Near-infrared imaging of developmental defects in dental enamel.
Hirasuna, Krista; Fried, Daniel; Darling, Cynthia L
2008-01-01
Polarization-sensitive optical coherence tomography (PS-OCT) and near-infrared (NIR) imaging are promising new technologies under development for monitoring early carious lesions. Fluorosis is a growing problem in the United States, and the more prevalent mild fluorosis can be visually mistaken for early enamel demineralization. Unfortunately, there is little quantitative information available regarding the differences in optical properties of sound enamel, enamel developmental defects, and caries. Thirty extracted human teeth with various degrees of suspected fluorosis were imaged using PS-OCT and NIR. An InGaAs camera and a NIR diode laser were used to measure the optical attenuation through transverse tooth sections (approximately 200 microm). A digital microradiography system was used to quantify the enamel defect severity by measurement of the relative mineral loss for comparison with optical scattering measurements. Developmental defects were clearly visible in the polarization-resolved OCT images, demonstrating that PS-OCT can be used to nondestructively measure the depth and possible severity of the defects. Enamel defects on whole teeth that could be imaged with high contrast with visible light were transparent in the NIR. This study suggests that PS-OCT and NIR methods may potentially be used as tools to assess the severity and extent of enamel defects.
A novel ciliopathic skull defect arising from excess neural crest.
Tabler, Jacqueline M; Rice, Christopher P; Liu, Karen J; Wallingford, John B
2016-09-01
The skull is essential for protecting the brain from damage, and birth defects involving disorganization of skull bones are common. However, the developmental trajectories and molecular etiologies by which many craniofacial phenotypes arise remain poorly understood. Here, we report a novel skull defect in ciliopathic Fuz mutant mice in which only a single bone pair encases the forebrain, instead of the usual paired frontal and parietal bones. Through genetic lineage analysis, we show that this defect stems from a massive expansion of the neural crest-derived frontal bone. This expansion occurs at the expense of the mesodermally-derived parietal bones, which are either severely reduced or absent. A similar, though less severe, phenotype was observed in Gli3 mutant mice, consistent with a role for Gli3 in cilia-mediated signaling. Excess crest has also been shown to drive defective palate morphogenesis in ciliopathic mice, and that defect is ameliorated by reduction of Fgf8 gene dosage. Strikingly, skull defects in Fuz mutant mice are also rescued by loss of one allele of fgf8, suggesting a potential route to therapy. In sum, this work is significant for revealing a novel skull defect with a previously un-described developmental etiology and for suggesting a common developmental origin for skull and palate defects in ciliopathies. Copyright © 2016 Elsevier Inc. All rights reserved.
Color masking of developmental enamel defects: a case series.
Torres, C R G; Borges, A B
2015-01-01
Developmental defects involving color alteration of enamel frequently compromise the esthetic appearance of the tooth. The resin infiltration technique represents an alternative treatment for color masking of these lesions and uniformization of tooth color. This technique is considered relatively simple and microinvasive, since only a minimal portion of enamel is removed. This article illustrates the color-masking effect with resin infiltration of fluorosis and traumatic hypomineralization lesions with a case series. The final esthetic outcomes demonstrated the ability of the resin infiltrant to mask the color of white developmental defect lesions, resulting in satisfactory clinical esthetic improvements. However, in more severe cases, the color-masking effect was not complete.
Zoupa, Maria; Machera, Kyriaki
2017-01-01
Triadimefon is a widely used triazole fungicide known to cause severe developmental defects in several model organisms and in humans. The present study evaluated in detail the developmental effects seen in zebrafish embryos exposed to triadimefon, confirmed and expanded upon previous phenotypic findings and compared them to those observed in other traditional animal models. In order to do this, we exposed embryos to 2 and 4 µg/mL triadimefon and evaluated growth until 120 h post-fertilization (hpf) through gross morphology examination. Our analysis revealed significant developmental defects at the highest tested concentration including somite deformities, severe craniofacial defects, a cleft phenotype along the three primary neural divisions, a rigorously hypoplastic or even absent mandible and a hypoplastic morphology of the pharyngeal arches. Interestingly, massive pericardial edemas, abnormal shaped hearts, brachycardia and inhibited or absent blood circulation were also observed. Our results revealed that the presented zebrafish phenotypes are comparable to those seen in other organism models and those derived from human observations as a result of triadimefon exposure. We therefore demonstrated that zebrafish provide an excellent system for study of compounds with toxic significance and can be used as an alternative model for developmental toxicity studies to predict effects in mammals. PMID:28417904
Origins and consequences of congenital heart defects affecting the right ventricle.
Woudstra, Odilia I; Ahuja, Suchit; Bokma, Jouke P; Bouma, Berto J; Mulder, Barbara J M; Christoffels, Vincent M
2017-10-01
Congenital heart disease is a major health issue, accounting for a third of all congenital defects. Improved early surgical management has led to a growing population of adults with congenital heart disease, including patients with defects affecting the right ventricle, which are often classified as severe. Defects affecting the right ventricle often cause right ventricular volume or pressure overload and affected patients are at high risk for complications such as heart failure and sudden death. Recent insights into the developmental mechanisms and distinct developmental origins of the left ventricle, right ventricle, and the outflow tract have shed light on the common features and distinct problems arising in specific defects. Here, we provide a comprehensive overview of the current knowledge on the development into the normal and congenitally malformed right heart and the clinical consequences of several congenital heart defects affecting the right ventricle. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.
Developmental defects in zebrafish for classification of EGF pathway inhibitors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pruvot, Benoist; Curé, Yoann; Djiotsa, Joachim
2014-01-15
One of the major challenges when testing drug candidates targeted at a specific pathway in whole animals is the discrimination between specific effects and unwanted, off-target effects. Here we used the zebrafish to define several developmental defects caused by impairment of Egf signaling, a major pathway of interest in tumor biology. We inactivated Egf signaling by genetically blocking Egf expression or using specific inhibitors of the Egf receptor function. We show that the combined occurrence of defects in cartilage formation, disturbance of blood flow in the trunk and a decrease of myelin basic protein expression represent good indicators for impairmentmore » of Egf signaling. Finally, we present a classification of known tyrosine kinase inhibitors according to their specificity for the Egf pathway. In conclusion, we show that developmental indicators can help to discriminate between specific effects on the target pathway from off-target effects in molecularly targeted drug screening experiments in whole animal systems. - Highlights: • We analyze the functions of Egf signaling on zebrafish development. • Genetic blocking of Egf expression causes cartilage, myelin and circulatory defects. • Chemical inhibition of Egf receptor function causes similar defects. • Developmental defects can reveal the specificity of Egf pathway inhibitors.« less
Liang, Liyang; Xie, Yingjun; Shen, Yiping; Yin, Qibin; Yuan, Haiming
2016-01-01
Proximal 4p deletion syndrome is a relatively rare genetic condition characterized by dysmorphic facial features, limb anomalies, minor congenital heart defects, hypogonadism, cafe-au-lait spots, developmental delay, tall and thin habitus, and intellectual disability. At present, over 20 cases of this syndrome have been published. However, duplication of the same region in proximal 4p has never been reported. Here, we describe a 2-year-5-month-old boy with severe congenital heart defects, limb anomalies, hypogonadism, distinctive facial features, pre- and postnatal developmental delay, and mild cognitive impairments. A de novo 4.5-Mb interstitial duplication at 4p15.2p15.1 was detected by chromosomal microarray analysis. Next-generation sequencing was employed and confirmed the duplication, but revealed no additional pathogenic variants. Several candidate genes in this interval responsible for the complex clinical phenotype were identified, such as RBPJ, STIM2, CCKAR, and LGI2. The results suggest a novel contiguous gene duplication syndrome. © 2016 S. Karger AG, Basel.
Sarmah, Swapnalee; Marrs, James A.
2014-01-01
BACKGROUND Fetal alcohol spectrum disorder (FASD) describes a range of birth defects including various congenital heart defects (CHDs). Mechanisms of FASD-associated CHDs are not understood. Whether alcohol interferes with a single critical event or with multiple events in heart formation is not known. RESULTS Our zebrafish embryo experiments showed that ethanol interrupts different cardiac regulatory networks and perturbed multiple steps of cardiogenesis (specification, myocardial migration, looping, chamber morphogenesis and endocardial cushion formation). Ethanol exposure during gastrulation until cardiac specification or during myocardial midline migration did not produce severe or persistent heart development defects. However, exposure comprising gastrulation until myocardial precursor midline fusion or during heart patterning stages produced aberrant heart looping and defective endocardial cushions. Continuous exposure during entire cardiogenesis produced complex cardiac defects leading to severely defective myocardium, endocardium, and endocardial cushions. Supplementation of retinoic acid with ethanol partially rescued early heart developmental defects, but the endocardial cushions did not form correctly. In contrast, supplementation of folic acid rescued normal heart development, including the endocardial cushions. CONCLUSIONS Our results indicate that ethanol exposure interrupted divergent cardiac morphogenesis events causing heart defects. Folic acid supplementation was effective in preventing a wide spectrum of ethanol-induced heart developmental defects. PMID:23832875
[Semiotics of the Currarino syndrome].
Pankevych, T L; Lóniushkin, O I; Sitkovskyĭ, M B; Kaplan, V M; Iurchenko, M I; Cherniienko, Iu L
1993-01-01
The main criteria for diagnosis of the Currarino syndrome have been defined. Roentgenologic investigation of the lumbar-sacral spine in direct projection is indicated to all the patients with anorectal developmental defects, in particular with congenital anorectal stenosis. In detection of a specific defect of the terminal vertebrae, the performance of computed tomography of the pelvic bottom and nuclear magnetic resonance tomography of the lumbar-sacral spine is necessary. This permits to assess the nature of a presacral tumour and degree of dysplasia of the external and sphincter. Timely diagnosis of the Currarino syndrome in children with the anorectal developmental defects permits to avoid severe septic and functional complications in surgical intervention.
Ekanayake, L; van der Hoek, W
2002-01-01
The study was conducted to assess caries and developmental defects of enamel in relation to fluoride levels in drinking water and the association between caries experience and the severity of diffuse opacities in children living in Uda Walawe, an area with varying concentrations of fluoride in drinking water in Sri Lanka. A total of 518 14-year-old children who were lifelong residents in this area were examined for dental caries and developmental defects of enamel. But the present analysis is confined to 486 children from whom drinking water samples were collected. The prevalence of enamel defects and diffuse opacities ranged from 27 to 57% while the prevalence of caries ranged from 18 to 29% in the different fluoride exposure groups. The prevalence of enamel defects increased significantly with the increase in the fluoride level in drinking water. Both the caries prevalence and the mean caries experience were significantly higher in children with diffuse opacities than in those without in the group consuming water containing >0.70 mg/l of fluoride. The association between dental caries and the severity of diffuse opacities was also significant only in this group. Children with the mildest form of opacities (DDE scores 3 and 4) had the lowest DMFS (0.25 +/- 0.7), and the highest DMFS (1.1 +/- 1.7) was found in those with the most severe form of opacities (DDE score 6). In conclusion, the relationship that was observed in this study between fluoride levels in drinking water, diffuse opacities and caries suggests that the appropriate level of fluoride in drinking water for arid areas of Sri Lanka is around 0.3 mg/l. Also individuals with severe forms of enamel defects in high-fluoride areas are susceptible to dental caries. Copyright 2002 S. Karger AG, Basel
Fujita, Atsushi; Isidor, Bertrand; Piloquet, Hugues; Corre, Pierre; Okamoto, Nobuhiko; Nakashima, Mitsuko; Tsurusaki, Yoshinori; Saitsu, Hirotomo; Miyake, Noriko; Matsumoto, Naomichi
2016-09-01
MEIS2 aberrations are considered to be the cause of intellectual disability, cleft palate and cardiac septal defect, as MEIS2 copy number variation is often observed with these phenotypes. To our knowledge, only one nucleotide-level change-specifically, an in-frame MEIS2 deletion-has so far been reported. Here, we report a female patient with a de novo nonsense mutation (c.611C>G, p.Ser204*) in MEIS2. She showed severe intellectual disability, moderate motor/verbal developmental delay, cleft palate, cardiac septal defect, hypermetropia, severe feeding difficulties with gastro-esophageal reflux and constipation. By reviewing this patient and previous patients with MEIS2 point mutations, we found that feeding difficulty with gastro-esophageal reflux appears to be one of the core clinical features of MEIS2 haploinsufficiency, in addition to intellectual disability, cleft palate and cardiac septal defect.
Williams Syndrome Transcription Factor is critical for neural crest cell function in Xenopus laevis
Barnett, Chris; Yazgan, Oya; Kuo, Hui-Ching; Malakar, Sreepurna; Thomas, Trevor; Fitzgerald, Amanda; Harbour, Billy; Henry, Jonathan J.; Krebs, Jocelyn E.
2012-01-01
Williams Syndrome Transcription Factor (WSTF) is one of ~25 haplodeficient genes in patients with the complex developmental disorder Williams Syndrome (WS). WS results in visual/spatial processing defects, cognitive impairment, unique behavioral phenotypes, characteristic “elfin” facial features, low muscle tone and heart defects. WSTF exists in several chromatin remodeling complexes and has roles in transcription, replication, and repair. Chromatin remodeling is essential during embryogenesis, but WSTF’s role in vertebrate development is poorly characterized. To investigate the developmental role of WSTF, we knocked down WSTF in Xenopus laevis embryos using a morpholino that targets WSTF mRNA. BMP4 shows markedly increased and spatially aberrant expression in WSTF-deficient embryos, while SHH, MRF4, PAX2, EPHA4 and SOX2 expression are severely reduced, coupled with defects in a number of developing embryonic structures and organs. WSTF-deficient embryos display defects in anterior neural development. Induction of the neural crest, measured by expression of the neural crest-specific genes SNAIL and SLUG, is unaffected by WSTF depletion. However, at subsequent stages WSTF knockdown results in a severe defect in neural crest migration and/or maintenance. Consistent with a maintenance defect, WSTF knockdowns display a specific pattern of increased apoptosis at the tailbud stage in regions corresponding to the path of cranial neural crest migration. Our work is the first to describe a role for WSTF in proper neural crest function, and suggests that neural crest defects resulting from WSTF haploinsufficiency may be a major contributor to the pathoembryology of WS. PMID:22691402
Numerical Estimation in Adults with and without Developmental Dyscalculia
ERIC Educational Resources Information Center
Mejias, Sandrine; Gregoire, Jacques; Noel, Marie-Pascale
2012-01-01
It has been hypothesized that developmental dyscalculia (DD) is either due to a defect of the approximate number system (ANS) or to an impaired access between that system and symbolic numbers. Several studies have tested these two hypotheses in children with DD but none has dealt with adults who had experienced DD as children. This study aimed to…
Makris, Susan L; Scott, Cheryl Siegel; Fox, John; Knudsen, Thomas B; Hotchkiss, Andrew K; Arzuaga, Xabier; Euling, Susan Y; Powers, Christina M; Jinot, Jennifer; Hogan, Karen A; Abbott, Barbara D; Hunter, E Sidney; Narotsky, Michael G
2016-10-01
The 2011 EPA trichloroethylene (TCE) IRIS assessment, used developmental cardiac defects from a controversial drinking water study in rats (Johnson et al. [51]), along with several other studies/endpoints to derive reference values. An updated literature search of TCE-related developmental cardiac defects was conducted. Study quality, strengths, and limitations were assessed. A putative adverse outcome pathway (AOP) construct was developed to explore key events for the most commonly observed cardiac dysmorphologies, particularly those involved with epithelial-mesenchymal transition (EMT) of endothelial origin (EndMT); several candidate pathways were identified. A hypothesis-driven weight-of-evidence analysis of epidemiological, toxicological, in vitro, in ovo, and mechanistic/AOP data concluded that TCE has the potential to cause cardiac defects in humans when exposure occurs at sufficient doses during a sensitive window of fetal development. The study by Johnson et al. [51] was reaffirmed as suitable for hazard characterization and reference value derivation, though acknowledging study limitations and uncertainties. Published by Elsevier Inc.
Pancreas and gallbladder agenesis in a newborn with semilobar holoprosencephaly, a case report.
Hilbrands, Robert; Keymolen, Kathelijn; Michotte, Alex; Marichal, Miriam; Cools, Filip; Goossens, Anieta; Veld, Peter In't; De Schepper, Jean; Hattersley, Andrew; Heimberg, Harry
2017-05-19
Pancreatic agenesis is an extremely rare cause of neonatal diabetes mellitus and has enabled the discovery of several key transcription factors essential for normal pancreas and beta cell development. We report a case of a Caucasian female with complete pancreatic agenesis occurring together with semilobar holoprosencephaly (HPE), a more common brain developmental disorder. Clinical findings were later confirmed by autopsy, which also identified agenesis of the gallbladder. Although the sequences of a selected set of genes related to pancreas agenesis or HPE were wild-type, the patient's phenotype suggests a genetic defect that emerges early in embryonic development of brain, gallbladder and pancreas. Developmental defects of the pancreas and brain can occur together. Identifying the genetic defect may identify a novel key regulator in beta cell development.
2012-01-01
Background The Deepwater Horizon disaster was the largest marine oil spill in history, and total vertical exposure of oil to the water column suggests it could impact an enormous diversity of ecosystems. The most vulnerable organisms are those encountering these pollutants during their early life stages. Water-soluble components of crude oil and specific polycyclic aromatic hydrocarbons have been shown to cause defects in cardiovascular and craniofacial development in a variety of teleost species, but the developmental origins of these defects have yet to be determined. We have adopted zebrafish, Danio rerio, as a model to test whether water accumulated fractions (WAF) of the Deepwater Horizon oil could impact specific embryonic developmental processes. While not a native species to the Gulf waters, the developmental biology of zebrafish has been well characterized and makes it a powerful model system to reveal the cellular and molecular mechanisms behind Macondo crude toxicity. Results WAF of Macondo crude oil sampled during the oil spill was used to treat zebrafish throughout embryonic and larval development. Our results indicate that the Macondo crude oil causes a variety of significant defects in zebrafish embryogenesis, but these defects have specific developmental origins. WAF treatments caused defects in craniofacial development and circulatory function similar to previous reports, but we extend these results to show they are likely derived from an earlier defect in neural crest cell development. Moreover, we demonstrate that exposure to WAFs causes a variety of novel deformations in specific developmental processes, including programmed cell death, locomotor behavior, sensory and motor axon pathfinding, somitogenesis and muscle patterning. Interestingly, the severity of cell death and muscle phenotypes decreased over several months of repeated analysis, which was correlated with a rapid drop-off in the aromatic and alkane hydrocarbon components of the oil. Conclusions Whether these teratogenic effects are unique to the oil from the Deepwater Horizon oil spill or generalizable for most crude oil types remains to be determined. This work establishes a model for further investigation into the molecular mechanisms behind crude oil mediated deformations. In addition, due to the high conservation of genetic and cellular processes between zebrafish and other vertebrates, our work also provides a platform for more focused assessment of the impact that the Deepwater Horizon oil spill has had on the early life stages of native fish species in the Gulf of Mexico and the Atlantic Ocean. PMID:22559716
Beck, Susanne C; Feng, Yuxi; Sothilingam, Vithiyanjali; Garcia Garrido, Marina; Tanimoto, Naoyuki; Acar, Niyazi; Shan, Shenliang; Seebauer, Britta; Berger, Wolfgang; Hammes, Hans-Peter; Seeliger, Mathias W
2017-01-01
Loss of Norrin signalling due to mutations in the Norrie disease pseudoglioma gene causes severe vascular defects in the retina, leading to visual impairment and ultimately blindness. While the emphasis of experimental work so far was on the developmental period, we focus here on disease mechanisms that induce progression into severe adult disease. The goal of this study was the comprehensive analysis of the long-term effects of the absence of Norrin on vascular homeostasis and retinal function. In a mouse model of Norrie disease retinal vascular morphology and integrity were studied by means of in vivo angiography; the vascular constituents were assessed in detailed histological analyses using quantitative retinal morphometry. Finally, electroretinographic analyses were performed to assess the retinal function in adult Norrin deficient animals. We could show that the primary developmental defects not only persisted but developed into further vascular abnormalities and microangiopathies. In particular, the overall vessel homeostasis, the vascular integrity, and also the cellular constituents of the vascular wall were affected in the adult Norrin deficient retina. Moreover, functional analyses indicated to persistent hypoxia in the neural retina which was suggested as one of the major driving forces of disease progression. In summary, our data provide evidence that the key to adult Norrie disease are ongoing vascular modifications, driven by the persistent hypoxic conditions, which are ineffective to compensate for the primary Norrin-dependent defects.
Sothilingam, Vithiyanjali; Garcia Garrido, Marina; Tanimoto, Naoyuki; Acar, Niyazi; Shan, Shenliang; Seebauer, Britta; Berger, Wolfgang; Hammes, Hans-Peter; Seeliger, Mathias W.
2017-01-01
Loss of Norrin signalling due to mutations in the Norrie disease pseudoglioma gene causes severe vascular defects in the retina, leading to visual impairment and ultimately blindness. While the emphasis of experimental work so far was on the developmental period, we focus here on disease mechanisms that induce progression into severe adult disease. The goal of this study was the comprehensive analysis of the long-term effects of the absence of Norrin on vascular homeostasis and retinal function. In a mouse model of Norrie disease retinal vascular morphology and integrity were studied by means of in vivo angiography; the vascular constituents were assessed in detailed histological analyses using quantitative retinal morphometry. Finally, electroretinographic analyses were performed to assess the retinal function in adult Norrin deficient animals. We could show that the primary developmental defects not only persisted but developed into further vascular abnormalities and microangiopathies. In particular, the overall vessel homeostasis, the vascular integrity, and also the cellular constituents of the vascular wall were affected in the adult Norrin deficient retina. Moreover, functional analyses indicated to persistent hypoxia in the neural retina which was suggested as one of the major driving forces of disease progression. In summary, our data provide evidence that the key to adult Norrie disease are ongoing vascular modifications, driven by the persistent hypoxic conditions, which are ineffective to compensate for the primary Norrin-dependent defects. PMID:28575130
Osborn, Daniel P S; Roccasecca, Rosa Maria; McMurray, Fiona; Hernandez-Hernandez, Victor; Mukherjee, Sriparna; Barroso, Inês; Stemple, Derek; Cox, Roger; Beales, Philip L; Christou-Savina, Sonia
2014-01-01
Common intronic variants in the Human fat mass and obesity-associated gene (FTO) are found to be associated with an increased risk of obesity. Overexpression of FTO correlates with increased food intake and obesity, whilst loss-of-function results in lethality and severe developmental defects. Despite intense scientific discussions around the role of FTO in energy metabolism, the function of FTO during development remains undefined. Here, we show that loss of Fto leads to developmental defects such as growth retardation, craniofacial dysmorphism and aberrant neural crest cells migration in Zebrafish. We find that the important developmental pathway, Wnt, is compromised in the absence of FTO, both in vivo (zebrafish) and in vitro (Fto(-/-) MEFs and HEK293T). Canonical Wnt signalling is down regulated by abrogated β-Catenin translocation to the nucleus whilst non-canonical Wnt/Ca(2+) pathway is activated via its key signal mediators CaMKII and PKCδ. Moreover, we demonstrate that loss of Fto results in short, absent or disorganised cilia leading to situs inversus, renal cystogenesis, neural crest cell defects and microcephaly in Zebrafish. Congruently, Fto knockout mice display aberrant tissue specific cilia. These data identify FTO as a protein-regulator of the balanced activation between canonical and non-canonical branches of the Wnt pathway. Furthermore, we present the first evidence that FTO plays a role in development and cilia formation/function.
ERIC Educational Resources Information Center
Thornhill, Paul; Bassett, David; Lochmuller, Hanns; Bushby, Kate; Straub, Volker
2008-01-01
A number of muscular dystrophies are associated with the defective glycosylation of [alpha]-dystroglycan and many are now known to result from mutations in a number of genes encoding putative or known glycosyltransferases. These diseases include severe forms of congenital muscular dystrophy (CMD) such as Fukuyama type congenital muscular dystrophy…
Brennan, Marie-Luise; Adam, Margaret P; Seaver, Laurie H; Myers, Angela; Schelley, Susan; Zadeh, Neda; Hudgins, Louanne; Bernstein, Jonathan A
2015-01-01
The diagnosis of Angelman syndrome (AS) is based on clinical features and genetic testing. Developmental delay, severe speech impairment, ataxia, atypical behavior and microcephaly by two years of age are typical. Feeding difficulties in young infants and obesity in late childhood can also be seen. The NIH Angelman-Rett-Prader-Willi Consortium and others have documented genotype-phenotype associations including an increased body mass index in children with uniparental disomy (UPD) or imprinting center (IC) defects. We recently encountered four cases of infantile obesity in non-deletion AS cases, and therefore examined body mass measures in a cohort of non-deletion AS cases. We report on 16 infants and toddlers (ages 6 to 44 months; 6 female, and 10 male) with severe developmental delay. Birth weights were appropriate for gestational age in most cases, >97th% in one case and not available in four cases. The molecular subclass case distribution consisted of: UPD (n = 2), IC defect (n = 3), UPD or IC defect (n = 3), and UBE3A mutation (n = 8). Almost all (7 out of 8) UPD, IC and UPD/IC cases went on to exhibit >90th% age- and gender-appropriate weight for height or BMI within the first 44 months. In contrast, no UBE3A mutation cases exhibited obesity or pre-obesity measures (percentiles ranged from <3% to 55%). These findings demonstrate that increased body mass may be evident as early as the first year of life and highlight the utility of considering the diagnosis of AS in the obese infant or toddler with developmental delay, especially when severe. Although a mechanism explaining the association of UPD, and IC defects with obesity has not been identified, recognition of this correlation may inform investigation of imprinting at the PWS/AS locus and obesity. © 2014 Wiley Periodicals, Inc.
[SOX2 defect and anophthalmia and microphthalmia].
Ye, Fu-xiang; Fan, Xian-qun
2012-11-01
As a severe congenital developmental disorder, anophthalmia and microphthalmia are usually accompanied with vision impairment and hypoevolutism of the orbit in the affected side. Many genes are involved in anophthalmia and microphthalmia, in which, SOX2 is an important one. The defect of SOX2 causes multiple system disorders, including anophthalmia and microphthalmia. We describe the relationship between the SOX2 defect and anophthalmia/microphthalmia, in order to offer some proposals for the differential diagnosis, treatment and research of anophthalmia and microphthalmia.
38 CFR 4.9 - Congenital or developmental defects.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Congenital or... SCHEDULE FOR RATING DISABILITIES General Policy in Rating § 4.9 Congenital or developmental defects. Mere congenital or developmental defects, absent, displaced or supernumerary parts, refractive error of the eye...
Wnt signaling in caudal dysgenesis and diabetic embryopathy
Pavlinkova, Gabriela; Salbaum, J. Michael; Kappen, Claudia
2010-01-01
Congenital defects are a major complication of diabetic pregnancy, and the leading cause of infant death in the first year of life. Caudal dysgenesis, occurring up to 200-fold more frequently in children born to diabetic mothers, is a hallmark of diabetic pregnancy. Given that there is also an at least 3-fold higher risk for heart defects and neural tube defects, it is important to identify the underlying molecular mechanisms for aberrant embryonic development. We have investigated gene expression in a transgenic mouse model of caudal dysgenesis, and in a pharmacological model using situ hybridization and quantitative real-time PCR. We identify altered expression of several molecules that control developmental processes and embryonic growth. The results from our models point towards major implication of altered Wnt signaling in the pathogenesis of developmental anomalies associated with embryonic exposure to maternal diabetes. PMID:18937363
Developmental Defects of Enamel in Children with Intellectual Disability.
Erika, Vesna; Modrić; Verzak, Željko; Karlović, Zoran
2016-03-01
To investigate the frequency of developmental defects of enamel (DDE) in children with intellectual disability. Children aged 5-18 years (72 children with intellectual disabilities and 72 controls) were included in the study. All the teeth were screened for developmental defects of enamel using the modified Developmental defects of enamel (mDDE) index. Out of the 72 children with intellectual disabilities in this study, 20 (27.78%) presented dental defects of enamel, compared with 8 (11.11%) of those in the control group, which was considered statistically significant (p = 0.021). The majority of children in both groups had white demarcated opacities. Children in both groups were more likely to have maxillary teeth affected than the mandibular teeth and the asymmetrical demarcated enamel defects were more common than the symmetric ones. Majority of opacities in children in both groups were on the maxillary incisors. Children with intellectual disabilities have more developmental defects of enamel than children in the control group. Enamel defects increase caries risk and cause reduction in enamel mechanical properties leading to restoration failures.
Bloch-Zupan, Agnès; Jamet, Xavier; Etard, Christelle; Laugel, Virginie; Muller, Jean; Geoffroy, Véronique; Strauss, Jean-Pierre; Pelletier, Valérie; Marion, Vincent; Poch, Olivier; Strahle, Uwe; Stoetzel, Corinne; Dollfus, Hélène
2011-01-01
Inherited dental malformations constitute a clinically and genetically heterogeneous group of disorders. Here, we report on a severe developmental dental defect that results in a dentin dysplasia phenotype with major microdontia, oligodontia, and shape abnormalities in a highly consanguineous family. Homozygosity mapping revealed a unique zone on 6q27-ter. The two affected children were found to carry a homozygous mutation in SMOC2. Knockdown of smoc2 in zebrafish showed pharyngeal teeth that had abnormalities reminiscent of the human phenotype. Moreover, smoc2 depletion in zebrafish affected the expression of three major odontogenesis genes: dlx2, bmp2, and pitx2. PMID:22152679
Mellerick, Dervla M; Liu, Heather
2004-09-05
Despite the significant contributions of tissue culture and bacterial models to toxicology, whole animal models for developmental neurotoxins are limited in availability and ease of experimentation. Because Drosophila is a well understood model for embryonic development that is highly accessible, we asked whether it could be used to study methanol developmental neurotoxicity. In the presence of 4% methanol, approximately 35% of embryos die and methanol exposure leads to severe CNS defects in about half those embryos, where the longitudinal connectives are dorsally displaced and commissure formation is severely reduced. In addition, a range of morphological defects in other germ layers is seen, and cell movement is adversely affected by methanol exposure. Although we did not find any evidence to suggest that methanol exposure affects the capacity of neuroblasts to divide or induces inappropriate apoptosis in these cells, in the CNS of germ band retracted embryos, the number of apoptotic nuclei is significantly increased in methanol-exposed embryos in comparison to controls, particularly in and adjacent to the ventral midline. Apoptosis contributes significantly to methanol neurotoxicity because embryos lacking the cell death genes grim, hid, and reaper have milder CNS defects resulting from methanol exposure than wild-type embryos. Our data suggest that when neurons and glia are severely adversely affected by methanol exposure, the damaged cells are cleared by apoptosis, leading to embryonic death. Thus, the Drosophila embryo may prove useful in identifying and unraveling mechanistic aspects of developmental neurotoxicity, specifically in relation to methanol toxicity.
NEOCORTICAL HYPERTROPHY FOLLOWING DEVELOPMENTAL HYPOTHYROIDISM IN RATS
Thyroid hormones (TH) are essential to the normal development of the brain. Although severe congenital hypothyroidism has long been associated with mental retardation and motor defects, it has only recently been established that even subtle decreases in maternal TH alter fetal br...
Genetic and flow anomalies in congenital heart disease.
Rugonyi, Sandra
2016-01-01
Congenital heart defects are the most common malformations in humans, affecting approximately 1% of newborn babies. While genetic causes of congenital heart disease have been studied, only less than 20% of human cases are clearly linked to genetic anomalies. The cause for the majority of the cases remains unknown. Heart formation is a finely orchestrated developmental process and slight disruptions of it can lead to severe malformations. Dysregulation of developmental processes leading to heart malformations are caused by genetic anomalies but also environmental factors including blood flow. Intra-cardiac blood flow dynamics plays a significant role regulating heart development and perturbations of blood flow lead to congenital heart defects in animal models. Defects that result from hemodynamic alterations, however, recapitulate those observed in human babies, even those due to genetic anomalies and toxic teratogen exposure. Because important cardiac developmental events, such as valve formation and septation, occur under blood flow conditions while the heart is pumping, blood flow regulation of cardiac formation might be a critical factor determining cardiac phenotype. The contribution of flow to cardiac phenotype, however, is frequently ignored. More research is needed to determine how blood flow influences cardiac development and the extent to which flow may determine cardiac phenotype.
Dinchuk, Joseph E; Focht, Richard J; Kelley, Jennifer A; Henderson, Nancy L; Zolotarjova, Nina I; Wynn, Richard; Neff, Nicola T; Link, John; Huber, Reid M; Burn, Timothy C; Rupar, Mark J; Cunningham, Mark R; Selling, Bernard H; Ma, Jianhong; Stern, Andrew A; Hollis, Gregory F; Stein, Robert B; Friedman, Paul A
2002-04-12
The BAH genomic locus encodes three distinct proteins: junctin, humbug, and BAH. All three proteins share common exons, but differ significantly based upon the use of alternative terminal exons. The biological roles of BAH and humbug and their functional relationship to junctin remain unclear. To evaluate the role of BAH in vivo, the catalytic domain of BAH was specifically targeted such that the coding regions of junctin and humbug remained undisturbed. BAH null mice lack measurable BAH protein in several tissues, lack aspartyl beta-hydroxylase activity in liver preparations, and exhibit no hydroxylation of the epidermal growth factor (EGF) domain of clotting Factor X. In addition to reduced fertility in females, BAH null mice display several developmental defects including syndactyly, facial dysmorphology, and a mild defect in hard palate formation. The developmental defects present in BAH null mice are similar to defects observed in knock-outs and hypomorphs of the Notch ligand Serrate-2. In this work, beta-hydroxylation of Asp residues in EGF domains is demonstrated for a soluble form of a Notch ligand, human Jagged-1. These results along with recent reports that another post-translational modification of EGF domains in Notch gene family members (glycosylation by Fringe) alters Notch pathway signaling, lends credence to the suggestion that aspartyl beta-hydroxylation may represent another post-translational modification of EGF domains that can modulate Notch pathway signaling. Previous work has demonstrated increased levels of BAH in certain tumor tissues and a role for BAH in tumorigenesis has been proposed. The role of hydroxylase in tumor formation was tested directly by crossing BAH KO mice with an intestinal tumor model, APCmin mice. Surprisingly, BAH null/APCmin mice show a statistically significant increase in both intestinal polyp size and number when compared with BAH wild-type/APCmin controls. These results suggest that, in contrast to expectations, loss of BAH catalytic activity may promote tumor formation.
FOLATE AND HUMAN DEVELOPMENT: PREFACE
Neural tube defects (NTDs) are a complex developmental trait in which several genes, interacting with environmental factors, create the phenotype. In the United States, the rate of NTDs has been reported to range from 4 to 10 per 10,000 live births, and NTDs affect approximately...
Graf, Philipp; Dolzblasz, Alicja; Würschum, Tobias; Lenhard, Michael; Pfreundt, Ulrike; Laux, Thomas
2010-03-01
Maintenance of stem cells in the Arabidopsis thaliana shoot meristem is regulated by signals from the underlying cells of the organizing center, provided through the transcription factor WUSCHEL (WUS). Here, we report the isolation of several independent mutants of MGOUN1 (MGO1) as genetic suppressors of ectopic WUS activity and enhancers of stem cell defects in hypomorphic wus alleles. mgo1 mutants have previously been reported to result in a delayed progression of meristem cells into differentiating organ primordia (Laufs et al., 1998). Genetic analyses indicate that MGO1 functions together with WUS in stem cell maintenance at all stages of shoot and floral meristems. Synergistic interactions of mgo1 with several chromatin mutants suggest that MGO1 affects gene expression together with chromatin remodeling pathways. In addition, the expression states of developmentally regulated genes are randomly switched in mgo1 in a mitotically inheritable way, indicating that MGO1 stabilizes epigenetic states against stochastically occurring changes. Positional cloning revealed that MGO1 encodes a putative type IB topoisomerase, which in animals and yeast has been shown to be required for regulation of DNA coiling during transcription and replication. The specific developmental defects in mgo1 mutants link topoisomerase IB function in Arabidopsis to stable propagation of developmentally regulated gene expression.
Meyer, Katja; Koester, Tino; Staiger, Dorothee
2015-01-01
Alternative pre-messenger RNA splicing in higher plants emerges as an important layer of regulation upon exposure to exogenous and endogenous cues. Accordingly, mutants defective in RNA-binding proteins predicted to function in the splicing process show severe phenotypic alterations. Among those are developmental defects, impaired responses to pathogen threat or abiotic stress factors, and misregulation of the circadian timing system. A suite of splicing factors has been identified in the model plant Arabidopsis thaliana. Here we summarize recent insights on how defects in these splicing factors impair plant performance. PMID:26213982
Tissue-specific regulation of BMP signaling by Drosophila N-glycanase 1.
Galeone, Antonio; Han, Seung Yeop; Huang, Chengcheng; Hosomi, Akira; Suzuki, Tadashi; Jafar-Nejad, Hamed
2017-08-04
Mutations in the human N- glycanase 1 ( NGLY1 ) cause a rare, multisystem congenital disorder with global developmental delay. However, the mechanisms by which NGLY1 and its homologs regulate embryonic development are not known. Here we show that Drosophila Pngl encodes an N -glycanase and exhibits a high degree of functional conservation with human NGLY1. Loss of Pngl results in developmental midgut defects reminiscent of midgut-specific loss of BMP signaling. Pngl mutant larvae also exhibit a severe midgut clearance defect, which cannot be fully explained by impaired BMP signaling. Genetic experiments indicate that Pngl is primarily required in the mesoderm during Drosophila development. Loss of Pngl results in a severe decrease in the level of Dpp homodimers and abolishes BMP autoregulation in the visceral mesoderm mediated by Dpp and Tkv homodimers. Thus, our studies uncover a novel mechanism for the tissue-specific regulation of an evolutionarily conserved signaling pathway by an N -glycanase enzyme.
Herberg, U; Hövels-Gürich, H
2012-06-01
Children with severe congenital heart defects (CHD) requiring open heart surgery in the first year of life are at high risk for developing neurological and psychomotor abnormalities. Depending on the type and severity of the CHD, between 15 and over 50% of these children have deficits, which are usually confined to distinct domains of development, although formal intelligence tends to be normal. Children with mild CHD, who comprise the majority of congenital heart defects, have a far better developmental prognosis than those with complex CHD. This review concentrates on the impact of severe CHD on the developing brain of the foetus and infant. It also provides a summary of recent clinical and neuroimaging studies, and an overview of the long-term neurological prognosis. Advanced neuroimaging modalities indicate that, related to altered cerebral blood flow and oxygenation, foetuses with severe CHD show delayed third trimester brain maturation and increased vulnerability for hypoxic injury. Morphological and neurological abnormalities are present before surgery, commonly affecting the white matter. In the long-term, impaired neurological and developmental outcomes are related to the combination of prenatal, perinatal and additional perioperative risk factors. Therefore, new therapeutic approaches aim to optimise the intra- and perinatal management of foetuses and newborns with congenital heart defects. Identification and avoidance of risk factors, early neurodevelopmental assessment and therapy may optimise the long-term outcome in this high-risk population. © Georg Thieme Verlag KG Stuttgart · New York.
USDA-ARS?s Scientific Manuscript database
The exposure of a developing embryo or fetus to alkaloids from plants, plant products, or plant extracts has the potential to cause developmental defects in humans and animals. These defects may have multiple causes but those induced by piperidine and quinolizidine alkaloids arise from the inhibiti...
Later Competence and Adaptation in Infants Who Survive Severe Heart Defects.
ERIC Educational Resources Information Center
O'Dougherty, Margaret; And Others
1983-01-01
Describes a model of risk potential for developmental outcome that was based on cardiac, medical, surgical, and family stress factors in 31 children with transposition of the great arteries. All children had undergone reparative open heart surgery utilizing cardiopulmonary bypass during infancy. (Author/RH)
Phenotype and management of Aicardi syndrome: new findings from a survey of 69 children
USDA-ARS?s Scientific Manuscript database
Aicardi syndrome is a rare neurodevelopmental disorder characterized by agenesis of the corpus callosum, other developmental brain abnormalities, chorioretinal lacunae, and severe seizures. Current clinical knowledge is derived from small series that focus on these major defects. The authors perform...
Social complementation and growth advantages promote socially defective bacterial isolates.
Kraemer, Susanne A; Velicer, Gregory J
2014-04-22
Social interactions among diverse individuals that encounter one another in nature have often been studied among animals but rarely among microbes. For example, the evolutionary forces that determine natural frequencies of bacteria that express cooperative behaviours at low levels remain poorly understood. Natural isolates of the soil bacterium Myxococcus xanthus sampled from the same fruiting body often vary in social phenotypes, such as group swarming and multicellular development. Here, we tested whether genotypes highly proficient at swarming or development might promote the persistence of less socially proficient genotypes from the same fruiting body. Fast-swarming strains complemented slower isolates, allowing the latter to keep pace with faster strains in mixed groups. During development, one low-sporulating strain was antagonized by high sporulators, whereas others with severe developmental defects had those defects partially complemented by high-sporulating strains. Despite declining in frequency overall during competition experiments spanning multiple cycles of development, developmentally defective strains exhibited advantages during the growth phases of competitions. These results suggest that microbes with low-sociality phenotypes often benefit from interacting with more socially proficient strains. Such complementation may combine with advantages at other traits to increase equilibrium frequencies of low-sociality genotypes in natural populations.
Muth-Köhne, Elke; Wichmann, Arne; Delov, Vera; Fenske, Martina
2012-07-01
Rodents are widely used to test the developmental neurotoxicity potential of chemical substances. The regulatory test procedures are elaborate and the requirement of numerous animals is ethically disputable. Therefore, non-animal alternatives are highly desirable, but appropriate test systems that meet regulatory demands are not yet available. Hence, we have developed a new developmental neurotoxicity assay based on specific whole-mount immunostainings of primary and secondary motor neurons (using the monoclonal antibodies znp1 and zn8) in zebrafish embryos. By classifying the motor neuron defects, we evaluated the severity of the neurotoxic damage to individual primary and secondary motor neurons caused by chemical exposure and determined the corresponding effect concentration values (EC₅₀). In a proof-of-principle study, we investigated the effects of three model compounds thiocyclam, cartap and disulfiram, which show some neurotoxicity-indicating effects in vertebrates, and the positive controls ethanol and nicotine and the negative controls 3,4-dichloroaniline (3,4-DCA) and triclosan. As a quantitative measure of the neurotoxic potential of the test compounds, we calculated the ratios of the EC₅₀ values for motor neuron defects and the cumulative malformations, as determined in a zebrafish embryo toxicity test (zFET). Based on this index, disulfiram was classified as the most potent and thiocyclam as the least potent developmental neurotoxin. The index also confirmed the control compounds as positive and negative neurotoxicants. Our findings demonstrate that this index can be used to reliably distinguish between neurotoxic and non-neurotoxic chemicals and provide a sound estimate for the neurodevelopmental hazard potential of a chemical. The demonstrated method can be a feasible approach to reduce the number of animals used in developmental neurotoxicity evaluation procedures. Copyright © 2012 Elsevier Inc. All rights reserved.
Kimmel, Gary L; Kimmel, Carole A; Williams, Amy L; DeSesso, John M
2013-02-01
The herbicide glyphosate has undergone multiple safety tests for developmental toxicity in rats and rabbits. The European Commission's 2002 review of available glyphosate data discusses specific heart defects observed in several individual rabbit developmental toxicity studies, but describes the evidence for a potential causal relationship as equivocal. The present assessment was undertaken to analyze the current body of information generated from seven unpublished rabbit studies in order to determine if glyphosate poses a risk for cardiovascular malformations. In addition, the results of six unpublished developmental toxicity studies in rats were considered. Five of the seven rabbit studies (dose range: 10-500 mg/kg/day) were GLP- and testing guideline-compliant for the era in which the studies were performed; a sixth study predated testing and GLP guidelines, but generally adhered to these principles. The seventh study was judged inadequate. In each of the adequate studies, offspring effects occurred only at doses that also caused maternal toxicity. An integrated evaluation of the six adequate studies, using conservative assumptions, demonstrated that neither the overall malformation rate nor the incidence of cardiovascular malformations increased with dose up to the point where severe maternal toxicity was observed (generally ≥150 mg/kg/day). Random occurrences of cardiovascular malformations were observed across all dose groups (including controls) and did not exhibit a dose-response relationship. In the six rat studies (dose range: 30-3500 mg/kg/day), a low incidence of sporadic cardiovascular malformations was reported that was clearly not related to treatment. In summary, assessment of the entire body of the developmental toxicity data reviewed fails to support a potential risk for increased cardiovascular defects as a result of glyphosate exposure during pregnancy.
Kimmel, Gary L.; Kimmel, Carole A.; Williams, Amy L.
2013-01-01
The herbicide glyphosate has undergone multiple safety tests for developmental toxicity in rats and rabbits. The European Commission’s 2002 review of available glyphosate data discusses specific heart defects observed in several individual rabbit developmental toxicity studies, but describes the evidence for a potential causal relationship as equivocal. The present assessment was undertaken to analyze the current body of information generated from seven unpublished rabbit studies in order to determine if glyphosate poses a risk for cardiovascular malformations. In addition, the results of six unpublished developmental toxicity studies in rats were considered. Five of the seven rabbit studies (dose range: 10–500 mg/kg/day) were GLP- and testing guideline-compliant for the era in which the studies were performed; a sixth study predated testing and GLP guidelines, but generally adhered to these principles. The seventh study was judged inadequate. In each of the adequate studies, offspring effects occurred only at doses that also caused maternal toxicity. An integrated evaluation of the six adequate studies, using conservative assumptions, demonstrated that neither the overall malformation rate nor the incidence of cardiovascular malformations increased with dose up to the point where severe maternal toxicity was observed (generally ≥150 mg/kg/day). Random occurrences of cardiovascular malformations were observed across all dose groups (including controls) and did not exhibit a dose–response relationship. In the six rat studies (dose range: 30–3500 mg/kg/day), a low incidence of sporadic cardiovascular malformations was reported that was clearly not related to treatment. In summary, assessment of the entire body of the developmental toxicity data reviewed fails to support a potential risk for increased cardiovascular defects as a result of glyphosate exposure during pregnancy. PMID:23286529
Near-infrared imaging of enamel hypomineralization due to developmental defects
NASA Astrophysics Data System (ADS)
Lee, Robert C.; Jang, Andrew; Fried, Daniel
2017-02-01
The increasing prevalence of mild hypomineralization due to developmental defects on tooth surfaces poses a challenge for caries detection and caries risk assessment and reliable methods need to be developed to discriminate such lesions from active caries lesions that need intervention. Previous studies have demonstrated that areas of hypomineralization are typically covered with a relatively thick surface layer of highly mineralized and transparent enamel similar to arrested lesions. Seventy-six extracted human teeth with mild to moderate degrees of suspicious fluorosis were imaged using near-infrared reflectance and transillumination. Enamel hypomineralization was clearly visible in both modalities. However, it was difficult to distinguish hypomineralization due to developmental defects from caries lesions with contrast measurements alone. The location of the lesion on tooth coronal surface (i.e. generalized vs. localized) seems to be the most important indicator for the presence of enamel hypomineralization due to developmental defects.
Near-infrared imaging of enamel hypomineralization due to developmental defects.
Lee, Robert C; Jang, Andrew; Fried, Daniel
2017-01-28
The increasing prevalence of mild hypomineralization due to developmental defects on tooth surfaces poses a challenge for caries detection and caries risk assessment and reliable methods need to be developed to discriminate such lesions from active caries lesions that need intervention. Previous studies have demonstrated that areas of hypomineralization are typically covered with a relatively thick surface layer of highly mineralized and transparent enamel similar to arrested lesions. Seventy-six extracted human teeth with mild to moderate degrees of suspicious fluorosis were imaged using near-infrared reflectance and transillumination. Enamel hypomineralization was clearly visible in both modalities. However, it was difficult to distinguish hypomineralization due to developmental defects from caries lesions with contrast measurements alone. The location of the lesion on tooth coronal surface (i.e. generalized vs. localized) seems to be the most important indicator for the presence of enamel hypomineralization due to developmental defects.
Developmental neurogenetics and neuro-ophthalmology.
Bennett, Jeffrey L
2002-12-01
The field of developmental neurogenetics has burgeoned over the past decade. Through the combined efforts of developmental biologists, geneticists, and clinicians, genetic defects resulting in neuro-ophthalmic disorders such as holoprosencephaly, microphthalmia, dominant optic atrophy, and optic nerve colobomas have been identified and characterized at the molecular level. Experimental studies in model organisms are continuing to identify novel genes critical for ocular and central nervous system development. Mutations in some of these genes have revealed a spectrum of pathology similar to that observed in septo-optic dysplasia, Möebius syndrome, and Duane retraction syndrome. This review examines our current knowledge of the molecular genetics of neuro-ophthalmic disease and focuses on several candidate genes for afferent and efferent visual system disorders.
Congenital Heart Defects and Receipt of Special Education Services.
Riehle-Colarusso, Tiffany; Autry, Andrew; Razzaghi, Hilda; Boyle, Coleen A; Mahle, William T; Van Naarden Braun, Kim; Correa, Adolfo
2015-09-01
We investigated the prevalence of receipt of special education services among children with congenital heart defects (CHDs) compared with children without birth defects. Children born from 1982 to 2004 in metropolitan Atlanta with CHDs (n = 3744) were identified from a population-based birth defect surveillance program; children without birth defects (n = 860 715) were identified from birth certificates. Cohorts were linked to special education files for the 1992-2012 school years to identify special education services. Children with noncardiac defects or genetic syndromes were excluded; children with CHDs were classified by presence or absence of critical CHDs (ie, CHDs requiring intervention by age one year). We evaluated the prevalence of receipt of special education services and prevalence rate ratios using children without birth defects as a reference. Compared with children without birth defects, children with CHDs were 50% more likely to receive special education services overall (adjusted prevalence rate ratio [aPRR] = 1.5; 95% confidence interval [CI]: 1.4-1.7). Specifically, they had higher prevalence of several special education categories including: intellectual disability (aPRR = 3.8; 95% CI: 2.8-5.1), sensory impairment (aPRR = 3.0; 95% CI: 1.8-5.0), other health impairment (aPRR = 2.8; 95% CI: 2.2-3.5), significant developmental delay (aPRR = 1.9; 95% CI: 1.3-2.8), and specific learning disability (aPRR = 1.4; 95% CI: 1.1-1.7). For most special education services, the excess prevalence did not vary by presence of critical CHDs. Children with CHDs received special education services more often than children without birth defects. These findings highlight the need for special education services and the importance of developmental screening for all children with CHDs. Copyright © 2015 by the American Academy of Pediatrics.
Child Care Provider Awareness and Prevention of Cytomegalovirus and Other Infectious Diseases
ERIC Educational Resources Information Center
Thackeray, Rosemary; Magnusson, Brianna M.
2016-01-01
Background: Child care facilities are prime locations for the transmission of infectious and communicable diseases. Children and child care providers are at high risk for cytomegalovirus (CMV) infection which causes severe birth defects and developmental delays. Objective: The goals of study were: (1) to determine the level of cytomegalovirus…
Khan, Kamron; Logan, Clare V.; McKibbin, Martin; Sheridan, Eamonn; Elçioglu, Nursel H.; Yenice, Ozlem; Parry, David A.; Fernandez-Fuentes, Narcis; Abdelhamed, Zakia I.A.; Al-Maskari, Ahmed; Poulter, James A.; Mohamed, Moin D.; Carr, Ian M.; Morgan, Joanne E.; Jafri, Hussain; Raashid, Yasmin; Taylor, Graham R.; Johnson, Colin A.; Inglehearn, Chris F.; Toomes, Carmel; Ali, Manir
2012-01-01
The atonal homolog 7 (ATOH7) gene encodes a transcription factor involved in determining the fate of retinal progenitor cells and is particularly required for optic nerve and ganglion cell development. Using a combination of autozygosity mapping and next generation sequencing, we have identified homozygous mutations in this gene, p.E49V and p.P18RfsX69, in two consanguineous families diagnosed with multiple ocular developmental defects, including severe vitreoretinal dysplasia, optic nerve hypoplasia, persistent fetal vasculature, microphthalmia, congenital cataracts, microcornea, corneal opacity and nystagmus. Most of these clinical features overlap with defects in the Norrin/β-catenin signalling pathway that is characterized by dysgenesis of the retinal and hyaloid vasculature. Our findings document Mendelian mutations within ATOH7 and imply a role for this molecule in the development of structures at the front as well as the back of the eye. This work also provides further insights into the function of ATOH7, especially its importance in retinal vascular development and hyaloid regression. PMID:22068589
Post-natal myogenic and adipogenic developmental
Konings, Gonda; van Weeghel, Michel; van den Hoogenhof, Maarten MG; Gijbels, Marion; van Erk, Arie; Schoonderwoerd, Kees; van den Bosch, Bianca; Dahlmans, Vivian; Calis, Chantal; Houten, Sander M; Misteli, Tom
2011-01-01
A-type lamins are a major component of the nuclear lamina. Mutations in the LMNA gene, which encodes the A-type lamins A and C, cause a set of phenotypically diverse diseases collectively called laminopathies. While adult LMNA null mice show various symptoms typically associated with laminopathies, the effect of loss of lamin A/C on early post-natal development is poorly understood. Here we developed a novel LMNA null mouse (LMNAGT−/−) based on genetrap technology and analyzed its early post-natal development. We detect LMNA transcripts in heart, the outflow tract, dorsal aorta, liver and somites during early embryonic development. Loss of A-type lamins results in severe growth retardation and developmental defects of the heart, including impaired myocyte hypertrophy, skeletal muscle hypotrophy, decreased amounts of subcutaneous adipose tissue and impaired ex vivo adipogenic differentiation. These defects cause death at 2 to 3 weeks post partum associated with muscle weakness and metabolic complications, but without the occurrence of dilated cardiomyopathy or an obvious progeroid phenotype. Our results indicate that defective early post-natal development critically contributes to the disease phenotypes in adult laminopathies. PMID:21818413
Bach, Liên; Michaelson, Louise V.; Haslam, Richard; Bellec, Yannick; Gissot, Lionel; Marion, Jessica; Da Costa, Marco; Boutin, Jean-Pierre; Miquel, Martine; Tellier, Frédérique; Domergue, Frederic; Markham, Jonathan E.; Beaudoin, Frederic; Napier, Johnathan A.; Faure, Jean-Denis
2008-01-01
Very-long-chain fatty acids (VLCFAs) are synthesized as acyl-CoAs by the endoplasmic reticulum-localized elongase multiprotein complex. Two Arabidopsis genes are putative homologues of the recently identified yeast 3-hydroxy-acyl-CoA dehydratase (PHS1), the third enzyme of the elongase complex. We showed that Arabidopsis PASTICCINO2 (PAS2) was able to restore phs1 cytokinesis defects and sphingolipid long chain base overaccumulation. Conversely, the expression of PHS1 was able to complement the developmental defects and the accumulation of long chain bases of the pas2–1 mutant. The pas2–1 mutant was characterized by a general reduction of VLCFA pools in seed storage triacylglycerols, cuticular waxes, and complex sphingolipids. Most strikingly, the defective elongation cycle resulted in the accumulation of 3-hydroxy-acyl-CoA intermediates, indicating premature termination of fatty acid elongation and confirming the role of PAS2 in this process. We demonstrated by in vivo bimolecular fluorescence complementation that PAS2 was specifically associated in the endoplasmic reticulum with the enoyl-CoA reductase CER10, the fourth enzyme of the elongase complex. Finally, complete loss of PAS2 function is embryo lethal, and the ectopic expression of PHS1 led to enhanced levels of VLCFAs associated with severe developmental defects. Altogether these results demonstrate that the plant 3-hydroxy-acyl-CoA dehydratase PASTICCINO2 is an essential and limiting enzyme in VLCFA synthesis but also that PAS2-derived VLCFA homeostasis is required for specific developmental processes. PMID:18799749
mus304 encodes a novel DNA damage checkpoint protein required during Drosophila development
Brodsky, Michael H.; Sekelsky, Jeff J.; Tsang, Garson; Hawley, R. Scott; Rubin, Gerald M.
2000-01-01
Checkpoints block cell cycle progression in eukaryotic cells exposed to DNA damaging agents. We show that several Drosophila homologs of checkpoint genes, mei-41, grapes, and 14-3-3ε, regulate a DNA damage checkpoint in the developing eye. We have used this assay to show that the mutagen-sensitive gene mus304 is also required for this checkpoint. mus304 encodes a novel coiled-coil domain protein, which is targeted to the cytoplasm. Similar to mei-41, mus304 is required for chromosome break repair and for genomic stability. mus304 animals also exhibit three developmental defects, abnormal bristle morphology, decreased meiotic recombination, and arrested embryonic development. We suggest that these phenotypes reflect distinct developmental consequences of a single underlying checkpoint defect. Similar mechanisms may account for the puzzling array of symptoms observed in humans with mutations in the ATM tumor suppressor gene. PMID:10733527
Mutation in ATG5 reduces autophagy and leads to ataxia with developmental delay.
Kim, Myungjin; Sandford, Erin; Gatica, Damian; Qiu, Yu; Liu, Xu; Zheng, Yumei; Schulman, Brenda A; Xu, Jishu; Semple, Ian; Ro, Seung-Hyun; Kim, Boyoung; Mavioglu, R Nehir; Tolun, Aslıhan; Jipa, Andras; Takats, Szabolcs; Karpati, Manuela; Li, Jun Z; Yapici, Zuhal; Juhasz, Gabor; Lee, Jun Hee; Klionsky, Daniel J; Burmeister, Margit
2016-01-26
Autophagy is required for the homeostasis of cellular material and is proposed to be involved in many aspects of health. Defects in the autophagy pathway have been observed in neurodegenerative disorders; however, no genetically-inherited pathogenic mutations in any of the core autophagy-related (ATG) genes have been reported in human patients to date. We identified a homozygous missense mutation, changing a conserved amino acid, in ATG5 in two siblings with congenital ataxia, mental retardation, and developmental delay. The subjects' cells display a decrease in autophagy flux and defects in conjugation of ATG12 to ATG5. The homologous mutation in yeast demonstrates a 30-50% reduction of induced autophagy. Flies in which Atg5 is substituted with the mutant human ATG5 exhibit severe movement disorder, in contrast to flies expressing the wild-type human protein. Our results demonstrate the critical role of autophagy in preventing neurological diseases and maintaining neuronal health.
Zinc and Zinc Transporters: Novel Regulators of Ventricular Myocardial Development.
Lin, Wen; Li, Deqiang
2018-06-01
Ventricular myocardial development is a well-orchestrated process involving different cardiac structures, multiple signal pathways, and myriad proteins. Dysregulation of this important developmental event can result in cardiomyopathies, such as left ventricle non-compaction, which affect the pediatric population and the adults. Human and mouse studies have shed light upon the etiology of some cardiomyopathy cases and highlighted the contribution of both genetic and environmental factors. However, the regulation of ventricular myocardial development remains incompletely understood. Zinc is an essential trace metal with structural, enzymatic, and signaling function. Perturbation of zinc homeostasis has resulted in developmental and physiological defects including cardiomyopathy. In this review, we summarize several mechanisms by which zinc and zinc transporters can impact the regulation of ventricular myocardial development. Based on our review, we propose that zinc deficiency and mutations of zinc transporters may underlie some cardiomyopathy cases especially those involving ventricular myocardial development defects.
Costa, Francine S; Silveira, Ethieli R; Pinto, Gabriela S; Nascimento, Gustavo G; Thomson, William Murray; Demarco, Flávio F
2017-05-01
This systematic review and meta-analysis evaluated the association between developmental defects of enamel and dental caries in the primary dentition. Electronic searches were performed in PubMed, Web of Knowledge, Scopus and Scielo for the identification of relevant studies. Observational studies that examined the association between developmental defects of enamel and dental caries in the deciduous dentition were included. Additionally, meta-analysis, funnel plots and sensitivity analysis were employed to synthesize the available evidence. Multivariable meta-regression analysis was performed to explore heterogeneity among studies. A total of 318 articles were identified in the electronic searches. Of those, 16 studies were included in the meta-analysis. Pooled estimates revealed that children with developmental defects of enamel had higher odds of having dental caries (OR 3.32; 95%CI 2.41-4.57), with high heterogeneity between studies (I 2 80%). Methodological characteristic of the studies, such as where it was conducted, the examined teeth and the quality of the study explained about 30% of the variability. Concerning type of defect, children with hypoplasia and diffuse opacities had higher odds of having dental caries (OR 4.28; 95%CI 2.24-8.15; OR1.42; 95%CI 1.15-1.76, respectively). This systematic review and meta-analysis demonstrates a clear association between developmental defects of enamel and dental caries in the primary dentition. Copyright © 2017 Elsevier Ltd. All rights reserved.
Noonan syndrome gain-of-function mutations in NRAS cause zebrafish gastrulation defects
Runtuwene, Vincent; van Eekelen, Mark; Overvoorde, John; Rehmann, Holger; Yntema, Helger G.; Nillesen, Willy M.; van Haeringen, Arie; van der Burgt, Ineke; Burgering, Boudewijn; den Hertog, Jeroen
2011-01-01
SUMMARY Noonan syndrome is a relatively common developmental disorder that is characterized by reduced growth, wide-set eyes and congenital heart defects. Noonan syndrome is associated with dysregulation of the Ras–mitogen-activated-protein-kinase (MAPK) signaling pathway. Recently, two mutations in NRAS were reported to be associated with Noonan syndrome, T50I and G60E. Here, we report a mutation in NRAS, resulting in an I24N amino acid substitution, that we identified in an individual bearing typical Noonan syndrome features. The I24N mutation activates N-Ras, resulting in enhanced downstream signaling. Expression of N-Ras-I24N, N-Ras-G60E or the strongly activating mutant N-Ras-G12V, which we included as a positive control, results in developmental defects in zebrafish embryos, demonstrating that these activating N-Ras mutants are sufficient to induce developmental disorders. The defects in zebrafish embryos are reminiscent of symptoms in individuals with Noonan syndrome and phenocopy the defects that other Noonan-syndrome-associated genes induce in zebrafish embryos. MEK inhibition completely rescued the activated N-Ras-induced phenotypes, demonstrating that these defects are mediated exclusively by Ras-MAPK signaling. In conclusion, mutations in NRAS from individuals with Noonan syndrome activated N-Ras signaling and induced developmental defects in zebrafish embryos, indicating that activating mutations in NRAS cause Noonan syndrome. PMID:21263000
Sanchez-Albisua, I; Borell-Kost, S; Mau-Holzmann, U A; Licht, P; Krägeloh-Mann, I
2007-02-01
The neurodevelopmental outcome of children born after intracytoplasmic sperm injection (ICSI) is controversial. We compared the medical and developmental outcome of 34 singletons born after ICSI (20 males, 14 females; mean ages of 18 mo and 40 mo [SD 9 mo]; range 2 y 10 mo-4 y 8 mo) with 39 case control studies (21 males, 18 females; mean ages of 18 mo and 40 mo [SD 4 mo]; range 3 y-4 y 1 mo). Each child was assessed physically and tested in three development domains (fine motor, gross motor, and language). Five children born after ICSI versus two control children (p=0.2) had major congenital anomalies (MaCAs). Four children born after ICSI versus no control children had severe MaCAs (p=0.04). These were defined as having a significant impact on development or causing chronic disease: Angelman syndrome (n=1), lissencephaly (n=1), Hanhart syndrome (n=1), and persistent hyperinsulinemic hypoglycaemia of infancy (n=1). Karyotyping in 23 children born after ICSI revealed no abnormalities. An imprinting defect was found in the child with Angelman syndrome. Results of developmental assessment were in all cases normal at the age of 18 months except for the three children with Angelman and Hanhart syndromes, and lissencephaly. At the second assessment, five more children born after ICSI and four control children showed abnormalities in one or more developmental domains. We conclude that there seems to be a higher frequency of severe major anomalies in children born after ICSI. An increased risk for imprinting defects cannot be excluded. If we exclude children with severe MaCAs, the incidence of an abnormal somatic or neurodevelopmental outcome in the fourth year of life in children born after ICSI is similar to that of spontaneously conceived children.
Prenatal stress and development: beyond the single cause and effect paradigm.
Hamlin, Heather J
2012-12-01
Our awareness of the causes of stress-induced developmental dysfunction has increased dramatically over the past decade, and it is becoming increasingly clear that a number of factors can have considerable impacts on the developing fetus. Although there is a tendency in investigations of developmental teratogens to attribute specific causes to adverse fetal outcomes, it is important we recognize that for most developmental dysfunctions it is unlikely a single cause, but yet a series of environmental insults combined with genetic predisposition that ultimately leads to a disease state. Nonetheless, a number of developmental teratogens, such as maternal psychological stress and chemical exposures, have been shown to increase the likelihood of developmental defects. These defects can manifest during development, leading to observable birth defects, or could become evident long after birth, even into adulthood. In addition, epigenetic mutations in the germline can alter the phenotype of successive generations through transgenerational inheritance, and in this way environmental factors can alter the developmental outcomes and disease predispositions of future generations. Understanding this complexity is essential to interpretations of causality in the studies of stress-induced developmental dysfunction and needs to be fully considered to more effectively interpret potential outcomes. Copyright © 2013 Wiley Periodicals, Inc.
Enhancer of zeste acts as a major developmental regulator of Ciona intestinalis embryogenesis
Le Goff, Emilie; Martinand-Mari, Camille; Martin, Marianne; Feuillard, Jérôme; Boublik, Yvan; Godefroy, Nelly; Mangeat, Paul; Baghdiguian, Stephen; Cavalli, Giacomo
2015-01-01
ABSTRACT The paradigm of developmental regulation by Polycomb group (PcG) proteins posits that they maintain silencing outside the spatial expression domains of their target genes, particularly of Hox genes, starting from mid embryogenesis. The Enhancer of zeste [E(z)] PcG protein is the catalytic subunit of the PRC2 complex, which silences its targets via deposition of the H3K27me3 mark. Here, we studied the ascidian Ciona intestinalis counterpart of E(z). Ci-E(z) is detected by immunohistochemistry as soon as the 2- and 4-cell stages as a cytoplasmic form and becomes exclusively nuclear thereafter, whereas the H3K27me3 mark is detected starting from the gastrula stage and later. Morpholino invalidation of Ci-E(z) leads to the total disappearance of both Ci-E(z) protein and its H3K27me3 mark. Ci-E(z) morphants display a severe phenotype. Strikingly, the earliest defects occur at the 4-cell stage with the dysregulation of cell positioning and mitotic impairment. At later stages, Ci-E(z)-deficient embryos are affected by terminal differentiation defects of neural, epidermal and muscle tissues, by the failure to form a notochord and by the absence of caudal nerve. These major phenotypic defects are specifically rescued by injection of a morpholino-resistant Ci-E(z) mRNA, which restores expression of Ci-E(z) protein and re-deposition of the H3K27me3 mark. As observed by qPCR analyses, Ci-E(z) invalidation leads to the early derepression of tissue-specific developmental genes, whereas late-acting developmental genes are generally down-regulated. Altogether, our results suggest that Ci-E(z) plays a major role during embryonic development in Ciona intestinalis by silencing early-acting developmental genes in a Hox-independent manner. PMID:26276097
Moriyama, Yuki; Ohata, Yoshihisa; Mori, Shoko; Matsukawa, Shinya; Michiue, Tatsuo; Asashima, Makoto; Kuroda, Hiroki
2011-01-28
Rapamycin is a drug working as an inhibitor of the TOR (target of rapamycin) signaling pathway and influences various life phenomena such as cell growth, proliferation, and life span extension in eukaryote. However, the extent to which rapamycin controls early developmental events of amphibians remains to be understood. Here we report an examination of rapamycin effects during Xenopus early development, followed by a confirmation of suppression of TOR downstream kinase S6K by rapamycin treatment. First, we found that developmental speed was declined in dose-dependent manner of rapamycin. Second, black pigment spots located at dorsal and lateral skin in tadpoles were reduced by rapamycin treatment. Moreover, in tadpole stages severe gastrointestinal malformations were observed in rapamycin-treated embryos. Taken together with these results, we conclude that treatment of the drug rapamycin causes enormous influences on early developmental period. Copyright © 2010 Elsevier Inc. All rights reserved.
Balmus, Gabriel; Zhu, Min; Mukherjee, Sucheta; Lyndaker, Amy M.; Hume, Kelly R.; Lee, Jaesung; Riccio, Mark L.; Reeves, Anthony P.; Sutter, Nathan B.; Noden, Drew M.; Peters, Rachel M.; Weiss, Robert S.
2012-01-01
The human genomic instability syndrome ataxia telangiectasia (A-T), caused by mutations in the gene encoding the DNA damage checkpoint kinase ATM, is characterized by multisystem defects including neurodegeneration, immunodeficiency and increased cancer predisposition. ATM is central to a pathway that responds to double-strand DNA breaks, whereas the related kinase ATR leads a parallel signaling cascade that is activated by replication stress. To dissect the physiological relationship between the ATM and ATR pathways, we generated mice defective for both. Because complete ATR pathway inactivation causes embryonic lethality, we weakened the ATR mechanism to different degrees by impairing HUS1, a member of the 911 complex that is required for efficient ATR signaling. Notably, simultaneous ATM and HUS1 defects caused synthetic lethality. Atm/Hus1 double-mutant embryos showed widespread apoptosis and died mid-gestationally. Despite the underlying DNA damage checkpoint defects, increased DNA damage signaling was observed, as evidenced by H2AX phosphorylation and p53 accumulation. A less severe Hus1 defect together with Atm loss resulted in partial embryonic lethality, with the surviving double-mutant mice showing synergistic increases in genomic instability and specific developmental defects, including dwarfism, craniofacial abnormalities and brachymesophalangy, phenotypes that are observed in several human genomic instability disorders. In addition to identifying tissue-specific consequences of checkpoint dysfunction, these data highlight a robust, cooperative configuration for the mammalian DNA damage response network and further suggest HUS1 and related genes in the ATR pathway as candidate modifiers of disease severity in A-T patients. PMID:22575700
Marble, Michael; Pridjian, Gabriella
2002-04-01
We report a family with apparent autosomal dominant inheritance of scalp defects, polythelia, microcephaly, and developmental delay. A review of the literature revealed no previous report of this combination of anomalies. We conclude that these patients have a new autosomal dominant syndrome. Copyright 2002 Wiley-Liss, Inc.
Oral Health Characteristics and Dental Rehabilitation of Children with Global Developmental Delay.
Kumar, Saurabh; Pai, Deepika; Saran, Runki
2017-01-01
Global developmental delay (GDD) is a chronic neurological disturbance which includes defects in one or more developmental domains. The developmental domain can be motor, cognitive, daily activities, speech or language, and social or personal development. The etiology for GDD can be prenatal, perinatal, or postnatal. It can be diagnosed early in childhood as the delay or absence of one or more developmental milestones. Hence the role of pedodontist and pediatricians becomes more crucial in identifying this condition. The diagnosis of GDD requires a detailed history including family history and environmental risk factors followed by physical and neurological examinations. Investigations for GDD include diagnostic laboratory tests, brain imaging, and other evidence-based evaluations. GDD affects multiple developmental domains that not only have direct bearing on maintenance of oral health, but also require additional behavior management techniques to deliver optimal dental care. This paper describes two different spectra of children with GDD. Since the severity of GDD can vary, this paper also discusses the different behavior management techniques that were applied to provide dental treatment in such children.
Li, Rui; Sun, Le; Fang, Ai; Li, Peng; Wu, Qian; Wang, Xiaoqun
2017-11-01
The development of a cerebral organoid culture in vitro offers an opportunity to generate human brain-like organs to investigate mechanisms of human disease that are specific to the neurogenesis of radial glial (RG) and outer radial glial (oRG) cells in the ventricular zone (VZ) and subventricular zone (SVZ) of the developing neocortex. Modeling neuronal progenitors and the organization that produces mature subcortical neuron subtypes during early stages of development is essential for studying human brain developmental diseases. Several previous efforts have shown to grow neural organoid in culture dishes successfully, however we demonstrate a new paradigm that recapitulates neocortical development process with VZ, OSVZ formation and the lamination organization of cortical layer structure. In addition, using patient-specific induced pluripotent stem cells (iPSCs) with dysfunction of the Aspm gene from a primary microcephaly patient, we demonstrate neurogenesis defects result in defective neuronal activity in patient organoids, suggesting a new strategy to study human developmental diseases in central nerve system.
Novel adverse outcome pathways revealed by chemical genetics in a developing marine fish
Sørhus, Elin; Incardona, John P; Furmanek, Tomasz; Goetz, Giles W; Scholz, Nathaniel L; Meier, Sonnich; Edvardsen, Rolf B; Jentoft, Sissel
2017-01-01
Crude oil spills are a worldwide ocean conservation threat. Fish are particularly vulnerable to the oiling of spawning habitats, and crude oil causes severe abnormalities in embryos and larvae. However, the underlying mechanisms for these developmental defects are not well understood. Here, we explore the transcriptional basis for four discrete crude oil injury phenotypes in the early life stages of the commercially important Atlantic haddock (Melanogrammus aeglefinus). These include defects in (1) cardiac form and function, (2) craniofacial development, (3) ionoregulation and fluid balance, and (4) cholesterol synthesis and homeostasis. Our findings suggest a key role for intracellular calcium cycling and excitation-transcription coupling in the dysregulation of heart and jaw morphogenesis. Moreover, the disruption of ionoregulatory pathways sheds new light on buoyancy control in marine fish embryos. Overall, our chemical-genetic approach identifies initiating events for distinct adverse outcome pathways and novel roles for individual genes in fundamental developmental processes. DOI: http://dx.doi.org/10.7554/eLife.20707.001 PMID:28117666
Rebuilding a broken heart: lessons from developmental and regenerative biology.
Kuyumcu-Martinez, Muge N; Bressan, Michael C
2016-11-01
In May 2016, the annual Weinstein Cardiovascular Development and Regeneration Conference was held in Durham, North Carolina, USA. The meeting assembled leading investigators, junior scientists and trainees from around the world to discuss developmental and regenerative biological approaches to understanding the etiology of congenital heart defects and the repair of diseased cardiac tissue. In this Meeting Review, we present several of the major themes that were discussed throughout the meeting and highlight the depth and range of research currently being performed to uncover the causes of human cardiac diseases and develop potential therapies. © 2016. Published by The Company of Biologists Ltd.
BACKGROUND: Methanol causes axial skeleton and craniofacial defects in both CD-1 and C57BL/6J mice during gastrulation, but C57BL/6J embryos are more severely affected. We evaluated methanol-induced pathogenesis in CD-1 and C57BL/6J embryos exposed during gastrulation in whole em...
Verbruggen, Krijn T; Knijff, Wilma A; Soorani-Lunsing, Roelineke J; Sijens, Paul E; Verhoeven, Nanda M; Salomons, Gajja S; Goorhuis-Brouwer, Siena M; van Spronsen, Francjan J
2007-09-01
Guanidinoacetate N-methyltransferase (GAMT) deficiency is a defect in the biosynthesis of creatine (Cr). So far, reports have not focused on the description of developmental abilities in this disorder. Here, we present the result of formal testing of developmental abilities in a GAMT-deficient patient. Our patient, a 3-year-old boy with GAMT deficiency, presented clinically with a severe language production delay and nearly normal nonverbal development. Treatment with oral Cr supplementation led to partial restoration of the cerebral Cr concentration and a clinically remarkable acceleration of language production development. In contrast to clinical observation, formal testing showed a rather harmonic developmental delay before therapy and a general improvement, but no specific acceleration of language development after therapy. From our case, we conclude that in GAMT deficiency language delay is not always more prominent than delays in other developmental areas. The discrepancy between the clinical impression and formal testing underscores the importance of applying standardized tests in children with developmental delays. Screening for Cr deficiency by metabolite analysis of body fluids or proton magnetic resonance spectroscopy of the brain deficiency should be considered in any child with global developmental delay/mental retardation lacking clues for an alternative etiology.
Parent stress across molecular subtypes of children with Angelman syndrome.
Miodrag, N; Peters, S
2015-09-01
Parenting stress has been consistently reported among parents of children with developmental disabilities. However, to date, no studies have investigated the impact of a molecular subtype of Angelman syndrome (AS) on parent stress, despite distinct phenotypic differences among subtypes. Data for 124 families of children with three subtypes of AS: class I and II deletions (n = 99), imprinting centre defects (IC defects; n = 11) and paternal uniparental disomy (UPD; n = 14) were drawn from the AS Rare Diseases Clinical Research Network (RDCRN) database and collected from five research sites across the Unites States. The AS study at the RDCRN gathered health information to understand how the syndrome develops and how to treat it. Parents completed questionnaires on their perceived psychological stress, the severity of children's aberrant behaviour and children's sleep patterns. Children's adaptive functioning and developmental levels were clinically evaluated. Child-related stress reached clinical levels for 40% of parents of children with deletions, 100% for IC defects and 64.3% for UPD. Sleep difficulties were similar and elevated across subtypes. There were no differences between molecular subtypes for overall child and parent-related stress. However, results showed greater isolation and lack of perceived parenting skills for parents of children with UPD compared with deletions. Better overall cognition for children with deletions was significantly related to more child-related stress while their poorer adaptive functioning was associated with more child-related stress. For all three groups, the severity of children's inappropriate behaviour was positively related to different aspects of stress. How parents react to stress depends, in part, on children's AS molecular subtype. Despite falling under the larger umbrella term of AS, it is important to acknowledge the unique aspects associated with children's molecular subtype. Identifying these factors can lead to tailored interventions that fit the particular needs of families of children with different AS subtypes. © 2015 MENCAP and International Association of the Scientific Study of Intellectual and Developmental Disabilities and John Wiley & Sons Ltd.
Bartlett, Heather L.; Sutherland, Lillian; Kolker, Sandra J.; Welp, Chelsea; Tajchman, Urszula; Desmarais, Vera; Weeks, Daniel L.
2007-01-01
Nkx2-5 is a homeobox containing transcription factor that is conserved and expressed in organisms that form hearts. Fruit flies lacking the gene (tinman) fail to form a dorsal vessel, mice that are homozygous null for Nkx2-5 form small, deformed hearts, and several human cardiac defects have been linked to dominant mutations in the Nkx2-5 gene. The Xenopus homologs (XNkx2-5) of two truncated forms of Nkx2-5 that have been identified in humans with congenital heart defects were used in the studies reported here. mRNAs encoding these mutations were injected into single cell Xenopus embryos, and heart development was monitored. Our results indicate that the introduction of truncated XNkx2-5 variants leads to three principle developmental defects. The atrial septum and the valve of the atrioventricular canal were both abnormal. In addition, video microscopic timing of heart contraction indicated that embryos injected with either mutant form of XNkx2-5 have conduction defects. PMID:17685485
Stage specific requirement of platelet-derived growth factor receptor-α in embryonic development.
Qian, Chen; Wong, Carol Wing Yan; Wu, Zhongluan; He, Qiuming; Xia, Huimin; Tam, Paul Kwong Hang; Wong, Kenneth Kak Yuen; Lui, Vincent Chi Hang
2017-01-01
Platelet-derived growth factor receptor alpha (PDGFRα) is a cell-surface receptor tyrosine kinase for platelet-derived growth factors. Correct timing and level of Pdgfra expression is crucial for embryo development, and deletion of Pdgfra caused developmental defects of multiple endoderm and mesoderm derived structures, resulting in a complex phenotypes including orofacial cleft, spina bifida, rib deformities, and omphalocele in mice. However, it is not clear if deletion of Pdgfra at different embryonic stages differentially affects these structures. To address the temporal requirement of Pdgfra in embryonic development. We have deleted the Pdgfra in Pdgfra-expressing tissues at different embryonic stages in mice, examined and quantified the developmental anomalies. Current study showed that (i) conditional deletion of Pdgfra at different embryonic days (between E7.5 and E10.5) resulted in orofacial cleft, spina bifida, rib cage deformities, and omphalocele, and (ii) the day of Pdgfra deletion influenced the combinations, incidence and severities of these anomalies. Deletion of Pdgfra caused apoptosis of Pdgfra-expressing tissues, and developmental defects of their derivatives. Orofacial cleft, spina bifida and omphalocele are among the commonest skeletal and abdominal wall defects of newborns, but their genetic etiologies are largely unknown. The remarkable resemblance of our conditional Pdgfra knockout embryos to theses human congenital anomalies, suggesting that dysregulated PDGFRA expression could cause these anomalies in human. Future work should aim at defining (a) the regulatory elements for the expression of the human PDGFRA during embryonic development, and (b) if mutations / sequence variations of these regulatory elements cause these anomalies.
Bisphenol A induces otolith malformations during vertebrate embryogenesis
2011-01-01
Background The plastic monomer and plasticizer bisphenol A (BPA), used for manufacturing polycarbonate plastic and epoxy resins, is produced at over 2.5 million metric tons per year. Concerns have been raised that BPA acts as an endocrine disruptor on both developmental and reproductive processes and a large body of evidence suggests that BPA interferes with estrogen and thyroid hormone signaling. Here, we investigated BPA effects during embryonic development using the zebrafish and Xenopus models. Results We report that BPA exposure leads to severe malformations of the otic vesicle. In zebrafish and in Xenopus embryos, exposure to BPA during the first developmental day resulted in dose-dependent defects in otolith formation. Defects included aggregation, multiplication and occasionally failure to form otoliths. As no effects on otolith development were seen with exposure to micromolar concentrations of thyroid hormone, 17-ß-estradiol or of the estrogen receptor antagonist ICI 182,780 we conclude that the effects of BPA are independent of estrogen receptors or thyroid-hormone receptors. Na+/K+ ATPases are crucial for otolith formation in zebrafish. Pharmacological inhibition of the major Na+/K+ ATPase with ouabain can rescue the BPA-induced otolith phenotype. Conclusions The data suggest that the spectrum of BPA action is wider than previously expected and argue for a systematic survey of the developmental effects of this endocrine disruptor. PMID:21269433
Bisphenol A induces otolith malformations during vertebrate embryogenesis.
Gibert, Yann; Sassi-Messai, Sana; Fini, Jean-Baptiste; Bernard, Laure; Zalko, Daniel; Cravedi, Jean-Pierre; Balaguer, Patrick; Andersson-Lendahl, Monika; Demeneix, Barbara; Laudet, Vincent
2011-01-26
The plastic monomer and plasticizer bisphenol A (BPA), used for manufacturing polycarbonate plastic and epoxy resins, is produced at over 2.5 million metric tons per year. Concerns have been raised that BPA acts as an endocrine disruptor on both developmental and reproductive processes and a large body of evidence suggests that BPA interferes with estrogen and thyroid hormone signaling. Here, we investigated BPA effects during embryonic development using the zebrafish and Xenopus models. We report that BPA exposure leads to severe malformations of the otic vesicle. In zebrafish and in Xenopus embryos, exposure to BPA during the first developmental day resulted in dose-dependent defects in otolith formation. Defects included aggregation, multiplication and occasionally failure to form otoliths. As no effects on otolith development were seen with exposure to micromolar concentrations of thyroid hormone, 17-ß-estradiol or of the estrogen receptor antagonist ICI 182,780 we conclude that the effects of BPA are independent of estrogen receptors or thyroid-hormone receptors. Na+/K+ ATPases are crucial for otolith formation in zebrafish. Pharmacological inhibition of the major Na+/K+ ATPase with ouabain can rescue the BPA-induced otolith phenotype. The data suggest that the spectrum of BPA action is wider than previously expected and argue for a systematic survey of the developmental effects of this endocrine disruptor.
Exclusion of MYF5, GSC, RUNX2, and TCOF1 mutation in a case of cerebro-costo-mandibular syndrome.
Su, Pen-Hua; Chen, Jia-Yuh; Chiang, Chin-Lung; Ng, Yan-Yan; Chen, Suh-Jen
2010-04-01
Cerebro-costo-mandibular syndrome (CCMS) is an uncommon multiple congenital anomaly syndrome characterized by severe micrognathia, posterior rib-gap defects, and developmental delay. The cause of CCMS is unknown. Genes hypothesized to have a causal role in CCMS, include myogenic factor 5 (MYF5), goosecoid homeobox (GSC) and runt-related transcription factor 2 (RUNX2) [formerly known as core-binding factor (CBFA1)]. We report an infant with typical features of CCMS who, on prenatal ultrasound, was found to have severe micrognathia. We present the first image by three-dimensional computed tomography of posterior rib-defect, and we exclude mutations of the MYF5, GSC, RUNX2, and TCOF1 genes in our patient. Further molecular studies are needed to evaluate the cause of CCMS.
Defective pulmonary innervation and autonomic imbalance in congenital diaphragmatic hernia
Lath, Nikesh R.; Galambos, Csaba; Rocha, Alejandro Best; Malek, Marcus; Gittes, George K.
2012-01-01
Congenital diaphragmatic hernia (CDH) is associated with significant mortality due to lung hypoplasia and pulmonary hypertension. The role of embryonic pulmonary innervation in normal lung development and lung maldevelopment in CDH has not been defined. We hypothesize that developmental defects of intrapulmonary innervation, in particular autonomic innervation, occur in CDH. This abnormal embryonic pulmonary innervation may contribute to lung developmental defects and postnatal physiological derangement in CDH. To define patterns of pulmonary innervation in CDH, human CDH and control lung autopsy specimens were stained with the pan-neural marker S-100. To further characterize patterns of overall and autonomic pulmonary innervation during lung development in CDH, the murine nitrofen model of CDH was utilized. Immunostaining for protein gene product 9.5 (a pan-neuronal marker), tyrosine hydroxylase (a sympathetic marker), vesicular acetylcholine transporter (a parasympathetic marker), or VIP (a parasympathetic marker) was performed on lung whole mounts and analyzed via confocal microscopy and three-dimensional reconstruction. Peribronchial and perivascular neuronal staining pattern is less complex in human CDH than control lung. In mice, protein gene product 9.5 staining reveals less complex neuronal branching and decreased neural tissue in nitrofen-treated lungs from embryonic day 12.5 to 16.5 compared with controls. Furthermore, nitrofen-treated embryonic lungs exhibited altered autonomic innervation, with a relative increase in sympathetic nerve staining and a decrease in parasympathetic nerve staining compared with controls. These results suggest a primary defect in pulmonary neural developmental in CDH, resulting in less complex neural innervation and autonomic imbalance. Defective embryonic pulmonary innervation may contribute to lung developmental defects and postnatal physiological derangement in CDH. PMID:22114150
METROPOLITAN ATLANTA DEVELOPMENTAL DISABILITIES PROGRAM (MADDSP)
To address the problem of developmental disabilities among children, CDC, the former Division of Birth Defects and Developmental Disabilities, which was funded by the Agency for Toxic Substances and Disease Registry (ATSDR), and the Georgia Department of Human Resources, initiate...
Exome Sequencing in 32 Patients with Anophthalmia/Microphthalmia and Developmental Eye Defects
Slavotinek, Anne M.; Garcia, Sarah T.; Chandratillake, Gemma; Bardakjian, Tanya; Ullah, Ehsan; Wu, Di; Umeda, Kyle; Lao, Richard; Tang, Paul Ling-Fung; Wan, Eunice; Madireddy, Lohith; Lyalina, Svetlana; Mendelsohn, Bryce A.; Dugan, Sarah; Tirch, Jean; Tischler, Reana; Harris, Jason; Clark, Michael J.; Chervitz, Stephen; Patwardhan, Anil; West, John M.; Ursell, Phillip; de Alba Campomanes, Alejandra; Schneider, Adele; Kwok, Pui-yan; Baranzini, Sergio; Chen, Richard O.
2014-01-01
Anophthalmia/microphthalmia (A/M) is a genetically heterogeneous birth defect for which the etiology is unknown in more than 50% of patients. We used exome sequencing with the ACE Exome™ (Personalis, Inc; 18 cases) and UCSF Genomics Core (21 cases) to sequence 28 patients with A/M and four patients with varied developmental eye defects. In the 28 patients with A/M, we identified de novo mutations in three patients (OTX2, p.(Gln91His), RARB, p.Arg387Cys and GDF6, p.Ala249Glu) and inherited mutations in STRA6 in two patients. In patients with developmental eye defects, a female with cataracts and cardiomyopathy had a de novo COL4A1 mutation, p.(Gly773Arg), expanding the phenotype associated with COL4A1 to include cardiomyopathy. A male with a chorioretinal defect, microcephaly, seizures and sensorineural deafness had two PNPT1 mutations, p.(Ala507Ser) and c.401-1G>A, and we describe eye defects associated with this gene for the first time. Exome sequencing was efficient for identifying mutations in pathogenic genes for which there is no clinical testing available and for identifying cases that expand phenotypic spectra, such as the PNPT1 and COL4A1-associated disorders described here. PMID:25457163
Disruption of an Evolutionarily Novel Synaptic Expression Pattern in Autism
Jiang, Xi; Hu, Haiyang; Guijarro, Patricia; Mitchell, Amanda; Ely, John J.; Sherwood, Chet C.; Hof, Patrick R.; Qiu, Zilong; Pääbo, Svante; Akbarian, Schahram; Khaitovich, Philipp
2016-01-01
Cognitive defects in autism spectrum disorder (ASD) include socialization and communication: key behavioral capacities that separate humans from other species. Here, we analyze gene expression in the prefrontal cortex of 63 autism patients and control individuals, as well as 62 chimpanzees and macaques, from natal to adult age. We show that among all aberrant expression changes seen in ASD brains, a single aberrant expression pattern overrepresented in genes involved synaptic-related pathways is enriched in nucleotide variants linked to autism. Furthermore, only this pattern contains an excess of developmental expression features unique to humans, thus resulting in the disruption of human-specific developmental programs in autism. Several members of the early growth response (EGR) transcription factor family can be implicated in regulation of this aberrant developmental change. Our study draws a connection between the genetic risk architecture of autism and molecular features of cortical development unique to humans. PMID:27685936
Esakky, Prabagaran; Hansen, Deborah A; Drury, Andrea M; Felder, Paul; Cusumano, Andrew; Moley, Kelle H
2016-10-01
Paternal smoking is associated with infertility, birth defects and childhood cancers. Our earlier studies using cigarette smoke condensate (CSC) demonstrated several deleterious changes in male germ cells. Here, we hypothesize that chronic paternal exposure to CSC causes molecular and phenotypic changes in the sire and the offspring, respectively. In this mouse study, CSC caused DNA damage and cytotoxicity in testes via accumulation of benzo(a)pyrene (B[a]P) and cotinine. Decreased expression of growth arrest and DNA damage inducible alpha (Gadd45a), aryl hydrocarbon receptor (Ahr), and cyclin-dependent kinase inhibitor 1A (P21) was seen in CSC exposed testes. Apoptotic germ cell death was detected by induction of Fas, FasL, and activated caspase-3. The CSC-exposed males displayed reduction in sperm motility and fertilizing ability and sired pups with reduced body weight and crown-rump length, and smaller litter size with higher numbers of resorption. This model of CSC exposure demonstrates testicular toxicity and developmental defects in the offspring. Copyright © 2016 Elsevier Inc. All rights reserved.
Nitric Oxide Regulates Protein Methylation during Stress Responses in Plants.
Hu, Jiliang; Yang, Huanjie; Mu, Jinye; Lu, Tiancong; Peng, Juli; Deng, Xian; Kong, Zhaosheng; Bao, Shilai; Cao, Xiaofeng; Zuo, Jianru
2017-08-17
Methylation and nitric oxide (NO)-based S-nitrosylation are highly conserved protein posttranslational modifications that regulate diverse biological processes. In higher eukaryotes, PRMT5 catalyzes Arg symmetric dimethylation, including key components of the spliceosome. The Arabidopsis prmt5 mutant shows severe developmental defects and impaired stress responses. However, little is known about the mechanisms regulating the PRMT5 activity. Here, we report that NO positively regulates the PRMT5 activity through S-nitrosylation at Cys-125 during stress responses. In prmt5-1 plants, a PRMT5 C125S transgene, carrying a non-nitrosylatable mutation at Cys-125, fully rescues the developmental defects, but not the stress hypersensitive phenotype and the responsiveness to NO during stress responses. Moreover, the salt-induced Arg symmetric dimethylation is abolished in PRMT5 C125S /prmt5-1 plants, correlated to aberrant splicing of pre-mRNA derived from a stress-related gene. These findings define a mechanism by which plants transduce stress-triggered NO signal to protein methylation machinery through S-nitrosylation of PRMT5 in response to environmental alterations. Copyright © 2017 Elsevier Inc. All rights reserved.
Combined endodontic-periodontic treatment of a palatal groove: a case report.
Schwartz, Scott A; Koch, Michael A; Deas, David E; Powell, Charles A
2006-06-01
The palatal groove is a developmental anomaly that predisposes the tooth involved to a severe periodontal defect. When further complicated by pulp necrosis, these grooves often present a diagnostic and treatment planning challenge that requires an interdisciplinary treatment approach. This case report describes the successful collaborative management of a maxillary lateral incisor with an extensive palatal groove using a combination of nonsurgical endodontic therapy, odontoplasty, and periodontal regenerative techniques.
Schertzer, Michael; Jouravleva, Karina; Perderiset, Mylene; Dingli, Florent; Loew, Damarys; Le Guen, Tangui; Bardoni, Barbara; de Villartay, Jean-Pierre; Revy, Patrick; Londoño-Vallejo, Arturo
2015-01-01
Hoyeraal-Hreidarsson syndrome (HHS) is a severe form of Dyskeratosis congenita characterized by developmental defects, bone marrow failure and immunodeficiency and has been associated with telomere dysfunction. Recently, mutations in Regulator of Telomere ELongation helicase 1 (RTEL1), a helicase first identified in Mus musculus as being responsible for the maintenance of long telomeres, have been identified in several HHS patients. Here we show that RTEL1 is required for the export and the correct cytoplasmic trafficking of the small nuclear (sn) RNA pre-U2, a component of the major spliceosome complex. RTEL1-HHS cells show abnormal subcellular partitioning of pre-U2, defects in the recycling of ribonucleotide proteins (RNP) in the cytoplasm and splicing defects. While most of these phenotypes can be suppressed by re-expressing the wild-type protein in RTEL1-HHS cells, expression of RTEL1 mutated variants in immortalized cells provokes cytoplasmic mislocalizations of pre-U2 and other RNP components, as well as splicing defects, thus phenocopying RTEL1-HHS cellular defects. Strikingly, expression of a cytoplasmic form of RTEL1 is sufficient to correct RNP mislocalizations both in RTEL1–HHS cells and in cells expressing nuclear mutated forms of RTEL1. This work unravels completely unanticipated roles for RTEL1 in RNP trafficking and strongly suggests that defects in RNP biogenesis pathways contribute to the pathology of HHS. PMID:25628358
Le Guen, Tangui; Jullien, Laurent; Touzot, Fabien; Schertzer, Michael; Gaillard, Laetitia; Perderiset, Mylène; Carpentier, Wassila; Nitschke, Patrick; Picard, Capucine; Couillault, Gérard; Soulier, Jean; Fischer, Alain; Callebaut, Isabelle; Jabado, Nada; Londono-Vallejo, Arturo; de Villartay, Jean-Pierre; Revy, Patrick
2013-08-15
Hoyeraal-Hreidarsson syndrome (HHS), a severe variant of dyskeratosis congenita (DC), is characterized by early onset bone marrow failure, immunodeficiency and developmental defects. Several factors involved in telomere length maintenance and/or protection are defective in HHS/DC, underlining the relationship between telomere dysfunction and these diseases. By combining whole-genome linkage analysis and exome sequencing, we identified compound heterozygous RTEL1 (regulator of telomere elongation helicase 1) mutations in three patients with HHS from two unrelated families. RTEL1 is a DNA helicase that participates in DNA replication, DNA repair and telomere integrity. We show that, in addition to short telomeres, RTEL1-deficient cells from patients exhibit hallmarks of genome instability, including spontaneous DNA damage, anaphase bridges and telomeric aberrations. Collectively, these results identify RTEL1 as a novel HHS-causing gene and highlight its role as a genomic caretaker in humans.
Briand, Nolwenn; Guénantin, Anne-Claire; Jeziorowska, Dorota; Shah, Akshay; Mantecon, Matthieu; Capel, Emilie; Garcia, Marie; Oldenburg, Anja; Paulsen, Jonas; Hulot, Jean-Sebastien; Vigouroux, Corinne; Collas, Philippe
2018-04-15
The p.R482W hotspot mutation in A-type nuclear lamins causes familial partial lipodystrophy of Dunnigan-type (FPLD2), a lipodystrophic syndrome complicated by early onset atherosclerosis. Molecular mechanisms underlying endothelial cell dysfunction conferred by the lamin A mutation remain elusive. However, lamin A regulates epigenetic developmental pathways and mutations could perturb these functions. Here, we demonstrate that lamin A R482W elicits endothelial differentiation defects in a developmental model of FPLD2. Genome modeling in fibroblasts from patients with FPLD2 caused by the lamin A R482W mutation reveals repositioning of the mesodermal regulator T/Brachyury locus towards the nuclear center relative to normal fibroblasts, suggesting enhanced activation propensity of the locus in a developmental model of FPLD2. Addressing this issue, we report phenotypic and transcriptional alterations in mesodermal and endothelial differentiation of induced pluripotent stem cells we generated from a patient with R482W-associated FPLD2. Correction of the LMNA mutation ameliorates R482W-associated phenotypes and gene expression. Transcriptomics links endothelial differentiation defects to decreased Polycomb-mediated repression of the T/Brachyury locus and over-activation of T target genes. Binding of the Polycomb repressor complex 2 to T/Brachyury is impaired by the mutated lamin A network, which is unable to properly associate with the locus. This leads to a deregulation of vascular gene expression over time. By connecting a lipodystrophic hotspot lamin A mutation to a disruption of early mesodermal gene expression and defective endothelial differentiation, we propose that the mutation rewires the fate of several lineages, resulting in multi-tissue pathogenic phenotypes.
Exome sequencing in 32 patients with anophthalmia/microphthalmia and developmental eye defects.
Slavotinek, A M; Garcia, S T; Chandratillake, G; Bardakjian, T; Ullah, E; Wu, D; Umeda, K; Lao, R; Tang, P L-F; Wan, E; Madireddy, L; Lyalina, S; Mendelsohn, B A; Dugan, S; Tirch, J; Tischler, R; Harris, J; Clark, M J; Chervitz, S; Patwardhan, A; West, J M; Ursell, P; de Alba Campomanes, A; Schneider, A; Kwok, P-Y; Baranzini, S; Chen, R O
2015-11-01
Anophthalmia/microphthalmia (A/M) is a genetically heterogeneous birth defect for which the etiology is unknown in more than 50% of patients. We used exome sequencing with the ACE Exome(TM) (Personalis, Inc; 18 cases) and UCSF Genomics Core (21 cases) to sequence 28 patients with A/M and four patients with varied developmental eye defects. In the 28 patients with A/M, we identified de novo mutations in three patients (OTX2, p.(Gln91His), RARB, p.Arg387Cys and GDF6, p.Ala249Glu) and inherited mutations in STRA6 in two patients. In patients with developmental eye defects, a female with cataracts and cardiomyopathy had a de novo COL4A1 mutation, p.(Gly773Arg), expanding the phenotype associated with COL4A1 to include cardiomyopathy. A male with a chorioretinal defect, microcephaly, seizures and sensorineural deafness had two PNPT1 mutations, p.(Ala507Ser) and c.401-1G>A, and we describe eye defects associated with this gene for the first time. Exome sequencing was efficient for identifying mutations in pathogenic genes for which there is no clinical testing available and for identifying cases that expand phenotypic spectra, such as the PNPT1 and COL4A1-associated disorders described here. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Palpant, Nathan J.; Hofsteen, Peter; Pabon, Lil; Reinecke, Hans; Murry, Charles E.
2015-01-01
Background Maternal smoking is a risk factor for low birth weight and other adverse developmental outcomes. Objective We sought to determine the impact of standard tobacco cigarettes and e-cigarettes on heart development in vitro and in vivo. Methods Zebrafish (Danio rerio) were used to assess developmental effects in vivo and cardiac differentiation of human embryonic stem cells (hESCs) was used as a model for in vitro cardiac development. Results In zebrafish, exposure to both types of cigarettes results in broad, dose-dependent developmental defects coupled with severe heart malformation, pericardial edema and reduced heart function. Tobacco cigarettes are more toxic than e-cigarettes at comparable nicotine concentrations. During cardiac differentiation of hESCs, tobacco smoke exposure results in a delayed transition through mesoderm. Both types of cigarettes decrease expression of cardiac transcription factors in cardiac progenitor cells, suggesting a persistent delay in differentiation. In definitive human cardiomyocytes, both e-cigarette- and tobacco cigarette-treated samples showed reduced expression of sarcomeric genes such as MLC2v and MYL6. Furthermore, tobacco cigarette-treated samples had delayed onset of beating and showed low levels and aberrant localization of N-cadherin, reduced myofilament content with significantly reduced sarcomere length, and increased expression of the immature cardiac marker smooth muscle alpha-actin. Conclusion These data indicate a negative effect of both tobacco cigarettes and e-cigarettes on heart development in vitro and in vivo. Tobacco cigarettes are more toxic than E-cigarettes and exhibit a broader spectrum of cardiac developmental defects. PMID:25978043
Liu, Desheng; Makaroff, Christopher A
2015-03-05
Eco1/Ctf7 is essential for the establishment of sister chromatid cohesion during S phase of the cell cycle. Inactivation of Ctf7/Eco1 leads to a lethal phenotype in most organisms. Altering Eco1/Ctf7 levels or point mutations in the gene can lead to alterations in nuclear division as well as a wide range of developmental defects. Inactivation of Arabidopsis CTF7 (AtCTF7) results in severe defects in reproduction and vegetative growth. To further investigate the function(s) of AtCTF7, a tagged version of AtCTF7 and several AtCTF7 deletion constructs were created and transformed into wild type or ctf7 +/- plants. Transgenic plants expressing 35S:NTAP:AtCTF7∆299-345 (AtCTF7∆B) displayed a wide range of phenotypic alterations in reproduction and vegetative growth. Male meiocytes exhibited chromosome fragmentation and uneven chromosome segregation. Mutant ovules contained abnormal megasporocyte-like cells during pre-meiosis, megaspores experienced elongated meiosis and megagametogenesis, and defective megaspores/embryo sacs were produced at various stages. The transgenic plants also exhibited a broad range of vegetative defects, including meristem disruption and dwarfism that were inherited in a non-Mendelian fashion. Transcripts for epigenetically regulated transposable elements (TEs) were elevated in transgenic plants. Transgenic plants expressing 35S:AtCTF7∆B displayed similar vegetative defects, suggesting the defects in 35S:NTAP:AtCTF7∆B plants are caused by high-level expression of AtCTF7∆B. High level expression of AtCTF7∆B disrupts megasporogenesis, megagametogenesis and male meiosis, as well as causing a broad range of vegetative defects, including dwarfism that are inherited in a non-Mendelian fashion.
Array comparative genome hybridization in patients with developmental delay: two example cases.
Hancarova, Miroslava; Drabova, Jana; Zmitkova, Zuzana; Vlckova, Marketa; Hedvicakova, Petra; Novotna, Drahuse; Vlckova, Zdenka; Vejvalkova, Sarka; Marikova, Tatana; Sedlacek, Zdenek
2012-02-15
Developmental delay is often a predictor of mental retardation (MR) or autism, two relatively frequent developmental disorders severely affecting intellectual and social functioning. The causes of these conditions remain unknown in most patients. They have a strong genetic component, but the specific genetic defects can only be identified in a fraction of patients. Recent developments in genomics supported the establishment of the causal link between copy number variants in the genomes of some patients and their affection. One of the techniques suitable for this analysis is array comparative genome hybridization, which can be used both for detailed mapping of chromosome rearrangements identified by classical cytogenetics and for the identification of novel submicroscopic gains or losses of genetic material. We illustrate the power of this approach in two patients. Patient 1 had a cytogenetically visible deletion of chromosome X and the molecular analysis was used to specify the gene content of the deletion and the prognosis of the child. Patient 2 had a seemingly normal karyotype and the analysis revealed a small recurrent deletion of chromosome 1 likely to be responsible for his phenotype. However, the genetic dissection of MR and autism is complicated by high heterogeneity of the genetic aberrations among patients and by broad variability of phenotypic effects of individual genetic defects. Copyright © 2010 Elsevier B.V. All rights reserved.
Limb defects induced by retinoic acid signaling antagonism and synthesis inhibition are consistent with ethanol-induced limb defects
Johnson CS1, Sulik KK1,2, Hunter, ES III3
1Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, NC....
Inhibition of GSK3β rescues hippocampal development and learning in a mouse model of CDKL5 disorder.
Fuchs, Claudia; Rimondini, Roberto; Viggiano, Rocchina; Trazzi, Stefania; De Franceschi, Marianna; Bartesaghi, Renata; Ciani, Elisabetta
2015-10-01
Mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene have been identified in a rare neurodevelopmental disorder characterized by early-onset seizures, severe developmental delay, intellectual disability and Rett syndrome-like features. CDKL5 is highly expressed in the brain during early postnatal stages, suggesting its importance for brain maturation. Using a newly-generated Cdkl5 knockout (Cdkl5 -/Y) mouse, we recently found that loss of Cdkl5 impairs postnatal hippocampal development with a reduction in neuronal precursor survival and maturation. These defects were accompanied by increased activity of the glycogen synthase kinase 3β (GSK3β) a crucial inhibitory regulator of many neurodevelopmental processes. The goal of the current study was to establish whether inhibition of GSK3β corrects hippocampal developmental defects due to Cdkl5 loss. We found that treatment with the GSK3β inhibitor SB216763 restored neuronal precursor survival, dendritic maturation, connectivity and hippocampus-dependent learning and memory in the Cdkl5 -/Y mouse. Importantly, these effects were retained one month after treatment cessation. At present, there are no therapeutic strategies to improve the neurological defects of subjects with CDKL5 disorder. Current results point at GSK3β inhibitors as potential therapeutic tools for the improvement of abnormal brain development in CDKL5 disorder. Copyright © 2015. Published by Elsevier Inc.
Sorting nexin 3 mutation impairs development and neuronal function in Caenorhabditis elegans.
Vieira, Neide; Bessa, Carlos; Rodrigues, Ana J; Marques, Paulo; Chan, Fung-Yi; de Carvalho, Ana Xavier; Correia-Neves, Margarida; Sousa, Nuno
2018-06-01
The sorting nexins family of proteins (SNXs) plays pleiotropic functions in protein trafficking and intracellular signaling and has been associated with several disorders, namely Alzheimer's disease and Down's syndrome. Despite the growing association of SNXs with neurodegeneration, not much is known about their function in the nervous system. The aim of this work was to use the nematode Caenorhabditis elegans that encodes in its genome eight SNXs orthologs, to dissect the role of distinct SNXs, particularly in the nervous system. By screening the C. elegans SNXs deletion mutants for morphological, developmental and behavioral alterations, we show here that snx-3 gene mutation leads to an array of developmental defects, such as delayed hatching, decreased brood size and life span and reduced body length. Additionally, ∆snx-3 worms present increased susceptibility to osmotic, thermo and oxidative stress and distinct behavioral deficits, namely, a chemotaxis defect which is independent of the described snx-3 role in Wnt secretion. ∆snx-3 animals also display abnormal GABAergic neuronal architecture and wiring and altered AIY interneuron structure. Pan-neuronal expression of C. elegans snx-3 cDNA in the ∆snx-3 mutant is able to rescue its locomotion defects, as well as its chemotaxis toward isoamyl alcohol. Altogether, the present work provides the first in vivo evidence of the SNX-3 role in the nervous system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruening, W.; Nakagama, H.: Bardessy, N.
Wilms` tumor (WT), an embryonal malignancy of the kidney, occurs most frequently in children under the age of 5 years, affecting {approximately}1 in 10,000 individuals. The WT1 tumor suppressor gene, residing at 11p13, is structurally altered in {approximately}10-15% of WT cases. Individuals with germline mutations within the WT1 gene suffer from predisposition to WT and developmental defects of the urogenital system. Patients with heterozygous deletions of the WT1 gene, or mutations predicted to cause inactivation of one WT1 allele, suffer relatively mild genital system defects (notably hypospadias and cryptorchidism in males) and a predisposition to WT. These results suggest thatmore » developing genital system development is sensitive to the absolute concentrations of the WT1 gene products. Patients with missense mutations within the WT1 gene, however, can suffer from a much more severe disorder known as Denys-Drash syndrome (DDS). This syndrome is characterized by intersex disorders, renal nephropathy, and a predisposition to WTs. The increased severity of the developmental defects associated with DDS, compared to those individuals with mild genital system anomalies and WTs, suggests that mutations defined in patients with DDS behave in a dominant-negative fashion. We have identified a novel WT1 mutation in a patient with DDS. This mutation, predicted to produce a truncated WT1 polypeptide encompassing exons 1, 2, and 3, defines a domain capable of behaving as an antimorph. We have also demonstrated that WT1 can self-associate in vivo using yeast two-hybrid systems. Deletion analysis have mapped the interacting domains to the amino terminus of the WT1 polypeptide, within exons 1 and 2. These results provide a molecular mechanism to explain how WT1 mutations can function in a dominant-negative fashion to eliminate wild-type WT1 activity, leading to DDS.« less
Winkle, Cortney C.; Olsen, Reid H. J.; Kim, Hyojin; Moy, Sheryl S.
2016-01-01
During hippocampal development, newly born neurons migrate to appropriate destinations, extend axons, and ramify dendritic arbors to establish functional circuitry. These developmental stages are recapitulated in the dentate gyrus of the adult hippocampus, where neurons are continuously generated and subsequently incorporate into existing, local circuitry. Here we demonstrate that the E3 ubiquitin ligase TRIM9 regulates these developmental stages in embryonic and adult-born mouse hippocampal neurons in vitro and in vivo. Embryonic hippocampal and adult-born dentate granule neurons lacking Trim9 exhibit several morphological defects, including excessive dendritic arborization. Although gross anatomy of the hippocampus was not detectably altered by Trim9 deletion, a significant number of Trim9−/− adult-born dentate neurons localized inappropriately. These morphological and localization defects of hippocampal neurons in Trim9−/− mice were associated with extreme deficits in spatial learning and memory, suggesting that TRIM9-directed neuronal morphogenesis may be involved in hippocampal-dependent behaviors. SIGNIFICANCE STATEMENT Appropriate generation and incorporation of adult-born neurons in the dentate gyrus are critical for spatial learning and memory and other hippocampal functions. Here we identify the brain-enriched E3 ubiquitin ligase TRIM9 as a novel regulator of embryonic and adult hippocampal neuron shape acquisition and hippocampal-dependent behaviors. Genetic deletion of Trim9 elevated dendritic arborization of hippocampal neurons in vitro and in vivo. Adult-born dentate granule cells lacking Trim9 similarly exhibited excessive dendritic arborization and mislocalization of cell bodies in vivo. These cellular defects were associated with severe deficits in spatial learning and memory. PMID:27147649
Winkle, Cortney C; Olsen, Reid H J; Kim, Hyojin; Moy, Sheryl S; Song, Juan; Gupton, Stephanie L
2016-05-04
During hippocampal development, newly born neurons migrate to appropriate destinations, extend axons, and ramify dendritic arbors to establish functional circuitry. These developmental stages are recapitulated in the dentate gyrus of the adult hippocampus, where neurons are continuously generated and subsequently incorporate into existing, local circuitry. Here we demonstrate that the E3 ubiquitin ligase TRIM9 regulates these developmental stages in embryonic and adult-born mouse hippocampal neurons in vitro and in vivo Embryonic hippocampal and adult-born dentate granule neurons lacking Trim9 exhibit several morphological defects, including excessive dendritic arborization. Although gross anatomy of the hippocampus was not detectably altered by Trim9 deletion, a significant number of Trim9(-/-) adult-born dentate neurons localized inappropriately. These morphological and localization defects of hippocampal neurons in Trim9(-/-) mice were associated with extreme deficits in spatial learning and memory, suggesting that TRIM9-directed neuronal morphogenesis may be involved in hippocampal-dependent behaviors. Appropriate generation and incorporation of adult-born neurons in the dentate gyrus are critical for spatial learning and memory and other hippocampal functions. Here we identify the brain-enriched E3 ubiquitin ligase TRIM9 as a novel regulator of embryonic and adult hippocampal neuron shape acquisition and hippocampal-dependent behaviors. Genetic deletion of Trim9 elevated dendritic arborization of hippocampal neurons in vitro and in vivo Adult-born dentate granule cells lacking Trim9 similarly exhibited excessive dendritic arborization and mislocalization of cell bodies in vivo These cellular defects were associated with severe deficits in spatial learning and memory. Copyright © 2016 the authors 0270-6474/16/364940-19$15.00/0.
Mammalian Cardiovascular Patterning as Determined by Hemodynamic Forces and Blood Vessel Genetics
NASA Astrophysics Data System (ADS)
Anderson, Gregory Arthur
Cardiovascular development is a process that involves the timing of multiple molecular events, and numerous subtle three-dimensional conformational changes. Traditional developmental biology techniques have provided large quantities of information as to how these complex organ systems develop. However, the major drawback of the majority of current developmental biological imaging is that they are two-dimensional in nature. It is now well recognized that circulation of blood is required for normal patterning and remodeling of blood vessels. Normal blood vessel formation is dependent upon a complex network of signaling pathways, and genetic mutations in these pathways leads to impaired vascular development, heart failure, and lethality. As such, it is not surprising that mutant mice with aberrant cardiovascular patterning are so common, since normal development requires proper coordination between three systems: the heart, the blood, and the vasculature. This thesis describes the implementation of a three-dimensional imaging technique, optical projection tomography (OPT), in conjunction with a computer-based registration algorithm to statistically analyze developmental differences in groups of wild-type mouse embryos. Embryos that differ by only a few hours' gestational time are shown to have developmental differences in blood vessel formation and heart development progression that can be discerned. This thesis describes how we analyzed mouse models of cardiovascular perturbation by OPT to detect morphological differences in embryonic development in both qualitative and quantitative ways. Both a blood vessel specific mutation and a cardiac specific mutation were analyzed, providing evidence that developmental defects of these types can be quantified. Finally, we describe the implementation of OPT imaging to identify statistically significant phenotypes from three different mouse models of cardiovascular perturbation across a range of developmental time points. Image registration methods, combined with intensity- and deformation-based analyses are described and utilized to fully characterize myosin light chain 2a (Mlc2a), delta-like ligand 4 (Dll4), and Endoglin (Eng) mutant mouse embryos. We show that Eng mutant embryos are statistically similar to the Mlc2a phenotype, confirming that these mouse mutants suffer from a primary cardiac developmental defect. Thus, a loss of hemodynamic force caused by defective pumping of the heart is the primary developmental defect affecting these mice.
Defining a predictive model of developmental toxicity from in vitro and high-throughput screening (HTS) assays can be limited by the availability of developmental defects data. ToxRefDB (www.epa.gov/ncct/todrefdb) was built from animal studies on data-rich environmental chemicals...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moriyama, Yuki; Ohata, Yoshihisa; Mori, Shoko
Research highlights: {yields} Does famous anti-aging drug rapamycin work from the beginning of life? The answer is yes. {yields} This study shows that developmental speed of frog embryo was dose-dependently decreased by rapamycin treatment. {yields} In additions, morphogenetic effects such as less pigmentations and gut malformation are occurred by rapamycin. -- Abstract: Rapamycin is a drug working as an inhibitor of the TOR (target of rapamycin) signaling pathway and influences various life phenomena such as cell growth, proliferation, and life span extension in eukaryote. However, the extent to which rapamycin controls early developmental events of amphibians remains to be understood.more » Here we report an examination of rapamycin effects during Xenopus early development, followed by a confirmation of suppression of TOR downstream kinase S6K by rapamycin treatment. First, we found that developmental speed was declined in dose-dependent manner of rapamycin. Second, black pigment spots located at dorsal and lateral skin in tadpoles were reduced by rapamycin treatment. Moreover, in tadpole stages severe gastrointestinal malformations were observed in rapamycin-treated embryos. Taken together with these results, we conclude that treatment of the drug rapamycin causes enormous influences on early developmental period.« less
Novel NEK8 Mutations Cause Severe Syndromic Renal Cystic Dysplasia through YAP Dysregulation
Grampa, Valentina; Odye, Gweltas; Thomas, Sophie; Elkhartoufi, Nadia; Filhol, Emilie; Niel, Olivier; Silbermann, Flora; Lebreton, Corinne; Collardeau-Frachon, Sophie; Rouvet, Isabelle; Alessandri, Jean-Luc; Devisme, Louise; Dieux-Coeslier, Anne; Cordier, Marie-Pierre; Capri, Yline; Khung-Savatovsky, Suonavy; Sigaudy, Sabine; Salomon, Rémi; Antignac, Corinne; Gubler, Marie-Claire; Benmerah, Alexandre; Terzi, Fabiola; Attié-Bitach, Tania; Jeanpierre, Cécile; Saunier, Sophie
2016-01-01
Ciliopathies are a group of genetic multi-systemic disorders related to dysfunction of the primary cilium, a sensory organelle present at the cell surface that regulates key signaling pathways during development and tissue homeostasis. In order to identify novel genes whose mutations would cause severe developmental ciliopathies, >500 patients/fetuses were analyzed by a targeted high throughput sequencing approach allowing exome sequencing of >1200 ciliary genes. NEK8/NPHP9 mutations were identified in five cases with severe overlapping phenotypes including renal cystic dysplasia/hypodysplasia, situs inversus, cardiopathy with hypertrophic septum and bile duct paucity. These cases highlight a genotype-phenotype correlation, with missense and nonsense mutations associated with hypodysplasia and enlarged cystic organs, respectively. Functional analyses of NEK8 mutations in patient fibroblasts and mIMCD3 cells showed that these mutations differentially affect ciliogenesis, proliferation/apoptosis/DNA damage response, as well as epithelial morphogenesis. Notably, missense mutations exacerbated some of the defects due to NEK8 loss of function, highlighting their likely gain-of-function effect. We also showed that NEK8 missense and loss-of-function mutations differentially affect the regulation of the main Hippo signaling effector, YAP, as well as the expression of its target genes in patient fibroblasts and renal cells. YAP imbalance was also observed in enlarged spheroids of Nek8-invalidated renal epithelial cells grown in 3D culture, as well as in cystic kidneys of Jck mice. Moreover, co-injection of nek8 MO with WT or mutated NEK8-GFP RNA in zebrafish embryos led to shortened dorsally curved body axis, similar to embryos injected with human YAP RNA. Finally, treatment with Verteporfin, an inhibitor of YAP transcriptional activity, partially rescued the 3D spheroid defects of Nek8-invalidated cells and the abnormalities of NEK8-overexpressing zebrafish embryos. Altogether, our study demonstrates that NEK8 human mutations cause major organ developmental defects due to altered ciliogenesis and cell differentiation/proliferation through deregulation of the Hippo pathway. PMID:26967905
The prevalence of Molar-Incisor Hypomineralisation (MIH) in Wainuiomata children.
Mahoney, Erin K; Morrison, David G
2009-12-01
The aim of this study was to determine the prevalence of Molar-Incisor Hypomineralisation (MIH) in Wainuiomata children and describe differences in prevalence among Māori, Pacific Island and New Zealand European ethnic groups. Cross-sectional survey of developmental defects of enamel in a random sample of children attending primary school in Wainuiomata, Wellington. Study information and consent forms were sent to 850 7-to-10-year-old schoolchildren. Using the modified Developmental Defects of Enamel index, a single paediatric dentist examined students in the classroom. Dental caries experience was recorded as decayed, missing or filled primary and permanent teeth. Examinations were conducted on 522 children (participation rate 61.4%). The mean age of the children was 8.2 years (range 7 to 10 years). MIH prevalence was 14.9%. The prevalence ofhypomineralisation ofany tooth was 15.3%, and that for hypoplasia was 4.0%. There was no statistically significant ethnic difference in MIH prevalence. The mean DMFT was 0.16 (SD, 0.54) in those without a developmental defect, 0.54 (SD, 1.12) in those with hypomineralisation and 1.85 (SD, 1.85) in those with hypoplasia (p < 0.01). Approximately one in seven Wainuiomata children have MIH. Ethnicity is not a modifying factor in the occurrence of developmental defects of enamel. The presence of hypomineralisation and/or hypoplasia was associated with significantly greater caries experience in the permanent dentition.
Schertzer, Michael; Jouravleva, Karina; Perderiset, Mylene; Dingli, Florent; Loew, Damarys; Le Guen, Tangui; Bardoni, Barbara; de Villartay, Jean-Pierre; Revy, Patrick; Londoño-Vallejo, Arturo
2015-02-18
Hoyeraal-Hreidarsson syndrome (HHS) is a severe form of Dyskeratosis congenita characterized by developmental defects, bone marrow failure and immunodeficiency and has been associated with telomere dysfunction. Recently, mutations in Regulator of Telomere ELongation helicase 1 (RTEL1), a helicase first identified in Mus musculus as being responsible for the maintenance of long telomeres, have been identified in several HHS patients. Here we show that RTEL1 is required for the export and the correct cytoplasmic trafficking of the small nuclear (sn) RNA pre-U2, a component of the major spliceosome complex. RTEL1-HHS cells show abnormal subcellular partitioning of pre-U2, defects in the recycling of ribonucleotide proteins (RNP) in the cytoplasm and splicing defects. While most of these phenotypes can be suppressed by re-expressing the wild-type protein in RTEL1-HHS cells, expression of RTEL1 mutated variants in immortalized cells provokes cytoplasmic mislocalizations of pre-U2 and other RNP components, as well as splicing defects, thus phenocopying RTEL1-HHS cellular defects. Strikingly, expression of a cytoplasmic form of RTEL1 is sufficient to correct RNP mislocalizations both in RTEL1-HHS cells and in cells expressing nuclear mutated forms of RTEL1. This work unravels completely unanticipated roles for RTEL1 in RNP trafficking and strongly suggests that defects in RNP biogenesis pathways contribute to the pathology of HHS. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Cawdell-Smith, J; Upfold, J; Edwards, M; Smith, M
1992-01-01
Guinea pigs were exposed to hyperthermia for 1 hr once or twice on day 11, 12, 13, or 14 (E11-E14) of pregnancy. The mean rectal temperatures were elevated by 3.4 degrees C-4.0 degrees C. This treatment resulted in a marked elevation of rates of resorption and developmental defects in embryos examined at day E23. The defects observed were those affecting the neural tube (NTD) (exencephaly, encephaloceles, and microphthalmia), kyphosis/scoliosis, branchial arch defects, and pericardial edema. Embryos with NTD and kyphosis/scoliosis have not been found among newborn guinea pigs to date following maternal heat exposure on days E12-E14. It appears that embryos with these defects are filtered out by resorption or abortion by days E30-E35.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colman, Joan; Rice, Glenn E., E-mail: rice.glenn@epa.gov; Wright, J. Michael
Reactions between chemicals used to disinfect drinking water and compounds present in source waters produce chemical mixtures containing hundreds of disinfection byproducts (DBPs). Although the results have been somewhat inconsistent, some epidemiological studies suggest associations may exist between DBP exposures and adverse developmental outcomes. The potencies of individual DBPs in rodent and rabbit developmental bioassays suggest that no individual DBP can account for the relative risk estimates reported in the positive epidemiologic studies, leading to the hypothesis that these outcomes could result from the toxicity of DBP mixtures. As a first step in a mixtures risk assessment for DBP developmentalmore » effects, this paper identifies developmentally toxic DBPs and examines data relevant to the mode of action (MOA) for DBP developmental toxicity. We identified 24 developmentally toxic DBPs and four adverse developmental outcomes associated with human DBP exposures: spontaneous abortion, cardiovascular defects, neural tube defects, and low birth weight infancy. A plausible MOA, involving hormonal disruption of pregnancy, is delineated for spontaneous abortion, which some epidemiologic studies associate with total trihalomethane and bromodichloromethane exposures. The DBP data for the other three outcomes were inadequate to define key MOA steps.« less
Verreet, Tine; Quintens, Roel; Baatout, Sarah; Benotmane, Mohammed A.
2016-01-01
Ionizing radiation is omnipresent. We are continuously exposed to natural (e.g., radon and cosmic) and man-made radiation sources, including those from industry but especially from the medical sector. The increasing use of medical radiation modalities, in particular those employing low-dose radiation such as CT scans, raises concerns regarding the effects of cumulative exposure doses and the inappropriate utilization of these imaging techniques. One of the major goals in the radioprotection field is to better understand the potential health risk posed to the unborn child after radiation exposure to the pregnant mother, of which the first convincing evidence came from epidemiological studies on in utero exposed atomic bomb survivors. In the following years, animal models have proven to be an essential tool to further characterize brain developmental defects and consequent functional deficits. However, the identification of a possible dose threshold is far from complete and a sound link between early defects and persistent anomalies has not yet been established. This review provides an overview of the current knowledge on brain developmental and persistent defects resulting from in utero radiation exposure and addresses the many questions that still remain to be answered. PMID:27382490
Mouse Models for Investigating the Developmental Bases of Human Birth Defects
MOON, ANNE M.
2006-01-01
Clinicians and basic scientists share an interest in discovering how genetic or environmental factors interact to perturb normal development and cause birth defects and human disease. Given the complexity of such interactions, it is not surprising that 4% of human infants are born with a congenital malformation, and cardiovascular defects occur in nearly 1%. Our research is based on the fundamental hypothesis that an understanding of normal and abnormal development will permit us to generate effective strategies for both prevention and treatment of human birth defects. Animal models are invaluable in these efforts because they allow one to interrogate the genetic, molecular and cellular events that distinguish normal from abnormal development. Several features of the mouse make it a particularly powerful experimental model: it is a mammalian system with similar embryology, anatomy and physiology to humans; genes, proteins and regulatory programs are largely conserved between human and mouse; and finally, gene targeting in murine embryonic stem cells has made the mouse genome amenable to sophisticated genetic manipulation currently unavailable in any other model organism. PMID:16641221
Knockdown of zebrafish Fancd2 causes developmental abnormalities via p53-dependent apoptosis.
Liu, Ting Xi; Howlett, Niall G; Deng, Min; Langenau, David M; Hsu, Karl; Rhodes, Jennifer; Kanki, John P; D'Andrea, Alan D; Look, A Thomas
2003-12-01
Mechanisms underlying the multiple developmental defects observed in Fanconi anemia (FA) patients are not well defined. We have identified the zebrafish homolog of human FANCD2, which encodes a nuclear effector protein that is monoubiquitinated in response to DNA damage, targeting it to nuclear foci where it preserves chromosomal integrity. Fancd2-deficient zebrafish embryos develop defects similar to those found in children with FA, including shortened body length, microcephaly, and microophthalmia, which are due to extensive cellular apoptosis. Developmental defects and increased apoptosis in Fancd2-deficient zebrafish were corrected by injection of human FANCD2 or zebrafish bcl2 mRNA, or by knockdown of p53, indicating that in the absence of Fancd2, developing tissues spontaneously undergo p53-dependent apoptosis. Thus, Fancd2 is essential during embryogenesis to prevent inappropriate apoptosis in neural cells and other tissues undergoing high levels of proliferative expansion, implicating this mechanism in the congenital abnormalities observed in human infants with FA.
Editorial brain malformation surveillance in the Zika era
Trevathan, Edwin
2016-01-01
The current surveillance systems for congenital microcephaly are necessary to monitor the impact of Zika virus (ZIKV) on the developing human brain, as well as the ZIKV prevention efforts. However, these congenital microcephaly surveillance systems are insufficient. Abnormalities of neuronal differentiation, development and migration may occur among infants with normal head circumference who have intrauterine exposure to ZIKV. Therefore, surveillance for congenital microcephaly does not ascertain many of the infants seriously impacted by congenital ZIKV infection. Furthermore, many infants with normal head circumference and with malformations of the brain cortex do not have clinical manifestations of their congenital malformations until several months to many years after birth, when they present with clinical manifestations such as seizures/epilepsy, developmental delays with or without developmental regression, and/or motor impairment. In response to the ZIKV threat, public health surveillance systems must be enhanced to ascertain a wide variety of congenital brain malformations, as well as their clinical manifestations that lead to diagnostic brain imaging. Birth Defects Research (Part A) 106:869–874, 2016. © 2016 The Authors Birth Defects Research Part A: Clinical and Molecular Teratology Published by Wiley Periodicals, Inc. PMID:27891785
Dai, H; Zhang, V W; El-Hattab, A W; Ficicioglu, C; Shinawi, M; Lines, M; Schulze, A; McNutt, M; Gotway, G; Tian, X; Chen, S; Wang, J; Craigen, W J; Wong, L-J
2017-04-01
Mutations in FBXL4 have recently been recognized to cause a mitochondrial disorder, with clinical features including early onset lactic acidosis, hypotonia, and developmental delay. FBXL4 sequence analysis was performed in 808 subjects suspected to have a mitochondrial disorder. In addition, 28 samples from patients with early onset of lactic acidosis, but without identifiable mutations in 192 genes known to cause mitochondrial diseases, were examined for FBXL4 mutations. Definitive diagnosis was made in 10 new subjects with a total of 7 novel deleterious variants; 5 null and 2 missense substitutions. All patients exhibited congenital lactic acidemia, most of them with severe encephalopathic presentation, and global developmental delay. Overall, FBXL4 defects account for at least 0.7% (6 out of 808) of subjects suspected to have a mitochondrial disorder, and as high as 14.3% (4 out of 28) in young children with congenital lactic acidosis and clinical features of mitochondrial disease. Including FBLX4 in the mitochondrial diseases panel should be particularly important for patients with congenital lactic acidosis. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Blastogenetic associations: General considerations.
Lubinsky, Mark
2015-11-01
Associations of anomalies, with VACTERL as the prototype, have been the source of much debate, including questions about the validity and definition of this category. Evidence is presented for a teratologic basis for associations involving interactions between disruptive events and specific vulnerabilities. Because the embryo is organized in time and space, differences in the timing, location, and severity of exposures will create variable sequelae for any specific vulnerability, creating associations. The blastogenetic stage of development involves distinct properties that affect the nature of associations arising during this time, including relatively undifferentiated developmental fields and causally nonspecific malformations. With this, single anomalies can be part of the spectrum of findings that comprise a specific association. A specific defect defines a subset of disturbances, biasing frequencies of other defects. Processes are basic, integrated, and general, so disruptions are often lethal, and can have multiple effects, accounting for high incidences of multiple anomalies, and overlaps between associations. Blastogenetic disturbances also do not affect the late "fine tuning" of minor anomalies, although pathogenetic sequences can occur. This model suggests that certain combinations of congenital anomalies can arise from causally nonspecific teratogenetic fields determined by timing, location, and vulnerabilities, rather than polytopic developmental fields. © 2015 Wiley Periodicals, Inc.
Drosophila Fip200 is an essential regulator of autophagy that attenuates both growth and aging.
Kim, Myungjin; Park, Hae Li; Park, Hwan-Woo; Ro, Seung-Hyun; Nam, Samuel G; Reed, John M; Guan, Jun-Lin; Lee, Jun Hee
2013-08-01
Autophagy-related 1 (Atg1)/Unc-51-like protein kinases (ULKs) are evolutionarily conserved proteins that play critical physiological roles in controlling autophagy, cell growth and neurodevelopment. RB1-inducible coiled-coil 1 (RB1CC1), also known as PTK2/FAK family-interacting protein of 200 kDa (FIP200) is a recently discovered binding partner of ULK1. Here we isolated the Drosophila RB1CC1/FIP200 homolog (Fip200/CG1347) and showed that it mediates Atg1-induced autophagy as a genetically downstream component in diverse physiological contexts. Fip200 loss-of-function mutants experienced severe mobility loss associated with neuronal autophagy defects and neurodegeneration. The Fip200 mutants were also devoid of both developmental and starvation-induced autophagy in salivary gland and fat body, while having no defects in axonal transport and projection in developing neurons. Interestingly, moderate downregulation of Fip200 accelerated both developmental growth and aging, accompanied by target of rapamycin (Tor) signaling upregulation. These results suggest that Fip200 is a critical downstream component of Atg1 and specifically mediates Atg1's autophagy-, aging- and growth-regulating functions.
Drosophila Fip200 is an essential regulator of autophagy that attenuates both growth and aging
Kim, Myungjin; Park, Hae Li; Park, Hwan-Woo; Ro, Seung-Hyun; Nam, Samuel G.; Reed, John M.; Guan, Jun-Lin; Lee, Jun Hee
2013-01-01
Autophagy-related 1 (Atg1)/Unc-51-like protein kinases (ULKs) are evolutionarily conserved proteins that play critical physiological roles in controlling autophagy, cell growth and neurodevelopment. RB1-inducible coiled-coil 1 (RB1CC1), also known as PTK2/FAK family-interacting protein of 200 kDa (FIP200) is a recently discovered binding partner of ULK1. Here we isolated the Drosophila RB1CC1/FIP200 homolog (Fip200/CG1347) and showed that it mediates Atg1-induced autophagy as a genetically downstream component in diverse physiological contexts. Fip200 loss-of-function mutants experienced severe mobility loss associated with neuronal autophagy defects and neurodegeneration. The Fip200 mutants were also devoid of both developmental and starvation-induced autophagy in salivary gland and fat body, while having no defects in axonal transport and projection in developing neurons. Interestingly, moderate downregulation of Fip200 accelerated both developmental growth and aging, accompanied by target of rapamycin (Tor) signaling upregulation. These results suggest that Fip200 is a critical downstream component of Atg1 and specifically mediates Atg1’s autophagy-, aging- and growth-regulating functions. PMID:23819996
Bolton, Helen; Graham, Sarah J L; Van der Aa, Niels; Kumar, Parveen; Theunis, Koen; Fernandez Gallardo, Elia; Voet, Thierry; Zernicka-Goetz, Magdalena
2016-03-29
Most human pre-implantation embryos are mosaics of euploid and aneuploid cells. To determine the fate of aneuploid cells and the developmental potential of mosaic embryos, here we generate a mouse model of chromosome mosaicism. By treating embryos with a spindle assembly checkpoint inhibitor during the four- to eight-cell division, we efficiently generate aneuploid cells, resulting in embryo death during peri-implantation development. Live-embryo imaging and single-cell tracking in chimeric embryos, containing aneuploid and euploid cells, reveal that the fate of aneuploid cells depends on lineage: aneuploid cells in the fetal lineage are eliminated by apoptosis, whereas those in the placental lineage show severe proliferative defects. Overall, the proportion of aneuploid cells is progressively depleted from the blastocyst stage onwards. Finally, we show that mosaic embryos have full developmental potential, provided they contain sufficient euploid cells, a finding of significance for the assessment of embryo vitality in the clinic.
Werren, John H.; Cohen, Lorna B.; Gadau, Juergen; Ponce, Rita; Baudry, Emmanuelle; Lynch, Jeremy A.
2016-01-01
The animal head is a complex structure where numerous sensory, structural and alimentary structures are concentrated and integrated, and its ontogeny requires precise and delicate interactions among genes, cells, and tissues. Thus, it is perhaps unsurprising that craniofacial abnormalities are among the most common birth defects in people, or that these defects have a complex genetic basis involving interactions among multiple loci. Developmental processes that depend on such epistatic interactions become exponentially more difficult to study in diploid organisms as the number of genes involved increases. Here, we present hybrid haploid males of the wasp species pair Nasonia vitripennis and Nasonia giraulti, which have distinct male head morphologies, as a genetic model of craniofacial development that possesses the genetic advantages of haploidy, along with many powerful genomic tools. Viable, fertile hybrids can be made between the species, and quantitative trail loci related to shape differences have been identified. In addition, a subset of hybrid males show head abnormalities, including clefting at the midline and asymmetries. Crucially, epistatic interactions among multiple loci underlie several developmental differences and defects observed in the F2 hybrid males. Furthermore, we demonstrate an introgression of a chromosomal region from N. giraulti into N. vitripennis that shows an abnormality in relative eye size, which maps to a region containing a major QTL for this trait. Therefore, the genetic sources of head morphology can, in principle, be identified by positional cloning. Thus, Nasonia is well positioned to be a uniquely powerful model invertebrate system with which to probe both development and complex genetics of craniofacial patterning and defects. PMID:26721604
Geoffroy, Andréa; Kerek, Racha; Pourié, Grégory; Helle, Déborah; Guéant, Jean-Louis; Daval, Jean-Luc; Bossenmeyer-Pourié, Carine
2017-09-01
The micronutrients folate and vitamin B12 are essential for the proper development of the central nervous system, and their deficiency during pregnancy has been associated with a wide range of disorders. They act as methyl donors in the one-carbon metabolism which critically influences epigenetic mechanisms. In order to depict further underlying mechanisms, we investigated the role of let-7 and miR-34, two microRNAs regulated by methylation, on a rat model of maternal deficiency. In several countries, public health policies recommend periconceptional supplementation with folic acid. However, the question about the duration and periodicity of supplementation remains. We therefore tested maternal supply (3 mg/kg/day) during the last third of gestation from embryonic days (E) 13 to 20. Methyl donor deficiency-related developmental disorders at E20, including cerebellar and interhemispheric suture defects and atrophy of selective cerebral layers, were associated with increased brain expression (by 2.5-fold) of let-7a and miR-34a, with subsequent downregulation of their regulatory targets such as Trim71 and Notch signaling partners, respectively. These processes could be reversed by siRNA strategy in differentiating neuroprogenitors lacking folate, with improvement of their morphological characteristics. While folic acid supplementation helped restoring the levels of let-7a and miR-34a and their downstream targets, it led to a reduction of structural and functional defects taking place during the perinatal period. Our data outline the potential role of let-7 and miR-34 and their related signaling pathways in the developmental defects following gestational methyl donor deficiency and support the likely usefulness of late folate supplementation in at risk women.
Albert, Mareike; Schmitz, Sandra U; Kooistra, Susanne M; Malatesta, Martina; Morales Torres, Cristina; Rekling, Jens C; Johansen, Jens V; Abarrategui, Iratxe; Helin, Kristian
2013-04-01
Embryonic development is tightly regulated by transcription factors and chromatin-associated proteins. H3K4me3 is associated with active transcription and H3K27me3 with gene repression, while the combination of both keeps genes required for development in a plastic state. Here we show that deletion of the H3K4me2/3 histone demethylase Jarid1b (Kdm5b/Plu1) results in major neonatal lethality due to respiratory failure. Jarid1b knockout embryos have several neural defects including disorganized cranial nerves, defects in eye development, and increased incidences of exencephaly. Moreover, in line with an overlap of Jarid1b and Polycomb target genes, Jarid1b knockout embryos display homeotic skeletal transformations typical for Polycomb mutants, supporting a functional interplay between Polycomb proteins and Jarid1b. To understand how Jarid1b regulates mouse development, we performed a genome-wide analysis of histone modifications, which demonstrated that normally inactive genes encoding developmental regulators acquire aberrant H3K4me3 during early embryogenesis in Jarid1b knockout embryos. H3K4me3 accumulates as embryonic development proceeds, leading to increased expression of neural master regulators like Pax6 and Otx2 in Jarid1b knockout brains. Taken together, these results suggest that Jarid1b regulates mouse development by protecting developmental genes from inappropriate acquisition of active histone modifications.
Kooistra, Susanne M.; Malatesta, Martina; Morales Torres, Cristina; Rekling, Jens C.; Johansen, Jens V.; Abarrategui, Iratxe; Helin, Kristian
2013-01-01
Embryonic development is tightly regulated by transcription factors and chromatin-associated proteins. H3K4me3 is associated with active transcription and H3K27me3 with gene repression, while the combination of both keeps genes required for development in a plastic state. Here we show that deletion of the H3K4me2/3 histone demethylase Jarid1b (Kdm5b/Plu1) results in major neonatal lethality due to respiratory failure. Jarid1b knockout embryos have several neural defects including disorganized cranial nerves, defects in eye development, and increased incidences of exencephaly. Moreover, in line with an overlap of Jarid1b and Polycomb target genes, Jarid1b knockout embryos display homeotic skeletal transformations typical for Polycomb mutants, supporting a functional interplay between Polycomb proteins and Jarid1b. To understand how Jarid1b regulates mouse development, we performed a genome-wide analysis of histone modifications, which demonstrated that normally inactive genes encoding developmental regulators acquire aberrant H3K4me3 during early embryogenesis in Jarid1b knockout embryos. H3K4me3 accumulates as embryonic development proceeds, leading to increased expression of neural master regulators like Pax6 and Otx2 in Jarid1b knockout brains. Taken together, these results suggest that Jarid1b regulates mouse development by protecting developmental genes from inappropriate acquisition of active histone modifications. PMID:23637629
Blanchette, Cassandra R; Thackeray, Andrea; Perrat, Paola N; Hekimi, Siegfried; Bénard, Claire Y
2017-01-01
The regulation of cell migration is essential to animal development and physiology. Heparan sulfate proteoglycans shape the interactions of morphogens and guidance cues with their respective receptors to elicit appropriate cellular responses. Heparan sulfate proteoglycans consist of a protein core with attached heparan sulfate glycosaminoglycan chains, which are synthesized by glycosyltransferases of the exostosin (EXT) family. Abnormal HS chain synthesis results in pleiotropic consequences, including abnormal development and tumor formation. In humans, mutations in either of the exostosin genes EXT1 and EXT2 lead to osteosarcomas or multiple exostoses. Complete loss of any of the exostosin glycosyltransferases in mouse, fish, flies and worms leads to drastic morphogenetic defects and embryonic lethality. Here we identify and study previously unavailable viable hypomorphic mutations in the two C. elegans exostosin glycosyltransferases genes, rib-1 and rib-2. These partial loss-of-function mutations lead to a severe reduction of HS levels and result in profound but specific developmental defects, including abnormal cell and axonal migrations. We find that the expression pattern of the HS copolymerase is dynamic during embryonic and larval morphogenesis, and is sustained throughout life in specific cell types, consistent with HSPGs playing both developmental and post-developmental roles. Cell-type specific expression of the HS copolymerase shows that HS elongation is required in both the migrating neuron and neighboring cells to coordinate migration guidance. Our findings provide insights into general principles underlying HSPG function in development.
Pancreas-specific deletion of mouse Gata4 and Gata6 causes pancreatic agenesis
Xuan, Shouhong; Borok, Matthew J.; Decker, Kimberly J.; Battle, Michele A.; Duncan, Stephen A.; Hale, Michael A.; Macdonald, Raymond J.; Sussel, Lori
2012-01-01
Pancreatic agenesis is a human disorder caused by defects in pancreas development. To date, only a few genes have been linked to pancreatic agenesis in humans, with mutations in pancreatic and duodenal homeobox 1 (PDX1) and pancreas-specific transcription factor 1a (PTF1A) reported in only 5 families with described cases. Recently, mutations in GATA6 have been identified in a large percentage of human cases, and a GATA4 mutant allele has been implicated in a single case. In the mouse, Gata4 and Gata6 are expressed in several endoderm-derived tissues, including the pancreas. To analyze the functions of GATA4 and/or GATA6 during mouse pancreatic development, we generated pancreas-specific deletions of Gata4 and Gata6. Surprisingly, loss of either Gata4 or Gata6 in the pancreas resulted in only mild pancreatic defects, which resolved postnatally. However, simultaneous deletion of both Gata4 and Gata6 in the pancreas caused severe pancreatic agenesis due to disruption of pancreatic progenitor cell proliferation, defects in branching morphogenesis, and a subsequent failure to induce the differentiation of progenitor cells expressing carboxypeptidase A1 (CPA1) and neurogenin 3 (NEUROG3). These studies address the conserved and nonconserved mechanisms underlying GATA4 and GATA6 function during pancreas development and provide a new mouse model to characterize the underlying developmental defects associated with pancreatic agenesis. PMID:23006325
Update on Foregut Molecular Embryology and Role of Regenerative Medicine Therapies
Perin, Silvia; McCann, Conor J.; Borrelli, Osvaldo; De Coppi, Paolo; Thapar, Nikhil
2017-01-01
Esophageal atresia (OA) represents one of the commonest and most severe developmental disorders of the foregut, the most proximal segment of the gastrointestinal (GI) tract (esophagus and stomach) in embryological terms. Of intrigue is the common origin from this foregut of two very diverse functional entities, the digestive and respiratory systems. OA appears to result from incomplete separation of the ventral and dorsal parts of the foregut during development, resulting in disruption of esophageal anatomy and frequent association with tracheo-oesophageal fistula. Not surprisingly, and likely inherent to OA, are associated abnormalities in components of the enteric neuromusculature and ultimately loss of esophageal functional integrity. An appreciation of such developmental processes and associated defects has not only enhanced our understanding of the etiopathogenesis underlying such devastating defects but also highlighted the potential of novel corrective therapies. There has been considerable progress in the identification and propagation of neural crest stem cells from the GI tract itself or derived from pluripotent cells. Such cells have been successfully transplanted into models of enteric neuropathy confirming their ability to functionally integrate and replenish missing or defective enteric nerves. Combinatorial approaches in tissue engineering hold significant promise for the generation of organ-specific scaffolds such as the esophagus with current initiatives directed toward their cellularization to facilitate optimal function. This chapter outlines the most current understanding of the molecular embryology underlying foregut development and OA, and also explores the promise of regenerative medicine. PMID:28503544
Update on Foregut Molecular Embryology and Role of Regenerative Medicine Therapies.
Perin, Silvia; McCann, Conor J; Borrelli, Osvaldo; De Coppi, Paolo; Thapar, Nikhil
2017-01-01
Esophageal atresia (OA) represents one of the commonest and most severe developmental disorders of the foregut, the most proximal segment of the gastrointestinal (GI) tract (esophagus and stomach) in embryological terms. Of intrigue is the common origin from this foregut of two very diverse functional entities, the digestive and respiratory systems. OA appears to result from incomplete separation of the ventral and dorsal parts of the foregut during development, resulting in disruption of esophageal anatomy and frequent association with tracheo-oesophageal fistula. Not surprisingly, and likely inherent to OA, are associated abnormalities in components of the enteric neuromusculature and ultimately loss of esophageal functional integrity. An appreciation of such developmental processes and associated defects has not only enhanced our understanding of the etiopathogenesis underlying such devastating defects but also highlighted the potential of novel corrective therapies. There has been considerable progress in the identification and propagation of neural crest stem cells from the GI tract itself or derived from pluripotent cells. Such cells have been successfully transplanted into models of enteric neuropathy confirming their ability to functionally integrate and replenish missing or defective enteric nerves. Combinatorial approaches in tissue engineering hold significant promise for the generation of organ-specific scaffolds such as the esophagus with current initiatives directed toward their cellularization to facilitate optimal function. This chapter outlines the most current understanding of the molecular embryology underlying foregut development and OA, and also explores the promise of regenerative medicine.
Developmental Toxicity of Louisiana Crude Oil-Spiked Sediment to Zebrafish
Embryonic exposures to the components of petroleum, including polycyclic aromatic hydrocarbons (PAHs), cause a characteristic suite of developmental defects and cardiotoxicity in a variety of fish species. We exposed zebrafish embryos to reference sediment mixed with laboratory w...
Developmental Toxicity of Louisiana Crude Oiled Sediment to Zebrafish
Embryonic exposures to polycyclic aromatic hydrocarbons (PAHs) and petroleum products cause a characteristic suite of developmental defects in a variety of fish species. We exposed zebrafish embryos to sediment mixed with laboratory weathered South Louisiana crude oil. Oiled sedi...
Akhter, Shamima; Lam, Yung C.; Chang, Sandy; Legerski, Randy J.
2013-01-01
Summary Conserved metallo β-Lactamase and β-CASP (CPSF-Artemis-Snm1-Pso2) domain nuclease family member SNM1B/Apollo is a shelterin-associated protein that localizes to telomeres through its interaction with TRF2. To study its in vivo role, we generated a knockout of SNM1B/Apollo in a mouse model. Snm1B/Apollo homozygous null mice die at birth with developmental delay and defects in multiple organ systems. Cell proliferation defects were observed in Snm1B/Apollo mutant mouse embryonic fibroblasts (MEFs) owing to high levels of telomeric end-to-end fusions. Deficiency of the nonhomologous end-joining (NHEJ) factor Ku70, but not p53, rescued the developmental defects and lethality observed in Snm1B/Apollo mutant mice as well as the impaired proliferation of Snm1B/Apollo-deficient MEFs. These findings demonstrate that SNM1B/Apollo is required to protect telomeres against NHEJ-mediated repair, which results in genomic instability and the consequent multi-organ developmental failure. Although Snm1B/Apollo-deficient MEFs exhibited high levels of apoptosis, abrogation of p53-dependent programmed cell death did not rescue the multi-organ developmental failure in the mice. PMID:20854421
1992-08-31
Birth Defects and Developmental Anomalies Twelve specific birth defects (anencephaly, spina bifida, hydrocephalus, cleft palate , cleft lip / palate ...Selected Birth Defects Twelve birth defects (anencephaly, spina bifida, hydrocephalus, cleft palate , cleft lip / palate , esophageal atresia, anorectal... cleft palate after coadministration of retinoic acid and TCDD. Toxicology and Applied Pharmacology 99(2):287-301 25. Roberts, E. A., Vella, L. M., Golas
Rogers, Scott W; Tvrdik, Petr; Capecchi, Mario R; Gahring, Lorise C
2012-01-01
Lumbosacral spina bifida is a common debilitating birth defect whose multiple causes are poorly understood. Here, we provide the first genetic delineation of cholinergic nicotinic receptor alpha7 (Chrna7) expression and link the ablation of the Chrna7 cell lineage to this condition in the mouse. Using homologous recombination, an IRES-Cre bi-cistronic cassette was introduced into the 3′ noncoding region of Chrna7 (Chrna7:Cre) for identifying cell lineages expressing this gene. This lineage first appears at embryonic day E9.0 in rhombomeres 3 and 5 of the neural tube and extends to cell subsets in most tissues by E14.5. Ablation of the Chrna7:Cre cell lineage in embryos from crosses with conditionally expressed attenuated diphtheria toxin results in precise developmental defects including omphalocele (89%) and open spina bifida (SB; 80%). We hypothesized that like humans, this defect would be modified by environmental compounds not only folic acid or choline but also nicotine. Prenatal chronic oral nicotine administration substantially worsened the defect to often include the rostral neural tube. In contrast, supplementation of the maternal diet with 2% choline decreased SB prevalence to 38% and dramatically reduced the defect severity. Folic acid supplementation only trended towards a reduced SB frequency. The omphalocele was unaffected by these interventions. These studies identify the Chrna7 cell lineage as participating in posterior neuropore closure and present a novel model of lower SB that can be substantially modified by the prenatal environment. © 2012 Wiley Periodicals, Inc. PMID:22473653
Clarke, Nigel F; Andrews, Ian; Carpenter, Kevin; Jakobs, Cornelis; van der Knaap, Marjo S; Kirk, Edwin P
2003-08-01
D-2-hydroxyglutaric aciduria (D2HGA) is a rare autosomal recessive disorder with variable clinical expression. The biochemical defect is unknown at present. Previously reported cases have either followed a severe clinical course characterized by neonatal epileptic encephalopathy, cortical blindness, and profound developmental delay, or a mild course characterized by mild developmental delay, manageable epilepsy, and mild hypotonia. To date there has been a clear distinction between these two groups. We report the second case of a child with D2HGA who has followed an intermediate course. She presented in infancy with hypotonia, manageable epilepsy and developed moderate to severe developmental delay, and cortical visual impairment. The proposita had a coarse facial appearance, flat face, broad nasal bridge, up-turned nose, and simple, anteverted ears. These facial anomalies have been noted in other children with D2HGA and this case strengthens the proposed association between this facial phenotype and D2HGA. We also report the third and fourth instances of prenatal diagnosis for D2HGA. At each prenatal diagnosis, an affected fetus was diagnosed on the basis of markedly increased levels of D-2-hydroxyglutaric acid in amniotic fluid. Copyright 2003 Wiley-Liss, Inc.
Desvignes, Thomas; Nguyen, Thaovi; Chesnel, Franck; Bouleau, Aurélien; Fauvel, Christian; Bobe, Julien
2015-08-01
Retinitis pigmentosa 2 (RP2) gene is responsible for up to 20% of X-linked retinitis pigmentosa, a severe heterogeneous genetic disorder resulting in progressive retinal degeneration in humans. In vertebrates, several bodies of evidence have clearly established the role of Rp2 protein in cilia genesis and/or function. Unexpectedly, some observations in zebrafish have suggested the oocyte-predominant expression of the rp2 gene, a typical feature of maternal-effect genes. In the present study, we investigate the maternal inheritance of rp2 gene products in zebrafish eggs in order to address whether rp2 could be a novel maternal-effect gene required for normal development. Although both rp2 mRNA and corresponding protein are expressed during oogenesis, rp2 mRNA is maternally inherited, in contrast to Rp2 protein. A knockdown of the protein transcribed from both rp2 maternal and zygotic mRNA results in delayed epiboly and severe developmental defects, including eye malformations, that were not observed when only the protein from zygotic origin was knocked down. Moreover, the knockdown of maternal and zygotic Rp2 revealed a high incidence of left-right asymmetry establishment defects compared to only zygotic knockdown. Here we show that rp2 is a novel maternal-effect gene exclusively expressed in oocytes within the zebrafish ovary and demonstrate that maternal rp2 mRNA is essential for successful embryonic development and thus contributes to egg developmental competence. Our observations also reveal that Rp2 protein translated from maternal mRNA is important to allow normal heart loop formation, thus providing evidence of a direct maternal contribution to left-right asymmetry establishment. © 2015 by the Society for the Study of Reproduction, Inc.
Roles of mTOR Signaling in Brain Development.
Lee, Da Yong
2015-09-01
mTOR is a serine/threonine kinase composed of multiple protein components. Intracellular signaling of mTOR complexes is involved in many of physiological functions including cell survival, proliferation and differentiation through the regulation of protein synthesis in multiple cell types. During brain development, mTOR-mediated signaling pathway plays a crucial role in the process of neuronal and glial differentiation and the maintenance of the stemness of neural stem cells. The abnormalities in the activity of mTOR and its downstream signaling molecules in neural stem cells result in severe defects of brain developmental processes causing a significant number of brain disorders, such as pediatric brain tumors, autism, seizure, learning disability and mental retardation. Understanding the implication of mTOR activity in neural stem cells would be able to provide an important clue in the development of future brain developmental disorder therapies.
Kim, Edward; Wang, Yuan; Kim, Sun-Jung; Bornhorst, Miriam; Jecrois, Emmanuelle S; Anthony, Todd E; Wang, Chenran; Li, Yi E; Guan, Jun-Lin; Murphy, Geoffrey G; Zhu, Yuan
2014-12-23
Individuals with neurofibromatosis type 1 (NF1) frequently exhibit cognitive and motor impairments and characteristics of autism. The cerebellum plays a critical role in motor control, cognition, and social interaction, suggesting that cerebellar defects likely contribute to NF1-associated neurodevelopmental disorders. Here we show that Nf1 inactivation during early, but not late stages of cerebellar development, disrupts neuronal lamination, which is partially caused by overproduction of glia and subsequent disruption of the Bergmann glia (BG) scaffold. Specific Nf1 inactivation in glutamatergic neuronal precursors causes premature differentiation of granule cell (GC) precursors and ectopic production of unipolar brush cells (UBCs), indirectly disrupting neuronal migration. Transient MEK inhibition during a neonatal window prevents cerebellar developmental defects and improves long-term motor performance of Nf1-deficient mice. This study reveals essential roles of Nf1 in GC/UBC migration by generating correct numbers of glia and controlling GC/UBC fate-specification/differentiation, identifying a therapeutic prevention strategy for multiple NF1-associcated developmental abnormalities.
Sujak, Sharol Lail; Abdul Kadir, Rahimah; Dom, Tuti Ningseh Mohd
2004-12-01
The aim of this study was to investigate the prevalence and psychosocial impact of enamel defects among 16-year-old school children on the island of Penang. The data were collected through a self-administered questionnaire survey and an oral examination, using the Modified Developmental Defects of Enamel Index (FDI, 1992). In all, 1024 subjects were selected using a multistage random sampling technique. About two-thirds of the sample (67.1%) had at least one tooth affected by enamel defects. Enamel opacities accounted for 85.6% of the total condition. Diffuse-type opacity predominated (63.5%). Among subjects who expressed dissatisfaction, 18.8% reported covering their mouths when smiling, 8.7% avoided going out with friends and 39.1% had consulted their dentists. About 17% of the subjects reported that their parents had complained about the color of their front teeth but only 5.7% had experienced being teased by their friends about the problem. Two-thirds of the subjects were affected by enamel defects involving at least one tooth; however, the esthetic perception and psychosocial impact of those affected were minor.
Nakagata, Naomi; Miyagawa, Shinichi; Suzuki, Kentaro; Kitazawa, Sohei; Yamada, Gen
2012-01-01
Background Congenital diseases of the urinary tract are frequently observed in infants. Such diseases present a number of developmental anomalies such as hydroureter and hydronephrosis. Although some genetically-modified mouse models of growth factor signaling genes reproduce urinary phenotypes, the pathogenic mechanisms remain obscure. Previous studies suggest that a portion of the cells in the external genitalia and bladder are derived from peri-cloacal mesenchymal cells that receive Hedgehog (Hh) signaling in the early developmental stages. We hypothesized that defects in such progenitor cells, which give rise to urinary tract tissues, may be a cause of such diseases. Methodology/Principal Findings To elucidate the pathogenic mechanisms of upper urinary tract malformations, we analyzed a series of Sonic hedgehog (Shh) deficient mice. Shh−/− displayed hydroureter and hydronephrosis phenotypes and reduced expression of several developmental markers. In addition, we suggested that Shh modulation at an early embryonic stage is responsible for such phenotypes by analyzing the Shh conditional mutants. Tissue contribution assays of Hh-responsive cells revealed that peri-cloacal mesenchymal cells, which received Hh signal secreted from cloacal epithelium, could contribute to the ureteral mesenchyme. Gain- and loss-of-functional mutants for Hh signaling revealed a correlation between Hh signaling and Bone morphogenetic protein (Bmp) signaling. Finally, a conditional ablation of Bmp receptor type IA (BmprIA) gene was examined in Hh-responsive cell lineages. This system thus made it possible to analyze the primary functions of the growth factor signaling relay. The defective Hh-to-Bmp signaling relay resulted in severe urinary tract phenotypes with a decrease in the number of Hh-responsive cells. Conclusions/Significance This study identified the essential embryonic stages for the pathogenesis of urinary tract phenotypes. These results suggested that Hh-responsive mesenchymal Bmp signaling maintains the population of peri-cloacal mesenchyme cells, which is essential for the development of the ureter and the upper urinary tract. PMID:22860096
The VIRTUAL EMBRYO. A Computational Framework for Developmental Toxicity
EPA’s ‘Virtual Embryo Project’ (v-Embryo™) is focused on the predictive toxicology of children’s health and developmental defects following prenatal exposure to environmental chemicals. The research is motivated by scientific principles in systems biology as a framework for the g...
Mechanistic modeling of developmental defects through computational embryology (WC10th)
Abstract: An important consideration for 3Rs is to identify developmental hazards utilizing mechanism-based in vitro assays (e.g., ToxCast) and in silico predictive models. Steady progress has been made with agent-based models that recapitulate morphogenetic drivers for angiogen...
Kierdorf, Uwe; Death, Clare; Hufschmid, Jasmin; Witzel, Carsten; Kierdorf, Horst
2016-01-01
Dental fluorosis has recently been diagnosed in wild marsupials inhabiting a high-fluoride area in Victoria, Australia. Information on the histopathology of fluorotic marsupial enamel has thus far not been available. This study analyzed the developmental and post-eruptive defects in fluorotic molar enamel of eastern grey kangaroos (Macropus giganteus) from the same high-fluoride area using light microscopy and backscattered electron imaging in the scanning electron microscope. The fluorotic enamel exhibited a brownish to blackish discolouration due to post-eruptive infiltration of stains from the oral cavity and was less resistant to wear than normally mineralized enamel of kangaroos from low-fluoride areas. Developmental defects of enamel included enamel hypoplasia and a pronounced hypomineralization of the outer (sub-surface) enamel underneath a thin rim of well-mineralized surface enamel. While the hypoplastic defects denote a disturbance of ameloblast function during the secretory stage of amelogenesis, the hypomineralization is attributed to an impairment of enamel maturation. In addition to hypoplastic defects, the fluorotic molars also exhibited numerous post-eruptive enamel defects due to the flaking-off of portions of the outer, hypomineralized enamel layer during mastication. The macroscopic and histopathological lesions in fluorotic enamel of M. giganteus match those previously described for placental mammals. It is therefore concluded that there exist no principal differences in the pathogenic mechanisms of dental fluorosis between marsupial and placental mammals. The regular occurrence of hypomineralized, opaque outer enamel in the teeth of M. giganteus and other macropodids must be considered in the differential diagnosis of dental fluorosis in these species. PMID:26895178
Chia, Poh Hui; Zhong, Franklin Lei; Niwa, Shinsuke; Bonnard, Carine; Utami, Kagistia Hana; Zeng, Ruizhu; Lee, Hane; Eskin, Ascia; Nelson, Stanley F; Xie, William H; Al-Tawalbeh, Samah; El-Khateeb, Mohammad; Shboul, Mohammad; Pouladi, Mahmoud A; Al-Raqad, Mohammed; Reversade, Bruno
2018-05-22
Calcium/calmodulin-dependent protein kinase II (CAMK2) plays fundamental roles in synaptic plasticity that underlies learning and memory. Here, we describe a new recessive neurodevelopmental syndrome with global developmental delay, seizures and intellectual disability. Using linkage analysis and exome sequencing, we found that this disease maps to chromosome 5q31.1-q34 and is caused by a biallelic germline mutation in CAMK2A . The missense mutation, p.His477Tyr is located in the CAMK2A association domain that is critical for its function and localization. Biochemically, the p.His477Tyr mutant is defective in self-oligomerization and unable to assemble into the multimeric holoenzyme. In vivo , CAMK2A H477Y failed to rescue neuronal defects in C. elegans lacking unc-43 , the ortholog of human CAMK2A. In vitro , neurons derived from patient iPSCs displayed profound synaptic defects. Together, our data demonstrate that a recessive germline mutation in CAMK2A leads to neurodevelopmental defects in humans and suggest that dysfunctional CAMK2 paralogs may contribute to other neurological disorders. © 2018, Chia et al.
Analysis of FOXF1 and the FOX gene cluster in patients with VACTERL association
Agochukwu, Nneamaka B.; Pineda-Alvarez, Daniel E.; Keaton, Amelia A.; Warren-Mora, Nicole; Raam, Manu S.; Kamat, Aparna; Chandrasekharappa, Settara C.; Solomon, Benjamin D.
2011-01-01
VACTERL association, a relatively common condition with an incidence of approximately 1 in 20,000 – 35,000 births, is a non-random association of birth defects that includes vertebral defects (V), anal atresia (A), cardiac defects (C), tracheo-esophageal fistula (TE), renal anomalies (R) and limb malformations (L). Although the etiology is unknown in the majority of patients, there is evidence that it is causally heterogeneous. Several studies have shown evidence for inheritance in VACTERL, implying a role for genetic loci. Recently, patients with component features of VACTERL and a lethal developmental pulmonary disorder, alveolar capillary dysplasia with misalignment of pulmonary veins (ACD/MPV), were found to harbor deletions or mutations affecting FOXF1 and the FOX gene cluster on chromosome 16q24. We investigated this gene through direct sequencing and high-density SNP microarray in 12 patients with VACTERL association but without ACD/MPV. Our mutational analysis of FOXF1 showed normal sequences and no genomic imbalances affecting the FOX gene cluster on chromosome 16q24 in the studied patients. Possible explanations for these results include the etiologic and clinical heterogeneity of VACTERL association, the possibility that mutations affecting this gene may occur only in more severely affected individuals, and insufficient study sample size. PMID:21315191
Ahir, Bhavesh K.; Sanders, Alison P.; Rager, Julia E.
2013-01-01
Background: The biological mechanisms by which environmental metals are associated with birth defects are largely unknown. Systems biology–based approaches may help to identify key pathways that mediate metal-induced birth defects as well as potential targets for prevention. Objectives: First, we applied a novel computational approach to identify a prioritized biological pathway that associates metals with birth defects. Second, in a laboratory setting, we sought to determine whether inhibition of the identified pathway prevents developmental defects. Methods: Seven environmental metals were selected for inclusion in the computational analysis: arsenic, cadmium, chromium, lead, mercury, nickel, and selenium. We used an in silico strategy to predict genes and pathways associated with both metal exposure and developmental defects. The most significant pathway was identified and tested using an in ovo whole chick embryo culture assay. We further evaluated the role of the pathway as a mediator of metal-induced toxicity using the in vitro midbrain micromass culture assay. Results: The glucocorticoid receptor pathway was computationally predicted to be a key mediator of multiple metal-induced birth defects. In the chick embryo model, structural malformations induced by inorganic arsenic (iAs) were prevented when signaling of the glucocorticoid receptor pathway was inhibited. Further, glucocorticoid receptor inhibition demonstrated partial to complete protection from both iAs- and cadmium-induced neurodevelopmental toxicity in vitro. Conclusions: Our findings highlight a novel approach to computationally identify a targeted biological pathway for examining birth defects prevention. PMID:23458687
in vitro Models if Human Embryonic Mesenchymal Transitions in Morphogenesis
Our ability to predict human developmental consequences produced by exposure to environmental chemicals is limited by the current experimental and computational models.Human heart defects are among the most common type of birth defects and affect 1% of children (~40,000 children)...
Imaging techniques for visualizing and phenotyping congenital heart defects in murine models.
Liu, Xiaoqin; Tobita, Kimimasa; Francis, Richard J B; Lo, Cecilia W
2013-06-01
Mouse model is ideal for investigating the genetic and developmental etiology of congenital heart disease. However, cardiovascular phenotyping for the precise diagnosis of structural heart defects in mice remain challenging. With rapid advances in imaging techniques, there are now high throughput phenotyping tools available for the diagnosis of structural heart defects. In this review, we discuss the efficacy of four different imaging modalities for congenital heart disease diagnosis in fetal/neonatal mice, including noninvasive fetal echocardiography, micro-computed tomography (micro-CT), micro-magnetic resonance imaging (micro-MRI), and episcopic fluorescence image capture (EFIC) histopathology. The experience we have gained in the use of these imaging modalities in a large-scale mouse mutagenesis screen have validated their efficacy for congenital heart defect diagnosis in the tiny hearts of fetal and newborn mice. These cutting edge phenotyping tools will be invaluable for furthering our understanding of the developmental etiology of congenital heart disease. Copyright © 2013 Wiley Periodicals, Inc.
Sudha, Dhandayuthapani; Patric, Irene Rosita Pia; Ganapathy, Aparna; Agarwal, Smitha; Krishna, Shuba; Neriyanuri, Srividya; Sripriya, Sarangapani; Sen, Parveen; Chidambaram, Subbulakshmi; Arunachalam, Jayamuruga Pandian
2017-01-01
In this study, we present a juvenile retinoschisis patient with developmental delay, sensorineural hearing loss, and reduced axial tone. X-linked juvenile retinoschisis (XLRS) is a retinal dystrophy, most often not associated with systemic anomalies and also not showing any locus heterogeneity. Therefore it was of interest to understand the genetic basis of the condition in this patient. RS1 gene screening for XLRS was performed by Sanger sequencing. Whole genome SNP 6.0 array analysis was carried out to investigate gross chromosomal aberrations that could result in systemic phenotype. In addition, targeted next generation sequencing (NGS) was employed to determine any possible involvement of X-linked syndromic and non-syndromic mental retardation genes. This NGS panel consisted of 550 genes implicated in several other rare inherited diseases. RS1 gene screening revealed a pathogenic hemizygous splice site mutation (c.78+1G>T), inherited from the mother. SNP 6.0 array analysis did not indicate any significant chromosomal aberrations that could be disease-associated. Targeted resequencing did not identify any mutations in the X-linked mental retardation genes. However, variations in three other genes (NSD1, LARGE, and POLG) were detected, which were all inherited from the patient's unaffected father. Taken together, RS1 mutation was found to segregate with retinoschisis phenotype while none of the other identified variations were co-segregating with the systemic defects. Hereby, we infer that the multisystemic defects harbored by the patient are a rare coexistence of XLRS, developmental delay, sensorineural hearing loss, and reduced axial tone reported for the first time in the literature.
Kraemer, Kenneth H.; Patronas, Nicholas J.; Schiffmann, Raphael; Brooks, Brian P.; Tamura, Deborah; DiGiovanna, John J.
2008-01-01
Patients with the rare genetic disorders, xeroderma pigmentosum (XP), trichothiodystrophy (TTD) and Cockayne syndrome (CS) have defects in DNA nucleotide excision repair (NER). The NER pathway involves at least 28 genes. Three NER genes are also part of the basal transcription factor, TFIIH. Mutations in 11 NER genes have been associated with clinical diseases with at least 8 overlapping phenotypes. The clinical features of these patients have some similarities and but also have marked differences. NER is involved in protection against sunlight induced DNA damage. While XP patients have 1000-fold increase in susceptibility to skin cancer, TTD and CS patients have normal skin cancer risk. Several of the genes involved in NER also affect somatic growth and development. Some patients have short stature and immature sexual development. TTD patients have sulfur deficient brittle hair. Progressive sensorineural deafness is an early feature of XP and CS. Many of these clinical diseases are associated with developmental delay and progressive neurological degeneration. The main neuropathology of XP is a primary neuronal degeneration. In contrast, CS and TTD patients have reduced myelination of the brain. These complex neurological abnormalities are not related to sunlight exposure but may be caused by developmental defects as well as faulty repair of DNA damage to neuronal cells induced by oxidative metabolism or other endogenous processes. PMID:17276014
Notchless is required for axial skeleton formation in mice.
Beck-Cormier, Sarah; Escande, Marie; Souilhol, Céline; Vandormael-Pournin, Sandrine; Sourice, Sophie; Pilet, Paul; Babinet, Charles; Cohen-Tannoudji, Michel
2014-01-01
Maintenance of cell survival is essential for proper embryonic development. In the mouse, Notchless homolog 1 (Drosophila) (Nle1) is instrumental for survival of cells of the inner cell mass upon implantation. Here, we analyze the function of Nle1 after implantation using the Meox2(tm1(cre)Sor) mouse that expresses the Cre recombinase specifically in the epiblast at E5.5. First, we find that NLE1 function is required in epiblast cells, as Nle1-deficient cells are rapidly eliminated. In this report, we also show that the Meox2(Cre) transgene is active in specific tissues during organogenesis. In particular, we detect high Cre expression in the vertebral column, ribs, limbs and tailbud. We took advantage of this dynamic expression profile to analyze the effects of inducing mosaic deletion of Nle1 in the embryo. We show that Nle1 deletion in this context, results in severe developmental anomalies leading to lethality at birth. Mutant embryos display multiple developmental defects in particular during axial skeletal formation. We also provide evidence that axial defects are due to an increase in apoptotic cell death in the somite at E9.5. These data demonstrate an essential role for Nle1 during organogenesis and in particular during axial development.
Notchless Is Required for Axial Skeleton Formation in Mice
Beck-Cormier, Sarah; Escande, Marie; Souilhol, Céline; Vandormael-Pournin, Sandrine; Sourice, Sophie; Pilet, Paul; Cohen-Tannoudji, Michel
2014-01-01
Maintenance of cell survival is essential for proper embryonic development. In the mouse, Notchless homolog 1 (Drosophila) (Nle1) is instrumental for survival of cells of the inner cell mass upon implantation. Here, we analyze the function of Nle1 after implantation using the Meox2tm1(cre)Sor mouse that expresses the Cre recombinase specifically in the epiblast at E5.5. First, we find that NLE1 function is required in epiblast cells, as Nle1-deficient cells are rapidly eliminated. In this report, we also show that the Meox2Cre transgene is active in specific tissues during organogenesis. In particular, we detect high Cre expression in the vertebral column, ribs, limbs and tailbud. We took advantage of this dynamic expression profile to analyze the effects of inducing mosaic deletion of Nle1 in the embryo. We show that Nle1 deletion in this context, results in severe developmental anomalies leading to lethality at birth. Mutant embryos display multiple developmental defects in particular during axial skeletal formation. We also provide evidence that axial defects are due to an increase in apoptotic cell death in the somite at E9.5. These data demonstrate an essential role for Nle1 during organogenesis and in particular during axial development. PMID:24875805
Richendrfer, Holly; Pelkowski, Sean D.; Colwill, Ruth M.; Créton, Robbert
2013-01-01
Neurobehavioral disorders such as anxiety, autism, and attention deficit hyperactivity disorders are typically influenced by genetic and environmental factors. Although several genetic risk factors have been identified in recent years, little is known about the environmental factors that either cause neurobehavioral disorders or contribute to their progression in genetically predisposed individuals. One environmental factor that has raised concerns is chlorpyrifos, an organophosphate pesticide that is widely used in agriculture and is found ubiquitously in the environment. In the present study, we examined the effects of sub-chronic chlorpyrifos exposure on anxiety-related behavior during development using zebrafish larvae. We found that sub-chronic exposure to 0.01 or 0.1 μM chlorpyrifos during development induces specific behavioral defects in 7-day-old zebrafish larvae. The larvae displayed decreases in swim speed and thigmotaxis, yet no changes in avoidance behavior were seen. Exposure to 0.001 μM chlorpyrifos did not affect swimming, thigmotaxis, or avoidance behavior and exposure to 1 μM chlorpyrifos induced behavioral defects, but also induced defects in larval morphology. Since thigmotaxis, a preference for the edge, is an anxiety-related behavior in zebrafish larvae, we propose that sub-chronic chlorpyrifos exposure interferes with the development of anxiety-related behaviors. The results of this study provide a good starting point for examination of the molecular, cellular, developmental, and neural mechanisms that are affected by environmentally relevant concentrations of organophosphate pesticides. A more detailed understanding of these mechanisms is important for the development of predictive models and refined health policies to prevent toxicant-induced neurobehavioral disorders. PMID:22579535
Parent-of-origin growth effects and the evolution of hybrid inviability in dwarf hamsters.
Brekke, Thomas D; Good, Jeffrey M
2014-11-01
Mammalian hybrids often show abnormal growth, indicating that developmental inviability may play an important role in mammalian speciation. Yet, it is unclear if this recurrent phenotype reflects a common genetic basis. Here, we describe extreme parent-of-origin-dependent growth in hybrids from crosses between two species of dwarf hamsters, Phodopus campbelli and Phodopus sungorus. One cross type resulted in massive placental and embryonic overgrowth, severe developmental defects, and maternal death. Embryos from the reciprocal cross were viable and normal sized, but adult hybrid males were relatively small. These effects are strikingly similar to patterns from several other mammalian hybrids. Using comparative sequence data from dwarf hamsters and several other hybridizing mammals, we argue that extreme hybrid growth can contribute to reproductive isolation during the early stages of species divergence. Next, we tested if abnormal growth in hybrid hamsters was associated with disrupted genomic imprinting. We found no association between imprinting status at several candidate genes and hybrid growth, though two interacting genes involved in embryonic growth did show reduced expression in overgrown hybrids. Collectively, our study indicates that growth-related hybrid inviability may play an important role in mammalian speciation but that the genetic underpinnings of these phenotypes remain unresolved. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Xue; Hu, Zhengtao; Hu, Chunyan
Investigations have characterized addictive drug-induced developmental cardiovascular malformation in human, non-human primate and rodent. However, the underlying mechanism of malformation caused by drugs during pregnancy is still largely unknown, and preventive and therapeutic measures have been lacking. Using {sup 1}H NMR spectroscopy, we profiled the metabolites from human embryo endothelial cells exposed to methamphetamine (METH) and quantified a total of 226 peaks. We identified 11 metabolites modified robustly and found that taurine markedly increased. We then validated the hypothesis that this dramatic increase in taurine could attribute to its effect in inhibiting METH-induced developmental angiogenesis defect. Taurine supplement showed amore » more significant potential than other metabolites in protecting against METH-induced injury in endothelial cells. Taurine strongly attenuated METH-induced inhibition of proliferation and migration in endothelial cells. Furthermore, death rate and vessel abnormality of zebrafish embryos treated with METH were greatly reversed by taurine. In addition, taurine supplement caused a rapid decrease in reactive oxygen species generation and strongly attenuated the excitable arise of antioxidase activities in the beginning of METH exposure prophase. Dysregulations of NF-κB, p-ERK as well as Bax, which reflect apoptosis, cell cycle arrest and oxidative stress in vascular endothelium, were blocked by taurine. Our results provide the first evidence that taurine prevents METH-caused developmental angiogenesis defect through antioxidant mechanism. Taurine could serve as a potential therapeutic or preventive intervention of developmental vascular malformation for the pregnant women with drug use. Highlights: ► Metabonomics findings. ► Abnormal development. ► Dysregulations of key proteins.« less
Eum, Juneyong; Kwak, Jina; Kim, Hee Joung; Ki, Seoyoung; Lee, Kooyeon; Raslan, Ahmed A.; Park, Ok Kyu; Chowdhury, Md Ashraf Uddin; Her, Song; Kee, Yun; Kwon, Seung-Hae; Hwang, Byung Joon
2016-01-01
Environmental contamination by trinitrotoluene is of global concern due to its widespread use in military ordnance and commercial explosives. Despite known long-term persistence in groundwater and soil, the toxicological profile of trinitrotoluene and other explosive wastes have not been systematically measured using in vivo biological assays. Zebrafish embryos are ideal model vertebrates for high-throughput toxicity screening and live in vivo imaging due to their small size and transparency during embryogenesis. Here, we used Single Plane Illumination Microscopy (SPIM)/light sheet microscopy to assess the developmental toxicity of explosive-contaminated water in zebrafish embryos and report 2,4,6-trinitrotoluene-associated developmental abnormalities, including defects in heart formation and circulation, in 3D. Levels of apoptotic cell death were higher in the actively developing tissues of trinitrotoluene-treated embryos than controls. Live 3D imaging of heart tube development at cellular resolution by light-sheet microscopy revealed trinitrotoluene-associated cardiac toxicity, including hypoplastic heart chamber formation and cardiac looping defects, while the real time PCR (polymerase chain reaction) quantitatively measured the molecular changes in the heart and blood development supporting the developmental defects at the molecular level. Identification of cellular toxicity in zebrafish using the state-of-the-art 3D imaging system could form the basis of a sensitive biosensor for environmental contaminants and be further valued by combining it with molecular analysis. PMID:27869673
Akhter, Shamima; Lam, Yung C; Chang, Sandy; Legerski, Randy J
2010-12-01
Conserved metallo β-Lactamase and β-CASP (CPSF-Artemis-Snm1-Pso2) domain nuclease family member SNM1B/Apollo is a shelterin-associated protein that localizes to telomeres through its interaction with TRF2. To study its in vivo role, we generated a knockout of SNM1B/Apollo in a mouse model. Snm1B/Apollo homozygous null mice die at birth with developmental delay and defects in multiple organ systems. Cell proliferation defects were observed in Snm1B/Apollo mutant mouse embryonic fibroblasts (MEFs) owing to high levels of telomeric end-to-end fusions. Deficiency of the nonhomologous end-joining (NHEJ) factor Ku70, but not p53, rescued the developmental defects and lethality observed in Snm1B/Apollo mutant mice as well as the impaired proliferation of Snm1B/Apollo-deficient MEFs. These findings demonstrate that SNM1B/Apollo is required to protect telomeres against NHEJ-mediated repair, which results in genomic instability and the consequent multi-organ developmental failure. Although Snm1B/Apollo-deficient MEFs exhibited high levels of apoptosis, abrogation of p53-dependent programmed cell death did not rescue the multi-organ developmental failure in the mice. © 2010 The Authors. Aging Cell © 2010 Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland.
Jia, Fan; Cui, Mingxue; Than, Minh T; Han, Min
2016-02-05
Branched-chain α-ketoacid dehydrogenase (BCKDH) catalyzes the critical step in the branched-chain amino acid (BCAA) catabolic pathway and has been the focus of extensive studies. Mutations in the complex disrupt many fundamental metabolic pathways and cause multiple human diseases including maple syrup urine disease (MSUD), autism, and other related neurological disorders. BCKDH may also be required for the synthesis of monomethyl branched-chain fatty acids (mmBCFAs) from BCAAs. The pathology of MSUD has been attributed mainly to BCAA accumulation, but the role of mmBCFA has not been evaluated. Here we show that disrupting BCKDH in Caenorhabditis elegans causes mmBCFA deficiency, in addition to BCAA accumulation. Worms with deficiency in BCKDH function manifest larval arrest and embryonic lethal phenotypes, and mmBCFA supplementation suppressed both without correcting BCAA levels. The majority of developmental defects caused by BCKDH deficiency may thus be attributed to lacking mmBCFAs in worms. Tissue-specific analysis shows that restoration of BCKDH function in multiple tissues can rescue the defects, but is especially effective in neurons. Taken together, we conclude that mmBCFA deficiency is largely responsible for the developmental defects in the worm and conceivably might also be a critical contributor to the pathology of human MSUD. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Contaminated sport fish consumption may result in exposure to various reproductive and developmental toxicants, including pesticides and other suspected endocrine disruptors. We investigated the relation between maternal sport fish meals and risk of major birth defects among infa...
Padmanabhan, Vasantha; Veiga-Lopez, Almudena
2013-01-01
Polycystic ovary syndrome (PCOS) is one of the most common fertility disorders, affecting several million women worldwide. Women with PCOS manifest neuroendocrine, ovarian, and metabolic defects. A large number of animal models have evolved to understand the etiology of PCOS. These models provide support for the contributing role of excess steroids during development in programming the PCOS phenotype. However, considerable phenotypic variability is evident across animal models, depending on the quality of the steroid administered and the perinatal time of treatment relative to the developmental trajectory of the fetus/offspring. This review focuses on the reproductive and metabolic phenotypes of the various PCOS animal models that have evolved in the last decade to delineate the relative roles of androgens and estrogens in relation to the timing of exposure in programming the various dysfunctions that are part and parcel of the PCOS phenotype. Furthermore, the review addresses the contributory role of the postnatal metabolic environment in exaggerating the severity of the phenotype, the translational relevance of the various animal models to PCOS, and areas for future research. PMID:21710394
Relationships between visual-motor and cognitive abilities in intellectual disabilities.
Di Blasi, Francesco D; Elia, Flaviana; Buono, Serafino; Ramakers, Ger J A; Di Nuovo, Santo F
2007-06-01
The neurobiological hypothesis supports the relevance of studying visual-perceptual and visual-motor skills in relation to cognitive abilities in intellectual disabilities because the defective intellectual functioning in intellectual disabilities is not restricted to higher cognitive functions but also to more basic functions. The sample was 102 children 6 to 16 years old and with different severities of intellectual disabilities. Children were administered the Wechsler Intelligence Scale for Children, the Bender Visual Motor Gestalt Test, and the Developmental Test of Visual Perception, and data were also analysed according to the presence or absence of organic anomalies, which are etiologically relevant for mental disabilities. Children with intellectual disabilities had deficits in perceptual organisation which correlated with the severity of intellectual disabilities. Higher correlations between the spatial subtests of the Developmental Test of Visual Perception and the Performance subtests of the Wechsler Intelligence Scale for Children suggested that the spatial skills and cognitive performance may have a similar basis in information processing. Need to differentiate protocols for rehabilitation and intervention for recovery of perceptual abilities from general programs of cognitive stimulations is suggested.
Shared molecular networks in orofacial and neural tube development.
Kousa, Youssef A; Mansour, Tamer A; Seada, Haitham; Matoo, Samaneh; Schutte, Brian C
2017-01-30
Single genetic variants can affect multiple tissues during development. Thus it is possible that disruption of shared gene regulatory networks might underlie syndromic presentations. In this study, we explore this idea through examination of two critical developmental programs that control orofacial and neural tube development and identify shared regulatory factors and networks. Identification of these networks has the potential to yield additional candidate genes for poorly understood developmental disorders and assist in modeling and perhaps managing risk factors to prevent morbidly and mortality. We reviewed the literature to identify genes common between orofacial and neural tube defects and development. We then conducted a bioinformatic analysis to identify shared molecular targets and pathways in the development of these tissues. Finally, we examine publicly available RNA-Seq data to identify which of these genes are expressed in both tissues during development. We identify common regulatory factors in orofacial and neural tube development. Pathway enrichment analysis shows that folate, cancer and hedgehog signaling pathways are shared in neural tube and orofacial development. Developing neural tissues differentially express mouse exencephaly and cleft palate genes, whereas developing orofacial tissues were enriched for both clefting and neural tube defect genes. These data suggest that key developmental factors and pathways are shared between orofacial and neural tube defects. We conclude that it might be most beneficial to focus on common regulatory factors and pathways to better understand pathology and develop preventative measures for these birth defects. Birth Defects Research 109:169-179, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
SYNOPSIS: The question of how tissues and organs are shaped during development is crucial for understanding human birth defects. Data from high-throughput screening assays on human stem cells may be utilized predict developmental toxicity with reasonable accuracy. Other types of ...
Primary cilia maintain corneal epithelial homeostasis by regulation of the Notch signaling pathway
Grisanti, Laura; Revenkova, Ekaterina; Gordon, Ronald E.
2016-01-01
Primary cilia have been linked to signaling pathways involved in cell proliferation, cell motility and cell polarity. Defects in ciliary function result in developmental abnormalities and multiple ciliopathies. Patients affected by severe ciliopathies, such as Meckel syndrome, present several ocular surface disease conditions of unclear pathogenesis. Here, we show that primary cilia are predominantly present on basal cells of the mouse corneal epithelium (CE) throughout development and in the adult. Conditional ablation of cilia in the CE leads to an increase in proliferation and vertical migration of basal corneal epithelial cells (CECs). A consequent increase in cell density of suprabasal layers results in a thicker than normal CE. Surprisingly, in cilia-deficient CE, cilia-mediated signaling pathways, including Hh and Wnt pathways, were not affected but the intensity of Notch signaling was severely diminished. Although Notch1 and Notch2 receptors were expressed normally, nuclear Notch1 intracellular domain (N1ICD) expression was severely reduced. Postnatal development analysis revealed that in cilia-deficient CECs downregulation of the Notch pathway precedes cell proliferation defects. Thus, we have uncovered a function of the primary cilium in maintaining homeostasis of the CE by balancing proliferation and vertical migration of basal CECs through modulation of Notch signaling. PMID:27122169
Histone Lysine Methylases and Demethylases in the Landscape of Human Developmental Disorders.
Faundes, Víctor; Newman, William G; Bernardini, Laura; Canham, Natalie; Clayton-Smith, Jill; Dallapiccola, Bruno; Davies, Sally J; Demos, Michelle K; Goldman, Amy; Gill, Harinder; Horton, Rachel; Kerr, Bronwyn; Kumar, Dhavendra; Lehman, Anna; McKee, Shane; Morton, Jenny; Parker, Michael J; Rankin, Julia; Robertson, Lisa; Temple, I Karen; Banka, Siddharth
2018-01-04
Histone lysine methyltransferases (KMTs) and demethylases (KDMs) underpin gene regulation. Here we demonstrate that variants causing haploinsufficiency of KMTs and KDMs are frequently encountered in individuals with developmental disorders. Using a combination of human variation databases and existing animal models, we determine 22 KMTs and KDMs as additional candidates for dominantly inherited developmental disorders. We show that KMTs and KDMs that are associated with, or are candidates for, dominant developmental disorders tend to have a higher level of transcription, longer canonical transcripts, more interactors, and a higher number and more types of post-translational modifications than other KMT and KDMs. We provide evidence to firmly associate KMT2C, ASH1L, and KMT5B haploinsufficiency with dominant developmental disorders. Whereas KMT2C or ASH1L haploinsufficiency results in a predominantly neurodevelopmental phenotype with occasional physical anomalies, KMT5B mutations cause an overgrowth syndrome with intellectual disability. We further expand the phenotypic spectrum of KMT2B-related disorders and show that some individuals can have severe developmental delay without dystonia at least until mid-childhood. Additionally, we describe a recessive histone lysine-methylation defect caused by homozygous or compound heterozygous KDM5B variants and resulting in a recognizable syndrome with developmental delay, facial dysmorphism, and camptodactyly. Collectively, these results emphasize the significance of histone lysine methylation in normal human development and the importance of this process in human developmental disorders. Our results demonstrate that systematic clinically oriented pathway-based analysis of genomic data can accelerate the discovery of rare genetic disorders. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Noonan syndrome and clinically related disorders
Tartaglia, Marco; Gelb, Bruce D.; Zenker, Martin
2010-01-01
Noonan syndrome is a relatively common, clinically variable developmental disorder. Cardinal features include postnatally reduced growth, distinctive facial dysmorphism, congenital heart defects and hypertrophic cardiomyopathy, variable cognitive deficit and skeletal, ectodermal and hematologic anomalies. Noonan syndrome is transmitted as an autosomal dominant trait, and is genetically heterogeneous. So far, heterozygous mutations in nine genes (PTPN11, SOS1, KRAS, NRAS, RAF1, BRAF, SHOC2, MEK1 and CBL) have been documented to underlie this disorder or clinically related phenotypes. Based on these recent discoveries, the diagnosis can now be confirmed molecularly in approximately 75% of affected individuals. Affected genes encode for proteins participating in the RAS-mitogen-activated protein kinases (MAPK) signal transduction pathway, which is implicated in several developmental processes controlling morphology determination, organogenesis, synaptic plasticity and growth. Here, we provide an overview of clinical aspects of this disorder and closely related conditions, the molecular mechanisms underlying pathogenesis, and major genotype-phenotype correlations. PMID:21396583
Neural crest cells: from developmental biology to clinical interventions.
Noisa, Parinya; Raivio, Taneli
2014-09-01
Neural crest cells are multipotent cells, which are specified in embryonic ectoderm in the border of neural plate and epiderm during early development by interconnection of extrinsic stimuli and intrinsic factors. Neural crest cells are capable of differentiating into various somatic cell types, including melanocytes, craniofacial cartilage and bone, smooth muscle, and peripheral nervous cells, which supports their promise for cell therapy. In this work, we provide a comprehensive review of wide aspects of neural crest cells from their developmental biology to applicability in medical research. We provide a simplified model of neural crest cell development and highlight the key external stimuli and intrinsic regulators that determine the neural crest cell fate. Defects of neural crest cell development leading to several human disorders are also mentioned, with the emphasis of using human induced pluripotent stem cells to model neurocristopathic syndromes. © 2014 Wiley Periodicals, Inc.
Developmental Patterning: Putting the Squeeze on Mis-specified Cells.
Nakajima, Yu-Ichiro; Gibson, Matthew C
2016-03-07
Widely implicated in human disease, abnormal cellular cysts reflect dramatic defects in the maintenance of epithelial integrity. A new study reports that epithelial cysts may arise as a surprisingly general consequence of clonal defects in the specification of cell identity. Copyright © 2016 Elsevier Ltd. All rights reserved.
Can Computational Models Be Used to Assess the Developmental Toxicity of Environmental Exposures?
Environmental causes of birth defects include maternal exposure to drugs, chemicals, or physical agents. Environmental factors account for an estimated 3–7% of birth defects although a broader contribution is likely based on the mother’s general health status and genetic blueprin...
Manjila, Sunil; Miller, Erin A; Vadera, Sumeet; Goel, Rishi K; Khan, Fahd R; Crowe, Carol; Geertman, Robert T
2012-01-01
Duplication of the pituitary gland (DPG) is a rare craniofacial developmental anomaly occurring during blastogenesis with postulated etiology such as incomplete twinning, teratogens, median cleft face syndrome or splitting of the notochord. The complex craniocaudal spectrum of blastogenesis defects associated with DPG is examined with an illustrative case. We report for the first time in the medical literature some unique associations with DPG, such as a clival encephalocele, third cerebral peduncle, duplicate odontoid process and a double tongue with independent volitional control. This patient also has the previously reported common associations such as duplicated sella, cleft palate, hypertelorism, callosal agenesis, hypothalamic enlargement, nasopharyngeal teratoma, fenestrated basilar artery and supernumerary teeth. This study also reviews 37 cases of DPG identified through MEDLINE literature search from 1880 to 2011. It provides a detailed analysis of the current case through physical examination and imaging. The authors propose that the developmental deformities associated with duplication of pituitary gland (DPG) occur as part of a developmental continuum, not as chance associations. Considering the fact that DPG is uniquely and certainly present throughout the spectrum of these blastogenesis defects, we suggest the term DPG-plus syndrome.
Kim, Edward; Wang, Yuan; Kim, Sun-Jung; Bornhorst, Miriam; Jecrois, Emmanuelle S; Anthony, Todd E; Wang, Chenran; Li, Yi E; Guan, Jun-Lin; Murphy, Geoffrey G; Zhu, Yuan
2014-01-01
Individuals with neurofibromatosis type 1 (NF1) frequently exhibit cognitive and motor impairments and characteristics of autism. The cerebellum plays a critical role in motor control, cognition, and social interaction, suggesting that cerebellar defects likely contribute to NF1-associated neurodevelopmental disorders. Here we show that Nf1 inactivation during early, but not late stages of cerebellar development, disrupts neuronal lamination, which is partially caused by overproduction of glia and subsequent disruption of the Bergmann glia (BG) scaffold. Specific Nf1 inactivation in glutamatergic neuronal precursors causes premature differentiation of granule cell (GC) precursors and ectopic production of unipolar brush cells (UBCs), indirectly disrupting neuronal migration. Transient MEK inhibition during a neonatal window prevents cerebellar developmental defects and improves long-term motor performance of Nf1-deficient mice. This study reveals essential roles of Nf1 in GC/UBC migration by generating correct numbers of glia and controlling GC/UBC fate-specification/differentiation, identifying a therapeutic prevention strategy for multiple NF1-associcated developmental abnormalities. DOI: http://dx.doi.org/10.7554/eLife.05151.001 PMID:25535838
Della Valle, Elisa; Vezzani, Silvia; Rochira, Vincenzo; Granata, Antonio Raffaele Michele; Madeo, Bruno; Genovese, Elisabetta; Pignatti, Elisa; Marino, Marco; Carani, Cesare; Simoni, Manuela
2013-01-01
Hypogonadotropic hypogonadism (HH) is a heterogeneous disease caused by mutations in several genes. Based on the presence of hyposmia/anosmia it is distinguished into Kallmann syndrome (KS) and isolated HH. The prevalence of other developmental anomalies is not well established. We studied 36 patients with HH (31 males, 5 females, mean age 41.5), 9 with familial and 27 with sporadic HH (33 congenital, 3 adult-onset), by physical examination, smell test (BSIT Sensonics), audiometry, renal ultrasound, and magnetic resonance imaging of the olfactory structures. Based on the smell test, patients were classified as normosmic (n = 21, 58.3%) and hypo/anosmic (n = 15, 41.6%). Hypoplasia/agenesis of olfactory bulbs was found in 40% of patients (10/25; 75% hypo/anosmic, 7.6% normosmic, p < 0.01, Fisher's test). Remarkably, olfactory structures were normal in two anosmic patients, while one normosmic patient presented a unilateral hypoplastic bulb. Fourteen of 33 patients (42.4%) presented neurosensorial hearing loss of various degrees (28.5% hypo/anosmic, 52.6% normosmic, p = NS). Renal ultrasound revealed 27.7% of cases with renal anomalies (26.6% hypo/anosmic, 28.5% normosmic, p = NS). At least one midline defect was found in 50% of the patients (53.3% hypo/anosmic, 47.6% normosmic, p = NS), including abnormal palate, dental anomalies, pectus excavatum, bimanual synkinesis, iris coloboma, and absent nasal cartilage. Anamnestically 4/31 patients reported cryptorchidism (25% hypo/anosmic, 5.2% normosmic, p = NS). Hypo/anosmia is significantly related to anatomical anomalies of the olfactory bulbs/tracts but the prevalence of other developmental anomalies, especially midline defects and neurosensorial hearing loss, is high both in HH and KS and independent of the presence of anosmia/hyposmia. From the clinical standpoint KS and normosmic HH should be considered as the same complex, developmental disease.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hinshaw, Stephen M.; Makrantoni, Vasso; Kerr, Alastair
The cohesin ring holds newly replicated sister chromatids together until their separation at anaphase. Initiation of sister chromatid cohesion depends on a separate complex, Scc2NIPBL/Scc4Mau2 (Scc2/4), which loads cohesin onto DNA and determines its localization across the genome. Proper cohesin loading is essential for cell division, and partial defects cause chromosome missegregation and aberrant transcriptional regulation, leading to severe developmental defects in multicellular organisms. We present here a crystal structure showing the interaction between Scc2 and Scc4. Scc4 is a TPR array that envelops an extended Scc2 peptide. Using budding yeast, we demonstrate that a conserved patch on the surfacemore » of Scc4 is required to recruit Scc2/4 to centromeres and to build pericentromeric cohesion. These findings reveal the role of Scc4 in determining the localization of cohesin loading and establish a molecular basis for Scc2/4 recruitment to centromeres.« less
Armc5 deletion causes developmental defects and compromises T-cell immune responses
Hu, Yan; Lao, Linjiang; Mao, Jianning; Jin, Wei; Luo, Hongyu; Charpentier, Tania; Qi, Shijie; Peng, Junzheng; Hu, Bing; Marcinkiewicz, Mieczyslaw Martin; Lamarre, Alain; Wu, Jiangping
2017-01-01
Armadillo repeat containing 5 (ARMC5) is a cytosolic protein with no enzymatic activities. Little is known about its function and mechanisms of action, except that gene mutations are associated with risks of primary macronodular adrenal gland hyperplasia. Here we map Armc5 expression by in situ hybridization, and generate Armc5 knockout mice, which are small in body size. Armc5 knockout mice have compromised T-cell proliferation and differentiation into Th1 and Th17 cells, increased T-cell apoptosis, reduced severity of experimental autoimmune encephalitis, and defective immune responses to lymphocytic choriomeningitis virus infection. These mice also develop adrenal gland hyperplasia in old age. Yeast 2-hybrid assays identify 16 ARMC5-binding partners. Together these data indicate that ARMC5 is crucial in fetal development, T-cell function and adrenal gland growth homeostasis, and that the functions of ARMC5 probably depend on interaction with multiple signalling pathways. PMID:28169274
Constitutional Epi/Genetic Conditions: Genetic, Epigenetic, and Environmental Factors
Schenkel, Laila C.; Rodenhiser, David; Siu, Victoria; McCready, Elizabeth; Ainsworth, Peter; Sadikovic, Bekim
2016-01-01
There are more than 4,000 phenotypes for which the molecular basis is at least partly known. Though defects in primary DNA structure constitute a major cause of these disorders, epigenetic disruption is emerging as an important alternative mechanism in the etiology of a broad range of congenital and developmental conditions. These include epigenetic defects caused by either localized (in cis) genetic alterations or more distant (in trans) genetic events but can also include environmental effects. Emerging evidence suggests interplay between genetic and environmental factors in the epigenetic etiology of several constitutional “epi/genetic” conditions. This review summarizes our broadening understanding of how epigenetics contributes to pediatric disease by exploring different classes of epigenomic disorders. It further challenges the simplistic dogma of “DNA encodes RNA encodes protein” to best understand the spectrum of factors that can influence genetic traits in a pediatric population. PMID:28180025
Fluctuating asymmetry as risk marker for stress and structural defects in a toxicologic experiment.
Breno, Matteo; Bots, Jessica; De Schaepdrijver, Luc; Van Dongen, Stefan
2013-08-01
Fluctuating asymmetry (the directionally random asymmetry of bilateral structures, FA) is commonly used as a measure of developmental instability, and may increase with stress. As several studies reported a relation between FA and developmental abnormalities, we investigate whether FA could be an additional perhaps more sensitive marker of developmental toxicity. The aim of this work is analyzing patterns of FA in multiple traits in a large dataset of rabbit fetuses, which were prenatally exposed to a toxic compound and sacrificed just before natural delivery. Gravid females were exposed to three doses of this compound, inducing abnormalities in the fetuses at the high dose only. The average FA, however, was already higher than control in rabbit fetuses of the low-dose group but did not further increase with higher concentrations. Moreover, the increase in FA differed between traits, with the hindlimbs showing the strongest response. In addition, we did not find any association between FA and the presence of fetal abnormalities at the individual level. Although these results suggest that FA may act as "an early warning system," we did not find a dose-response relationship with increasing stress and effects were trait-specific. Further testing is needed before FA may be considered as a sensitive marker in developmental toxicity studies. © 2013 Wiley Periodicals, Inc.
Control of asgE Expression during Growth and Development of Myxococcus xanthus
Garza, Anthony G.; Harris, Baruch Z.; Greenberg, Brandon M.; Singer, Mitchell
2000-01-01
One of the earliest events in the Myxococcus xanthus developmental cycle is production of an extracellular cell density signal called A-signal (or A-factor). Previously, we showed that cells carrying an insertion in the asgE gene fail to produce normal levels of this cell-cell signal. In this study we found that expression of asgE is growth phase regulated and developmentally regulated. Several lines of evidence indicate that asgE is cotranscribed with an upstream gene during development. Using primer extension analyses, we identified two 5′ ends for this developmental transcript. The DNA sequence upstream of one 5′ end has similarity to the promoter regions of several genes that are A-signal dependent, whereas sequences located upstream of the second 5′ end show similarity to promoter elements identified for genes that are C-signal dependent. Consistent with this result is our finding that mutants failing to produce A-signal or C-signal are defective for developmental expression of asgE. In contrast to developing cells, the large majority of the asgE transcript found in vegetative cells appears to be monocistronic. This finding suggests that asgE uses different promoters for expression during vegetative growth and development. Growth phase regulation of asgE is abolished in a relA mutant, indicating that this vegetative promoter is induced by starvation. The data presented here, in combination with our previous results, indicate that the level of AsgE in vegetative cells is sufficient for this protein to carry out its function during development. PMID:11073904
Mishra, Swati; Choe, Youngshik; Pleasure, Samuel J.; Siegenthaler, Julie A.
2016-01-01
Growth and maturation of the cerebrovasculature is a vital event in neocortical development however mechanisms that control cerebrovascular development remain poorly understood. Mutations in or deletions that include the FOXC1 gene are associated with congenital cerebrovascular anomalies and increased stroke risk in patients. Foxc1 mutant mice display severe cerebrovascular hemorrhage at late gestational ages. While these data demonstrate Foxc1 is required for cerebrovascular development, its broad expression in the brain vasculature combined with Foxc1 mutant’s complex developmental defects have made it difficult to pinpoint its function(s). Using global and conditional Foxc1 mutants, we find 1) significant cerebrovascular growth defects precede cerebral hemorrhage and 2) expression of Foxc1 in neural crest-derived meninges and brain pericytes, though not endothelial cells, is required for normal cerebrovascular development. We provide evidence that reduced levels of meninges-derived retinoic acid (RA), caused by defects in meninges formation in Foxc1 mutants, is a major contributing factor to the cerebrovascular growth defects in Foxc1 mutants. We provide data that suggests that meninges-derived RA ensures adequate growth of the neocortical vasculature via regulating expression of WNT pathway proteins and neural progenitor derived-VEGF-A. Our findings offer the first evidence for a role of the meninges in brain vascular development and provide new insight into potential causes of cerebrovascular defects in patients with FOXC1 mutations. PMID:27671872
Mishra, Swati; Choe, Youngshik; Pleasure, Samuel J; Siegenthaler, Julie A
2016-12-01
Growth and maturation of the cerebrovasculature is a vital event in neocortical development however mechanisms that control cerebrovascular development remain poorly understood. Mutations in or deletions that include the FOXC1 gene are associated with congenital cerebrovascular anomalies and increased stroke risk in patients. Foxc1 mutant mice display severe cerebrovascular hemorrhage at late gestational ages. While these data demonstrate Foxc1 is required for cerebrovascular development, its broad expression in the brain vasculature combined with Foxc1 mutant's complex developmental defects have made it difficult to pinpoint its function(s). Using global and conditional Foxc1 mutants, we find 1) significant cerebrovascular growth defects precede cerebral hemorrhage and 2) expression of Foxc1 in neural crest-derived meninges and brain pericytes, though not endothelial cells, is required for normal cerebrovascular development. We provide evidence that reduced levels of meninges-derived retinoic acid (RA), caused by defects in meninges formation in Foxc1 mutants, is a major contributing factor to the cerebrovascular growth defects in Foxc1 mutants. We provide data that suggests that meninges-derived RA ensures adequate growth of the neocortical vasculature via regulating expression of WNT pathway proteins and neural progenitor derived-VEGF-A. Our findings offer the first evidence for a role of the meninges in brain vascular development and provide new insight into potential causes of cerebrovascular defects in patients with FOXC1 mutations. Copyright © 2016 Elsevier Inc. All rights reserved.
Enriched expression of the ciliopathy gene Ick in cell proliferating regions of adult mice.
Tsutsumi, Ryotaro; Chaya, Taro; Furukawa, Takahisa
2018-04-07
Cilia are essential for sensory and motile functions across species. In humans, ciliary dysfunction causes "ciliopathies", which show severe developmental abnormalities in various tissues. Several missense mutations in intestinal cell kinase (ICK) gene lead to endocrine-cerebro-osteodysplasia syndrome or short rib-polydactyly syndrome, lethal recessive developmental ciliopathies. We and others previously reported that Ick-deficient mice exhibit neonatal lethality with developmental defects. Mechanistically, Ick regulates intraflagellar transport and cilia length at ciliary tips. Although Ick plays important roles during mammalian development, roles of Ick at the adult stage are poorly understood. In the current study, we investigated the Ick gene expression in adult mouse tissues. RT-PCR analysis showed that Ick is ubiquitously expressed, with enrichment in the retina, brain, lung, intestine, and reproductive system. In the adult brain, we found that Ick expression is enriched in the walls of the lateral ventricle, in the rostral migratory stream of the olfactory bulb, and in the subgranular zone of the hippocampal dentate gyrus by in situ hybridization analysis. We also observed that Ick staining pattern is similar to pachytene spermatocyte to spermatid markers in the mature testis and to an intestinal stem cell marker in the adult small intestine. These results suggest that Ick is expressed in proliferating regions in the adult mouse brain, testis, and intestine. Copyright © 2018 Elsevier B.V. All rights reserved.
K-RasV14I recapitulates Noonan syndrome in mice
Hernández-Porras, Isabel; Fabbiano, Salvatore; Schuhmacher, Alberto J.; Aicher, Alexandra; Cañamero, Marta; Cámara, Juan Antonio; Cussó, Lorena; Desco, Manuel; Heeschen, Christopher; Mulero, Francisca; Bustelo, Xosé R.; Guerra, Carmen; Barbacid, Mariano
2014-01-01
Noonan syndrome (NS) is an autosomal dominant genetic disorder characterized by short stature, craniofacial dysmorphism, and congenital heart defects. NS also is associated with a risk for developing myeloproliferative disorders (MPD), including juvenile myelomonocytic leukemia (JMML). Mutations responsible for NS occur in at least 11 different loci including KRAS. Here we describe a mouse model for NS induced by K-RasV14I, a recurrent KRAS mutation in NS patients. K-RasV14I–mutant mice displayed multiple NS-associated developmental defects such as growth delay, craniofacial dysmorphia, cardiac defects, and hematologic abnormalities including a severe form of MPD that resembles human JMML. Homozygous animals had perinatal lethality whose penetrance varied with genetic background. Exposure of pregnant mothers to a MEK inhibitor rescued perinatal lethality and prevented craniofacial dysmorphia and cardiac defects. However, Mek inhibition was not sufficient to correct these defects when mice were treated after weaning. Interestingly, Mek inhibition did not correct the neoplastic MPD characteristic of these mutant mice, regardless of the timing at which the mice were treated, thus suggesting that MPD is driven by additional signaling pathways. These genetically engineered K-RasV14I–mutant mice offer an experimental tool for studying the molecular mechanisms underlying the clinical manifestations of NS. Perhaps more importantly, they should be useful as a preclinical model to test new therapies aimed at preventing or ameliorating those deficits associated with this syndrome. PMID:25359213
Bourtchouladze, Rusiko; Lidge, Regina; Catapano, Ray; Stanley, Jennifer; Gossweiler, Scott; Romashko, Darlene; Scott, Rod; Tully, Tim
2003-01-01
Mice carrying a truncated form of cAMP-responsive element binding protein (CREB)-binding protein (CBP) show several developmental abnormalities similar to patients with Rubinstein-Taybi syndrome (RTS). RTS patients suffer from mental retardation, whereas long-term memory formation is defective in mutant CBP mice. A critical role for cAMP signaling during CREB-dependent long-term memory formation appears to be evolutionarily conserved. From this observation, we reasoned that drugs that modulate CREB function by enhancing cAMP signaling might yield an effective treatment for the memory defect(s) of CBP+/− mice. To this end, we designed a cell-based drug screen and discovered inhibitors of phosphodiesterase 4 (PDE4) to be particularly effective enhancers of CREB function. We extend previous behavioral observations by showing that CBP+/− mutants have impaired long-term memory but normal learning and short-term memory in an object recognition task. We demonstrate that the prototypical PDE4 inhibitor, rolipram, and a novel one (HT0712) abolish the long-term memory defect of CBP+/− mice. Importantly, the genetic lesion in CBP acts specifically to shift the dose sensitivity for HT0712 to enhance memory formation, which conveys molecular specificity on the drug's mechanism of action. Our results suggest that PDE4 inhibitors may be used to treat the cognitive dysfunction of RTS patients. PMID:12930888
USDA-ARS?s Scientific Manuscript database
A long-unresolved question in the developmental biology of Drosophila melanogaster has been whether methyl farnesoid hormones secreted by the ring gland are necessary for larval maturation and metamorphosis. In this study, we have used RNAi techniques to inhibit 3-Hydroxy-3-Methylglutaryl CoA Reduct...
Public health impact of plastics: An overview
Rustagi, Neeti; Pradhan, S. K.; Singh, Ritesh
2011-01-01
Plastic, one of the most preferred materials in today's industrial world is posing serious threat to environment and consumer's health in many direct and indirect ways. Exposure to harmful chemicals during manufacturing, leaching in the stored food items while using plastic packages or chewing of plastic teethers and toys by children are linked with severe adverse health outcomes such as cancers, birth defects, impaired immunity, endocrine disruption, developmental and reproductive effects etc. Promotion of plastics substitutes and safe disposal of plastic waste requires urgent and definitive action to take care of this potential health hazard in future. PMID:22412286
CHEMICAL PRIORITIZATION FOR DEVELOPMENTAL ...
Defining a predictive model of developmental toxicity from in vitro and high-throughput screening (HTS) assays can be limited by the availability of developmental defects data. ToxRefDB (www.epa.gov/ncct/todrefdb) was built from animal studies on data-rich environmental chemicals, and has been used as an anchor for predictive modeling of ToxCast™ data. Scaling to thousands of untested chemicals requires another approach. ToxPlorer™ was developed as a tool to query and extract specific facts about defined biological entities from the open scientific literature and to coherently synthesize relevant knowledge about relationships, pathways and processes in toxicity. Here, we investigated the specific application of ToxPlorer to weighting HTS assay targets for relevance to developmental defects as defined in the literature. First, we systemically analyzed 88,193 Pubmed abstracts selected by bulk query using harmonized terminology for 862 developmental endpoints (www.devtox.net) and 364,334 dictionary term entities in our VT-KB (virtual tissues knowledgebase). We specifically focused on entities corresponding to genes/proteins mapped across of >500 ToxCast HTS assays. The 88,193 devtox abstracts mentioned 244 gene/protein entities in an aggregated total of ~8,000 occurrences. Each of the 244 assays was scored and weighted by the number of devtox articles and relevance to developmental processes. This score was used as a feature for chemical prioritization by Toxic
Fishing for Fetal Alcohol Spectrum Disorders: Zebrafish as a Model for Ethanol Teratogenesis.
Lovely, Charles Ben; Fernandes, Yohaan; Eberhart, Johann K
2016-10-01
Fetal Alcohol Spectrum Disorders (FASD) describes a wide array of ethanol-induced developmental defects, including craniofacial dysmorphology and cognitive impairments. It affects ∼1 in 100 children born in the United States each year. Due to the pleiotropic effects of ethanol, animal models have proven critical in characterizing the mechanisms of ethanol teratogenesis. In this review, we focus on the utility of zebrafish in characterizing ethanol-induced developmental defects. A growing number of laboratories have focused on using zebrafish to examine ethanol-induced defects in craniofacial, cardiac, ocular, and neural development, as well as cognitive and behavioral impairments. Growing evidence supports that genetic predisposition plays a role in these ethanol-induced defects, yet little is understood about these gene-ethanol interactions. With a high degree of genetic amenability, zebrafish is at the forefront of identifying and characterizing the gene-ethanol interactions that underlie FASD. Because of the conservation of gene function between zebrafish and humans, these studies will directly translate to studies of candidate genes in human populations and allow for better diagnosis and treatment of FASD.
Zhang, Shun; Niu, Qiang; Gao, Hui; Ma, Rulin; Lei, Rongrong; Zhang, Cheng; Xia, Tao; Li, Pei; Xu, Chunyan; Wang, Chao; Chen, Jingwen; Dong, Lixing; Zhao, Qian; Wang, Aiguo
2016-05-01
Fluoride, a ubiquitous environmental contaminant, is known to impair testicular functions and fertility; however the underlying mechanisms remain obscure. In this study, we used a rat model to mimic human exposure and sought to investigate the roles of apoptosis and autophagy in testicular toxicity of fluoride. Sprague-Dawley rats were developmentally exposed to 25, 50, or 100 mg/L sodium fluoride (NaF) via drinking water from pre-pregnancy to post-puberty, and then the testes of offspring were excised on postnatal day 56. Our results demonstrated that developmental NaF exposure induced an enhanced testicular apoptosis, as manifested by a series of hallmarks such as caspase-3 activation, chromatin condensation and DNA fragmentation. Further study revealed that fluoride exposure elicited significant elevations in the levels of cell surface death receptor Fas with a parallel increase in cytoplasmic cytochrome c, indicating the involvement of both extrinsic and intrinsic apoptotic pathways. Intriguingly, fluoride treatment also simultaneously increased the number of autophagosomes and the levels of autophagy marker LC3-II but not Beclin1. Unexpectedly, the expression of p62, a substrate that is degraded by autophagy, was also significantly elevated, suggesting that the accumulated autophagosomes resulted from impaired autophagy degradation rather than increased formation. Importantly, these were associated with marked histopathological lesions including spermatogenic failure and germ cell loss, along with severe ultrastructural abnormalities in testes. Taken together, our findings provide deeper insights into roles of excessive apoptosis and defective autophagy in the aggravation of testicular damage, which could contribute to a better understanding of fluoride-induced male reproductive toxicity. Copyright © 2016 Elsevier Ltd. All rights reserved.
Xenopus as a Model Organism for Birth Defects – Congenital Heart Disease and Heterotaxy
Duncan, Anna R.; Khokha, Mustafa K.
2016-01-01
Congenital heart disease is the leading cause of birth defects, affecting 9 out of 1000 newborns each year. A particularly severe form of congenital heart disease is heterotaxy, a disorder of left-right development. Despite aggressive surgical management, patients with heterotaxy have poor survival rates and severe morbidity due to their complex congenital heart disease. Recent genetic analysis of affected patients has found novel candidate genes for heterotaxy although their underlying mechanisms remain unknown. In this review, we discuss the importance and challenges of birth defects research including high locus heterogeneity and few second alleles that make defining disease causality difficult. A powerful strategy moving forward is to analyze these candidate genes in a high-throughput human disease model. Xenopus is ideal for these studies. We present multiple examples demonstrating the power of Xenopus in discovery new biology from the analysis of candidate heterotaxy genes such as GALNT11, NEK2 and BCOR. These genes have diverse roles in embryos and have led to a greater understanding of complex signaling pathways and basic developmental biology. It is our hope that the mechanistic analysis of these candidate genes in Xenopus enabled by next generation sequencing of patients will provide clinicians with a greater understanding of patient pathophysiology allowing more precise and personalized medicine, to help them more effectively in the future. PMID:26910255
Sakai, Daisuke; Trainor, Paul A
2016-09-01
One-third of all congenital birth defects affect the head and face, and most craniofacial anomalies are considered to arise through defects in the development of cranial neural crest cells. Cranial neural crest cells give rise to the majority of craniofacial bones, cartilages and connective tissues. Therefore, understanding the events that control normal cranial neural crest and subsequent craniofacial development is important for elucidating the pathogenetic mechanisms of craniofacial anomalies and for the exploring potential therapeutic avenues for their prevention. Treacher Collins syndrome (TCS) is a congenital disorder characterized by severe craniofacial anomalies. An animal model of TCS, generated through mutation of Tcof1, the mouse (Mus musculus) homologue of the gene primarily mutated in association with TCS in humans, has recently revealed significant insights into the pathogenesis of TCS. Apoptotic elimination of neuroepithelial cells including neural crest cells is the primary cause of craniofacial defects in Tcof1 mutant embryos. However, our understanding of the mechanisms that induce tissue-specific apoptosis remains incomplete. In this review, we describe recent advances in our understanding of the pathogenesis TCS. Furthermore, we discuss the role of Tcof1 in normal embryonic development, the correlation between genetic and environmental factors on the severity of craniofacial abnormalities, and the prospect for prenatal prevention of craniofacial anomalies. © 2016 Japanese Society of Developmental Biologists.
DOE Office of Scientific and Technical Information (OSTI.GOV)
West, Paul R., E-mail: pwest@stemina.co; Weir, April M.; Smith, Alan M.
2010-08-15
Teratogens, substances that may cause fetal abnormalities during development, are responsible for a significant number of birth defects. Animal models used to predict teratogenicity often do not faithfully correlate to human response. Here, we seek to develop a more predictive developmental toxicity model based on an in vitro method that utilizes both human embryonic stem (hES) cells and metabolomics to discover biomarkers of developmental toxicity. We developed a method where hES cells were dosed with several drugs of known teratogenicity then LC-MS analysis was performed to measure changes in abundance levels of small molecules in response to drug dosing. Statisticalmore » analysis was employed to select for specific mass features that can provide a prediction of the developmental toxicity of a substance. These molecules can serve as biomarkers of developmental toxicity, leading to better prediction of teratogenicity. In particular, our work shows a correlation between teratogenicity and changes of greater than 10% in the ratio of arginine to asymmetric dimethylarginine levels. In addition, this study resulted in the establishment of a predictive model based on the most informative mass features. This model was subsequently tested for its predictive accuracy in two blinded studies using eight drugs of known teratogenicity, where it correctly predicted the teratogenicity for seven of the eight drugs. Thus, our initial data shows that this platform is a robust alternative to animal and other in vitro models for the prediction of the developmental toxicity of chemicals that may also provide invaluable information about the underlying biochemical pathways.« less
Pommerrenig, Benjamin; Popko, Jennifer; Heilmann, Mareike; Schulmeister, Sylwia; Dietel, Katharina; Schmitt, Bianca; Stadler, Ruth; Feussner, Ivo; Sauer, Norbert
2013-01-01
The Arabidopsis SUC5 protein represents a classical sucrose/H+ symporter. Functional analyses previously revealed that SUC5 also transports biotin, an essential co-factor for fatty acid synthesis. However, evidence for a dual role in transport of the structurally unrelated compounds sucrose and biotin in plants was lacking. Here we show that SUC5 localizes to the plasma membrane, and that the SUC5 gene is expressed in developing embryos, confirming the role of the SUC5 protein as substrate carrier across apoplastic barriers in seeds. We show that transport of biotin but not of sucrose across these barriers is impaired in suc5 mutant embryos. In addition, we show that SUC5 is essential for the delivery of biotin into the embryo of biotin biosynthesis-defective mutants (bio1 and bio2). We compared embryo and seedling development as well as triacylglycerol accumulation and fatty acid composition in seeds of single mutants (suc5, bio1 or bio2), double mutants (suc5 bio1 and suc5 bio2) and wild-type plants. Although suc5 mutants were like the wild-type, bio1 and bio2 mutants showed developmental defects and reduced triacylglycerol contents. In suc5 bio1 and suc5 bio2 double mutants, developmental defects were severely increased and the triacylglycerol content was reduced to a greater extent in comparison to the single mutants. Supplementation with externally applied biotin helped to reduce symptoms in both single and double mutants, but the efficacy of supplementation was significantly lower in double than in single mutants, showing that transport of biotin into the embryo is lower in the absence of SUC5. PMID:23031218
De Mori, Roberta; Romani, Marta; D'Arrigo, Stefano; Zaki, Maha S; Lorefice, Elisa; Tardivo, Silvia; Biagini, Tommaso; Stanley, Valentina; Musaev, Damir; Fluss, Joel; Micalizzi, Alessia; Nuovo, Sara; Illi, Barbara; Chiapparini, Luisa; Di Marcotullio, Lucia; Issa, Mahmoud Y; Anello, Danila; Casella, Antonella; Ginevrino, Monia; Leggins, Autumn Sa'na; Roosing, Susanne; Alfonsi, Romina; Rosati, Jessica; Schot, Rachel; Mancini, Grazia Maria Simonetta; Bertini, Enrico; Dobyns, William B; Mazza, Tommaso; Gleeson, Joseph G; Valente, Enza Maria
2017-10-05
The Sonic Hedgehog (SHH) pathway is a key signaling pathway orchestrating embryonic development, mainly of the CNS and limbs. In vertebrates, SHH signaling is mediated by the primary cilium, and genetic defects affecting either SHH pathway members or ciliary proteins cause a spectrum of developmental disorders. SUFU is the main negative regulator of the SHH pathway and is essential during development. Indeed, Sufu knock-out is lethal in mice, and recessive pathogenic variants of this gene have never been reported in humans. Through whole-exome sequencing in subjects with Joubert syndrome, we identified four children from two unrelated families carrying homozygous missense variants in SUFU. The children presented congenital ataxia and cerebellar vermis hypoplasia with elongated superior cerebellar peduncles (mild "molar tooth sign"), typical cranio-facial dysmorphisms (hypertelorism, depressed nasal bridge, frontal bossing), and postaxial polydactyly. Two siblings also showed polymicrogyria. Molecular dynamics simulation predicted random movements of the mutated residues, with loss of the native enveloping movement of the binding site around its ligand GLI3. Functional studies on cellular models and fibroblasts showed that both variants significantly reduced SUFU stability and its capacity to bind GLI3 and promote its cleavage into the repressor form GLI3R. In turn, this impaired SUFU-mediated repression of the SHH pathway, as shown by altered expression levels of several target genes. We demonstrate that germline hypomorphic variants of SUFU cause deregulation of SHH signaling, resulting in recessive developmental defects of the CNS and limbs which share features with both SHH-related disorders and ciliopathies. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Reproduction Symposium: developmental programming of reproductive and metabolic health.
Padmanabhan, V; Veiga-Lopez, A
2014-08-01
Inappropriate programming of the reproductive system by developmental exposure to excess steroid hormones is of concern. Sheep are well suited for investigating developmental origin of reproductive and metabolic disorders. The developmental time line of female sheep (approximately 5 mo gestation and approximately 7 mo to puberty) is ideal for conducting sequential studies of the progression of metabolic and/or reproductive disruption from the developmental insult to manifestation of adult consequences. Major benefits of using sheep include knowledge of established critical periods to target adult defects, a rich understanding of reproductive neuroendocrine regulation, availability of noninvasive approaches to monitor follicular dynamics, established surgical approaches to obtain hypophyseal portal blood for measurement of hypothalamic hormones, and the ability to perform studies in natural setting thereby keeping behavioral interactions intact. Of importance is the ability to chronically instrument fetus and mother for determining early endocrine perturbations. Prenatal exposure of the female to excess testosterone (T) leads to an array of adult reproductive disorders that include LH excess, functional hyperandrogenism, neuroendocrine defects, multifollicular ovarian morphology, and corpus luteum dysfunction culminating in early reproductive failure. At the neuroendocrine level, all 3 feedback systems are compromised. At the pituitary level, gonadotrope (LH secretion) sensitivity to GnRH is increased. Multifollicular ovarian morphology stems from persistence of follicles as well as enhanced follicular recruitment. These defects culminate in progressive loss of cyclicity and reduced fecundity. Prenatal T excess also leads to fetal growth retardation, an early marker of adult reproductive and metabolic diseases, insulin resistance, hypertension, and behavioral deficits. Collectively, the reproductive and metabolic deficits of prenatal T-treated sheep provide proof of concept for the developmental origin of fertility and metabolic disorders. Studies with the environmental endocrine disruptor bisphenol A (BPA) show that reproductive disruptions found in prenatal BPA-treated sheep are similar to those seen in prenatal T-treated sheep. The ubiquitous exposure to endocrine disrupting compounds with steroidogenic potential via the environment and food sources calls for studies addressing the impact of developmental exposure to environmental steroid mimics on reproductive function.
Developmental programming of reproductive and metabolic health1,2
Padmanabhan, V.; Veiga-Lopez, A.
2014-01-01
The inappropriate programming of the reproductive system by developmental exposure to excess steroid hormones is of concern. Sheep are well suited for investigating developmental origin of reproductive and metabolic disorders. The developmental time line of female sheep (~5 mo gestation and ~7 mo to puberty) is ideal for conducting sequential studies of the progression of metabolic and (or) reproductive disruption from the developmental insult to manifestation of adult consequences. Major benefits of using sheep include knowledge of established critical periods to target adult defects, a rich understanding of reproductive neuroendocrine regulation, availability of non-invasive approaches to monitor follicular dynamics, established surgical approaches to obtain hypophyseal portal blood for measurement of hypothalamic hormones, and the ability to perform studies in natural setting keeping behavioral interactions intact. Of importance is the ability to chronically instrument fetus and mother for determining early endocrine perturbations. Prenatal exposure of the female to excess testosterone (T) leads to an array of adult reproductive disorders that include LH excess, functional hyperandrogenism, neuroendocrine defects, multifollicular ovarian morphology, and corpus luteum dysfunction culminating in early reproductive failure. At the neuroendocrine level all three feedback systems are compromised. At the pituitary level, gonadotrope (LH secretion) sensitivity to GnRH is increased. Multifollicular ovarian morphology stems from persistence of follicles, as well as enhanced follicular recruitment. These defects culminate in progressive loss of cyclicity and reduced fecundity. Prenatal T excess also leads to fetal growth retardation, an early marker of adult reproductive/metabolic diseases, insulin resistance, hypertension and behavioral deficits. Collectively, the reproductive and metabolic deficits of prenatal T-treated sheep provide proof of concept for the developmental origin of fertility and metabolic disorders. Studies with the environmental endocrine disruptor, bisphenol-A (BPA), show that reproductive disruptions found in prenatal BPA-treated sheep are similar to those seen in prenatal T-treated sheep. The ubiquitous exposure to endocrine disrupting compounds (EDC) with steroidogenic potential via the environment and food sources, calls for studies addressing the impact of developmental exposure to environmental steroid mimics on reproductive function. PMID:25074449
Itoh, Jun-Ichi; Hibara, Ken-Ichiro; Sato, Yutaka; Nagato, Yasuo
2008-01-01
Members of the Class III homeodomain leucine zipper (Class III HD-Zip) gene family are central regulators of crucial aspects of plant development. To better understand the roles of five Class III HD-Zip genes in rice (Oryza sativa) development, we investigated their expression patterns, ectopic expression phenotypes, and auxin responsiveness. Four genes, OSHB1 to OSHB4, were expressed in a localized domain of the shoot apical meristem (SAM), the adaxial cells of leaf primordia, the leaf margins, and the xylem tissue of vascular bundles. In contrast, expression of OSHB5 was observed only in phloem tissue. Plants ectopically expressing microRNA166-resistant versions of the OSHB3 gene exhibited severe defects, including the ectopic production of leaf margins, shoots, and radialized leaves. The treatment of seedlings with auxin quickly induced ectopic OSHB3 expression in the entire region of the SAM, but not in other tissues. Furthermore, this ectopic expression of OSHB3 was correlated with leaf initiation defects. Our findings suggest that rice Class III HD-Zip genes have conserved functions with their homologs in Arabidopsis (Arabidopsis thaliana), but have also acquired specific developmental roles in grasses or monocots. In addition, some Class III HD-Zip genes may regulate the leaf initiation process in the SAM in an auxin-dependent manner. PMID:18567825
García-Sanz, Patricia; Mirasierra, Mercedes; Moratalla, Rosario; Vallejo, Mario
2017-03-24
Oxidative stress constitutes a major cause for increased risk of congenital malformations associated to severe hyperglycaemia during pregnancy. Mutations in the gene encoding the transcription factor ALX3 cause congenital craniofacial and neural tube defects. Since oxidative stress and lack of ALX3 favour excessive embryonic apoptosis, we investigated whether ALX3-deficiency further increases the risk of embryonic damage during gestational hyperglycaemia in mice. We found that congenital malformations associated to ALX3-deficiency are enhanced in diabetic pregnancies. Increased expression of genes encoding oxidative stress-scavenging enzymes in embryos from diabetic mothers was blunted in the absence of ALX3, leading to increased oxidative stress. Levels of ALX3 increased in response to glucose, but ALX3 did not activate oxidative stress defence genes directly. Instead, ALX3 stimulated the transcription of Foxo1, a master regulator of oxidative stress-scavenging genes, by binding to a newly identified binding site located in the Foxo1 promoter. Our data identify ALX3 as an important component of the defence mechanisms against the occurrence of developmental malformations during diabetic gestations, stimulating the expression of oxidative stress-scavenging genes in a glucose-dependent manner via Foxo1 activation. Thus, ALX3 deficiency provides a novel molecular mechanism for developmental defects arising from maternal hyperglycaemia.
The 12q14 microdeletion syndrome: six new cases confirming the role of HMGA2 in growth
Lynch, Sally Ann; Foulds, Nicola; Thuresson, Ann-Charlotte; Collins, Amanda L; Annerén, Göran; Hedberg, Bernt-Oves; Delaney, Carol A; Iremonger, James; Murray, Caroline M; Crolla, John A; Costigan, Colm; Lam, Wayne; Fitzpatrick, David R; Regan, Regina; Ennis, Sean; Sharkey, Freddie
2011-01-01
We report six patients with array deletions encompassing 12q14. Out of a total of 2538 array investigations carried out on children with developmental delay and dysmorphism in three diagnostic testing centres, six positive cases yielded a frequency of 1 in 423 for this deletion syndrome. The deleted region in each of the six cases overlaps significantly with previously reported cases with microdeletions of this region. The chromosomal range of the deletions extends from 12q13.3q15. In the current study, we report overlapping deletions of variable extent and size but primarily comprising chromosomal bands 12q13.3q14.1. Four of the six deletions were confirmed as de novo events. Two cases had deletions that included HMGA2, and both children had significant short stature. Neither case had osteopoikilosis despite both being deleted for LEMD3. Four cases had deletions that ended proximal to HMGA2 and all of these had much better growth. Five cases had congenital heart defects, including two with atrial septal defects, one each with pulmonary stenosis, sub-aortic stenosis and a patent ductus. Four cases had moderate delay, two had severe developmental delay and a further two had a diagnosis of autism. All six cases had significant speech delay with subtle facial dysmorphism. PMID:21267005
ERIC Educational Resources Information Center
Skagerlund, Kenny; Träff, Ulf
2016-01-01
This study investigated if developmental dyscalculia (DD) in children with different profiles of mathematical deficits has the same or different cognitive origins. The defective approximate number system hypothesis and the access deficit hypothesis were tested using two different groups of children with DD (11-13 years old): a group with…
Padmanabhan, Vasantha; Sarma, Hiren N.; Savabieasfahani, Mozhgan; Steckler, Teresa L.; Veiga-Lopez, Almudena
2014-01-01
The inappropriate programming of developing organ systems by exposure to excess native or environmental steroids, particularly the contamination of our environment and our food sources with synthetic endocrine disrupting chemicals that can interact with steroid receptors, is a major concern. Studies with native steroids have found that in utero exposure of sheep to excess testosterone, an estrogen precursor, results in low birth weight offspring and leads to an array of adult reproductive / metabolic deficits manifested as cycle defects, functional hyperandrogenism, neuroendocrine / ovarian defects, insulin resistance, and hypertension. Furthermore, the severity of reproductive dysfunction is amplified by excess postnatal weight gain. The constellation of adult reproductive and metabolic dysfunction in prenatal testosterone-treated sheep is similar to features seen in women with polycystic ovary syndrome. Prenatal dihydrotestosterone treatment failed to result in similar phenotype suggesting that many effects of prenatal testosterone excess are likely facilitated via aromatization to estradiol. Similarly, exposure to environmental steroid imposters such as bisphenol A (BPA) and methoxychlor (MXC) from days 30-90 of gestation had long-term but differential effects. Exposure of sheep to BPA, which resulted in maternal levels of 30-50 ng/ml BPA, culminated in low birth-weight offspring. These female offspring were hypergonadotropic during early postnatal life and characterized by severely dampened preovulatory LH surges. Prenatal MXC-treated females had normal birth weight and manifested delayed but normal amplitude LH surges. Importantly, the effects of BPA were evident at levels, which approximated twice the highest levels found in human maternal circulation of industrialized nations. These findings provide evidence in support of developmental origin of adult reproductive and metabolic diseases and highlight the risk posed by exposure to environmental endocrine disrupting chemicals. PMID:20070410
Wesdorp, Mieke; de Koning Gans, Pia A M; Schraders, Margit; Oostrik, Jaap; Huynen, Martijn A; Venselaar, Hanka; Beynon, Andy J; van Gaalen, Judith; Piai, Vitória; Voermans, Nicol; van Rossum, Michelle M; Hartel, Bas P; Lelieveld, Stefan H; Wiel, Laurens; Verbist, Berit; Rotteveel, Liselotte J; van Dooren, Marieke F; Lichtner, Peter; Kunst, Henricus P M; Feenstra, Ilse; Admiraal, Ronald J C; Yntema, Helger G; Hoefsloot, Lies H; Pennings, Ronald J E; Kremer, Hannie
2018-05-12
Unraveling the causes and pathomechanisms of progressive disorders is essential for the development of therapeutic strategies. Here, we identified heterozygous pathogenic missense variants of LMX1A in two families of Dutch origin with progressive nonsyndromic hearing impairment (HI), using whole exome sequencing. One variant, c.721G > C (p.Val241Leu), occurred de novo and is predicted to affect the homeodomain of LMX1A, which is essential for DNA binding. The second variant, c.290G > C (p.Cys97Ser), predicted to affect a zinc-binding residue of the second LIM domain that is involved in protein-protein interactions. Bi-allelic deleterious variants of Lmx1a are associated with a complex phenotype in mice, including deafness and vestibular defects, due to arrest of inner ear development. Although Lmx1a mouse mutants demonstrate neurological, skeletal, pigmentation and reproductive system abnormalities, no syndromic features were present in the participating subjects of either family. LMX1A has previously been suggested as a candidate gene for intellectual disability, but our data do not support this, as affected subjects displayed normal cognition. Large variability was observed in the age of onset (a)symmetry, severity and progression rate of HI. About half of the affected individuals displayed vestibular dysfunction and experienced symptoms thereof. The late-onset progressive phenotype and the absence of cochleovestibular malformations on computed tomography scans indicate that heterozygous defects of LMX1A do not result in severe developmental abnormalities in humans. We propose that a single LMX1A wild-type copy is sufficient for normal development but insufficient for maintenance of cochleovestibular function. Alternatively, minor cochleovestibular developmental abnormalities could eventually lead to the progressive phenotype seen in the families.
Jones, Tamsin E M; Day, Robert C; Beck, Caroline W
2013-11-01
The vertebrate limb is one of the most intensively studied organs in the field of developmental biology. Limb development in tetrapod vertebrates is highly conserved and dependent on the interaction of several important molecular pathways. The bone morphogenetic protein (BMP) signaling cascade is one of these pathways and has been shown to be crucial for several aspects of limb development. Here, we have used a Xenopus laevis transgenic line, in which expression of the inhibitor Noggin is under the control of the heat-shock promoter hsp70 to examine the effects of attenuation of BMP signaling at different stages of limb development. Remarkably different phenotypes were produced at different stages, illustrating the varied roles of BMP in development of the limb. Very early limb buds appeared to be refractory to the effects of BMP attenuation, developing normally in most cases. Ectopic limbs were produced by overexpression of Noggin corresponding to a brief window of limb development at about stage 49/50, as recently described by Christen et al. (2012). Attenuation of BMP signaling in stage 51 or 52 tadpoles lead to a reduction in the number of digits formed, resulting in hypodactyly or ectrodactyly, as well as occasional defects in the more proximal tibia-fibula. Finally, inhibition at stage 54 (paddle stage) led to the formation of dramatically shortened digits resulting from loss of distal phalanges. Transcriptome analysis has revealed the possibility that more Noggin-sensitive members of the BMP family could be involved in limb development than previously suspected. Our analysis demonstrates the usefulness of heat-shock-driven gene expression as an effective method for inhibiting a developmental pathway at different times during limb development. © 2013 Anatomical Society.
Stefan, M; Ji, H; Simmons, R A; Cummings, D E; Ahima, R S; Friedman, M I; Nicholls, R D
2005-10-01
Prader-Willi syndrome (PWS) has a biphasic clinical phenotype with failure to thrive in the neonatal period followed by hyperphagia and severe obesity commencing in childhood among other endocrinological and neurobehavioral abnormalities. The syndrome results from loss of function of several clustered, paternally expressed genes in chromosome 15q11-q13. PWS is assumed to result from a hypothalamic defect, but the pathophysiological basis of the disorder is unknown. We hypothesize that a fetal developmental abnormality in PWS leads to the neonatal phenotype, whereas the adult phenotype results from a failure in compensatory mechanisms. To address this hypothesis and better characterize the neonatal failure to thrive phenotype during postnatal life, we studied a transgenic deletion PWS (TgPWS) mouse model that shares similarities with the first stage of the human syndrome. TgPWS mice have fetal and neonatal growth retardation associated with profoundly reduced insulin and glucagon levels. Consistent with growth retardation, TgPWS mice have deregulated liver expression of IGF system components, as revealed by quantitative gene expression studies. Lethality in TgPWS mice appears to result from severe hypoglycemia after postnatal d 2 after depletion of liver glycogen stores. Consistent with hypoglycemia, TgPWS mice appear to have increased fat oxidation. Ghrelin levels increase in TgPWS reciprocally with the falling glucose levels, suggesting that the rise in ghrelin reported in PWS patients may be secondary to a perceived energy deficiency. Together, the data reveal defects in endocrine pancreatic function as well as glucose and hepatic energy metabolism that may underlie the neonatal phenotype of PWS.
ALTERED RA SIGNALING IN THE GENESIS OF ETHANOL-INDUCED LIMB DEFECTS
Altered RA Signaling in the Genesis of Ethanol-Induced Limb Defects
Johnson CS(1), Sulik KK(1,2) Hunter, ES III(3)
(1) Dept of Cell and Developmental Biology, UNC-Chapel Hill (2) Bowles Center for Alcohol Studies, UNC-CH (3) NHEERL, ORD, US EPA, RTP, NC
Administr...
Evidence of Early Childhood Defects Due to Prenatal Over-Exposure to Vitamin A: A Case Study
ERIC Educational Resources Information Center
Naude, H.; Marx, J.; Pretorius, E.; Hislop-Esterhuyzen, N.
2007-01-01
One of the important nutrients during pregnancy is vitamin A or related compounds called retinoids. Although it is well-known that vitamin A deficiency may be detrimental to foetal development, overdosage of retinoids might cause developmental defects, particularly affecting the central nervous system development of the foetus, causing hindbrain…
Manjila, Sunil; Miller, Erin A.; Vadera, Sumeet; Goel, Rishi K.; Khan, Fahd R.; Crowe, Carol; Geertman, Robert T.
2012-01-01
Background: Duplication of the pituitary gland (DPG) is a rare craniofacial developmental anomaly occurring during blastogenesis with postulated etiology such as incomplete twinning, teratogens, median cleft face syndrome or splitting of the notochord. The complex craniocaudal spectrum of blastogenesis defects associated with DPG is examined with an illustrative case. Case Description: We report for the first time in the medical literature some unique associations with DPG, such as a clival encephalocele, third cerebral peduncle, duplicate odontoid process and a double tongue with independent volitional control. This patient also has the previously reported common associations such as duplicated sella, cleft palate, hypertelorism, callosal agenesis, hypothalamic enlargement, nasopharyngeal teratoma, fenestrated basilar artery and supernumerary teeth. This study also reviews 37 cases of DPG identified through MEDLINE literature search from 1880 to 2011. It provides a detailed analysis of the current case through physical examination and imaging. Conclusion: The authors propose that the developmental deformities associated with duplication of pituitary gland (DPG) occur as part of a developmental continuum, not as chance associations. Considering the fact that DPG is uniquely and certainly present throughout the spectrum of these blastogenesis defects, we suggest the term DPG-plus syndrome. PMID:22439114
Prchalova, Darina; Havlovicova, Marketa; Sterbova, Katalin; Stranecky, Viktor; Hancarova, Miroslava; Sedlacek, Zdenek
2017-06-02
Whole exome sequencing is a powerful tool for the analysis of genetically heterogeneous conditions. The prioritization of variants identified often focuses on nonsense, frameshift and canonical splice site mutations, and highly deleterious missense variants, although other defects can also play a role. The definition of the phenotype range and course of rare genetic conditions requires long-term clinical follow-up of patients. We report an adult female patient with severe intellectual disability, severe speech delay, epilepsy, autistic features, aggressiveness, sleep problems, broad-based clumsy gait and constipation. Whole exome sequencing identified a de novo mutation in the SYNGAP1 gene. The variant was located in the broader splice donor region of intron 10 and replaced G by A at position +5 of the splice site. The variant was predicted in silico and shown experimentally to abolish the regular splice site and to activate a cryptic donor site within exon 10, causing frameshift and premature termination. The overall clinical picture of the patient corresponded well with the characteristic SYNGAP1-associated phenotype observed in previously reported patients. However, our patient was 31 years old which contrasted with most other published SYNGAP1 cases who were much younger. Our patient had a significant growth delay and microcephaly. Both features normalised later, although the head circumference stayed only slightly above the lower limit of the norm. The patient had a delayed puberty. Her cognitive and language performance remained at the level of a one-year-old child even in adulthood and showed a slow decline. Myopathic facial features and facial dysmorphism became more pronounced with age. Although the gait of the patient was unsteady in childhood, more severe gait problems developed in her teens. While the seizures remained well-controlled, her aggressive behaviour worsened with age and required extensive medication. The finding in our patient underscores the notion that the interpretation of variants identified using whole exome sequencing should focus not only on variants in the canonical splice dinucleotides GT and AG, but also on broader splice regions. The long-term clinical follow-up of our patient contributes to the knowledge of the developmental trajectory in individuals with SYNGAP1 gene defects.
Walton, Travis; Preston, Elicia; Nair, Gautham; Zacharias, Amanda L.; Raj, Arjun; Murray, John Isaac
2015-01-01
While many transcriptional regulators of pluripotent and terminally differentiated states have been identified, regulation of intermediate progenitor states is less well understood. Previous high throughput cellular resolution expression studies identified dozens of transcription factors with lineage-specific expression patterns in C. elegans embryos that could regulate progenitor identity. In this study we identified a broad embryonic role for the C. elegans OTX transcription factor ceh-36, which was previously shown to be required for the terminal specification of four neurons. ceh-36 is expressed in progenitors of over 30% of embryonic cells, yet is not required for embryonic viability. Quantitative phenotyping by computational analysis of time-lapse movies of ceh-36 mutant embryos identified cell cycle or cell migration defects in over 100 of these cells, but most defects were low-penetrance, suggesting redundancy. Expression of ceh-36 partially overlaps with that of the PITX transcription factor unc-30. unc-30 single mutants are viable but loss of both ceh-36 and unc-30 causes 100% lethality, and double mutants have significantly higher frequencies of cellular developmental defects in the cells where their expression normally overlaps. These factors are also required for robust expression of the downstream developmental regulator mls-2/HMX. This work provides the first example of genetic redundancy between the related yet evolutionarily distant OTX and PITX families of bicoid class homeodomain factors and demonstrates the power of quantitative developmental phenotyping in C. elegans to identify developmental regulators acting in progenitor cells. PMID:25738873
(1) Standard practice for assessing developmental toxicity is the observation of apical endpoints (intrauterine death, fetal growth retardation, structural malformations) in pregnant rats/rabbits following exposure during organogenesis. EPA’s computational toxicology research pro...
Endocannabinoid system in neurodegenerative disorders.
Basavarajappa, Balapal S; Shivakumar, Madhu; Joshi, Vikram; Subbanna, Shivakumar
2017-09-01
Most neurodegenerative disorders (NDDs) are characterized by cognitive impairment and other neurological defects. The definite cause of and pathways underlying the progression of these NDDs are not well-defined. Several mechanisms have been proposed to contribute to the development of NDDs. These mechanisms may proceed concurrently or successively, and they differ among cell types at different developmental stages in distinct brain regions. The endocannabinoid system, which involves cannabinoid receptors type 1 (CB1R) and type 2 (CB2R), endogenous cannabinoids and the enzymes that catabolize these compounds, has been shown to contribute to the development of NDDs in several animal models and human studies. In this review, we discuss the functions of the endocannabinoid system in NDDs and converse the therapeutic efficacy of targeting the endocannabinoid system to rescue NDDs. © 2017 International Society for Neurochemistry.
Loss of mTOR-dependent macroautophagy causes autistic-like synaptic pruning deficits.
Tang, Guomei; Gudsnuk, Kathryn; Kuo, Sheng-Han; Cotrina, Marisa L; Rosoklija, Gorazd; Sosunov, Alexander; Sonders, Mark S; Kanter, Ellen; Castagna, Candace; Yamamoto, Ai; Yue, Zhenyu; Arancio, Ottavio; Peterson, Bradley S; Champagne, Frances; Dwork, Andrew J; Goldman, James; Sulzer, David
2014-09-03
Developmental alterations of excitatory synapses are implicated in autism spectrum disorders (ASDs). Here, we report increased dendritic spine density with reduced developmental spine pruning in layer V pyramidal neurons in postmortem ASD temporal lobe. These spine deficits correlate with hyperactivated mTOR and impaired autophagy. In Tsc2 ± ASD mice where mTOR is constitutively overactive, we observed postnatal spine pruning defects, blockade of autophagy, and ASD-like social behaviors. The mTOR inhibitor rapamycin corrected ASD-like behaviors and spine pruning defects in Tsc2 ± mice, but not in Atg7(CKO) neuronal autophagy-deficient mice or Tsc2 ± :Atg7(CKO) double mutants. Neuronal autophagy furthermore enabled spine elimination with no effects on spine formation. Our findings suggest that mTOR-regulated autophagy is required for developmental spine pruning, and activation of neuronal autophagy corrects synaptic pathology and social behavior deficits in ASD models with hyperactivated mTOR. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Lopez, Andrew L.; Wang, Shang; Garcia, Monica; Valladolid, Christian; Larin, Kirill V.; Larina, Irina V.
2015-03-01
Understanding mouse embryonic development is an invaluable resource for our interpretation of normal human embryology and congenital defects. Our research focuses on developing methods for live imaging and dynamic characterization of early embryonic development in mouse models of human diseases. Using multidisciplinary methods: optical coherence tomography (OCT), live mouse embryo manipulations and static embryo culture, molecular biology, advanced image processing and computational modeling we aim to understand developmental processes. We have developed an OCT based approach to image live early mouse embryos (E8.5 - E9.5) cultured on an imaging stage and visualize developmental events with a spatial resolution of a few micrometers (less than the size of an individual cell) and a frame rate of up to hundreds of frames per second and reconstruct cardiodynamics in 4D (3D+time). We are now using these methods to study how specific embryonic lethal mutations affect cardiac morphology and function during early development.
Geiselhart, Anja; Lier, Amelie; Walter, Dagmar; Milsom, Michael D.
2012-01-01
Fanconi anemia (FA) is the most common inherited bone marrow failure syndrome. FA patients suffer to varying degrees from a heterogeneous range of developmental defects and, in addition, have an increased likelihood of developing cancer. Almost all FA patients develop a severe, progressive bone marrow failure syndrome, which impacts upon the production of all hematopoietic lineages and, hence, is thought to be driven by a defect at the level of the hematopoietic stem cell (HSC). This hypothesis would also correlate with the very high incidence of MDS and AML that is observed in FA patients. In this paper, we discuss the evidence that supports the role of dysfunctional HSC biology in driving the etiology of the disease. Furthermore, we consider the different model systems currently available to study the biology of cells defective in the FA signaling pathway and how they are informative in terms of identifying the physiologic mediators of HSC depletion and dissecting their putative mechanism of action. Finally, we ask whether the insights gained using such disease models can be translated into potential novel therapeutic strategies for the treatment of the hematologic disorders in FA patients. PMID:22675615
Hudik, Elodie; Yoshioka, Yasushi; Domenichini, Séverine; Bourge, Mickaël; Soubigout-Taconnat, Ludivine; Mazubert, Christelle; Yi, Dalong; Bujaldon, Sandrine; Hayashi, Hiroyuki; De Veylder, Lieven; Bergounioux, Catherine; Benhamed, Moussa; Raynaud, Cécile
2014-01-01
The majority of research on cell cycle regulation is focused on the nuclear events that govern the replication and segregation of the genome between the two daughter cells. However, eukaryotic cells contain several compartmentalized organelles with specialized functions, and coordination among these organelles is required for proper cell cycle progression, as evidenced by the isolation of several mutants in which both organelle function and overall plant development were affected. To investigate how chloroplast dysfunction affects the cell cycle, we analyzed the crumpled leaf (crl) mutant of Arabidopsis (Arabidopsis thaliana), which is deficient for a chloroplastic protein and displays particularly severe developmental defects. In the crl mutant, we reveal that cell cycle regulation is altered drastically and that meristematic cells prematurely enter differentiation, leading to reduced plant stature and early endoreduplication in the leaves. This response is due to the repression of several key cell cycle regulators as well as constitutive activation of stress-response genes, among them the cell cycle inhibitor SIAMESE-RELATED5. One unique feature of the crl mutant is that it produces aplastidic cells in several organs, including the root tip. By investigating the consequence of the absence of plastids on cell cycle progression, we showed that nuclear DNA replication occurs in aplastidic cells in the root tip, which opens future research prospects regarding the dialogue between plastids and the nucleus during cell cycle regulation in higher plants. PMID:25037213
Pharyngeal mesoderm regulatory network controls cardiac and head muscle morphogenesis.
Harel, Itamar; Maezawa, Yoshiro; Avraham, Roi; Rinon, Ariel; Ma, Hsiao-Yen; Cross, Joe W; Leviatan, Noam; Hegesh, Julius; Roy, Achira; Jacob-Hirsch, Jasmine; Rechavi, Gideon; Carvajal, Jaime; Tole, Shubha; Kioussi, Chrissa; Quaggin, Susan; Tzahor, Eldad
2012-11-13
The search for developmental mechanisms driving vertebrate organogenesis has paved the way toward a deeper understanding of birth defects. During embryogenesis, parts of the heart and craniofacial muscles arise from pharyngeal mesoderm (PM) progenitors. Here, we reveal a hierarchical regulatory network of a set of transcription factors expressed in the PM that initiates heart and craniofacial organogenesis. Genetic perturbation of this network in mice resulted in heart and craniofacial muscle defects, revealing robust cross-regulation between its members. We identified Lhx2 as a previously undescribed player during cardiac and pharyngeal muscle development. Lhx2 and Tcf21 genetically interact with Tbx1, the major determinant in the etiology of DiGeorge/velo-cardio-facial/22q11.2 deletion syndrome. Furthermore, knockout of these genes in the mouse recapitulates specific cardiac features of this syndrome. We suggest that PM-derived cardiogenesis and myogenesis are network properties rather than properties specific to individual PM members. These findings shed new light on the developmental underpinnings of congenital defects.
Toxicity and developmental defects of different sizes and shape nickel nanoparticles in zebrafish
Ispas, Cristina; Andreescu, Daniel; Patel, Avni; Goia, Dan V.; Andreescu, Silvana; Wallace, Kenneth N.
2009-01-01
Metallic nanoparticles such as nickel are used in catalytic, sensing and electronic applications, but health and environmental affects have not been fully investigated. While some metal nanoparticles result in toxicity, it is also important to determine whether nanoparticles of the same metal but of different size and shape changes toxicity. Three different size nickel nanoparticle (Ni NPs) of 30, 60, and 100 nm and larger particle clusters of aggregated 60 nm entities with a dendritic structure were synthesized and exposed to zebrafish embryos assessing mortality and developmental defects. Ni NPs exposure was compared to soluble nickel salts. All three 30, 60, and 100 nm Ni NPs are equal to or less toxic than soluble nickel while dendritic clusters were more toxic. With each Ni NP exposure, thinning of the intestinal epithelium first occurs around the LD10 continuing into the LD50. LD50 exposure also results in skeletal muscle fiber separation. Exposure to soluble nickel does not cause intestinal defects while skeletal muscle separation occurs at concentrations well over LD50. These results suggest that configuration of nanoparticles may affect toxicity more than size and defects from Ni NPs exposure occur by different biological mechanisms than soluble nickel. PMID:19746736
Cultural relativism: maintenance of genomic imprints in pluripotent stem cell culture systems.
Greenberg, Maxim Vc; Bourc'his, Déborah
2015-04-01
Pluripotent stem cells (PSCs) in culture have become a widely used model for studying events occurring during mammalian development; they also present an exciting avenue for therapeutics. However, compared to their in vivo counterparts, cultured PSC derivatives have unique properties, and it is well established that their epigenome is sensitive to medium composition. Here we review the specific effects on genomic imprints in various PSC types and culture systems. Imprinted gene regulation is developmentally important, and imprinting defects have been associated with several human diseases. Therefore, imprint abnormalities in PSCs may have considerable consequences for downstream applications. Copyright © 2015 Elsevier Ltd. All rights reserved.
Vargas-Ferreira, F; Salas, M M S; Nascimento, G G; Tarquinio, S B C; Faggion, C M; Peres, M A; Thomson, W M; Demarco, F F
2015-06-01
Dental caries is the main problem oral health and it is not well established in the literature if the enamel defects are a risk factor for its development. Studies have reported a potential association between developmental defects enamel (DDE) and dental caries occurrence. We investigated the association between DDE and caries in permanent dentition of children and teenagers. A systematic review was carried out using four databases (Pubmed, Web of Science, Embase, and Science Direct), which were searched from their earliest records until December 31, 2014. Population-based studies assessing differences in dental caries experience according to the presence of enamel defects (and their types) were included. PRISMA guidelines for reporting systematic reviews were followed. Meta-analysis was performed to assess the pooled effect, and meta-regression was carried out to identify heterogeneity sources. From the 2558 initially identified papers, nine studies fulfilled all inclusion criteria after checking the titles, abstracts, references, and complete reading. Seven of them were included in the meta-analysis with random model. A positive association between enamel defects and dental caries was identified; meta-analysis showed that individuals with DDE had higher pooled odds of having dental caries experience [OR 2.21 (95% CI 1.3; 3.54)]. Meta-regression analysis demonstrated that adjustment for sociodemographic factors, countries' socioeconomic status, and bias (quality of studies) explained the high heterogeneity observed. A higher chance of dental caries should be expected among individuals with enamel defects. Copyright © 2015 Elsevier Ltd. All rights reserved.
Effect of carbaryl on survival and development in Bombina orientalis (Boulenger) embryos.
Kang, Han Seung; Park, Chan Jin; Gye, Myung Chan
2010-05-01
Bombina orientalis is one of the most common amphibians in the world and comprise a large proportion of their total number in Korea. B. orientalis, spawns in the farming regions at Spring when the massive application of agricultural chemicals occurs. Carbaryl, carbamate chemical is a slightly to highly toxic insecticide inhibiting acetylcholinesterase. The embryotoxicity and teratogenic effects of carbaryl on B. orientalis embryos were investigated at 5, 10, 50 and 100 muM. The survival rates of embryos at 312 h post fertilization were decreased with concentration dependent manner. Exposure to carbaryl produced 4 types of severe external abnormalities such as bent trunk, thick-set body, bent tail and ventral blister. At 5 muM carbaryl, a dose of no observed effect on embryonic survival, developmental abnormalities were significantly increased. The developmental abnormalities showed in order of frequency with bent trunk, thick-set body, bent tail and ventral blister. This result suggests that carbaryl is detrimental for embryonic survival and teratogenic by causing the axial skeletal defects in B. orientalis embryos.
Skagerlund, Kenny; Träff, Ulf
2016-01-01
This study investigated if developmental dyscalculia (DD) in children with different profiles of mathematical deficits has the same or different cognitive origins. The defective approximate number system hypothesis and the access deficit hypothesis were tested using two different groups of children with DD (11-13 years old): a group with arithmetic fact dyscalculia (AFD) and a group with general dyscalculia (GD). Several different aspects of number magnitude processing were assessed in these two groups and compared with age-matched typically achieving children. The GD group displayed weaknesses with both symbolic and nonsymbolic number processing, whereas the AFD group displayed problems only with symbolic number processing. These findings provide evidence that the origins of DD in children with different profiles of mathematical problems diverge. Children with GD have impairment in the innate approximate number system, whereas children with AFD suffer from an access deficit. These findings have implications for researchers' selection procedures when studying dyscalculia, and also for practitioners in the educational setting. © Hammill Institute on Disabilities 2014.
Kashyap, Bhavani; Pegorsch, Laurel; Frey, Ruth A.; Sun, Chi; Shelden, Eric A.; Stenkamp, Deborah L.
2014-01-01
The mechanisms through which ethanol exposure results in developmental defects remain unclear. We used the zebrafish model to elucidate eye-specific mechanisms that underlie ethanol-mediated microphthalmia (reduced eye size), through time-series microarray analysis of gene expression within eyes of embryos exposed to 1.5% ethanol. 62 genes were differentially expressed (DE) in ethanol-treated as compared to control eyes sampled during retinal neurogenesis (24-48 hours post-fertilization). The EDGE (extraction of differential gene expression) algorithm identified >3000 genes DE over developmental time in ethanol-exposed eyes as compared to controls. The DE lists included several genes indicating a mis-regulated cellular stress response due to ethanol exposure. Combined treatment with sub-threshold levels of ethanol and a morpholino targeting heat shock factor 1 mRNA resulted in microphthalmia, suggesting convergent molecular pathways. Thermal preconditioning partially prevented ethanol-mediated microphthalmia while maintaining Hsf-1 expression. These data suggest roles for reduced Hsf-1 in mediating microphthalmic effects of embryonic ethanol exposure. PMID:24355176
Auerbach, Marcy R.; Yan, Donghong; Vij, Rajesh; Hongo, Jo-Anne; Nakamura, Gerald; Vernes, Jean-Michel; Meng, Y. Gloria; Lein, Samantha; Chan, Pamela; Ross, Jed; Carano, Richard; Deng, Rong; Lewin-Koh, Nicholas; Xu, Min; Feierbach, Becket
2014-01-01
Human cytomegalovirus (HCMV) is the most common cause of congenital virus infection. Congenital HCMV infection occurs in 0.2–1% of all births, and causes birth defects and developmental abnormalities, including sensorineural hearing loss and developmental delay. Several key studies have established the guinea pig as a tractable model for the study of congenital HCMV infection and have shown that polyclonal antibodies can be protective [1]–[3]. In this study, we demonstrate that an anti-guinea pig CMV (GPCMV) glycoprotein H/glycoprotein L neutralizing monoclonal antibody protects against fetal infection and loss in the guinea pig. Furthermore, we have delineated the kinetics of GPCMV congenital infection, from maternal infection (salivary glands, seroconversion, placenta) to fetal infection (fetus and amniotic fluid). Our studies support the hypothesis that a neutralizing monoclonal antibody targeting an envelope GPCMV glycoprotein can protect the fetus from infection and may shed light on the therapeutic intervention of HCMV congenital infection in humans. PMID:24722349
Diogo, Rui; Smith, Christopher M; Ziermann, Janine M
2015-11-01
We introduce a new subfield of the recently created field of Evolutionary-Developmental-Anthropology (Evo-Devo-Anth): Evolutionary-Developmental-Pathology-and-Anthropology (Evo-Devo-P'Anth). This subfield combines experimental and developmental studies of nonhuman model organisms, biological anthropology, chordate comparative anatomy and evolution, and the study of normal and pathological human development. Instead of focusing on other organisms to try to better understand human development, evolution, anatomy, and pathology, it places humans as the central case study, i.e., as truly model organism themselves. We summarize the results of our recent Evo-Devo-P'Anth studies and discuss long-standing questions in each of the broader biological fields combined in this subfield, paying special attention to the links between: (1) Human anomalies and variations, nonpentadactyly, homeotic transformations, and "nearest neighbor" vs. "find and seek" muscle-skeleton associations in limb+facial muscles vs. other head muscles; (2) Developmental constraints, the notion of "phylotypic stage," internalism vs. externalism, and the "logic of monsters" vs. "lack of homeostasis" views about human birth defects; (3) Human evolution, reversions, atavisms, paedomorphosis, and peromorphosis; (4) Scala naturae, Haeckelian recapitulation, von Baer's laws, and parallelism between phylogeny and development, here formally defined as "Phylo-Devo parallelism"; and (5) Patau, Edwards, and Down syndrome (trisomies 13, 18, 21), atavisms, apoptosis, heart malformations, and medical implications. © 2015 Wiley Periodicals, Inc.
Laczmańska, Izabela; Jakubiak, Aleksandra; Slęzak, Ryszard; Pesz, Karolina; Stembalska, Agnieszka; Laczmański, Lukasz; Sąsiadek, Maria M; Smigiel, Robert
2011-01-01
Developmental delay and intellectual disability are significant medical and social problems which concern 1-3% of population. The etiology remains unknown in over half of the cases. To evaluate the efficiency of MLPA (Multiplex Ligation-dependent Probe Amplification) as a screening test in diagnosis of patients with developmental delay and/or intellectual disability. 313 MLPA tests were performed in 256 patients with developmental delay and/ or intellectual disability with unknown etiology. MLPA test was made after exclusion of genetic disorders possible to diagnose by dysmorphological examination or using specifi c genetic tests. Positive results were confirmed by FISH analysis with appropriate probes. Chromosomal microaberrations were identifi ed in 15 patients (4,8%): deletions of 1p36 in 4 cases, in one case deletion of 22q11.21, 22q13.33, SNRPN1, 4ptel, 6qtel, 7q11.23, 16ptel, 18qtel as well as one ca se of deletion 3ptel/duplication 15qtel; deletion 18qtel/duplication Xqtel, and also duplication 7q11.23. Detail clinical analysis was performed in patients with diagnosed microaberrations in MLPA test. The molecular MLPA test, screening for chromosomal microaberration syndromes, should be performed in each patient with developmental delay and/or intellectual disability of unknown etiology and normal cytogenetic analysis, even if congenital defects and positive familial history do not exist.
Ma, Yujun; Wang, Enguo; Yuan, Tian; Zhao, Guo Xiang
2016-08-01
As the reading process is inseparable from working memory, inhibition, and other higher cognitive processes, the deep cognitive processing defects that are associated with dyslexia may be due to defective distraction inhibition systems. In this study, we used event-related potential technology to explore the source of negative priming effects in children with developmental dyslexia and in a group of healthy children for comparison. We found that the changes in the average response times in the negative priming and control conditions were consistent across the two groups, while the negative priming effects differed significantly between the groups. The magnitude of the negative priming effect was significantly different between the two groups, with the magnitude being significantly higher in the control group than it was in the developmental dyslexia group. These results indicate that there are deficits in distraction inhibition in children with developmental dyslexia. In terms of the time course of processing, inhibition deficits in the dyslexia group appeared during early-stage cognition selection and lasted through the response selection phase. Regarding the cerebral cortex locations, early-stage cognition selection was mainly located in the parietal region, while late-stage response selection was mainly located in the frontal and central regions. The results of our study may help further our understanding of the intrinsic causes of developmental dyslexia. Copyright © 2016 Elsevier Ltd. All rights reserved.
Severe combined immunodeficiency in Sting V154M/WT mice.
Bouis, Delphine; Kirstetter, Peggy; Arbogast, Florent; Lamon, Delphine; Delgado, Virginia; Jung, Sophie; Ebel, Claudine; Jacobs, Hugues; Knapp, Anne-Marie; Jeremiah, Nadia; Belot, Alexandre; Martin, Thierry; Crow, Yanick J; André-Schmutz, Isabelle; Korganow, Anne-Sophie; Rieux-Laucat, Frédéric; Soulas-Sprauel, Pauline
2018-05-23
Autosomal dominant gain-of-function (GOF) mutations in human STING (Stimulator of Interferon Genes) lead to a severe autoinflammatory disease called SAVI (STING Associated Vasculopathy with onset in Infancy), associated with enhanced expression of interferon (IFN) stimulated gene (ISG) transcripts. The goal of this study was to analyze the phenotype of a new mouse model of Sting hyperactivation, and the role of type I IFN in this system. We generated a knock-in model carrying an amino acid substitution (V154M) in mouse Sting, corresponding to a recurrent mutation seen in human patients with SAVI. Hematopoietic development and tissue histology were analyzed. Lymphocyte activation and proliferation were assessed in vitro. Sting V154M/WT mice were crossed to IFNAR (IFNα/β Receptor) knock-out mice in order to evaluate the type I IFN-dependence of the mutant Sting phenotype recorded. In Sting V154M/WT mice we detected variable expression of inflammatory infiltrates in the lungs and kidneys. These mice showed a marked decrease in survival and developed a severe combined immunodeficiency disease (SCID) affecting B, T and NK cells, with an almost complete lack of antibodies and a significant expansion of monocytes and granulocytes. The blockade in B and T cell development was present from early immature stages in bone marrow and thymus. In addition, in vitro experiments revealed an intrinsic proliferative defect of mature T cells. Whilst the V154M/WT mutant demonstrated increased expression of ISGs, the SCID phenotype was not reversed in Sting V154M/WT IFNAR knock-out mice. However, the anti-proliferative defect in T cells was partially rescued by IFNAR deficiency. Sting GOF mice developed an IFN-independent SCID phenotype with a T, B and NK cell developmental defect and hypogammaglobulinemia, associated with signs of inflammation in lungs and kidneys. Only the intrinsic proliferative defect of T cells was, partially, IFN-dependent. Copyright © 2018. Published by Elsevier Inc.
Teratology: from science to birth defects prevention.
Rasmussen, Sonja A; Erickson, J David; Reef, Susan E; Ross, Danielle S
2009-01-01
One of the goals of birth defects research is to better understand risk or preventive factors for birth defects so that strategies for prevention can be developed. In this article, we have selected four areas of birth defects research that have led to the development of prevention strategies. These areas include rubella virus as a cause of congenital rubella syndrome, folic acid as a preventive factor for neural tube defects, cytomegalovirus infection as a cause of birth defects and developmental disabilities, and alcohol as a cause of fetal alcohol spectrum disorders. For each of these areas, we review key clinical and research findings that led to the identification of the risk or preventive factor, milestones in the development of prevention strategies, and the progress made thus far toward prevention.
Nataf, Serge; Anginot, Adrienne; Vuaillat, Carine; Malaval, Luc; Fodil, Nassima; Chereul¶, Emmanuel; Langlois¶, Jean-Baptiste; Dumontel, Christiane; Cavillon, Gaelle; Confavreux, Christian; Mazzorana, Marlène; Vico, Laurence; Belin, Marie-Franaçoise; Vivier, Eric; Tomasello, Elena; Jurdic, Pierre
2005-01-01
Human polycystic lipomembraneous osteodysplasia with sclerosing leukoencephalopathy, also known as Nasu-Hakola disease, has been described to be associated with mutations affecting the immunoreceptor tyrosine-based activation motif-bearing KARAP/DAP12 immunoreceptor gene. Patients present bone fragilities and severe neurological alterations leading to presenile dementia. Here we investigated whether the absence of KARAP/DAP12-mediated signals in loss-of-function (KΔ75) mice also leads to bone and central nervous system pathological features. Histological analysis of adult KΔ75 mice brains revealed a diffuse hypomyelination predominating in anterior brain regions. As this was not accompanied by oligodendrocyte degeneration or microglial cell activation it suggests a developmental defect of myelin formation. Interestingly, in postnatal KΔ75 mice, we observed a dramatic reduction in microglial cell numbers similar to in vitro microglial cell differentiation impairment. Our results raise the intriguing possibility that defective microglial cell differentiation might be responsible for abnormal myelin development. Histomorphometry revealed that bone remodeling is also altered, because of a resorption defect, associated with a severe block of in vitro osteoclast differentiation. In addition, we show that, among monocytic lineages, KARAP/DAP12 specifically controls microglial and osteoclast differentiation. Our results confirm that KARAP/DAP12-mediated signals play an important role in the regulation of both brain and bone homeostasis. Yet, important differences exist between the symptoms observed in Nasu-Hakola patients and KΔ75 mice. PMID:15632019
Novel isoforms of Dlg are fundamental for neuronal development in Drosophila.
Mendoza, Carolina; Olguín, Patricio; Lafferte, Gabriela; Thomas, Ulrich; Ebitsch, Susanne; Gundelfinger, Eckart D; Kukuljan, Manuel; Sierralta, Jimena
2003-03-15
Drosophila discs-large (dlg) mutants exhibit multiple developmental abnormalities, including severe defects in neuronal differentiation and synaptic structure and function. These defects have been ascribed to the loss of a single gene product, Dlg-A, a scaffold protein thought to be expressed in many cell types. Here, we describe that additional isoforms arise as a consequence of different transcription start points and alternative splicing of dlg. At least five different dlg gene products are predicted. We identified a subset of dlg-derived cDNAs that include novel exons encoding a peptide homologous to the N terminus of the mammalian protein SAP97/hDLG (S97N). Dlg isoforms containing the S97N domain are expressed at larval neuromuscular junctions and within the CNS of both embryos and larvae but are not detectable in epithelial tissues. Strong hypomorphic dlg alleles exhibit decreased expression of S97N, which may account for neural-specific aspects of the pleiomorphic dlg mutant phenotype. Selective inhibition of the expression of S97N-containing proteins in embryos by double-strand RNA leads to severe defects in neuronal differentiation and axon guidance, without overt perturbations in epithelia. These results indicate that the differential expression of dlg products correlates with distinct functions in non-neural and neural cells. During embryonic development, proteins that include the S97N domain are essential for proper neuronal differentiation and organization, acting through mechanisms that may include the adequate localization of cell fate determinants.
IFT46 plays an essential role in cilia development
Lee, Mi-Sun; Hwang, Kyu-Seok; Oh, Hyun-Woo; Ji-Ae, Kim; Kim, Hyun-Taek; Cho, Hyun-Soo; Lee, Jeong-Ju; Ko, Je Yeong; Choi, Jung-Hwa; Jeong, Yun-Mi; You, Kwan-Hee; Kim, Joon; Park, Doo-Sang; Nam, Ki-Hoan; Aizawa, Shinichi; Kiyonari, Hiroshi; Shioi, Go; Park, Jong-Hoon; Zhou, Weibin; Kim, Nam-Soon; Kim, Cheol-Hee
2015-01-01
Cilia are microtubule-based structures that project into the extracellular space. Ciliary defects are associated with several human diseases, including polycystic kidney disease, primary ciliary dyskinesia, left-right axis patterning, hydrocephalus and retinal degeneration. However, the genetic and cellular biological control of ciliogenesis remains poorly understood. The IFT46 is one of the highly conserved intraflagellar transport complex B proteins. In zebrafish, ift46 is expressed in various ciliated tissues such as Kupffer’s vesicle, pronephric ducts, ears and spinal cord. We show that ift46 is localized to the basal body. Knockdown of ift46 gene results in multiple phenotypes associated with various ciliopathies including kidney cysts, pericardial edema and ventral axis curvature. In ift46 morphants, cilia in kidney and spinal canal are shortened and abnormal. Similar ciliary defects are observed in otic vesicles, lateral line hair cells, olfactory pits, but not in Kupffer’s vesicle. To explore the functions of Ift46 during mouse development, we have generated Ift46 knock-out mice. The Ift46 mutants have developmental defects in brain, neural tube and heart. In particular Ift46(−/−) homozygotes displays randomization of the embryo heart looping, which is a hallmark of defective left-right (L/R) axis patterning. Taken together, our results demonstrated that IFT46 has an essential role in vertebrate ciliary development. PMID:25722189
Maternal aldehyde elimination during pregnancy preserves the fetal genome.
Oberbeck, Nina; Langevin, Frédéric; King, Gareth; de Wind, Niels; Crossan, Gerry P; Patel, Ketan J
2014-09-18
Maternal metabolism provides essential nutrients to enable embryonic development. However, both mother and embryo produce reactive metabolites that can damage DNA. Here we discover how the embryo is protected from these genotoxins. Pregnant mice lacking Aldh2, a key enzyme that detoxifies reactive aldehydes, cannot support the development of embryos lacking the Fanconi anemia DNA repair pathway gene Fanca. Remarkably, transferring Aldh2(-/-)Fanca(-/-) embryos into wild-type mothers suppresses developmental defects and rescues embryonic lethality. These rescued neonates have severely depleted hematopoietic stem and progenitor cells, indicating that despite intact maternal aldehyde catabolism, fetal Aldh2 is essential for hematopoiesis. Hence, maternal and fetal aldehyde detoxification protects the developing embryo from DNA damage. Failure of this genome preservation mechanism might explain why birth defects and bone marrow failure occur in Fanconi anemia, and may have implications for fetal well-being in the many women in Southeast Asia that are genetically deficient in ALDH2. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Maternal Aldehyde Elimination during Pregnancy Preserves the Fetal Genome
Oberbeck, Nina; Langevin, Frédéric; King, Gareth; de Wind, Niels; Crossan, Gerry P.; Patel, Ketan J.
2014-01-01
Summary Maternal metabolism provides essential nutrients to enable embryonic development. However, both mother and embryo produce reactive metabolites that can damage DNA. Here we discover how the embryo is protected from these genotoxins. Pregnant mice lacking Aldh2, a key enzyme that detoxifies reactive aldehydes, cannot support the development of embryos lacking the Fanconi anemia DNA repair pathway gene Fanca. Remarkably, transferring Aldh2−/−Fanca−/− embryos into wild-type mothers suppresses developmental defects and rescues embryonic lethality. These rescued neonates have severely depleted hematopoietic stem and progenitor cells, indicating that despite intact maternal aldehyde catabolism, fetal Aldh2 is essential for hematopoiesis. Hence, maternal and fetal aldehyde detoxification protects the developing embryo from DNA damage. Failure of this genome preservation mechanism might explain why birth defects and bone marrow failure occur in Fanconi anemia, and may have implications for fetal well-being in the many women in Southeast Asia that are genetically deficient in ALDH2. PMID:25155611
[A case of mosaic ring chromosome 4 with subtelomeric 4p deletion].
Kim, Jeong Hyun; Oh, Phil Soo; Na, Hye Yeon; Kim, Sun-Hee; Cho, Hyoun Chan
2009-02-01
Ring chromosome is a structural abnormality that is thought to be the result of fusion and breakage in the short and long arms of chromosome. Wolf-Hirschhorn syndrome (WHS) is a well-known congenital anomaly in the ring chromosome 4 with a partial deletion of the distal short arm. Here we report a 10-month-old male of mosaic ring chromosome 4 with the chief complaint of severe short stature. He showed the height of -4 standard deviation, subtle hypothyroidism and mild atrial septal defect/ventricular septal defect, and also a mild language developmental delay was suspected. Brain magnetic resonance imaging showed multifocal leukomalacia. Chromosomal analysis of the peripheral blood showed the mosaic karyotype with [46,XY,r(4)(p16q35)[84]/45,XY,-4[9]/91,XXYY, dic r(4;4)(p16q35;p16q35)[5]/46,XY,dic r(4;4)(p16q35;p16q35)[2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindsay, E.A.; Halford, S.; Wadey, R.
1993-08-01
DiGeorge syndrome (DGS) is a developmental defect characterized by cardiac defects, facial dysmorphism, and mental retardation. Several studies have described a critical region for DGS at 22q11, within which the majority of DGS patients have deletions. The authors have isolated nine cosmid and three YAC clones using previously described and newly isolated probes that have been shown to be deleted in many DGS patients. Using fluorescence in situ hybridization and digital imaging, they have mapped and ordered these clones relative to the breakpoints of two balanced translocations at 22q11 (one in a DGS patient and one in the unaffected parentmore » of a DGS child). The data indicate that the breakpoint in the unaffected individual distally limits the DGS critical region (defined as the smallest region of overlap), while proximally the region is limited by repeat-rich DNA. The critical region includes the balanced translocation breakpoint of the DGS patient that presumably disrupts the gene causing this syndrome.« less
Seow, W Kim; Ford, Daniel; Kazoullis, Stauros; Newman, Bruce; Holcombe, Trevor
2011-01-01
The purpose of this study was to compare developmental defects of enamel (DDE) in the primary and permanent dentitions of children from a low-fluoride district. A total of 517 healthy schoolchildren were examined using the modified DDE criteria. The prevalence of DDE in the primary and permanent dentition was 25% and 58%, respectively (P<.001). The mean number of teeth with enamel opacity per subject was approximately threefold compared to that affected by enamel hypoplasia (3.1±3.8 vs 0.8±1.4, P<.001 in the primary dentition and 3.6±4.7 vs 1.2±2.2, P<.001 in the permanent dentition). Demarcated opacities (83%) were predominant compared to diffuse opacities (17%), while missing enamel was the most common type of enamel hypoplasia (50%), followed by grooves (31%) and enamel pits (19%) (P=.04). In the permanent dentition, diffuse and demarcated opacities were equally frequent, while enamel grooves were the commonest type of hypoplasia (52%), followed by missing enamel (35%) and enamel pits (5%; P<.001). In a low-fluoride community, developmental defects of enamel were twice as common in the permanent dentition vs the primary dentition. In the primary dentition, the predominant defects were demarcated opacities and missing enamel, while in the permanent dentition, the defects were more variable.
A Mutant Receptor Tyrosine Phosphatase, CD148, Causes Defects in Vascular Development
Takahashi, Takamune; Takahashi, Keiko; St. John, Patricia L.; Fleming, Paul A.; Tomemori, Takuya; Watanabe, Toshio; Abrahamson, Dale R.; Drake, Christopher J.; Shirasawa, Takuji; Daniel, Thomas O.
2003-01-01
Vascularization defects in genetic recombinant mice have defined critical roles for a number of specific receptor tyrosine kinases. Here we evaluated whether an endothelium-expressed receptor tyrosine phosphatase, CD148 (DEP-1/PTPη), participates in developmental vascularization. A mutant allele, CD148ΔCyGFP, was constructed to eliminate CD148 phosphatase activity by in-frame replacement of cytoplasmic sequences with enhanced green fluorescent protein sequences. Homozygous mutant mice died at midgestation, before embryonic day 11.5 (E11.5), with vascularization failure marked by growth retardation and disorganized vascular structures. Structural abnormalities were observed as early as E8.25 in the yolk sac, prior to the appearance of intraembryonic defects. Homozygous mutant mice displayed enlarged vessels comprised of endothelial cells expressing markers of early differentiation, including VEGFR2 (Flk1), Tal1/SCL, CD31, ephrin-B2, and Tie2, with notable lack of endoglin expression. Increased endothelial cell numbers and mitotic activity indices were demonstrated. At E9.5, homozygous mutant embryos showed homogeneously enlarged primitive vessels defective in vascular remodeling and branching, with impaired pericyte investment adjacent to endothelial structures, in similarity to endoglin-deficient embryos. Developing cardiac tissues showed expanded endocardial projections accompanied by defective endocardial cushion formation. These findings implicate a member of the receptor tyrosine phosphatase family, CD148, in developmental vascular organization and provide evidence that it regulates endothelial proliferation and endothelium-pericyte interactions. PMID:12588999
Epigenetic stress responses induce muscle stem-cell ageing by Hoxa9 developmental signals.
Schwörer, Simon; Becker, Friedrich; Feller, Christian; Baig, Ali H; Köber, Ute; Henze, Henriette; Kraus, Johann M; Xin, Beibei; Lechel, André; Lipka, Daniel B; Varghese, Christy S; Schmidt, Manuel; Rohs, Remo; Aebersold, Ruedi; Medina, Kay L; Kestler, Hans A; Neri, Francesco; von Maltzahn, Julia; Tümpel, Stefan; Rudolph, K Lenhard
2016-12-15
The functionality of stem cells declines during ageing, and this decline contributes to ageing-associated impairments in tissue regeneration and function. Alterations in developmental pathways have been associated with declines in stem-cell function during ageing, but the nature of this process remains poorly understood. Hox genes are key regulators of stem cells and tissue patterning during embryogenesis with an unknown role in ageing. Here we show that the epigenetic stress response in muscle stem cells (also known as satellite cells) differs between aged and young mice. The alteration includes aberrant global and site-specific induction of active chromatin marks in activated satellite cells from aged mice, resulting in the specific induction of Hoxa9 but not other Hox genes. Hoxa9 in turn activates several developmental pathways and represents a decisive factor that separates satellite cell gene expression in aged mice from that in young mice. The activated pathways include most of the currently known inhibitors of satellite cell function in ageing muscle, including Wnt, TGFβ, JAK/STAT and senescence signalling. Inhibition of aberrant chromatin activation or deletion of Hoxa9 improves satellite cell function and muscle regeneration in aged mice, whereas overexpression of Hoxa9 mimics ageing-associated defects in satellite cells from young mice, which can be rescued by the inhibition of Hoxa9-targeted developmental pathways. Together, these data delineate an altered epigenetic stress response in activated satellite cells from aged mice, which limits satellite cell function and muscle regeneration by Hoxa9-dependent activation of developmental pathways.
Developmental toxicology: adequacy of current methods.
Peters, P W
1998-01-01
Toxicology embraces several disciplines such as carcinogenicity, mutagenicity and reproductive toxicity. Reproductive toxicology is concerned with possible effects of substances on the reproductive process, i.e. on sexual organs and their functions, endocrine regulation, fertilization, transport of the fertilized ovum, implantation, and embryonic, fetal and postnatal development, until the end-differentiation of the organs is achieved. Reproductive toxicology is divided into areas related to male and female fertility, and developmental toxicology. Developmental toxicology can be further broken down into prenatal and postnatal toxicology. Today, much new information is available about the origins of developmental disorders resulting from chemical exposure. While these findings seem to promise important new developments in methodology and research, there is a danger of losing sight of the precepts and principles established in the light of existing knowledge. There is also a danger that we may fail to correct shortcomings in our existing procedures and practice. The aim of this presentation is to emphasize the importance of testing substances for their impact in advance of their use and to underline that we must use the best existing tools for carrying out risk assessments. Moreover, it needs to be stressed that there are many substances that are never assessed with respect to reproductive and developmental toxicity. Similarly, our programmes for post-marketing surveillance with respect to developmental toxicology are grossly inadequate. Our ability to identify risks to normal development and reproduction would be much improved, first if a number of straightforward precepts were always followed and second, if we had a clearer understanding of what we mean by risk and acceptable levels of risk in the context of development. Other aims of this paper are: to stress the complexity of the different stages of normal prenatal development; to note the principles that are applicable in developmental and especially prenatal toxicology; to describe the different agents that might act as developmental toxicants or teratogens; to show the broad scope of different effects caused by developmental toxic agents; and to indicate methods to detect and to recognise causes of developmental defects with the primary objective of preventing these disorders.
Stimulation of mTORC1 with L-leucine Rescues Defects Associated with Roberts Syndrome
Xu, Baoshan; Lee, Kenneth K.; Zhang, Lily; Gerton, Jennifer L.
2013-01-01
Roberts syndrome (RBS) is a human disease characterized by defects in limb and craniofacial development and growth and mental retardation. RBS is caused by mutations in ESCO2, a gene which encodes an acetyltransferase for the cohesin complex. While the essential role of the cohesin complex in chromosome segregation has been well characterized, it plays additional roles in DNA damage repair, chromosome condensation, and gene expression. The developmental phenotypes of Roberts syndrome and other cohesinopathies suggest that gene expression is impaired during embryogenesis. It was previously reported that ribosomal RNA production and protein translation were impaired in immortalized RBS cells. It was speculated that cohesin binding at the rDNA was important for nucleolar form and function. We have explored the hypothesis that reduced ribosome function contributes to RBS in zebrafish models and human cells. Two key pathways that sense cellular stress are the p53 and mTOR pathways. We report that mTOR signaling is inhibited in human RBS cells based on the reduced phosphorylation of the downstream effectors S6K1, S6 and 4EBP1, and this correlates with p53 activation. Nucleoli, the sites of ribosome production, are highly fragmented in RBS cells. We tested the effect of inhibiting p53 or stimulating mTOR in RBS cells. The rescue provided by mTOR activation was more significant, with activation rescuing both cell division and cell death. To study this cohesinopathy in a whole animal model we used ESCO2-mutant and morphant zebrafish embryos, which have developmental defects mimicking RBS. Consistent with RBS patient cells, the ESCO2 mutant embryos show p53 activation and inhibition of the TOR pathway. Stimulation of the TOR pathway with L-leucine rescued many developmental defects of ESCO2-mutant embryos. Our data support the idea that RBS can be attributed in part to defects in ribosome biogenesis, and stimulation of the TOR pathway has therapeutic potential. PMID:24098154
Stimulation of mTORC1 with L-leucine rescues defects associated with Roberts syndrome.
Xu, Baoshan; Lee, Kenneth K; Zhang, Lily; Gerton, Jennifer L
2013-01-01
Roberts syndrome (RBS) is a human disease characterized by defects in limb and craniofacial development and growth and mental retardation. RBS is caused by mutations in ESCO2, a gene which encodes an acetyltransferase for the cohesin complex. While the essential role of the cohesin complex in chromosome segregation has been well characterized, it plays additional roles in DNA damage repair, chromosome condensation, and gene expression. The developmental phenotypes of Roberts syndrome and other cohesinopathies suggest that gene expression is impaired during embryogenesis. It was previously reported that ribosomal RNA production and protein translation were impaired in immortalized RBS cells. It was speculated that cohesin binding at the rDNA was important for nucleolar form and function. We have explored the hypothesis that reduced ribosome function contributes to RBS in zebrafish models and human cells. Two key pathways that sense cellular stress are the p53 and mTOR pathways. We report that mTOR signaling is inhibited in human RBS cells based on the reduced phosphorylation of the downstream effectors S6K1, S6 and 4EBP1, and this correlates with p53 activation. Nucleoli, the sites of ribosome production, are highly fragmented in RBS cells. We tested the effect of inhibiting p53 or stimulating mTOR in RBS cells. The rescue provided by mTOR activation was more significant, with activation rescuing both cell division and cell death. To study this cohesinopathy in a whole animal model we used ESCO2-mutant and morphant zebrafish embryos, which have developmental defects mimicking RBS. Consistent with RBS patient cells, the ESCO2 mutant embryos show p53 activation and inhibition of the TOR pathway. Stimulation of the TOR pathway with L-leucine rescued many developmental defects of ESCO2-mutant embryos. Our data support the idea that RBS can be attributed in part to defects in ribosome biogenesis, and stimulation of the TOR pathway has therapeutic potential.
Ito, Keishi; Arakawa, Sousuke; Murakami, Shingo; Sawamoto, Kazunobu
2012-01-01
Sensory input is essential for the normal development of sensory centers in the brain, such as the somatosensory, visual, auditory, and olfactory systems. Visual deprivation during a specific developmental stage, called the critical period, results in severe and irreversible functional impairments in the primary visual cortex. Olfactory deprivation in the early postnatal period also causes significant developmental defects in the olfactory bulb, the primary center for olfaction. Olfactory bulb interneurons are continuously generated from neural stem cells in the ventricular-subventricular zone, suggesting that the olfactory system has plasticity even in adulthood. Here, we investigated the effect of transient neonatal olfactory deprivation on the addition of interneurons to the glomerular layer of the adult mouse olfactory bulb. We found that the addition of one subtype of interneurons was persistently inhibited even after reopening the naris. BrdU pulse-chase experiments revealed that the neonatal olfactory deprivation predominantly affected an early phase in the maturation of this neuronal subtype in the olfactory bulb. Subjecting the mice to odor stimulation for 6 weeks after naris reopening resulted in significant recovery from the histological and functional defects caused by the olfactory deprivation. These results suggest that a subtype-specific critical period exists for olfactory bulb neurogenesis, but that this period is less strict and more plastic compared with the critical periods for other systems. This study provides new insights into the mechanisms of postnatal neurogenesis and a biological basis for the therapeutic effect of olfactory training. PMID:23133633
Requirements for FGF3 and FGF10 during inner ear formation.
Alvarez, Yolanda; Alonso, Maria Teresa; Vendrell, Victor; Zelarayan, Laura Cecilia; Chamero, Pablo; Theil, Thomas; Bösl, Michael R; Kato, Shigeaki; Maconochie, Mark; Riethmacher, Dieter; Schimmang, Thomas
2003-12-01
Members of the fibroblast growth factor (FGF) gene family control formation of the body plan and organogenesis in vertebrates. FGF3 is expressed in the developing hindbrain and has been shown to be involved in inner ear development of different vertebrate species, including zebrafish, Xenopus, chick and mouse. In the mouse, insertion of a neomycin resistance gene into the Fgf3 gene via homologous recombination results in severe developmental defects during differentiation of the otic vesicle. We have addressed the precise roles of FGF3 and other FGF family members during formation of the murine inner ear using both loss- and gain-of-function experiments. We generated a new mutant allele lacking the entire FGF3-coding region but surprisingly found no evidence for severe defects either during inner ear development or in the mature sensory organ, suggesting the functional involvement of other FGF family members during its formation. Ectopic expression of FGF10 in the developing hindbrain of transgenic mice leads to the formation of ectopic vesicles, expressing some otic marker genes and thus indicating a role for FGF10 during otic vesicle formation. Expression analysis of FGF10 during mouse embryogenesis reveals a highly dynamic pattern of expression in the developing hindbrain, partially overlapping with FGF3 expression and coinciding with formation of the inner ear. However, FGF10 mutant mice have been reported to display only mild defects during inner ear differentiation. We thus created double mutant mice for FGF3 and FGF10, which form severely reduced otic vesicles, suggesting redundant roles of these FGFs, acting in combination as neural signals for otic vesicle formation.
Purcell, Scott H.; Chi, Maggie; Jimenez, Patricia T.; Grindler, Natalia; Schedl, Tim; Moley, Kelle H.
2012-01-01
Background Maternal obesity is associated with poor outcomes across the reproductive spectrum including infertility, increased time to pregnancy, early pregnancy loss, fetal loss, congenital abnormalities and neonatal conditions. Furthermore, the proportion of reproductive-aged woman that are obese in the population is increasing sharply. From current studies it is not clear if the origin of the reproductive complications is attributable to problems that arise in the oocyte or the uterine environment. Methodology/Principal Findings We examined the developmental basis of the reproductive phenotypes in obese animals by employing a high fat diet mouse model of obesity. We analyzed very early embryonic and fetal phenotypes, which can be parsed into three abnormal developmental processes that occur in obese mothers. The first is oocyte meiotic aneuploidy that then leads to early embryonic loss. The second is an abnormal process distinct from meiotic aneuploidy that also leads to early embryonic loss. The third is fetal growth retardation and brain developmental abnormalities, which based on embryo transfer experiments are not due to the obese uterine environment but instead must be from a defect that arises prior to the blastocyst stage. Conclusions/Significance Our results suggest that reproductive complications in obese females are, at least in part, from oocyte maternal effects. This conclusion is consistent with IVF studies where the increased pregnancy failure rate in obese women returns to the normal rate if donor oocytes are used instead of autologous oocytes. We postulate that preconceptional weight gain adversely affects pregnancy outcomes and fetal development. In light of our findings, preconceptional counseling may be indicated as the preferable, earlier target for intervention in obese women desiring pregnancy and healthy outcomes. PMID:23152876
Carland, Francine; Fujioka, Shozo; Nelson, Timothy
2010-01-01
Plant sterols are structural components of cell membranes that provide rigidity, permeability, and regional identity to membranes. Sterols are also the precursors to the brassinosteroid signaling molecules. Evidence is accumulating that specific sterols have roles in pattern formation during development. COTYLEDON VASCULAR PATTERNING1 (CVP1) encodes C-24 STEROL METHYLTRANSFERASE2 (SMT2), one of three SMTs in Arabidopsis (Arabidopsis thaliana). SMT2 and SMT3, which also encodes a C-24 SMT, catalyze the reaction that distinguishes the synthesis of structural sterols from signaling brassinosteroid derivatives and are highly regulated. The deficiency of SMT2 in the cvp1 mutant results in moderate developmental defects, including aberrant cotyledon vein patterning, serrated floral organs, and reduced stature, but plants are viable, suggesting that SMT3 activity can substitute for the loss of SMT2. To test the distinct developmental roles of SMT2 and SMT3, we identified a transcript null smt3 mutant. Although smt3 single mutants appear wild type, cvp1 smt3 double mutants show enhanced defects relative to cvp1 mutants, such as discontinuous cotyledon vein pattern, and produce novel phenotypes, including defective root growth, loss of apical dominance, sterility, and homeotic floral transformations. These phenotypes are correlated with major alterations in the profiles of specific sterols but without significant alterations to brassinosteroid profiles. The alterations to sterol profiles in cvp1 mutants affect auxin response, demonstrated by weak auxin insensitivity, enhanced axr1 auxin resistance, ectopically expressed DR5:β-glucuronidase in developing embryos, and defective response to auxin-inhibited PIN2-green fluorescent protein endocytosis. We discuss the developmental roles of sterols implied by these results. PMID:20421456
Pislariu, Catalina I.; D. Murray, Jeremy; Wen, JiangQi; Cosson, Viviane; Muni, RajaSekhara Reddy Duvvuru; Wang, Mingyi; A. Benedito, Vagner; Andriankaja, Andry; Cheng, Xiaofei; Jerez, Ivone Torres; Mondy, Samuel; Zhang, Shulan; Taylor, Mark E.; Tadege, Million; Ratet, Pascal; Mysore, Kirankumar S.; Chen, Rujin; Udvardi, Michael K.
2012-01-01
A Tnt1-insertion mutant population of Medicago truncatula ecotype R108 was screened for defects in nodulation and symbiotic nitrogen fixation. Primary screening of 9,300 mutant lines yielded 317 lines with putative defects in nodule development and/or nitrogen fixation. Of these, 230 lines were rescreened, and 156 lines were confirmed with defective symbiotic nitrogen fixation. Mutants were sorted into six distinct phenotypic categories: 72 nonnodulating mutants (Nod−), 51 mutants with totally ineffective nodules (Nod+ Fix−), 17 mutants with partially ineffective nodules (Nod+ Fix+/−), 27 mutants defective in nodule emergence, elongation, and nitrogen fixation (Nod+/− Fix−), one mutant with delayed and reduced nodulation but effective in nitrogen fixation (dNod+/− Fix+), and 11 supernodulating mutants (Nod++Fix+/−). A total of 2,801 flanking sequence tags were generated from the 156 symbiotic mutant lines. Analysis of flanking sequence tags revealed 14 insertion alleles of the following known symbiotic genes: NODULE INCEPTION (NIN), DOESN’T MAKE INFECTIONS3 (DMI3/CCaMK), ERF REQUIRED FOR NODULATION, and SUPERNUMERARY NODULES (SUNN). In parallel, a polymerase chain reaction-based strategy was used to identify Tnt1 insertions in known symbiotic genes, which revealed 25 additional insertion alleles in the following genes: DMI1, DMI2, DMI3, NIN, NODULATION SIGNALING PATHWAY1 (NSP1), NSP2, SUNN, and SICKLE. Thirty-nine Nod− lines were also screened for arbuscular mycorrhizal symbiosis phenotypes, and 30 mutants exhibited defects in arbuscular mycorrhizal symbiosis. Morphological and developmental features of several new symbiotic mutants are reported. The collection of mutants described here is a source of novel alleles of known symbiotic genes and a resource for cloning novel symbiotic genes via Tnt1 tagging. PMID:22679222
Pislariu, Catalina I; Murray, Jeremy D; Wen, JiangQi; Cosson, Viviane; Muni, RajaSekhara Reddy Duvvuru; Wang, Mingyi; Benedito, Vagner A; Andriankaja, Andry; Cheng, Xiaofei; Jerez, Ivone Torres; Mondy, Samuel; Zhang, Shulan; Taylor, Mark E; Tadege, Million; Ratet, Pascal; Mysore, Kirankumar S; Chen, Rujin; Udvardi, Michael K
2012-08-01
A Tnt1-insertion mutant population of Medicago truncatula ecotype R108 was screened for defects in nodulation and symbiotic nitrogen fixation. Primary screening of 9,300 mutant lines yielded 317 lines with putative defects in nodule development and/or nitrogen fixation. Of these, 230 lines were rescreened, and 156 lines were confirmed with defective symbiotic nitrogen fixation. Mutants were sorted into six distinct phenotypic categories: 72 nonnodulating mutants (Nod-), 51 mutants with totally ineffective nodules (Nod+ Fix-), 17 mutants with partially ineffective nodules (Nod+ Fix+/-), 27 mutants defective in nodule emergence, elongation, and nitrogen fixation (Nod+/- Fix-), one mutant with delayed and reduced nodulation but effective in nitrogen fixation (dNod+/- Fix+), and 11 supernodulating mutants (Nod++Fix+/-). A total of 2,801 flanking sequence tags were generated from the 156 symbiotic mutant lines. Analysis of flanking sequence tags revealed 14 insertion alleles of the following known symbiotic genes: NODULE INCEPTION (NIN), DOESN'T MAKE INFECTIONS3 (DMI3/CCaMK), ERF REQUIRED FOR NODULATION, and SUPERNUMERARY NODULES (SUNN). In parallel, a polymerase chain reaction-based strategy was used to identify Tnt1 insertions in known symbiotic genes, which revealed 25 additional insertion alleles in the following genes: DMI1, DMI2, DMI3, NIN, NODULATION SIGNALING PATHWAY1 (NSP1), NSP2, SUNN, and SICKLE. Thirty-nine Nod- lines were also screened for arbuscular mycorrhizal symbiosis phenotypes, and 30 mutants exhibited defects in arbuscular mycorrhizal symbiosis. Morphological and developmental features of several new symbiotic mutants are reported. The collection of mutants described here is a source of novel alleles of known symbiotic genes and a resource for cloning novel symbiotic genes via Tnt1 tagging.
Jung, Jee-Hyun; Lee, Eun-Hee; Choi, Kwang-Min; Yim, Un Hyuk; Ha, Sung Yong; An, Joon Geon; Kim, Moonkoo
2017-06-01
Crude oils from distinct geographical regions have distinct chemical compositions, and, as a result, their toxicity may be different. However, developmental toxicity of crude oils derived from different geographical regions has not been extensively characterized. In this study, flounder embryos were separately exposed to effluents contaminated by three crude oils including: Basrah Light (BLO), Pyrenees (PCO), and Sakhalin Vityaz (SVO), in addition to a processed fuel oil (MFO-380), to measure developmental toxicity and for gene expressions. Each oil possessed a distinct chemical composition. Edema defect was highest in embryos exposed to PCO and MFO-380 that both have a greater fraction of three-ring PAHs (33% and 22%, respectively) compared to BLO and SVO. Observed caudal fin defects were higher in embryos exposed to SVO and MFO-380, which are both dominated by naphthalenes (81% and 52%, respectively). CYP1A gene expressions were also highest in embryos exposed to SVO and MFO-380. Higher incidence of cardiotoxicity and lower nkx 2.5 expression were detected in embryos exposed to PCO. Unique gene expression profiles were observed in embryos exposed to crude oils with distinct compositions. This study demonstrates that crude oils of different geographical origins with different compositional characteristics induce developmental toxicity to different degrees. Copyright © 2017 Elsevier Inc. All rights reserved.
Developmental transitions in C. elegans larval stages.
Rougvie, Ann E; Moss, Eric G
2013-01-01
Molecular mechanisms control the timing, sequence, and synchrony of developmental events in multicellular organisms. In Caenorhabditis elegans, these mechanisms are revealed through the analysis of mutants with "heterochronic" defects: cell division or differentiation patterns that occur in the correct lineage, but simply at the wrong time. Subsets of cells in these mutants thus express temporal identities normally restricted to a different life stage. A seminal finding arising from studies of the heterochronic genes was the discovery of miRNAs; these tiny miRNAs are now a defining feature of the pathway. A series of sequentially expressed miRNAs guide larval transitions through stage-specific repression of key effector molecules. The wild-type lineage patterns are executed as discrete modules programmed between temporal borders imposed by the molting cycles. How these successive events are synchronized with the oscillatory molting cycle is just beginning to come to light. Progression through larval stages can be specifically, yet reversibly, halted in response to environmental cues, including nutrient availability. Here too, heterochronic genes and miRNAs play key roles. Remarkably, developmental arrest can, in some cases, either mask or reveal timing defects associated with mutations. In this chapter, we provide an overview of how the C. elegans heterochronic gene pathway guides developmental transitions during continuous and interrupted larval development. © 2013 Elsevier Inc. All rights reserved.
Etiology and clinical presentation of birth defects: population based study
Carey, John C; Byrne, Janice L B; Krikov, Sergey; Botto, Lorenzo D
2017-01-01
Objective To assess causation and clinical presentation of major birth defects. Design Population based case cohort. Setting Cases of birth defects in children born 2005-09 to resident women, ascertained through Utah’s population based surveillance system. All records underwent clinical re-review. Participants 5504 cases among 270 878 births (prevalence 2.03%), excluding mild isolated conditions (such as muscular ventricular septal defects, distal hypospadias). Main outcome measures The primary outcomes were the proportion of birth defects with a known etiology (chromosomal, genetic, human teratogen, twinning) or unknown etiology, by morphology (isolated, multiple, minors only), and by pathogenesis (sequence, developmental field defect, or known pattern of birth defects). Results Definite cause was assigned in 20.2% (n=1114) of cases: chromosomal or genetic conditions accounted for 94.4% (n=1052), teratogens for 4.1% (n=46, mostly poorly controlled pregestational diabetes), and twinning for 1.4% (n=16, conjoined or acardiac). The 79.8% (n=4390) remaining were classified as unknown etiology; of these 88.2% (n=3874) were isolated birth defects. Family history (similarly affected first degree relative) was documented in 4.8% (n=266). In this cohort, 92.1% (5067/5504) were live born infants (isolated and non-isolated birth defects): 75.3% (4147/5504) were classified as having an isolated birth defect (unknown or known etiology). Conclusions These findings underscore the gaps in our knowledge regarding the causes of birth defects. For the causes that are known, such as smoking or diabetes, assigning causation in individual cases remains challenging. Nevertheless, the ongoing impact of these exposures on fetal development highlights the urgency and benefits of population based preventive interventions. For the causes that are still unknown, better strategies are needed. These can include greater integration of the key elements of etiology, morphology, and pathogenesis into epidemiologic studies; greater collaboration between researchers (such as developmental biologists), clinicians (such as medical geneticists), and epidemiologists; and better ways to objectively measure fetal exposures (beyond maternal self reports) and closer (prenatally) to the critical period of organogenesis. PMID:28559234
Cortellino, Salvatore; Wang, Chengbing; Wang, Baolin; Bassi, Maria Rosaria; Caretti, Elena; Champeval, Delphine; Calmont, Amelie; Jarnik, Michal; Burch, John; Zaret, Kenneth; Larue, Lionel; Bellacosa, Alfonso
2009-01-01
Primary cilia are assembled and maintained by evolutionarily conserved intraflagellar transport (IFT) proteins that are involved in the coordinated movement of macromolecular cargo from the basal body to the cilium tip and back. The IFT machinery is organized in two structural complexes named complex A and complex B. Recently, inactivation in the mouse germline of Ift genes belonging to complex B revealed a requirement of ciliogenesis, or proteins involved in ciliogenesis, for Sonic Hedgehog (Shh) signaling in mammals. Here we report on a complex A mutant mouse, defective for the Ift122 gene. Ift122-null embryos show multiple developmental defects (exencephaly, situs viscerum inversus, delay in turning, hemorrhage and defects in limb development) that result in lethality. In the node, primary cilia were absent or malformed in homozygous mutant and heterozygous embryos, respectively. Impairment of the Shh pathway was apparent in both neural tube patterning (expansion of motoneurons and rostro-caudal level-dependent contraction or expansion of the dorso-lateral interneurons), and limb patterning (ectrosyndactyly). These phenotypes are distinct from both complex B IFT mutant embryos and embryos defective for the ciliary protein hennin/Arl13b, and suggest reduced levels of both Gli2/Gli3 activator and Gli3 repressor functions. We conclude that complex A and complex B factors play similar but distinct roles in ciliogenesis and Shh/Gli3 signaling. PMID:19000668
Zou, Jia; Zhang, Bo; Gutmann, David H; Wong, Michael
2017-12-01
Epilepsy is one of the most prominent symptoms of tuberous sclerosis complex (TSC), a genetic disorder, and may be related to developmental defects resulting from impaired TSC1 or TSC2 gene function in astrocytes and neurons. Inactivation of the Tsc1 gene driven by a glial-fibrillary acidic protein (GFAP) promoter during embryonic brain development leads to widespread pathologic effects on astrocytes and neurons, culminating in severe, progressive epilepsy in mice (Tsc1 GFAP -Cre mice). However, the developmental timing and cellular specificity relevant to epileptogenesis in this model has not been well defined. The present study evaluates the effect of postnatal Tsc1 gene inactivation on pathologic features of astrocytes and neurons and development of epilepsy. An inducible Tsc1 knock-out mouse was created utilizing a tamoxifen-driven GFAP-CreER line (Tsc1 GFAP -Cre ER mice) with TSC1 reduction induced postnatally at 2 and 6 weeks of age, and compared to conventional Tsc1 GFAP -Cre mice with prenatal TSC1 reduction. Western blotting, immunohistochemistry, histology, and video-electroencephalography (EEG) assessed mechanistic target of rapamycin (mTOR) pathway activation, astrogliosis, neuronal organization, and spontaneous seizures, respectively. Tsc1 gene inactivation at 2 weeks of age was sufficient to cause astrogliosis and mild epilepsy in Tsc1 GFAP -Cre ER mice, but the phenotype was much less severe than that observed with prenatal Tsc1 gene inactivation in Tsc1 GFAP -Cre mice. Both astrocytes and neurons were affected by prenatal and postnatal Tsc1 gene activation to a degree similar to the severity of epilepsy, suggesting that both cellular types may contribute to epileptogenesis. These findings support a model in which the developmental timing of TSC1 loss dictates the severity of neuronal and glial abnormalities and resulting epilepsy. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.
Behavioral Teratogenesis in Drosophila melanogaster.
Mishra, Monalisa; Barik, Bedanta Kumar
2018-01-01
Developmental biology is a fascinating branch of science which helps us to understand the mechanism of development, thus the findings are used in various therapeutic approach. Drosophila melanogaster served as a model to find the key molecules that initiate and regulate the mechanism of development. Various genes, transcription factors, and signaling pathways helping in development are identified in Drosophila. Many toxic compounds, which can affect the development, are also recognized using Drosophila model. These compounds, which can affect the development, are named as a teratogen. Many teratogens identified using Drosophila may also act as a teratogen for a human being since 75% of conservation exist between the disease genes present in Drosophila and human. There are certain teratogens, which do not cause developmental defect if exposed during pregnancy, however; behavioral defect appears in later part of development. Such compounds are named as a behavioral teratogen. Thus, it is worthy to identify the potential behavioral teratogen using Drosophila model. Drosophila behavior is well studied in various developmental stages. This chapter describes various methods which can be employed to test behavioral teratogenesis in Drosophila.
de Sena-Tomás, Carmen; Navarro-González, Mónica; Kües, Ursula; Pérez-Martín, José
2013-09-01
The fungal fruiting body or mushroom is a multicellular structure essential for sexual reproduction. It is composed of dikaryotic cells that contain one haploid nucleus from each mating partner sharing the same cytoplasm without undergoing nuclear fusion. In the mushroom, the pileus bears the hymenium, a layer of cells that includes the specialized basidia in which nuclear fusion, meiosis, and sporulation occur. Coprinopsis cinerea is a well-known model fungus used to study developmental processes associated with the formation of the fruiting body. Here we describe that knocking down the expression of Atr1 and Chk1, two kinases shown to be involved in the response to DNA damage in a number of eukaryotic organisms, dramatically impairs the ability to develop fruiting bodies in C. cinerea, as well as other developmental decisions such as sclerotia formation. These developmental defects correlated with the impairment in silenced strains to sustain an appropriated dikaryotic cell cycle. Dikaryotic cells in which chk1 or atr1 genes were silenced displayed a higher level of asynchronous mitosis and as a consequence aberrant cells carrying an unbalanced dose of nuclei. Since fruiting body initiation is dependent on the balanced mating-type regulator doses present in the dikaryon, we believe that the observed developmental defects were a consequence of the impaired cell cycle in the dikaryon. Our results suggest a connection between the DNA damage response cascade, cell cycle regulation, and developmental processes in this fungus.
Busiah, Kanetee; Drunat, Séverine; Vaivre-Douret, Laurence; Bonnefond, Amélie; Simon, Albane; Flechtner, Isabelle; Gérard, Bénédicte; Pouvreau, Nathalie; Elie, Caroline; Nimri, Revital; De Vries, Liat; Tubiana-Rufi, Nadia; Metz, Chantal; Bertrand, Anne-Marie; Nivot-Adamiak, Sylvie; de Kerdanet, Marc; Stuckens, Chantal; Jennane, Farida; Souchon, Pierre-François; Le Tallec, Claire; Désirée, Christelle; Pereira, Sabrina; Dechaume, Aurélie; Robert, Jean-Jacques; Phillip, Moshe; Scharfmann, Raphaël; Czernichow, Paul; Froguel, Philippe; Vaxillaire, Martine; Polak, Michel; Cavé, Hélène
2013-11-01
Neonatal diabetes mellitus is a rare genetic form of pancreatic β-cell dysfunction. We compared phenotypic features and clinical outcomes according to genetic subtypes in a cohort of patients diagnosed with neonatal diabetes mellitus before age 1 year, without β-cell autoimmunity and with normal pancreas morphology. We prospectively investigated patients from 20 countries referred to the French Neonatal Diabetes Mellitus Study Group from 1995 to 2010. Patients with hyperglycaemia requiring treatment with insulin before age 1 year were eligible, provided that they had normal pancreatic morphology as assessed by ultrasonography and negative tests for β-cell autoimmunity. We assessed changes in the 6q24 locus, KATP-channel subunit genes (ABCC8 and KCNJ11), and preproinsulin gene (INS) and investigated associations between genotype and phenotype, with special attention to extra-pancreatic abnormalities. We tested 174 index patients, of whom 47 (27%) had no detectable genetic defect. Of the remaining 127 index patients, 40 (31%) had 6q24 abnormalities, 43 (34%) had mutations in KCNJ11, 31 (24%) had mutations in ABCC8, and 13 (10%) had mutations in INS. We reported developmental delay with or without epilepsy in 13 index patients (18% of participants with mutations in genes encoding KATP channel subunits). In-depth neuropsychomotor investigations were done at median age 7 years (IQR 1-15) in 27 index patients with mutations in KATP channel subunit genes who did not have developmental delay or epilepsy. Developmental coordination disorder (particularly visual-spatial dyspraxia) or attention deficits were recorded in all index patients who had this testing. Compared with index patients who had mutations in KATP channel subunit genes, those with 6q24 abnormalities had specific features: developmental defects involving the heart, kidneys, or urinary tract (8/36 [22%] vs 2/71 [3%]; p=0·002), intrauterine growth restriction (34/37 [92%] vs 34/70 [48%]; p<0·0001), and early diagnosis (median age 5·0 days, IQR 1·0-14·5 vs 45·5 days, IQR 27·2-95·0; p<0·0001). Remission of neonatal diabetes mellitus occurred in 89 (51%) index patients at a median age of 17 weeks (IQR 9·5-39·0; median follow-up 4·7 years, IQR 1·5-12·8). Recurrence was common, with no difference between the groups who had 6q24 abnormalities versus mutations in KATP channel subunit genes (82% vs 86%; p=0·36). Neonatal diabetes mellitus is often associated with neuropsychological dysfunction and developmental defects that are specific to the underlying genetic abnormality. A multidisciplinary assessment is therefore essential when patients are diagnosed. Features of neuropsychological dysfunction and developmental defects should be tested for in adults with a history of neonatal diabetes mellitus. Agence Nationale de la Recherche-Maladies Rares Research Program Grant, the Transnational European Research Grant on Rare Diseases, the Société Francophone du Diabète-Association Française du Diabète, the Association Française du Diabète, Aide aux Jeunes Diabétiques, a CIFRE grant from the French Government, HRA-Pharma, the French Ministry of Education and Research, and the Société Française de Pédiatrie. Copyright © 2013 Elsevier Ltd. All rights reserved.
Stern, D; Cho, M T; Chikarmane, R; Willaert, R; Retterer, K; Kendall, F; Deardorff, M; Hopkins, S; Bedoukian, E; Slavotinek, A; Schrier Vergano, S; Spangler, B; McDonald, M; McConkie-Rosell, A; Burton, B K; Kim, K H; Oundjian, N; Kronn, D; Chandy, N; Baskin, B; Guillen Sacoto, M J; Wentzensen, I M; McLaughlin, H M; McKnight, D; Chung, W K
2017-08-01
Graphical abstract key: ADHD, attention deficit hyperactivity disorder; ASD, atrial septal defect; DD, developmental delay; EEG, electroencephalogram; Ht, height; ID, intellectual disability; OCD, obsessive-compulsive disorder; OFC, open fontanelle; PDA, patent ductus arteriosis; PFO, patent foramen ovale; VSD, ventricular septal defect; Wt, weight. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Lower urinary tract development and disease
Rasouly, Hila Milo; Lu, Weining
2013-01-01
Congenital Anomalies of the Lower Urinary Tract (CALUT) are a family of birth defects of the ureter, the bladder and the urethra. CALUT includes ureteral anomalies such as congenital abnormalities of the ureteropelvic junction (UPJ) and ureterovesical junction (UVJ), and birth defects of the bladder and the urethra such as bladder-exstrophy-epispadias complex (BEEC), prune belly syndrome (PBS), and posterior urethral valves (PUV). CALUT is one of the most common birth defects and is often associated with antenatal hydronephrosis, vesicoureteral reflux (VUR), urinary tract obstruction, urinary tract infections (UTI), chronic kidney disease and renal failure in children. Here, we discuss the current genetic and molecular knowledge about lower urinary tract development and genetic basis of CALUT in both human and mouse models. We provide an overview of the developmental processes leading to the formation of the ureter, bladder, and urethra, and different genes and signaling pathways controlling these developmental processes. Human genetic disorders that affect the ureter, bladder and urethra and associated gene mutations are also presented. As we are entering the post-genomic era of personalized medicine, information in this article may provide useful interpretation for the genetic and genomic test results collected from patients with lower urinary tract birth defects. With evidence-based interpretations, clinicians may provide more effective personalized therapies to patients and genetic counseling for their families. PMID:23408557
Genetic and Cellular Mechanisms Regulating Anterior Foregut and Esophageal Development
Jacobs, Ian J.; Ku, Wei-Yao; Que, Jianwen
2012-01-01
Separation of the single anterior foregut tube into the esophagus and trachea involves cell proliferation and differentiation, as well as dynamic changes in cell-cell adhesion and migration. These biological processes are regulated and coordinated at multiple levels through the interplay of the epithelium and mesenchyme. Genetic studies and in vitro modeling have shed light on relevant regulatory networks that include a number of transcription factors and signaling pathways. These signaling molecules exhibit unique expression patterns and play specific functions in their respective territories before the separation process occurs. Disruption of regulatory networks inevitably leads to defective separation and malformation of the trachea and esophagus and results in the formation of a relatively common birth defect, esophageal atresia with or without tracheoesophageal fistula (EA/TEF). Significantly, some of the signaling pathways and transcription factors involved in anterior foregut separation continue to play important roles in the morphogenesis of the individual organs. In this review, we will focus on new findings related to these different developmental processes and discuss them in the context of developmental disorders (or birth defects) commonly seen in clinics. PMID:22750256
The Fanconi anemia DNA repair pathway: structural and functional insights into a complex disorder.
Walden, Helen; Deans, Andrew J
2014-01-01
Mutations in any of at least sixteen FANC genes (FANCA-Q) cause Fanconi anemia, a disorder characterized by sensitivity to DNA interstrand crosslinking agents. The clinical features of cytopenia, developmental defects, and tumor predisposition are similar in each group, suggesting that the gene products participate in a common pathway. The Fanconi anemia DNA repair pathway consists of an anchor complex that recognizes damage caused by interstrand crosslinks, a multisubunit ubiquitin ligase that monoubiquitinates two substrates, and several downstream repair proteins including nucleases and homologous recombination enzymes. We review progress in the use of structural and biochemical approaches to understanding how each FANC protein functions in this pathway.
Cell and plastid division are coordinated through the prereplication factor AtCDT1
Raynaud, Cécile; Perennes, Claudette; Reuzeau, Christophe; Catrice, Olivier; Brown, Spencer; Bergounioux, Catherine
2005-01-01
The cell division cycle involves nuclear and cytoplasmic events, namely organelle multiplication and distribution between the daughter cells. Until now, plastid and plant cell division have been considered as independent processes because they can be uncoupled. Here, down-regulation of AtCDT1a and AtCDT1b, members of the prereplication complex, is shown to alter both nuclear DNA replication and plastid division in Arabidopsis thaliana. These data constitute molecular evidence for relationships between the cell-cycle and plastid division. Moreover, the severe developmental defects observed in AtCDT1-RNA interference (RNAi) plants underline the importance of coordinated cell and organelle division for plant growth and morphogenesis. PMID:15928083
A patient with mitochondrial disorder due to a novel mutation in MRPS22.
Kılıç, Mustafa; Oğuz, Kader-Karli; Kılıç, Esra; Yüksel, Deniz; Demirci, Hüseyin; Sağıroğlu, Mahmut Şamil; Yücel-Yılmaz, Didem; Özgül, Rıza Köksal
2017-10-01
MRPS22 gene defect is a very rare newly discovered mitochondrial disorder. We report a 4-month-old severely affected male infant with MRPS22 mutation. Whole exome sequencing revealed a novel homozygous splicing mutation c.339 + 5 G > A in MRPS22 gene. He has mild dysmorphism, hypotonia, developmental delay but not hypertrophic cardiomyopathy and tubulopathy which differ from other majority of reported patients. Therefore, hypertrophic cardiomyopathy and tubulopathy may not be considered as constant features of MRPS22. With this case report, we also present first symmetrical bilateral brainstem and medial thalamic lesions, and cerebellar and cerebral atrophy on a brain MR imaging follow-up of ten months.
Liu, Shu; Wang, Zhiqing; Wei, Sisi; Liang, Jinqun; Chen, Nuan; OuYang, Haimei; Zeng, Weihong; Chen, Liying; Xie, Xunjie; Jiang, Jianhui
2018-04-14
Ring chromosome 6, r(6), is an extremely rare cytogenetic abnormality with clinical heterogeneity which arises typically de novo. The phenotypes of r(6) can be highly variable, ranging from almost normal to severe malformations and neurological defects. Up to now, only 33 cases have been reported in the literature. In this 10-year follow-up study, we report a case presenting distinctive facial features, severe developmental delay, and gray matter heterotopia with r(6) and terminal deletions of 6p25.3 (115426-384174, 268 kb) and 6q26-27 (168697778-170732033, 2.03 Mb) encompassing 2 and 15 candidate genes, respectively, which were detected using G-banding karyotyping, FISH, and chromosomal microarray analysis. We also analyzed the available information on the clinical features of the reported r(6) cases in order to provide more valuable information on genotype-phenotype correlations. To the best of our knowledge, this is the first report of gray matter heterotopia manifested in a patient with r(6) in China, and the deletions of 6p and 6q in our case are the smallest with the precise size of euchromatic material loss currently known. © 2018 S. Karger AG, Basel.
Windpassinger, Christian; Piard, Juliette; Bonnard, Carine; Alfadhel, Majid; Lim, Shuhui; Bisteau, Xavier; Blouin, Stéphane; Ali, Nur'Ain B; Ng, Alvin Yu Jin; Lu, Hao; Tohari, Sumanty; Talib, S Zakiah A; van Hul, Noémi; Caldez, Matias J; Van Maldergem, Lionel; Yigit, Gökhan; Kayserili, Hülya; Youssef, Sameh A; Coppola, Vincenzo; de Bruin, Alain; Tessarollo, Lino; Choi, Hyungwon; Rupp, Verena; Roetzer, Katharina; Roschger, Paul; Klaushofer, Klaus; Altmüller, Janine; Roy, Sudipto; Venkatesh, Byrappa; Ganger, Rudolf; Grill, Franz; Ben Chehida, Farid; Wollnik, Bernd; Altunoglu, Umut; Al Kaissi, Ali; Reversade, Bruno; Kaldis, Philipp
2017-09-07
In five separate families, we identified nine individuals affected by a previously unidentified syndrome characterized by growth retardation, spine malformation, facial dysmorphisms, and developmental delays. Using homozygosity mapping, array CGH, and exome sequencing, we uncovered bi-allelic loss-of-function CDK10 mutations segregating with this disease. CDK10 is a protein kinase that partners with cyclin M to phosphorylate substrates such as ETS2 and PKN2 in order to modulate cellular growth. To validate and model the pathogenicity of these CDK10 germline mutations, we generated conditional-knockout mice. Homozygous Cdk10-knockout mice died postnatally with severe growth retardation, skeletal defects, and kidney and lung abnormalities, symptoms that partly resemble the disease's effect in humans. Fibroblasts derived from affected individuals and Cdk10-knockout mouse embryonic fibroblasts (MEFs) proliferated normally; however, Cdk10-knockout MEFs developed longer cilia. Comparative transcriptomic analysis of mutant and wild-type mouse organs revealed lipid metabolic changes consistent with growth impairment and altered ciliogenesis in the absence of CDK10. Our results document the CDK10 loss-of-function phenotype and point to a function for CDK10 in transducing signals received at the primary cilia to sustain embryonic and postnatal development. Copyright © 2017 American Society of Human Genetics. All rights reserved.
Multilayer mounting enables long-term imaging of zebrafish development in a light sheet microscope.
Kaufmann, Anna; Mickoleit, Michaela; Weber, Michael; Huisken, Jan
2012-09-01
Light sheet microscopy techniques, such as selective plane illumination microscopy (SPIM), are ideally suited for time-lapse imaging of developmental processes lasting several hours to a few days. The success of this promising technology has mainly been limited by the lack of suitable techniques for mounting fragile samples. Embedding zebrafish embryos in agarose, which is common in conventional confocal microscopy, has resulted in severe growth defects and unreliable results. In this study, we systematically quantified the viability and mobility of zebrafish embryos mounted under more suitable conditions. We found that tubes made of fluorinated ethylene propylene (FEP) filled with low concentrations of agarose or methylcellulose provided an optimal balance between sufficient confinement of the living embryo in a physiological environment over 3 days and optical clarity suitable for fluorescence imaging. We also compared the effect of different concentrations of Tricaine on the development of zebrafish and provide guidelines for its optimal use depending on the application. Our results will make light sheet microscopy techniques applicable to more fields of developmental biology, in particular the multiview long-term imaging of zebrafish embryos and other small organisms. Furthermore, the refinement of sample preparation for in toto and in vivo imaging will promote other emerging optical imaging techniques, such as optical projection tomography (OPT).
Traeger, Stefanie; Nowrousian, Minou
2015-04-14
During sexual development, filamentous ascomycetes form complex, three-dimensional fruiting bodies for the generation and dispersal of spores. In previous studies, we identified genes with evolutionary conserved expression patterns during fruiting body formation in several fungal species. Here, we present the functional analysis of two developmentally up-regulated genes, chs7 and sec22, in the ascomycete Sordaria macrospora. The genes encode a class VII (division III) chitin synthase and a soluble N-ethylmaleimide-sensitive-factor attachment protein receptor (SNARE) protein, respectively. Deletion mutants of chs7 had normal vegetative growth and were fully fertile but showed sensitivity toward cell wall stress. Deletion of sec22 resulted in a reduced number of ascospores and in defects in ascospore pigmentation and germination, whereas vegetative growth was normal in the mutant. A SEC22-EGFP fusion construct under control of the native sec22 promoter and terminator regions was expressed during different stages of sexual development. Expression of several development-related genes was deregulated in the sec22 mutant, including three genes involved in melanin biosynthesis. Our data indicate that chs7 is dispensable for fruiting body formation in S. macrospora, whereas sec22 is required for ascospore maturation and germination and thus involved in late stages of sexual development. Copyright © 2015 Traeger and Nowrousian.
Traeger, Stefanie; Nowrousian, Minou
2015-01-01
During sexual development, filamentous ascomycetes form complex, three-dimensional fruiting bodies for the generation and dispersal of spores. In previous studies, we identified genes with evolutionary conserved expression patterns during fruiting body formation in several fungal species. Here, we present the functional analysis of two developmentally up-regulated genes, chs7 and sec22, in the ascomycete Sordaria macrospora. The genes encode a class VII (division III) chitin synthase and a soluble N-ethylmaleimide-sensitive-factor attachment protein receptor (SNARE) protein, respectively. Deletion mutants of chs7 had normal vegetative growth and were fully fertile but showed sensitivity toward cell wall stress. Deletion of sec22 resulted in a reduced number of ascospores and in defects in ascospore pigmentation and germination, whereas vegetative growth was normal in the mutant. A SEC22-EGFP fusion construct under control of the native sec22 promoter and terminator regions was expressed during different stages of sexual development. Expression of several development-related genes was deregulated in the sec22 mutant, including three genes involved in melanin biosynthesis. Our data indicate that chs7 is dispensable for fruiting body formation in S. macrospora, whereas sec22 is required for ascospore maturation and germination and thus involved in late stages of sexual development. PMID:25873638
Beysen, D; Raes, J; Leroy, B P; Lucassen, A; Yates, J R W; Clayton-Smith, J; Ilyina, H; Brooks, S Sklower; Christin-Maitre, S; Fellous, M; Fryns, J P; Kim, J R; Lapunzina, P; Lemyre, E; Meire, F; Messiaen, L M; Oley, C; Splitt, M; Thomson, J; Van de Peer, Y; Veitia, R A; De Paepe, A; De Baere, E
2005-08-01
The expression of a gene requires not only a normal coding sequence but also intact regulatory regions, which can be located at large distances from the target genes, as demonstrated for an increasing number of developmental genes. In previous mutation studies of the role of FOXL2 in blepharophimosis syndrome (BPES), we identified intragenic mutations in 70% of our patients. Three translocation breakpoints upstream of FOXL2 in patients with BPES suggested a position effect. Here, we identified novel microdeletions outside of FOXL2 in cases of sporadic and familial BPES. Specifically, four rearrangements, with an overlap of 126 kb, are located 230 kb upstream of FOXL2, telomeric to the reported translocation breakpoints. Moreover, the shortest region of deletion overlap (SRO) contains several conserved nongenic sequences (CNGs) harboring putative transcription-factor binding sites and representing potential long-range cis-regulatory elements. Interestingly, the human region orthologous to the 12-kb sequence deleted in the polled intersex syndrome in goat, which is an animal model for BPES, is contained in this SRO, providing evidence of human-goat conservation of FOXL2 expression and of the mutational mechanism. Surprisingly, in a fifth family with BPES, one rearrangement was found downstream of FOXL2. In addition, we report nine novel rearrangements encompassing FOXL2 that range from partial gene deletions to submicroscopic deletions. Overall, genomic rearrangements encompassing or outside of FOXL2 account for 16% of all molecular defects found in our families with BPES. In summary, this is the first report of extragenic deletions in BPES, providing further evidence of potential long-range cis-regulatory elements regulating FOXL2 expression. It contributes to the enlarging group of developmental diseases caused by defective distant regulation of gene expression. Finally, we demonstrate that CNGs are candidate regions for genomic rearrangements in developmental genes.
Beysen, D.; Raes, J.; Leroy, B. P.; Lucassen, A.; Yates, J. R. W.; Clayton-Smith, J.; Ilyina, H.; Brooks, S. Sklower; Christin-Maitre, S.; Fellous, M.; Fryns, J. P.; Kim, J. R.; Lapunzina, P.; Lemyre, E.; Meire, F.; Messiaen, L. M.; Oley, C.; Splitt, M.; Thomson, J.; Peer, Y. Van de; Veitia, R. A.; De Paepe, A.; De Baere, E.
2005-01-01
The expression of a gene requires not only a normal coding sequence but also intact regulatory regions, which can be located at large distances from the target genes, as demonstrated for an increasing number of developmental genes. In previous mutation studies of the role of FOXL2 in blepharophimosis syndrome (BPES), we identified intragenic mutations in 70% of our patients. Three translocation breakpoints upstream of FOXL2 in patients with BPES suggested a position effect. Here, we identified novel microdeletions outside of FOXL2 in cases of sporadic and familial BPES. Specifically, four rearrangements, with an overlap of 126 kb, are located 230 kb upstream of FOXL2, telomeric to the reported translocation breakpoints. Moreover, the shortest region of deletion overlap (SRO) contains several conserved nongenic sequences (CNGs) harboring putative transcription-factor binding sites and representing potential long-range cis-regulatory elements. Interestingly, the human region orthologous to the 12-kb sequence deleted in the polled intersex syndrome in goat, which is an animal model for BPES, is contained in this SRO, providing evidence of human-goat conservation of FOXL2 expression and of the mutational mechanism. Surprisingly, in a fifth family with BPES, one rearrangement was found downstream of FOXL2. In addition, we report nine novel rearrangements encompassing FOXL2 that range from partial gene deletions to submicroscopic deletions. Overall, genomic rearrangements encompassing or outside of FOXL2 account for 16% of all molecular defects found in our families with BPES. In summary, this is the first report of extragenic deletions in BPES, providing further evidence of potential long-range cis-regulatory elements regulating FOXL2 expression. It contributes to the enlarging group of developmental diseases caused by defective distant regulation of gene expression. Finally, we demonstrate that CNGs are candidate regions for genomic rearrangements in developmental genes. PMID:15962237
Creatine deficiency syndromes.
Schulze, Andreas
2013-01-01
The lack of creatine in the central nervous system causes a severe but treatable neurological disease. Three inherited defects, AGAT, GAMT, and CrT deficiency, compromising synthesis and transport of creatine have been discovered recently. Together these so-called creatine deficiency syndromes (CDS) might represent the most frequent metabolic disorders with a primarily neurological phenotype. Patients with CDS present with global developmental delays, mental retardation, speech impairment especially affecting active language, seizures, extrapyramidal movement disorder, and autism spectrum disorder. The two defects in the creatine synthesis, AGAT and GAMT, are autosomal recessive disorders. They can be diagnosed by analysis of the creatine, guanidinoacetate, and creatinine in body fluids. Treatment is available and, especially when introduced in infancy, has a good outcome. The defect of creatine transport, CrT, is an X-linked condition and perhaps the most frequent reasons for X-linked mental retardation. Diagnosis is made by an increased ratio of creatine to creatinine in urine, but successful treatment still needs to be explored. CDS are under-diagnosed because easy to miss in standard diagnostic workup. Because CDS represent a frequent cause of cognitive and neurological impairment that is treatable they warrant consideration in the workup for genetic mental retardation syndromes, for intractable seizure disorders, and for neurological diseases with a predominant lack of active speech. Copyright © 2013 Elsevier B.V. All rights reserved.
Nakrieko, Kerry-Ann; Welch, Ian; Dupuis, Holly; Bryce, Dawn; Pajak, Agnieszka; St Arnaud, René; Dedhar, Shoukat; D'Souza, Sudhir J A; Dagnino, Lina
2008-04-01
Integrin-linked kinase (ILK) is key for cell survival, migration, and adhesion, but little is known about its role in epidermal development and homeostasis in vivo. We generated mice with conditional inactivation of the Ilk gene in squamous epithelia. These mice die perinatally and exhibit skin blistering and severe defects in hair follicle morphogenesis, including greatly reduced follicle numbers, failure to progress beyond very early developmental stages, and pronounced defects in follicular keratinocyte proliferation. ILK-deficient epidermis shows abnormalities in adhesion to the basement membrane and in differentiation. ILK-deficient cultured keratinocytes fail to attach and spread efficiently and exhibit multiple abnormalities in actin cytoskeletal organization. Ilk gene inactivation in cultured keratinocytes causes impaired ability to form stable lamellipodia, to directionally migrate, and to polarize. These defects are accompanied by abnormal distribution of active Cdc42 to cell protrusions, as well as reduced activation of Rac1 upon induction of cell migration in scraped keratinocyte monolayers. Significantly, alterations in cell spreading and forward movement in single cells can be rescued by expression of constitutively active Rac1 or RhoG. Our studies underscore a central and distinct role for ILK in hair follicle development and in polarized cell movements, two key aspects of epithelial morphogenesis and function.
Nakrieko, Kerry-Ann; Welch, Ian; Dupuis, Holly; Bryce, Dawn; Pajak, Agnieszka; St. Arnaud, René; Dedhar, Shoukat
2008-01-01
Integrin-linked kinase (ILK) is key for cell survival, migration, and adhesion, but little is known about its role in epidermal development and homeostasis in vivo. We generated mice with conditional inactivation of the Ilk gene in squamous epithelia. These mice die perinatally and exhibit skin blistering and severe defects in hair follicle morphogenesis, including greatly reduced follicle numbers, failure to progress beyond very early developmental stages, and pronounced defects in follicular keratinocyte proliferation. ILK-deficient epidermis shows abnormalities in adhesion to the basement membrane and in differentiation. ILK-deficient cultured keratinocytes fail to attach and spread efficiently and exhibit multiple abnormalities in actin cytoskeletal organization. Ilk gene inactivation in cultured keratinocytes causes impaired ability to form stable lamellipodia, to directionally migrate, and to polarize. These defects are accompanied by abnormal distribution of active Cdc42 to cell protrusions, as well as reduced activation of Rac1 upon induction of cell migration in scraped keratinocyte monolayers. Significantly, alterations in cell spreading and forward movement in single cells can be rescued by expression of constitutively active Rac1 or RhoG. Our studies underscore a central and distinct role for ILK in hair follicle development and in polarized cell movements, two key aspects of epithelial morphogenesis and function. PMID:18234842
Cao, Siqi; Smith, Laura L; Padilla-Lopez, Sergio R; Guida, Brandon S; Blume, Elizabeth; Shi, Jiahai; Morton, Sarah U; Brownstein, Catherine A; Beggs, Alan H; Kruer, Michael C; Agrawal, Pankaj B
2017-09-15
Eukaryotic elongation factor 1A (EEF1A), is encoded by two distinct isoforms, EEF1A1 and EEF1A2; whereas EEF1A1 is expressed almost ubiquitously, EEF1A2 expression is limited such that it is only detectable in skeletal muscle, heart, brain and spinal cord. Currently, the role of EEF1A2 in normal cardiac development and function is unclear. There have been several reports linking de novo dominant EEF1A2 mutations to neurological issues in humans. We report a pair of siblings carrying a homozygous missense mutation p.P333L in EEF1A2 who exhibited global developmental delay, failure to thrive, dilated cardiomyopathy and epilepsy, ultimately leading to death in early childhood. A third sibling also died of a similar presentation, but DNA was unavailable to confirm the mutation. Functional genomic analysis was performed in S. cerevisiae and zebrafish. In S. cerevisiae, there was no evidence for a dominant-negative effect. Previously identified putative de novo mutations failed to complement yeast strains lacking the EEF1A ortholog showing a major growth defect. In contrast, the introduction of the mutation seen in our family led to a milder growth defect. To evaluate its function in zebrafish, we knocked down eef1a2 expression using translation blocking and splice-site interfering morpholinos. EEF1A2-deficient zebrafish had skeletal muscle weakness, cardiac failure and small heads. Human EEF1A2 wild-type mRNA successfully rescued the morphant phenotype, but mutant RNA did not. Overall, EEF1A2 appears to be critical for normal heart function in humans, and its deficiency results in clinical abnormalities in neurologic function as well as in skeletal and cardiac muscle defects. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Sørhus, Elin; Incardona, John P.; Karlsen, Ørjan; Linbo, Tiffany; Sørensen, Lisbet; Nordtug, Trond; van der Meeren, Terje; Thorsen, Anders; Thorbjørnsen, Maja; Jentoft, Sissel; Edvardsen, Rolf B.; Meier, Sonnich
2016-01-01
Recent studies have shown that crude oil exposure affects cardiac development in fish by disrupting excitation-contraction (EC) coupling. We previously found that eggs of Atlantic haddock (Melanogrammus aeglefinus) bind dispersed oil droplets, potentially leading to more profound toxic effects from uptake of polycyclic aromatic hydrocarbons (PAHs). Using lower concentrations of dispersed crude oil (0.7–7 μg/L ∑PAH), here we exposed a broader range of developmental stages over both short and prolonged durations. We quantified effects on cardiac function and morphogenesis, characterized novel craniofacial defects, and examined the expression of genes encoding potential targets underlying cardiac and craniofacial defects. Because of oil droplet binding, a 24-hr exposure was sufficient to create severe cardiac and craniofacial abnormalities. The specific nature of the craniofacial abnormalities suggests that crude oil may target common craniofacial and cardiac precursor cells either directly or indirectly by affecting ion channels and intracellular calcium in particular. Furthermore, down-regulation of genes encoding specific components of the EC coupling machinery suggests that crude oil disrupts excitation-transcription coupling or normal feedback regulation of ion channels blocked by PAHs. These data support a unifying hypothesis whereby depletion of intracellular calcium pools by crude oil-derived PAHs disrupts several pathways critical for organogenesis in fish. PMID:27506155
Rigas, Stamatis; Ditengou, Franck Anicet; Ljung, Karin; Daras, Gerasimos; Tietz, Olaf; Palme, Klaus; Hatzopoulos, Polydefkis
2013-03-01
Active polar transport establishes directional auxin flow and the generation of local auxin gradients implicated in plant responses and development. Auxin modulates gravitropism at the root tip and root hair morphogenesis at the differentiation zone. Genetic and biochemical analyses provide evidence for defective basipetal auxin transport in trh1 roots. The trh1, pin2, axr2 and aux1 mutants, and transgenic plants overexpressing PIN1, all showing impaired gravity response and root hair development, revealed ectopic PIN1 localization. The auxin antagonist hypaphorine blocked root hair elongation and caused moderate agravitropic root growth, also leading to PIN1 mislocalization. These results suggest that auxin imbalance leads to proximal and distal developmental defects in Arabidopsis root apex, associated with agravitropic root growth and root hair phenotype, respectively, providing evidence that these two auxin-regulated processes are coupled. Cell-specific subcellular localization of TRH1-YFP in stele and epidermis supports TRH1 engagement in auxin transport, and hence impaired function in trh1 causes dual defects of auxin imbalance. The interplay between intrinsic cues determining root epidermal cell fate through the TTG/GL2 pathway and environmental cues including abiotic stresses modulates root hair morphogenesis. As a consequence of auxin imbalance in Arabidopsis root apex, ectopic PIN1 mislocalization could be a risk aversion mechanism to trigger root developmental responses ensuring root growth plasticity. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.
Dental health of aboriginal pre-school children in Brisbane, Australia.
Seow, W K; Amaratunge, A; Bennett, R; Bronsch, D; Lai, P Y
1996-06-01
This investigation studied the dental health status of a group of 184 Australian Aboriginal children with a mean age of 4.4 +/- 0.8 years, who were attending pre-schools in metropolitan Brisbane, a non-fluoridated state capital city. The DDE (Developmental Defects of Enamel) Index was used to chart enamel hypoplasia and enamel opacities. WHO criteria was used to diagnose dental caries. The results showed that 98% of children had at least one tooth showing developmental enamel defects. Each child had a mean of 3.8 +/- 1.7 teeth affected by enamel hypoplasia and another 1.1 +/- 0.8 teeth affected by enamel opacity. Seventy-eight percent of the children had dental caries. The mean number of decayed, missing, filled teeth (dmft) per child was 3.8 +/- 3.7. The decayed component constituted 3.5 (95%) of the mean dmft, indicating a high unmet restorative need in this group. The mean dmfs (decayed, missing, filled, surfaces) was 5.9 +/- 7.3. Maxillary anterior labial decay of at least one tooth affected 43 (23%) of the children. In this sub-group, the dmft and dmfs was 9.1 +/- 2.8 and 15.4 +/- 7.7 respectively. Oral debris was found in 98% of the children. It is hypothesized that the high levels of underlying developmental enamel defects, compounded by low fluoride exposure, poor oral hygiene and a diet high in refined sugars pose an important caries risk factor in this group of children.
2014-08-01
Assisted Reproduction Treatment (ART) is here to stay. This review addresses the parental background of birth defects, before, during and after conception and focuses both on the underlying subfertility and on the question whether ART as a treatment is an additional contributing factor. Searches were performed in Medline and other databases. Summaries were discussed in a Delphi panel set-up by the European Society of Human Reproduction and Embryology (ESHRE). Several birth defects and adult diseases arise during the earliest stages of ovarian development and oocyte differentiation: this is the case of cleft palate disorders in offspring from female rat exposed to Dioxin during fetal life or the polycystic ovary diseases in female offspring (primates) exposed to elevated androgen concentration during fetal life. Human oocytes and embryos often fail to stop the propagation of aneuploid cells but maintain their ability to repair DNA damages including those introduced by the fertilizing sperm. There is a 29 % increased risk of birth defects in the newborns spontaneously conceived by subfertile couples and the risk is further increased (34 %) when conception is achieved by treating infertlity with ART (Danish IVF Registry). Periconceptional conditions are critical for ART babies: their birth weight is in general smaller (Norvegian Registry) but a more prolonged culture time doubled the number of large babies (Finnish Registry). The long-term developmental effects of ART on child and subsequent health as an adult remains a subject worthy of futher monitoring and investigation.
The aristaless-like homeobox protein Alx3 as an etiopathogenic factor for diabetes mellitus.
Vallejo, Mario
2011-01-01
Inactivation of the gene encoding the aristaless-related homeodomain transcription factor Alx3 results in islet cell apoptosis and impaired glucose homeostasis that worsens with age due to the appearance of insulin resistance. Alx3-deficient mice also show extrapancreatic developmental defects with variable penetrance. These include polydactyly, craniofacial midline defects, and neural tube closure defects. In humans, related congenital defects associated with mutations in ALX3 and other aristaless-related genes are being identified. Emerging evidence suggests that normal pancreatic function in humans may require the integrity of aristaless-related genes. Here, the proposal that ALX3 could be considered as a candidate gene for the etiopathogenesis of diabetes or its complications during embryonic or fetal development is discussed.
p53/CEP-1 Increases or Decreases Lifespan, Depending on Level of Mitochondrial Bioenergetic Stress
Ventura, Natascia; Rea, Shane L.; Schiavi, Alfonso; Torgovnick, Alessandro; Testi, Roberto; Johnson, Thomas E.
2009-01-01
SUMMARY Mitochondrial pathologies underlie a number of life-shortening diseases in humans. In the nematode Caenorhabditis elegans, severely reduced expression of mitochondrial proteins involved in electron transport chain-mediated energy production also leads to pathological phenotypes, including arrested development and/or shorter life; in sharp contrast, mild suppression of these same proteins extends lifespan. Here we show that the C. elegans p53 ortholog cep-1 mediates these opposite effects. We find that cep-1 is required to extend longevity in response to mild suppression of several bioenergetically relevant mitochondrial proteins, including frataxin - the protein defective in patients with Friedreich’s Ataxia. Importantly we show that cep-1 also mediates both the developmental arrest and life shortening induced by severe mitochondrial stress. Our findings support an evolutionarily conserved function for p53 in modulating organismal responses to mitochondrial dysfunction and suggest that metabolic checkpoint responses may play a role in longevity control and in human mitochondrial-associated diseases. PMID:19416129
Exposure to the BPA-Substitute Bisphenol S Causes Unique Alterations of Germline Function
Chen, Yichang; Qiu, Zhiqun; Lee, Dong Yeon; Telesca, Donatello; Yang, Xia; Allard, Patrick
2016-01-01
Concerns about the safety of Bisphenol A, a chemical found in plastics, receipts, food packaging and more, have led to its replacement with substitutes now found in a multitude of consumer products. However, several popular BPA-free alternatives, such as Bisphenol S, share a high degree of structural similarity with BPA, suggesting that these substitutes may disrupt similar developmental and reproductive pathways. We compared the effects of BPA and BPS on germline and reproductive functions using the genetic model system Caenorhabditis elegans. We found that, similarly to BPA, BPS caused severe reproductive defects including germline apoptosis and embryonic lethality. However, meiotic recombination, targeted gene expression, whole transcriptome and ontology analyses as well as ToxCast data mining all indicate that these effects are partly achieved via mechanisms distinct from BPAs. These findings therefore raise new concerns about the safety of BPA alternatives and the risk associated with human exposure to mixtures. PMID:27472198
Variability in dentofacial phenotypes in four families with WNT10A mutations
Vink, Christian P; Ockeloen, Charlotte W; ten Kate, Sietske; Koolen, David A; Ploos van Amstel, Johannes Kristian; Kuijpers-Jagtman, Anne-Marie; van Heumen, Celeste C; Kleefstra, Tjitske; Carels, Carine E L
2014-01-01
This article describes the inter- and intra-familial phenotypic variability in four families with WNT10A mutations. Clinical characteristics of the patients range from mild to severe isolated tooth agenesis, over mild symptoms of ectodermal dysplasia, to more severe syndromic forms like odonto-onycho-dermal dysplasia (OODD) and Schöpf–Schulz–Passarge syndrome (SSPS). Recurrent WNT10A mutations were identified in all affected family members and the associated symptoms are presented with emphasis on the dentofacial phenotypes obtained with inter alia three-dimensional facial stereophotogrammetry. A comprehensive overview of the literature regarding WNT10A mutations, associated conditions and developmental defects is presented. We conclude that OODD and SSPS should be considered as variable expressions of the same WNT10A genotype. In all affected individuals, a dished-in facial appearance was observed which might be helpful in the clinical setting as a clue to the underlying genetic etiology. PMID:24398796
Pillas, Demetris; Hoggart, Clive J; Evans, David M; O'Reilly, Paul F; Sipilä, Kirsi; Lähdesmäki, Raija; Millwood, Iona Y; Kaakinen, Marika; Netuveli, Gopalakrishnan; Blane, David; Charoen, Pimphen; Sovio, Ulla; Pouta, Anneli; Freimer, Nelson; Hartikainen, Anna-Liisa; Laitinen, Jaana; Vaara, Sarianna; Glaser, Beate; Crawford, Peter; Timpson, Nicholas J; Ring, Susan M; Deng, Guohong; Zhang, Weihua; McCarthy, Mark I; Deloukas, Panos; Peltonen, Leena; Elliott, Paul; Coin, Lachlan J M; Smith, George Davey; Jarvelin, Marjo-Riitta
2010-02-26
Tooth development is a highly heritable process which relates to other growth and developmental processes, and which interacts with the development of the entire craniofacial complex. Abnormalities of tooth development are common, with tooth agenesis being the most common developmental anomaly in humans. We performed a genome-wide association study of time to first tooth eruption and number of teeth at one year in 4,564 individuals from the 1966 Northern Finland Birth Cohort (NFBC1966) and 1,518 individuals from the Avon Longitudinal Study of Parents and Children (ALSPAC). We identified 5 loci at P<5x10(-8), and 5 with suggestive association (P<5x10(-6)). The loci included several genes with links to tooth and other organ development (KCNJ2, EDA, HOXB2, RAD51L1, IGF2BP1, HMGA2, MSRB3). Genes at four of the identified loci are implicated in the development of cancer. A variant within the HOXB gene cluster associated with occlusion defects requiring orthodontic treatment by age 31 years.
Sipilä, Kirsi; Lähdesmäki, Raija; Millwood, Iona Y.; Kaakinen, Marika; Netuveli, Gopalakrishnan; Blane, David; Charoen, Pimphen; Sovio, Ulla; Pouta, Anneli; Freimer, Nelson; Hartikainen, Anna-Liisa; Laitinen, Jaana; Vaara, Sarianna; Glaser, Beate; Crawford, Peter; Timpson, Nicholas J.; Ring, Susan M.; Deng, Guohong; Zhang, Weihua; McCarthy, Mark I.; Deloukas, Panos; Peltonen, Leena
2010-01-01
Tooth development is a highly heritable process which relates to other growth and developmental processes, and which interacts with the development of the entire craniofacial complex. Abnormalities of tooth development are common, with tooth agenesis being the most common developmental anomaly in humans. We performed a genome-wide association study of time to first tooth eruption and number of teeth at one year in 4,564 individuals from the 1966 Northern Finland Birth Cohort (NFBC1966) and 1,518 individuals from the Avon Longitudinal Study of Parents and Children (ALSPAC). We identified 5 loci at P<5×10−8, and 5 with suggestive association (P<5×10−6). The loci included several genes with links to tooth and other organ development (KCNJ2, EDA, HOXB2, RAD51L1, IGF2BP1, HMGA2, MSRB3). Genes at four of the identified loci are implicated in the development of cancer. A variant within the HOXB gene cluster associated with occlusion defects requiring orthodontic treatment by age 31 years. PMID:20195514
Micro-RNAs and their roles in eye disorders.
Raghunath, Azhwar; Perumal, Ekambaram
2015-01-01
Micro-RNAs (miRNAs) are members of the family of noncoding RNA molecules that regulate gene expression by translational repression and mRNA degradation. Initial identification of miRNAs revealed them only as developmental regulators; later, their radiated roles in various cellular processes have been established. They regulate several pathways, including developmental timing, hematopoiesis, organogenesis, apoptosis, cell differentiation and proliferation. Their roles in eye disorders are being explored by biologists around the world. Eye physiology requires the perfect orchestration of all the regulatory networks; any defect in any of the networks leads to eye disorders. The dysregulation of miRNA expression has been reported in many eye disorders, which paves the way for new therapeutics. This review summarizes the biogenesis of miRNAs and their role in eye disorders. miRNA studies also have implications for the understanding of various complex metabolic pathways leading to disorders of the eye. The ultimate understanding leads to potential opportunities in evaluating miRNAs as molecular biomarkers, prognostic tools, diagnostic tools and therapeutic agents for eye disorders. © 2015 S. Karger AG, Basel.
Cerebellar Development and Disease
Gleeson, Joseph G.
2008-01-01
Recent Advances The molecular control of cell type specification within the developing cerebellum as well as the genetic causes of the most common human developmental cerebellar disorders have long remained mysterious. Recent genetic lineage and loss-of-function data from mice have revealed unique and non-overlapping anatomical origins for GABAergic neurons from ventricular zone precursors and glutamatergic cell from rhombic lip precursors, mirroring distinct origins for these neurotransmitter-specific cell types in the cerebral cortex. Mouse studies elucidating the role of Ptf1a as a cerebellar ventricular zone GABerigic fate switch were actually preceded by the recognition that PTF1A mutations in humans cause cerebellar agenesis, a birth defect of the human cerebellum. Indeed, several genes for congenital human cerebellar malformations have recently been identified, including genes causing Joubert syndrome, Dandy-Walker malformation and Ponto-cerebellar hypoplasia. These studies have pointed to surprisingly complex roles for transcriptional regulation, mitochondrial function and neuronal cilia in patterning, homeostasis and cell proliferation during cerebellar development. Together mouse and human studies are synergistically advancing our understanding of the developmental mechanisms that generate the uniquely complex mature cerebellum. PMID:18513948
Human DAZL, DAZ and BOULE genes modulate primordial germ cell and haploid gamete formation
Kee, Kehkooi; Angeles, Vanessa T; Flores, Martha; Nguyen, Ha Nam; Pera, Renee A Reijo
2009-01-01
The leading cause of infertility in men and women is quantitative and qualitative defects in human germ cell (oocyte and sperm) development. Yet, it has not been possible to examine the unique developmental genetics of human germ cell formation and differentiation due to inaccessibility of germ cells during fetal development. Although several studies have shown that germ cells can be differentiated from mouse and human embryonic stem cells, human germ cells differentiated in these studies generally did not develop beyond the earliest stages1-8. Here we used a germ cell reporter to quantitate and isolate primordial germ cells derived from both male and female hESCs. Then, by silencing and overexpressing genes that encode germ cell-specific cytoplasmic RNA-binding proteins (not transcription factors), we modulated human germ cell formation and developmental progression. We observed that human DAZL (Deleted in AZoospermia-Like) functions in primordial germ cell formation, whereas closely-related genes, DAZ and BOULE, promote later stages of meiosis and development of haploid gametes. These results are significant to the generation of gametes for future basic science and potential clinical applications. PMID:19865085
Nuclear migration events throughout development
Bone, Courtney R.
2016-01-01
ABSTRACT Moving the nucleus to a specific position within the cell is an important event during many cell and developmental processes. Several different molecular mechanisms exist to position nuclei in various cell types. In this Commentary, we review the recent progress made in elucidating mechanisms of nuclear migration in a variety of important developmental models. Genetic approaches to identify mutations that disrupt nuclear migration in yeast, filamentous fungi, Caenorhabditis elegans, Drosophila melanogaster and plants led to the identification of microtubule motors, as well as Sad1p, UNC-84 (SUN) domain and Klarsicht, ANC-1, Syne homology (KASH) domain proteins (LINC complex) that function to connect nuclei to the cytoskeleton. We focus on how these proteins and various mechanisms move nuclei during vertebrate development, including processes related to wound healing of fibroblasts, fertilization, developing myotubes and the developing central nervous system. We also describe how nuclear migration is involved in cells that migrate through constricted spaces. On the basis of these findings, it is becoming increasingly clear that defects in nuclear positioning are associated with human diseases, syndromes and disorders. PMID:27182060
Martins, Torcato; Meghini, Francesco; Florio, Francesca; Kimata, Yuu
2017-01-09
The cell cycle is coordinated with differentiation during animal development. Here we report a cell-cycle-independent developmental role for a master cell-cycle regulator, the anaphase-promoting complex or cyclosome (APC/C), in the regulation of cell fate through modulation of Wingless (Wg) signaling. The APC/C controls both cell-cycle progression and postmitotic processes through ubiquitin-dependent proteolysis. Through an RNAi screen in the developing Drosophila eye, we found that partial APC/C inactivation severely inhibits retinal differentiation independently of cell-cycle defects. The differentiation inhibition coincides with hyperactivation of Wg signaling caused by the accumulation of a Wg modulator, Drosophila Nek2 (dNek2). The APC/C degrades dNek2 upon synchronous G1 arrest prior to differentiation, which allows retinal differentiation through local suppression of Wg signaling. We also provide evidence that decapentaplegic signaling may posttranslationally regulate this APC/C function. Thus, the APC/C coordinates cell-fate determination with the cell cycle through the modulation of developmental signaling pathways. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Verboon, Jeffrey M.; Rahe, Travis K.; Rodriguez-Mesa, Evelyn; Parkhurst, Susan M.
2015-01-01
Drosophila immune cells, the hemocytes, undergo four stereotypical developmental migrations to populate the embryo, where they provide immune reconnoitering, as well as a number of non–immune-related functions necessary for proper embryogenesis. Here, we describe a role for Rho1 in one of these developmental migrations in which posteriorly located hemocytes migrate toward the head. This migration requires the interaction of Rho1 with its downstream effector Wash, a Wiskott–Aldrich syndrome family protein. Both Wash knockdown and a Rho1 transgene harboring a mutation that prevents Wash binding exhibit the same developmental migratory defect as Rho1 knockdown. Wash activates the Arp2/3 complex, whose activity is needed for this migration, whereas members of the WASH regulatory complex (SWIP, Strumpellin, and CCDC53) are not. Our results suggest a WASH complex–independent signaling pathway to regulate the cytoskeleton during a subset of hemocyte developmental migrations. PMID:25739458
Pagano, Giovanni; Guida, Marco; Siciliano, Antonietta; Oral, Rahime; Koçbaş, Fatma; Palumbo, Anna; Castellano, Immacolata; Migliaccio, Oriana; Thomas, Philippe J; Trifuoggi, Marco
2016-05-01
Broad-ranging adverse effects are known for rare earth elements (REE), yet only a few studies tested the toxicity of several REE, prompting studies focusing on multi-parameter REE toxicity. Trichloride salts of Y, La, Ce, Nd, Sm, Eu and Gd were tested in Paracentrotus lividus sea urchin embryos and sperm for: (1) developmental defects in either REE-exposed larvae or in the offspring of REE-exposed sperm; (2) fertilization success; (3) mitotic anomalies in REE-exposed embryos and in the offspring of REE-exposed sperm, and (4) reactive oxygen species (ROS) formation, and malondialdehyde (MDA) and nitric oxide (NO) levels. REEs affected P. lividus larvae with concentration-related increase in developmental defects, 10(-6) to 10(-4)M, ranking as: Gd(III)>Y(III)>La(III)>Nd(III)≅Eu(III)>Ce(III)≅Sm(III). Nominal concentrations of REE salts were confirmed by inductively coupled plasma mass spectrometry (ICP-MS). Significant increases in MDA levels, ROS formation, and NO levels were found in REE-exposed embryos. Sperm exposure to REEs (10(-5) to 10(-4)M) resulted in concentration-related decrease in fertilization success along with increase in offspring damage. Decreased mitotic activity and increased aberration rates were detected in REE-exposed embryos and in the offspring of REE-exposed sperm. REE-associated toxicity affecting embryogenesis, fertilization, cytogenetic and redox endpoints showed different activities of tested REEs. Damage to early life stages, along with redox and cytogenetic anomalies should be the focus of future REE toxicity studies. Copyright © 2016 Elsevier Inc. All rights reserved.
Chen, Hua-Ling; Yuh, Chiou-Hwa; Wu, Kenneth K
2010-02-19
Nestin is expressed in neural progenitor cells (NPC) of developing brain. Despite its wide use as an NPC marker, the function of nestin in embryo development is unclear. As nestin is conserved in zebrafish and its predicted sequence is clustered with the mammalian nestin orthologue, we used zebrafish as a model to investigate its role in embryogenesis. Injection of nestin morpholino (MO) into fertilized eggs induced time- and dose-dependent brain and eye developmental defects. Nestin morphants exhibited characteristic morphological changes including small head, small eyes and hydrocephalus. Histological examinations show reduced hind- and mid-brain size, dilated ventricle, poorly organized retina and underdeveloped lens. Injection of control nestin MO did not induce brain or eye changes. Nestin MO injection reduced expression of ascl1b (achaete-scute complex-like 1b), a marker of NPCs, without affecting its distribution. Nestin MO did not influence Elavl3/4 (Embryonic lethal, abnormal vision, Drosophila-like 3/4) (a neuronal marker), or otx2 (a midbrain neuronal marker), but severely perturbed cranial motor nerve development and axon distribution. To determine whether the developmental defects are due to excessive NPC apoptosis and/or reduced NPC proliferation, we analyzed apoptosis by TUNEL assay and acridine orange staining and proliferation by BrdU incorporation, pcna and mcm5 expressions. Excessive apoptosis was noted in hindbrain and midbrain cells. Apoptotic signals were colocalized with ascl1b. Proliferation markers were not significantly altered by nestin MO. These results suggest that nestin is essential for zebrafish brain and eye development probably through control of progenitor cell apoptosis.
Left Right Patterning, Evolution and Cardiac Development
Dykes, Iain M.
2018-01-01
Many aspects of heart development are determined by the left right axis and as a result several congenital diseases have their origins in aberrant left-right patterning. Establishment of this axis occurs early in embryogenesis before formation of the linear heart tube yet impacts upon much later morphogenetic events. In this review I discuss the differing mechanisms by which left-right polarity is achieved in the mouse and chick embryos and comment on the evolution of this system. I then discus three major classes of cardiovascular defect associated with aberrant left-right patterning seen in mouse mutants and human disease. I describe phenotypes associated with the determination of atrial identity and venous connections, looping morphogenesis of the heart tube and finally the asymmetric remodelling of the embryonic branchial arch arterial system to form the leftward looped arch of aorta and associated great arteries. Where appropriate, I consider left right patterning defects from an evolutionary perspective, demonstrating how developmental processes have been modified in species over time and illustrating how comparative embryology can aide in our understanding of congenital heart disease. PMID:29755990
DeFord-Watts, Laura M.; Tassin, Tara C.; Becker, Amy M.; Medeiros, Jennifer J.; Albanesi, Joseph P.; Love, Paul E.; Wülfing, Christoph; van Oers, Nicolai S. C.
2010-01-01
The CD3 ε subunit of the TCR complex contains two defined signaling domains, a proline-rich sequence and an ITAM. We identified a third signaling sequence in CD3 ε, termed the basic-rich stretch (BRS). Herein, we show that the positively charged residues of the BRS enable this region of CD3 ε to complex a subset of acidic phospholipids, including PI(3)P, PI(4)P, PI(5)P, PI(3,4,5)P3, and PI(4,5)P2. Transgenic mice containing mutations of the BRS exhibited varying developmental defects, ranging from reduced thymic cellularity to a complete block in T cell development. Peripheral T cells from BRS-modified mice also exhibited several defects, including decreased TCR surface expression, reduced TCR-mediated signaling responses to agonist peptide-loaded APCs, and delayed CD3 ε localization to the immunological synapse. Overall, these findings demonstrate a functional role for the CD3 ε lipid-binding domain in T cell biology. PMID:19542373
Contribution of olivofloccular circuitry developmental defects to atypical gaze in autism
Wegiel, Jerzy; Kuchna, Izabela; Nowicki, Krzysztof; Imaki, Humi; Wegiel, Jarek; Ma, Shuang Yong; Azmitia, Efrain C.; Banerjee, Probal; Flory, Michael; Cohen, Ira L.; London, Eric; Brown, W. Ted; Hare, Carolyn Komich; Wisniewski, Thomas
2014-01-01
Individuals with autism demonstrate atypical gaze, impairments in smooth pursuit, altered movement perception and deficits in facial perception. The olivofloccular neuronal circuit is a major contributor to eye movement control. This study of the cerebellum in 12 autistic and 10 control subjects revealed dysplastic changes in the flocculus of eight autistic (67%) and two control (20%) subjects. Defects of the oculomotor system, including avoidance of eye contact and poor or no eye contact, were reported in 88% of autistic subjects with postmortem-detected floccular dysplasia. Focal disorganization of the flocculus cytoarchitecture with deficit, altered morphology, and spatial disorientation of Purkinje cells (PCs); deficit and abnormalities of granule, basket, stellate and unipolar brush cells; and structural defects and abnormal orientation of Bergmann glia are indicators of profound disruption of flocculus circuitry in a dysplastic area. The average volume of PCs was 26% less in the dysplastic region than in the unaffected region of the flocculus (p<0.01) in autistic subjects. Moreover, the average volume of PCs in the entire cerebellum was 25% less in the autistic subjects than in the control subjects (p<0.001). Findings from this study and a parallel study of the inferior olive (IO) suggest that focal floccular dysplasia combined with IO neurons and PC developmental defects may contribute to oculomotor system dysfunction and atypical gaze in autistic subjects. PMID:23558308
Li, Ruixi; Sun, Ruobai; Hicks, Glenn R; Raikhel, Natasha V
2015-01-06
The vacuole is the most prominent compartment in plant cells and is important for ion and protein storage. In our effort to search for key regulators in the plant vacuole sorting pathway, ribosomal large subunit 4 (rpl4d) was identified as a translational mutant defective in both vacuole trafficking and normal development. Polysome profiling of the rpl4d mutant showed reduction in polysome-bound mRNA compared with wild-type, but no significant change in the general mRNA distribution pattern. Ribsomal profiling data indicated that genes in the lipid metabolism pathways were translationally down-regulated in the rpl4d mutant. Live imaging studies by Nile red staining suggested that both polar and nonpolar lipid accumulation was reduced in meristem tissues of rpl4d mutants. Pharmacological evidence showed that sterol and sphingolipid biosynthetic inhibitors can phenocopy the defects of the rpl4d mutant, including an altered vacuole trafficking pattern. Genetic evidence from lipid biosynthetic mutants indicates that alteration in the metabolism of either sterol or sphingolipid biosynthesis resulted in vacuole trafficking defects, similar to the rpl4d mutant. Tissue-specific complementation with key enzymes from lipid biosynthesis pathways can partially rescue both vacuole trafficking and auxin-related developmental defects in the rpl4d mutant. These results indicate that lipid metabolism modulates auxin-mediated tissue differentiation and endomembrane trafficking pathways downstream of ribosomal protein function.
Inhibition of the 3-hydroxy-3-methyl-glutaryl-CoA reductase induces orofacial defects in zebrafish.
Signore, Iskra A; Jerez, Carolina; Figueroa, Diego; Suazo, José; Marcelain, Katherine; Cerda, Oscar; Colombo Flores, Alicia
2016-10-01
Orofacial clefts (OFCs) are common birth defects, which include a range of disorders with a complex etiology affecting formation of craniofacial structures. Some forms of syndromic OFCs are produced by defects in the cholesterol pathway. The principal enzyme of the cholesterol pathway is the 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGCR). Our aim is to study whether defects of HMGCR function would produce orofacial malformation similar to those found in disorders of cholesterol synthesis. We used zebrafish hmgcrb mutants and HMGCR inhibition assay using atorvastatin during early and late stages of orofacial morphogenesis in zebrafish. To describe craniofacial phenotypes, we stained cartilage and bone and performed in situ hybridization using known craniofacial markers. Also, we visualized neural crest cell migration in a transgenic fish. Our results showed that mutants displayed loss of cartilage and diminished orofacial outgrowth, and in some cases palatal cleft. Late treatments with statin show a similar phenotype. Affected-siblings displayed a moderate phenotype, whereas early-treated embryos had a minor cleft. We found reduced expression of the downstream component of Sonic Hedgehog-signaling gli1 in ventral brain, oral ectoderm, and pharyngeal endoderm in mutants and in late atorvastatin-treated embryos. Our results suggest that HMGCR loss-of-function primarily affects postmigratory cranial neural crest cells through abnormal Sonic Hedgehog signaling, probably induced by reduction in metabolites of the cholesterol pathway. Malformation severity correlates with the grade of HMGCR inhibition, developmental stage of its disruption, and probably with availability of maternal lipids. Together, our results might help to understand the spectrum of orofacial phenotypes found in cholesterol synthesis disorders. Birth Defects Research (Part A) 106:814-830, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Dental enamel defects in Italian children with cystic fibrosis: an observational study.
Ferrazzano, G F; Sangianantoni, G; Cantile, T; Amato, I; Orlando, S; Ingenito, A
2012-03-01
The relationship between cystic fibrosis (CF) and caries experience has already been explored, but relatively little information is available on dental enamel defects prevalence among children affected by cystic fibrosis. The aim of this study was to investigate this issue in deciduous and permanent teeth of children with CF resident in southern Italy. This cross sectional observational study was undertaken between October 2009 and March 2010. 88 CF patients and 101 healthy age-matched participated in this study. The prevalence of dental enamel defects was calculated using a modified Developmental Defects of Enamel (DDE) index. The comparison of dental enamel defects prevalence among groups was carried out using regression binary logistic analysis. In the CF subjects there was a higher prevalence (56%) of enamel defects in comparison to the healthy group (22%). The most prevalent enamel defect was hypoplasia with loss of enamel (23% of CF patients vs 1 1/2% of control group) in permanent teeth. This study confirms that children with cystic fibrosis are at increased risk of developing hypoplastic defects on their permanent teeth.
Seifi, M; Walter, M A
2018-06-01
Axenfeld-Rieger syndrome (ARS) is a clinically and genetically heterogeneous group of developmental disorders affecting primarily the anterior segment of the eye, often leading to secondary glaucoma. Patients with ARS may also present with systemic changes, including dental defects, mild craniofacial dysmorphism, and umbilical anomalies. ARS is inherited in an autosomal-dominant fashion; the underlying defect in 40% of patients is mutations in PITX2 or FOXC1. Here, an overview of the clinical spectrum of ARS is provided. As well, the known underlying genetic defects, clinical diagnostic possibilities, genetic counseling and treatments of ARS are discussed in detail. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
EXPERIMENTAL MODELS FOR THE STUDY OF ORAL CLEFTS
Toxicology and teratology studies routinely utilize animal models to determine the potential for chemical and physical agents to produce reproductive and developmental toxicity, including birth defects such as cleft palate. The standardized teratology screen typically tests co...
Presentations: Adverse Outcome Pathways for Abnormal Phenotypes
Birth defects affect many infants and the etiology for most are unknown. Although environmental factors are known to influence pregnancy outcome, thousands of chemicals, present in the environment, are untested for developmental toxicity potential. Application of computational p...
Zebrafish numb and numblike are involved in primitive erythrocyte differentiation.
Bresciani, Erica; Confalonieri, Stefano; Cermenati, Solei; Cimbro, Simona; Foglia, Efrem; Beltrame, Monica; Di Fiore, Pier Paolo; Cotelli, Franco
2010-12-13
Notch signaling is an evolutionarily conserved regulatory circuitry implicated in cell fate determination in various developmental processes including hematopoietic stem cell self-renewal and differentiation of blood lineages. Known endogenous inhibitors of Notch activity are Numb-Nb and Numblike-Nbl, which play partially redundant functions in specifying and maintaining neuronal differentiation. Nb and Nbl are expressed in most tissues including embryonic and adult hematopoietic tissues in mice and humans, suggesting possible roles for these proteins in hematopoiesis. We employed zebrafish to investigate the possible functional role of Numb and Numblike during hematopoiesis, as this system allows a detailed analysis even in embryos with severe defects that would be lethal in other organisms. Here we describe that nb/nbl knockdown results in severe reduction or absence of embryonic erythrocytes in zebrafish. Interestingly, nb/nbl knocked-down embryos present severe downregulation of the erythroid transcription factor gata1. This results in erythroblasts which fail to mature and undergo apoptosis. Our results indicate that Notch activity is increased in embryos injected with nb/nbl morpholino, and we show that inhibition of Notch activation can partially rescue the hematopoietic phenotype. Our results provide the first in vivo evidence of an involvement of Numb and Numblike in zebrafish erythroid differentiation during primitive hematopoiesis. Furthermore, we found that, at least in part, the nb/nbl morphant phenotype is due to enhanced Notch activation within hematopoietic districts, which in turn results in primitive erythroid differentiation defects.
Sandoval, Imelda T; Manos, Elizabeth J; Van Wagoner, Ryan M; Delacruz, Richard Glenn C; Edes, Kornelia; Winge, Dennis R; Ireland, Chris M; Jones, David A
2013-06-20
A major hurdle in using complex systems for drug screening is the difficulty of defining the mechanistic targets of small molecules. The zebrafish provides an excellent model system for juxtaposing developmental phenotypes with mechanism discovery using organism genetics. We carried out a phenotype-based screen of uncharacterized small molecules in zebrafish that produced a variety of chemically induced phenotypes with potential genetic parallels. Specifically, kalihinol F caused an undulated notochord, defects in pigment formation, hematopoiesis, and neural development. These phenotypes were strikingly similar to the zebrafish mutant, calamity, an established model of copper deficiency. Further studies into the mechanism of action of kalihinol F revealed a copper-chelating activity. Our data support this mechanism of action for kalihinol F and the utility of zebrafish as an effective system for identifying therapeutic and target pathways. Copyright © 2013 Elsevier Ltd. All rights reserved.
Anand, Deepti; Agrawal, Smriti A; Slavotinek, Anne; Lachke, Salil A
2018-04-01
Mutations in the transcription factor genes FOXE3, HSF4, MAF, and PITX3 cause congenital lens defects including cataracts that may be accompanied by defects in other components of the eye or in nonocular tissues. We comprehensively describe here all the variants in FOXE3, HSF4, MAF, and PITX3 genes linked to human developmental defects. A total of 52 variants for FOXE3, 18 variants for HSF4, 20 variants for MAF, and 19 variants for PITX3 identified so far in isolated cases or within families are documented. This effort reveals FOXE3, HSF4, MAF, and PITX3 to have 33, 16, 18, and 7 unique causal mutations, respectively. Loss-of-function mutant animals for these genes have served to model the pathobiology of the associated human defects, and we discuss the currently known molecular function of these genes, particularly with emphasis on their role in ocular development. Finally, we make the detailed FOXE3, HSF4, MAF, and PITX3 variant information available in the Leiden Online Variation Database (LOVD) platform at https://www.LOVD.nl/FOXE3, https://www.LOVD.nl/HSF4, https://www.LOVD.nl/MAF, and https://www.LOVD.nl/PITX3. Thus, this article informs on key variants in transcription factor genes linked to cataract, aphakia, corneal opacity, glaucoma, microcornea, microphthalmia, anterior segment mesenchymal dysgenesis, and Ayme-Gripp syndrome, and facilitates their access through Web-based databases. © 2018 Wiley Periodicals, Inc.
Eibach, Sebastian; Moes, Greg; Hou, Yong Jin; Zovickian, John; Pang, Dachling
2017-10-01
Primary and secondary neurulation are the two known processes that form the central neuraxis of vertebrates. Human phenotypes of neural tube defects (NTDs) mostly fall into two corresponding categories consistent with the two types of developmental sequence: primary NTD features an open skin defect, an exposed, unclosed neural plate (hence an open neural tube defect, or ONTD), and an unformed or poorly formed secondary neural tube, and secondary NTD with no skin abnormality (hence a closed NTD) and a malformed conus caudal to a well-developed primary neural tube. We encountered three cases of a previously unrecorded form of spinal dysraphism in which the primary and secondary neural tubes are individually formed but are physically separated far apart and functionally disconnected from each other. One patient was operated on, in whom both the lumbosacral spinal cord from primary neurulation and the conus from secondary neurulation are each anatomically complete and endowed with functioning segmental motor roots tested by intraoperative triggered electromyography and direct spinal cord stimulation. The remarkable feature is that the two neural tubes are unjoined except by a functionally inert, probably non-neural band. The developmental error of this peculiar malformation probably occurs during the critical transition between the end of primary and the beginning of secondary neurulation, in a stage aptly called junctional neurulation. We describe the current knowledge concerning junctional neurulation and speculate on the embryogenesis of this new class of spinal dysraphism, which we call junctional neural tube defect.
MicroRNA-20a is essential for normal embryogenesis by targeting vsx1 mRNA in fish
Sun, Lei; Li, Heng; Xu, Xiaofeng; Xiao, Guanxiu; Luo, Chen
2015-01-01
MicroRNAs are major post-transcriptional regulators of gene expression and have essential roles in diverse developmental processes. In vertebrates, some regulatory genes play different roles at different developmental stages. These genes are initially transcribed in a wide embryonic region but restricted within distinct cell types at subsequent stages during development. Therefore, post-transcriptional regulation is required for the transition from one developmental stage to the next and the establishment of different cell identities. However, the regulation of many multiple functional genes at post-transcription level during development remains unknown. Here we show that miR-20a can target the mRNA of vsx1, a multiple functional gene, at the 3′-UTR and inhibit protein expression in both goldfish and zebrafish. The expression of miR-20a is initiated ubiquitously at late gastrula stage and exhibits a tissue-specific pattern in the developing retina. Inhibition of vsx1 3′-UTR mediated protein expression occurs when and where miR-20a is expressed. Decoying miR-20a resulted in severely impaired head, eye and trunk formation in association with excessive generation of vsx1 marked neurons in the spinal cord and defects of somites in the mesoderm region. These results demonstrate that miR-20a is essential for normal embryogenesis by restricting Vsx1 expression in goldfish and zebrafish, and that post-transcriptional regulation is an essential mechanism for Vsx1 playing different roles in diverse developmental processes. PMID:25833418
Püttmann, Lucia; Stehr, Henning; Garshasbi, Masoud; Hu, Hao; Kahrizi, Kimia; Lipkowitz, Bettina; Jamali, Payman; Tzschach, Andreas; Najmabadi, Hossein; Ropers, Hans-Hilger; Musante, Luciana; Kuss, Andreas W
2013-08-01
Succinic semialdehyde dehydrogenase (SSADH) deficiency is a disorder of the catabolism of the neurotransmitter gamma-aminobutyric acid (GABA) with a very variable clinical phenotype ranging from mild intellectual disability to severe neurological defects. We report here on a large Iranian family with four affected patients presenting with severe intellectual disability, developmental delay and generalized tonic-clonic seizures. Molecular genetic analysis revealed a missense mutation c.901A>G (p.K301E, RefSeq number NM_001080) in ALDH5A1 co-segregating with the disease in the family. The missense mutation affects an amino acid residue that is highly conserved across the animal kingdom. Protein modeling showed that p.K301E most likely leads to a loss of NAD(+) binding and a predicted decrease in the free energy by 6.67 kcal/mol furthermore suggests a severe destabilization of the protein. In line with these in silico observations, no SSADH enzyme activity could be detected in patient lymphoblasts. Copyright © 2013 Wiley Periodicals, Inc.
Nagy, Rebecca; Wang, Heng; Albrecht, Beate; Wieczorek, Dagmar; Gillessen-Kaesbach, Gabriele; Haan, Eric; Meinecke, Peter; de la Chapelle, Albert; Westman, Judith A.
2011-01-01
Microcephalic osteodysplastic primordial dwarfism type I (MOPD I) is a rare autosomal recessive developmental disorder characterized by extreme intrauterine growth retardation, severe microcephaly, central nervous system abnormalities, dysmorphic facial features, skin abnormalities, skeletal changes, limb deformations, and early death. Recently, mutations in the RNU4ATAC gene, which encodes U4atac, a small nuclear RNA that is a crucial component of the minor spliceosome, were found to cause MOPD I. MOPD I is the first disease known to be associated with a defect in small nuclear RNAs. We describe here the clinical and molecular data for 17 cases of MOPD I, including 15 previously unreported cases, all carrying biallelic mutations in the RNU4ATAC gene. PMID:21815888
Computational Modeling and Simulation of Genital Tubercle ...
Hypospadias is a developmental defect of urethral tube closure that has a complex etiology. Here, we describe a multicellular agent-based model of genital tubercle development that simulates urethrogenesis from the urethral plate stage to urethral tube closure in differentiating male embryos. The model, constructed in CompuCell3D, implemented spatially dynamic signals from SHH, FGF10, and androgen signaling pathways. These signals modulated stochastic cell behaviors, such as differential adhesion, cell motility, proliferation, and apoptosis. Urethral tube closure was an emergent property of the model that was quantitatively dependent on SHH and FGF10 induced effects on mesenchymal proliferation and endodermal apoptosis, ultimately linked to androgen signaling. In the absence of androgenization, simulated genital tubercle development defaulted to the female condition. Intermediate phenotypes associated with partial androgen deficiency resulted in incomplete closure. Using this computer model, complex relationships between urethral tube closure defects and disruption of underlying signaling pathways could be probed theoretically in multiplex disturbance scenarios and modeled into probabilistic predictions for individual risk for hypospadias and potentially other developmental defects of the male genital tubercle. We identify the minimal molecular network that determines the outcome of male genital tubercle development in mice.
Sociability and synapse subtype-specific defects in mice lacking SRPX2, a language-associated gene
Cong, Qifei; Palmer, Christian R.
2018-01-01
The FoxP2 transcription factor and its target genes have been implicated in developmental brain diseases with a prominent language component, such as developmental verbal dyspraxia and specific language impairment. How FoxP2 affects neural circuitry development remains poorly understood. The sushi domain protein SRPX2 is a target of FoxP2, and mutations in SRPX2 are associated with language defects in humans. We have previously shown that SRPX2 is a synaptogenic protein that increases excitatory synapse density. Here we provide the first characterization of mice lacking the SRPX2 gene, and show that these mice exhibit defects in both neural circuitry and communication and social behaviors. Specifically, we show that mice lacking SRPX2 show a specific reduction in excitatory VGlut2 synapses in the cerebral cortex, while VGlut1 and inhibitory synapses were largely unaffected. SRPX2 KO mice also exhibit an abnormal ultrasonic vocalization ontogenetic profile in neonatal pups, and reduced preference for social novelty. These data demonstrate a functional role for SRPX2 during brain development, and further implicate FoxP2 and its targets in regulating the development of vocalization and social circuits. PMID:29920554
Muralidharan, Pooja; Connors, Craig T; Mohammed, Arooj S; Sarmah, Swapnalee; Marrs, Kathleen; Marrs, James A; Chism, Grady W
2017-09-01
Prenatal ethanol exposure causes the most frequent preventable birth disorder, fetal alcohol spectrum disorder (FASD). The effect of turmeric extracts in rescuing an ethanol-induced developmental defect using zebrafish as a model was determined. Ethanol-induced oxidative stress is one of the major mechanisms underlying FASD. We hypothesize that antioxidant inducing properties of turmeric may alleviate ethanol-induced defects. Curcuminoid content of the turmeric powder extract (5 mg/mL turmeric in ethanol) was determined by UPLC and found to contain Curcumin (124.1 ± 0.2 μg/mL), Desmethoxycurcumin (43.4 ± 0.1 μg/mL), and Bisdemethoxycurcumin (36.6 ± 0.1 μg/mL). Zebrafish embryos were treated with 100 mM (0.6% v/v) ethanol during gastrulation through organogenesis (2 to 48 h postfertilization (hpf)) and supplemented with turmeric extract to obtain total curcuminoid concentrations of 0, 1.16, 1.72, or 2.32 μM. Turmeric supplementation showed significant rescue of the body length at 72 hpf compared to ethanol-treated embryos. The mechanism underlying the rescue remains to be determined. © 2017 Institute of Food Technologists®.
Drosophila Lin-52 Acts in Opposition to Repressive Components of the Myb-MuvB/dREAM Complex
Lewis, Peter W.; Sahoo, Debashis; Geng, Cuiyun; Bell, Maren
2012-01-01
The Drosophila melanogaster Myb-MuvB/dREAM complex (MMB/dREAM) participates in both the activation and repression of developmentally regulated genes and origins of DNA replication. Mutants in MMB subunits exhibit diverse phenotypes, including lethality, eye defects, reduced fecundity, and sterility. Here, we used P-element excision to generate mutations in lin-52, which encodes the smallest subunit of the MMB/dREAM complex. lin-52 is required for viability, as null mutants die prior to pupariation. The generation of somatic and germ line mutant clones indicates that lin-52 is required for adult eye development and for early embryogenesis via maternal effects. Interestingly, the maternal-effect embryonic lethality, larval lethality, and adult eye defects could be suppressed by mutations in other subunits of the MMB/dREAM complex. These results suggest that a partial MMB/dREAM complex is responsible for the lethality and eye defects of lin-52 mutants. Furthermore, these findings support a model in which the Lin-52 and Myb proteins counteract the repressive activities of the other members of the MMB/dREAM complex at specific genomic loci in a developmentally controlled manner. PMID:22688510
Distinct cerebellar foliation anomalies in a CHD7 haploinsufficient mouse model of CHARGE syndrome
Whittaker, Danielle E.; Kasah, Sahrunizam; Donovan, Alex P. A.; Ellegood, Jacob; Riegman, Kimberley L. H.; Volk, Holger A.; McGonnell, Imelda; Lerch, Jason P.
2017-01-01
Mutations in the gene encoding the ATP dependent chromatin‐remodeling factor, CHD7 are the major cause of CHARGE (Coloboma, Heart defects, Atresia of the choanae, Retarded growth and development, Genital‐urinary anomalies, and Ear defects) syndrome. Neurodevelopmental defects and a range of neurological signs have been identified in individuals with CHARGE syndrome, including developmental delay, lack of coordination, intellectual disability, and autistic traits. We previously identified cerebellar vermis hypoplasia and abnormal cerebellar foliation in individuals with CHARGE syndrome. Here, we report mild cerebellar hypoplasia and distinct cerebellar foliation anomalies in a Chd7 haploinsufficient mouse model. We describe specific alterations in the precise spatio‐temporal sequence of fissure formation during perinatal cerebellar development responsible for these foliation anomalies. The altered cerebellar foliation pattern in Chd7 haploinsufficient mice show some similarities to those reported in mice with altered Engrailed, Fgf8 or Zic1 gene expression and we propose that mutations or polymorphisms in these genes may modify the cerebellar phenotype in CHARGE syndrome. Our findings in a mouse model of CHARGE syndrome indicate that a careful analysis of cerebellar foliation may be warranted in patients with CHARGE syndrome, particularly in patients with cerebellar hypoplasia and developmental delay. PMID:29168327
Impact of Co-Occurring Birth Defects on the Timing of Newborn Hearing Screening and Diagnosis
Chapman, Derek A.; Stampfel, Caroline C.; Bodurtha, Joann N.; Dodson, Kelley M.; Pandya, Arti; Lynch, Kathleen B.; Kirby, Russell S.
2016-01-01
Purpose Early detection of hearing loss in all newborns and timely intervention are critical to children's cognitive, verbal, behavioral, and social development. The initiation of appropriate early intervention services before 6 months of age can prevent or reduce negative developmental consequences. The purpose of this study was to assess, using large, population-based registries, the effect of co-occurring birth defects (CBDs) on the timing and overall rate of hearing screening and diagnosis. Method The authors linked statewide data from newborn hearing screenings, a birth defects registry, and birth certificates to assess the timeliness of newborn hearing screening and diagnosis of hearing loss (HL) for infants with and without CBDs in 485 children with confirmed HL. Results Nearly one third (31.5%) of children with HL had 1 or more CBDs. The presence of CBDs prolonged the time of the initial infant hearing screening, which contributed to further delays in the subsequent diagnosis of HL. Conclusions Better coordination of HL assessment into treatment plans for children with CBDs may enable earlier diagnosis of HL and provide opportunities for intervention that will affect long-term developmental outcomes for these children. PMID:21940980
[Symbrachydactyly--a roentgenographic and clinical study of 126 cases].
Senrui, H
1984-07-01
One hundred and twenty-six cases of symbrachydactyly were analyzed roentgenographically and clinically. This curious anomaly of the hand is sporadic and of unknown etiology. It is predominantly one-sided, either isolated or combined with ipsilateral pectoral muscle defect (fifty-one cases). On X-ray pictures, the skeletal abnormalities of the hands ranged from mild involvement featured with hypoplastic or aplastic middle phalanges to the most severe involvement in which all the phalanges were missing, providing a continuous spectrum. Even in the mildly affected hands hypoplasia involves all the phalanges and metacarpals, most severely in the middle phanges followed by distal, proximal phalanges and metacarpals in turn. The forearms and arms are less affected than the hands. The tendency is observed in the severely affected hands. In the most severely affected hand all the digits are missing, but there exist several finger-buds which carry often nail rudiments. Synostosis is seen in the remaining hypoplastic metacarpals often and in carpals infrequently. Although remarkable shortening and curving forearm bones are observed often, the humeral involvement remains mild. Abnormalities of muscles and tendons are frequently observed in the hand and forearm. The anomaly is classified roentgenographically into three types: Type I (brachydactyly type) which is featured with fingers having three or two phalanges (fifty-four hands), Type II (partial ectrodactyly type) in which one to four digits have only one phalanx or none(thirty-nine hands), and Type III(total ectrodactyly type) in which all the digits have only one phalanx or none (thirty-five hands). The symbrachydactyly seems to be caused by a extensive defect in an undifferentiated mesenchyme of the arm bud at about developmental stage 16, which may later cause a failure of separation of skeletal and muscular tissues of the hand and forearm or an arrest in their development.
Chin, Alvin J.; Saint-Jeannet, Jean-Pierre; Lo, Cecilia W.
2012-01-01
To illustrate the impact developmental biology and genetics have already had on the clinical management of the million infants born worldwide each year with CHD, we have chosen three stories which have had particular relevance for pediatric cardiologists, cardiothoracic surgeons, cardiac anesthesiologists, and cardiac nurses. First, we show how Margaret Kirby’s finding of the unexpected contribution of an ectodermal cell population – the cranial neural crest – to the aortic arch arteries and arterial pole of the embryonic avian heart provided a key impetus to the field of cardiovascular patterning. Recognition that a majority of patients affected by the neurocristopathy DiGeorge syndrome have a chromosome 22q11 deletion, have also spurred tremendous efforts to characterize the molecular mechanisms contributing to this pathology, assigning a major role to the transcription factor Tbx1. Second, synthesizing the work of the last two decades by many laboratories on a wide gamut of metazoans (invertebrates, tunicates, agnathans, teleosts, lungfish, amphibians, and amniotes), we review the >20 major modifications and additions to the ancient circulatory arrangement composed solely of a unicameral (one-chambered), contractile myocardial tube and a short proximal aorta. Two changes will be discussed in detail – the interposition of a second cardiac chamber in the circulation and the septation of the cardiac ventricle. By comparing the developmental genetic data of several model organisms, we can better understand the origin of the various components of the multicameral (multi-chambered) heart seen in humans. Third, Martina Brueckner’s discovery that a faulty axonemal dynein was responsible for the phenotype of the iv/iv mouse (the first mammalian model of human heterotaxy) focused attention on the biology of cilia. We discuss how even the care of the complex cardiac and non-cardiac anomalies seen in heterotaxy syndrome, which have long seemed impervious to advancements in surgical and medical intensive care (Jacobs et al., 2011), may yet yield to strategies grounded in a better understanding of the cilium. The fact that all cardiac defects seen in patients with full-blown heterotaxy can also be seen in patients without obvious laterality defects hints at important roles for ciliary function not only in left-right axis specification but also in cardiovascular morphogenesis. These three developmental biology stories illustrate how the remaining unexplained mortality and morbidity of congenital heart disease can be solved. PMID:22640994
Gatto, Cheryl L.; Broadie, Kendal
2011-01-01
Fragile X syndrome (FXS), caused by loss of fragile X mental retardation 1 (FMR1) gene function, is the most common heritable cause of intellectual disability and autism spectrum disorders. The FMR1 product (FMRP) is an RNA-binding protein best established to function in activity-dependent modulation of synaptic connections. In the Drosophila FXS disease model, loss of functionally-conserved dFMRP causes synaptic overgrowth and overelaboration in pigment dispersing factor (PDF) peptidergic neurons in the adult brain. Here, we identify a very different component of PDF neuron misregulation in dfmr1 mutants: the aberrant retention of normally developmentally-transient PDF tritocerebral (PDF-TRI) neurons. In wild-type animals, PDF-TRI neurons in the central brain undergo programmed cell death and complete, processive clearance within days of eclosion. In the absence of dFMRP, a defective apoptotic program leads to constitutive maintenance of these peptidergic neurons. We tested whether this apoptotic defect is circuit-specific by examining crustacean cardioactive peptide (CCAP) and bursicon circuits, which are similarly developmentally-transient and normally eliminated immediately post-eclosion. In dfmr1 null mutants, CCAP/bursicon neurons also exhibit significantly delayed clearance dynamics, but are subsequently eliminated from the nervous system, in contrast to the fully persistent PDF-TRI neurons. Thus, the requirement of dFMRP for the retention of transitory peptidergic neurons shows evident circuit specificity. The novel defect of impaired apoptosis and aberrant neuron persistence in the Drosophila FXS model suggests an entirely new level of “pruning” dysfunction may contribute to the FXS disease state. PMID:21596027
A-to-I RNA editing promotes developmental stage–specific gene and lncRNA expression
Goldstein, Boaz; Agranat-Tamir, Lily; Light, Dean; Ben-Naim Zgayer, Orna; Fishman, Alla; Lamm, Ayelet T.
2017-01-01
A-to-I RNA editing is a conserved widespread phenomenon in which adenosine (A) is converted to inosine (I) by adenosine deaminases (ADARs) in double-stranded RNA regions, mainly noncoding. Mutations in ADAR enzymes in Caenorhabditis elegans cause defects in normal development but are not lethal as in human and mouse. Previous studies in C. elegans indicated competition between RNA interference (RNAi) and RNA editing mechanisms, based on the observation that worms that lack both mechanisms do not exhibit defects, in contrast to the developmental defects observed when only RNA editing is absent. To study the effects of RNA editing on gene expression and function, we established a novel screen that enabled us to identify thousands of RNA editing sites in nonrepetitive regions in the genome. These include dozens of genes that are edited at their 3′ UTR region. We found that these genes are mainly germline and neuronal genes, and that they are down-regulated in the absence of ADAR enzymes. Moreover, we discovered that almost half of these genes are edited in a developmental-specific manner, indicating that RNA editing is a highly regulated process. We found that many pseudogenes and other lncRNAs are also extensively down-regulated in the absence of ADARs in the embryo but not in the fourth larval (L4) stage. This down-regulation is not observed upon additional knockout of RNAi. Furthermore, levels of siRNAs aligned to pseudogenes in ADAR mutants are enhanced. Taken together, our results suggest a role for RNA editing in normal growth and development by regulating silencing via RNAi. PMID:28031250
Fisher, M C; Zeisel, S H; Mar, M H; Sadler, T W
2001-08-01
Choline is an essential nutrient in methylation, acetylcholine and phospholipid biosynthesis, and in cell signaling. The demand by an embryo or fetus for choline may place a pregnant woman and, subsequently, the developing conceptus at risk for choline deficiency. To determine whether a disruption in choline uptake and metabolism results in developmental abnormalities, early somite staged mouse embryos were exposed in vitro to either an inhibitor of choline uptake and metabolism, 2-dimethylaminoethanol (DMAE), or an inhibitor of phosphatidylcholine synthesis, 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine (ET-18-OCH(3)). Cell death following inhibitor exposure was investigated with LysoTracker Red and histology. Embryos exposed to 250-750 microM DMAE for 26 hr developed craniofacial hypoplasia and open neural tube defects in the forebrain, midbrain, and hindbrain regions. Embryos exposed to 125-275 microM ET-18-OCH(3) exhibited similar defects or expansion of the brain vesicles. ET-18-OCH(3)-affected embryos also had a distended neural tube at the posterior neuropore. Embryonic growth was reduced in embryos treated with either DMAE (375, 500, and 750 microM) or ET-18-OCH(3) (200 and 275 microM). Whole mount staining with LysoTracker Red and histological sections showed increased areas of cell death in embryos treated with 275 microM ET-18-OCH(3) for 6 hr, but there was no evidence of cell death in DMAE-exposed embryos. Inhibition of choline uptake and metabolism during neurulation results in growth retardation and developmental defects that affect the neural tube and face. Copyright 2001 Wiley-Liss, Inc.
Upadia, Jariya; Gonzales, Patrick R; Robin, Nathaniel H
2018-04-16
The NR2F2 gene plays an important role in angiogenesis and heart development. Moreover, this gene is involved in organogenesis in many other organs in mouse models. Variants in this gene have been reported in a number of patients with nonsyndromic atrioventricular septal defect, and in one patient with congenital heart defect and dysmorphic features. Here we report an 11-month-old Caucasian male with global developmental delay, dysmorphic features, coarctation of the aorta, and ventricular septal defect. He was later found to have a pathogenic mutation in the NR2F2 gene by whole exome sequencing. This is the second instance in which an NR2F2 mutation has been identified in a child with a congenital heart defect and other anomalies. This case suggests that some variants in NR2F2 may cause syndromic forms of congenital heart defect. © 2018 Wiley Periodicals, Inc.
Developmental and perinatal brain diseases.
Adle-Biassette, Homa; Golden, Jeffery A; Harding, Brian
2017-01-01
This chapter briefly describes the normal development of the nervous system, the neuropathology and pathophysiology of acquired and secondary disorders affecting the embryo, fetus, and child. They include CNS manifestations of chromosomal change; forebrain patterning defects; disorders of the brain size; cell migration and specification disorders; cerebellum, hindbrain and spinal patterning defects; hydrocephalus; secondary malformations and destructive pathologies; vascular malformations; arachnoid cysts and infectious diseases. The distinction between malformations and disruptions is important for pathogenesis and genetic counseling. Copyright © 2017 Elsevier B.V. All rights reserved.
Computational Modeling and Simulation of Developmental ...
SYNOPSIS: The question of how tissues and organs are shaped during development is crucial for understanding human birth defects. Data from high-throughput screening assays on human stem cells may be utilized predict developmental toxicity with reasonable accuracy. Other types of models are necessary, however, for mechanism-specific analysis because embryogenesis requires precise timing and control. Agent-based modeling and simulation (ABMS) is an approach to virtually reconstruct these dynamics, cell-by-cell and interaction-by-interaction. Using ABMS, HTS lesions from ToxCast can be integrated with patterning systems heuristically to propagate key events This presentation to FDA-CFSAN will update progress on the applications of in silico modeling tools and approaches for assessing developmental toxicity.
Patterning of leaf vein networks by convergent auxin transport pathways.
Sawchuk, Megan G; Edgar, Alexander; Scarpella, Enrico
2013-01-01
The formation of leaf vein patterns has fascinated biologists for centuries. Transport of the plant signal auxin has long been implicated in vein patterning, but molecular details have remained unclear. Varied evidence suggests a central role for the plasma-membrane (PM)-localized PIN-FORMED1 (PIN1) intercellular auxin transporter of Arabidopsis thaliana in auxin-transport-dependent vein patterning. However, in contrast to the severe vein-pattern defects induced by auxin transport inhibitors, pin1 mutant leaves have only mild vein-pattern defects. These defects have been interpreted as evidence of redundancy between PIN1 and the other four PM-localized PIN proteins in vein patterning, redundancy that underlies many developmental processes. By contrast, we show here that vein patterning in the Arabidopsis leaf is controlled by two distinct and convergent auxin-transport pathways: intercellular auxin transport mediated by PM-localized PIN1 and intracellular auxin transport mediated by the evolutionarily older, endoplasmic-reticulum-localized PIN6, PIN8, and PIN5. PIN6 and PIN8 are expressed, as PIN1 and PIN5, at sites of vein formation. pin6 synthetically enhances pin1 vein-pattern defects, and pin8 quantitatively enhances pin1pin6 vein-pattern defects. Function of PIN6 is necessary, redundantly with that of PIN8, and sufficient to control auxin response levels, PIN1 expression, and vein network formation; and the vein pattern defects induced by ectopic PIN6 expression are mimicked by ectopic PIN8 expression. Finally, vein patterning functions of PIN6 and PIN8 are antagonized by PIN5 function. Our data define a new level of control of vein patterning, one with repercussions on other patterning processes in the plant, and suggest a mechanism to select cell files specialized for vascular function that predates evolution of PM-localized PIN proteins.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trego, Kelly S.; Chernikova, Sophia B.; Davalos, Albert R.
XPG is a structure-specific endonuclease required for nucleotide excision repair (NER). XPG incision defects result in the cancer-prone syndrome xeroderma pigmentosum, whereas truncating mutations of XPG cause the severe postnatal progeroid developmental disorder Cockayne syndrome. We show that XPG interacts directly with WRN protein, which is defective in the premature aging disorder Werner syndrome, and that the two proteins undergo similar sub-nuclear redistribution in S-phase and co-localize in nuclear foci. The co-localization was observed in mid- to late-S-phase, when WRN moves from nucleoli to nuclear foci that have been shown to contain protein markers of both stalled replication forks andmore » telomeric proteins. We mapped the interaction between XPG and WRN to the C-terminal domains of each and show that interaction with the C-terminal domain of XPG strongly stimulates WRN helicase activity. WRN also possesses a competing DNA single-strand annealing activity that, combined with unwinding, has been shown to coordinate regression of model replication forks to form Holliday junction/chicken foot intermediate structures. We tested whether XPG stimulated WRN annealing activity and found that XPG itself has intrinsic strand annealing activity that requires the unstructured R- and C-terminal domains, but not the conserved catalytic core or endonuclease activity. Annealing by XPG is cooperative, rather than additive, with WRN annealing. Taken together, our results suggest a novel function for XPG in S-phase that is at least in part carried out coordinately with WRN, and which may contribute to the severity of the phenotypes that occur upon loss of XPG.« less
Baxter, Sally L; Allard, Denise E; Crowl, Christopher; Sherwood, Nina Tang
2014-08-01
Autosomal-dominant hereditary spastic paraplegia (AD-HSP) is a crippling neurodegenerative disease for which effective treatment or cure remains unknown. Victims experience progressive mobility loss due to degeneration of the longest axons in the spinal cord. Over half of AD-HSP cases arise from loss-of-function mutations in spastin, which encodes a microtubule-severing AAA ATPase. In Drosophila models of AD-HSP, larvae lacking Spastin exhibit abnormal motor neuron morphology and function, and most die as pupae. Adult survivors display impaired mobility, reminiscent of the human disease. Here, we show that rearing pupae or adults at reduced temperature (18°C), compared with the standard temperature of 24°C, improves the survival and mobility of adult spastin mutants but leaves wild-type flies unaffected. Flies expressing human spastin with pathogenic mutations are similarly rescued. Additionally, larval cooling partially rescues the larval synaptic phenotype. Cooling thus alleviates known spastin phenotypes for each developmental stage at which it is administered and, notably, is effective even in mature adults. We find further that cold treatment rescues larval synaptic defects in flies with mutations in Flower (a protein with no known relation to Spastin) and mobility defects in flies lacking Kat60-L1, another microtubule-severing protein enriched in the CNS. Together, these data support the hypothesis that the beneficial effects of cold extend beyond specific alleviation of Spastin dysfunction, to at least a subset of cellular and behavioral neuronal defects. Mild hypothermia, a common neuroprotective technique in clinical treatment of acute anoxia, might thus hold additional promise as a therapeutic approach for AD-HSP and, potentially, for other neurodegenerative diseases. © 2014. Published by The Company of Biologists Ltd.
CHARGE association in a child with de novo inv dup (14)(q22{yields}q24.3)
DOE Office of Scientific and Technical Information (OSTI.GOV)
North, K.; Wu, B.L.; Whiteman, D.
1994-09-01
The CHARGE association is an increasingly recognized complex of multiple malformations, that include Coloboma, Heart defect, choanal Atresia, Retardation of mental and somatic development, hypoplastic Genitalia, and Ear abnormalities or deafness. It has been postulated that many of the defects result from abnormalities in the development, migration or interaction of cells of the cephalic neural crest. The majority of cases are sporadic. We report a case of an inverted duplication (14)(q22{yields}q24.3) associated with CHARGE association. The patient was a 4 {1/2}-year-old female and was the product of a normal pregnancy. Family history was unremarkable. The clinical manifestations included the combinationmore » of congenital anomalies (coloboma, ventricular septal defect, severe developmental delay and growth retardation, genital hypoplasia and sensorineural deafness) in association with soft tissue choanal atresia, dysphagia, and minor dysmorphic features (low set ears, upslanting palpebral fissures). High resolution cytogenetic studies revealed that the child has 46,XX,inv dup(14)(q22{yields}q24.3) and parents have normal chromosomes. FISH with a chromosome 14 paint probe confirmed that the duplicated region is entirely derived from chromosome 14. FISH with D22S75 probe for region 22q11.2 detected no deletion for this locus. Several duplications or deletions involving different chromosomes have been reported for patients with conditions resembling CHARGE association. This indicates that CHARGE is possible genetically heterogenous, parallelling the phenotypic heterogeneity of the disorder. Two published cases with unbalanced rearrengements involving 14q22 have some comparable features with our case, which suggests that the locus for a gene causing some of the features of CHARGE association may reside at 14q22 or 14q24.3.« less
Milstone, Zachary J; Lawson, Grace; Trivedi, Chinmay M
2017-12-01
Craniofacial anomalies involve defective pharyngeal arch development and neural crest function. Copy number variation at 1p35, containing histone deacetylase 1 (Hdac1), or 6q21-22, containing Hdac2, are implicated in patients with craniofacial defects, suggesting an important role in guiding neural crest development. However, the roles of Hdac1 and Hdac2 within neural crest cells remain unknown. The neural crest and its derivatives express both Hdac1 and Hdac2 during early murine development. Ablation of Hdac1 and Hdac2 within murine neural crest progenitor cells cause severe hemorrhage, atrophic pharyngeal arches, defective head morphogenesis, and complete embryonic lethality. Embryos lacking Hdac1 and Hdac2 in the neural crest exhibit decreased proliferation and increased apoptosis in both the neural tube and the first pharyngeal arch. Mechanistically, loss of Hdac1 and Hdac2 upregulates cyclin-dependent kinase inhibitors Cdkn1a, Cdkn1b, Cdkn1c, Cdkn2b, Cdkn2c, and Tp53 within the first pharyngeal arch. Our results show that Hdac1 and Hdac2 function redundantly within the neural crest to regulate proliferation and the development of the pharyngeal arches by means of repression of cyclin-dependent kinase inhibitors. Developmental Dynamics 246:1015-1026, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Zhang, Le; Willemse, Joost; Hoskisson, Paul A; van Wezel, Gilles P
2018-05-09
Cell division during the reproductive phase of the Streptomyces life-cycle requires tight coordination between synchronous formation of multiple septa and DNA segregation. One remarkable difference with most other bacterial systems is that cell division in Streptomyces is positively controlled by the recruitment of FtsZ by SsgB. Here we show that deletion of ylmD (SCO2081) or ylmE (SCO2080), which lie in operon with ftsZ in the dcw cluster of actinomycetes, has major consequences for sporulation-specific cell division in Streptomyces coelicolor. Electron and fluorescence microscopy demonstrated that ylmE mutants have a highly aberrant phenotype with defective septum synthesis, and produce very few spores with low viability and high heat sensitivity. FtsZ-ring formation was also highly disturbed in ylmE mutants. Deletion of ylmD had a far less severe effect on sporulation. Interestingly, the additional deletion of ylmD restored sporulation to the ylmE null mutant. YlmD and YlmE are not part of the divisome, but instead localize diffusely in aerial hyphae, with differential intensity throughout the sporogenic part of the hyphae. Taken together, our work reveals a function for YlmD and YlmE in the control of sporulation-specific cell division in S. coelicolor, whereby the presence of YlmD alone results in major developmental defects.
Stephen L. Gans Distinguished Overseas Lecture. The neural crest in pediatric surgery.
Tovar, Juan A
2007-06-01
This review highlights the relevance of the neural crest (NC) as a developmental control mechanism involved in several pediatric surgical conditions and the investigative interest of following some of its known signaling pathways. The participation of the NC in facial clefts, ear defects, branchial fistulae and cysts, heart outflow tract and aortic arch anomalies, pigmentary disorders, abnormal enteric innervation, neural tumors, hemangiomas, and vascular anomalies is briefly reviewed. Then, the literature on clinical and experimental esophageal atresia-tracheoesophageal fistula (EA-TEF) and congenital diaphragmatic hernia (CDH) is reviewed for the presence of associated NC defects. Finally, some of the molecular signaling pathways involved in both conditions (sonic hedgehog, Hox genes, and retinoids) are summarized. The association of facial, cardiovascular, thymic, parathyroid, and C-cell defects together with anomalies of extrinsic and intrinsic esophageal innervation in babies and/or animals with both EA-TEF and CDH strongly supports the hypothesis that NC is involved in the pathogenesis of these malformative clusters. On the other hand, both EA-TEF and CDH are observed in mice mutant for genes involved in the previously mentioned signaling pathways. The investigation of NC-related molecular pathogenic pathways involved in malformative associations like EA-TEF and CDH that are induced by chromosomal anomalies, chemical teratogens, and engineered mutations is a promising way of clarifying why and how some pediatric surgical conditions occur. Pediatric surgeons should be actively involved in these investigations.
Chatterjee, Mithu; Liu, Qiujie; Menello, Caitlin; Galli, Mary; Gallavotti, Andrea
2017-08-01
The micronutrient boron is essential in maintaining the structure of plant cell walls and is critical for high yields in crop species. Boron can move into plants by diffusion or by active and facilitated transport mechanisms. We recently showed that mutations in the maize boron efflux transporter ROTTEN EAR (RTE) cause severe developmental defects and sterility. RTE is part of a small gene family containing five additional members ( RTE2 - RTE6 ) that show tissue-specific expression. The close paralogous gene RTE2 encodes a protein with 95% amino acid identity with RTE and is similarly expressed in shoot and root cells surrounding the vasculature. Despite sharing a similar function with RTE , mutations in the RTE2 gene do not cause growth defects in the shoot, even in boron-deficient conditions. However, rte2 mutants strongly enhance the rte phenotype in soils with low boron content, producing shorter plants that fail to form all reproductive structures. The joint action of RTE and RTE2 is also required in root development. These defects can be fully complemented by supplying boric acid, suggesting that diffusion or additional transport mechanisms overcome active boron transport deficiencies in the presence of an excess of boron. Overall, these results suggest that RTE2 and RTE function are essential for maize shoot and root growth in boron-deficient conditions. Copyright © 2017 by the Genetics Society of America.
Methionine biosynthesis is essential for infection in the rice blast fungus Magnaporthe oryzae.
Saint-Macary, Marie Emmanuelle; Barbisan, Crystel; Gagey, Marie Josèphe; Frelin, Océane; Beffa, Roland; Lebrun, Marc Henri; Droux, Michel
2015-01-01
Methionine is a sulfur amino acid standing at the crossroads of several biosynthetic pathways. In fungi, the last step of methionine biosynthesis is catalyzed by a cobalamine-independent methionine synthase (Met6, EC 2.1.1.14). In the present work, we studied the role of Met6 in the infection process of the rice blast fungus, Magnaporthe oryzae. To this end MET6 null mutants were obtained by targeted gene replacement. On minimum medium, MET6 null mutants were auxotrophic for methionine. Even when grown in presence of excess methionine, these mutants displayed developmental defects, such as reduced mycelium pigmentation, aerial hypha formation and sporulation. They also displayed characteristic metabolic signatures such as increased levels of cysteine, cystathionine, homocysteine, S-adenosylmethionine, S-adenosylhomocysteine while methionine and glutathione levels remained unchanged. These metabolic perturbations were associated with the over-expression of MgCBS1 involved in the reversed transsulfuration pathway that metabolizes homocysteine into cysteine and MgSAM1 and MgSAHH1 involved in the methyl cycle. This suggests a physiological adaptation of M. oryzae to metabolic defects induced by the loss of Met6, in particular an increase in homocysteine levels. Pathogenicity assays showed that MET6 null mutants were non-pathogenic on both barley and rice leaves. These mutants were defective in appressorium-mediated penetration and invasive infectious growth. These pathogenicity defects were rescued by addition of exogenous methionine and S-methylmethionine. These results show that M. oryzae cannot assimilate sufficient methionine from plant tissues and must synthesize this amino acid de novo to fulfill its sulfur amino acid requirement during infection.
Heparan Sulfate Expression in the Neural Crest is Essential for Mouse Cardiogenesis
Pan, Yi; Carbe, Christian; Pickhinke, Ute; Kupich, Sabine; Ohlig, Stefanie; Frye, Maike; Seelige, Ruth; Pallerla, Srinivas R.; Moon, Anne M.; Lawrence, Roger; Esko, Jeffrey D.; Zhang, Xin; Grobe, Kay
2015-01-01
Impaired heparan sulfate (HS) synthesis in vertebrate development causes complex malformations due to the functional disruption of multiple HS-binding growth factors and morphogens. Here, we report developmental heart defects in mice bearing a targeted disruption of the HS-generating enzyme GlcNAc N-Deacetylase/GlcN N-Sulfotransferase 1 (NDST1), including ventricular septal defects (VSD), persistent truncus arteriosus (PTA), double outlet right ventricle (DORV), and retroesophageal right subclavian artery (RERSC). These defects closely resemble cardiac anomalies observed in mice made deficient in the cardiogenic regulator fibroblast growth factor 8 (FGF8). Consistent with this, we show that HS-dependent FGF8/FGF-receptor2C assembly and FGF8-dependent ERK-phosphorylation are strongly reduced in NDST1−/− embryonic cells and tissues. Moreover, WNT1-Cre/LoxP-mediated conditional targeting of NDST function in neural crest cells (NCCs) revealed that their impaired HS-dependent development contributes strongly to the observed cardiac defects. These findings raise the possibility that defects in HS biosynthesis may contribute to congenital heart defects in humans that represent the most common type of birth defect. PMID:24200809
Endochondral Priming: A Developmental Engineering Strategy for Bone Tissue Regeneration.
Freeman, Fiona E; McNamara, Laoise M
2017-04-01
Tissue engineering and regenerative medicine have significant potential to treat bone pathologies by exploiting the capacity for bone progenitors to grow and produce tissue constituents under specific biochemical and physical conditions. However, conventional tissue engineering approaches, which combine stem cells with biomaterial scaffolds, are limited as the constructs often degrade, due to a lack of vascularization, and lack the mechanical integrity to fulfill load bearing functions, and as such are not yet widely used for clinical treatment of large bone defects. Recent studies have proposed that in vitro tissue engineering approaches should strive to simulate in vivo bone developmental processes and, thereby, imitate natural factors governing cell differentiation and matrix production, following the paradigm recently defined as "developmental engineering." Although developmental engineering strategies have been recently developed that mimic specific aspects of the endochondral ossification bone formation process, these findings are not widely understood. Moreover, a critical comparison of these approaches to standard biomaterial-based bone tissue engineering has not yet been undertaken. For that reason, this article presents noteworthy experimental findings from researchers focusing on developing an endochondral-based developmental engineering strategy for bone tissue regeneration. These studies have established that in vitro approaches, which mimic certain aspects of the endochondral ossification process, namely the formation of the cartilage template and the vascularization of the cartilage template, can promote mineralization and vascularization to a certain extent both in vitro and in vivo. Finally, this article outlines specific experimental challenges that must be overcome to further exploit the biology of endochondral ossification and provide a tissue engineering construct for clinical treatment of large bone/nonunion defects and obviate the need for bone tissue graft.
Ajami, Shabnam; Pakshir, Hamidreza; Samady, Hedyeh
2017-09-01
Individuals with oral clefts exhibit considerably more dental anomalies than individuals without clefts. These problems could initially be among the symptoms of their disease and/or they may be the side effect of their treatments. Pushback palatoplasty could cause some interference during the development of teeth and result in tooth defects. The study was performed to assess the prevalence and characteristics of developmental dental anomalies in orofacial cleft patients who attended Shiraz Orthodontics Research Center-Cleft Lip and Palate Clinic. We managed to compare dental anomaly traits based on gender and cleft side. Eighty out of 121 cleft patients were included in this cross-sectional study. All the patients used pushback palatoplasty in their palate closure surgeries. Intraoral photographs, panoramic and intraoral radiographs, cone-beam computed tomography (CBCT) and dental and medical histories were examined and recorded by two observers. Data were analyzed using SPSS PC version 20.0. The differences in the side of cleft and dental anomalies were compared using the Mann-Whitney test. The mean age of patients was 14.27 years (SD=5.06). The most frequent cleft type was unilateral cleft lip and palate (50%) followed by bilateral cleft lip and palate (43.75%), cleft palate (2.5%) and cleft lip (1.25%). Male predominance (70%) was observed. 92.5 percent had at least one developmental dental anomaly. The most prevalent anomalies were hypodontia (71.25%) followed by microdontia (30%), root dilacerations (21.25%) and supernumerary teeth (15%). The most prevalent cleft types were unilateral and bilateral cleft lip and palate with male and left side predominance. Hypodontia, microdontia, dilacerations and supernumerary teeth were the most prevalent developmental dental anomalies among Iranian southwestern cleft patients. The surgical technique used to repair their cleft palate may have played a role in developmental dental defects.
Morash, Michael G; Brassinga, Ann Karen C; Warthan, Michelle; Gourabathini, Poornima; Garduño, Rafael A; Goodman, Steven D; Hoffman, Paul S
2009-04-01
Legionella pneumophila is an intracellular parasite of protozoa that differentiates late in infection into metabolically dormant cysts that are highly infectious. Regulation of this process is poorly understood. Here we report that the small DNA binding regulatory proteins integration host factor (IHF) and HU are reciprocally expressed over the developmental cycle, with HU expressed during exponential phase and IHF expressed postexponentially. To assess the role of these regulatory proteins in development, chromosomal deletions were constructed. Single (ihfA or ihfB) and double deletion (Deltaihf) IHF mutants failed to grow in Acanthamoeba castellanii unless complemented in trans when expressed temporally from the ihfA promoter but not under P(tac) (isopropyl-beta-d-thiogalactopyranoside). In contrast, IHF mutants were infectious for HeLa cells, though electron microscopic examination revealed defects in late-stage cyst morphogenesis (thickened cell wall, intracytoplasmic membranes, and inclusions of poly-beta-hydroxybutyrate), and were depressed for the developmental marker MagA. Green fluorescent protein promoter fusion assays indicated that IHF and the stationary-phase sigma factor RpoS were required for full postexponential expression of magA. Finally, defects in cyst morphogenesis noted for Deltaihf mutants in HeLa cells correlated with a loss of both detergent resistance and hyperinfectivity compared with results for wild-type cysts. These studies establish IHF and HU as markers of developmental stages and show that IHF function is required for both differentiation and full virulence of L. pneumophila in natural amoebic hosts.
REPRODUCTIVE AND DEVELOPMENTAL TOXICITY OF ARSENIC IN RODENTS: A REVIEW
Arsenic is a recognized reproductive toxicant in humans and induces malformations, especially neural tube defects, in laboratory animals. Early studies showed that murine malformations occurred only when a high dose of inorganic arsenic was given by intravenous or intraperitoneal...
Computational Modeling and Simulation of Genital Tubercle Development
Hypospadias is a developmental defect of urethral tube closure that has a complex etiology. Here, we describe a multicellular agent-based model of genital tubercle development that simulates urethrogenesis from the urethral plate stage to urethral tube closure in differentiating ...
Response to "The Many Faces of Dyslexia."
ERIC Educational Resources Information Center
Galaburda, Albert M.
1986-01-01
In response to M. Rawson's paper, the author uses an analogy with coronary artery disease to show that current brain research is not entirely at odds with the position that dyslexia may be a developmental variation, rather than a defect. (Author/DB)
Filges, Isabel; Bischof-Renner, Andrea; Röthlisberger, Benno; Potthoff, Christian; Glanzmann, René; Günthard, Joëlle; Schneider, Jacques; Huber, Andreas R; Zumsteg, Urs; Miny, Peter; Szinnai, Gabor
2012-02-01
Clinical presentation of hypopituitarism in the neonate may be variable, ranging from absent to severe nonspecific symptoms and may be life-threatening in patients with adrenocorticotropic hormone deficiency. The LIM homeobox gene 4 (LHX4) transcription factor regulates early embryonic development of the anterior pituitary gland. Autosomal dominant mutations in LHX4 cause congenital hypopituitarism with variable combined pituitary hormone deficiency (CPHD). We report on a neonate with unexplained heart failure and minor physical anomalies, suggesting a midline defect. She was diagnosed with complete CPHD. Cardiac function was rescued by replacement with hydrocortisone and thyroxine; hypoglycaemia stopped under growth hormone therapy. Magnetic resonance imaging revealed a dysgenetic pituitary gland suggesting an early developmental defect. Array comparative genomic hybridization showed a maternally inherited 1.5-megabase microdeletion in 1q25.2q25.3, including the LHX4 gene. Haploinsufficiency of LHX4 likely explains the predominant pituitary phenotype in the proposita and we suggest variable intrafamilial penetrance of the inherited microdeletion. To the best of our knowledge, we are the first to report on heart failure as a rare nonspecific symptom of treatable CPHD in the newborn. Variably penetrant pituitary insufficiency, including this severe and atypical presentation, can be correlated with LHX4 insufficiency and highlights the role of LHX4 for pituitary development.
PAUSED encodes the Arabidopsis exportin-t ortholog.
Hunter, Christine A; Aukerman, Milo J; Sun, Hui; Fokina, Maria; Poethig, R Scott
2003-08-01
Los1p/exportin-t (XPOT) mediates the nuclear export of tRNAs in yeast and mammals. The requirements for this transport pathway are unclear, however, because los1 mutations do not affect yeast growth, and the phenotype of XPOT mutations in mammals is unknown. Here, we show that PAUSED (PSD) is the Arabidopsis ortholog of LOS1/XPOT and is capable of rescuing the tRNA export defect of los1 in Brewer's yeast (Saccharomyces cerevisiae), suggesting that its function has been conserved. Putative null alleles of PSD disrupt the initiation of the shoot apical meristem and delay leaf initiation after germination, the emergence of the radicle and lateral roots, and the transition to flowering. Plants doubly mutant for psd and hasty, the Arabidopsis ortholog of exportin 5, are viable but have a more severe phenotype than either single mutant. These results suggest that PSD plays a role in tRNA export in Arabidopsis, but that at least one-and perhaps several-additional tRNA export pathways also exist. The PSD transcript is broadly expressed during development and is alternatively spliced in the 3'-untranslated region. No temporal or spatial difference in the abundance of different splice forms was observed. We propose that the mutant phenotype of psd reflects defects in developmental events and cell/tissue types that require elevated levels of protein synthesis and are therefore acutely sensitive to a reduction in tRNA export.
Linear scleroderma en coup de sabre including abnormal dental development.
Hørberg, M; Lauesen, S R; Daugaard-Jensen, J; Kjær, I
2015-04-01
Linear scleroderma en coup de sabre (SCS) is a rare skin condition, where dense collagen is deposited in a localised groove of the head and neck area resembling the stroke of a sabre. The SCS may involve the oral cavity, but the severity and relation to this skin abnormality is unknown. A paediatric dentist may be the first medical person to identify SCS by its involvement in dentition. It is assumed that the malformation of a dentition could be associated with the severity of the skin deviation. A 6-year and 10-month-old Turkish girl with a history of SCS was referred for dental diagnostics and treatment. The SCS skin lesion affected the left side of her hairline over the forehead and nose, involving the left orbit proceeding towards the left oral region. Dental clinical/radiographic examination revealed malformed left maxillary incisors with short roots and lack of eruption. The patient has been regularly controlled and treated since she was first diagnosed. A surgical and orthodontic treatment was performed to ensure optimal occlusion, space and alveolar bone development. The present age of the patient is 14 years and 10 months. This case demonstrated a patient with a left-sided skin defect (SCS) and a left-sided local malformation in her dentition. It is possible that there is a developmental connection between these two left-sided defects, both with an ectodermal origin.
Nothing new under the heavens: MIH in the past?
Ogden, A R; Pinhasi, R; White, W J
2008-12-01
This was to study an archaeological population of subadult teeth in 17th and 18th century skeletal material from a London (England) cemetery for enamel defects including molar-incisor-hypomineralisation (MIH). Dentitions of 45 sub-adults were examined using standard macroscopic methods and systematically recorded. A total of 557 teeth were examined with a *5 lens and photographed. Ages of the individuals were estimated from their dental crown and root development stages and not from charts that combine tooth eruption with development stages. The dental age of the individual and the approximate age of onset of enamel defects was then calculated on the basis of the chronological sequence of incremental deposition and calcification of the enamel matrix. Affected enamel was graded macroscopically as: - Mild: <30% of the tooth's enamel surface area visibly disrupted (this encompasses the entire range reported in most other studies), Moderate: 31-49% of the tooth's enamel surface area visibly disrupted and Severe: >50% of the tooth's enamel surface area visibly disrupted. Of the total number of individuals 41 (93.2%) showed signs of enamel developmental dysplasia or MIH, 28 of them showing moderate or severe lesions of molars, primary or permanent (63.6% of the sample). Incisors and canines, though surviving much less often, showed episodes of linear hypoplasia. The extensive lesions seen on many of the molars displayed cuspal enamel hypoplasia (CEH). Many of these teeth also exhibited Molar Incisal Hypomineralisation (MIH).
Lee, Jinsu; Shim, Donghwan; Moon, Suyun; Kim, Hyemin; Bae, Wonsil; Kim, Kyunghwan; Kim, Yang-Hoon; Rhee, Sung-Keun; Hong, Chang Pyo; Hong, Suk-Young; Lee, Ye-Jin; Sung, Jwakyung; Ryu, Hojin
2018-06-01
Brassinosteroids (BRs) are plant steroid hormones that play crucial roles in a range of growth and developmental processes. Although BR signal transduction and biosynthetic pathways have been well characterized in model plants, their biological roles in an important crop, tomato (Solanum lycopersicum), remain unknown. Here, cultivated tomato (WT) and a BR synthesis mutant, Micro-Tom (MT), were compared using physiological and transcriptomic approaches. The cultivated tomato showed higher tolerance to drought and osmotic stresses than the MT tomato. However, BR-defective phenotypes of MT, including plant growth and stomatal closure defects, were completely recovered by application of exogenous BR or complementation with a SlDWARF gene. Using genome-wide transcriptome analysis, 619 significantly differentially expressed genes (DEGs) were identified between WT and MT plants. Several DEGs were linked to known signaling networks, including those related to biotic/abiotic stress responses, lignification, cell wall development, and hormone responses. Consistent with the higher susceptibility of MT to drought stress, several gene sets involved in responses to drought and osmotic stress were differentially regulated between the WT and MT tomato plants. Our data suggest that BR signaling pathways are involved in mediating the response to abiotic stress via fine-tuning of abiotic stress-related gene networks in tomato plants. Copyright © 2018. Published by Elsevier Masson SAS.
Guo, Dongchuan; Wu, Yun; Kaplan, Heidi B.
2000-01-01
Starvation and cell density regulate the developmental expression of Myxococcus xanthus gene 4521. Three classes of mutants allow expression of this developmental gene during growth on nutrient agar, such that colonies of strains containing a Tn5 lac Ω4521 fusion are Lac+. One class of these mutants inactivates SasN, a negative regulator of 4521 expression; another class activates SasS, a sensor kinase-positive regulator of 4521 expression; and a third class blocks lipopolysaccharide (LPS) O-antigen biosynthesis. To identify additional positive regulators of 4521 expression, 11 Lac− TnV.AS transposon insertion mutants were isolated from a screen of 18,000 Lac+ LPS O-antigen mutants containing Tn5 lac Ω4521 (Tcr). Ten mutations identified genes that could encode positive regulators of 4521 developmental expression based on their ability to abolish 4521 expression during development in the absence of LPS O antigen and in an otherwise wild-type background. Eight of these mutations mapped to the sasB locus, which encodes the known 4521 regulators SasS and SasN. One mapped to sasS, whereas seven identified new genes. Three mutations mapped to a gene encoding an NtrC-like response regulator homologue, designated sasR, and four others mapped to a gene designated sasP. One mutation, designated ssp10, specifically suppressed the LPS O-antigen defect; the ssp10 mutation had no effect on 4521 expression in an otherwise wild-type background but reduced 4521 developmental expression in the absence of LPS O antigen to a level close to that of the parent strain. All of the mutations except those in sasP conferred defects during growth and development. These data indicate that a number of elements are required for 4521 developmental expression and that most of these are necessary for normal growth and fruiting body development. PMID:10913090
Kim, Soo Youn; Xu, Zheng-Yi; Song, Kyungyoung; Kim, Dae Heon; Kang, Hyangju; Reichardt, Ilka; Sohn, Eun Ju; Friml, Jirí; Juergens, Gerd; Hwang, Inhwan
2013-08-01
Fertilization in flowering plants requires the temporal and spatial coordination of many developmental processes, including pollen production, anther dehiscence, ovule production, and pollen tube elongation. However, it remains elusive as to how this coordination occurs during reproduction. Here, we present evidence that endocytosis, involving heterotetrameric adaptor protein complex 2 (AP-2), plays a crucial role in fertilization. An Arabidopsis thaliana mutant ap2m displays multiple defects in pollen production and viability, as well as elongation of staminal filaments and pollen tubes, all of which are pivotal processes needed for fertilization. Of these abnormalities, the defects in elongation of staminal filaments and pollen tubes were partially rescued by exogenous auxin. Moreover, DR5rev:GFP (for green fluorescent protein) expression was greatly reduced in filaments and anthers in ap2m mutant plants. At the cellular level, ap2m mutants displayed defects in both endocytosis of N-(3-triethylammonium-propyl)-4-(4-diethylaminophenylhexatrienyl) pyridinium dibromide, a lypophilic dye used as an endocytosis marker, and polar localization of auxin-efflux carrier PIN FORMED2 (PIN2) in the stamen filaments. Moreover, these defects were phenocopied by treatment with Tyrphostin A23, an inhibitor of endocytosis. Based on these results, we propose that AP-2-dependent endocytosis plays a crucial role in coordinating the multiple developmental aspects of male reproductive organs by modulating cellular auxin level through the regulation of the amount and polarity of PINs.
Kim, Soo Youn; Xu, Zheng-Yi; Song, Kyungyoung; Kim, Dae Heon; Kang, Hyangju; Reichardt, Ilka; Sohn, Eun Ju; Friml, Jiří; Juergens, Gerd; Hwang, Inhwan
2013-01-01
Fertilization in flowering plants requires the temporal and spatial coordination of many developmental processes, including pollen production, anther dehiscence, ovule production, and pollen tube elongation. However, it remains elusive as to how this coordination occurs during reproduction. Here, we present evidence that endocytosis, involving heterotetrameric adaptor protein complex 2 (AP-2), plays a crucial role in fertilization. An Arabidopsis thaliana mutant ap2m displays multiple defects in pollen production and viability, as well as elongation of staminal filaments and pollen tubes, all of which are pivotal processes needed for fertilization. Of these abnormalities, the defects in elongation of staminal filaments and pollen tubes were partially rescued by exogenous auxin. Moreover, DR5rev:GFP (for green fluorescent protein) expression was greatly reduced in filaments and anthers in ap2m mutant plants. At the cellular level, ap2m mutants displayed defects in both endocytosis of N-(3-triethylammonium-propyl)-4-(4-diethylaminophenylhexatrienyl) pyridinium dibromide, a lypophilic dye used as an endocytosis marker, and polar localization of auxin-efflux carrier PIN FORMED2 (PIN2) in the stamen filaments. Moreover, these defects were phenocopied by treatment with Tyrphostin A23, an inhibitor of endocytosis. Based on these results, we propose that AP-2–dependent endocytosis plays a crucial role in coordinating the multiple developmental aspects of male reproductive organs by modulating cellular auxin level through the regulation of the amount and polarity of PINs. PMID:23975898
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Ruixi; Sun, Ruobai; Hicks, Glenn R.
The vacuole is the most prominent compartment in plant cells and is important for ion and protein storage. In our effort to search for key regulators in the plant vacuole sorting pathway, ribosomal large subunit 4 (rpl4d) was identified as a translational mutant defective in both vacuole trafficking and normal development. Polysome profiling of the rpl4d mutant showed reduction in polysome-bound mRNA compared with wild-type, but no significant change in the general mRNA distribution pattern. Ribsomal profiling data indicated that genes in the lipid metabolism pathways were translationally down-regulated in the rpl4d mutant. Live imaging studies by Nile red stainingmore » suggested that both polar and nonpolar lipid accumulation was reduced in meristem tissues of rpl4d mutants. Pharmacological evidence showed that sterol and sphingolipid biosynthetic inhibitors can phenocopy the defects of the rpl4d mutant, including an altered vacuole trafficking pattern. Genetic evidence from lipid biosynthetic mutants indicates that alteration in the metabolism of either sterol or sphingolipid biosynthesis resulted in vacuole trafficking defects, similar to the rpl4d mutant. Tissue-specific complementation with key enzymes from lipid biosynthesis pathways can partially rescue both vacuole trafficking and auxin-related developmental defects in the rpl4d mutant. These results indicate that lipid metabolism modulates auxin-mediated tissue differentiation and endomembrane trafficking pathways downstream of ribosomal protein function.« less
Li, Ruixi; Sun, Ruobai; Hicks, Glenn R.; ...
2014-12-22
The vacuole is the most prominent compartment in plant cells and is important for ion and protein storage. In our effort to search for key regulators in the plant vacuole sorting pathway, ribosomal large subunit 4 (rpl4d) was identified as a translational mutant defective in both vacuole trafficking and normal development. Polysome profiling of the rpl4d mutant showed reduction in polysome-bound mRNA compared with wild-type, but no significant change in the general mRNA distribution pattern. Ribsomal profiling data indicated that genes in the lipid metabolism pathways were translationally down-regulated in the rpl4d mutant. Live imaging studies by Nile red stainingmore » suggested that both polar and nonpolar lipid accumulation was reduced in meristem tissues of rpl4d mutants. Pharmacological evidence showed that sterol and sphingolipid biosynthetic inhibitors can phenocopy the defects of the rpl4d mutant, including an altered vacuole trafficking pattern. Genetic evidence from lipid biosynthetic mutants indicates that alteration in the metabolism of either sterol or sphingolipid biosynthesis resulted in vacuole trafficking defects, similar to the rpl4d mutant. Tissue-specific complementation with key enzymes from lipid biosynthesis pathways can partially rescue both vacuole trafficking and auxin-related developmental defects in the rpl4d mutant. These results indicate that lipid metabolism modulates auxin-mediated tissue differentiation and endomembrane trafficking pathways downstream of ribosomal protein function.« less
Regulation of spindle integrity and mitotic fidelity by BCCIP
Huhn, S C; Liu, J; Ye, C; Lu, H; Jiang, X; Feng, X; Ganesan, S; White, E; Shen, Z
2017-01-01
Centrosomes together with the mitotic spindle ensure the faithful distribution of chromosomes between daughter cells, and spindle orientation is a major determinant of cell fate during tissue regeneration. Spindle defects are not only an impetus of chromosome instability but are also a cause of developmental disorders involving defective asymmetric cell division. In this work, we demonstrate BCCIP, especially BCCIPα, as a previously unidentified component of the mitotic spindle pole and the centrosome. We demonstrate that BCCIP localizes proximal to the mother centriole and participates in microtubule organization and then redistributes to the spindle pole to ensure faithful spindle architecture. We find that BCCIP depletion leads to morphological defects, disoriented mitotic spindles, chromosome congression defects and delayed mitotic progression. Our study identifies BCCIP as a novel factor critical for microtubule regulation and explicates a mechanism utilized by BCCIP in tumor suppression. PMID:28394342
Kersseboom, Rogier; Ta, Van B T; Zijlstra, A J Esther; Middendorp, Sabine; Jumaa, Hassan; van Loo, Pieter Fokko; Hendriks, Rudolf W
2006-04-15
Bruton's tyrosine kinase (Btk) and the adapter protein SLP-65 (Src homology 2 domain-containing leukocyte-specific phosphoprotein of 65 kDa) transmit precursor BCR (pre-BCR) signals that are essential for efficient developmental progression of large cycling into small resting pre-B cells. We show that Btk- and SLP-65-deficient pre-B cells have a specific defect in Ig lambda L chain germline transcription. In Btk/SLP-65 double-deficient pre-B cells, both kappa and lambda germline transcripts are severely reduced. Although these observations point to an important role for Btk and SLP-65 in the initiation of L chain gene rearrangement, the possibility remained that these signaling molecules are only required for termination of pre-B cell proliferation or for pre-B cell survival, whereby differentiation and L chain rearrangement is subsequently initiated in a Btk/SLP-65-independent fashion. Because transgenic expression of the antiapoptotic protein Bcl-2 did not rescue the developmental arrest of Btk/SLP-65 double-deficient pre-B cells, we conclude that defective L chain opening in Btk/SLP-65-deficient small resting pre-B cells is not due to their reduced survival. Next, we analyzed transgenic mice expressing the constitutively active Btk mutant E41K. The expression of E41K-Btk in Ig H chain-negative pro-B cells induced 1) surface marker changes that signify cellular differentiation, including down-regulation of surrogate L chain and up-regulation of CD2, CD25, and MHC class II; and 2) premature rearrangement and expression of kappa and lambda light chains. These findings demonstrate that Btk and SLP-65 transmit signals that induce cellular maturation and Ig L chain rearrangement independently of their role in termination of pre-B cell expansion.
Eijlander, Robyn T.; Holsappel, Siger; de Jong, Anne; Ghosh, Abhinaba; Christie, Graham; Kuipers, Oscar P.
2016-01-01
Sporulation is a highly sophisticated developmental process adopted by most Bacilli as a survival strategy to withstand extreme conditions that normally do not support microbial growth. A complicated regulatory cascade, divided into various stages and taking place in two different compartments of the cell, involves a number of primary and secondary regulator proteins that drive gene expression directed toward the formation and maturation of an endospore. Such regulator proteins are highly conserved among various spore formers. Despite this conservation, both regulatory and phenotypic differences are observed between different species of spore forming bacteria. In this study, we demonstrate that deletion of the regulatory sporulation protein SpoVT results in a severe sporulation defect in Bacillus cereus, whereas this is not observed in Bacillus subtilis. Although spores are initially formed, the process is stalled at a later stage in development, followed by lysis of the forespore and the mother cell. A transcriptomic investigation of B. cereus ΔspoVT shows upregulation of genes involved in germination, potentially leading to premature lysis of prespores formed. Additionally, extreme variation in the expression of species-specific genes of unknown function was observed. Introduction of the B. subtilis SpoVT protein could partly restore the sporulation defect in the B. cereus spoVT mutant strain. The difference in phenotype is thus more than likely explained by differences in promoter targets rather than differences in mode of action of the conserved SpoVT regulator protein. This study stresses that evolutionary variances in regulon members of sporulation regulators can have profound effects on the spore developmental process and that mere protein homology is not a foolproof predictor of similar phenotypes. PMID:27790204
Eijlander, Robyn T; Holsappel, Siger; de Jong, Anne; Ghosh, Abhinaba; Christie, Graham; Kuipers, Oscar P
2016-01-01
Sporulation is a highly sophisticated developmental process adopted by most Bacilli as a survival strategy to withstand extreme conditions that normally do not support microbial growth. A complicated regulatory cascade, divided into various stages and taking place in two different compartments of the cell, involves a number of primary and secondary regulator proteins that drive gene expression directed toward the formation and maturation of an endospore. Such regulator proteins are highly conserved among various spore formers. Despite this conservation, both regulatory and phenotypic differences are observed between different species of spore forming bacteria. In this study, we demonstrate that deletion of the regulatory sporulation protein SpoVT results in a severe sporulation defect in Bacillus cereus , whereas this is not observed in Bacillus subtilis . Although spores are initially formed, the process is stalled at a later stage in development, followed by lysis of the forespore and the mother cell. A transcriptomic investigation of B. cereus Δ spoVT shows upregulation of genes involved in germination, potentially leading to premature lysis of prespores formed. Additionally, extreme variation in the expression of species-specific genes of unknown function was observed. Introduction of the B. subtilis SpoVT protein could partly restore the sporulation defect in the B. cereus spoVT mutant strain. The difference in phenotype is thus more than likely explained by differences in promoter targets rather than differences in mode of action of the conserved SpoVT regulator protein. This study stresses that evolutionary variances in regulon members of sporulation regulators can have profound effects on the spore developmental process and that mere protein homology is not a foolproof predictor of similar phenotypes.
The role of diet and nutrition in the etiology and prevention of oral diseases.
Moynihan, Paula J
2005-09-01
Diet plays an important role in preventing oral diseases including dental caries, dental erosion, developmental defects, oral mucosal diseases and, to a lesser extent, periodontal disease. This paper is intended to provide an overview of the evidence for an association between diet, nutrition and oral diseases and to clarify areas of uncertainty. Undernutrition increases the severity of oral mucosal and periodontal diseases and is a contributing factor to life-threatening noma. Undernutrition is associated with developmental defects of the enamel which increase susceptibility to dental caries. Dental erosion is perceived to be increasing. Evidence suggests that soft drinks, a major source of acids in the diet in developed countries, are a significant causative factor. Convincing evidence from experimental, animal, human observational and human intervention studies shows that sugars are the main dietary factor associated with dental caries. Despite the indisputable role of fluoride in the prevention of caries, it has not eliminated dental caries and many communities are not exposed to optimal quantities of fluoride. Controlling the intake of sugars therefore remains important for caries prevention. Research has consistently shown that when the intake of free sugars is < 15 kg/person/year, the level of dental caries is low. Despite experimental and animal studies suggesting that some starch-containing foods and fruits are cariogenic, this is not supported by epidemiological data, which show that high intakes of starchy staple foods, fruits and vegetables are associated with low levels of dental caries. Following global recommendations that encourage a diet high in starchy staple foods, fruit and vegetables and low in free sugars and fat will protect both oral and general health.
EMG1 is essential for mouse pre-implantation embryo development.
Wu, Xiaoli; Sandhu, Sumit; Patel, Nehal; Triggs-Raine, Barbara; Ding, Hao
2010-09-21
Essential for mitotic growth 1 (EMG1) is a highly conserved nucleolar protein identified in yeast to have a critical function in ribosome biogenesis. A mutation in the human EMG1 homolog causes Bowen-Conradi syndrome (BCS), a developmental disorder characterized by severe growth failure and psychomotor retardation leading to death in early childhood. To begin to understand the role of EMG1 in mammalian development, and how its deficiency could lead to Bowen-Conradi syndrome, we have used mouse as a model. The expression of Emg1 during mouse development was examined and mice carrying a null mutation for Emg1 were generated and characterized. Our studies indicated that Emg1 is broadly expressed during early mouse embryonic development. However, in late embryonic stages and during postnatal development, Emg1 exhibited specific expression patterns. To assess a developmental role for EMG1 in vivo, we exploited a mouse gene-targeting approach. Loss of EMG1 function in mice arrested embryonic development prior to the blastocyst stage. The arrested Emg1-/- embryos exhibited defects in early cell lineage-specification as well as in nucleologenesis. Further, loss of p53, which has been shown to rescue some phenotypes resulting from defects in ribosome biogenesis, failed to rescue the Emg1-/- pre-implantation lethality. Our data demonstrate that Emg1 is highly expressed during mouse embryonic development, and essential for mouse pre-implantation development. The absolute requirement for EMG1 in early embryonic development is consistent with its essential role in yeast. Further, our findings also lend support to the previous study that showed Bowen-Conradi syndrome results from a partial EMG1 deficiency. A complete deficiency would not be expected to be compatible with a live birth.
The role of diet and nutrition in the etiology and prevention of oral diseases.
Moynihan, Paula J.
2005-01-01
Diet plays an important role in preventing oral diseases including dental caries, dental erosion, developmental defects, oral mucosal diseases and, to a lesser extent, periodontal disease. This paper is intended to provide an overview of the evidence for an association between diet, nutrition and oral diseases and to clarify areas of uncertainty. Undernutrition increases the severity of oral mucosal and periodontal diseases and is a contributing factor to life-threatening noma. Undernutrition is associated with developmental defects of the enamel which increase susceptibility to dental caries. Dental erosion is perceived to be increasing. Evidence suggests that soft drinks, a major source of acids in the diet in developed countries, are a significant causative factor. Convincing evidence from experimental, animal, human observational and human intervention studies shows that sugars are the main dietary factor associated with dental caries. Despite the indisputable role of fluoride in the prevention of caries, it has not eliminated dental caries and many communities are not exposed to optimal quantities of fluoride. Controlling the intake of sugars therefore remains important for caries prevention. Research has consistently shown that when the intake of free sugars is < 15 kg/person/year, the level of dental caries is low. Despite experimental and animal studies suggesting that some starch-containing foods and fruits are cariogenic, this is not supported by epidemiological data, which show that high intakes of starchy staple foods, fruits and vegetables are associated with low levels of dental caries. Following global recommendations that encourage a diet high in starchy staple foods, fruit and vegetables and low in free sugars and fat will protect both oral and general health. PMID:16211161
Maternal high-fat diet and obesity compromise fetal hematopoiesis
Kamimae-Lanning, Ashley N.; Krasnow, Stephanie M.; Goloviznina, Natalya A.; Zhu, Xinxia; Roth-Carter, Quinn R.; Levasseur, Peter R.; Jeng, Sophia; McWeeney, Shannon K.; Kurre, Peter; Marks, Daniel L.
2014-01-01
Objective Recent evidence indicates that the adult hematopoietic system is susceptible to diet-induced lineage skewing. It is not known whether the developing hematopoietic system is subject to metabolic programming via in utero high-fat diet (HFD) exposure, an established mechanism of adult disease in several organ systems. We previously reported substantial losses in offspring liver size with prenatal HFD. As the liver is the main hematopoietic organ in the fetus, we asked whether the developmental expansion of the hematopoietic stem and progenitor cell (HSPC) pool is compromised by prenatal HFD and/or maternal obesity. Methods We used quantitative assays, progenitor colony formation, flow cytometry, transplantation, and gene expression assays with a series of dietary manipulations to test the effects of gestational high-fat diet and maternal obesity on the day 14.5 fetal liver hematopoietic system. Results Maternal obesity, particularly when paired with gestational HFD, restricts physiological expansion of fetal HSPCs while promoting the opposing cell fate of differentiation. Importantly, these effects are only partially ameliorated by gestational dietary adjustments for obese dams. Competitive transplantation reveals compromised repopulation and myeloid-biased differentiation of HFD-programmed HSPCs to be a niche-dependent defect, apparent in HFD-conditioned male recipients. Fetal HSPC deficiencies coincide with perturbations in genes regulating metabolism, immune and inflammatory processes, and stress response, along with downregulation of genes critical for hematopoietic stem cell self-renewal and activation of pathways regulating cell migration. Conclusions Our data reveal a previously unrecognized susceptibility to nutritional and metabolic developmental programming in the fetal HSPC compartment, which is a partially reversible and microenvironment-dependent defect perturbing stem and progenitor cell expansion and hematopoietic lineage commitment. PMID:25685687
78 FR 14553 - Proposed Data Collections Submitted for Public Comment and Recommendations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-06
...; deep vein thrombosis/pulmonary embolism (DVT/PE); sickle cell disease (SCD); attention-deficit/hyperactivity disorder (ADHD); and Tourette syndrome. The Children's Health Act of 2000 required the... Defects and Developmental Disabilities, Human Development and Disabilities, and Blood Disorders--NEW...
20180312 - Mechanistic Modeling of Developmental Defects through Computational Embryology (SOT)
Significant advances in the genome sciences, in automated high-throughput screening (HTS), and in alternative methods for testing enable rapid profiling of chemical libraries for quantitative effects on diverse cellular activities. While a surfeit of HTS data and information is n...
Vascular development commences with de novo assembly of a primary capillary plexus (vasculogenesis) followed by its expansion (angiogenesis) and maturation (angio-adaptation) into a hierarchical system of arteries and veins. These processes are tightly regulated by genetic signal...
ETOILE Regulates Developmental Patterning in the Filamentous Brown Alga Ectocarpus siliculosus[W
Le Bail, Aude; Billoud, Bernard; Le Panse, Sophie; Chenivesse, Sabine; Charrier, Bénédicte
2011-01-01
Brown algae are multicellular marine organisms evolutionarily distant from both metazoans and land plants. The molecular or cellular mechanisms that govern the developmental patterning in brown algae are poorly characterized. Here, we report the first morphogenetic mutant, étoile (etl), produced in the brown algal model Ectocarpus siliculosus. Genetic, cellular, and morphometric analyses showed that a single recessive locus, ETL, regulates cell differentiation: etl cells display thickening of the extracellular matrix (ECM), and the elongated, apical, and actively dividing E cells are underrepresented. As a result of this defect, the overrepresentation of round, branch-initiating R cells in the etl mutant leads to the rapid induction of the branching process at the expense of the uniaxial growth in the primary filament. Computational modeling allowed the simulation of the etl mutant phenotype by including a modified response to the neighborhood information in the division rules used to specify wild-type development. Microarray experiments supported the hypothesis of a defect in cell–cell communication, as primarily Lin-Notch-domain transmembrane proteins, which share similarities with metazoan Notch proteins involved in binary cell differentiation were repressed in etl. Thus, our study highlights the role of the ECM and of novel transmembrane proteins in cell–cell communication during the establishment of the developmental pattern in this brown alga. PMID:21478443
He, Miao; Kratz, Lisa E.; Michel, Joshua J.; Vallejo, Abbe N.; Ferris, Laura; Kelley, Richard I.; Hoover, Jacqueline J.; Jukic, Drazen; Gibson, K. Michael; Wolfe, Lynne A.; Ramachandran, Dhanya; Zwick, Michael E.; Vockley, Jerry
2011-01-01
Defects in cholesterol synthesis result in a wide variety of symptoms, from neonatal lethality to the relatively mild dysmorphic features and developmental delay found in individuals with Smith-Lemli-Opitz syndrome. We report here the identification of mutations in sterol-C4-methyl oxidase–like gene (SC4MOL) as the cause of an autosomal recessive syndrome in a human patient with psoriasiform dermatitis, arthralgias, congenital cataracts, microcephaly, and developmental delay. This gene encodes a sterol-C4-methyl oxidase (SMO), which catalyzes demethylation of C4-methylsterols in the cholesterol synthesis pathway. C4-Methylsterols are meiosis-activating sterols (MASs). They exist at high concentrations in the testis and ovary and play roles in meiosis activation. In this study, we found that an accumulation of MASs in the patient led to cell overproliferation in both skin and blood. SMO deficiency also substantially altered immunocyte phenotype and in vitro function. MASs serve as ligands for liver X receptors α and β (LXRα and LXRβ), which are important in regulating not only lipid transport in the epidermis, but also innate and adaptive immunity. Deficiency of SMO represents a biochemical defect in the cholesterol synthesis pathway, the clinical spectrum of which remains to be defined. PMID:21285510
A-to-I RNA editing promotes developmental stage-specific gene and lncRNA expression.
Goldstein, Boaz; Agranat-Tamir, Lily; Light, Dean; Ben-Naim Zgayer, Orna; Fishman, Alla; Lamm, Ayelet T
2017-03-01
A-to-I RNA editing is a conserved widespread phenomenon in which adenosine (A) is converted to inosine (I) by adenosine deaminases (ADARs) in double-stranded RNA regions, mainly noncoding. Mutations in ADAR enzymes in Caenorhabditis elegans cause defects in normal development but are not lethal as in human and mouse. Previous studies in C. elegans indicated competition between RNA interference (RNAi) and RNA editing mechanisms, based on the observation that worms that lack both mechanisms do not exhibit defects, in contrast to the developmental defects observed when only RNA editing is absent. To study the effects of RNA editing on gene expression and function, we established a novel screen that enabled us to identify thousands of RNA editing sites in nonrepetitive regions in the genome. These include dozens of genes that are edited at their 3' UTR region. We found that these genes are mainly germline and neuronal genes, and that they are down-regulated in the absence of ADAR enzymes. Moreover, we discovered that almost half of these genes are edited in a developmental-specific manner, indicating that RNA editing is a highly regulated process. We found that many pseudogenes and other lncRNAs are also extensively down-regulated in the absence of ADARs in the embryo but not in the fourth larval (L4) stage. This down-regulation is not observed upon additional knockout of RNAi. Furthermore, levels of siRNAs aligned to pseudogenes in ADAR mutants are enhanced. Taken together, our results suggest a role for RNA editing in normal growth and development by regulating silencing via RNAi. © 2017 Goldstein et al.; Published by Cold Spring Harbor Laboratory Press.
Gresser, Amy L.; Gutzwiller, Lisa M.; Gauck, Mackenzie K.; Hartenstein, Volker; Cook, Tiffany A.; Gebelein, Brian
2015-01-01
Organismal growth regulation requires the interaction of multiple metabolic, hormonal and neuronal pathways. While the molecular basis for many of these are well characterized, less is known about the developmental origins of growth regulatory structures and the mechanisms governing control of feeding and satiety. For these reasons, new tools and approaches are needed to link the specification and maturation of discrete cell populations with their subsequent regulatory roles. In this study, we characterize a rhomboid enhancer element that selectively labels four Drosophila embryonic neural precursors. These precursors give rise to the hypopharyngeal sensory organ of the peripheral nervous system and a subset of neurons in the deutocerebral region of the embryonic central nervous system. Post embryogenesis, the rhomboid enhancer is active in a subset of cells within the larval pharyngeal epithelium. Enhancer-targeted toxin expression alters the morphology of the sense organ and results in impaired larval growth, developmental delay, defective anterior spiracle eversion and lethality. Limiting the duration of toxin expression reveals differences in the critical periods for these effects. Embryonic expression causes developmental defects and partially penetrant pre-pupal lethality. Survivors of embryonic expression, however, ultimately become viable adults. In contrast, post-embryonic toxin expression results in fully penetrant lethality. To better define the larval growth defect, we used a variety of assays to demonstrate that toxin-targeted larvae are capable of locating, ingesting and clearing food and they exhibit normal food search behaviors. Strikingly, however, following food exposure these larvae show a rapid decrease in consumption suggesting a satiety-like phenomenon that correlates with the period of impaired larval growth. Together, these data suggest a critical role for these enhancer-defined lineages in regulating feeding, growth and viability. PMID:26252385
The Arabidopsis Golgi-localized GDP-L-fucose transporter is required for plant development
Rautengarten, Carsten; Ebert, Berit; Liu, Lifeng; ...
2016-07-06
Nucleotide sugar transport across Golgi membranes is essential for the luminal biosynthesis of glycan structures. Here we identify GDP-fucose transporter 1 (GFT1), an Arabidopsis nucleotide sugar transporter that translocates GDP-L-fucose into the Golgi lumen. Using proteo-liposome-based transport assays, we show that GFT preferentially transports GDP-L-fucose over other nucleotide sugars in vitro, while GFT1-silenced plants are almost devoid of L-fucose in cell wall-derived xyloglucan and rhamnogalacturonan II. Furthermore, these lines display reduced L-fucose content in N-glycan structures accompanied by severe developmental growth defects. We conclude that GFT1 is the major nucleotide sugar transporter for import of GDP-L-fucose into the Golgi andmore » is required for proper plant growth and development.« less
Nagy, R; Wang, H; Albrecht, B; Wieczorek, D; Gillessen-Kaesbach, G; Haan, E; Meinecke, P; de la Chapelle, A; Westman, J A
2012-08-01
Microcephalic osteodysplastic primordial dwarfism type I (MOPD I) is a rare autosomal recessive developmental disorder characterized by extreme intrauterine growth retardation, severe microcephaly, central nervous system abnormalities, dysmorphic facial features, skin abnormalities, skeletal changes, limb deformations, and early death. Recently, mutations in the RNU4ATAC gene, which encodes U4atac, a small nuclear RNA that is a crucial component of the minor spliceosome, were found to cause MOPD I. MOPD I is the first disease known to be associated with a defect in small nuclear RNAs. We describe here the clinical and molecular data for 17 cases of MOPD I, including 15 previously unreported cases, all carrying biallelic mutations in the RNU4ATAC gene. © 2011 John Wiley & Sons A/S.
The Arabidopsis Golgi-localized GDP-L-fucose transporter is required for plant development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rautengarten, Carsten; Ebert, Berit; Liu, Lifeng
Nucleotide sugar transport across Golgi membranes is essential for the luminal biosynthesis of glycan structures. Here we identify GDP-fucose transporter 1 (GFT1), an Arabidopsis nucleotide sugar transporter that translocates GDP-L-fucose into the Golgi lumen. Using proteo-liposome-based transport assays, we show that GFT preferentially transports GDP-L-fucose over other nucleotide sugars in vitro, while GFT1-silenced plants are almost devoid of L-fucose in cell wall-derived xyloglucan and rhamnogalacturonan II. Furthermore, these lines display reduced L-fucose content in N-glycan structures accompanied by severe developmental growth defects. We conclude that GFT1 is the major nucleotide sugar transporter for import of GDP-L-fucose into the Golgi andmore » is required for proper plant growth and development.« less
The Arabidopsis Golgi-localized GDP-L-fucose transporter is required for plant development
Rautengarten, Carsten; Ebert, Berit; Liu, Lifeng; Stonebloom, Solomon; Smith-Moritz, Andreia M.; Pauly, Markus; Orellana, Ariel; Scheller, Henrik Vibe; Heazlewood, Joshua L.
2016-01-01
Nucleotide sugar transport across Golgi membranes is essential for the luminal biosynthesis of glycan structures. Here we identify GDP-fucose transporter 1 (GFT1), an Arabidopsis nucleotide sugar transporter that translocates GDP-L-fucose into the Golgi lumen. Using proteo-liposome-based transport assays, we show that GFT preferentially transports GDP-L-fucose over other nucleotide sugars in vitro, while GFT1-silenced plants are almost devoid of L-fucose in cell wall-derived xyloglucan and rhamnogalacturonan II. Furthermore, these lines display reduced L-fucose content in N-glycan structures accompanied by severe developmental growth defects. We conclude that GFT1 is the major nucleotide sugar transporter for import of GDP-L-fucose into the Golgi and is required for proper plant growth and development. PMID:27381418
The Arabidopsis Golgi-localized GDP-L-fucose transporter is required for plant development.
Rautengarten, Carsten; Ebert, Berit; Liu, Lifeng; Stonebloom, Solomon; Smith-Moritz, Andreia M; Pauly, Markus; Orellana, Ariel; Scheller, Henrik Vibe; Heazlewood, Joshua L
2016-07-06
Nucleotide sugar transport across Golgi membranes is essential for the luminal biosynthesis of glycan structures. Here we identify GDP-fucose transporter 1 (GFT1), an Arabidopsis nucleotide sugar transporter that translocates GDP-L-fucose into the Golgi lumen. Using proteo-liposome-based transport assays, we show that GFT preferentially transports GDP-L-fucose over other nucleotide sugars in vitro, while GFT1-silenced plants are almost devoid of L-fucose in cell wall-derived xyloglucan and rhamnogalacturonan II. Furthermore, these lines display reduced L-fucose content in N-glycan structures accompanied by severe developmental growth defects. We conclude that GFT1 is the major nucleotide sugar transporter for import of GDP-L-fucose into the Golgi and is required for proper plant growth and development.
Intellectual Profiles in KBG-Syndrome: A Wechsler Based Case-Control Study
van Dongen, Linde C. M.; Wingbermühle, Ellen; Oomens, Wouter; Bos-Roubos, Anja G.; Ockeloen, Charlotte W.; Kleefstra, Tjitske; Egger, Jos I. M.
2017-01-01
KBG syndrome is a neurodevelopmental disorder (NDD) caused by loss-of-function of the ANKRD11 gene. The core phenotype comprises developmental delay (DD)/ intellectual disability (ID) and several specific facial dysmorphisms. In addition, both ADHD- and ASD-related symptoms have been mentioned. For the correct understanding of these developmental and behavioral characteristics however, it is of great importance to apply objective measures, which seldom has been done in patients with KBG syndrome. In this study, intelligence profiles of patients with KBG syndrome (n = 18) were compared with a control group comprising patients with NDD caused by various other genetic defects (n = 17), by means of the Wechsler scales. These scales were also used to measure speed of information processing, working memory, verbal comprehension and perceptual reasoning. No significant differences were found in the global level of intelligence of patients with KBG syndrome as compared to the patient genetic control group. The same was true for Wechsler subtest results. Hence, behavioral problems associated with KBG syndrome cannot directly be related to or explained by a specific intelligence profile. Instead, specific assessment of neurocognitive functions should be performed to clarify the putative behavioral problems as observed in this syndrome. PMID:29311865
Cystoid edema, neovascularization and inflammatory processes in the murine Norrin-deficient retina.
Beck, Susanne C; Karlstetter, Marcus; Garcia Garrido, Marina; Feng, Yuxi; Dannhausen, Katharina; Mühlfriedel, Regine; Sothilingam, Vithiyanjali; Seebauer, Britta; Berger, Wolfgang; Hammes, Hans-Peter; Seeliger, Mathias W; Langmann, Thomas
2018-04-13
Mutations in the Norrin (NDP) gene cause severe developmental blood vessel defects in the retina leading to congenital blindness. In the retina of Ndph-knockout mice only the superficial capillary network develops. Here, a detailed characterization of this mouse model at late stages of the disease using in vivo retinal imaging revealed cystoid structures that closely resemble the ovoid cysts in the inner nuclear layer of the human retina with cystoid macular edema (CME). In human CME an involvement of Müller glia cells is hypothesized. In Ndph-knockout retinae we could demonstrate that activated Müller cells were located around and within these cystoid spaces. In addition, we observed extensive activation of retinal microglia and development of neovascularization. Furthermore, ex vivo analyses detected extravasation of monocytic cells suggesting a breakdown of the blood retina barrier. Thus, we could demonstrate that also in the developmental retinal vascular pathology present in the Ndph-knockout mouse inflammatory processes are active and may contribute to further retinal degeneration. This observation delivers a new perspective for curative treatments of retinal vasculopathies. Modulation of inflammatory responses might reduce the symptoms and improve visual acuity in these diseases.
Parker, Matthew O; Evans, Alexandra M-D; Brock, Alistair J; Combe, Fraser J; Teh, Muy-Teck; Brennan, Caroline H
2016-01-01
Exposure to alcohol during early central nervous system development has been shown variously to affect aspects of physiological and behavioural development. In extreme cases, this can extend to craniofacial defects, severe developmental delay and mental retardation. At more moderate levels, subtle differences in brain morphology and behaviour have been observed. One clear effect of developmental alcohol exposure is an increase in the propensity to develop alcoholism and other addictions. The mechanisms by which this occurs, however, are not currently understood. In this study, we tested the hypothesis that adult zebrafish chronically exposed to moderate levels of ethanol during early brain ontogenesis would show an increase in conditioned place preference for alcohol and an increased propensity towards habit formation, a key component of drug addiction in humans. We found support for both of these hypotheses and found that the exposed fish had changes in mRNA expression patterns for dopamine receptor, nicotinic acetylcholine receptor and μ-opioid receptor encoding genes. Collectively, these data show an explicit link between the increased proclivity for addiction and addiction-related behaviour following exposure to ethanol during early brain development and alterations in the neural circuits underlying habit learning. © 2014 Society for the Study of Addiction.
M'Angale, P Githure; Staveley, Brian E
2017-03-01
Mutations in parkin (PARK2) and Pink1 (PARK6) are responsible for autosomal recessive forms of early onset Parkinson's disease (PD). Attributed to the failure of neurons to clear dysfunctional mitochondria, loss of gene expression leads to loss of nigrostriatal neurons. The Pink1/parkin pathway plays a role in the quality control mechanism aimed at eliminating defective mitochondria, and the failure of this mechanism results in a reduced lifespan and impaired locomotor ability, among other phenotypes. Inhibition of parkin or Pink1 through the induction of stable RNAi transgene in the Ddc-Gal4-expressing neurons results in such phenotypes to model PD. To further evaluate the effects of the overexpression of the Bcl-2 homologue Buffy, we analysed lifespan and climbing ability in both parkin-RNAi- and Pink1-RNAi-expressing flies. In addition, the effect of Buffy overexpression upon parkin-induced developmental eye defects was examined through GMR-Gal4-dependent expression. Curiously, Buffy overexpression produced very different effects: the parkin-induced phenotypes were enhanced, whereas the Pink1-enhanced phenotypes were suppressed. Interestingly, the overexpression of Buffy along with the inhibition of parkin in the neuron-rich eye results in the suppression of the developmental eye defects.
Cadmium affects muscle type development and axon growth in zebrafish embryonic somitogenesis.
Hen Chow, Elly Suk; Cheng, Shuk Han
2003-05-01
We have previously reported that exposure to cadmium during zebrafish embryonic development caused morphological malformations of organs and ectopic expression of genes involved in regulating developmental process. One of the most common developmental defects observed was altered axial curvature resulting from defects in the myotomes of the somites. In this study, we investigated the mechanisms of cadmium-induced toxicity in zebrafish somitogenesis. We showed that the critical period of exposure was the gastrulation period, which actually preceded the formation of the first morphologically distinct somites. The somites thus formed lost the typical chevron V-shape and are packed disorderly. The myogenic lineage commitment of the axial mesodermal cells was not affected, as the myogenic regulatory transcription factors were expressed normally. There were, however, losses of fast and slow muscle fibers in the myotomes. The innervation of the muscle blocks by spinal motoneurons is an important process of the somitogenesis. Both primary and secondary motoneurons appear to form normally while the axon growth is affected in cadmium-treated embryos. The notochord, which is essential in the patterning of the somites and the central nervous system, showed abnormal morphological features and failed to extend to the tail region. Taken together, it appears that cadmium exposure led to abnormal somite patterning of the muscle fibers and defects in axonogenesis.
Distinct cerebellar foliation anomalies in a CHD7 haploinsufficient mouse model of CHARGE syndrome.
Whittaker, Danielle E; Kasah, Sahrunizam; Donovan, Alex P A; Ellegood, Jacob; Riegman, Kimberley L H; Volk, Holger A; McGonnell, Imelda; Lerch, Jason P; Basson, M Albert
2017-12-01
Mutations in the gene encoding the ATP dependent chromatin-remodeling factor, CHD7 are the major cause of CHARGE (Coloboma, Heart defects, Atresia of the choanae, Retarded growth and development, Genital-urinary anomalies, and Ear defects) syndrome. Neurodevelopmental defects and a range of neurological signs have been identified in individuals with CHARGE syndrome, including developmental delay, lack of coordination, intellectual disability, and autistic traits. We previously identified cerebellar vermis hypoplasia and abnormal cerebellar foliation in individuals with CHARGE syndrome. Here, we report mild cerebellar hypoplasia and distinct cerebellar foliation anomalies in a Chd7 haploinsufficient mouse model. We describe specific alterations in the precise spatio-temporal sequence of fissure formation during perinatal cerebellar development responsible for these foliation anomalies. The altered cerebellar foliation pattern in Chd7 haploinsufficient mice show some similarities to those reported in mice with altered Engrailed, Fgf8 or Zic1 gene expression and we propose that mutations or polymorphisms in these genes may modify the cerebellar phenotype in CHARGE syndrome. Our findings in a mouse model of CHARGE syndrome indicate that a careful analysis of cerebellar foliation may be warranted in patients with CHARGE syndrome, particularly in patients with cerebellar hypoplasia and developmental delay. © 2017 The Authors. American Journal of Medical Genetics Part C Published by Wiley Periodicals, Inc.
Vesicoureteral reflux and the extracellular matrix connection
Tokhmafshan, Fatima; Brophy, Patrick D.; Gbadegesin, Rasheed A.
2017-01-01
Primary vesicoureteral reflux (VUR) is a common pediatric condition due to a developmental defect in the ureterovesical junction. The prevalence of VUR among individuals with connective tissue disorders, as well as the importance of the ureter and bladder wall musculature for the anti-reflux mechanism, suggest that defects in the extracellular matrix (ECM) within the ureterovesical junction may result in VUR. This review will discuss the function of the smooth muscle and its supporting ECM microenvironment with respect to VUR, and explore the association of VUR with mutations in ECM-related genes. PMID:27139901
Some epidemiological studies report associations between drinking water disinfection by-products (DBPs) and adverse reproductive and developmental effects, e.g., low birth weight, spontaneous abortion, stillbirth, and birth defects. To address concerns raised by these studies, w...
Some epidemiological studies report associations between drinking water disinfection by-products (DBPs) and adverse reproductive and developmental effects, e.g., low birth weight, spontaneous abortion, stillbirth, and birth defects. To address concerns raised by these studies, w...
Educating Health Professionals about Fetal Alcohol Spectrum Disorders
ERIC Educational Resources Information Center
American Journal of Health Education, 2007
2007-01-01
Prenatal exposure to alcohol is a leading preventable cause of birth defects and developmental disabilities. Individuals exposed to alcohol during fetal development can have physical, mental, behavioral, and learning disabilities, with lifelong implications. These conditions are known as fetal alcohol spectrum disorders (FASDs). Health care…
Conditional deletion of SLP-76 in mature T cells abrogates peripheral immune responses1
Wu, Gregory F.; Corbo, Evann; Schmidt, Michelle; Smith-Garvin, Jennifer E.; Riese, Matthew J.; Jordan, Martha S.; Laufer, Terri M.; Brown, Eric J.; Maltzman, Jonathan S.
2011-01-01
SUMMARY The adaptor protein Src homology 2 domain-containing leukocyte-specific protein of 76 kDa (SLP-76) is central to the organization of intracellular signaling downstream of the T cell receptor (TCR). Evaluation of its role in mature, primary T cells has been hampered by developmental defects that occur in the absence of wild-type SLP-76 protein in thymocytes. Following tamoxifen-regulated conditional deletion of SLP-76, mature, antigen-inexperienced T cells maintain normal TCR surface expression but fail to transduce TCR generated signals. Conditionally deficient T cells fail to proliferate in response to antigenic stimulation or a lymphopenic environment. Mice with induced deletion of SLP-76 are resistant to induction of the CD4+ T cell mediated autoimmune disease experimental autoimmune encephalomyelitis. Our findings demonstrate the critical role of SLP-76-mediated signaling in initiating T cell-directed immune responses both in vitro and in vivo and highlight the ability to analyze signaling processes in mature T cells in the absence of developmental defects. PMID:21469089
Zebrafish embryo developmental toxicology assay.
Panzica-Kelly, Julieta M; Zhang, Cindy X; Augustine-Rauch, Karen
2012-01-01
A promising in vitro zebrafish developmental toxicology assay was generated to test compounds for their teratogenic potential. The assay's predictivity is approximately 87% in AB strain fish (Brannen KC et al., Birth Defects Res B Dev Reprod Toxicol 89:66-77, 2010). The procedure entails exposing dechorionated gastrulation-stage embryos to a range of compound concentrations for 5 days throughout embryonic and larva development. The larvae are evaluated for viability in order to identify an LC25 (the compound concentration in which 25% lethality is observed) and morphological anomalies using a numerical score system to identify the NOAEL (no observed adverse effect level). These values are used to calculate the teratogenic index (LC25/NOAEL ratio) of each compound. If the teratogenic index is equal to or greater than 10 then the compound is classified as a teratogen, and if the ratio is less than 10 then the compound is classified as a nonteratogen (Brannen KC et al., Birth Defects Res B Dev Reprod Toxicol 89:66-77, 2010).
Mechanical analysis of a heat-shock induced developmental defect
NASA Astrophysics Data System (ADS)
Crews, Sarah M.; McCleery, W. Tyler; Hutson, M. Shane
2014-03-01
Embryonic development in Drosophila is a complex process involving coordinated movements of mechanically interacting tissues. Perturbing this system with a transient heat shock can result in a number of developmental defects. In particular, a heat shock applied during the earliest morphogenetic movements of gastrulation can lead to apparent recovery, but then subsequent morphogenetic failure 5-6 hours later during germ band retraction. The process of germ band retraction requires an intact amnioserosa - a single layered extra-embryonic epithelial tissue - and heat shock at gastrulation can induce the later opening of holes in the amnioserosa. These holes are highly correlated with failures of germ band retraction. These holes could be caused by a combination of mechanical weakness in the amnioserosa or local increases in mechanical stress. Here, we assess the role of mechanical stress using confocal imaging to compare cell and tissue morphology in the amnioserosa of normal and heat-shocked embryos and laser hole drilling to map the stress field around the times and locations at which heat-shock induced holes open.
Eye Development Genes and Known Syndromes
Slavotinek, Anne M.
2011-01-01
Anophthalmia and microphthalmia (A/M) are significant eye defects because they can have profound effects on visual acuity. A/M is associated with non-ocular abnormalities in an estimated 33–95% of cases and around 25% of patients have an underlying genetic syndrome that is diagnosable. Syndrome recognition is important for targeted molecular genetic testing, prognosis and for counseling regarding recurrence risks. This review provides clinical and molecular information for several of the commonest syndromes associated with A/M: Anophthalmia-Esophageal-Genital syndrome, caused by SOX2 mutations, Anophthalmia and pituitary abnormalities caused by OTX2 mutations, Matthew-Wood syndrome caused by STRA6 mutations, Oculocardiafaciodental syndrome and Lenz microphthalmia caused by BCOR mutations, Microphthalmia Linear Skin pigmentation syndrome caused by HCCS mutations, Anophthalmia, pituitary abnormalities, polysyndactyly caused by BMP4 mutations and Waardenburg anophthalmia caused by mutations in SMOC1. In addition, we briefly discuss the ocular and extraocular phenotypes associated with several other important eye developmental genes, including GDF6, VSX2, RAX, SHH, SIX6 and PAX6. PMID:22005280
Carta, Claudio; Pantaleoni, Francesca; Bocchinfuso, Gianfranco; Stella, Lorenzo; Vasta, Isabella; Sarkozy, Anna; Digilio, Cristina; Palleschi, Antonio; Pizzuti, Antonio; Grammatico, Paola; Zampino, Giuseppe; Dallapiccola, Bruno; Gelb, Bruce D.; Tartaglia, Marco
2006-01-01
Noonan syndrome (NS) is a developmental disorder characterized by short stature, facial dysmorphia, congenital heart disease, and multiple skeletal and hematologic defects. NS is an autosomal dominant trait and is genetically heterogeneous. Gain of function of SHP-2, a protein tyrosine phosphatase that positively modulates RAS signaling, is observed in nearly 50% of affected individuals. Here, we report the identification of heterozygous KRAS gene mutations in two subjects exhibiting a severe NS phenotype with features overlapping those of cardiofaciocutaneous and Costello syndromes. Both mutations were de novo and affected exon 6, which encodes the C-terminal portion of KRAS isoform B but does not contribute to KRAS isoform A. Structural analysis indicated that both substitutions (Val152Gly and Asp153Val) perturb the conformation of the guanine ring–binding pocket of the protein, predicting an increase in the guanine diphosphate/guanine triphosphate (GTP) dissociation rate that would favor GTP binding to the KRASB isoform and bypass the requirement for a guanine nucleotide exchange factor. PMID:16773572
Early environmental therapy rescues brain development in a mouse model of Down syndrome.
Begenisic, Tatjana; Sansevero, Gabriele; Baroncelli, Laura; Cioni, Giovanni; Sale, Alessandro
2015-10-01
Down syndrome (DS), the most common genetic disorder associated with intellectual disabilities, is an untreatable condition characterized by a number of developmental defects and permanent deficits in the adulthood. Ts65Dn mice, the major animal model for DS, display severe cognitive and synaptic plasticity defects closely resembling the human phenotype. Here, we employed a multidisciplinary approach to investigate, for the first time in developing Ts65Dn mice, the effects elicited by early environmental enrichment (EE) on brain maturation and function. We report that exposure to EE resulted in a robust increase in maternal care levels displayed by Ts65Dn mothers and led to a normalization of declarative memory abilities and hippocampal plasticity in trisomic offspring. The positive effects of EE on Ts65Dn phenotype were not limited to the cognitive domain, but also included a rescue of visual system maturation. The beneficial EE effects were accompanied by increased BDNF and correction of over-expression of the GABA vesicular transporter vGAT. These findings highlight the beneficial impact of early environmental stimuli and their potential for application in the treatment of major functional deficits in children with DS. Copyright © 2015 Elsevier Inc. All rights reserved.
The ciliopathy gene Rpgrip1l is essential for hair follicle development.
Chen, Jiang; Laclef, Christine; Moncayo, Alejandra; Snedecor, Elizabeth R; Yang, Ning; Li, Li; Takemaru, Ken-Ichi; Paus, Ralf; Schneider-Maunoury, Sylvie; Clark, Richard A
2015-03-01
The primary cilium is essential for skin morphogenesis through regulating the Notch, Wnt, and hedgehog signaling pathways. Prior studies on the functions of primary cilia in the skin were based on the investigations of genes that are essential for cilium formation. However, none of these ciliogenic genes has been linked to ciliopathy, a group of disorders caused by abnormal formation or function of cilia. To determine whether there is a genetic and molecular link between ciliopathies and skin morphogenesis, we investigated the role of RPGRIP1L, a gene mutated in Joubert (JBTS) and Meckel (MKS) syndromes, two severe forms of ciliopathy, in the context of skin development. We found that RPGRIP1L is essential for hair follicle morphogenesis. Specifically, disrupting the Rpgrip1l gene in mice resulted in reduced proliferation and differentiation of follicular keratinocytes, leading to hair follicle developmental defects. These defects were associated with significantly decreased primary cilium formation and attenuated hedgehog signaling. In contrast, we found that hair follicle induction and polarization and the development of interfollicular epidermis were unaffected. This study indicates that RPGRIP1L, a ciliopathy gene, is essential for hair follicle morphogenesis likely through regulating primary cilia formation and the hedgehog signaling pathway.
Notch3 is necessary for neuronal differentiation and maturation in the adult spinal cord
Rusanescu, Gabriel; Mao, Jianren
2014-01-01
Notch receptors are key regulators of nervous system development and promoters of neural stem cells renewal and proliferation. Defects in the expression of Notch genes result in severe, often lethal developmental abnormalities. Notch3 is generally thought to have a similar proliferative, anti-differentiation and gliogenic role to Notch1. However, in some cases, Notch3 has an opposite, pro-differentiation effect. Here, we show that Notch3 segregates from Notch1 and is transiently expressed in adult rat and mouse spinal cord neuron precursors and immature neurons. This suggests that during the differentiation of adult neural progenitor cells, Notch signalling may follow a modified version of the classical lateral inhibition model, involving the segregation of individual Notch receptors. Notch3 knockout mice, otherwise neurologically normal, are characterized by a reduced number of mature inhibitory interneurons and an increased number of highly excitable immature neurons in spinal cord laminae I–II. As a result, these mice have permanently lower nociceptive thresholds, similar to chronic pain. These results suggest that defective neuronal differentiation, for example as a result of reduced Notch3 expression or activation, may underlie human cases of intractable chronic pain, such as fibromyalgia and neuropathic pain. PMID:25164209
Brassinosteroids Are Master Regulators of Gibberellin Biosynthesis in Arabidopsis
Unterholzner, Simon J.; Rozhon, Wilfried; Papacek, Michael; Ciomas, Jennifer; Lange, Theo; Kugler, Karl G.; Mayer, Klaus F.; Sieberer, Tobias; Poppenberger, Brigitte
2015-01-01
Plant growth and development are highly regulated processes that are coordinated by hormones including the brassinosteroids (BRs), a group of steroids with structural similarity to steroid hormones of mammals. Although it is well understood how BRs are produced and how their signals are transduced, BR targets, which directly confer the hormone’s growth-promoting effects, have remained largely elusive. Here, we show that BRs regulate the biosynthesis of gibberellins (GAs), another class of growth-promoting hormones, in Arabidopsis thaliana. We reveal that Arabidopsis mutants deficient in BR signaling are severely impaired in the production of bioactive GA, which is correlated with defective GA biosynthetic gene expression. Expression of the key GA biosynthesis gene GA20ox1 in the BR signaling mutant bri1-301 rescues many of its developmental defects. We provide evidence that supports a model in which the BR-regulated transcription factor BES1 binds to a regulatory element in promoters of GA biosynthesis genes in a BR-induced manner to control their expression. In summary, our study underscores a role of BRs as master regulators of GA biosynthesis and shows that this function is of major relevance for the growth and development of vascular plants. PMID:26243314
So, Joyce; Müller, Ines; Kunath, Melanie; Herrmann, Susanne; Ullmann, Reinhard; Schweiger, Susann
2008-01-01
Opitz G/BBB syndrome (OS) is a congenital midline malformation syndrome characterized by hypertelorism, hypospadias, cleft lip/palate, laryngotracheoesophageal abnormalities, imperforate anus, developmental delay and cardiac defects. The X-linked form is caused by mutations in the MID1 gene, while no gene has yet been identified for the autosomal dominant form. Here, we report on a 15-year-old boy who was referred for MID1 mutation analysis with findings typical of OS, including apparent hypertelorism, hypospadias, a history of feeding difficulties, dysphagia secondary to esophageal arteria lusoria, growth retardation and developmental delay. No MID1 mutation was found, but subsequent sub-megabase resolution array CGH unexpectedly documented a 2.34 Mb terminal 4p deletion, suggesting a diagnosis of WHS, and a duplication in Xp22.31. Wolf-Hirschhorn syndrome (WHS) is a contiguous gene deletion syndrome involving terminal chromosome 4p deletions, in particular 4p16.3. WHS is characterized by typical facial appearance ("Greek helmet facies"), mental retardation, congenital hypotonia, and growth retardation. While the severity of developmental delay in this patient supports the diagnosis of WHS rather than OS, this case illustrates the striking similarities of clinical findings in seemingly unrelated syndromes, suggesting common or interacting pathways at the molecular and pathogenetic level. This is the first report of arteria lusoria (esophageal vascular ring) in a patient with WHS. (c) 2007 Wiley-Liss, Inc.
Anderson, Robert H; Spicer, Diane E; Loomba, Rohit
2018-02-06
Pediatric cardiologists treating patients with severe congenital cardiac defects define "visceral heterotaxy" on the basis of isomerism of the atrial appendages. The isomeric features represent an obvious manifestation of disruption of left-right asymmetry during embryonic development. Thus, there are two subsets of individuals within the overall syndrome, with features of either right or left isomerism. Within the heart, it is only the atrial appendages that are truly isomeric. The remainder of the cardiac components shows variable morphology, as does the arrangement of the remaining body organs. Order is provided in this potentially chaotic arrangement simply by describing the specific features of each of the systems. These features as defined by clinicians, however, seem less well recognized by those investigating the developmental origins of the disruption of symmetry. Developmental biologists place much greater emphasis on ventricular looping. Although the direction of the loop can certainly be interpreted as representing an example of asymmetry, it is not comparable to the isomeric features that underscore the clinical syndromes. This is because, thus far, there is no evidence of ventricular isomerism, with the ventricles distinguished one from the other on the basis of their disparate anatomical features. In similar fashion, some consider transposition to represent abnormal lateralization, but again, clinical diagnosis depends on recognition of the lateralized features. In this review, therefore, we discuss the key questions that currently underscore the mismatch in the approaches to "lateralization" as taken by clinicians and developmental biologists.
Label-free in vivo imaging of Drosophila melanogaster by multiphoton microscopy
NASA Astrophysics Data System (ADS)
Lin, Chiao-Ying; Hovhannisyan, Vladimir; Wu, June-Tai; Lin, Sung-Jan; Lin, Chii-Wann; Chen, Jyh-Horng; Dong, Chen-Yuan
2008-02-01
The fruit fly Drosophila melanogaster is one of the most valuable organisms in genetic and developmental biology studies. Drosophila is a small organism with a short life cycle, and is inexpensive and easy to maintain. The entire genome of Drosophila has recently been sequenced (cite the reference). These advantages make fruit fly an attractive model organism for biomedical researches. Unlike humans, Drosophila can be subjected to genetic manipulation with relative ease. Originally, Drosophila was mostly used in classical genetics studies. In the model era of molecular biology, the fruit fly has become a model organ for developmental biology researches. In the past, numerous molecularly modified mutants with well defined genetic defects affecting different aspects of the developmental processes have been identified and studied. However, traditionally, the developmental defects of the mutant flies are mostly examined in isolated fixed tissues which preclude the observation of the dynamic interaction of the different cell types and the extracellular matrix. Therefore, the ability to image different organelles of the fruit fly without extrinsic labeling is invaluable for Drosophila biology. In this work, we successfully acquire in vivo images of both developing muscles and axons of motor neurons in the three larval stages by using the minimially invasive imaging modality of multiphoton (SHG) microscopy. We found that while SHG imaging is useful in revealing the muscular architecture of the developing larva, it is the autofluorescence signal that allows label-free imaging of various organelles to be achieved. Our results demonstrate that multiphoton imaging is a powerful technique for investigation the development of Drosophila.
Weber, Ursula; Rodriguez, Estefania; Martignetti, John; Mlodzik, Marek
2014-01-01
Krüppel like factors (KLFs) are conserved transcription factors that have been implicated in many developmental processes including differentiation, organ patterning, or regulation of stem cell pluripotency. We report the generation and analysis of loss-of-function mutants of Drosophila Klf6/7, the luna gene. We demonstrate that luna mutants are associated with very early embryonic defects prior to cellularization at the syncytial stage and cause DNA separation defects during the rapid mitotic cycles resulting in un-coupled DNA and centrosome cycles. These defects manifest themselves, both in animals that are maternally homozygous and heterozygous mutant. Surprisingly, luna is only required during the syncytial stages and not later in development, suggesting that the DNA segregation defect is linked to centrosomes, since centrosomes are dispensable for later cell divisions. PMID:24915236
KIAA1109 Variants Are Associated with a Severe Disorder of Brain Development and Arthrogryposis.
Gueneau, Lucie; Fish, Richard J; Shamseldin, Hanan E; Voisin, Norine; Tran Mau-Them, Frédéric; Preiksaitiene, Egle; Monroe, Glen R; Lai, Angeline; Putoux, Audrey; Allias, Fabienne; Ambusaidi, Qamariya; Ambrozaityte, Laima; Cimbalistienė, Loreta; Delafontaine, Julien; Guex, Nicolas; Hashem, Mais; Kurdi, Wesam; Jamuar, Saumya Shekhar; Ying, Lim J; Bonnard, Carine; Pippucci, Tommaso; Pradervand, Sylvain; Roechert, Bernd; van Hasselt, Peter M; Wiederkehr, Michaël; Wright, Caroline F; Xenarios, Ioannis; van Haaften, Gijs; Shaw-Smith, Charles; Schindewolf, Erica M; Neerman-Arbez, Marguerite; Sanlaville, Damien; Lesca, Gaëtan; Guibaud, Laurent; Reversade, Bruno; Chelly, Jamel; Kučinskas, Vaidutis; Alkuraya, Fowzan S; Reymond, Alexandre
2018-01-04
Whole-exome and targeted sequencing of 13 individuals from 10 unrelated families with overlapping clinical manifestations identified loss-of-function and missense variants in KIAA1109 allowing delineation of an autosomal-recessive multi-system syndrome, which we suggest to name Alkuraya-Kučinskas syndrome (MIM 617822). Shared phenotypic features representing the cardinal characteristics of this syndrome combine brain atrophy with clubfoot and arthrogryposis. Affected individuals present with cerebral parenchymal underdevelopment, ranging from major cerebral parenchymal thinning with lissencephalic aspect to moderate parenchymal rarefaction, severe to mild ventriculomegaly, cerebellar hypoplasia with brainstem dysgenesis, and cardiac and ophthalmologic anomalies, such as microphthalmia and cataract. Severe loss-of-function cases were incompatible with life, whereas those individuals with milder missense variants presented with severe global developmental delay, syndactyly of 2 nd and 3 rd toes, and severe muscle hypotonia resulting in incapacity to stand without support. Consistent with a causative role for KIAA1109 loss-of-function/hypomorphic variants in this syndrome, knockdowns of the zebrafish orthologous gene resulted in embryos with hydrocephaly and abnormally curved notochords and overall body shape, whereas published knockouts of the fruit fly and mouse orthologous genes resulted in lethality or severe neurological defects reminiscent of the probands' features. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Kaplan, Rebecca E W; Chen, Yutao; Moore, Brad T; Jordan, James M; Maxwell, Colin S; Schindler, Adam J; Baugh, L Ryan
2015-12-01
Nutrient availability has profound influence on development. In the nematode C. elegans, nutrient availability governs post-embryonic development. L1-stage larvae remain in a state of developmental arrest after hatching until they feed. This "L1 arrest" (or "L1 diapause") is associated with increased stress resistance, supporting starvation survival. Loss of the transcription factor daf-16/FOXO, an effector of insulin/IGF signaling, results in arrest-defective and starvation-sensitive phenotypes. We show that daf-16/FOXO regulates L1 arrest cell-nonautonomously, suggesting that insulin/IGF signaling regulates at least one additional signaling pathway. We used mRNA-seq to identify candidate signaling molecules affected by daf-16/FOXO during L1 arrest. dbl-1/TGF-β, a ligand for the Sma/Mab pathway, daf-12/NHR and daf-36/oxygenase, an upstream component of the daf-12 steroid hormone signaling pathway, were up-regulated during L1 arrest in a daf-16/FOXO mutant. Using genetic epistasis analysis, we show that dbl-1/TGF-β and daf-12/NHR steroid hormone signaling pathways are required for the daf-16/FOXO arrest-defective phenotype, suggesting that daf-16/FOXO represses dbl-1/TGF-β, daf-12/NHR and daf-36/oxygenase. The dbl-1/TGF-β and daf-12/NHR pathways have not previously been shown to affect L1 development, but we found that disruption of these pathways delayed L1 development in fed larvae, consistent with these pathways promoting development in starved daf-16/FOXO mutants. Though the dbl-1/TGF-β and daf-12/NHR pathways are epistatic to daf-16/FOXO for the arrest-defective phenotype, disruption of these pathways does not suppress starvation sensitivity of daf-16/FOXO mutants. This observation uncouples starvation survival from developmental arrest, indicating that DAF-16/FOXO targets distinct effectors for each phenotype and revealing that inappropriate development during starvation does not cause the early demise of daf-16/FOXO mutants. Overall, this study shows that daf-16/FOXO promotes developmental arrest cell-nonautonomously by repressing pathways that promote larval development.
Moore, Brad T.; Jordan, James M.; Maxwell, Colin S.; Schindler, Adam J.; Baugh, L. Ryan
2015-01-01
Nutrient availability has profound influence on development. In the nematode C. elegans, nutrient availability governs post-embryonic development. L1-stage larvae remain in a state of developmental arrest after hatching until they feed. This “L1 arrest” (or "L1 diapause") is associated with increased stress resistance, supporting starvation survival. Loss of the transcription factor daf-16/FOXO, an effector of insulin/IGF signaling, results in arrest-defective and starvation-sensitive phenotypes. We show that daf-16/FOXO regulates L1 arrest cell-nonautonomously, suggesting that insulin/IGF signaling regulates at least one additional signaling pathway. We used mRNA-seq to identify candidate signaling molecules affected by daf-16/FOXO during L1 arrest. dbl-1/TGF-β, a ligand for the Sma/Mab pathway, daf-12/NHR and daf-36/oxygenase, an upstream component of the daf-12 steroid hormone signaling pathway, were up-regulated during L1 arrest in a daf-16/FOXO mutant. Using genetic epistasis analysis, we show that dbl-1/TGF-β and daf-12/NHR steroid hormone signaling pathways are required for the daf-16/FOXO arrest-defective phenotype, suggesting that daf-16/FOXO represses dbl-1/TGF-β, daf-12/NHR and daf-36/oxygenase. The dbl-1/TGF-β and daf-12/NHR pathways have not previously been shown to affect L1 development, but we found that disruption of these pathways delayed L1 development in fed larvae, consistent with these pathways promoting development in starved daf-16/FOXO mutants. Though the dbl-1/TGF-β and daf-12/NHR pathways are epistatic to daf-16/FOXO for the arrest-defective phenotype, disruption of these pathways does not suppress starvation sensitivity of daf-16/FOXO mutants. This observation uncouples starvation survival from developmental arrest, indicating that DAF-16/FOXO targets distinct effectors for each phenotype and revealing that inappropriate development during starvation does not cause the early demise of daf-16/FOXO mutants. Overall, this study shows that daf-16/FOXO promotes developmental arrest cell-nonautonomously by repressing pathways that promote larval development. PMID:26656736
78 FR 18986 - Proposed Data Collections Submitted for Public Comment and Recommendations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-28
... DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention [60Day-13-0733... on proposed data collection projects, the Centers for Disease Control and Prevention (CDC) will... Center on Birth Defects and Developmental Disabilities (NCBDDD), Centers for Disease Control and...
Garry, Vincent F; Harkins, Mary E; Erickson, Leanna L; Long-Simpson, Leslie K; Holland, Seth E; Burroughs, Barbara L
2002-01-01
We previously demonstrated that the frequency of birth defects among children of residents of the Red River Valley (RRV), Minnesota, USA, was significantly higher than in other major agricultural regions of the state during the years 1989-1991, with children born to male pesticide applicators having the highest risk. The present, smaller cross-sectional study of 695 families and 1,532 children, conducted during 1997-1998, provides a more detailed examination of reproductive health outcomes in farm families ascertained from parent-reported birth defects. In the present study, in the first year of life, the birth defect rate was 31.3 births per 1,000, with 83% of the total reported birth defects confirmed by medical records. Inclusion of children identified with birth or developmental disorders within the first 3 years of life and later led to a rate of 47.0 per 1,000 (72 children from 1,532 live births). Conceptions in spring resulted in significantly more children with birth defects than found in any other season (7.6 vs. 3.7%). Twelve families had more than one child with a birth defect (n = 28 children). Forty-two percent of the children from families with recurrent birth defects were conceived in spring, a significantly higher rate than that for any other season. Three families in the kinships defined contributed a first-degree relative other than a sibling with the same or similar birth defect, consistent with a Mendelian inheritance pattern. The remaining nine families did not follow a Mendelian inheritance pattern. The sex ratio of children with birth defects born to applicator families shows a male predominance (1.75 to 1) across specific pesticide class use and exposure categories exclusive of fungicides. In the fungicide exposure category, normal female births significantly exceed male births (1.25 to 1). Similarly, the proportion of male to female children with birth defects is significantly lower (0.57 to 1; p = 0.02). Adverse neurologic and neurobehavioral developmental effects clustered among the children born to applicators of the fumigant phosphine (odds ratio [OR] = 2.48; confidence interval [CI], 1.2-5.1). Use of the herbicide glyphosate yielded an OR of 3.6 (CI, 1.3-9.6) in the neurobehavioral category. Finally, these studies point out that (a) herbicides applied in the spring may be a factor in the birth defects observed and (b) fungicides can be a significant factor in the determination of sex of the children of the families of the RRV. Thus, two distinct classes of pesticides seem to have adverse effects on different reproductive outcomes. Biologically based confirmatory studies are needed. PMID:12060842
Methionine Biosynthesis is Essential for Infection in the Rice Blast Fungus Magnaporthe oryzae
Gagey, Marie Josèphe; Frelin, Océane; Beffa, Roland; Lebrun, Marc Henri; Droux, Michel
2015-01-01
Methionine is a sulfur amino acid standing at the crossroads of several biosynthetic pathways. In fungi, the last step of methionine biosynthesis is catalyzed by a cobalamine-independent methionine synthase (Met6, EC 2.1.1.14). In the present work, we studied the role of Met6 in the infection process of the rice blast fungus, Magnaporthe oryzae. To this end MET6 null mutants were obtained by targeted gene replacement. On minimum medium, MET6 null mutants were auxotrophic for methionine. Even when grown in presence of excess methionine, these mutants displayed developmental defects, such as reduced mycelium pigmentation, aerial hypha formation and sporulation. They also displayed characteristic metabolic signatures such as increased levels of cysteine, cystathionine, homocysteine, S-adenosylmethionine, S-adenosylhomocysteine while methionine and glutathione levels remained unchanged. These metabolic perturbations were associated with the over-expression of MgCBS1 involved in the reversed transsulfuration pathway that metabolizes homocysteine into cysteine and MgSAM1 and MgSAHH1 involved in the methyl cycle. This suggests a physiological adaptation of M. oryzae to metabolic defects induced by the loss of Met6, in particular an increase in homocysteine levels. Pathogenicity assays showed that MET6 null mutants were non-pathogenic on both barley and rice leaves. These mutants were defective in appressorium-mediated penetration and invasive infectious growth. These pathogenicity defects were rescued by addition of exogenous methionine and S-methylmethionine. These results show that M. oryzae cannot assimilate sufficient methionine from plant tissues and must synthesize this amino acid de novo to fulfill its sulfur amino acid requirement during infection. PMID:25856162
O'Hara, Mackie
2017-05-01
Recently, studies have interpreted regular spacing and average number of perikymata between dental enamel defects in orangutans to reflect seasonal episodes of physiological stress. To estimate the amount of time between developmental defects (enamel hypoplasia), studies have relied on perikymata counts. Unfortunately, perikymata are frequently not continuously visible between defects, significantly reducing data sets. A method is presented here for estimating the number of perikymata between defects using standard perikymata profiles (SPP) that allow the number of perikymata between all pairs of defects across a tooth to be analyzed. The SPP method should allow the entire complement of defects to be analyzed within the context of an individual's crown formation time. The average number of perikymata were established per decile and charted to create male and female Pongo pygmaeus SPPs. The position of the beginning of each defect was recorded for lower canines from males (n = 6) and females (n = 17). The number of perikymata between defects estimated by the SPP was compared to the actual count (where perikymata were continuously visible). The number of perikymata between defects estimated by the SPPs was accurate within three perikymata and highly correlated with the actual counts, significantly increasing the number of analyzable defect pairs. SPPs allow all defect pairs to be included in studies of defect timing, not just those with continuously visible perikymata. Establishing an individual's entire complement of dental defects makes it possible to calculate the regularity (and potential seasonality) of defects. © 2017 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haghighi Poodeh, Saeid, E-mail: saeid.haghighi@oulu.fi; Medical Research Center, Oulu University Hospital, Oulu; Alhonen, Leena
Highlights: • Polyamine pools in embryonic and extraembryonic tissues are developmentally regulated. • Alcohol administration perturbs polyamine levels in the tissues with various patterns. • Total absence of polyamines in the embryo head at 9.5 dpc is critical for development. • The deficiency is associated with reduction in endothelial cell sprouting in the head. • Retarded migration of neural crest cells may cause development of neural tube defect. - Abstract: Introduction: Polyamines play a fundamental role during embryogenesis by regulating cell growth and proliferation and by interacting with RNA, DNA and protein. The polyamine pools are regulated by metabolism andmore » uptake from exogenous sources. The use of certain inhibitors of polyamine synthesis causes similar defects to those seen in alcohol exposure e.g. retarded embryo growth and endothelial cell sprouting. Methods: CD-1 mice received two intraperitoneal injections of 3 g/kg ethanol at 4 h intervals 8.75 days post coitum (dpc). The fetal head, trunk, yolk sac and placenta were collected at 9.5 and 12.5 dpc and polyamine concentrations were determined. Results: No measurable quantity of polyamines could be detected in the embryo head at 9.5 dpc, 12 h after ethanol exposure. Putrescine was not detectable in the trunk of the embryo at that time, whereas polyamines in yolk sac and placenta were at control level. Polyamine deficiency was associated with slow cell growth, reduction in endothelial cell sprouting, an altered pattern of blood vessel network formation and consequently retarded migration of neural crest cells and growth restriction. Discussion: Our results indicate that the polyamine pools in embryonic and extraembryonic tissues are developmentally regulated. Alcohol administration, at the critical stage, perturbs polyamine levels with various patterns, depending on the tissue and its developmental stage. The total absence of polyamines in the embryo head at 9.5 dpc may explain why this stage is so vulnerable to the development of neural tube defect, and growth restriction, the findings previously observed in fetal alcohol syndrome.« less
ERIC Educational Resources Information Center
Ferreri, Summer J.; Plavnick, Joshua B.
2011-01-01
Many children with severe developmental disabilities emit idiosyncratic gestures that may function as verbal operants (Sigafoos et al., 2000). This study examined the effectiveness of a functional analysis methodology to identify the variables responsible for gestures emitted by 2 young children with severe developmental disabilities. Potential…
Inagaki, Soichi; Nakamura, Kenzo; Morikami, Atsushi
2009-08-01
Spatio-temporal regulation of gene expression during development depends on many factors. Mutations in Arabidopsis thaliana TEBICHI (TEB) gene encoding putative helicase and DNA polymerase domains-containing protein result in defects in meristem maintenance and correct organ formation, as well as constitutive DNA damage response and a defect in cell cycle progression; but the molecular link between these phenotypes of teb mutants is unknown. Here, we show that mutations in the DNA replication checkpoint pathway gene, ATR, but not in ATM gene, enhance developmental phenotypes of teb mutants, although atr suppresses cell cycle defect of teb mutants. Developmental phenotypes of teb mutants are also enhanced by mutations in RAD51D and XRCC2 gene, which are involved in homologous recombination. teb and teb atr double mutants exhibit defects in adaxial-abaxial polarity of leaves, which is caused in part by the upregulation of ETTIN (ETT)/AUXIN RESPONSIVE FACTOR 3 (ARF3) and ARF4 genes. The Helitron transposon in the upstream of ETT/ARF3 gene is likely to be involved in the upregulation of ETT/ARF3 in teb. Microarray analysis indicated that teb and teb atr causes preferential upregulation of genes nearby the Helitron transposons. Furthermore, interestingly, duplicated genes, especially tandemly arrayed homologous genes, are highly upregulated in teb or teb atr. We conclude that TEB is required for normal progression of DNA replication and for correct expression of genes during development. Interplay between these two functions and possible mechanism leading to altered expression of specific genes will be discussed.
Molar-incisor hypomineralization (MIH) in a group of school-aged children in Benghazi, Libya.
Fteita, D; Ali, A; Alaluusua, S
2006-06-01
Molar-incisor hypomineralization (MIH) is common in many countries and it has significant impact on treatment need. The aim of the present study was to assess developmental enamel defects with an emphasis to MIH in children from four primary schools in Benghazi, Libya. Permanent first molars of a total of 378 (188 females) 7.0-8.9-year-old children were examined for demarcated opacities, diffuse opacities and hypoplasia in their schools using a portable light, a mirror, and a probe. A subgroup of children attending two of the four schools and having all incisors and first molars erupted (N = 154) was examined for enamel defects in these teeth. Eleven children (2.9%) had MIH. The mean value of demarcated opacities in their first molars was 1.5. MIH lesions were found only in 1.1% of the children's first molars (tooth prevalence) and all lesions were mild. Six children (1.6%) had diffuse opacities and 3 (0.8%) had hypoplastic defects in their first molars. Fourteen out of 154 children (9%) who had both incisors and molars examined had some kind of developmental enamel defect: 11 children (7.1%) had demarcated opacities, 3 (1.9%) had diffuse opacities, and none had hypoplasia. MIH was rare in Benghazi, Libya. The prevalence was clearly lower than in comparable studies performed in Italy or in Nordic countries, where, according to the earlier reports, MIH is seen in every fifth or sixth child. Our result may be valuable when so far mostly unknown etiology behind MIH is investigated.
The Endocytic Recycling Regulatory Protein EHD1 Is Required for Ocular Lens Development
Arya, Priyanka; Rainey, Mark A.; Bhattacharyya, Sohinee; Mohapatra, Bhopal; George, Manju; Kuracha, Murali R; Storck, Matthew D.; Band, Vimla; Govindarajan, Venkatesh; Band, Hamid
2015-01-01
The C-terminal Eps15 homology domain-containing (EHD) proteins play a key role in endocytic recycling, a fundamental cellular process that ensures the return of endocytosed membrane components and receptors back to the cell surface. To define the in vivo biological functions of EHD1, we have generated Ehd1 knockout mice and previously reported a requirement of EHD1 for spermatogenesis. Here, we show that approximately 56% of the Ehd1-null mice displayed gross ocular abnormalities, including anophthalmia, aphakia, microphthalmia and congenital cataracts. Histological characterization of ocular abnormalities showed pleiotropic defects that include a smaller or absent lens, persistence of lens stalk and hyaloid vasculature, and deformed optic cups. To test whether these profound ocular defects resulted from the loss of EHD1 in the lens or in non-lenticular tissues, we deleted the Ehd1 gene selectively in the presumptive lens ectoderm using Le-Cre. Conditional Ehd1 deletion in the lens resulted in developmental defects that included thin epithelial layers, small lenses and absence of corneal endothelium. Ehd1 deletion in the lens also resulted in reduced lens epithelial proliferation, survival and expression of junctional proteins E-cadherin and ZO-1. Finally, Le-Cre-mediated deletion of Ehd1 in the lens led to defects in corneal endothelial differentiation. Taken together, these data reveal a unique role for EHD1 in early lens development and suggest a previously unknown link between the endocytic recycling pathway and regulation of key developmental processes including proliferation, differentiation and morphogenesis. PMID:26455409
Congenital or torsion-induced absence of Fallopian tubes. Two case reports.
Paternoster, D M; Costantini, W; Uglietti, A; Vasile, C; Bocconi, L
1998-05-01
Unilateral absence of a uterine tube is an extremely rare finding, for which there are two possible etiopathogenic causes: in some cases it is due to haemorrhage filling of the cavity and its reabsorption as a result of asymptomatic torsion of the uterine tube during adult life, in pediatric age or even during intrauterine life; alternatively, the absence may be congenital, associated with developmental alterations of the mesonephric and paramesonephric ducts. The article presents two cases of fallopian tube absence: a congenital monolateral absence and a tubal torsion during pregnancy. The symptomatology of the torsion of the fallopian tube in pregnancy can be milder than in the classic description with peritoneal reaction and severe clinical alteration. The main risk factors for tubal torsion are: adhesions and inflammatory processes, ovarian cysts, usually of dermoid type, menstrual period, pregnancy, abnormal long mesosalpinx and/or mesovarium, pelvic congestion induced by constipation and disturbed venous blood flow from the adnexa. A congenital defect of the mesonephric duct is followed by a homolateral defect of the paramesonephric duct. The resulting anomaly is characterized by the absence of the uterine tube, uterus-tube angle, kidney and ureter. Partial or total unilateral defects of a paramesonephric duct are more common than aplasia of both ducts. Some authors have suggested that an inadequate blood supply during the descent into the pelvis of the caudal part of the paramesonephric duct might feasibly lead to incomplete tube development.
Nociti, Francisco H.; Somerman, Martha J.
2014-01-01
Teeth are mineralized organs composed of three unique hard tissues, enamel, dentin, and cementum, and supported by the surrounding alveolar bone. Although odontogenesis differs from osteogenesis in several respects, tooth mineralization is susceptible to similar developmental failures as bone. Here we discuss conditions fitting under the umbrella of rickets, which traditionally referred to skeletal disease associated with vitamin D deficiency but has been more recently expanded to include newly identified factors involved in endocrine regulation of vitamin D, phosphate, and calcium, including phosphate-regulating endopeptidase homolog, X-linked, fibroblast growth factor 23, and dentin matrix protein 1. Systemic mineral metabolism intersects with local regulation of mineralization, and factors including tissue nonspecific alkaline phosphatase are necessary for proper mineralization, where rickets can result from loss of activity of tissue nonspecific alkaline phosphatase. Individuals suffering from rickets often bear the additional burden of a defective dentition, and transgenic mouse models have aided in understanding the nature and mechanisms involved in tooth defects, which may or may not parallel rachitic bone defects. This report reviews dental effects of the range of rachitic disorders, including discussion of etiologies of hereditary forms of rickets, a survey of resulting bone and tooth mineralization disorders, and a discussion of mechanisms, known and hypothesized, involved in the observed dental pathologies. Descriptions of human pathology are augmented by analysis of transgenic mouse models, and new interpretations are brought to bear on questions of how teeth are affected under conditions of rickets. In short, the rachitic tooth will be revealed. PMID:23939820
Enkhmandakh, Badam; Makeyev, Aleksandr V; Erdenechimeg, Lkhamsuren; Ruddle, Frank H; Chimge, Nyam-Osor; Tussie-Luna, Maria Isabel; Roy, Ananda L; Bayarsaihan, Dashzeveg
2009-01-06
GTF2I and GTF2IRD1 encoding the multifunctional transcription factors TFII-I and BEN are clustered at the 7q11.23 region hemizygously deleted in Williams-Beuren syndrome (WBS), a complex multisystemic neurodevelopmental disorder. Although the biochemical properties of TFII-I family transcription factors have been studied in depth, little is known about the specialized contributions of these factors in pathways required for proper embryonic development. Here, we show that homozygous loss of either Gtf2ird1 or Gtf2i function results in multiple phenotypic manifestations, including embryonic lethality; brain hemorrhage; and vasculogenic, craniofacial, and neural tube defects in mice. Further analyses suggest that embryonic lethality may be attributable to defects in yolk sac vasculogenesis and angiogenesis. Microarray data indicate that the Gtf2ird1 homozygous phenotype is mainly caused by an impairment of the genes involved in the TGFbetaRII/Alk1/Smad5 signal transduction pathway. The effect of Gtf2i inactivation on this pathway is less prominent, but downregulation of the endothelial growth factor receptor-2 gene, resulting in the deterioration of vascular signaling, most likely exacerbates the severity of the Gtf2i mutant phenotype. A subset of Gtf2ird1 and Gtf2i heterozygotes displayed microcephaly, retarded growth, and skeletal and craniofacial defects, therefore showing that haploinsufficiency of TFII-I proteins causes various developmental anomalies that are often associated with WBS.
77 FR 37050 - Proposed Data Collections Submitted for Public Comment and Recommendations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-20
... proficient with diagnosing infants or younger children because children age 5 and younger require a different... Division of Human Development and Disability, located within NCBDDD, promotes the health of babies, children, and adults, with a focus on preventing birth defects and developmental disabilities and...
USDA-ARS?s Scientific Manuscript database
Teratogenic alkaloids can cause developmental defects due to inhibition of fetal movement that results from desensitization of fetal muscletype nicotinic acetylcholine receptors (nAChRs). We investigated the ability of two known teratogens, the piperidinyl-pyridine anabasine and its 1,2-dehydropiper...
Agonist mediated fetal muscle-type nicotinic acetylcholine receptor desensitization
USDA-ARS?s Scientific Manuscript database
The exposure of a developing embryo or fetus to teratogenic alkaloids from plants has the potential to cause developmental defects in livestock due to the inhibition of fetal movement by alkaloids. The mechanism behind the inhibition of fetal movement is the desensitization of fetal muscle-type nico...
76 FR 27325 - Proposed Data Collections Submitted for Public Comment and Recommendations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-11
... Enhanced Implementation of the ``Learn the Signs. Act Early.'' Campaign in 4 Target Sites,--New--National Center on Birth Defects and Developmental Disabilities (NCBDDD), Centers for Disease Control and Prevention (CDC). Background and Brief Description CDC's ``Learn the Signs Act Early'' campaign is a health...
Prevention of Fetal Alcohol Spectrum Disorders
ERIC Educational Resources Information Center
Floyd, R. Louise; Weber, Mary Kate; Denny, Clark; O'Connor, Mary J.
2009-01-01
Alcohol use among women of childbearing age is a leading, preventable cause of birth defects and developmental disabilities in the United States. Although most women reduce their alcohol use upon pregnancy recognition, some women report drinking during pregnancy and others may continue to drink prior to realizing they are pregnant. These findings…
Phosphorylation-dependent trafficking of plasma membrane proteins in animal and plant cells.
Offringa, Remko; Huang, Fang
2013-09-01
In both unicellular and multicellular organisms, transmembrane (TM) proteins are sorted to and retained at specific membrane domains by endomembrane trafficking mechanisms that recognize sorting signals in the these proteins. The trafficking and distribution of plasma membrane (PM)-localized TM proteins (PM proteins), especially of those PM proteins that show an asymmetric distribution over the PM, has received much attention, as their proper PM localization is crucial for elementary signaling and transport processes, and defects in their localization often lead to severe disease symptoms or developmental defects. The subcellular localization of PM proteins is dynamically regulated by post-translational modifications, such as phosphorylation and ubiquitination. These modificaitons mostly occur on sorting signals that are located in the larger cytosolic domains of the cargo proteins. Here we review the effects of phosphorylation of PM proteins on their trafficking, and present the key examples from the animal field that have been subject to studies for already several decades, such as that of aquaporin 2 and the epidermal growth factor receptor. Our knowledge on cargo trafficking in plants is largely based on studies of the family of PIN FORMED (PIN) carriers that mediate the efflux of the plant hormone auxin. We will review what is known on the subcellular distribution and trafficking of PIN proteins, with a focus on how this is modulated by phosphorylation, and identify and discuss analogies and differences in trafficking with the well-studied animal examples. © 2013 Institute of Botany, Chinese Academy of Sciences.
Hörtnagel, Konstanze; Krägeloh-Mann, Inge; Bornemann, Antje; Döcker, Miriam; Biskup, Saskia; Mayrhofer, Heidi; Battke, Florian; du Bois, Gabriele; Harzer, Klaus
2016-11-01
Vesicular protein sorting-associated proteins (VPS, including VPS11) are indispensable in the endocytic network, in particular the endosome-lysosome biogenesis. Exome sequencing revealed the homozygous variant p.Leu387_ Gly395del in the VPS11 gene in two siblings. On immunoblotting, the mutant VPS11 protein showed a distinctly reduced immunostaining intensity. The children presented with primary and severe developmental delay associated with myoclonic seizures, spastic tetraplegia, trunk and neck hypotonia, blindness, hearing loss, and microcephaly. Neuro-imaging showed severe hypomyelination affecting cerebral and cerebellar white matter and corpus callosum, in the absence of a peripheral neuropathy. Electron microscopy of a skin biopsy revealed clusters of membranous cytoplasmic bodies in dermal unmyelinated nerve axons, and numbers of vacuoles in eccrine sweat glands, similar to what is seen in a classic lysosomal storage disease (LSD). Bone marrow cytology showed a high number of storage macrophages with a micro-vacuolated cytoplasm. Biochemically, changes in urinary glycosphingolipids were reminiscent of those in prosaposin deficiency (another LSD). The clinical and neuro-imaged features in our patients were almost identical to those in some recently reported patients with another variant in the VPS11 gene, p.Cys846Gly; underlining the presumed pathogenic potential of VPS11 defects. A new feature was the morphological evidence for lysosomal storage in VPS11 deficiency: This newly characterised disease can be viewed as belonging to the complex field of LSD.
Hennersdorf, Florian; Friese, Natascha; Löwenheim, Hubert; Tropitzsch, Anke; Ernemann, Ulrike; Bisdas, Sotirios
2014-06-01
Goldenhar syndrome is a developmental disorder presenting with orofacial and vertebral anomalies, which are also accompanied by abnormalities in other organs. We examined temporal bone changes with special emphasis on inner ear abnormalities in these patients. A retrospective review of 7 new cases in addition to a previously published series of 14 cases with clinically diagnosed Goldenhar syndrome was carried out to search for inner ear anomalies. In addition, temporal bone imaging studies from the literature were summarized and compared with our results. Departments of Neuroradiology and Otorhinolaryngology at a university hospital. In addition to the previous series of 14 patients, 7 new patients with Goldenhar syndrome were identified. Patients underwent otologic examination, audiometric studies, and high-resolution computed tomography (CT) or magnetic resonance imaging (MRI) of the temporal bone. Temporal bone changes and specifically inner ear malformations. Nineteen of 21 patients showed changes of the external and middle ear correlating with the literature. Seven of 21 patients showed inner ear abnormalities constituting one-third of all patients. These ranged from mild such as vestibular enlargement to severe defects such as cochlear hypoplasia and common cavity. Inner ear abnormalities were present in one-third of patients. Although in some cases, these might not be of clinical significance, some patients show severe defects of the inner ear requiring more complex hearing loss therapy. Therefore, imaging of the temporal bone structures is important in the care of these patients.
Tan, Kun; An, Lei; Miao, Kai; Ren, Likun; Hou, Zhuocheng; Tao, Li; Zhang, Zhenni; Wang, Xiaodong; Xia, Wei; Liu, Jinghao; Wang, Zhuqing; Xi, Guangyin; Gao, Shuai; Sui, Linlin; Zhu, De-Sheng; Wang, Shumin; Wu, Zhonghong; Bach, Ingolf; Chen, Dong-bao; Tian, Jianhui
2016-01-01
Dynamic epigenetic reprogramming occurs during normal embryonic development at the preimplantation stage. Erroneous epigenetic modifications due to environmental perturbations such as manipulation and culture of embryos during in vitro fertilization (IVF) are linked to various short- or long-term consequences. Among these, the skewed sex ratio, an indicator of reproductive hazards, was reported in bovine and porcine embryos and even human IVF newborns. However, since the first case of sex skewing reported in 1991, the underlying mechanisms remain unclear. We reported herein that sex ratio is skewed in mouse IVF offspring, and this was a result of female-biased peri-implantation developmental defects that were originated from impaired imprinted X chromosome inactivation (iXCI) through reduced ring finger protein 12 (Rnf12)/X-inactive specific transcript (Xist) expression. Compensation of impaired iXCI by overexpression of Rnf12 to up-regulate Xist significantly rescued female-biased developmental defects and corrected sex ratio in IVF offspring. Moreover, supplementation of an epigenetic modulator retinoic acid in embryo culture medium up-regulated Rnf12/Xist expression, improved iXCI, and successfully redeemed the skewed sex ratio to nearly 50% in mouse IVF offspring. Thus, our data show that iXCI is one of the major epigenetic barriers for the developmental competence of female embryos during preimplantation stage, and targeting erroneous epigenetic modifications may provide a potential approach for preventing IVF-associated complications. PMID:26951653
Prevalence and Characteristics of Developmental Dental Anomalies in Iranian Orofacial Cleft Patients
Ajami, Shabnam; Pakshir, Hamidreza; Samady, Hedyeh
2017-01-01
Statement of the Problem: Individuals with oral clefts exhibit considerably more dental anomalies than individuals without clefts. These problems could initially be among the symptoms of their disease and/or they may be the side effect of their treatments. Pushback palatoplasty could cause some interference during the development of teeth and result in tooth defects. Purpose: The study was performed to assess the prevalence and characteristics of developmental dental anomalies in orofacial cleft patients who attended Shiraz Orthodontics Research Center-Cleft Lip and Palate Clinic. We managed to compare dental anomaly traits based on gender and cleft side. Materials and Method: Eighty out of 121 cleft patients were included in this cross-sectional study. All the patients used pushback palatoplasty in their palate closure surgeries. Intraoral photographs, panoramic and intraoral radiographs, cone-beam computed tomography (CBCT) and dental and medical histories were examined and recorded by two observers. Data were analyzed using SPSS PC version 20.0. The differences in the side of cleft and dental anomalies were compared using the Mann-Whitney test. Results: The mean age of patients was 14.27 years (SD=5.06). The most frequent cleft type was unilateral cleft lip and palate (50%) followed by bilateral cleft lip and palate (43.75%), cleft palate (2.5%) and cleft lip (1.25%). Male predominance (70%) was observed. 92.5 percent had at least one developmental dental anomaly. The most prevalent anomalies were hypodontia (71.25%) followed by microdontia (30%), root dilacerations (21.25%) and supernumerary teeth (15%). Conclusion: The most prevalent cleft types were unilateral and bilateral cleft lip and palate with male and left side predominance. Hypodontia, microdontia, dilacerations and supernumerary teeth were the most prevalent developmental dental anomalies among Iranian southwestern cleft patients. The surgical technique used to repair their cleft palate may have played a role in developmental dental defects. PMID:29034274
Amelogenesis imperfecta and the treatment plan - interdisciplinary team approach.
Suchancova, B; Holly, D; Janska, M; Stebel, J; Lysy, J; Thurzo, A; Sasinek, S
2014-01-01
Amelogenesis imperfecta is a set of hereditary defects representing mainly the development defects of enamel without the presence of whole-body symptoms. Developmental disorders can manifest a complete absence of enamel, which is caused by improper differentiation of ameloblasts. This article describes the diagnosis and treatment of a patient with amelogenesis imperfecta, as well as the need for interdisciplinary cooperation to achieve the best possible morphological, skeletal, functional and aesthetic rehabilitation of the patients with this diagnosis. Furthermore, the article reviews literature dealing with other anomalies occurring in association with amelogenesis imperfect (Fig. 12, Ref. 20).
The Nucleosome Remodeling and Deacetylase (NuRD) Complex in Development and Disease
Basta, Jeannine; Rauchman, Michael
2014-01-01
The Nucleosome Remodeling and Deacetylase (NuRD) complex is one of the major chromatin remodeling complexes found in cells. It plays an important role in regulating gene transcription, genome integrity and cell cycle progression. Through its impact on these basic cellular processes, increasing evidence indicates that alterations in the activity of this macromolecular complex can lead to developmental defects, oncogenesis and accelerated ageing. Recent genetic and biochemical studies have elucidated the mechanisms of NuRD action in modifying the chromatin landscape. These advances have the potential to lead to new therapeutic approaches to birth defects and cancer. PMID:24880148
Nucleotide excision repair deficient mouse models and neurological disease
Niedernhofer, Laura J.
2008-01-01
Nucleotide excision repair (NER) is a highly conserved mechanism to remove helix-distorting DNA base damage. A major substrate for NER is DNA damage caused by environmental genotoxins, most notably ultraviolet radiation. Xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy are three human diseases caused by inherited defects in NER. The symptoms and severity of these diseases vary dramatically, ranging from profound developmental delay to cancer predisposition and accelerated aging. All three syndromes include neurological disease, indicating an important role for NER in protecting against spontaneous DNA damage as well. To study the pathophysiology caused by DNA damage, numerous mouse models of NER deficiency were generated by knocking-out genes required for NER or knocking-in disease-causing human mutations. This review explores the utility of these mouse models to study neurological disease caused by NER deficiency. PMID:18272436
Hereditary motor and sensory neuropathy with agenesis of the corpus callosum.
Dupré, Nicolas; Howard, Heidi C; Mathieu, Jean; Karpati, George; Vanasse, Michel; Bouchard, Jean-Pierre; Carpenter, Stirling; Rouleau, Guy A
2003-07-01
Hereditary motor and sensory neuropathy associated with agenesis of the corpus callosum (OMIM 218000) is an autosomal recessive disease of early onset characterized by a delay in developmental milestones, a severe sensory-motor polyneuropathy with areflexia, a variable degree of agenesis of the corpus callosum, amyotrophy, hypotonia, and cognitive impairment. Although this disorder has rarely been reported worldwide, it has a high prevalence in the Saguenay-Lac-St-Jean region of the province of Quebec (Canada) predominantly because of a founder effect. The gene defect responsible for this disorder recently has been identified, and it is a protein-truncating mutation in the SLC12A6 gene, which codes for a cotransporter protein known as KCC3. Herein, we provide the first extensive review of this disorder, covering epidemiological, clinical, and molecular genetic studies.
[Endocrine disruptors, reproduction and hormone-dependent cancers].
Fenichel, Patrick; Brucker-Davis, Françoise; Chevalier, Nicolas
2016-01-01
Endocrine disruptors are natural or synthetic chemical compounds which are present in the environment and which are able to interfere with hormonal regulation pathways and to induce human health deleterious effects. While their precise implication in human health and diseases is still matter of debates, it becomes likely that they have to be considered as risk factors in numerous chronic diseases: developmental and reproductive defects and hormone dependent cancers (present review), metabolic diseases (obesity and type 2 diabetes), neurodevelopmental or neurodegenerative diseases. Low doses exposure during critical windows of exposure such as foetal, perinatal and peri-pubertal periods, or chronic exposure with bioaccumulation in the adipose tissue, and possible synergic effects of several compounds ("cocktail effect") may participate to the genetic/environment interface suspected to participate to the pathophysiology of many diseases. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Biomaterials for Bone Regenerative Engineering.
Yu, Xiaohua; Tang, Xiaoyan; Gohil, Shalini V; Laurencin, Cato T
2015-06-24
Strategies for bone tissue regeneration have been continuously evolving for the last 25 years since the introduction of the "tissue engineering" concept. The convergence of the life, physical, and engineering sciences has brought in several advanced technologies available to tissue engineers and scientists. This resulted in the creation of a new multidisciplinary field termed as "regenerative engineering". In this article, the role of biomaterials in bone regenerative engineering is systematically reviewed to elucidate the new design criteria for the next generation of biomaterials for bone regenerative engineering. The exemplary design of biomaterials harnessing various materials characteristics towards successful bone defect repair and regeneration is highlighted. Particular attention is given to the attempts of incorporating advanced materials science, stem cell technologies, and developmental biology into biomaterials design to engineer and develop the next generation bone grafts. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Modified overdentures for the management of oligodontia and developmental defects.
Abadi, B J; Kimmel, N A; Falace, D A
1982-01-01
A technique for the construction of complete dentures over unaltered natural teeth has been described and illustrated for three different situations. The procedure is straightforward and simple and varies only slightly from conventional overdenture construction. The technique offers several advantages for a patient who wishes to keep the remaining natural teeth unaltered but who requires significant functional or esthetic improvement. Since the teeth are unaltered, any type of future treatment may be considered at any time without being compromised. This is an important factor to consider for the young patient. The cost, when compared to the fabrication of a fixed or cast removable prosthesis, is significantly less, while still providing acceptable esthetics and function. The versatility of this procedure allows its use in a number of situations which are not amenable to more complicated treatment methods.
Donahue, M L; Ryan, R M
1995-03-13
We describe an infant with a deletion of 8q21-->22 who had distinct clinical manifestations including minor facial anomalies, a congenital heart defect, a Dandy-Walker variant, and mild to moderate developmental delay. Her facial characteristics included small, wide-spaced eyes, asymmetric bilateral epicanthal folds, a broad nasal bridge, a "carp-shaped" mouth, micrognathia, and prominent, apparently low-set ears. Three other reports describe children with larger proximal deletions of 8q that include 8q21 and q22. These four children all have similar facial appearance. Of the others reported, one had a congenital heart defect and one had craniosynostosis. This case, in addition to the previously noted three cases, helps in delineating a recognizable syndrome.
Fetal Alcohol Spectrum Disorders.
Williams, Janet F; Smith, Vincent C
2015-11-01
Prenatal exposure to alcohol can damage the developing fetus and is the leading preventable cause of birth defects and intellectual and neurodevelopmental disabilities. In 1973, fetal alcohol syndrome was first described as a specific cluster of birth defects resulting from alcohol exposure in utero. Subsequently, research unequivocally revealed that prenatal alcohol exposure causes a broad range of adverse developmental effects. Fetal alcohol spectrum disorder (FASD) is the general term that encompasses the range of adverse effects associated with prenatal alcohol exposure. The diagnostic criteria for fetal alcohol syndrome are specific, and comprehensive efforts are ongoing to establish definitive criteria for diagnosing the other FASDs. A large and growing body of research has led to evidence-based FASD education of professionals and the public, broader prevention initiatives, and recommended treatment approaches based on the following premises:▪ Alcohol-related birth defects and developmental disabilities are completely preventable when pregnant women abstain from alcohol use.▪ Neurocognitive and behavioral problems resulting from prenatal alcohol exposure are lifelong.▪ Early recognition, diagnosis, and therapy for any condition along the FASD continuum can result in improved outcomes.▪ During pregnancy:◦no amount of alcohol intake should be considered safe;◦there is no safe trimester to drink alcohol;◦all forms of alcohol, such as beer, wine, and liquor, pose similar risk; and◦binge drinking poses dose-related risk to the developing fetus. Copyright © 2015 by the American Academy of Pediatrics.
The Epidermis of Grhl3-Null Mice Displays Altered Lipid Processing and Cellular Hyperproliferation
Ting, Stephen B; Caddy, Jacinta; Wilanowski, Tomasz; Auden, Alana; Cunningham, John M; Elias, Peter M; Holleran, Walter M
2005-01-01
The presence of an impermeable surface barrier is an essential homeostatic mechanism in almost all living organisms. We have recently described a novel gene that is critical for the developmental instruction and repair of the integument in mammals. This gene, Grainy head-like 3 (Grhl3) is a member of a large family of transcription factors that are homologs of the Drosophila developmental gene grainy head (grh). Mice lacking Grhl3 fail to form an adequate skin barrier, and die at birth due to dehydration. These animals are also unable to repair the epidermis, exhibiting failed wound healing in both fetal and adult stages of development. These defects are due, in part, to diminished expression of a Grhl3 target gene, Transglutaminase 1 (TGase 1), which encodes a key enzyme involved in cross-linking of epidermal structural proteins and lipids into the cornified envelope (CE). Remarkably, the Drosophila grh gene plays an analogous role, regulating enzymes involved in the generation of quinones, which are essential for cross-linking structural components of the fly epidermis. In an extension of our initial analyses, we focus this report on additional defects observed in the Grhl3-null epidermis, namely defective extra-cellular lipid processing, altered lamellar lipid architecture and cellular hyperproliferation. These abnormalities suggest that Grhl3 plays diverse mechanistic roles in maintaining homeostasis in the skin. PMID:19521564
The epidermis of grhl3-null mice displays altered lipid processing and cellular hyperproliferation.
Ting, Stephen B; Caddy, Jacinta; Wilanowski, Tomasz; Auden, Alana; Cunningham, John M; Elias, Peter M; Holleran, Walter M; Jane, Stephen M
2005-04-01
The presence of an impermeable surface barrier is an essential homeostatic mechanism in almost all living organisms. We have recently described a novel gene that is critical for the developmental instruction and repair of the integument in mammals. This gene, Grainy head-like 3 (Grhl3) is a member of a large family of transcription factors that are homologs of the Drosophila developmental gene grainy head (grh). Mice lacking Grhl3 fail to form an adequate skin barrier, and die at birth due to dehydration. These animals are also unable to repair the epidermis, exhibiting failed wound healing in both fetal and adult stages of development. These defects are due, in part, to diminished expression of a Grhl3 target gene, Transglutaminase 1 (TGase 1), which encodes a key enzyme involved in cross-linking of epidermal structural proteins and lipids into the cornified envelope (CE). Remarkably, the Drosophila grh gene plays an analogous role, regulating enzymes involved in the generation of quinones, which are essential for cross-linking structural components of the fly epidermis. In an extension of our initial analyses, we focus this report on additional defects observed in the Grhl3-null epidermis, namely defective extra-cellular lipid processing, altered lamellar lipid architecture and cellular hyperproliferation. These abnormalities suggest that Grhl3 plays diverse mechanistic roles in maintaining homeostasis in the skin.
Naganos, Shintaro; Ueno, Kohei; Horiuchi, Junjiro; Saitoe, Minoru
2016-04-06
Reduced insulin/insulin-like growth factor signaling (IIS) is a major cause of symmetrical intrauterine growth retardation (IUGR), an impairment in cell proliferation during prenatal development that results in global growth defects and mental retardation. In Drosophila, chico encodes the only insulin receptor substrate. Similar to other animal models of IUGR, chico mutants have defects in global growth and associative learning. However, the physiological and molecular bases of learning defects caused by chico mutations, and by symmetrical IUGR, are not clear. In this study, we found that chico mutations impair memory-associated synaptic plasticity in the mushroom bodies (MBs), neural centers for olfactory learning. Mutations in chico reduce expression of the rutabaga-type adenylyl cyclase (rut), leading to decreased cAMP synthesis in the MBs. Expressing a rut (+) transgene in the MBs restores memory-associated plasticity and olfactory associative learning in chico mutants, without affecting growth. Thus chico mutations disrupt olfactory learning, at least in part, by reducing cAMP signaling in the MBs. Our results suggest that some cognitive defects associated with reduced IIS may occur, independently of developmental defects, from acute reductions in cAMP signaling.
Coughlin, Curtis R; Scharer, Gunter H; Friederich, Marisa W; Yu, Hung-Chun; Geiger, Elizabeth A; Creadon-Swindell, Geralyn; Collins, Abigail E; Vanlander, Arnaud V; Coster, Rudy Van; Powell, Christopher A; Swanson, Michael A; Minczuk, Michal; Van Hove, Johan L K; Shaikh, Tamim H
2015-08-01
Mitochondrial disease is often suspected in cases of severe epileptic encephalopathy especially when a complex movement disorder, liver involvement and progressive developmental regression are present. Although mutations in either mitochondrial DNA or POLG are often present, other nuclear defects in mitochondrial DNA replication and protein translation have been associated with a severe epileptic encephalopathy. We identified a proband with an epileptic encephalopathy, complex movement disorder and a combined mitochondrial respiratory chain enzyme deficiency. The child presented with neurological regression, complex movement disorder and intractable seizures. A combined deficiency of mitochondrial complexes I, III and IV was noted in liver tissue, along with increased mitochondrial DNA content in skeletal muscle. Incomplete assembly of complex V, using blue native polyacrylamide gel electrophoretic analysis and complex I, using western blotting, suggested a disorder of mitochondrial transcription or translation. Exome sequencing identified compound heterozygous mutations in CARS2, a mitochondrial aminoacyl-tRNA synthetase. Both mutations affect highly conserved amino acids located within the functional ligase domain of the cysteinyl-tRNA synthase. A specific decrease in the amount of charged mt-tRNA(Cys) was detected in patient fibroblasts compared with controls. Retroviral transfection of the wild-type CARS2 into patient skin fibroblasts led to the correction of the incomplete assembly of complex V, providing functional evidence for the role of CARS2 mutations in disease aetiology. Our findings indicate that mutations in CARS2 result in a mitochondrial translational defect as seen in individuals with mitochondrial epileptic encephalopathy. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Rademaker, Marius; Agnew, Karen; Andrews, Megan; Armour, Katherine; Baker, Chris; Foley, Peter; Frew, John; Gebauer, Kurt; Gupta, Monisha; Kennedy, Debra; Marshman, Gillian; Sullivan, John
2017-05-23
The Australasian Psoriasis Collaboration has reviewed the evidence for managing moderate to severe psoriasis in those who are pregnant or are breast-feeding, or planning a family. The severity of the psoriasis, associated comorbidities and specific anti-psoriasis treatment, along with other exposures, can have a deleterious effect on pregnancy outcomes. Psoriasis itself increases the risk of preterm and low birthweight babies, along with spontaneous and induced abortions, but no specific birth defects have been otherwise demonstrated. The baseline risk for a live born baby to have a major birth defect is 3%, and significant neuro-developmental problem is 5%. In Australia, pregnant women with psoriasis are more likely to be overweight or obese, depressed, or smoke in their first trimester, and are also less likely to take prenatal vitamins or supplements. Preconception counselling to improve maternal, pregnancy and baby health is therefore strongly encouraged. The topical and systemic therapies commonly used in psoriasis are each discussed separately, with regards to pregnancy exposure, breast-feeding and effects on male fertility and mutagenicity. The systemic therapies included are acitretin, adalimumab, apremilast, certolizumab, ciclosporin, etanercept, infliximab, ixekizumab, methotrexate, NBUVB, prednisone, PUVA, secukinumab and ustekinumab. The topical therapies include dithranol (anthralin), calcipotriol, coal tar, corticosteroids (weak, potent and super-potent), moisturisers, salicylic acid, tacrolimus, and tazarotene. As a general recommendation, effective drugs that have been widely used for years are preferable to newer alternatives with less foetal safety data. It is equally important to evaluate the risks of not treating, as severe untreated disease may negatively impact both mother and the foetus. © 2017 The Australasian College of Dermatologists.
An Essential Postdevelopmental Role for Lis1 in Mice
Hines, Timothy J.; Gao, Xu; Sahu, Subhshri; Lange, Meghann M.; Turner, Jill R.
2018-01-01
LIS1 mutations cause lissencephaly (LIS), a severe developmental brain malformation. Much less is known about its role in the mature nervous system. LIS1 regulates the microtubule motor cytoplasmic dynein 1 (dynein), and as LIS1 and dynein are both expressed in the adult nervous system, Lis1 could potentially regulate dynein-dependent processes such as axonal transport. We therefore knocked out Lis1 in adult mice using tamoxifen-induced, Cre-ER-mediated recombination. When an actin promoter was used to drive Cre-ER expression (Act-Cre-ER), heterozygous Lis1 knockout (KO) caused no obvious change in viability or behavior, despite evidence of widespread recombination by a Cre reporter three weeks after tamoxifen exposure. In contrast, homozygous Lis1 KO caused the rapid onset of neurological symptoms in both male and female mice. One tamoxifen-dosing regimen caused prominent recombination in the midbrain/hindbrain, PNS, and cardiac/skeletal muscle within a week; these mice developed severe symptoms in that time frame and were killed. A different tamoxifen regimen resulted in delayed recombination in midbrain/hindbrain, but not in other tissues, and also delayed the onset of symptoms. This indicates that Lis1 loss in the midbrain/hindbrain causes the severe phenotype. In support of this, brainstem regions known to house cardiorespiratory centers showed signs of axonal dysfunction in KO animals. Transport defects, neurofilament (NF) alterations, and varicosities were observed in axons in cultured DRG neurons from KO animals. Because no symptoms were observed when a cardiac specific Cre-ER promoter was used, we propose a vital role for Lis1 in autonomic neurons and implicate defective axonal transport in the KO phenotype. PMID:29404402
Doll, Caleb A; Broadie, Kendal
2016-05-01
Neural circuit optimization occurs through sensory activity-dependent mechanisms that refine synaptic connectivity and information processing during early-use developmental critical periods. Fragile X Mental Retardation Protein (FMRP), the gene product lost in Fragile X syndrome (FXS), acts as an activity sensor during critical period development, both as an RNA-binding translation regulator and channel-binding excitability regulator. Here, we employ a Drosophila FXS disease model to assay calcium signaling dynamics with a targeted transgenic GCaMP reporter during critical period development of the mushroom body (MB) learning/memory circuit. We find FMRP regulates depolarization-induced calcium signaling in a neuron-specific manner within this circuit, suppressing activity-dependent calcium transients in excitatory cholinergic MB input projection neurons and enhancing calcium signals in inhibitory GABAergic MB output neurons. Both changes are restricted to the developmental critical period and rectified at maturity. Importantly, conditional genetic (dfmr1) rescue of null mutants during the critical period corrects calcium signaling defects in both neuron classes, indicating a temporally restricted FMRP requirement. Likewise, conditional dfmr1 knockdown (RNAi) during the critical period replicates constitutive null mutant defects in both neuron classes, confirming cell-autonomous requirements for FMRP in developmental regulation of calcium signaling dynamics. Optogenetic stimulation during the critical period enhances depolarization-induced calcium signaling in both neuron classes, but this developmental change is eliminated in dfmr1 null mutants, indicating the activity-dependent regulation requires FMRP. These results show FMRP shapes neuron class-specific calcium signaling in excitatory vs. inhibitory neurons in developing learning/memory circuitry, and that FMRP mediates activity-dependent regulation of calcium signaling specifically during the early-use critical period. Copyright © 2016 Elsevier Inc. All rights reserved.
Wang, Chi Chiu; Man, Gene Chi Wai; Chu, Ching Yan; Borchert, Astrid; Ugun-Klusek, Aslihan; Billett, E. Ellen; Kühn, Hartmut; Ufer, Christoph
2014-01-01
Monoamine oxidases A and B (MAO-A and MAO-B) are enzymes of the outer mitochondrial membrane that metabolize biogenic amines. In the adult central nervous system, MAOs have important functions for neurotransmitter homeostasis. Expression of MAO isoforms has been detected in the developing embryo. However, suppression of MAO-B does not induce developmental alterations. In contrast, targeted inhibition and knockdown of MAO-A expression (E7.5–E10.5) caused structural abnormalities in the brain. Here we explored the molecular mechanisms underlying defective brain development induced by MAO-A knockdown during in vitro embryogenesis. The developmental alterations were paralleled by diminished apoptotic activity in the affected neuronal structures. Moreover, dysfunctional MAO-A expression led to elevated levels of embryonic serotonin (5-hydroxytryptamine (5-HT)), and we found that knockdown of serotonin receptor-6 (5-Htr6) expression or pharmacologic inhibition of 5-Htr6 activity rescued the MAO-A knockdown phenotype and restored apoptotic activity in the developing brain. Our data suggest that excessive 5-Htr6 activation reduces activation of caspase-3 and -9 of the intrinsic apoptotic pathway and enhances expression of antiapoptotic proteins Bcl-2 and Bcl-XL. Moreover, we found that elevated 5-HT levels in MAO-A knockdown embryos coincided with an enhanced activation of extracellular signal-regulated kinase 1/2 (ERK1/2) and a reduction of proliferating cell numbers. In summary, our findings suggest that excessive 5-HT in MAO-A-deficient mouse embryos triggers cellular signaling cascades via 5-Htr6, which suppresses developmental apoptosis in the brain and thus induces developmental retardations. PMID:24497636
Kanasaki, Megumi; Vong, Sylvia; Rovira, Carlota; Kalluri, Raghu
2014-01-01
K-ras is essential for embryogenesis and its mutations are involved in human developmental syndromes and cancer. To determine the consequences of K-ras activation in urothelium, we used uroplakin-II (UPK II) promoter driven Cre recombinase mice and generated mice with mutated KrasG12D allele in the urothelium (UPK II-Cre;LSL-K-rasG12D). The UPK II-Cre;LSL-K-rasG12D mice died neonatally due to lung morphogenesis defects consisting of simplification with enlargement of terminal air spaces and dysmorphic pulmonary vasculature. A significant alteration in epithelial and vascular basement membranes, together with fragmentation of laminin, points to extracellular matrix degradation as the causative mechanism of alveolar and vascular defects. Our data also suggest that altered protease activity in amniotic fluid might be associated with matrix defects in lung of UPK II-Cre;LSL-K-rasG12. These defects resemble those observed in early stage human neonatal bronchopulmonary dysplasia (BPD), although the relevance of this new mouse model for BPD study needs further investigation. PMID:24760005
Localization of congenital tegmen tympani defects.
Tóth, Miklós; Helling, Kai; Baksa, Gábor; Mann, Wolf
2007-12-01
This study sets out to demonstrate the normal developmental steps of the tegmen tympani and thus explains the typical localization of congenital tegmental defects. For this study, 79 macerated and formalin-fixed human temporal bones from 14th fetal week to adults were observed and prepared. Macroscopic and microscopic examination of the prenatal and postnatal changes of the tegmen tympani during its development. Temporal bones from 14th fetal week to adults underwent descriptive anatomic studies to understand the normal development of the tegmen tympani and to find a possible cause of its congenital defects. The medial part of the tegmen tympani develops from the otic capsule during chondral ossification, thus forming the tegmental process of the petrous part. The lateral part shows membranous ossification. The tegmental process cases a temporary bony dehiscence lateral to the geniculate ganglion between the 23rd and 25th fetal week. Congenital defects develop near the geniculate ganglion and seem to be due to an incomplete development of tegmental process of otic capsule. Because of that, congenital lesion of the tegmen tympani can be defined as an inner ear defect.
Fiesselmann, Birgit S; Luichtl, Miriam; Yang, Xiaomeng; Matthes, Michaela; Peis, Ottilie; Torres-Ruiz, Ramon A
2015-07-07
In dicot Arabidopsis thaliana embryos two cotyledons develop largely autonomously from the shoot apical meristem (SAM). Recessive mutations in the Arabidopsis receptor-like kinase RPK1 lead to monocotyledonous seedlings, with low (10 %) penetrance due to complex functional redundancy. In strong rpk1 alleles, about 10 % of these (i. e. 1 % of all homozygotes) did not develop a SAM. We wondered whether RPK1 might also control SAM gene expression and SAM generation in addition to its known stochastic impact on cell division and PINFORMED1 (PIN1) polarity in the epidermis. SAM-less seedlings developed a simple morphology with a straight and continuous hypocotyl-cotyledon structure lacking a recognizable epicotyl. According to rpk1's auxin-related PIN1 defect, the seedlings displayed defects in the vascular tissue. Surprisingly, SAM-less seedlings variably expressed essential SAM specific genes along the hypocotyl-cotyledon structure up into the cotyledon lamina. Few were even capable of developing an ectopic shoot meristem (eSM) on top of the cotyledon. The results highlight the developmental autonomy of the SAM vs. cotyledons and suggest that the primary rpk1 defect does not lie in the seedling's ability to express SAM genes or to develop a shoot meristem. Rather, rpk1's known defects in cell division and auxin homeostasis, by disturbed PIN1 polarity, impact on SAM and organ generation. In early embryo stages this failure generates a simplified monocotyledonous morphology. Once generated, this likely entails a loss of positional information that in turn affects the spatiotemporal development of the SAM. SAM-bearing and SAM-less monocotyledonous phenotypes show morphological similarities either to real monocots or to dicot species, which only develop one cotyledon. The specific cotyledon defect in rpk1 mutants thus sheds light upon the developmental implications of the transition from two cotyledons to one.
Nigri, Flavio; Cabral, Isaias Fiuza; da Silva, Raquel Tavares Boy; Pereira, Heloisa Viscaíno; Ribeiro, Carlos Roberto Telles
2014-01-01
The association of Down syndrome (DS) with Dandy Walker malformation (DWM) is extremely rare, with only 3 cases reported to date. All cases reported have shown a bad life expectancy and a bad developmental outcome. The present case reveals the possibility of a good prognosis. A 19-month-old male patient had successful endoscopic hydrocephalus treatment and a good developmental outcome. He probably had a better outcome because of good DS and DWM prognostic parameters. Our patient suffered from a DWM with vermis identification of 2 fissures and 3 lobes and a DS with a well-preserved tonus, which was not associated with other congenital systemic defects. We may conclude that the prognosis of DS-DWM association may separately depend on the degree of clinical and neurological involvement of each malformation. PMID:24932176
Nigri, Flavio; Cabral, Isaias Fiuza; da Silva, Raquel Tavares Boy; Pereira, Heloisa Viscaíno; Ribeiro, Carlos Roberto Telles
2014-05-01
The association of Down syndrome (DS) with Dandy Walker malformation (DWM) is extremely rare, with only 3 cases reported to date. All cases reported have shown a bad life expectancy and a bad developmental outcome. The present case reveals the possibility of a good prognosis. A 19-month-old male patient had successful endoscopic hydrocephalus treatment and a good developmental outcome. He probably had a better outcome because of good DS and DWM prognostic parameters. Our patient suffered from a DWM with vermis identification of 2 fissures and 3 lobes and a DS with a well-preserved tonus, which was not associated with other congenital systemic defects. We may conclude that the prognosis of DS-DWM association may separately depend on the degree of clinical and neurological involvement of each malformation.
Periconceptional and early pregnancy folate supplements are associated with reduced recurrence and occurrence of birth defects in humans. This study was undertaken to assess the influence of maternal folate status and dietary folate intake on outcome of exposures to diverse terat...
The locations of cell death and resulting malformations in embryos following teratogen exposure vary depending on the teratogen used, the genotype of the conceptus, and the developmental stage of the embryo at time of exposure. To date, ethanol-induced cell death has been charac...
Role of DNA Replication Defects in Breast Cancer
2010-10-01
effect is that C3H-Mcm4Chaos3/Chaos3 mice are developmentally normal, but Mcm4Chaos3/- animals die in utero or neonatally [Shima, 2007]. To further...3e). This increase in the ratio of reticulocytes (erythrocyte precursors) to mature RBCs is characteristic of anemia . Hemizygosity for Mcm3
USDA-ARS?s Scientific Manuscript database
Teratogenic alkaloids can cause developmental defects due to the inhibition of fetal movement from the desensitization of fetal muscle-type nicotinic acetylcholine receptors (nAChR). In this study, we tested the hypothesis that the piperidine alkaloid anabaseine a 1,2-dehydropiperidine and anabasin...
ERIC Educational Resources Information Center
Gahagan, Sheila; Sharpe, Tanya Telfair; Brimacombe, Michael; Fry-Johnson, Yvonne; Levine, Robert; Mengel, Mark; O'Connor, Mary; Paley, Blair; Adubato, Susan; Brenneman, George
2007-01-01
Objectives: Prenatal exposure to alcohol interferes with fetal development and is the leading preventable cause of birth defects and developmental disabilities. The purpose of this study was to identify current knowledge, diagnosis, prevention, and intervention practices related to fetal alcohol syndrome and related conditions by members of the…
Conditional deletion of SLP-76 in mature T cells abrogates peripheral immune responses.
Wu, Gregory F; Corbo, Evann; Schmidt, Michelle; Smith-Garvin, Jennifer E; Riese, Matthew J; Jordan, Martha S; Laufer, Terri M; Brown, Eric J; Maltzman, Jonathan S
2011-07-01
The adaptor protein Src homology 2 domain-containing leukocyte-specific protein of 76 kDa (SLP-76) is central to the organization of intracellular signaling downstream of the T-cell receptor (TCR). Evaluation of its role in mature, primary T cells has been hampered by developmental defects that occur in the absence of WT SLP-76 protein in thymocytes. Here, we show that following tamoxifen-regulated conditional deletion of SLP-76, mature, antigen-inexperienced T cells maintain normal TCR surface expression but fail to transduce TCR-generated signals. Conditionally deficient T cells fail to proliferate in response to antigenic stimulation or a lymphopenic environment. Mice with induced deletion of SLP-76 are resistant to induction of the CD4+ T-cell-mediated autoimmune disease experimental autoimmune encephalomyelitis. Altogether, our findings demonstrate the critical role of SLP-76-mediated signaling in initiating T-cell-directed immune responses both in vitro and in vivo and highlight the ability to analyze signaling processes in mature T cells in the absence of developmental defects. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yunus, Ian Sofian; Liu, Yu-Chi; Nakamura, Yuki
2016-11-01
In plants, ethanolamine is considered a precursor for the synthesis of choline, which is an essential dietary nutrient for animals. An enzyme serine decarboxylase (SDC) has been identified and characterized in Arabidopsis, which directly converts serine to ethanolamine, a precursor to phosphorylethanolamine and its subsequent metabolites in plants. However, the importance of SDC and ethanolamine production in plant growth and development remains unclear. Here, we show that SDC is required for ethanolamine biosynthesis in vivo and essential in plant embryogenesis in Arabidopsis. The knockout of SDC1 caused an embryonic lethal defect due to the developmental arrest of the embryos at the heart stage. During embryo development, the expression was observed at the later stages, at which developmental defect occurred in the knockout mutant. Overexpression of SDC1 in planta increased levels of ethanolamine, phosphatidylethanolamine, and phosphatidylcholine both in leaves and siliques. These results suggest that SDC1 plays an essential role in ethanolamine biosynthesis during the embryogenesis in Arabidopsis. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.
Bacrot, Séverine; Doyard, Mathilde; Huber, Céline; Alibeu, Olivier; Feldhahn, Niklas; Lehalle, Daphné; Lacombe, Didier; Marlin, Sandrine; Nitschke, Patrick; Petit, Florence; Vazquez, Marie-Paule; Munnich, Arnold; Cormier-Daire, Valérie
2015-02-01
Cerebro-costo-mandibular syndrome (CCMS) is a developmental disorder characterized by the association of Pierre Robin sequence and posterior rib defects. Exome sequencing and Sanger sequencing in five unrelated CCMS patients revealed five heterozygous variants in the small nuclear ribonucleoprotein polypeptides B and B1 (SNRPB) gene. This gene includes three transcripts, namely transcripts 1 and 2, encoding components of the core spliceosomal machinery (SmB' and SmB) and transcript 3 undergoing nonsense-mediated mRNA decay. All variants were located in the premature termination codon (PTC)-introducing alternative exon of transcript 3. Quantitative RT-PCR analysis revealed a significant increase in transcript 3 levels in leukocytes of CCMS individuals compared to controls. We conclude that CCMS is due to heterozygous mutations in SNRPB, enhancing inclusion of a SNRPB PTC-introducing alternative exon, and show that this developmental disease is caused by defects in the splicing machinery. Our finding confirms the report of SNRPB mutations in CCMS patients by Lynch et al. (2014) and further extends the clinical and molecular observations. © 2014 WILEY PERIODICALS, INC.
Xu, Baoshan; Sowa, Nenja; Cardenas, Maria E.; Gerton, Jennifer L.
2015-01-01
Cohesinopathies are human genetic disorders that include Cornelia de Lange syndrome (CdLS) and Roberts syndrome (RBS) and are characterized by defects in limb and craniofacial development as well as mental retardation. The developmental phenotypes of CdLS and other cohesinopathies suggest that mutations in the structure and regulation of the cohesin complex during embryogenesis interfere with gene regulation. In a previous project, we showed that RBS was associated with highly fragmented nucleoli and defects in both ribosome biogenesis and protein translation. l-leucine stimulation of the mTOR pathway partially rescued translation in human RBS cells and development in zebrafish models of RBS. In this study, we investigate protein translation in zebrafish models of CdLS. Our results show that phosphorylation of RPS6 as well as 4E-binding protein 1 (4EBP1) was reduced in nipbla/b, rad21 and smc3-morphant embryos, a pattern indicating reduced translation. Moreover, protein biosynthesis and rRNA production were decreased in the cohesin morphant embryo cells. l-leucine partly rescued protein synthesis and rRNA production in the cohesin morphants and partially restored phosphorylation of RPS6 and 4EBP1. Concomitantly, l-leucine treatment partially improved cohesinopathy embryo development including the formation of craniofacial cartilage. Interestingly, we observed that alpha-ketoisocaproate (α-KIC), which is a keto derivative of leucine, also partially rescued the development of rad21 and nipbla/b morphants by boosting mTOR-dependent translation. In summary, our results suggest that cohesinopathies are caused in part by defective protein synthesis, and stimulation of the mTOR pathway through l-leucine or its metabolite α-KIC can partially rescue development in zebrafish models for CdLS. PMID:25378554
Xu, Baoshan; Sowa, Nenja; Cardenas, Maria E; Gerton, Jennifer L
2015-03-15
Cohesinopathies are human genetic disorders that include Cornelia de Lange syndrome (CdLS) and Roberts syndrome (RBS) and are characterized by defects in limb and craniofacial development as well as mental retardation. The developmental phenotypes of CdLS and other cohesinopathies suggest that mutations in the structure and regulation of the cohesin complex during embryogenesis interfere with gene regulation. In a previous project, we showed that RBS was associated with highly fragmented nucleoli and defects in both ribosome biogenesis and protein translation. l-leucine stimulation of the mTOR pathway partially rescued translation in human RBS cells and development in zebrafish models of RBS. In this study, we investigate protein translation in zebrafish models of CdLS. Our results show that phosphorylation of RPS6 as well as 4E-binding protein 1 (4EBP1) was reduced in nipbla/b, rad21 and smc3-morphant embryos, a pattern indicating reduced translation. Moreover, protein biosynthesis and rRNA production were decreased in the cohesin morphant embryo cells. l-leucine partly rescued protein synthesis and rRNA production in the cohesin morphants and partially restored phosphorylation of RPS6 and 4EBP1. Concomitantly, l-leucine treatment partially improved cohesinopathy embryo development including the formation of craniofacial cartilage. Interestingly, we observed that alpha-ketoisocaproate (α-KIC), which is a keto derivative of leucine, also partially rescued the development of rad21 and nipbla/b morphants by boosting mTOR-dependent translation. In summary, our results suggest that cohesinopathies are caused in part by defective protein synthesis, and stimulation of the mTOR pathway through l-leucine or its metabolite α-KIC can partially rescue development in zebrafish models for CdLS. © The Author 2014. Published by Oxford University Press.
Gangliosides in the Nervous System: Biosynthesis and Degradation
NASA Astrophysics Data System (ADS)
Yu, Robert K.; Ariga, Toshio; Yanagisawa, Makoto; Zeng, Guichao
Gangliosides, abundant in the nervous system, are known to play crucial modulatory roles in cellular recognition, interaction, adhesion, and signal transduction, particularly during early developmental stages. The expression of gangliosides in the nervous system is developmentally regulated and is closely related to the differentiation state of the cell. Ganglioside biosynthesis occurs in intracellular organelles, from which gangliosides are transported to the plasma membrane. During brain development, the ganglioside composition of the nervous system undergoes remarkable changes and is strictly regulated by the activities of glycosyltransferases, which can occur at different levels of control, including glycosyltransferase gene transcription and posttranslational modification. Genes for glycosyltransferase involved in ganglioside biosynthesis have been cloned and classified into families of glycosyltransferases based on their amino acid sequence similarities. The donor and acceptor substrate specificities are determined by enzymatic analysis of the glycosyltransferase gene products. Cell-type specific regulation of these genes has also been studied. Gangliosides are degraded by lysosomal exoglycosidases. The action of these enzymes occurs frequently in cooperation with activator proteins. Several human diseases are caused by defects of degradative enzymes, resulting in massive accumulation of certain glycolipids, including gangliosides in the lysosomal compartment and other organelles in the brain and visceral organs. Some of the representative lysosomal storage diseases (LSDs) caused by the accumulation of lipids in late endosomes and lysosomes will be discussed.
Fan, Yanjie; Wu, Yanming; Wang, Lili; Wang, Yu; Gong, Zhuwen; Qiu, Wenjuan; Wang, Jingmin; Zhang, Huiwen; Ji, Xing; Ye, Jun; Han, Lianshu; Jin, Xingming; Shen, Yongnian; Li, Fei; Xiao, Bing; Liang, Lili; Zhang, Xia; Liu, Xiaomin; Gu, Xuefan; Yu, Yongguo
2018-05-24
Developmental delay (DD) and intellectual disability (ID) are frequently associated with a broad spectrum of additional phenotypes. Chromosomal microarray analysis (CMA) has been recommended as a first-tier test for DD/ID in general, whereas the diagnostic yield differs significantly among DD/ID patients with different comorbid conditions. To investigate the genotype-phenotype correlation, we examined the characteristics of identified pathogenic copy number variations (pCNVs) and compared the diagnostic yields among patient subgroups with different co-occurring conditions. This study is a retrospective review of CMA results generated from a mixed cohort of 710 Chinese patients with DD/ID. A total of 247 pCNVs were identified in 201 patients (28%). A large portion of these pCNVs were copy number losses, and the size of copy number losses was generally smaller than gains. The diagnostic yields were significantly higher in subgroups with co-occurring congenital heart defects (55%), facial dysmorphism (39%), microcephaly (34%) or hypotonia (35%), whereas co-occurring conditions of skeletal malformation (26%), brain malformation (24%) or epilepsy (24%) did not alter the yield. In addition, the diagnostic yield nominally correlated with ID severity. Varied yields exist in DD/ID patients with different phenotypic presentation. The presence of comorbid conditions can be among factors to consider when planning CMA.
Parente, Daniel J; Garriga, Caryn; Baskin, Berivan; Douglas, Ganka; Cho, Megan T; Araujo, Gabriel C; Shinawi, Marwan
2017-01-01
Neuroligins are post-synaptic, cellular adhesion molecules implicated in synaptic formation and function. NLGN2 is strongly linked to inhibitory, GABAergic signaling and is crucial for maintaining the excitation-inhibition balance in the brain. Disruption of the excitation-inhibition balance is associated with neuropsychiatric disease. In animal models, altered NLGN2 expression causes anxiety, developmental delay, motor discoordination, social impairment, aggression, and sensory processing defects. In humans, mutations in NLGN3 and NLGN4 are linked to autism and schizophrenia; NLGN2 missense variants are implicated in schizophrenia. Copy number variants encompassing NLGN2 on 17p13.1 are associated with autism, intellectual disability, metabolic syndrome, diabetes, and dysmorphic features, but an isolated NLGN2 nonsense variant has not yet been described in humans. Here, we describe a 15-year-old male with severe anxiety, obsessive-compulsive behaviors, developmental delay, autism, obesity, macrocephaly, and some dysmorphic features. Exome sequencing identified a heterozygous, de novo, c.441C>A p.(Tyr147Ter) variant in NLGN2 that is predicted to cause loss of normal protein function. This is the first report of an NLGN2 nonsense variant in humans, adding to the accumulating evidence that links synaptic proteins with a spectrum of neurodevelopmental phenotypes. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Shox2-deficiency leads to dysplasia and ankylosis of the temporomandibular joint in Mice
Gu, Shuping; Wei, Na; Yu, Ling; Fei, Jian; Chen, YiPing
2010-01-01
The temporomandibular joint (TMJ) is a unique synovial joint whose development differs from the formation of other synovial joints. Mutations have been associated with the developmental defects of the TMJ only in a few genes. In this study, we report the expression of the homeobox gene Shox2 in the cranial neural crest derived mesenchymal cells of the maxilla-mandibular junction and later in the progenitor cells and undifferentiated chondrocytes of the condyle as well as the glenoid fossa of the developing TMJ. A conditional inactivation of Shox2 in the cranial neural crest-derived cells causes developmental abnormalities in the TMJ, including dysplasia of the condyle and glenoid fossa. The articulating disc forms but fuses with the fibrous layers of the condyle and glenoid fossa, clinically known as TMJ ankylosis. Histological examination indicates a delay in development in the mutant TMJ, accompanied by a significantly reduced rate of cell proliferation. In situ hybridization further demonstrates an altered expression of several key osteogenic genes and a delayed expression of the osteogenic differentiation markers. Shox2 appears to regulate the expression of osteogenic genes and is essential for the development and function of the TMJ. The Shox2 conditional mutant thus provides a unique animal model of TMJ ankylosis. PMID:18514492
Complex Mixture-Associated Hormesis and Toxicity: The Case of Leather Tanning Industry
Pagano, Giovanni; Castello, Giuseppe; Gallo, Marialuisa; Borriello, Ilaria; Guida, Marco
2008-01-01
A series of studies investigated the toxicities of tannery-derived complex mixtures, i.e. vegetable tannin (VT) from Acacia sp. or phenol-based synthetic tannin (ST), and waste-water from tannin-based vs. chromium-based tanneries. Toxicity was evaluated by multiple bioassays including developmental defects and loss of fertilization rate in sea urchin embryos and sperm (Paracentrotus lividus and Sphaerechinus granularis), and algal growth inhibition (Dunaliella tertiolecta and Selenastrum capricornutum). Both VT and ST water extracts resulted in hormetic effects at concentrations ranging 0.1 to 0.3%, and toxicity at levels ≥1%, both in sea urchin embryo and sperm, and in algal growth bioassays. When comparing tannin-based tannery wastewater (TTW) vs. chromium-based tannery effluent (CTE), a hormesis to toxicity trend was observed for TTW both in terms of developmental and fertilization toxicity in sea urchins, and in algal growth inhibition, with hormetic effects at 0.1 to 0.2% TTW, and toxicity at TTW levels ≥1%. Unlike TTW, CTE showed a monotonic toxicity increase from the lowest tested level (0.1%) and CTE toxicity at higher levels was significantly more severe than TTW-induced toxicity. The results support the view that leather production utilizing tannins might be regarded as a more environmentally friendly procedure than chromium-based tanning process. PMID:19088903
Complex mixture-associated hormesis and toxicity: the case of leather tanning industry.
Pagano, Giovanni; Castello, Giuseppe; Gallo, Marialuisa; Borriello, Ilaria; Guida, Marco
2008-01-01
A series of studies investigated the toxicities of tannery-derived complex mixtures, i.e. vegetable tannin (VT) from Acacia sp. or phenol-based synthetic tannin (ST), and waste-water from tannin-based vs. chromium-based tanneries. Toxicity was evaluated by multiple bioassays including developmental defects and loss of fertilization rate in sea urchin embryos and sperm (Paracentrotus lividus and Sphaerechinus granularis), and algal growth inhibition (Dunaliella tertiolecta and Selenastrum capricornutum). Both VT and ST water extracts resulted in hormetic effects at concentrations ranging 0.1 to 0.3%, and toxicity at levels > or =1%, both in sea urchin embryo and sperm, and in algal growth bioassays. When comparing tannin-based tannery wastewater (TTW) vs. chromium-based tannery effluent (CTE), a hormesis to toxicity trend was observed for TTW both in terms of developmental and fertilization toxicity in sea urchins, and in algal growth inhibition, with hormetic effects at 0.1 to 0.2% TTW, and toxicity at TTW levels > or =1%. Unlike TTW, CTE showed a monotonic toxicity increase from the lowest tested level (0.1%) and CTE toxicity at higher levels was significantly more severe than TTW-induced toxicity. The results support the view that leather production utilizing tannins might be regarded as a more environmentally friendly procedure than chromium-based tanning process.
The chromatin remodeling factor CHD7 controls cerebellar development by regulating reelin expression
Whittaker, Danielle E.; Riegman, Kimberley L.H.; Kasah, Sahrunizam; Mohan, Conor; Yu, Tian; Sala, Blanca Pijuan; Hebaishi, Husam; Caruso, Angela; Marques, Ana Claudia; Michetti, Caterina; Smachetti, María Eugenia Sanz; Shah, Apar; Sabbioni, Mara; Kulhanci, Omer; Tee, Wee-Wei; Reinberg, Danny; Scattoni, Maria Luisa; McGonnell, Imelda; Wardle, Fiona C.; Fernandes, Cathy
2017-01-01
The mechanisms underlying the neurodevelopmental deficits associated with CHARGE syndrome, which include cerebellar hypoplasia, developmental delay, coordination problems, and autistic features, have not been identified. CHARGE syndrome has been associated with mutations in the gene encoding the ATP-dependent chromatin remodeler CHD7. CHD7 is expressed in neural stem and progenitor cells, but its role in neurogenesis during brain development remains unknown. Here we have shown that deletion of Chd7 from cerebellar granule cell progenitors (GCps) results in reduced GCp proliferation, cerebellar hypoplasia, developmental delay, and motor deficits in mice. Genome-wide expression profiling revealed downregulated expression of the gene encoding the glycoprotein reelin (Reln) in Chd7-deficient GCps. Recessive RELN mutations have been associated with severe cerebellar hypoplasia in humans. We found molecular and genetic evidence that reductions in Reln expression contribute to GCp proliferative defects and cerebellar hypoplasia in GCp-specific Chd7 mouse mutants. Finally, we showed that CHD7 is necessary for maintaining an open, accessible chromatin state at the Reln locus. Taken together, this study shows that Reln gene expression is regulated by chromatin remodeling, identifies CHD7 as a previously unrecognized upstream regulator of Reln, and provides direct in vivo evidence that a mammalian CHD protein can control brain development by modulating chromatin accessibility in neuronal progenitors. PMID:28165338
Fuchs, Claudia; Fustini, Norma; Trazzi, Stefania; Gennaccaro, Laura; Rimondini, Roberto; Ciani, Elisabetta
2018-05-01
Cyclin-dependent kinase-like 5 (CDKL5) disorder is a severe neurodevelopmental disorder characterized by early-onset epileptic seizures, severe developmental delay, and intellectual disability. To date, no effective pharmacological treatments are available to improve the neurological phenotype that is due to mutations in the CDKL5 gene. Murine models of CDKL5 disorder have recently been generated, making the preclinical testing of pharmacological interventions possible. Using a Cdkl5 knockout (KO) mouse model, we recently demonstrated that deficiency of Cdkl5 causes defects in postnatal hippocampal development and hippocampus-dependent learning and memory. These defects were accompanied by an increased activity of GSK3β, an important inhibitory regulator of many neuronal functions. Pharmacological inhibition of GSK3β activity was able to recover hippocampal defects and cognitive performance in juvenile Cdkl5 KO mice, suggesting that GSK3β inhibitors might be a potential therapeutic option for CDKL5 disorder. As GSK3β inhibitors have been shown to have differential medication responses in young people and adults, this study was designed to examine whether GSK3β is a possible therapeutic target both in juvenile and in adult CDKL5 patients. We found that treatment with the GSK3β inhibitor Tideglusib during the juvenile period improved hippocampal development and hippocampus-dependent behaviors in Cdkl5 KO mice, while treatment later on in adulthood had no positive effects. These results suggest that pharmacological interventions aimed at normalizing impaired GSK3β activity might have different age-dependent outcomes in CDKL5 disorder. This is of utmost importance in the development of therapeutic approaches in CDKL5 patients and in the design of rational clinical trials. © 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Mutation of Growth Arrest Specific 8 Reveals a Role in Motile Cilia Function and Human Disease
Lewis, Wesley R.; Malarkey, Erik B.; Tritschler, Douglas; Bower, Raqual; Pasek, Raymond C.; Porath, Jonathan D.; Birket, Susan E.; Saunier, Sophie; Antignac, Corinne; Leigh, Margaret W.; Zariwala, Maimoona A.; Drummond, Iain A.; Parant, John M.; Hildebrandt, Friedhelm; Yoder, Bradley K.
2016-01-01
Ciliopathies are genetic disorders arising from dysfunction of microtubule-based cellular appendages called cilia. Different cilia types possess distinct stereotypic microtubule doublet arrangements with non-motile or ‘primary’ cilia having a 9+0 and motile cilia have a 9+2 array of microtubule doublets. Primary cilia are critical sensory and signaling centers needed for normal mammalian development. Defects in their structure/function result in a spectrum of clinical and developmental pathologies including abnormal neural tube and limb patterning. Altered patterning phenotypes in the limb and neural tube are due to perturbations in the hedgehog (Hh) signaling pathway. Motile cilia are important in fluid movement and defects in motility result in chronic respiratory infections, altered left-right asymmetry, and infertility. These features are the hallmarks of Primary Ciliary Dyskinesia (PCD, OMIM 244400). While mutations in several genes are associated with PCD in patients and animal models, the genetic lesion in many cases is unknown. We assessed the in vivo functions of Growth Arrest Specific 8 (GAS8). GAS8 shares strong sequence similarity with the Chlamydomonas Nexin-Dynein Regulatory Complex (NDRC) protein 4 (DRC4) where it is needed for proper flagella motility. In mammalian cells, the GAS8 protein localizes not only to the microtubule axoneme of motile cilia, but also to the base of non-motile cilia. Gas8 was recently implicated in the Hh signaling pathway as a regulator of Smoothened trafficking into the cilium. Here, we generate the first mouse with a Gas8 mutation and show that it causes severe PCD phenotypes; however, there were no overt Hh pathway phenotypes. In addition, we identified two human patients with missense variants in Gas8. Rescue experiments in Chlamydomonas revealed a subtle defect in swim velocity compared to controls. Further experiments using CRISPR/Cas9 homology driven repair (HDR) to generate one of these human missense variants in mice demonstrated that this allele is likely pathogenic. PMID:27472056
Mutation of Growth Arrest Specific 8 Reveals a Role in Motile Cilia Function and Human Disease.
Lewis, Wesley R; Malarkey, Erik B; Tritschler, Douglas; Bower, Raqual; Pasek, Raymond C; Porath, Jonathan D; Birket, Susan E; Saunier, Sophie; Antignac, Corinne; Knowles, Michael R; Leigh, Margaret W; Zariwala, Maimoona A; Challa, Anil K; Kesterson, Robert A; Rowe, Steven M; Drummond, Iain A; Parant, John M; Hildebrandt, Friedhelm; Porter, Mary E; Yoder, Bradley K; Berbari, Nicolas F
2016-07-01
Ciliopathies are genetic disorders arising from dysfunction of microtubule-based cellular appendages called cilia. Different cilia types possess distinct stereotypic microtubule doublet arrangements with non-motile or 'primary' cilia having a 9+0 and motile cilia have a 9+2 array of microtubule doublets. Primary cilia are critical sensory and signaling centers needed for normal mammalian development. Defects in their structure/function result in a spectrum of clinical and developmental pathologies including abnormal neural tube and limb patterning. Altered patterning phenotypes in the limb and neural tube are due to perturbations in the hedgehog (Hh) signaling pathway. Motile cilia are important in fluid movement and defects in motility result in chronic respiratory infections, altered left-right asymmetry, and infertility. These features are the hallmarks of Primary Ciliary Dyskinesia (PCD, OMIM 244400). While mutations in several genes are associated with PCD in patients and animal models, the genetic lesion in many cases is unknown. We assessed the in vivo functions of Growth Arrest Specific 8 (GAS8). GAS8 shares strong sequence similarity with the Chlamydomonas Nexin-Dynein Regulatory Complex (NDRC) protein 4 (DRC4) where it is needed for proper flagella motility. In mammalian cells, the GAS8 protein localizes not only to the microtubule axoneme of motile cilia, but also to the base of non-motile cilia. Gas8 was recently implicated in the Hh signaling pathway as a regulator of Smoothened trafficking into the cilium. Here, we generate the first mouse with a Gas8 mutation and show that it causes severe PCD phenotypes; however, there were no overt Hh pathway phenotypes. In addition, we identified two human patients with missense variants in Gas8. Rescue experiments in Chlamydomonas revealed a subtle defect in swim velocity compared to controls. Further experiments using CRISPR/Cas9 homology driven repair (HDR) to generate one of these human missense variants in mice demonstrated that this allele is likely pathogenic.
Stereotyped behavior of severely disabled children in classroom and free-play settings.
Thompson, T J; Berkson, G
1985-05-01
The relationships between stereotyped behavior, object manipulation, self-manipulation, teacher attention, and various developmental measures were examined in 101 severely developmentally disabled children in their classrooms and a free-play setting. Stereotyped behavior without objects was positively correlated with self-manipulation and CA and was negatively correlated with complex object manipulation, developmental age, developmental quotient, and teacher attention. Stereotyped behavior with objects was negatively correlated with complex object manipulation. Partial correlations showed that age, self-manipulation, and developmental age shared unique variance with stereotyped behavior without objects.
Harsh childhood environmental characteristics predict exploitation and retaliation in humans
McCullough, Michael E.; Pedersen, Eric J.; Schroder, Jaclyn M.; Tabak, Benjamin A.; Carver, Charles S.
2013-01-01
Across and within societies, people vary in their propensities towards exploitative and retaliatory defection in potentially cooperative interaction. We hypothesized that this variation reflects adaptive responses to variation in cues during childhood that life will be harsh, unstable and short—cues that probabilistically indicate that it is in one's fitness interests to exploit co-operators and to retaliate quickly against defectors. Here, we show that childhood exposure to family neglect, conflict and violence, and to neighbourhood crime, were positively associated for men (but not women) with exploitation of an interaction partner and retaliatory defection after that partner began to defect. The associations between childhood environment and both forms of defection for men appeared to be mediated by participants' endorsement of a ‘code of honour’. These results suggest that individual differences in mutual benefit cooperation are not merely due to genetic noise, random developmental variation or the operation of domain-general cultural learning mechanisms, but rather, might reflect the adaptive calibration of social strategies to local social–ecological conditions. PMID:23118435
Spofford, Lisa; Dimian, Adele; Tervo, Raymond; MacLean, William E.; Symons, Frank J.
2016-01-01
Objective To compare the prevalence of self-injurious behavior (SIB) and stereotyped motor behavior (STY) of preschool-aged children with developmental delays (DD group) and their peers without developmental delays (TD group) using a standardized caregiver report scale. Methods The Repetitive Behavior Scale-Revised was completed by caregivers of children with developmental delays and their peers without developmental delays. Frequency of occurrence and severity ratings for SIB and STY were compared between groups. Results SIB and STY were reported more often and at a greater level of severity in the DD group. Older chronological age was associated with more severe STY in the DD group but not the TD group. Gender was not related to STY or SIB for either group. Conclusions Differences in STY and SIB were evident between preschoolers with and without DD. Findings are discussed from developmental and behavioral psychology perspectives regarding the expression of repetitive behavior in developmentally at-risk pediatric populations. PMID:26514642
A Drosophila model for fetal alcohol syndrome disorders: role for the insulin pathway
McClure, Kimberly D.; French, Rachael L.; Heberlein, Ulrike
2011-01-01
SUMMARY Prenatal exposure to ethanol in humans results in a wide range of developmental abnormalities, including growth deficiency, developmental delay, reduced brain size, permanent neurobehavioral abnormalities and fetal death. Here we describe the use of Drosophila melanogaster as a model for exploring the effects of ethanol exposure on development and behavior. We show that developmental ethanol exposure causes reduced viability, developmental delay and reduced adult body size. We find that flies reared on ethanol-containing food have smaller brains and imaginal discs, which is due to reduced cell division rather than increased apoptosis. Additionally, we show that, as in mammals, flies reared on ethanol have altered responses to ethanol vapor exposure as adults, including increased locomotor activation, resistance to the sedating effects of the drug and reduced tolerance development upon repeated ethanol exposure. We have found that the developmental and behavioral defects are largely due to the effects of ethanol on insulin signaling; specifically, a reduction in Drosophila insulin-like peptide (Dilp) and insulin receptor expression. Transgenic expression of Dilp proteins in the larval brain suppressed both the developmental and behavioral abnormalities displayed by ethanol-reared adult flies. Our results thus establish Drosophila as a useful model system to uncover the complex etiology of fetal alcohol syndrome. PMID:21303840
Applying Evolutionary Genetics to Developmental Toxicology and Risk Assessment
Leung, Maxwell C. K.; Procter, Andrew C.; Goldstone, Jared V.; Foox, Jonathan; DeSalle, Robert; Mattingly, Carolyn J.; Siddall, Mark E.; Timme-Laragy, Alicia R.
2018-01-01
Evolutionary thinking continues to challenge our views on health and disease. Yet, there is a communication gap between evolutionary biologists and toxicologists in recognizing the connections among developmental pathways, high-throughput screening, and birth defects in humans. To increase our capability in identifying potential developmental toxicants in humans, we propose to apply evolutionary genetics to improve the experimental design and data interpretation with various in vitro and whole-organism models. We review five molecular systems of stress response and update 18 consensual cell-cell signaling pathways that are the hallmark for early development, organogenesis, and differentiation; and revisit the principles of teratology in light of recent advances in high-throughput screening, big data techniques, and systems toxicology. Multiscale systems modeling plays an integral role in the evolutionary approach to cross-species extrapolation. Phylogenetic analysis and comparative bioinformatics are both valuable tools in identifying and validating the molecular initiating events that account for adverse developmental outcomes in humans. The discordance of susceptibility between test species and humans (ontogeny) reflects their differences in evolutionary history (phylogeny). This synthesis not only can lead to novel applications in developmental toxicity and risk assessment, but also can pave the way for applying an evo-devo perspective to the study of developmental origins of health and disease. PMID:28267574
Two siblings with congenital central hypothyroidism caused by a novel mutation in the IGSF1 gene.
Oguma, Makiko; Kobayashi, Mizuki; Yamazaki, Masayo; Yokoyama, Koji; Morikawa, Shuntaro; Yamaguchi, Takeshi; Yamagata, Takanori; Tajima, Toshihiro
2018-01-01
Genetic defects in the immunoglobulin superfamily member 1(IGSF1) protein are the cause of congenital central hypothyroidism (C-CH). Here we report two Japanese siblings with C-CH due to a novel IGSF1 mutation. The youngest brother showed a failure to thrive, hypothermia, and neonatal icterus six days after birth. Further endocrine evaluations led to the diagnosis of C-CH. In addition, PRL deficiency was later detected. In contrast, the elder brother did not show symptoms of severe hypothyroidism during the neonatal period, but he had been followed up by doctors due to psychomotor developmental delays since the age of 1 yr. At the age of 3 yr, he had low thyroxine and PRL levels and was also diagnosed with C-CH. Because of the C-CH and PRL deficiency, an IGSF1 deficiency was suspected. Sequence analysis of the IGSF1 gene identified a novel hemizygous mutation of p.Trp1173GlyfsTer8 (NM_001170961.1:c.3517del) in both siblings. In conclusion, the phenotypic severity of C-CH is different, even in siblings. Importantly, an IGSF1 deficiency may result in severe hypothyroidism during the neonatal period.
Lewis, Johnnye; Gonzales, Melissa; Burnette, Courtney; Benally, Malcolm; Seanez, Paula; Shuey, Christopher; Nez, Helen; Nez, Christopher; Nez, Seraphina
2015-01-01
Two disparate statistics often cited for the Western United States raise concern about risks for developmental disabilities in Native American children. First, 13 of the states with the highest percentage of Native American population are located in the Western United States (U.S. Census Bureau, 2012 ). Second, more than 161,000 abandoned hard-rock mines are located in 12 Western states (General Accounting Office, 2014 ). Moreover, numerous studies have linked low-level metals exposure with birth defects and developmental delays. Concern has emerged among tribal populations that metals exposure from abandoned mines might threaten development of future generations.
Dixon, Jill; Jones, Natalie C; Sandell, Lisa L; Jayasinghe, Sachintha M; Crane, Jennifer; Rey, Jean-Philippe; Dixon, Michael J; Trainor, Paul A
2006-09-05
Neural crest cells are a migratory cell population that give rise to the majority of the cartilage, bone, connective tissue, and sensory ganglia in the head. Abnormalities in the formation, proliferation, migration, and differentiation phases of the neural crest cell life cycle can lead to craniofacial malformations, which constitute one-third of all congenital birth defects. Treacher Collins syndrome (TCS) is characterized by hypoplasia of the facial bones, cleft palate, and middle and external ear defects. Although TCS results from autosomal dominant mutations of the gene TCOF1, the mechanistic origins of the abnormalities observed in this condition are unknown, and the function of Treacle, the protein encoded by TCOF1, remains poorly understood. To investigate the developmental basis of TCS we generated a mouse model through germ-line mutation of Tcof1. Haploinsufficiency of Tcof1 leads to a deficiency in migrating neural crest cells, which results in severe craniofacial malformations. We demonstrate that Tcof1/Treacle is required cell-autonomously for the formation and proliferation of neural crest cells. Tcof1/Treacle regulates proliferation by controlling the production of mature ribosomes. Therefore, Tcof1/Treacle is a unique spatiotemporal regulator of ribosome biogenesis, a deficiency that disrupts neural crest cell formation and proliferation, causing the hypoplasia characteristic of TCS craniofacial anomalies.
The effects of carbaryl on the development of zebrafish (Danio rerio) embryos.
Schock, Elizabeth N; Ford, Windsor C; Midgley, Kirsten J; Fader, Joseph G; Giavasis, Michael N; McWhorter, Michelle L
2012-12-01
In the United States, Sevin(™) brand insecticide is one of the most commonly used insecticides. The active ingredient in Sevin(™), carbaryl (1-napthyl-N-methylcarbamate), is a known acetylcholinesterase (AChE) inhibitor that prevents the breakdown of acetylcholine to acetate and choline at the synapse. While carbaryl successfully causes the death of insects by paralysis, it has also been shown to have negative effects on the development of several nontarget species. To study the effects of carbaryl on nontarget species, zebrafish (Danio rerio) were used, as they are a good model for both toxicology and development studies. Our study suggests that carbaryl induces changes in morphology, specifically in embryo size and shape. Additionally, carbaryl causes defects in heart formation that is characterized by a decrease in heart rate and a developmental delay/defect in cardiac looping. A significant decrease in the number of spinal cord neurons present was also observed. Further investigation showed that there was an increase in cell death in carbaryl-treated embryos. The results indicate that carbaryl may have a greater environmental impact than initially intended. Our study, which was conducted solely by undergraduates at a liberal arts college, indicates that carbaryl may be detrimental to the development of nontarget species.
The effects of male age on sperm DNA damage in healthy non-smokers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmid, T; Eskenazi, B; Baumgartner, A
The trend for men to have children at older ages raises concerns that advancing age may increase the production of genetically defective sperm, increasing the risks of transmitting germ-line mutations. We investigated the associations between male age and sperm DNA damage and the influence of several lifestyle factors in a healthy non-clinical group of 80 non-smokers (age: 22-80) with no known fertility problems using the sperm Comet analyses. The average percent of DNA that migrated out of the sperm nucleus under alkaline electrophoresis increased with age (0.18% per year, p=0.006); but there was no age association for damage measured undermore » neutral conditions (p=0.7). Men who consumed >3 cups coffee per day had {approx}20% higher % tail DNA under neutral but not alkaline conditions compared to men who consumed no caffeine (p=0.005). Our findings indicate that (a) older men have increased sperm DNA damage associated with alkali-labile sites or single-strand DNA breaks, and (b) independent of age, men with substantial daily caffeine consumption have increased sperm DNA damage associated with double-strand DNA breaks. DNA damage in sperm can be converted to chromosomal aberrations and gene mutations after fertilization increasing the risks for developmental defects and genetic diseases among offspring.« less
Saini, Kumud; Markakis, Marios N.; Zdanio, Malgorzata; Balcerowicz, Daria M.; Beeckman, Tom; De Veylder, Lieven; Prinsen, Els; Beemster, Gerrit T. S.; Vissenberg, Kris
2017-01-01
In plants many developmental processes are regulated by auxin and its directional transport. PINOID (PID) kinase helps to regulate this transport by influencing polar recruitment of PIN efflux proteins on the cellular membranes. We investigated how altered auxin levels affect leaf growth in Arabidopsis thaliana. Arabidopsis mutants and transgenic plants with altered PID expression levels were used to study the effect on auxin distribution and leaf development. Single knockouts showed small pleiotropic growth defects. Contrastingly, several leaf phenotypes related to changes in auxin concentrations and transcriptional activity were observed in PID overexpression (PIDOE) lines. Unlike in the knockout lines, the leaves of PIDOE lines showed an elevation in total indole-3-acetic acid (IAA). Accordingly, enhanced DR5-visualized auxin responses were detected, especially along the leaf margins. Kinematic analysis revealed that ectopic expression of PID negatively affects cell proliferation and expansion rates, yielding reduced cell numbers and small-sized cells in the PIDOE leaves. We used PIDOE lines as a tool to study auxin dose effects on leaf development and demonstrate that auxin, above a certain threshold, has a negative affect on leaf growth. RNA sequencing further showed how subtle PIDOE-related changes in auxin levels lead to transcriptional reprogramming of cellular processes. PMID:28659952
Łukasiewicz, Kinga; Węgrzyn, Grzegorz
2016-01-01
An isolated population of apollo butterfly (Parnassius apollo, Lepidoptera: Papilionidae) occurs in Pieniny National Park (Poland). Deformations and reductions of wings in a relatively large number of individuals from this population is found, yet the reasons for these defects are unknown. During studies devoted to identify cause(s) of this phenomenon, we found that specific regions of genes coding of enzymes laccases 1 and 2 could not be amplified from DNA samples isolated from large fractions of malformed insects while expected PCR products were detected in almost all (with one exception) normal butterflies. Laccases (p-diphenol:dioxygen oxidoreductases) are oxidases containing several copper atoms. They catalyse single-electron oxidations of phenolic or other compounds with concomitant reduction of oxygen to water. In insects, their enzymatic activities were found previously in epidermis, midgut, Malpighian tubules, salivary glands, and reproductive tissues. Therefore, we suggest that defects in genes coding for laccases might contribute to deformation and reduction of wings in apollo butterflies, though it seems obvious that deficiency in these enzymes could not be the sole cause of these developmental improperties in P. apollo from Pieniny National Park.
Developmental imaging: the avian embryo hatches to the challenge.
Kulesa, Paul M; McKinney, Mary C; McLennan, Rebecca
2013-06-01
The avian embryo provides a multifaceted model to study developmental mechanisms because of its accessibility to microsurgery, fluorescence cell labeling, in vivo imaging, and molecular manipulation. Early two-dimensional planar growth of the avian embryo mimics human development and provides unique access to complex cell migration patterns using light microscopy. Later developmental events continue to permit access to both light and other imaging modalities, making the avian embryo an excellent model for developmental imaging. For example, significant insights into cell and tissue behaviors within the primitive streak, craniofacial region, and cardiovascular and peripheral nervous systems have come from avian embryo studies. In this review, we provide an update to recent advances in embryo and tissue slice culture and imaging, fluorescence cell labeling, and gene profiling. We focus on how technical advances in the chick and quail provide a clearer understanding of how embryonic cell dynamics are beautifully choreographed in space and time to sculpt cells into functioning structures. We summarize how these technical advances help us to better understand basic developmental mechanisms that may lead to clinical research into human birth defects and tissue repair. Copyright © 2013 Wiley Periodicals, Inc.
The Genetics of Axon Guidance and Axon Regeneration in Caenorhabditis elegans
Chisholm, Andrew D.; Hutter, Harald; Jin, Yishi; Wadsworth, William G.
2016-01-01
The correct wiring of neuronal circuits depends on outgrowth and guidance of neuronal processes during development. In the past two decades, great progress has been made in understanding the molecular basis of axon outgrowth and guidance. Genetic analysis in Caenorhabditis elegans has played a key role in elucidating conserved pathways regulating axon guidance, including Netrin signaling, the slit Slit/Robo pathway, Wnt signaling, and others. Axon guidance factors were first identified by screens for mutations affecting animal behavior, and by direct visual screens for axon guidance defects. Genetic analysis of these pathways has revealed the complex and combinatorial nature of guidance cues, and has delineated how cues guide growth cones via receptor activity and cytoskeletal rearrangement. Several axon guidance pathways also affect directed migrations of non-neuronal cells in C. elegans, with implications for normal and pathological cell migrations in situations such as tumor metastasis. The small number of neurons and highly stereotyped axonal architecture of the C. elegans nervous system allow analysis of axon guidance at the level of single identified axons, and permit in vivo tests of prevailing models of axon guidance. C. elegans axons also have a robust capacity to undergo regenerative regrowth after precise laser injury (axotomy). Although such axon regrowth shares some similarities with developmental axon outgrowth, screens for regrowth mutants have revealed regeneration-specific pathways and factors that were not identified in developmental screens. Several areas remain poorly understood, including how major axon tracts are formed in the embryo, and the function of axon regeneration in the natural environment. PMID:28114100
Dual Functions of ASCIZ in the DNA Base Damage Response and Pulmonary Organogenesis
Tenis, Nora; Hammet, Andrew; Hewitt, Kimberly; Ng, Jane-Lee; McNees, Carolyn J.; Kozlov, Sergei V.; Oka, Hayato; Kobayashi, Masahiko; Conlan, Lindus A.; Cole, Timothy J.; Yamamoto, Ken-ichi; Taniguchi, Yoshihito; Takeda, Shunichi; Lavin, Martin F.; Heierhorst, Jörg
2010-01-01
Zn2+-finger proteins comprise one of the largest protein superfamilies with diverse biological functions. The ATM substrate Chk2-interacting Zn2+-finger protein (ASCIZ; also known as ATMIN and ZNF822) was originally linked to functions in the DNA base damage response and has also been proposed to be an essential cofactor of the ATM kinase. Here we show that absence of ASCIZ leads to p53-independent late-embryonic lethality in mice. Asciz-deficient primary fibroblasts exhibit increased sensitivity to DNA base damaging agents MMS and H2O2, but Asciz deletion or knock-down does not affect ATM levels and activation in mouse, chicken, or human cells. Unexpectedly, Asciz-deficient embryos also exhibit severe respiratory tract defects with complete pulmonary agenesis and severe tracheal atresia. Nkx2.1-expressing respiratory precursors are still specified in the absence of ASCIZ, but fail to segregate properly within the ventral foregut, and as a consequence lung buds never form and separation of the trachea from the oesophagus stalls early. Comparison of phenotypes suggests that ASCIZ functions between Wnt2-2b/ß-catenin and FGF10/FGF-receptor 2b signaling pathways in the mesodermal/endodermal crosstalk regulating early respiratory development. We also find that ASCIZ can activate expression of reporter genes via its SQ/TQ-cluster domain in vitro, suggesting that it may exert its developmental functions as a transcription factor. Altogether, the data indicate that, in addition to its role in the DNA base damage response, ASCIZ has separate developmental functions as an essential regulator of respiratory organogenesis. PMID:20975950
Form matters: morphological aspects of lateral root development
Szymanowska-Pułka, Joanna
2013-01-01
Background The crucial role of roots in plant nutrition, and consequently in plant productivity, is a strong motivation to study the growth and functioning of various aspects of the root system. Numerous studies on lateral roots, as a major determinant of the root system architecture, mostly focus on the physiological and molecular bases of developmental processes. Unfortunately, little attention is paid either to the morphological changes accompanying the formation of a lateral root or to morphological defects occurring in lateral root primordia. The latter are observed in some mutants and occasionally in wild-type plants, but may also result from application of external factors. Scope and Conclusions In this review various morphological aspects of lateral branching in roots are analysed. Morphological events occurring during the formation of a typical lateral root are described. This process involves dramatic changes in the geometry of the developing organ that at early stages are associated with oblique cell divisions, leading to breaking of the symmetry of the cell pattern. Several types of defects in the morphology of primordia are indicated and described. Computer simulations show that some of these defects may result from an unstable field of growth rates. Significant changes in both primary and lateral root morphology may also be a consequence of various mutations, some of which are auxin-related. Examples reported in the literature are considered. Finally, lateral root formation is discussed in terms of mechanics. In this approach the primordium is considered as a physical object undergoing deformation and is characterized by specific mechanical properties. PMID:24190952
Nie, Shuyi; Bronner, Marianne E.
2015-01-01
Aims Ets1 is an important transcription factor that is expressed in both the cardiac neural crest (NC) and heart mesoderm of vertebrate embryos. Moreover, Ets1 deletion in humans results in congenital heart abnormalities. To clarify the functional contributions of Ets1 in cardiac NC vs. heart mesoderm, we performed tissue-targeted loss-of-function analysis to compare the relative roles of Ets1 in these two tissues during heart formation using Xenopus embryos as a model system. Methods and results We confirmed by in situ hybridization analysis that Ets1 is expressed in NC and heart mesoderm during embryogenesis. Using a translation-blocking antisense morpholino to knockdown Ets1 protein selectively in the NC, we observed defects in NC delamination from the neural tube, collective cell migration, as well as segregation of NC streams in the cranial and cardiac regions. Many cardiac NC cells failed to reach their destination in the heart, resulting in defective aortic arch artery formation. A different set of defects was noted when Ets1 knockdown was targeted to heart mesoderm. The formation of the primitive heart tube was dramatically delayed and the endocardial tissue appeared depleted. As a result, the conformation of the heart was severely disrupted. In addition, the outflow tract septum was missing, and trabeculae formation in the ventricle was abolished. Conclusion Our study shows that Ets1 is required in both the cardiac NC and heart mesoderm, albeit for different aspects of heart formation. Our results reinforce the suggestion that proper interaction between these tissues is critical for normal heart development. PMID:25691536
Molloy, Anne M; Kirke, Peadar N; Brody, Lawrence C; Scott, John M; Mills, James L
2008-06-01
The importance of folate in reproduction can be appreciated by considering that the existence of the vitamin was first suspected from efforts to explain a potentially fatal megaloblastic anemia in young pregnant women in India. Today, low maternal folate status during pregnancy and lactation remains a significant cause of maternal morbidity in some communities. The folate status of the neonate tends to be protected at the expense of maternal stores; nevertheless, there is mounting evidence that inadequate maternal folate status during pregnancy may lead to low infant birthweight, thereby conferring risk of developmental and long-term adverse health outcomes. Moreover, folate-related anemia during childhood and adolescence might predispose children to further infections and disease. The role of folic acid in prevention of neural tube defects (NTD) is now established, and several studies suggest that this protection may extend to some other birth defects. In terms of maternal health, clinical vitamin B12 deficiency may be a cause of infertility or recurrent spontaneous abortion. Starting pregnancy with an inadequate vitamin B12 status may increase risk of birth defects such as NTD, and may contribute to preterm delivery, although this needs further evaluation. Furthermore, inadequate vitamin B12 status in the mother may lead to frank deficiency in the infant if sufficient fetal stores of vitamin B12 are not laid down during pregnancy or are not available in breastmilk. However, the implications of starting pregnancy and lactation with low vitamin B12 status have not been sufficiently researched.
McJunkin, Katherine; Ambros, Victor
2014-07-21
MicroRNAs guide many aspects of development in all metazoan species. Frequently, microRNAs are expressed during a specific developmental stage to perform a temporally defined function. The C. elegans mir-35-42 microRNAs are expressed abundantly in oocytes and early embryos and are essential for embryonic development. Here, we show that these embryonic microRNAs surprisingly also function to control the number of progeny produced by adult hermaphrodites. Using a temperature-sensitive mir-35-42 family mutant (a deletion of the mir-35-41 cluster), we demonstrate three distinct defects in hermaphrodite fecundity. At permissive temperatures, a mild sperm defect partially reduces hermaphrodite fecundity. At restrictive temperatures, somatic gonad dysfunction combined with a severe sperm defect sharply reduces fecundity. Multiple lines of evidence, including a late embryonic temperature-sensitive period, support a role for mir-35-41 early during development to promote subsequent sperm production in later larval stages. We further show that the predicted mir-35 family target sup-26 (suppressor-26) acts downstream of mir-35-41 in this process, suggesting that sup-26 de-repression in mir-35-41 deletion mutants may contribute to temperature-sensitive loss of fecundity. In addition, these microRNAs play a role in male fertility, promoting proper morphogenesis of male-specific mating structures. Overall, our results demonstrate that robust activity of the mir-35-42 family microRNAs not only is essential for embryonic development across a range of temperatures but also enables the worm to subsequently develop full reproductive capacity. Copyright © 2014 McJunkin and Ambros.
Zaytseva, Olga; Tenis, Nora; Mitchell, Naomi; Kanno, Shin-ichiro; Yasui, Akira; Heierhorst, Jörg; Quinn, Leonie M
2014-01-01
The essential zinc finger protein ASCIZ (also known as ATMIN, ZNF822) plays critical roles during lung organogenesis and B cell development in mice, where it regulates the expression of dynein light chain (DYNLL1/LC8), but its functions in other species including invertebrates are largely unknown. Here we report the identification of the Drosophila ortholog of ASCIZ (dASCIZ) and show that loss of dASCIZ function leads to pronounced mitotic delays with centrosome and spindle positioning defects during development, reminiscent of impaired dynein motor functions. Interestingly, similar mitotic and developmental defects were observed upon knockdown of the DYNLL/LC8-type dynein light chain Cutup (Ctp), and dASCIZ loss-of-function phenotypes could be suppressed by ectopic Ctp expression. Consistent with a genetic function of dASCIZ upstream of Ctp, we show that loss of dASCIZ led to reduced endogenous Ctp mRNA and protein levels and dramatically reduced Ctp–LacZ reporter gene activity in vivo, indicating that dASCIZ regulates development and mitosis as a Ctp transcription factor. We speculate that the more severe mitotic defects in the absence of ASCIZ in flies compared to mice may be due to redundancy with a second, ASCIZ-independent, Dynll2 gene in mammals in contrast to a single Ctp gene in Drosophila. Altogether, our data demonstrate that ASCIZ is an evolutionary highly conserved transcriptional regulator of dynein light-chain levels and a novel regulator of mitosis in flies. PMID:24336747
Litholdo, Celso G.; Parker, Benjamin L.; Eamens, Andrew L.; Larsen, Martin R.; Cordwell, Stuart J.; Waterhouse, Peter M.
2016-01-01
Expression of the F-Box protein Leaf Curling Responsiveness (LCR) is regulated by microRNA, miR394, and alterations to this interplay in Arabidopsis thaliana produce defects in leaf polarity and shoot apical meristem organization. Although the miR394-LCR node has been documented in Arabidopsis, the identification of proteins targeted by LCR F-box itself has proven problematic. Here, a proteomic analysis of shoot apices from plants with altered LCR levels identified a member of the Latex Protein (MLP) family gene as a potential LCR F-box target. Bioinformatic and molecular analyses also suggested that other MLP family members are likely to be targets for this post-translational regulation. Direct interaction between LCR F-Box and MLP423 was validated. Additional MLP members had reduction in protein accumulation, in varying degrees, mediated by LCR F-Box. Transgenic Arabidopsis lines, in which MLP28 expression was reduced through an artificial miRNA technology, displayed severe developmental defects, including changes in leaf patterning and morphology, shoot apex defects, and eventual premature death. These phenotypic characteristics resemble those of Arabidopsis plants modified to over-express LCR. Taken together, the results demonstrate that MLPs are driven to degradation by LCR, and indicate that MLP gene family is target of miR394-LCR regulatory node, representing potential targets for directly post-translational regulation mediated by LCR F-Box. In addition, MLP28 family member is associated with the LCR regulation that is critical for normal Arabidopsis development. PMID:27067051
De novo mutations in histone modifying genes in congenital heart disease
Zaidi, Samir; Choi, Murim; Wakimoto, Hiroko; Ma, Lijiang; Jiang, Jianming; Overton, John D.; Romano-Adesman, Angela; Bjornson, Robert D.; Breitbart, Roger E.; Brown, Kerry K.; Carriero, Nicholas J.; Cheung, Yee Him; Deanfield, John; DePalma, Steve; Fakhro, Khalid A.; Glessner, Joseph; Hakonarson, Hakon; Italia, Michael; Kaltman, Jonathan R.; Kaski, Juan; Kim, Richard; Kline, Jennie K.; Lee, Teresa; Leipzig, Jeremy; Lopez, Alexander; Mane, Shrikant M.; Mitchell, Laura E.; Newburger, Jane W.; Parfenov, Michael; Pe'er, Itsik; Porter, George; Roberts, Amy; Sachidanandam, Ravi; Sanders, Stephan J.; Seiden, Howard S.; State, Mathew W.; Subramanian, Sailakshmi; Tikhonova, Irina R.; Wang, Wei; Warburton, Dorothy; White, Peter S.; Williams, Ismee A.; Zhao, Hongyu; Seidman, Jonathan G.; Brueckner, Martina; Chung, Wendy K.; Gelb, Bruce D.; Goldmuntz, Elizabeth; Seidman, Christine E.; Lifton, Richard P.
2013-01-01
Congenital heart disease (CHD) is the most frequent birth defect, affecting 0.8% of live births1. Many cases occur sporadically and impair reproductive fitness, suggesting a role for de novo mutations. By analysis of exome sequencing of parent-offspring trios, we compared the incidence of de novo mutations in 362 severe CHD cases and 264 controls. CHD cases showed a significant excess of protein-altering de novo mutations in genes expressed in the developing heart, with an odds ratio of 7.5 for damaging mutations. Similar odds ratios were seen across major classes of severe CHD. We found a marked excess of de novo mutations in genes involved in production, removal or reading of H3K4 methylation (H3K4me), or ubiquitination of H2BK120, which is required for H3K4 methylation2–4. There were also two de novo mutations in SMAD2; SMAD2 signaling in the embryonic left-right organizer induces demethylation of H3K27me5. H3K4me and H3K27me mark `poised' promoters and enhancers that regulate expression of key developmental genes6. These findings implicate de novo point mutations in several hundred genes that collectively contribute to ~10% of severe CHD. PMID:23665959
Fanconi anemia: a disorder defective in the DNA damage response.
Kitao, Hiroyuki; Takata, Minoru
2011-04-01
Fanconi anemia (FA) is a cancer predisposition disorder characterized by progressive bone marrow failure, congenital developmental defects, chromosomal abnormalities, and cellular hypersensitivity to DNA interstrand crosslink (ICL) agents. So far mutations in 14 FANC genes were identified in FA or FA-like patients. These gene products constitute a common ubiquitin-phosphorylation network called the "FA pathway" and cooperate with other proteins involved in DNA repair and cell cycle control to repair ICL lesions and to maintain genome stability. In this review, we summarize recent exciting discoveries that have expanded our view of the molecular mechanisms operating in DNA repair and DNA damage signaling.
Islet-1 is required for ventral neuron survival in Xenopus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Yu; Zhao, Shuhua; Li, Jiejing
Islet-1 is a LIM domain transcription factor involved in several processes of embryonic development. Xenopus Islet-1 (Xisl-1) has been shown to be crucial for proper heart development. Here we show that Xisl-1 and Xisl-2 are differentially expressed in the nervous system in Xenopus embryos. Knock-down of Xisl-1 by specific morpholino leads to severe developmental defects, including eye and heart failure. Staining with the neuronal markers N-tubulin and Xisl-1 itself reveals that the motor neurons and a group of ventral interneurons are lost in the Xisl-1 morphants. Terminal dUTP nick-end labeling (TUNEL) analysis shows that Xisl-1 morpholino injection induces extensive apoptosismore » in the ventral neural plate, which can be largely inhibited by the apoptosis inhibitor M50054. We also find that over-expression of Xisl-1 is able to promote cell proliferation and induce Xstat3 expression in the injected side, suggesting a potential role for Xisl-1 in the regulation of cell proliferation in co-operation with the Jak-Stat pathway.« less
Hall, Sonia; Ward, Robert E.
2016-01-01
The septate junction (SJ) is the occluding junction found in the ectodermal epithelia of invertebrate organisms, and is essential to maintain chemically distinct compartments in epithelial organs, to provide the blood–brain barrier in the nervous system, and to provide an important line of defense against invading pathogens. More than 20 genes have been identified to function in the establishment or maintenance of SJs in Drosophila melanogaster. Numerous studies have demonstrated the cell biological function of these proteins in establishing the occluding junction, whereas very few studies have examined further developmental roles for them. Here we examined embryos with mutations in nine different core SJ genes and found that all nine result in defects in embryonic development as early as germ band retraction, with the most penetrant defect observed in head involution. SJ genes are also required for cell shape changes and cell rearrangements that drive the elongation of the salivary gland during midembryogenesis. Interestingly, these developmental events occur at a time prior to the formation of the occluding junction, when SJ proteins localize along the lateral membrane and have not yet coalesced into the region of the SJ. Together, these observations reveal an underappreciated role for a large group of SJ genes in essential developmental events during embryogenesis, and suggest that the function of these proteins in facilitating cell shape changes and rearrangements is independent of their role in the occluding junction. PMID:27261004
Physics and the canalization of morphogenesis: a grand challenge in organismal biology
von Dassow, Michelangelo; Davidson, Lance A.
2011-01-01
Morphogenesis takes place in a background of organism-to-organism and environmental variation. Therefore, a fundamental question in the study of morphogenesis is how the mechanical processes of tissue movement and deformation are affected by that variability, and in turn, how the mechanics of the system modulates phenotypic variation. We highlight a few key factors, including environmental temperature, embryo size, and environmental chemistry that might perturb the mechanics of morphogenesis in natural populations. Then we discuss several ways in which mechanics – including feedback from mechanical cues – might influence intra-specific variation in morphogenesis. To understand morphogenesis it will be necessary to consider whole-organism, environment, and evolutionary scales because these larger scales present the challenges that developmental mechanisms have evolved to cope with. Studying the variation organisms express and the variation organisms experience will aid in deciphering the causes of birth defects. PMID:21750364
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kimura, Toshiyuki; Arakawa, Yoshiki; Inazawa, Johji
1997-03-31
Smith-Magenis syndrome (SAIS) is caused by a microdeletion of 17p11.2 and comprises developmental and growth delay, facial abnormalities, unusual behavior and sleep problems. This phenotype may be due to haploinsufficiency of several contiguous genes. The human brain finger protein gene (ZNF179), a member of the RING finger protein family, has been isolated and mapped to l7p11.2. FISH analyses of metaphase or interphase chromosomes of 6 patients with SMS show that ZNF179 was deleted in one of the 2 homologs (17p11.2), indicating a possible association of the defect of this gene with the pathogenesis of SMS. Furthermore, using a prophase FISHmore » ordering system, we sublocalized ZNF179 proximally to LLGL which lies on the critical region for SMS. 27 refs., 2 figs.« less
Holoprosencephaly: from Homer to Hedgehog.
Ming, J E; Muenke, M
1998-03-01
Holoprosencephaly (HPE), a common developmental defect affecting the forebrain and face, is etiologically heterogeneous and exhibits wide phenotypic variation. Graded degrees of severity of the brain malformation are also reflected in the highly variable craniofacial malformations associated with HPE. In addition, individuals with microforms of HPE, who usually have normal cognition and normal brain imaging, are at risk for having children with HPE. Some obligate carriers for HPE may not have any phenotypic abnormalities. Recurrent chromosomal rearrangements in individuals with HPE suggest loci containing genes important for brain development, and abnormalities in these genes may result in HPE. Recently, Sonic Hedgehog (SHH) was the first gene identified as causing HPE in humans. Proper function of SHH depends on cholesterol modification. Other candidate genes that may be involved in HPE include components of the SHH pathway, elements involved in cholesterol metabolism, and genes expressed in the developing forebrain.
Retromer association with membranes: plants have their own rules!
Zelazny, Enric; Santambrogio, Martina; Gaude, Thierry
2013-09-01
The retromer is an endosome-localized complex involved in protein trafficking. To better understand its function and regulation in plants, we recently investigated how Arabidopsis retromer subunits assemble and are targeted to endosomal membranes and highlighted original features compared with mammals. We characterized Arabidopsis vps26 null mutant and showed that it displays severe developmental defaults similar to those observed in vps29 mutant. Here, we go further by describing new phenotypic defects associated with loss of VPS26 function, such as inhibition of lateral root initiation. Recently, we showed that VPS35 subunit plays a crucial role in the recruitment of the plant retromer to endosomes, probably through an interaction with the Rab7 homolog RABG3f. In this work, we now show that contrary to mammals, Arabidopsis Rab5 homologs do not seem to be necessary for the recruitment of the core retromer to endosomal membranes, which highlights a new specificity of the plant retromer.
Cilia/Ift protein and motor -related bone diseases and mouse models.
Yuan, Xue; Yang, Shuying
2015-01-01
Primary cilia are essential cellular organelles projecting from the cell surface to sense and transduce developmental signaling. They are tiny but have complicated structures containing microtubule (MT)-based internal structures (the axoneme) and mother centriole formed basal body. Intraflagellar transport (Ift) operated by Ift proteins and motors are indispensable for cilia formation and function. Mutations in Ift proteins or Ift motors cause various human diseases, some of which have severe bone defects. Over the last few decades, major advances have occurred in understanding the roles of these proteins and cilia in bone development and remodeling by examining cilia/Ift protein-related human diseases and establishing mouse transgenic models. In this review, we describe current advances in the understanding of the cilia/Ift structure and function. We further summarize cilia/Ift-related human diseases and current mouse models with an emphasis on bone-related phenotypes, cilia morphology, and signaling pathways.
Increased nuchal traslucency in normal karyotype fetuses
De Domenico, Roberta; Faraci, Marianna; Hyseni, Entela; Di Prima, Fosca A. F.; Valenti, Oriana; Monte, Santo; Giorgio, Elsa; Renda, Eliana
2011-01-01
Nuchal traslucency (NT) measurement between 11 and 14 weeks’ gestation is a reliable marker for chromosomal abnormalities, including trisomy 21. However, even if conventional karyotyping is normal, increased NT is a predictive value of adverse pregnancy outcome, because it is associated with several fetal malformations, congenital heart defects, genetic syndromes, intrauterine death and miscarriages; the majority of these structural anomalies are undetectable before birth. The risk is proportional to the nuchal translucency thickness, in fact it statistically increases after measurement reaching 3.5 mm or more. However, when these chromosomally normal fetuses with an enlarged NT survive, even if a detailed ultrasound examination and echocardiography fail to reveal any abnormalities, their uneventful outcome and postnatal developmental delay will be not statistically increased when compared to the general population. These parents should be confidently reassured that the residual chance of structural anomalies and abnormal neurodevelopment may not be higher than in the general population. PMID:22439071
Ishii, Seiji; Torii, Masaaki; Son, Alexander I; Rajendraprasad, Meenu; Morozov, Yury M; Kawasawa, Yuka Imamura; Salzberg, Anna C; Fujimoto, Mitsuaki; Brennand, Kristen; Nakai, Akira; Mezger, Valerie; Gage, Fred H; Rakic, Pasko; Hashimoto-Torii, Kazue
2017-05-02
Repetitive prenatal exposure to identical or similar doses of harmful agents results in highly variable and unpredictable negative effects on fetal brain development ranging in severity from high to little or none. However, the molecular and cellular basis of this variability is not well understood. This study reports that exposure of mouse and human embryonic brain tissues to equal doses of harmful chemicals, such as ethanol, activates the primary stress response transcription factor heat shock factor 1 (Hsf1) in a highly variable and stochastic manner. While Hsf1 is essential for protecting the embryonic brain from environmental stress, excessive activation impairs critical developmental events such as neuronal migration. Our results suggest that mosaic activation of Hsf1 within the embryonic brain in response to prenatal environmental stress exposure may contribute to the resulting generation of phenotypic variations observed in complex congenital brain disorders.
Kopyta, Ilona; Jamroz, Ewa; Kluczewska, Ewa; Sarecka-Hujar, Beata
2014-04-01
Schizencephaly is a rare and severe congenital brain defect. Its etiology is not unequivocal and its clinical course differs with every case. The aim of the study was to analyze correlations between clinical and radiologic features of schizencephaly in Polish patients. The study group consisted of 25 children. Epileptic seizures were observed in 60% of cases and in 32% epilepsy was drug resistant. Generalized hypotonia was found in 24%, spastic diparesis in 48%, and spastic hemiparesis in 28% of cases. Seizures were more frequent in the bilateral than unilateral schizencephaly subgroup (72% vs 29%, P = .045). There was a correlation between the presence of the bilateral type II schizencephaly and the occurrence of seizures (P = .002, r = 0.578). There is a correlation between the type of schizencephaly and the presence of seizures in Polish pediatric patients. In most of the patients, schizencephaly leads to developmental retardation and epileptic seizures.
Tropini, Carolina; Huang, Kerwyn Casey
2012-01-01
Bacterial cells maintain sophisticated levels of intracellular organization that allow for signal amplification, response to stimuli, cell division, and many other critical processes. The mechanisms underlying localization and their contribution to fitness have been difficult to uncover, due to the often challenging task of creating mutants with systematically perturbed localization but normal enzymatic activity, and the lack of quantitative models through which to interpret subtle phenotypic changes. Focusing on the model bacterium Caulobacter crescentus, which generates two different types of daughter cells from an underlying asymmetric distribution of protein phosphorylation, we use mathematical modeling to investigate the contribution of the localization of histidine kinases to the establishment of cellular asymmetry and subsequent developmental outcomes. We use existing mutant phenotypes and fluorescence data to parameterize a reaction-diffusion model of the kinases PleC and DivJ and their cognate response regulator DivK. We then present a systematic computational analysis of the effects of changes in protein localization and abundance to determine whether PleC localization is required for correct developmental timing in Caulobacter. Our model predicts the developmental phenotypes of several localization mutants, and suggests that a novel strain with co-localization of PleC and DivJ could provide quantitative insight into the signaling threshold required for flagellar pole development. Our analysis indicates that normal development can be maintained through a wide range of localization phenotypes, and that developmental defects due to changes in PleC localization can be rescued by increased PleC expression. We also show that the system is remarkably robust to perturbation of the kinetic parameters, and while the localization of either PleC or DivJ is required for asymmetric development, the delocalization of one of these two components does not prevent flagellar pole development. We further find that allosteric regulation of PleC observed in vitro does not affect the predicted in vivo developmental phenotypes. Taken together, our model suggests that cells can tolerate perturbations to localization phenotypes, whose evolutionary origins may be connected with reducing protein expression or with decoupling pre- and post-division phenotypes. PMID:22876167
Morphological and behavioral responses of zebrafish after 24 h of ketamine embryonic exposure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Félix, Luís M., E-mail: lfelix@utad.pt
Ketamine, one anesthetic used as an illicit drug, has been detected both in freshwater and marine ecosystems. However, knowledge of its impact on aquatic life is still limited. This study aimed to test its effects in zebrafish embryos by analyzing its time- and dose-dependent developmental toxicity and long-term behavioral changes. The 24 h-LC{sub 50} was calculated from percent survival using probit analysis. Based on the 24 h-LC{sub 50} (94.4 mg L{sup −1}), embryos (2 hour post-fertilization - hpf) were divided into four groups, including control, and exposed for 24 h to ketamine concentrations of 50, 70 or 90 mg L{supmore » −1}. Developmental parameters were evaluated on the course of the experimental period, and anatomical abnormalities and locomotor deficits were analyzed at 144 hpf. Although the portion of ketamine transferred into the embryo was higher in the lowest exposed group (about 0.056 ± 0.020 pmol per embryo), the results showed that endpoints such as increased mortality, edema, heart rate alterations, malformation and abnormal growth rates were significantly affected. At 144 hpf, the developmental abnormalities included thoracic and trunk abnormalities in the groups exposed to 70 and 90 mg L{sup −1}. Defects in cartilage (alcian blue) and bone (calcein) elements also corroborated the craniofacial anomalies observed. A significant up-regulation of the development-related gene nog3 was detected by qRT-PCR at 8 hpf. Early exposure to ketamine also resulted in long-term behavioral changes, such as an increase in thigmotaxis and disruption of avoidance behavior at 144 hpf. Altogether, this study provides new evidence on the ketamine teratogenic potential, indicating a possible pharmacological impact of ketamine in aquatic environments. - Highlights: • 24 h exposure to ketamine increases mortality. • Morphological changes were observed after exposure. • Exposure to ketamine leads to severe craniofacial anomalies. • Developmental gene expression changes in response to ketamine. • Developmental ketamine exposure produces lasting behavioral changes.« less
ERIC Educational Resources Information Center
Andrews, Alice E.; Stonestreet, Ruth H.
This paper presents a case study of Gorlin Syndrome, also known as Basal Cell Nevus Syndrome, a rare genetic disorder characterized by widespread developmental defects. Criteria for diagnosis are listed, noting the presence of frequent basal cell carcinomas at a relatively young age and multiple cysts of the jaw. Speech and/or language impairments…
Abstract
The environmental toxicant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) produces cleft palate (CP) and hydronephrosis (HN) in mice. The etiology of these defects involves hyperproliferation of epithelial cells of the secondary palatal shelf and ureter, respectively. ...
Of Heart & Kidneys: Hands-On Activities for Demonstrating Organ Function & Repair
ERIC Educational Resources Information Center
Kao, Robert M.
2014-01-01
A major challenge in teaching organ development and disease is deconstructing a complex choreography of molecular and cellular changes over time into a linear stepwise process for students. As an entry toward learning developmental concepts, I propose two inexpensive hands-on activities to help facilitate learning of (1) how to identify defects in…
Microcephaly: computational and organotypic modeling of a ...
lecture discusses computational and organotypic models of microcephaly in an AOP Framework and ToxCast assays. Lecture slide presentation at UNC Chapel Hill for Advanced Toxicology course lecture on Computational Approaches to Developmental and Reproductive Toxicology with presentation on computational and organotypic modeling of a complex human birth defect microcephaly with is associated with the recent Zika virus outbreak.
USDA-ARS?s Scientific Manuscript database
Anabasine and anabaseine are potent and effective agonists at nicotinic acetylcholine receptors (nAChR). Anabasine in livestock species is teratogenic and has been shown to cause developmental defects that include arthrogyrposis, kyposis, lordosis, scoliosis, and torticollis. We have postulated that...
ERIC Educational Resources Information Center
Wong, Terry T.-Y.; Ho, Connie S.-H.; Tang, Joey
2017-01-01
Developmental dyscalculia (DD) is a specific learning disability in mathematics that affects around 6% of the population. Currently, the core deficit of DD remains unknown. While the number sense deficit hypothesis suggests that the core deficit of DD lies in the inability to represent nonsymbolic numerosity, the access deficit hypothesis suggests…
[Introduction to Genetic/Rare Disease and the Application of Genetic Counseling].
Chu, Shao-Yin; Weng, Chun-Ying
2017-10-01
Genetic disease or hereditary disease is a group of disorders that is caused by mutations in an individual's genome. The mutated genome or gene may be transmitted through the germ line during reproduction, causing certain recurrence risk in offspring and other family members. The heritability of these disorders is thus an important issue to deal with clinically. In Taiwan, a rare disease is defined as a disease that is prevalent in fewer than 1 in 10,000 individuals. As up to 80% of rare disease cases in Taiwan are genetic disease disorders, genetic disease may not rare. The pathophysiology of genetic/ rare disease is very complicated. Individual disorders may have their own unique mechanisms (such as Fragile X syndrome), with most of these mechanisms still unclear or unknown. The symptoms and signs of genetic/rare disease thus present the greatest variabilities and cause difficulties in making diagnoses. Most related patients may present multiple congenital anomalies, metabolic disorders, growth and developmental delays, defects in cognition, neuromuscular abnormalities, and defects in vision, hearing or other organ functions. Symptomatic and supportive treatment still comprise a major component of treatment of genetic/rare disease (with the exception of special formulae for several inborn errors of metabolic disease and enzyme replacement therapy in some lysosomal storage disease). Poor self-care ability is common and the burden on caregivers is huge. Most rare disease patients are treated using a comprehensive rehabilitation program that begins during very early childhood, receive individual educational programs, and are continuously monitored with regard to their growth, developmental, and nutritional status. Inter-professional patient care, genetic counseling, and the creation of family support networks play an important role in family management. Public awareness and the creation of appropriate social systems and resources allocation are mandatory for proper care. The incidence of each genetic/rare disease is rare, but collectively they are important public health issue and a challenge to medical care.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pagano, Giovanni, E-mail: gbpagano@tin.it; Guida, Marco; Siciliano, Antonietta
Background: Broad-ranging adverse effects are known for rare earth elements (REE), yet only a few studies tested the toxicity of several REE, prompting studies focusing on multi-parameter REE toxicity. Methods: Trichloride salts of Y, La, Ce, Nd, Sm, Eu and Gd were tested in Paracentrotus lividus sea urchin embryos and sperm for: (1) developmental defects in either REE-exposed larvae or in the offspring of REE-exposed sperm; (2) fertilization success; (3) mitotic anomalies in REE-exposed embryos and in the offspring of REE-exposed sperm, and (4) reactive oxygen species (ROS) formation, and malondialdehyde (MDA) and nitric oxide (NO) levels. Results: REEs affectedmore » P. lividus larvae with concentration-related increase in developmental defects, 10{sup −6} to 10{sup −4} M, ranking as: Gd(III)>Y(III)>La(III)>Nd(III)≅Eu(III)>Ce(III)≅Sm(III). Nominal concentrations of REE salts were confirmed by inductively coupled plasma mass spectrometry (ICP-MS). Significant increases in MDA levels, ROS formation, and NO levels were found in REE-exposed embryos. Sperm exposure to REEs (10{sup −5} to 10{sup −4} M) resulted in concentration-related decrease in fertilization success along with increase in offspring damage. Decreased mitotic activity and increased aberration rates were detected in REE-exposed embryos and in the offspring of REE-exposed sperm. Conclusion: REE-associated toxicity affecting embryogenesis, fertilization, cytogenetic and redox endpoints showed different activities of tested REEs. Damage to early life stages, along with redox and cytogenetic anomalies should be the focus of future REE toxicity studies. - Highlights: • Seven rare earth elements exerted different effects on sea urchin early life stages. • Embryo-, spermio- and mitotoxicity, and oxidative/ nitrosative stress were found. • Nominal vs. analytical REE concentrations were checked. • Comparative toxicities were evaluated for the different REE.« less
Mutations in THAP11 cause an inborn error of cobalamin metabolism and developmental abnormalities.
Quintana, Anita M; Yu, Hung-Chun; Brebner, Alison; Pupavac, Mihaela; Geiger, Elizabeth A; Watson, Abigail; Castro, Victoria L; Cheung, Warren; Chen, Shu-Huang; Watkins, David; Pastinen, Tomi; Skovby, Flemming; Appel, Bruce; Rosenblatt, David S; Shaikh, Tamim H
2017-08-01
CblX (MIM309541) is an X-linked recessive disorder characterized by defects in cobalamin (vitamin B12) metabolism and other developmental defects. Mutations in HCFC1, a transcriptional co-regulator which interacts with multiple transcription factors, have been associated with cblX. HCFC1 regulates cobalamin metabolism via the regulation of MMACHC expression through its interaction with THAP11, a THAP domain-containing transcription factor. The HCFC1/THAP11 complex potentially regulates genes involved in diverse cellular functions including cell cycle, proliferation, and transcription. Thus, it is likely that mutation of THAP11 also results in biochemical and other phenotypes similar to those observed in patients with cblX. We report a patient who presented with clinical and biochemical phenotypic features that overlap cblX, but who does not have any mutations in either MMACHC or HCFC1. We sequenced THAP11 by Sanger sequencing and discovered a potentially pathogenic, homozygous variant, c.240C > G (p.Phe80Leu). Functional analysis in the developing zebrafish embryo demonstrated that both THAP11 and HCFC1 regulate the proliferation and differentiation of neural precursors, suggesting important roles in normal brain development. The loss of THAP11 in zebrafish embryos results in craniofacial abnormalities including the complete loss of Meckel's cartilage, the ceratohyal, and all of the ceratobranchial cartilages. These data are consistent with our previous work that demonstrated a role for HCFC1 in vertebrate craniofacial development. High throughput RNA-sequencing analysis reveals several overlapping gene targets of HCFC1 and THAP11. Thus, both HCFC1 and THAP11 play important roles in the regulation of cobalamin metabolism as well as other pathways involved in early vertebrate development. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Inoue, Takanobu; Nakamura, Akie; Fuke, Tomoko; Yamazawa, Kazuki; Sano, Shinichiro; Matsubara, Keiko; Mizuno, Seiji; Matsukura, Yoshika; Harashima, Chie; Hasegawa, Tatsuji; Nakajima, Hisakazu; Tsumura, Kumi; Kizaki, Zenro; Oka, Akira; Ogata, Tsutomu; Fukami, Maki; Kagami, Masayo
2017-01-01
Silver-Russell syndrome (SRS) is a rare congenital disorder characterized by pre- and postnatal growth failure and dysmorphic features. Recently, pathogenic copy number variations (PCNVs) and imprinting defects other than hypomethylation of the H19 -differentially methylated region (DMR) and maternal uniparental disomy chromosome 7 have been reported in patients with the SRS phenotype. This study aimed to clarify the frequency and clinical features of patients with SRS phenotype caused by PCNVs. We performed array comparative genomic hybridization analysis using a catalog array for 54 patients satisfying the Netchine-Harbison clinical scoring system (NH-CSS) (SRS-compatible) and for 28 patients presenting with three NH-CSS items together with triangular face and/or fifth finger clinodactyly and/or brachydactyly (SRS-like) without abnormal methylation levels of 9 DMRs related to known imprinting disorders. We then investigated the clinical features of patients with PCNVs. Three of the 54 SRS-compatible patients (5.6%) and 2 of the 28 SRS-like patients (7.1%) had PCNVs. We detected 3.5 Mb deletion in 4p16.3, mosaic trisomy 18, and 3.77-4.00 Mb deletion in 19q13.11-12 in SRS-compatible patients, and 1.41-1.97 Mb deletion in 7q11.23 in both SRS-like patients. Congenital heart diseases (CHDs) were identified in two patients and moderate to severe global developmental delay was observed in four patients. Of the patients in our study, 5.6% of SRS-compatible and 7.1% of SRS-like patients had PCNVs. All PCNVs have been previously reported for genetic causes of contiguous deletion syndromes or mosaic trisomy 18. Our study suggests patients with PCNVs, who have a phenotype resembling SRS, show a high tendency towards CHDs and/or apparent developmental delay.
Boycheva, Svetlana; Dominguez, Ana; Rolcik, Jakub; Boller, Thomas; Fitzpatrick, Teresa B
2015-01-01
Vitamin B(6) (pyridoxal 5'-phosphate) is an essential cofactor of many metabolic enzymes. Plants biosynthesize the vitamin de novo employing two enzymes, pyridoxine synthase1 (PDX1) and PDX2. In Arabidopsis (Arabidopsis thaliana), there are two catalytically active paralogs of PDX1 (PDX1.1 and PDX1.3) producing the vitamin at comparable rates. Since single mutants are viable but the pdx1.1 pdx1.3 double mutant is lethal, the corresponding enzymes seem redundant. However, the single mutants exhibit substantial phenotypic differences, particularly at the level of root development, with pdx1.3 being more impaired than pdx1.1. Here, we investigate the differential regulation of PDX1.1 and PDX1.3 by identifying factors involved in their disparate phenotypes. Swapped-promoter experiments clarify the presence of distinct regulatory elements in the upstream regions of both genes. Exogenous sucrose (Suc) triggers impaired ethylene production in both mutants but is more severe in pdx1.3 than in pdx1.1. Interestingly, Suc specifically represses PDX1.1 expression, accounting for the stronger vitamin B6 deficit in pdx1.3 compared with pdx1.1. Surprisingly, Suc enhances auxin levels in pdx1.1, whereas the levels are diminished in pdx1.3. In the case of pdx1.3, the previously reported reduced meristem activity combined with the impaired ethylene and auxin levels manifest the specific root developmental defects. Moreover, it is the deficit in ethylene production and/or signaling that triggers this outcome. On the other hand, we hypothesize that it is the increased auxin content of pdx1.1 that is responsible for the root developmental defects observed therein. We conclude that PDX1.1 and PDX1.3 play partially nonredundant roles and are differentially regulated as manifested in disparate root growth impairment morphologies. © 2015 American Society of Plant Biologists. All Rights Reserved.
Hale, Michael A; Swift, Galvin H; Hoang, Chinh Q; Deering, Tye G; Masui, Toshi; Lee, Youn-Kyoung; Xue, Jumin; MacDonald, Raymond J
2014-08-01
The orphan nuclear receptor NR5A2 is necessary for the stem-like properties of the epiblast of the pre-gastrulation embryo and for cellular and physiological homeostasis of endoderm-derived organs postnatally. Using conditional gene inactivation, we show that Nr5a2 also plays crucial regulatory roles during organogenesis. During the formation of the pancreas, Nr5a2 is necessary for the expansion of the nascent pancreatic epithelium, for the subsequent formation of the multipotent progenitor cell (MPC) population that gives rise to pre-acinar cells and bipotent cells with ductal and islet endocrine potential, and for the formation and differentiation of acinar cells. At birth, the NR5A2-deficient pancreas has defects in all three epithelial tissues: a partial loss of endocrine cells, a disrupted ductal tree and a >90% deficit of acini. The acinar defects are due to a combination of fewer MPCs, deficient allocation of those MPCs to pre-acinar fate, disruption of acinar morphogenesis and incomplete acinar cell differentiation. NR5A2 controls these developmental processes directly as well as through regulatory interactions with other pancreatic transcriptional regulators, including PTF1A, MYC, GATA4, FOXA2, RBPJL and MIST1 (BHLHA15). In particular, Nr5a2 and Ptf1a establish mutually reinforcing regulatory interactions and collaborate to control developmentally regulated pancreatic genes by binding to shared transcriptional regulatory regions. At the final stage of acinar cell development, the absence of NR5A2 affects the expression of Ptf1a and its acinar specific partner Rbpjl, so that the few acinar cells that form do not complete differentiation. Nr5a2 controls several temporally distinct stages of pancreatic development that involve regulatory mechanisms relevant to pancreatic oncogenesis and the maintenance of the exocrine phenotype. © 2014. Published by The Company of Biologists Ltd.
Boycheva, Svetlana; Dominguez, Ana; Rolcik, Jakub; Boller, Thomas; Fitzpatrick, Teresa B.
2015-01-01
Vitamin B6 (pyridoxal 5′-phosphate) is an essential cofactor of many metabolic enzymes. Plants biosynthesize the vitamin de novo employing two enzymes, pyridoxine synthase1 (PDX1) and PDX2. In Arabidopsis (Arabidopsis thaliana), there are two catalytically active paralogs of PDX1 (PDX1.1 and PDX1.3) producing the vitamin at comparable rates. Since single mutants are viable but the pdx1.1 pdx1.3 double mutant is lethal, the corresponding enzymes seem redundant. However, the single mutants exhibit substantial phenotypic differences, particularly at the level of root development, with pdx1.3 being more impaired than pdx1.1. Here, we investigate the differential regulation of PDX1.1 and PDX1.3 by identifying factors involved in their disparate phenotypes. Swapped-promoter experiments clarify the presence of distinct regulatory elements in the upstream regions of both genes. Exogenous sucrose (Suc) triggers impaired ethylene production in both mutants but is more severe in pdx1.3 than in pdx1.1. Interestingly, Suc specifically represses PDX1.1 expression, accounting for the stronger vitamin B6 deficit in pdx1.3 compared with pdx1.1. Surprisingly, Suc enhances auxin levels in pdx1.1, whereas the levels are diminished in pdx1.3. In the case of pdx1.3, the previously reported reduced meristem activity combined with the impaired ethylene and auxin levels manifest the specific root developmental defects. Moreover, it is the deficit in ethylene production and/or signaling that triggers this outcome. On the other hand, we hypothesize that it is the increased auxin content of pdx1.1 that is responsible for the root developmental defects observed therein. We conclude that PDX1.1 and PDX1.3 play partially nonredundant roles and are differentially regulated as manifested in disparate root growth impairment morphologies. PMID:25475669
Conserved genetic pathways associated with microphthalmia, anophthalmia, and coloboma
Reis, Linda M.; Semina, Elena V.
2016-01-01
The human eye is a complex organ whose development requires extraordinary coordination of developmental processes. The conservation of ocular developmental steps in vertebrates suggests possible common genetic mechanisms. Genetic diseases involving the eye represent a leading cause of blindness in children and adults. During the last decades, there has been an exponential increase in genetic studies of ocular disorders. In this review, we summarize current success in identification of genes responsible for microphthalmia, anophthalmia and coloboma (MAC) phenotypes, which are associated with early defects in embryonic eye development. Studies in animal models for the orthologous genes identified overlapping phenotypes for most factors confirming the conservation of their function in vertebrate development. These animal models allow for further investigation of the mechanisms of MAC, integration of various identified genes into common developmental pathways and, finally, provide an avenue for the development and testing of therapeutic interventions. PMID:26046913
Conserved genetic pathways associated with microphthalmia, anophthalmia, and coloboma.
Reis, Linda M; Semina, Elena V
2015-06-01
The human eye is a complex organ whose development requires extraordinary coordination of developmental processes. The conservation of ocular developmental steps in vertebrates suggests possible common genetic mechanisms. Genetic diseases involving the eye represent a leading cause of blindness in children and adults. During the last decades, there has been an exponential increase in genetic studies of ocular disorders. In this review, we summarize current success in identification of genes responsible for microphthalmia, anophthalmia, and coloboma (MAC) phenotypes, which are associated with early defects in embryonic eye development. Studies in animal models for the orthologous genes identified overlapping phenotypes for most factors, confirming the conservation of their function in vertebrate development. These animal models allow for further investigation of the mechanisms of MAC, integration of various identified genes into common developmental pathways and finally, provide an avenue for the development and testing of therapeutic interventions. © 2015 Wiley Periodicals, Inc.
Single-Cell Resolution of Temporal Gene Expression during Heart Development.
DeLaughter, Daniel M; Bick, Alexander G; Wakimoto, Hiroko; McKean, David; Gorham, Joshua M; Kathiriya, Irfan S; Hinson, John T; Homsy, Jason; Gray, Jesse; Pu, William; Bruneau, Benoit G; Seidman, J G; Seidman, Christine E
2016-11-21
Activation of complex molecular programs in specific cell lineages governs mammalian heart development, from a primordial linear tube to a four-chamber organ. To characterize lineage-specific, spatiotemporal developmental programs, we performed single-cell RNA sequencing of >1,200 murine cells isolated at seven time points spanning embryonic day 9.5 (primordial heart tube) to postnatal day 21 (mature heart). Using unbiased transcriptional data, we classified cardiomyocytes, endothelial cells, and fibroblast-enriched cells, thus identifying markers for temporal and chamber-specific developmental programs. By harnessing these datasets, we defined developmental ages of human and mouse pluripotent stem-cell-derived cardiomyocytes and characterized lineage-specific maturation defects in hearts of mice with heterozygous mutations in Nkx2.5 that cause human heart malformations. This spatiotemporal transcriptome analysis of heart development reveals lineage-specific gene programs underlying normal cardiac development and congenital heart disease. Copyright © 2016 Elsevier Inc. All rights reserved.
Beauzamy, Léna; Caporali, Elisabetta; Koroney, Abdoul-Salam
2016-01-01
Although many transcription factors involved in cell wall morphogenesis have been identified and studied, it is still unknown how genetic and molecular regulation of cell wall biosynthesis is integrated into developmental programs. We demonstrate by molecular genetic studies that SEEDSTICK (STK), a transcription factor controlling ovule and seed integument identity, directly regulates PMEI6 and other genes involved in the biogenesis of the cellulose-pectin matrix of the cell wall. Based on atomic force microscopy, immunocytochemistry, and chemical analyses, we propose that structural modifications of the cell wall matrix in the stk mutant contribute to defects in mucilage release and seed germination under water-stress conditions. Our studies reveal a molecular network controlled by STK that regulates cell wall properties of the seed coat, demonstrating that developmental regulators controlling organ identity also coordinate specific aspects of cell wall characteristics. PMID:27624758
Cao, Huojun; Amendt, Brad A
2016-11-01
Developmental dental anomalies are common forms of congenital defects. The molecular mechanisms of dental anomalies are poorly understood. Systematic approaches such as clustering genes based on similar expression patterns could identify novel genes involved in dental anomalies and provide a framework for understanding molecular regulatory mechanisms of these genes during tooth development (odontogenesis). A python package (pySAPC) of sparse affinity propagation clustering algorithm for large datasets was developed. Whole genome pair-wise similarity was calculated based on expression pattern similarity based on 45 microarrays of several stages during odontogenesis. pySAPC identified 743 gene clusters based on expression pattern similarity during mouse tooth development. Three clusters are significantly enriched for genes associated with dental anomalies (with FDR <0.1). The three clusters of genes have distinct expression patterns during odontogenesis. Clustering genes based on similar expression profiles recovered several known regulatory relationships for genes involved in odontogenesis, as well as many novel genes that may be involved with the same genetic pathways as genes that have already been shown to contribute to dental defects. By using sparse similarity matrix, pySAPC use much less memory and CPU time compared with the original affinity propagation program that uses a full similarity matrix. This python package will be useful for many applications where dataset(s) are too large to use full similarity matrix. This article is part of a Special Issue entitled "System Genetics" Guest Editor: Dr. Yudong Cai and Dr. Tao Huang. Copyright © 2016. Published by Elsevier B.V.
Dauber, Andrew; Lafranchi, Stephen H; Maliga, Zoltan; Lui, Julian C; Moon, Jennifer E; McDeed, Cailin; Henke, Katrin; Zonana, Jonathan; Kingman, Garrett A; Pers, Tune H; Baron, Jeffrey; Rosenfeld, Ron G; Hirschhorn, Joel N; Harris, Matthew P; Hwa, Vivian
2012-11-01
Microcephalic primordial dwarfism (MPD) is a rare, severe form of human growth failure in which growth restriction is evident in utero and continues into postnatal life. Single causative gene defects have been identified in a number of patients with MPD, and all involve genes fundamental to cellular processes including centrosome functions. The objective of the study was to find the genetic etiology of a novel presentation of MPD. The design of the study was whole-exome sequencing performed on two affected sisters in a single family. Molecular and functional studies of a candidate gene were performed using patient-derived primary fibroblasts and a zebrafish morpholino oligonucleotides knockdown model. Two sisters presented with a novel subtype of MPD, including severe intellectual disabilities. NIN, encoding Ninein, a centrosomal protein critically involved in asymmetric cell division, was identified as a candidate gene, and functional impacts in fibroblasts and zebrafish were studied. From 34,606 genomic variants, two very rare missense variants in NIN were identified. Both probands were compound heterozygotes. In the zebrafish, ninein knockdown led to specific and novel defects in the specification and morphogenesis of the anterior neuroectoderm, resulting in a deformity of the developing cranium with a small, squared skull highly reminiscent of the human phenotype. We identified a novel clinical subtype of MPD in two sisters who have rare variants in NIN. We show, for the first time, that reduction of ninein function in the developing zebrafish leads to specific deficiencies of brain and skull development, offering a developmental basis for the myriad phenotypes in our patients.
Liu, Xue-song; Zhao, Xu-dong; Wang, Xiaoxing; Yao, Yi-xin; Zhang, Liang-liang; Shu, Run-zhe; Ren, Wei-hua; Huang, Ying; Huang, Lei; Gu, Ming-min; Kuang, Ying; Wang, Long; Lu, Shun-yuan; Chi, Jun; Fen, Jing-sheng; Wang, Yi-fei; Fei, Jian; Dai, Wei; Wang, Zhu-Gang
2010-01-01
Chromosomal instability during cell division frequently causes cell death or malignant transformation. Orderly chromosome congression at the metaphase plate, a paramount process to vertebrate mitosis and meiosis, is controlled by a number of molecular regulators, including kinesins. Kinesin-8 (Kif18A) functions to control mitotic chromosome alignment at the mid-zone by negative regulation of kinetochore oscillation. Here the authors report that disrupting Kif18a function results in complete sterility in male but not in female mice. Histological examination reveals that Kif18a−/− testes exhibit severe developmental impairment of seminiferous tubules. Testis atrophy in Kif18a−/− mice is caused by perturbation of microtubule dynamics and spindle pole integrity, leading to chromosome congression defects during mitosis and meiosis. Depletion of KIF18A via RNAi causes mitotic arrest accompanied by unaligned chromosomes and increased microtubule nucleating centers in both GC-1 and HeLa cells. Prolonged depletion of KIF18A causes apoptosis due to perturbed microtubule dynamics. Further studies reveal that KIF18A silencing results in degradation of CENP-E and BubR1, which is accompanied by premature sister chromatid separation. KIF18A physically interacts with BubR1 and CENP-E, and this interaction is modulated during mitosis. Combined, the studies indicate that KIF18A is essential for normal chromosome congression during cell division and that the absence of KIF18A function causes severe defects in microtubule dynamics, spindle integrity, and checkpoint activation, leading to germinal cell aplasia in mice. PMID:20981276
Hypomorphic mutations in TRNT1 cause retinitis pigmentosa with erythrocytic microcytosis
DeLuca, Adam P.; Whitmore, S. Scott; Barnes, Jenna; Sharma, Tasneem P.; Westfall, Trudi A.; Scott, C. Anthony; Weed, Matthew C.; Wiley, Jill S.; Wiley, Luke A.; Johnston, Rebecca M.; Schnieders, Michael J.; Lentz, Steven R.; Tucker, Budd A.; Mullins, Robert F.; Scheetz, Todd E.; Stone, Edwin M.; Slusarski, Diane C.
2016-01-01
Retinitis pigmentosa (RP) is a highly heterogeneous group of disorders characterized by degeneration of the retinal photoreceptor cells and progressive loss of vision. While hundreds of mutations in more than 100 genes have been reported to cause RP, discovering the causative mutations in many patients remains a significant challenge. Exome sequencing in an individual affected with non-syndromic RP revealed two plausibly disease-causing variants in TRNT1, a gene encoding a nucleotidyltransferase critical for tRNA processing. A total of 727 additional unrelated individuals with molecularly uncharacterized RP were completely screened for TRNT1 coding sequence variants, and a second family was identified with two members who exhibited a phenotype that was remarkably similar to the index patient. Inactivating mutations in TRNT1 have been previously shown to cause a severe congenital syndrome of sideroblastic anemia, B-cell immunodeficiency, recurrent fevers and developmental delay (SIFD). Complete blood counts of all three of our patients revealed red blood cell microcytosis and anisocytosis with only mild anemia. Characterization of TRNT1 in patient-derived cell lines revealed reduced but detectable TRNT1 protein, consistent with partial function. Suppression of trnt1 expression in zebrafish recapitulated several features of the human SIFD syndrome, including anemia and sensory organ defects. When levels of trnt1 were titrated, visual dysfunction was found in the absence of other phenotypes. The visual defects in the trnt1-knockdown zebrafish were ameliorated by the addition of exogenous human TRNT1 RNA. Our findings indicate that hypomorphic TRNT1 mutations can cause a recessive disease that is almost entirely limited to the retina. PMID:26494905
Developmental outcome, including setback, in young children with severe visual impairment.
Dale, Naomi; Sonksen, Patricia
2002-09-01
This study retrospectively investigated the developmental perspective of 69 children (40 males, 29 females) with 'potentially simple' congenital disorders of the peripheral visual system: development was examined in the context of degree of visual impairment. Developmental and visual assessments were carried out at 10 to 16 months (Time 1) and 27 to 54 months of age (Time 2). Participants were grouped according to (1) visual status: profound visual impairment (PVI), severe visual impairment (SVI); (2) developmental status on the Reynell-Zinkin scales. A majority of the sample showed normal development on all subscales (62% Time 1, 57% Time 2). Those with PVI were more developmentally vulnerable than SVI with a greater incidence of (1) uneven developmental profile at Time 1 (48% PVI, 16% SVI); (2) global learning difficulties at Time 2 (37% PVI, 0% SVI); (3) delay on individual subscales at Time 2 (p<0.02 PVI versus SVI); (4) deceleration (verbal comprehension 74% PVI, 24% SVI, sensorimotor understanding 70% PVI, 27% SVI); and (5) severe developmental setback (33% PVI, 7% SVI). Risk factors of visual level, age, and sex for poor developmental outcome in infants with visual impairment were established.