of researchers in the medical domain and showcase that our system empowers users to choose an effective representation of their complex data.
Chen, Xiaochun; Yu, Shaoming; Yang, Liang; Wang, Jianping; Jiang, Changlong
2016-07-14
The instant and on-site detection of trace aqueous fluoride ions is still a challenge for environmental monitoring and protection. This work demonstrates a new analytical method and its utility of a paper sensor for visual detection of F(-) on the basis of the fluorescence resonance energy transfer (FRET) between photoluminescent graphene oxide (GO) and silver nanoparticles (AgNPs) through the formation of cyclic esters between phenylborinic acid and diol. The fluorescence of GO was quenched by the AgNPs, and trace F(-) can recover the fluorescence of the quenched photoluminescent GO. The increase in fluorescence intensity is proportional to the concentration of F(-) in the range of 0.05-0.55 nM, along with a limit of detection (LOD) as low as 9.07 pM. Following the sensing mechanism, a paper-based sensor for the visual detection of aqueous F(-) has been successfully developed. The paper sensor showed high sensitivity for aqueous F(-), and the LOD could reach as low as 0.1 μM as observed by the naked eye. The very simple and effective strategy reported here could be extended to the visual detection of a wide range of analytes in the environment by the construction of highly efficient FRET nanoprobes.
User-driven sampling strategies in image exploitation
NASA Astrophysics Data System (ADS)
Harvey, Neal; Porter, Reid
2013-12-01
Visual analytics and interactive machine learning both try to leverage the complementary strengths of humans and machines to solve complex data exploitation tasks. These fields overlap most significantly when training is involved: the visualization or machine learning tool improves over time by exploiting observations of the human-computer interaction. This paper focuses on one aspect of the human-computer interaction that we call user-driven sampling strategies. Unlike relevance feedback and active learning sampling strategies, where the computer selects which data to label at each iteration, we investigate situations where the user selects which data is to be labeled at each iteration. User-driven sampling strategies can emerge in many visual analytics applications but they have not been fully developed in machine learning. User-driven sampling strategies suggest new theoretical and practical research questions for both visualization science and machine learning. In this paper we identify and quantify the potential benefits of these strategies in a practical image analysis application. We find user-driven sampling strategies can sometimes provide significant performance gains by steering tools towards local minima that have lower error than tools trained with all of the data. In preliminary experiments we find these performance gains are particularly pronounced when the user is experienced with the tool and application domain.
NASA Astrophysics Data System (ADS)
Tong, Rong
As a primary digital library portal for astrophysics researchers, SAO/NASA ADS (Astrophysics Data System) 2.0 interface features several visualization tools such as Author Network and Metrics. This research study involves 20 ADS long term users who participated in a usability and eye tracking research session. Participants first completed a cognitive test, and then performed five tasks in ADS 2.0 where they explored its multiple visualization tools. Results show that over half of the participants were Imagers and half of the participants were Analytic. Cognitive styles were found to have significant impacts on several efficiency-based measures. Analytic-oriented participants were observed to spent shorter time on web pages and apps, made fewer web page changes than less-Analytic-driving participants in performing common tasks, whereas AI (Analytic-Imagery) participants also completed their five tasks faster than non-AI participants. Meanwhile, self-identified Imagery participants were found to be more efficient in their task completion through multiple measures including total time on task, number of mouse clicks, and number of query revisions made. Imagery scores were negatively associated with frequency of confusion and the observed counts of being surprised. Compared to those who did not claimed to be a visual person, self-identified Imagery participants were observed to have significantly less frequency in frustration and hesitation during their task performance. Both demographic variables and past user experiences were found to correlate with task performance; query revision also correlated with multiple time-based measurements. Considered as an indicator of efficiency, query revisions were found to correlate negatively with the rate of complete with ease, and positively with several time-based efficiency measures, rate of complete with some difficulty, and the frequency of frustration. These results provide rich insights into the cognitive styles of ADS' core users, the impact of such styles and demographic attributes on their task performance their affective and cognitive experiences, and their interaction behaviors while using the visualization component of ADS 2.0, and would subsequently contribute to the design of bibliographic retrieval systems for scientists.
Visualization rhetoric: framing effects in narrative visualization.
Hullman, Jessica; Diakopoulos, Nicholas
2011-12-01
Narrative visualizations combine conventions of communicative and exploratory information visualization to convey an intended story. We demonstrate visualization rhetoric as an analytical framework for understanding how design techniques that prioritize particular interpretations in visualizations that "tell a story" can significantly affect end-user interpretation. We draw a parallel between narrative visualization interpretation and evidence from framing studies in political messaging, decision-making, and literary studies. Devices for understanding the rhetorical nature of narrative information visualizations are presented, informed by the rigorous application of concepts from critical theory, semiotics, journalism, and political theory. We draw attention to how design tactics represent additions or omissions of information at various levels-the data, visual representation, textual annotations, and interactivity-and how visualizations denote and connote phenomena with reference to unstated viewing conventions and codes. Classes of rhetorical techniques identified via a systematic analysis of recent narrative visualizations are presented, and characterized according to their rhetorical contribution to the visualization. We describe how designers and researchers can benefit from the potentially positive aspects of visualization rhetoric in designing engaging, layered narrative visualizations and how our framework can shed light on how a visualization design prioritizes specific interpretations. We identify areas where future inquiry into visualization rhetoric can improve understanding of visualization interpretation. © 2011 IEEE
Xiao, Fengjun; Li, Chengzhi; Sun, Jiangman; Zhang, Lianjie
2017-01-01
To study the rapid growth of research on organic photovoltaic (OPV) technology, development trends in the relevant research are analyzed based on CiteSpace software of text mining and visualization in scientific literature. By this analytical method, the outputs and cooperation of authors, the hot research topics, the vital references and the development trend of OPV are identified and visualized. Different from the traditional review articles by the experts on OPV, this work provides a new method of visualizing information about the development of the OPV technology research over the past decade quantitatively.
NASA Astrophysics Data System (ADS)
Xiao, Fengjun; Li, Chengzhi; Sun, Jiangman; Zhang, Lianjie
2017-09-01
To study the rapid growth of research on organic photovoltaic (OPV) technology, development trends in the relevant research are analyzed based on CiteSpace software of text mining and visualization in scientific literature. By this analytical method, the outputs and cooperation of authors, the hot research topics, the vital references and the development trend of OPV are identified and visualized. Different from the traditional review articles by the experts on OPV, this work provides a new method of visualizing information about the development of the OPV technology research over the past decade quantitatively.
NASA Technical Reports Server (NTRS)
Sturm, Erick J.; Monahue, Kenneth M.; Biehl, James P.; Kokorowski, Michael; Ngalande, Cedrick,; Boedeker, Jordan
2012-01-01
The Jupiter Environment Tool (JET) is a custom UI plug-in for STK that provides an interface to Jupiter environment models for visualization and analysis. Users can visualize the different magnetic field models of Jupiter through various rendering methods, which are fully integrated within STK s 3D Window. This allows users to take snapshots and make animations of their scenarios with magnetic field visualizations. Analytical data can be accessed in the form of custom vectors. Given these custom vectors, users have access to magnetic field data in custom reports, graphs, access constraints, coverage analysis, and anywhere else vectors are used within STK.
Moving from Descriptive to Causal Analytics: Case Study of the Health Indicators Warehouse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schryver, Jack C.; Shankar, Mallikarjun; Xu, Songhua
The KDD community has described a multitude of methods for knowledge discovery on large datasets. We consider some of these methods and integrate them into an analyst s workflow that proceeds from the data-centric descriptive level to the model-centric causal level. Examples of the workflow are shown for the Health Indicators Warehouse, which is a public database for community health information that is a potent resource for conducting data science on a medium scale. We demonstrate the potential of HIW as a source of serious visual analytics efforts by showing correlation matrix visualizations, multivariate outlier analysis, multiple linear regression ofmore » Medicare costs, and scatterplot matrices for a broad set of health indicators. We conclude by sketching the first steps toward a causal dependence hypothesis.« less
Toward interactive search in remote sensing imagery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Porter, Reid B; Hush, Do; Harvey, Neal
2010-01-01
To move from data to information in almost all science and defense applications requires a human-in-the-loop to validate information products, resolve inconsistencies, and account for incomplete and potentially deceptive sources of information. This is a key motivation for visual analytics which aims to develop techniques that complement and empower human users. By contrast, the vast majority of algorithms developed in machine learning aim to replace human users in data exploitation. In this paper we describe a recently introduced machine learning problem, called rare category detection, which may be a better match to visual analytic environments. We describe a new designmore » criteria for this problem, and present comparisons to existing techniques with both synthetic and real-world datasets. We conclude by describing an application in broad-area search of remote sensing imagery.« less
Mathematical thinking styles of undergraduate students and their achievement in mathematics
NASA Astrophysics Data System (ADS)
Risnanosanti
2017-08-01
The main purpose of this study is to analyze the role of mathematical thinking styles in students' achievement in mathematics. On the basis of this study, it is also to generate recommendation for classroom instruction. The two specific aims are; first to observe students' mathematical thinking styles during problem solving, the second to asses students' achievement in mathematics. The data were collected by using Mathematical Thinking Styles questionnaires and test of students' achievement in mathematics. The subject in this study was 35 students from third year at mathematics study program of Muhammadiyah University of Bengkulu in academic year 2016/2017. The result of this study was that the students have three mathematical thinking styles (analytic, visual, and integrated), and the students who have analytic styles have better achievement than those who have visual styles in mathematics.
Pfeuffer, Kevin P.; Ray, Steven J.; Hieftje, Gary M.
2014-01-01
Ambient desorption/ionization mass spectrometry (ADI-MS) has developed into an important analytical field over the last nine years. The ability to analyze samples under ambient conditions while retaining the sensitivity and specificity of mass spectrometry has led to numerous applications and a corresponding jump in the popularity of this field. Despite the great potential of ADI-MS, problems remain in the areas of ion identification and quantification. Difficulties with ion identification can be solved through modified instrumentation, including accurate-mass or MS/MS capabilities for analyte identification. More difficult problems include quantification due to the ambient nature of the sampling process. To characterize and improve sample volatilization, ionization, and introduction into the mass-spectrometer interface, a method of visualizing mass transport into the mass spectrometer is needed. Schlieren imaging is a well-established technique that renders small changes in refractive index visible. Here, schlieren imaging was used to visualize helium flow from a plasma-based ADI-MS source into a mass spectrometer while ion signals were recorded. Optimal sample positions for melting-point capillary and transmission-mode (stainless steel mesh) introduction were found to be near (within 1 mm of) the mass spectrometer inlet. Additionally, the orientation of the sampled surface plays a significant role. More efficient mass transport resulted for analyte deposits directly facing the MS inlet. Different surfaces (glass slide and rough surface) were also examined; for both it was found that the optimal position is immediately beneath the MS inlet. PMID:24658804
Pfeuffer, Kevin P; Ray, Steven J; Hieftje, Gary M
2014-05-01
Ambient desorption/ionization mass spectrometry (ADI-MS) has developed into an important analytical field over the last 9 years. The ability to analyze samples under ambient conditions while retaining the sensitivity and specificity of mass spectrometry has led to numerous applications and a corresponding jump in the popularity of this field. Despite the great potential of ADI-MS, problems remain in the areas of ion identification and quantification. Difficulties with ion identification can be solved through modified instrumentation, including accurate-mass or MS/MS capabilities for analyte identification. More difficult problems include quantification because of the ambient nature of the sampling process. To characterize and improve sample volatilization, ionization, and introduction into the mass spectrometer interface, a method of visualizing mass transport into the mass spectrometer is needed. Schlieren imaging is a well-established technique that renders small changes in refractive index visible. Here, schlieren imaging was used to visualize helium flow from a plasma-based ADI-MS source into a mass spectrometer while ion signals were recorded. Optimal sample positions for melting-point capillary and transmission-mode (stainless steel mesh) introduction were found to be near (within 1 mm of) the mass spectrometer inlet. Additionally, the orientation of the sampled surface plays a significant role. More efficient mass transport resulted for analyte deposits directly facing the MS inlet. Different surfaces (glass slide and rough surface) were also examined; for both it was found that the optimal position is immediately beneath the MS inlet.
NASA Astrophysics Data System (ADS)
Pfeuffer, Kevin P.; Ray, Steven J.; Hieftje, Gary M.
2014-05-01
Ambient desorption/ionization mass spectrometry (ADI-MS) has developed into an important analytical field over the last 9 years. The ability to analyze samples under ambient conditions while retaining the sensitivity and specificity of mass spectrometry has led to numerous applications and a corresponding jump in the popularity of this field. Despite the great potential of ADI-MS, problems remain in the areas of ion identification and quantification. Difficulties with ion identification can be solved through modified instrumentation, including accurate-mass or MS/MS capabilities for analyte identification. More difficult problems include quantification because of the ambient nature of the sampling process. To characterize and improve sample volatilization, ionization, and introduction into the mass spectrometer interface, a method of visualizing mass transport into the mass spectrometer is needed. Schlieren imaging is a well-established technique that renders small changes in refractive index visible. Here, schlieren imaging was used to visualize helium flow from a plasma-based ADI-MS source into a mass spectrometer while ion signals were recorded. Optimal sample positions for melting-point capillary and transmission-mode (stainless steel mesh) introduction were found to be near (within 1 mm of) the mass spectrometer inlet. Additionally, the orientation of the sampled surface plays a significant role. More efficient mass transport resulted for analyte deposits directly facing the MS inlet. Different surfaces (glass slide and rough surface) were also examined; for both it was found that the optimal position is immediately beneath the MS inlet.
Mining patterns in persistent surveillance systems with smart query and visual analytics
NASA Astrophysics Data System (ADS)
Habibi, Mohammad S.; Shirkhodaie, Amir
2013-05-01
In Persistent Surveillance Systems (PSS) the ability to detect and characterize events geospatially help take pre-emptive steps to counter adversary's actions. Interactive Visual Analytic (VA) model offers this platform for pattern investigation and reasoning to comprehend and/or predict such occurrences. The need for identifying and offsetting these threats requires collecting information from diverse sources, which brings with it increasingly abstract data. These abstract semantic data have a degree of inherent uncertainty and imprecision, and require a method for their filtration before being processed further. In this paper, we have introduced an approach based on Vector Space Modeling (VSM) technique for classification of spatiotemporal sequential patterns of group activities. The feature vectors consist of an array of attributes extracted from generated sensors semantic annotated messages. To facilitate proper similarity matching and detection of time-varying spatiotemporal patterns, a Temporal-Dynamic Time Warping (DTW) method with Gaussian Mixture Model (GMM) for Expectation Maximization (EM) is introduced. DTW is intended for detection of event patterns from neighborhood-proximity semantic frames derived from established ontology. GMM with EM, on the other hand, is employed as a Bayesian probabilistic model to estimated probability of events associated with a detected spatiotemporal pattern. In this paper, we present a new visual analytic tool for testing and evaluation group activities detected under this control scheme. Experimental results demonstrate the effectiveness of proposed approach for discovery and matching of subsequences within sequentially generated patterns space of our experiments.
Marek, Lukáš; Tuček, Pavel; Pászto, Vít
2015-01-28
Visual analytics aims to connect the processing power of information technologies and the user's ability of logical thinking and reasoning through the complex visual interaction. Moreover, the most of the data contain the spatial component. Therefore, the need for geovisual tools and methods arises. Either one can develop own system but the dissemination of findings and its usability might be problematic or the widespread and well-known platform can be utilized. The aim of this paper is to prove the applicability of Google Earth™ software as a tool for geovisual analytics that helps to understand the spatio-temporal patterns of the disease distribution. We combined the complex joint spatio-temporal analysis with comprehensive visualisation. We analysed the spatio-temporal distribution of the campylobacteriosis in the Czech Republic between 2008 and 2012. We applied three main approaches in the study: (1) the geovisual analytics of the surveillance data that were visualised in the form of bubble chart; (2) the geovisual analytics of the disease's weekly incidence surfaces computed by spatio-temporal kriging and (3) the spatio-temporal scan statistics that was employed in order to identify high or low rates clusters of affected municipalities. The final data are stored in Keyhole Markup Language files and visualised in Google Earth™ in order to apply geovisual analytics. Using geovisual analytics we were able to display and retrieve information from complex dataset efficiently. Instead of searching for patterns in a series of static maps or using numerical statistics, we created the set of interactive visualisations in order to explore and communicate results of analyses to the wider audience. The results of the geovisual analytics identified periodical patterns in the behaviour of the disease as well as fourteen spatio-temporal clusters of increased relative risk. We prove that Google Earth™ software is a usable tool for the geovisual analysis of the disease distribution. Google Earth™ has many indisputable advantages (widespread, freely available, intuitive interface, space-time visualisation capabilities and animations, communication of results), nevertheless it is still needed to combine it with pre-processing tools that prepare the data into a form suitable for the geovisual analytics itself.
Urusov, Alexandr E; Gubaidullina, Miliausha K; Petrakova, Alina V; Zherdev, Anatoly V; Dzantiev, Boris B
2017-12-06
A new kind of competitive immunochromatographic assay is presented. It is based on the use of a test strip loaded with (a) labeled specific antibodies, (b) a hapten-protein conjugate at the control zone, and (c) antibodies interacting with the specific antibodies in the analytical zone. In the case where a sample does not contain the target antigen (hapten), all labeled antibodies remain in the control zone because of the selected ratio of reactants. The analytical zone remains colorless because the labeled antibodies do not reach it. If an antigen is present in the sample, it interferes with the binding of the specific antibodies in the control zone and knocks them out. Some of these antibodies pass the control zone to form a colored line in the analytical zone. The intensity of the color is directly proportional to the amount of the target antigen in the sample. The assay has an attractive feature in that an appearance in coloration is more easily detected visually than a decoloration. Moreover, the onset of coloration is detectable at a lower concentration than a decoloration. The new detection scheme was applied to the determination of the mycotoxin deoxynivalenol. The visual limit of detection is 2 ng·mL -1 in corn extracts (35 ng per gram of sample). With the same reagents, this is lower by a factor of 60 than the established test strip. The assay takes only 15 min. This new kind of assay has wide potential applications for numerous low molecular weight analytes. Graphical abstract Competitive immunochromatography with direct analyte-signal dependence is proposed. It provides a 60-fold decrease of the detection limit for mycotoxin deoxynivalenol. The analyte-antibody-label complexes move along the immobilized antigen (control zone) and bind with anti-species antibodies (test zone).
Timing variation in an analytically solvable chaotic system
NASA Astrophysics Data System (ADS)
Blakely, J. N.; Milosavljevic, M. S.; Corron, N. J.
2017-02-01
We present analytic solutions for a chaotic dynamical system that do not have the regular timing characteristic of recently reported solvable chaotic systems. The dynamical system can be viewed as a first order filter with binary feedback. The feedback state may be switched only at instants defined by an external clock signal. Generalizing from a period one clock, we show analytic solutions for period two and higher period clocks. We show that even when the clock 'ticks' randomly the chaotic system has an analytic solution. These solutions can be visualized in a stroboscopic map whose complexity increases with the complexity of the clock. We provide both analytic results as well as experimental data from an electronic circuit implementation of the system. Our findings bridge the gap between the irregular timing of well known chaotic systems such as Lorenz and Rossler and the well regulated oscillations of recently reported solvable chaotic systems.
Electrochromic Molecular Imprinting Sensor for Visual and Smartphone-Based Detections.
Capoferri, Denise; Álvarez-Diduk, Ruslan; Del Carlo, Michele; Compagnone, Dario; Merkoçi, Arben
2018-05-01
Electrochromic effect and molecularly imprinted technology have been used to develop a sensitive and selective electrochromic sensor. The polymeric matrices obtained using the imprinting technology are robust molecular recognition elements and have the potential to mimic natural recognition entities with very high selectivity. The electrochromic behavior of iridium oxide nanoparticles (IrOx NPs) as physicochemical transducer together with a molecularly imprinted polymer (MIP) as recognition layer resulted in a fast and efficient translation of the detection event. The sensor was fabricated using screen-printing technology with indium tin oxide as a transparent working electrode; IrOx NPs where electrodeposited onto the electrode followed by thermal polymerization of polypyrrole in the presence of the analyte (chlorpyrifos). Two different approaches were used to detect and quantify the pesticide: direct visual detection and smartphone imaging. Application of different oxidation potentials for 10 s resulted in color changes directly related to the concentration of the analyte. For smartphone imaging, at fixed potential, the concentration of the analyte was dependent on the color intensity of the electrode. The electrochromic sensor detects a highly toxic compound (chlorpyrifos) with a 100 fM and 1 mM dynamic range. So far, to the best of our knowledge, this is the first work where an electrochromic MIP sensor uses the electrochromic properties of IrOx to detect a certain analyte with high selectivity and sensitivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rubel, Oliver; Loring, Burlen; Vay, Jean -Luc
The generation of short pulses of ion beams through the interaction of an intense laser with a plasma sheath offers the possibility of compact and cheaper ion sources for many applications--from fast ignition and radiography of dense targets to hadron therapy and injection into conventional accelerators. To enable the efficient analysis of large-scale, high-fidelity particle accelerator simulations using the Warp simulation suite, the authors introduce the Warp In situ Visualization Toolkit (WarpIV). WarpIV integrates state-of-the-art in situ visualization and analysis using VisIt with Warp, supports management and control of complex in situ visualization and analysis workflows, and implements integrated analyticsmore » to facilitate query- and feature-based data analytics and efficient large-scale data analysis. WarpIV enables for the first time distributed parallel, in situ visualization of the full simulation data using high-performance compute resources as the data is being generated by Warp. The authors describe the application of WarpIV to study and compare large 2D and 3D ion accelerator simulations, demonstrating significant differences in the acceleration process in 2D and 3D simulations. WarpIV is available to the public via https://bitbucket.org/berkeleylab/warpiv. The Warp In situ Visualization Toolkit (WarpIV) supports large-scale, parallel, in situ visualization and analysis and facilitates query- and feature-based analytics, enabling for the first time high-performance analysis of large-scale, high-fidelity particle accelerator simulations while the data is being generated by the Warp simulation suite. Furthermore, this supplemental material https://extras.computer.org/extra/mcg2016030022s1.pdf provides more details regarding the memory profiling and optimization and the Yee grid recentering optimization results discussed in the main article.« less
Shaded computer graphic techniques for visualizing and interpreting analytic fluid flow models
NASA Technical Reports Server (NTRS)
Parke, F. I.
1981-01-01
Mathematical models which predict the behavior of fluid flow in different experiments are simulated using digital computers. The simulations predict values of parameters of the fluid flow (pressure, temperature and velocity vector) at many points in the fluid. Visualization of the spatial variation in the value of these parameters is important to comprehend and check the data generated, to identify the regions of interest in the flow, and for effectively communicating information about the flow to others. The state of the art imaging techniques developed in the field of three dimensional shaded computer graphics is applied to visualization of fluid flow. Use of an imaging technique known as 'SCAN' for visualizing fluid flow, is studied and the results are presented.
Ion concentration in micro and nanoscale electrospray emitters.
Yuill, Elizabeth M; Baker, Lane A
2018-06-01
Solution-phase ion transport during electrospray has been characterized for nanopipettes, or glass capillaries pulled to nanoscale tip dimensions, and micron-sized electrospray ionization emitters. Direct visualization of charged fluorophores during the electrospray process is used to evaluate impacts of emitter size, ionic strength, analyte size, and pressure-driven flow on heterogeneous ion transport during electrospray. Mass spectrometric measurements of positively- and negatively-charged proteins were taken for micron-sized and nanopipette emitters under low ionic strength conditions to further illustrate a discrepancy in solution-driven transport of charged analytes. A fundamental understanding of analyte electromigration during electrospray, which is not always considered, is expected to provide control over selective analyte depletion and enrichment, and can be harnessed for sample cleanup. Graphical abstract Fluorescence micrographs of ion migration in nanoscale pipettes while solution is electrosprayed.
Cognitive Foundations for Visual Analytics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greitzer, Frank L.; Noonan, Christine F.; Franklin, Lyndsey
In this report, we provide an overview of scientific/technical literature on information visualization and VA. Topics discussed include an update and overview of the extensive literature search conducted for this study, the nature and purpose of the field, major research thrusts, and scientific foundations. We review methodologies for evaluating and measuring the impact of VA technologies as well as taxonomies that have been proposed for various purposes to support the VA community. A cognitive science perspective underlies each of these discussions.
Mirel, Barbara; Görg, Carsten
2014-04-26
A common class of biomedical analysis is to explore expression data from high throughput experiments for the purpose of uncovering functional relationships that can lead to a hypothesis about mechanisms of a disease. We call this analysis expression driven, -omics hypothesizing. In it, scientists use interactive data visualizations and read deeply in the research literature. Little is known, however, about the actual flow of reasoning and behaviors (sense making) that scientists enact in this analysis, end-to-end. Understanding this flow is important because if bioinformatics tools are to be truly useful they must support it. Sense making models of visual analytics in other domains have been developed and used to inform the design of useful and usable tools. We believe they would be helpful in bioinformatics. To characterize the sense making involved in expression-driven, -omics hypothesizing, we conducted an in-depth observational study of one scientist as she engaged in this analysis over six months. From findings, we abstracted a preliminary sense making model. Here we describe its stages and suggest guidelines for developing visualization tools that we derived from this case. A single case cannot be generalized. But we offer our findings, sense making model and case-based tool guidelines as a first step toward increasing interest and further research in the bioinformatics field on scientists' analytical workflows and their implications for tool design.
NASA Astrophysics Data System (ADS)
Li, W.; Shao, H.
2017-12-01
For geospatial cyberinfrastructure enabled web services, the ability of rapidly transmitting and sharing spatial data over the Internet plays a critical role to meet the demands of real-time change detection, response and decision-making. Especially for the vector datasets which serve as irreplaceable and concrete material in data-driven geospatial applications, their rich geometry and property information facilitates the development of interactive, efficient and intelligent data analysis and visualization applications. However, the big-data issues of vector datasets have hindered their wide adoption in web services. In this research, we propose a comprehensive optimization strategy to enhance the performance of vector data transmitting and processing. This strategy combines: 1) pre- and on-the-fly generalization, which automatically determines proper simplification level through the introduction of appropriate distance tolerance (ADT) to meet various visualization requirements, and at the same time speed up simplification efficiency; 2) a progressive attribute transmission method to reduce data size and therefore the service response time; 3) compressed data transmission and dynamic adoption of a compression method to maximize the service efficiency under different computing and network environments. A cyberinfrastructure web portal was developed for implementing the proposed technologies. After applying our optimization strategies, substantial performance enhancement is achieved. We expect this work to widen the use of web service providing vector data to support real-time spatial feature sharing, visual analytics and decision-making.
2014-01-01
A common class of biomedical analysis is to explore expression data from high throughput experiments for the purpose of uncovering functional relationships that can lead to a hypothesis about mechanisms of a disease. We call this analysis expression driven, -omics hypothesizing. In it, scientists use interactive data visualizations and read deeply in the research literature. Little is known, however, about the actual flow of reasoning and behaviors (sense making) that scientists enact in this analysis, end-to-end. Understanding this flow is important because if bioinformatics tools are to be truly useful they must support it. Sense making models of visual analytics in other domains have been developed and used to inform the design of useful and usable tools. We believe they would be helpful in bioinformatics. To characterize the sense making involved in expression-driven, -omics hypothesizing, we conducted an in-depth observational study of one scientist as she engaged in this analysis over six months. From findings, we abstracted a preliminary sense making model. Here we describe its stages and suggest guidelines for developing visualization tools that we derived from this case. A single case cannot be generalized. But we offer our findings, sense making model and case-based tool guidelines as a first step toward increasing interest and further research in the bioinformatics field on scientists’ analytical workflows and their implications for tool design. PMID:24766796
Kalonia, Cavan; Kumru, Ozan S.; Kim, Jae Hyun; Middaugh, C. Russell; Volkin, David B.
2013-01-01
This study presents a novel method to visualize protein aggregate and particle formation data to rapidly evaluate the effect of solution and stress conditions on the physical stability of an IgG1 monoclonal antibody (mAb). Radar chart arrays were designed so that hundreds of Microflow Digital Imaging (MFI) solution measurements, evaluating different mAb formulations under varying stresses, could be presented in a single figure with minimal loss of data resolution. These MFI radar charts show measured changes in subvisible particle number, size and morphology distribution as a change in the shape of polygons. Radar charts were also created to visualize mAb aggregate and particle formation across a wide size range by combining data sets from size exclusion chromatography (SEC), Archimedes resonant mass measurements, and MFI. We found that the environmental/mechanical stress condition (e.g., heat vs. agitation) was the most important factor in influencing the particle size and morphology distribution with this IgG1 mAb. Additionally, the presence of NaCl exhibited a pH and stress dependent behavior resulting in promotion or inhibition mAb particle formation. This data visualization technique provides a comprehensive analysis of the aggregation tendencies of this IgG1 mAb in different formulations with varying stresses as measured by different analytical techniques. PMID:24122556
A visual analytic framework for data fusion in investigative intelligence
NASA Astrophysics Data System (ADS)
Cai, Guoray; Gross, Geoff; Llinas, James; Hall, David
2014-05-01
Intelligence analysis depends on data fusion systems to provide capabilities of detecting and tracking important objects, events, and their relationships in connection to an analytical situation. However, automated data fusion technologies are not mature enough to offer reliable and trustworthy information for situation awareness. Given the trend of increasing sophistication of data fusion algorithms and loss of transparency in data fusion process, analysts are left out of the data fusion process cycle with little to no control and confidence on the data fusion outcome. Following the recent rethinking of data fusion as human-centered process, this paper proposes a conceptual framework towards developing alternative data fusion architecture. This idea is inspired by the recent advances in our understanding of human cognitive systems, the science of visual analytics, and the latest thinking about human-centered data fusion. Our conceptual framework is supported by an analysis of the limitation of existing fully automated data fusion systems where the effectiveness of important algorithmic decisions depend on the availability of expert knowledge or the knowledge of the analyst's mental state in an investigation. The success of this effort will result in next generation data fusion systems that can be better trusted while maintaining high throughput.
DOE Office of Scientific and Technical Information (OSTI.GOV)
ElNaggar, Mariam S; Barbier, Charlotte N; Van Berkel, Gary J
A coaxial geometry liquid microjunction surface sampling probe (LMJ-SSP) enables direct extraction of analytes from surfaces for subsequent analysis by techniques like mass spectrometry. Solution dynamics at the probe-to-sample surface interface in the LMJ-SSP has been suspected to influence sampling efficiency and dispersion but has not been rigorously investigated. The effect on flow dynamics and analyte transport to the mass spectrometer caused by coaxial retraction of the inner and outer capillaries from each other and the surface during sampling with a LMJ-SSP was investigated using computational fluid dynamics and experimentation. A transparent LMJ-SSP was constructed to provide the means formore » visual observation of the dynamics of the surface sampling process. Visual observation, computational fluid dynamics (CFD) analysis, and experimental results revealed that inner capillary axial retraction from the flush position relative to the outer capillary transitioned the probe from a continuous sampling and injection mode through an intermediate regime to sample plug formationmode caused by eddy currents at the sampling end of the probe. The potential for analytical implementation of these newly discovered probe operational modes is discussed.« less
Combined imaging and chemical sensing using a single optical imaging fiber.
Bronk, K S; Michael, K L; Pantano, P; Walt, D R
1995-09-01
Despite many innovations and developments in the field of fiber-optic chemical sensors, optical fibers have not been employed to both view a sample and concurrently detect an analyte of interest. While chemical sensors employing a single optical fiber or a noncoherent fiberoptic bundle have been applied to a wide variety of analytical determinations, they cannot be used for imaging. Similarly, coherent imaging fibers have been employed only for their originally intended purpose, image transmission. We herein report a new technique for viewing a sample and measuring surface chemical concentrations that employs a coherent imaging fiber. The method is based on the deposition of a thin, analyte-sensitive polymer layer on the distal surface of a 350-microns-diameter imaging fiber. We present results from a pH sensor array and an acetylcholine biosensor array, each of which contains approximately 6000 optical sensors. The acetylcholine biosensor has a detection limit of 35 microM and a fast (< 1 s) response time. In association with an epifluorescence microscope and a charge-coupled device, these modified imaging fibers can display visual information of a remote sample with 4-microns spatial resolution, allowing for alternating acquisition of both chemical analysis and visual histology.
Visual analysis of large heterogeneous social networks by semantic and structural abstraction.
Shen, Zeqian; Ma, Kwan-Liu; Eliassi-Rad, Tina
2006-01-01
Social network analysis is an active area of study beyond sociology. It uncovers the invisible relationships between actors in a network and provides understanding of social processes and behaviors. It has become an important technique in a variety of application areas such as the Web, organizational studies, and homeland security. This paper presents a visual analytics tool, OntoVis, for understanding large, heterogeneous social networks, in which nodes and links could represent different concepts and relations, respectively. These concepts and relations are related through an ontology (also known as a schema). OntoVis is named such because it uses information in the ontology associated with a social network to semantically prune a large, heterogeneous network. In addition to semantic abstraction, OntoVis also allows users to do structural abstraction and importance filtering to make large networks manageable and to facilitate analytic reasoning. All these unique capabilities of OntoVis are illustrated with several case studies.
An Advanced Framework for Improving Situational Awareness in Electric Power Grid Operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yousu; Huang, Zhenyu; Zhou, Ning
With the deployment of new smart grid technologies and the penetration of renewable energy in power systems, significant uncertainty and variability is being introduced into power grid operation. Traditionally, the Energy Management System (EMS) operates the power grid in a deterministic mode, and thus will not be sufficient for the future control center in a stochastic environment with faster dynamics. One of the main challenges is to improve situational awareness. This paper reviews the current status of power grid operation and presents a vision of improving wide-area situational awareness for a future control center. An advanced framework, consisting of parallelmore » state estimation, state prediction, parallel contingency selection, parallel contingency analysis, and advanced visual analytics, is proposed to provide capabilities needed for better decision support by utilizing high performance computing (HPC) techniques and advanced visual analytic techniques. Research results are presented to support the proposed vision and framework.« less
ATLAS Eventlndex monitoring system using the Kibana analytics and visualization platform
NASA Astrophysics Data System (ADS)
Barberis, D.; Cárdenas Zárate, S. E.; Favareto, A.; Fernandez Casani, A.; Gallas, E. J.; Garcia Montoro, C.; Gonzalez de la Hoz, S.; Hrivnac, J.; Malon, D.; Prokoshin, F.; Salt, J.; Sanchez, J.; Toebbicke, R.; Yuan, R.; ATLAS Collaboration
2016-10-01
The ATLAS EventIndex is a data catalogue system that stores event-related metadata for all (real and simulated) ATLAS events, on all processing stages. As it consists of different components that depend on other applications (such as distributed storage, and different sources of information) we need to monitor the conditions of many heterogeneous subsystems, to make sure everything is working correctly. This paper describes how we gather information about the EventIndex components and related subsystems: the Producer-Consumer architecture for data collection, health parameters from the servers that run EventIndex components, EventIndex web interface status, and the Hadoop infrastructure that stores EventIndex data. This information is collected, processed, and then displayed using CERN service monitoring software based on the Kibana analytic and visualization package, provided by CERN IT Department. EventIndex monitoring is used both by the EventIndex team and ATLAS Distributed Computing shifts crew.
Single Cell Proteomics in Biomedicine: High-dimensional Data Acquisition, Visualization and Analysis
Su, Yapeng; Shi, Qihui; Wei, Wei
2017-01-01
New insights on cellular heterogeneity in the last decade provoke the development of a variety of single cell omics tools at a lightning pace. The resultant high-dimensional single cell data generated by these tools require new theoretical approaches and analytical algorithms for effective visualization and interpretation. In this review, we briefly survey the state-of-the-art single cell proteomic tools with a particular focus on data acquisition and quantification, followed by an elaboration of a number of statistical and computational approaches developed to date for dissecting the high-dimensional single cell data. The underlying assumptions, unique features and limitations of the analytical methods with the designated biological questions they seek to answer will be discussed. Particular attention will be given to those information theoretical approaches that are anchored in a set of first principles of physics and can yield detailed (and often surprising) predictions. PMID:28128880
Hyperspectral imaging for non-contact analysis of forensic traces.
Edelman, G J; Gaston, E; van Leeuwen, T G; Cullen, P J; Aalders, M C G
2012-11-30
Hyperspectral imaging (HSI) integrates conventional imaging and spectroscopy, to obtain both spatial and spectral information from a specimen. This technique enables investigators to analyze the chemical composition of traces and simultaneously visualize their spatial distribution. HSI offers significant potential for the detection, visualization, identification and age estimation of forensic traces. The rapid, non-destructive and non-contact features of HSI mark its suitability as an analytical tool for forensic science. This paper provides an overview of the principles, instrumentation and analytical techniques involved in hyperspectral imaging. We describe recent advances in HSI technology motivating forensic science applications, e.g. the development of portable and fast image acquisition systems. Reported forensic science applications are reviewed. Challenges are addressed, such as the analysis of traces on backgrounds encountered in casework, concluded by a summary of possible future applications. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Visualization of Microfloral Metabolism for Marine Waste Recycling
Ogura, Tatsuki; Hoshino, Reona; Date, Yasuhiro; Kikuchi, Jun
2016-01-01
Marine biomass including fishery products are precious protein resources for human foods and are an alternative to livestock animals in order to reduce the virtual water problem. However, a large amount of marine waste can be generated from fishery products and it is not currently recycled. We evaluated the metabolism of digested marine waste using integrated analytical methods, under anaerobic conditions and the fertilization of abandoned agricultural soils. Dynamics of fish waste digestion revealed that samples of meat and bony parts had similar dynamics under anaerobic conditions in spite of large chemical variations in input marine wastes. Abandoned agricultural soils fertilized with fish waste accumulated some amino acids derived from fish waste, and accumulation of l-arginine and l-glutamine were higher in plant seedlings. Therefore, we have proposed an analytical method to visualize metabolic dynamics for recycling of fishery waste processes. PMID:26828528
mHealth Visual Discovery Dashboard.
Fang, Dezhi; Hohman, Fred; Polack, Peter; Sarker, Hillol; Kahng, Minsuk; Sharmin, Moushumi; al'Absi, Mustafa; Chau, Duen Horng
2017-09-01
We present Discovery Dashboard, a visual analytics system for exploring large volumes of time series data from mobile medical field studies. Discovery Dashboard offers interactive exploration tools and a data mining motif discovery algorithm to help researchers formulate hypotheses, discover trends and patterns, and ultimately gain a deeper understanding of their data. Discovery Dashboard emphasizes user freedom and flexibility during the data exploration process and enables researchers to do things previously challenging or impossible to do - in the web-browser and in real time. We demonstrate our system visualizing data from a mobile sensor study conducted at the University of Minnesota that included 52 participants who were trying to quit smoking.
mHealth Visual Discovery Dashboard
Fang, Dezhi; Hohman, Fred; Polack, Peter; Sarker, Hillol; Kahng, Minsuk; Sharmin, Moushumi; al'Absi, Mustafa; Chau, Duen Horng
2018-01-01
We present Discovery Dashboard, a visual analytics system for exploring large volumes of time series data from mobile medical field studies. Discovery Dashboard offers interactive exploration tools and a data mining motif discovery algorithm to help researchers formulate hypotheses, discover trends and patterns, and ultimately gain a deeper understanding of their data. Discovery Dashboard emphasizes user freedom and flexibility during the data exploration process and enables researchers to do things previously challenging or impossible to do — in the web-browser and in real time. We demonstrate our system visualizing data from a mobile sensor study conducted at the University of Minnesota that included 52 participants who were trying to quit smoking. PMID:29354812
How visualization layout relates to locus of control and other personality factors.
Ziemkiewicz, Caroline; Ottley, Alvitta; Crouser, R Jordan; Yauilla, Ashley Rye; Su, Sara L; Ribarsky, William; Chang, Remco
2013-07-01
Existing research suggests that individual personality differences are correlated with a user's speed and accuracy in solving problems with different types of complex visualization systems. We extend this research by isolating factors in personality traits as well as in the visualizations that could have contributed to the observed correlation. We focus on a personality trait known as "locus of control” (LOC), which represents a person's tendency to see themselves as controlled by or in control of external events. To isolate variables of the visualization design, we control extraneous factors such as color, interaction, and labeling. We conduct a user study with four visualizations that gradually shift from a list metaphor to a containment metaphor and compare the participants' speed, accuracy, and preference with their locus of control and other personality factors. Our findings demonstrate that there is indeed a correlation between the two: participants with an internal locus of control perform more poorly with visualizations that employ a containment metaphor, while those with an external locus of control perform well with such visualizations. These results provide evidence for the externalization theory of visualization. Finally, we propose applications of these findings to adaptive visual analytics and visualization evaluation.
Variability and Correlations in Primary Visual Cortical Neurons Driven by Fixational Eye Movements
McFarland, James M.; Cumming, Bruce G.
2016-01-01
The ability to distinguish between elements of a sensory neuron's activity that are stimulus independent versus driven by the stimulus is critical for addressing many questions in systems neuroscience. This is typically accomplished by measuring neural responses to repeated presentations of identical stimuli and identifying the trial-variable components of the response as noise. In awake primates, however, small “fixational” eye movements (FEMs) introduce uncontrolled trial-to-trial differences in the visual stimulus itself, potentially confounding this distinction. Here, we describe novel analytical methods that directly quantify the stimulus-driven and stimulus-independent components of visual neuron responses in the presence of FEMs. We apply this approach, combined with precise model-based eye tracking, to recordings from primary visual cortex (V1), finding that standard approaches that ignore FEMs typically miss more than half of the stimulus-driven neural response variance, creating substantial biases in measures of response reliability. We show that these effects are likely not isolated to the particular experimental conditions used here, such as the choice of visual stimulus or spike measurement time window, and thus will be a more general problem for V1 recordings in awake primates. We also demonstrate that measurements of the stimulus-driven and stimulus-independent correlations among pairs of V1 neurons can be greatly biased by FEMs. These results thus illustrate the potentially dramatic impact of FEMs on measures of signal and noise in visual neuron activity and also demonstrate a novel approach for controlling for these eye-movement-induced effects. SIGNIFICANCE STATEMENT Distinguishing between the signal and noise in a sensory neuron's activity is typically accomplished by measuring neural responses to repeated presentations of an identical stimulus. For recordings from the visual cortex of awake animals, small “fixational” eye movements (FEMs) inevitably introduce trial-to-trial variability in the visual stimulus, potentially confounding such measures. Here, we show that FEMs often have a dramatic impact on several important measures of response variability for neurons in primary visual cortex. We also present an analytical approach for quantifying signal and noise in visual neuron activity in the presence of FEMs. These results thus highlight the importance of controlling for FEMs in studies of visual neuron function, and demonstrate novel methods for doing so. PMID:27277801
CollaborationViz: Interactive Visual Exploration of Biomedical Research Collaboration Networks
Bian, Jiang; Xie, Mengjun; Hudson, Teresa J.; Eswaran, Hari; Brochhausen, Mathias; Hanna, Josh; Hogan, William R.
2014-01-01
Social network analysis (SNA) helps us understand patterns of interaction between social entities. A number of SNA studies have shed light on the characteristics of research collaboration networks (RCNs). Especially, in the Clinical Translational Science Award (CTSA) community, SNA provides us a set of effective tools to quantitatively assess research collaborations and the impact of CTSA. However, descriptive network statistics are difficult for non-experts to understand. In this article, we present our experiences of building meaningful network visualizations to facilitate a series of visual analysis tasks. The basis of our design is multidimensional, visual aggregation of network dynamics. The resulting visualizations can help uncover hidden structures in the networks, elicit new observations of the network dynamics, compare different investigators and investigator groups, determine critical factors to the network evolution, and help direct further analyses. We applied our visualization techniques to explore the biomedical RCNs at the University of Arkansas for Medical Sciences – a CTSA institution. And, we created CollaborationViz, an open-source visual analytical tool to help network researchers and administration apprehend the network dynamics of research collaborations through interactive visualization. PMID:25405477
ANALYTiC: An Active Learning System for Trajectory Classification.
Soares Junior, Amilcar; Renso, Chiara; Matwin, Stan
2017-01-01
The increasing availability and use of positioning devices has resulted in large volumes of trajectory data. However, semantic annotations for such data are typically added by domain experts, which is a time-consuming task. Machine-learning algorithms can help infer semantic annotations from trajectory data by learning from sets of labeled data. Specifically, active learning approaches can minimize the set of trajectories to be annotated while preserving good performance measures. The ANALYTiC web-based interactive tool visually guides users through this annotation process.
An interactive visualization tool for mobile objects
NASA Astrophysics Data System (ADS)
Kobayashi, Tetsuo
Recent advancements in mobile devices---such as Global Positioning System (GPS), cellular phones, car navigation system, and radio-frequency identification (RFID)---have greatly influenced the nature and volume of data about individual-based movement in space and time. Due to the prevalence of mobile devices, vast amounts of mobile objects data are being produced and stored in databases, overwhelming the capacity of traditional spatial analytical methods. There is a growing need for discovering unexpected patterns, trends, and relationships that are hidden in the massive mobile objects data. Geographic visualization (GVis) and knowledge discovery in databases (KDD) are two major research fields that are associated with knowledge discovery and construction. Their major research challenges are the integration of GVis and KDD, enhancing the ability to handle large volume mobile objects data, and high interactivity between the computer and users of GVis and KDD tools. This dissertation proposes a visualization toolkit to enable highly interactive visual data exploration for mobile objects datasets. Vector algebraic representation and online analytical processing (OLAP) are utilized for managing and querying the mobile object data to accomplish high interactivity of the visualization tool. In addition, reconstructing trajectories at user-defined levels of temporal granularity with time aggregation methods allows exploration of the individual objects at different levels of movement generality. At a given level of generality, individual paths can be combined into synthetic summary paths based on three similarity measures, namely, locational similarity, directional similarity, and geometric similarity functions. A visualization toolkit based on the space-time cube concept exploits these functionalities to create a user-interactive environment for exploring mobile objects data. Furthermore, the characteristics of visualized trajectories are exported to be utilized for data mining, which leads to the integration of GVis and KDD. Case studies using three movement datasets (personal travel data survey in Lexington, Kentucky, wild chicken movement data in Thailand, and self-tracking data in Utah) demonstrate the potential of the system to extract meaningful patterns from the otherwise difficult to comprehend collections of space-time trajectories.
NASA Astrophysics Data System (ADS)
Ramful, Ajay; Ho, Siew Yin; Lowrie, Tom
2015-12-01
This inquiry presents two fine-grained case studies of students demonstrating different levels of cognitive functioning in relation to bilateral symmetry and reflection. The two students were asked to solve four sets of tasks and articulate their reasoning in task-based interviews. The first participant, Brittany, focused essentially on three criteria, namely (1) equidistance, (2) congruence of sides and (3) `exactly opposite' as the intuitive counterpart of perpendicularity for performing reflection. On the other hand, the second participant, Sara, focused on perpendicularity and equidistance, as is the normative procedure. Brittany's inadequate knowledge of reflection shaped her actions and served as a validation for her solutions. Intuitively, her visual strategies took over as a fallback measure to maintain congruence of sides in the absence of a formal notion of perpendicularity. In this paper, we address some of the well-known constraints that students encounter in dealing with bilateral symmetry and reflection, particularly situations involving inclined line of symmetry. Importantly, we make an attempt to show how visual and analytical strategies interact in the production of a reflected image. Our findings highlight the necessity to give more explicit attention to the notion of perpendicularity in bilateral symmetry and reflection tasks.
NASA Astrophysics Data System (ADS)
Han, Keesook J.; Hodge, Matthew; Ross, Virginia W.
2011-06-01
For monitoring network traffic, there is an enormous cost in collecting, storing, and analyzing network traffic datasets. Data mining based network traffic analysis has a growing interest in the cyber security community, but is computationally expensive for finding correlations between attributes in massive network traffic datasets. To lower the cost and reduce computational complexity, it is desirable to perform feasible statistical processing on effective reduced datasets instead of on the original full datasets. Because of the dynamic behavior of network traffic, traffic traces exhibit mixtures of heavy tailed statistical distributions or overdispersion. Heavy tailed network traffic characterization and visualization are important and essential tasks to measure network performance for the Quality of Services. However, heavy tailed distributions are limited in their ability to characterize real-time network traffic due to the difficulty of parameter estimation. The Entropy-Based Heavy Tailed Distribution Transformation (EHTDT) was developed to convert the heavy tailed distribution into a transformed distribution to find the linear approximation. The EHTDT linearization has the advantage of being amenable to characterize and aggregate overdispersion of network traffic in realtime. Results of applying the EHTDT for innovative visual analytics to real network traffic data are presented.
Kangas, Michael J; Burks, Raychelle M; Atwater, Jordyn; Lukowicz, Rachel M; Garver, Billy; Holmes, Andrea E
2018-02-01
With the increasing availability of digital imaging devices, colorimetric sensor arrays are rapidly becoming a simple, yet effective tool for the identification and quantification of various analytes. Colorimetric arrays utilize colorimetric data from many colorimetric sensors, with the multidimensional nature of the resulting data necessitating the use of chemometric analysis. Herein, an 8 sensor colorimetric array was used to analyze select acid and basic samples (0.5 - 10 M) to determine which chemometric methods are best suited for classification quantification of analytes within clusters. PCA, HCA, and LDA were used to visualize the data set. All three methods showed well-separated clusters for each of the acid or base analytes and moderate separation between analyte concentrations, indicating that the sensor array can be used to identify and quantify samples. Furthermore, PCA could be used to determine which sensors showed the most effective analyte identification. LDA, KNN, and HQI were used for identification of analyte and concentration. HQI and KNN could be used to correctly identify the analytes in all cases, while LDA correctly identified 95 of 96 analytes correctly. Additional studies demonstrated that controlling for solvent and image effects was unnecessary for all chemometric methods utilized in this study.
The visual communication in the optonometric scales.
Dantas, Rosane Arruda; Pagliuca, Lorita Marlena Freitag
2006-01-01
Communication through vision involves visual apprenticeship that demands ocular integrity, which results in the importance of the evaluation of visual acuity. The scale of images, formed by optotypes, is a method for the verification of visual acuity in kindergarten children. To identify the optotype the child needs to know the image in analysis. Given the importance of visual communication during the process of construction of the scale of images, one presents a bibliographic, analytical study aiming at thinking about the principles for the construction of those tables. One considers the draw inserted as an optotype as a non-verbal symbolic expression of the body and/or of the environment constructed based on the caption of experiences by the individual. One contests the indiscriminate use of images, for one understands that there must be previous knowledge. Despite the subjectivity of the optotypes, the scales continue valid if one adapts images to those of the universe of the children to be examined.
Noninvasive studies of human visual cortex using neuromagnetic techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aine, C.J.; George, J.S.; Supek, S.
1990-01-01
The major goals of noninvasive studies of the human visual cortex are: to increase knowledge of the functional organization of cortical visual pathways; and to develop noninvasive clinical tests for the assessment of cortical function. Noninvasive techniques suitable for studies of the structure and function of human visual cortex include magnetic resonance imaging (MRI), positron emission tomography (PET), single photon emission tomography (SPECT), scalp recorded event-related potentials (ERPs), and event-related magnetic fields (ERFs). The primary challenge faced by noninvasive functional measures is to optimize the spatial and temporal resolution of the measurement and analytic techniques in order to effectively characterizemore » the spatial and temporal variations in patterns of neuronal activity. In this paper we review the use of neuromagnetic techniques for this purpose. 8 refs., 3 figs.« less
Public Health Analysis Transport Optimization Model v. 1.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beyeler, Walt; Finley, Patrick; Walser, Alex
PHANTOM models logistic functions of national public health systems. The system enables public health officials to visualize and coordinate options for public health surveillance, diagnosis, response and administration in an integrated analytical environment. Users may simulate and analyze system performance applying scenarios that represent current conditions or future contingencies what-if analyses of potential systemic improvements. Public health networks are visualized as interactive maps, with graphical displays of relevant system performance metrics as calculated by the simulation modeling components.
2017-08-30
as being three-fold: 1) a measurement of the integrity of both the central and peripheral visual processing centers; 2) an indicator of detail...visual assessment task 12 integral to the Army’s Class 1 Flight Physical (Ginsburg, 1981 and 1984; Bachman & Behar, 1986). During a Class 1 flight...systems. Meta-analysis has been defined as the statistical analysis of a collection of analytical results for the purpose of integrating the findings
Propeller flow visualization techniques
NASA Technical Reports Server (NTRS)
Stefko, G. L.; Paulovich, F. J.; Greissing, J. P.; Walker, E. D.
1982-01-01
Propeller flow visualization techniques were tested. The actual operating blade shape as it determines the actual propeller performance and noise was established. The ability to photographically determine the advanced propeller blade tip deflections, local flow field conditions, and gain insight into aeroelastic instability is demonstrated. The analytical prediction methods which are being developed can be compared with experimental data. These comparisons contribute to the verification of these improved methods and give improved capability for designing future advanced propellers with enhanced performance and noise characteristics.
Multi-Intelligence Analytics for Next Generation Analysts (MIAGA)
NASA Astrophysics Data System (ADS)
Blasch, Erik; Waltz, Ed
2016-05-01
Current analysts are inundated with large volumes of data from which extraction, exploitation, and indexing are required. A future need for next-generation analysts is an appropriate balance between machine analytics from raw data and the ability of the user to interact with information through automation. Many quantitative intelligence tools and techniques have been developed which are examined towards matching analyst opportunities with recent technical trends such as big data, access to information, and visualization. The concepts and techniques summarized are derived from discussions with real analysts, documented trends of technical developments, and methods to engage future analysts with multiintelligence services. For example, qualitative techniques should be matched against physical, cognitive, and contextual quantitative analytics for intelligence reporting. Future trends include enabling knowledge search, collaborative situational sharing, and agile support for empirical decision-making and analytical reasoning.
NASA Astrophysics Data System (ADS)
Giuliani, M.; Herman, J. D.; Castelletti, A.; Reed, P.
2014-04-01
This study contributes a decision analytic framework to overcome policy inertia and myopia in complex river basin management contexts. The framework combines reservoir policy identification, many-objective optimization under uncertainty, and visual analytics to characterize current operations and discover key trade-offs between alternative policies for balancing competing demands and system uncertainties. The approach is demonstrated on the Conowingo Dam, located within the Lower Susquehanna River, USA. The Lower Susquehanna River is an interstate water body that has been subject to intensive water management efforts due to competing demands from urban water supply, atomic power plant cooling, hydropower production, and federally regulated environmental flows. We have identified a baseline operating policy for the Conowingo Dam that closely reproduces the dynamics of current releases and flows for the Lower Susquehanna and thus can be used to represent the preferences structure guiding current operations. Starting from this baseline policy, our proposed decision analytic framework then combines evolutionary many-objective optimization with visual analytics to discover new operating policies that better balance the trade-offs within the Lower Susquehanna. Our results confirm that the baseline operating policy, which only considers deterministic historical inflows, significantly overestimates the system's reliability in meeting the reservoir's competing demands. Our proposed framework removes this bias by successfully identifying alternative reservoir policies that are more robust to hydroclimatic uncertainties while also better addressing the trade-offs across the Conowingo Dam's multisector services.
Experimental and analytical study of close-coupled ventral nozzles for ASTOVL aircraft
NASA Technical Reports Server (NTRS)
Mcardle, Jack G.; Smith, C. Frederic
1990-01-01
Flow in a generic ventral nozzle system was studied experimentally and analytically with a block version of the PARC3D computational fluid dynamics program (a full Navier-Stokes equation solver) in order to evaluate the program's ability to predict system performance and internal flow patterns. For the experimental work a one-third-size model tailpipe with a single large rectangular ventral nozzle mounted normal to the tailpipe axis was tested with unheated air at steady-state pressure ratios up to 4.0. The end of the tailpipe was closed to simulate a blocked exhaust nozzle. Measurements showed about 5 1/2 percent flow-turning loss, reasonable nozzle performance coefficients, and a significant aftward axial component of thrust due to flow turning loss, reasonable nozzle performance coefficients, and a significant aftward axial component of thrust due to flow turning more than 90 deg. Flow behavior into and through the ventral duct is discussed and illustrated with paint streak flow visualization photographs. For the analytical work the same ventral system configuration was modeled with two computational grids to evaluate the effect of grid density. Both grids gave good results. The finer-grid solution produced more detailed flow patterns and predicted performance parameters, such as thrust and discharge coefficient, within 1 percent of the measured values. PARC3D flow visualization images are shown for comparison with the paint streak photographs. Modeling and computational issues encountered in the analytical work are discussed.
Data Integration to Explore the Dynamics of Conflict: A Preliminary Study
2008-12-01
layered because 19 Gregory F. Treverton and Bryan Gabbard C., Assessing the Analysis of Intelligence...the Path," National Visualization and Analytics Center, 2005. Treverton, Gregory F., and Bryan Gabbard C., “Assessing the Analysis of Intelligence
A Teaching Model for the Grammar of Television.
ERIC Educational Resources Information Center
Becker, Ann Devaney
1986-01-01
Offers an analytical model to assist teachers and students in decoding social and cultural meaning embedded in the visual track of any given television program. To illustrate the model, the Public Broadcasting System's production of "The Scarlet Letter" is analyzed. (MBR)
Peterson, Elena S; McCue, Lee Ann; Schrimpe-Rutledge, Alexandra C; Jensen, Jeffrey L; Walker, Hyunjoo; Kobold, Markus A; Webb, Samantha R; Payne, Samuel H; Ansong, Charles; Adkins, Joshua N; Cannon, William R; Webb-Robertson, Bobbie-Jo M
2012-04-05
The procedural aspects of genome sequencing and assembly have become relatively inexpensive, yet the full, accurate structural annotation of these genomes remains a challenge. Next-generation sequencing transcriptomics (RNA-Seq), global microarrays, and tandem mass spectrometry (MS/MS)-based proteomics have demonstrated immense value to genome curators as individual sources of information, however, integrating these data types to validate and improve structural annotation remains a major challenge. Current visual and statistical analytic tools are focused on a single data type, or existing software tools are retrofitted to analyze new data forms. We present Visual Exploration and Statistics to Promote Annotation (VESPA) is a new interactive visual analysis software tool focused on assisting scientists with the annotation of prokaryotic genomes though the integration of proteomics and transcriptomics data with current genome location coordinates. VESPA is a desktop Java™ application that integrates high-throughput proteomics data (peptide-centric) and transcriptomics (probe or RNA-Seq) data into a genomic context, all of which can be visualized at three levels of genomic resolution. Data is interrogated via searches linked to the genome visualizations to find regions with high likelihood of mis-annotation. Search results are linked to exports for further validation outside of VESPA or potential coding-regions can be analyzed concurrently with the software through interaction with BLAST. VESPA is demonstrated on two use cases (Yersinia pestis Pestoides F and Synechococcus sp. PCC 7002) to demonstrate the rapid manner in which mis-annotations can be found and explored in VESPA using either proteomics data alone, or in combination with transcriptomic data. VESPA is an interactive visual analytics tool that integrates high-throughput data into a genomic context to facilitate the discovery of structural mis-annotations in prokaryotic genomes. Data is evaluated via visual analysis across multiple levels of genomic resolution, linked searches and interaction with existing bioinformatics tools. We highlight the novel functionality of VESPA and core programming requirements for visualization of these large heterogeneous datasets for a client-side application. The software is freely available at https://www.biopilot.org/docs/Software/Vespa.php.
2012-01-01
Background The procedural aspects of genome sequencing and assembly have become relatively inexpensive, yet the full, accurate structural annotation of these genomes remains a challenge. Next-generation sequencing transcriptomics (RNA-Seq), global microarrays, and tandem mass spectrometry (MS/MS)-based proteomics have demonstrated immense value to genome curators as individual sources of information, however, integrating these data types to validate and improve structural annotation remains a major challenge. Current visual and statistical analytic tools are focused on a single data type, or existing software tools are retrofitted to analyze new data forms. We present Visual Exploration and Statistics to Promote Annotation (VESPA) is a new interactive visual analysis software tool focused on assisting scientists with the annotation of prokaryotic genomes though the integration of proteomics and transcriptomics data with current genome location coordinates. Results VESPA is a desktop Java™ application that integrates high-throughput proteomics data (peptide-centric) and transcriptomics (probe or RNA-Seq) data into a genomic context, all of which can be visualized at three levels of genomic resolution. Data is interrogated via searches linked to the genome visualizations to find regions with high likelihood of mis-annotation. Search results are linked to exports for further validation outside of VESPA or potential coding-regions can be analyzed concurrently with the software through interaction with BLAST. VESPA is demonstrated on two use cases (Yersinia pestis Pestoides F and Synechococcus sp. PCC 7002) to demonstrate the rapid manner in which mis-annotations can be found and explored in VESPA using either proteomics data alone, or in combination with transcriptomic data. Conclusions VESPA is an interactive visual analytics tool that integrates high-throughput data into a genomic context to facilitate the discovery of structural mis-annotations in prokaryotic genomes. Data is evaluated via visual analysis across multiple levels of genomic resolution, linked searches and interaction with existing bioinformatics tools. We highlight the novel functionality of VESPA and core programming requirements for visualization of these large heterogeneous datasets for a client-side application. The software is freely available at https://www.biopilot.org/docs/Software/Vespa.php. PMID:22480257
NASA Technical Reports Server (NTRS)
Esker, Barbara S.; Debonis, James R.
1991-01-01
Flow through a combined ventral and axial exhaust nozzle system was studied experimentally and analytically. The work is part of an ongoing propulsion technology effort at NASA Lewis Research Center for short takeoff, vertical landing (STOVL) aircraft. The experimental investigation was done on the NASA Lewis Powered Lift Facility. The experiment consisted of performance testing over a range of tailpipe pressure ratios from 1 to 3.2 and flow visualization. The analytical investigation consisted of modeling the same configuration and solving for the flow using the PARC3D computational fluid dynamics program. The comparison of experimental and analytical results was very good. The ventral nozzle performance coefficients obtained from both the experimental and analytical studies agreed within 1.2 percent. The net horizontal thrust of the nozzle system contained a significant reverse thrust component created by the flow overturning in the ventral duct. This component resulted in a low net horizontal thrust coefficient. The experimental and analytical studies showed very good agreement in the internal flow patterns.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaurov, Alexander A., E-mail: kaurov@uchicago.edu
The methods for studying the epoch of cosmic reionization vary from full radiative transfer simulations to purely analytical models. While numerical approaches are computationally expensive and are not suitable for generating many mock catalogs, analytical methods are based on assumptions and approximations. We explore the interconnection between both methods. First, we ask how the analytical framework of excursion set formalism can be used for statistical analysis of numerical simulations and visual representation of the morphology of ionization fronts. Second, we explore the methods of training the analytical model on a given numerical simulation. We present a new code which emergedmore » from this study. Its main application is to match the analytical model with a numerical simulation. Then, it allows one to generate mock reionization catalogs with volumes exceeding the original simulation quickly and computationally inexpensively, meanwhile reproducing large-scale statistical properties. These mock catalogs are particularly useful for cosmic microwave background polarization and 21 cm experiments, where large volumes are required to simulate the observed signal.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ragan, Eric D; Goodall, John R
2014-01-01
Provenance tools can help capture and represent the history of analytic processes. In addition to supporting analytic performance, provenance tools can be used to support memory of the process and communication of the steps to others. Objective evaluation methods are needed to evaluate how well provenance tools support analyst s memory and communication of analytic processes. In this paper, we present several methods for the evaluation of process memory, and we discuss the advantages and limitations of each. We discuss methods for determining a baseline process for comparison, and we describe various methods that can be used to elicit processmore » recall, step ordering, and time estimations. Additionally, we discuss methods for conducting quantitative and qualitative analyses of process memory. By organizing possible memory evaluation methods and providing a meta-analysis of the potential benefits and drawbacks of different approaches, this paper can inform study design and encourage objective evaluation of process memory and communication.« less
Modeling and Visualizing Flow of Chemical Agents Across Complex Terrain
NASA Technical Reports Server (NTRS)
Kao, David; Kramer, Marc; Chaderjian, Neal
2005-01-01
Release of chemical agents across complex terrain presents a real threat to homeland security. Modeling and visualization tools are being developed that capture flow fluid terrain interaction as well as point dispersal downstream flow paths. These analytic tools when coupled with UAV atmospheric observations provide predictive capabilities to allow for rapid emergency response as well as developing a comprehensive preemptive counter-threat evacuation plan. The visualization tools involve high-end computing and massive parallel processing combined with texture mapping. We demonstrate our approach across a mountainous portion of North California under two contrasting meteorological conditions. Animations depicting flow over this geographical location provide immediate assistance in decision support and crisis management.
Visualizing the Big (and Large) Data from an HPC Resource
NASA Astrophysics Data System (ADS)
Sisneros, R.
2015-10-01
Supercomputers are built to endure painfully large simulations and contend with resulting outputs. These are characteristics that scientists are all too willing to test the limits of in their quest for science at scale. The data generated during a scientist's workflow through an HPC center (large data) is the primary target for analysis and visualization. However, the hardware itself is also capable of generating volumes of diagnostic data (big data); this presents compelling opportunities to deploy analogous analytic techniques. In this paper we will provide a survey of some of the many ways in which visualization and analysis may be crammed into the scientific workflow as well as utilized on machine-specific data.
Endoparasites of the Eastern Rock Sengi (Elephantulus myurus) from South Africa.
Lutermann, Heike; Medger, Katarina; Junker, Kerstin
2015-12-01
The endoparasite fauna of the eastern rock sengi ( Elephantulus myurus Thomas and Schwann) was studied for the first time for any sengi species from September 2007 until August 2008 in the Limpopo Province of South Africa. From the 121 sengis examined, we recovered 11 endoparasite taxa, including 9 nematodes, 1 cestode family (Hymenolepididae), and 1 pentastomid species (Armillifer armillatus (Wyman, 1834)). The overall endoparasite prevalence was high, at 100%, and largely attributable to the nematode Maupasina weissi Seurat, 1913 , with only a single individual being parasite free. Despite the high diversity, species richness was low (1.58 ± 0.06) and only M. weissi and spiruroid larvae occurred at a prevalence exceeding 8%. The abundance of M. weissi varied significantly between seasons and was lowest in summer and autumn. In contrast, the abundance of spiruroid larvae remained relatively constant across seasons in males, but was significantly higher in spring and summer compared to winter in females. These patterns may be generated by an accumulation of M. weissi with age as well as sex-specific seasonal shifts in diet. An updated list on the hosts and geographic range of parasites of sengis is provided.
The Role of Nanoparticle Design in Determining Analytical Performance of Lateral Flow Immunoassays.
Zhan, Li; Guo, Shuang-Zhuang; Song, Fayi; Gong, Yan; Xu, Feng; Boulware, David R; McAlpine, Michael C; Chan, Warren C W; Bischof, John C
2017-12-13
Rapid, simple, and cost-effective diagnostics are needed to improve healthcare at the point of care (POC). However, the most widely used POC diagnostic, the lateral flow immunoassay (LFA), is ∼1000-times less sensitive and has a smaller analytical range than laboratory tests, requiring a confirmatory test to establish truly negative results. Here, a rational and systematic strategy is used to design the LFA contrast label (i.e., gold nanoparticles) to improve the analytical sensitivity, analytical detection range, and antigen quantification of LFAs. Specifically, we discovered that the size (30, 60, or 100 nm) of the gold nanoparticles is a main contributor to the LFA analytical performance through both the degree of receptor interaction and the ultimate visual or thermal contrast signals. Using the optimal LFA design, we demonstrated the ability to improve the analytical sensitivity by 256-fold and expand the analytical detection range from 3 log 10 to 6 log 10 for diagnosing patients with inflammatory conditions by measuring C-reactive protein. This work demonstrates that, with appropriate design of the contrast label, a simple and commonly used diagnostic technology can compete with more expensive state-of-the-art laboratory tests.
Kakio, Tomoko; Yoshida, Naoko; Macha, Susan; Moriguchi, Kazunobu; Hiroshima, Takashi; Ikeda, Yukihiro; Tsuboi, Hirohito; Kimura, Kazuko
2017-09-01
Analytical methods for the detection of substandard and falsified medical products (SFs) are important for public health and patient safety. Research to understand how the physical and chemical properties of SFs can be most effectively applied to distinguish the SFs from authentic products has not yet been investigated enough. Here, we investigated the usefulness of two analytical methods, handheld Raman spectroscopy (handheld Raman) and X-ray computed tomography (X-ray CT), for detecting SFs among oral solid antihypertensive pharmaceutical products containing candesartan cilexetil as an active pharmaceutical ingredient (API). X-ray CT visualized at least two different types of falsified tablets, one containing many cracks and voids and the other containing aggregates with high electron density, such as from the presence of the heavy elements. Generic products that purported to contain equivalent amounts of API to the authentic products were discriminated from the authentic products by the handheld Raman and the different physical structure on X-ray CT. Approach to investigate both the chemical and physical properties with handheld Raman and X-ray CT, respectively, promise the accurate discrimination of the SFs, even if their visual appearance is similar with authentic products. We present a decision tree for investigating the authenticity of samples purporting to be authentic commercial tablets. Our results indicate that the combination approach of visual observation, handheld Raman and X-ray CT is a powerful strategy for nondestructive discrimination of suspect samples.
Moskvin, Oleg V; Bolotin, Dmitry; Wang, Andrew; Ivanov, Pavel S; Gomelsky, Mark
2011-02-01
We present Rhodobase, a web-based meta-analytical tool for analysis of transcriptional regulation in a model anoxygenic photosynthetic bacterium, Rhodobacter sphaeroides. The gene association meta-analysis is based on the pooled data from 100 of R. sphaeroides whole-genome DNA microarrays. Gene-centric regulatory networks were visualized using the StarNet approach (Jupiter, D.C., VanBuren, V., 2008. A visual data mining tool that facilitates reconstruction of transcription regulatory networks. PLoS ONE 3, e1717) with several modifications. We developed a means to identify and visualize operons and superoperons. We designed a framework for the cross-genome search for transcription factor binding sites that takes into account high GC-content and oligonucleotide usage profile characteristic of the R. sphaeroides genome. To facilitate reconstruction of directional relationships between co-regulated genes, we screened upstream sequences (-400 to +20bp from start codons) of all genes for putative binding sites of bacterial transcription factors using a self-optimizing search method developed here. To test performance of the meta-analysis tools and transcription factor site predictions, we reconstructed selected nodes of the R. sphaeroides transcription factor-centric regulatory matrix. The test revealed regulatory relationships that correlate well with the experimentally derived data. The database of transcriptional profile correlations, the network visualization engine and the optimized search engine for transcription factor binding sites analysis are available at http://rhodobase.org. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Integration of bus stop counts data with census data for improving bus service.
DOT National Transportation Integrated Search
2016-04-01
This research project produced an open source transit market data visualization and analysis tool suite, : The Bus Transit Market Analyst (BTMA), which contains user-friendly GIS mapping and data : analytics tools, and state-of-the-art transit demand...
The Cerebral Balance of Power: Confrontation or Cooperation?
ERIC Educational Resources Information Center
Sergent, Justine
1982-01-01
Two visual search experiments suggest that: cerebral lateralization of cognitive functions results from differences in sensorimotor resolution capacities of the hemispheres; both hemispheres can process verbal and visuospatial information analytically and holistically; and respective hemispheric competence is a function of the level of…
The role of 3-D interactive visualization in blind surveys of H I in galaxies
NASA Astrophysics Data System (ADS)
Punzo, D.; van der Hulst, J. M.; Roerdink, J. B. T. M.; Oosterloo, T. A.; Ramatsoku, M.; Verheijen, M. A. W.
2015-09-01
Upcoming H I surveys will deliver large datasets, and automated processing using the full 3-D information (two positional dimensions and one spectral dimension) to find and characterize H I objects is imperative. In this context, visualization is an essential tool for enabling qualitative and quantitative human control on an automated source finding and analysis pipeline. We discuss how Visual Analytics, the combination of automated data processing and human reasoning, creativity and intuition, supported by interactive visualization, enables flexible and fast interaction with the 3-D data, helping the astronomer to deal with the analysis of complex sources. 3-D visualization, coupled to modeling, provides additional capabilities helping the discovery and analysis of subtle structures in the 3-D domain. The requirements for a fully interactive visualization tool are: coupled 1-D/2-D/3-D visualization, quantitative and comparative capabilities, combined with supervised semi-automated analysis. Moreover, the source code must have the following characteristics for enabling collaborative work: open, modular, well documented, and well maintained. We review four state of-the-art, 3-D visualization packages assessing their capabilities and feasibility for use in the case of 3-D astronomical data.
New test techniques and analytical procedures for understanding the behavior of advanced propellers
NASA Technical Reports Server (NTRS)
Stefko, G. L.; Bober, L. J.; Neumann, H. E.
1983-01-01
Analytical procedures and experimental techniques were developed to improve the capability to design advanced high speed propellers. Some results from the propeller lifting line and lifting surface aerodynamic analysis codes are compared with propeller force data, probe data and laser velocimeter data. In general, the code comparisons with data indicate good qualitative agreement. A rotating propeller force balance demonstrated good accuracy and reduced test time by 50 percent. Results from three propeller flow visualization techniques are shown which illustrate some of the physical phenomena occurring on these propellers.
Comparative analysis of methods for real-time analytical control of chemotherapies preparations.
Bazin, Christophe; Cassard, Bruno; Caudron, Eric; Prognon, Patrice; Havard, Laurent
2015-10-15
Control of chemotherapies preparations are now an obligation in France, though analytical control is compulsory. Several methods are available and none of them is presumed as ideal. We wanted to compare them so as to determine which one could be the best choice. We compared non analytical (visual and video-assisted, gravimetric) and analytical (HPLC/FIA, UV/FT-IR, UV/Raman, Raman) methods thanks to our experience and a SWOT analysis. The results of the analysis show great differences between the techniques, but as expected none us them is without defects. However they can probably be used in synergy. Overall for the pharmacist willing to get involved, the implementation of the control for chemotherapies preparations must be widely anticipated, with the listing of every parameter, and remains according to us an analyst's job. Copyright © 2015 Elsevier B.V. All rights reserved.
Analytical and Theranostic Applications of Gold Nanoparticles and Multifunctional Nanocomposites
Khlebtsov, Nikolai; Bogatyrev, Vladimir; Dykman, Lev; Khlebtsov, Boris; Staroverov, Sergey; Shirokov, Alexander; Matora, Larisa; Khanadeev, Vitaly; Pylaev, Timofey; Tsyganova, Natalia; Terentyuk, Georgy
2013-01-01
Gold nanoparticles (GNPs) and GNP-based multifunctional nanocomposites are the subject of intensive studies and biomedical applications. This minireview summarizes our recent efforts in analytical and theranostic applications of engineered GNPs and nanocomposites by using plasmonic properties of GNPs and various optical techniques. Specifically, we consider analytical biosensing; visualization and bioimaging of bacterial, mammalian, and plant cells; photodynamic treatment of pathogenic bacteria; and photothermal therapy of xenografted tumors. In addition to recently published reports, we discuss new data on dot immunoassay diagnostics of mycobacteria, multiplexed immunoelectron microscopy analysis of Azospirillum brasilense, materno-embryonic transfer of GNPs in pregnant rats, and combined photodynamic and photothermal treatment of rat xenografted tumors with gold nanorods covered by a mesoporous silica shell doped with hematoporphyrin. PMID:23471188
Toward Usable Interactive Analytics: Coupling Cognition and Computation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Endert, Alexander; North, Chris; Chang, Remco
Interactive analytics provide users a myriad of computational means to aid in extracting meaningful information from large and complex datasets. Much prior work focuses either on advancing the capabilities of machine-centric approaches by the data mining and machine learning communities, or human-driven methods by the visualization and CHI communities. However, these methods do not yet support a true human-machine symbiotic relationship where users and machines work together collaboratively and adapt to each other to advance an interactive analytic process. In this paper we discuss some of the inherent issues, outlining what we believe are the steps toward usable interactive analyticsmore » that will ultimately increase the effectiveness for both humans and computers to produce insights.« less
Huang, Yi-Wen; Roa, Juan C.; Goodfellow, Paul J.; Kizer, E. Lynette; Huang, Tim H. M.; Chen, Yidong
2013-01-01
Background DNA methylation of promoter CpG islands is associated with gene suppression, and its unique genome-wide profiles have been linked to tumor progression. Coupled with high-throughput sequencing technologies, it can now efficiently determine genome-wide methylation profiles in cancer cells. Also, experimental and computational technologies make it possible to find the functional relationship between cancer-specific methylation patterns and their clinicopathological parameters. Methodology/Principal Findings Cancer methylome system (CMS) is a web-based database application designed for the visualization, comparison and statistical analysis of human cancer-specific DNA methylation. Methylation intensities were obtained from MBDCap-sequencing, pre-processed and stored in the database. 191 patient samples (169 tumor and 22 normal specimen) and 41 breast cancer cell-lines are deposited in the database, comprising about 6.6 billion uniquely mapped sequence reads. This provides comprehensive and genome-wide epigenetic portraits of human breast cancer and endometrial cancer to date. Two views are proposed for users to better understand methylation structure at the genomic level or systemic methylation alteration at the gene level. In addition, a variety of annotation tracks are provided to cover genomic information. CMS includes important analytic functions for interpretation of methylation data, such as the detection of differentially methylated regions, statistical calculation of global methylation intensities, multiple gene sets of biologically significant categories, interactivity with UCSC via custom-track data. We also present examples of discoveries utilizing the framework. Conclusions/Significance CMS provides visualization and analytic functions for cancer methylome datasets. A comprehensive collection of datasets, a variety of embedded analytic functions and extensive applications with biological and translational significance make this system powerful and unique in cancer methylation research. CMS is freely accessible at: http://cbbiweb.uthscsa.edu/KMethylomes/. PMID:23630576
Gu, Fei; Doderer, Mark S; Huang, Yi-Wen; Roa, Juan C; Goodfellow, Paul J; Kizer, E Lynette; Huang, Tim H M; Chen, Yidong
2013-01-01
DNA methylation of promoter CpG islands is associated with gene suppression, and its unique genome-wide profiles have been linked to tumor progression. Coupled with high-throughput sequencing technologies, it can now efficiently determine genome-wide methylation profiles in cancer cells. Also, experimental and computational technologies make it possible to find the functional relationship between cancer-specific methylation patterns and their clinicopathological parameters. Cancer methylome system (CMS) is a web-based database application designed for the visualization, comparison and statistical analysis of human cancer-specific DNA methylation. Methylation intensities were obtained from MBDCap-sequencing, pre-processed and stored in the database. 191 patient samples (169 tumor and 22 normal specimen) and 41 breast cancer cell-lines are deposited in the database, comprising about 6.6 billion uniquely mapped sequence reads. This provides comprehensive and genome-wide epigenetic portraits of human breast cancer and endometrial cancer to date. Two views are proposed for users to better understand methylation structure at the genomic level or systemic methylation alteration at the gene level. In addition, a variety of annotation tracks are provided to cover genomic information. CMS includes important analytic functions for interpretation of methylation data, such as the detection of differentially methylated regions, statistical calculation of global methylation intensities, multiple gene sets of biologically significant categories, interactivity with UCSC via custom-track data. We also present examples of discoveries utilizing the framework. CMS provides visualization and analytic functions for cancer methylome datasets. A comprehensive collection of datasets, a variety of embedded analytic functions and extensive applications with biological and translational significance make this system powerful and unique in cancer methylation research. CMS is freely accessible at: http://cbbiweb.uthscsa.edu/KMethylomes/.
Soto, Axel J; Zerva, Chrysoula; Batista-Navarro, Riza; Ananiadou, Sophia
2018-04-15
Pathway models are valuable resources that help us understand the various mechanisms underpinning complex biological processes. Their curation is typically carried out through manual inspection of published scientific literature to find information relevant to a model, which is a laborious and knowledge-intensive task. Furthermore, models curated manually cannot be easily updated and maintained with new evidence extracted from the literature without automated support. We have developed LitPathExplorer, a visual text analytics tool that integrates advanced text mining, semi-supervised learning and interactive visualization, to facilitate the exploration and analysis of pathway models using statements (i.e. events) extracted automatically from the literature and organized according to levels of confidence. LitPathExplorer supports pathway modellers and curators alike by: (i) extracting events from the literature that corroborate existing models with evidence; (ii) discovering new events which can update models; and (iii) providing a confidence value for each event that is automatically computed based on linguistic features and article metadata. Our evaluation of event extraction showed a precision of 89% and a recall of 71%. Evaluation of our confidence measure, when used for ranking sampled events, showed an average precision ranging between 61 and 73%, which can be improved to 95% when the user is involved in the semi-supervised learning process. Qualitative evaluation using pair analytics based on the feedback of three domain experts confirmed the utility of our tool within the context of pathway model exploration. LitPathExplorer is available at http://nactem.ac.uk/LitPathExplorer_BI/. sophia.ananiadou@manchester.ac.uk. Supplementary data are available at Bioinformatics online.
Seeing is believing: on the use of image databases for visually exploring plant organelle dynamics.
Mano, Shoji; Miwa, Tomoki; Nishikawa, Shuh-ichi; Mimura, Tetsuro; Nishimura, Mikio
2009-12-01
Organelle dynamics vary dramatically depending on cell type, developmental stage and environmental stimuli, so that various parameters, such as size, number and behavior, are required for the description of the dynamics of each organelle. Imaging techniques are superior to other techniques for describing organelle dynamics because these parameters are visually exhibited. Therefore, as the results can be seen immediately, investigators can more easily grasp organelle dynamics. At present, imaging techniques are emerging as fundamental tools in plant organelle research, and the development of new methodologies to visualize organelles and the improvement of analytical tools and equipment have allowed the large-scale generation of image and movie data. Accordingly, image databases that accumulate information on organelle dynamics are an increasingly indispensable part of modern plant organelle research. In addition, image databases are potentially rich data sources for computational analyses, as image and movie data reposited in the databases contain valuable and significant information, such as size, number, length and velocity. Computational analytical tools support image-based data mining, such as segmentation, quantification and statistical analyses, to extract biologically meaningful information from each database and combine them to construct models. In this review, we outline the image databases that are dedicated to plant organelle research and present their potential as resources for image-based computational analyses.
Automated indirect immunofluorescence evaluation of antinuclear autoantibodies on HEp-2 cells.
Voigt, Jörn; Krause, Christopher; Rohwäder, Edda; Saschenbrecker, Sandra; Hahn, Melanie; Danckwardt, Maick; Feirer, Christian; Ens, Konstantin; Fechner, Kai; Barth, Erhardt; Martinetz, Thomas; Stöcker, Winfried
2012-01-01
Indirect immunofluorescence (IIF) on human epithelial (HEp-2) cells is considered as the gold standard screening method for the detection of antinuclear autoantibodies (ANA). However, in terms of automation and standardization, it has not been able to keep pace with most other analytical techniques used in diagnostic laboratories. Although there are already some automation solutions for IIF incubation in the market, the automation of result evaluation is still in its infancy. Therefore, the EUROPattern Suite has been developed as a comprehensive automated processing and interpretation system for standardized and efficient ANA detection by HEp-2 cell-based IIF. In this study, the automated pattern recognition was compared to conventional visual interpretation in a total of 351 sera. In the discrimination of positive from negative samples, concordant results between visual and automated evaluation were obtained for 349 sera (99.4%, kappa = 0.984). The system missed out none of the 272 antibody-positive samples and identified 77 out of 79 visually negative samples (analytical sensitivity/specificity: 100%/97.5%). Moreover, 94.0% of all main antibody patterns were recognized correctly by the software. Owing to its performance characteristics, EUROPattern enables fast, objective, and economic IIF ANA analysis and has the potential to reduce intra- and interlaboratory variability.
Automated Indirect Immunofluorescence Evaluation of Antinuclear Autoantibodies on HEp-2 Cells
Voigt, Jörn; Krause, Christopher; Rohwäder, Edda; Saschenbrecker, Sandra; Hahn, Melanie; Danckwardt, Maick; Feirer, Christian; Ens, Konstantin; Fechner, Kai; Barth, Erhardt; Martinetz, Thomas; Stöcker, Winfried
2012-01-01
Indirect immunofluorescence (IIF) on human epithelial (HEp-2) cells is considered as the gold standard screening method for the detection of antinuclear autoantibodies (ANA). However, in terms of automation and standardization, it has not been able to keep pace with most other analytical techniques used in diagnostic laboratories. Although there are already some automation solutions for IIF incubation in the market, the automation of result evaluation is still in its infancy. Therefore, the EUROPattern Suite has been developed as a comprehensive automated processing and interpretation system for standardized and efficient ANA detection by HEp-2 cell-based IIF. In this study, the automated pattern recognition was compared to conventional visual interpretation in a total of 351 sera. In the discrimination of positive from negative samples, concordant results between visual and automated evaluation were obtained for 349 sera (99.4%, kappa = 0.984). The system missed out none of the 272 antibody-positive samples and identified 77 out of 79 visually negative samples (analytical sensitivity/specificity: 100%/97.5%). Moreover, 94.0% of all main antibody patterns were recognized correctly by the software. Owing to its performance characteristics, EUROPattern enables fast, objective, and economic IIF ANA analysis and has the potential to reduce intra- and interlaboratory variability. PMID:23251220
Modeling human pilot cue utilization with applications to simulator fidelity assessment.
Zeyada, Y; Hess, R A
2000-01-01
An analytical investigation to model the manner in which pilots perceive and utilize visual, proprioceptive, and vestibular cues in a ground-based flight simulator was undertaken. Data from a NASA Ames Research Center vertical motion simulator study of a simple, single-degree-of-freedom rotorcraft bob-up/down maneuver were employed in the investigation. The study was part of a larger research effort that has the creation of a methodology for determining flight simulator fidelity requirements as its ultimate goal. The study utilized a closed-loop feedback structure of the pilot/simulator system that included the pilot, the cockpit inceptor, the dynamics of the simulated vehicle, and the motion system. With the exception of time delays that accrued in visual scene production in the simulator, visual scene effects were not included in this study. Pilot/vehicle analysis and fuzzy-inference identification were employed to study the changes in fidelity that occurred as the characteristics of the motion system were varied over five configurations. The data from three of the five pilots who participated in the experimental study were analyzed in the fuzzy-inference identification. Results indicate that both the analytical pilot/vehicle analysis and the fuzzy-inference identification can be used to identify changes in simulator fidelity for the task examined.
A Methodology for Evaluating the Fidelity of Ground-Based Flight Simulators
NASA Technical Reports Server (NTRS)
Zeyada, Y.; Hess, R. A.
1999-01-01
An analytical and experimental investigation was undertaken to model the manner in which pilots perceive and utilize visual, proprioceptive, and vestibular cues in a ground-based flight simulator. The study was part of a larger research effort which has the creation of a methodology for determining flight simulator fidelity requirements as its ultimate goal. The study utilized a closed-loop feedback structure of the pilot/simulator system which included the pilot, the cockpit inceptor, the dynamics of the simulated vehicle and the motion system. With the exception of time delays which accrued in visual scene production in the simulator, visual scene effects were not included in this study. The NASA Ames Vertical Motion Simulator was used in a simple, single-degree of freedom rotorcraft bob-up/down maneuver. Pilot/vehicle analysis and fuzzy-inference identification were employed to study the changes in fidelity which occurred as the characteristics of the motion system were varied over five configurations i The data from three of the five pilots that participated in the experimental study were analyzed in the fuzzy inference identification. Results indicate that both the analytical pilot/vehicle analysis and the fuzzyinference identification can be used to reflect changes in simulator fidelity for the task examined.
A Methodology for Evaluating the Fidelity of Ground-Based Flight Simulators
NASA Technical Reports Server (NTRS)
Zeyada, Y.; Hess, R. A.
1999-01-01
An analytical and experimental investigation was undertaken to model the manner in which pilots perceive and utilize visual, proprioceptive, and vestibular cues in a ground-based flight simulator. The study was part of a larger research effort which has the creation of a methodology for determining flight simulator fidelity requirements as its ultimate goal. The study utilized a closed-loop feedback structure of the pilot/simulator system which included the pilot, the cockpit inceptor, the dynamics of the simulated vehicle and the motion system. With the exception of time delays which accrued in visual scene production in the simulator, visual scene effects were not included in this study. The NASA Ames Vertical Motion Simulator was used in a simple, single-degree of freedom rotorcraft bob-up/down maneuver. Pilot/vehicle analysis and fuzzy-inference identification were employed to study the changes in fidelity which occurred as the characteristics of the motion system were varied over five configurations. The data from three of the five pilots that participated in the experimental study were analyzed in the fuzzy-inference identification. Results indicate that both the analytical pilot/vehicle analysis and the fuzzy-inference identification can be used to reflect changes in simulator fidelity for the task examined.
Environmental Systems Management as a conceptual framework and as a set of interdisciplinary analytical approaches will be described within the context of sustainable watershed management, within devergent complex ecosystems. A specific subset of integrated tools are deployed to...
Thinking Graphically: Connecting Vision and Cognition during Graph Comprehension
ERIC Educational Resources Information Center
Ratwani, Raj M.; Trafton, J. Gregory; Boehm-Davis, Deborah A.
2008-01-01
Task analytic theories of graph comprehension account for the perceptual and conceptual processes required to extract specific information from graphs. Comparatively, the processes underlying information integration have received less attention. We propose a new framework for information integration that highlights visual integration and cognitive…
Delving Deeper: Transforming Shapes Physically and Analytically
ERIC Educational Resources Information Center
Rathouz, Margaret; Novak, Christopher; Clifford, John
2013-01-01
Constructing formulas "from scratch" for calculating geometric measurements of shapes--for example, the area of a triangle--involves reasoning deductively and drawing connections between different methods (Usnick, Lamphere, and Bright 1992). Visual and manipulative models also play a role in helping students understand the underlying…
A Demonstration of Sample Segregation
ERIC Educational Resources Information Center
Fritz, Mark D.; Brumbach, Stephen B.; Hartman, JudithAnn R.
2005-01-01
The demonstration of sample segregation, which is simple, and visually compelling illustrates the importance of sample handling for students studying analytical chemistry and environmental chemistry. The mixture used in this demonstration has two components, which have big particle size, and different colors, which makes the segregation graphic.
ERIC Educational Resources Information Center
Charleer, Sven; Klerkx, Joris; Duval, Erik
2014-01-01
This article explores how information visualization techniques can be applied to learning analytics data to help teachers and students deal with the abundance of learner traces. We also investigate how the affordances of large interactive surfaces can facilitate a collaborative sense-making environment for multiple students and teachers to explore…
Ko, Sungahn; Zhao, Jieqiong; Xia, Jing; Afzal, Shehzad; Wang, Xiaoyu; Abram, Greg; Elmqvist, Niklas; Kne, Len; Van Riper, David; Gaither, Kelly; Kennedy, Shaun; Tolone, William; Ribarsky, William; Ebert, David S
2014-12-01
We present VASA, a visual analytics platform consisting of a desktop application, a component model, and a suite of distributed simulation components for modeling the impact of societal threats such as weather, food contamination, and traffic on critical infrastructure such as supply chains, road networks, and power grids. Each component encapsulates a high-fidelity simulation model that together form an asynchronous simulation pipeline: a system of systems of individual simulations with a common data and parameter exchange format. At the heart of VASA is the Workbench, a visual analytics application providing three distinct features: (1) low-fidelity approximations of the distributed simulation components using local simulation proxies to enable analysts to interactively configure a simulation run; (2) computational steering mechanisms to manage the execution of individual simulation components; and (3) spatiotemporal and interactive methods to explore the combined results of a simulation run. We showcase the utility of the platform using examples involving supply chains during a hurricane as well as food contamination in a fast food restaurant chain.
Su, Yapeng; Shi, Qihui; Wei, Wei
2017-02-01
New insights on cellular heterogeneity in the last decade provoke the development of a variety of single cell omics tools at a lightning pace. The resultant high-dimensional single cell data generated by these tools require new theoretical approaches and analytical algorithms for effective visualization and interpretation. In this review, we briefly survey the state-of-the-art single cell proteomic tools with a particular focus on data acquisition and quantification, followed by an elaboration of a number of statistical and computational approaches developed to date for dissecting the high-dimensional single cell data. The underlying assumptions, unique features, and limitations of the analytical methods with the designated biological questions they seek to answer will be discussed. Particular attention will be given to those information theoretical approaches that are anchored in a set of first principles of physics and can yield detailed (and often surprising) predictions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Science-Driven Computing: NERSC's Plan for 2006-2010
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simon, Horst D.; Kramer, William T.C.; Bailey, David H.
NERSC has developed a five-year strategic plan focusing on three components: Science-Driven Systems, Science-Driven Services, and Science-Driven Analytics. (1) Science-Driven Systems: Balanced introduction of the best new technologies for complete computational systems--computing, storage, networking, visualization and analysis--coupled with the activities necessary to engage vendors in addressing the DOE computational science requirements in their future roadmaps. (2) Science-Driven Services: The entire range of support activities, from high-quality operations and user services to direct scientific support, that enable a broad range of scientists to effectively use NERSC systems in their research. NERSC will concentrate on resources needed to realize the promise ofmore » the new highly scalable architectures for scientific discovery in multidisciplinary computational science projects. (3) Science-Driven Analytics: The architectural and systems enhancements and services required to integrate NERSC's powerful computational and storage resources to provide scientists with new tools to effectively manipulate, visualize, and analyze the huge data sets derived from simulations and experiments.« less
Web-Based Visual Analytics for Social Media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Best, Daniel M.; Bruce, Joseph R.; Dowson, Scott T.
Social media provides a rich source of data that reflects current trends and public opinion on a multitude of topics. The data can be harvested from Twitter, Facebook, Blogs, and other social applications. The high rate of adoption of social media has created a domain that has an ever expanding volume of data that make it difficult to use the raw data for analysis. Information visual analytics is key in drawing out features of interest in social media. The Scalable Reasoning System is an application that couples a back end server performing analysis algorithms and an intuitive front end visualizationmore » to allow for investigation. We provide a componentized system that can be rapidly adapted to customer needs such that the information they are most interested in is brought to their attention through the application. To this end, we have developed a social media application for use by emergency operations for the city of Seattle to show current weather and traffic trends which is important for their tasks.« less
Using business intelligence for efficient inter-facility patient transfer.
Haque, Waqar; Derksen, Beth Ann; Calado, Devin; Foster, Lee
2015-01-01
In the context of inter-facility patient transfer, a transfer operator must be able to objectively identify a destination which meets the needs of a patient, while keeping in mind each facility's limitations. We propose a solution which uses Business Intelligence (BI) techniques to analyze data related to healthcare infrastructure and services, and provides a web based system to identify optimal destination(s). The proposed inter-facility transfer system uses a single data warehouse with an Online Analytical Processing (OLAP) cube built on top that supplies analytical data to multiple reports embedded in web pages. The data visualization tool includes map based navigation of the health authority as well as an interactive filtering mechanism which finds facilities meeting the selected criteria. The data visualization is backed by an intuitive data entry web form which safely constrains the data, ensuring consistency and a single version of truth. The overall time required to identify the destination for inter-facility transfers is reduced from hours to a few minutes with this interactive solution.
Hanson, Marta
2017-09-01
Argument This article analyzes for the first time the earliest western maps of diseases in China spanning fifty years from the late 1870s to the end of the 1920s. The 24 featured disease maps present a visual history of the major transformations in modern medicine from medical geography to laboratory medicine wrought on Chinese soil. These medical transformations occurred within new political formations from the Qing dynasty (1644-1911) to colonialism in East Asia (Hong Kong, Taiwan, Manchuria, Korea) and hypercolonialism within China (Tianjin, Shanghai, Amoy) as well as the new Republican Chinese nation state (1912-49). As a subgenre of persuasive graphics, physicians marshaled disease maps for various rhetorical functions within these different political contexts. Disease maps in China changed from being mostly analytical tools to functioning as tools of empire, national sovereignty, and public health propaganda legitimating new medical concepts, public health interventions, and political structures governing over human and non-human populations.
Graphing trillions of triangles.
Burkhardt, Paul
2017-07-01
The increasing size of Big Data is often heralded but how data are transformed and represented is also profoundly important to knowledge discovery, and this is exemplified in Big Graph analytics. Much attention has been placed on the scale of the input graph but the product of a graph algorithm can be many times larger than the input. This is true for many graph problems, such as listing all triangles in a graph. Enabling scalable graph exploration for Big Graphs requires new approaches to algorithms, architectures, and visual analytics. A brief tutorial is given to aid the argument for thoughtful representation of data in the context of graph analysis. Then a new algebraic method to reduce the arithmetic operations in counting and listing triangles in graphs is introduced. Additionally, a scalable triangle listing algorithm in the MapReduce model will be presented followed by a description of the experiments with that algorithm that led to the current largest and fastest triangle listing benchmarks to date. Finally, a method for identifying triangles in new visual graph exploration technologies is proposed.
GANViz: A Visual Analytics Approach to Understand the Adversarial Game.
Wang, Junpeng; Gou, Liang; Yang, Hao; Shen, Han-Wei
2018-06-01
Generative models bear promising implications to learn data representations in an unsupervised fashion with deep learning. Generative Adversarial Nets (GAN) is one of the most popular frameworks in this arena. Despite the promising results from different types of GANs, in-depth understanding on the adversarial training process of the models remains a challenge to domain experts. The complexity and the potential long-time training process of the models make it hard to evaluate, interpret, and optimize them. In this work, guided by practical needs from domain experts, we design and develop a visual analytics system, GANViz, aiming to help experts understand the adversarial process of GANs in-depth. Specifically, GANViz evaluates the model performance of two subnetworks of GANs, provides evidence and interpretations of the models' performance, and empowers comparative analysis with the evidence. Through our case studies with two real-world datasets, we demonstrate that GANViz can provide useful insight into helping domain experts understand, interpret, evaluate, and potentially improve GAN models.
LoyalTracker: Visualizing Loyalty Dynamics in Search Engines.
Shi, Conglei; Wu, Yingcai; Liu, Shixia; Zhou, Hong; Qu, Huamin
2014-12-01
The huge amount of user log data collected by search engine providers creates new opportunities to understand user loyalty and defection behavior at an unprecedented scale. However, this also poses a great challenge to analyze the behavior and glean insights into the complex, large data. In this paper, we introduce LoyalTracker, a visual analytics system to track user loyalty and switching behavior towards multiple search engines from the vast amount of user log data. We propose a new interactive visualization technique (flow view) based on a flow metaphor, which conveys a proper visual summary of the dynamics of user loyalty of thousands of users over time. Two other visualization techniques, a density map and a word cloud, are integrated to enable analysts to gain further insights into the patterns identified by the flow view. Case studies and the interview with domain experts are conducted to demonstrate the usefulness of our technique in understanding user loyalty and switching behavior in search engines.
In situ visualization and data analysis for turbidity currents simulation
NASA Astrophysics Data System (ADS)
Camata, Jose J.; Silva, Vítor; Valduriez, Patrick; Mattoso, Marta; Coutinho, Alvaro L. G. A.
2018-01-01
Turbidity currents are underflows responsible for sediment deposits that generate geological formations of interest for the oil and gas industry. LibMesh-sedimentation is an application built upon the libMesh library to simulate turbidity currents. In this work, we present the integration of libMesh-sedimentation with in situ visualization and in transit data analysis tools. DfAnalyzer is a solution based on provenance data to extract and relate strategic simulation data in transit from multiple data for online queries. We integrate libMesh-sedimentation and ParaView Catalyst to perform in situ data analysis and visualization. We present a parallel performance analysis for two turbidity currents simulations showing that the overhead for both in situ visualization and in transit data analysis is negligible. We show that our tools enable monitoring the sediments appearance at runtime and steer the simulation based on the solver convergence and visual information on the sediment deposits, thus enhancing the analytical power of turbidity currents simulations.
Visual analytics of large multidimensional data using variable binned scatter plots
NASA Astrophysics Data System (ADS)
Hao, Ming C.; Dayal, Umeshwar; Sharma, Ratnesh K.; Keim, Daniel A.; Janetzko, Halldór
2010-01-01
The scatter plot is a well-known method of visualizing pairs of two-dimensional continuous variables. Multidimensional data can be depicted in a scatter plot matrix. They are intuitive and easy-to-use, but often have a high degree of overlap which may occlude a significant portion of data. In this paper, we propose variable binned scatter plots to allow the visualization of large amounts of data without overlapping. The basic idea is to use a non-uniform (variable) binning of the x and y dimensions and plots all the data points that fall within each bin into corresponding squares. Further, we map a third attribute to color for visualizing clusters. Analysts are able to interact with individual data points for record level information. We have applied these techniques to solve real-world problems on credit card fraud and data center energy consumption to visualize their data distribution and cause-effect among multiple attributes. A comparison of our methods with two recent well-known variants of scatter plots is included.
Visualizing nD Point Clouds as Topological Landscape Profiles to Guide Local Data Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oesterling, Patrick; Heine, Christian; Weber, Gunther H.
2012-05-04
Analyzing high-dimensional point clouds is a classical challenge in visual analytics. Traditional techniques, such as projections or axis-based techniques, suffer from projection artifacts, occlusion, and visual complexity.We propose to split data analysis into two parts to address these shortcomings. First, a structural overview phase abstracts data by its density distribution. This phase performs topological analysis to support accurate and non-overlapping presentation of the high-dimensional cluster structure as a topological landscape profile. Utilizing a landscape metaphor, it presents clusters and their nesting as hills whose height, width, and shape reflect cluster coherence, size, and stability, respectively. A second local analysis phasemore » utilizes this global structural knowledge to select individual clusters or point sets for further, localized data analysis. Focusing on structural entities significantly reduces visual clutter in established geometric visualizations and permits a clearer, more thorough data analysis. In conclusion, this analysis complements the global topological perspective and enables the user to study subspaces or geometric properties, such as shape.« less
Multi-focus and multi-level techniques for visualization and analysis of networks with thematic data
NASA Astrophysics Data System (ADS)
Cossalter, Michele; Mengshoel, Ole J.; Selker, Ted
2013-01-01
Information-rich data sets bring several challenges in the areas of visualization and analysis, even when associated with node-link network visualizations. This paper presents an integration of multi-focus and multi-level techniques that enable interactive, multi-step comparisons in node-link networks. We describe NetEx, a visualization tool that enables users to simultaneously explore different parts of a network and its thematic data, such as time series or conditional probability tables. NetEx, implemented as a Cytoscape plug-in, has been applied to the analysis of electrical power networks, Bayesian networks, and the Enron e-mail repository. In this paper we briefly discuss visualization and analysis of the Enron social network, but focus on data from an electrical power network. Specifically, we demonstrate how NetEx supports the analytical task of electrical power system fault diagnosis. Results from a user study with 25 subjects suggest that NetEx enables more accurate isolation of complex faults compared to an especially designed software tool.
Query2Question: Translating Visualization Interaction into Natural Language.
Nafari, Maryam; Weaver, Chris
2015-06-01
Richly interactive visualization tools are increasingly popular for data exploration and analysis in a wide variety of domains. Existing systems and techniques for recording provenance of interaction focus either on comprehensive automated recording of low-level interaction events or on idiosyncratic manual transcription of high-level analysis activities. In this paper, we present the architecture and translation design of a query-to-question (Q2Q) system that automatically records user interactions and presents them semantically using natural language (written English). Q2Q takes advantage of domain knowledge and uses natural language generation (NLG) techniques to translate and transcribe a progression of interactive visualization states into a visual log of styled text that complements and effectively extends the functionality of visualization tools. We present Q2Q as a means to support a cross-examination process in which questions rather than interactions are the focus of analytic reasoning and action. We describe the architecture and implementation of the Q2Q system, discuss key design factors and variations that effect question generation, and present several visualizations that incorporate Q2Q for analysis in a variety of knowledge domains.
Pathways to Identity: Aiding Law Enforcement in Identification Tasks With Visual Analytics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruce, Joseph R.; Scholtz, Jean; Hodges, Duncan
The nature of identity has changed dramatically in recent years, and has grown in complexity. Identities are defined in multiple domains: biological and psychological elements strongly contribute, but also biographical and cyber elements are necessary to complete the picture. Law enforcement is beginning to adjust to these changes, recognizing its importance in criminal justice. The SuperIdentity project seeks to aid law enforcement officials in their identification tasks through research of techniques for discovering identity traits, generation of statistical models of identity and analysis of identity traits through visualization. We present use cases compiled through user interviews in multiple fields, includingmore » law enforcement, as well as the modeling and visualization tools design to aid in those use cases.« less
Modeling human comprehension of data visualizations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matzen, Laura E.; Haass, Michael Joseph; Divis, Kristin Marie
This project was inspired by two needs. The first is a need for tools to help scientists and engineers to design effective data visualizations for communicating information, whether to the user of a system, an analyst who must make decisions based on complex data, or in the context of a technical report or publication. Most scientists and engineers are not trained in visualization design, and they could benefit from simple metrics to assess how well their visualization's design conveys the intended message. In other words, will the most important information draw the viewer's attention? The second is the need formore » cognition-based metrics for evaluating new types of visualizations created by researchers in the information visualization and visual analytics communities. Evaluating visualizations is difficult even for experts. However, all visualization methods and techniques are intended to exploit the properties of the human visual system to convey information efficiently to a viewer. Thus, developing evaluation methods that are rooted in the scientific knowledge of the human visual system could be a useful approach. In this project, we conducted fundamental research on how humans make sense of abstract data visualizations, and how this process is influenced by their goals and prior experience. We then used that research to develop a new model, the Data Visualization Saliency Model, that can make accurate predictions about which features in an abstract visualization will draw a viewer's attention. The model is an evaluation tool that can address both of the needs described above, supporting both visualization research and Sandia mission needs.« less
Applicability of Visual Analytics to Defence and Security Operations
2011-06-01
It shows the events importance in the news over time. Topics are extracted from fused video, audio and closed captions. Since viewing video...Detection of Anomalous Maritime Behavior, In Banissi, E. et al. (Eds.) Proceedings of the 12th IEEE International Conference on Information Visualisation
The geospatial modeling interface (GMI) framework for deploying and assessing environmental models
USDA-ARS?s Scientific Manuscript database
Geographical information systems (GIS) software packages have been used for close to three decades as analytical tools in environmental management for geospatial data assembly, processing, storage, and visualization of input data and model output. However, with increasing availability and use of ful...
Semiotic Criteria for Evaluating Instructional HyperMedia.
ERIC Educational Resources Information Center
Tucker, Susan A.; Dempsey, John V.
This report describes hypermedia as a non-linear interlinked representation of textual, graphic, visual and audio material, that enables students to connect large bodies of information while developing analytical skills necessary to think critically about this information. It is noted that the use of microcomputers for hypermedia instruction…
The Use of Visual Arts as a Window to Diagnosing Medical Pathologies.
Bramstedt, Katrina A
2016-08-01
Observation is a key step preceding diagnosis, prognostication, and treatment. Careful patient observation is a skill that is learned but rarely explicitly taught. Furthermore, proper clinical observation requires more than a glance; it requires attention to detail. In medical school, the art of learning to look can be taught using the medical humanities and especially visual arts such as paintings and film. Research shows that such training improves not only observation skills but also teamwork, listening skills, and reflective and analytical thinking. Overall, the use of visual arts in medical school curricula can build visual literacy: the capacity to identify and analyze facial features, emotions, and general bodily presentations, including contextual features such as clothing, hair, and body art. With the ability to formulate and convey a detailed "picture" of the patient, clinicians can integrate aesthetic and clinical knowledge, helping facilitate the diagnosing of medical pathologies. © 2016 American Medical Association. All Rights Reserved.
Effects of lorazepam on visual perceptual abilities.
Pompéia, S; Pradella-Hallinan, M; Manzano, G M; Bueno, O F A
2008-04-01
To evaluate the effects of an acute dose of the benzodiazepine (BZ) lorazepam in young healthy volunteers on five distinguishable visual perception abilities determined by previous factor-analytic studies. This was a double-blind, cross-over design study of acute oral doses of lorazepam (2 mg) and placebo in young healthy volunteers. We focused on a set of paper-and-pencil tests of visual perceptual abilities that load on five correlated but distinguishable factors (Spatial Visualization, Spatial Relations, Perceptual Speed, Closure Speed, and Closure Flexibility). Some other tests (DSST, immediate and delayed recall of prose; measures of subjective mood alterations) were used to control for the classic BZ-induced effects. Lorazepam impaired performance in the DSST and delayed recall of prose, increased subjective sedation and impaired tasks of all abilities except Spatial Visualization and Closure Speed. Only impairment in Perceptual Speed (Identical Pictures task) and delayed recall of prose were not explained by sedation. Acute administration of lorazepam, in a dose that impaired episodic memory, selectively affected different visual perceptual abilities before and after controlling for sedation. Central executive demands and sedation did not account for results, so impairment in the Identical Pictures task may be attributed to lorazepam's visual processing alterations. 2008 John Wiley & Sons, Ltd.
Tattoo and taboo: on the meaning of tattoos in the analytic process.
Karacaoglan, Uta
2012-02-01
Tattooing projects a visual image in transference to form a backdrop for the most salient unconscious inner conflicts arising during an ongoing analytic process. Like a snapshot, the tattoo is a dialectic record of the mother-father relationship, of desires for closeness and distance, commonality and difference, identification and individuation. As Walter Benjamin famously stated about the nature of visual images in his Arcades Project, the tattoo represents "dialectics at a standstill." What seems paramount to the patient who participates in the act of tattooing is the need for stasis and immutability, as if bringing unconscious conflicts to "standstill" were to deliver a sense of stability. Unconsciously, the need is triggered by a threat to the inner stability resulting from fear of violating a taboo escalating to the point that fears of abandonment and fusion become unbearable. On the one hand, the tattoo is a visual symbolization of a taboo transgression; on the other hand, it activates the same through an act of self-injury that resembles the magical ritual acts of indigenous peoples' use of tattoos. The taboo thus serves as an ersatz for the actual violation of the taboo in real life, so that the tattoo may be ascribed a magical significance or totemic function. And yet the tattoo's success as a vehicle for constructing a transitional object is always contingent on the tangible manipulation of the skin conjoined with the creation of a symbolizing visual image. The image then acts like a "patch" to repair holes blown into Winnicott's "potential space" and to reconstruct it. Copyright © 2011 Institute of Psychoanalysis.
FuryExplorer: visual-interactive exploration of horse motion capture data
NASA Astrophysics Data System (ADS)
Wilhelm, Nils; Vögele, Anna; Zsoldos, Rebeka; Licka, Theresia; Krüger, Björn; Bernard, Jürgen
2015-01-01
The analysis of equine motion has a long tradition in the past of mankind. Equine biomechanics aims at detecting characteristics of horses indicative of good performance. Especially, veterinary medicine gait analysis plays an important role in diagnostics and in the emerging research of long-term effects of athletic exercises. More recently, the incorporation of motion capture technology contributed to an easier and faster analysis, with a trend from mere observation of horses towards the analysis of multivariate time-oriented data. However, due to the novelty of this topic being raised within an interdisciplinary context, there is yet a lack of visual-interactive interfaces to facilitate time series data analysis and information discourse for the veterinary and biomechanics communities. In this design study, we bring visual analytics technology into the respective domains, which, to our best knowledge, was never approached before. Based on requirements developed in the domain characterization phase, we present a visual-interactive system for the exploration of horse motion data. The system provides multiple views which enable domain experts to explore frequent poses and motions, but also to drill down to interesting subsets, possibly containing unexpected patterns. We show the applicability of the system in two exploratory use cases, one on the comparison of different gait motions, and one on the analysis of lameness recovery. Finally, we present the results of a summative user study conducted in the environment of the domain experts. The overall outcome was a significant improvement in effectiveness and efficiency in the analytical workflow of the domain experts.
Parsa, Behnoosh; Terekhov, Alexander; Zatsiorsky, Vladimir M; Latash, Mark L
2017-02-01
We address the nature of unintentional changes in performance in two papers. This first paper tested a hypothesis that unintentional changes in performance variables during continuous tasks without visual feedback are due to two processes. First, there is a drift of the referent coordinate for the salient performance variable toward the actual coordinate of the effector. Second, there is a drift toward minimum of a cost function. We tested this hypothesis in four-finger isometric pressing tasks that required the accurate production of a combination of total moment and total force with natural and modified finger involvement. Subjects performed accurate force-moment production tasks under visual feedback, and then visual feedback was removed for some or all of the salient variables. Analytical inverse optimization was used to compute a cost function. Without visual feedback, both force and moment drifted slowly toward lower absolute magnitudes. Over 15 s, the force drop could reach 20% of its initial magnitude while moment drop could reach 30% of its initial magnitude. Individual finger forces could show drifts toward both higher and lower forces. The cost function estimated using the analytical inverse optimization reduced its value as a consequence of the drift. We interpret the results within the framework of hierarchical control with referent spatial coordinates for salient variables at each level of the hierarchy combined with synergic control of salient variables. The force drift is discussed as a natural relaxation process toward states with lower potential energy in the physical (physiological) system involved in the task.
Parsa, Behnoosh; Terekhov, Alexander; Zatsiorsky, Vladimir M.; Latash, Mark L.
2016-01-01
We address the nature of unintentional changes in performance in two papers. This first paper tested a hypothesis that unintentional changes in performance variables during continuous tasks without visual feedback are due to two processes. First, there is a drift of the referent coordinate for the salient performance variable toward the actual coordinate of the effector. Second, there is a drift toward minimum of a cost function. We tested this hypothesis in four-finger isometric pressing tasks that required the accurate production of a combination of total moment and total force with natural and modified finger involvement. Subjects performed accurate force/moment production tasks under visual feedback, and then visual feedback was removed for some or all of the salient variables. Analytical inverse optimization was used to compute a cost function. Without visual feedback, both force and moment drifted slowly toward lower absolute magnitudes. Over 15 s, the force drop could reach 20% of its initial magnitude while moment drop could reach 30% of its initial magnitude. Individual finger forces could show drifts toward both higher and lower forces. The cost function estimated using the analytical inverse optimization reduced its value as a consequence of the drift. We interpret the results within the framework of hierarchical control with referent spatial coordinates for salient variables at each level of the hierarchy combined with synergic control of salient variables. The force drift is discussed as a natural relaxation process toward states with lower potential energy in the physical (physiological) system involved in the task. PMID:27785549
Curating and Integrating Data from Multiple Sources to Support Healthcare Analytics.
Ng, Kenney; Kakkanatt, Chris; Benigno, Michael; Thompson, Clay; Jackson, Margaret; Cahan, Amos; Zhu, Xinxin; Zhang, Ping; Huang, Paul
2015-01-01
As the volume and variety of healthcare related data continues to grow, the analysis and use of this data will increasingly depend on the ability to appropriately collect, curate and integrate disparate data from many different sources. We describe our approach to and highlight our experiences with the development of a robust data collection, curation and integration infrastructure that supports healthcare analytics. This system has been successfully applied to the processing of a variety of data types including clinical data from electronic health records and observational studies, genomic data, microbiomic data, self-reported data from surveys and self-tracked data from wearable devices from over 600 subjects. The curated data is currently being used to support healthcare analytic applications such as data visualization, patient stratification and predictive modeling.
Körsgen, Martin; Pelster, Andreas; Dreisewerd, Klaus; Arlinghaus, Heinrich F
2016-02-01
The analytical sensitivity in matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is largely affected by the specific analyte-matrix interaction, in particular by the possible incorporation of the analytes into crystalline MALDI matrices. Here we used time-of-flight secondary ion mass spectrometry (ToF-SIMS) to visualize the incorporation of three peptides with different hydrophobicities, bradykinin, Substance P, and vasopressin, into two classic MALDI matrices, 2,5-dihydroxybenzoic acid (DHB) and α-cyano-4-hydroxycinnamic acid (HCCA). For depth profiling, an Ar cluster ion beam was used to gradually sputter through the matrix crystals without causing significant degradation of matrix or biomolecules. A pulsed Bi3 ion cluster beam was used to image the lateral analyte distribution in the center of the sputter crater. Using this dual beam technique, the 3D distribution of the analytes and spatial segregation effects within the matrix crystals were imaged with sub-μm resolution. The technique could in the future enable matrix-enhanced (ME)-ToF-SIMS imaging of peptides in tissue slices at ultra-high resolution. Graphical Abstract ᅟ.
Analytic Steering: Inserting Context into the Information Dialog
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bohn, Shawn J.; Calapristi, Augustin J.; Brown, Shyretha D.
2011-10-23
An analyst’s intrinsic domain knowledge is a primary asset in almost any analysis task. Unstructured text analysis systems that apply un-supervised content analysis approaches can be more effective if they can leverage this domain knowledge in a manner that augments the information discovery process without obfuscating new or unexpected content. Current unsupervised approaches rely upon the prowess of the analyst to submit the right queries or observe generalized document and term relationships from ranked or visual results. We propose a new approach which allows the user to control or steer the analytic view within the unsupervised space. This process ismore » controlled through the data characterization process via user supplied context in the form of a collection of key terms. We show that steering with an appropriate choice of key terms can provide better relevance to the analytic domain and still enable the analyst to uncover un-expected relationships; this paper discusses cases where various analytic steering approaches can provide enhanced analysis results and cases where analytic steering can have a negative impact on the analysis process.« less
NASA Astrophysics Data System (ADS)
Körsgen, Martin; Pelster, Andreas; Dreisewerd, Klaus; Arlinghaus, Heinrich F.
2016-02-01
The analytical sensitivity in matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is largely affected by the specific analyte-matrix interaction, in particular by the possible incorporation of the analytes into crystalline MALDI matrices. Here we used time-of-flight secondary ion mass spectrometry (ToF-SIMS) to visualize the incorporation of three peptides with different hydrophobicities, bradykinin, Substance P, and vasopressin, into two classic MALDI matrices, 2,5-dihydroxybenzoic acid (DHB) and α-cyano-4-hydroxycinnamic acid (HCCA). For depth profiling, an Ar cluster ion beam was used to gradually sputter through the matrix crystals without causing significant degradation of matrix or biomolecules. A pulsed Bi3 ion cluster beam was used to image the lateral analyte distribution in the center of the sputter crater. Using this dual beam technique, the 3D distribution of the analytes and spatial segregation effects within the matrix crystals were imaged with sub-μm resolution. The technique could in the future enable matrix-enhanced (ME)-ToF-SIMS imaging of peptides in tissue slices at ultra-high resolution.
StreamMap: Smooth Dynamic Visualization of High-Density Streaming Points.
Li, Chenhui; Baciu, George; Han, Yu
2018-03-01
Interactive visualization of streaming points for real-time scatterplots and linear blending of correlation patterns is increasingly becoming the dominant mode of visual analytics for both big data and streaming data from active sensors and broadcasting media. To better visualize and interact with inter-stream patterns, it is generally necessary to smooth out gaps or distortions in the streaming data. Previous approaches either animate the points directly or present a sampled static heat-map. We propose a new approach, called StreamMap, to smoothly blend high-density streaming points and create a visual flow that emphasizes the density pattern distributions. In essence, we present three new contributions for the visualization of high-density streaming points. The first contribution is a density-based method called super kernel density estimation that aggregates streaming points using an adaptive kernel to solve the overlapping problem. The second contribution is a robust density morphing algorithm that generates several smooth intermediate frames for a given pair of frames. The third contribution is a trend representation design that can help convey the flow directions of the streaming points. The experimental results on three datasets demonstrate the effectiveness of StreamMap when dynamic visualization and visual analysis of trend patterns on streaming points are required.
Chen, Chen; Schneps, Matthew H; Masyn, Katherine E; Thomson, Jennifer M
2016-11-01
Increasing evidence has shown visual attention span to be a factor, distinct from phonological skills, that explains single-word identification (pseudo-word/word reading) performance in dyslexia. Yet, little is known about how well visual attention span explains text comprehension. Observing reading comprehension in a sample of 105 high school students with dyslexia, we used a pathway analysis to examine the direct and indirect path between visual attention span and reading comprehension while controlling for other factors such as phonological awareness, letter identification, short-term memory, IQ and age. Integrating phonemic decoding efficiency skills in the analytic model, this study aimed to disentangle how visual attention span and phonological skills work together in reading comprehension for readers with dyslexia. We found visual attention span to have a significant direct effect on more difficult reading comprehension but not on an easier level. It also had a significant direct effect on pseudo-word identification but not on word identification. In addition, we found that visual attention span indirectly explains reading comprehension through pseudo-word reading and word reading skills. This study supports the hypothesis that at least part of the dyslexic profile can be explained by visual attention abilities. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Models of dyadic social interaction.
Griffin, Dale; Gonzalez, Richard
2003-01-01
We discuss the logic of research designs for dyadic interaction and present statistical models with parameters that are tied to psychologically relevant constructs. Building on Karl Pearson's classic nineteenth-century statistical analysis of within-organism similarity, we describe several approaches to indexing dyadic interdependence and provide graphical methods for visualizing dyadic data. We also describe several statistical and conceptual solutions to the 'levels of analytic' problem in analysing dyadic data. These analytic strategies allow the researcher to examine and measure psychological questions of interdependence and social influence. We provide illustrative data from casually interacting and romantic dyads. PMID:12689382
A comparative review of optical surface contamination assessment techniques
NASA Technical Reports Server (NTRS)
Heaney, James B.
1987-01-01
This paper will review the relative sensitivities and practicalities of the common surface analytical methods that are used to detect and identify unwelcome adsorbants on optical surfaces. The compared methods include visual inspection, simple reflectometry and transmissiometry, ellipsometry, infrared absorption and attenuated total reflectance spectroscopy (ATR), Auger electron spectroscopy (AES), scanning electron microscopy (SEM), secondary ion mass spectrometry (SIMS), and mass accretion determined by quartz crystal microbalance (QCM). The discussion is biased toward those methods that apply optical thin film analytical techniques to spacecraft optical contamination problems. Examples are cited from both ground based and in-orbit experiments.
Visual Attention Modulates Insight versus Analytic Solving of Verbal Problems
ERIC Educational Resources Information Center
Wegbreit, Ezra; Suzuki, Satoru; Grabowecky, Marcia; Kounios, John; Beeman, Mark
2012-01-01
Behavioral and neuroimaging findings indicate that distinct cognitive and neural processes underlie solving problems with sudden insight. Moreover, people with less focused attention sometimes perform better on tests of insight and creative problem solving. However, it remains unclear whether different states of attention, within individuals,…
Visualization of Twitter Data in the Classroom
ERIC Educational Resources Information Center
Sigman, Betsy Page; Garr, William; Pongsajapan, Robert; Selvanadin, Marie; McWilliams, Mindy; Bolling, Kristin
2016-01-01
The expression "big data" is ubiquitous in the business world today, but few undergraduate business students have the opportunity to gain practical experience with how new business analytics tools can be used in decision making. This article describes a set of hands-on labs that prepare students to incorporate streaming data analysis…
Use of Audiovisual Texts in University Education Process
ERIC Educational Resources Information Center
Aleksandrov, Evgeniy P.
2014-01-01
Audio-visual learning technologies offer great opportunities in the development of students' analytical and projective abilities. These technologies can be used in classroom activities and for homework. This article discusses the features of audiovisual media texts use in a series of social sciences and humanities in the University curriculum.
Learning to See: Enhancing Student Learning through Videotaped Feedback
ERIC Educational Resources Information Center
Yakura, Elaine K.
2009-01-01
Feedback is crucial to developing skills, but meaningful feedback is difficult to provide. Classroom videotaping can provide effective feedback on student performance, but for video feedback to be most helpful, students must develop a type of "visual intelligence"--analytical skills that increase critical thinking and self-awareness. The author…
Keystroke Logging in Writing Research: Using Inputlog to Analyze and Visualize Writing Processes
ERIC Educational Resources Information Center
Leijten, Marielle; Van Waes, Luuk
2013-01-01
Keystroke logging has become instrumental in identifying writing strategies and understanding cognitive processes. Recent technological advances have refined logging efficiency and analytical outputs. While keystroke logging allows for ecological data collection, it is often difficult to connect the fine grain of logging data to the underlying…
USDA-ARS?s Scientific Manuscript database
Geographical information systems (GIS) software packages have been used for nearly three decades as analytical tools in natural resource management for geospatial data assembly, processing, storage, and visualization of input data and model output. However, with increasing availability and use of fu...
Advanced Certification Program for Computer Graphic Specialists. Final Performance Report.
ERIC Educational Resources Information Center
Parkland Coll., Champaign, IL.
A pioneer program in computer graphics was implemented at Parkland College (Illinois) to meet the demand for specialized technicians to visualize data generated on high performance computers. In summer 1989, 23 students were accepted into the pilot program. Courses included C programming, calculus and analytic geometry, computer graphics, and…
What Is Design Thinking and Why Is It Important?
ERIC Educational Resources Information Center
Razzouk, Rim; Shute, Valerie
2012-01-01
Design thinking is generally defined as an analytic and creative process that engages a person in opportunities to experiment, create and prototype models, gather feedback, and redesign. Several characteristics (e.g., visualization, creativity) that a good design thinker should possess have been identified from the literature. The primary purpose…
Analysing Children's Drawings: Applied Imagination
ERIC Educational Resources Information Center
Bland, Derek
2012-01-01
This article centres on a research project in which freehand drawings provided a richly creative and colourful data source of children's imagined, ideal learning environments. Issues concerning the analysis of the visual data are discussed, in particular, how imaginative content was analysed and how the analytical process was dependent on an…
Exploring DNA Structure with Cn3D
ERIC Educational Resources Information Center
Porter, Sandra G.; Day, Joseph; McCarty, Richard E.; Shearn, Allen; Shingles, Richard; Fletcher, Linnea; Murphy, Stephanie; Pearlman, Rebecca
2007-01-01
Researchers in the field of bioinformatics have developed a number of analytical programs and databases that are increasingly important for advancing biological research. Because bioinformatics programs are used to analyze, visualize, and/or compare biological data, it is likely that the use of these programs will have a positive impact on biology…
Microwave Workshop for Windows.
ERIC Educational Resources Information Center
White, Colin
1998-01-01
"Microwave Workshop for Windows" consists of three programs that act as teaching aid and provide a circuit design utility within the field of microwave engineering. The first program is a computer representation of a graphical design tool; the second is an accurate visual and analytical representation of a microwave test bench; the third…
Discovering Romanticism and Classicism in the English Classroom.
ERIC Educational Resources Information Center
Stark, Sandra A.
1994-01-01
Details the concepts of romanticism and classicism and how they relate to secondary English instruction. Argues that teachers should offer students both the imaginative adventure of the romantic and the analytical power of the classicist. Describes a visual lesson by which these two modes might be illustrated and fostered. (HB)
NASA Astrophysics Data System (ADS)
Pletikapić, Galja; Ivošević DeNardis, Nadica
2017-01-01
Surface analytical methods are applied to examine the environmental status of seawaters. The present overview emphasizes advantages of combining surface analytical methods, applied to a hazardous situation in the Adriatic Sea, such as monitoring of the first aggregation phases of dissolved organic matter in order to potentially predict the massive mucilage formation and testing of oil spill cleanup. Such an approach, based on fast and direct characterization of organic matter and its high-resolution visualization, sets a continuous-scale description of organic matter from micro- to nanometre scales. Electrochemical method of chronoamperometry at the dropping mercury electrode meets the requirements for monitoring purposes due to the simple and fast analysis of a large number of natural seawater samples enabling simultaneous differentiation of organic constituents. In contrast, atomic force microscopy allows direct visualization of biotic and abiotic particles and provides an insight into structural organization of marine organic matter at micro- and nanometre scales. In the future, merging data at different spatial scales, taking into account experimental input on micrometre scale, observations on metre scale and modelling on kilometre scale, will be important for developing sophisticated technological platforms for knowledge transfer, reports and maps applicable for the marine environmental protection and management of the coastal area, especially for tourism, fishery and cruiser trafficking.
Finite-difference time-domain modelling of through-the-Earth radio signal propagation
NASA Astrophysics Data System (ADS)
Ralchenko, M.; Svilans, M.; Samson, C.; Roper, M.
2015-12-01
This research seeks to extend the knowledge of how a very low frequency (VLF) through-the-Earth (TTE) radio signal behaves as it propagates underground, by calculating and visualizing the strength of the electric and magnetic fields for an arbitrary geology through numeric modelling. To achieve this objective, a new software tool has been developed using the finite-difference time-domain method. This technique is particularly well suited to visualizing the distribution of electromagnetic fields in an arbitrary geology. The frequency range of TTE radio (400-9000 Hz) and geometrical scales involved (1 m resolution for domains a few hundred metres in size) involves processing a grid composed of millions of cells for thousands of time steps, which is computationally expensive. Graphics processing unit acceleration was used to reduce execution time from days and weeks, to minutes and hours. Results from the new modelling tool were compared to three cases for which an analytic solution is known. Two more case studies were done featuring complex geologic environments relevant to TTE communications that cannot be solved analytically. There was good agreement between numeric and analytic results. Deviations were likely caused by numeric artifacts from the model boundaries; however, in a TTE application in field conditions, the uncertainty in the conductivity of the various geologic formations will greatly outweigh these small numeric errors.
Visualizing Mobility of Public Transportation System.
Zeng, Wei; Fu, Chi-Wing; Arisona, Stefan Müller; Erath, Alexander; Qu, Huamin
2014-12-01
Public transportation systems (PTSs) play an important role in modern cities, providing shared/massive transportation services that are essential for the general public. However, due to their increasing complexity, designing effective methods to visualize and explore PTS is highly challenging. Most existing techniques employ network visualization methods and focus on showing the network topology across stops while ignoring various mobility-related factors such as riding time, transfer time, waiting time, and round-the-clock patterns. This work aims to visualize and explore passenger mobility in a PTS with a family of analytical tasks based on inputs from transportation researchers. After exploring different design alternatives, we come up with an integrated solution with three visualization modules: isochrone map view for geographical information, isotime flow map view for effective temporal information comparison and manipulation, and OD-pair journey view for detailed visual analysis of mobility factors along routes between specific origin-destination pairs. The isotime flow map linearizes a flow map into a parallel isoline representation, maximizing the visualization of mobility information along the horizontal time axis while presenting clear and smooth pathways from origin to destinations. Moreover, we devise several interactive visual query methods for users to easily explore the dynamics of PTS mobility over space and time. Lastly, we also construct a PTS mobility model from millions of real passenger trajectories, and evaluate our visualization techniques with assorted case studies with the transportation researchers.
NASA Astrophysics Data System (ADS)
Zverev, V. V.; Izmozherov, I. M.; Filippov, B. N.
2018-02-01
Three-dimensional computer simulation of dynamic processes in a moving domain boundary separating domains in a soft magnetic uniaxial film with planar anisotropy is performed by numerical solution of Landau-Lifshitz-Gilbert equations. The developed visualization methods are used to establish the connection between the motion of surface vortices and antivortices, singular (Bloch) points, and core lines of intrafilm vortex structures. A relation between the character of magnetization dynamics and the film thickness is found. The analytical models of spatial vortex structures for imitation of topological properties of the structures observed in micromagnetic simulation are constructed.
Visualizing Uncertainty for Probabilistic Weather Forecasting based on Reforecast Analogs
NASA Astrophysics Data System (ADS)
Pelorosso, Leandro; Diehl, Alexandra; Matković, Krešimir; Delrieux, Claudio; Ruiz, Juan; Gröeller, M. Eduard; Bruckner, Stefan
2016-04-01
Numerical weather forecasts are prone to uncertainty coming from inaccuracies in the initial and boundary conditions and lack of precision in numerical models. Ensemble of forecasts partially addresses these problems by considering several runs of the numerical model. Each forecast is generated with different initial and boundary conditions and different model configurations [GR05]. The ensembles can be expressed as probabilistic forecasts, which have proven to be very effective in the decision-making processes [DE06]. The ensemble of forecasts represents only some of the possible future atmospheric states, usually underestimating the degree of uncertainty in the predictions [KAL03, PH06]. Hamill and Whitaker [HW06] introduced the "Reforecast Analog Regression" (RAR) technique to overcome the limitations of ensemble forecasting. This technique produces probabilistic predictions based on the analysis of historical forecasts and observations. Visual analytics provides tools for processing, visualizing, and exploring data to get new insights and discover hidden information patterns in an interactive exchange between the user and the application [KMS08]. In this work, we introduce Albero, a visual analytics solution for probabilistic weather forecasting based on the RAR technique. Albero targets at least two different type of users: "forecasters", who are meteorologists working in operational weather forecasting and "researchers", who work in the construction of numerical prediction models. Albero is an efficient tool for analyzing precipitation forecasts, allowing forecasters to make and communicate quick decisions. Our solution facilitates the analysis of a set of probabilistic forecasts, associated statistical data, observations and uncertainty. A dashboard with small-multiples of probabilistic forecasts allows the forecasters to analyze at a glance the distribution of probabilities as a function of time, space, and magnitude. It provides the user with a more accurate measure of forecast uncertainty that could result in better decision-making. It offers different level of abstractions to help with the recalibration of the RAR method. It also has an inspection tool that displays the selected analogs, their observations and statistical data. It gives the users access to inner parts of the method, unveiling hidden information. References [GR05] GNEITING T., RAFTERY A. E.: Weather forecasting with ensemble methods. Science 310, 5746, 248-249, 2005. [KAL03] KALNAY E.: Atmospheric modeling, data assimilation and predictability. Cambridge University Press, 2003. [PH06] PALMER T., HAGEDORN R.: Predictability of weather and climate. Cambridge University Press, 2006. [HW06] HAMILL T. M., WHITAKER J. S.: Probabilistic quantitative precipitation forecasts based on reforecast analogs: Theory and application. Monthly Weather Review 134, 11, 3209-3229, 2006. [DE06] DEITRICK S., EDSALL R.: The influence of uncertainty visualization on decision making: An empirical evaluation. Springer, 2006. [KMS08] KEIM D. A., MANSMANN F., SCHNEIDEWIND J., THOMAS J., ZIEGLER H.: Visual analytics: Scope and challenges. Springer, 2008.
Technosocial Predictive Analytics in Support of Naturalistic Decision Making
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanfilippo, Antonio P.; Cowell, Andrew J.; Malone, Elizabeth L.
2009-06-23
A main challenge we face in fostering sustainable growth is to anticipate outcomes through predictive and proactive across domains as diverse as energy, security, the environment, health and finance in order to maximize opportunities, influence outcomes and counter adversities. The goal of this paper is to present new methods for anticipatory analytical thinking which address this challenge through the development of a multi-perspective approach to predictive modeling as a core to a creative decision making process. This approach is uniquely multidisciplinary in that it strives to create decision advantage through the integration of human and physical models, and leverages knowledgemore » management and visual analytics to support creative thinking by facilitating the achievement of interoperable knowledge inputs and enhancing the user’s cognitive access. We describe a prototype system which implements this approach and exemplify its functionality with reference to a use case in which predictive modeling is paired with analytic gaming to support collaborative decision-making in the domain of agricultural land management.« less
Flowfield visualization for SSME hot gas manifold
NASA Technical Reports Server (NTRS)
Roger, Robert P.
1988-01-01
The objective of this research, as defined by NASA-Marshall Space Flight Center, was two-fold: (1) to numerically simulate viscous subsonic flow in a proposed elliptical two-duct version of the fuel side Hot Gas Manifold (HGM) for the Space Shuttle Main Engine (SSME), and (2) to provide analytical support for SSME related numerical computational experiments, being performed by the Computational Fluid Dynamics staff in the Aerophysics Division of the Structures and Dynamics Laboratory at NASA-MSFC. Numerical results of HGM were calculations to complement both water flow visualization experiments and air flow visualization experiments and air experiments in two-duct geometries performed at NASA-MSFC and Rocketdyne. In addition, code modification and improvement efforts were to strengthen the CFD capabilities of NASA-MSFC for producing reliable predictions of flow environments within the SSME.
Analysis, simulation and visualization of 1D tapping via reduced dynamical models
NASA Astrophysics Data System (ADS)
Blackmore, Denis; Rosato, Anthony; Tricoche, Xavier; Urban, Kevin; Zou, Luo
2014-04-01
A low-dimensional center-of-mass dynamical model is devised as a simplified means of approximately predicting some important aspects of the motion of a vertical column comprised of a large number of particles subjected to gravity and periodic vertical tapping. This model is investigated first as a continuous dynamical system using analytical, simulation and visualization techniques. Then, by employing an approach analogous to that used to approximate the dynamics of a bouncing ball on an oscillating flat plate, it is modeled as a discrete dynamical system and analyzed to determine bifurcations and transitions to chaotic motion along with other properties. The predictions of the analysis are then compared-primarily qualitatively-with visualization and simulation results of the reduced continuous model, and ultimately with simulations of the complete system dynamics.
Shipboard Analytical Capabilities on the Renovated JOIDES Resolution, IODP Riserless Drilling Vessel
NASA Astrophysics Data System (ADS)
Blum, P.; Foster, P.; Houpt, D.; Bennight, C.; Brandt, L.; Cobine, T.; Crawford, W.; Fackler, D.; Fujine, K.; Hastedt, M.; Hornbacher, D.; Mateo, Z.; Moortgat, E.; Vasilyev, M.; Vasilyeva, Y.; Zeliadt, S.; Zhao, J.
2008-12-01
The JOIDES Resolution (JR) has conducted 121 scientific drilling expeditions during the Ocean Drilling Program (ODP) and the first phase of the Integrated Ocean Drilling Program (IODP) (1983-2006). The vessel and scientific systems have just completed an NSF-sponsored renovation (2005-2008). Shipboard analytical systems have been upgraded, within funding constraints imposed by market driven vessel conversion cost increases, to include: (1) enhanced shipboard analytical services including instruments and software for sampling and the capture of chemistry, physical properties, and geological data; (2) new data management capabilities built around a laboratory information management system (LIMS), digital asset management system, and web services; (3) operations data services with enhanced access to navigation and rig instrumentation data; and (4) a combination of commercial and home-made user applications for workflow- specific data extractions, generic and customized data reporting, and data visualization within a shipboard production environment. The instrumented data capture systems include a new set of core loggers for rapid and non-destructive acquisition of images and other physical properties data from drill cores. Line-scan imaging and natural gamma ray loggers capture data at unprecedented quality due to new and innovative designs. Many instruments used to characterize chemical compounds of rocks, sediments, and interstitial fluids were upgraded with the latest technology. The shipboard analytical environment features a new and innovative framework (DESCinfo) and application (DESClogik) for capturing descriptive and interpretive data from geological sub-domains such as sedimentology, petrology, paleontology, structural geology, stratigraphy, etc. This system fills a long-standing gap by providing a global database, controlled vocabularies and taxa name lists with version control, a highly configurable spreadsheet environment for data capture, and visualization of context data collected with the shipboard core loggers and other instruments.
Dasgupta, Aritra; Poco, Jorge; Wei, Yaxing; ...
2015-03-16
Evaluation methodologies in visualization have mostly focused on how well the tools and techniques cater to the analytical needs of the user. While this is important in determining the effectiveness of the tools and advancing the state-of-the-art in visualization research, a key area that has mostly been overlooked is how well established visualization theories and principles are instantiated in practice. This is especially relevant when domain experts, and not visualization researchers, design visualizations for analysis of their data or for broader dissemination of scientific knowledge. There is very little research on exploring the synergistic capabilities of cross-domain collaboration between domainmore » experts and visualization researchers. To fill this gap, in this paper we describe the results of an exploratory study of climate data visualizations conducted in tight collaboration with a pool of climate scientists. The study analyzes a large set of static climate data visualizations for identifying their shortcomings in terms of visualization design. The outcome of the study is a classification scheme that categorizes the design problems in the form of a descriptive taxonomy. The taxonomy is a first attempt for systematically categorizing the types, causes, and consequences of design problems in visualizations created by domain experts. We demonstrate the use of the taxonomy for a number of purposes, such as, improving the existing climate data visualizations, reflecting on the impact of the problems for enabling domain experts in designing better visualizations, and also learning about the gaps and opportunities for future visualization research. We demonstrate the applicability of our taxonomy through a number of examples and discuss the lessons learnt and implications of our findings.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dasgupta, Aritra; Poco, Jorge; Wei, Yaxing
Evaluation methodologies in visualization have mostly focused on how well the tools and techniques cater to the analytical needs of the user. While this is important in determining the effectiveness of the tools and advancing the state-of-the-art in visualization research, a key area that has mostly been overlooked is how well established visualization theories and principles are instantiated in practice. This is especially relevant when domain experts, and not visualization researchers, design visualizations for analysis of their data or for broader dissemination of scientific knowledge. There is very little research on exploring the synergistic capabilities of cross-domain collaboration between domainmore » experts and visualization researchers. To fill this gap, in this paper we describe the results of an exploratory study of climate data visualizations conducted in tight collaboration with a pool of climate scientists. The study analyzes a large set of static climate data visualizations for identifying their shortcomings in terms of visualization design. The outcome of the study is a classification scheme that categorizes the design problems in the form of a descriptive taxonomy. The taxonomy is a first attempt for systematically categorizing the types, causes, and consequences of design problems in visualizations created by domain experts. We demonstrate the use of the taxonomy for a number of purposes, such as, improving the existing climate data visualizations, reflecting on the impact of the problems for enabling domain experts in designing better visualizations, and also learning about the gaps and opportunities for future visualization research. We demonstrate the applicability of our taxonomy through a number of examples and discuss the lessons learnt and implications of our findings.« less
NASA Astrophysics Data System (ADS)
Shipman, J. S.; Anderson, J. W.
2017-12-01
An ideal tool for ecologists and land managers to investigate the impacts of both projected environmental changes and policy alternatives is the creation of immersive, interactive, virtual landscapes. As a new frontier in visualizing and understanding geospatial data, virtual landscapes require a new toolbox for data visualization that includes traditional GIS tools and uncommon tools such as the Unity3d game engine. Game engines provide capabilities to not only explore data but to build and interact with dynamic models collaboratively. These virtual worlds can be used to display and illustrate data that is often more understandable and plausible to both stakeholders and policy makers than is achieved using traditional maps.Within this context we will present funded research that has been developed utilizing virtual landscapes for geographic visualization and decision support among varied stakeholders. We will highlight the challenges and lessons learned when developing interactive virtual environments that require large multidisciplinary team efforts with varied competences. The results will emphasize the importance of visualization and interactive virtual environments and the link with emerging research disciplines within Visual Analytics.
BiNA: A Visual Analytics Tool for Biological Network Data
Gerasch, Andreas; Faber, Daniel; Küntzer, Jan; Niermann, Peter; Kohlbacher, Oliver; Lenhof, Hans-Peter; Kaufmann, Michael
2014-01-01
Interactive visual analysis of biological high-throughput data in the context of the underlying networks is an essential task in modern biomedicine with applications ranging from metabolic engineering to personalized medicine. The complexity and heterogeneity of data sets require flexible software architectures for data analysis. Concise and easily readable graphical representation of data and interactive navigation of large data sets are essential in this context. We present BiNA - the Biological Network Analyzer - a flexible open-source software for analyzing and visualizing biological networks. Highly configurable visualization styles for regulatory and metabolic network data offer sophisticated drawings and intuitive navigation and exploration techniques using hierarchical graph concepts. The generic projection and analysis framework provides powerful functionalities for visual analyses of high-throughput omics data in the context of networks, in particular for the differential analysis and the analysis of time series data. A direct interface to an underlying data warehouse provides fast access to a wide range of semantically integrated biological network databases. A plugin system allows simple customization and integration of new analysis algorithms or visual representations. BiNA is available under the 3-clause BSD license at http://bina.unipax.info/. PMID:24551056
Sci-Fin: Visual Mining Spatial and Temporal Behavior Features from Social Media
Pu, Jiansu; Teng, Zhiyao; Gong, Rui; Wen, Changjiang; Xu, Yang
2016-01-01
Check-in records are usually available in social services, which offer us the opportunity to capture and analyze users’ spatial and temporal behaviors. Mining such behavior features is essential to social analysis and business intelligence. However, the complexity and incompleteness of check-in records bring challenges to achieve such a task. Different from the previous work on social behavior analysis, in this paper, we present a visual analytics system, Social Check-in Fingerprinting (Sci-Fin), to facilitate the analysis and visualization of social check-in data. We focus on three major components of user check-in data: location, activity, and profile. Visual fingerprints for location, activity, and profile are designed to intuitively represent the high-dimensional attributes. To visually mine and demonstrate the behavior features, we integrate WorldMapper and Voronoi Treemap into our glyph-like designs. Such visual fingerprint designs offer us the opportunity to summarize the interesting features and patterns from different check-in locations, activities and users (groups). We demonstrate the effectiveness and usability of our system by conducting extensive case studies on real check-in data collected from a popular microblogging service. Interesting findings are reported and discussed at last. PMID:27999398
Sci-Fin: Visual Mining Spatial and Temporal Behavior Features from Social Media.
Pu, Jiansu; Teng, Zhiyao; Gong, Rui; Wen, Changjiang; Xu, Yang
2016-12-20
Check-in records are usually available in social services, which offer us the opportunity to capture and analyze users' spatial and temporal behaviors. Mining such behavior features is essential to social analysis and business intelligence. However, the complexity and incompleteness of check-in records bring challenges to achieve such a task. Different from the previous work on social behavior analysis, in this paper, we present a visual analytics system, Social Check-in Fingerprinting (Sci-Fin), to facilitate the analysis and visualization of social check-in data. We focus on three major components of user check-in data: location, activity, and profile. Visual fingerprints for location, activity, and profile are designed to intuitively represent the high-dimensional attributes. To visually mine and demonstrate the behavior features, we integrate WorldMapper and Voronoi Treemap into our glyph-like designs. Such visual fingerprint designs offer us the opportunity to summarize the interesting features and patterns from different check-in locations, activities and users (groups). We demonstrate the effectiveness and usability of our system by conducting extensive case studies on real check-in data collected from a popular microblogging service. Interesting findings are reported and discussed at last.
CasCADe: A Novel 4D Visualization System for Virtual Construction Planning.
Ivson, Paulo; Nascimento, Daniel; Celes, Waldemar; Barbosa, Simone Dj
2018-01-01
Building Information Modeling (BIM) provides an integrated 3D environment to manage large-scale engineering projects. The Architecture, Engineering and Construction (AEC) industry explores 4D visualizations over these datasets for virtual construction planning. However, existing solutions lack adequate visual mechanisms to inspect the underlying schedule and make inconsistencies readily apparent. The goal of this paper is to apply best practices of information visualization to improve 4D analysis of construction plans. We first present a review of previous work that identifies common use cases and limitations. We then consulted with AEC professionals to specify the main design requirements for such applications. These guided the development of CasCADe, a novel 4D visualization system where task sequencing and spatio-temporal simultaneity are immediately apparent. This unique framework enables the combination of diverse analytical features to create an information-rich analysis environment. We also describe how engineering collaborators used CasCADe to review the real-world construction plans of an Oil & Gas process plant. The system made evident schedule uncertainties, identified work-space conflicts and helped analyze other constructability issues. The results and contributions of this paper suggest new avenues for future research in information visualization for the AEC industry.
General Analytical Schemes for the Characterization of Pectin-Based Edible Gelled Systems
Haghighi, Maryam; Rezaei, Karamatollah
2012-01-01
Pectin-based gelled systems have gained increasing attention for the design of newly developed food products. For this reason, the characterization of such formulas is a necessity in order to present scientific data and to introduce an appropriate finished product to the industry. Various analytical techniques are available for the evaluation of the systems formulated on the basis of pectin and the designed gel. In this paper, general analytical approaches for the characterization of pectin-based gelled systems were categorized into several subsections including physicochemical analysis, visual observation, textural/rheological measurement, microstructural image characterization, and psychorheological evaluation. Three-dimensional trials to assess correlations among microstructure, texture, and taste were also discussed. Practical examples of advanced objective techniques including experimental setups for small and large deformation rheological measurements and microstructural image analysis were presented in more details. PMID:22645484
PB-AM: An open-source, fully analytical linear poisson-boltzmann solver
DOE Office of Scientific and Technical Information (OSTI.GOV)
Felberg, Lisa E.; Brookes, David H.; Yap, Eng-Hui
2016-11-02
We present the open source distributed software package Poisson-Boltzmann Analytical Method (PB-AM), a fully analytical solution to the linearized Poisson Boltzmann equation. The PB-AM software package includes the generation of outputs files appropriate for visualization using VMD, a Brownian dynamics scheme that uses periodic boundary conditions to simulate dynamics, the ability to specify docking criteria, and offers two different kinetics schemes to evaluate biomolecular association rate constants. Given that PB-AM defines mutual polarization completely and accurately, it can be refactored as a many-body expansion to explore 2- and 3-body polarization. Additionally, the software has been integrated into the Adaptive Poisson-Boltzmannmore » Solver (APBS) software package to make it more accessible to a larger group of scientists, educators and students that are more familiar with the APBS framework.« less