Sample records for severe myocardial dysfunction

  1. Right Ventricular Myocardial Stiffness in Experimental Pulmonary Arterial Hypertension: Relative Contribution of Fibrosis and Myofibril Stiffness.

    PubMed

    Rain, Silvia; Andersen, Stine; Najafi, Aref; Gammelgaard Schultz, Jacob; da Silva Gonçalves Bós, Denielli; Handoko, M Louis; Bogaard, Harm-Jan; Vonk-Noordegraaf, Anton; Andersen, Asger; van der Velden, Jolanda; Ottenheijm, Coen A C; de Man, Frances S

    2016-07-01

    The purpose of this study was to determine the relative contribution of fibrosis-mediated and myofibril-mediated stiffness in rats with mild and severe right ventricular (RV) dysfunction. By performing pulmonary artery banding of different diameters for 7 weeks, mild RV dysfunction (Ø=0.6 mm) and severe RV dysfunction (Ø=0.5 mm) were induced in rats. The relative contribution of fibrosis- and myofibril-mediated RV stiffness was determined in RV trabecular strips. Total myocardial stiffness was increased in trabeculae from both mild and severe RV dysfunction in comparison to controls. In severe RV dysfunction, increased RV myocardial stiffness was explained by both increased fibrosis-mediated stiffness and increased myofibril-mediated stiffness, whereas in mild RV dysfunction, only myofibril-mediated stiffness was increased in comparison to control. Histological analyses revealed that RV fibrosis gradually increased with severity of RV dysfunction, whereas the ratio of collagen I/III expression was only elevated in severe RV dysfunction. Stiffness measurements in single membrane-permeabilized RV cardiomyocytes demonstrated a gradual increase in RV myofibril stiffness, which was partially restored by protein kinase A in both mild and severe RV dysfunction. Increased expression of compliant titin isoforms was observed only in mild RV dysfunction, whereas titin phosphorylation was reduced in both mild and severe RV dysfunction. RV myocardial stiffness is increased in rats with mild and severe RV dysfunction. In mild RV dysfunction, stiffness is mainly determined by increased myofibril stiffness. In severe RV dysfunction, both myofibril- and fibrosis-mediated stiffness contribute to increased RV myocardial stiffness. © 2016 The Authors.

  2. Right Ventricular Myocardial Stiffness in Experimental Pulmonary Arterial Hypertension

    PubMed Central

    Rain, Silvia; Andersen, Stine; Najafi, Aref; Gammelgaard Schultz, Jacob; da Silva Gonçalves Bós, Denielli; Handoko, M. Louis; Bogaard, Harm-Jan; Vonk-Noordegraaf, Anton; Andersen, Asger; van der Velden, Jolanda; Ottenheijm, Coen A.C.

    2016-01-01

    Background— The purpose of this study was to determine the relative contribution of fibrosis-mediated and myofibril-mediated stiffness in rats with mild and severe right ventricular (RV) dysfunction. Methods and Results— By performing pulmonary artery banding of different diameters for 7 weeks, mild RV dysfunction (Ø=0.6 mm) and severe RV dysfunction (Ø=0.5 mm) were induced in rats. The relative contribution of fibrosis- and myofibril-mediated RV stiffness was determined in RV trabecular strips. Total myocardial stiffness was increased in trabeculae from both mild and severe RV dysfunction in comparison to controls. In severe RV dysfunction, increased RV myocardial stiffness was explained by both increased fibrosis-mediated stiffness and increased myofibril-mediated stiffness, whereas in mild RV dysfunction, only myofibril-mediated stiffness was increased in comparison to control. Histological analyses revealed that RV fibrosis gradually increased with severity of RV dysfunction, whereas the ratio of collagen I/III expression was only elevated in severe RV dysfunction. Stiffness measurements in single membrane-permeabilized RV cardiomyocytes demonstrated a gradual increase in RV myofibril stiffness, which was partially restored by protein kinase A in both mild and severe RV dysfunction. Increased expression of compliant titin isoforms was observed only in mild RV dysfunction, whereas titin phosphorylation was reduced in both mild and severe RV dysfunction. Conclusions— RV myocardial stiffness is increased in rats with mild and severe RV dysfunction. In mild RV dysfunction, stiffness is mainly determined by increased myofibril stiffness. In severe RV dysfunction, both myofibril- and fibrosis-mediated stiffness contribute to increased RV myocardial stiffness. PMID:27370069

  3. Taxonomy of segmental myocardial systolic dysfunction

    PubMed Central

    McDiarmid, Adam K.; Pellicori, Pierpaolo; Cleland, John G.; Plein, Sven

    2017-01-01

    The terms used to describe different states of myocardial health and disease are poorly defined. Imprecision and inconsistency in nomenclature can lead to difficulty in interpreting and applying trial outcomes to clinical practice. In particular, the terms ‘viable’ and ‘hibernating’ are commonly applied interchangeably and incorrectly to myocardium that exhibits chronic contractile dysfunction in patients with ischaemic heart disease. The range of inherent differences amongst imaging modalities used to define myocardial health and disease add further challenges to consistent definitions. The results of several large trials have led to renewed discussion about the classification of dysfunctional myocardial segments. This article aims to describe the diverse myocardial pathologies that may affect the myocardium in ischaemic heart disease and cardiomyopathy, and how they may be assessed with non-invasive imaging techniques in order to provide a taxonomy of myocardial dysfunction. PMID:27147609

  4. Taxonomy of segmental myocardial systolic dysfunction.

    PubMed

    McDiarmid, Adam K; Pellicori, Pierpaolo; Cleland, John G; Plein, Sven

    2017-04-01

    The terms used to describe different states of myocardial health and disease are poorly defined. Imprecision and inconsistency in nomenclature can lead to difficulty in interpreting and applying trial outcomes to clinical practice. In particular, the terms 'viable' and 'hibernating' are commonly applied interchangeably and incorrectly to myocardium that exhibits chronic contractile dysfunction in patients with ischaemic heart disease. The range of inherent differences amongst imaging modalities used to define myocardial health and disease add further challenges to consistent definitions. The results of several large trials have led to renewed discussion about the classification of dysfunctional myocardial segments. This article aims to describe the diverse myocardial pathologies that may affect the myocardium in ischaemic heart disease and cardiomyopathy, and how they may be assessed with non-invasive imaging techniques in order to provide a taxonomy of myocardial dysfunction. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Cardiology.

  5. Biventricular assist device for scombroid poisoning with refractory myocardial dysfunction: a bridge to recovery.

    PubMed

    Grinda, Jean-Michel; Bellenfant, Florence; Brivet, François Gilles; Carel, Yvan; Deloche, Alain

    2004-09-01

    We report the usefulness of biventricular mechanical circulatory support in a 36-yr-old woman with refractory myocardial dysfunction resulting from scombroid poisoning. Case report. Medical and surgical university care units. A previously healthy 36-yr-old woman with severe myocardial dysfunction unresponsive to epinephrine (1.3 microg/kg/min) and dobutamine (18 microg/kg/min) after the ingestion of cooked fresh tuna. Implantation at day 3 of a biventricular assist device consisting of two paracorporeal pneumatic pumps set at 70 beats/min to reach an output of 5.6 L/min during 8 days. The biventricular mechanical circulatory assist device allowed weaning of the inotropic drugs, maintenance of end-organ function, and support of the patient until myocardial recovery. The patient was successfully explanted 11 days after ingestion. Cardiac function had totally recovered, but a stroke was noted. At 3-yrs follow-up, there was no cardiac or neurologic sequela. This report describes severe myocardial dysfunction secondary to scombroid poisoning and demonstrates the usefulness of a mechanical circulatory assist device as a bridge to recovery.

  6. Relation of Erectile Dysfunction to Subclinical Myocardial Injury.

    PubMed

    Omland, Torbjørn; Randby, Anna; Hrubos-Strøm, Harald; Røsjø, Helge; Einvik, Gunnar

    2016-12-15

    The circulating concentration of cardiac troponin I (cTnI) is an index of subclinical myocardial injury in several patient populations and in the general population. Erectile dysfunction is associated with greater risk for cardiovascular events, but the association with subclinical myocardial injury is not known. We aimed to test the hypothesis that the presence and severity of erectile dysfunction is associated with greater concentrations of cTnI in the general population. The presence and severity of erectile dysfunction was assessed by administering the International Index of Erectile Function 5 (IIEF-5) questionnaire to 260 men aged 30 to 65 years recruited from a population-based study. Concentrations of cTnI were determined by a high-sensitivity (hs) assay. Hs-cTnI levels were significantly higher in subjects with than in those without erectile dysfunction (median 2.9 vs 1.6 ng/l; p <0.001). Men with erectile dysfunction (i.e., IIEF-5 sum score <22) were also significantly older; had a higher systolic blood pressure, lower estimated glomerular filtration rate, higher augmentation index and N-terminal pro-B-type natriuretic peptide; and had a higher prevalence of hypertension, diabetes mellitus, and previous coronary artery disease than subjects without erectile dysfunction. These covariates were adjusted for in a multivariate linear regression model, yet the IIEF-5 sum score remained significantly negatively associated with the hs-cTnI concentration (standardized β -0.206; p <0.001). In conclusion, the presence and severity of erectile dysfunction is associated with circulating concentrations of hs-cTnI, indicating subclinical myocardial injury independently of cardiovascular risk factors, endothelial dysfunction and heart failure biomarkers. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Pseudo-acute myocardial infarction due to transient apical ventricular dysfunction syndrome (Takotsubo syndrome).

    PubMed

    Maciel, Bruno Araújo; Cidrão, Alan Alves de Lima; Sousa, Italo Bruno Dos Santos; Ferreira, José Adailson da Silva; Messias Neto, Valdevino Pedro

    2013-03-01

    Takotsubo syndrome is characterized by predominantly medial-apical transient left ventricular dysfunction, which is typically triggered by physical or emotional stress. The present article reports the case of a 61-year-old female patient presenting with dizziness, excessive sweating, and sudden state of ill feeling following an episode involving intense emotional stress. The physical examination and electrocardiogram were normal upon admission, but the troponin I and creatine kinase-MB concentrations were increased. Acute myocardial infarction without ST segment elevation was suspected, and coronary angiography was immediately performed, which showed severe diffuse left ventricular hypokinesia, medial-apical systolic ballooning, and a lack of significant coronary injury. The patient was referred to the intensive care unit and was successfully treated with supportive therapy. As this case shows, Takotsubo syndrome might simulate the clinical manifestations of acute myocardial infarction, and coronary angiography is necessary to distinguish between both myocardial infarction and myocardial infarction in the acute stage. The present patient progressed with spontaneous resolution of the ventricular dysfunction without any sequelae.

  8. Pseudo-acute myocardial infarction due to transient apical ventricular dysfunction syndrome (Takotsubo syndrome)

    PubMed Central

    Maciel, Bruno Araújo; Cidrão, Alan Alves de Lima; Sousa, Ítalo Bruno dos Santos; Ferreira, José Adailson da Silva; Messias Neto, Valdevino Pedro

    2013-01-01

    Takotsubo syndrome is characterized by predominantly medial-apical transient left ventricular dysfunction, which is typically triggered by physical or emotional stress. The present article reports the case of a 61-year-old female patient presenting with dizziness, excessive sweating, and sudden state of ill feeling following an episode involving intense emotional stress. The physical examination and electrocardiogram were normal upon admission, but the troponin I and creatine kinase-MB concentrations were increased. Acute myocardial infarction without ST segment elevation was suspected, and coronary angiography was immediately performed, which showed severe diffuse left ventricular hypokinesia, medial-apical systolic ballooning, and a lack of significant coronary injury. The patient was referred to the intensive care unit and was successfully treated with supportive therapy. As this case shows, Takotsubo syndrome might simulate the clinical manifestations of acute myocardial infarction, and coronary angiography is necessary to distinguish between both myocardial infarction and myocardial infarction in the acute stage. The present patient progressed with spontaneous resolution of the ventricular dysfunction without any sequelae. PMID:23887762

  9. Transient ventricular dysfunction after an asphyxiation event: stress or hypoxia?

    PubMed

    Valletta, Mary E; Haque, Ikram; Al-Mousily, Faris; Udassi, Jai; Saidi, Arwa

    2008-11-01

    This report of a pediatric patient with acute upper airway obstruction causing asphyxiation emphasizes the need to maintain clinical suspicion for acquired myocardial dysfunction, despite the presumed role of noncardiogenic causes for pulmonary edema after an acute upper airway obstruction. Case report. A tertiary pediatric intensive care unit. A 10-year-old girl with no significant medical history who developed flash pulmonary edema and acute myocardial dysfunction after an acute upper airway obstruction. Serial echocardiograms, exercise stress test, and coronary angiography were performed. Serial pro-brain natriuretic peptide, troponins, and CK-MB levels were also followed. Troponin level normalized approximately 7 days after the acute event. CK-MB and pro-brain natriuretic peptide levels decreased but had not completely normalized by time of discharge. The patient was discharged home 10 days after the event on an anticipated 6-month course of metoprolol without any signs or symptoms of cardiac dysfunction. Myocardial dysfunction is rarely documented in children after an acute upper airway obstruction or an asphyxiation event. Pediatric intensivists and hospitalists should maintain a high degree of clinical suspicion and screen for possible myocardial dysfunction in the pediatric patient with an acute severe hypoxic event especially when accompanied by pulmonary edema. Prompt evaluation ensures appropriate support. Additionally, some role may exist for early adrenergic receptor blockade.

  10. Coronary microvascular dysfunction equivalent to left main coronary artery disease.

    PubMed

    Panç, Cafer; Kocaağa, Mehmet; Erdoğan, Onur; Sarıkaya, Remzi; Umman, Sabahattin

    2017-04-01

    Coronary microvascular dysfunction, also known as cardiac syndrome X, is a clinical syndrome presenting with typical angina and evidence of myocardial ischemia in the absence of flow-limiting stenosis on coronary angiography. Of patients undergoing coronary angiography due to suspected myocardial ischemia, 50% are found to have normal or near-normal coronary arteries. Described in this case report is a patient who developed hypotension and ST segment depressions during treadmill exercise test. Left main coronary artery or multivessel disease was suspected. Coronary angiography was normal, but coronary flow reserve measurement revealed severe microvascular dysfunction.

  11. Basic and advanced echocardiographic evaluation of myocardial dysfunction in sepsis and septic shock.

    PubMed

    Vallabhajosyula, S; Pruthi, S; Shah, S; Wiley, B M; Mankad, S V; Jentzer, J C

    2018-01-01

    Sepsis continues to be a leading cause of mortality and morbidity in the intensive care unit. Cardiovascular dysfunction in sepsis is associated with worse short- and long-term outcomes. Sepsis-related myocardial dysfunction is noted in 20%-65% of these patients and manifests as isolated or combined left or right ventricular systolic or diastolic dysfunction. Echocardiography is the most commonly used modality for the diagnosis of sepsis-related myocardial dysfunction. With the increasing use of ultrasonography in the intensive care unit, there is a renewed interest in sepsis-related myocardial dysfunction. This review summarises the current scope of literature focused on sepsis-related myocardial dysfunction and highlights the use of basic and advanced echocardiographic techniques for the diagnosis of sepsis-related myocardial dysfunction and the management of sepsis and septic shock.

  12. Modern nuclear cardiac imaging in diagnosis and clinical management of patients with left ventricular dysfunction.

    PubMed

    Abidov, A; Hachamovitch, R; Berman, D S

    2004-12-01

    Congestive heart failure (CHF) has become a large social burden in modern Western society, with very high morbidity and mortality and extremely large financial costs. The largest cause of CHF is coronary heart disease, with ventricular dysfunction that may or may not be reversible by revascularization. Thus, evaluation of the viable myocardial tissue in patients with ischemic left ventricular (LV) dysfunction has important clinical and therapeutic implications. Furthermore, since patients with ventricular dysfunction are at higher operative risk, cardiologists and cardiac surgeons are commonly faced with issues regarding the balance between the potential risk vs benefit of revascularization procedures. Cardiac nuclear imaging [myocardial perfusion SPECT (MPS) and positron emission tomography (PET)] provide objective information that augments standard clinical and angiographic assessments of patients with ventricular dysfunction with respect to diagnosis (etiology), prognosis, and potential benefit from intervention. Development of the technology and methodology of gated MPS, now the routine method for MPS, allows assessment of the extent and severity of inducible ischemia as well as hypoperfused but viable myocardium, and also provides measurements of LV ejection fraction, regional wall motion, LV volume measurements, diastolic function and LV geometry. With PET, myocardial metabolism and blood flow reserve can be added to the measurements provided by nuclear cardiology procedures. This paper provides insight into the current evidence regarding settings in which nuclear cardiac imaging procedures are helpful in assessment of patients in the setting of coronary artery disease with severe LV dysfunction. A risk-benefit approach to MPS results is proposed, with principal focus on identifying patients at risk for major cardiac events who may benefit from myocardial revascularization.

  13. Myocardial recovery from ischemia-reperfusion is compromised in the absence of tissue inhibitor of metalloproteinase 4.

    PubMed

    Takawale, Abhijit; Fan, Dong; Basu, Ratnadeep; Shen, Mengcheng; Parajuli, Nirmal; Wang, Wang; Wang, Xiuhua; Oudit, Gavin Y; Kassiri, Zamaneh

    2014-07-01

    Myocardial reperfusion after ischemia (I/R), although an effective approach in rescuing the ischemic myocardium, can itself trigger several adverse effects including aberrant remodeling of the myocardium and its extracellular matrix. Tissue inhibitor of metalloproteinases (TIMPs) protect the extracellular matrix against excess degradation by matrix metalloproteinases (MMPs). TIMP4 levels are reduced in myocardial infarction; however, its causal role in progression of post-I/R injury has not been explored. In vivo I/R (20-minute ischemia, 1-week reperfusion) resulted in more severe systolic and diastolic dysfunction in TIMP4(-/-) mice with enhanced inflammation, oxidative stress (1 day post-I/R), hypertrophy, and interstitial fibrosis (1 week). After an initial increase in TIMP4 (1 day post-I/R), TIMP4 mRNA and protein decreased in the ischemic myocardium from wild-type mice by 1 week post-I/R and in tissue samples from patients with myocardial infarction, which correlated with enhanced activity of membrane-bound MMP, membrane-type 1 MMP. By 4 weeks post-I/R, wild-type mice showed no cardiac dysfunction, elevated TIMP4 levels (to baseline), and normalized membrane-type 1 MMP activity. TIMP4-deficient mice, however, showed exacerbated diastolic dysfunction, sustained elevation of membrane-type 1 MMP activity, and worsened myocardial hypertrophy and fibrosis. Ex vivo I/R (20- or 30-minute ischemia, 45-minute reperfusion) resulted in comparable cardiac dysfunction in wild-type and TIMP4(-/-) mice. TIMP4 is essential for recovery from myocardial I/R in vivo, primarily because of its membrane-type 1 MMP inhibitory function. TIMP4 deficiency does not increase susceptibility to ex vivo I/R injury. Replenishment of myocardial TIMP4 could serve as an effective therapy in post-I/R recovery for patients with reduced TIMP4. © 2014 American Heart Association, Inc.

  14. Left ventricular function abnormalities as a manifestation of silent myocardial ischemia.

    PubMed

    Lambert, C R; Conti, C R; Pepine, C J

    1986-11-01

    A large body of evidence exists indicating that left ventricular dysfunction is a common occurrence in patients with severe coronary artery disease and represents silent or asymptomatic myocardial ischemia. Such dysfunction probably occurs early in the time course of every ischemic episode in patients with coronary artery disease whether symptoms are eventually manifested or not. The pathophysiology of silent versus symptomatic left ventricular dysfunction due to ischemia appears to be identical. Silent ischemia-related left ventricular dysfunction can be documented during spontaneous or stress-induced perturbations in the myocardial oxygen supply/demand ratio. It also may be detected by nitroglycerin-induced improvement in ventricular function or by salutary changes in wall motion following revascularization. Silent left ventricular dysfunction is a very early occurrence during ischemia and precedes electrocardiographic abnormalities. In this light, its existence should always be kept in mind when dealing with patients with ischemic heart disease. It can be hypothesized that because silent ischemia appears to be identical to ischemia with symptoms in a pathophysiologic sense, prognosis and treatment in both cases should be the same.

  15. Myocardial Dysfunction and Shock after Cardiac Arrest

    PubMed Central

    Jentzer, Jacob C.; Chonde, Meshe D.; Dezfulian, Cameron

    2015-01-01

    Postarrest myocardial dysfunction includes the development of low cardiac output or ventricular systolic or diastolic dysfunction after cardiac arrest. Impaired left ventricular systolic function is reported in nearly two-thirds of patients resuscitated after cardiac arrest. Hypotension and shock requiring vasopressor support are similarly common after cardiac arrest. Whereas shock requiring vasopressor support is consistently associated with an adverse outcome after cardiac arrest, the association between myocardial dysfunction and outcomes is less clear. Myocardial dysfunction and shock after cardiac arrest develop as the result of preexisting cardiac pathology with multiple superimposed insults from resuscitation. The pathophysiology involves cardiovascular ischemia/reperfusion injury and cardiovascular toxicity from excessive levels of inflammatory cytokine activation and catecholamines, among other contributing factors. Similar mechanisms occur in myocardial dysfunction after cardiopulmonary bypass, in sepsis, and in stress-induced cardiomyopathy. Hemodynamic stabilization after resuscitation from cardiac arrest involves restoration of preload, vasopressors to support arterial pressure, and inotropic support if needed to reverse the effects of myocardial dysfunction and improve systemic perfusion. Further research is needed to define the role of postarrest myocardial dysfunction on cardiac arrest outcomes and identify therapeutic strategies. PMID:26421284

  16. Myocardial Dysfunction and Shock after Cardiac Arrest.

    PubMed

    Jentzer, Jacob C; Chonde, Meshe D; Dezfulian, Cameron

    2015-01-01

    Postarrest myocardial dysfunction includes the development of low cardiac output or ventricular systolic or diastolic dysfunction after cardiac arrest. Impaired left ventricular systolic function is reported in nearly two-thirds of patients resuscitated after cardiac arrest. Hypotension and shock requiring vasopressor support are similarly common after cardiac arrest. Whereas shock requiring vasopressor support is consistently associated with an adverse outcome after cardiac arrest, the association between myocardial dysfunction and outcomes is less clear. Myocardial dysfunction and shock after cardiac arrest develop as the result of preexisting cardiac pathology with multiple superimposed insults from resuscitation. The pathophysiology involves cardiovascular ischemia/reperfusion injury and cardiovascular toxicity from excessive levels of inflammatory cytokine activation and catecholamines, among other contributing factors. Similar mechanisms occur in myocardial dysfunction after cardiopulmonary bypass, in sepsis, and in stress-induced cardiomyopathy. Hemodynamic stabilization after resuscitation from cardiac arrest involves restoration of preload, vasopressors to support arterial pressure, and inotropic support if needed to reverse the effects of myocardial dysfunction and improve systemic perfusion. Further research is needed to define the role of postarrest myocardial dysfunction on cardiac arrest outcomes and identify therapeutic strategies.

  17. Functional Cardiac Magnetic Resonance Imaging (MRI) in the Assessment of Myocardial Viability and Perfusion

    PubMed Central

    2003-01-01

    Executive Summary Objective The objective of this health technology policy assessment was to determine the effectiveness safety and cost-effectiveness of using functional cardiac magnetic resonance imaging (MRI) for the assessment of myocardial viability and perfusion in patients with coronary artery disease and left ventricular dysfunction. Results Functional MRI has become increasingly investigated as a noninvasive method for assessing myocardial viability and perfusion. Most patients in the published literature have mild to moderate impaired LV function. It is possible that the severity of LV dysfunction may be an important factor that can alter the diagnostic accuracy of imaging techniques. There is some evidence of comparable or better performance of functional cardiac MRI for the assessment of myocardial viability and perfusion compared with other imaging techniques. However limitations to most of the studies included: Functional cardiac MRI studies that assess myocardial viability and perfusion have had small sample sizes. Some studies assessed myocardial viability/perfusion in patients who had already undergone revascularization, or excluded patients with a prior MI (Schwitter et al., 2001). Lack of explicit detail of patient recruitment. Patients with LVEF >35%. Interstudy variability in post MI imaging time(including acute or chronic MI), when patients with a prior MI were included. Poor interobserver agreement (kappa statistic) in the interpretation of the results. Traditionally, 0.80 is considered “good”. Cardiac MRI measurement of myocardial perfusion to as an adjunct tool to help diagnose CAD (prior to a definitive coronary angiography) has also been examined in some studies, with methodological limitations, yielding comparable results. Many studies examining myocardial viability and perfusion report on the accuracy of imaging methods with limited data on long-term patient outcome and management. Kim et al. (2000) revealed that the transmural extent of hyperenhancement was significantly related to the likelihood of improvement in contractility after revascularization. However, the LVEF in the patient population was 43% prior to revascularization. It is important to know whether the technique has the same degree of accuracy in patients who have more severe LV dysfunction and who would most benefit from an assessment of myocardial viability. “Substantial” viability used as a measure of a patient’s ability to recover after revascularization has not been definitively reported (how much viability is enough?). Patients with severe LV dysfunction are more likely to have mixtures of surviving myocardium, including normal, infarcted, stunned and hibernating myocardium (Cowley et al., 1999). This may lead to a lack of homogeneity of response to testing and to revascularization and contribute to inter- and intra-study differences. There is a need for a large prospective study with adequate follow-up time for patients with CAD and LV dysfunction (LVEF<35%) comparing MRI and an alternate imaging technique. There is some evidence that MRI has comparable sensitivity, specificity and accuracy to PET for determining myocardial viability. However, there is a lack of evidence comparing the accuracy of these two techniques to predict LV function recovery. In addition, some studies refer to PET as the gold standard for the assessment of myocardial viability. Therefore, PET may be an ideal noninvasive imaging comparator to MRI for a prospective study with follow-up. To date, there is a lack of cost-effectiveness analyses (or any economic analyses) of functional cardiac MRI versus an alternate noninvasive imaging method for the assessment of myocardial viability/perfusion. Conclusion There is some evidence that the accuracy of functional cardiac MRI compares favourably with alternate imaging techniques for the assessment of myocardial viability and perfusion. There is insufficient evidence whether functional cardiac MRI can better select which patients [who have CAD and severe LV dysfunction (LVEF <35%)] may benefit from revascularization compared with an alternate noninvasive imaging technology. There is insufficient evidence whether functional cardiac MRI can better select which patients should proceed to invasive coronary angiography for the definitive diagnosis of CAD, compared with an alternate noninvasive imaging technology. There is a need for a large prospective (potentially multicentre) study with adequate follow-up time for patients with CAD and LV dysfunction (LVEF<35%) comparing MRI and PET. Since longer follow-up time may be associated with restenosis or graft occlusion, it has been suggested to have serial measurements after revascularization (Cowley et al., 1999). PMID:23074446

  18. History of erectile dysfunction as a predictor of poor physical performance after an acute myocardial infarction.

    PubMed

    Compostella, Leonida; Compostella, Caterina; Truong, Li Van Stella; Russo, Nicola; Setzu, Tiziana; Iliceto, Sabino; Bellotto, Fabio

    2017-03-01

    Background Erectile dysfunction may predict future cardiovascular events and indicate the severity of coronary artery disease in middle-aged men. The aim of this study was to evaluate whether erectile dysfunction (expression of generalized macro- and micro-vascular pathology) could predict reduced effort tolerance in patients after an acute myocardial infarction. Patients and methods One hundred and thirty-nine male patients (60 ± 12 years old), admitted to intensive cardiac rehabilitation 13 days after a complicated acute myocardial infarction, were evaluated for history of erectile dysfunction using the International Index of Erectile Function questionnaire. Their physical performance was assessed by means of two six-minute walk tests (performed two weeks apart) and by a symptom limited cardiopulmonary exercise test (CPET). Results Patients with erectile dysfunction (57% of cases) demonstrated poorer physical performance, significantly correlated to the degree of erectile dysfunction. After cardiac rehabilitation, they walked shorter distances at the final six-minute walk test (490 ± 119 vs. 564 ± 94 m; p < 0.001); at CPET they sustained lower workload (79 ± 28 vs. 109 ± 34 W; p < 0.001) and reached lower oxygen uptake at peak effort (18 ± 5 vs. 21 ± 5 ml/kg per min; p = 0.003) and at anaerobic threshold (13 ± 3 vs.16 ± 4 ml/kg per min; p = 0.001). The positive predictive value of presence of erectile dysfunction was 0.71 for low peak oxygen uptake (<20 ml/kg per min) and 0.69 for reduced effort capacity (W-max <100 W). Conclusions As indicators of generalized underlying vascular pathology, presence and degree of erectile dysfunction may predict the severity of deterioration of effort tolerance in post-acute myocardial infarction patients. In the attempt to reduce the possibly associated long-term risk, an optimization of type, intensity and duration of cardiac rehabilitation should be considered.

  19. Females Are Protected From Iron-Overload Cardiomyopathy Independent of Iron Metabolism: Key Role of Oxidative Stress.

    PubMed

    Das, Subhash K; Patel, Vaibhav B; Basu, Ratnadeep; Wang, Wang; DesAulniers, Jessica; Kassiri, Zamaneh; Oudit, Gavin Y

    2017-01-23

    Sex-related differences in cardiac function and iron metabolism exist in humans and experimental animals. Male patients and preclinical animal models are more susceptible to cardiomyopathies and heart failure. However, whether similar differences are seen in iron-overload cardiomyopathy is poorly understood. Male and female wild-type and hemojuvelin-null mice were injected and fed with a high-iron diet, respectively, to develop secondary iron overload and genetic hemochromatosis. Female mice were completely protected from iron-overload cardiomyopathy, whereas iron overload resulted in marked diastolic dysfunction in male iron-overloaded mice based on echocardiographic and invasive pressure-volume analyses. Female mice demonstrated a marked suppression of iron-mediated oxidative stress and a lack of myocardial fibrosis despite an equivalent degree of myocardial iron deposition. Ovariectomized female mice with iron overload exhibited essential pathophysiological features of iron-overload cardiomyopathy showing distinct diastolic and systolic dysfunction, severe myocardial fibrosis, increased myocardial oxidative stress, and increased expression of cardiac disease markers. Ovariectomy prevented iron-induced upregulation of ferritin, decreased myocardial SERCA2a levels, and increased NCX1 levels. 17β-Estradiol therapy rescued the iron-overload cardiomyopathy in male wild-type mice. The responses in wild-type and hemojuvelin-null female mice were remarkably similar, highlighting a conserved mechanism of sex-dependent protection from iron-overload-mediated cardiac injury. Male and female mice respond differently to iron-overload-mediated effects on heart structure and function, and females are markedly protected from iron-overload cardiomyopathy. Ovariectomy in female mice exacerbated iron-induced myocardial injury and precipitated severe cardiac dysfunction during iron-overload conditions, whereas 17β-estradiol therapy was protective in male iron-overloaded mice. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  20. Common presentation of rare diseases: Left ventricular hypertrophy and diastolic dysfunction.

    PubMed

    Linhart, Ales; Cecchi, Franco

    2018-04-15

    Left ventricular hypertrophy may be a consequence of a hemodynamic overload or a manifestation of several diseases affecting different structural and functional proteins of cardiomyocytes. Among these, sarcomeric hypertrophic cardiomyopathy (HCM) represents the most frequent cause. In addition, several metabolic diseases lead to myocardial thickening, either due to intracellular storage (glycogen storage and lysosomal diseases), extracellular deposition (TTR and AL amyloidosis) or due to abnormal energy metabolism (mitochondrial diseases). The recognition of these rare causes of myocardial hypertrophy is important for family screening strategies, risk assessment, and treatment. Moreover, as there are specific therapies for some forms of HCM including enzyme substitution and chaperone therapies and specific treatments for TTR amyloidosis, a differential diagnosis should be sought in all patients with unexplained left ventricular hypertrophy. Diastolic dysfunction is a key feature of HCM and its phenocopies. Its assessment is complex and requires evaluation of several functional parameters and structural changes. Severe diastolic dysfunction carries a negative prognostic implication and its value in differential diagnosis is limited. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. High Serum sTREM-1 Correlates With Myocardial Dysfunction and Predicts Prognosis in Septic Patients.

    PubMed

    Li, Zhenyu; Zhang, Enyuan; Hu, Yipeng; Liu, Yi; Chen, Bing

    2016-06-01

    This study aimed to evaluate the predictive and prognostic value of soluble triggering receptor expressed on myeloid cells-1 (sTREM-1) in patients with myocardial dysfunction induced by severe sepsis and septic shock. A total of 84 patients with severe sepsis and septic shock were enrolled between May 2013 and December 2014.The patients were monitored by pulse indicator continuous cardiac output system and divided into myocardial depression group (cardiac function index [CFI] < 4.1/minute, n = 37) and nonmyocardial depression group (CFI ≥ 4.1/minute, n = 47 ). Additionally, the patients were divided into survival group (n = 40) and nonsurvival group (n = 44) based on 28-day mortality. Hemodynamic parameters and serum sTREM-1, B-type natriuretic peptide (BNP) and cardiac troponin I (cTnI) levels were collected on days 1, 3 and 5 after admission to intensive care unit. (1) The serum values of sTREM-1, BNP and cTnI in myocardial depression group were higher than those in nonmyocardial depression group (P < 0.01); and CFI, cardiac index, stroke volume, global ejection fraction and left ventricular contractility index (dpmax) in myocardial depression group were lower than those in nonmyocardial depression group on day 1 (P < 0.05); (2) serum sTREM-1 negatively correlated with left ventricular ejection fraction, CFI, cardiac index, global ejection fraction and dpmax, and it positively correlated with BNP and cTnI (P < 0.01); (3) the area under the receiver operating characteristics curve for sTREM-1 in the prediction of myocardial depression was 0.671 with a sensitivity of 83.8% and a specificity of 46.8% when cutoff point was 174.5ng/mL, the power of predicting septic depression for sTREM-1 was lower than that of BNP; logistic regression analysis showed that serum sTREM-1 was not an independent predictor of septic myocardial depression; the area under the receiver operating characteristics curve was 0.773 for sTREM-1 in predicting outcome with a sensitivity of 86.4% and a specificity of 80% when cutoff point was 182.3ng/mL, the power of predicting prognosis for sTREM-1 was superior to those of BNP and cTnI; (4) there was a decrease trend for sTREM-1 levels and an increasing trend for CFI in the survival group (P < 0.05). Myocardial dysfunction is common in patients with severe sepsis and septic shock and high serum levels of sTREM-1 correlates with myocardial dysfunction to some extent but is not an independent predictor, which more importantly showed prognostic value for septic shock outcome. Copyright © 2016 Southern Society for Clinical Investigation. Published by Elsevier Inc. All rights reserved.

  2. Hypothyroidism-induced myocardial damage and heart failure: an overlooked entity.

    PubMed

    Shuvy, Mony; Shifman, Oshrat E Tayer; Nusair, Samir; Pappo, Orit; Lotan, Chaim

    2009-01-01

    Hypothyroid state may induce cardiac muscle impairment such as diastolic dysfunction and abnormal relaxation time. Advanced heart failure in hypothyroid patients has been described only in severe symptomatic cases, mostly during myxedematous coma. We describe an unusual case of asymptomatic patient with hypothyroidism who presented with severely reduced cardiac function with elevated cardiac enzymes reflecting significant myocardial injury. Comprehensive evaluation for heart failure was suggestive only for long-standing untreated hypothyroidism. Endomyocadial biopsy demonstrated unique histological findings of mucopolysaccharide accumulation attributed to hypothyroid state. Asymptomatic hypothyroidism may cause severe reduction in cardiac function accompanied with elevated cardiac enzymes. To our knowledge, this is the first description of human myocardial biopsy revealing mucopolysaccharide accumulation attributed to hypothyroid state.

  3. Direct Evidence that Myocardial Insulin Resistance following Myocardial Ischemia Contributes to Post-Ischemic Heart Failure

    PubMed Central

    Fu, Feng; Zhao, Kun; Li, Jia; Xu, Jie; Zhang, Yuan; Liu, Chengfeng; Yang, Weidong; Gao, Chao; Li, Jun; Zhang, Haifeng; Li, Yan; Cui, Qin; Wang, Haichang; Tao, Ling; Wang, Jing; Quon, Michael J; Gao, Feng

    2015-01-01

    A close link between heart failure (HF) and systemic insulin resistance has been well documented, whereas myocardial insulin resistance and its association with HF are inadequately investigated. This study aims to determine the role of myocardial insulin resistance in ischemic HF and its underlying mechanisms. Male Sprague-Dawley rats subjected to myocardial infarction (MI) developed progressive left ventricular dilation with dysfunction and HF at 4 wk post-MI. Of note, myocardial insulin sensitivity was decreased as early as 1 wk after MI, which was accompanied by increased production of myocardial TNF-α. Overexpression of TNF-α in heart mimicked impaired insulin signaling and cardiac dysfunction leading to HF observed after MI. Treatment of rats with a specific TNF-α inhibitor improved myocardial insulin signaling post-MI. Insulin treatment given immediately following MI suppressed myocardial TNF-α production and improved cardiac insulin sensitivity and opposed cardiac dysfunction/remodeling. Moreover, tamoxifen-induced cardiomyocyte-specific insulin receptor knockout mice exhibited aggravated post-ischemic ventricular remodeling and dysfunction compared with controls. In conclusion, MI induces myocardial insulin resistance (without systemic insulin resistance) mediated partly by ischemia-induced myocardial TNF-α overproduction and promotes the development of HF. Our findings underscore the direct and essential role of myocardial insulin signaling in protection against post-ischemic HF. PMID:26659007

  4. Interplay of matrix metalloproteinases, tissue inhibitors of metalloproteinases and their regulators in cardiac matrix remodeling.

    PubMed

    Li, Y Y; McTiernan, C F; Feldman, A M

    2000-05-01

    Myocardial fibrosis due to maladaptive extracellular matrix remodeling contributes to dysfunction of the failing heart. Further elucidation of the mechanism by which myocardial fibrosis and dilatation can be prevented or even reversed remains of great interest as a potential means to limit myocardial remodeling and dysfunction. Matrix metalloproteinases (MMPs) are the driving force behind extracellular matrix degradation during remodeling and are increased in the failing human heart. MMPs are regulated by a variety of growth factors, cytokines, and matrix fragments such as matrikines. In the present report, we discuss the regulation of MMPs, the role of MMPs in the development of cardiac fibrosis, and the modulation of MMP activity using gene transfer and knockout technologies. We also present recent findings from our laboratory on the regulation of the extracellular MMP inducer (EMMPRIN), MMPs, and transforming growth factor-beta(1) in the failing human heart before and after left ventricular assist device support, as well as the possibility of preventing ventricular fibrosis using different anti-MMP strategies. Several studies suggest that such modulation of MMP activity can alter ventricular remodeling, myocardial dysfunction, and the progression of heart failure. It is therefore suggested that the interplay of MMPs and their regulators is important in the development of the heart failure phenotype, and myocardial fibrosis in heart failure may be modified by modulating MMP activity.

  5. Severe Sepsis and Acute Myocardial Dysfunction in an Adolescent with Chlamydia Trachomatis Pelvic Inflammatory Disease: A Case Report.

    PubMed

    Morgan, Ashley M; Roden, R Claire; Matson, Steven C; Wallace, Grant M; Lange, Hannah L H; Bonny, Andrea E

    2018-04-01

    Although generally asymptomatic, severe Chlamydia trachomatis (C. trachomatis) infections have been documented. C. trachomatis has been associated with myocarditis as well as sepsis. A 19-year-old girl with type 1 diabetes mellitus developed sudden-onset mental status change and shock after resolution of diabetic ketoacidosis. Abdominal and pelvic imaging showed uterine and adnexal inflammation, and pelvic examination confirmed a diagnosis of pelvic inflammatory disease. The patient was intubated, required vasopressor support, and developed severe biventricular myocardial dysfunction. Infectious myocarditis workup was negative. Nucleic acid amplification testing from vaginal discharge was positive for C. trachomatis and Trichomonas vaginalis and negative for Neisseria gonorrhoeae. C. trachomatis should be considered in the workup of septic shock, particularly in populations at high risk for sexually transmitted infections. Copyright © 2017 North American Society for Pediatric and Adolescent Gynecology. Published by Elsevier Inc. All rights reserved.

  6. 3D cardiac wall thickening assessment for acute myocardial infarction

    NASA Astrophysics Data System (ADS)

    Khalid, A.; Chan, B. T.; Lim, E.; Liew, Y. M.

    2017-06-01

    Acute myocardial infarction (AMI) is the most severe form of coronary artery disease leading to localized myocardial injury and therefore irregularities in the cardiac wall contractility. Studies have found very limited differences in global indices (such as ejection fraction, myocardial mass and volume) between healthy subjects and AMI patients, and therefore suggested regional assessment. Regional index, specifically cardiac wall thickness (WT) and thickening is closely related to cardiac function and could reveal regional abnormality due to AMI. In this study, we developed a 3D wall thickening assessment method to identify regional wall contractility dysfunction due to localized myocardial injury from infarction. Wall thickness and thickening were assessed from 3D personalized cardiac models reconstructed from cine MRI images by fitting inscribed sphere between endocardial and epicardial wall. The thickening analysis was performed in 5 patients and 3 healthy subjects and the results were compared against the gold standard 2D late-gadolinium-enhanced (LGE) images for infarct localization. The notable finding of this study is the highly accurate estimation and visual representation of the infarct size and location in 3D. This study provides clinicians with an intuitive way to visually and qualitatively assess regional cardiac wall dysfunction due to infarction in AMI patients.

  7. Chronic Kidney Disease Exacerbates Myocardial Ischemia Reperfusion Injury: Role of Endoplasmic Reticulum Stress-Mediated Apoptosis.

    PubMed

    Guo, Junjie; Zhu, Jianbing; Ma, Leilei; Shi, Hongtao; Hu, Jiachang; Zhang, Shuning; Hou, Lei; Xu, Fengqiang; An, Yi; Yu, Haichu; Ge, Junbo

    2018-06-01

    Chronic kidney disease (CKD) is known to exacerbate myocardial ischemia reperfusion (IR) injury. However, the underlying mechanisms are still not well understood. Despite various strategies for cardioprotection, limited studies have been focused on the prevention of CKD-induced myocardial susceptibility to IR injury. Here, we hypothesized that excessive endoplasmic reticulum (ER) stress-mediated apoptosis involved in myocardial IR injury in CKD mice and pretreatment with chemical ER chaperone rendered the heart resistant to myocardial IR injury in the setting of CKD. CKD was induced by 5/6 subtotal nephrectomy (SN) in mice, whereas sham-operated mice served as control (Sham). CKD significantly aggravated the cardiac injury after IR in SN group than Sham group as reflected by more severe cardiac dysfunction, increased myocardial infarct size and the ratio of myocardial apoptosis. The expression of ER stress-mediated apoptotic proteins (Bcl-2 associated X protein (Bax), glucose-regulated protein 78 (GRP78), CCAAT/enhancer-binding protein homologous protein (CHOP), caspase-12) was markedly upregulated after IR injury in SN group than Sham group, whereas the expression of anti-apoptotic protein, Bcl-2, was obviously downregulated. In addition, the chemical ER chaperone sodium 4-phenylbutyrate (4PBA) pretreatment ameliorated cardiac dysfunction and lessened the infarct size and myocardial apoptosis after IR injury in mice with CKD. Taken together, these findings demonstrated that excessive activation of ER stress-mediated apoptosis pathway involved in the CKD-induced myocardial susceptibility to IR injury, and chemical ER chaperone 4PBA alleviated myocardial IR injury in mice with CKD.

  8. Transient severe left ventricular dysfunction following percutaneous patent ductus arteriosus closure in an adult with bicuspid aortic valve: A case report

    PubMed Central

    HWANG, HUI-JEONG; YOON, KYUNG LIM; SOHN, IL SUK

    2016-01-01

    The present study reported the case of a 60-year-old female with patent ductus arteriosus (PDA) and a bicuspid aortic valve, who presented with transient severe left ventricular (LV) dysfunction following percutaneous closure of PDA, as identified by speckle tracking analysis. Transient LV dysfunction following PDA closure has previously been reported; however, severe LV dysfunction is rare. In the present case, the combination of a large PDA size, large amount of shunting, LV remodeling and bicuspid aortic valve may have induced serious deterioration of LV function following PDA closure. Furthermore, speckle-tracking echocardiography may be useful in the estimation of functional alterations in the myocardium of the LV following PDA closure. The observations detailed in the present study may improve the understanding of the pathophysiology and myocardial patterns of transient left ventricular dysfunction following PDA closure in adult humans. PMID:26998021

  9. Transient severe left ventricular dysfunction following percutaneous patent ductus arteriosus closure in an adult with bicuspid aortic valve: A case report.

    PubMed

    Hwang, Hui-Jeong; Yoon, Kyung Lim; Sohn, Il Suk

    2016-03-01

    The present study reported the case of a 60-year-old female with patent ductus arteriosus (PDA) and a bicuspid aortic valve, who presented with transient severe left ventricular (LV) dysfunction following percutaneous closure of PDA, as identified by speckle tracking analysis. Transient LV dysfunction following PDA closure has previously been reported; however, severe LV dysfunction is rare. In the present case, the combination of a large PDA size, large amount of shunting, LV remodeling and bicuspid aortic valve may have induced serious deterioration of LV function following PDA closure. Furthermore, speckle-tracking echocardiography may be useful in the estimation of functional alterations in the myocardium of the LV following PDA closure. The observations detailed in the present study may improve the understanding of the pathophysiology and myocardial patterns of transient left ventricular dysfunction following PDA closure in adult humans.

  10. Effects of statin therapy on clinical outcomes after acute myocardial infarction in patients with advanced renal dysfunction: A propensity score-matched analysis.

    PubMed

    Kim, Jin Sug; Kim, Weon; Park, Ji Yoon; Woo, Jong Shin; Lee, Tae Won; Ihm, Chun Gyoo; Kim, Yang Gyun; Moon, Ju-Young; Lee, Sang Ho; Jeong, Myung Ho; Jeong, Kyung Hwan

    2017-01-01

    Lipid lowering therapy is widely used for the prevention of cardiovascular complications after acute myocardial infarction (AMI). However, some studies show that this benefit is uncertain in patients with renal dysfunction, and the role of statins is based on the severity of renal dysfunction. In this study, we investigated the impact of statin therapy on major adverse cardiac events (MACEs) and all-cause mortality in patients with advanced renal dysfunction undergoing percutaneous coronary intervention (PCI) after AMI. This study was based on the Korea Acute Myocardial Infarction Registry database. We included 861 patients with advanced renal dysfunction from among 33,205 patients who underwent PCI after AMI between November 2005 and July 2012. Patients were divided into two groups: a statin group (n = 537) and a no-statin group (n = 324). We investigated the 12-month MACEs (cardiac death, myocardial infarction, repeated PCI or coronary artery bypass grafting) and all-cause mortality of each group. Subsequently, a propensity score-matched analysis was performed. In the total population studied, no significant differences were observed between the two groups with respect to the rate of recurrent MI, repeated PCI, coronary artery bypass grafting (CABG), or all-cause mortality. However, the cardiac death rate was significantly lower in the statin group (p = 0.009). Propensity score-matched analysis yielded 274 pairs demonstrating, results similar to those obtained from the total population. However, there was no significant difference in the cardiac death rate in the propensity score-matched population (p = 0.103). Cox-regression analysis revealed only left ventricular ejection fraction to be an independent predictor of 12-month MACEs (Hazard ratio [HR] of 0.979, 95% confidence interval [CI], 0962-0.996, p = 0.018). Statin therapy was not significantly associated with a reduction in the 12-month MACEs or all-cause mortality in patients with advanced renal dysfunction undergoing PCI after AMI.

  11. Sepsis-induced myocardial dysfunction and myocardial protection from ischemia/reperfusion injury.

    PubMed

    McDonough, Kathleen H; Virag, Jitka Ismail

    2006-01-01

    Sepsis, bacteremia and inflammation cause myocardial depression. The mechanism of the dysfunction is not clearly established partly because dysfunction can be elicited by many different mechanisms which can all manifest in disruption of myocardial mechanical function. In addition the models of sepsis and bacteremia and inflammation may vary drastically in the sequence of the coordinated immune response to the inflammatory or septic stimulus. Patterns of cytokine expression can vary as can other responses of the immune system. Patterns of neurohumoral activation in response to the stress of sepsis or bacteremia or inflammation can also vary in both magnitude of response and temporal sequence of response. Stress induced activation of the sympathetic nervous system and humoral responses to stress have a wide range of intensity that can be elicited. The fairly uniform response of the myocardium indicating cardiac dysfunction is surprisingly constant. Systolic performance, as measured by stroke volume or cardiac output and pressure work as estimated by ventricular pressure, are impaired when myocardial contraction is compromised. At times, diastolic function, assessed by ventricular relaxation and filling, is impaired. In addition to the dysfunction that occurs, there is a longer term response of the myocardium to sepsis, and this response is similar to that which is elicited in the heart by multiple brief ischemia/reperfusion episodes and by numerous pharmacological agents as well as heat stress and modified forms of lipopolysaccharide. The myocardium develops protection after an initial stress such that during a second stress, the myocardium does not exhibit as much damage as does a non-protected heart. Many agents can induce this protection which has been termed preconditioning. Both early preconditioning (protection that is measurable min to hours after the initial stimulus) and late preconditioning (protection that is measurable hours to days after the initial trigger or stimulus) are effective in protecting the heart from prolonged ischemia and reperfusion injury. Understanding the mechanisms of sepsis/bacteremia induced dysfunction and protection and if the dysfunction and protection are the products of the same intracellular pathways is important in protecting the heart from failing to perform adequately during severe sepsis and/or septic shock and for understanding the multitude of mechanism by which the myocardium maintains reserve capacity.

  12. Clinical utility of endocrine markers predicting myocardial siderosis in transfusion dependent thalassemia major.

    PubMed

    Ehsan, Lubaina; Rashid, Mariam; Alvi, Najveen; Awais, Khadija; Nadeem, Omair; Asghar, Aleezay; Sajjad, Fatimah; Fatima, Malika; Qidwai, Asim; Hussain, Shabneez; Hasan, Erum; Brown, Nick; Altaf, Sadaf; Hasan, Babar; Kirmani, Salman

    2018-06-12

    Endocrinopathy due to iron overload is the most common morbidity whereas myocardial siderosis causing toxic cardiomyopathy is the leading cause of mortality among patients with transfusion dependent thalassemia major (TDTM). If detected early, this can be treated with aggressive chelation. T2* cardiac magnetic resonance imaging (CMR) guided chelation protocols are now the gold standard but have limited availability in low and middle-income countries. We hypothesized that markers of endocrine dysfunction would correlate with T2* CMR and can be used to predict the severity of myocardial siderosis and guide chelation therapy. We undertook a multicenter retrospective study of 280 patients with TDTM to assess the prevalence of endocrinopathies and the predictive value of a number of individual and composite markers of endocrinopathy with T2* CMR. The prevalence of hypogonadism, stunting, hypoparathyroidism, and hypothyroidism was 82%, 69%, 40%, and 30%, respectively. The sensitivity of hypogonadism and stunting predicting severe myocardial siderosis was 90% and 80%, respectively. We conclude that clinical markers of endocrine dysfunction, especially hypogonadism (positive likelihood ratio [LR+] = 1.4, 95% confidence interval [CI] = 1.0-1.9; positive predictive value [PPV] = 77%, 95% CI = 70-82; negative predictive value [NPV] = 57%, 95% CI = 34-77] and stunting (LR+ = 1.3, 95% CI = 1.1-1.6; PPV = 64%, 95% CI = 60-69; NPV = 55%, 95% CI = 45-64) in TDTM can predict severe myocardial siderosis and can potentially guide chelation therapy, especially where access to T2* CMR is limited. © 2018 Wiley Periodicals, Inc.

  13. Multiple cardiac complications after adjuvant therapy for breast cancer: the importance of echocardiography. A case report and review of the literature.

    PubMed

    Gurghean, Adriana Luminita; Savulescu-Fiedler, Ilinca; Mihailescu, Anca

    2017-01-31

    Cardiovascular complications induced by adjuvant cancer therapies may become symptomatic after many years, being responsible for increased morbidity and mortality in long-term survivors. We report a case of a 54-year old female admitted for severe heart failure induced by myocardial and valvular damage after postoperative adjuvant therapy for left breast cancer 6 years ago. Her recent history revealed nonST elevation myocardial infarction in the absence of significant cardiovascular risk factors. Transthoracic echocardiography, tissue Doppler imaging and speckle-tracking imaging revealed severe biventricular systolic dysfunction, severe mitral and tricuspid regurgitation and severe pulmonary hypertension.

  14. Myocardial Viability and Impact of Surgical Ventricular Reconstruction on Outcomes of Patients with Severe Left Ventricular Dysfunction Undergoing Coronary Artery Bypass Surgery: Results of the Surgical Treatment for Ischemic Heart Failure (STICH) Trial

    PubMed Central

    Holly, Thomas A.; Bonow, Robert O.; Arnold, J. Malcolm O.; Oh, Jae K.; Varadarajan, Padmini; Pohost, Gerald M.; Haddad, Haissam; Jones, Robert H.; Velazquez, Eric J.; Birkenfeld, Bozena; Asch, Federico M.; Malinowski, Marcin; Barretto, Rodrigo; Kalil, Renato A.K.; Berman, Daniel S.; Sun, Jie-Lena; Lee, Kerry L.; Panza, Julio A.

    2014-01-01

    Objective In the Surgical Treatment for Ischemic Heart Failure (STICH) trial, surgical ventricular reconstruction plus coronary artery bypass surgery was not associated with a reduction in the rate of death or cardiac hospitalization compared to bypass alone. We hypothesized that the absence of viable myocardium identifies patients with coronary artery disease and left ventricular dysfunction who have a greater benefit with coronary artery bypass graft surgery and surgical ventricular reconstruction compared to bypass alone. Methods Myocardial viability was assessed by single photon computed tomography in 267 of the 1,000 patients randomized to bypass or bypass plus surgical ventricular reconstruction in STICH. Myocardial viability was assessed on a per patient basis as well as regionally based on pre-specified criteria. Results At 3 years, there was no difference in mortality or the combined outcome of death or cardiac hospitalization between those with and those without viability, and there was no significant interaction between the type of surgery and global viability status with respect to mortality or death plus cardiac hospitalization. Furthermore, there was no difference in mortality or death plus cardiac hospitalization between those with and without anterior wall or apical scar, and no significant interaction between the presence of scar in these regions and the type of surgery with respect to mortality. Conclusion In patients with coronary artery disease and severe regional left ventricular dysfunction, assessment of myocardial viability does not identify patients who will derive a mortality benefit from adding surgical ventricular reconstruction to coronary artery bypass graft surgery. PMID:25152476

  15. Microtubule depolymerization normalizes in vivo myocardial contractile function in dogs with pressure-overload left ventricular hypertrophy

    NASA Technical Reports Server (NTRS)

    Koide, M.; Hamawaki, M.; Narishige, T.; Sato, H.; Nemoto, S.; DeFreyte, G.; Zile, M. R.; Cooper G, I. V.; Carabello, B. A.

    2000-01-01

    BACKGROUND: Because initially compensatory myocardial hypertrophy in response to pressure overloading may eventually decompensate to myocardial failure, mechanisms responsible for this transition have long been sought. One such mechanism established in vitro is densification of the cellular microtubule network, which imposes a viscous load that inhibits cardiocyte contraction. METHODS AND RESULTS: In the present study, we extended this in vitro finding to the in vivo level and tested the hypothesis that this cytoskeletal abnormality is important in the in vivo contractile dysfunction that occurs in experimental aortic stenosis in the adult dog. In 8 dogs in which gradual stenosis of the ascending aorta had caused severe left ventricular (LV) pressure overloading (gradient, 152+/-16 mm Hg) with contractile dysfunction, LV function was measured at baseline and 1 hour after the intravenous administration of colchicine. Cardiocytes obtained by biopsy before and after in vivo colchicine administration were examined in tandem. Microtubule depolymerization restored LV contractile function both in vivo and in vitro. CONCLUSIONS: These and additional corroborative data show that increased cardiocyte microtubule network density is an important mechanism for the ventricular contractile dysfunction that develops in large mammals with adult-onset pressure-overload-induced cardiac hypertrophy.

  16. RIPHeart (Remote Ischemic Preconditioning for Heart Surgery) Study: Myocardial Dysfunction, Postoperative Neurocognitive Dysfunction, and 1 Year Follow-Up.

    PubMed

    Meybohm, Patrick; Kohlhaas, Madeline; Stoppe, Christian; Gruenewald, Matthias; Renner, Jochen; Bein, Berthold; Albrecht, Martin; Cremer, Jochen; Coburn, Mark; Schaelte, Gereon; Boening, Andreas; Niemann, Bernd; Sander, Michael; Roesner, Jan; Kletzin, Frank; Mutlak, Haitham; Westphal, Sabine; Laufenberg-Feldmann, Rita; Ferner, Marion; Brandes, Ivo F; Bauer, Martin; Stehr, Sebastian N; Kortgen, Andreas; Wittmann, Maria; Baumgarten, Georg; Meyer-Treschan, Tanja; Kienbaum, Peter; Heringlake, Matthias; Schoen, Julika; Treskatsch, Sascha; Smul, Thorsten; Wolwender, Ewa; Schilling, Thomas; Fuernau, Georg; Bogatsch, Holger; Brosteanu, Oana; Hasenclever, Dirk; Zacharowski, Kai

    2018-03-26

    Remote ischemic preconditioning (RIPC) has been suggested to protect against certain forms of organ injury after cardiac surgery. Previously, we reported the main results of RIPHeart (Remote Ischemic Preconditioning for Heart Surgery) Study, a multicenter trial randomizing 1403 cardiac surgery patients receiving either RIPC or sham-RIPC. In this follow-up paper, we present 1-year follow-up of the composite primary end point and its individual components (all-cause mortality, myocardial infarction, stroke and acute renal failure), in a sub-group of patients, intraoperative myocardial dysfunction assessed by transesophageal echocardiography and the incidence of postoperative neurocognitive dysfunction 5 to 7 days and 3 months after surgery. RIPC neither showed any beneficial effect on the 1-year composite primary end point (RIPC versus sham-RIPC 16.4% versus 16.9%) and its individual components (all-cause mortality [3.4% versus 2.5%], myocardial infarction [7.0% versus 9.4%], stroke [2.2% versus 3.1%], acute renal failure [7.0% versus 5.7%]) nor improved intraoperative myocardial dysfunction or incidence of postoperative neurocognitive dysfunction 5 to 7 days (67 [47.5%] versus 71 [53.8%] patients) and 3 months after surgery (17 [27.9%] versus 18 [27.7%] patients), respectively. Similar to our main study, RIPC had no effect on intraoperative myocardial dysfunction, neurocognitive function and long-term outcome in cardiac surgery patients undergoing propofol anesthesia. URL: https://www.clinicaltrials.gov. Unique identifier: NCT01067703. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  17. Cardiovascular magnetic resonance assessment of ventricular function and myocardial scarring before and early after repair of anomalous left coronary artery from the pulmonary artery

    PubMed Central

    2014-01-01

    Background In patients with anomalous left coronary artery from the pulmonary artery (ALCAPA) left ventricular (LV) dilatation and dysfunction evolves due to diminished myocardial perfusion caused by coronary steal phenomenon. Using late gadolinium enhanced cardiovascular magnetic resonance (LGE-CMR) imaging, myocardial scarring has been shown in ALCAPA patients late after repair, however the incidence of scarring before surgery and its impact on postoperative course after surgical repair remained unknown. Methods 8 ALCAPA-patients (mean age 10.0 ± 5.8 months) underwent CMR before and early after (mean 4.9 ± 2.5 months) coronary reimplantation procedures. CMR included functional analysis and LGE for detection of myocardial scars. Results LV dilatation (mean LVEDVI 171 ± 94 ml/m2) and dysfunction (mean LV-EF 22 ± 10 %) was present in all patients and improved significantly after surgery (mean LVEDV 68 ± 42 ml/m2, p = 0.02; mean LV-EF 58 ± 19 %, p < 0.001). Preoperative CMR revealed myocardial scarring in 2 of the 8 patients and did not predict postoperative course. At follow-up CMR, one LGE-positive patient showed delayed recovery of LV function while myocardial scarring was still present in both patients. In two patients new-onset transmural scarring was found, although functional recovery after operation was sufficient. One of them showed a stenosis of the left coronary artery and required resurgery. Conclusions Despite diminished myocardial perfusion and severely compromised LV function, myocardial scarring was preoperatively only infrequently present. Improvement of myocardial function was independent of new-onset scarring while the impact of preoperative scarring still needs to be defined. PMID:24387660

  18. Takotsubo-like Myocardial Dysfunction in a Patient with Botulism.

    PubMed

    Tonomura, Shuichi; Kakehi, Yoshiaki; Sato, Masatoshi; Naito, Yuki; Shimizu, Hisao; Goto, Yasunobu; Takahashi, Nobuyuki

    2017-11-01

    Botulinum toxin A (BTXA) can disrupt the neuromuscular and autonomic functions. We herein report a case of autonomic system dysfunction that manifested as Takotsubo-like myocardial dysfunction in a patient with botulism. Takotsubo syndrome results in acute cardiac insufficiency, another fatal complication of botulism in addition to respiratory muscle paralysis, particularly in patients with cardiovascular disease.

  19. Takotsubo-like Myocardial Dysfunction in a Patient with Botulism

    PubMed Central

    Tonomura, Shuichi; Kakehi, Yoshiaki; Sato, Masatoshi; Naito, Yuki; Shimizu, Hisao; Goto, Yasunobu; Takahashi, Nobuyuki

    2017-01-01

    Botulinum toxin A (BTXA) can disrupt the neuromuscular and autonomic functions. We herein report a case of autonomic system dysfunction that manifested as Takotsubo-like myocardial dysfunction in a patient with botulism. Takotsubo syndrome results in acute cardiac insufficiency, another fatal complication of botulism in addition to respiratory muscle paralysis, particularly in patients with cardiovascular disease. PMID:28924131

  20. Acute Right Ventricular Dysfunction in Intensive Care Unit

    PubMed Central

    Domingo, Enric

    2017-01-01

    The role of the left ventricle in ICU patients with circulatory shock has long been considered. However, acute right ventricle (RV) dysfunction causes and aggravates many common critical diseases (acute respiratory distress syndrome, pulmonary embolism, acute myocardial infarction, and postoperative cardiac surgery). Several supportive therapies, including mechanical ventilation and fluid management, can make RV dysfunction worse, potentially exacerbating shock. We briefly review the epidemiology, pathophysiology, diagnosis, and recommendations to guide management of acute RV dysfunction in ICU patients. Our aim is to clarify the complex effects of mechanical ventilation, fluid therapy, vasoactive drug infusions, and other therapies to resuscitate the critical patient optimally. PMID:29201914

  1. Mechanistic insights and characterization of sickle cell disease-associated cardiomyopathy.

    PubMed

    Desai, Ankit A; Patel, Amit R; Ahmad, Homaa; Groth, John V; Thiruvoipati, Thejasvi; Turner, Kristen; Yodwut, Chattanong; Czobor, Peter; Artz, Nicole; Machado, Roberto F; Garcia, Joe G N; Lang, Roberto M

    2014-05-01

    Cardiovascular disease is an important cause of morbidity and mortality in sickle cell disease (SCD). We sought to characterize sickle cell cardiomyopathy using multimodality noninvasive cardiovascular testing and identify potential causative mechanisms. Stable adults with SCD (n=38) and healthy controls (n=13) prospectively underwent same day multiparametric cardiovascular magnetic resonance (cine, T2* iron, vasodilator first pass myocardial perfusion, and late gadolinium enhancement imaging), transthoracic echocardiography, and applanation tonometry. Compared with controls, patients with SCD had severe dilation of the left ventricle (124±27 vs 79±12 mL/m(2)), right ventricle (127±28 vs 83±14 mL/m(2)), left atrium (65±16 vs 41±9 mL/m(2)), and right atrium (78±17 vs 56±17 mL/m(2); P<0.01 for all). Patients with SCD also had a 21% lower myocardial perfusion reserve index than control subjects (1.47±0.34 vs 1.87±0.37; P=0.034). A significant subset of patients with SCD (25%) had evidence of late gadolinium enhancement, whereas only 1 patient had evidence of myocardial iron overload. Diastolic dysfunction was present in 26% of patients with SCD compared with 8% in controls. Estimated filling pressures (E/e', 9.3±2.7 vs 7.3±2.0; P=0.0288) were higher in patients with SCD. Left ventricular dilation and the presence of late gadolinium enhancement were inversely correlated to hepatic T2* times (ie, hepatic iron overload because of frequent blood transfusions; P<0.05 for both), whereas diastolic dysfunction and increased filling pressures were correlated to aortic stiffness (augmentation pressure and index, P<0.05 for all). Sickle cell cardiomyopathy is characterized by 4-chamber dilation and in some patients myocardial fibrosis, abnormal perfusion reserve, diastolic dysfunction, and only rarely myocardial iron overload. Left ventricular dilation and myocardial fibrosis are associated with increased blood transfusion requirements, whereas left ventricular diastolic dysfunction is predominantly correlated with increased aortic stiffness. http://www.clinicaltrials.gov. Unique identifier: NCT01044901. © 2014 American Heart Association, Inc.

  2. Systemic inflammation is associated with myocardial fibrosis, diastolic dysfunction, and cardiac hypertrophy in patients with hypertrophic cardiomyopathy

    PubMed Central

    Fang, Lu; Ellims, Andris H; Beale, Anna L; Taylor, Andrew J; Murphy, Andrew; Dart, Anthony M

    2017-01-01

    Background: Regional or diffuse fibrosis is an early feature of hypertrophic cardiomyopathy (HCM) and is related to poor prognosis. Previous studies have documented low-grade inflammation in HCM. The aim of this study was to examine the relationships between circulating inflammatory markers and myocardial fibrosis, systolic and diastolic dysfunction, and the degree of cardiac hypertrophy in HCM patients. Methods and results: Fifty HCM patients were recruited while 20 healthy subjects served as the control group. Seventeen inflammatory cytokines/chemokines were measured in plasma. Cardiac magnetic resonance imaging and echocardiography were used to assess cardiac phenotypes. Tumour necrosis factor (TNF)-α, interleukin (IL)-6 and serum amyloid P (SAP) were significantly increased in HCM patients compared to controls. IL-6, IL-4, and monocyte chemotactic protein (MCP)-1 were correlated with regional fibrosis while stromal cell-derived factor-1 and MCP-1 were correlated with diffuse fibrosis. Fractalkine and interferon-γ were associated with left ventricular wall thickness. The above associations remained significant in a linear regression model including age, gender, body mass index and family history. TNF-α, IL-6, SAP, MCP-1 and IL-10 were associated with parameters of diastolic dysfunction. White blood cells were also increased in HCM patients and correlated with diffuse fibrosis and diastolic dysfunction. However the associations between parameters of systemic inflammation and diastolic dysfunction were weakened in the linear regression analysis. Conclusions: Systemic inflammation is associated with parameters of the disease severity of HCM patients, particularly regional and diffuse fibrosis. Modifying inflammation may reduce myocardial fibrosis in HCM patients. PMID:29218105

  3. Evaluation of cerebral-cardiac syndrome using echocardiography in a canine model of acute traumatic brain injury.

    PubMed

    Qian, Rong; Yang, Weizhong; Wang, Xiumei; Xu, Zhen; Liu, Xiaodong; Sun, Bing

    2015-01-01

    Previous studies have confirmed that traumatic brain injury (TBI) can induce general adaptation syndrome (GAS), which subsequently results in myocardial dysfunction and damage in some patients with acute TBI; this condition is also termed as cerebral-cardiac syndrome. However, most clinicians ignore the detection and treatment of myocardial dysfunction, and instead concentrate only on the serious neural damage that is observed in acute TBI, which is one of the most important fatal factors. Therefore, clarification is urgently needed regarding the relationship between TBI and myocardial dysfunction. In the present study, we evaluated 18 canine models of acute TBI, by using real-time myocardial contrast echocardiography and strain rate imaging to accurately evaluate myocardial function and regional microcirculation, including the strain rate of the different myocardial segments, time-amplitude curves, mean ascending slope of the curve, and local myocardial blood flow. Our results suggest that acute TBI often results in cerebral-cardiac syndrome, which rapidly progresses to the serious stage within 3 days. This study is the first to provide comprehensive ultrasonic characteristics of cerebral-cardiac syndrome in an animal model of TBI.

  4. Both Selenium Deficiency and Modest Selenium Supplementation Lead to Myocardial Fibrosis in Mice via Effects on Redox-Methylation Balance

    PubMed Central

    Metes-Kosik, Nicole; Luptak, Ivan; DiBello, Patricia M.; Handy, Diane E.; Tang, Shiow-Shih; Zhi, Hui; Qin, Fuzhong; Jacobsen, Donald W.; Loscalzo, Joseph; Joseph, Jacob

    2013-01-01

    Scope Selenium has complex effects in vivo on multiple homeostatic mechanisms such as redox balance, methylation balance, and epigenesis, via its interaction with the methionine-homocysteine cycle. In this study, we examined the hypothesis that selenium status would modulate both redox and methylation balance and thereby modulate myocardial structure and function. Methods and Results We examined the effects of selenium deficient (<0.025 mg/kg), control (0.15 mg/kg), and selenium supplemented (0.5 mg/kg) diets on myocardial histology, biochemistry and function in adult C57/BL6 mice. Selenium deficiency led to reactive myocardial fibrosis and systolic dysfunction accompanied by increased myocardial oxidant stress. Selenium supplementation significantly reduced methylation potential, DNA methyltransferase activity and DNA methylation. In mice fed the supplemented diet, inspite of lower oxidant stress, myocardial matrix gene expression was significantly altered resulting in reactive myocardial fibrosis and diastolic dysfunction in the absence of myocardial hypertrophy. Conclusions Our results indicate that both selenium deficiency and modest selenium supplementation leads to a similar phenotype of abnormal myocardial matrix remodeling and dysfunction in the normal heart. The crucial role selenium plays in maintaining the balance between redox and methylation pathways needs to be taken into account while optimizing selenium status for prevention and treatment of heart failure. PMID:23097236

  5. Double valve replacement in a patient with implantable cardioverter defibrillator with severe left ventricular dysfunction.

    PubMed

    Manjunath, Girish; Rao, Prakash; Prakash, Nagendra; Shivaram, B K

    2016-01-01

    Recent data from landmark trials suggest that the indications for cardiac pacing and implantable cardioverter defibrillators (ICDs) are set to expand to include heart failure, sleep-disordered breathing, and possibly routine implantation in patients with myocardial infarction and poor ventricular function.[1] This will inevitably result in more patients with cardiac devices undergoing surgeries. Perioperative electromagnetic interference and their potential effects on ICDs pose considerable challenges to the anesthesiologists.[2] We present a case of a patient with automatic ICD with severe left ventricular dysfunction posted for double valve replacement.

  6. Galectin-3 in heart failure with preserved ejection fraction. A RELAX trial substudy (Phosphodiesterase-5 Inhibition to Improve Clinical Status and Exercise Capacity in Diastolic Heart Failure).

    PubMed

    AbouEzzeddine, Omar F; Haines, Phillip; Stevens, Susanna; Nativi-Nicolau, Jose; Felker, G Michael; Borlaug, Barry A; Chen, Horng H; Tracy, Russell P; Braunwald, Eugene; Redfield, Margaret M

    2015-03-01

    This study hypothesized that elevated galectin-3 (Gal-3) levels would identify patients with more advanced heart failure (HF) with preserved ejection fraction (HFpEF) as assessed by key pathophysiological domains. Gal-3 is implicated in the pathogenesis of cardiac fibrosis but is also increased with normal aging and renal dysfunction. Cardiac fibrosis may contribute to cardiac dysfunction, exercise intolerance, and congestion in HFpEF. Two hundred eight patients from the RELAX (Phosphodiesterase-5 Inhibition to Improve Clinical Status and Exercise Capacity in Diastolic Heart Failure) trial of sildenafil in HFpEF had Gal-3 measured at enrollment. Pathophysiological domains assessed included biomarkers of neurohumoral activation, fibrosis, inflammation and myocardial necrosis, congestion severity and quality of life, cardiac structure and function, and exercise performance. Analysis adjusted for age, sex, and/or cystatin-C levels. Potential interaction between baseline Gal-3 and treatment (sildenafil) effect on the RELAX study primary endpoint (change in peak oxygen consumption) was tested. Gal-3 levels were associated with age and severity of renal dysfunction. Adjusting for age, sex, and/or cystatin-C, Gal-3 was not associated with biomarkers of neurohumoral activation, fibrosis, inflammation or myocardial necrosis, congestion or quality-of-life impairment, cardiac remodeling or dysfunction, or exercise intolerance. Gal-3 did not identify patients who responded to phosphodiesterase type 5 (PDE-5) inhibitors (interaction p = 0.53). In overt HFpEF, Gal-3 was related to severity of renal dysfunction and accounting for this, was not independently associated with severity of pathophysiological derangements or response PDE-5 inhibition. These findings underscore the need to adjust for renal function when interpreting Gal-3 levels, and call into question the value of Gal-3 to quantify disease severity in overt HFpEF. Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  7. Edaravone Improves Septic Cardiac Function by Inducing an HIF-1α/HO-1 Pathway

    PubMed Central

    He, Chao; Zhang, Wei; Li, Suobei; Ruan, Wei; Xu, Junmei

    2018-01-01

    Septic myocardial dysfunction remains prevalent and raises mortality rate in patients with sepsis. During sepsis, tissues undergo tremendous oxidative stress which contributes critically to organ dysfunction. Edaravone, a potent radical scavenger, has been proved beneficial in ischemic injuries involving hypoxia-inducible factor- (HIF-) 1, a key regulator of a prominent antioxidative protein heme oxygenase- (HO-) 1. However, its effect in septic myocardial dysfunction remains unclarified. We hypothesized that edaravone may prevent septic myocardial dysfunction by inducing the HIF-1/HO-1 pathway. Rats were subjected to cecal ligation and puncture (CLP) with or without edaravone infusion at three doses (50, 100, or 200 mg/kg, resp.) before CLP and intraperitoneal injection of the HIF-1α antagonist, ME (15 mg/kg), after CLP. After CLP, rats had cardiac dysfunction, which was associated with deformed myocardium, augmented lipid peroxidation, and increased myocardial apoptosis and inflammation, along with decreased activities of catalase, HIF-1α, and HO-1 in the myocardium. Edaravone pretreatment dose-dependently reversed the changes, of which high dose most effectively improved cardiac function and survival rate of septic rats. However, inhibition of HIF-1α by ME demolished the beneficial effects of edaravone at high dose, reducing the survival rate of the septic rats without treatments. Taken together, edaravone, by inducing the HIF-1α/HO-1 pathway, suppressed oxidative stress and protected the heart against septic myocardial injury and dysfunction. PMID:29765498

  8. Velocity vector imaging fails to quantify regional myocardial dysfunction in a mouse model of isoprenaline-induced cardiotoxicity.

    PubMed

    Täng, Margareta Scharin; Redfors, Bjorn; Shao, Yangzhen; Omerovic, Elmir

    2012-08-01

    Regional myocardial deformation patterns are important in a variety of cardiac diseases, including stress-induced cardiomyopathy. Velocity-vector-based imaging is a speckle-tracking echocardiography (STE)-based algorithm that has been shown to allow in-depth cardiac phenotyping in humans. Regional posterior wall myocardial dysfunction occurs during severe isoprenaline stress in mice. We have previously shown that regional posterior wall end-systolic transmural strain decreases after severe isoprenaline toxicity in mice. We hypothesize that STE can detect and further quantify these perturbations. Twenty-three mice underwent echocardiographic examination using the VEVO2100 system. Regional transmural radial strain and strain rate were calculated in both parasternal short-axis and parasternal long-axis cine loops using the VisualSonics VEVO 2100 velocity vector imaging (VVI) STE algorithm. Eight C57BL/6 mice underwent baseline echocardiographic examination using the VisualSonics VEVO 770 system, which can acquire >1,000 frames/s cine loops. In a parasternal short-axis cine loop, the heart was divided into six segments, and regional fractional wall thickening (FWT) was assessed manually. The same protocols were also performed 90 minutes post 400 mg/kg intraperitoneally isoprenaline. Regional myocardial FWT is uniform at baseline but increases significantly in anterolateral segments, whereas it decreases significantly in posterior segments (P < 0.05). A similar pattern is seen using the VVI algorithm although the variance is larger, and differences are smaller and fail to reach significance. VVI is less sensitive in detecting regional perturbations in myocardial function than manual tracing, possibly due to the low frame rate in the cine loops used. © 2012, Wiley Periodicals, Inc.

  9. Defective branched chain amino acid catabolism contributes to cardiac dysfunction and remodeling following myocardial infarction.

    PubMed

    Wang, Wei; Zhang, Fuyang; Xia, Yunlong; Zhao, Shihao; Yan, Wenjun; Wang, Helin; Lee, Yan; Li, Congye; Zhang, Ling; Lian, Kun; Gao, Erhe; Cheng, Hexiang; Tao, Ling

    2016-11-01

    Cardiac metabolic remodeling is a central event during heart failure (HF) development following myocardial infarction (MI). It is well known that myocardial glucose and fatty acid dysmetabolism contribute to post-MI cardiac dysfunction and remodeling. However, the role of amino acid metabolism in post-MI HF remains elusive. Branched chain amino acids (BCAAs) are an important group of essential amino acids and function as crucial nutrient signaling in mammalian animals. The present study aimed to determine the role of cardiac BCAA metabolism in post-MI HF progression. Utilizing coronary artery ligation-induced murine MI models, we found that myocardial BCAA catabolism was significantly impaired in response to permanent MI, therefore leading to an obvious elevation of myocardial BCAA abundance. In MI-operated mice, oral BCAA administration further increased cardiac BCAA levels, activated the mammalian target of rapamycin (mTOR) signaling, and exacerbated cardiac dysfunction and remodeling. These data demonstrate that BCAAs act as a direct contributor to post-MI cardiac pathologies. Furthermore, these BCAA-mediated deleterious effects were improved by rapamycin cotreatment, revealing an indispensable role of mTOR in BCAA-mediated adverse effects on cardiac function/structure post-MI. Of note, pharmacological inhibition of branched chain ketoacid dehydrogenase kinase (BDK), a negative regulator of myocardial BCAA catabolism, significantly improved cardiac BCAA catabolic disorders, reduced myocardial BCAA levels, and ameliorated post-MI cardiac dysfunction and remodeling. In conclusion, our data provide the evidence that impaired cardiac BCAA catabolism directly contributes to post-MI cardiac dysfunction and remodeling. Moreover, improving cardiac BCAA catabolic defects may be a promising therapeutic strategy against post-MI HF. Copyright © 2016 the American Physiological Society.

  10. [Anomalous origin of the left coronary artery from the pulmonary trunk with myocardial infarction and severe left ventricular dysfunction in infancy--assessment of myocardial damage using SPECT studies with 201TlCl and 123I-BMIPP].

    PubMed

    Miyamoto, T; Horigome, H; Sato, H; Yamada, M; Inai, K; Takeda, T; Ishikawa, N; Hoshino, H; Itai, Y

    1996-02-01

    A 4-month-old male infant with Bland-White-Garland (BWG) syndrome complicated myocardial infarction was reported. Signs included tachypnea, coughing, and failure to thrive. However, there was no sign of myocardial infarction. A chest radiograph revealed cardiomegaly (CTR = 65%) and electrocardiogram showed abnormal Q waves in I, aVL, V6 leads. Cardiac catheterization and angiography revealed marked dilatation of left ventricle (end-diastolic volume = 384 ml/m2) and extremely depressed ejection fraction (16%), confirming the diagnosis of BWG syndrome. A 201TlCl-myocardial SPECT demonstrated apical defect and hypoperfusion in the anterolateral, inferoposterior walls, whereas 123I-beta-methyl-p-iodophenylpentadecanoic-acid (123I-BMIPP) SPECT showed a wider defect area. SPECT studies with 201TlCl and 123I-BMIPP, are useful to assess myocardial viability more accurately in BWG syndrome.

  11. Predictive factor of secondary tricuspid regurgitation after aortic valve replacement for aortic stenosis: the importance of myocardial hypertrophy and diastolic dysfunction.

    PubMed

    Igarashi, Takashi; Tanji, Masahiro; Takahashi, Koki; Ishida, Keiichi; Sasaki, Satomi; Yokoyama, Hitoshi

    2017-05-01

    The aim of this study is to determine the predictors of secondary tricuspid regurgitation after aortic valve replacement for aortic stenosis. Seventy-one patients, who underwent aortic valve replacement for aortic stenosis at our institute from January 2006 to July 2011, were divided into two groups: an STR group, which included 15 patients with moderate or greater than moderate secondary tricuspid regurgitation at a follow-up visit and a control group. Echocardiography was performed before surgery, at discharge, and at a late follow-up visit (mean follow-up 36 ± 19 months, range 0-77). Preoperatively, the number of women (p < .01), body surface area (p < .001), and relative wall thickness (0.60 ± 0.15 vs 0.71 ± 0.13, p = .022) showed significant differences between the two groups. At a follow-up visit, moderate or severe mitral regurgitation (p = .0001) and severe diastolic dysfunction (p = .003) showed significant differences between the two groups. In the Cox regression analysis, moderate or severe mitral regurgitation at follow-up (p = .038, hazard ratio 4.394, 95% CI 1.085-17.791) was the only independent predictor of secondary tricuspid regurgitation. This study suggested that preoperative concentric myocardial hypertrophy and diastolic dysfunction were associated with development of the secondary tricuspid regurgitation at late follow-up.

  12. Cardiac macrophages promote diastolic dysfunction.

    PubMed

    Hulsmans, Maarten; Sager, Hendrik B; Roh, Jason D; Valero-Muñoz, María; Houstis, Nicholas E; Iwamoto, Yoshiko; Sun, Yuan; Wilson, Richard M; Wojtkiewicz, Gregory; Tricot, Benoit; Osborne, Michael T; Hung, Judy; Vinegoni, Claudio; Naxerova, Kamila; Sosnovik, David E; Zile, Michael R; Bradshaw, Amy D; Liao, Ronglih; Tawakol, Ahmed; Weissleder, Ralph; Rosenzweig, Anthony; Swirski, Filip K; Sam, Flora; Nahrendorf, Matthias

    2018-02-05

    Macrophages populate the healthy myocardium and, depending on their phenotype, may contribute to tissue homeostasis or disease. Their origin and role in diastolic dysfunction, a hallmark of cardiac aging and heart failure with preserved ejection fraction, remain unclear. Here we show that cardiac macrophages expand in humans and mice with diastolic dysfunction, which in mice was induced by either hypertension or advanced age. A higher murine myocardial macrophage density results from monocyte recruitment and increased hematopoiesis in bone marrow and spleen. In humans, we observed a parallel constellation of hematopoietic activation: circulating myeloid cells are more frequent, and splenic 18 F-FDG PET/CT imaging signal correlates with echocardiographic indices of diastolic dysfunction. While diastolic dysfunction develops, cardiac macrophages produce IL-10, activate fibroblasts, and stimulate collagen deposition, leading to impaired myocardial relaxation and increased myocardial stiffness. Deletion of IL-10 in macrophages improves diastolic function. These data imply expansion and phenotypic changes of cardiac macrophages as therapeutic targets for cardiac fibrosis leading to diastolic dysfunction. © 2018 Hulsmans et al.

  13. Assessment of diastolic function by tissue Doppler echocardiography: comparison with standard transmitral and pulmonary venous flow

    NASA Technical Reports Server (NTRS)

    Farias, C. A.; Rodriguez, L.; Garcia, M. J.; Sun, J. P.; Klein, A. L.; Thomas, J. D.

    1999-01-01

    The objective of this study was to determine the utility of Doppler tissue echocardiography in the evaluation of diastolic filling and in discriminating between normal subjects and those with various stages of diastolic dysfunction. We measured myocardial velocities in 51 patients with various stages of diastolic dysfunction and in 27 normal volunteers. The discriminating power of each of the standard Doppler indexes of left ventricular filling, pulmonary venous flow, and myocardial velocities was determined with the use of Spearman rank correlation and analysis of variance F statistics. Early diastolic myocardial velocity (E(m)) was higher in normal subjects (16.0 +/- 3.8 cm/s) than in patients with either delayed relaxation (n = 15, 7.5 +/- 2.2 cm/s), pseudonormal filling (n = 26, 7.6 +/- 2.3 cm/s), or restrictive filling (n = 10, 7.4 +/- 2.4 cm/s, P <.0001). E(m ) was the best single discriminator between control subjects and patients with diastolic dysfunction (P =.7, F = 64.5). Myocardial velocities assessed by Doppler tissue echocardiography are useful in differentiating patients with normal from those with abnormal diastolic function. Myocardial velocity remains reduced even in those stages of diastolic dysfunction characterized by increased preload compensation.

  14. Estrogen receptor ERα plays a major role in ethanol-evoked myocardial oxidative stress and dysfunction in conscious female rats.

    PubMed

    Yao, Fanrong; Abdel-Rahman, Abdel A

    2016-02-01

    Our previous studies showed that ethanol elicited estrogen (E2)-dependent myocardial oxidative stress and dysfunction. In the present study we tested the hypothesis that E2 signaling via the estrogen receptor (ER), ERα, mediates this myocardial detrimental effect of alcohol. To achieve this goal, conscious female rats in proestrus phase (highest endogenous E2 level) received a selective ER antagonist (200 μg/kg; intra-venous [i.v.]) for ERα (MPP), ERβ (PHTPP) or GPER (G15) or saline 30 min before ethanol (1 g/kg; i.v.) or saline infusion. ERα blockade virtually abrogated ethanol-evoked myocardial dysfunction and hypotension, while ERβ blockade had little effect on the hypotensive response, but caused delayed attenuation of the ethanol-evoked reductions in left ventricular developed pressure and the rate of left ventricle pressure rise. GPER blockade caused delayed attenuation of all cardiovascular effects of ethanol. All three antagonists attenuated the ethanol-evoked increases in myocardial catalase and ALDH2 activities, Akt, ERK1/2, p38, eNOS, and nNOS phosphorylation, except for a lack of effect of PHTPP on p38. Finally, all three ER antagonists attenuated ethanol-evoked elevation in myocardial ROS, but this effect was most notable with ERα blockade. In conclusion, ERα plays a greater role in, and might serve as a molecular target for ameliorating, the E2-dependent myocardial oxidative stress and dysfunction caused by ethanol. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Relationship of biomarkers of extracellular matrix with myocardial function in Type 2 diabetes mellitus.

    PubMed

    Liu, Ju-Hua; Chen, Yan; Zhen, Zhe; Ho, Lai-Ming; Tsang, Anita; Yuen, Michele; Lam, Karen; Tse, Hung-Fat; Yiu, Kai-Hang

    2017-07-01

    The study evaluated the relationship of extracellular matrix and renin angiotensin system with myocardial dysfunction in Type 2 diabetes mellitus. All patients underwent resting and exercise echocardiography, including conventional parameters, E/E' ratio, global longitudinal strain and diastolic function reserve index. Plasma matrix metalloproteinase-1, TIMP-1, amino-terminal propeptide of type I and type III procollagen and renin angiotensin system activity were measured. As patients with diastolic dysfunction had a higher plasma level of TIMP-1 and propeptide of type III procollagen than those with no diastolic dysfunction. After multivariate adjustment, TIMP-1 associated with E/E' (both at rest and stress) and diastolic function reserve index. TIMP-1 is independently associated with myocardial diastolic dysfunction in patients with Type 2 diabetes mellitus.

  16. Both selenium deficiency and modest selenium supplementation lead to myocardial fibrosis in mice via effects on redox-methylation balance.

    PubMed

    Metes-Kosik, Nicole; Luptak, Ivan; Dibello, Patricia M; Handy, Diane E; Tang, Shiow-Shih; Zhi, Hui; Qin, Fuzhong; Jacobsen, Donald W; Loscalzo, Joseph; Joseph, Jacob

    2012-12-01

    Selenium has complex effects in vivo on multiple homeostatic mechanisms such as redox balance, methylation balance, and epigenesis, via its interaction with the methionine-homocysteine cycle. In this study, we examined the hypothesis that selenium status would modulate both redox and methylation balance and thereby modulate myocardial structure and function. We examined the effects of selenium-deficient (<0.025 mg/kg), control (0.15 mg/kg), and selenium-supplemented (0.5 mg/kg) diets on myocardial histology, biochemistry and function in adult C57/BL6 mice. Selenium deficiency led to reactive myocardial fibrosis and systolic dysfunction accompanied by increased myocardial oxidant stress. Selenium supplementation significantly reduced methylation potential, DNA methyltransferase activity and DNA methylation. In mice fed the supplemented diet, inspite of lower oxidant stress, myocardial matrix gene expression was significantly altered resulting in reactive myocardial fibrosis and diastolic dysfunction in the absence of myocardial hypertrophy. Our results indicate that both selenium deficiency and modest selenium supplementation leads to a similar phenotype of abnormal myocardial matrix remodeling and dysfunction in the normal heart. The crucial role selenium plays in maintaining the balance between redox and methylation pathways needs to be taken into account while optimizing selenium status for prevention and treatment of heart failure. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Myocardial oedema as the sole marker of acute injury in Takotsubo cardiomyopathy: a cardiovascular magnetic resonance (CMR) study.

    PubMed

    Iacucci, Ilaria; Carbone, Iacopo; Cannavale, Giuseppe; Conti, Bettina; Iampieri, Ilaria; Rosati, Riccardo; Sardella, Gennaro; Frustaci, Andrea; Fedele, Francesco; Catalano, Carlo; Francone, Marco

    2013-12-01

    The main hallmark of Takotsubo cardiomyopathy (TT-CMP) is transient ischaemia, with completely reversible regional contractile dysfunction, which involves the mid-apical segments and shows no angiographic signs of coronary artery disease (CAD). The acute and reversible myocardial injury suggests that tissue oedema may be an important marker of disease. Seventeen patients with a clinical and angiographic diagnosis of TT-CMP underwent cardiovascular magnetic resonance (CMR) imaging in the acute phase and at follow-up after 4 months. A standard acquisition protocol including turbo spin echo (TSE) T2-weighted short-tau inversion-recovery (T2 STIR), steady-state free-precession cine (SSFP cine) and lateenhancement (LE) imaging after gadolinium benzyloxypropionic tetraacetic acid (Gd-BOPTA) administration was performed. All images were analysed, and data on oedema and LE were correlated with regional dysfunction and histological findings from endomyocardial biopsy (EMB) where available. In all patients, T2 STIR images showed a diffuse homogeneous hyperintensity that extended to all mid-apical segments and perfectly matched the area of regional dysfunction, reflecting tissue oedema. In the five patients who underwent EMB, histology confirmed the massive interstitial oedema associated with typical contraction-band necrosis. No cases of LE were observed. At follow-up, complete regression of oedema was observed in all cases, with significant recovery of regional and global left ventricular (LV) function (ejection fraction from 48.7% to 59.8%). Myocardial oedema on CMR is a characteristic feature of acute TT-CMP, which reflects acute inflammation and acute myocardial injury. It could therefore be used as a specific marker of disease severity.

  18. Employing Extracellular Volume Cardiovascular Magnetic Resonance Measures of Myocardial Fibrosis to Foster Novel Therapeutics.

    PubMed

    Schelbert, Erik B; Sabbah, Hani N; Butler, Javed; Gheorghiade, Mihai

    2017-06-01

    Quantifying myocardial fibrosis (MF) with myocardial extracellular volume measures acquired during cardiovascular magnetic resonance promises to transform clinical care by advancing pathophysiologic understanding and fostering novel therapeutics. Extracellular volume quantifies MF by measuring the extracellular compartment depicted by the myocardial uptake of contrast relative to plasma. MF is a key domain of dysfunctional but viable myocardium among others (eg, microvascular dysfunction and cardiomyocyte/mitochondrial dysfunction). Although anatomically distinct, these domains may functionally interact. MF represents pathological remodeling in the heart associated with cardiac dysfunction and adverse outcomes likely mediated by interactions with the microvasculature and the cardiomyocyte. Reversal of MF improves key measures of cardiac dysfunction, so reversal of MF represents a likely mechanism for improved outcomes. Instead of characterizing the myocardium as homogenous tissue and using important yet still generic descriptors, such as thickness (hypertrophy) and function (diastolic or systolic), which lack mechanistic specificity, paradigms of cardiac disease have evolved to conceptualize myocardial disease and patient vulnerability based on the extent of disease involving its various compartments. Specifying myocardial compartmental involvement may then implicate cellular/molecular disease pathways for treatment and targeted pharmaceutical development and above all highlight the role of the cardiac-specific pathology in heart failure among myriad other changes in the heart and beyond. The cardiology community now requires phase 2 and 3 clinical trials to examine strategies for the regression/prevention of MF and eventually biomarkers to identify MF without reliance on cardiovascular magnetic resonance. It seems likely that efficacious antifibrotic therapy will improve outcomes, but definitive data are needed. © 2017 American Heart Association, Inc.

  19. Early detection of myocardial dysfunction using two-dimensional speckle tracking echocardiography in a young cat with hypertrophic cardiomyopathy

    PubMed Central

    Mochizuki, Yohei; Yoshimatsu, Hiroki; Niina, Ayaka; Teshima, Takahiro; Matsumoto, Hirotaka; Koyama, Hidekazu

    2018-01-01

    Case summary A 5-month-old intact female Scottish Fold cat was presented for cardiac evaluation. Careful auscultation detected a slight systolic murmur (Levine I/VI). The findings of electrocardiography, thoracic radiography, non-invasive blood pressure measurements and conventional echocardiographic studies were unremarkable. However, two-dimensional speckle tracking echocardiography revealed abnormalities in myocardial deformations, including decreased early-to-late diastolic strain rate ratios in longitudinal, radial and circumferential directions, and deteriorated segmental systolic longitudinal strain. At the follow-up examinations, the cat exhibited echocardiographic left ventricular hypertrophy and was diagnosed with hypertrophic cardiomyopathy using conventional echocardiography. Relevance and novel information This is the first report on the use of two-dimensional speckle tracking echocardiography for the early detection of myocardial dysfunction in a cat with hypertrophic cardiomyopathy; the myocardial dysfunction was detected before the development of hypertrophy. The findings from this case suggest that two-dimensional speckle tracking echocardiography can be useful for myocardial assessment when conventional echocardiographic and Doppler findings are ambiguous. PMID:29449957

  20. Adverse postresuscitation myocardial effects elicited by buffer-induced alkalemia ameliorated by NHE-1 inhibition in a rat model of ventricular fibrillation.

    PubMed

    Lamoureux, Lorissa; Radhakrishnan, Jeejabai; Mason, Thomas G; Kraut, Jeffrey A; Gazmuri, Raúl J

    2016-11-01

    Major myocardial abnormalities occur during cardiac arrest and resuscitation including intracellular acidosis-partly caused by CO 2 accumulation-and activation of the Na + -H + exchanger isoform-1 (NHE-1). We hypothesized that a favorable interaction may result from NHE-1 inhibition during cardiac resuscitation followed by administration of a CO 2 -consuming buffer upon return of spontaneous circulation (ROSC). Ventricular fibrillation was electrically induced in 24 male rats and left untreated for 8 min followed by defibrillation after 8 min of cardiopulmonary resuscitation (CPR). Rats were randomized 1:1:1 to the NHE-1 inhibitor zoniporide or vehicle during CPR and disodium carbonate/sodium bicarbonate buffer or normal saline (30 ml/kg) after ROSC. Survival at 240 min declined from 100% with Zoniporide/Saline to 50% with Zoniporide/Buffer and 25% with Vehicle/Buffer (P = 0.004), explained by worsening postresuscitation myocardial dysfunction. Marked alkalemia occurred after buffer administration along with lactatemia that was maximal after Vehicle/Buffer, attenuated by Zoniporide/Buffer, and minimal with Zoniporide/Saline [13.3 ± 4.8 (SD), 9.2 ± 4.6, and 2.7 ± 1.0 mmol/l; P ≤ 0.001]. We attributed the intense postresuscitation lactatemia to enhanced glycolysis consequent to severe buffer-induced alkalemia transmitted intracellularly by an active NHE-1. We attributed the worsened postresuscitation myocardial dysfunction also to severe alkalemia intensifying Na + entry via NHE-1 with consequent Ca 2+ overload injuring mitochondria, evidenced by increased plasma cytochrome c Both buffer-induced effects were ameliorated by zoniporide. Accordingly, buffer-induced alkalemia after ROSC worsened myocardial function and survival, likely through enhancing NHE-1 activity. Zoniporide attenuated these effects and uncovered a complex postresuscitation acid-base physiology whereby blood pH drives NHE-1 activity and compromises mitochondrial function and integrity along with myocardial function and survival.

  1. Losartan treatment attenuates tumor-induced myocardial dysfunction

    PubMed Central

    Stevens, Sarah CW; Velten, Markus; Youtz, Dane J.; Clark, Yvonne; Jing, Runfeng; Reiser, Peter J.; Bicer, Sabahattin; Devine, Raymond; McCarthy, Donna O.; Wold, Loren E.

    2015-01-01

    Fatigue and muscle wasting are common symptoms experienced by cancer patients. Data from animal models demonstrate that angiotensin is involved in tumor-induced muscle wasting, and that tumor growth can independently affect myocardial function, which could contribute to fatigue in cancer patients. In clinical studies, inhibitors of angiotensin converting enzyme (ACE) can prevent the development of chemotherapy-induced cardiovascular dysfunction, suggesting a mechanistic role for the renin-angiotensin-aldosterone system (RAAS). In the present study, we investigated whether an angiotensin (AT)1-receptor antagonist could prevent the development of tumor-associated myocardial dysfunction. Methods and Results: Colon26 adenocarcinoma (c26) cells were implanted into female CD2F1 mice at 8 weeks of age. Simultaneously, mice were administered Losartan (10 mg/kg) daily via their drinking water. In vivo echocardiography, blood pressure, in vitro cardiomyocyte function, cell proliferation assays, and measures of systemic inflammation and myocardial protein degradation were performed 19 days following tumor cell injection. Losartan treatment prevented tumor-induced loss of muscle mass and in vitro c26 cell proliferation, decreased tumor weight, and attenuated myocardial expression of interleukin-6. Furthermore, Losartan treatment mitigated tumor-associated alterations in calcium signaling in cardiomyocytes, which was associated with improved myocyte contraction velocity, systolic function, and blood pressures in the hearts of tumor-bearing mice. Conclusions: These data suggest that Losartan may mitigate tumor-induced myocardial dysfunction and inflammation. PMID:25988231

  2. Losartan treatment attenuates tumor-induced myocardial dysfunction.

    PubMed

    Stevens, Sarah C W; Velten, Markus; Youtz, Dane J; Clark, Yvonne; Jing, Runfeng; Reiser, Peter J; Bicer, Sabahattin; Devine, Raymond D; McCarthy, Donna O; Wold, Loren E

    2015-08-01

    Fatigue and muscle wasting are common symptoms experienced by cancer patients. Data from animal models demonstrate that angiotensin is involved in tumor-induced muscle wasting, and that tumor growth can independently affect myocardial function, which could contribute to fatigue in cancer patients. In clinical studies, inhibitors of angiotensin converting enzyme (ACE) can prevent the development of chemotherapy-induced cardiovascular dysfunction, suggesting a mechanistic role for the renin-angiotensin-aldosterone system (RAAS). In the present study, we investigated whether an angiotensin (AT) 1-receptor antagonist could prevent the development of tumor-associated myocardial dysfunction. Colon26 adenocarcinoma (c26) cells were implanted into female CD2F1 mice at 8weeks of age. Simultaneously, mice were administered Losartan (10mg/kg) daily via their drinking water. In vivo echocardiography, blood pressure, in vitro cardiomyocyte function, cell proliferation assays, and measures of systemic inflammation and myocardial protein degradation were performed 19days following tumor cell injection. Losartan treatment prevented tumor-induced loss of muscle mass and in vitro c26 cell proliferation, decreased tumor weight, and attenuated myocardial expression of interleukin-6. Furthermore, Losartan treatment mitigated tumor-associated alterations in calcium signaling in cardiomyocytes, which was associated with improved myocyte contraction velocity, systolic function, and blood pressures in the hearts of tumor-bearing mice. These data suggest that Losartan may mitigate tumor-induced myocardial dysfunction and inflammation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Regulation of Coronary Blood Flow in Health and Ischemic Heart Disease

    PubMed Central

    Duncker, Dirk J.; Koller, Akos; Merkus, Daphne; Canty, John M.

    2018-01-01

    The major factors determining myocardial perfusion and oxygen delivery have been elucidated over the past several decades, and this knowledge has been incorporated into the management of patients with ischemic heart disease (IHD). The basic understanding of the fluid mechanical behavior of coronary stenoses has also been translated to the cardiac catheterization laboratory where measurements of coronary pressure distal to a stenosis and coronary flow are routinely obtained. However, the role of perturbations in coronary microvascular structure and function, due to myocardial hypertrophy or coronary microvascular dysfunction, in IHD is becoming increasingly recognized. Future studies should therefore be aimed at further improving our understanding of the integrated coronary microvascular mechanisms that control coronary blood flow, and of the underlying causes and mechanisms of coronary microvascular dysfunction. This knowledge will be essential to further improve the treatment of patients with IHD. PMID:25475073

  4. Fractal analysis of the ischemic transition region in chronic ischemic heart disease using magnetic resonance imaging.

    PubMed

    Michallek, Florian; Dewey, Marc

    2017-04-01

    To introduce a novel hypothesis and method to characterise pathomechanisms underlying myocardial ischemia in chronic ischemic heart disease by local fractal analysis (FA) of the ischemic myocardial transition region in perfusion imaging. Vascular mechanisms to compensate ischemia are regulated at various vascular scales with their superimposed perfusion pattern being hypothetically self-similar. Dedicated FA software ("FraktalWandler") has been developed. Fractal dimensions during first-pass (FD first-pass ) and recirculation (FD recirculation ) are hypothesised to indicate the predominating pathomechanism and ischemic severity, respectively. Twenty-six patients with evidence of myocardial ischemia in 108 ischemic myocardial segments on magnetic resonance imaging (MRI) were analysed. The 40th and 60th percentiles of FD first-pass were used for pathomechanical classification, assigning lesions with FD first-pass  ≤ 2.335 to predominating coronary microvascular dysfunction (CMD) and ≥2.387 to predominating coronary artery disease (CAD). Optimal classification point in ROC analysis was FD first-pass  = 2.358. FD recirculation correlated moderately with per cent diameter stenosis in invasive coronary angiography in lesions classified CAD (r = 0.472, p = 0.001) but not CMD (r = 0.082, p = 0.600). The ischemic transition region may provide information on pathomechanical composition and severity of myocardial ischemia. FA of this region is feasible and may improve diagnosis compared to traditional noninvasive myocardial perfusion analysis. • A novel hypothesis and method is introduced to pathophysiologically characterise myocardial ischemia. • The ischemic transition region appears a meaningful diagnostic target in perfusion imaging. • Fractal analysis may characterise pathomechanical composition and severity of myocardial ischemia.

  5. Estrogen modulation of the ethanol-evoked myocardial oxidative stress and dysfunction via DAPK3/Akt/ERK activation in male rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El-Mas, Mahmoud M., E-mail: mahelm@hotmail.com; Abdel-Rahman, Abdel A., E-mail: abdelrahmana@ecu.edu

    Evidence suggests that male rats are protected against the hypotensive and myocardial depressant effects of ethanol compared with females. We investigated whether E{sub 2} modifies the myocardial and oxidative effects of ethanol in male rats. Conscious male rats received ethanol (0.5, 1 or 1.5 g/kg i.v.) 30-min after E{sub 2} (1 μg/kg i.v.) or its vehicle (saline), and hearts were collected at the conclusion of hemodynamic measurements for ex vivo molecular studies. Ethanol had no effect in vehicle-treated rats, but it caused dose-related reductions in LV developed pressure (LVDP), end-diastolic pressure (LVEDP), rate of rise in LV pressure (dP/dt{sub max})more » and systolic (SBP) and diastolic (DBP) blood pressures in E{sub 2}-pretreated rats. These effects were associated with elevated (i) indices of reactive oxygen species (ROS), (ii) malondialdehyde (MDA) protein adducts, and (iii) phosphorylated death-associated protein kinase-3 (DAPK3), Akt, and extracellular signal-regulated kinases (ERK1/2). Enhanced myocardial anti-oxidant enzymes (heme oxygenase-1, catalase and aldehyde dehydrogenase 2) activities were also demonstrated. In conclusion, E{sub 2} promotes ethanol-evoked myocardial oxidative stress and dysfunction in male rats. The present findings highlight the risk of developing myocardial dysfunction in men who consume alcohol while receiving E{sub 2} for specific medical conditions. - Highlights: • Ethanol lowers blood pressure and causes LV dysfunction in E{sub 2}-treated rats. • E{sub 2}/ethanol aggravates cardiac oxidative state via of DAPK3/Akt/ERK activation. • E{sub 2}/ethanol causes a feedback increase in cardiac HO-1, catalase and ALDH2. • Alcohol might increase risk of myocardial dysfunction in men treated with E{sub 2}.« less

  6. Effect of uridine derivatives on myocardial stunning during postischemic reperfusion of rat heart.

    PubMed

    Sapronov, N S; Eliseev, V V; Rodionova, O M

    2000-10-01

    Uridine and uridine-5'-monophosphate prevent myocardial stunning during postischemic reperfusion of isolated rat heart. Uridine-5'-diphosphate does not prevent postischemic myocardial dysfunction, while uridine-5'-triphosphate aggravates it.

  7. Speckle tracking echocardiography in patients with septic shock: a case control study (SPECKSS).

    PubMed

    Ng, Pauline Yeung; Sin, Wai Ching; Ng, Andrew Kei-Yan; Chan, Wai Ming

    2016-05-14

    Sepsis-induced myocardial dysfunction is a well-recognized condition and confers worse outcomes in septic patients. Echocardiographic assessment by conventional parameters such as left ventricular ejection fraction (LVEF) is often affected by ongoing changes in preload and afterload conditions. Novel echocardiographic technologies such as speckle tracking echocardiography (STE) have evolved for direct assessment of the myocardial function. We investigate the measurement of myocardial strain by speckle tracking echocardiography for the diagnosis of sepsis-induced myocardial dysfunction. This is a case-control study at a university-affiliated medical intensive care unit. Consecutive adult medical patients admitted with a diagnosis of septic shock were included. Patients with other causes of myocardial dysfunction were excluded. They were compared to age-matched, gender-matched, and cardiovascular risk-factor-matched controls, who were admitted to hospital for sepsis but did not develop septic shock. Transthoracic echocardiography was performed on all patients within 24 hours of diagnosis, and a reassessment echocardiogram was performed in the study group of patients upon recovery. Patients with septic shock (n = 33) (study group) and 29 matched patients with sepsis but no septic shock (control group) were recruited. The mean sequential organ failure assessment (SOFA) score for the study and control groups were 10.2 and 1.6, respectively (P < 0.001). In patients with septic shock, the mean arterial pressure was lower (76 mmHg vs 82 mmHg, P = 0.032), and the heart rate was higher (99 bpm vs 86 bpm, P = 0.008). The cardiac output (5.9 L/min vs 5.5 L/min, P = 0.401) and systemic vascular resistance (1090 dynes•sec/cm(5) vs 1194 dynes•sec/cm(5), P = 0.303) were similar. The study group had a greater degree of myocardial dysfunction measured by global longitudinal strain (GLS) (-14.5 % vs -18.3 %, P <0.001), and the myocardial strain differed upon diagnosis and recovery (-14.5 % vs -16.0 %, P = 0.010). Conventional echocardiographic measurements such as LVEF (59 % in the study group vs 61 % in the control group, P = 0.169) did not differ between the two groups. Speckle tracking echocardiography can detect significant left ventricular impairment in patients with septic shock, which was not otherwise detectable by conventional echocardiography. The reversible nature of myocardial dysfunction in sepsis was also demonstrable. This echocardiographic technique is useful in the diagnosis and monitoring of sepsis-induced myocardial dysfunction.

  8. Magnetic Resonance Characterization of Cardiac Adaptation and Myocardial Fibrosis in Pulmonary Hypertension Secondary to Systemic-To-Pulmonary Shunt.

    PubMed

    Pereda, Daniel; García-Lunar, Inés; Sierra, Federico; Sánchez-Quintana, Damián; Santiago, Evelyn; Ballesteros, Constanza; Encalada, Juan F; Sánchez-González, Javier; Fuster, Valentín; Ibáñez, Borja; García-Álvarez, Ana

    2016-09-01

    Pulmonary hypertension (PH) and right ventricular (RV) dysfunction are strong predictors of morbidity and mortality among patients with congenital heart disease. Early detection of RV involvement may be useful in the management of these patients. We aimed to assess progressive cardiac adaptation and quantify myocardial extracellular volume in an experimental porcine model of PH because of aorto-pulmonary shunt using cardiac magnetic resonance (CMR). To characterize serial cardiac adaptation, 12 pigs (aorto-pulmonary shunt [n=6] or sham operation [n=6]) were evaluated monthly with right heart catheterization, CMR, and computed tomography during 4 months, followed by pathology analysis. Extracellular volume by CMR in different myocardial regions was studied in 20 animals (aorto-pulmonary shunt [n=10] or sham operation [n=10]) 3 months after the intervention. All shunted animals developed PH. CMR evidenced progressive RV hypertrophy and dysfunction secondary to increased afterload and left ventricular dilatation secondary to volume overload. Shunt flow by CMR strongly correlated with PH severity, left ventricular end-diastolic pressure, and left ventricular dilatation. T1-mapping sequences demonstrated increased extracellular volume at the RV insertion points, the interventricular septum, and the left ventricular lateral wall, reproducing the pattern of fibrosis found on pathology. Extracellular volume at the RV insertion points strongly correlated with pulmonary hemodynamics and RV dysfunction. Prolonged systemic-to-pulmonary shunting in growing piglets induces PH with biventricular remodeling and myocardial fibrosis that can be detected and monitored using CMR. These results may be useful for the diagnosis and management of congenital heart disease patients with pulmonary overcirculation. © 2016 American Heart Association, Inc.

  9. Fully automatic left ventricular myocardial strain estimation in 2D short-axis tagged magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Morais, Pedro; Queirós, Sandro; Heyde, Brecht; Engvall, Jan; 'hooge, Jan D.; Vilaça, João L.

    2017-09-01

    Cardiovascular diseases are among the leading causes of death and frequently result in local myocardial dysfunction. Among the numerous imaging modalities available to detect these dysfunctional regions, cardiac deformation imaging through tagged magnetic resonance imaging (t-MRI) has been an attractive approach. Nevertheless, fully automatic analysis of these data sets is still challenging. In this work, we present a fully automatic framework to estimate left ventricular myocardial deformation from t-MRI. This strategy performs automatic myocardial segmentation based on B-spline explicit active surfaces, which are initialized using an annular model. A non-rigid image-registration technique is then used to assess myocardial deformation. Three experiments were set up to validate the proposed framework using a clinical database of 75 patients. First, automatic segmentation accuracy was evaluated by comparing against manual delineations at one specific cardiac phase. The proposed solution showed an average perpendicular distance error of 2.35  ±  1.21 mm and 2.27  ±  1.02 mm for the endo- and epicardium, respectively. Second, starting from either manual or automatic segmentation, myocardial tracking was performed and the resulting strain curves were compared. It is shown that the automatic segmentation adds negligible differences during the strain-estimation stage, corroborating its accuracy. Finally, segmental strain was compared with scar tissue extent determined by delay-enhanced MRI. The results proved that both strain components were able to distinguish between normal and infarct regions. Overall, the proposed framework was shown to be accurate, robust, and attractive for clinical practice, as it overcomes several limitations of a manual analysis.

  10. Endothelial function is associated with myocardial diastolic function in women with systemic lupus erythematosus.

    PubMed

    Chin, Calvin W L; Chin, Chee-Yang; Ng, Marie X R; Le, Thu-Thao; Huang, Fei-Qiong; Fong, Kok-Yong; Thumboo, Julian; Tan, Ru-San

    2014-09-01

    Endothelial dysfunction is associated with traditional and systemic lupus erythematosus (SLE)-specific risk factors, and early data suggest reversibility of endothelial dysfunction with therapy. The clinical relevance of endothelial function assessment has been limited by the lack of studies, demonstrating its prognostic significance and impact on early myocardial function. Therefore, we aimed to determine the association between endothelial and myocardial diastolic function in SLE women. Women with SLE and no coronary artery disease were prospectively recruited and underwent radionuclide myocardial perfusion imaging (MPI) (Jetstream, Philips, the Netherlands) to exclude subclinical myocardial ischemia. Cardiac and vascular functions were assessed in all patients (Alpha 10, Aloka, Tokyo). Diastolic function was assessed using pulse wave early (E) and late mitral blood inflow and myocardial tissue Doppler (mean of medial and lateral annulus e') velocities. Endothelial function was measured using brachial artery flow-mediated vasodilatation (FMD%). Univariate and multivariate linear regressions were used to assess the association between FMD% and myocardial diastolic function, adjusting for potential confounders. Thirty-eight patients without detectable myocardial ischemia on MPI were studied (mean age 44 ± 10 years; mean disease duration 14 ± 6 years). About 61 % of patients had normal diastolic function (E/e' ≤ 8), and 5 % of patients had definite diastolic dysfunction with E/e' > 13 (mean 7.1 ± 2.9). FMD% was associated with E/e' (regression coefficient β = -0.35; 95 % CI -0.62 to -0.08; p = 0.01) independent of systolic blood pressure, age, and SLICC/ACR Damage Index.

  11. Myocardial scintigraphy with 201thallium in pediatric cardiology: A review of 52 cases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bjoerkhem, G.E.; Evander, E.; White, T.

    1990-01-01

    We report our experience of myocardial scintigraphy with 201thallium (201Tl) in 52 children, aged 4 days to 18 years, in which 80 studies were made primarily to demonstrate or exclude impaired myocardial perfusion. For analysis, the patients were divided into the following eight groups: group I, coronary artery malformations (five patients); group II, Kawasaki's syndrome (six patients); group III, arterial switch operation (seven patients); group IV, dilated cardiomyopathy (18 patients); group V, hypertrophic cardiomyopathy (four patients); group VI, myocardial dysfunction after surgery for congenital heart disease (five patients); group VII, pulmonary atresia (three patients); and group VIII, miscellaneous (four patients).more » Myocardial scintigraphy was performed with a planar or tomographic technique at rest or after exercise (four patients). Isotope-uptake defects, indicating impaired myocardial perfusion, were present in 14 patients, including small infants. Defects were seen in all groups except those with hypertrophic cardiomyopathy and pulmonary atresia. The absence of such defects in several of the patients with Kawasaki's syndrome was particularly valuable as it made coronary angiography unnecessary. In the other groups of patients myocardial scintigraphy was a valuable adjunct to other investigations.« less

  12. Erythropoietin alleviates post-resuscitation myocardial dysfunction in rats potentially through increasing the expression of angiotensin II receptor type 2 in myocardial tissues

    PubMed Central

    Zhou, Hourong; Huang, Jia; Zhu, Li; Cao, Yu

    2018-01-01

    Activation of renin-angiotensin system (RAS) is one of the pathological mechanisms associated with myocardial ischemia-reperfusion injury following resuscitation. The present study aimed to determine whether erythropoietin (EPO) improves post-resuscitation myocardial dysfunction and how it affects the renin-angiotensin system. Sprague-Dawley rats were randomly divided into sham, vehicle, epinephrine (EP), EPO and EP + EPO groups. Excluding the sham group, all groups underwent cardiopulmonary resuscitation (CPR) 4 min after asphyxia-induced cardiac arrest (CA). EP and/or EPO was administrated by intravenous injection when CPR began. The results demonstrated that the vehicle group exhibited lower mean arterial pressure, left ventricular systolic pressure, maximal ascending rate of left ventricular pressure during left ventricular isovolumic contraction and maximal descending rate of left ventricular pressure during left ventricular isovolumic relaxation (+LVdP/dt max and -LVdP/dt max, respectively), and higher left ventricular end-diastolic pressure, compared with the sham group following return of spontaneous circulation (ROSC). Few significant differences were observed concerning the myocardial function between the vehicle and EP groups; however, compared with the vehicle group, EPO reversed myocardial function indices following ROSC, excluding-LVdP/dt max. Serum renin and angiotensin (Ang) II levels were measured by ELISA. The serum levels of renin and Ang II were significantly increased in the vehicle group compared with the sham group, which was also observed for the myocardial expression of renin and Ang II receptor type 1 (AT1R), as determined by reverse transcription-quantitative polymerase chain reaction and western blotting. EPO alone did not significantly reduce the high serum levels of renin and Ang II post-resuscitation, but changed the protein levels of renin and AT1R expression in myocardial tissues. However, EPO enhanced the myocardial expression of Ang II receptor type 2 (AT2R) following ROSC. In conclusion, the present study confirmed that CA resuscitation activated the renin-Ang II-AT1R signaling pathway, which may contribute to myocardial dysfunction in rats. The present study confirmed that EPO treatment is beneficial for protecting cardiac function post-resuscitation, and the roles of EPO in alleviating post-resuscitation myocardial dysfunction may potentially be associated with enhanced myocardial expression of AT2R. PMID:29393490

  13. Alcohol dehydrogenase accentuates ethanol-induced myocardial dysfunction and mitochondrial damage in mice: role of mitochondrial death pathway.

    PubMed

    Guo, Rui; Ren, Jun

    2010-01-18

    Binge drinking and alcohol toxicity are often associated with myocardial dysfunction possibly due to accumulation of the ethanol metabolite acetaldehyde although the underlying mechanism is unknown. This study was designed to examine the impact of accelerated ethanol metabolism on myocardial contractility, mitochondrial function and apoptosis using a murine model of cardiac-specific overexpression of alcohol dehydrogenase (ADH). ADH and wild-type FVB mice were acutely challenged with ethanol (3 g/kg/d, i.p.) for 3 days. Myocardial contractility, mitochondrial damage and apoptosis (death receptor and mitochondrial pathways) were examined. Ethanol led to reduced cardiac contractility, enlarged cardiomyocyte, mitochondrial damage and apoptosis, the effects of which were exaggerated by ADH transgene. In particular, ADH exacerbated mitochondrial dysfunction manifested as decreased mitochondrial membrane potential and accumulation of mitochondrial O(2) (*-). Myocardium from ethanol-treated mice displayed enhanced Bax, Caspase-3 and decreased Bcl-2 expression, the effect of which with the exception of Caspase-3 was augmented by ADH. ADH accentuated ethanol-induced increase in the mitochondrial death domain components pro-caspase-9 and cytochrome C in the cytoplasm. Neither ethanol nor ADH affected the expression of ANP, total pro-caspase-9, cytosolic and total pro-caspase-8, TNF-alpha, Fas receptor, Fas L and cytosolic AIF. Taken together, these data suggest that enhanced acetaldehyde production through ADH overexpression following acute ethanol exposure exacerbated ethanol-induced myocardial contractile dysfunction, cardiomyocyte enlargement, mitochondrial damage and apoptosis, indicating a pivotal role of ADH in ethanol-induced cardiac dysfunction possibly through mitochondrial death pathway of apoptosis.

  14. Eplerenone: a selective aldosterone receptor antagonist for patients with heart failure.

    PubMed

    Barnes, Brian J; Howard, Patricia A

    2005-01-01

    To evaluate the pharmacology, pharmacokinetics, safety, and clinical use of eplerenone in heart failure (HF). English-language MEDLINE searches were performed from 1966 to May 2004. Key words included eplerenone, aldosterone receptor antagonist, heart failure, myocardial infarction, left-ventricular dysfunction, and cost-effectiveness. Additional references were identified from bibliographies of selected articles. Human trials evaluating the efficacy, safety, and cost-effectiveness of aldosterone receptor antagonists in HF were evaluated. Eplerenone is the first selective aldosterone receptor antagonist. The drug is indicated to improve the survival of stable patients with left-ventricular systolic dysfunction (ejection fraction <40%) and clinical evidence of HF following acute myocardial infarction. Efficacy and safety in this population have been demonstrated in a large, randomized clinical trial. Eplerenone is associated with severe and sometimes life-threatening hyperkalemia. Patients with reduced renal function and diabetes, as well as those on other drugs that increase potassium levels, are at highest risk. Eplerenone is metabolized by the cytochrome P450 system and may interact with drugs that interfere with this system. A major advantage of eplerenone over the nonselective aldosterone receptor antagonist spironolactone is lack of binding to progesterone and androgen receptors, which is associated with drug-induced gynecomastia, breast pain, and impotence. The addition of eplerenone to traditional HF therapy has been shown to reduce morbidity and mortality in patients who develop left-ventricular dysfunction after acute myocardial infarction. Eplerenone's selectivity reduces sex hormone-related adverse effects. Despite these benefits, the overall cost-effectiveness has yet to be determined.

  15. Xanthine Oxidase Inhibition with Febuxostat Attenuates Systolic Overload-induced Left Ventricular Hypertrophy and Dysfunction in Mice

    PubMed Central

    Xu, Xin; Hu, Xinli; Lu, Zhongbing; Zhang, Ping; Zhao, Lin; Wessale, Jerry L.; Bache, Robert J.; Chen, Yingjie

    2008-01-01

    The purine analog xanthine oxidase (XO) inhibitors (XOIs), allopurinol and oxypurinol, have been reported to protect against heart failure secondary to myocardial infarction or rapid ventricular pacing. Since these agents might influence other aspects of purine metabolism that could influence their effect, this study examined the effect of the non-purine XOI, febuxostat, on pressure overload-induced left ventricular (LV) hypertrophy and dysfunction. Transverse aortic constriction (TAC) in mice caused LV hypertrophy and dysfunction as well as increased myocardial nitrotyrosine at 8 days. TAC also caused increased phosphorylated Akt (p-AktSer473), p42/44 extracellular signal-regulated kinase (p-ErkThr202/Tyr204) and mammalian target of rapamycin (mTOR) (p-mTORSer2488). XO inhibition with febuxostat (5mg/kg/day by gavage for 8 days) beginning ~60 minutes after TAC attenuated the TAC-induced LV hypertrophy and dysfunction. Febuxostat blunted the TAC-induced increases in nitrotyrosine (indicating reduced myocardial oxidative stress), p-ErkThr202/Tyr204 and p-mTORSer2488, with no effect on total Erk or total mTOR. Febuxostat had no effect on myocardial p-AktSer473 or total Akt. The results suggest that XO inhibition with febuxostat reduced oxidative stress in the pressure overloaded LV, thereby diminishing the activation of pathways that result in pathologic hypertrophy and contractile dysfunction. PMID:18995179

  16. Myocardial Hypertrophy and Its Role in Heart Failure with Preserved Ejection Fraction

    PubMed Central

    Heinzel, Frank R.; Hohendanner, Felix; Jin, Ge; Sedej, Simon; Edelmann, Frank

    2015-01-01

    Left ventricular hypertrophy (LVH) is the most common myocardial structural abnormality associated with heart failure with preserved ejection fraction (HFpEF). LVH is driven by neurohumoral activation, increased mechanical load and cytokines associated with arterial hypertension, chronic kidney disease, diabetes and other co-morbidities. Here we discuss the experimental and clinical evidence that links LVH to diastolic dysfunction and qualifies LVH as one diagnostic marker for HFpEF. Mechanisms leading to diastolic dysfunction in LVH are incompletely understood but may include extracellular matrix changes, vascular dysfunction as well as altered cardiomyocyte mechano-elastical properties. Beating cardiomyocytes from HFpEF patients have not yet been studied, but we and others have shown increased Ca2+ turnover and impaired relaxation in cardiomyocytes from hypertrophied hearts. Structural myocardial remodeling can lead to heterogeneity in regional myocardial contractile function, which contributes to diastolic dysfunction in HFpEF. In the clinical setting of patients with compound co-morbidities, diastolic dysfunction may occur independently of LVH. This may be one explanation why current approaches to reduce LVH have not been effective to improve symptoms and prognosis in HFpEF. Exercise training on the other hand, in clinical trials improved exercise tolerance and diastolic function but did not reduce LVH. Thus, current clinical evidence does not support regression of LVH as a surrogate marker for (short-term) improvement of HFpEF. PMID:26183480

  17. Prognostic impact of isolated right ventricular dysfunction in sepsis and septic shock: an 8-year historical cohort study.

    PubMed

    Vallabhajosyula, Saraschandra; Kumar, Mukesh; Pandompatam, Govind; Sakhuja, Ankit; Kashyap, Rahul; Kashani, Kianoush; Gajic, Ognjen; Geske, Jeffrey B; Jentzer, Jacob C

    2017-09-07

    Echocardiographic myocardial dysfunction is reported commonly in sepsis and septic shock, but there are limited data on sepsis-related right ventricular dysfunction. This study sought to evaluate the association of right ventricular dysfunction with clinical outcomes in patients with severe sepsis and septic shock. Historical cohort study of adult patients admitted to all intensive care units at the Mayo Clinic from January 1, 2007 through December 31, 2014 for severe sepsis and septic shock, who had an echocardiogram performed within 72 h of admission. Patients with prior heart failure, cor-pulmonale, pulmonary hypertension and valvular disease were excluded. Right ventricular dysfunction was defined by the American Society of Echocardiography criteria. Outcomes included 1-year survival, in-hospital mortality and length of stay. Right ventricular dysfunction was present in 214 (55%) of 388 patients who met the inclusion criteria-isolated right ventricular dysfunction was seen in 100 (47%) and combined right and left ventricular dysfunction in 114 (53%). The baseline characteristics were similar between cohorts except for the higher mechanical ventilation use in patients with isolated right ventricular dysfunction. Echocardiographic findings demonstrated lower right ventricular and tricuspid valve velocities in patients with right ventricular dysfunction and lower left ventricular ejection fraction and increased mitral E/e' ratios in patients with combined right and left ventricular dysfunction. After adjustment for age, comorbidity, illness severity, septic shock and use of mechanical ventilation, isolated right ventricular dysfunction was independently associated with worse 1-year survival-hazard ratio 1.6 [95% confidence interval 1.2-2.1; p = 0.002) in patients with sepsis and septic shock. Isolated right ventricular dysfunction is seen commonly in sepsis and septic shock and is associated with worse long-term survival.

  18. Rationale and Design of a Clinical Trial to Evaluate the Safety and Efficacy of Intracoronary Infusion of Allogeneic Human Cardiac Stem Cells in Patients With Acute Myocardial Infarction and Left Ventricular Dysfunction: The Randomized Multicenter Double-Blind Controlled CAREMI Trial (Cardiac Stem Cells in Patients With Acute Myocardial Infarction).

    PubMed

    Sanz-Ruiz, Ricardo; Casado Plasencia, Ana; Borlado, Luis R; Fernández-Santos, María Eugenia; Al-Daccak, Reem; Claus, Piet; Palacios, Itziar; Sádaba, Rafael; Charron, Dominique; Bogaert, Jan; Mulet, Miguel; Yotti, Raquel; Gilaberte, Immaculada; Bernad, Antonio; Bermejo, Javier; Janssens, Stefan; Fernández-Avilés, Franciso

    2017-06-23

    Stem cell therapy has increased the therapeutic armamentarium in the fight against ischemic heart disease and heart failure. The administration of exogenous stem cells has been investigated in patients suffering an acute myocardial infarction, with the final aim of salvaging jeopardized myocardium and preventing left ventricular adverse remodeling and functional deterioration. However, phase I and II clinical trials with autologous and first-generation stem cells have yielded inconsistent benefits and mixed results. In the search for new and more efficient cellular regenerative products, interesting cardioprotective, immunoregulatory, and cardioregenerative properties have been demonstrated for human cardiac stem cells. On the other hand, allogeneic cells show several advantages over autologous sources: they can be produced in large quantities, easily administered off-the-shelf early after an acute myocardial infarction, comply with stringent criteria for product homogeneity, potency, and quality control, and may exhibit a distinctive immunologic behavior. With a promising preclinical background, CAREMI (Cardiac Stem Cells in Patients With Acute Myocardial Infarction) has been designed as a double-blind, 2:1 randomized, controlled, and multicenter clinical trial that will evaluate the safety, feasibility, and efficacy of intracoronary delivery of allogeneic human cardiac stem cell in 55 patients with large acute myocardial infarction, left ventricular dysfunction, and at high risk of developing heart failure. This phase I/II clinical trial represents a novel experience in humans with allogeneic cardiac stem cell in a rigorously imaging-based selected group of acute myocardial infarction patients, with detailed safety immunologic assessments and magnetic resonance imaging-based efficacy end points. URL: http://www.clinicaltrials.gov. Unique identifier: NCT02439398. © 2017 American Heart Association, Inc.

  19. Myocardial viability assessment with dynamic low-dose iodine-123-iodophenylpentadecanoic acid metabolic imaging: comparison with myocardial biopsy and reinjection SPECT thallium after myocardial infarction.

    PubMed

    Murray, G L; Schad, N C; Magill, H L; Vander Zwaag, R

    1994-04-01

    Aggressive cardiac revascularization requires recognition of stunned and hibernating myocardium, and cost considerations may well govern the technique used. Dynamic low-dose (1 mCi) [123I]iodophenylpentadecanoic acid (IPPA) metabolic imaging is a potential alternative to PET using either 18FDG or 15O-water. Resting IPPA images were obtained from patients with severe ischemic cardiomyopathy, and transmural myocardial biopsies were obtained during coronary bypass surgery to confirm viability. Thirty-nine of 43 (91%) biopsies confirmed the results of the IPPA images with a sensitivity for viability of 33/36 (92%) and a specificity of 6/7 (86%). Postoperatively, wall motion improved in 80% of IPPA-viable, dysfunctional segments. Furthermore, when compared to reinjection thallium (SPECT-TI) scans after myocardial infarction, IPPA-SPECT-TI concordance occurred in 27/35 (77%) (K = 0.536, p = 0.0003). Similar to PET, IPPA demonstrated more viability than SPECT-TI, 26/35 (74%) versus 18/35 (51%) (p = 0.047). Metabolic IPPA cardiac viability imaging is a safe, inexpensive technique that may be a useful alternative to PET.

  20. Myocardial Ischemia Induces SDF-1α Release in Cardiac Surgery Patients.

    PubMed

    Kim, Bong-Sung; Jacobs, Denise; Emontzpohl, Christoph; Goetzenich, Andreas; Soppert, Josefin; Jarchow, Mareike; Schindler, Lisa; Averdunk, Luisa; Kraemer, Sandra; Marx, Gernot; Bernhagen, Jürgen; Pallua, Norbert; Schlemmer, Heinz-Peter; Simons, David; Stoppe, Christian

    2016-06-01

    In the present observational study, we measured serum levels of the chemokine stromal cell-derived factor-1α (SDF-1α) in 100 patients undergoing cardiac surgery with cardiopulmonary bypass at seven distinct time points including preoperative values, myocardial ischemia, reperfusion, and the postoperative course. Myocardial ischemia triggered a marked increase of SDF-1α serum levels whereas cardiac reperfusion had no significant influence. Perioperative SDF-1α serum levels were influenced by patients' characteristics (e.g., age, gender, aspirin intake). In an explorative analysis, we observed an inverse association between SDF-1α serum levels and the incidence of organ dysfunction. In conclusion, time of myocardial ischemia was identified as the key stimulus for a significant upregulation of SDF-1α, indicating its role as a marker of myocardial injury. The inverse association between SDF-1α levels and organ dysfunction association encourages further studies to evaluate its organoprotective properties in cardiac surgery patients.

  1. Cardiac DPP-4 inhibition by saxagliptin ameliorates isoproterenol-induced myocardial remodeling and cardiac diastolic dysfunction in rats.

    PubMed

    Ikeda, Junichi; Kimoto, Naoya; Kitayama, Tetsuya; Kunori, Shunji

    2016-09-01

    Saxagliptin, a potent and selective DPP-4 inhibitor, is characterized by its slow dissociation from DPP-4 and its long half-life and is expected to have a potent tissue membrane-bound DPP-4-inhibitory effect in various tissues. In the present study, we examined the effects of saxagliptin on in situ cardiac DPP-4 activity. We also examined the effects of saxagliptin on isoproterenol-induced the changes in the early stage such as, myocardial remodeling and cardiac diastolic dysfunction. Male SD rats treated with isoproterenol (1 mg/kg/day via osmotic pump) received vehicle or saxagliptin (17.5 mg/kg via drinking water) for 2 weeks. In situ cardiac DPP-4 activity was measured by a colorimetric assay. Cardiac gene expressions were examined and an echocardiographic analysis was performed. Saxagliptin treatment significantly inhibited in situ cardiac DPP-4 activity and suppressed isoproterenol-induced myocardial remodeling and the expression of related genes without altering the blood glucose levels. Saxagliptin also significantly ameliorated cardiac diastolic dysfunction in isoproterenol-treated rats. In conclusion, the inhibition of DPP-4 activity in cardiac tissue by saxagliptin was associated with suppression of myocardial remodeling and cardiac diastolic dysfunction independently of its glucose-lowering action in isoproterenol-treated rats. Cardiac DPP-4 activity may contribute to myocardial remodeling in the development of heart failure. Copyright © 2016 Kyowa Hakko Kirin Co.,Ltd. Production and hosting by Elsevier B.V. All rights reserved.

  2. Role of Myocardial Collagen in Severe Aortic Stenosis With Preserved Ejection Fraction and Symptoms of Heart Failure.

    PubMed

    Echegaray, Kattalin; Andreu, Ion; Lazkano, Ane; Villanueva, Iñaki; Sáenz, Alberto; Elizalde, María Reyes; Echeverría, Tomás; López, Begoña; Garro, Asier; González, Arantxa; Zubillaga, Elena; Solla, Itziar; Sanz, Iñaki; González, Jesús; Elósegui-Artola, Alberto; Roca-Cusachs, Pere; Díez, Javier; Ravassa, Susana; Querejeta, Ramón

    2017-10-01

    We investigated the anatomical localization, biomechanical properties, and molecular phenotype of myocardial collagen tissue in 40 patients with severe aortic stenosis with preserved ejection fraction and symptoms of heart failure. Two transmural biopsies were taken from the left ventricular free wall. Mysial and nonmysial regions of the collagen network were analyzed. Myocardial collagen volume fraction (CVF) was measured by picrosirius red staining. Young's elastic modulus (YEM) was measured by atomic force microscopy in decellularized slices to assess stiffness. Collagen types I and III were measured as C I VF and C III VF, respectively, by confocal microscopy in areas with YEM evaluation. Compared with controls, patients exhibited increased mysial and nonmysial CVF and nonmysial:mysial CVF ratio (P < .05). In patients, nonmysial CVF (r = 0.330; P = .046) and the nonmysial:mysial CVF ratio (r = 0.419; P = .012) were directly correlated with the ratio of maximal early transmitral flow velocity in diastole to early mitral annulus velocity in diastole. Both the C I VF:C III VF ratio and YEM were increased (P ≤ .001) in nonmysial regions compared with mysial regions in patients, with a direct correlation (r = 0.895; P < .001) between them. These findings suggest that, in patients with severe aortic stenosis with preserved ejection fraction and symptoms of heart failure, diastolic dysfunction is associated with increased nonmysial deposition of collagen, predominantly type I, resulting in increased extracellular matrix stiffness. Therefore, the characteristics of collagen tissue may contribute to diastolic dysfunction in these patients. Copyright © 2016 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  3. Myocardial Autophagy after Severe Burn in Rats

    PubMed Central

    Zhang, Qiong; Shi, Xiao-hua; Huang, Yue-sheng

    2012-01-01

    Background Autophagy plays a major role in myocardial ischemia and hypoxia injury. The present study investigated the effects of autophagy on cardiac dysfunction in rats after severe burn. Methods Protein expression of the autophagy markers LC3 and Beclin 1 were determined at 0, 1, 3, 6, and 12 h post-burn in Sprague Dawley rats subjected to 30% total body surface area 3rd degree burns. Autophagic, apoptotic, and oncotic cell death were evaluated in the myocardium at each time point by immunofluorescence. Changes of cardiac function were measured in a Langendorff model of isolated heart at 6 h post-burn, and the autophagic response was measured following activation by Rapamycin and inhibition by 3-methyladenine (3-MA). The angiotensin converting enzyme inhibitor enalaprilat, the angiotensin receptor I blocker losartan, and the reactive oxygen species inhibitor diphenylene iodonium (DPI) were also applied to the ex vivo heart model to examine the roles of these factors in post-burn cardiac function. Results Autophagic cell death was first observed in the myocardium at 3 h post-burn, occurring in 0.008 ± 0.001% of total cardiomyocytes, and continued to increase to a level of 0.022 ± 0.005% by 12 h post-burn. No autophagic cell death was observed in control hearts. Compared with apoptosis, autophagic cell death occurred earlier and in larger quantities. Rapamycin enhanced autophagy and decreased cardiac function in isolated hearts 6 h post-burn, while 3-MA exerted the opposite response. Enalaprilat, losartan, and DPI all inhibited autophagy and enhanced heart function. Conclusion Myocardial autophagy is enhanced in severe burns and autophagic cell death occurred early at 3 h post-burn, which may contribute to post-burn cardiac dysfunction. Angiotensin II and reactive oxygen species may play important roles in this process by regulating cell signaling transduction. PMID:22768082

  4. Increase in mean platelet volume in patients with myocardial bridge.

    PubMed

    Bilen, Emine; Tanboga, Ibrahim Halil; Kurt, Mustafa; Kocak, Umran; Ayhan, Huseyin; Keles, Telat; Bozkurt, Engin

    2013-01-01

    Myocardial bridge is associated with atherosclerosis altered in shear stress and endothelial dysfunction. Mean platelet volume (MPV), a determinant of platelet activation, is shown to be related with atherosclerosis and endothelial dysfunction. In this study, we aimed to evaluate platelet function assessed by MPV in patients with myocardial bridge. Forty-two patients with myocardial bridge in the left anterior descending artery (LAD) and 43 age- and gender-matched healthy participants were included in the study. Myocardial bridging was defined as an intramyocardial systolic compression or milking of a segment of an epicardial coronary artery on angiography. For the entire study population, MPV was measured using an automatic blood counter. The study population consisted of 42 patients with myocardial bridge (52.7 ± 10.2, 76.2% male) and 43 age- and sex-matched healthy control participants (52.1 ± 10.4, 74.4% male). Compared to the control group, MPV value was significantly higher in patients with myocardial bridge (8.9 ± 1.24 vs 8.3 ± 0.78; P = .01). Further, there were no significant differences between groups regarding hemoglobin level, platelet count, fasting blood glucose, and creatinine levels. Our study findings indicated that myocardial bridge is associated with elevated MPV values. Our results might partly explain the increased cardiovascular events in patients with myocardial bridge.

  5. Two-dimensional color tissue Doppler imaging detects myocardial dysfunction before occurrence of hypertrophy in a young Maine Coon cat.

    PubMed

    Chetboul, Valerie; Sampedrano, Carolina Carlos; Gouni, Vassiliki; Nicolle, Audrey P; Pouchelon, Jean-Louis

    2006-01-01

    A 20-month-old healthy male Maine Coon cat was referred for a cardiovascular evaluation. Physical examination and electrocardiogram were normal. The end-diastolic subaortic interventricular septal thickness (6 mm; reference range: < or = 6mm) and the mitral flow late diastolic velocity (0.89 m/s; reference range: 0.2-0.8m/s) were within the upper ranges. However, M-mode echocardiography did not reveal any sign of hypertrophic cardiomyopathy (HCM). Tissue Doppler imaging (TDI) identified a marked left ventricular free wall dysfunction characterized by decreased myocardial velocities in early diastole, increased myocardial velocities in late diastole and the presence of postsystolic contractions both at the base and the apex for the longitudinal motion. One year later, the diagnosis of HCM was confirmed by conventional echocardiography and the cat died suddenly 2 months later. This report demonstrates for the first time in spontaneous HCM the sensitivity of TDI for early diagnosis of myocardial dysfunction and suggests that TDI should form part of the screening techniques for early diagnosis of feline HCM.

  6. Endocannabinoids as mediators in the heart: a potential target for therapy of remodelling after myocardial infarction?

    PubMed Central

    Hiley, C Robin; Ford, William R

    2003-01-01

    Endocannabinoid production by platelets and macrophages is increased in circulatory shock. This may be protective of the cardiovascular system as blockade of CB1 cannabinoid receptors exacerbates endothelial dysfunction in haemorrhagic and endotoxin shock and reduces survival. Now evidence suggests that blockade of CB1 receptors starting 24 h after myocardial infarction in rats has a deleterious effect on cardiac performance, while use of a nonselective cannabinoid receptor agonist prevents hypotension and reduces endothelial dysfunction, although left ventricular end diastolic pressure is elevated. Cannabinoids and endocannabinoid systems may therefore present useful targets for therapy following myocardial infarction. PMID:12711614

  7. Comparison of LVEF assessed by 2D echocardiography, gated blood pool SPECT, 99mTc tetrofosmin gated SPECT, and 18F-FDG gated PET with ERNV in patients with CAD and severe LV dysfunction.

    PubMed

    Raja, Senthil; Mittal, Bhagwant R; Santhosh, Sampath; Bhattacharya, Anish; Rohit, Manoj K

    2014-11-01

    Left ventricular ejection fraction (LVEF) is the single most important predictor of prognosis in patients with coronary artery disease (CAD) and left ventricular (LV) dysfunction. Equilibrium radionuclide ventriculography (ERNV) is considered the most reliable technique for assessing LVEF. Most of these patients undergo two dimensional (2D) echocardiography and myocardial viability study using gated myocardial perfusion imaging (MPI) or gated F-fluorodeoxyglucose (F-FDG) PET. However, the accuracy of LVEF assessed by these methods is not clear. This study has been designed to assess the correlation and agreement between the LVEF measured by 2D echocardiography, gated blood pool single photon emission computed tomography (SPECT), Tc tetrofosmin gated SPECT, and F-FDG gated PET with ERNV in CAD patients with severe LV dysfunction. Patients with CAD and severe LV dysfunction [ejection fraction (EF) <35 assessed by 2D echocardiography] were prospectively included in the study. These patients underwent ERNV along with gated blood pool SPECT, Tc tetrofosmin gated SPECT, and F-FDG gated PET as per the standard protocol for myocardial viability assessment and LVEF calculation. Spearman's coefficient of correlation (r) was calculated for the different sets of values with significance level kept at a P-value less than 0.05. Bland-Altman plots were inspected to visually assess the between-agreement measurements from different methods. Forty-one patients were prospectively included. LVEF calculated by various radionuclide methods showed good correlation with ERNV as follows: gated blood pool SPECT, r=0.92; MPI gated SPECT, r=0.85; and F-FDG gated PET, r=0.76. However, the correlation between 2D echocardiography and ERNV was poor (r=0.520). The Bland-Altman plot for LVEF measured by all radionuclide methods showed good agreement with ERNV. However, agreement between 2D echocardiography and ERNV is poor, as most of the values in this plot gave a negative difference for low EF and a positive difference for high EF. The mean difference between various techniques [2D echocardiography (a), gated blood pool SPECT (b), MPI gated SPECT (c), F-FDG gated PET (d)] and ERNV (e) was as follows: (a)-(e), 3.3; (b)-(e), 5; (c)-(e), 1.1; and (d)-(e), 2.9. The best possible correlation and agreement was found between MPI gated SPECT and ERNV. This study showed good correlation and agreement between MPI gated SPECT and F-FDG gated PET with ERNV for LVEF calculation in CAD patients with severe LV dysfunction. Thus, subjecting patients who undergo viability assessment by MPI gated SPECT or F-FDG gated PET to a separate procedure like ERNV for LVEF assessment may not be warranted. As the gated blood pool SPECT also showed good correlation and agreement with ERNV for LVEF assessment in CAD patients with severe LV dysfunction, with better characteristics than ERNV, it can be routinely used whenever accurate LVEF assessment is needed.

  8. Detrimental effects of acute hyperglycaemia on the rat heart.

    PubMed

    Mapanga, R F; Joseph, D; Symington, B; Garson, K-L; Kimar, C; Kelly-Laubscher, R; Essop, M Faadiel

    2014-03-01

    Hyperglycaemia is an important risk factor for acute myocardial infarction. It can lead to increased induction of non-oxidative glucose pathways (NOGPs) - polyol and hexosamine biosynthetic pathways, advanced glycation end products and protein kinase C - that may contribute to cardiovascular diseases onset. However, the precise underlying mechanisms remain poorly understood. Here we hypothesized that acute hyperglycaemia increases myocardial oxidative stress and NOGP activation resulting in cardiac dysfunction during ischaemia-reperfusion and that inhibition of, and/or shunting flux away from NOGPs [by benfotiamine (BFT) treatment], leads to cardioprotection. We employed several experimental systems: (i) Isolated rat hearts were perfused ex vivo with Krebs-Henseleit buffer containing 33 mm glucose vs. controls (11 mm glucose) ± global ischaemia and reperfusion ± BFT (first 20 min of reperfusion); (ii) Infarct size determination as per the ischaemic protocol, but with regional ischaemia and reperfusion ± BFT treatment; in separate experiments, NOGP inhibitors were also employed for (i) and (ii); and (iii) In vivo coronary ligations performed on streptozotocin-treated rats ± BFT treatment (early reperfusion). Acute hyperglycaemia generated myocardial oxidative stress, NOGP activation and apoptosis, but caused no impairment of cardiac function during pre-ischaemia, thereby priming hearts for later damage. Following ischaemia-reperfusion (under hyperglycaemic conditions), such effects were exacerbated together with cardiac contractile dysfunction. Moreover, inhibition of respective NOGPs and shunting away by BFT treatment (in part) improved cardiac function during ischaemia-reperfusion. Coordinate NOGP activation in response to acute hyperglycaemia results in contractile dysfunction during ischaemia-reperfusion, allowing for the development of novel cardioprotective agents. © 2013 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  9. Dysfunctional nitric oxide signalling increases risk of myocardial infarction.

    PubMed

    Erdmann, Jeanette; Stark, Klaus; Esslinger, Ulrike B; Rumpf, Philipp Moritz; Koesling, Doris; de Wit, Cor; Kaiser, Frank J; Braunholz, Diana; Medack, Anja; Fischer, Marcus; Zimmermann, Martina E; Tennstedt, Stephanie; Graf, Elisabeth; Eck, Sebastian; Aherrahrou, Zouhair; Nahrstaedt, Janja; Willenborg, Christina; Bruse, Petra; Brænne, Ingrid; Nöthen, Markus M; Hofmann, Per; Braund, Peter S; Mergia, Evanthia; Reinhard, Wibke; Burgdorf, Christof; Schreiber, Stefan; Balmforth, Anthony J; Hall, Alistair S; Bertram, Lars; Steinhagen-Thiessen, Elisabeth; Li, Shu-Chen; März, Winfried; Reilly, Muredach; Kathiresan, Sekar; McPherson, Ruth; Walter, Ulrich; Ott, Jurg; Samani, Nilesh J; Strom, Tim M; Meitinger, Thomas; Hengstenberg, Christian; Schunkert, Heribert

    2013-12-19

    Myocardial infarction, a leading cause of death in the Western world, usually occurs when the fibrous cap overlying an atherosclerotic plaque in a coronary artery ruptures. The resulting exposure of blood to the atherosclerotic material then triggers thrombus formation, which occludes the artery. The importance of genetic predisposition to coronary artery disease and myocardial infarction is best documented by the predictive value of a positive family history. Next-generation sequencing in families with several affected individuals has revolutionized mutation identification. Here we report the segregation of two private, heterozygous mutations in two functionally related genes, GUCY1A3 (p.Leu163Phefs*24) and CCT7 (p.Ser525Leu), in an extended myocardial infarction family. GUCY1A3 encodes the α1 subunit of soluble guanylyl cyclase (α1-sGC), and CCT7 encodes CCTη, a member of the tailless complex polypeptide 1 ring complex, which, among other functions, stabilizes soluble guanylyl cyclase. After stimulation with nitric oxide, soluble guanylyl cyclase generates cGMP, which induces vasodilation and inhibits platelet activation. We demonstrate in vitro that mutations in both GUCY1A3 and CCT7 severely reduce α1-sGC as well as β1-sGC protein content, and impair soluble guanylyl cyclase activity. Moreover, platelets from digenic mutation carriers contained less soluble guanylyl cyclase protein and consequently displayed reduced nitric-oxide-induced cGMP formation. Mice deficient in α1-sGC protein displayed accelerated thrombus formation in the microcirculation after local trauma. Starting with a severely affected family, we have identified a link between impaired soluble-guanylyl-cyclase-dependent nitric oxide signalling and myocardial infarction risk, possibly through accelerated thrombus formation. Reversing this defect may provide a new therapeutic target for reducing the risk of myocardial infarction.

  10. Non-ischemic diabetic cardiomyopathy may initially exhibit a transient subclinical phase of hyperdynamic myocardial performance.

    PubMed

    Hensel, Kai O

    2016-09-01

    Cardiovascular complications are the key cause for mortality in diabetes mellitus. Besides ischemia-related cardiac malfunction there is growing evidence for non-ischemic diabetes-associated heart failure in both type 1 and type 2 diabetes mellitus. The underlying pathophysiology of non-ischemic diabetic cardiomyopathy (NIDC) is poorly understood and data on myocardial mechanics in early stages of the disease are rare. However, several studies in both human and experimental animal settings have reported prima facie unexplained features indicating myocardial hyperdynamics early in the course of the disease. The new hypothesis is that - other than previously thought - NIDC may be non-linear and initially feature an asymptomatic subclinical phase of myocardial hypercontractility that precedes the long-term development of diabetes-associated cardiac dysfunction and ultimately heart failure. Diabetes-induced metabolic imbalances may lead to a paradoxic inotropic increase and inefficient myocardial mechanics that finally result in a gradual deterioration of myocardial performance. In conclusion, diabetic patients should be screened regularly and early in the course of the disease utilizing ultra-sensitive myocardial deformation imaging in order to identify patients at risk for diabetes-associated heart failure. Moreover, hyperdynamic myocardial deformation might help distinguish non-ischemic from ischemic diabetic cardiomyopathy. Further studies are needed to illuminate the underlying pathophysiological mechanisms, the exact spatiotemporal evolvement of diabetic cardiomyopathy and its long-term relation to clinical outcome parameters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Phaeochromocytoma in a 86-year-old patient presenting with reversible myocardial dysfunction.

    PubMed

    Szwench, Elżbieta; P Czkowska, Mariola; Marczewski, Krzysztof; Klisiewicz, Anna; Micha Owska, Ilona; Ciuba, Iwona; Januszewicz, Magdalena; Prejbisz, Aleksander; Hoffman, Piotr; Januszewicz, Andrzej

    2011-12-01

    BACKGROUND. Phaeochromocytomas and paragangliomas are rare, mostly benign catecholamine-producing tumours of chromaffin cells of the adrenal medulla or of extra-adrenal paraganglia. Phaeochromocytoma may occur at any age, the greatest frequency being in the fourth and fifth decades. Only on extremely rare occasions does the tumour develop in the very old patients. METHODS. We are describing an 86-year-old patient with phaeochromocytoma, presenting with reversible myocardial dysfunction. RESULTS. This very old patient with phaeochromocytoma had hypertension characterized by labile blood pressure values and increased daytime blood pressure variability. This patient exhibited reversible myocardial dysfunction suggestive for "catecholaminergic cardiomyopathy", as the complication of phaeochromocytoma. After surgical removal of the tumour, recovery of left ventricular function was documented by echocardiography showing normalization of systolic function and improvement of diastolic function. CONCLUSION. Phaeochromocytomas are rare forms of secondary hypertension, but should be considered in the differential diagnosis, regardless of age, even in very old patients.

  12. Chagas' heart disease: gender differences in myocardial damage assessed by cardiovascular magnetic resonance.

    PubMed

    Assunção, Antonildes N; Jerosch-Herold, Michael; Melo, Rodrigo L; Mauricio, Alejandra V; Rocha, Liliane; Torreão, Jorge A; Fernandes, Fabio; Ianni, Barbara M; Mady, Charles; Ramires, José A F; Kalil-Filho, Roberto; Rochitte, Carlos E

    2016-11-28

    Since a male-related higher cardiovascular morbidity and mortality in patients with Chagas' heart disease has been reported, we aimed to investigate gender differences in myocardial damage assessed by cardiovascular magnetic resonance (CMR). Retrospectively, 62 seropositive Chagas' heart disease patients referred to CMR (1.5 T) and with low probability of having significant coronary artery disease were included in this analysis. Amongst both sexes, there was a strong negative correlation between LV ejection fraction and myocardial fibrosis (male r = 0.64, female r = 0.73, both P < 0.001), with males showing significantly greater myocardial fibrosis (P = 0.002) and lower LV ejection fraction (P < 0.001) than females. After adjustment for potential confounders, gender remained associated with myocardial dysfunction, and 53% of the effect was mediated by myocardial fibrosis (P for mediation = 0.004). Also, the transmural pattern was more prevalent among male patients (23.7 vs. 9.9%, P < 0.001) as well as the myocardial heterogeneity or gray zone (2.2 vs. 1.3 g, P = 0.003). We observed gender-related differences in myocardial damage assessed by CMR in patients with Chagas' heart disease. As myocardial fibrosis and myocardial dysfunction are associated to cardiovascular outcomes, our findings might help to understand the poorer prognosis observed in males in Chagas' disease.

  13. Stem Cells for Cardiac Regeneration by Cell Therapy and Myocardial Tissue Engineering

    NASA Astrophysics Data System (ADS)

    Wu, Jun; Zeng, Faquan; Weisel, Richard D.; Li, Ren-Ke

    Congestive heart failure, which often occurs progressively following a myocardial infarction, is characterized by impaired myocardial perfusion, ventricular dilatation, and cardiac dysfunction. Novel treatments are required to reverse these effects - especially in older patients whose endogenous regenerative responses to currently available therapies are limited by age. This review explores the current state of research for two related approaches to cardiac regeneration: cell therapy and tissue engineering. First, to evaluate cell therapy, we review the effectiveness of various cell types for their ability to limit ventricular dilatation and promote functional recovery following implantation into a damaged heart. Next, to assess tissue engineering, we discuss the characteristics of several biomaterials for their potential to physically support the infarcted myocardium and promote implanted cell survival following cardiac injury. Finally, looking ahead, we present recent findings suggesting that hybrid constructs combining a biomaterial with stem and supporting cells may be the most effective approaches to cardiac regeneration.

  14. The role of myocardial viability in contemporary cardiac practice.

    PubMed

    Jamiel, Abdelrahman; Ebid, Mohamad; Ahmed, Amjad M; Ahmed, Dalia; Al-Mallah, Mouaz H

    2017-07-01

    Ischemic heart disease (IHD) remains the single most common cause of death worldwide. Ischemic cardiomyopathy is a major sequel of coronary artery disease. The economic health burden of IHD is substantial. In patients with old myocardial infarction (OMI), the extent of viable myocardium (VM) directly affects the short- and long-term outcome. There is a considerable collection of observational data showing substantial improvement in patients with significant left ventricular dysfunction when the need for revascularization is guided by preoperative assessment of viability and hibernation. However, a major challenge for present cardiovascular imaging is to identify better ways to assess viable but inadequately perfused myocardium and thus optimize selection of patients for coronary revascularization. Several non-invasive techniques have been developed to detect signs of viability. Hence, our aim is to provide the reader a state-of-the art review for the assessment of myocardial viability.

  15. It's a trap! Clinical similarities and subtle ECG differences between takotsubo cardiomyopathy and myocardial infarction.

    PubMed

    Vivo, Rey P; Krim, Selim R; Hodgson, John

    2008-11-01

    We describe a 65-year-old woman with a history of hypertension and smoking who presented with an acute episode of chest pain precipitated by severe emotional stress. Her initial electrocardiogram done in the emergency room showed non-specific T wave changes in the lateral leads and her cardiac troponin levels were mildly elevated. Because of her clinical presentation, she was admitted with a presumptive diagnosis of acute myocardial infarction and managed with antiplatelet and anticoagulant therapy. Coronary angiogram did not reveal coronary artery disease and left ventriculography showed findings consistent with apical ballooning syndrome or takotsubo cardiomyopathy. Subsequent electrocardiograms displayed dramatic changes including T wave inversions, QT interval prolongation and U waves. The patient remained asymptomatic and recovered uneventfully. Three weeks post-discharge, an echocardiogram documented resolved left ventricular dysfunction. We describe the clinical features and highlight the electrocardiographic findings that may help differentiate takotsubo cardiomyopathy from myocardial infarction.

  16. Correlation between cardiac remodelling, function, and myocardial contractility in rat hearts 5 weeks after myocardial infarction.

    PubMed

    Gosselin, H; Qi, X; Rouleau, J L

    1998-01-01

    Early after infarction, ventricular dysfunction occurs as a result of loss of myocardial tissue. Although papillary muscle studies suggest that reduced myocardial contractility contributes to this ventricular dysfunction, in vivo studies indicate that at rest, cardiac output is normal or near normal, suggesting that contractility of the remaining viable myocardium of the ventricular wall is preserved. However, this has never been verified. To explore this further, 100 rats with various-sized myocardial infarctions had ventricular function assessed by Langendorff preparation or by isolated papillary muscle studies 5 weeks after infarction. Morphologic studies were also done. Rats with large infarctions (54%) had marked ventricular dilatation (dilatation index from 0.23 to 0.75, p < 0.01) and papillary muscle dysfunction (total tension from 6.7 to 3.2 g/mm2, p < 0.01) but only moderate left ventricular dysfunction (maximum developed tension from 206 to 151 mmHg (1 mmHg = 133.3 Pa), p < 0.01), a decrease less than one would expect with an infarct size of 54%. The contractility of the remaining viable myocardium of the ventricle was also moderately depressed (peak systolic midwall stress 91 to 60 mmHg, p < 0.01). Rats with moderate infarctions (32%) had less marked but still moderate ventricular dilatation (dilatation index 0.37, p < 0.001) and moderate papillary muscle dysfunction (total tension 4.2 g/mm2, p < 0.01). However, their decrease in ventricular function was only mild (maximum developed pressure 178 mmHg, p < 0.01) and less than one would expect with an infarct size of 32%. The remaining viable myocardium of the ventricular wall appeared to have normal contractility (peak systolic midwall stress = 86 mmHg, ns). We conclude that in this postinfarction model, in large myocardial infarctions, a loss of contractility of the remaining viable myocardium of the ventricular wall occurs as early as 5 weeks after infarction and that papillary muscle studies slightly overestimate the degree of ventricular dysfunction. In moderate infarctions, the remaining viable myocardium of the ventricular wall has preserved contractility while papillary muscle function is depressed. In this relatively early postinfarction phase, ventricular remodelling appears to help maintain left ventricular function in both moderate and large infarctions.

  17. Multiple organ dysfunction syndrome, an unusual complication of heroin intoxication: a case report and review of literature.

    PubMed

    Feng, Gang; Luo, Qiancheng; Guo, Enwei; Yao, Yulan; Yang, Feng; Zhang, Bingyu; Li, Longxuan

    2015-01-01

    Multiple organ dysfunction syndrome (MODS) has rarely been described in patients with heroin intoxication. Here, we report a rare case of MODS involving six organs, due to heroin intoxication. The patient was a 32-year-old Chinese man with severe heroin intoxication complicated by acute pulmonary edema and respiratory insufficiency, shock, myocardial damage and cardiac insufficiency, rhabdomyolysis and acute renal insufficiency, acute liver injury and hepatic insufficiency, toxic leukoencephalopathy, and hypoglycemia. He managed to survive and was discharged after 10 weeks of intensive care. The possible pathogenesis and therapeutic measures of MODS induced by heroin intoxication and some suggestions for preventing and treating severe complications of heroin intoxication, based on clinical evidence and the pertinent literature, are discussed in this report.

  18. A peripheral blood transcriptome biomarker test to diagnose functional recovery potential in advanced heart failure.

    PubMed

    Deng, Mario C

    2018-05-08

    Heart failure (HF) is a complex clinical syndrome that causes systemic hypoperfusion and failure to meet the body's metabolic demands. In an attempt to compensate, chronic upregulation of the sympathetic nervous system and renin-angiotensin-aldosterone leads to further myocardial injury, HF progression and reduced O 2 delivery. This triggers progressive organ dysfunction, immune system activation and profound metabolic derangements, creating a milieu similar to other chronic systemic diseases and presenting as advanced HF with severely limited prognosis. We hypothesize that 1-year survival in advanced HF is linked to functional recovery potential (FRP), a novel clinical composite parameter that includes HF severity, secondary organ dysfunction, co-morbidities, frailty, disabilities as well as chronological age and that can be diagnosed by a molecular biomarker.

  19. Cardioprotective Properties of Aerobic and Resistance Training Against Myocardial Infarction.

    PubMed

    Barboza, C A; Souza, G I H; Oliveira, J C M F; Silva, L M; Mostarda, C T; Dourado, P M M; Oyama, L M; Lira, F S; Irigoyen, M C; Rodrigues, B

    2016-06-01

    We evaluated the effects of aerobic and resistance exercise training on ventricular morphometry and function, physical capacity, autonomic function, as well as on ventricular inflammatory status in trained rats prior to myocardial infarction. Male Wistar rats were divided into the following groups: sedentary+Sham, sedentary+myocardial infarction, aerobic trained+myocardial infarction, and resistance trained+myocardial infarction. Sham and myocardial infarction were performed after training periods. In the days following the surgeries, evaluations were performed. Aerobic training prevents aerobic (to a greater extent) and resistance capacity impairments, ventricular dysfunction, baroreflex sensitivity and autonomic disorders (vagal tonus decrease and sympathetic tonus increase) triggered by myocardial infarction. Resistance training was able to prevent negative changes to aerobic and resistance capacity (to a greater extent) but not to ventricular dysfunction, and it prevented cardiovascular sympathetic increments. Additionally, both types of training reduced left ventricle inflammatory cytokine concentration. Our results suggest that aerobic and, for the first time, dynamic resistance training were able to reduce sympathetic tonus to the heart and vessels, as well as preventing the increase in pro-inflammatory cytokine concentrations in the left ventricle of trained groups. These data emphasizes the positive effects of aerobic and dynamic resistance training on the prevention of the negative changes triggered by myocardial infarction. © Georg Thieme Verlag KG Stuttgart · New York.

  20. Roles of mitochondrial fragmentation and reactive oxygen species in mitochondrial dysfunction and myocardial insulin resistance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, Tomoyuki; Saotome, Masao, E-mail: msaotome@hama-med.ac.jp; Nobuhara, Mamoru

    Purpose: Evidence suggests an association between aberrant mitochondrial dynamics and cardiac diseases. Because myocardial metabolic deficiency caused by insulin resistance plays a crucial role in heart disease, we investigated the role of dynamin-related protein-1 (DRP1; a mitochondrial fission protein) in the pathogenesis of myocardial insulin resistance. Methods and Results: DRP1-expressing H9c2 myocytes, which had fragmented mitochondria with mitochondrial membrane potential (ΔΨ{sub m}) depolarization, exhibited attenuated insulin signaling and 2-deoxy-D-glucose (2-DG) uptake, indicating insulin resistance. Treatment of the DRP1-expressing myocytes with Mn(III)tetrakis(1-methyl-4-pyridyl)porphyrin pentachloride (TMPyP) significantly improved insulin resistance and mitochondrial dysfunction. When myocytes were exposed to hydrogen peroxide (H{sub 2}O{sub 2}),more » they increased DRP1 expression and mitochondrial fragmentation, resulting in ΔΨ{sub m} depolarization and insulin resistance. When DRP1 was suppressed by siRNA, H{sub 2}O{sub 2}-induced mitochondrial dysfunction and insulin resistance were restored. Our results suggest that a mutual enhancement between DRP1 and reactive oxygen species could induce mitochondrial dysfunction and myocardial insulin resistance. In palmitate-induced insulin-resistant myocytes, neither DRP1-suppression nor TMPyP restored the ΔΨ{sub m} depolarization and impaired 2-DG uptake, however they improved insulin signaling. Conclusions: A mutual enhancement between DRP1 and ROS could promote mitochondrial dysfunction and inhibition of insulin signal transduction. However, other mechanisms, including lipid metabolite-induced mitochondrial dysfunction, may be involved in palmitate-induced insulin resistance. - Highlights: • DRP1 promotes mitochondrial fragmentation and insulin-resistance. • A mutual enhancement between DRP1 and ROS ipromotes insulin-resistance. • Palmitate increases DRP1 expression and induces insulin-resistance. • Inhibition of DRP or ROS failed to improve palmitate-induced insulin-resistance. • Mitochondrial dysfunction by lipid metabolites would induce insulin-resistance.« less

  1. The role of PET quantification in cardiovascular imaging.

    PubMed

    Slomka, Piotr; Berman, Daniel S; Alexanderson, Erick; Germano, Guido

    2014-08-01

    Positron Emission Tomography (PET) has several clinical and research applications in cardiovascular imaging. Myocardial perfusion imaging with PET allows accurate global and regional measurements of myocardial perfusion, myocardial blood flow and function at stress and rest in one exam. Simultaneous assessment of function and perfusion by PET with quantitative software is currently the routine practice. Combination of ejection fraction reserve with perfusion information may improve the identification of severe disease. The myocardial viability can be estimated by quantitative comparison of fluorodeoxyglucose ( 18 FDG) and rest perfusion imaging. The myocardial blood flow and coronary flow reserve measurements are becoming routinely included in the clinical assessment due to enhanced dynamic imaging capabilities of the latest PET/CT scanners. Absolute flow measurements allow evaluation of the coronary microvascular dysfunction and provide additional prognostic and diagnostic information for coronary disease. Standard quantitative approaches to compute myocardial blood flow from kinetic PET data in automated and rapid fashion have been developed for 13 N-ammonia, 15 O-water and 82 Rb radiotracers. The agreement between software methods available for such analysis is excellent. Relative quantification of 82 Rb PET myocardial perfusion, based on comparisons to normal databases, demonstrates high performance for the detection of obstructive coronary disease. New tracers, such as 18 F-flurpiridaz may allow further improvements in the disease detection. Computerized analysis of perfusion at stress and rest reduces the variability of the assessment as compared to visual analysis. PET quantification can be enhanced by precise coregistration with CT angiography. In emerging clinical applications, the potential to identify vulnerable plaques by quantification of atherosclerotic plaque uptake of 18 FDG and 18 F-sodium fluoride tracers in carotids, aorta and coronary arteries has been demonstrated.

  2. Increased intracranial pressure elicits hypertension, increased sympathetic activity, electrocardiographic abnormalities and myocardial damage in rats.

    PubMed

    Shanlin, R J; Sole, M J; Rahimifar, M; Tator, C H; Factor, S M

    1988-09-01

    Intracranial pressure was increased in 59 rats by inflating a subdural balloon to a total mass volume of 0.3 ml. The increase in intracranial pressure ranged from 75 to greater than 500 mm Hg. With few exceptions, mean arterial pressure increased to as high as 227 mm Hg during the increase in intracranial pressure. Significant increases in plasma catecholamines, major electrocardiographic changes and a considerably shortened survival time were observed only in the rats that demonstrated an increase in mean arterial pressure greater than 50 mm Hg. A perfusion study with liquid silicone rubber (Microfil) revealed dilated irregular myocardial vessels with areas of focal constriction consistent with microvascular spasm. Histologic examination of the myocardium revealed widespread patches of contraction band necrosis and occasional contraction bands in the smooth muscle media of large coronary arteries. These observations suggest that myocardial damage after suddenly increased intracranial pressure resulted both from exposure to toxic levels of catecholamines and from myocardial reperfusion. Extension of these studies to humans suggests that a detailed assessment of myocardial function should be performed in victims of severe brain injury. Myocardial dysfunction may be a major determinant of the patient's prognosis or may render the heart unsuitable for transplantation.

  3. Matrix metalloproteinases and their tissue inhibitor after reperfused ST-elevation myocardial infarction treated with doxycycline. Insights from the TIPTOP trial.

    PubMed

    Cerisano, Giampaolo; Buonamici, Piergiovanni; Gori, Anna Maria; Valenti, Renato; Sciagrà, Roberto; Giusti, Betti; Sereni, Alice; Raspanti, Silvia; Colonna, Paolo; Gensini, Gian Franco; Abbate, Rosanna; Schulz, Richard; Antoniucci, David

    2015-10-15

    The TIPTOP (Early Short-term Doxycycline Therapy In Patients with Acute Myocardial Infarction and Left Ventricular Dysfunction to Prevent The Ominous Progression to Adverse Remodelling) trial demonstrated that a timely, short-term therapy with doxycycline is able to reduce LV dilation, and both infarct size and severity in patients treated with primary percutaneous intervention (pPCI) for a first ST-elevation myocardial infarction (STEMI) and left ventricular (LV) dysfunction. In this secondary, pre-defined analysis of the TIPTOP trial we evaluated the relationship between doxycycline and plasma levels of matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs). In 106 of the 110 (96%) patients enrolled in the TIPTOP trial, plasma MMPs and TIMPs were measured at baseline, and at post-STEMI days 1, 7, 30 and 180. To evaluate the remodeling process, 2D-Echo studies were performed at baseline and at 6months. A (99m)Tc-SPECT was performed to evaluate the 6-month infarct size and severity. Doxycycline therapy was independently related to higher plasma TIMP-2 levels at day 7 (p<0.05). Plasma TIMP-2 levels above the median value at day 7 were correlated with the 6-month smaller infarct size (3% [0%-16%] vs. 12% [0%-30%], p=0.002) and severity (0.55 [0.44-0.64] vs. 0.45 [0.29-0.60], p=0.002), and LV dilation (-1ml/m(2) [from -7ml/m(2) to 9ml/m(2)] vs. 3ml/m(2) [from -2ml/m(2) to 19ml/m(2)], p=0.04), compared to their counterpart. In this clinical setting, doxycycline therapy results in higher plasma levels of TIMP-2 which, in turn, inversely correlate with 6month infarct size and severity as well as LV dilation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Role of ivabradine in management of stable angina in patients with different clinical profiles

    PubMed Central

    Kaski, Juan Carlos; Gloekler, Steffen; Ferrari, Roberto; Fox, Kim; Lévy, Bernard I; Komajda, Michel; Vardas, Panos; Camici, Paolo G

    2018-01-01

    In chronic stable angina, elevated heart rate contributes to the development of symptoms and signs of myocardial ischaemia by increasing myocardial oxygen demand and reducing diastolic perfusion time. Accordingly, heart rate reduction is a well-known strategy for improving both symptoms of myocardial ischaemia and quality of life (QOL). The heart rate-reducing agent ivabradine, a direct and selective inhibitor of the I f current, decreases myocardial oxygen consumption while increasing diastolic time, without affecting myocardial contractility or coronary vasomotor tone. Ivabradine is indicated for treatment of stable angina and chronic heart failure (HF). This review examines available evidence regarding the efficacy and safety of ivabradine in stable angina, when used as monotherapy or in combination with beta-blockers, in particular angina subgroups and in patients with stable angina with left ventricular systolic dysfunction (LVSD) or HF. Trials involving more than 45 000 patients receiving treatment with ivabradine have shown that this agent has antianginal and anti-ischaemic effects, regardless of age, sex, severity of angina, revascularisation status or comorbidities. This heart rate-lowering agent might also improve prognosis, reduce hospitalisation rates and improve QOL in angina patients with chronic HF and LVSD. PMID:29632676

  5. Effect of milrinone on short term outcome of patients with myocardial dysfunction undergoing off-pump coronary artery bypass graft: a randomized clinical trial.

    PubMed

    Hadadzadeh, Mehdi; Hosseini, Seyed Habib; Mostafavi Pour Manshadi, Seyed Mohammad Yousof; Naderi, Nafiseh; Emami Meybodi, Mahmood

    2013-01-01

    Myocardial dysfunction is a major complication in cardiac surgery that needs inotropic support. This study evaluates the effect of milrinone on patients with low ventricular ejection fraction undergoing off- pump coronary artery bypass graft (OPCAB). The present study is designed to evaluate the effect of milrinone on myocardial dysfunction. Eighty patients with low ventricular ejection fraction (<35%), candidate for elective OPCAB, were enrolled in this study. They were randomly assigned to two groups. One group received milrinone (50 μg/kg) intravenously and another group received a saline as placebo followed by 24 hours infusion of each agent (0.5 μg/kg/min). Short outcome of patients such as hemodynamic parameters and left ventricular ejection fraction were variables evaluated. Serum levels of creatine phosphokinase, the MB isoenzyme of creatine kinase, occurrence of arrhythmias and mean duration of mechanical ventilation were significantly lower in milrinone group (P<0.05). The mean post operative left ventricular ejection fraction was significantly higher in milrinone group (P=0.031). There were no statistical significant differences between the two groups in terms of intra-aortic balloon pump, inotropic support requirement, myocardial ischemia, myocardial infarction, duration of inotropic support, duration of intensive care unit stay, mortality and morbidity rate. Administration of milrinone in patients undergoing OPCAB with low ventricular ejection fraction is useful and effective.

  6. Urocortin Treatment Improves Acute Hemodynamic Instability and Reduces Myocardial Damage in Post-Cardiac Arrest Myocardial Dysfunction

    PubMed Central

    Huang, Chien-Hua; Wang, Chih-Hung; Tsai, Min-Shan; Hsu, Nai-Tan; Chiang, Chih-Yen; Wang, Tzung-Dau; Chang, Wei-Tien; Chen, Huei-Wen; Chen, Wen-Jone

    2016-01-01

    Aims Hemodynamic instability occurs following cardiac arrest and is associated with high mortality during the post-cardiac period. Urocortin is a novel peptide and a member of the corticotrophin-releasing factor family. Urocortin has the potential to improve acute cardiac dysfunction, as well as to reduce the myocardial damage sustained after ischemia reperfusion injury. The effects of urocortin in post-cardiac arrest myocardial dysfunction remain unclear. Methods and Results We developed a preclinical cardiac arrest model and investigated the effects of urocortin. After cardiac arrest induced by 6.5 min asphyxia, male Wistar rats were resuscitated and randomized to either the urocortin treatment group or the control group. Urocortin (10 μg/kg) was administrated intravenously upon onset of resuscitation in the experimental group. The rate of return of spontaneous circulation (ROSC) was similar between the urocortin group (76%) and the control group (72%) after resuscitation. The left ventricular systolic (dP/dt40) and diastolic (maximal negative dP/dt) functions, and cardiac output, were ameliorated within 4 h after ROSC in the urocortin-treated group compared to the control group (P<0.01). The neurological function of surviving animals was better at 6 h after ROSC in the urocortin-treated group (p = 0.023). The 72-h survival rate was greater in the urocortin-treated group compared to the control group (p = 0.044 by log-rank test). Cardiomyocyte apoptosis was lower in the urocortin-treated group (39.9±8.6 vs. 17.5±4.6% of TUNEL positive nuclei, P<0.05) with significantly increased Akt, ERK and STAT-3 activation and phosphorylation in the myocardium (P<0.05). Conclusions Urocortin treatment can improve acute hemodynamic instability as well as reducing myocardial damage in post-cardiac arrest myocardial dysfunction. PMID:27832152

  7. Myocardial dysfunction occurs prior to changes in ventricular geometry in mice with chronic kidney disease (CKD).

    PubMed

    Winterberg, Pamela D; Jiang, Rong; Maxwell, Josh T; Wang, Bo; Wagner, Mary B

    2016-03-01

    Uremic cardiomyopathy is responsible for high morbidity and mortality rates among patients with chronic kidney disease (CKD), but the underlying mechanisms contributing to this complex phenotype are incompletely understood. Myocardial deformation analyses (ventricular strain) of patients with mild CKD have recently been reported to predict adverse clinical outcome. We aimed to determine if early myocardial dysfunction in a mouse model of CKD could be detected using ventricular strain analyses. CKD was induced in 5-week-old male 129X1/SvJ mice through partial nephrectomy (5/6Nx) with age-matched mice undergoing bilateral sham surgeries serving as controls. Serial transthoracic echocardiography was performed over 16 weeks following induction of CKD. Invasive hemodynamic measurements were performed at 8 weeks. Gene expression and histology was performed on hearts at 8 and 16 weeks. CKD mice developed decreased longitudinal strain (-25 ± 4.2% vs. -29 ± 2.3%; P = 0.01) and diastolic dysfunction (E/A ratio 1.2 ± 0.15 vs. 1.9 ± 0.18; P < 0.001) compared to controls as early as 2 weeks following 5/6Nx. In contrast, ventricular hypertrophy was not apparent until 4 weeks. Hearts from CKD mice developed progressive fibrosis at 8 and 16 weeks with gene signatures suggestive of evolving heart failure with elevated expression of natriuretic peptides. Uremic cardiomyopathy in this model is characterized by early myocardial dysfunction which preceded observable changes in ventricular geometry. The model ultimately resulted in myocardial fibrosis and increased expression of natriuretic peptides suggestive of progressive heart failure. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  8. Dipeptidyl peptidase 4 inhibitor attenuates obesity-induced myocardial fibrosis by inhibiting transforming growth factor-βl and Smad2/3 pathways in high-fat diet-induced obesity rat model.

    PubMed

    Hong, Seul-Ki; Choo, Eun-Ho; Ihm, Sang-Hyun; Chang, Kiyuk; Seung, Ki-Bae

    2017-11-01

    Obesity-induced myocardial fibrosis may lead to diastolic dysfunction and ultimately heart failure. Activation of the transforming growth factor (TGF)-βl and its downstream Smad2/3 pathways may play a pivotal role in the pathogenesis of obesity-induced myocardial fibrosis, and the antidiabetic dipeptidyl peptidase 4 inhibitors (DPP4i) might affect these pathways. We investigated whether DPP4i reduces myocardial fibrosis by inhibiting the TGF-β1 and Smad2/3 pathways in the myocardium of a diet-induced obesity (DIO) rat model. Eight-week-old male spontaneously hypertensive rats (SHRs) were fed either a normal fat diet (chow) or a high-fat diet (HFD) and then the HFD-fed SHRs were randomized to either the DPP4i (MK-0626) or control (distilled water) groups for 12weeks. At 20weeks old, all the rats underwent hemodynamic and metabolic studies and Doppler echocardiography. Compared with the normal fat diet (chow)-fed SHRs, the HFD-fed SHRs developed a more intense degree of hyperglycemia and dyslipidemia and showed a constellation of left ventricular (LV) diastolic dysfunction, and exacerbated myocardial fibrosis, as well as activation of the TGF-β1 and Smad2/3 pathways. DPP4i significantly improved the metabolic and hemodynamic parameters. The echocardiogram showed that DPP4i improved the LV diastolic dysfunction (early to late ventricular filling velocity [E/A] ratio, 1.49±0.21 vs. 1.77±0.09, p<0.05). Furthermore, DPP4i significantly reduced myocardial fibrosis and collagen production by the myocardium and suppressed TGF-β1 and phosphorylation of Smad2/3 in the heart. In addition, DPP4i decreased TGF-β1-induced collagen production and TGF-β1-mediated phosphorylation and nuclear translocation of Smad2/3 in rat cardiac fibroblasts. In conclusion, DPP4 inhibition attenuated myocardial fibrosis and improved LV diastolic dysfunction in a DIO rat model by modulating the TGF-β1 and Smad2/3 pathways. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Cardiovascular Abnormalities in Carbon Monoxide Poisoning.

    PubMed

    Garg, Jalaj; Krishnamoorthy, Parasuram; Palaniswamy, Chandrasekar; Khera, Sahil; Ahmad, Hasan; Jain, Diwakar; Aronow, Wilbert S; Frishman, William H

    Acute carbon monoxide (CO) poisoning is the most common cause of poisoning and poisoning-related death in the United States. It manifests as broad spectrum of symptoms ranging from mild headache, nausea, and fatigue to dizziness, syncope, coma, seizures resulting in cardiovascular collapse, respiratory failure, and death. Cardiovascular complications of CO poisoning has been well reported and include myocardial stunning, left ventricular dysfunction, pulmonary edema, and arrhythmias. Acute myocardial ischemia has also been reported from increased thrombogenicity due to CO poisoning. Myocardial toxicity from CO exposure is associated with increased short-term and long-term mortality. Carboxyhemoglobin (COHb) levels do not correlate well with the clinical severity of CO poisoning. Supplemental oxygen remains the cornerstone of therapy for CO poisoning. Hyperbaric oxygen therapy increases CO elimination and has been used with wide variability in patients with evidence of neurological and myocardial injury from CO poisoning, but its benefit in limiting or reversing cardiac injury is unknown. We present a comprehensive review of literature on cardiovascular manifestations of CO poisoning and propose a diagnostic algorithm for managing patients with CO poisoning.

  10. Assessment of subclinical right ventricular systolic dysfunction in coal miners using myocardial isovolumic acceleration.

    PubMed

    Ozcan Abacıoglu, Ozge; Kaplan, Mehmet; Abacıoglu, Serkan; Quisi, Ala

    2017-09-01

    Several studies have been conducted regarding the effects of coal mining on the respiratory system. However, there is a lack of data concerning potential effects of coal mining on the cardiovascular system. In this study, we aimed to evaluate the potential subclinical right and left ventricular dysfunction in coal miners. This single-center, prospective study included a total of 102 patients. Patient and control groups consisted of 54 coal miners and 48 healthy men, respectively. All patients underwent 12-lead electrocardiography, transthoracic echocardiography, and pulmonary function test. As compared to control group, coal miners had significantly higher right ventricular myocardial performance index (RVMPI) (0.41 ± 0.03 vs 0.37 ± 0.02, P < .001), lower right ventricular fractional area change (RVFAC) (33.55% ± 6.70% vs 37.04 ± 9.26 P < .05), lower tricuspid annular plane systolic excursion (TAPSE) (1.54 ± 0.17 vs 1.73 ± 0.25, P < .001), lower myocardial isovolumic acceleration (IVA) (2.13 ± 0.16 vs 2.56 ± 0.36 P < .001) and decreased aortic distensibility (AD) (4.14 ± 2.18 vs 6.63 ± 3.91 P < .001). All of the echocardiographic parameters were positively correlated with exposure time to coal mine dust, except IVA. Echocardiographic parameters of both right and left ventricular dysfunction, including RVMPI, RVFAC, TAPSE, IVA, and AD, are impaired in coal miners. © 2017 The Authors Echocardiography Published by Wiley Periodicals, Inc.

  11. Doppler-derived myocardial performance index in patients with impaired left ventricular relaxation and preserved systolic function.

    PubMed

    Fernandes, José Maria G; Rivera, Ivan Romero; de Oliveira Romão, Benício; Mendonça, Maria Alayde; Vasconcelos, Miriam Lira Castro; Carvalho, Antônio Carlos; Campos, Orlando; De Paola, Angelo Amato V; Moisés, Valdir A

    2009-09-01

    The Doppler-derived myocardial performance index (MPI) has been used in the evaluation of left ventricular (LV) function in several diseases. In patients with isolated diastolic dysfunction, the diagnostic utility of this index remains unclear. The aim of this study was to determine the diagnostic utility of MPI in patients with systemic hypertension, impaired LV relaxation, and normal ejection fraction. Thirty hypertensive patients with impaired LV relaxation were compared to 30 control subjects. MPI and its components, isovolumetric relaxation time (IRT), isovolumetric contraction time (ICT), and the ejection time (ET), were measured from LV outflow and mitral inflow Doppler velocity profiles. MPI was higher in patients than in control subjects (0.45 +/- 0.13 vs 0.37 +/- 0.07 P < 0.0029). The increase in MPI was due to the prolongation of IRT without significant change of ICT and ET. MPI cutoff value of > or =0.40 identified impaired LV relaxation with a sensitivity of 63% and specificity of 70% while an IRT >94 ms had a sensitivity of 67% and specificity of 80%. Multivariate analysis identified relative wall thickness, mitral early filling wave velocity (E), and systolic myocardial velocity (Sm) as independent predictors of MPI in patients with hypertension. MPI was increase in patients with hypertension, diastolic dysfunction, and normal ejection fraction but was not superior to IRT to detect impaired LV relaxation.

  12. Asymptomatic cardiovascular manifestations in diabetes mellitus: left ventricular diastolic dysfunction and silent myocardial ischemia.

    PubMed

    Seferović-Mitrović, Jelena P; Lalić, Nebojsa M; Vujisić-Tesić, Bosiljka; Lalić, Katarina; Jotić, Aleksandra; Ristić, Arsen D; Giga, Vojislav; Tesić, Milorad; Milić, Natasa; Lukić, Ljiljana; Milicić, Tanja; Singh, Sandra; Seferović, Petar M

    2011-01-01

    Several cardiovascular manifestations in patients with diabetes may be asymptomatic. Left ventricular diastolic dysfunction (LVDD) is considered to be the earliest metabolic myocardial lesion in these patients, and can be diagnosed with tissue Doppler echocardiography. Silent myocardial ischemia (SMI) is a characteristic and frequently described form of ischemic heart disease in patients with diabetes. Objective The aim of the study was to assess the prevalence of LVDD and SMI in patients with type 2 diabetes, as well as to compare demographic, clinical, and metabolic data among defined groups (patients with LVDD, patients with SMI and patients with type 2 diabetes, without LVDD and SMI). We investigated 104 type 2 diabetic patients (mean age 55.4 +/- 9.1 years, 64.4% males) with normal blood pressure, prehypertension and arterial hypertension stage I. Study design included basic laboratory assessment and cardiological workup (transthoracic echocardiography and tissue Doppler, as well as the exercise stress echocardiography). LVDD was diagnosed in twelve patients (11.5%), while SMI was revealed in six patients (5.8%). Less patients with LVDD were using metformin, in comparison to other two groups (chi2 =12.152; p=0.002). Values of HDL cholesterol (F=4.515; p=0.013) and apolipoprotein A1 (F=5.128; p= 0.008) were significantly higher in patients with LVDD. The study confirmed asymptomatic cardiovascular complications in 17.3% patients with type 2 diabetes.

  13. Evaluation of mechanical dyssynchrony and myocardial perfusion using phase analysis of gated SPECT imaging in patients with left ventricular dysfunction

    PubMed Central

    Trimble, Mark A.; Borges-Neto, Salvador; Honeycutt, Emily F.; Shaw, Linda K.; Pagnanelli, Robert; Chen, Ji; Iskandrian, Ami E.; Garcia, Ernest V.; Velazquez, Eric J.

    2010-01-01

    Background Using phase analysis of gated single photon emission computed tomography (SPECT) imaging, we examined the relation between myocardial perfusion, degree of electrical dyssynchrony, and degree of SPECT-derived mechanical dyssynchrony in patients with left ventricular (LV) dysfunction. Methods and Results We retrospectively examined 125 patients with LV dysfunction and ejection fraction of 35% or lower. Fourier analysis converts regional myocardial counts into a continuous thickening function, allowing resolution of phase of onset of myocardial thickening. The SD of LV phase distribution (phase SD) and histogram bandwidth describe LV phase dispersion as a measure of dyssynchrony. Heart failure (HF) patients with perfusion abnormalities ities have higher degrees of dyssynchrony measured by median phase SD (45.5° vs 27.7°, P < .0001) and bandwidth (117.0° vs 73.0°, P = .0006). HF patients with prolonged QRS durations have higher degrees of dyssynchrony measured by median phase SD (54.1° vs 34.7°, P < .0001) and bandwidth (136.5° vs 99.0°, P = .0005). Mild to moderate correlations exist between QRS duration and phase analysis indices of phase SD (r = 0.50) and bandwidth (r = 0.40). Mechanical dyssynchrony (phase SD >43°) was 43.2%. Conclusions HF patients with perfusion abnormalities or prolonged QRS durations QRS durations have higher degrees of mechanical dyssynchrony. Gated SPECT myocardial perfusion imaging can quantify myocardial function, perfusion, and dyssynchrony and may help in evaluating patients for cardiac resynchronization therapy. PMID:18761269

  14. Heart involvement in cystic fibrosis: A specific cystic fibrosis-related myocardial changes?

    PubMed

    Labombarda, Fabien; Saloux, Eric; Brouard, Jacques; Bergot, Emmanuel; Milliez, Paul

    2016-09-01

    Cystic fibrosis is a complex multi-systemic chronic disease characterized by progressive organ dysfunction with development of fibrosis, possibly affecting the heart. Over the last four decades pathological, experimental, and clinical evidence points towards the existence of a specific myocardial involvement in cystic fibrosis. Multi-modality cardiac imaging, especially recent echocardiographic techniques, evidenced diastolic and/or systolic ventricular dysfunction in cystic fibrosis leading to the concept of a cystic fibrosis-related cardiomyopathy. Hypoxemia and inflammation are among the most important factors for heart involvement in cystic fibrosis. Cystic Fibrosis Transmembrane Regulator was found to be involved in the regulation of cardiomyocyte contraction and may also account for cystic fibrosis-related myocardial dysfunction. This review, mainly focused on echocardiographic studies, seeks to synthesize the existing literature for and against the existence of heart involvement in cystic fibrosis, its mechanisms and prognostic implications. Careful investigation of the heart function may be helpful for risk stratification and therapeutic decisions in patients with cystic fibrosis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Systems Biology and Biomechanical Model of Heart Failure

    PubMed Central

    Louridas, George E; Lourida, Katerina G

    2012-01-01

    Heart failure is seen as a complex disease caused by a combination of a mechanical disorder, cardiac remodeling and neurohormonal activation. To define heart failure the systems biology approach integrates genes and molecules, interprets the relationship of the molecular networks with modular functional units, and explains the interaction between mechanical dysfunction and cardiac remodeling. The biomechanical model of heart failure explains satisfactorily the progression of myocardial dysfunction and the development of clinical phenotypes. The earliest mechanical changes and stresses applied in myocardial cells and/or myocardial loss or dysfunction activate left ventricular cavity remodeling and other neurohormonal regulatory mechanisms such as early release of natriuretic peptides followed by SAS and RAAS mobilization. Eventually the neurohormonal activation and the left ventricular remodeling process are leading to clinical deterioration of heart failure towards a multi-organic damage. It is hypothesized that approaching heart failure with the methodology of systems biology we promote the elucidation of its complex pathophysiology and most probably we can invent new therapeutic strategies. PMID:22935019

  16. Protective effects of combination of quercetin and α-tocopherol on mitochondrial dysfunction and myocardial infarct size in isoproterenol-treated myocardial infarcted rats: biochemical, transmission electron microscopic, and macroscopic enzyme mapping evidences.

    PubMed

    Punithavathi, V R; Stanely Mainzen Prince, P

    2010-01-01

    Mitochondrial dysfunction plays an important role in the pathology of myocardial infarction. We evaluated the combined protective effects of quercetin and α-tocopherol on mitochondrial damage and myocardial infarct size in isoproterenol-induced myocardia- infarcted rats. Rats were pretreated with quercetin (10 mg/kg) alone, α-tocopherol (10 mg/kg) alone, and combination of quercetin (10 mg/kg) and α-tocopherol (10 mg/kg) orally using an intragastric tube daily for 14 days. After pretreatment, rats were induced myocardial infarction by isoproterenol (100 mg/kg) at an interval of 24 h for 2 days. Isoproterenol treatment caused significant increase in mitochondrial lipid peroxides with significant decrease in mitochondrial antioxidants. Significant decrease in the activities of isocitrate, succinate, malate, and α-ketoglutarate and NADH dehydrogenases and cytochrome-c-oxidase, significant increase in calcium, and significant decrease in adenosine triphosphate were observed in mitochondria of myocardial infarcted rats. Combined pretreatment with quercetin and α-tocopherol normalized all the biochemical parameters and preserved the integrity of heart tissue and restored normal mitochondrial function in myocardial-infarcted rats. Transmission electron microscopic findings on heart mitochondria and macroscopic enzyme mapping assay on the size of myocardial infarct also correlated with these biochemical parameters. The present study showed that combined pretreatment was highly effective than single pretreatment. Copyright 2010 Wiley Periodicals, Inc.

  17. CARD9 knockout ameliorates myocardial dysfunction associated with high fat diet-induced obesity.

    PubMed

    Cao, Li; Qin, Xing; Peterson, Matthew R; Haller, Samantha E; Wilson, Kayla A; Hu, Nan; Lin, Xin; Nair, Sreejayan; Ren, Jun; He, Guanglong

    2016-03-01

    Obesity is associated with chronic inflammation which plays a critical role in the development of cardiovascular dysfunction. Because the adaptor protein caspase recruitment domain-containing protein 9 (CARD9) in macrophages regulates innate immune responses via activation of pro-inflammatory cytokines, we hypothesize that CARD9 mediates the pro-inflammatory signaling associated with obesity en route to myocardial dysfunction. C57BL/6 wild-type (WT) and CARD9(-/-) mice were fed normal diet (ND, 12% fat) or a high fat diet (HFD, 45% fat) for 5months. At the end of 5-month HFD feeding, cardiac function was evaluated using echocardiography. Cardiomyocytes were isolated and contractile properties were measured. Immunofluorescence was performed to detect macrophage infiltration in the heart. Heart tissue homogenates, plasma, and supernatants from isolated macrophages were collected to measure the concentrations of pro-inflammatory cytokines using ELISA kits. Western immunoblotting analyses were performed on heart tissue homogenates and isolated macrophages to explore the underlying signaling mechanism(s). CARD9 knockout alleviated HFD-induced insulin resistance and glucose intolerance, prevented myocardial dysfunction with preserved cardiac fractional shortening and cardiomyocyte contractile properties. CARD9 knockout also significantly decreased the number of infiltrated macrophages in the heart with reduced myocardium-, plasma-, and macrophage-derived cytokines including IL-6, IL-1β and TNFα. Finally, CARD9 knockout abrogated the increase of p38 MAPK phosphorylation, the decrease of LC3BII/LC3BI ratio and the up-regulation of p62 expression in the heart induced by HFD feeding and restored cardiac autophagy signaling. In conclusion, CARD9 knockout ameliorates myocardial dysfunction associated with HFD-induced obesity, potentially through reduction of macrophage infiltration, suppression of p38 MAPK phosphorylation, and preservation of autophagy in the heart. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. NDUFA4L2 protects against ischaemia/reperfusion-induced cardiomyocyte apoptosis and mitochondrial dysfunction by inhibiting complex I.

    PubMed

    Li, Jianhua; Bai, Caiyan; Guo, Junxia; Liang, Wanqian; Long, Jingning

    2017-07-01

    Myocardial ischaemia/reperfusion (I/R) injury may cause the apoptosis of cardiomyocytes as well as mitochondrial dysfunction. The aims of the present study were to investigate whether NADH dehydrogenase 1 alpha subcomplex subunit 4-like 2 (NDUFA4L2) on myocardial ischaemia-reperfusion (I/R) injury and the underlying molecular mechanism. The hypoxia-reperfusion (H/R) model was established in vitro using H9c2 cells to simulate I/R injury. NDUFA4L2 and complex I expression levels were detected using RT-PCR and western blot. The apoptosis of H9c2 cells was evaluated by flow cytometry and the expression of Bax and Bcl-2 was detected by western blot. The mitochondrial function was assessed by ATP concentration, mPTP opening and cytochrome c (cyto C) expression. Our data indicated that NDUFA4L2 expression was significantly down-regulated in myocardial H/R injury. Overexpression of NDUFA4L2 led to a dramatic prevention of H/R-induced apoptosis accompanied by a decrease in the expression of Bax and an increase in the expression of Bcl-2. Meanwhile, augmentation of NDUFA4L2 dramatically prevented mitochondrial dysfunction caused by H/R as reflecting in the increased ATP concentration, delayed mPTP opening, as well as down-regulated cyto C expression. Moreover, complex I activation was heightened and negatively regulated by NDUFA4L2. Silencing complex I conspicuously attenuated cell apoptosis and mitochondrial dysfunction. Taken together, our findings demonstrated that NDUFA4L2 protects against H/R injury by preventing myocardium apoptosis and mitochondrial dysfunction via the complex I, and may be a potential therapeutic approach for attenuating myocardial I/R injury. © 2017 John Wiley & Sons Australia, Ltd.

  19. A randomized controlled trial of levosimendan to reduce mortality in high-risk cardiac surgery patients (CHEETAH): Rationale and design.

    PubMed

    Zangrillo, Alberto; Alvaro, Gabriele; Pisano, Antonio; Guarracino, Fabio; Lobreglio, Rosetta; Bradic, Nikola; Lembo, Rosalba; Gianni, Stefano; Calabrò, Maria Grazia; Likhvantsev, Valery; Grigoryev, Evgeny; Buscaglia, Giuseppe; Pala, Giovanni; Auci, Elisabetta; Amantea, Bruno; Monaco, Fabrizio; De Vuono, Giovanni; Corcione, Antonio; Galdieri, Nicola; Cariello, Claudia; Bove, Tiziana; Fominskiy, Evgeny; Auriemma, Stefano; Baiocchi, Massimo; Bianchi, Alessandro; Frontini, Mario; Paternoster, Gianluca; Sangalli, Fabio; Wang, Chew-Yin; Zucchetti, Maria Chiara; Biondi-Zoccai, Giuseppe; Gemma, Marco; Lipinski, Michael J; Lomivorotov, Vladimir V; Landoni, Giovanni

    2016-07-01

    Patients undergoing cardiac surgery are at risk of perioperative low cardiac output syndrome due to postoperative myocardial dysfunction. Myocardial dysfunction in patients undergoing cardiac surgery is a potential indication for the use of levosimendan, a calcium sensitizer with 3 beneficial cardiovascular effects (inotropic, vasodilatory, and anti-inflammatory), which appears effective in improving clinically relevant outcomes. Double-blind, placebo-controlled, multicenter randomized trial. Tertiary care hospitals. Cardiac surgery patients (n = 1,000) with postoperative myocardial dysfunction (defined as patients with intraaortic balloon pump and/or high-dose standard inotropic support) will be randomized to receive a continuous infusion of either levosimendan (0.05-0.2 μg/[kg min]) or placebo for 24-48 hours. The primary end point will be 30-day mortality. Secondary end points will be mortality at 1 year, time on mechanical ventilation, acute kidney injury, decision to stop the study drug due to adverse events or to start open-label levosimendan, and length of intensive care unit and hospital stay. We will test the hypothesis that levosimendan reduces 30-day mortality in cardiac surgery patients with postoperative myocardial dysfunction. This trial is planned to determine whether levosimendan could improve survival in patients with postoperative low cardiac output syndrome. The results of this double-blind, placebo-controlled randomized trial may provide important insights into the management of low cardiac output in cardiac surgery. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Cardiogenic shock with basal transient left ventricular ballooning (Takotsubo-like cardiomyopathy) as first presentation of pheochromocytoma.

    PubMed

    Di Palma, Gisella; Daniele, Gian P; Antonini-Canterin, Francesco; Piazza, Rita; Nicolosi, Gian L

    2010-07-01

    Pheochromocytoma is a rare tumor that produces a distant effect by secretion of catecholamines. This tumor usually presents with hypertension and palpitations but it may also cause cardiogenic shock because of catecholamine-induced myocardial dysfunction. We describe a rare case of Takotsubo-like cardiomyopathy as first manifestation of pheochromocytoma with an unusual onset characterized by severe hypotension and transient basal left ventricular ballooning ('inverted' Takotsubo-like cardiomyopathy).

  1. Simvastatin mitigates increases in risk factors for and the occurrence of cardiac disease following 10 Gy total body irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lenarczyk, Marek; Su, Jidong; Haworth, Steven T.

    The ability of simvastatin to mitigate the increases in risk factors for and the occurrence of cardiac disease after 10 Gy total body irradiation (TBI) was determined. This radiation dose is relevant to conditioning for stem cell transplantation and threats from radiological terrorism. Male rats received single dose TBI of 10 Gy. Age-matched, sham-irradiated rats served as controls. Lipid profile, heart and liver morphology and cardiac mechanical function were determined for up to 120 days after irradiation. TBI resulted in a sustained increase in total- and LDL-cholesterol (low-density lipoprotein-cholesterol), and triglycerides. Simvastatin (10 mg/kg body weight/day) administered continuously from 9more » days after irradiation mitigated TBI-induced increases in total- and LDL-cholesterol and triglycerides, as well as liver injury. TBI resulted in cellular peri-arterial fibrosis, whereas control hearts had less collagen and fibrosis. Simvastatin mitigated these morphological injuries. TBI resulted in cardiac mechanical dysfunction. Simvastatin mitigated cardiac mechanical dysfunction 20–120 days following TBI. To determine whether simvastatin affects the ability of the heart to withstand stress after TBI, injury from myocardial ischemia/reperfusion was determined in vitro. TBI increased the severity of an induced myocardial infarction at 20 and 80 days after irradiation. Simvastatin mitigated the severity of this myocardial infarction at 20 and 80 days following TBI. It is concluded simvastatin mitigated the increases in risk factors for cardiac disease and the extent of cardiac disease following TBI. This statin may be developed as a medical countermeasure for the mitigation of radiation-induced cardiac disease.« less

  2. Simvastatin mitigates increases in risk factors for and the occurrence of cardiac disease following 10 Gy total body irradiation

    DOE PAGES

    Lenarczyk, Marek; Su, Jidong; Haworth, Steven T.; ...

    2015-06-01

    The ability of simvastatin to mitigate the increases in risk factors for and the occurrence of cardiac disease after 10 Gy total body irradiation (TBI) was determined. This radiation dose is relevant to conditioning for stem cell transplantation and threats from radiological terrorism. Male rats received single dose TBI of 10 Gy. Age-matched, sham-irradiated rats served as controls. Lipid profile, heart and liver morphology and cardiac mechanical function were determined for up to 120 days after irradiation. TBI resulted in a sustained increase in total- and LDL-cholesterol (low-density lipoprotein-cholesterol), and triglycerides. Simvastatin (10 mg/kg body weight/day) administered continuously from 9more » days after irradiation mitigated TBI-induced increases in total- and LDL-cholesterol and triglycerides, as well as liver injury. TBI resulted in cellular peri-arterial fibrosis, whereas control hearts had less collagen and fibrosis. Simvastatin mitigated these morphological injuries. TBI resulted in cardiac mechanical dysfunction. Simvastatin mitigated cardiac mechanical dysfunction 20–120 days following TBI. To determine whether simvastatin affects the ability of the heart to withstand stress after TBI, injury from myocardial ischemia/reperfusion was determined in vitro. TBI increased the severity of an induced myocardial infarction at 20 and 80 days after irradiation. Simvastatin mitigated the severity of this myocardial infarction at 20 and 80 days following TBI. It is concluded simvastatin mitigated the increases in risk factors for cardiac disease and the extent of cardiac disease following TBI. This statin may be developed as a medical countermeasure for the mitigation of radiation-induced cardiac disease.« less

  3. Simvastatin mitigates increases in risk factors for and the occurrence of cardiac disease following 10 Gy total body irradiation.

    PubMed

    Lenarczyk, Marek; Su, Jidong; Haworth, Steven T; Komorowski, Richard; Fish, Brian L; Migrino, Raymond Q; Harmann, Leanne; Hopewell, John W; Kronenberg, Amy; Patel, Shailendra; Moulder, John E; Baker, John E

    2015-06-01

    The ability of simvastatin to mitigate the increases in risk factors for and the occurrence of cardiac disease after 10 Gy total body irradiation (TBI) was determined. This radiation dose is relevant to conditioning for stem cell transplantation and threats from radiological terrorism. Male rats received single dose TBI of 10 Gy. Age-matched, sham-irradiated rats served as controls. Lipid profile, heart and liver morphology and cardiac mechanical function were determined for up to 120 days after irradiation. TBI resulted in a sustained increase in total- and LDL-cholesterol (low-density lipoprotein-cholesterol), and triglycerides. Simvastatin (10 mg/kg body weight/day) administered continuously from 9 days after irradiation mitigated TBI-induced increases in total- and LDL-cholesterol and triglycerides, as well as liver injury. TBI resulted in cellular peri-arterial fibrosis, whereas control hearts had less collagen and fibrosis. Simvastatin mitigated these morphological injuries. TBI resulted in cardiac mechanical dysfunction. Simvastatin mitigated cardiac mechanical dysfunction 20-120 days following TBI. To determine whether simvastatin affects the ability of the heart to withstand stress after TBI, injury from myocardial ischemia/reperfusion was determined in vitro. TBI increased the severity of an induced myocardial infarction at 20 and 80 days after irradiation. Simvastatin mitigated the severity of this myocardial infarction at 20 and 80 days following TBI. It is concluded simvastatin mitigated the increases in risk factors for cardiac disease and the extent of cardiac disease following TBI. This statin may be developed as a medical countermeasure for the mitigation of radiation-induced cardiac disease.

  4. Influence of manual thrombus aspiration on left ventricular diastolic function in patients with ST-segment elevation myocardial infarction treated with primary percutaneous coronary intervention.

    PubMed

    Ilić, Ivan; Stanković, Ivan; Vidaković, Radosav; Janićijević, Aleksandra; Cerović, Milivoje; Jovanović, Vladimir; Aleksić, Aleksandar; Obradović, Gojko; Nikolajević, Ivica; Kafedzić, Srdjan; Milicević, Dusan; Kusić, Jovana; Putniković, Biljana; Nesković, Aleksandar N

    2016-01-01

    Data on effects of thrombus aspiration on left ventricular diastolic function in ST-elevation myocardial infarction (STEMI) population are scarce. We sought to compare echocardiographic indices of the diastolic function and outcomes in STEMI patients treated with and without manual thrombus aspiration, in an academic, high-volume percutaneous coronary intervention (PCI) center. A total of 433 consecutive patients who underwent primary PCI in 2011-2012 were enrolled in the study. Patients were not eligible for the study if they already suffered a myocardial infarction, had been previously revascularized, received thrombolytics, presented with cardiogenic shock, had significant valvular disease, atrial fibrillation or had previously implanted pacemaker. Comprehensive echocardiogram was performed within 48 hours. During follow-up patients'status was assessed by an office visit or telephone interview. Patients treated with thrombus aspiration (TA+, n=216) had similar baseline characteristics as those without thrombus aspiration (TA-, n = 217). Groups had similar total ischemic time (319 ± 276 vs. 333 ± 372 min; p = 0.665), but TA+ group had higher maximum values of troponin I (39.5 ± 30.5 vs. 27.6 ± 26.9 ng/ml; p < 0.001). The echocardiography revealed similar left ventricular volumes and systolic function, but TA+ group had significantly higher incidence of E/e' > 15, as a marker of severe diastolic dysfunction' (TA+ 23.1% vs. TA- 15.2%; p = 0.050). During average follow-up of 14 ± 5 months, major adverse cardiac/cerebral events occurred at the similar rate (log rank p = 0.867). Thrombus aspiration is associated with a greater incidence of severe diastolic dysfunction in unselected STEMI patients treated with primary PCI, but it doesn't influence the incidence of major adverse cardiovascular events.

  5. Levosimendan reduces myocardial damage and improves cardiodynamics in streptozotocin induced diabetic cardiomyopathy via SERCA2a/NCX1 pathway.

    PubMed

    Akhtar, Md Sayeed; Pillai, Krishna Kolappa; Hassan, Md Quamrul; Dhyani, Neha; Ismail, Md Vasim; Najmi, Abul Kalam

    2016-05-15

    Diabetic cardiomyopathy (DCM) is one of the most common causes of mortality. Its pathophysiology is not fully understood and involve number of factors including, cardiovascular and metabolic disorders. The present study was designed to study the pathogenesis of DCM and to explore the effects of levosimendan along with either ramipril or insulin in the long term management of DCM. Streptozotocin (STZ) was used to develop DCM in Wistar rats at the dose of 25mg/kg body weight for three consecutive days. Rats were randomly divided into 9 groups and treatments were started after 2weeks of STZ administration. Persistent hyperglycemia was observed in STZ treated rats, leading to significant contractile dysfunction as evidenced by decreased left ventricular pressure (LVP), +LV (dp/dt), -LV (dp/dt) as well as elevated Tau and LVEDP. Marked myocardial damage such as fibrosis, increased wall tension, depletion of contractile proteins were observed as evidenced by increased levels of TGF-β, BNP, cTroponin-I, as well as decreased expression of SERCA2a and NCX1 proteins in diabetic rats. The levosimendan alone and also in combination with either ramipril or insulin significantly normalized the myocardial dysfunctions developed during the course of persistent hyperglycemia. The study suggests that levosimendan treatment improves cardiac dysfunction significantly. Its combined use with ramipril proves better than with insulin in correcting myocardial performance as well as reduction in myocardial damage. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Coronary microvascular rarefaction and myocardial fibrosis in heart failure with preserved ejection fraction.

    PubMed

    Mohammed, Selma F; Hussain, Saad; Mirzoyev, Sultan A; Edwards, William D; Maleszewski, Joseph J; Redfield, Margaret M

    2015-02-10

    Characterization of myocardial structural changes in heart failure with preserved ejection fraction (HFpEF) has been hindered by the limited availability of human cardiac tissue. Cardiac hypertrophy, coronary artery disease (CAD), coronary microvascular rarefaction, and myocardial fibrosis may contribute to HFpEF pathophysiology. We identified HFpEF patients (n=124) and age-appropriate control subjects (noncardiac death, no heart failure diagnosis; n=104) who underwent autopsy. Heart weight and CAD severity were obtained from the autopsy reports. With the use of whole-field digital microscopy and automated analysis algorithms in full-thickness left ventricular sections, microvascular density (MVD), myocardial fibrosis, and their relationship were quantified. Subjects with HFpEF had heavier hearts (median, 538 g; 169% of age-, sex-, and body size-expected heart weight versus 335 g; 112% in controls), more severe CAD (65% with ≥1 vessel with >50% diameter stenosis in HFpEF versus 13% in controls), more left ventricular fibrosis (median % area fibrosis, 9.6 versus 7.1) and lower MVD (median 961 versus 1316 vessels/mm(2)) than control (P<0.0001 for all). Myocardial fibrosis increased with decreasing MVD in controls (r=-0.28, P=0.004) and HFpEF (r=-0.26, P=0.004). Adjusting for MVD attenuated the group differences in fibrosis. Heart weight, fibrosis, and MVD were similar in HFpEF patients with CAD versus without CAD. In this study, patients with HFpEF had more cardiac hypertrophy, epicardial CAD, coronary microvascular rarefaction, and myocardial fibrosis than controls. Each of these findings may contribute to the left ventricular diastolic dysfunction and cardiac reserve function impairment characteristic of HFpEF. © 2014 American Heart Association, Inc.

  7. Tissue Doppler imaging for detection of radial and longitudinal myocardial dysfunction in a family of cats affected by dystrophin-deficient hypertrophic muscular dystrophy.

    PubMed

    Chetboul, Valérie; Blot, Stephane; Sampedrano, Carolina Carlos; Thibaud, Jean-Laurent; Granger, Nicolas; Tissier, Renaud; Bruneval, Patrick; Gaschen, Frederic; Gouni, Vassiliki; Nicolle, Audrey P; Pouchelon, Jean-Louis

    2006-01-01

    Diagnosis of feline hypertrophic cardiomyopathy currently is based on the presence of myocardial hypertrophy detected using conventional echocardiography. The accuracy of tissue Doppler imaging (TDI) for earlier detection of the disease has never been described. The objective of this sudy was to quantify left ventricular free wall (LVFW) velocities in cats with hypertrophic muscular dystrophy (HFMD) during preclinical cardiomyopathy using TDI. The study animals included 22 healthy controls and 7 cats belonging to a family of cats with HFMD (2 affected adult males, 2 heterozygous adult females, one 2.5-month-old affected male kitten, and 2 phenotypically normal female kittens from the same litter). All cats were examined via conventional echocardiography and 2-dimensional color TDI. No LVFW hypertrophy was detected in the 2 carriers or in the affected kitten when using conventional echocardiography and histologic examination, respectively. The LVFW also was normal for 1 affected male and at the upper limit of normal for the 2nd male. Conversely, LVFW dysfunction was detected in all affected and carrier cats with HFMD when using TDI. TDI consistently detects LVFW dysfunction in cats with HFMD despite the absence of myocardial hypertrophy. Therefore, TDI appears more sensitive than conventional echocardiography in detecting regional myocardial abnormalities.

  8. Current Management of Calcific Aortic Stenosis

    PubMed Central

    Lindman, Brian R.; Bonow, Robert O.; Otto, Catherine M.

    2014-01-01

    Calcific aortic stenosis (AS) is a progressive disease with no effective medical therapy that ultimately requires aortic valve replacement (AVR) for severe valve obstruction. Echocardiography is the primary diagnostic approach to define valve anatomy, measure AS severity and evaluate the left ventricular (LV) response to chronic pressure overload. In asymptomatic patients, markers of disease progression include the degree of leaflet calcification, hemodynamic severity of stenosis, adverse LV remodeling, reduced LV longitudinal strain, myocardial fibrosis and pulmonary hypertension. The onset of symptoms portends a predictably high mortality rate unless AVR is performed. In symptomatic patients, AVR improves symptoms, improves survival and, in patients with LV dysfunction, improves systolic function. Poor outcomes after AVR are associated with low-flow low-gradient AS, severe ventricular fibrosis, oxygen dependent lung disease, frailty, advanced renal dysfunction and a high comorbidity score. However, in most patients with severe symptoms, AVR is lifesaving. Bioprosthetic valves are recommended for patients over the age of 65 years. Transcatheter AVR is now available for patients with severe comorbidities, is recommended in patients who are deemed inoperable and is a reasonable alternative to surgical AVR in high risk patients. PMID:23833296

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kajimoto, Masaki; O'Kelly-Priddy, Colleen M.; Ledee, Dolena R.

    Extracorporeal membrane oxygenation (ECMO) supports infants and children with severe cardiopulmonary compromise. Nutritional support for these children includes provision of medium- and long-chain fatty acids (FAs). However, ECMO induces a stress response, which could limit the capacity for FA oxidation. Metabolic impairment could induce new or exacerbate existing myocardial dysfunction. Using a clinically relevant piglet model, we tested the hypothesis that ECMO maintains the myocardial capacity for FA oxidation and preserves myocardial energy state. Provision of 13-Carbon labeled medium-chain FA (octanoate), longchain free FAs (LCFAs), and lactate into systemic circulation showed that ECMO promoted relative increases in myocardial LCFA oxidationmore » while inhibiting lactate oxidation. Loading of these labeled substrates at high dose into the left coronary artery demonstrated metabolic flexibility as the heart preferentially oxidized octanoate. ECMO preserved this octanoate metabolic response, but also promoted LCFA oxidation and inhibited lactate utilization. Rapid upregulation of pyruvate dehydrogenase kinase-4 (PDK4) protein appeared to participate in this metabolic shift during ECMO. ECMO also increased relative flux from lactate to alanine further supporting the role for pyruvate dehydrogenase inhibition by PDK4. High dose substrate loading during ECMO also elevated the myocardial energy state indexed by phosphocreatine to ATP ratio. ECMO promotes LCFA oxidation in immature hearts, while maintaining myocardial energy state. These data support the appropriateness of FA provision during ECMO support for the immature heart.« less

  10. Cardioprotective effects of red wine and vodka in a model of endothelial dysfunction

    PubMed Central

    Lassaletta, Antonio D; Chu, Louis M; Elmadhun, Nassrene Y; Burgess, Thomas A; Feng, Jun; Robich, Michael P; Sellke, Frank W

    2012-01-01

    Background Moderate alcohol consumption is largely believed to be cardioprotective, while red wine is hypothesized to offer benefit in part due to the pro-angiogenic and antioxidant properties of polyphenols. We investigated the cardiovascular effects of both red wine and vodka in a swine model of endothelial dysfunction. Methods Twenty-seven male Yorkshire swine fed a high-fat/cholesterol diet were divided into three groups and received either no alcohol (Control), red wine, or vodka. After seven weeks, myocardial perfusion was measured, and ventricular tissue was analyzed for microvascular reactivity, and immunohistochemical studies. Results There were no differences in myocardial perfusion, in arteriolar or capillary density, or in VEGF expression among groups. Total protein oxidation as well as expression of superoxide dismutase-1 and -2 (SOD1, SOD2) and NADPH-oxidase (NOX2) was decreased in both treatment groups compared to controls. Endothelium-dependent microvessel relaxation, however, was significantly improved only in the red wine-supplemented group. Conclusions Supplementation with both red wine and vodka decreased oxidative stress by several measures, implicating the effects of ethanol in reducing oxidative stress in the myocardium. However, it was only in the red wine-supplemented group that an improvement in microvessel function was observed. This suggests that a component of red wine, independent of ethanol, possibly a polyphenol such as resveratrol, may confer cardioprotection by normalizing endothelial dysfunction induced by an atherogenic diet. PMID:22748601

  11. Differential loss of natural killer cell activity in patients with acute myocardial infarction and stable angina pectoris.

    PubMed

    Yan, Wenwen; Zhou, Lin; Wen, Siwan; Duan, Qianglin; Huang, Feifei; Tang, Yu; Liu, Xiaohong; Chai, Yongyan; Wang, Lemin

    2015-01-01

    To evaluate the activity of natural killer cells through their inhibitory and activating receptors and quantity in peripheral blood mononuclear cells extracted from patients with acute myocardial infarction, stable angina pectoris and the controls. 100 patients with myocardial infarction, 100 with stable angina, and 20 healthy volunteers were recruited into the study. 20 randomly chosen people per group were examined for the whole human genome microarray analysis to detect the gene expressions of all 40 inhibitory and activating natural killer cell receptors. Flow cytometry analysis was applied to all 200 patients to measure the quantity of natural killer cells. In myocardial infarction group, the mRNA expressions of six inhibitory receptors KIR2DL2, KIR3DL3, CD94, NKG2A, KLRB1, KLRG1, and eight activating receptors KIR2DS3, KIR2DS5, NKp30, NTB-A, CRACC, CD2, CD7 and CD96 were significantly down-regulated (P<0.05) compared with both angina patients and the controls. There was no statistical difference in receptor expressions between angina patients and control group. The quantity of natural killer cells was significantly decreased in both infarction and angina patients compared with normal range (P<0.001). The significant mRNAs down-regulation of several receptors in myocardial infarction group and reduction in the quantity of natural killer cells in both myocardial infarction and angina patients showed a quantitative loss and dysfunction of natural killer cells in myocardial infarction patients.

  12. Extracellular Superoxide Dismutase Deficiency Exacerbates Pressure Overload–Induced Left Ventricular Hypertrophy and Dysfunction

    PubMed Central

    Lu, Zhongbing; Xu, Xin; Hu, Xinli; Zhu, Guangshuo; Zhang, Ping; van Deel, Elza D.; French, Joel P.; Fassett, John T.; Oury, Tim D.; Bache, Robert J.; Chen, Yingjie

    2008-01-01

    Extracellular superoxide dismutase (SOD) contributes only a small fraction to total SOD activity in the normal heart but is strategically located to scavenge free radicals in the extracellular compartment. To examine the physiological significance of extracellular SOD in the response of the heart to hemodynamic stress, we studied the effect of extracellular SOD deficiency on transverse aortic constriction (TAC)–induced left ventricular remodeling. Under unstressed conditions extracellular SOD deficiency had no effect on myocardial total SOD activity, the ratio of glutathione:glutathione disulfide, nitrotyrosine content, or superoxide anion production but resulted in small but significant increases in myocardial fibrosis and ventricular mass. In response to TAC for 6 weeks, extracellular SOD-deficient mice developed more severe left ventricular hypertrophy (heart weight increased 2.56-fold in extracellular SOD-deficient mice as compared with 1.99-fold in wild-type mice) and pulmonary congestion (lung weight increased 2.92-fold in extracellular SOD-deficient mice as compared with 1.84-fold in wild-type mice). Extracellular SOD-deficient mice also had more ventricular fibrosis, dilation, and a greater reduction of left ventricular fractional shortening and rate of pressure development after TAC. TAC resulted in greater increases of ventricular collagen I, collagen III, matrix metalloproteinase-2, matrix metalloproteinase-9, nitrotyrosine, and superoxide anion production. TAC also resulted in a greater decrease of the ratio of glutathione:glutathione disulfide in extracellular SOD-deficient mice. The finding that extracellular SOD deficiency had minimal impact on myocardial overall SOD activity but exacerbated TAC induced myocardial oxidative stress, hypertrophy, fibrosis, and dysfunction indicates that the distribution of extracellular SOD in the extracellular space is critically important in protecting the heart against pressure overload. PMID:17998475

  13. Human umbilical cord mesenchymal stem cells alleviate interstitial fibrosis and cardiac dysfunction in a dilated cardiomyopathy rat model by inhibiting TNF-α and TGF-β1/ERK1/2 signaling pathways

    PubMed Central

    Zhang, Changyi; Zhou, Guichi; Chen, Yezeng; Liu, Sizheng; Chen, Fen; Xie, Lichun; Wang, Wei; Zhang, Yonggang; Wang, Tianyou; Lai, Xiulan; Ma, Lian

    2018-01-01

    Dilated cardiomyopathy (DCM) is a disease of the heart characterized by pathological remodeling, including patchy interstitial fibrosis and degeneration of cardiomyocytes. In the present study, the beneficial role of human umbilical cord-derived mesenchymal stem cells (HuMSCs) derived from Wharton's jelly was evaluated in the myosin-induced rat model of DCM. Male Lewis rats (aged 8-weeks) were injected with porcine myosin to induce DCM. Cultured HuMSCs (1×106 cells/rat) were intravenously injected 28 days after myosin injection and the effects on myocardial fibrosis and the underlying signaling pathways were investigated and compared with vehicle-injected and negative control rats. Myosin injections in rats (vehicle group and experimental group) for 28 days led to severe fibrosis and significant deterioration of cardiac function indicative of DCM. HuMSC treatment reduced fibrosis as determined by Masson's staining of collagen deposits, as well as quantification of molecular markers of myocardial fibrosis such as collagen I/III, profibrotic factors transforming growth factor-β1 (TGF-β1), tumor necrosis factor-α (TNF-α), and connective tissue growth factor (CTGF). HuMSC treatment restored cardiac function as observed using echocardiography. In addition, western blot analysis indicated that HuMSC injections in DCM rats inhibited the expression of TNF-α, extracellular-signal regulated kinase 1/2 (ERK1/2) and TGF-β1, which is a master switch for inducing myocardial fibrosis. These findings suggested that HuMSC injections attenuated myocardial fibrosis and dysfunction in a rat model of DCM, likely by inhibiting TNF-α and the TGF-β1/ERK1/2 fibrosis pathways. Therefore, HuMSC treatment may represent a potential therapeutic method for treatment of DCM. PMID:29115435

  14. Assessment of left ventricular functions and myocardial iron load with tissue Doppler and speckle tracking echocardiography and T2* MRI in patients with β-thalassemia major.

    PubMed

    Ari, Mehmet Emre; Ekici, Filiz; Çetin, İbrahim İlker; Tavil, Emine Betül; Yaralı, Neşe; Işık, Pamir; Hazırolan, Tuncay; Tunç, Bahattin

    2017-03-01

    The purpose of this study is to determine early myocardial dysfunction in β-thalassemia major (BTM) patients. Where the myocardial dysfunction cannot be detected by conventional echocardiography, it could be detected by tissue Doppler imaging (TDI) or speckle tracking echocardiography (STE). In this study, we analyzed 60 individuals, 30 of whom were BTM patients and the other 30 of whom were the control group. T2* magnetic resonance imaging (MRI) was used to measure cardiac iron deposition. The myocardial functions were evaluated by conventional echocardiography, TDI and STE. When basal lateral left ventricular and basal septal wall TDI values were compared between the patient group and control group, only isovolumic contraction time values were significantly longer in the patients. The global circumferential strain was significantly lower in the patients. When evaluated as segmental, longitudinal strain values of basal inferoseptum and circumferential strain values of anteroseptum, anterior, and inferolateral segments were significantly lower in the patients. In the patients, global longitudinal and circumferential strains in the group who had pathological T2* values were significantly lower than the group who did not. In addition, circumferential strain values in anteroseptum, anterolateral, inferior, and inferoseptum segments were significantly lower in the patients with T2* values<20 ms than those with T2* values≥20 ms. Although T2* MRI is the most sensitive test detecting myocardial iron load, TDI and STE can be used for screening myocardial dysfunction. The abnormal strain values, especially circumferential, may be detected as the first finding of abnormal iron load and related to T2* values. © 2017, Wiley Periodicals, Inc.

  15. Differential expression of myocardial heat shock proteins in rats acutely exposed to fluoride.

    PubMed

    Panneerselvam, Lakshmikanthan; Raghunath, Azhwar; Perumal, Ekambaram

    2017-09-01

    Acute fluoride (F - ) toxicity is known to cause severe cardiac complications and leads to sudden heart failure. Previously, we reported that increased myocardial oxidative damage, apoptosis, altered cytoskeleton and AMPK signaling proteins associated with energy deprivation in acute F - induced cardiac dysfunction. The present study was aimed to decipher the status of myocardial heat shock proteins (Hsps-Hsp27, Hsp32, Hsp40, Hsp60, Hsp70, Hsp90) and heat shock transcription factor 1 (Hsf1) in acute F - -intoxicated rats. In order to study the expression of myocardial Hsps, male Wistar rats were treated with single oral doses of 45 and 90 mg/kg F - for 24 h. The expression levels of myocardial Hsps were determined using RT-PCR, western blotting, and immunohistochemical studies. Acute F - -intoxicated rats showed elevated levels of both the transcripts and protein expression of Hsf1, Hsp27, Hsp32, Hsp60, and Hsp70 when compared to control. In addition, the expression levels of Hsp40 and Hsp90 were significantly declined in a dose-dependent fashion in F - -treated animals. Our result suggests that differential expression of Hsps in the rat myocardium could serve as a balance between pro-survival and death signal during acute F - -induced heart failure.

  16. Cardiac-Specific Overexpression of Catalase Attenuates Lipopolysaccharide-Induced Myocardial Contractile Dysfunction: Role of Autophagy

    PubMed Central

    Turdi, Subat; Han, Xuefeng; Huff, Anna F.; Roe, Nathan D.; Hu, Nan; Gao, Feng; Ren, Jun

    2012-01-01

    Lipopolysaccharide (LPS) from Gram-negative bacteria is a major initiator of sepsis, leading to cardiovascular collapse. Accumulating evidence has indicated a role of reactive oxygen species (ROS) in cardiovascular complication in sepsis. This study was designed to examine the effect of cardiac-specific overexpression of catalase in LPS-induced cardiac contractile dysfunction and the underlying mechanism(s) with a focus on autophagy. Catalase transgenic and wild-type FVB mice were challenged with LPS (6 mg/kg) and cardiac function was evaluated. Levels of oxidative stress, autophagy, apoptosis and protein damage were examined using fluorescence microscopy, Western blot, TUNEL assay, caspase-3 activity and carbonyl formation. Kaplan-Meier curve was constructed for survival following LPS treatment. Our results revealed a lower mortality in catalase mice compared with FVB mice following LPS challenge. LPS injection led to depressed cardiac contractile capacity as evidenced by echocardiography and cardiomyocyte contractile function, the effect of which was ablated by catalase overexpression. LPS treatment induced elevated TNF-α level, autophagy, apoptosis (TUNEL, caspase-3 activation, cleaved caspase-3), production of ROS and O2−, and protein carbonyl formation, the effects of which were significantly attenuated by catalase overexpression. Electron microscopy revealed focal myocardial damage characterized by mitochondrial injury following LPS treatment, which was less severe in catalase mice. Interestingly, LPS-induced cardiomyocyte contractile dysfunction was prevented by antioxidant NAC and the autophagy inhibitor 3-methyladenine. Taken together, our data revealed that catalase protects against LPS-induced cardiac dysfunction and mortality, which may be associated with inhibition of oxidative stress and autophagy. PMID:22902401

  17. Daily exercise prevents diastolic dysfunction and oxidative stress in a female mouse model of western diet induced obesity by maintaining cardiac heme oxygenase-1 levels.

    PubMed

    Bostick, Brian; Aroor, Annayya R; Habibi, Javad; Durante, William; Ma, Lixin; DeMarco, Vincent G; Garro, Mona; Hayden, Melvin R; Booth, Frank W; Sowers, James R

    2017-01-01

    Obesity is a global epidemic with profound cardiovascular disease (CVD) complications. Obese women are particularly vulnerable to CVD, suffering higher rates of CVD compared to non-obese females. Diastolic dysfunction is the earliest manifestation of CVD in obese women but remains poorly understood with no evidence-based therapies. We have shown early diastolic dysfunction in obesity is associated with oxidative stress and myocardial fibrosis. Recent evidence suggests exercise may increase levels of the antioxidant heme oxygenase-1 (HO-1). Accordingly, we hypothesized that diastolic dysfunction in female mice consuming a western diet (WD) could be prevented by daily volitional exercise with reductions in oxidative stress, myocardial fibrosis and maintenance of myocardial HO-1 levels. Four-week-old female C57BL/6J mice were fed a high-fat/high-fructose WD for 16weeks (N=8) alongside control diet fed mice (N=8). A separate cohort of WD fed females was allowed a running wheel for the entire study (N=7). Cardiac function was assessed at 20weeks by high-resolution cardiac magnetic resonance imaging (MRI). Functional assessment was followed by immunohistochemistry, transmission electron microscopy (TEM) and Western blotting to identify pathologic mechanisms and assess HO-1 protein levels. There was no significant body weight decrease in exercising mice, normalized body weight 14.3g/mm, compared to sedentary mice, normalized body weight 13.6g/mm (p=0.38). Total body fat was also unchanged in exercising, fat mass of 6.6g, compared to sedentary mice, fat mass 7.4g (p=0.55). Exercise prevented diastolic dysfunction with a significant reduction in left ventricular relaxation time to 23.8ms for exercising group compared to 33.0ms in sedentary group (p<0.01). Exercise markedly reduced oxidative stress and myocardial fibrosis with improved mitochondrial architecture. HO-1 protein levels were increased in the hearts of exercising mice compared to sedentary WD fed females. This study provides seminal evidence that exercise can prevent diastolic dysfunction in WD-induced obesity in females even without changes in body weight. Furthermore, the reduction in myocardial oxidative stress and fibrosis and improved HO-1 levels in exercising mice suggests a novel mechanism for the antioxidant effect of exercise. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Simultaneous assessment of myocardial perfusion and function during mental stress in patients with chronic coronary artery disease.

    PubMed

    Arrighi, James A; Burg, Matthew; Cohen, Ira S; Soufer, Robert

    2003-01-01

    Mental stress (MS) is an important provocateur of myocardial ischemia in many patients with chronic coronary artery disease. The majority of laboratory assessments of ischemia in response to MS have included measurements of either myocardial perfusion or function alone. We performed this study to determine the relationship between alterations in perfusion and ventricular function during MS. Methods and results Twenty-eight patients with reversible perfusion defects on exercise or pharmacologic stress myocardial perfusion imaging (MPI) underwent simultaneous technetium 99m sestamibi single photon emission computed tomography (SPECT) MPI and transthoracic echocardiography at rest and during MS according to a mental arithmetic protocol. In all cases the MS study was performed within 4 weeks of the initial exercise or pharmacologic MPI that demonstrated ischemia. SPECT studies were analyzed visually with the use of a 13-segment model and quantitatively by semiautomated circumferential profile analysis. Echocardiograms were graded on a segmental model for regional wall motion on a 4-point scale. Of 28 patients, 18 (64%) had perfusion defects and/or left ventricular dysfunction develop during MS: 9 (32%) had myocardial perfusion defects develop, 6 (21%) had regional or global left ventricular dysfunction develop, and 3 (11%) had both perfusion defects and left ventricular dysfunction develop. The overall concordance between perfusion and function criteria for ischemia during MS was only 46%. Among 9 patients with MS-induced left ventricular dysfunction, 5 had new regional wall motion abnormalities and 4 had a global decrement in function. In patients with MS-induced ischemia by SPECT, the number of reversible perfusion defects was similar during both MS and exercise/pharmacologic stress (2.8 +/- 2.0 vs 3.5 +/- 1.8, P =.41). Hemodynamic changes during MS were similar whether patients were divided on the basis of perfusion defects or left ventricular dysfunction during MS. These data indicate the feasibility of simultaneous assessment of perfusion and function responses during MS. Flow and function responses to MS are frequently not concordant. These data suggest that MS-induced changes in perfusion may represent a different phenomenon than MS-induced changes in left ventricular function (either globally or regionally).

  19. Depressive disorder and gastrointestinal dysfunction after myocardial infarct are associated with abnormal tryptophan-5-hydroxytryptamine metabolism in rats

    PubMed Central

    Liu, Chunyan; Wang, Yangang

    2017-01-01

    In this study, we investigated the relationship between tryptophan-5-hydroxytryptamine metabolism, depressive disorder, and gastrointestinal dysfunction in rats after myocardial infarction. Our goal was to elucidate the physiopathologic bases of somatic/psychiatric depression symptoms after myocardial infarction. A myocardial infarction model was established by permanent occlusion of the left anterior descending coronary artery. Depression-like behavior was evaluated using the sucrose preference test, open field test, and forced swim test. Gastric retention and intestinal transit were detected using the carbon powder labeling method. Immunohistochemical staining was used to detect indoleamine 2,3-dioxygenase expression in the hippocampus and ileum. High-performance liquid chromatography with fluorescence and ultraviolet detection determined the levels of 5-hydroxytryptamine, its precursor tryptophan, and its metabolite 5-hydroxyindoleacetic acid in the hippocampus, distal ileum, and peripheral blood. All data were analyzed using one-way analyses of variance. Three weeks after arterial occlusion, rats in the model group began to exhibit depression-like symptoms. For example, the rate of sucrose consumption was reduced, the total and central distance traveled in the open field test were reduced, and immobility time was increased, while swimming, struggling and latency to immobility were decreased in the forced swim test. Moreover, the gastric retention rate and gastrointestinal transit rate were increased in the model group. Expression of indoleamine 2,3-dioxygenase was increased in the hippocampus and ileum, whereas 5-hydroxytryptamine metabolism was decreased, resulting in lower 5-hydroxytryptamine and 5-hydroxyindoleacetic acid levels in the hippocampus and higher levels in the ileum. Depressive disorder and gastrointestinal dysfunction after myocardial infarction involve abnormal tryptophan-5-hydroxytryptamine metabolism, which may explain the somatic, cognitive, and psychiatric symptoms of depression commonly observed after myocardial infarction. Peripheral 5-hydroxytryptamine is an important substance in the gut-brain axis, and its abnormal metabolism is a critical finding after myocardial infarct. PMID:28212441

  20. Depressive disorder and gastrointestinal dysfunction after myocardial infarct are associated with abnormal tryptophan-5-hydroxytryptamine metabolism in rats.

    PubMed

    Lu, Xiaofang; Wang, Yuefen; Liu, Chunyan; Wang, Yangang

    2017-01-01

    In this study, we investigated the relationship between tryptophan-5-hydroxytryptamine metabolism, depressive disorder, and gastrointestinal dysfunction in rats after myocardial infarction. Our goal was to elucidate the physiopathologic bases of somatic/psychiatric depression symptoms after myocardial infarction. A myocardial infarction model was established by permanent occlusion of the left anterior descending coronary artery. Depression-like behavior was evaluated using the sucrose preference test, open field test, and forced swim test. Gastric retention and intestinal transit were detected using the carbon powder labeling method. Immunohistochemical staining was used to detect indoleamine 2,3-dioxygenase expression in the hippocampus and ileum. High-performance liquid chromatography with fluorescence and ultraviolet detection determined the levels of 5-hydroxytryptamine, its precursor tryptophan, and its metabolite 5-hydroxyindoleacetic acid in the hippocampus, distal ileum, and peripheral blood. All data were analyzed using one-way analyses of variance. Three weeks after arterial occlusion, rats in the model group began to exhibit depression-like symptoms. For example, the rate of sucrose consumption was reduced, the total and central distance traveled in the open field test were reduced, and immobility time was increased, while swimming, struggling and latency to immobility were decreased in the forced swim test. Moreover, the gastric retention rate and gastrointestinal transit rate were increased in the model group. Expression of indoleamine 2,3-dioxygenase was increased in the hippocampus and ileum, whereas 5-hydroxytryptamine metabolism was decreased, resulting in lower 5-hydroxytryptamine and 5-hydroxyindoleacetic acid levels in the hippocampus and higher levels in the ileum. Depressive disorder and gastrointestinal dysfunction after myocardial infarction involve abnormal tryptophan-5-hydroxytryptamine metabolism, which may explain the somatic, cognitive, and psychiatric symptoms of depression commonly observed after myocardial infarction. Peripheral 5-hydroxytryptamine is an important substance in the gut-brain axis, and its abnormal metabolism is a critical finding after myocardial infarct.

  1. Selective Cerebro-Myocardial Perfusion in Complex Neonatal Aortic Arch Pathology: Midterm Results.

    PubMed

    Hoxha, Stiljan; Abbasciano, Riccardo Giuseppe; Sandrini, Camilla; Rossetti, Lucia; Menon, Tiziano; Barozzi, Luca; Linardi, Daniele; Rungatscher, Alessio; Faggian, Giuseppe; Luciani, Giovanni Battista

    2018-04-01

    Aortic arch repair in newborns and infants has traditionally been accomplished using a period of deep hypothermic circulatory arrest. To reduce neurologic and cardiac dysfunction related to circulatory arrest and myocardial ischemia during complex aortic arch surgery, an alternative and novel strategy for cerebro-myocardial protection was recently developed, where regional low-flow perfusion is combined with controlled and independent coronary perfusion. The aim of the present retrospective study was to assess short-term and mid-term results of selective and independent cerebro-myocardial perfusion in neonatal aortic arch surgery. From April 2008 to August 2015, 28 consecutive neonates underwent aortic arch surgery under cerebro-myocardial perfusion. There were 17 male and 11 female, with median age of 15 days (3-30 days) and median body weight of 3 kg (1.6-4.2 kg), 9 (32%) of whom with low body weight (<2.5 kg). The spectrum of pathologies treated was heterogeneous and included 13 neonates having single-stage biventricular repair (46%), 7 staged biventricular repair (25%), and 8 single-ventricle repair (29%). All operations were performed under moderate hypothermia and with a "beating heart and brain." Average cardiopulmonary bypass time was 131 ± 64 min (42-310 min). A period of cardiac arrest to complete intra-cardiac repair was required in nine patients (32%), and circulatory arrest in 1 to repair total anomalous pulmonary venous connection. Average time of splanchnic ischemia during cerebro-myocardial perfusion was 30 ± 11 min (15-69 min). Renal dysfunction, requiring a period of peritoneal dialysis was observed in 10 (36%) patients, while liver dysfunction was noted only in 3 (11%). There were three (11%) early and two late deaths during a median follow-up of 2.9 years (range 6 months-7.7 years), with an actuarial survival of 82% at 7 years. At latest follow-up, no patient showed signs of cardiac or neurologic dysfunction. The present experience shows that a strategy of selective and independent cerebro-myocardial perfusion is safe, versatile, and feasible in high-risk neonates with complex congenital arch pathology. Encouraging outcomes were noted in terms of cardiac and neurological function, with limited end-organ morbidity. © 2018 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  2. Giant and thrombosed left ventricular aneurysm

    PubMed Central

    de Agustin, Jose Alberto; de Diego, Jose Juan Gomez; Marcos-Alberca, Pedro; Rodrigo, Jose Luis; Almeria, Carlos; Mahia, Patricia; Luaces, Maria; Garcia-Fernandez, Miguel Angel; Macaya, Carlos; de Isla, Leopoldo Perez

    2015-01-01

    Left ventricular aneurysms are a frequent complication of acute extensive myocardial infarction and are most commonly located at the ventricular apex. A timely diagnosis is vital due to the serious complications that can occur, including heart failure, thromboembolism, or tachyarrhythmias. We report the case of a 78-year-old male with history of previous anterior myocardial infarction and currently under evaluation by chronic heart failure. Transthoracic echocardiogram revealed a huge thrombosed and calcified anteroapical left ventricular aneurysm. Coronary angiography demonstrated that the left anterior descending artery was chronically occluded, and revealed a big and spherical mass with calcified borders in the left hemithorax. Left ventriculogram confirmed that this spherical mass was a giant calcified left ventricular aneurysm, causing very severe left ventricular systolic dysfunction. The patient underwent cardioverter-defibrillator implantation for primary prevention. PMID:26225205

  3. Preservation of myocardium during coronary artery bypass surgery.

    PubMed

    Kinoshita, Takeshi; Asai, Tohru

    2012-08-01

    Myocardial protection aims to prevent reversible post-ischemic cardiac dysfunction (myocardial stunning) and irreversible myocardial cell death (myocardial infarction) that occur as a consequence of myocardial ischemia and/or ischemic-reperfusion injury. Although the mortality rate for isolated coronary artery bypass grafting has been markedly reduced during the past decade, myocardial death, as evidenced by elevation in creatine kinase-myocardial band and/or cardiac troponin, is common. This is ascribed to suboptimal myocardial protection during cardiopulmonary bypass or with off-pump technique, early graft failure, distal embolization, and regional or global myocardial ischemia during surgery. An unmet need in contemporary coronary bypass surgery is to find more effective cardioprotective strategies that have the potential for decreasing the morbidity and mortality associated with suboptimal cardioprotection. In the present review article on myocardial protection in contemporary coronary artery bypass surgery, we attempt to elucidate the clinical problems, summarize the outcomes of selected phase III trials, and introduce new perspectives.

  4. Cardiac insulin-like growth factor-1 and cyclins gene expression in canine models of ischemic or overpacing cardiomyopathy.

    PubMed

    Mahmoudabady, Maryam; Mathieu, Myrielle; Touihri, Karim; Hadad, Ielham; Da Costa, Agnes Mendes; Naeije, Robert; Mc Entee, Kathleen

    2009-10-09

    Insulin-like growth factor-1 (IGF-1), transforming growth factor beta (TGFbeta) and cyclins are thought to play a role in myocardial hypertrophic response to insults. We investigated these signaling pathways in canine models of ischemic or overpacing-induced cardiomyopathy. Echocardiographic recordings and myocardial sampling for measurements of gene expressions of IGF-1, its receptor (IGF-1R), TGFbeta and of cyclins A, B, D1, D2, D3 and E, were obtained in 8 dogs with a healed myocardial infarction, 8 dogs after 7 weeks of overpacing and in 7 healthy control dogs. Ischemic cardiomyopathy was characterized by moderate left ventricular systolic dysfunction and eccentric hypertrophy, with increased expressions of IGF-1, IGF-1R and cyclins B, D1, D3 and E. Tachycardiomyopathy was characterized by severe left ventricular systolic dysfunction and dilation with no identifiable hypertrophic response. In the latter model, only IGF-1 was overexpressed while IGF-1R, cyclins B, D1, D3 and E stayed unchanged as compared to controls. The expressions of TGFbeta, cyclins A and D2 were comparable in the 3 groups. The expression of IGF-1R was correlated with the thickness of the interventricular septum, in systole and diastole, and to cyclins B, D1, D3 and E expression. These results agree with the notion that IGF-1/IGF-1R and cyclins are involved in the hypertrophic response observed in cardiomyopathies.

  5. Cardiac insulin-like growth factor-1 and cyclins gene expression in canine models of ischemic or overpacing cardiomyopathy

    PubMed Central

    Mahmoudabady, Maryam; Mathieu, Myrielle; Touihri, Karim; Hadad, Ielham; Da Costa, Agnes Mendes; Naeije, Robert; Mc Entee, Kathleen

    2009-01-01

    Background Insulin-like growth factor-1 (IGF-1), transforming growth factor β (TGFβ) and cyclins are thought to play a role in myocardial hypertrophic response to insults. We investigated these signaling pathways in canine models of ischemic or overpacing-induced cardiomyopathy. Methods Echocardiographic recordings and myocardial sampling for measurements of gene expressions of IGF-1, its receptor (IGF-1R), TGFβ and of cyclins A, B, D1, D2, D3 and E, were obtained in 8 dogs with a healed myocardial infarction, 8 dogs after 7 weeks of overpacing and in 7 healthy control dogs. Results Ischemic cardiomyopathy was characterized by moderate left ventricular systolic dysfunction and eccentric hypertrophy, with increased expressions of IGF-1, IGF-1R and cyclins B, D1, D3 and E. Tachycardiomyopathy was characterized by severe left ventricular systolic dysfunction and dilation with no identifiable hypertrophic response. In the latter model, only IGF-1 was overexpressed while IGF-1R, cyclins B, D1, D3 and E stayed unchanged as compared to controls. The expressions of TGFβ, cyclins A and D2 were comparable in the 3 groups. The expression of IGF-1R was correlated with the thickness of the interventricular septum, in systole and diastole, and to cyclins B, D1, D3 and E expression. Conclusion These results agree with the notion that IGF-1/IGF-1R and cyclins are involved in the hypertrophic response observed in cardiomyopathies. PMID:19818143

  6. Positron Emission Tomography for the Assessment of Myocardial Viability

    PubMed Central

    2005-01-01

    Executive Summary Objective The objective was to update the 2001 systematic review conducted by the Institute For Clinical Evaluative Sciences (ICES) on the use of positron emission tomography (PET) in assessing myocardial viability. The update consisted of a review and analysis of the research evidence published since the 2001 ICES review to determine the effectiveness and cost-effectiveness of PET in detecting left ventricular (LV) viability and predicting patient outcomes after revascularization in comparison with other noninvasive techniques. Background Left Ventricular Viability Heart failure is a complex syndrome that impairs the contractile ability of the heart to maintain adequate blood circulation, resulting in poor functional capacity and increased risk of morbidity and mortality. It is the leading cause of hospitalization in elderly Canadians. In more than two-thirds of cases, heart failure is secondary to coronary heart disease. It has been shown that dysfunctional myocardium resulting from coronary heart disease (CAD) may recover contractile function (i.e. considered viable). Dysfunctional but viable myocardium may have been stunned by a brief episode of ischemia, followed by restoration of perfusion, and may regain function spontaneously. It is believed that repetitive stunning results in hibernating myocardium that will only regain contractile function upon revascularization. For people with CAD and severe LV dysfunction (left ventricular ejection fraction [LVEF] <35%) refractory to medical therapy, coronary artery bypass and heart transplantation are the only treatment options. The opportunity for a heart transplant is limited by scarcityof donor hearts. Coronary artery bypass in these patients is associated with high perioperative complications; however, there is evidence that revascularization in the presence of dysfunctional but viable myocardium is associated with survival benefits and lower rates of cardiac events. The assessment of left ventricular (LV) viability is, therefore, critical in deciding whether a patient with coronary artery disease and severe LV dysfunction should undergo revascularization, receive a heart transplant, or remain on medical therapy. Assessment of Left Ventricular Viability Techniques for assessing myocardial viability depend on the measurement of a specific characteristic of viable myocytes such as cell membrane integrity, preserved metabolism, mitochondria integrity, and preserved contractile reserve. In Ontario, single photon emission computed tomography (SPECT) using radioactive 201thallium is the most commonly used technique followed by dobutamine echocardiography. Newer techniques include SPECT using technetium tracers, cardiac magnetic resonance imaging, and PET, the subject of this review. Positron Emission Tomography PET is a nuclear imaging technique based on the metabolism of radioactive analogs of normal substrates such as glucose and water. The radiopharmaceutical used most frequently in myocardial viability assessment is F18 fluorodeoxyglucose (FDG), a glucose analog. The procedure involves the intravenous administration of FDG under controlled glycemic conditions, and imaging with a PET scanner. The images are reconstructed using computer software and analyzed visually or semi-quantitatively, often in conjunction with perfusion images. Dysfunctional but stunned myocardium is characterized by normal perfusion and normal FDG uptake; hibernating myocardium exhibits reduced perfusion and normal/enhanced FDG uptake (perfusion/metabolism mismatch), whereas scar tissue is characterized by reduction in both perfusion and FDG uptake (perfusion/metabolism match). Review Strategy The Medical Advisory Secretariat used a search strategy similar to that used in the 2001 ICES review to identify English language reports of health technology assessments and primary studies in selected databases, published from January 1, 2001 to April 20, 2005. Patients of interest were those with CAD and severe ventricular dysfunction being considered for revascularization that had undergone viability assessment using either PET and/or other noninvasive techniques. The outcomes of interest were diagnostic and predictive accuracy with respect to recovery of regional or global LV function, long-term survival and cardiac events, and quality of life. Other outcomes of interest were impact on treatment decision, adverse events, and cost-effectiveness ratios. Of 456 citations, 8 systematic reviews/meta-analyses and 37 reports on primary studies met the selection criteria. The reports were categorized using the Medical Advisory Secretariat levels of evidence system, and the quality of the reports was assessed using the criteria of the Quality Assessment of Diagnostic Accuracy Studies (QUADAS) developed by the Centre for Dissemination of Research (National Health Service, United Kingdom). Analysis of sensitivity, specificity, predictive values and likelihood ratios were conducted for all data as well as stratified by mean left ventricular ejection fraction (LVEF). There were no randomized controlled trials. The included studies compared PET with one or more other noninvasive viability tests on the same group of patients or examined the long-term outcomes of PET viability assessments. The quality assessment showed that about 50% or more of the studies had selection bias, interpreted tests without blinding, excluded uninterpretable segments in the analysis, or did not have clearly stated selection criteria. Data from the above studies were integrated with data from the 2001 ICES review for analysis and interpretation. Summary of Findings The evidence was derived from populations with moderate to severe ischemic LV dysfunction with an overall quality that ranges from moderate to low. PET appears to be a safe technique for assessing myocardial viability. CAD patients with moderate to severe ischemic LV dysfunction and residual viable myocardium had significantly lower 2-year mortality rate (3.2%) and higher event-free survival rates (92% at 3 years) when treated with revascularization than those who were not revascularized but were treated medically (16% mortality at 2-years and 48% 3-year event-free survival). A large meta-analysis and moderate quality studies of diagnostic accuracy consistently showed that compared to other noninvasive diagnostic tests such as thallium SPECT and echocardiography, FDG PET has: Higher sensitivity (median 90%, range 71%–100%) and better negative likelihood ratio (median 0.16, range 0–0.38; ideal <0.1) for predicting regional myocardial function recovery after revascularization. Specificity (median 73%, range 33%–91%) that is similar to other radionuclide imaging but lower than that of dobutamine echocardiography Less useful positive likelihood ratio (median 3.1, range 1.4 –9.2; ideal>10) for predicting segmental function recovery. Taking positive and negative likelihood ratios together suggests that FDG PET and dobutamine echocardiography may produce small but sometimes important changes in the probability of recovering regional wall motion after revascularization. Given its higher sensitivity, PET is less likely to produce false positive results in myocardial viability. PET, therefore, has the potential to identify some patients who might benefit from revascularization, but who would not have been identified as suitable candidates for revascularization using thallium SPECT or dobutamine echocardiography. PET appears to be superior to other nuclear imaging techniques including SPECT with 201thallium or technetium labelled tracers, although recent studies suggest that FDG SPECT may have comparable diagnostic accuracy as FDG PET for predicting regional and global LV function recovery. No firm conclusion can be reached about the incremental value of PET over other noninvasive techniques for predicting global function improvement or long-term outcomes in the most important target population (patients with severe ischemic LV dysfunction) due to lack of direct comparison. An Ontario-based economic analysis showed that in people with CAD and severe LV dysfunction and who were found to have no viable myocardium or indeterminate results by thallium SPECT, the use of PET as a follow-up assessment would likely result in lower cost and better 5-year survival compared to the use of thallium SPECT alone. The projected annual budget impact of adding PET under the above scenario was estimated to range from $1.5 million to $2.3 million. Conclusion In patients with severe LV dysfunction, that are deemed to have no viable myocardium or indeterminate results in assessments using other noninvasive tests, PET may have a role in further identifying patients who may benefit from revascularization. No firm conclusion can be drawn on the impact of PET viability assessment on long-term clinical outcomes in the most important target population (i.e. patients with severe LV dysfunction). PMID:23074467

  7. Folic acid prevents cardiac dysfunction and reduces myocardial fibrosis in a mouse model of high-fat diet-induced obesity.

    PubMed

    Li, Wei; Tang, Renqiao; Ouyang, Shengrong; Ma, Feifei; Liu, Zhuo; Wu, Jianxin

    2017-01-01

    Folic acid (FA) is an antioxidant that can reduce reactive oxygen species generation and can blunt cardiac dysfunction during ischemia. We hypothesized that FA supplementation prevents cardiac fibrosis and cardiac dysfunction induced by obesity. Six-week-old C57BL6/J mice were fed a high-fat diet (HFD), normal diet (ND), or an HFD supplemented with folic acid (FAD) for 14 weeks. Cardiac function was measured using a transthoracic echocardiographic exam. Phenotypic analysis included measurements of body and heart weight, blood glucose and tissue homocysteine (Hcy) content, and heart oxidative stress status. HFD consumption elevated fasting blood glucose levels and caused obesity and heart enlargement. FA supplementation in HFD-fed mice resulted in reduced fasting blood glucose, heart weight, and heart tissue Hcy content. We also observed a significant cardiac systolic dysfunction when mice were subjected to HFD feeding as indicated by a reduction in the left ventricular ejection fraction and fractional shortening. However, FAD treatment improved cardiac function. FA supplementation protected against cardiac fibrosis induced by HFD. In addition, HFD increased malondialdehyde concentration of the heart tissue and reduced the levels of antioxidant enzyme, glutathione, and catalase. HFD consumption induced myocardial oxidant stress with amelioration by FA treatment. FA supplementation significantly lowers blood glucose levels and heart tissue Hcy content and reverses cardiac dysfunction induced by HFD in mice. These functional improvements of the heart may be mediated by the alleviation of oxidative stress and myocardial fibrosis.

  8. Curcumin ameliorates cardiac dysfunction induced by mechanical trauma.

    PubMed

    Li, Xintao; Cao, Tingting; Ma, Shuo; Jing, Zehao; Bi, Yue; Zhou, Jicheng; Chen, Chong; Yu, Deqin; Zhu, Liang; Li, Shuzhuang

    2017-11-05

    Curcumin, a phytochemical component derived from turmeric (Carcuma longa), has been extensively investigated because of its anti-inflammatory and anti-oxidative properties. Inflammation and oxidative stress play critical roles in posttraumatic cardiomyocyte apoptosis, which contributes to secondary cardiac dysfunction. This research was designed to identify the protective effect of curcumin on posttraumatic cardiac dysfunction and investigate its underlying mechanism. Noble-Collip drum was used to prepare a mechanical trauma (MT) model of rats, and the hemodynamic responses of traumatized rats were observed by ventricular intubation 12h after trauma. Myocardial apoptosis was determined through terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining and caspase-3 activity assay. Tumor necrosis factor-α (TNF-α) and reactive oxygen species (ROS) generated by monocytes and myocardial cells were identified through enzyme-linked immunosorbent assay (ELISA), and the intracellular alteration of Ca 2+ in cardiomyocytes was examined through confocal microscopy. In vivo, curcumin effectively ameliorated MT-induced secondary cardiac dysfunction and significantly decreased the apoptotic indices of the traumatized myocardial cells. In vitro, curcumin inhibited TNF-α production by monocytes and reduced the circulating TNF-α levels. With curcumin pretreatment, ROS production and Ca 2+ overload in H9c2 cells were attenuated when these cells were incubated with traumatic plasma. Therefore, curcumin can effectively ameliorate MT-induced cardiac dysfunction mainly by inhibiting systemic inflammatory responses and by weakening oxidative stress reaction and Ca 2+ overload in cardiomyocytes. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Effects of intraaortic balloon augmentation in a porcine model of endotoxemic shock.

    PubMed

    Engoren, Milo; Habib, Robert H

    2004-03-01

    Patients with septic shock commonly have myocardial dysfunction associated with lactic acid production and troponin I release. The purpose of this study was to evaluate the effects on intraaortic balloon pump (IABP) support on myocardial dysfunction. Prospective, randomized controlled study. Animal research laboratory. Ten pigs had arterial, pulmonary arterial, and coronary catheters inserted. After receiving endotoxin infusion over 30 min, half the animals received IABP support. Coronary sinus lactic acid levels (P< 0.05 for both 90 min versus baseline and 60 min versus baseline) and arterial lactic acid levels (P < 0.05 for both 90 min versus baseline and 60 min versus baseline) increased with time but did not differ between IABP and sham groups. While overall there was no difference with time in myocardial lactic acid consumption or production (calculated as arterial lactic acid level minus coronary sinus lactic acid level), the IABP group showed net myocardial lactic acid consumption at 90 min, while the sham group showed myocardial lactic acid production. Three of five animals in each group showed troponin I release. The levels were similar and did not differ between groups. IABP had no benefits in this porcine model of endotoxemic shock.

  10. Cardiac-specific overexpression of aldehyde dehydrogenase 2 exacerbates cardiac remodeling in response to pressure overload.

    PubMed

    Dassanayaka, Sujith; Zheng, Yuting; Gibb, Andrew A; Cummins, Timothy D; McNally, Lindsey A; Brittian, Kenneth R; Jagatheesan, Ganapathy; Audam, Timothy N; Long, Bethany W; Brainard, Robert E; Jones, Steven P; Hill, Bradford G

    2018-06-01

    Pathological cardiac remodeling during heart failure is associated with higher levels of lipid peroxidation products and lower abundance of several aldehyde detoxification enzymes, including aldehyde dehydrogenase 2 (ALDH2). An emerging idea that could explain these findings concerns the role of electrophilic species in redox signaling, which may be important for adaptive responses to stress or injury. The purpose of this study was to determine whether genetically increasing ALDH2 activity affects pressure overload-induced cardiac dysfunction. Mice subjected to transverse aortic constriction (TAC) for 12 weeks developed myocardial hypertrophy and cardiac dysfunction, which were associated with diminished ALDH2 expression and activity. Cardiac-specific expression of the human ALDH2 gene in mice augmented myocardial ALDH2 activity but did not improve cardiac function in response to pressure overload. After 12 weeks of TAC, ALDH2 transgenic mice had larger hearts than their wild-type littermates and lower capillary density. These findings show that overexpression of ALDH2 augments the hypertrophic response to pressure overload and imply that downregulation of ALDH2 may be an adaptive response to certain forms of cardiac pathology. Copyright © 2018. Published by Elsevier B.V.

  11. Coronary Artery Disease and Outcomes of Aortic Valve Replacement for Severe Aortic Stenosis

    PubMed Central

    Beach, Jocelyn M.; Mihaljevic, Tomislav; Svensson, Lars G.; Rajeswaran, Jeevanantham; Marwick, Thomas; Griffin, Brian; Johnston, Douglas R.; Sabik, Joseph F.; Blackstone, Eugene H.

    2014-01-01

    Objectives We contrast risk profiles and compare outcomes of patients with severe aortic stenosis (AS) and coronary artery disease (CAD) who underwent aortic valve replacement (AVR) and coronary artery bypass grafting (AS+CABG) with those of patients with isolated AS who underwent AVR alone. Background In patients with severe AS, CAD is often an incidental finding with underappreciated survival implications. Methods From 10/1991–7/2010, 2,286 patients underwent AVR+CABG and 1,637 AVR alone. A propensity score was developed and used for matched comparisons of outcomes (1,082 patient pairs). Analyses of long-term mortality were performed for each group, then combined to identify common and unique risk factors. Results Patients with AS+CAD vs. isolated AS were older, more symptomatic, more likely to be hypertensive, had lower ejection fraction and greater arteriosclerotic burden, but less severe AS. Hospital morbidity and long-term survival were poorer (43% vs. 59% at 10 years). Both groups shared many mortality risk factors; however, early risk among AS+CAD patients reflected effects of CAD; late risk reflected diastolic left ventricular dysfunction expressed as ventricular hypertrophy and left atrial enlargement. Patients with isolated AS and few comorbidities had the best outcome, those with CAD without myocardial damage had intermediate outcome equivalent to propensity-matched isolated AS patients, and those with CAD, myocardial damage, and advanced comorbidities had the worst outcome. Conclusions Cardiovascular risk factors and comorbidities must be considered in managing patients with severe AS. Patients with severe AS and CAD risk factors should undergo early diagnostics and AVR+CABG before ischemic myocardial damage occurs. PMID:23428216

  12. Effects of potassium/lidocaine-induced cardiac standstill during cardiopulmonary resuscitation in a pig model of prolonged ventricular fibrillation.

    PubMed

    Kook Lee, Byung; Joon Lee, Seung; Woon Jeung, Kyung; Youn Lee, Hyoung; Jeong, In Seok; Lim, Victor; Hun Jung, Yong; Heo, Tag; Il Min, Yong

    2014-04-01

    Several studies in patients who underwent open heart surgery found that myocardial ischemic damage was reduced by potassium cardioplegia combined with lidocaine infusion. The authors evaluated the effects of potassium/lidocaine-induced cardiac standstill during conventional cardiopulmonary resuscitation (CPR) on myocardial injury and left ventricular dysfunction after resuscitation from prolonged ventricular fibrillation (VF) cardiac arrest in a pig model. Ventricular fibrillation was induced in 16 pigs, and circulatory arrest was maintained for 14 minutes. Animals were then resuscitated by standard CPR. Animals were randomized at the start of CPR to receive 20 mL of saline (control group) or 0.9 mEq/kg potassium chloride and 1.2 mg/kg lidocaine diluted to 20 mL (K-lido group). Seven animals in each group achieved return of spontaneous circulation (ROSC; p=1.000). Four of the K-lido group animals (50%) achieved ROSC without countershock. Resuscitated animals in the K-lido group required fewer countershocks (p=0.004), smaller doses of epinephrine (p=0.009), and shorter durations of CPR (p=0.004) than did the control group. The uncorrected troponin-I at 4 hours after ROSC was lower in the K-lido group compared with the control group (2.82 ng/mL, 95% confidence interval [CI]=1.07 to 3.38 ng/mL vs. 6.55 ng/mL, 95% CI=4.84 to 13.30 ng/mL; p=0.025), although the difference was not significant after Bonferroni correction. The magnitude of reduction in left ventricular ejection fraction (LVEF) between baseline and 1 hour after ROSC was significantly lower in the K-lido group (26.5%, SD±6.1% vs. 39.1%, SD±6.8%; p=0.004). In a pig model of untreated VF cardiac arrest for 14 minutes, resuscitation with potassium/lidocaine-induced cardiac standstill during conventional CPR tended to reduce myocardial injury and decreased the severity of postresuscitation myocardial dysfunction significantly. © 2014 by the Society for Academic Emergency Medicine.

  13. Inhibition of CYP2E1 attenuates chronic alcohol intake-induced myocardial contractile dysfunction and apoptosis.

    PubMed

    Zhang, Rong-Huai; Gao, Jian-Yuan; Guo, Hai-Tao; Scott, Glenda I; Eason, Anna R; Wang, Xiao-Ming; Ren, Jun

    2013-01-01

    Alcohol intake is associated with myocardial contractile dysfunction and apoptosis although the precise mechanism is unclear. This study was designed to examine the effect of the cytochrome P450 enzyme CYP2E1 inhibition on ethanol-induced cardiac dysfunction. Adult male mice were fed a 4% ethanol liquid or pair-fed control diet for 6weeks. Following 2weeks of diet feeding, a cohort of mice started to receive the CYP2E1 inhibitor diallyl sulfide (100mg/kg/d, i.p.) for the remaining feeding duration. Cardiac function was assessed using echocardiographic and IonOptix systems. Western blot analysis was used to evaluate CYP2E1, heme oxygenase-1 (HO-1), iNOS, the intracellular Ca(2+) regulatory proteins sarco(endo)plasmic reticulum Ca(2+)-ATPase, Na(+)Ca(2+) exchanger and phospholamban, pro-apoptotic protein cleaved caspase-3, Bax, c-Jun-NH(2)-terminal kinase (JNK) and apoptosis signal-regulating kinase (ASK-1). Ethanol led to elevated levels of CYP2E1, iNOS and phospholamban, decreased levels of HO-1 and Na(+)Ca(2+) exchanger, cardiac contractile and intracellular Ca(2+) defects, cardiac fibrosis, overt O(2)(-) production, and apoptosis accompanied with increased phosphorylation of JNK and ASK-1, the effects were significantly attenuated or ablated by diallyl sulfide. Inhibitors of JNK and ASK-1 but not HO-1 inducer or iNOS inhibitor obliterated ethanol-induced cardiomyocyte contractile dysfunction, substantiating a role for JNK and ASK-1 signaling in ethanol-induced myocardial injury. Taken together, these findings suggest that ethanol metabolism through CYP2E1 may contribute to the pathogenesis of alcoholic cardiomyopathy including myocardial contractile dysfunction, oxidative stress and apoptosis, possibly through activation of JNK and ASK-1 signaling. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Cardiac computed tomography of an asymptomatic 48-year-old woman with ALCAPA syndrome.

    PubMed

    Sajjadieh Khajouei, Amirreza; Samie-Nasab, Mohammadreza; Behjati, Mohaddeseh; Biederman, Robert W

    2016-12-01

    Untreated ALCAPA cases most often die in infancy. Adults with untreated ALCAPA commonly present with mitral regurgitation, severe left ventricular dysfunction, and sometimes myocardial infarction. Herein, we present an asymptomatic adult female with ALCAPA recognized through cardiac computed tomography (CT). In ALCAPA, like other coronary anomalies, cardiac CT is often instrumental in providing unique noninvasive and clinically relevant evaluation. Herein, we present an atypical presentation of an asymptomatic middle-aged adult female with ALCAPA. © 2016, Wiley Periodicals, Inc.

  15. Regional myocardial extraction of a radioiodinated branched chain fatty acid during right ventricular pressure overload due to acute pulmonary hypertension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurford, W.; Lowenstein, E.; Zapol, W.

    1985-05-01

    To determine whether branched chain fatty acid extraction is reduced during right ventricular (RV) dysfunction due to acute pulmonary artery hypertension, studies were done in 6 anesthetized dogs. Regional branched chain fatty acid extraction was measured by comparing the myocardial uptake of I-125 labeled 15-(p-(iodophenyl))-3-methylpentadecanoic acid (I-PDA) to myocardial blood flow. Acute pulmonary hypertension was induced by incremental intravenous injection of 100 micron diameter glass beads into six pentobarbital anesthetized, mechanically ventilated dogs. Myocardial blood flow was measured by radiolabeled microspheres both under baseline conditions and during pulmonary hypertension. Mean RV pressure rose from 12 +- 2 (mean +- SEM)more » to 30 +-3mmHg resulting in a 225 +- 16% increase in RV stroke work. RV ejection fraction, as assessed by gated blood pool scans fell from 39 +- 2 to 18 +- 2%. Left ventricular (LV) pressures, stroke work and ejection fraction were unchanged. Myocardial blood flow increased 132 + 59% in the RV free wall and 67 +- 22% in the RV septum. LV blood flow was unchanged. Despite increased RV work and myocardial blood flow, no differences were noted in the branched chain fatty acid extraction ratios among LV or RV free walls or septum. The authors conclude that early RV dysfunction associated with pulmonary artery hypertension is not due to inadequate myocardial blood flow or branched chain fatty acid extraction.« less

  16. β-Adrenergic receptors desensitization is not involved in exercise-induced cardiac fatigue: NADPH oxidase-induced oxidative stress as a new trigger.

    PubMed

    Vitiello, Damien; Boissière, Julien; Doucende, Grégory; Gayrard, Sandrine; Polge, Anne; Faure, Patrice; Goux, Aurélie; Tanguy, Stéphane; Obert, Philippe; Reboul, Cyril; Nottin, Stéphane

    2011-11-01

    Prolonged strenuous exercise (PSE) induces transient left ventricular (LV) dysfunction. Previous studies suggest that β-adrenergic pathway desensitization could be involved in this phenomenon, but it remains to be confirmed. Moreover, other underlying mechanisms involving oxidative stress have been recently proposed. The present study aimed to evaluate the involvement of both the β-adrenergic pathway and NADPH oxidase (Nox) enzyme-induced oxidative stress in myocardial dysfunction in rats following PSE. Rats were divided into 4 groups: controls (Ctrl), 4-h exercised on treadmill (PSE), and 2 groups in which Nox enzyme was inhibited with apocynin treatment (Ctrl APO and PSE APO, respectively). We evaluated cardiac function in vivo and ex vivo during basal conditions and isoproterenol stress. GSH/GSSG ratio, cardiac troponin I (cTnI) release, and lipid peroxidation (MDA) were evaluated. PSE induced a decrease in LV developed pressure, intrinsic myocardial contractility, and relaxation associated with an increase in plasma cTnI release. Our in vivo and ex vivo results demonstrated no differences in myocardial response to isoproterenol and of effective dose 50 between control and PSE rats. Interestingly, the LV dysfunction was reversed by apocynin treatment. Moreover, apocynin prevented cellular oxidation [GSH/GSSG ratio: PSE APO rats vs. PSE rats in arbitrary units (au): 1.98 ± 0.07 vs. 1.35 ± 0.10; P < 0.001]. However, no differences in MDA were observed between groups. These data suggest that myocardial dysfunction observed after PSE was not due to β-adrenergic receptor desensitization but could be due to a signaling oxidative stress from the Nox enzyme.

  17. Cardiac-Specific Deletion of Pyruvate Dehydrogenase Impairs Glucose Oxidation Rates and Induces Diastolic Dysfunction.

    PubMed

    Gopal, Keshav; Almutairi, Malak; Al Batran, Rami; Eaton, Farah; Gandhi, Manoj; Ussher, John Reyes

    2018-01-01

    Obesity and type 2 diabetes (T2D) increase the risk for cardiomyopathy, which is the presence of ventricular dysfunction in the absence of underlying coronary artery disease and/or hypertension. As myocardial energy metabolism is altered during obesity/T2D (increased fatty acid oxidation and decreased glucose oxidation), we hypothesized that restricting myocardial glucose oxidation in lean mice devoid of the perturbed metabolic milieu observed in obesity/T2D would produce a cardiomyopathy phenotype, characterized via diastolic dysfunction. We tested our hypothesis via producing mice with a cardiac-specific gene knockout for pyruvate dehydrogenase (PDH, gene name Pdha1 ), the rate-limiting enzyme for glucose oxidation. Cardiac-specific Pdha1 deficient ( Pdha1 Cardiac-/- ) mice were generated via crossing a tamoxifen-inducible Cre expressing mouse under the control of the alpha-myosin heavy chain (αMHC-MerCreMer) promoter with a floxed Pdha1 mouse. Energy metabolism and cardiac function were assessed via isolated working heart perfusions and ultrasound echocardiography, respectively. Tamoxifen administration produced an ~85% reduction in PDH protein expression in Pdha1 Cardiac-/- mice versus their control littermates, which resulted in a marked reduction in myocardial glucose oxidation and a corresponding increase in palmitate oxidation. This myocardial metabolism profile did not impair systolic function in Pdha1 Cardiac-/- mice, which had comparable left ventricular ejection fractions and fractional shortenings as their αMHC-MerCreMer control littermates, but did produce diastolic dysfunction as seen via the reduced mitral E/A ratio. Therefore, it does appear that forced restriction of glucose oxidation in the hearts of Pdha1 Cardiac-/- mice is sufficient to produce a cardiomyopathy-like phenotype, independent of the perturbed metabolic milieu observed in obesity and/or T2D.

  18. Correlation of left ventricular systolic dysfunction determined by low ejection fraction and 30-day mortality in patients with severe sepsis and septic shock: a systematic review and meta-analysis.

    PubMed

    Sevilla Berrios, Ronaldo A; O'Horo, John C; Velagapudi, Venu; Pulido, Juan N

    2014-08-01

    The prognostic implications of myocardial dysfunction in patients with sepsis and its association with mortality are controversial. Several tools have been proposed to evaluate cardiac function in these patients, but their usefulness beyond guiding therapy is unclear. We review the value of echocardiographic estimate of left ventricular ejection fraction (LVEF) in the setting of severe sepsis and/or septic shock and its correlation with 30-day mortality. We conducted a systematic review and meta-analysis to evaluate the prognostic functionality of newly diagnosed LV systolic dysfunction by transthoracic echocardiography on critical ill patients admitted to the intensive care unit with severe sepsis or septic shock. A search of EMBASE and PubMed, Ovide MEDLINE, and Cochrane CENTRAL medical databases yielded 7 studies meeting inclusion criteria reporting on a total of 585 patients. The pooled sensitivity of depressed LVEF for mortality was 52% (95% confidence interval [CI], 29%-73%), and pooled specificity was 63% (95% CI, 53%-71%). Summary receiver operating characteristic curve showed an area under the curve of 0.62 (95% CI, 0.58-0.67). The overall mortality diagnostic odd ratio for septic patients with LV systolic dysfunction was 1.92 (95% CI, 1.27-2.899). Statistical heterogeneity of studies was moderate. The presence of new LV systolic dysfunction associated with sepsis and defined as low LVEF is neither a sensitive nor a specific predictor of mortality. These findings are limited because of the heterogeneity and underpower of the studies. Further research into this method is warranted. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Quantification of coronary flow reserve in patients with ischaemic and non-ischaemic cardiomyopathy and its association with clinical outcomes.

    PubMed

    Majmudar, Maulik D; Murthy, Venkatesh L; Shah, Ravi V; Kolli, Swathy; Mousavi, Negareh; Foster, Courtney R; Hainer, Jon; Blankstein, Ron; Dorbala, Sharmila; Sitek, Arkadiusz; Stevenson, Lynne W; Mehra, Mandeep R; Di Carli, Marcelo F

    2015-08-01

    Patients with left ventricular systolic dysfunction frequently show abnormal coronary vascular function, even in the absence of overt coronary artery disease. Moreover, the severity of vascular dysfunction might be related to the aetiology of cardiomyopathy.We sought to determine the incremental value of assessing coronary vascular dysfunction among patients with ischaemic (ICM) and non-ischaemic (NICM) cardiomyopathy at risk for adverse cardiovascular outcomes. Coronary flow reserve (CFR, stress/rest myocardial blood flow) was quantified in 510 consecutive patients with rest left ventricular ejection fraction (LVEF) ≤45% referred for rest/stress myocardial perfusion PET imaging. The primary end point was a composite of major adverse cardiovascular events (MACE) including cardiac death, heart failure hospitalization, late revascularization, and aborted sudden cardiac death.Median follow-up was 8.2 months. Cox proportional hazards model was used to adjust for clinical variables. The annualized MACE rate was 26.3%. Patients in the lowest two tertiles of CFR (CFR ≤ 1.65) experienced higher MACE rates than those in the highest tertile (32.6 vs. 15.5% per year, respectively, P = 0.004), irrespective of aetiology of cardiomyopathy. Impaired coronary vascular function, as assessed by reduced CFR by PET imaging, is common in patients with both ischaemic and non-ischaemic cardiomyopathy and is associated with MACE. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  20. Assessment of myocardial viability: comparison of echocardiography versus cardiac magnetic resonance imaging in the current era.

    PubMed

    Tomlinson, David R; Becher, Harald; Selvanayagam, Joseph B

    2008-06-01

    Detecting viable myocardium, whether hibernating or stunned, is of clinical significance in patients with coronary artery disease and left ventricular dysfunction. Echocardiographic assessments of myocardial thickening and endocardial excursion during dobutamine infusion provide a highly specific marker for myocardial viability, but with relatively less sensitivity. The additional modalities of myocardial contrast echocardiography and tissue Doppler have recently been proposed to provide further, quantitative measures of myocardial viability assessment. Cardiac magnetic resonance (CMR) has become popular for the assessment of myocardial viability as it can assess cardiac function, volumes, myocardial scar, and perfusion with high-spatial resolution. Both 'delayed enhancement' CMR and dobutamine stress CMR have important roles in the assessment of patients with ischaemic cardiomyopathy. This article reviews the recent advances in both echocardiography and CMR for the clinical assessment of myocardial viability. It attempts to provide a pragmatic approach toward the patient-specific assessment of this important clinical problem.

  1. Overexpression of Hsp20 Prevents Endotoxin-Induced Myocardial Dysfunction and Apoptosis via Inhibition of NF-κB Activation

    PubMed Central

    Wang, Xiaohong; Zingarelli, Basilia; Connor, Michael O’; Zhang, Pengyuan; Adeyemo, Adeola; Kranias, Evangelia G.; Wang, Yigang; Fan, Guo-Chang

    2009-01-01

    The occurrence of cardiovascular dysfunction in sepsis is associated with a significantly increased mortality rate of 70% to 90% compared with 20% in septic patients without cardiovascular impairment. Thus, rectification or blockade of myocardial depressant factors should partly ameliorate sepsis progression. Heat shock protein 20 (Hsp20) has been shown to enhance myocardial contractile function and protect against doxorubicin-induced cardiotoxicity. To investigate the possible role of Hsp20 in sepsis-mediated cardiac injury, we first examined the expression profiles of five major Hsps in response to lipopolysaccharide (LPS) challenge, and observed that only the expression of Hsp20 was downregulated in LPS-treated myocardium, suggesting that this decrease might be one of mechanisms contributing to LPS-induced cardiovascular defects. Further studies using loss-of-function and gain-of function approaches in adult rat cardiomyocytes verified that reduced Hsp20 levels were indeed correlated with the impaired contractile function. In fact, overexpression of Hsp20 significantly enhanced cardiomyocyte contractility upon LPS treatment. Moreover, after administration of LPS (25μg/g) in vivo, Hsp20 transgenic mice (10-fold overexpression) displayed: 1) an improvement in myocardial function; 2) reduced the degree of cardiac apoptosis; and 3) decreased NF-κB activity, accompanied with reduced myocardial cytokines IL-1β and TNF-α production, compared to the LPS-treated non-transgenic littermate controls. Thus, the increases in Hsp20 levels can protect against LPS-induced cardiac apoptosis and dysfunction, associated with inhibition of NF-κB activity, suggesting that Hsp20 may be a new therapeutic agent for the treatment of sepsis. PMID:19501592

  2. Pannus-related prosthetic valve dysfunction. Case report

    PubMed Central

    MOLDOVAN, MARIA-SÎNZIANA; BEDELEANU, DANIELA; KOVACS, EMESE; CIUMĂRNEAN, LORENA; MOLNAR, ADRIAN

    2016-01-01

    Pannus-related prosthetic valve dysfunction, a complication of mechanical prosthetic valve replacement, is rare, with a slowly progressive evolution, but it can be acute, severe, requiring surgical reintervention. We present the case of a patient with a mechanical single disc aortic prosthesis, with moderate prosthesis-patient mismatch, minor pannus found on previous ultrasound examinations, who presented to our service with angina pain with a duration of 1 hour, subsequently interpreted as non-ST segment elevation myocardial infarction (NSTEMI) syndrome. Coronarography showed normal epicardial coronary arteries, an ample movement of the prosthetic disc, without evidence of coronary thromboembolism, and Gated Single-Photon Emission Computerized Tomography (SPECT) with Technetium (Tc)-99m detected no perfusion defects. Transthoracic echocardiography (TTE) evidenced a dysfunctional prosthesis due to a subvalvular mass; transesophageal echocardiography (TOE) showed the interference of this mass, with a pannus appearance, with the closure of the prosthetic disc. Under conditions of repeated angina episodes, under anticoagulant treatment, surgery was performed, with the intraoperative confirmation of pannus and its removal. Postoperative evolution was favorable. This case reflects the diagnostic and therapeutic management problems of pannus-related prosthetic valve dysfunction. PMID:27004041

  3. Pannus-related prosthetic valve dysfunction. Case report.

    PubMed

    Moldovan, Maria-Sînziana; Bedeleanu, Daniela; Kovacs, Emese; Ciumărnean, Lorena; Molnar, Adrian

    2016-01-01

    Pannus-related prosthetic valve dysfunction, a complication of mechanical prosthetic valve replacement, is rare, with a slowly progressive evolution, but it can be acute, severe, requiring surgical reintervention. We present the case of a patient with a mechanical single disc aortic prosthesis, with moderate prosthesis-patient mismatch, minor pannus found on previous ultrasound examinations, who presented to our service with angina pain with a duration of 1 hour, subsequently interpreted as non-ST segment elevation myocardial infarction (NSTEMI) syndrome. Coronarography showed normal epicardial coronary arteries, an ample movement of the prosthetic disc, without evidence of coronary thromboembolism, and Gated Single-Photon Emission Computerized Tomography (SPECT) with Technetium (Tc)-99m detected no perfusion defects. Transthoracic echocardiography (TTE) evidenced a dysfunctional prosthesis due to a subvalvular mass; transesophageal echocardiography (TOE) showed the interference of this mass, with a pannus appearance, with the closure of the prosthetic disc. Under conditions of repeated angina episodes, under anticoagulant treatment, surgery was performed, with the intraoperative confirmation of pannus and its removal. Postoperative evolution was favorable. This case reflects the diagnostic and therapeutic management problems of pannus-related prosthetic valve dysfunction.

  4. [Understanding heart failure].

    PubMed

    Boo, José Fernando Guadalajara

    2006-01-01

    Heart failure is a disease with several definitions. The term "heart failure" is used by has brougth about confusion in the terminology. For this reason, the value of the ejection fraction (< 0.40 or < 0.35) is used in most meganalyses on the treatment of heart failure, avoiding the term "heart failure" that is a confounding concept. In this paper we carefully analyze the meaning of contractility, ventricular function or performance, preload, afterload, heart failure, compensation mechanisms in heart failure, myocardial oxygen consumption, inadequate, adequate and inappropriate hypertrophy, systole, diastole, compliance, problems of relaxation, and diastolic dysfunction. Their definitions are supported by the original scientific descriptions in an attempt to clarify the concepts about ventricular function and heart failure and, in this way, use the same scientific language about the meaning of ventricular function, heart failure, and diastolic dysfunction.

  5. Long-Term Preservation of Left Ventricular Systolic Function in Patients With Refractory Angina Pectoris and Inducible Myocardial Ischemia on Optimal Medical Therapy.

    PubMed

    Slavich, Massimo; Maranta, Francesco; Fumero, Andrea; Godino, Cosmo; Giannini, Francesco; Oppizzi, Michele; Colombo, Antonio; Fragasso, Gabriele; Margonato, Alberto

    2016-05-15

    Refractory angina pectoris (RAP) represents a clinical condition characterized by frequent episodes of chest pain despite therapy optimization. According to myocardial stunning and myocardial hibernation definitions, RAP should represent the ideal condition for systolic dysfunction development. We aim to investigate the evolution of left ventricular (LV) function in patients with RAP. A retrospective study which encompasses 144 patients with RAP referred to our institution from 1999 to December 2014 was performed. Of them, 88 met the inclusion criteria, and LV function was assessed by echocardiography. All of them had persistent angina episodes on top of optimal medical therapy and evidence of significant inducible myocardial ischemia and no further revascularization options. Nitrates consumption rate, time of angina duration, and the number of angina attacks were evaluated. In the whole population, ejection fraction (EF) was 44% ± 2. EF was significantly lower in patients with previous myocardial infarction (41% ± 1.5 vs 51% ± 1.8, p <0.0001). The duration time and the number of angina attacks did not correlate with EF in the whole population and in patients without previous myocardial infarction. In patients with previous myocardial infarction, the number of anginal attacks did not correlate with EF, but EF appeared higher in patients with angina duration >5 years (<5 years EF 37% ± 1 [n = 26]; >5 years 44% ± 2 [n = 44]; p 0.02). Long-term LV function in patients with RAP is generally preserved. A previous history of myocardial infarction is the only determinant in the development of systolic dysfunction. In conclusion, frequent angina attacks and a long-term history of angina are not apparently associated to worse LV function. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Evaluation of the metabolism of high energy phosphates in patients with Chagas' disease.

    PubMed

    Leme, Ana Maria Betim Paes; Salemi, Vera Maria Cury; Parga, José Rodrigues; Ianni, Bárbara Maria; Mady, Charles; Weiss, Robert G; Kalil-Filho, Roberto

    2010-08-01

    Abnormalities in myocardial metabolism have been observed in patients with heart failure of different etiologies. Magnetic resonance spectroscopy (MRS) with phosphorus-31 is a noninvasive technique that allows detection of myocardial metabolic changes. To determine the resting metabolism of high-energy phosphates in patients with Chagas' disease (CD) by MRS with phosphorus-31. We studied 39 patients with CD, 23 with preserved ventricular function (PF Group) and 16 with ventricular dysfunction (VD Group), assessed by Doppler echocardiography. MRS of the anterosseptal region was performed in 39 patients and 8 normal subjects (C Group) through a Phillips 1.5 Tesla device, obtaining the phosphocreatine/beta-adenosine triphosphate myocardial ratio (PCr/β-ATP). The levels of cardiac PCr/β-ATP were reduced in VD Group in relation to PF Group, and the latter presented reduced levels compared to C Group (VD Group: 0.89 ± 0.31 vs PF Group: 1.47 ± 0.34 vs C Group: 1.88 ± 0.08, p < 0.001). A correlation was found between left ventricular ejection fraction and PCr/β-ATP in 39 patients (r = 0.64, p < 0.001). Patients under functional class I (n = 22) presented PCr/β-ATP of 1.45 ± 0.35, and those in functional classes II and III (n = 17), PCr/β-ATP of 0.94 ± 0.36 (p < 0.001). The 31-phosphorus MRS was able to detect non-invasively changes in the rest energy metabolism of patients with Chagas' disease, with and without systolic dysfunction. These changes were related to the severity of heart impairment.

  7. Cardioprotective effects of gallic acid in diabetes-induced myocardial dysfunction in rats

    PubMed Central

    Patel, Snehal S.; Goyal, Ramesh K.

    2011-01-01

    Background: Normalization of hyperglycemia, hyperlipidemia, and oxidative stress is an important objective in preventing diabetes-induced cardiac dysfunction. Objective: This study was undertaken to examine the effects of gallic acid in myocardial dysfunctions associated with type-1 diabetes. Materials and Methods: Diabetes was induced by single intravenous injection of streptozotocin (STZ, 50 mg/kg i.v.). Gallic acid was administered daily at three different doses (100, 50, and 25 mg/kg p.o.) for 8 weeks at the end of which blood samples were collected and analyzed for various biochemical parameters. Results: Injection of STZ produced significant loss of body weight (BW), polyphagia, polydypsia, hyperglycemia, hypoinsulinemia, hyperlipidemia, hypertension, bradycardia, and myocardial functional alterations. Treatment with gallic acid significantly lowered fasting glucose, the AUCglucose level in a dose-dependent manner; however, the insulin level was not increased significantly at same the dose and prevented loss of BW, polyphagia, and polydypsia in diabetic rats. It also prevented STZ-induced hyperlipidemia, hypertension, bradycardia, structural alterations in cardiac tissue such as increase in force of contraction, left ventricular weight to body weight ratio, collagen content, protein content, serum lactate dehydrogenase, and creatinine kinase levels in a dose-dependent manner. Further, treatment also produced reduction in lipid peroxidation and increase in antioxidant parameters in heart of diabetic rats. Conclusion: The results of this study suggest that gallic acid to be beneficial for the treatment of myocardial damage associated with type-1 diabetes. PMID:22224046

  8. Saturated high-fat diet-induced obesity increases adenylate cyclase of myocardial β-adrenergic system and does not compromise cardiac function.

    PubMed

    Vileigas, Danielle F; de Deus, Adriana F; da Silva, Danielle C T; de Tomasi, Loreta C; de Campos, Dijon H S; Adorni, Caroline S; de Oliveira, Scarlet M; Sant'Ana, Paula G; Okoshi, Katashi; Padovani, Carlos R; Cicogna, Antonio C

    2016-09-01

    Obesity is a worldwide pandemic associated with high incidence of cardiovascular disease. The mechanisms by which the obesity leads cardiac dysfunction are not fully elucidated and few studies have evaluated the relationship between obesity and proteins involved in myocardial β-adrenergic (βA) system. The purpose of this study was to evaluate the cardiac function and βA pathway components in myocardium of obese rats. Male Wistar rats were distributed into two groups: control (n = 17; standard diet) and obese (n = 17; saturated high-fat diet) fed for 33 weeks. Nutritional profile and comorbidities were assessed. Cardiac structure and function was evaluated by macroscopic postmortem, echocardiographic and isolated papillary muscle analyzes. Myocardial protein expression of β1- and β2-adrenergic receptors, Gαs protein, adenylate cyclase (AC) and protein kinase A (PKA) was performed by Western blot. Cardiac cyclic adenosine monophosphate (cAMP) levels and PKA activity were assessed by ELISA Obese rats showed increased adiposity index (P < 0.001) and several comorbidities as hypertension, glucose intolerance, insulin resistance, and dyslipidemia compared with control rats. Echocardiographic assessment revealed increased left atrium diameter (C: 4.98 ± 0.38 vs. Ob: 5.47 ± 0.53, P = 0.024) and posterior wall shortening velocity (C: 37.1 ± 3.6 vs. Ob: 41.8 ± 3.8, P = 0.007) in obese group. Papillary muscle evaluation indicated that baseline data and myocardial responsiveness to isoproterenol stimulation were similar between the groups. Protein expression of myocardial AC was higher in obese group than in the control (C: 1.00 ± 0.21 vs. Ob: 1.25 ± 0.10, P = 0.025), whereas the other components were unchanged. These results suggest that saturated high-fat diet-induced obesity was not effective in triggering cardiac dysfunction and impair the beta-adrenergic signaling. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  9. Early detection of right ventricular dysfunction using transthoracic echocardiography in ARDS: a more objective approach.

    PubMed

    Wadia, Subeer Kanwar; Shah, Trushil G; Hedstrom, Grady; Kovach, Julie A; Tandon, Rajive

    2016-12-01

    Right ventricular (RV) dysfunction is an independent predictor of morbidity and mortality in acute respiratory distress syndrome (ARDS). Our goal was to describe morphologic changes in the RV using objective measures on transthoracic echocardiography (TTE) that occur following ARDS. We retrospectively measured changes in the following RV parameters from a pre-ARDS TTE to an ARDS TTE: tricuspid annular plane systolic excursion (TAPSE), myocardial performance index (MPI), fractional area change (FAC), systolic pulmonary artery pressure (SPAP), peak tricuspid regurgitant (TR) velocity, and septal shift. Over 24 months, 14 patients met inclusion/exclusion criteria. Mean TAPSE decreased from 22.4 mm pre-ARDS to 16.3 mm during ARDS, P<.001. Mean MPI increased from 0.19 to 0.38, P=.001. Mean FAC decreased from 60.8% to 41.2%, P=.003. Peak TR velocity increased from 2.67 m/s pre-ARDS to 3.31 m/s during ARDS, P=.02. SPAP and septal shift demonstrated trends but not statistically different between pre-ARDS and ARDS states. TAPSE correlated with ARDS severity (PaO 2 /FiO 2 ratios), P=.004, and was lower among 30-day nonsurvivors compared with survivors, P=.002. Mild RV dysfunction is common after ARDS onset. RV morphologic changes coupled with dysfunction can be detected noninvasively through TTE changes with TAPSE, MPI, and FAC. Mild RV dysfunction by TAPSE is associated with ARDS severity and mortality. © 2016, Wiley Periodicals, Inc.

  10. Synergistic role of ADP and Ca2+ in diastolic myocardial stiffness

    PubMed Central

    Sequeira, Vasco; Najafi, Aref; McConnell, Mark; Fowler, Ewan D; Bollen, Ilse A E; Wüst, Rob C I; dos Remedios, Cris; Helmes, Michiel; White, Ed; Stienen, Ger J M; Tardiff, Jil; Kuster, Diederik W D; van der Velden, Jolanda

    2015-01-01

    Abstract Heart failure (HF) with diastolic dysfunction has been attributed to increased myocardial stiffness that limits proper filling of the ventricle. Altered cross-bridge interaction may significantly contribute to high diastolic stiffness, but this has not been shown thus far. Cross-bridge interactions are dependent on cytosolic [Ca2+] and the regeneration of ATP from ADP. Depletion of myocardial energy reserve is a hallmark of HF leading to ADP accumulation and disturbed Ca2+ handling. Here, we investigated if ADP elevation in concert with increased diastolic [Ca2+] promotes diastolic cross-bridge formation and force generation and thereby increases diastolic stiffness. ADP dose-dependently increased force production in the absence of Ca2+ in membrane-permeabilized cardiomyocytes from human hearts. Moreover, physiological levels of ADP increased actomyosin force generation in the presence of Ca2+ both in human and rat membrane-permeabilized cardiomyocytes. Diastolic stress measured at physiological lattice spacing and 37°C in the presence of pathological levels of ADP and diastolic [Ca2+] revealed a 76 ± 1% contribution of cross-bridge interaction to total diastolic stress in rat membrane-permeabilized cardiomyocytes. Inhibition of creatine kinase (CK), which increases cytosolic ADP, in enzyme-isolated intact rat cardiomyocytes impaired diastolic re-lengthening associated with diastolic Ca2+ overload. In isolated Langendorff-perfused rat hearts, CK inhibition increased ventricular stiffness only in the presence of diastolic [Ca2+]. We propose that elevations of intracellular ADP in specific types of cardiac disease, including those where myocardial energy reserve is limited, contribute to diastolic dysfunction by recruiting cross-bridges, even at low Ca2+, and thereby increase myocardial stiffness. Key points Diastolic dysfunction in heart failure patients is evident from stiffening of the passive properties of the ventricular wall. Increased actomyosin interactions may significantly limit diastolic capacity, however, direct evidence is absent. From experiments at the cellular and whole organ level, in humans and rats, we show that actomyosin-related force development contributes significantly to high diastolic stiffness in environments where high ADP and increased diastolic [Ca2+] are present, such as the failing myocardium. Our basal study provides a mechanical mechanism which may partly underlie diastolic dysfunction. PMID:26096258

  11. Myocardial impairment detected by late gadolinium enhancement in hypertrophic cardiomyopathy: comparison with 99mTc-MIBI/tetrofosmin and 123I-BMIPP SPECT.

    PubMed

    Hashimura, Hiromi; Kiso, Keisuke; Yamada, Naoaki; Kono, Atsushi; Morita, Yoshiaki; Fukushima, Kazuto; Higashi, Masahiro; Noguchi, Teruo; Ishibashi-Ueda, Hatsue; Naito, Hiroaki; Sugimura, Kazuro

    2013-06-17

    Myocardial fibrosis is considered to be an important factor in myocardial dysfunction and sudden cardiac death in hypertrophic cardiomyopathy (HCM). The purpose of this study was to compare myocardial fibrosis detected by late gadolinium enhancement (LGE) on cardiac MRI with myocardial perfusion and fatty acid metabolism assessed by single photon emission computed tomography in HCM. We retrospectively evaluated 20 consecutive HCM patients (female, 7; mean age, 53.4 years) who underwent LGE, technetium-99m methoxyisobutylisonitrile/tetrofosmin (99mTc-MIBI/tetrofosmin), and iodine-123 beta-methyl-iodophenylpentadecanoic acid (123I-BMIPP) imaging. We calculated the myocardium-to-lumen signal ratio (M/L) for LGE in 17 segments based on the American Heart Association statement. Scoring of 99mTc-MIBI/tetrofosmin (PI) and 123I-BMIPP (BM) was performed for each segment using a 5-point scale (0, normal; 4, highly decreased). Nineteen of 20 patients (95%) and 153 of 340 segments (45%) showed LGE. M/Ls were 0.42±0.16, 0.55±0.17, and 0.65±0.24 in PI0/BM0, PI0/BM1-4 and PI1-4/BM1-4, respectively. All M/Ls were significantly higher than that of a normal control (0.34±0.14) (p<0.001). Myocardial fibrosis in HCM can occur despite normal perfusion and fatty acid metabolism, and is more strongly associated with disorders of fatty acid metabolism than with perfusion abnormalities. M/L may be a useful indicator of disease severity.

  12. Prevalence of scarred and dysfunctional myocardium in patients with heart failure of ischaemic origin: A cardiovascular magnetic resonance study

    PubMed Central

    2011-01-01

    Background Cardiovascular magnetic resonance (CMR) with late gadolinium enhancement (LGE) can provide unique data on the transmural extent of scar/viability. We assessed the prevalence of dysfunctional myocardium, including partial thickness scar, which could contribute to left ventricular contractile dysfunction in patients with heart failure and ischaemic heart disease who denied angina symptoms. Methods We invited patients with ischaemic heart disease and a left ventricular ejection fraction < 50% by echocardiography to have LGE CMR. Myocardial contractility and transmural extent of scar were assessed using a 17-segment model. Results The median age of the 193 patients enrolled was 70 (interquartile range: 63-76) years and 167 (87%) were men. Of 3281 myocardial segments assessed, 1759 (54%) were dysfunctional, of which 581 (33%) showed no scar, 623 (35%) had scar affecting ≤50% of wall thickness and 555 (32%) had scar affecting > 50% of wall thickness. Of 1522 segments with normal contractile function, only 98 (6%) had evidence of scar on CMR. Overall, 182 (94%) patients had ≥1 and 107 (55%) patients had ≥5 segments with contractile dysfunction that had no scar or ≤50% transmural scar suggesting viability. Conclusions In this cohort of patients with left ventricular systolic dysfunction and ischaemic heart disease, about half of all segments had contractile dysfunction but only one third of these had > 50% of the wall thickness affected by scar, suggesting that most dysfunctional segments could improve in response to an appropriate intervention. PMID:21936915

  13. TAK1 is activated in the myocardium after pressure overload and is sufficient to provoke heart failure in transgenic mice

    NASA Technical Reports Server (NTRS)

    Zhang, D.; Gaussin, V.; Taffet, G. E.; Belaguli, N. S.; Yamada, M.; Schwartz, R. J.; Michael, L. H.; Overbeek, P. A.; Schneider, M. D.

    2000-01-01

    The transforming-growth-factor-beta-activated kinase TAK1 is a member of the mitogen-activated protein kinase kinase kinase family, which couples extracellular stimuli to gene transcription. The in vivo function of TAK1 is not understood. Here, we investigated the potential involvement of TAK1 in cardiac hypertrophy. In adult mouse myocardium, TAK1 kinase activity was upregulated 7 days after aortic banding, a mechanical load that induces hypertrophy and expression of transforming growth factor beta. An activating mutation of TAK1 expressed in myocardium of transgenic mice was sufficient to produce p38 mitogen-activated protein kinase phosphorylation in vivo, cardiac hypertrophy, interstitial fibrosis, severe myocardial dysfunction, 'fetal' gene induction, apoptosis and early lethality. Thus, TAK1 activity is induced as a delayed response to mechanical stress, and can suffice to elicit myocardial hypertrophy and fulminant heart failure.

  14. Abnormal sympathetic innervation of the heart in a patient with Emery-Dreifuss muscular dystrophy.

    PubMed

    Fujiita, Takashi; Shimizu, Masami; Kaku, Bunji; Kanaya, Hounin; Horita, Yuki; Uno, Yoshihide; Yamazaki, Tsukasa; Ohka, Takio; Sakata, Kenji; Mabuchi, Hiroshi

    2005-07-01

    A 33-year-old man was admitted for general malaise and vomiting. An electrocardiogram showed a complete atrioventricular block and an echocardiogram showed right atrial dilatation and normal wall motion of left ventricle (LV). Gene analysis showed nonsense mutation in the STA gene, which codes for emerin, and Emery-Dreifuss muscular dystrophy was diagnosed. An endomyocardial biopsy of right ventricle showed mild hypertrophy of myocytes. Myocardial scintigraphic studies with Tc-99m methoxyisobutylisonitrile (MIBI) and I-123-betamethyl-p-iodophenylpentadecanoic acid (BMIPP) scintigrams showed no abnormalities. In contrast, I-123 metaiodobenzylguanidine (MIBG) scintigrams showed a diffuse and severe decrease in accumulation of MIBG in the heart. Six months later, his LV wall motion on echocardiograms developed diffuse hypokinesis. These results suggest that the abnormality on I-123 MIBG myocardial scintigrams may predict LV dysfunction in Emery-Dreifuss muscular dystrophy.

  15. Left ventricular diastolic dysfunction in type 2 diabetes patients: a novel 2D strain analysis based on cardiac magnetic resonance imaging.

    PubMed

    Chen, Qiang; Gan, Yan; Li, Zhi-Yong

    2016-09-01

    This study was to develop a strain analysis method to evaluate the left ventricular (LV) functions in type 2 diabetic patients with an asymptomatic LV diastolic dysfunction. Two groups (10 asymptomatic type 2 diabetic subjects and 10 control ones) were considered. All of the subjects had normal ejection fraction values but impaired diastolic functions assessed by the transmitral blood flow velocity. For each subject, based on cardiac MRI, global indexes including LV volume, LV myocardial mass, cardiac index (CI), and transmitral peak velocity, were measured, and regional indexes (i.e., LV deformation, strain and strain rate) were calculated through an image-registration technology. Most of the global indexes did not differentiate between the two groups, except for the CI, LV myocardial mass and transmitral peak velocity. While for the regional indexes, the global LV diastolic dysfunction of the diabetic indicated an increased strain (0.08 ± 0.044 vs. -0.031 ± 0.077, p = 0.001) and a reduced strain rate (1.834 ± 0.909 vs. 3.791 ± 2.394, p = 0.033) compared to the controls, moreover, the local LV diastolic dysfunction reflected by the strain and strain rate varied, and the degree of dysfunction gradually decreased from the basal level to the apical level. The results showed that the strain and strain rates are effective to capture the subtle alterations of the LV functions, and the proposed method can be used to estimate the LV myocardial function based on cardiac MRI.

  16. Lin28a protects against postinfarction myocardial remodeling and dysfunction through Sirt1 activation and autophagy enhancement.

    PubMed

    Hao, Yuanyuan; Lu, Qun; Yang, Guodong; Ma, Aiqun

    2016-10-28

    Myocardial remodeling and cardiac dysfunction prevention may represent a therapeutic approach to reduce mortality in patients with myocardial infarction (MI). We investigated the effects of Lin28a in experimental MI models, as well as the mechanisms underlying these effects. Left anterior descending (LAD) coronary artery ligation was used to construct an MI-induced injury model. Neonatal cardiomyocytes were isolated and cultured to investigate the mechanisms underlying the protective effects of Lin28a against MI-induced injury. Lin28a significantly inhibited left ventricular remodeling and cardiac dysfunction after MI, as demonstrated via echocardiography and hemodynamic measurements. Lin28a reduced cardiac enzyme and inflammatory marker release in mice subjected to MI-induced injury. The mechanisms underlying the protective effects of Lin28a against MI-induced injury were associated with autophagy enhancements and apoptosis inhibition. Consistent with these findings, Lin28a knockdown aggravated cardiac remodeling and dysfunction after MI-induced injury. Lin28a knockdown also inhibited cardiomyocyte autophagy and increased cardiomyocyte apoptosis in mice subjected to MI-induced injury. Interestingly, Sirt1 knockdown abolished the protective effects of Lin28a against cardiac remodeling and dysfunction after MI, and Lin28a failed to increase the numbers of GFP-LC3-positive punctae and decrease aggresome and p62 accumulation in Sirt1-knockdown neonatal cardiomyocytes subjected to hypoxia-induced injury. Lin28a inhibits cardiac remodeling, improves cardiac function, and reduces cardiac enzyme and inflammatory marker release after MI. Lin28a also up-regulates cardiomyocyte autophagy and inhibits cardiomyocyte apoptosis through Sirt1 activation. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Penehyclidine hydrochloride regulates mitochondrial dynamics and apoptosis through p38MAPK and JNK signal pathways and provides cardioprotection in rats with myocardial ischemia-reperfusion injury.

    PubMed

    Feng, Min; Wang, Lirui; Chang, Siyuan; Yuan, Pu

    2018-05-31

    The potential mechanism of penehyclidine hydrochloride (PHC) against myocardial ischemia-reperfusion (I/R) injury has not been fully elucidated. The aim of the present study was to reveal whether mitochondrial dynamics, apoptosis, and MAPKs were involved in the cardioprotective effect of this drug on myocardial I/R injury. Ninety healthy adult male Wistar rats were separately pretreated with normal saline (0.9%); PHC; and signal pathway blockers of MAPKs, Drp1, and Bcl-2. Coronary artery ligation and subsequent reperfusion were performed to induce myocardial I/R injury. Echocardiography was performed. Myocardial enzymes and oxidative stress markers were detected. Myocardial cell apoptotic rates and infarct sizes were measured. Mitochondrial function was evaluated. Expression levels of MAPKs, mitochondria regulatory proteins (Drp1, Mfn1/2), and apoptosis-related proteins (Bcl-2, Bax) were determined. PHC pretreatment improved myocardial abnormalities (dysfunction, injury, infarct size, and apoptotic rate), mitochondrial abnormalities (dysfunction and fission), and excessive oxidative stress and inhibited the activities of p38MAPK and JNK signal pathways in rats with myocardial I/R injury (P < 0.05). Additionally, p38MAPK and JNK blockers (SB239063 and SP600125, respectively) had an effect on rats same as that of PHC. Although Drp1 blocker (Mdivi-1) showed a similar cardioprotective effect (P < 0.05), it did not affect the expression of MAPKs and apoptosis-related proteins (P > 0.05). In addition, Bcl-2 blocker (ABT-737) caused a high expression of Drp1 and a low expression of Mfn1/2 (P < 0.05). PHC regulated mitochondrial dynamics and apoptosis through p38MAPK and JNK signal pathways and provided cardioprotection in rats with myocardial I/R injury. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Assessment of myocardial viability by dynamic tomographic iodine 123 iodophenylpentadecanoic acid imaging: comparison with rest-redistribution thallium 201 imaging.

    PubMed

    Iskandrian, A S; Powers, J; Cave, V; Wasserleben, V; Cassell, D; Heo, J

    1995-01-01

    This study examined the ability of dynamic 123I-labeled iodophenylpentadecanoic acid (IPPA) imaging to detect myocardial viability in patients with left ventricular (LV) dysfunction caused by coronary artery disease. Serial 180-degree single-photon emission computed tomographic (SPECT) images (five sets, 8 minutes each) were obtained starting 4 minutes after injection of 2 to 6 mCi 123I at rest in 21 patients with LV dysfunction (ejection fraction [EF] 34% +/- 11%). The segmental uptake was compared with that of rest-redistribution 201Tl images (20 segments/study). The number of perfusion defects (reversible and fixed) was similar by IPPA and thallium (11 +/- 5 vs 10 +/- 5 segments/patient; difference not significant). There was agreement between IPPA and thallium for presence or absence (kappa = 0.78 +/- 0.03) and nature (reversible, mild fixed, or severe fixed) of perfusion defects (kappa = 0.54 +/- 0.04). However, there were more reversible IPPA defects than reversible thallium defects (7 +/- 4 vs 3 +/- 4 segments/patient; p = 0.001). In 14 patients the EF (by gated pool imaging) improved after coronary revascularization from 33% +/- 11% to 39% +/- 12% (p = 0.002). The number of reversible IPPA defects was greater in the seven patients who had improvement in EF than in the patients without such improvement (10 +/- 4 vs 5 +/- 4 segments/patient; p = 0.075). 123I-labeled IPPA SPECT imaging is a promising new technique for assessment of viability. Reversible defects predict recovery of LV dysfunction after coronary revascularization.

  19. Sequential N-Terminal Pro-B-Type Natriuretic Peptide and High-Sensitivity Cardiac Troponin Measurements During Albumin Replacement in Patients With Severe Sepsis or Septic Shock.

    PubMed

    Masson, Serge; Caironi, Pietro; Fanizza, Caterina; Carrer, Sara; Caricato, Anselmo; Fassini, Paola; Vago, Tarcisio; Romero, Marilena; Tognoni, Gianni; Gattinoni, Luciano; Latini, Roberto

    2016-04-01

    Myocardial dysfunction is a frequent complication in patients with severe sepsis and can worsen the prognosis. We investigated whether circulating biomarkers related to myocardial function and injury predicted outcome and were associated with albumin replacement. A multicenter, randomized clinical trial about albumin replacement in severe sepsis or septic shock (the Albumin Italian Outcome Sepsis trial). Forty ICUs in Italy. Nine hundred and ninety-five patients with severe sepsis or septic shock. Randomization to albumin and crystalloid solutions or crystalloid solutions alone. Plasma concentrations of N- terminal pro-B-type natriuretic peptide and high-sensitivity cardiac troponin T were measured 1, 2, and 7 days after enrollment. We tested the relationship of single marker measurements or changes over time with clinical events, organ dysfunctions, albumin replacement, and ICU or 90-day mortality in the overall population and after stratification by shock. N-terminal pro-B-type natriuretic peptide levels were abnormal in 97.4% of the patients and high-sensitivity cardiac troponin T in 84.5%, with higher concentrations in those with shock. After extensive adjustments, N-terminal pro-B-type natriuretic peptide concentrations predicted ICU or 90-day mortality, better than high-sensitivity cardiac troponin T. Early changes in N-terminal pro-B-type natriuretic peptide or high-sensitivity cardiac troponin T concentrations were independently associated with subsequent mortality in patients with shock. Patients given albumin had significantly higher N-terminal pro-B-type natriuretic peptide levels; in addition, early rise in N-terminal pro-B-type natriuretic peptide was associated with a better outcome in this subgroup. Circulating N-terminal pro-B-type natriuretic peptide and high-sensitivity cardiac troponin T are frequently elevated in severe sepsis or septic shock and have relevant prognostic value, which may be important in monitoring the clinical efficacy of supporting therapy.

  20. Therapeutic Effects of Breviscapine in Cardiovascular Diseases: A Review.

    PubMed

    Gao, Jialiang; Chen, Guang; He, Haoqiang; Liu, Chao; Xiong, Xingjiang; Li, Jun; Wang, Jie

    2017-01-01

    Breviscapine is a crude extract of several flavonoids of Erigeron breviscapus (Vant.) Hand.-Mazz. , containing more than 85% of scutellarin, which has been traditionally used in China as an activating blood circulation medicine to improve cerebral blood supply. Accumulating evidence from various in vivo and in vitro studies has shown that breviscapine exerts a broad range of cardiovascular pharmacological effects, including vasodilation, protection against ischaemia/reperfusion (I/R), anti-inflammation, anticoagulation, antithrombosis, endothelial protection, myocardial protection, reduction of smooth muscle cell migration and proliferation, anticardiac remodeling, antiarrhythmia, blood lipid reduction, and improvement of erectile dysfunction. In addition, several clinical studies have reported that breviscapine could be used in conjunction with Western medicine for cardiovascular diseases (CVDs) including coronary heart disease, myocardial infarction, hypertension, atrial fibrillation, hyperlipidaemia, viral myocarditis, chronic heart failure, and pulmonary heart disease. However, the protective effects of breviscapine on CVDs based on experimental studies along with its underlying mechanisms have not been reviewed systematically. This paper reviewed the underlying pharmacological mechanisms in the cardioprotective effects of breviscapine and elucidated its clinical applications.

  1. Therapeutic Effects of Breviscapine in Cardiovascular Diseases: A Review

    PubMed Central

    Gao, Jialiang; Chen, Guang; He, Haoqiang; Liu, Chao; Xiong, Xingjiang; Li, Jun; Wang, Jie

    2017-01-01

    Breviscapine is a crude extract of several flavonoids of Erigeron breviscapus (Vant.) Hand.-Mazz., containing more than 85% of scutellarin, which has been traditionally used in China as an activating blood circulation medicine to improve cerebral blood supply. Accumulating evidence from various in vivo and in vitro studies has shown that breviscapine exerts a broad range of cardiovascular pharmacological effects, including vasodilation, protection against ischaemia/reperfusion (I/R), anti-inflammation, anticoagulation, antithrombosis, endothelial protection, myocardial protection, reduction of smooth muscle cell migration and proliferation, anticardiac remodeling, antiarrhythmia, blood lipid reduction, and improvement of erectile dysfunction. In addition, several clinical studies have reported that breviscapine could be used in conjunction with Western medicine for cardiovascular diseases (CVDs) including coronary heart disease, myocardial infarction, hypertension, atrial fibrillation, hyperlipidaemia, viral myocarditis, chronic heart failure, and pulmonary heart disease. However, the protective effects of breviscapine on CVDs based on experimental studies along with its underlying mechanisms have not been reviewed systematically. This paper reviewed the underlying pharmacological mechanisms in the cardioprotective effects of breviscapine and elucidated its clinical applications. PMID:28588491

  2. Impact of a pure reduction in heart rate for the treatment of left ventricular dysfunction: clinical benefits of ivabradine in the BEAUTIFUL trial.

    PubMed

    Danchin, Nicolas

    2009-01-01

    Ivabradine is an I(f) current inhibitor, that has documented antianginal efficacy. The BEAUTIFUL trial tested ivabradine against placebo in a large population of 10,917 patients in sinus rhythm, with coronary artery disease and left ventricular dysfunction, defined as left ventricular ejection fraction < or =35%. Overall, there was no impact of ivabradine on the primary end-point of the trial (cardiovascular mortality, hospitalisation for myocardial infarction, new onset or worsening heart failure). In the placebo arm of the trial, baseline heart rate > or = 70 bpm was associated with an increased risk of cardiovascular mortality, myocardial infarction, heart failure and coronary revascularisation. In the subgroup of patients with a baseline heart rate > or =70 bpm, treatment with ivabradine resulted in a significant, 36% reduction in the risk of myocardial infarction and a 20% reduction in the need for coronary revascularisation. Ivabradine was well tolerated, with an increased rate of treatment discontinuation, mainly due to bradycardia, compared with placebo. Because of its safety and efficacy to control angina, ivabradine should be considered first-line antianginal treatment in coronary artery disease patients with left ventricular dysfunction and increased heart rate, already receiving beta-blocker therapy or in whom these medications are not tolerated.

  3. A Novel Positron Emission Tomography (PET) Approach to Monitor Cardiac Metabolic Pathway Remodeling in Response to Sunitinib Malate.

    PubMed

    O'Farrell, Alice C; Evans, Rhys; Silvola, Johanna M U; Miller, Ian S; Conroy, Emer; Hector, Suzanne; Cary, Maurice; Murray, David W; Jarzabek, Monika A; Maratha, Ashwini; Alamanou, Marina; Udupi, Girish Mallya; Shiels, Liam; Pallaud, Celine; Saraste, Antti; Liljenbäck, Heidi; Jauhiainen, Matti; Oikonen, Vesa; Ducret, Axel; Cutler, Paul; McAuliffe, Fionnuala M; Rousseau, Jacques A; Lecomte, Roger; Gascon, Suzanne; Arany, Zoltan; Ky, Bonnie; Force, Thomas; Knuuti, Juhani; Gallagher, William M; Roivainen, Anne; Byrne, Annette T

    2017-01-01

    Sunitinib is a tyrosine kinase inhibitor approved for the treatment of multiple solid tumors. However, cardiotoxicity is of increasing concern, with a need to develop rational mechanism driven approaches for the early detection of cardiac dysfunction. We sought to interrogate changes in cardiac energy substrate usage during sunitinib treatment, hypothesising that these changes could represent a strategy for the early detection of cardiotoxicity. Balb/CJ mice or Sprague-Dawley rats were treated orally for 4 weeks with 40 or 20 mg/kg/day sunitinib. Cardiac positron emission tomography (PET) was implemented to investigate alterations in myocardial glucose and oxidative metabolism. Following treatment, blood pressure increased, and left ventricular ejection fraction decreased. Cardiac [18F]-fluorodeoxyglucose (FDG)-PET revealed increased glucose uptake after 48 hours. [11C]Acetate-PET showed decreased myocardial perfusion following treatment. Electron microscopy revealed significant lipid accumulation in the myocardium. Proteomic analyses indicated that oxidative metabolism, fatty acid β-oxidation and mitochondrial dysfunction were among the top myocardial signalling pathways perturbed. Sunitinib treatment results in an increased reliance on glycolysis, increased myocardial lipid deposition and perturbed mitochondrial function, indicative of a fundamental energy crisis resulting in compromised myocardial energy metabolism and function. Our findings suggest that a cardiac PET strategy may represent a rational approach to non-invasively monitor metabolic pathway remodeling following sunitinib treatment.

  4. A Novel Positron Emission Tomography (PET) Approach to Monitor Cardiac Metabolic Pathway Remodeling in Response to Sunitinib Malate

    PubMed Central

    Silvola, Johanna M. U.; Miller, Ian S.; Conroy, Emer; Hector, Suzanne; Cary, Maurice; Murray, David W.; Jarzabek, Monika A.; Maratha, Ashwini; Alamanou, Marina; Udupi, Girish Mallya; Shiels, Liam; Pallaud, Celine; Saraste, Antti; Liljenbäck, Heidi; Jauhiainen, Matti; Oikonen, Vesa; Ducret, Axel; Cutler, Paul; McAuliffe, Fionnuala M.; Rousseau, Jacques A.; Lecomte, Roger; Gascon, Suzanne; Arany, Zoltan; Ky, Bonnie; Force, Thomas; Knuuti, Juhani; Gallagher, William M.; Roivainen, Anne; Byrne, Annette T.

    2017-01-01

    Sunitinib is a tyrosine kinase inhibitor approved for the treatment of multiple solid tumors. However, cardiotoxicity is of increasing concern, with a need to develop rational mechanism driven approaches for the early detection of cardiac dysfunction. We sought to interrogate changes in cardiac energy substrate usage during sunitinib treatment, hypothesising that these changes could represent a strategy for the early detection of cardiotoxicity. Balb/CJ mice or Sprague-Dawley rats were treated orally for 4 weeks with 40 or 20 mg/kg/day sunitinib. Cardiac positron emission tomography (PET) was implemented to investigate alterations in myocardial glucose and oxidative metabolism. Following treatment, blood pressure increased, and left ventricular ejection fraction decreased. Cardiac [18F]-fluorodeoxyglucose (FDG)-PET revealed increased glucose uptake after 48 hours. [11C]Acetate-PET showed decreased myocardial perfusion following treatment. Electron microscopy revealed significant lipid accumulation in the myocardium. Proteomic analyses indicated that oxidative metabolism, fatty acid β-oxidation and mitochondrial dysfunction were among the top myocardial signalling pathways perturbed. Sunitinib treatment results in an increased reliance on glycolysis, increased myocardial lipid deposition and perturbed mitochondrial function, indicative of a fundamental energy crisis resulting in compromised myocardial energy metabolism and function. Our findings suggest that a cardiac PET strategy may represent a rational approach to non-invasively monitor metabolic pathway remodeling following sunitinib treatment. PMID:28129334

  5. Ultrastructural and cellular basis for the development of abnormal myocardial mechanics during the transition from hypertension to heart failure.

    PubMed

    Shah, Sanjiv J; Aistrup, Gary L; Gupta, Deepak K; O'Toole, Matthew J; Nahhas, Amanda F; Schuster, Daniel; Chirayil, Nimi; Bassi, Nikhil; Ramakrishna, Satvik; Beussink, Lauren; Misener, Sol; Kane, Bonnie; Wang, David; Randolph, Blake; Ito, Aiko; Wu, Megan; Akintilo, Lisa; Mongkolrattanothai, Thitipong; Reddy, Mahendra; Kumar, Manvinder; Arora, Rishi; Ng, Jason; Wasserstrom, J Andrew

    2014-01-01

    Although the development of abnormal myocardial mechanics represents a key step during the transition from hypertension to overt heart failure (HF), the underlying ultrastructural and cellular basis of abnormal myocardial mechanics remains unclear. We therefore investigated how changes in transverse (T)-tubule organization and the resulting altered intracellular Ca(2+) cycling in large cell populations underlie the development of abnormal myocardial mechanics in a model of chronic hypertension. Hearts from spontaneously hypertensive rats (SHRs; n = 72) were studied at different ages and stages of hypertensive heart disease and early HF and were compared with age-matched control (Wistar-Kyoto) rats (n = 34). Echocardiography, including tissue Doppler and speckle-tracking analysis, was performed just before euthanization, after which T-tubule organization and Ca(2+) transients were studied using confocal microscopy. In SHRs, abnormalities in myocardial mechanics occurred early in response to hypertension, before the development of overt systolic dysfunction and HF. Reduced longitudinal, circumferential, and radial strain as well as reduced tissue Doppler early diastolic tissue velocities occurred in concert with T-tubule disorganization and impaired Ca(2+) cycling, all of which preceded the development of cardiac fibrosis. The time to peak of intracellular Ca(2+) transients was slowed due to T-tubule disruption, providing a link between declining cell ultrastructure and abnormal myocardial mechanics. In conclusion, subclinical abnormalities in myocardial mechanics occur early in response to hypertension and coincide with the development of T-tubule disorganization and impaired intracellular Ca(2+) cycling. These changes occur before the development of significant cardiac fibrosis and precede the development of overt cardiac dysfunction and HF.

  6. Association of Lifestyle-Related Comorbidities With Periodontitis

    PubMed Central

    Lee, Jae-Hong; Lee, Jung-Seok; Park, Jin-Young; Choi, Jung-Kyu; Kim, Dong-Wook; Kim, Young-Taek; Choi, Seong-Ho

    2015-01-01

    Abstract The aim of this study was to determine the association of periodontitis with lifestyle-related comorbidities (LCs) using data in the Korean National Health Insurance Cohort Database from 2002 to 2013. This was a retrospective study involving a large national cohort with patient samples (representing 2% of the total Korean population) stratified on the basis of sociodemographic information. Using this precisely extracted database, the correlations between LCs (cerebral infarction, angina pectoris, myocardial infarction, hypertension, diabetes mellitus, rheumatoid arthritis, erectile dysfunction, osteoporosis, and obesity) and periodontitis were investigated while adjusting for confounding bias. Univariate and multiple logistic regression analyses were used to evaluate differences in variable factors. Among a total of 1,025,340 samples, 321,103 (31.3%) cases were diagnosed with periodontitis. Statistically significant associations were found between all LCs except myocardial infarction and periodontitis (P < 0.005). Periodontitis is significantly and positively correlated with LCs (except for myocardial infarction) after adjusting for confounding bias. In particular, lifestyle-related diseases, erectile dysfunction, and osteoporosis seem to be intimately related to periodontitis. PMID:26376407

  7. Integration of mechanical, structural and electrical imaging to understand response to cardiac resynchronization therapy.

    PubMed

    Silva, Etelvino; Bijnens, Bart; Berruezo, Antonio; Mont, Lluis; Doltra, Adelina; Andreu, David; Brugada, Josep; Sitges, Marta

    2014-10-01

    There is extensive controversy exists on whether cardiac resynchronization therapy corrects electrical or mechanical asynchrony. The aim of this study was to determine if there is a correlation between electrical and mechanical sequences and if myocardial scar has any relevant impact. Six patients with normal left ventricular function and 12 patients with left ventricular dysfunction and left bundle branch block, treated with cardiac resynchronization therapy, were studied. Real-time three-dimensional echocardiography and electroanatomical mapping were performed in all patients and, where applicable, before and after therapy. Magnetic resonance was performed for evaluation of myocardial scar. Images were postprocessed and mechanical and electrical activation sequences were defined and time differences between the first and last ventricular segment to be activated were determined. Response to therapy was defined as a reduction in left ventricular end-systolic volume ≥ 15% after 12 months of follow-up. Good correlation between electrical and mechanical timings was found in patients with normal left ventricular function (r(2) = 0.88; P = .005) but not in those with left ventricular dysfunction (r(2) = 0.02; P = not significant). After therapy, both timings and sequences were modified and improved, except in those with myocardial scar. Despite a close electromechanical relationship in normal left ventricular function, there is no significant correlation in patients with dysfunction. Although resynchronization therapy improves this correlation, the changes in electrical activation may not yield similar changes in left ventricular mechanics particularly depending on the underlying myocardial substrate. Copyright © 2013 Sociedad Española de Cardiología. Published by Elsevier Espana. All rights reserved.

  8. CES1 Carriers in the PAPI Study

    ClinicalTrials.gov

    2018-04-10

    Heart Diseases; Coronary Disease; Coronary Artery Disease; Cardiovascular Diseases; Myocardial Ischemia; Artery Occlusion; Aspirin Sensitivity; Clopidogrel, Poor Metabolism of; Platelet Dysfunction; Platelet Thrombus

  9. Reducing myocardial infarct size: challenges and future opportunities

    PubMed Central

    Bulluck, Heerajnarain; Yellon, Derek M; Hausenloy, Derek J

    2016-01-01

    Despite prompt reperfusion by primary percutaneous coronary intervention (PPCI), the mortality and morbidity of patients presenting with an acute ST-segment elevation myocardial infarction (STEMI) remain significant with 9% death and 10% heart failure at 1 year. In these patients, one important neglected therapeutic target is ‘myocardial reperfusion injury’, a term given to the cardiomyocyte death and microvascular dysfunction which occurs on reperfusing ischaemic myocardium. A number of cardioprotective therapies (both mechanical and pharmacological), which are known to target myocardial reperfusion injury, have been shown to reduce myocardial infarct (MI) size in small proof-of-concept clinical studies—however, being able to demonstrate improved clinical outcomes has been elusive. In this article, we review the challenges facing clinical cardioprotection research, and highlight future therapies for reducing MI size and preventing heart failure in patients presenting with STEMI at risk of myocardial reperfusion injury. PMID:26674987

  10. Profound bioenergetic abnormalities in peri-infarct myocardial regions.

    PubMed

    Hu, Qingsong; Wang, Xiaohong; Lee, Joseph; Mansoor, Abdul; Liu, Jingbo; Zeng, Lepeng; Swingen, Cory; Zhang, Ge; Feygin, Julia; Ochiai, Koichi; Bransford, Toni L; From, Arthur H L; Bache, Robert J; Zhang, Jianyi

    2006-08-01

    Regions of myocardial infarct (MI) are surrounded by a border zone (BZ) of normally perfused but dysfunctional myocardium. Although systolic dysfunction has been attributed to elevated wall stress in this region, there is evidence that intrinsic abnormalities of contractile performance exist in BZ myocardium. This study examined whether decreases of high-energy phosphates (HEP) and mitochondrial F(1)F(0)-ATPase (mtATPase) subunits typical of failing myocardium exist in BZ myocardium of compensated postinfarct remodeled hearts. Eight pigs were studied 6 wk after MI was produced by ligation of the left anterior descending coronary artery (LAD) distal to the second diagonal. Animals developed compensated LV remodeling with a decrease of ejection fraction from 54.6 +/- 5.4% to 31 +/- 2.1% (MRI) 5 wk after LAD occlusion. The remote zone (RZ) myocardium demonstrated modest decreases of ATP and mtATPase components. In contrast, BZ myocardium demonstrated profound abnormalities with ATP levels decreased to 42% of normal, and phosphocreatine-to-ATP ratio ((31)P-magnetic resonance spectroscopy) decreased from 2.06 +/- 0.19 in normal hearts to 1.07 +/- 0.10, with decreases in alpha-, beta-, OSCP, and IF(1) subunits of mtATPase, especially in the subendocardium. The reduction of myocardial creatine kinase isoform protein expression was also more severe in the BZ relative to the RZ myocardium. These abnormalities were independent of a change in mitochondrial content because the mitochondrial citrate synthase protein level was not different between the BZ and RZ. This regional heterogeneity of ATP content and expression of key enzymes in ATP production suggests that energetic insufficiency in the peri-infarct region may contribute to the transition from compensated LV remodeling to congestive heart failure.

  11. Enterovirus-related diarrhoea in Guangdong, China: clinical features and implications in hand, foot and mouth disease and herpangina.

    PubMed

    Zhou, Hong-Tao; Yi, Hai-Su; Guo, Yong-Hui; Pan, Yu-Xian; Tao, Shao-Hua; Wang, Bin; Chen, Man-Jun; Yang, Mei; Yu, Nan

    2016-03-16

    A series of complications caused by enteroviruses, including meningitis, encephalitis, acute flaccid paralysis, acute cardiopulmonary failure, respiratory infection, and myocardial injury have been reported in hand, foot and mouth disease/herpangina (HFMD/HA). However, the complication of diarrhoea caused by enteroviruses has been neglected, and a summary of its clinical features and impact on HFMD/HA is unavailable. We included inpatients with HFMD/HA admitted to the Paediatric Department of Zhujiang Hospital during 2009-2012. We summarised and compared clinical data for cases with and without diarrhoea, and determined enterovirus serotypes by reverse transcriptase polymerase chain reaction and genotyping based on a partial-length fragment of viral protein 1 or the 5'-untranslated region. There were 804 inpatients with HFMD/HA and 28 (3.5%) presented with diarrhoea. Gastrointestinal symptoms were mild in most cases of diarrhoea (82.1%), with high prevalence of no dehydration (82.1%), short duration of diarrhoea (78.6%) and watery stools (75.0%). The prevalence of multi-organ dysfunction syndrome (10.7 vs 0.40%) (p = 0.001), hepatic injury (14.3 vs 3.4%) (p = 0.019), myocardial injury (21.4 vs 6.1%) (p = 0.002) and convulsion (21.4 vs 7.2%) (p = 0.016) was significantly higher in the diarrhoea than no diarrhoea group. There was no significant difference between the two groups regarding prevalence of death, altered consciousness, paralysis, central nervous system involvement, or acute respiratory infection. Most patients with diarrhoea caused by enteroviruses circulating in Guangdong Province in 2009-2012 had mild or moderate gastrointestinal symptoms. Although enterovirus-related diarrhoea caused additional multi-organ dysfunction syndrome, hepatic injury and myocardial injury in children with HFMD/HA, timely intervention efficiently reduced disease severity and improved outcome.

  12. Predictors of transient left ventricular dysfunction following transcatheter patent ductus arteriosus closure in pediatric age.

    PubMed

    Agha, Hala Mounir; Hamza, Hala S; Kotby, Alyaa; Ganzoury, Mona E L; Soliman, Nanies

    2017-10-01

    To evaluate the left ventricular function before and after transcatheter percutaneous patent ductus arteriosus (PDA) closure, and to identify the predictors of myocardial dysfunction post-PDA closure if present. Transcatheter PDA closure; conventional, Doppler, and tissue Doppler imaging; and speckle tracking echocardiography. To determine the feasibility and reliability of tissue Doppler and myocardial deformation imaging for evaluating myocardial function in children undergoing transcatheter PDA closure. Forty-two children diagnosed with hemodynamically significant PDA underwent percutaneous PDA closure. Conventional, Doppler, and tissue Doppler imaging, and speckle-derived strain rate echocardiography were performed at preclosure and at 48 hours, 1 month, and 6 months postclosure. Tissue Doppler velocities of the lateral and septal mitral valve annuli were obtained. Global and regional longitudinal peak systolic strain values were determined using two-dimensional speckle tracking echocardiography. The median age of the patients was 2 years and body weight was 15 kg, with the mean PDA diameter of 3.11 ± 0.99 mm. M-mode measurements (left ventricular end diastolic diameter, left atrium diameter to aortic annulus ratio, ejection fraction, and shortening fraction) reduced significantly early after PDA closure ( p  < 0.001). After 1 month, left ventricular end diastolic diameter and left atrium diameter to aortic annulus ratio continued to decrease, while ejection fraction and fractional shortening improved significantly. All tissue Doppler velocities showed a significant decrease at 48 hours with significant prolongation of global myocardial function ( p  < 0.001) and then were normalized within 1 month postclosure. Similarly, global longitudinal strain significantly decreased at 48 hours postclosure ( p  < 0.001), which also recovered at 1 month follow-up. Preclosure global longitudinal strain showed a good correlation with the postclosure prolongation of the myocardial performance index. Transcatheter PDA closure causes a significant decrease in left ventricular performance early after PDA closure, which recovers completely within 1 month. Preclosure global longitudinal strain can be a predictor of postclosure myocardial dysfunction.

  13. Caffeic acid protects rat heart mitochondria against isoproterenol-induced oxidative damage

    PubMed Central

    Kumaran, Kandaswamy Senthil

    2010-01-01

    Cardiac mitochondrial dysfunction plays an important role in the pathology of myocardial infarction. The protective effects of caffeic acid on mitochondrial dysfunction in isoproterenol-induced myocardial infarction were studied in Wistar rats. Rats were pretreated with caffeic acid (15 mg/kg) for 10 days. After the pretreatment period, isoproterenol (100 mg/kg) was subcutaneously injected to rats at an interval of 24 h for 2 days to induce myocardial infarction. Isoproterenol-induced rats showed considerable increased levels of serum troponins and heart mitochondrial lipid peroxidation products and considerable decreased glutathione peroxidase and reduced glutathione. Also, considerably decreased activities of isocitrate, succinate, malate, α-ketoglutarate, and NADH dehydrogenases and cytochrome-C-oxidase were observed in the mitochondria of myocardial-infarcted rats. The mitochondrial calcium, cholesterol, free fatty acids, and triglycerides were considerably increased and adenosine triphosphate and phospholipids were considerably decreased in isoproterenol-induced rats. Caffeic acid pretreatment showed considerable protective effects on all the biochemical parameters studied. Myocardial infarct size was much reduced in caffeic acid pretreated isoproterenol-induced rats. Transmission electron microscopic findings also confirmed the protective effects of caffeic acid. The possible mechanisms of caffeic acid on cardiac mitochondria protection might be due to decreasing free radicals, increasing multienzyme activities, reduced glutathione, and adenosine triphosphate levels and maintaining lipids and calcium. In vitro studies also confirmed the free-radical-scavenging activity of caffeic acid. Thus, caffeic acid protected rat’s heart mitochondria against isoproterenol-induced damage. This study may have a significant impact on myocardial-infarcted patients. PMID:20376586

  14. Caffeic acid protects rat heart mitochondria against isoproterenol-induced oxidative damage.

    PubMed

    Kumaran, Kandaswamy Senthil; Prince, Ponnian Stanely Mainzen

    2010-11-01

    Cardiac mitochondrial dysfunction plays an important role in the pathology of myocardial infarction. The protective effects of caffeic acid on mitochondrial dysfunction in isoproterenol-induced myocardial infarction were studied in Wistar rats. Rats were pretreated with caffeic acid (15 mg/kg) for 10 days. After the pretreatment period, isoproterenol (100 mg/kg) was subcutaneously injected to rats at an interval of 24 h for 2 days to induce myocardial infarction. Isoproterenol-induced rats showed considerable increased levels of serum troponins and heart mitochondrial lipid peroxidation products and considerable decreased glutathione peroxidase and reduced glutathione. Also, considerably decreased activities of isocitrate, succinate, malate, α-ketoglutarate, and NADH dehydrogenases and cytochrome-C-oxidase were observed in the mitochondria of myocardial-infarcted rats. The mitochondrial calcium, cholesterol, free fatty acids, and triglycerides were considerably increased and adenosine triphosphate and phospholipids were considerably decreased in isoproterenol-induced rats. Caffeic acid pretreatment showed considerable protective effects on all the biochemical parameters studied. Myocardial infarct size was much reduced in caffeic acid pretreated isoproterenol-induced rats. Transmission electron microscopic findings also confirmed the protective effects of caffeic acid. The possible mechanisms of caffeic acid on cardiac mitochondria protection might be due to decreasing free radicals, increasing multienzyme activities, reduced glutathione, and adenosine triphosphate levels and maintaining lipids and calcium. In vitro studies also confirmed the free-radical-scavenging activity of caffeic acid. Thus, caffeic acid protected rat's heart mitochondria against isoproterenol-induced damage. This study may have a significant impact on myocardial-infarcted patients.

  15. Association of Exercise Training with Tobacco Smoking Prevents Fibrosis but has Adverse Impact on Myocardial Mechanics.

    PubMed

    Reis Junior, Dermeval; Antonio, Ednei Luiz; de Franco, Marcello Fabiano; de Oliveira, Helenita Antonia; Tucci, Paulo José Ferreira; Serra, Andrey Jorge

    2016-12-01

    There was no data for cardiac repercussion of exercise training associated with tobacco smoking. This issue is interesting because some smoking people can be enrolled in an exercise-training program. Thus, we evaluated swimming training effects on the function and structural myocardial in rats exposed to tobacco smoking. Male Wistar rats were assigned to one of four groups: C, untrained rats without exposure to tobacco smoking; E, exercised rats without exposure to tobacco smoking; CS, untrained rats exposed to tobacco smoking; ECS, exercised rats exposed to tobacco smoking. Rats swam five times a week twice daily (60min per session) for 8 weeks. Before each bout exercise, rats breathed smoke from 20 cigarettes for 60min. Twenty-four hours after the last day of the protocol, papillary muscles were isolated for in vitro analysis of myocardial mechanics. The myocardial mass and nuclear cardiomyocyte volume were used as hypertrophy markers, and collagen content was determined by picrosirius red staining. There was a well-pronounced myocardial hypertrophic effect for two interventions. The exercise blunted myocardial collagen increases induced by tobacco smoking. However, exercise and tobacco-smoking association was deleterious to myocardial performance. Thereby, in vitro experiments with papillary muscles contracting in isometric showed impairment myocardial inotropism in exercised rats exposed to tobacco smoking. This work presents novel findings on the role of exercise training on cardiac remodeling induced by tobacco smoking. Although exercise has mitigated tissue fibrosis, their association with tobacco smoking exacerbated hypertrophy and in vitro myocardial dysfunction. This is first study to show that the association of an aerobic exercise training with tobacco smoking intensifies the phenotype of pathological cardiac hypertrophy. Therefore, the combination of interventions resulted in exacerbated myocardial hypertrophy and contractility dysfunction. These findings have significant clinical implication because some smoking people can be enrolled in an exercise-training program. © The Author 2016. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Lisinopril. A review of its pharmacology and clinical efficacy in the early management of acute myocardial infarction.

    PubMed

    Goa, K L; Balfour, J A; Zuanetti, G

    1996-10-01

    Following establishment of its efficacy in hypertension and congestive heart failure, the ACE inhibitor lisinopril has now been shown to reduce mortality and cardiovascular morbidity in patients with myocardial infarction when administered as early treatment. The ability of lisinopril to attenuate the detrimental effects of left ventricular remodelling is a key mechanism; however, additional cardioprotective and vasculoprotective actions are postulated to play a role in mediating the early benefit. The GISSI-3 trial in > 19 000 patients has demonstrated that, when given orally within 24 hours of symptom onset and continued for 6 weeks, lisinopril (with or without nitrates) produces measurable survival benefits within 1 to 2 days of starting treatment. Compared with no lisinopril treatment, reductions of 11% in risk of mortality and 7.7% in a combined end-point (death plus severe left ventricular dysfunction) were evident at 6 weeks. Advantages were apparent in all types of patients. Thus, those at high risk-women, the elderly, patients with diabetes mellitus and those with anterior infarct and/or Killip class > 1 -also benefited. These gains in combined end-point events persisted in the longer term, despite treatment withdrawal after 6 weeks in most patients. At 6 months, the incidence rate for the combined end-point remained lower than with control (a 6.2% reduction). The GISSI-3 results concur with those from recent large investigations (ISIS-4, CCS-1, SMILE) of other ACE inhibitors as early management in myocardial infarction. However, the results of the CONSENSUS II trial (using intravenous enalaprilat then oral enalapril) were unfavourable in some patients. These findings, together with the development of persistent hypotension and, to a lesser extent, renal dysfunction among patients in the GISSI-3 trial, have prompted considerable debate over optimum treatment strategies. Present opinion generally holds that therapy with lisinopril or other ACE inhibitors shown to be beneficial may be started within 24 hours in haemodynamically stable patients with no other contraindications; current labelling in the US and other countries reflects this position. There is virtually unanimous agreement that such therapy is indicated in high-risk patients, particularly those with left ventricular dysfunction. The choice of ACE inhibitor appears less important than the decision to treat; it seems likely that these benefits are a class effect. Lisinopril has a tolerability profile resembling that of other ACE inhibitors, can be given once daily and may be less costly than other members of its class. However, present cost analyses are flawed and this latter points remains to be proven in formal cost-effectiveness analyses. In conclusion, early treatment with lisinopril (within 24 hours of symptom onset) for 6 weeks improves survival and reduces cardiovascular morbidity in patients with myocardial infarction, and confers ongoing benefit after drug withdrawal. While patients with symptoms of left ventricular dysfunction are prime candidates for treatment, all those who are haemodynamically stable with no other contraindications are also eligible to receive therapy. Lisinopril and other ACE inhibitors shown to be beneficial should therefore be considered an integral part of the early management of myocardial infarction in suitable patients.

  17. Attenuating the defibrillation dosage decreases postresuscitation myocardial dysfunction in a swine model of pediatric ventricular fibrillation

    PubMed Central

    Berg, Marc D.; Banville, Isabelle L.; Chapman, Fred W.; Walker, Robert G.; Gaballa, Mohammed A.; Hilwig, Ronald W.; Samson, Ricardo A.; Kern, Karl B.; Berg, Robert A.

    2009-01-01

    Objective The optimal biphasic defibrillation dose for children is unknown. Postresuscitation myocardial dysfunction is common and may be worsened by higher defibrillation doses. Adult-dose automated external defibrillators are commonly available; pediatric doses can be delivered by attenuating the adult defibrillation dose through a pediatric pads/cable system. The objective was to investigate whether unattenuated (adult) dose biphasic defibrillation results in greater postresuscitation myocardial dysfunction and damage than attenuated (pediatric) defibrillation. Design Laboratory animal experiment. Setting University animal laboratory. Subjects Domestic swine weighing 19 ± 3.6 kg. Interventions Fifty-two piglets were randomized to receive biphasic defibrillation using either adult-dose shocks of 200, 300, and 360 J or pediatric-dose shocks of ~50, 75, and 85 J after 7 mins of untreated ventricular fibrillation. Contrast left ventriculograms were obtained at baseline and then at 1, 2, 3, and 4 hrs postresuscitation. Postresuscitation left ventricular ejection fraction and cardiac troponins were evaluated. Measurements and Main Results By design, piglets in the adult-dose group received shocks with more energy (261 ± 65 J vs. 72 ± 12 J, p < .001) and higher peak current (37 ± 8 A vs. 13 ± 2 A, p < .001) at the largest defibrillation dose needed. In both groups, left ventricular ejection fraction was reduced significantly at 1, 2, and 4 hrs from baseline and improved during the 4 hrs postresuscitation. The decrease in left ventricular ejection fraction from baseline was greater after adult-dose defibrillation. Plasma cardiac troponin levels were elevated 4 hrs postresuscitation in 11 of 19 adult-dose piglets vs. four of 20 pediatric-dose piglets (p = .02). Conclusions Unattenuated adult-dose defibrillation results in a greater frequency of myocardial damage and worse postresuscitation myocardial function than pediatric doses in a swine model of prolonged out-of-hospital pediatric ventricular fibrillation cardiac arrest. These data support the use of pediatric attenuating electrodes with adult biphasic automated external defibrillators to defibrillate children. PMID:18496405

  18. Thymol, a dietary monoterpene phenol abrogates mitochondrial dysfunction in β-adrenergic agonist induced myocardial infarcted rats by inhibiting oxidative stress.

    PubMed

    Nagoor Meeran, M F; Jagadeesh, G S; Selvaraj, P

    2016-01-25

    Mitochondrial dysfunction has been suggested to be one of the important pathological events in isoproterenol (ISO), a synthetic catecholamine and β-adrenergic agonist induced myocardial infarction (MI). In this context, we have evaluated the impact of thymol against ISO induced oxidative stress and calcium uniporter malfunction involved in the pathology of mitochondrial dysfunction in rats. Male albino Wistar rats were pre and co-treated with thymol (7.5 mg/kg body weight) daily for 7 days. Isoproterenol (100 mg/kg body weight) was subcutaneously injected into rats on 6th and 7th day to induce MI. To explore the extent of cardiac mitochondrial damage, the activities/levels of cardiac marker enzymes, mitochondrial lipid peroxidation products, antioxidants, lipids, calcium, adenosine triphosphate and multi marker enzymes were evaluated. Isoproterenol induced myocardial infarcted rats showed a significant increase in the activities of cardiac diagnostic markers, heart mitochondrial lipid peroxidation, lipids, calcium, and a significant decrease in the activities/levels of heart mitochondrial superoxide dismutase, catalase, glutathione peroxidase, reduced glutathione, isocitrate, malate, α-ketoglutarate and NADH-dehydrogenases, cytochrome-C-oxidase, and adenosine triphosphate. Thymol pre and co-treatment showed near normalized effects on all the biochemical parameters studied. Transmission electron microscopic findings and mitochondrial swelling studies confirmed our biochemical findings. The in vitro study also revealed the potent free-radical scavenging activity of thymol. Thus, thymol attenuates the involvement of ISO against oxidative stress and calcium uniporter malfunction associated with mitochondrial dysfunction in rats. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Increased de novo ceramide synthesis and accumulation in failing myocardium

    PubMed Central

    Ji, Ruiping; Akashi, Hirokazu; Drosatos, Konstantinos; Liao, Xianghai; Jiang, Hongfeng; Kennel, Peter J.; Brunjes, Danielle L.; Castillero, Estibaliz; Zhang, Xiaokan; Deng, Lily Y.; Homma, Shunichi; George, Isaac J.; Takayama, Hiroo; Naka, Yoshifumi; Goldberg, Ira J.

    2017-01-01

    Abnormal lipid metabolism may contribute to myocardial injury and remodeling. To determine whether accumulation of very long–chain ceramides occurs in human failing myocardium, we analyzed myocardial tissue and serum from patients with severe heart failure (HF) undergoing placement of left ventricular assist devices and controls. Lipidomic analysis revealed increased total and very long–chain ceramides in myocardium and serum of patients with advanced HF. After unloading, these changes showed partial reversibility. Following myocardial infarction (MI), serine palmitoyl transferase (SPT), the rate-limiting enzyme of the de novo pathway of ceramide synthesis, and ceramides were found increased. Blockade of SPT by the specific inhibitor myriocin reduced ceramide accumulation in ischemic cardiomyopathy and decreased C16, C24:1, and C24 ceramides. SPT inhibition also reduced ventricular remodeling, fibrosis, and macrophage content following MI. Further, genetic deletion of the SPTLC2 gene preserved cardiac function following MI. Finally, in vitro studies revealed that changes in ceramide synthesis are linked to hypoxia and inflammation. In conclusion, cardiac ceramides accumulate in the failing myocardium, and increased levels are detectable in circulation. Inhibition of de novo ceramide synthesis reduces cardiac remodeling. Thus, increased de novo ceramide synthesis contributes to progressive pathologic cardiac remodeling and dysfunction. PMID:28469091

  20. Carriers of the hypertrophic cardiomyopathy MYBPC3 mutation are characterized by reduced myocardial efficiency in the absence of hypertrophy and microvascular dysfunction.

    PubMed

    Timmer, Stefan A J; Germans, Tjeerd; Brouwer, Wessel P; Lubberink, Mark; van der Velden, Jolanda; Wilde, Arthur A M; Christiaans, Imke; Lammertsma, Adriaan A; Knaapen, Paul; van Rossum, Albert C

    2011-12-01

    Next to left ventricular (LV) hypertrophy, hypertrophic cardiomyopathy (HCM) is characterized by microvascular dysfunction and reduced myocardial external efficiency (MEE). Insights into the presence of these abnormalities as early markers of disease are of clinical importance in risk stratification, and development of therapeutic approaches. Therefore, the aim was to investigate myocardial perfusion and energetics in genotype-positive, phenotype-negative HCM subjects (carriers). Fifteen carriers of an MYBPC3 mutation underwent [(15)O]water positron emission tomography (PET) to assess myocardial blood flow (MBF). [(11)C]acetate PET was performed to obtain myocardial oxygen consumption (MVO(2)). By use of cardiovascular magnetic resonance imaging, LV volumes and mass were defined to calculate MEE, i.e. the ratio between external work and MVO(2). Eleven healthy, genotype-negative, family relatives underwent similar scanning protocols to serve as a control group. Left ventricular mass was comparable between carriers and controls (93 ± 25 vs. 99 ± 21 g, P= 0.85), as was MBF at rest (1.19 ± 0.34 vs. 1.18 ± 0.32 mL min(-1) g(-1), P= 0.92), and during hyperaemia (3.87 ± 0.75 vs. 3.96 ± 0.86 mL min(-1) g(-1), P= 0.77). Myocardial oxygen consumption averaged 0.137 ± 0.057 mL min(-1) g(-1) in carriers and was not significantly different from controls (0.125 ± 0.043 mL min(-1) g(-1), P= 0.29). Cardiac work, however, was slightly reduced in carriers (7398 ± 1384 vs. 9139 ± 2484 mmHg mL in controls, P= 0.08). As a consequence, MEE was significantly decreased in carriers (27 ± 10 vs. 36 ± 8% in controls, P= 0.02). Carriers display reduced myocardial work generation in relation to oxygen consumption, in the absence of hypertrophy and flow abnormalities. Hence, impaired myocardial energetics may constitute a primary component of HCM pathogenesis.

  1. Is the epicardial left ventricular lead implantation an alternative approach to percutaneous attempt in patients with Steinert disease? A case report

    PubMed Central

    PAPA, ANDREA ANTONIO; RAGO, ANNA; PETILLO, ROBERTA; D’AMBROSIO, PAOLA; SCUTIFERO, MARIANNA; FEO, MARISA DE; MAIELLO, CIRO; PALLADINO, ALBERTO

    2017-01-01

    Steinert’s disease or Myotonic Dystrophy type 1 (DM1) is an autosomal dominant multisystemic disorder characterized by myotonia, muscle and facial weakness, cataracts, cognitive, endocrine and gastrointestinal involvement, and cardiac conduction abnormalities. Although mild myocardial dysfunction may be detected in this syndrome with age, overt myocardial dysfunction with heart failure is not frequent. Cardiac resynchronization therapy is an effective treatment to improve morbidity and reduce mortality in patients with DM1 showing intra-ventricular conduction delay and/or congestive heart failure. We report the case of a patient with Steinert disease showing an early onset ventricular dysfunction due to chronic right ventricular apical pacing, in which an epicardial left ventricular lead implantation was performed following the failure of the percutaneous attempt. As no relief in symptoms of heart failure, nor an improvement of left ventricular ejection fraction and reverse remodelling was observed six months later, the patient was addressed to the heart transplantation.

  2. Right Ventricular Dysfunction Impairs Effort Tolerance Independent of Left Ventricular Function Among Patients Undergoing Exercise Stress Myocardial Perfusion Imaging.

    PubMed

    Kim, Jiwon; Di Franco, Antonino; Seoane, Tania; Srinivasan, Aparna; Kampaktsis, Polydoros N; Geevarghese, Alexi; Goldburg, Samantha R; Khan, Saadat A; Szulc, Massimiliano; Ratcliffe, Mark B; Levine, Robert A; Morgan, Ashley E; Maddula, Pooja; Rozenstrauch, Meenakshi; Shah, Tara; Devereux, Richard B; Weinsaft, Jonathan W

    2016-11-01

    Right ventricular (RV) and left ventricular (LV) function are closely linked due to a variety of factors, including common coronary blood supply. Altered LV perfusion holds the potential to affect the RV, but links between LV ischemia and RV performance, and independent impact of RV dysfunction on effort tolerance, are unknown. The population comprised 2051 patients who underwent exercise stress myocardial perfusion imaging and echo (5.5±7.9 days), among whom 6% had echo-evidenced RV dysfunction. Global summed stress scores were ≈3-fold higher among patients with RV dysfunction, attributable to increments in inducible and fixed LV perfusion defects (all P≤0.001). Regional inferior and lateral wall ischemia was greater among patients with RV dysfunction (both P<0.01), without difference in corresponding anterior defects (P=0.13). In multivariable analysis, inducible inferior and lateral wall perfusion defects increased the likelihood of RV dysfunction (both P<0.05) independent of LV function, fixed perfusion defects, and pulmonary artery pressure. Patients with RV dysfunction demonstrated lesser effort tolerance whether measured by exercise duration (6.7±2.8 versus 7.9±2.9 minutes; P<0.001) or peak treadmill stage (2.6±0.9 versus 3.1±1.0; P<0.001), paralleling results among patients with LV dysfunction (7.0±2.9 versus 8.0±2.9; P<0.001|2.7±1.0 versus 3.1±1.0; P<0.001 respectively). Exercise time decreased stepwise in relation to both RV and LV dysfunction (P<0.001) and was associated with each parameter independent of age or medication regimen. Among patients with known or suspected coronary artery disease, regional LV ischemia involving the inferior and lateral walls confers increased likelihood of RV dysfunction. RV dysfunction impairs exercise tolerance independent of LV dysfunction. © 2016 American Heart Association, Inc.

  3. 99 mTc-MIBI washout as a complementary factor in the evaluation of idiopathic dilated cardiomyopathy (IDCM) using myocardial perfusion imaging.

    PubMed

    Shiroodi, Mohammad Kazem; Shafiei, Babak; Baharfard, Nastaran; Gheidari, Mohammad Esmail; Nazari, Babak; Pirayesh, Elaheh; Kiasat, Ali; Hoseinzadeh, Samaneh; Hashemi, Abolghassem; Akbarzadeh, Mohammad Ali; Javadi, Hamid; Nabipour, Iraj; Assadi, Majid

    2012-01-01

    Rapid technetium-99 m methoxyisobutylisonitrile (99 mTc-MIBI) washout has been shown to occur in impaired myocardia. This study is based on the hypothesis that scintigraphy can be applied to calculate the myocardial 99 mTc-MIBI washout rate (WR) to diagnose and evaluate heart failure severity and other left ventricular functional parameters specifically in idiopathic dilated cardiomyopathy (IDCM) patients. Patients with IDCMP (n = 17; 52.65 ± 11.47 years) and normal subjects (n = 6; 49.67 ± 10.15 years) were intravenously administered 99 mTc-hexakis-2-methoxyisobutylisonitrile (99 mTc-MIBI). Next, early and delayed planar data were acquired (at 3.5-h intervals), and electrocardiogram (ECG)-gated myocardial perfusion single photon emission computed tomography (SPECT) was performed. The 99 mTc-MIBI WR was calculated using early and delayed planar images. Left ventricular functional parameters were also analyzed using quantitative gated SPECT (QGS) data. In target group, myocardial WRs (29.13 ± 6.68%) were significantly higher than those of control subjects (14.17 ± 3.31%; P < 0.001). The 99 mTc-MIBI WR increased with the increasing severity of the NYHA functional class (23.16 ± 1.72% for class I, 30.25 ± 0.95% for class II, 32.60 ± 6.73% for class III, and 37.50 ± 7.77% for class IV; P = 0.02). The WR was positively correlated with the end-diastolic volume (EDV) index (r (2) = 0.216; β = 0.464; P = 0.02 [ml/m(2)], the end-systolic volume (ESV) index (r (2) = 0.234; β = 0.484; P = 0.01 [ml/m(2)]), the summed motion score (SMS) (r (2) = 0.544; β = 0.738; P = 0.00), and the summed thickening score (STS) (r (2) = 0.656; β = 0.810; P = 0.00); it was negatively correlated with the left ventricular ejection fraction (LVEF) (r (2) = 0.679; β = -0.824; P = 0.00). It can be concluded that 99 mTc-MIBI scintigraphy might be a valuable molecular imaging tool for the diagnosis and evaluation of myocardial damage or dysfunction severity.

  4. Acute Heart Failure Triggered by Coronary Spasm With Transient Left Ventricular Dysfunction.

    PubMed

    Adachi, Yusuke; Sakakura, Kenichi; Ibe, Tatsuro; Yoshida, Nanae; Wada, Hiroshi; Fujita, Hideo; Momomura, Shin-Ichi

    2017-04-06

    Coronary spasm is abnormal contraction of an epicardial coronary artery resulting in myocardial ischemia. Coronary spasm induces not only depressed myocardial contractility, but also incomplete myocardial relaxation, which leads to elevated ventricular filling pressure. We herein report the case of a 55-year-old woman who had repeated acute heart failure caused by coronary spasm. Acetylcholine provocation test with simultaneous right heart catheterization was useful for the diagnosis of elevated ventricular filling pressure as well as coronary artery spasm. We should add coronary spasm to a differential diagnosis for repeated acute heart failure.

  5. Impact of sleep-disordered breathing in patients with acute myocardial infarction: a retrospective analysis.

    PubMed

    Gessner, Verena; Bitter, Thomas; Horstkotte, Dieter; Oldenburg, Olaf; Fox, Henrik

    2017-10-01

    Sleep-disordered breathing (SDB) is associated with an increased risk of cardiovascular events. Previous studies showed that severe SDB has a negative impact on myocardial salvage and progression of left ventricular dysfunction after acute myocardial infarction (AMI). This study investigated the frequency of SDB and the effects of SDB on left ventricular function after AMI. This retrospective study enrolled all patients with AMI who had undergone cardiorespiratory polygraphy for SDB diagnosis. The apnea-hypopnea index was used as a standard metric of SDB severity. SDB was classified as mild (apnea-hypopnea index >5 to <15 per h), moderate (≥15 to <30 per h) or severe (apnea-hypopnea index ≥30 per h). According to the majority of events, SDB was classified as predominant obstructive sleep apnea, central sleep apnea or mixed sleep apnea (mixed SDB). A total of 223 patients with AMI (112 with ST elevation and 111 without ST elevation; 63.2 ± 11.2 years, 82% male, left ventricular ejection fraction 49 ± 12%) were enrolled. SDB was present in 85.6%, and was moderate-to-severe in 63.2%; 40.8% had obstructive sleep apnea, 41.7% had central sleep apnea and 3.1% had mixed SDB. Left ventricular ejection fraction was lower in patients with AMI with severe SDB (45 ± 14%) versus those without SDB (57 ± 7%; P < 0.005). In addition, lower left ventricular ejection fraction (≤45%) was associated with increased frequency (apnea-hypopnea index ≥5 per h in 96%) and severity (apnea-hypopnea index ≥30 per h in 48%) of SDB in general and a higher percentage of central sleep apnea (57%) in particular. SDB is highly frequent in patients with AMI. SDB severity appeared to be linked to impaired left ventricular function, especially in patients with central sleep apnea. © 2017 European Sleep Research Society.

  6. Estrogen Receptors α and β Play Major Roles in Ethanol-Evoked Myocardial Oxidative Stress and Dysfunction in Conscious Ovariectomized Rats.

    PubMed

    Yao, Fanrong; Abdel-Rahman, Abdel A

    2017-02-01

    We documented the dependence of ethanol (EtOH)-evoked myocardial dysfunction on estrogen (E 2 ), and our recent estrogen receptor (ER) blockade study, in proestrus rats, implicated ERα signaling in this phenomenon. However, a limitation of selective pharmacological loss-of-function approach is the potential contribution of the other 2 ERs to the observed effects because crosstalk exists between the 3 ERs. Here, we adopted a "regain"-of-function approach (using selective ER subtype agonists) to identify the ER subtype(s) required for unraveling the E 2 -dependent myocardial oxidative stress/dysfunction caused by EtOH in conscious ovariectomized (OVX) rats. OVX rats received a selective ERα (PPT), ERβ (DPN), or GPER (G1) agonist (10 μg/kg; i.v.) or vehicle 30 minutes before EtOH (1.0 g/kg; infused i.v. over 30 minutes) or saline, and the hemodynamic recording continued for additional 60 minutes. Thereafter, left ventricular tissue was collected for conducting ex vivo molecular/biochemical studies. EtOH had no hemodynamic effects in OVX rats, but reduced the left ventricular contractility index, dP/dt max , and MAP after acute ERα (PPT) or ERβ (DPN) activation. These responses were associated with increases in the phosphorylation of ERK1/2 and eNOS, and in reactive oxygen species (ROS) and malondialdehyde (MDA) levels in the myocardium. GPER activation (G1) only unraveled a modest EtOH-evoked hypotension and elevation in myocardial ROS. PPT enhanced catalase, DPN reduced ALDH2, while G1 had no effect on the activity of either enzyme, and none of the agonists influenced alcohol dehydrogenase or CYP2E1 activities in the myocardium. Blood EtOH concentration (96.0 mg/dl) was significantly reduced following ERα (59.8 mg/dl) or ERβ (62.9 mg/dl), but not GPER (100.3 mg/dl), activation in EtOH-treated OVX rats. ERα and ERβ play major roles in the E 2 -dependent myocardial dysfunction caused by EtOH by promoting combined accumulation of cardiotoxic (ROS and MDA) and cardiodepressant (NOS-derived NO) molecules in female myocardium. Copyright © 2016 by the Research Society on Alcoholism.

  7. Respiratory physiotherapy in the pre and postoperative myocardial revascularization surgery.

    PubMed

    Cavenaghi, Simone; Ferreira, Lucas Lima; Marino, Lais Helena Carvalho; Lamari, Neuseli Marino

    2011-01-01

    The cardiovascular diseases are among the main death causes in the developed world. They have been increasing epidemically in the developing countries. In spite of several alternatives for the treatment of the coronary artery disease; the surgery of the myocardial revascularization is an option with proper indications of medium and long-term with good results. It provides the remission of the angina symptoms contributing to the increase of the expectation and improvement of the life quality. Most of patients undergoing myocardial revascularization surgery develop postoperative lung dysfunction with important reduction of the lung volumes, damages in the respiratory mechanism, decrease in the lung indulgence and increase of the respiratory work. The reduction of volumes and lung capacities can contribute to alterations in the gas exchanges, resulting in hypoxemia and decrease in the diffusion capacity. Taking this into account, the Physiotherapy has been requested more and more to perform in the pre as well as in the postoperative period of this surgery. This study aimed at updating the knowledge regarding the respiratory physiotherapy performance in the pre and postoperative period of the myocardial revascularization surgery enhancing the prevention of lung complications. The Physiotherapy uses several techniques in the preoperative period; such as: the incentive spirometry, exercises of deep breathing, cough, inspiratory muscle training, earlier ambulation and physiotherapeutic orientations. While in the postoperative period, the objective is the treatment after lung complications took place, performed by means of physiotherapeutic maneuvers and noninvasive respiratory devices, aiming at improving the respiratory mechanism, the lung reexpansion and the bronchial hygiene. Respiratory physiotherapy is an integral part in the care management of the patient with cardiopathy, either in the pre or in the postoperative period, since it contributes significantly to a better prognosis of these patients with the use of specific techniques.

  8. Associations between psychological constructs and cardiac biomarkers following acute coronary syndrome

    PubMed Central

    Celano, Christopher M.; Beale, Eleanor E.; Beach, Scott R.; Belcher, Arianna M.; Suarez, Laura; Motiwala, Shweta R.; Gandhi, Parul U.; Gaggin, Hanna; Januzzi, James L.; Healy, Brian C.; Huffman, Jeff C.

    2016-01-01

    Objective Psychological constructs are associated with cardiovascular health, but the biological mechanisms mediating these relationships are unknown. We examined relationships between psychological constructs and markers of inflammation, endothelial function, and myocardial strain in a cohort of post-acute coronary syndrome (ACS) patients. Methods Participants (N=164) attended study visits 2 weeks and 6 months post-ACS. During these visits, they completed self-report measures of depressive symptoms, anxiety, optimism, and gratitude, and blood samples were collected for measurement of biomarkers reflecting inflammation, endothelial function, and myocardial strain. Generalized estimating equations and linear regression analyses were performed to examine concurrent and prospective relationships between psychological constructs and biomarkers. Results In concurrent analyses, depressive symptoms were associated with elevated markers of inflammation (interleukin-17: β=.047, 95% confidence interval [.010, .083]), endothelial dysfunction (endothelin-1: β=.020, [.004, .037]), and myocardial strain (N-terminal pro-B-type natriuretic peptide: β=.045, [.008, .083]), independent of age, sex, medical variables, and anxiety, while anxiety was not associated with these markers in multivariable adjusted models. Optimism and gratitude were associated with lower levels of markers of endothelial dysfunction (endothelin-1: gratitude: β=−.009, [−.017, −.001]; optimism: β=−.009, [−.016, −.001]; soluble intercellular adhesion molecule-1: gratitude: β=−.007, [−.014, −.000]), independent of depressive and anxiety symptoms. Psychological constructs at 2 weeks were not prospectively associated with biomarkers at 6 months. Conclusions Depressive symptoms were associated with more inflammation, myocardial strain, and endothelial dysfunction in the 6 months post-ACS, while positive psychological constructs were linked to better endothelial function. Larger, prospective studies may clarify the directionality of these relationships. PMID:27749683

  9. Should the patient with coronary artery disease use sildenafil?

    PubMed

    Cheitlin, Melvin D

    2003-01-01

    Since the etiology of erectile dysfunction is frequently related to endothelial dysfunction, a problem in common with much vascular disease, erectile dysfunction disproportionately affects patients with cardiovascular disease. With the development of phosphodiesterase 5 inhibitors, the first of which was sildenafil (Viagra), an effective oral medication became available. The question of safety of these drugs, especially in patients with latent or overt coronary artery disease, is of concern. Sildenafil relaxes smooth muscle and therefore lowers systolic and diastolic blood pressure slightly. With organic nitrates, the drop in blood pressure is potentiated, at times dangerously, thereby making it contraindicated to take nitrates within 24 hours of using sildenafil. In double-blind, placebo-controlled trials, there was no difference between sildenafil subjects and control patients in the incidence of myocardial infarction, cardiovascular, and total deaths. Coronary disease patients with stable angina, controlled on medications, were included in the trials. Therefore, sildenafil, as a drug, is safe in such patients. With a patient with coronary artery disease suddenly engaging in the physical exercise associated with sexual intercourse, there is the danger of increased risk of precipitating myocardial infarction or death. The cardiovascular metabolic cost of sexual activity is reviewed and appears to be approximately at the level of 3-5 metabolic equivalents of exercise. Sexual activity occurs within 2 hours of the onset of an acute myocardial infarction in <1.0% of patients. Although sexual intercourse is estimated to increase the risk of myocardial infarction by a factor of 2x, there is still only a very small increase in risk, a risk acceptable to patients who feel their quality of life will be markedly improved by their ability to engage in sexual activity.

  10. A mathematical model for active contraction in healthy and failing myocytes and left ventricles.

    PubMed

    Cai, Li; Wang, Yongheng; Gao, Hao; Li, Yiqiang; Luo, Xiaoyu

    2017-01-01

    Cardiovascular disease is one of the leading causes of death worldwide, in particular myocardial dysfunction, which may lead to heart failure eventually. Understanding the electro-mechanics of the heart will help in developing more effective clinical treatments. In this paper, we present a multi-scale electro-mechanics model of the left ventricle (LV). The Holzapfel-Ogden constitutive law was used to describe the passive myocardial response in tissue level, a modified Grandi-Pasqualini-Bers model was adopted to model calcium dynamics in individual myocytes, and the active tension was described using the Niederer-Hunter-Smith myofilament model. We first studied the electro-mechanics coupling in a single myocyte in the healthy and diseased left ventricle, and then the single cell model was embedded in a dynamic LV model to investigate the compensation mechanism of LV pump function due to myocardial dysfunction caused by abnormality in cellular calcium dynamics. The multi-scale LV model was solved using an in-house developed hybrid immersed boundary method with finite element extension. The predictions of the healthy LV model agreed well with the clinical measurements and other studies, and likewise, the results in the failing states were also consistent with clinical observations. In particular, we found that a low level of intracellular Ca2+ transient in myocytes can result in LV pump function failure even with increased myocardial contractility, decreased systolic blood pressure, and increased diastolic filling pressure, even though they will increase LV stroke volume. Our work suggested that treatments targeted at increased contractility and lowering the systolic blood pressure alone are not sufficient in preventing LV pump dysfunction, restoring a balanced physiological Ca2+ handling mechanism is necessary.

  11. Impaired cardiac contractile function in arginine:glycine amidinotransferase knockout mice devoid of creatine is rescued by homoarginine but not creatine

    PubMed Central

    Faller, Kiterie M E; Atzler, Dorothee; McAndrew, Debra J; Zervou, Sevasti; Whittington, Hannah J; Simon, Jillian N; Aksentijevic, Dunja; ten Hove, Michiel; Choe, Chi-un; Isbrandt, Dirk; Casadei, Barbara; Schneider, Jurgen E; Neubauer, Stefan; Lygate, Craig A

    2018-01-01

    Abstract Aims Creatine buffers cellular adenosine triphosphate (ATP) via the creatine kinase reaction. Creatine levels are reduced in heart failure, but their contribution to pathophysiology is unclear. Arginine:glycine amidinotransferase (AGAT) in the kidney catalyses both the first step in creatine biosynthesis as well as homoarginine (HA) synthesis. AGAT-/- mice fed a creatine-free diet have a whole body creatine-deficiency. We hypothesized that AGAT-/- mice would develop cardiac dysfunction and rescue by dietary creatine would imply causality. Methods and results Withdrawal of dietary creatine in AGAT-/- mice provided an estimate of myocardial creatine efflux of ∼2.7%/day; however, in vivo cardiac function was maintained despite low levels of myocardial creatine. Using AGAT-/- mice naïve to dietary creatine we confirmed absence of phosphocreatine in the heart, but crucially, ATP levels were unchanged. Potential compensatory adaptations were absent, AMPK was not activated and respiration in isolated mitochondria was normal. AGAT-/- mice had rescuable changes in body water and organ weights suggesting a role for creatine as a compatible osmolyte. Creatine-naïve AGAT-/- mice had haemodynamic impairment with low LV systolic pressure and reduced inotropy, lusitropy, and contractile reserve. Creatine supplementation only corrected systolic pressure despite normalization of myocardial creatine. AGAT-/- mice had low plasma HA and supplementation completely rescued all other haemodynamic parameters. Contractile dysfunction in AGAT-/- was confirmed in Langendorff perfused hearts and in creatine-replete isolated cardiomyocytes, indicating that HA is necessary for normal cardiac function. Conclusions Our findings argue against low myocardial creatine per se as a major contributor to cardiac dysfunction. Conversely, we show that HA deficiency can impair cardiac function, which may explain why low HA is an independent risk factor for multiple cardiovascular diseases. PMID:29236952

  12. SIRT1 activation attenuates diastolic dysfunction by reducing cardiac fibrosis in a model of anthracycline cardiomyopathy.

    PubMed

    Cappetta, Donato; Esposito, Grazia; Piegari, Elena; Russo, Rosa; Ciuffreda, Loreta Pia; Rivellino, Alessia; Berrino, Liberato; Rossi, Francesco; De Angelis, Antonella; Urbanek, Konrad

    2016-02-15

    Doxorubicin (DOXO) is an effective anti-neoplastic drug but its clinical benefits are hampered by cardiotoxicity. Oxidative stress, apoptosis and myocardial fibrosis mediate the anthracycline cardiomyopathy. ROS trigger TGF-β pathway that activates cardiac fibroblasts promoting fibrosis. Myocardial stiffness contributes to diastolic dysfunction, less studied aspect of anthracycline cardiomyopathy. Considering the role of SIRT1 in the inhibition of the TGF-β/SMAD3 pathway, resveratrol (RES), a SIRT1 activator, might improve cardiac function by interfering with the development of cardiac fibrosis in a model of DOXO-induced cardiomyopathy. F344 rats received a cumulative dose of 15 mg/kg of DOXO in 2 weeks or DOXO+RES (DOXO and RES, 2.5mg/kg/day, concomitantly for 2 weeks and then RES alone for 1 more week). The effects of RES on cardiac fibroblasts were also tested in vitro. Along with systolic dysfunction, DOXO was also responsible of diastolic abnormalities. Myocardial stiffness correlated with fibroblast activation and collagen deposition. DOXO+RES co-treatment significantly improved ± dP/dt and, more interestingly, ameliorated end-diastolic pressure/volume relationship. Treatment with RES resulted in reduced fibrosis and fibroblast activation and, most importantly, the mortality rate was significantly reduced in DOXO+RES group. Fibroblasts isolated from DOXO+RES-treated rats, in which SIRT1 was upregulated, showed decreased levels of TGF-β and pSMAD3/SMAD3 when compared to cells isolated from DOXO-exposed hearts. Our findings reveal a key role of SIRT1 in supporting animal survival and functional parameters of the heart. SIRT1 activation by interfering with fibrogenesis can improve relaxation properties of myocardium and attenuate myocardial remodeling related to chemotherapy. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Cardiac fibroblast GSK-3β regulates ventricular remodeling and dysfunction in ischemic heart

    PubMed Central

    Lal, Hind; Ahmad, Firdos; Zhou, Jibin; Yu, Justine E.; Vagnozzi, Ronald J.; Guo, Yuanjun; Yu, Daohai; Tsai, Emily J.; Woodgett, James; Gao, Erhe; Force, Thomas

    2014-01-01

    Background Myocardial infarction-induced remodeling includes chamber dilatation, contractile dysfunction, and fibrosis. Of these, fibrosis is the least understood. Following MI, activated cardiac fibroblasts (CFs) deposit extracellular matrix. Current therapies to prevent fibrosis are inadequate and new molecular targets are needed. Methods and Results Herein we report that GSK-3β is phosphorylated (inhibited) in fibrotic tissues from ischemic human and mouse heart. Using two fibroblast-specific GSK-3β knockout mouse models, we show that deletion of GSK-3β in CFs leads to fibrogenesis, left ventricular dysfunction and excessive scarring in the ischemic heart. Deletion of GSK-3β induces a pro-fibrotic myofibroblast phenotype in isolated CFs, in post-MI hearts, and in MEFs deleted for GSK-3β. Mechanistically, GSK-3β inhibits pro-fibrotic TGF-β1-SMAD-3 signaling via interactions with SMAD-3. Moreover, deletion of GSK-3β resulted in the suppression of SMAD-3 transcriptional activity. This pathway is central to the pathology since a small molecule inhibitor of SMAD-3 largely prevented fibrosis and limited LV remodeling. Conclusion These studies support targeting GSK-3β in myocardial fibrotic disorders and establish critical roles of CFs in remodeling and ventricular dysfunction. PMID:24899689

  14. Life-threatening heat stroke presenting with ST elevations: a report of consecutive cases during the heat wave in Austria in July 2013.

    PubMed

    Lassnig, Elisabeth; Dinkhauser, Patrick; Maurer, Edwin; Eber, Bernd

    2014-08-01

    Heat stroke is a life-threatening condition due to an acute thermoregulatory failure during exposure to high environmental temperatures. We report a series of four cases (three exertional, one classic heat stroke) during the heat wave of July 2013 in Austria. All of them presented with a core temperature > 41 °C, central nervous dysfunction, acute respiratory and renal failure, disseminated intravascular coagulation, rhabdomyolysis, and severe electrocardiographic changes, two cases even mimicking ST-elevation myocardial infarction. The patients were cooled to normal temperature with the "Arctic sun" external cooling system within hours. Electrocardiographic changes resolved quickly. All patients primarily recovered from multiple organ dysfunction and could be discharged from intensive care unit. Unfortunately, the two elder patients died 1 week and 5 weeks later because of late complications.

  15. Use of milrinone to treat cardiac dysfunction in infants with pulmonary hypertension secondary to congenital diaphragmatic hernia: a review of six patients.

    PubMed

    Patel, Neil

    2012-01-01

    Pulmonary hypertension and secondary cardiac dysfunction are important contributors of morbidity and mortality in infants with congenital diaphragmatic hernia (CDH). Milrinone, a phosphodiesterase-3 inhibitor, may be useful in this setting for its combined actions as a pulmonary vasodilator and to improve systolic and diastolic function. This study aimed to assess the effects of milrinone on cardiac function and pulmonary artery pressure in infants with CDH. A retrospective review of echocardiograms performed on infants with CDH who received milrinone was performed. Tissue Doppler imaging velocities were used to assess systolic and diastolic function. Pulmonary artery pressure was assessed from the pattern and velocity of ductal shunting. Six infants with CDH and severe pulmonary hypertension were identified. Systolic and diastolic myocardial velocities were reduced in the right ventricle (RV) and interventricular septum (IVS) at baseline. In the 72 h after commencement of milrinone, there was a significant increase in early diastolic myocardial velocities in the RV, accompanied by increasing systolic velocities in the RV and IVS. Oxygenation index was significantly reduced, blood pressure unchanged, and ductal shunt velocity minimally altered over the same time period. Milrinone use was associated with an improvement in systolic and diastolic function in the RV, corresponding to an improvement in clinical status. Copyright © 2012 S. Karger AG, Basel.

  16. Exercise-induced changes in mitral regurgitation in patients with prior myocardial infarction and left ventricular dysfunction: relation to mitral deformation and left ventricular function and shape.

    PubMed

    Giga, Vojislav; Ostojic, Miodrag; Vujisic-Tesic, Bosiljka; Djordjevic-Dikic, Ana; Stepanovic, Jelena; Beleslin, Branko; Petrovic, Milan; Nedeljkovic, Milan; Nedeljkovic, Ivana; Milic, Natasa

    2005-09-01

    The aim of this study was to assess the relationship between exercise-induced changes in mitral regurgitation (MR) and echocardiographic characteristics of mitral deformation, global left ventricular (LV) function and shape at rest and after exercise. Forty consecutive patients with ischaemic MR due to prior myocardial infarction (MI), ejection fraction <45% in sinus rhythm underwent exercise-echocardiographic testing. Exercise-induced changes in effective regurgitant orifice (ERO) were compared with baseline and exercise-induced changes in mitral deformation and global LV function and shape. There was significant correlation between exercise-induced changes in ERO and changes in coaptation distance (r=0.80, P<0.0001), tenting area (r=0.79, P<0.0001) and mitral annular diameter (r=0.65, P<0.0001), as well as in end-systolic sphericity index (r=-0.50, P=0.001, respectively), and wall motion score index (r=0.44, P=0.004). In contrast, exercise-induced changes in ERO were not related to the echocardiographic features at rest. By stepwise multiple regression model, the exercise-induced changes in mitral deformation were found to independently correlate with exercise-induced changes in ERO (generalized r(2)=0.80, P<0.0001). Exercise-induced changes in severity of ischaemic MR in patients with LV dysfunction due to prior MI were independently related to changes in mitral deformation.

  17. Visit-to-visit blood pressure variation is associated with outcomes in a U-shaped fashion in patients with myocardial infarction complicated with systolic dysfunction and/or heart failure: findings from the EPHESUS and OPTIMAAL trials.

    PubMed

    Ferreira, João Pedro; Duarte, Kévin; Pitt, Bertram; Dickstein, Kenneth; McMurray, John J V; Zannad, Faiez; Rossignol, Patrick

    2018-04-21

    Visit-to-visit office blood pressure variation (BPV) has prognostic implications independent from mean BP across several populations in the cardiovascular field. The association of BPV with outcomes in patients with myocardial infarction (MI) with systolic dysfunction and/or heart failure is yet to be determined. Two independent cohorts were assessed: the EPHESUS and the OPTIMAAL trials with a total of more than 12 000 patients. The primary outcome was all-cause death. BPV was calculated as a coefficient of variation, that is, the ratio of the SD to the mean BP along the postbaseline follow-up. Cox regression models were used to determine the associations between BPV and events. Compared with the middle and lower BPV tertiles, patients in the upper BPV tertile were older, more often women, hypertensive, diabetic, with peripheral artery disease, and had more frequent use of loop diuretics and ACEi/ARBs. They also had lower LVEF, hemoglobin, and eGFR (all P < 0.001). BPV was independently associated with worse prognosis in a U-shaped manner. In the EPHESUS trial, both low and high BPV were associated with higher rates of death (and also cardiovascular death and the composite of cardiovascular death/ cardiovascular hospitalization): adjusted hazard ratio (95% CI) for the outcome of death is 1.99 (1.68-2.36) for high BPV and is 1.60 (1.35-1.90) for low BPV. Similar results were observed in the OPTIMAAL trial population. In two independent cohorts of MI patients with systolic dysfunction and/or heart failure, BPV was associated with worse prognosis in a U-shaped manner independently of the mean BP.

  18. Cardiac Auscultation for Noncardiologists: Application in Cardiac Rehabilitation Programs: PART I: PATIENTS AFTER ACUTE CORONARY SYNDROMES AND HEART FAILURE.

    PubMed

    Compostella, Leonida; Compostella, Caterina; Russo, Nicola; Setzu, Tiziana; Iliceto, Sabino; Bellotto, Fabio

    2017-09-01

    During outpatient cardiac rehabilitation after an acute coronary syndrome or after an episode of congestive heart failure, a careful, periodic evaluation of patients' clinical and hemodynamic status is essential. Simple and traditional cardiac auscultation could play a role in providing useful prognostic information.Reduced intensity of the first heart sound (S1), especially when associated with prolonged apical impulse and the appearance of added sounds, may help identify left ventricular (LV) dysfunction or conduction disturbances, sometimes associated with transient myocardial ischemia. If both S1 and second heart sound (S2) are reduced in intensity, a pericardial effusion may be suspected, whereas an increased intensity of S2 may indicate increased pulmonary artery pressure. The persistence of a protodiastolic sound (S3) after an acute coronary syndrome is an indicator of severe LV dysfunction and a poor prognosis. In patients with congestive heart failure, the association of an S3 and elevated heart rate may indicate impending decompensation. A presystolic sound (S4) is often associated with S3 in patients with LV failure, although it could also be present in hypertensive patients and in patients with an LV aneurysm. Careful evaluation of apical systolic murmurs could help identifying possible LV dysfunction or mitral valve pathology, and differentiate them from a ruptured papillary muscle or ventricular septal rupture. Friction rubs after an acute myocardial infarction, due to reactive pericarditis or Dressler syndrome, are often associated with a complicated clinical course.During cardiac rehabilitation, periodic cardiac auscultation may provide useful information about the clinical-hemodynamic status of patients and allow timely detection of signs, heralding possible complications in an efficient and low-cost manner.

  19. Role of microtubules in the contractile dysfunction of hypertrophied myocardium

    NASA Technical Reports Server (NTRS)

    Zile, M. R.; Koide, M.; Sato, H.; Ishiguro, Y.; Conrad, C. H.; Buckley, J. M.; Morgan, J. P.; Cooper, G. 4th

    1999-01-01

    OBJECTIVES: We sought to determine whether the ameliorative effects of microtubule depolymerization on cellular contractile dysfunction in pressure overload cardiac hypertrophy apply at the tissue level. BACKGROUND: A selective and persistent increase in microtubule density causes decreased contractile function of cardiocytes from cats with hypertrophy produced by chronic right ventricular (RV) pressure overloading. Microtubule depolymerization by colchicine normalizes contractility in these isolated cardiocytes. However, whether these changes in cellular function might contribute to changes in function at the more highly integrated and complex cardiac tissue level was unknown. METHODS: Accordingly, RV papillary muscles were isolated from 25 cats with RV pressure overload hypertrophy induced by pulmonary artery banding (PAB) for 4 weeks and 25 control cats. Contractile state was measured using physiologically sequenced contractions before and 90 min after treatment with 10(-5) mol/liter colchicine. RESULTS: The PAB significantly increased RV systolic pressure and the RV weight/body weight ratio in PAB; it significantly decreased developed tension from 59+/-3 mN/mm2 in control to 25+/-4 mN/mm2 in PAB, shortening extent from 0.21+/-0.01 muscle lengths (ML) in control to 0.12+/-0.01 ML in PAB, and shortening rate from 1.12+/-0.07 ML/s in control to 0.55+/-0.03 ML/s in PAB. Indirect immunofluorescence confocal microscopy showed that PAB muscles had a selective increase in microtubule density and that colchicine caused complete microtubule depolymerization in both control and PAB papillary muscles. Microtubule depolymerization normalized myocardial contractility in papillary muscles of PAB cats but did not alter contractility in control muscles. CONCLUSIONS: Excess microtubule density, therefore, is equally important to both cellular and to myocardial contractile dysfunction caused by chronic, severe pressure-overload cardiac hypertrophy.

  20. Comparative Definitions for Moderate-Severe Ischemia in Stress Nuclear, Echocardiography, and Magnetic Resonance Imaging

    PubMed Central

    Shaw, Leslee J.; Berman, Daniel S.; Picard, Michael H.; Friedrich, Matthias G.; Kwong, Raymond Y.; Stone, Gregg W.; Senior, Roxy; Min, James K.; Hachamovitch, Rory; Scherrer-Crosbie, Marielle; Mieres, Jennifer H.; Marwick, Thomas H.; Phillips, Lawrence M.; Chaudhry, Farooq A.; Pellikka, Patricia A.; Slomka, Piotr; Arai, Andrew E.; Iskandrian, Ami E.; Bateman, Timothy M.; Heller, Gary V.; Miller, Todd D.; Nagel, Eike; Goyal, Abhinav; Borges-Neto, Salvador; Boden, William E.; Reynolds, Harmony R.; Hochman, Judith S.; Maron, David J.; Douglas, Pamela S.

    2014-01-01

    The lack of standardized reporting of the magnitude of ischemia on noninvasive imaging contributes to variability in translating the severity of ischemia across stress imaging modalities. We identified the risk of coronary artery disease (CAD) death or myocardial infarction (MI) associated with ≥10% ischemic myocardium on stress nuclear imaging as the risk threshold for stress echocardiography and cardiac magnetic resonance. A narrative review revealed that ≥10% ischemic myocardium on stress nuclear imaging was associated with a median rate of CAD death or MI of 4.9%/year (interquartile range: 3.75% to 5.3%). For stress echocardiography, ≥3 newly dysfunctional segments portend a median rate of CAD death or MI of 4.5%/year (interquartile range: 3.8% to 5.9%). Although imprecisely delineated, moderate-severe ischemia on cardiac magnetic resonance may be indicated by ≥4 of 32 stress perfusion defects or ≥3 dobutamine-induced dysfunctional segments. Risk-based thresholds can define equivalent amounts of ischemia across the stress imaging modalities, which will help to translate a common understanding of patient risk on which to guide subsequent management decisions. PMID:24925328

  1. Mental Stress-Induced-Myocardial Ischemia in Young Patients With Recent Myocardial Infarction: Sex Differences and Mechanisms.

    PubMed

    Vaccarino, Viola; Sullivan, Samaah; Hammadah, Muhammad; Wilmot, Kobina; Al Mheid, Ibhar; Ramadan, Ronnie; Elon, Lisa; Pimple, Pratik M; Garcia, Ernest V; Nye, Jonathon; Shah, Amit J; Alkhoder, Ayman; Levantsevych, Oleksiy; Gay, Hawkins; Obideen, Malik; Huang, Minxuan; Lewis, Tené T; Bremner, J Douglas; Quyyumi, Arshed A; Raggi, Paolo

    2018-02-20

    Mental stress-induced myocardial ischemia (MSIMI) is frequent in patients with coronary artery disease and is associated with worse prognosis. Young women with a previous myocardial infarction (MI), a group with unexplained higher mortality than men of comparable age, have shown elevated rates of MSIMI, but the mechanisms are unknown. We studied 306 patients (150 women and 156 men) ≤61 years of age who were hospitalized for MI in the previous 8 months and 112 community controls (58 women and 54 men) frequency matched for sex and age to the patients with MI. Endothelium-dependent flow-mediated dilation and microvascular reactivity (reactive hyperemia index) were measured at rest and 30 minutes after mental stress. The digital vasomotor response to mental stress was assessed using peripheral arterial tonometry. Patients received 99m Tc-sestamibi myocardial perfusion imaging at rest, with mental (speech task) and conventional (exercise/pharmacological) stress. The mean age of the sample was 50 years (range, 22-61). In the MI group but not among controls, women had a more adverse socioeconomic and psychosocial profile than men. There were no sex differences in cardiovascular risk factors, and among patients with MI, clinical severity tended to be lower in women. Women in both groups showed a higher peripheral arterial tonometry ratio during mental stress but a lower reactive hyperemia index after mental stress, indicating enhanced microvascular dysfunction after stress. There were no sex differences in flow-mediated dilation changes with mental stress. The rate of MSIMI was twice as high in women as in men (22% versus 11%, P =0.009), and ischemia with conventional stress was similarly elevated (31% versus 16%, P =0.002). Psychosocial and clinical risk factors did not explain sex differences in inducible ischemia. Although vascular responses to mental stress (peripheral arterial tonometry ratio and reactive hyperemia index) also did not explain sex differences in MSIMI, they were predictive of MSIMI in women only. Young women after MI have a 2-fold likelihood of developing MSIMI compared with men and a similar increase in conventional stress ischemia. Microvascular dysfunction and peripheral vasoconstriction with mental stress are implicated in MSIMI among women but not among men, perhaps reflecting women's proclivity toward ischemia because of microcirculatory abnormalities. © 2018 American Heart Association, Inc.

  2. Local sympathetic denervation attenuates myocardial inflammation and improves cardiac function after myocardial infarction in mice

    PubMed Central

    Ziegler, Karin A; Ahles, Andrea; Wille, Timo; Kerler, Julia; Ramanujam, Deepak; Engelhardt, Stefan

    2018-01-01

    Abstract Aims Cardiac inflammation has been suggested to be regulated by the sympathetic nervous system (SNS). However, due to the lack of methodology to surgically eliminate the myocardial SNS in mice, neuronal control of cardiac inflammation remains ill-defined. Here, we report a procedure for local cardiac sympathetic denervation in mice and tested its effect in a mouse model of heart failure post-myocardial infarction. Methods and results Upon preparation of the carotid bifurcation, the right and the left superior cervical ganglia were localized and their pre- and postganglionic branches dissected before removal of the ganglion. Ganglionectomy led to an almost entire loss of myocardial sympathetic innervation in the left ventricular anterior wall. When applied at the time of myocardial infarction (MI), cardiac sympathetic denervation did not affect acute myocardial damage and infarct size. In contrast, cardiac sympathetic denervation significantly attenuated chronic consequences of MI, including myocardial inflammation, myocyte hypertrophy, and overall cardiac dysfunction. Conclusion These data suggest a critical role for local sympathetic control of cardiac inflammation. Our model of myocardial sympathetic denervation in mice should prove useful to further dissect the molecular mechanisms underlying cardiac neural control. PMID:29186414

  3. Model-dependent effects of the gap junction conduction-enhancing antiarrhythmic peptide rotigaptide (ZP123) on experimental atrial fibrillation in dogs.

    PubMed

    Shiroshita-Takeshita, Akiko; Sakabe, Masao; Haugan, Ketil; Hennan, James K; Nattel, Stanley

    2007-01-23

    Abnormal intercellular communication caused by connexin dysfunction may be involved in atrial fibrillation (AF). The present study assessed the effect of the gap junctional conduction-enhancing peptide rotigaptide on AF maintenance in substrates that result from congestive heart failure induced by 2-week ventricular tachypacing (240 bpm), atrial tachypacing (ATP; 400 bpm for 3 to 6 weeks), and isolated atrial myocardial ischemia. Electrophysiological study and epicardial mapping were performed before and after rotigaptide administration in dogs with ATP and congestive heart failure, as well as in similarly instrumented sham dogs that were not tachypaced. For atrial myocardial ischemia, dogs administered rotigaptide before myocardial ischemia were compared with no-drug myocardial ischemia controls. ATP significantly shortened the atrial effective refractory period (P=0.003) and increased AF duration (P=0.008), with AF lasting >3 hours in all 6-week ATP animals. Rotigaptide increased conduction velocity in ATP dogs slightly but significantly (P=0.04) and did not affect the effective refractory period, AF duration, or atrial vulnerability. In dogs with congestive heart failure, rotigaptide also slightly increased conduction velocity (P=0.046) but failed to prevent AF promotion. Rotigaptide had no statistically significant effects in sham dogs. Myocardial ischemia alone increased AF duration and impaired conduction (based on conduction velocity across the ischemic border and indices of conduction heterogeneity). Rotigaptide prevented myocardial ischemia-induced conduction slowing and AF duration increases. Rotigaptide improves conduction in various AF models but suppresses AF only for the acute ischemia substrate. These results define the atrial antiarrhythmic profile of a mechanistically novel antiarrhythmic drug and suggest that gap junction dysfunction may be more important in ischemic AF than in ATP remodeling or congestive heart failure substrates.

  4. Hypercholesterolemia and Myocardial function evaluated via Tissue Doppler Imaging

    PubMed Central

    2009-01-01

    Objective To establish a link between hypercholesterolemia and myocardial dysfunction. Background Heart failure is a complex disease involving changes in systolic and diastolic function. Newer echocardiographic imaging modalities may be able to detect discreet changes in myocardial function associated with hypercholesterolemia. Therefore we sought to establish a link between hypercholesterolemia and myocardial dysfunction with tissue Doppler imaging (TDI). Methods Twenty-seven rabbits were studied: 7 were fed normal chow (group 1) and 20 a high cholesterol diet (10 with ezetimibe, 1 mg/kg/day; group 2 and 10 without, group 3). Echocardiographic images were obtained under general anesthesia. Serum cholesterol levels were obtained at baseline, 3 and 6 months and myocardial cholesterol levels measured following euthanasia. Results Doppler measurements, including E/A, E'/A' and S' were significantly lower in group 3 compared to both groups 1 and 2 but no significant differences were noted in chamber sizes or ejection fraction among the groups. Average serum cholesterol was higher in group 3 compared to groups 1 and 2 respectively (495 ± 305 mg/dl vs. 114 ± 95 mg/dl and 87 ± 37 mg/dl; p < 0.01). Myocardial cholesterol content was also higher in group 3 compared to group 2 (0.10 ± 0.04 vs. 0.06 mg/dl ± 0.02; p = 0.05). There was significant correlation between S', E'/A', E/E' and serum cholesterol (r2 = 0.17 p = 0.04, r2 = 0.37 p = 0.001 and r2 = 0.24 p = 0.01). Conclusion Cholesterol load in the serum and myocardium was significantly associated with decreased systolic and diastolic function by TDI. Moreover, lipid lowering was protective. PMID:19943937

  5. [Renal dysfunction in patients with myocardial infarction concurrent with type 2 diabetes mellitus].

    PubMed

    Evseeva, M V; Karetnikova, V N; Barbarash, O L

    2015-01-01

    Carbohydrate metabolic disturbances are an independent risk factor for not only the development, but also poor course of cardiovascular diseases, particularly those concurrent with renal dysfunction (RD). This factor acquires particular relevance due to the fact that the incidence of type 2 diabetes mellitus significantly continues to rise worldwide. The review considers the main mechanisms and common components of the pathogenesis of RD, as well as the constituents forming its basis in the presence of carbohydrate metabolic disturbances. Moreover, it highlights the timely detection of RD, a search for new biomarkers of prognostic value for cardiovascular events, and the early diagnosis of RD. The review unveils the present view of optimal diagnostic and management tactics for patients with myocardial infarction concurrent with background diseases.

  6. Decreased Autophagy Contributes to Myocardial Dysfunction in Rats Subjected to Nonlethal Mechanical Trauma

    PubMed Central

    Liang, Feng; Li, Xiaoyu; Wang, Li; Yang, Caihong; Yan, Zi; Zhang, Suli; Liu, Huirong

    2013-01-01

    Autophagy is important in cells for removing damaged organelles, such as mitochondria. Insufficient autophagy plays a critical role in tissue injury and organ dysfunction under a variety of pathological conditions. However, the role of autophagy in nonlethal traumatic cardiac damage remains unclear. The aims of the present study were to investigate whether nonlethal mechanical trauma may result in the change of cardiomyocyte autophagy, and if so, to determine whether the changed myocardial autophagy may contribute to delayed cardiac dysfunction. Male adult rats were subjected to nonlethal traumatic injury, and cardiomyocyte autophagy, cardiac mitochondrial function, and cardiac function in isolated perfused hearts were detected. Direct mechanical traumatic injury was not observed in the heart within 24 h after trauma. However, cardiomyocyte autophagy gradually decreased and reached a minimal level 6 h after trauma. Cardiac mitochondrial dysfunction was observed by cardiac radionuclide imaging 6 h after trauma, and cardiac dysfunction was observed 24 h after trauma in the isolated perfused heart. These were reversed when autophagy was induced by administration of the autophagy inducer rapamycin 30 min before trauma. Our present study demonstrated for the first time that nonlethal traumatic injury caused decreased autophagy, and decreased autophagy may contribute to post-traumatic organ dysfunction. Though our study has some limitations, it strongly suggests that cardiac damage induced by nonlethal mechanical trauma can be detected by noninvasive radionuclide imaging, and induction of autophagy may be a novel strategy for reducing posttrauma multiple organ failure. PMID:23977036

  7. Myocardial pathology induced by aldosterone is dependent on non-canonical activities of G protein-coupled receptor kinases

    PubMed Central

    Cannavo, Alessandro; Liccardo, Daniela; Eguchi, Akito; Elliott, Katherine J.; Traynham, Christopher J.; Ibetti, Jessica; Eguchi, Satoru; Leosco, Dario; Ferrara, Nicola; Rengo, Giuseppe; Koch, Walter J.

    2016-01-01

    Hyper-aldosteronism is associated with myocardial dysfunction including induction of cardiac fibrosis and maladaptive hypertrophy. Mechanisms of these cardiotoxicities are not fully understood. Here we show that mineralocorticoid receptor (MR) activation by aldosterone leads to pathological myocardial signalling mediated by mitochondrial G protein-coupled receptor kinase 2 (GRK2) pro-death activity and GRK5 pro-hypertrophic action. Moreover, these MR-dependent GRK2 and GRK5 non-canonical activities appear to involve cross-talk with the angiotensin II type-1 receptor (AT1R). Most importantly, we show that ventricular dysfunction caused by chronic hyper-aldosteronism in vivo is completely prevented in cardiac Grk2 knockout mice (KO) and to a lesser extent in Grk5 KO mice. However, aldosterone-induced cardiac hypertrophy is totally prevented in Grk5 KO mice. We also show human data consistent with MR activation status in heart failure influencing GRK2 levels. Therefore, our study uncovers GRKs as targets for ameliorating pathological cardiac effects associated with high-aldosterone levels. PMID:26932512

  8. Value of speckle tracking echocardiography for detection of clinically silent left ventricular dysfunction in patients with β-thalassemia.

    PubMed

    Parsaee, Mozhgan; Saedi, Sedigheh; Joghataei, Pegah; Azarkeivan, Azita; Alizadeh Sani, Zahra

    2017-10-01

    β-Thalassemia is an inherited hemoglobin disorder resulting in chronic hemolytic anemia requiring chronic transfusion therapy. Cardiac involvement is the main cause of death in patients with thalassemia major. The narrow border is between overt myocardial dysfunction and clinically silent left ventricular (LV) dysfunction in patients with thalassemia. Therefore, we need novel parameters in different imaging techniques to discover cardiac involvement in an early and subtle stage. We explore to find a novel, straightforward and informative parameter in echocardiography as a noninvasive, economical and really routine in clinical practice. In this prospective study, 55 patients, who are known cases of β-thalassemia major, receiving long-term blood transfusions and undergoing iron chelation therapy were enrolled. Ferritin level, cardiac magnetic resonance (CMR) T2 * value, full conventional echocardiography and speckle tracking, LV regional circumferential and longitudinal strain values (%) and time-to-peak strain (ms) of 17 segments cardiac model in eyeball tomogram were measured. There was a significant reduction in global longitudinal strain (GLS) (-20.9% ± 1.9 vs. -22.2 ± 1.03) and also basal segments longitudinal strain compared to normal subjects group (-17.4% ± 2.7 vs. -19.6% ± 1.2). There was no significant difference in circumferential strain value between thalassemia patients and normal control group. Interestingly, there was no significant correlation between GLS and CMR T2 * values showing no association between cardiac iron load and longitudinal strain. Speckle tracking echocardiography could be used as a feasible method for evaluating subclinical myocardial dysfunction in patients with thalassemia major. Echocardiography, using GLS, could predict clinically silent myocardial dysfunction independent of CMR (T2 * value) and extension of iron deposition. Our study also puts forward other causes such as chronic tissue hypoxia resulting from chronic anemia as a root cause and initiating factor for subsequent injury by the iron deposition. Speckle tracking can recognize the cardiac involvement in really early stages.

  9. Optimal Timing of Surgical Revascularization for Myocardial Infarction and Left Ventricular Dysfunction

    PubMed Central

    Wang, Rong; Cheng, Nan; Xiao, Cang-Song; Wu, Yang; Sai, Xiao-Yong; Gong, Zhi-Yun; Wang, Yao; Gao, Chang-Qing

    2017-01-01

    Background: The optimal timing of surgical revascularization for patients presenting with ST-segment elevation myocardial infarction (STEMI) and impaired left ventricular function is not well established. This study aimed to examine the timing of surgical revascularization after STEMI in patients with ischemic heart disease and left ventricular dysfunction (LVD) by comparing early and late results. Methods: From January 2003 to December 2013, there were 2276 patients undergoing isolated coronary artery bypass grafting (CABG) in our institution. Two hundred and sixty-four (223 male, 41 females) patients with a history of STEMI and LVD were divided into early revascularization (ER, <3 weeks), mid-term revascularization (MR, 3 weeks to 3 months), and late revascularization (LR, >3 months) groups according to the time interval from STEMI to CABG. Mortality and complication rates were compared among the groups by Fisher's exact test. Cox regression analyses were performed to examine the effect of the time interval of surgery on long-term survival. Results: No significant differences in 30-day mortality, long-term survival, freedom from all-cause death, and rehospitalization for heart failure existed among the groups (P > 0.05). More patients in the ER group (12.90%) had low cardiac output syndrome than those in the MR (2.89%) and LR (3.05%) groups (P = 0.035). The mean follow-up times were 46.72 ± 30.65, 48.70 ± 32.74, and 43.75 ± 32.43 months, respectively (P = 0.716). Cox regression analyses showed a severe preoperative condition (odds ratio = 7.13, 95% confidence interval 2.05–24.74, P = 0.002) rather than the time interval of CABG (P > 0.05) after myocardial infarction was a risk factor of long-term survival. Conclusions: Surgical revascularization for patients with STEMI and LVD can be performed at different times after STEMI with comparable operative mortality and long-term survival. However, ER (<3 weeks) has a higher incidence of postoperative low cardiac output syndrome. A severe preoperative condition rather than the time interval of CABG after STEMI is a risk factor of long-term survival. PMID:28218210

  10. Parametric techniques for characterizing myocardial tissue by magnetic resonance imaging (part 1): T1 mapping.

    PubMed

    Perea Palazón, R J; Ortiz Pérez, J T; Prat González, S; de Caralt Robira, T M; Cibeira López, M T; Solé Arqués, M

    2016-01-01

    The development of myocardial fibrosis is a common process in the appearance of ventricular dysfunction in many heart diseases. Magnetic resonance imaging makes it possible to accurately evaluate the structure and function of the heart, and its role in the macroscopic characterization of myocardial fibrosis by late enhancement techniques has been widely validated clinically. Recent studies have demonstrated that T1-mapping techniques can quantify diffuse myocardial fibrosis and the expansion of the myocardial extracellular space in absolute terms. However, further studies are necessary to validate the usefulness of this technique in the early detection of tissue remodeling at a time when implementing early treatment would improve a patient's prognosis. This article reviews the state of the art for T1 mapping of the myocardium, its clinical applications, and its limitations. Copyright © 2016 SERAM. Published by Elsevier España, S.L.U. All rights reserved.

  11. [A case of rupture of the left ventricle free wall with papillary muscle dysfunction following acute myocardial infarction, operated on successfully].

    PubMed

    de Lima, R; Perdigão, C; Neves, L; Cravino, J; Dantas, M; Bordalo, A; Pais, F; Diogo, A N; Ferreira, R; Ribeiro, C

    1990-09-01

    The authors present a case of left ventricular free wall rupture post acute myocardial infarction, associated with mitral papillary posterior muscle necrosis, operated by infartectomy and mitral valvular protesis replacement. They refer the various complications occurred during the hospital staying, and discuss its medical and surgical approach. The patient was discharged alive and six months after the infarction keeps a moderate activity.

  12. IGF-1 Alleviates High Fat Diet-Induced Myocardial Contractile Dysfunction: Role of Insulin Signaling and Mitochondrial Function

    PubMed Central

    Zhang, Yingmei; Yuan, Ming; Bradley, Katherine M.; Dong, Feng; Anversa, Piero; Ren, Jun

    2012-01-01

    Obesity is often associated with reduced plasma IGF-1 levels, oxidative stress, mitochondrial damage and cardiac dysfunction. This study was designed to evaluate the impact of IGF-1 on high fat diet-induced oxidative, myocardial, geometric and mitochondrial responses. FVB and cardiomyocyte-specific IGF-1 overexpression transgenic mice were fed a low (10%) or high fat (45%) diet to induce obesity. High fat diet feeding led to glucose intolerance, elevated plasma levels of leptin, interleukin-6, insulin and triglyceride as well as reduced circulating IGF-1 levels. Echocardiography revealed reduced fractional shortening, increased end systolic and diastolic diameter, increased wall thickness, and cardiac hypertrophy in high fat-fed FVB mice. High fat diet promoted ROS generation, apoptosis, protein and mitochondrial damage, reduced ATP content, cardiomyocyte cross-sectional area, contractile and intracellular Ca2+ dysregulation, including depressed peak shortening and maximal velocity of shortening/relengthening, prolonged duration of relengthening, and dampened intracellular Ca2+ rise and clearance. Western blot analysis revealed disrupted phosphorylation of insulin receptor, post-receptor signaling molecules IRS-1 (tyrosine/serine phosphorylation), Akt, GSK3β, Foxo3a, mTOR, as well as downregulated expression of mitochondrial proteins PPARγ coactivator 1α (PGC1α) and UCP-2. Intriguingly, IGF-1 mitigated high fat diet feeding-induced alterations in ROS, protein and mitochondrial damage, ATP content, apoptosis, myocardial contraction, intracellular Ca2+ handling and insulin signaling, but not whole body glucose intolerance and cardiac hypertrophy. Exogenous IGF-1 treatment also alleviated high fat diet-induced cardiac dysfunction. Our data revealed that IGF-1 alleviates high fat diet-induced cardiac dysfunction despite persistent cardiac remodeling, possibly due to preserved cell survival, mitochondrial function and insulin signaling. PMID:22275536

  13. Overweight female rats selectively breed for low aerobic capacity exhibit increased myocardial fibrosis and diastolic dysfunction

    PubMed Central

    Johnson, Megan S.; Ma, Lixin; Pulakat, Lakshmi; Mugerfeld, Irina; Hayden, Melvin R.; Garro, Mona; Knight, William; Britton, Steven L.; Koch, Lauren G.; Sowers, James R.

    2012-01-01

    The statistical association between endurance exercise capacity and cardiovascular disease suggests that impaired aerobic metabolism underlies the cardiovascular disease risk in men and women. To explore this connection, we applied divergent artificial selection in rats to develop low-capacity runner (LCR) and high-capacity runner (HCR) rats and found that disease risks segregated strongly with low running capacity. Here, we tested if inborn low aerobic capacity promotes differential sex-related cardiovascular effects. Compared with HCR males (HCR-M), LCR males (LCR-M) were overweight by 34% and had heavier retroperitoneal, epididymal, and omental fat pads; LCR females (LCR-F) were 20% heavier than HCR females (HCR-F), and their retroperitoneal, but not perireproductive or omental, fat pads were heavier as well. Unlike HCR-M, blood pressure was elevated in LCR-M, and this was accompanied by left ventricular (LV) hypertrophy. Like HCR-F, LCR-F exhibited normal blood pressure and LV weight as well as increased spontaneous cage activity compared with males. Despite normal blood pressures, LCR-F exhibited increased myocardial interstitial fibrosis and diastolic dysfunction, as indicated by increased LV stiffness, a decrease in the initial filling rate, and an increase in diastolic relaxation time. Although females exhibited increased arterial stiffness, ejection fraction was normal. Increased interstitial fibrosis and diastolic dysfunction in LCR-F was accompanied by the lowest protein levels of phosphorylated AMP-actived protein kinase [phospho-AMPK (Thr172)] and silent information regulator 1. Thus, the combination of risk factors, including female sex, intrinsic low aerobic capacity, and overweightness, promote myocardial stiffness/fibrosis sufficient to induce diastolic dysfunction in the absence of hypertension and LV hypertrophy. PMID:22345570

  14. Inpatient Coronary Angiography and Revascularisation following Non-ST-Elevation Acute Coronary Syndrome in Patients with Renal Impairment: A Cohort Study Using the Myocardial Ischaemia National Audit Project

    PubMed Central

    Shaw, Catriona; Nitsch, Dorothea; Steenkamp, Retha; Junghans, Cornelia; Shah, Sapna; O’Donoghue, Donal; Fogarty, Damian; Weston, Clive; Sharpe, Claire C.

    2014-01-01

    Background International guidelines support an early invasive management strategy (including early coronary angiography and revascularisation) for non-ST-elevation acute coronary syndrome (NSTE-ACS) in patients with renal impairment. However, evidence from outside the UK suggests that this approach is underutilised. We aimed to describe practice within the NHS, and to determine whether the severity of renal dysfunction influenced the provision of angiography and modified the association between early revascularisation and survival. Methods We performed a cohort study, using multivariable logistic regression and propensity score analyses, of data from the Myocardial Ischaemia National Audit Project for patients presenting with NSTE-ACS to English or Welsh hospitals between 2008 and 2010. Findings Of 35 881 patients diagnosed with NSTE-ACS, eGFR of <60 ml/minute/1.73 m2 was present in 15 680 (43.7%). There was a stepwise decline in the odds of undergoing inpatient angiography with worsening renal dysfunction. Compared with an eGFR>90 ml/minute/1.73 m2, patients with an eGFR between 45–59 ml/minute/1.73 m2 were 33% less likely to undergo angiography (adjusted OR 0.67, 95% CI 0.55–0.81); those with an eGFR<30/minute/1.73 m2 had a 64% reduction in odds of undergoing angiography (adjusted OR 0.36, 95%CI 0.29–0.43). Of 16 646 patients who had inpatient coronary angiography, 58.5% underwent inpatient revascularisation. After adjusting for co-variables, inpatient revascularisation was associated with approximately a 30% reduction in death within 1 year compared with those managed medically after coronary angiography (adjusted OR 0.66, 95%CI 0.57–0.77), with no evidence of modification by renal function (p interaction = 0.744). Interpretation Early revascularisation may offer a similar survival benefit in patients with and without renal dysfunction, yet renal impairment is an important determinant of the provision of coronary angiography following NSTE-ACS. A randomised controlled trial is needed to evaluate the efficacy of an early invasive approach in patients with severe renal dysfunction to ensure that all patients who may benefit are offered this treatment option. PMID:24937680

  15. Right ventricular systolic function in hypertensive heart failure.

    PubMed

    Oketona, O A; Balogun, M O; Akintomide, A O; Ajayi, O E; Adebayo, R A; Mene-Afejuku, T O; Oketona, O T; Bamikole, O J

    2017-01-01

    Heart failure (HF) is a major cause of cardiovascular admissions and hypertensive heart failure (HHF) is the most common cause of HF admissions in sub-Saharan Africa, Nigeria inclusive. Right ventricular (RV) dysfunction is being increasingly recognized in HF and found to be an independent predictor of adverse outcomes in HF. This study aimed to determine the prevalence of RV systolic dysfunction in HHF by several echocardiographic parameters. One hundred subjects with HHF were recruited consecutively into the study along with 50 age and sex-matched controls. All study participants gave written informed consent, and had a full physical examination, blood investigations, 12-lead electrocardiogram, and transthoracic echocardiography. RV systolic function was assessed in all subjects using different methods based on the American Society of Echocardiography guidelines for echocardiographic assessment of the right heart in adults. This included tricuspid annular plane systolic excursion (TAPSE), RV myocardial performance index (MPI), and RV systolic excursion velocity by tissue Doppler (S'). RV systolic dysfunction was found in 53% of subjects with HHF by TAPSE, 56% by RV MPI, and 48% by tissue Doppler systolic excursion S'. RV systolic dysfunction increased with reducing left ventricular ejection fraction (LVEF) in subjects with HHF. A high proportion of subjects with HHF were found to have RV systolic functional abnormalities using TAPSE, RV MPI, and RV S'. Prevalence of RV systolic dysfunction increased with reducing LVEF.

  16. Cardiovascular Impact in Patients Undergoing Maintenance Hemodialysis: Clinical Management Considerations

    PubMed Central

    Chirakarnjanakorn, Srisakul; Navaneethan, Sankar D.; Francis, Gary S.; Tang, W.H. Wilson

    2017-01-01

    Patients undergoing maintenance hemodialysis develop both structural and functional cardiovascular abnormalities. Despite improvement of dialysis technology, cardiovascular mortality of this population remains high. The pathophysiological mechanisms of these changes are complex and not well understood. It has been postulated that several non-traditional, uremic-related risk factors, especially the long-term uremic state, which may affect the cardiovascular system. There are many cardiovascular changes that occur in chronic kidney disease including left ventricular hypertrophy, myocardial fibrosis, microvascular disease, accelerated atherosclerosis and arteriosclerosis. These structural and functional changes in patients receiving chronic dialysis make them more susceptible to myocardial ischemia. Hemodialysis itself may adversely affect the cardiovascular system due to non-physiologic fluid removal, leading to hemodynamic instability and initiation of systemic inflammation. In the past decade there has been growing awareness that pathophysiological mechanisms cause cardiovascular dysfunction in patients on chronic dialysis, and there are now pharmacological and non-pharmacological therapies that may improve the poor quality of life and high mortality rate that these patients experience. PMID:28108129

  17. In vivo Post-Cardiac Arrest Myocardial Dysfunction is Supported by CaMKII-Mediated Calcium Long-Term Potentiation and Mitigated by Alda-1, an Agonist of Aldehyde Dehydrogenase Type 2

    PubMed Central

    Downey, Peter; Zalewski, Adrian; Rubio, Gabriel R.; Liu, Jing; Homburger, Julian R.; Grunwald, Zachary; Qi, Wei; Bollensdorff, Christian; Thanaporn, Porama; Ali, Ayyaz; Riemer, Kirk; Kohl, Peter; Mochly-Rosen, Daria; Gerstenfeld, Edward; Large, Stephen; Ali, Ziad; Ashley, Euan

    2016-01-01

    Background Survival after sudden cardiac arrest is limited by post-arrest myocardial dysfunction but understanding of this phenomenon is constrained by lack of data from a physiological model of disease. In this study, we established an in vivo model of cardiac arrest and resuscitation, characterized the biology of the associated myocardial dysfunction, and tested novel therapeutic strategies. Methods We developed rodent models of in vivo post-arrest myocardial dysfunction using extra-corporeal membrane oxygenation (ECMO) resuscitation followed by invasive hemodynamics measurement. In post-arrest isolated cardiomyocytes, we assessed mechanical load and Ca2+ induced Ca2+ release (CICR) simultaneously using the micro-carbon-fiber technique and observed reduced function and myofilament calcium sensitivity. We used a novel-designed fiber optic catheter imaging system, and a genetically encoded calcium sensor GCaMP6f, to image CICR in vivo. Results We found potentiation of CICR in isolated cells from this ECMO model and also in cells isolated from an ischemia-reperfusion Langendorff model perfused with oxygenated blood from an arrested animal, but not when reperfused in saline. We established that CICR potentiation begins in vivo. The augmented CICR observed post-arrest was mediated by the activation of Ca2+/calmodulin kinase II (CaMKII). Increased phosphorylation of CaMKII, phospholamban and ryanodine receptor 2 (RyR2) was detected in the post-arrest period. Exogenous adrenergic activation in vivo recapitulated Ca2+ potentiation but was associated with lesser CaMKII activation. Since oxidative stress and aldehydic adduct formation were high post arrest, we tested a small molecule activator of aldehyde dehydrogenase type 2, Alda-1, which reduced oxidative stress, restored calcium and CaMKII homeostasis, and improved cardiac function and post-arrest outcome in vivo. Conclusions Cardiac arrest and reperfusion lead to CaMKII activation and calcium long-term potentiation which support cardiomyocyte contractility in the face of impaired post-ischemic myofilament calcium sensitivity. Alda-1 mitigates these effects, normalizes calcium cycling and improves outcome. PMID:27582424

  18. Usefulness of Speckle-Tracking Imaging for Right Ventricular Assessment after Acute Myocardial Infarction: A Magnetic Resonance Imaging/Echocardiographic Comparison within the Relation between Aldosterone and Cardiac Remodeling after Myocardial Infarction Study.

    PubMed

    Lemarié, Jérémie; Huttin, Olivier; Girerd, Nicolas; Mandry, Damien; Juillière, Yves; Moulin, Frédéric; Lemoine, Simon; Beaumont, Marine; Marie, Pierre-Yves; Selton-Suty, Christine

    2015-07-01

    Right ventricular (RV) dysfunction after acute myocardial infarction (AMI) is frequent and associated with poor prognosis. The complex anatomy of the right ventricle makes its echocardiographic assessment challenging. Quantification of RV deformation by speckle-tracking echocardiography is a widely available and reproducible technique that readily provides an integrated analysis of all segments of the right ventricle. The aim of this study was to investigate the accuracy of conventional echocardiographic parameters and speckle-tracking echocardiographic strain parameters in assessing RV function after AMI, in comparison with cardiac magnetic resonance imaging (CMR). A total of 135 patients admitted for AMI (73 anterior, 62 inferior) were prospectively studied. Right ventricular function was assessed by echocardiography and CMR within 2 to 4 days of hospital admission. Right ventricular dysfunction was defined as CMR RV ejection fraction < 50%. Right ventricular global peak longitudinal systolic strain (GLPSS) was calculated by averaging the strain values of the septal, lateral, and inferior walls. Right ventricular dysfunction was documented in 20 patients. Right ventricular GLPSS was the best echographic correlate of CMR RV ejection fraction (r = -0.459, P < .0001) and possessed good diagnostic value for RV dysfunction (area under the receiver operating characteristic curve [AUROC], 0.724; 95% CI, 0.590-0.857), which was comparable with that of RV fractional area change (AUROC, 0.756; 95% CI, 0.647-0.866). In patients with inferior myocardial infarctions, the AUROCs for RV GLPSS (0.822) and inferolateral strain (0.877) were greater than that observed for RV fractional area change (0.760) Other conventional echocardiographic parameters performed poorly (all AUROCs < 0.700). After AMI, RV GLPSS is the best correlate of CMR RV ejection fraction. In patients with inferior AMIs, RV GLPSS displays even higher diagnostic value than conventional echocardiographic parameters. Copyright © 2015 American Society of Echocardiography. Published by Elsevier Inc. All rights reserved.

  19. Cardiac dysfunction and peri-weaning mortality in malonyl-coenzyme A decarboxylase (MCD) knockout mice as a consequence of restricting substrate plasticity.

    PubMed

    Aksentijević, Dunja; McAndrew, Debra J; Karlstädt, Anja; Zervou, Sevasti; Sebag-Montefiore, Liam; Cross, Rebecca; Douglas, Gillian; Regitz-Zagrosek, Vera; Lopaschuk, Gary D; Neubauer, Stefan; Lygate, Craig A

    2014-10-01

    Inhibition of malonyl-coenzyme A decarboxylase (MCD) shifts metabolism from fatty acid towards glucose oxidation, which has therapeutic potential for obesity and myocardial ischemic injury. However, ~40% of patients with MCD deficiency are diagnosed with cardiomyopathy during infancy. To clarify the link between MCD deficiency and cardiac dysfunction in early life and to determine the contributing systemic and cardiac metabolic perturbations. MCD knockout mice ((-/-)) exhibited non-Mendelian genotype ratios (31% fewer MCD(-/-)) with deaths clustered around weaning. Immediately prior to weaning (18days) MCD(-/-) mice had lower body weights, elevated body fat, hepatic steatosis and glycogen depletion compared to wild-type littermates. MCD(-/-) plasma was hyperketonemic, hyperlipidemic, had 60% lower lactate levels and markers of cellular damage were elevated. MCD(-/-) hearts exhibited hypertrophy, impaired ejection fraction and were energetically compromised (32% lower total adenine nucleotide pool). However differences between WT and MCD(-/-) converged with age, suggesting that, in surviving MCD(-/-) mice, early cardiac dysfunction resolves over time. These observations were corroborated by in silico modelling of cardiomyocyte metabolism, which indicated improvement of the MCD(-/-) metabolic phenotype and improved cardiac efficiency when switched from a high-fat diet (representative of suckling) to a standard post-weaning diet, independent of any developmental changes. MCD(-/-) mice consistently exhibited cardiac dysfunction and severe metabolic perturbations while on a high-fat, low carbohydrate diet of maternal milk and these gradually resolved post-weaning. This suggests that dysfunction is a common feature of MCD deficiency during early development, but that severity is dependent on composition of dietary substrates. Copyright © 2014. Published by Elsevier Ltd.

  20. Cardiac dysfunction and peri-weaning mortality in malonyl-coenzyme A decarboxylase (MCD) knockout mice as a consequence of restricting substrate plasticity

    PubMed Central

    Aksentijević, Dunja; McAndrew, Debra J.; Karlstädt, Anja; Zervou, Sevasti; Sebag-Montefiore, Liam; Cross, Rebecca; Douglas, Gillian; Regitz-Zagrosek, Vera; Lopaschuk, Gary D.; Neubauer, Stefan; Lygate, Craig A.

    2014-01-01

    Inhibition of malonyl-coenzyme A decarboxylase (MCD) shifts metabolism from fatty acid towards glucose oxidation, which has therapeutic potential for obesity and myocardial ischemic injury. However, ~ 40% of patients with MCD deficiency are diagnosed with cardiomyopathy during infancy. Aim To clarify the link between MCD deficiency and cardiac dysfunction in early life and to determine the contributing systemic and cardiac metabolic perturbations. Methods and results MCD knockout mice (−/−) exhibited non-Mendelian genotype ratios (31% fewer MCD−/−) with deaths clustered around weaning. Immediately prior to weaning (18 days) MCD−/− mice had lower body weights, elevated body fat, hepatic steatosis and glycogen depletion compared to wild-type littermates. MCD−/− plasma was hyperketonemic, hyperlipidemic, had 60% lower lactate levels and markers of cellular damage were elevated. MCD−/− hearts exhibited hypertrophy, impaired ejection fraction and were energetically compromised (32% lower total adenine nucleotide pool). However differences between WT and MCD−/− converged with age, suggesting that, in surviving MCD−/− mice, early cardiac dysfunction resolves over time. These observations were corroborated by in silico modelling of cardiomyocyte metabolism, which indicated improvement of the MCD−/− metabolic phenotype and improved cardiac efficiency when switched from a high-fat diet (representative of suckling) to a standard post-weaning diet, independent of any developmental changes. Conclusions MCD−/− mice consistently exhibited cardiac dysfunction and severe metabolic perturbations while on a high-fat, low carbohydrate diet of maternal milk and these gradually resolved post-weaning. This suggests that dysfunction is a common feature of MCD deficiency during early development, but that severity is dependent on composition of dietary substrates. PMID:25066696

  1. Coronary microvascular dysfunction in diabetes mellitus

    PubMed Central

    Selthofer-Relatic, Kristina; Drenjancevic, Ines; Bacun, Tatjana; Bosnjak, Ivica; Kibel, Dijana; Gros, Mario

    2017-01-01

    The significance, mechanisms and consequences of coronary microvascular dysfunction associated with diabetes mellitus are topics into which we have insufficient insight at this time. It is widely recognized that endothelial dysfunction that is caused by diabetes in various vascular beds contributes to a wide range of complications and exerts unfavorable effects on microcirculatory regulation. The coronary microcirculation is precisely regulated through a number of interconnected physiological processes with the purpose of matching local blood flow to myocardial metabolic demands. Dysregulation of this network might contribute to varying degrees of pathological consequences. This review discusses the most important findings regarding coronary microvascular dysfunction in diabetes from pre-clinical and clinical perspectives. PMID:28643578

  2. Afterload mismatch in aortic and mitral valve disease: implications for surgical therapy.

    PubMed

    Ross, J

    1985-04-01

    In the management of patients with valvular heart disease, an understanding of the effects of altered loading conditions on the left ventricle is important in reaching a proper decision concerning the timing of corrective operation. In acquired valvular aortic stenosis, concentric hypertrophy generally maintains left ventricular chamber size and ejection fraction within normal limits, but in late stage disease function can deteriorate as preload reserve is lost and aortic stenosis progresses. In this setting, even when the ejection fraction is markedly reduced (less than 25%), it can improve to normal after aortic valve replacement, suggesting that afterload mismatch rather than irreversibly depressed myocardial contractility was responsible for left ventricular failure. Therefore, patients with severe aortic stenosis and symptoms should not be denied operation because of impaired cardiac function. In chronic severe aortic and mitral regurgitation, operation is generally recommended when symptoms are present, but whether to recommend operation to prevent irreversible myocardial damage in patients with few or no symptoms has remained controversial. In aortic regurgitation, left ventricular function generally improves postoperatively, even if it is moderately impaired preoperatively, indicating correction of afterload mismatch. Most such patients can be carefully followed by echocardiography. However, in some patients, severe left ventricular dysfunction fails to improve postoperatively. Therefore, when echocardiographic studies in the patient with severe aortic regurgitation show an ejection fraction of less than 40% (fractional shortening less than 25%) plus enlarging left ventricular end-diastolic diameter (approaching 38 mm/m2 body surface area) and end-systolic diameter (approaching 50 mm or 26 mm/m2), confirmation of these findings by cardiac catheterization and consideration of operation are advisable even in patients with minimal symptoms. In chronic mitral regurgitation, maintenance of a normal ejection fraction can mask depressed myocardial contractility. Pre- and postoperative studies in such patients have shown a poor clinical result after mitral valve replacement, associated with a sharp decrease in the ejection fraction after operation. This response appears to reflect unmasking of decreased myocardial contractility by mitral valve replacement, with ejection of the total stroke volume into the high impedance of the aorta (afterload mismatch produced by operation).(ABSTRACT TRUNCATED AT 400 WORDS)

  3. Intravenously Delivered Mesenchymal Stem Cells: Systemic Anti-Inflammatory Effects Improve Left Ventricular Dysfunction in Acute Myocardial Infarction and Ischemic Cardiomyopathy.

    PubMed

    Luger, Dror; Lipinski, Michael J; Westman, Peter C; Glover, David K; Dimastromatteo, Julien; Frias, Juan C; Albelda, M Teresa; Sikora, Sergey; Kharazi, Alex; Vertelov, Grigory; Waksman, Ron; Epstein, Stephen E

    2017-05-12

    Virtually all mesenchymal stem cell (MSC) studies assume that therapeutic effects accrue from local myocardial effects of engrafted MSCs. Because few intravenously administered MSCs engraft in the myocardium, studies have mainly utilized direct myocardial delivery. We adopted a different paradigm. To test whether intravenously administered MSCs reduce left ventricular (LV) dysfunction both post-acute myocardial infarction and in ischemic cardiomyopathy and that these effects are caused, at least partly, by systemic anti-inflammatory activities. Mice underwent 45 minutes of left anterior descending artery occlusion. Human MSCs, grown chronically at 5% O 2 , were administered intravenously. LV function was assessed by serial echocardiography, 2,3,5-triphenyltetrazolium chloride staining determined infarct size, and fluorescence-activated cell sorting assessed cell composition. Fluorescent and radiolabeled MSCs (1×10 6 ) were injected 24 hours post-myocardial infarction and homed to regions of myocardial injury; however, the myocardium contained only a small proportion of total MSCs. Mice received 2×10 6 MSCs or saline intravenously 24 hours post-myocardial infarction (n=16 per group). At day 21, we harvested blood and spleens for fluorescence-activated cell sorting and hearts for 2,3,5-triphenyltetrazolium chloride staining. Adverse LV remodeling and deteriorating LV ejection fraction occurred in control mice with large infarcts (≥25% LV). Intravenous MSCs eliminated the progressive deterioration in LV end-diastolic volume and LV end-systolic volume. MSCs significantly decreased natural killer cells in the heart and spleen and neutrophils in the heart. Specific natural killer cell depletion 24 hours pre-acute myocardial infarction significantly improved infarct size, LV ejection fraction, and adverse LV remodeling, changes associated with decreased neutrophils in the heart. In an ischemic cardiomyopathy model, mice 4 weeks post-myocardial infarction were randomized to tail-vein injection of 2×10 6 MSCs, with injection repeated at week 3 (n=16) versus PBS control (n=16). MSCs significantly increased LV ejection fraction and decreased LV end-systolic volume. Intravenously administered MSCs for acute myocardial infarction attenuate the progressive deterioration in LV function and adverse remodeling in mice with large infarcts, and in ischemic cardiomyopathy, they improve LV function, effects apparently modulated in part by systemic anti-inflammatory activities. © 2017 American Heart Association, Inc.

  4. Real‐World Multicenter Registry of Patients with Severe Coronary Artery Calcification Undergoing Orbital Atherectomy

    PubMed Central

    Shlofmitz, Evan; Kaplan, Barry; Alexandru, Dragos; Meraj, Perwaiz; Shlofmitz, Richard

    2016-01-01

    Objectives We evaluated the safety and efficacy of orbital atherectomy in real‐world patients with severe coronary artery calcification (CAC). Background The presence of severe CAC increases the complexity of percutaneous coronary intervention as it may impede stent delivery and optimal stent expansion. Atherectomy may be an indispensable tool for uncrossable or undilatable lesions by modifying severe CAC. Although the ORBIT I and II trials report that orbital atherectomy was safe and effective for the treatment of severe CAC, patients with kidney disease, recent myocardial infarction, long diffuse disease, severe left ventricular dysfunction, and unprotected left main disease were excluded. Methods This retrospective study included 458 consecutive patients with severe CAC who underwent orbital atherectomy followed by stenting from October 2013 to December 2015 at 3 centers. Results The primary endpoint of major adverse cardiac and cerebrovascular events at 30 days was 1.7%. Low rates of 30‐day all‐cause mortality (1.3%), myocardial infarction (1.1%), target vessel revascularization (0%), stroke (0.2%), and stent thrombosis (0.9%) were observed. Angiographic complications were low: perforation was 0.7%, dissection 0.9%, and no‐reflow 0.7%. Emergency coronary artery bypass graft surgery was performed in 0.2% of patients. Conclusion In the largest real‐world study of patients who underwent orbital atherectomy, including high‐risk patients who were not surgical candidates as well as those with very complex coronary anatomy, acute and short‐term adverse clinical event rates were low. A randomized clinical trial is needed to identify the ideal treatment strategy for patients with severe CAC. PMID:27358246

  5. Sepiapterin reduces postischemic injury in the rat heart.

    PubMed

    Tiefenbacher, Christiane P; Lee, Ching-Hua; Kapitza, Jolanthe; Dietz, Volker; Niroomand, Feraydoon

    2003-10-01

    A reduced availability of tetrahydrobiopterin (BH4), an essential cofactor for NO-synthesis, is causally involved in the development of endothelial dysfunction associated with ischemia/reperfusion. We, therefore, investigated the effect of sepiapterin, a substrate for BH4 synthesis, on postischemic injury in myocardial infarction and myocardial stunning. In rats, myocardial stunning was induced by repetitive ischemia (5 x 10-min ligature of the left coronary artery, 5 x 20-min reperfusion) and myocardial infarction by 50-min ligature and 60-min reperfusion. Myocardial blood flow was determined by H2-clearance, regional myocardial function by pulsed Doppler and infarct size by tetrazolium staining. Myeloperoxidase (MPO) activity was measured as a marker of neutrophil extravasation. cGMP was determined in rat serum as an indicator of increased NO synthesis. In animals treated with sepiapterin, regional myocardial function was significantly improved in both myocardial stunning and infarction and infarct size was significantly reduced. MPO activity decreased with sepiapterin treatment in both models. The systemic level of cGMP was reduced both following myocardial stunning and myocardial infarction in the control group. Pretreatment with sepiapterin induced a significant increase of cGMP level at the end of the protocol in both models. Substitution of sepiapterin reduces postischemic injury both in myocardial stunning and infarction apparently by ameliorating the availability of NO, thereby attenuating the activation of neutrophils in ischemia/reperfusion.

  6. Alteration of Multiple Leukocyte Gene Expression Networks is Linked with Magnetic Resonance Markers of Prognosis After Acute ST-Elevation Myocardial Infarction.

    PubMed

    Teren, A; Kirsten, H; Beutner, F; Scholz, M; Holdt, L M; Teupser, D; Gutberlet, M; Thiery, J; Schuler, G; Eitel, I

    2017-02-03

    Prognostic relevant pathways of leukocyte involvement in human myocardial ischemic-reperfusion injury are largely unknown. We enrolled 136 patients with ST-elevation myocardial infarction (STEMI) after primary angioplasty within 12 h after onset of symptoms. Following reperfusion, whole blood was collected within a median time interval of 20 h (interquartile range: 15-25 h) for genome-wide gene expression analysis. Subsequent CMR scans were performed using a standard protocol to determine infarct size (IS), area at risk (AAR), myocardial salvage index (MSI) and the extent of late microvascular obstruction (lateMO). We found 398 genes associated with lateMO and two genes with IS. Neither AAR, nor MSI showed significant correlations with gene expression. Genes correlating with lateMO were strongly related to several canonical pathways, including positive regulation of T-cell activation (p = 3.44 × 10 -5 ), and regulation of inflammatory response (p = 1.86 × 10 -3 ). Network analysis of multiple gene expression alterations associated with larger lateMO identified the following functional consequences: facilitated utilisation and decreased concentration of free fatty acid, repressed cell differentiation, enhanced phagocyte movement, increased cell death, vascular disease and compensatory vasculogenesis. In conclusion, the extent of lateMO after acute, reperfused STEMI correlated with altered activation of multiple genes related to fatty acid utilisation, lymphocyte differentiation, phagocyte mobilisation, cell survival, and vascular dysfunction.

  7. The GSK-3 family as therapeutic target for myocardial diseases

    PubMed Central

    Lal, Hind; Ahmad, Firdos; Woodgett, James; Force, Thomas

    2014-01-01

    GSK-3 is one of the very few signaling molecules that regulate a truly astonishing number of critical intracellular signaling pathways. It has been implicated in a number of diseases including heart failure, bipolar disorder, diabetes, Alzheimer’s disease, aging, inflammation and cancer. Furthermore, a recent clinical trial has validated the feasibility of targeting GSK-3 with small molecule inhibitors for human diseases. In the current review we will focus on its expanding role in the heart, concentrating primarily on recent studies that have employed cardiomyocyte- and fibroblast-specific conditional gene deletion in mouse models. We will highlight the role of the GSK-3 isoforms in various pathological conditions including myocardial aging, ischemic injury, myocardial fibrosis and cardiomyocyte proliferation. We will discuss our recent findings that deletion of GSK-3α specifically in cardiomyocytes attenuates ventricular remodeling and cardiac dysfunction post-MI by limiting scar expansion and promoting cardiomyocyte proliferation. The recent emergence of GSK-3β as a regulator of myocardial fibrosis will also be discussed. We will review our very recent findings that specific deletion of GSK-3β in cardiac fibroblasts leads to fibrogenesis, left ventricular dysfunction and excessive scarring in the ischemic heart. Finally, we will examine the underlying mechanisms that drive the aberrant myocardial fibrosis in the models in which GSK-3β is specifically deleted in cardiac fibroblasts. We will summarize these recent results and offer explanations, whenever possible, and hypotheses when not. For these studies we will rely heavily on our models and those of others to reconcile some of the apparent inconsistencies in the literature. PMID:25552693

  8. Right ventricular myocardial infarction: presentation and acute outcomes.

    PubMed

    Chockalingam, Anand; Gnanavelu, G; Subramaniam, T; Dorairajan, Smrita; Chockalingam, V

    2005-01-01

    Acute inferior wall myocardial infarction can be complicated by right ventricular myocardial infarction (RVMI), and the excess mortality cannot be fully explained by mechanical reasons. The authors try to systematically assess the incidence, clinical presentation and early outcomes of right ventricular infarction in a tertiary-care setup. Their study was a prospective observational series of consecutive patients with RVMI. All patients with acute inferior myocardial infarction (n=135) were enlisted. RVMI was diagnosed by > or = 1 mm ST elevation in lead V(4R) in a right-sided electrocardiogram. Right ventricular (RV) infarction occurred in 37% (n=50) of patients with acute inferior infarctions. Patients with isolated inferior infarction served as controls (n=85). Echocardiography was performed within 24 hours of admission. From both groups, 66% qualified for thrombolysis. The incidence of hypotension-bradycardia and heart blocks requiring pacing support was much higher in right ventricular infarction (n=21) than in inferior infarction (n=13). Clinically manifest RV dysfunction (raised jugular venous pulse [JVP], hypotension, tricuspid regurgitation) and right ventricular dilation detected by echocardiography were seen in only 13 patients. The in-hospital mortality rate was significantly higher (n=8, 16%) in right ventricular infarction group than in inferior infarction group (n=3, 3.5%). Right ventricular infarction was seen in a third of inferior myocardial infarctions (IMIs), but hemodynamically evident right ventricular dysfunction occurred in only a tenth of acute IMIs. Nevertheless, the acute in-hospital mortality rate of patients with right ventricular infarction was much higher than in those with inferior infarction owing to arrhythmic and mechanical complications.

  9. Adiponectin downregulation is associated with volume overload-induced myocyte dysfunction in rats

    PubMed Central

    Wang, Li-li; Miller, Dori; Wanders, Desiree; Nanayakkara, Gayani; Amin, Rajesh; Judd, Robert; Morrison, Edward E; Zhong, Ju-ming

    2016-01-01

    Aim: Adiponectin has been reported to exert protective effects during pathological ventricular remodeling, but the role of adiponectin in volume overload-induced heart failure remains unclear. In this study we investigated the effect of adiponectin on cardiac myocyte contractile dysfunction following volume overload in rats. Methods: Volume overload was surgically induced in rats by infrarenal aorta-vena cava fistula. The rats were intravenously administered adenoviral adiponectin at 2-, 6- and 9-weeks following fistula. The protein expression of adiponectin, adiponectin receptors (AdipoR1/R2 and T-cadherin) and AMPK activity were measured using Western blot analyses. Isolated ventricular myocytes were prepared at 12 weeks post-fistula to examine the contractile performance of myocytes and intracellular Ca2+ transient. Results: A-V fistula resulted in significant reductions in serum and myocardial adiponectin levels, myocardial adiponectin receptor (AdipoR1/R2 and T-cadherin) levels, as well as myocardial AMPK activity. Consistent with these changes, the isolated myocytes exhibited significant depression in cell shortening and intracellular Ca2+ transient. Administration of adenoviral adiponectin significantly increased serum adiponectin levels and prevented myocyte contractile dysfunction in fistula rats. Furthermore, pretreatment of isolated myocytes with recombinant adiponectin (2.5 μg/mL) significantly improved their contractile performance in fistula rats, but had no effects in control or adenoviral adiponectin-administered rats. Conclusion: These results demonstrate a positive correlation between adiponectin downregulation and volume overload-induced ventricular remodeling. Adiponectin plays a protective role in volume overload-induced heart failure. PMID:26616727

  10. Coronary hemodynamic regulation by nitric oxide in experimental animals: recent advances.

    PubMed

    Toda, Noboru; Toda, Hiroshi

    2011-09-30

    Nitric oxide (NO) formed via endothelial NO synthase (eNOS) plays crucial roles in the regulation of coronary blood flow through vasodilatation and decreased vascular resistance and in the inhibition of platelet aggregation and adhesion, leading to the prevention of coronary circulatory failure, thrombosis, and atherosclerosis. NO restrains myocardial oxygen consumption, when coronary perfusion is restricted. Endothelial function is impaired by pathogenic factors including smoking, excess salt intake, obesity, aging, hypercholesterolemia, hyperglycemia, and hypertension. The mechanisms involved in endothelial dysfunction are reduced NOS expression and activity, decreased NO bioavailability, and increased production of oxygen radicals and endogenous NOS inhibitors. NADPH oxidase, xanthine oxidase, and NOS uncoupling are involved in increased superoxide generation. Plasma levels of asymmetric dimethylarginine, the endogenous NOS inhibitor, are increased by an impairment of enzymatic degradation by dimethylarginine dimethylaminohydrolase and alanine-glyoxylate aminotransferase 2. Impairment of coronary arteriolar dilatation induced by perivascular nitrergic nerve activation is involved in decreased coronary blood flow. NO derived from nNOS singly or in combination with eNOS protects against serious myocardial injury through ischemic insults. Ischemia-induced iNOS upregulation contributes to myocardial contractile dysfunction. Preventive and therapeutic measures, such as improvement of life-style and treatment with therapeutic agents, to eliminate pathogenic factors for endothelial dysfunction or nNOS-derived NO deprivation would be quite important for the prophylaxis and minimizing the development of coronary artery disease. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Regulation of Heat Shock Proteins 27 and 70, p-Akt/p-eNOS and MAPKs by Naringin Dampens Myocardial Injury and Dysfunction In Vivo after Ischemia/Reperfusion

    PubMed Central

    Rani, Neha; Bharti, Saurabh; Manchanda, Mansi; Nag, T. C.; Ray, Ruma; Chauhan, S. S.; Kumari, Santosh; Arya, Dharamvir Singh

    2013-01-01

    Naringin has antioxidant properties that could improve redox-sensitive myocardial ischemia reperfusion (IR) injury. This study was designed to investigate whether naringin restores the myocardial damage and dysfunction in vivo after IR and the mechanisms underlying its cardioprotective effects. Naringin (20–80 mg/kg/day, p.o.) or saline were administered to rats for 14 days and the myocardial IR injury was induced on 15th day by occluding the left anterior descending coronary artery for 45 min and subsequent reperfusion for 60 min. Post-IR rats exhibited pronounced cardiac dysfunction as evidenced by significantly decreased mean arterial pressure, heart rate, +LVdP/dt max (inotropic state), -LVdP/dt max (lusitropic state) and increased left ventricular end diastolic pressure as compared to sham group, which was improved by naringin. Further, on histopathological and ultrastructural assessments myocardium and myocytes appeared more normal in structure and the infarct size was reduced significantly in naringin 40 and 80 mg/kg/day group. This amelioration of post-IR-associated cardiac injury by naringin was accompanied by increased nitric oxide (NO) bioavailability, decreased NO inactivation to nitrotyrosine, amplified protein expressions of Hsp27, Hsp70, β-catenin and increased p-eNOS/eNOS, p-Akt/Akt, and p-ERK/ERK ratio. In addition, IR-induced TNF-α/IKK-β/NF-κB upregulation and JNK phosphorylation were significantly attenuated by naringin. Moreover, western blotting and immunohistochemistry analysis of apoptotic signaling pathway further established naringin cardioprotective potential as it upregulated Bcl-2 expression and downregulated Bax and Caspase-3 expression with reduced TUNEL positivity. Naringin also normalized the cardiac injury markers (lactate dehydrogenase and creatine kinase-MB), endogenous antioxidant activities (superoxide dismutase, reduced glutathione and glutathione peroxidase) and lipid peroxidation levels. Thus, naringin restored IR injury by preserving myocardial structural integrity and regulating Hsp27, Hsp70, p-eNOS/p-Akt/p-ERK signaling and inflammatory response. PMID:24324809

  12. Myocardial mechanics, energetics, and hemodynamics during intraaortic balloon and transvalvular axial flow hemopump support with a bovine model of ischemic cardiac dysfunction.

    PubMed

    Marks, J D; Pantalos, G M; Long, J W; Kinoshita, M; Everett, S D; Olsen, D B

    1999-01-01

    Unlike the mechanisms of intraaortic balloon pump (IABP) support, the mechanisms by which transvalvular axial flow Hemopump (HP) support benefit dysfunctional myocardium are less clearly understood. To help elucidate these mechanisms, hemodynamic, metabolic, and mechanical indexes of left ventricular function were measured during conditions of control, ischemic dysfunction, IABP support, and HP support. A large animal (calf) model of left ventricular dysfunction was created with multiple coronary ligations. Peak intraventricular pressure increased with HP support and decreased with IABP support. Intramyocardial pressure (an indicator of intramyocardial stress), time rate of pressure change (an indicator of contractility), and left ventricular myocardial oxygen consumption decreased with IABP and HP support. Left ventricular work decreased with HP support and increased with IABP support. During HP support, indexes of wall stress, work, and contractility, all primary determinants of oxygen consumption, were reduced. During IABP support, indexes of wall stress and contractility were reduced and external work increased. These changes were attributed primarily to changes in ventricular preload, and geometry for HP support, and to a reduction in afterload for IABP support. These findings support the hypothesis that both HP and IABP support reduce intramyocardial stress development and the corresponding oxygen consumption, although via different mechanisms.

  13. Myofilament dysfunction contributes to impaired myocardial contraction in the infarct border zone

    PubMed Central

    Shimkunas, Rafael; Makwana, Om; Spaulding, Kimberly; Bazargan, Mona; Khazalpour, Michael; Takaba, Kiyoaki; Soleimani, Mehrdad; Myagmar, Bat-Erdene; Lovett, David H.; Simpson, Paul C.; Ratcliffe, Mark B.

    2014-01-01

    After myocardial infarction, a poorly contracting nonischemic border zone forms adjacent to the infarct. The cause of border zone dysfunction is unclear. The goal of this study was to determine the myofilament mechanisms involved in postinfarction border zone dysfunction. Two weeks after anteroapical infarction of sheep hearts, we studied in vitro isometric and isotonic contractions of demembranated myocardium from the infarct border zone and a zone remote from the infarct. Maximal force development (Fmax) of the border zone myocardium was reduced by 31 ± 2% versus the remote zone myocardium (n = 6/group, P < 0.0001). Decreased border zone Fmax was not due to a reduced content of contractile material, as assessed histologically, and from myosin content. Furthermore, decreased border zone Fmax did not involve altered cross-bridge kinetics, as assessed by muscle shortening velocity and force development kinetics. Decreased border zone Fmax was associated with decreased cross-bridge formation, as assessed from muscle stiffness in the absence of ATP where cross-bridge formation should be maximized (rigor stiffness was reduced 34 ± 6%, n = 5, P = 0.011 vs. the remote zone). Furthermore, the border zone myocardium had significantly reduced phosphorylation of myosin essential light chain (ELC; 41 ± 10%, n = 4, P < 0.05). However, for animals treated with doxycycline, an inhibitor of matrix metalloproteinases, rigor stiffness and ELC phosphorylation were not reduced in the border zone myocardium, suggesting that doxycycline had a protective effect. In conclusion, myofilament dysfunction contributes to postinfarction border zone dysfunction, myofilament dysfunction involves impaired cross-bridge formation and decreased ELC phosphorylation, and matrix metalloproteinase inhibition may be beneficial for limiting postinfarct border zone dysfunction. PMID:25128171

  14. New Role for Interleukin-13 Receptor α1 in Myocardial Homeostasis and Heart Failure.

    PubMed

    Amit, Uri; Kain, David; Wagner, Allon; Sahu, Avinash; Nevo-Caspi, Yael; Gonen, Nir; Molotski, Natali; Konfino, Tal; Landa, Natalie; Naftali-Shani, Nili; Blum, Galia; Merquiol, Emmanuelle; Karo-Atar, Danielle; Kanfi, Yariv; Paret, Gidi; Munitz, Ariel; Cohen, Haim Y; Ruppin, Eytan; Hannenhalli, Sridhar; Leor, Jonathan

    2017-05-20

    The immune system plays a pivotal role in myocardial homeostasis and response to injury. Interleukins-4 and -13 are anti-inflammatory type-2 cytokines, signaling via the common interleukin-13 receptor α1 chain and the type-2 interleukin-4 receptor. The role of interleukin-13 receptor α1 in the heart is unknown. We analyzed myocardial samples from human donors (n=136) and patients with end-stage heart failure (n=177). We found that the interleukin-13 receptor α1 is present in the myocardium and, together with the complementary type-2 interleukin-4 receptor chain Il4ra , is significantly downregulated in the hearts of patients with heart failure. Next, we showed that Il13ra1 -deficient mice develop severe myocardial dysfunction and dyssynchrony compared to wild-type mice (left ventricular ejection fraction 29.7±9.9 versus 45.0±8.0; P =0.004, left ventricular end-diastolic diameter 4.2±0.2 versus 3.92±0.3; P =0.03). A bioinformatic analysis of mouse hearts indicated that interleukin-13 receptor α1 regulates critical pathways in the heart other than the immune system, such as extracellular matrix (normalized enrichment score=1.90; false discovery rate q=0.005) and glucose metabolism (normalized enrichment score=-2.36; false discovery rate q=0). Deficiency of Il13ra1 was associated with reduced collagen deposition under normal and pressure-overload conditions. The results of our studies in humans and mice indicate, for the first time, a role of interleukin-13 receptor α1 in myocardial homeostasis and heart failure and suggests a new therapeutic target to treat heart disease. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  15. Cardiac Dysfunction in a Porcine Model of Pediatric Malnutrition

    PubMed Central

    Fabiansen, Christian; Lykke, Mikkel; Hother, Anne-Louise; Koch, Jørgen; Nielsen, Ole Bækgaard; Hunter, Ingrid; Goetze, Jens P.; Friis, Henrik; Thymann, Thomas

    2015-01-01

    Background Half a million children die annually of severe acute malnutrition and cardiac dysfunction may contribute to the mortality. However, cardiac function remains poorly examined in cases of severe acute malnutrition. Objective To determine malnutrition-induced echocardiographic disturbances and longitudinal changes in plasma pro-atrial natriuretic peptide and cardiac troponin-T in a pediatric porcine model. Methods and Results Five-week old piglets (Duroc-x-Danish Landrace-x-Yorkshire) were fed a nutritionally inadequate maize-flour diet to induce malnutrition (MAIZE, n = 12) or a reference diet (AGE-REF, n = 12) for 7 weeks. Outcomes were compared to a weight-matched reference group (WEIGHT-REF, n = 8). Pro-atrial natriuretic peptide and cardiac troponin-T were measured weekly. Plasma pro-atrial natriuretic peptide decreased in both MAIZE and AGE-REF during the first 3 weeks but increased markedly in MAIZE relative to AGE-REF during week 5–7 (p≤0.001). There was overall no difference in plasma cardiac troponin-T between groups. However, further analysis revealed that release of cardiac troponin-T in plasma was more frequent in AGE-REF compared with MAIZE (OR: 4.8; 95%CI: 1.2–19.7; p = 0.03). However, when release occurred, cardiac troponin-T concentration was 6.9-fold higher (95%CI: 3.0–15.9; p<0.001) in MAIZE compared to AGE-REF. At week 7, the mean body weight in MAIZE was lower than AGE-REF (8.3 vs 32.4 kg, p<0.001), whereas heart-weight relative to body-weight was similar across the three groups. The myocardial performance index was 86% higher in MAIZE vs AGE-REF (p<0.001) and 27% higher in MAIZE vs WEIGHT-REF (p = 0.025). Conclusions Malnutrition associates with cardiac dysfunction in a pediatric porcine model by increased myocardial performance index and pro-atrial natriuretic peptide and it associates with cardiac injury by elevated cardiac troponin-T. Clinical studies are needed to see if the same applies for children suffering from malnutrition. PMID:26473958

  16. Effect of diastolic dysfunction on postoperative outcomes after cardiovascular surgery: A systematic review and meta-analysis.

    PubMed

    Kaw, Roop; Hernandez, Adrian V; Pasupuleti, Vinay; Deshpande, Abhishek; Nagarajan, Vijaiganesh; Bueno, Hector; Coleman, Craig I; Ioannidis, John P A; Bhatt, Deepak L; Blackstone, Eugene H

    2016-10-01

    The objective of this study was to investigate the effect of preoperative diastolic dysfunction on postoperative mortality and morbidity after cardiovascular surgery. We systematically searched for articles that assessed the prognostic role of diastolic dysfunction on cardiovascular surgery in PubMed, Cochrane Library, Web of Science, Embase, and Scopus until February 2016. Twelve studies (n = 8224) met our inclusion criteria. Because of the scarcity of outcome events, fixed-effects meta-analysis was performed via the Mantel-Haenszel method. Preoperative diagnosis of diastolic dysfunction was associated with greater postoperative mortality (odds ratio [OR], 2.41; 95% confidence interval [CI], 1.54-3.71; P < .0001), major adverse cardiac events (OR, 2.07; 95% CI, 1.55-2.78; P ≤ .0001), and prolonged mechanical ventilation (OR, 2.08; 95% CI, 1.04-4.16; P = .04) compared with patients without diastolic dysfunction among patients who underwent cardiovascular surgery. The odds of postoperative myocardial infarction (OR, 1.29; 95% CI, 0.82-2.05; P = .28) and atrial fibrillation (OR, 2.67; 95% CI, 0.49-14.43; P = .25) did not significantly differ between the 2 groups. Severity of preoperative diastolic dysfunction was associated with increased postoperative mortality (OR, 21.22; 95% CI, 3.74-120.33; P = .0006) for Grade 3 diastolic dysfunction compared with patients with normal diastolic function. Inclusion of left ventricular ejection fraction (LVEF) <40% accompanying diastolic dysfunction did not further impact postoperative mortality (P = .27; I(2) = 18%) compared with patients with normal LVEF and diastolic dysfunction. Presence of preoperative diastolic dysfunction was associated with greater postoperative mortality and major adverse cardiac events, regardless of LVEF. Mortality was significantly greater in grade III diastolic dysfunction. Copyright © 2016 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  17. [Traumatic tricuspid insufficiency].

    PubMed

    Vayre, F; Richard, P; Ollivier, J P

    1996-04-01

    Traumatic tricuspid insufficiency is a rare condition. The diagnosis is difficult because of the slow progression of this pathology and the presence of more clinically acute lesions. Non-penetrating chest trauma is responsible for 90% of cases. Echocardiography is the investigation of choice for assessing the mechanism of the tricuspid regurgitation and for diagnosing associated lesions. It should be performed systematically in patients with multiple trauma. The surgical indications are difficult to determine and depend on the patients' symptoms and the type of anatomical lesions. It should be undertaken before right ventricular myocardial dysfunction. Several techniques may be used from valvuloplasty to valve replacement mainly with bioprostheses in symptomatic patients.

  18. ALCAPA and massive pulmonary atelectasis: how a stent in the airway can be life-saving.

    PubMed

    Serio, Paola; Chiappa, Enrico; Fainardi, Valentina; Favilli, Silvia; Murzi, Bruno; Baggi, Roberto; Arcieri, Luigi; Leone, Roberto; Mirabile, Lorenzo

    2014-11-01

    Anomalous left coronary artery from pulmonary artery (ALCAPA) is a rare congenital anomaly in which left coronary artery arises from the pulmonary artery resulting in progressive myocardial ischemia and dysfunction of the left ventricle. We report a case of ALCAPA with severe cardiac and respiratory failure and huge heart dilation compressing the left main bronchus and preventing from an effective ventilation. Emergency bronchial stenting allowed to improve left lung atelectasis, reduce pulmonary hypertension, resume anterograde left coronary artery perfusion and stabilize cardiovascular conditions to undertake a successful surgical correction. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. Assessment of cardiovascular impairment in obese patients: Limitations and troubleshooting of available imaging tools.

    PubMed

    Gaudieri, V; Nappi, C; Acampa, W; Assante, R; Zampella, E; Magliulo, M; Petretta, M; Cuocolo, A

    The prevalence and severity of obesity have increased over recent decades, reaching worldwide epidemics. Obesity is associated to coronary artery disease and other risk factors, including hypertension, heart failure and atrial fibrillation, which are all increased in the setting of obesity. Several noninvasive cardiac imaging modalities, such as echocardiography, cardiac computed tomography, magnetic resonance and cardiac gated single-photon emission computed tomography, are available in assessing coronary artery disease and myocardial dysfunction. Yet, in patients with excess adiposity the diagnostic accuracy of these techniques may be limited due to some issues. In this review, we analyze challenges and possibilities to find the optimal cardiac imaging approach to obese population. Copyright © 2017 Elsevier España, S.L.U. y SEMNIM. All rights reserved.

  20. Characterizing cardiac dysfunction in fetuses with left congenital diaphragmatic hernia.

    PubMed

    Cruz-Lemini, Mónica; Valenzuela-Alcaraz, Brenda; Granados-Montiel, Julio; Martínez, Josep M; Crispi, Fátima; Gratacós, Eduard; Cruz-Martínez, Rogelio

    2018-03-23

    To evaluate cardiac function by conventional echocardiography and tissue Doppler imaging in fetuses with left congenital diaphragmatic hernia (CDH). Conventional echocardiography (myocardial performance index, ventricular filling velocities, and E/A ratios) and tissue Doppler imaging (annular myocardial peak velocities, E/E' and E'/A' ratios) in mitral, septal, and tricuspid annulus were evaluated in a cohort of 31 left-sided CDH fetuses and compared with 75 controls matched for gestational age 2:1. In comparison to controls, CDH fetuses had prolonged isovolumetric time periods (isovolumetric contraction time 35 ms vs 28 ms, P < .001), with higher myocardial performance index (0.49 vs 0.42, P < .001) and tricuspid E/A ratios (0.77 vs 0.72, P = .033). Longitudinal function assessed by tissue Doppler showed signs of impaired relaxation (mitral lateral A' 8.0 vs 10.1 cm/s, P < .001 and an increased mitral lateral E'/A' ratio 0.93 vs 0.78, P < .001) in the CDH fetuses as compared with controls, with preserved systolic function. Left CDH fetuses show echocardiographic signs of diastolic dysfunction, probably secondary to fetal heart compression, maintaining a preserved systolic function. © 2018 John Wiley & Sons, Ltd.

  1. Nitroglycerin Use in Myocardial Infarction Patients: Risks and Benefits

    PubMed Central

    Ferreira, Julio C.B.; Mochly-Rosen, Daria

    2012-01-01

    Acute myocardial infarction and its sequelae are leading causes of morbidity and mortality worldwide. Nitroglycerin remains a first-line treatment for angina pectoris and acute myocardial infarction. Nitroglycerin achieves its benefit by giving rise to nitric oxide, which causes vasodilation and increases blood flow to the myocardium. However, continuous delivery of nitroglycerin results in tolerance, limiting the use of this drug. Nitroglycerin tolerance is due, at least in part, to inactivation of aldehyde dehydrogenase 2 (ALDH2), an enzyme that converts nitroglycerin to the vasodilator, nitric oxide. We have recently found that, in addition to nitroglycerin’s effect on the vasculature, sustained treatment with nitroglycerin negatively affects cardiomyocyte viability following ischemia, thus resulting in increased infarct size in a myocardial infarction model in animals. Co-administration of Alda-1, an activator of ALDH2, with nitroglycerin improves metabolism of reactive aldehyde adducts and prevents the nitroglycerin-induced increase in cardiac dysfunction following myocardial infarction. In this review, we describe the molecular mechanisms associated with the benefits and risks of nitroglycerin administration in myocardial infarction. (167 of 200). PMID:22040938

  2. Myocardial perfusion imaging study of CO(2)-induced panic attack.

    PubMed

    Soares-Filho, Gastão L F; Machado, Sergio; Arias-Carrión, Oscar; Santulli, Gaetano; Mesquita, Claudio T; Cosci, Fiammetta; Silva, Adriana C; Nardi, Antonio E

    2014-01-15

    Chest pain is often seen alongside with panic attacks. Moreover, panic disorder has been suggested as a risk factor for cardiovascular disease and even a trigger for acute coronary syndrome. Patients with coronary artery disease may have myocardial ischemia in response to mental stress, in which panic attack is a strong component, by an increase in coronary vasomotor tone or sympathetic hyperactivity setting off an increase in myocardial oxygen consumption. Indeed, coronary artery spasm was presumed to be present in cases of cardiac ischemia linked to panic disorder. These findings correlating panic disorder with coronary artery disease lead us to raise questions about the favorable prognosis of chest pain in panic attack. To investigate whether myocardial ischemia is the genesis of chest pain in panic attacks, we developed a myocardial perfusion study through research by myocardial scintigraphy in patients with panic attacks induced in the laboratory by inhalation of 35% carbon dioxide. In conclusion, from the data obtained, some hypotheses are discussed from the viewpoint of endothelial dysfunction and microvascular disease present in mental stress response. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Amelioration of Cardiac Function and Activation of Anti-Inflammatory Vasoactive Peptides Expression in the Rat Myocardium by Low Level Laser Therapy

    PubMed Central

    Manchini, Martha Trindade; Serra, Andrey Jorge; Feliciano, Regiane dos Santos; Santana, Eduardo Tadeu; Antônio, Ednei Luis; de Tarso Camillo de Carvalho, Paulo; Montemor, Jairo; Crajoinas, Renato Oliveira; Girardi, Adriana Castello Costa; Tucci, Paulo José Ferreira; Silva, José Antônio

    2014-01-01

    Low-level laser therapy (LLLT) has been used as an anti-inflammatory treatment in several disease conditions, even when inflammation is a secondary consequence, such as in myocardial infarction (MI). However, the mechanism by which LLLT is able to protect the remaining myocardium remains unclear. The present study tested the hypothesis that LLLT reduces inflammation after acute MI in female rats and ameliorates cardiac function. The potential participation of the Renin-Angiotensin System (RAS) and Kallikrein-Kinin System (KKS) vasoactive peptides was also evaluated. LLLT treatment effectively reduced MI size, attenuated the systolic dysfunction after MI, and decreased the myocardial mRNA expression of interleukin-1 beta and interleukin-6 in comparison to the non-irradiated rat tissue. In addition, LLLT treatment increased protein and mRNA levels of the Mas receptor, the mRNA expression of kinin B2 receptors and the circulating levels of plasma kallikrein compared to non-treated post-MI rats. On the other hand, the kinin B1 receptor mRNA expression decreased after LLLT. No significant changes were found in the expression of vascular endothelial growth factor (VEGF) in the myocardial remote area between laser-irradiated and non-irradiated post-MI rats. Capillaries density also remained similar between these two experimental groups. The mRNA expression of the inducible nitric oxide synthase (iNOS) was increased three days after MI, however, this effect was blunted by LLLT. Moreover, endothelial NOS mRNA content increased after LLLT. Plasma nitric oxide metabolites (NOx) concentration was increased three days after MI in non-treated rats and increased even further by LLLT treatment. Our data suggest that LLLT diminishes the acute inflammation in the myocardium, reduces infarct size and attenuates left ventricle dysfunction post-MI and increases vasoactive peptides expression and nitric oxide (NO) generation. PMID:24991808

  4. The role of nailfold capillaroscopy in the assessment of internal organ involvement in systemic sclerosis: A critical review.

    PubMed

    Soulaidopoulos, Stergios; Triantafyllidou, Eva; Garyfallos, Alexandros; Kitas, George D; Dimitroulas, Theodoros

    2017-08-01

    Endothelial dysfunction and microvascular damage constitute the hallmarks of systemic sclerosis (SSc), explaining much of the pathophysiology and clinical manifestations of the disease. Nailfold videocapillaroscopy (NVC) is an established method for the assessment of the microvasculature, aiding in distinguishing different types of structural vascular abnormalities. Until recently, NVC was used in the diagnosis of SSc as well as in the assessment and follow-up of peripheral digital vasculopathy. On the top of digital ulcers, internal organ involvement such as myocardial dysfunction, pulmonary vascular and/or parenchymal lung disease characterizes severe SSc imparting a high risk of mortality. There is growing evidence suggesting that the extent of peripheral microvascular changes reflects the severity of the disease, especially in terms of life-threatening cardiopulmonary complications. The possible use of nailfold videocapillaroscopy as a useful, non-invasive modality to improve the ability to identify patients at higher risk for these devastating complications of the disease remains to be established. The aim of this review is to critically summarize and discuss current literature regarding the relationship between morphological alterations of nailfold dermal papillary vessels and several manifestations of SSc, focusing on visceral organ involvement, as well as their association with surrogate markers of macrovascular disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Atrial electromechanical delay and diastolic dysfunction in primary Sjögren syndrome.

    PubMed

    Akyel, Ahmet; Tavil, Yusuf; Tufan, Abdurrahman; Yayla, Cagri; Kaya, Arif; Tezcan, Mehme Engin; Ozturk, Mehmet Akif; Boyaci, Bulent

    2012-10-06

    In this study we aimed to investigate myocardial function and atrial electromechanical properties by conventional and tissue doppler echocardiography in patients with primary Sjögren syndrome. Forty patients with Sjögren syndrome (SS) and 25 age- and sex-matched healthy volunteers were enrolled in the study. Using transthoracic echocardiography, myocardial performance index and atrial electromechanical properties were measured. Basal characteristics were similar between two groups. Myocardial performance index values were disturbed in patients with Sjögren syndrome (0.41 vs. 0.32, p < 0.01). There was significant intraatrial (16.4±6.4, 5.0±4.5, p < 0.01) and interatrial (30.6±10.1, 15.4±5.9, p < 0.01) electromechanical delay in this patient group. Myocardial function is disturbed and there is significant atrial electromechanical delay in patients with primary SS. This study is the first to show altered myocardial function and atrial electromechanical properties in primary SS.

  6. Valsartan, captopril, or both in myocardial infarction complicated by heart failure, left ventricular dysfunction, or both.

    PubMed

    Pfeffer, Marc A; McMurray, John J V; Velazquez, Eric J; Rouleau, Jean-Lucien; Køber, Lars; Maggioni, Aldo P; Solomon, Scott D; Swedberg, Karl; Van de Werf, Frans; White, Harvey; Leimberger, Jeffrey D; Henis, Marc; Edwards, Susan; Zelenkofske, Steven; Sellers, Mary Ann; Califf, Robert M

    2003-11-13

    Angiotensin-converting-enzyme (ACE) inhibitors such as captopril reduce mortality and cardiovascular morbidity among patients with myocardial infarction complicated by left ventricular systolic dysfunction, heart failure, or both. In a double-blind trial, we compared the effect of the angiotensin-receptor blocker valsartan, the ACE inhibitor captopril, and the combination of the two on mortality in this population of patients. Patients receiving conventional therapy were randomly assigned, 0.5 to 10 days after acute myocardial infarction, to additional therapy with valsartan (4909 patients), valsartan plus captopril (4885 patients), or captopril (4909 patients). The primary end point was death from any cause. During a median follow-up of 24.7 months, 979 patients in the valsartan group died, as did 941 patients in the valsartan-and-captopril group and 958 patients in the captopril group (hazard ratio in the valsartan group as compared with the captopril group, 1.00; 97.5 percent confidence interval, 0.90 to 1.11; P=0.98; hazard ratio in the valsartan-and-captopril group as compared with the captopril group, 0.98; 97.5 percent confidence interval, 0.89 to 1.09; P=0.73). The upper limit of the one-sided 97.5 percent confidence interval for the comparison of the valsartan group with the captopril group was within the prespecified margin for noninferiority with regard to mortality (P=0.004) and with regard to the composite end point of fatal and nonfatal cardiovascular events (P<0.001). The valsartan-and-captopril group had the most drug-related adverse events. With monotherapy, hypotension and renal dysfunction were more common in the valsartan group, and cough, rash, and taste disturbance were more common in the captopril group. Valsartan is as effective as captopril in patients who are at high risk for cardiovascular events after myocardial infarction. Combining valsartan with captopril increased the rate of adverse events without improving survival. Copyright 2003 Massachusetts Medical Society

  7. Testosterone deficiency prevents left ventricular contractility dysfunction after myocardial infarction.

    PubMed

    Ribeiro Júnior, R F; Ronconi, K S; Jesus, I C G; Almeida, P W M; Forechi, L; Vassallo, D V; Guatimosim, S; Stefanon, I; Fernandes, A A

    2018-01-15

    Testosterone may affect myocardial contractility since its deficiency decreases the contraction and relaxation of the heart. Meanwhile, testosterone replacement therapy has raised concerns because it may worsen cardiac dysfunction and remodeling after myocardial infarction (MI). In this study, we evaluate cardiac contractility 60 days after MI in rats with suppressed testosterone. Male Wistar rats underwent bilateral orchidectomy one week before the ligation of the anterior descending left coronary artery. The animals were divided into orchidectomized (OCT); MI; orchidectomized + MI (OCT + MI); orchidectomized + MI + testosterone (OCT + MI + T) and control (Sham) groups. Eight weeks after MI, papillary muscle contractility was analyzed under increasing calcium (0.62, 1.25, 2.5 and 3.75 mM) and isoproterenol (10 -8 to 10 -2  M) concentrations. Ventricular myocytes were isolated for intracellular calcium measurements and assessment of Ca 2+ handling proteins. Contractility was preserved in the orchidectomized animals after myocardial infarction and was reduced when testosterone was replaced (Ca 2+ 3.75 mM: Sham: 608 ± 70 (n = 11); OCT: 590 ± 37 (n = 16); MI: 311 ± 33* (n = 9); OCT + MI: 594 ± 76 (n = 7); OCT + MI + T: 433 ± 38* (n=4), g/g *p < 0.05 vs Sham). Orchidectomy also increased the Ca 2+ transient amplitude of the ventricular myocytes and SERCA-2a protein expression levels. PLB phosphorylation levels at Thr 17 were not different in the orchidectomized animals compared to the Sham animals but were reduced after testosterone replacement. CAMKII phosphorylation and protein nitrosylation increased in the orchidectomized animals. Our results support the view that testosterone deficiency prevents MI contractility dysfunction by altering the key proteins involved in Ca 2+ handling. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Elevation of serum N-terminal pro-brain natriuretic peptide after exercise is an index of myocardial damage or a cytoprotective reflection?

    PubMed

    Faviou, E; Zachari, A; Nounopoulos, C; Agrafiotis, E; Vourli, G; Dionyssiou-Asteriou, A

    2008-03-01

    Recent investigations have suggested the occurrence of transient cardiac dysfunction and reversible myocardial injury in healthy individuals after heavy exercise. Our purpose was to examine if the release of N-terminal pro-brain natriuretic peptide (NT-proBNP) after intense exercise in obviously healthy participants may have cytoprotective and growth-regulating effects or may result from myocardial dysfunction/damage with changes in cTnT as a marker for myocardial cell necrosis during exercise. In 43 highly-trained male athletes <35 years old, who were examined immediately after exercising as well as 2 days later, 21 age-matched male patients classified as stage-B according to ACC/AHA guidelines and 35 healthy age-matched males, we evaluated NT-proBNP and 3rd generation's cTnT by electrochemiluminescence immunoassay. All participants underwent a detailed cardiac protocol including echocardiography and electrocardiogram (ECG). In athletes, cTnT consistently remained <0.01 mg/L after exercising as well as after 2 days. NTproBNP immediately after exercising was 58.27+/-19.48 ng/L, without reaching pathological levels, decreasing 2 days later to 22.93+/-10.22 ng/L. Our patients maintained high levels of NTproBNP, as much as a six-fold increase with reference to the levels of our study's control group and with cTnT <0.01 mg/L. In the control group, cTnT and NTproBNP levels were statistically similar with those of the athletes 2 days after exercising. NT-proBNP as a biological marker can reliably discriminate pathological from physiological cardiac hypertrophy. A normal plasma concentration of NT-proBNP in consecutive routine check-up, before and after exercise, could minimize the possibility of cardiac dysfunction, whereas persistent elevated plasma concentrations warrant further cardiological evaluation.

  9. Increasing Pyruvate Dehydrogenase Flux as a Treatment for Diabetic Cardiomyopathy: A Combined 13C Hyperpolarized Magnetic Resonance and Echocardiography Study.

    PubMed

    Le Page, Lydia M; Rider, Oliver J; Lewis, Andrew J; Ball, Vicky; Clarke, Kieran; Johansson, Edvin; Carr, Carolyn A; Heather, Lisa C; Tyler, Damian J

    2015-08-01

    Although diabetic cardiomyopathy is widely recognized, there are no specific treatments available. Altered myocardial substrate selection has emerged as a candidate mechanism behind the development of cardiac dysfunction in diabetes. As pyruvate dehydrogenase (PDH) activity appears central to the balance of substrate use, we aimed to investigate the relationship between PDH flux and myocardial function in a rodent model of type 2 diabetes and to explore whether or not increasing PDH flux, with dichloroacetate, would restore the balance of substrate use and improve cardiac function. All animals underwent in vivo hyperpolarized [1-(13)C]pyruvate magnetic resonance spectroscopy and echocardiography to assess cardiac PDH flux and function, respectively. Diabetic animals showed significantly higher blood glucose levels (10.8 ± 0.7 vs. 8.4 ± 0.5 mmol/L), lower PDH flux (0.005 ± 0.001 vs. 0.017 ± 0.002 s(-1)), and significantly impaired diastolic function (transmitral early diastolic peak velocity/early diastolic myocardial velocity ratio [E/E'] 12.2 ± 0.8 vs. 20 ± 2), which are in keeping with early diabetic cardiomyopathy. Twenty-eight days of treatment with dichloroacetate restored PDH flux to normal levels (0.018 ± 0.002 s(-1)), reversed diastolic dysfunction (E/E' 14 ± 1), and normalized blood glucose levels (7.5 ± 0.7 mmol/L). The treatment of diabetes with dichloroacetate therefore restored the balance of myocardial substrate selection, reversed diastolic dysfunction, and normalized blood glucose levels. This suggests that PDH modulation could be a novel therapy for the treatment and/or prevention of diabetic cardiomyopathy. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  10. Added clinical value of applying myocardial deformation imaging to assess right ventricular function.

    PubMed

    Sokalskis, Vladislavs; Peluso, Diletta; Jagodzinski, Annika; Sinning, Christoph

    2017-06-01

    Right heart dysfunction has been found to be a strong prognostic factor predicting adverse outcome in various cardiopulmonary diseases. Conventional echocardiographic measurements can be limited by geometrical assumptions and impaired reproducibility. Speckle tracking-derived strain provides a robust quantification of right ventricular function. It explicitly evaluates myocardial deformation, as opposed to tissue Doppler-derived strain, which is computed from tissue velocity gradients. Right ventricular longitudinal strain provides a sensitive tool for detecting right ventricular dysfunction, even at subclinical levels. Moreover, the longitudinal strain can be applied for prognostic stratification of patients with pulmonary hypertension, pulmonary embolism, and congestive heart failure. Speckle tracking-derived right atrial strain, right ventricular longitudinal strain-derived mechanical dyssynchrony, and three-dimensional echocardiography-derived strain are emerging imaging parameters and methods. Their application in research is paving the way for their clinical use. © 2017, Wiley Periodicals, Inc.

  11. Cannabidiol Protects against Doxorubicin-Induced Cardiomyopathy by Modulating Mitochondrial Function and Biogenesis.

    PubMed

    Hao, Enkui; Mukhopadhyay, Partha; Cao, Zongxian; Erdélyi, Katalin; Holovac, Eileen; Liaudet, Lucas; Lee, Wen-Shin; Haskó, György; Mechoulam, Raphael; Pacher, Pál

    2015-01-06

    Doxorubicin (DOX) is a widely used, potent chemotherapeutic agent; however, its clinical application is limited because of its dose-dependent cardiotoxicity. DOX's cardiotoxicity involves increased oxidative/nitrative stress, impaired mitochondrial function in cardiomyocytes/endothelial cells and cell death. Cannabidiol (CBD) is a nonpsychotropic constituent of marijuana, which is well tolerated in humans, with antioxidant, antiinflammatory and recently discovered antitumor properties. We aimed to explore the effects of CBD in a well-established mouse model of DOX-induced cardiomyopathy. DOX-induced cardiomyopathy was characterized by increased myocardial injury (elevated serum creatine kinase and lactate dehydrogenase levels), myocardial oxidative and nitrative stress (decreased total glutathione content and glutathione peroxidase 1 activity, increased lipid peroxidation, 3-nitrotyrosine formation and expression of inducible nitric oxide synthase mRNA), myocardial cell death (apoptotic and poly[ADP]-ribose polymerase 1 [PARP]-dependent) and cardiac dysfunction (decline in ejection fraction and left ventricular fractional shortening). DOX also impaired myocardial mitochondrial biogenesis (decreased mitochondrial copy number, mRNA expression of peroxisome proliferator-activated receptor γ coactivator 1-alpha, peroxisome proliferator-activated receptor alpha, estrogen-related receptor alpha), reduced mitochondrial function (attenuated complex I and II activities) and decreased myocardial expression of uncoupling protein 2 and 3 and medium-chain acyl-CoA dehydrogenase mRNA. Treatment with CBD markedly improved DOX-induced cardiac dysfunction, oxidative/nitrative stress and cell death. CBD also enhanced the DOX-induced impaired cardiac mitochondrial function and biogenesis. These data suggest that CBD may represent a novel cardioprotective strategy against DOX-induced cardiotoxicity, and the above-described effects on mitochondrial function and biogenesis may contribute to its beneficial properties described in numerous other models of tissue injury.

  12. Cannabidiol Protects against Doxorubicin-Induced Cardiomyopathy by Modulating Mitochondrial Function and Biogenesis

    PubMed Central

    Hao, Enkui; Mukhopadhyay, Partha; Cao, Zongxian; Erdélyi, Katalin; Holovac, Eileen; Liaudet, Lucas; Lee, Wen-Shin; Haskó, György; Mechoulam, Raphael; Pacher, Pál

    2015-01-01

    Doxorubicin (DOX) is a widely used, potent chemotherapeutic agent; however, its clinical application is limited because of its dose-dependent cardiotoxicity. DOX’s cardiotoxicity involves increased oxidative/nitrative stress, impaired mitochondrial function in cardiomyocytes/endothelial cells and cell death. Cannabidiol (CBD) is a nonpsychotropic constituent of marijuana, which is well tolerated in humans, with antioxidant, antiinflammatory and recently discovered antitumor properties. We aimed to explore the effects of CBD in a well-established mouse model of DOX-induced cardiomyopathy. DOX-induced cardiomyopathy was characterized by increased myocardial injury (elevated serum creatine kinase and lactate dehydrogenase levels), myocardial oxidative and nitrative stress (decreased total glutathione content and glutathione peroxidase 1 activity, increased lipid peroxidation, 3-nitrotyrosine formation and expression of inducible nitric oxide synthase mRNA), myocardial cell death (apoptotic and poly[ADP]-ribose polymerase 1 [PARP]-dependent) and cardiac dysfunction (decline in ejection fraction and left ventricular fractional shortening). DOX also impaired myocardial mitochondrial biogenesis (decreased mitochondrial copy number, mRNA expression of peroxisome proliferator-activated receptor γ coactivator 1-alpha, peroxisome proliferator-activated receptor alpha, estrogen-related receptor alpha), reduced mitochondrial function (attenuated complex I and II activities) and decreased myocardial expression of uncoupling protein 2 and 3 and medium-chain acyl-CoA dehydrogenase mRNA. Treatment with CBD markedly improved DOX-induced cardiac dysfunction, oxidative/nitrative stress and cell death. CBD also enhanced the DOX-induced impaired cardiac mitochondrial function and biogenesis. These data suggest that CBD may represent a novel cardioprotective strategy against DOX-induced cardiotoxicity, and the above-described effects on mitochondrial function and biogenesis may contribute to its beneficial properties described in numerous other models of tissue injury. PMID:25569804

  13. Dobutamine stress magnetic resonance imaging suffices for the demonstration of myocardial ischaemia and viability.

    PubMed

    Lamers, F P L; van Dijkman, P R M; Kuijpers, Th J A; van Herpen, G

    2003-02-01

    We report three patients in whom dobutamine stress magnetic imaging (DS-MRI) was essential in assessing myocardial ischaemia. Two patients were referred to the cardiologist because of chest pain. Patient A had typical exertional angina and a normal resting electrocardiogram (ECG). Patient B had typical exercise-induced angina and had recently experienced an attack of severe chest pain at rest for 15 minutes. The ECG showed a complete left bundle branch block (LBBB). Patient C was referred for heart failure of unknown origin. There were no symptoms of chest pain during rest or exercise. Echocardiography in this patient demonstrated global left ventricular (LV) dilatation, systolic dysfunction and a small dyskinetic segment in the inferior wall. In all these patients exercise stress testing had failed to demonstrate myocardial ischaemia. Patients A and C produced normal findings whereas in patient B the abnormal repolarisation due to pre-existent LBBB precluded a diagnosis of ischaemia. Breath-hold DS-MRI was performed to study LV wall motion and wall thickening at rest through increasing doses of dobutamine. A test was considered positive for myocardial ischaemia if wall motion abnormalities developed at high-dose levels of the drug (20 μg/kg/min or more with a maximum of 40 μg/kg/min) in previously normal vascular territories or worsened in a segment that was normal at baseline. Recovery of wall thickening in a previously hypokinetic or akinetic segment at a low dose of dobutamine (5-10 μg/kg/min) was taken as proof of viability. Patients A and B developed hypokinesia progressing into akinesia at high-dose dobutamine in the anteroseptal area of the LV indicative of ischaemia. These findings were corroborated by coronary angiography demonstrating severe coronary artery disease which led to coronary artery bypass grafting (CABG) in patient A and balloon angioplasty in patient B. In patient C global recovery of LV contractions during low-dose dobutamine was followed by hypokinesia in the inferoseptal area during high-dose dobutamine. This biphasic response indicates myocardial viability as well as ischaemia. CABG was carried out because of multiple stenoses in the left coronary artery. Post-operatively LV function normalised. DS-MRI is a valuable method for detecting myocardial ischaemia and viability in patients with suspected coronary artery, and can be applied in every hospital with MRI equipment at its disposal.

  14. Hot shot induction and reperfusion with a specific blocker of the es-ENT1 nucleoside transporter before and after hypothermic cardioplegia abolishes myocardial stunning in acutely ischemic hearts despite metabolic derangement: Hot shot drug delivery before hypothermic cardioplegia

    PubMed Central

    Abd-Elfattah, Anwar Saad; Tuchy, Gert E.; Jessen, Michael E.; Salter, David R.; Goldstein, Jacques P.; Brunsting, Louis A.; Wechsler, Andrew S.

    2013-01-01

    Objective Simultaneous inhibition of the cardiac equilibrative-p-nitrobenzylthioinosine (NBMPR)–sensitive (es) type of the equilibrative nucleoside transport 1 (ENT1) nucleoside transporter, with NBMPR, and adenosine deaminase, with erythro-9-[2-hydroxy-3-nonyl]adenine (EHNA), prevents release of myocardial purines and attenuates myocardial stunning and fibrillation in canine models of warm ischemia and reperfusion. It is not known whether prolonged administration of hypothermic cardioplegia influences purine release and EHNA/NBMPR-mediated cardioprotection in acutely ischemic hearts. Methods Anesthetized dogs (n = 46), which underwent normothermic aortic crossclamping for 20 minutes on-pump, were divided to determine (1) purine release with induction of intermittent antegrade or continuous retrograde hypothermic cardioplegia and reperfusion, (2) the effects of postischemic treatment with 100 µM EHNA and 25 µM NBMPR on purine release and global functional recovery, and (3) whether a hot shot and reperfusion with EHNA/NBMPR inhibits purine release and attenuates ventricular dysfunction of ischemic hearts. Myocardial biopsies and coronary sinus effluents were obtained and analyzed using high-performance liquid chromatography. Results Warm ischemia depleted myocardial adenosine triphosphate and elevated purines (ie, inosine > adenosine) as markers of ischemia. Induction of intermittent antegrade or continuous retrograde hypothermic (4°C) cardioplegia releases purines until the heart becomes cold (<20°C). During reperfusion, the levels of hypoxanthine and xanthine (free radical substrates) were >90% of purines in coronary sinus effluent. Reperfusion with EHNA/NBMPR abolished ventricular dysfunction in acutely ischemic hearts with and without a hot shot and hypothermic cardioplegic arrest. Conclusions Induction of hypothermic cardioplegia releases purines from ischemic hearts until they become cold, whereas reperfusion induces massive purine release and myocardial stunning. Inhibition of cardiac es-ENT1 nucleoside transporter abolishes postischemic reperfusion injury in warm and cold cardiac surgery. PMID:23422047

  15. Cardiac-restricted Overexpression of TRAF3 Interacting Protein 2 (TRAF3IP2) Results in Spontaneous Development of Myocardial Hypertrophy, Fibrosis, and Dysfunction *

    PubMed Central

    Sakamuri, Siva S. V. P.; Siddesha, Jalahalli M.; Saifudeen, Zubaida; Ma, Lixin; Siebenlist, Ulrich; Gardner, Jason D.; Chandrasekar, Bysani

    2016-01-01

    TRAF3IP2 (TRAF3 interacting protein 2; previously known as CIKS or Act1) is a key intermediate in the normal inflammatory response and the pathogenesis of various autoimmune and inflammatory diseases. Induction of TRAF3IP2 activates IκB kinase (IKK)/NF-κB, JNK/AP-1, and c/EBPβ and stimulates the expression of various inflammatory mediators with negative myocardial inotropic effects. To investigate the role of TRAF3IP2 in heart disease, we generated a transgenic mouse model with cardiomyocyte-specific TRAF3IP2 overexpression (TRAF3IP2-Tg). Echocardiography, magnetic resonance imaging, and pressure-volume conductance catheterization revealed impaired cardiac function in 2-month-old male transgenic (Tg) mice as evidenced by decreased ejection fraction, stroke volume, cardiac output, and peak ejection rate. Moreover, the male Tg mice spontaneously developed myocardial hypertrophy (increased heart/body weight ratio, cardiomyocyte cross-sectional area, GATA4 induction, and fetal gene re-expression). Furthermore, TRAF3IP2 overexpression resulted in the activation of IKK/NF-κB, JNK/AP-1, c/EBPβ, and p38 MAPK and induction of proinflammatory cytokines, chemokines, and extracellular matrix proteins in the heart. Although myocardial hypertrophy decreased with age, cardiac fibrosis (increased number of myofibroblasts and enhanced expression and deposition of fibrillar collagens) increased progressively. Despite these adverse changes, TRAF3IP2 overexpression did not result in cell death at any time period. Interestingly, despite increased mRNA expression, TRAF3IP2 protein levels and activation of its downstream signaling intermediates remained unchanged in the hearts of female Tg mice. The female Tg mice also failed to develop myocardial hypertrophy. In summary, these results demonstrate that overexpression of TRAF3IP2 in male mice is sufficient to induce myocardial hypertrophy, cardiac fibrosis, and contractile dysfunction. PMID:27466370

  16. Impaired left ventricular diastolic function is related to the formation of left ventricular apical thrombus in patients with acute anterior myocardial infarction.

    PubMed

    Choi, Ung Lim; Park, Jae-Hyeong; Sun, Byung Joo; Oh, Jin Kyung; Seong, Seok Woo; Lee, Jae-Hwan; Choi, Si Wan; Jeong, Jin-Ok; Kwon, In Sun; Seong, In-Whan

    2018-05-01

    Left ventricular (LV) apical thrombus is a clinically important complication which can cause systemic embolization in patients with anterior acute myocardial infarction (AMI). Systolic dysfunction has been a risk factor for developing LV apical thrombus in AMI patients. However, the role of diastolic dysfunction in the development of LV apical thrombus in these patients is still unknown. We performed this study to evaluate whether diastolic dysfunction can influence the development of LV apical thrombus in anterior AMI patients. We retrospectively analyzed all consecutive anterior AMI patients with available echocardiographic images within 1 month from January 2005 to April 2016. After gathering clinical characteristics from their medical records, systolic and diastolic functions were analyzed from digitally stored echocardiographic images. We included a total of 1045 patients (748 males, mean age 64 ± 12 years) with anterior AMI, and 494 (47%) were diagnosed as STEMI. The incidence of LV apical thrombus was 3.3% (34/1045). The LV apical thrombus group had larger LV diastolic dimension, larger LV diastolic and systolic volumes, and lower LVEF than the no LV thrombus group. The LV apical thrombus group showed higher mitral E velocity over mitral annular E' velocity ratio, an indicator of LV end-diastolic pressure (P < 0.001). In the LV apical thrombus group, the incidence of grade 2 diastolic dysfunction (32 vs 12%, P = 0.001) and grade 3 diastolic dysfunction (26 vs 2%, P < 0.001) were significantly higher than in the no LV apical thrombus group. The presence of more than grade 2 diastolic dysfunction, LVEF and presence of LV apical aneurysm were statistically significant factors associated with LV apical thrombus after the multivariate analysis. In conclusion, along with LV systolic dysfunction and LV apical aneurysm, LV diastolic dysfunction was also related with the presence of LV apical thrombus in patients with anterior AMI.

  17. Relationship of myocardial hibernation, scar, and angiographic collateral flow in ischemic cardiomyopathy with coronary chronic total occlusion.

    PubMed

    Wang, Li; Lu, Min-Jie; Feng, Lei; Wang, Juan; Fang, Wei; He, Zuo-Xiang; Dou, Ke-Fei; Zhao, Shi-Hua; Yang, Min-Fu

    2018-03-07

    The relationship between myocardial viability and angiographic collateral flow is not fully elucidated in ischemic cardiomyopathy (ICM) with coronary artery chronic total occlusion (CTO). We aimed to clarify the relationship between myocardial hibernation, myocardial scar, and angiographic collateral flow in these patients. Seventy-one consecutive ICM patients with 122 CTOs and 652 dysfunctional segments within CTO territories were retrospectively analyzed. Myocardial hibernation (perfusion-metabolism mismatch) and the extent of 18 F-fluorodeoxyglucose (FDG) abnormalities were assessed using 99m Tc-sestamibi and 18 F-FDG imaging. Myocardial scar was evaluated by late gadolinium enhancement (LGE) cardiac magnetic resonance (CMR) imaging. Collateral flow observed on coronary angiography was assessed using Rentrop classification. In these patients, neither the extent nor frequency of myocardial hibernation or scar was related to the status of collateral flow. Moreover, the matching rate in determining myocardial viability was poor between any 2 imaging indices. The extent of 18 F-FDG abnormalities was linearly related to the extent of LGE rather than myocardial hibernation. Of note, nearly one-third (30.4%) of segments with transmural scar still had hibernating tissue. Hibernation and non-transmural scar had higher sensitivity (63.0% and 66.7%) than collateral flow (37.0%) in predicting global functional improvement. Angiographic collateral cannot accurately predict myocardial viability, and has lower sensitivity in prediction of functional improvement in CTO territories in ICM patients. Hence, assessment of myocardial viability with non-invasive imaging modalities is of importance. Moreover, due to the lack of correlation between myocardial hibernation and scar, these two indices are complementary but not interchangeable.

  18. Real-World Multicenter Registry of Patients with Severe Coronary Artery Calcification Undergoing Orbital Atherectomy.

    PubMed

    Lee, Michael S; Shlofmitz, Evan; Kaplan, Barry; Alexandru, Dragos; Meraj, Perwaiz; Shlofmitz, Richard

    2016-08-01

    We evaluated the safety and efficacy of orbital atherectomy in real-world patients with severe coronary artery calcification (CAC). The presence of severe CAC increases the complexity of percutaneous coronary intervention as it may impede stent delivery and optimal stent expansion. Atherectomy may be an indispensable tool for uncrossable or undilatable lesions by modifying severe CAC. Although the ORBIT I and II trials report that orbital atherectomy was safe and effective for the treatment of severe CAC, patients with kidney disease, recent myocardial infarction, long diffuse disease, severe left ventricular dysfunction, and unprotected left main disease were excluded. This retrospective study included 458 consecutive patients with severe CAC who underwent orbital atherectomy followed by stenting from October 2013 to December 2015 at 3 centers. The primary endpoint of major adverse cardiac and cerebrovascular events at 30 days was 1.7%. Low rates of 30-day all-cause mortality (1.3%), myocardial infarction (1.1%), target vessel revascularization (0%), stroke (0.2%), and stent thrombosis (0.9%) were observed. Angiographic complications were low: perforation was 0.7%, dissection 0.9%, and no-reflow 0.7%. Emergency coronary artery bypass graft surgery was performed in 0.2% of patients. In the largest real-world study of patients who underwent orbital atherectomy, including high-risk patients who were not surgical candidates as well as those with very complex coronary anatomy, acute and short-term adverse clinical event rates were low. A randomized clinical trial is needed to identify the ideal treatment strategy for patients with severe CAC. © 2016 The Authors. Journal of Interventional Cardiology Published by Wiley Periodicals, Inc.

  19. Calcineurin Regulates Myocardial Function during Acute Endotoxemia

    PubMed Central

    Joshi, Mandar S.; Julian, Mark W.; Huff, Jennifer E.; Bauer, John A.; Xia, Yong; Crouser, Elliott D.

    2006-01-01

    Rationale: Cyclosporin A (CsA) is known to preserve cardiac contractile function during endotoxemia, but the mechanism is unclear. Increased nitric oxide (NO) production and altered mitochondrial function are implicated as mechanisms contributing to sepsis-induced cardiac dysfunction, and CsA has the capacity to reduce NO production and inhibit mitochondrial dysfunction relating to the mitochondrial permeability transition (MPT). Objectives: We hypothesized that CsA would protect against endotoxin-mediated cardiac contractile dysfunction by attenuating NO production and preserving mitochondrial function. Methods: Left ventricular function was measured continuously over 4 h in cats assigned as follows: control animals (n = 7); LPS alone (3 mg/kg, n = 8); and CsA (6 mg/kg, n = 7), a calcineurin inhibitor that blocks the MPT, or tacrolimus (FK506, 0.1 mg/kg, n = 7), a calcineurin inhibitor lacking MPT activity, followed in 30 min by LPS. Myocardial tissue was then analyzed for NO synthase-2 expression, tissue nitration, protein carbonylation, and mitochondrial morphology and function. Measurements and Main Results: LPS treatment resulted in impaired left ventricular contractility, altered mitochondrial morphology and function, and increased protein nitration. As hypothesized, CsA pretreatment normalized cardiac performance and mitochondrial respiration and reduced myocardial protein nitration. Unexpectedly, FK506 pretreatment had similar effects, normalizing both cardiac and mitochondrial parameters. However, CsA and FK506 pretreatments markedly increased protein carbonylation in the myocardium despite elevated manganese superoxide dismutase activity during endotoxemia. Conclusions: Our data indicate that calcineurin is a critical regulator of mitochondrial respiration, tissue nitration, protein carbonylation, and contractile function in the heart during acute endotoxemia. PMID:16424445

  20. Myocardial Viability: From Proof of Concept to Clinical Practice

    PubMed Central

    Tan, Timothy C.; Hsu, Chijen; Denniss, Alan Robert

    2016-01-01

    Ischaemic left ventricular (LV) dysfunction can arise from myocardial stunning, hibernation, or necrosis. Imaging modalities have become front-line methods in the assessment of viable myocardial tissue, with the aim to stratify patients into optimal treatment pathways. Initial studies, although favorable, lacked sufficient power and sample size to provide conclusive outcomes of viability assessment. Recent trials, including the STICH and HEART studies, have failed to confer prognostic benefits of revascularisation therapy over standard medical management in ischaemic cardiomyopathy. In lieu of these recent findings, assessment of myocardial viability therefore should not be the sole factor for therapy choice. Optimization of medical therapy is paramount, and physicians should feel comfortable in deferring coronary revascularisation in patients with coronary artery disease with reduced LV systolic function. Newer trials are currently underway and will hopefully provide a more complete understanding of the pathos and management of ischaemic cardiomyopathy. PMID:27313943

  1. Intradialytic Cardiac Magnetic Resonance Imaging to Assess Cardiovascular Responses in a Short-Term Trial of Hemodiafiltration and Hemodialysis

    PubMed Central

    Buchanan, Charlotte; Mohammed, Azharuddin; Cox, Eleanor; Köhler, Katrin; Canaud, Bernard; Taal, Maarten W.; Selby, Nicholas M.; Francis, Susan

    2017-01-01

    Hemodynamic stress during hemodialysis (HD) results in recurrent segmental ischemic injury (myocardial stunning) that drives cumulative cardiac damage. We performed a fully comprehensive study of the cardiovascular effect of dialysis sessions using intradialytic cardiac magnetic resonance imaging (MRI) to examine the comparative acute effects of standard HD versus hemodiafiltration (HDF) in stable patients. We randomly allocated 12 patients on HD (ages 32–72 years old) to either HD or HDF. Patients were stabilized on a modality for 2 weeks before undergoing serial cardiac MRI assessment during dialysis. Patients then crossed over to the other modality and were rescanned after 2 weeks. Cardiac MRI measurements included cardiac index, stroke volume index, global and regional contractile function (myocardial strain), coronary artery flow, and myocardial perfusion. Patients had mean±SEM ultrafiltration rates of 3.8±2.9 ml/kg per hour during HD and 4.4±2.5 ml/kg per hour during HDF (P=0.29), and both modalities provided a similar degree of cooling. All measures of systolic contractile function fell during HD and HDF, with partial recovery after dialysis. All patients experienced some degree of segmental left ventricular dysfunction, with severity proportional to ultrafiltration rate and BP reduction. Myocardial perfusion decreased significantly during HD and HDF. Treatment modality did not influence any of the cardiovascular responses to dialysis. In conclusion, in this randomized, crossover study, there was no significant difference in the cardiovascular response to HDF or HD with cooled dialysate as assessed with intradialytic MRI. PMID:28122851

  2. Endoplasmic reticulum Chaperon Tauroursodeoxycholic Acid Alleviates Obesity-Induced Myocardial Contractile Dysfunction

    PubMed Central

    Ceylan-Isik, Asli F.; Sreejayan, Nair; Ren, Jun

    2010-01-01

    ER stress is involved in the pathophysiology of obesity although little is known about the role of ER stress on obesity-associated cardiac dysfunction. This study was designed to examine the effect of ER chaperone tauroursodeoxycholic acid (TUDCA) on obesity-induced myocardial dysfunction. Adult lean and ob/ob obese mice were treated TUDCA (50 mg/kg/d, p.o.) or vehicle for 5 wks. Oral glucose tolerance test (OGTT) was performed. Echocardiography, cardiomyocyte contractile and intracellular Ca2+ properties were assessed. Sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) activity and protein expression of intracellular Ca2+ regulatory proteins were measured using 45Ca2+ uptake and Western blot analysis, respectively. Insulin signaling, ER stress markers and HSP90 were evaluated. Our results revealed that chronic TUDCA treatment lower systolic blood pressure and lessened glucose intolerance in obese mice. Obesity led to increased diastolic diameter, cardiac hypertrophy, compromised fractional shortening, cardiomyocyte contractile (peak shortening, maximal velocity of shortening/relengthening, and duration of contraction/relaxation) and intracellular Ca2+ properties, all of which were significantly attenuated by TUDCA. TUDCA reconciled obesity-associated decreased in SERCA activity and expression, and increase in serine phosphorylation of IRS, total and phosphorylated cJun, ER stress markers Bip, peIF2α and pPERK. Obesity-induced changes in phospholamban and HSP90 were unaffected by TUDCA. In vitro finding revealed that TUDCA ablated palmitic acid-induced cardiomyocyte contractile dysfunction. In summary, these data depicted a pivotal role of ER stress in obesity-associated cardiac contractile dysfunction, suggesting the therapeutic potential of ER stress as a target in the management of cardiac dysfunction in obesity. PMID:21035453

  3. Prevalence of arterial stiffness and the risk of myocardial diastolic dysfunction in women.

    PubMed

    Seeland, Ute; Brecht, Anna; Nauman, Ahmad T; Oertelt-Prigione, Sabine; Ruecke, Mirjam; Knebel, Fabian; Stangl, Verena; Regitz-Zagrosek, Vera

    2016-10-01

    The present study determines the prevalence of vascular dysfunction and arterial stiffness (ASt) in a female urban population by measuring the brachial augmentation index (AIx) and aortic pulse wave velocity (PWV). The study tests the hypothesis that the measurement of AIx and PWV is useful in addition to that of traditional cardiovascular risk factors when assessing the risk for left ventricular diastolic dysfunction (LVDD). This cross-sectional study recruited 965 women aged 25-75 years from 12 districts of Berlin. The ASt indices, brachial AIx, aortic PWV and the central blood pressure were measured by an oscillometric method. A randomly selected subgroup (n=343) was examined by echocardiography. Trans-mitral inflow E/A ratio and diastolic mitral annulus velocity (é) were assessed. Questionnaires, medical history and blood sampling were used for the evaluation of individual risk factors. Normal vascular function was found in 55% of the women included. The prevalence of women with pathological AIx only (AIx ⩾ -10%, PWV normal) was 21.5%, whereas 17.9% were affected by increased AIx and PWV (AIx ⩾ -10%, PWV ⩾9.7 m/s), and 6% with only pathological PWV values. The prevalence of LVDD was 31.7%. LVDD was significantly associated with pathological PWV ⩾ 9.7 m/s [OR: 1.27, 95%CI: 1.02-1.57], age [OR: 4.17, 95%CI: 2.87-6.07] and a waist circumference >80 cm [OR: 3.61, 95%CI: 1.85-7.04] in multiple regression analysis. The high prevalence of markers for vascular dysfunction and ASt in a general female population and their importance as a mediator of diastolic dysfunction should encourage implementation of aortic PWV measurement to improve cardiovascular-risk assessment in particular to identify subclinical myocardial diastolic dysfunction. © 2016 The Author(s).

  4. Diastolic dysfunction in the critically ill patient.

    PubMed

    Suárez, J C; López, P; Mancebo, J; Zapata, L

    2016-11-01

    Left ventricular diastolic dysfunction is a common finding in critically ill patients. It is characterized by a progressive deterioration of the relaxation and the compliance of the left ventricle. Two-dimensional and Doppler echocardiography is a cornerstone in its diagnosis. Acute pulmonary edema associated with hypertensive crisis is the most frequent presentation of diastolic dysfunction critically ill patients. Myocardial ischemia, sepsis and weaning failure from mechanical ventilation also may be associated with diastolic dysfunction. The treatment is based on the reduction of pulmonary congestion and left ventricular filling pressures. Some studies have found a prognostic role of diastolic dysfunction in some diseases such as sepsis. The present review aims to analyze thoroughly the echocardiographic diagnosis and the most frequent scenarios in critically ill patients in whom diastolic dysfunction plays a key role. Copyright © 2016 Elsevier España, S.L.U. y SEMICYUC. All rights reserved.

  5. The Predictive Role of Serum Triglyceride to High-Density Lipoprotein Cholesterol Ratio According to Renal Function in Patients with Acute Myocardial Infarction.

    PubMed

    Kim, Jin Sug; Kim, Weon; Woo, Jong Shin; Lee, Tae Won; Ihm, Chun Gyoo; Kim, Yang Gyoon; Moon, Joo Young; Lee, Sang Ho; Jeong, Myung Ho; Jeong, Kyung Hwan

    2016-01-01

    A high serum triglyceride to high-density lipoprotein cholesterol (TG/HDL-C) ratio has been reported as an independent predictor for cardiovascular events in the general population. However, the prognostic value of this ratio in patients with renal dysfunction is unclear. We examined the association of the TG/HDL-C ratio with major adverse cardiovascular events (MACEs) according to renal function in patients with acute myocardial infarction (AMI). This study was based on the Korea Acute Myocardial Infarction Registry database. Of 13,897 patients who were diagnosed with AMI, the study population included the 7,016 patients with available TG/HDL-C ratio data. Patients were stratified into three groups according to their estimated glomerular filtration rate (eGFR), and the TG/HDL-C ratio was categorized into tertiles. We investigated 12-month MACEs, which included cardiac death, myocardial infarction, and repeated percutaneous coronary intervention or coronary artery bypass grafting. During the 12-month follow up period, 593 patients experienced MACEs. There was a significant association between the TG/HDL-C ratio and MACEs (p<0.001) in the entire study cohort. Having a TG/HDL-C ratio value in the highest tertile of TG/HDL-C ratio was an independent factor associated with increased risk of MACEs (hazard ratio [HR], 1.56; 95% confidence interval [CI], 1.26-1.93; p<0.001). Then we performed subgroup analyses according to renal function. In patients with normal renal function (eGFR ≥ 90 ml/min/1.73m2) and mild renal dysfunction (eGFR ≥ 60 to < 90ml/min/1.73m2), a higher TG/HDL-C ratio was significantly associated with increased risk of MACEs (HR, 1.64; 95% CI, 1.04-2.60; p = 0.035; and HR, 1.56; 95% CI, 1.14-2.12; p = 0.005, respectively). However, in patients with moderate renal dysfunction (eGFR < 60 ml/min/1.73m2), TG/HDL-C ratio lost its predictive value on the risk of MACEs (HR, 1.23; 95% CI, 0.82-1.83; p = 0.317). In patients with AMI, TG/HDL-C ratio is a useful independent predictor of 12-month MACEs. However, this ratio does not have predictive power in patients with moderate renal dysfunction.

  6. Type 2 diabetes mellitus and exercise impairment.

    PubMed

    Reusch, Jane E B; Bridenstine, Mark; Regensteiner, Judith G

    2013-03-01

    Limitations in physical fitness, a consistent finding in individuals with both type I and type 2 diabetes mellitus, correlate strongly with cardiovascular and all-cause mortality. These limitations may significantly contribute to the persistent excess cardiovascular mortality affecting this group. Exercise impairments in VO2 peak and VO2 kinetics manifest early on in diabetes, even with good glycemic control and in the absence of clinically apparent complications. Subclinical cardiac dysfunction is often present but does not fully explain the observed defect in exercise capacity in persons with diabetes. In part, the cardiac limitations are secondary to decreased perfusion with exercise challenge. This is a reversible defect. Similarly, in the skeletal muscle, impairments in nutritive blood flow correlate with slowed (or inefficient) exercise kinetics and decreased exercise capacity. Several correlations highlight the likelihood of endothelial-specific impairments as mediators of exercise dysfunction in diabetes, including insulin resistance, endothelial dysfunction, decreased myocardial perfusion, slowed tissue hemoglobin oxygen saturation, and impairment in mitochondrial function. Both exercise training and therapies targeted at improving insulin sensitivity and endothelial function improve physical fitness in subjects with type 2 diabetes. Optimization of exercise functions in people with diabetes has implications for diabetes prevention and reductions in mortality risk. Understanding the molecular details of endothelial dysfunction in diabetes may provide specific therapeutic targets for the remediation of this defect. Rat models to test this hypothesis are under study.

  7. Adenoviral short hairpin RNA therapy targeting phosphodiesterase 5a relieves cardiac remodeling and dysfunction following myocardial infarction.

    PubMed

    Li, Longhu; Haider, Husnain Kh; Wang, Linlin; Lu, Gang; Ashraf, Muhammad

    2012-05-15

    We previously showed that treatment with tadalafil, a long-acting phosphodiesterase-5a (PDE5a) inhibitor, effectively prevented adverse left ventricular (LV) remodeling of the infarcted heart. We hypothesized that short-hairpin RNA (shRNA) therapy targeting PDE5a would simulate the effects of pharmacological intervention for treatment of postinfarction LV remodeling and dysfunction. Experimental model of myocardial infarction was developed in female mice by permanent ligation of left coronary artery. Immediately after that, an adenoviral vector encoding for shRNA sequence targeting PDE5a (Ad-shPDE5a) was injected intramyocardially, which specifically inhibited PDE5a in the heart. Four weeks later, Ad-shPDE5a treated mice showed significant mitigation of the left ventricle (LV) dilatation and dysfunction as indicated by smaller LV cavity and more preserved ejection fraction and fractional shortening. Infarction size and fibrosis were significantly reduced in Ad-shPDE5a-treated mice. Additionally, more salvaged cardiomyocytes, significantly reduced collagen contents, and higher blood vessel density were observed in Ad-shPDE5a-treated mice. The cytoprotective effects of Ad-shPDE5a were demonstrated in vitro in Ad-shPDE5a transfected cardiomyocytes cultured under oxygen glucose deprivation. Among downstream mediators of PDE5a signaling, cyclic GMP (cGMP) and cGMP-dependent protein kinase G (PKG) were activated with concomitant reduction in caspase-3 activity. However, no significant change in PKA and cAMP activities were observed in Ad-shPDE5a-treated hearts. Inhibition with shRNA improved cardiac remodeling and dysfunction by reducing infarction size and cardiac fibrosis and increased cGMP and PKG activity. These findings suggest that PDE5 inhibition with Ad-shPDE5a is a novel approach for treatment of myocardial infarction.

  8. PreSERVE-AMI: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial of Intracoronary Administration of Autologous CD34+ Cells in Patients With Left Ventricular Dysfunction Post STEMI.

    PubMed

    Quyyumi, Arshed A; Vasquez, Alejandro; Kereiakes, Dean J; Klapholz, Marc; Schaer, Gary L; Abdel-Latif, Ahmed; Frohwein, Stephen; Henry, Timothy D; Schatz, Richard A; Dib, Nabil; Toma, Catalin; Davidson, Charles J; Barsness, Gregory W; Shavelle, David M; Cohen, Martin; Poole, Joseph; Moss, Thomas; Hyde, Pamela; Kanakaraj, Anna Maria; Druker, Vitaly; Chung, Amy; Junge, Candice; Preti, Robert A; Smith, Robin L; Mazzo, David J; Pecora, Andrew; Losordo, Douglas W

    2017-01-20

    Despite direct immediate intervention and therapy, ST-segment-elevation myocardial infarction (STEMI) victims remain at risk for infarct expansion, heart failure, reinfarction, repeat revascularization, and death. To evaluate the safety and bioactivity of autologous CD34+ cell (CLBS10) intracoronary infusion in patients with left ventricular dysfunction post STEMI. Patients who underwent successful stenting for STEMI and had left ventricular dysfunction (ejection fraction≤48%) ≥4 days poststent were eligible for enrollment. Subjects (N=161) underwent mini bone marrow harvest and were randomized 1:1 to receive (1) autologous CD34+ cells (minimum 10 mol/L±20% cells; N=78) or (2) diluent alone (N=83), via intracoronary infusion. The primary safety end point was adverse events, serious adverse events, and major adverse cardiac event. The primary efficacy end point was change in resting myocardial perfusion over 6 months. No differences in myocardial perfusion or adverse events were observed between the control and treatment groups, although increased perfusion was observed within each group from baseline to 6 months (P<0.001). In secondary analyses, when adjusted for time of ischemia, a consistently favorable cell dose-dependent effect was observed in the change in left ventricular ejection fraction and infarct size, and the duration of time subjects was alive and out of hospital (P=0.05). At 1 year, 3.6% (N=3) and 0% deaths were observed in the control and treatment group, respectively. This PreSERVE-AMI (Phase 2, randomized, double-blind, placebo-controlled trial) represents the largest study of cell-based therapy for STEMI completed in the United States and provides evidence supporting safety and potential efficacy in patients with left ventricular dysfunction post STEMI who are at risk for death and major morbidity. URL: http://www.clinicaltrials.gov. Unique identifier: NCT01495364. © 2016 American Heart Association, Inc.

  9. Angiotensin-converting enzyme inhibitors in patients with coronary artery disease and absence of heart failure or left ventricular systolic dysfunction: an overview of long-term randomized controlled trials.

    PubMed

    Danchin, Nicolas; Cucherat, Michel; Thuillez, Christian; Durand, Eric; Kadri, Zena; Steg, Philippe G

    2006-04-10

    Results of randomized trials of angiotensin-converting enzyme inhibitors in patients with coronary artery disease (CAD) and preserved left ventricular function are conflicting. We undertook this study to determine whether long-term prescription of angiotensin-converting enzyme inhibitors decreases major cardiovascular events and mortality in patients who have CAD and no evidence of left ventricular systolic dysfunction. We searched MEDLINE, EMBASE, and IPA databases, the Cochrane Controlled Trials Register (1990-2004), and reports from scientific meetings (2003-2004), and we reviewed secondary sources. Search terms included angiotensin-converting enzyme inhibitors, coronary artery disease, randomi(s)zed controlled trials, clinical trials, and myocardial infarction. Eligible studies included randomized controlled trials in patients who had CAD and no heart failure or left ventricular dysfunction, with follow-up omicronf 2 years or longer. Of 1146 publications screened, 7 met our selection criteria and included a total of 33 960 patients followed up for a mean of 4.4 years. Five trials included only patients with documented CAD. One trial included patients with documented CAD (80%) or patients who had diabetes mellitus and 1 or more additional risk factors, and another trial included patients who had CAD, a history of transient ischemic attack, or intermittent claudication. Treatment with angiotensin-converting enzyme inhibitors decreased overall mortality (odds ratio, 0.86; 95% confidence interval, 0.79-0.93), cardiovascular mortality (odds ratio, 0.81; 95% confidence interval, 0.73-0.90), myocardial infarction (odds ratio, 0.82; 95% confidence interval, 0.75-0.89), and stroke (odds ratio, 0.77; 95% confidence interval, 0.66-0.88). Other end points, including resuscitation after cardiac arrest, myocardial revascularization, and hospitalization because of heart failure, were also reduced. Angiotensin-converting enzyme inhibitors reduce total mortality and major cardiovascular end points in patients who have CAD and no left ventricular systolic dysfunction or heart failure.

  10. Tissue angiotensin-converting enzyme inhibitors for the prevention of cardiovascular disease in patients with diabetes mellitus without left ventricular systolic dysfunction or clinical evidence of heart failure: a pooled meta-analysis of randomized placebo-controlled clinical trials.

    PubMed

    Saha, S A; Molnar, J; Arora, R R

    2008-01-01

    The aim of this study was to determine the role of tissue angiotensin-converting enzyme (ACE) inhibitors in the prevention of cardiovascular disease in patients with diabetes mellitus without left ventricular systolic dysfunction or clinical evidence of heart failure in randomized placebo-controlled clinical trials using pooled meta-analysis techniques. Randomized placebo-controlled clinical trials of at least 12 months duration in patients with diabetes mellitus without left ventricular systolic dysfunction or heart failure who had experienced a prior cardiovascular event or were at high cardiovascular risk were selected. A total of 10 328 patients (43 517 patient-years) from four selected trials were used for meta-analysis. Relative risk estimations were made using data pooled from the selected trials and statistical significance was determined using the Chi-squared test (two-sided alpha error <0.05). The number of patients needed to treat was also calculated. Tissue ACE inhibitors significantly reduced the risk of cardiovascular mortality by 14.9% (p = 0.022), myocardial infarction by 20.8% (p = 0.002) and the need for invasive coronary revascularization by 14% (p = 0.015) when compared to placebo. The risk of all-cause mortality also tended to be lower among patients randomized to tissue ACE inhibitors, whereas the risks of stroke and hospitalization for heart failure were not significantly affected. Treating about 65 patients with tissue ACE inhibitors for about 4.2 years would prevent one myocardial infarction, whereas treating about 85 patients would prevent one cardiovascular death. Pooled meta-analysis of randomized placebo-controlled trials suggests that tissue ACE inhibitors modestly reduce the risk of myocardial infarction and cardiovascular death and tend to reduce overall mortality in diabetic patients without left ventricular systolic dysfunction or heart failure.

  11. Adenoviral short hairpin RNA therapy targeting phosphodiesterase 5a relieves cardiac remodeling and dysfunction following myocardial infarction

    PubMed Central

    Li, Longhu; Haider, Husnain Kh.; Wang, Linlin; Lu, Gang

    2012-01-01

    We previously showed that treatment with tadalafil, a long-acting phosphodiesterase-5a (PDE5a) inhibitor, effectively prevented adverse left ventricular (LV) remodeling of the infarcted heart. We hypothesized that short-hairpin RNA (shRNA) therapy targeting PDE5a would simulate the effects of pharmacological intervention for treatment of postinfarction LV remodeling and dysfunction. Experimental model of myocardial infarction was developed in female mice by permanent ligation of left coronary artery. Immediately after that, an adenoviral vector encoding for shRNA sequence targeting PDE5a (Ad-shPDE5a) was injected intramyocardially, which specifically inhibited PDE5a in the heart. Four weeks later, Ad-shPDE5a treated mice showed significant mitigation of the left ventricle (LV) dilatation and dysfunction as indicated by smaller LV cavity and more preserved ejection fraction and fractional shortening. Infarction size and fibrosis were significantly reduced in Ad-shPDE5a-treated mice. Additionally, more salvaged cardiomyocytes, significantly reduced collagen contents, and higher blood vessel density were observed in Ad-shPDE5a-treated mice. The cytoprotective effects of Ad-shPDE5a were demonstrated in vitro in Ad-shPDE5a transfected cardiomyocytes cultured under oxygen glucose deprivation. Among downstream mediators of PDE5a signaling, cyclic GMP (cGMP) and cGMP-dependent protein kinase G (PKG) were activated with concomitant reduction in caspase-3 activity. However, no significant change in PKA and cAMP activities were observed in Ad-shPDE5a-treated hearts. Inhibition with shRNA improved cardiac remodeling and dysfunction by reducing infarction size and cardiac fibrosis and increased cGMP and PKG activity. These findings suggest that PDE5 inhibition with Ad-shPDE5a is a novel approach for treatment of myocardial infarction. PMID:22447941

  12. Cardiovascular impact in patients undergoing maintenance hemodialysis: Clinical management considerations.

    PubMed

    Chirakarnjanakorn, Srisakul; Navaneethan, Sankar D; Francis, Gary S; Tang, W H Wilson

    2017-04-01

    Patients undergoing maintenance hemodialysis develop both structural and functional cardiovascular abnormalities. Despite improvement of dialysis technology, cardiovascular mortality of this population remains high. The pathophysiological mechanisms of these changes are complex and not well understood. It has been postulated that several non-traditional, uremic-related risk factors, especially the long-term uremic state, which may affect the cardiovascular system. There are many cardiovascular changes that occur in chronic kidney disease including left ventricular hypertrophy, myocardial fibrosis, microvascular disease, accelerated atherosclerosis and arteriosclerosis. These structural and functional changes in patients receiving chronic dialysis make them more susceptible to myocardial ischemia. Hemodialysis itself may adversely affect the cardiovascular system due to non-physiologic fluid removal, leading to hemodynamic instability and initiation of systemic inflammation. In the past decade there has been growing awareness that pathophysiological mechanisms cause cardiovascular dysfunction in patients on chronic dialysis, and there are now pharmacological and non-pharmacological therapies that may improve the poor quality of life and high mortality rate that these patients experience. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. [Coronary revascularization in patients with preoperative electrical storm].

    PubMed

    Kawashima, Toshiya; Naraoka, S

    2007-03-01

    We report 5 cases who underwent surgical coronary revascularization for subacute myocardial ischemia with preoperative electrical storm. All patients showed severe left ventricular dysfunction. Mean ejection fraction was 24.4 +/- 7.6%. Three patients had already had implantable cardioverter-defibrillator (ICD) therapy. Procedures were on-pump coronary artery bypass grafting (CABG) and mitral valvuloplasty (MVP) [case 1], on-pump CABG, MVP, left ventricular restoration (LVR) and cryoablation (case 2), and off-pump CABG (case 3-5). Case 5 necessitated conversion to on-pump for electrical storm during left circumflex artery (LCx) anastomosis. Case 3 suddenly died on the 2nd postoperative day due to electrical storm. Case 1 had recurrent attack of electrical storm postoperatively, treated by ICD, overdrive pacing, repeated intraaortic balloon pumping (IABP), deep sedation with endotracheal intubation, and finally catheter ablation. Four patients have survived 2 years (mean) postoperatively without any arrhythmia, and are all in good condition [New York Heart Association (NYHA) I] now. It was concluded that off-pump procedure was not suitable for subacute myocardial ischemia with electrical storm and that LVR with surgical cryoablation would be effective if indicated.

  14. Mitochondrial translocation of Nur77 induced by ROS contributed to cardiomyocyte apoptosis in metabolic syndrome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Aibin; Liu, Jingyi; Institute of Cardiovascular Disease, General Hospital of Beijing Command, PLA, Beijing

    Highlights: • Metabolic syndrome exacerbated MI/R induced injury accompanied by decreased Nur77. • ROS led to Nur77 translocation in metabolic syndrome. • Inhibiting relocation of Nur77 to mitochondria reduced ROS-induced cardiomyocyte injury in metabolic syndrome. - Abstract: Metabolic syndrome is a major risk factor for cardiovascular diseases, and increased cardiomyocyte apoptosis which contributes to cardiac dysfunction after myocardial ischemia/reperfusion (MI/R) injury. Nur77, a nuclear orphan receptor, is involved in such various cellular events as apoptosis, proliferation, and glucose and lipid metabolism in several cell types. Apoptosis is positively correlated with mitochondrial translocation of Nur77 in the cancer cells. However, themore » roles of Nur77 on cardiac myocytes in patients with metabolic syndrome remain unclear. The objective of this study was to determine whether Nur77 may contribute to cardiac apoptosis in patients with metabolic syndrome after I/R injury, and, if so, to identify the underlying molecular mechanisms responsible. We used leptin-deficient (ob/ob) mice to make metabolic syndrome models. In this report, we observed that, accompanied by the substantial decline in apoptosis inducer Nur77, MI/R induced cardiac dysfunction was manifested as cardiomyopathy and increased ROS. Using the neonatal rat cardiac myocytes cultured in a high-glucose and high-fat medium, we found that excessive H{sub 2}O{sub 2} led to the significant alteration in mitochondrial membrane potential and translocation of Nur77 from the nucleus to the mitochondria. However, inhibition of the relocation of Nur77 to mitochondria via Cyclosporin A reversed the changes in membrane potential mediated by H{sub 2}O{sub 2} and reduced myocardial cell injury. Therefore, these data provide a potential underlying mechanism for cardiac dysfunction in metabolic syndrome and the suppression of Nur77 translocation may provide an effective approach to reduce cardiac injury in the process.« less

  15. Troponin elevation in severe sepsis and septic shock: the role of left ventricular diastolic dysfunction and right ventricular dilatation*.

    PubMed

    Landesberg, Giora; Jaffe, Allan S; Gilon, Dan; Levin, Phillip D; Goodman, Sergey; Abu-Baih, Abed; Beeri, Ronen; Weissman, Charles; Sprung, Charles L; Landesberg, Amir

    2014-04-01

    Serum troponin concentrations predict mortality in almost every clinical setting they have been examined, including sepsis. However, the causes for troponin elevations in sepsis are poorly understood. We hypothesized that detailed investigation of myocardial dysfunction by echocardiography can provide insight into the possible causes of troponin elevation and its association with mortality in sepsis. Prospective, analytic cohort study. Tertiary academic institute. A cohort of ICU patients with severe sepsis or septic shock. Advanced echocardiography using global strain, strain-rate imaging and 3D left and right ventricular volume analyses in addition to the standard echocardiography, and concomitant high-sensitivity troponin-T measurement in patients with severe sepsis or septic shock. Two hundred twenty-five echocardiograms and concomitant high-sensitivity troponin-T measurements were performed in a cohort of 106 patients within the first days of severe sepsis or septic shock (2.1 ± 1.4 measurements/patient). Combining echocardiographic and clinical variables, left ventricular diastolic dysfunction defined as increased mitral E-to-strain-rate e'-wave ratio, right ventricular dilatation (increased right ventricular end-systolic volume index), high Acute Physiology and Chronic Health Evaluation-II score, and low glomerular filtration rate best correlated with elevated log-transformed concomitant high-sensitivity troponin-T concentrations (mixed linear model: t = 3.8, 3.3, 2.8, and -2.1 and p = 0.001, 0.0002, 0.006, and 0.007, respectively). Left ventricular systolic dysfunction determined by reduced strain-rate s'-wave or low ejection fraction did not significantly correlate with log(concomitant high-sensitivity troponin-T). Forty-one patients (39%) died in-hospital. Right ventricular end-systolic volume index and left ventricular strain-rate e'-wave predicted in-hospital mortality, independent of Acute Physiology and Chronic Health Evaluation-II score (logistic regression: Wald = 8.4, 6.6, and 9.8 and p = 0.004, 0.010, and 0.001, respectively). Concomitant high-sensitivity troponin-T predicted mortality in univariate analysis (Wald = 8.4; p = 0.004), but not when combined with right ventricular end-systolic volume index and strain-rate e'-wave in the multivariate analysis (Wald = 2.3, 4.6, and 6.2 and p = 0.13, 0.032, and 0.012, respectively). Left ventricular diastolic dysfunction and right ventricular dilatation are the echocardiographic variables correlating best with concomitant high-sensitivity troponin-T concentrations. Left ventricular diastolic and right ventricular systolic dysfunction seem to explain the association of troponin with mortality in severe sepsis and septic shock.

  16. Psychobiology of depression/distress in congestive heart failure

    PubMed Central

    Hassan, Mustafa; Sheps, David S.

    2011-01-01

    Heart failure affects millions of Americans and new diagnosis rates are expected to almost triple over the next 30 years as our population ages. Affective disorders including clinical depression and anxiety are common in patients with congestive heart failure. Furthermore, the presence of these disorders significantly impacts quality of life, medical outcomes, and healthcare service utilization. In recent years, the literature has attempted to describe potential pathophysiologic mechanisms relating affective disorders and psychosocial stress to heart failure. Several potential mechanisms have been proposed including autonomic nervous system dysfunction, inflammation, cardiac arrhythmias, and altered platelet function. These mechanisms are reviewed in this article. Additional novel mechanisms such as mental stress-induced myocardial ischemia are also discussed. PMID:18368481

  17. Coronary care medicine: it's not your father's CCU anymore.

    PubMed

    Antman, Elliott M

    2004-01-01

    The management of ST-elevation MI (STEMI) has gone through four phases: 1. The "clinical observation phase"; 2. the "coronary care unit phase"; 3. the "high-technology phase"; and 4. the "evidence-based coronary care phase". A significant advance in the care of patients with acute myocardial infarction that arose as an outgrowth of the evidence-based era was introduction of a lexicon that more accurately reflected contemporary concepts of the pathophysiology underlying myocardial ischemia and infarction. Although considerable improvement has occurred in the process of care for patient with STEMI, room for improvement exists. Despite strong evidence in the literature that prompt use of reperfusion therapy improves survival of STEMI patients such treatment is underutilized and often not administered in an expeditious timeframe relative to the onset of symptom. Even in the reperfusion era, left ventricular dysfunction remains the single most important predictor of mortality following STEMI. After administration of aspirin, initiating reperfusion strategies and, where appropriate, beta blockade all STEMI patients should be considered for inhibition of the renin-angiotensin-aldosterone system. Several adjunctive pharmacotherapies have been investigated to prevent inflammatory damage in the infarct zone. Contrary to earlier beliefs that the heart is a terminally differentiated organ without the capacity to regenerate, evidence now exists that human cardiac myocytes divide after STEMI and stem cells can promote regeneration of cardiac tissue. These observations open up the possibility of myocardial replacement therapy after STEMI.

  18. Cardiovascular disease and cognitive dysfunction in systemic lupus erythematosus.

    PubMed

    Murray, Sara G; Yazdany, Jinoos; Kaiser, Rachel; Criswell, Lindsey A; Trupin, Laura; Yelin, Edward H; Katz, Patricia P; Julian, Laura J

    2012-09-01

    Cognitive dysfunction and cardiovascular disease are common and debilitating manifestations of systemic lupus erythematosus (SLE). In this study, we evaluated the relationship between cardiovascular events, traditional cardiovascular risk factors, and SLE-specific risk factors as predictors of cognitive dysfunction in a large cohort of participants with SLE. Subjects included 694 participants from the Lupus Outcomes Study (LOS), a longitudinal study of SLE outcomes based on an annual telephone survey querying demographic and clinical variables. The Hopkins Verbal Learning Test-Revised and the Controlled Oral Word Association Test were administered to assess cognitive function. Multiple logistic regression was used to identify cardiovascular events (myocardial infarction, stroke), traditional cardiovascular risk factors (hypertension, hyperlipidemia, diabetes mellitus, obesity, smoking), and SLE-specific risk factors (antiphospholipid antibodies [aPL], disease activity, disease duration) associated with cognitive impairment in year 7 of the LOS. The prevalence of cognitive impairment as measured by verbal memory and verbal fluency metrics was 15%. In adjusted multiple logistic regression analyses, aPL (odds ratio [OR] 2.10, 95% confidence interval [95% CI] 1.3-3.41), hypertension (OR 2.06, 95% CI 1.19-3.56), and a history of stroke (OR 2.27, 95% CI 1.16-4.43) were significantly associated with cognitive dysfunction. In additional analyses evaluating the association between these predictors and severity of cognitive impairment, stroke was significantly more prevalent in participants with severe impairment when compared to those with mild or moderate impairment (P = 0.036). These results suggest that the presence of aPL, hypertension, and stroke are key variables associated with cognitive impairment, which may aid in identification of patients at greatest risk. Copyright © 2012 by the American College of Rheumatology.

  19. Uric acid predicts mortality and ischaemic stroke in subjects with diastolic dysfunction: the Tromsø Study 1994-2013.

    PubMed

    Norvik, Jon V; Schirmer, Henrik; Ytrehus, Kirsti; Storhaug, Hilde M; Jenssen, Trond G; Eriksen, Bjørn O; Mathiesen, Ellisiv B; Løchen, Maja-Lisa; Wilsgaard, Tom; Solbu, Marit D

    2017-05-01

    To investigate whether serum uric acid predicts adverse outcomes in persons with indices of diastolic dysfunction in a general population. We performed a prospective cohort study among 1460 women and 1480 men from 1994 to 2013. Endpoints were all-cause mortality, incident myocardial infarction, and incident ischaemic stroke. We stratified the analyses by echocardiographic markers of diastolic dysfunction, and uric acid was the independent variable of interest. Hazard ratios (HR) were estimated per 59 μmol/L increase in baseline uric acid. Multivariable adjusted Cox proportional hazards models showed that uric acid predicted all-cause mortality in subjects with E/A ratio <0.75 (HR 1.12, 95% confidence interval [CI] 1.00-1.25) or E/A ratio >1.5 (HR 1.51, 95% CI 1.09-2.09, P for interaction between E/A ratio category and uric acid = 0.02). Elevated uric acid increased mortality risk in persons with E-wave deceleration time <140 ms or >220 ms (HR 1.46, 95% CI 1.01-2.12 and HR 1.13, 95% CI 1.02-1.26, respectively; P for interaction = 0.04). Furthermore, in participants with isovolumetric relaxation time ≤60 ms, mortality risk was higher with increasing uric acid (HR 4.98, 95% CI 2.02-12.26, P for interaction = 0.004). Finally, elevated uric acid predicted ischaemic stroke in subjects with severely enlarged left atria (HR 1.62, 95% CI 1.03-2.53, P for interaction = 0.047). Increased uric acid was associated with higher all-cause mortality risk in subjects with echocardiographic indices of diastolic dysfunction, and with higher ischaemic stroke risk in persons with severely enlarged left atria.

  20. Cardiomyocyte specific expression of Acyl-coA thioesterase 1 attenuates sepsis induced cardiac dysfunction and mortality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Congying; Dong, Ruolan; Chen, Chen

    Compromised cardiac fatty acid oxidation (FAO) induced energy deprivation is a critical cause of cardiac dysfunction in sepsis. Acyl-CoA thioesterase 1 (ACOT1) is involved in regulating cardiac energy production via altering substrate metabolism. This study aims to clarify whether ACOT1 has a potency to ameliorate septic myocardial dysfunction via enhancing cardiac FAO. Transgenic mice with cardiomyocyte specific expression of ACOT1 (αMHC-ACOT1) and their wild type (WT) littermates were challenged with Escherichia coli lipopolysaccharide (LPS; 5 mg/kg i.p.) and myocardial function was assessed 6 h later using echocardiography and hemodynamics. Deteriorated cardiac function evidenced by reduction of the percentage of left ventricular ejectionmore » fraction and fractional shortening after LPS administration was significantly attenuated by cardiomyocyte specific expression of ACOT1. αMHC-ACOT1 mice exhibited a markedly increase in glucose utilization and cardiac FAO compared with LPS-treated WT mice. Suppression of cardiac peroxisome proliferator activated receptor alpha (PPARa) and PPARγ-coactivator-1α (PGC1a) signaling observed in LPS-challenged WT mice was activated by the presence of ACOT1. These results suggest that ACOT1 has potential therapeutic values to protect heart from sepsis mediated dysfunction, possibly through activating PPARa/PGC1a signaling. - Highlights: • ACOT1 has potential therapeutic values to protect heart from sepsis mediated dysfunction. • ACOT1 can regulate PPARa/PGC1a signaling pathway. • We first generate the transgenic mice with cardiomyocyte specific expression of ACOT1.« less

  1. Methamphetamine-associated cardiomyopathy: patterns and predictors of recovery.

    PubMed

    Voskoboinik, A; Ihle, J F; Bloom, J E; Kaye, D M

    2016-06-01

    Methamphetamine abuse is a growing public health problem, and increasing numbers of patients are admitted with methamphetamine-associated cardiomyopathy (MAC). We sought to characterise the patterns of this disease and identify predictors of recovery. We retrospectively studied consecutive patients diagnosed with MAC between January 2006 and July 2015. We identified 20 patients (14 males, 6 females) with mean age 35 ± 9 years. Most had very severe systolic dysfunction (mean left ventricular ejection fraction (LVEF) 19.7 ± 11.4%) at presentation with 14 requiring inotropes and 5 requiring mechanical support. The pattern of systolic dysfunction was global in 14 patients, while 6 patients had a 'reverse Takotsubo' (RT) pattern with severely hypokinetic basal-mid segments and apical preservation. RT patients were predominantly female, had a short history of methamphetamine abuse and had higher cardiac enzyme levels. Patients with global dysfunction tended to have mid-wall fibrosis on cardiac magnetic resonance imaging. On follow-up transthoracic echocardiography, 6 out of 19 (32%) had normalisation of LVEF (LVEF ≥ 50%) within 6 weeks. Smaller left ventricular and left atrial size, shorter duration of methamphetamine use and RT pattern appeared to predict early recovery. A subset of MAC patients, particularly those with a RT pattern and lesser ventricular dilatation have the potential for early recovery of ventricular function. By contrast, those with evidence of myocardial fibrosis and ventricular enlargement have limited scope for recovery. © 2016 Royal Australasian College of Physicians.

  2. One-Month Diesel Exhaust Inhalation Produces Hypertensive Gene Expression Phenotype in Healthy Rats

    EPA Science Inventory

    Exposure to diesel exhaust (DE) is linked to vasoconstriction, endothelial 26 dysfunction, and myocardial ischemia in compromised individuals. We hypothesized that DE 27 inhalation would cause greater inflammation, hematological alterations, and cardiac molecular 28 impairment ...

  3. Detection and monitoring of cardiotoxicity-what does modern cardiology offer?

    PubMed

    Jurcut, Ruxandra; Wildiers, Hans; Ganame, Javier; D'hooge, Jan; Paridaens, Robert; Voigt, Jens-Uwe

    2008-05-01

    With new anticancer therapies, many patients can have a long life expectancy. Treatment-related comorbidities become an issue for cancer survivors. Cardiac toxicity remains an important side effect of anticancer therapies. Myocardial dysfunction can become apparent early or long after end of therapy and may be irreversible. Detection of cardiac injury is crucial since it may facilitate early therapeutic measures. Traditionally, chemotherapy-induced cardiotoxicity has been detected by measuring changes in left ventricular ejection fraction. This parameter is, however, insensitive to subtle changes in myocardial function as they occur in early cardiotoxicity. This review will discuss conventional and modern cardiologic approaches of assessing myocardial function. It will focus on Doppler myocardial imaging, a method which allows to sensitively measure myocardial function parameters like myocardial velocity, deformation (strain), or deformation rate (strain rate) and which has been shown to reliably detect early abnormalities in both regional and global myocardial function in an early stage. Other newer echocardiographic function estimators are based on automated border detection algorithms and ultrasonic integrated backscatter analysis. A further technique to be discussed is dobutamine stress echocardiography. The use of new biomarkers like B-type natriuretic peptide and troponin and less often used imaging techniques like magnetic resonance imaging and computed tomography will also be mentioned.

  4. Myocardial oxygen delivery after experimental hemorrhagic shock.

    PubMed Central

    Archie, J P; Mertz, W R

    1978-01-01

    The two components of myocardial oxygen delivery, coronary blood flow to capillaries and diffusion from capillaries to mitochondria, were studied in six dogs, (1) prior to shock, (2) after three hours of hemorrhage shock at a mean systemic arterial pressure of 40 torr, (3) after reinfusion of shed blood, and (4) during the irreversible late posttransfusion stage. There was a maldistribution of left ventricular coronary flow during late shock consistent with subendocardial ischemia. Cardiac performance was significantly impaired after resuscitation and all dogs became irreversible. Total and regional left ventricular coronary blood flow and myocardial oxygen delivery to capillaries were significantly greater than preshock values in (3) but not different from preshock values in (4). However, the myocardial oxygen diffusion area to distance ratio was significantly lower than preshock values in (3), and slightly lower in (4). These data suggest that myocardial oxygen diffusion may be impaired in the early post transfusion period, (3). Accordingly, the probable etiology of left ventricular dysfunction and possibly irreversibility after resuscitation from hemorrhagic shock is subendocardial ischemia during shock with either post-resuscitation impairment of myocardial oxygen diffusion, or in cellular oxygen utilization, or both. PMID:629622

  5. Mitochondrial dysfunction in myocardium obtained from clinically normal dogs, clinically normal anesthetized dogs, and dogs with dilated cardiomyopathy.

    PubMed

    Sleeper, Meg M; Rosato, Bradley P; Bansal, Seema; Avadhani, Narayan G

    2012-11-01

    To compare mitochondrial complex I and complex IV activity in myocardial mitochondria of clinically normal dogs, clinically normal dogs exposed to inhalation anesthesia, and dogs affected with dilated cardiomyopathy. Myocardial samples obtained from 21 euthanized dogs (6 clinically normal [control] dogs, 5 clinically normal dogs subjected to inhalation anesthesia with isoflurane prior to euthanasia, 5 dogs with juvenile-onset dilated cardiomyopathy, and 5 dogs with adult-onset dilated cardiomyopathy). Activity of mitochondrial complex I and complex IV was assayed spectrophotometrically in isolated mitochondria from left ventricular tissue obtained from the 4 groups of dogs. Activity of complex I and complex IV was significantly decreased in anesthetized dogs, compared with activities in the control dogs and dogs with juvenile-onset or adult-onset dilated cardiomyopathy. Inhalation anesthesia disrupted the electron transport chain in the dogs, which potentially led to an outburst of reactive oxygen species that caused mitochondrial dysfunction. Inhalation anesthesia depressed mitochondrial function in dogs, similar to results reported in other species. This effect is important to consider when anesthetizing animals with myocardial disease and suggested that antioxidant treatments may be beneficial in some animals. Additionally, this effect should be considered when designing studies in which mitochondrial enzyme activity will be measured. Additional studies that include a larger number of animals are warranted.

  6. Cpg-ODN, a TLR9 Agonist, Aggravates Myocardial Ischemia/Reperfusion Injury by Activation of TLR9-P38 MAPK Signaling.

    PubMed

    Xie, Liang; He, Songqing; Kong, Na; Zhu, Ying; Tang, Yi; Li, Jianhua; Liu, Zhengbing; Liu, Jing; Gong, Jianbin

    2018-06-19

    Toll-like receptors (TLRs) have been implicated in myocardial ischemia/ reperfusion (I/R) injury. We examined the effect of CpG-oligodeoxynucleotide (ODN) on myocardial I/R injury. Male Sprague-Dawley rats were treated with either CpG-ODN or control ODN 1 h prior to myocardial ischemia (30 min) followed by reperfusion. Rats treated with phosphate-buffered saline (PBS) served as I/R controls (n = 8/group). Infarct size was determined by 2,3,5-triphenyltetrazolium chloride and Evans blue straining. Cardiac function was examined by echocardiography before and up to 14 days after myocardial I/R. CpG-ODN administration significantly increased infarct size and reduced cardiac function and survival rate after myocardial I/R, compared to the PBS-treated I/R group. Control-ODN did not alter I/R-induced myocardial infarct size, cardiac dysfunction, and survival rate. Additionally, CpG-ODN promoted I/R-induced myocardial apoptosis and cleaved caspase-3 levels in the myocardium. CpG-ODN increased TLR9 activation and p38 phosphorylation in the myocardium. In vitro data also suggested that CpG-ODN treatment induced TLR9 activation and p38 phosphorylation. Importantly, p38 mitogen-activated protein kinase (MAPK) inhibition abolished CpG-ODN-induced cardiac injury. CpG-ODN, the TLR9 ligand, accelerates myocardial I/R injury. The mechanisms involve activation of the TLR9-p38 MAPK signaling pathway. © 2018 The Author(s). Published by S. Karger AG, Basel.

  7. Effects of ranolazine in a model of doxorubicin-induced left ventricle diastolic dysfunction.

    PubMed

    Cappetta, Donato; Esposito, Grazia; Coppini, Raffaele; Piegari, Elena; Russo, Rosa; Ciuffreda, Loreta Pia; Rivellino, Alessia; Santini, Lorenzo; Rafaniello, Concetta; Scavone, Cristina; Rossi, Francesco; Berrino, Liberato; Urbanek, Konrad; De Angelis, Antonella

    2017-11-01

    Doxorubicin is a highly effective anticancer drug, but its clinical application is hampered by cardiotoxicity. Asymptomatic diastolic dysfunction can be the earliest manifestation of doxorubicin cardiotoxicity. Therefore, a search for therapeutic intervention that can interfere with early manifestations and possibly prevent later development of cardiotoxicity is warranted. Increased doxorubicin-dependent ROS may explain, in part, Ca 2+ and Na + overload that contributes to diastolic dysfunction and development of heart failure. Therefore, we tested whether the administration of ranolazine, a selective blocker of late Na + current, immediately after completing doxorubicin therapy, could affect diastolic dysfunction and interfere with the progression of functional decline. Fischer 344 rats received a cumulative dose of doxorubicin of 15 mg·kg -1 over a period of 2 weeks. After the assessment of diastolic dysfunction, the animals were treated with ranolazine (80 mg·kg -1 , daily) for the following 4 weeks. While diastolic and systolic function progressively deteriorated in doxorubicin-treated animals, treatment with ranolazine relieved diastolic dysfunction and prevented worsening of systolic function, decreasing mortality. Ranolazine lowered myocardial NADPH oxidase 2 expression and oxidative/nitrative stress. Expression of the Na + /Ca 2+ exchanger 1 and Na v 1.5 channels was reduced and of the sarcoplasmic/endoplasmic reticulum Ca 2+ -ATPase 2 protein was increased. In addition, ranolazine lowered doxorubicin-induced hyper-phosphorylation and oxidation of Ca 2+ /calmodulin-dependent protein kinase II, and decreased myocardial fibrosis. Ranolazine, by the increased Na + influx, induced by doxorubicin, altered cardiac Ca 2+ and Na + handling and attenuated diastolic dysfunction induced by doxorubicin, thus preventing the progression of cardiomyopathy. This article is part of a themed section on New Insights into Cardiotoxicity Caused by Chemotherapeutic Agents. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.21/issuetoc. © 2017 The British Pharmacological Society.

  8. Multimodality imaging evaluation of Chagas disease: an expert consensus of Brazilian Cardiovascular Imaging Department (DIC) and the European Association of Cardiovascular Imaging (EACVI).

    PubMed

    Nunes, Maria Carmo P; Badano, Luigi Paolo; Marin-Neto, J Antonio; Edvardsen, Thor; Fernández-Golfín, Covadonga; Bucciarelli-Ducci, Chiara; Popescu, Bogdan A; Underwood, Richard; Habib, Gilbert; Zamorano, Jose Luis; Saraiva, Roberto Magalhães; Sabino, Ester Cerdeira; Botoni, Fernando A; Barbosa, Márcia Melo; Barros, Marcio Vinicius L; Falqueto, Eduardo; Simões, Marcus Vinicius; Schmidt, André; Rochitte, Carlos Eduardo; Rocha, Manoel Otávio Costa; Ribeiro, Antonio Luiz Pinho; Lancellotti, Patrizio

    2018-04-01

    To develop a document by Brazilian Cardiovascular Imaging Department (DIC) and the European Association of Cardiovascular Imaging (EACVI) to review and summarize the most recent evidences about the non-invasive assessment of patients with Chagas disease, with the intent to set up a framework for standardized cardiovascular imaging to assess cardiovascular morphologic and functional disturbances, as well as to guide the subsequent process of clinical decision-making. Chagas disease remains one of the most prevalent infectious diseases in Latin America, and has become a health problem in non-endemic countries. Dilated cardiomyopathy is the most severe manifestation of Chagas disease, which causes substantial disability and early mortality in the socially most productive population leading to a significant economical burden. Prompt and correct diagnosis of Chagas disease requires specialized clinical expertise to recognize the unique features of this disease. The appropriate and efficient use of cardiac imaging is pivotal for diagnosing the cardiac involvement in Chagas disease, to stage the disease, assess patients' prognosis and address management. Echocardiography is the most common imaging modality used to assess, and follow-up patients with Chagas disease. The presence of echocardiographic abnormalities is of utmost importance, since it allows to stage patients according to disease progression. In early stages of cardiac involvement, echocardiography may demonstrate segmental left ventricuar wall motion abnormalities, mainly in the basal segments of inferior, inferolateral walls, and the apex, which cannot be attributed to obstructive coronary artery arteries. The prevalence of segmental wall motion abnormalities varies according to the stage of the disease, reaching about 50% in patients with left ventricular dilatation and dysfunction. Speckle tracking echocardiography allows a more precise and quantitative measurement of the regional myocardial function. Since segmental wall motion abnormalities are frequent in Chagas disease, speckle tracking echocardiography may have an important clinical application in these patients, particularly in the indeterminate forms when abnormalities are more subtle. Speckle tracking echocardiography can also quantify the heterogeneity of systolic contraction, which is associated with the risk of arrhythmic events. Three-dimensional (3D) echocardiography is superior to conventional two-dimensional (2D) echocardiography for assessing more accurately the left ventricular apex and thus to detect apical aneurysms and thrombus in patients in whom ventricular foreshortening is suspected by 2D echocardiography. In addition, 3D echocardiography is more accurate than 2D Simpson s biplane rule for assessing left ventricular volumes and function in patients with significant wall motion abnormalities, including aneurysms with distorted ventricular geometry. Contrast echocardiography has the advantage to enhancement of left ventricular endocardial border, allowing for more accurate detection of ventricular aneurysms and thrombus in Chagas disease. Diastolic dysfunction is an important hallmark of Chagas disease even in its early phases. In general, left ventricular diastolic and systolic dysfunction coexist and isolated diastolic dysfunction is uncommon but may be present in patients with the indeterminate form. Right ventricular dysfunction may be detected early in the disease course, but in general, the clinical manifestations occur late at advanced stages of Chagas cardiomyopathy. Several echocardiographic parameters have been used to assess right ventricular function in Chagas disease, including qualitative evaluation, myocardial performance index, tissue Doppler imaging, tricuspid annular plane systolic excursion, and speckle tracking strain. Cardiac magnetic resonance (CMR) is useful to assess global and regional left ventricular function in patients with Chagas diseases. Myocardial fibrosis is a striking feature of Chagas cardiomyopathy and late gadolinium enhancement (LGE) is used to detect and quantify the extension of myocardial fibrosis. Myocardial fibrosis might have a role in risk stratification of patients with Chagas disease. Limited data are available regarding right ventricular function assessed by CMR in Chagas disease. Radionuclide ventriculography is used for global biventricular function assessment in patients with suspected or definite cardiac involvement in Chagas disease with suboptimal acoustic window and contraindication to CMR. Myocardial perfusion scintigraphy may improve risk stratification to define cardiac involvement in Chagas disease, especially in the patients with devices who cannot be submitted to CMR and in the clinical setting of Chagas patients whose main complaint is atypical chest pain. Detection of reversible ischemic defects predicts further deterioration of left ventricular systolic function and helps to avoid unnecessary cardiac catheterization and coronary angiography. Cardiac imaging is crucial to detect the cardiac involvement in patients with Chagas disease, stage the disease and stratify patient risk and address management. Unfortunately, most patients live in regions with limited access to imaging methods and point-of-care, simplified protocols, could improve the access of these remote populations to important information that could impact in the clinical management of the disease. Therefore, there are many fields for further research in cardiac imaging in Chagas disease. How to better provide an earlier diagnosis of cardiac involvement and improve patients risk stratification remains to be addressed using different images modalities.

  9. Association Between Sedentary Lifestyle and Diastolic Dysfunction Among Outpatients With Normal Left Ventricular Systolic Function Presenting to a Tertiary Referral Center in the Middle East.

    PubMed

    Matta, Stephanie; Chammas, Elie; Alraies, Chadi; Abchee, Antoine; AlJaroudi, Wael

    2016-05-01

    Sedentary lifestyle has become prevalent in our community. Recent data showed controversy on the effect of regular exercise on left ventricular compliance and myocardial relaxation. We sought to assess whether physical inactivity is an independent predictor of diastolic dysfunction in or community, after adjustment for several covariates. Consecutive outpatients presenting to the echocardiography laboratory between July 2013 and June 2014 were prospectively enrolled. Clinical variables were collected prospectively at enrollment. Patients were considered physically active if they exercised regularly ≥3× a week, ≥30 minutes each time. The primary endpoint was presence of diastolic dysfunction. The final cohort included 1356 patients (mean age [SD] 52.9 [17.4] years, 51.3% female). Compared with physically active patients, the 1009 (74.4%) physically inactive patients were older, more often female, and had more comorbidities and worse diastolic function (51.3% vs 38.3%; P < 0.001). On univariate analysis, physical inactivity was associated with 70% increased odds of having diastolic dysfunction (odds ratio: 1.70, 95% confidence interval: 1.32-2.18, P < 0.001). There was significant interaction between physical activity and left ventricular mass index (LVMI; P = 0.026). On multivariate analysis, patients who were physically inactive and had LVMI ≥ median had significantly higher odds of having diastolic dysfunction (odds ratio: 2.82, 95% confidence interval: 1.58-5.05, P < 0.001). In a large, prospectively enrolled cohort from a single tertiary center in the Middle East, physically inactive patients with increased LVMI had 2- to 3-fold increased odds of having diastolic dysfunction after multivariate adjustment. © 2016 Wiley Periodicals, Inc.

  10. TRPC3-Nox2 complex mediates doxorubicin-induced myocardial atrophy

    PubMed Central

    Shimauchi, Tsukasa; Numaga-Tomita, Takuro; Ito, Tomoya; Nishimura, Akiyuki; Matsukane, Ryosuke; Oda, Sayaka; Hoka, Sumio; Ide, Tomomi; Koitabashi, Norimichi; Uchida, Koji; Sumimoto, Hideki; Mori, Yasuo

    2017-01-01

    Myocardial atrophy is a wasting of cardiac muscle due to hemodynamic unloading. Doxorubicin is a highly effective anticancer agent but also induces myocardial atrophy through a largely unknown mechanism. Here, we demonstrate that inhibiting transient receptor potential canonical 3 (TRPC3) channels abolishes doxorubicin-induced myocardial atrophy in mice. Doxorubicin increased production of ROS in rodent cardiomyocytes through hypoxic stress–mediated upregulation of NADPH oxidase 2 (Nox2), which formed a stable complex with TRPC3. Cardiomyocyte-specific expression of TRPC3 C-terminal minipeptide inhibited TRPC3-Nox2 coupling and suppressed doxorubicin-induced reduction of myocardial cell size and left ventricular (LV) dysfunction, along with its upregulation of Nox2 and oxidative stress, without reducing hypoxic stress. Voluntary exercise, an effective treatment to prevent doxorubicin-induced cardiotoxicity, also downregulated the TRPC3-Nox2 complex and promoted volume load–induced LV compliance, as demonstrated in TRPC3-deficient hearts. These results illustrate the impact of TRPC3 on LV compliance and flexibility and, focusing on the TRPC3-Nox2 complex, provide a strategy for prevention of doxorubicin-induced cardiomyopathy. PMID:28768915

  11. Energy Drinks and Myocardial Ischemia: A Review of Case Reports.

    PubMed

    Lippi, Giuseppe; Cervellin, Gianfranco; Sanchis-Gomar, Fabian

    2016-07-01

    The use and abuse of energy drinks (EDs) is constantly increasing worldwide. We performed a systematic search in Medline, Scopus and Web of Science to identify evidence about the potential link between these beverages and myocardial ischemia. Overall, 8 case reports could be detected, all of which described a realistic association between large intake of EDs and episodes of myocardial ischemia. Interestingly, no additional triggers of myocardial ischemia other than energy drinks could be identified in the vast majority of cases. Some plausible explanations can be brought in support of this association. Most of the biological effects of EDs are seemingly mediated by a positive inotropic effect on cardiac function, which entails increase in heart rate, cardiac output and contractility, stroke volume and arterial blood pressure. Additional biological abnormalities reported after EDs intake include increased platelet aggregation, endothelial dysfunction, hyperglycemia as well as an increase in total cholesterol, triglycerides and low-density lipoprotein cholesterol. Although a causal relationship between large consumption of EDs and myocardial ischemia cannot be definitely established so far, concerns about the cardiovascular risk of excessive consumption of these beverages are seemingly justified.

  12. Soluble Components of Ultraflne Particulate Matter Stimulate Endothelial H202 Production

    EPA Science Inventory

    A growing body of evidence shows a strong association between particulate matter (PM) exposure and adverse cardiovascular health effects such as atherosclerosis and myocardial ischemia. The mechanisms by which PM causes cardiovascular dysfunction is unknown, but there is increasi...

  13. Current perspectives on protective roles of erythropoietin in cardiovascular system: erythropoietin receptor as a novel therapeutic target.

    PubMed

    Kagaya, Yutaka; Asaumi, Yasuhide; Wang, Wanting; Takeda, Morihiko; Nakano, Makoto; Satoh, Kimio; Fukumoto, Yoshihiro; Shimokawa, Hiroaki

    2012-06-01

    Erythropoietin (EPO) is a principal regulator that promotes proliferation and terminal differentiation of erythroid progenitor cells. EPO receptors are expressed not only in hematopoietic lineage cells but also in the cardiovascular system. We performed animal experiments using transgene-rescued EPO receptor null mutant mice (EpoR-/- rescued) that express the EPO receptor exclusively in the hematopoietic cells. The results of these experiments suggest that endogenous EPO/EPO receptor system in the heart exerts cardioprotective effects against myocardial injury induced by ischemia followed by reperfusion and pressure-overload induced left ventricular dysfunction. Many animal experiments have shown that the administration of recombinant human EPO also elicits cardioprotective effects against myocardial injury induced by ischemia and reperfusion. In contrast to the promising results of these animal experiments, recent clinical trials failed to demonstrate the reduction in infarct size or improvement of cardiac function by the administration of recombinant human EPO in patients with acute myocardial infarction who underwent primary percutaneous coronary intervention. It should be tested in future clinical studies whether a relatively low dose of recombinant human EPO or its derivatives that have no erythropoietic action reduces infarct size and ameliorates cardiac dysfunction in patients with acute myocardial infarction. In this article, we review implications of anemia associated with chronic heart failure, roles of the endogenous EPO/EPO receptor system, and the effects of the administration of erythropoiesis-stimulating agents in pathologic conditions of the heart by focusing on the EPO receptor as a potential candidate of novel therapeutic targets in cardiovascular diseases.

  14. Cardiac Expression of Human Type 2 Iodothyronine Deiodinase Increases Glucose Metabolism and Protects Against Doxorubicin-induced Cardiac Dysfunction in Male Mice

    PubMed Central

    Hong, Eun-Gyoung; Kim, Brian W.; Young Jung, Dae; Hun Kim, Jong; Yu, Tim; Seixas Da Silva, Wagner; Friedline, Randall H.; Bianco, Suzy D.; Seslar, Stephen P.; Wakimoto, Hiroko; Berul, Charles I.; Russell, Kerry S.; Won Lee, Ki; Larsen, P. Reed; Bianco, Antonio C.

    2013-01-01

    Altered glucose metabolism in the heart is an important characteristic of cardiovascular and metabolic disease. Because thyroid hormones have major effects on peripheral metabolism, we examined the metabolic effects of heart-selective increase in T3 using transgenic mice expressing human type 2 iodothyronine deiodinase (D2) under the control of the α-myosin heavy chain promoter (MHC-D2). Hyperinsulinemic-euglycemic clamps showed normal whole-body glucose disposal but increased hepatic insulin action in MHC-D2 mice as compared to wild-type (WT) littermates. Insulin-stimulated glucose uptake in heart was not altered, but basal myocardial glucose metabolism was increased by more than two-fold in MHC-D2 mice. Myocardial lipid levels were also elevated in MHC-D2 mice, suggesting an overall up-regulation of cardiac metabolism in these mice. The effects of doxorubicin (DOX) treatment on cardiac function and structure were examined using M-mode echocardiography. DOX treatment caused a significant reduction in ventricular fractional shortening and resulted in more than 50% death in WT mice. In contrast, MHC-D2 mice showed increased survival rate after DOX treatment, and this was associated with a six-fold increase in myocardial glucose metabolism and improved cardiac function. Myocardial activity and expression of AMPK, GLUT1, and Akt were also elevated in MHC-D2 and WT mice following DOX treatment. Thus, our findings indicate an important role of thyroid hormone in cardiac metabolism and further suggest a protective role of glucose utilization in DOX-mediated cardiac dysfunction. PMID:23861374

  15. Aldehydic load and aldehyde dehydrogenase 2 profile during the progression of post-myocardial infarction cardiomyopathy: benefits of Alda-1

    PubMed Central

    Gomes, Katia M.S.; Bechara, Luiz R.G.; Lima, Vanessa M.; Ribeiro, Márcio A.C.; Campos, Juliane C.; Dourado, Paulo M.; Kowaltowski, Alicia J.; Mochly-Rosen, Daria; Ferreira, Julio C.B.

    2015-01-01

    Background/Objectives We previously demonstrated that reducing cardiac aldehydic load by aldehyde dehydrogenase 2 (ALDH2), a mitochondrial enzyme responsible for metabolizing the major lipid peroxidation product, protects against acute ischemia/reperfusion injury and chronic heart failure. However, time-dependent changes in ALDH2 profile, aldehydic load and mitochondrial bioenergetics during progression of post-myocardial infarction (post-MI) cardiomyopathy is unknown and should be established to determine the optimal time window for drug treatment. Methods Here we characterized cardiac ALDH2 activity and expression, lipid peroxidation, 4-hydroxy-2-nonenal (4-HNE) adduct formation, glutathione pool and mitochondrial energy metabolism and H2O2 release during the 4 weeks after permanent left anterior descending (LAD) coronary artery occlusion in rats. Results We observed a sustained disruption of cardiac mitochondrial function during the progression of post-MI cardiomyopathy, characterized by >50% reduced mitochondrial respiratory control ratios and up to 2 fold increase in H2O2 release. Mitochondrial dysfunction was accompanied by accumulation of cardiac and circulating lipid peroxides and 4-HNE protein adducts and down-regulation of electron transport chain complexes I and V. Moreover, increased aldehydic load was associated with a 90% reduction in cardiac ALDH2 activity and increased glutathione pool. Further supporting an ALDH2 mechanism, sustained Alda-1 treatment (starting 24hrs after permanent LAD occlusion surgery) prevented aldehydic overload, mitochondrial dysfunction and improved ventricular function in post-MI cardiomyopathy rats. Conclusion Taken together, our findings demonstrate a disrupted mitochondrial metabolism along with an insufficient cardiac ALDH2-mediated aldehyde clearance during the progression of ventricular dysfunction, suggesting a potential therapeutic value of ALDH2 activators during the progression of post-myocardial infarction cardiomyopathy. PMID:25464432

  16. Stabilization of mitochondrial membrane potential prevents doxorubicin-induced cardiotoxicity in isolated rat heart

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montaigne, David; Marechal, Xavier; Baccouch, Riadh

    2010-05-01

    The present study was undertaken to examine the effects of doxorubicin on left ventricular function and cellular energy state in intact isolated hearts, and, to test whether inhibition of mitochondrial membrane potential dissipation would prevent doxorubicin-induced mitochondrial and myocardial dysfunction. Myocardial contractile performance and mitochondrial respiration were evaluated by left ventricular tension and its first derivatives and cardiac fiber respirometry, respectively. NADH levels, mitochondrial membrane potential and glucose uptake were monitored non-invasively via epicardial imaging of the left ventricular wall of Langendorff-perfused rat hearts. Heart performance was reduced in a time-dependent manner in isolated rat hearts perfused with Krebs-Henseleit solutionmore » containing 1 muM doxorubicin. Compared with controls, doxorubicin induced acute myocardial dysfunction (dF/dt{sub max} of 105 +- 8 mN/s in control hearts vs. 49 +- 7 mN/s in doxorubicin-treated hearts; *p < 0.05). In cardiac fibers prepared from perfused hearts, doxorubicin induced depression of mitochondrial respiration (respiratory control ratio of 4.0 +- 0.2 in control hearts vs. 2.2 +- 0.2 in doxorubicin-treated hearts; *p < 0.05) and cytochrome c oxidase kinetic activity (24 +- 1 muM cytochrome c/min/mg in control hearts vs. 14 +- 3 muM cytochrome c/min/mg in doxorubicin-treated hearts; *p < 0.05). Acute cardiotoxicity induced by doxorubicin was accompanied by NADH redox state, mitochondrial membrane potential, and glucose uptake reduction. Inhibition of mitochondrial permeability transition pore opening by cyclosporine A largely prevented mitochondrial membrane potential dissipation, cardiac energy state and dysfunction. These results suggest that in intact hearts an impairment of mitochondrial metabolism is involved in the development of doxorubicin cardiotoxicity.« less

  17. Facilitated ethanol metabolism promotes cardiomyocyte contractile dysfunction through autophagy in murine hearts.

    PubMed

    Guo, Rui; Hu, Nan; Kandadi, Machender R; Ren, Jun

    2012-04-01

    Chronic drinking leads to myocardial contractile dysfunction where ethanol metabolism plays an essential role. Acetaldehyde, the main ethanol metabolite, mediates alcohol-induced cell injury although the underlying mechanism is still elusive. This study was designed to examine the mechanism involved in accelerated ethanol metabolism-induced cardiac defect with a focus on autophagy. Wild-type FVB and cardiac-specific overexpression of alcohol dehydrogenase mice were placed on a 4% nutrition-balanced alcohol diet for 8 weeks. Myocardial histology, immunohistochemistry, autophagy markers and signal molecules were examined. Expression of micro RNA miR-30a, a potential target of Beclin 1, was evaluated by real-time PCR. Chronic alcohol intake led to cardiac acetaldehyde accumulation, hypertrophy and overt autophagosome accumulation (LC3-II and Atg7), the effect of which was accentuated by ADH. Signaling molecules governing autophagy initiation including class III PtdIns3K, phosphorylation of mTOR and p70S6K were enhanced and dampened, respectively, following alcohol intake. These alcohol-induced signaling responses were augmented by ADH. ADH accentuated or unmasked alcohol-induced downregulation of Bcl-2, Bcl-xL and MiR-30a. Interestingly, ADH aggravated alcohol-induced p62 accumulation. Autophagy inhibition using 3-MA abolished alcohol-induced cardiomyocyte contractile anomalies. Moreover, acetaldehyde led to cardiomyocyte contractile dysfunction and autophagy induction, which was ablated by 3-MA. Ethanol or acetaldehyde increased GFP-LC3 puncta in H9c2 cells, the effect of which was ablated by 3-MA but unaffected by lysosomal inhibition using bafilomycin A(1), E64D and pepstatin A. In summary, these data suggested that facilitated acetaldehyde production via ADH following alcohol intake triggered cardiac autophagosome formation along with impaired lysosomal degradation, en route to myocardial defect.

  18. Chinese patent medicine Xin-Ke-Shu inhibits Ca2+ overload and dysfunction of fatty acid β-oxidation in rats with myocardial infarction induced by LAD ligation.

    PubMed

    Yang, Yong; Jia, Hongmei; Yu, Meng; Zhou, Chao; Sun, Lili; Zhao, Yang; Zhang, Hongwu; Zou, Zhongmei

    2018-03-15

    Myocardial infarction (MI) occurs during a sustained insufficient blood supply to the heart, eventually leading to myocardial necrosis. Xin-Ke-Shu tablet (XKS) is a prescription herbal compound and a patented medicine extensively used in the clinical treatment of coronary heart disease (CHD). To understand the molecular mechanism of the XKS action against MI in detail, it is necessary to investigate the altered metabolome and related pathways coincident with clinical features. In this study, tissue-targeted metabonomics based on ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) were developed to explore the metabolic changes associated with XKS treatment in the heart tissue of rats with MI induced by a left anterior descending coronary artery ligation (LAD). The metabolic disorder induced by LAD was alleviated after low-dose XKS (LD) and intermediate-dose XKS (MD) treatment. XKS modulated six perturbed metabolic pathways. Among them, inhibition of Ca 2+ overload and dysfunction of fatty acid β-oxidation-related metabolic pathways likely underlie the therapeutic effects of XKS against MI. In agreement with its observed effect on metabolite perturbation, XKS reversed the over-expression of the four key proteins, long-chain acyl-CoA synthetase 1 (ACSL1), carnitine palmitoyl transferase-1 (CPT1B), calcium/calmodulin-dependent kinase II (CaMKII), and phospholipase A2IIA (PLA2IIA). Both metabolite and protein changes suggested that XKS exerts its therapeutic effect on metabolic perturbations in LAD-induced MI mainly by inhibiting the Ca 2+ overload and fatty acid β-oxidation dysfunction. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Cannabidiol attenuates cardiac dysfunction, oxidative stress, fibrosis, inflammatory and cell death signaling pathways in diabetic cardiomyopathy

    PubMed Central

    Rajesh, Mohanraj; Mukhopadhyay, Partha; Bátkai, Sándor; Patel, Vivek; Saito, Keita; Matsumoto, Shingo; Kashiwaya, Yoshihiro; Horváth, Béla; Mukhopadhyay, Bani; Becker, Lauren; Haskó, György; Liaudet, Lucas; Wink, David A; Veves, Aristidis; Mechoulam, Raphael; Pacher, Pál

    2010-01-01

    Objectives In this study, we have investigated the effects of cannabidiol (CBD) on myocardial dysfunction, inflammation, oxidative/nitrosative stress, cell death and interrelated signaling pathways, using a mouse model of type I diabetic cardiomyopathy and primary human cardiomyocytes exposed to high glucose. Background CBD, the most abundant nonpsychoactive constituent of Cannabis sativa (marijuana) plant, exerts antiinflammatory effects in various disease models and alleviates pain and spasticity associated with multiple sclerosis in humans. Methods Left ventricular function was measured by pressure-volume system. Oxidative stress, cell death and fibrosis markers were evaluated by molecular biology/biochemical techniques, electron spin resonance spectroscopy and flow cytometry. Results Diabetic cardiomyopathy was characterized by declined diastolic and systolic myocardial performance associated with increased oxidative-nitrosative stress, NF-κB and MAPK (JNK and p-38, p38α) activation, enhanced expression of adhesion molecules (ICAM-1, VCAM-1), TNF-α, markers of fibrosis (TGF-β, CTGF, fibronectin, collagen-1, MMP-2 and MMP-9), enhanced cell death (caspase 3/7 and PARP activity, chromatin fragmentation and TUNEL) and diminished Akt phosphorylation. Remarkably, CBD attenuated myocardial dysfunction, cardiac fibrosis, oxidative/nitrosative stress, inflammation, cell death, and interrelated signaling pathways. Furthermore, CBD also attenuated the high glucose-induced increased reactive oxygen species generation, NF-κB activation and cell death in primary human cardiomyocytes. Conclusions Collectively, these results coupled with the excellent safety and tolerability profile of cannabidiol in humans, strongly suggest that it may have great therapeutic potential in the treatment of diabetic complications, and perhaps other cardiovascular disorders, by attenuating oxidative/nitrosative stress, inflammation, cell death and fibrosis. PMID:21144973

  20. Inhibition of Drp1 attenuates mitochondrial damage and myocardial injury in Coxsackievirus B3 induced myocarditis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Lin; Zhang, Ming; Yan, Rui

    Viral myocarditis (VMC) is closely related to apoptosis, oxidative stress, innate immunity, and energy metabolism, which are all linked to mitochondrial dysfunction. A close nexus between mitochondrial dynamics and cardiovascular disease with mitochondrial dysfunction has been deeply researched, but there is still no relevant report in viral myocarditis. In this study, we aimed to explore the role of Dynamin-related protein 1 (Drp1)-linked mitochondrial fission in VMC. Mice were inoculated with the Coxsackievirus B3 (CVB3) and treated with mdivi1 (a Drp1 inhibitor). Protein expression of Drp1 was increased in mitochondria while decreased in cytoplasm and accompanied by excessive mitochondrial fission inmore » VMC mice. In addition, midivi1 treatment attenuate inflammatory cells infiltration in myocardium of the mice, serum Cardiac troponin I (CTnI) and Creatine kinase-MB (CK-MB) level. Mdivi1 also could improved the survival rate of mice and mitochondrial dysfunction reflected as the up-regulated mitochondrial marker enzymatic activities of succinate dehydrogenase (SDH), cytochrome c oxidase (COX) and mitochondrial membrane potential (MMP). At the same time, mdivi1 rescued the body weight loss, myocardial injury and apoptosis of cardiomyocyte. Furthermore, decease in LVEDs and increase in EF and FS were detected by echocardiogram, which indicated the improved myocardial function. Thus, Drp1-linked excessive mitochondrial fission contributed to VMC and midivi1 may be a potential therapeutic approach. - Highlights: • The expression of Drp1 is significantly increased in mitochondria while decreased in cytoplasm in VMC mice. • Drp1-linked excessive mitochondrial fission is involved in VMC. • Midivi1 treatment mitigate the mitochondrial damage, inflammation, apoptosis in VMC mice. • The disturbance of mitochondrial dynamics may be a new therapeutic target for VMC.« less

  1. Diastolic dysfunction in hypertension.

    PubMed

    Nazário Leão, R; Marques da Silva, P

    Hypertension and coronary heart disease, often coexisting, are the most common risk factors for heart failure. The progression of hypertensive heart disease involves myocardial fibrosis and alterations in the left ventricular geometry that precede the functional change, initially asymptomatic. The left ventricular diastolic dysfunction is part of this continuum being defined by the presence of left ventricular diastolic dysfunction without signs or symptoms of heart failure or poor left ventricular systolic function. It is highly prevalent in hypertensive patients and is associated with increased cardiovascular morbidity and mortality. Despite its growing importance in clinical practice it remains poorly understood. This review aims to present the epidemiological fundamentals and the latest developments in the pathophysiology, diagnosis and treatment of left ventricular diastolic dysfunction. Copyright © 2017 SEH-LELHA. Publicado por Elsevier España, S.L.U. All rights reserved.

  2. Association Between Albuminuria and Duration of Diabetes and Myocardial Dysfunction and Peripheral Arterial Disease Among Patients With Stable Coronary Artery Disease in the BARI 2D Study

    PubMed Central

    Escobedo, Jorge; Rana, Jamal S.; Lombardero, Manuel S.; Albert, Stewart G.; Davis, Andrew M.; Kennedy, Frank P.; Mooradian, Arshag D.; Robertson, David G.; Srinivas, V. S.; Gebhart, Suzanne S. P.

    2010-01-01

    OBJECTIVE: To evaluate the effect of prior duration of diabetes, glycated hemoglobin level at study entry, and microalbuminuria or macroalbuminuria on the extent and severity of coronary artery disease (CAD) and peripheral arterial disease. PATIENTS AND METHODS: We studied baseline characteristics of the 2368 participants of the BARI 2D (Bypass Angioplasty Revascularization Investigation 2 Diabetes) study, a randomized clinical trial that evaluates treatment efficacy for patients with type 2 diabetes and angiographically documented stable CAD. Patients were enrolled from January 1, 2001, through March 31, 2005. Peripheral arterial disease was ascertained by an ankle-brachial index (ABI) of 0.9 or less, and extent of CAD was measured by presence of multivessel disease, a left ventricular ejection fraction (LVEF) of less than 50%, and myocardial jeopardy index. RESULTS: Duration of diabetes of 20 or more years was associated with increased risk of ABI of 0.9 or less (odds ratio [OR], 1.54; 95% confidence interval [CI], 1.04-2.26), intermittent claudication (OR, 1.61; 95% CI, 1.10-2.35), and LVEF of less than 50% (OR, 2.03; 95% CI, 1.37-3.02). Microalbuminuria was associated with intermittent claudication (OR, 1.53; 95% CI, 1.16-2.02) and ABI of 0.9 or less (OR, 1.31; 95% CI, 0.98-1.75), whereas macroalbuminuria was associated with abnormal ABI, claudication, and LVEF of less than 50%. There was a significant association between diabetes duration and extent of CAD as manifested by number of coronary lesions, but no other significant associations were observed between duration of disease, glycated hemoglobin levels, or albumin-to-creatinine ratio and other manifestations of CAD. CONCLUSION: Duration of diabetes and microalbuminuria or macroalbuminuria are important predictors of severity of peripheral arterial disease and left ventricular dysfunction in a cohort of patients selected for the presence of CAD. PMID:20042560

  3. Association between left ventricular perfusion defects and myocardial deformation indexes in heart transplantation recipients.

    PubMed

    D'Andrea, Antonello; De Rimini, Maria Luisa; America, Raffaella; Cirillo, Chiara; Riegler, Lucia; Limongelli, Giuseppe; D'Alto, Michele; Salerno, Gemma; Maiello, Ciro; Muto, Pietro; Russo, Maria Giovanna; Calabrò, Raffaele; Bossone, Eduardo; Pacileo, Giuseppe

    2017-10-01

    The aim of the study was to analyze possible correlations between strain echocardiography (STE) and PET myocardial perfusion in a population of heart transplantation (HTx) recipients showing preserved left ventricular (LV) ejection fraction. By STE, LV global longitudinal strain (LV GLS) was lower in HTx. PET showed no transient or chronic ischemia in 83 of 115 HTx (73%). Fixed perfusion defects were observed in 17% of HTx and reversible ischemia in 10%. Significant coronary stenosis was observed only in 10 cases. GLS was independently associated with age at HTx and fixed perfusion defects (HR 0.41; P<.001). Such relationships underline STE ability to early identify HTx pts with subclinical myocardial dysfunction during long-term follow-up. © 2017, Wiley Periodicals, Inc.

  4. Effect of milrinone on cardiac functions in patients undergoing coronary artery bypass graft: a meta-analysis of randomized clinical trials

    PubMed Central

    You, Zhigang; Huang, Lin; Cheng, Xiaoshu; Wu, Qinghua; Jiang, Xinghua; Wu, Yanqing

    2016-01-01

    Background and aim Inotropes are commonly used to treat myocardial dysfunction, which is the major complication after coronary artery bypass graft (CABG). Milrinone, a phosphodiesterase 3 inhibitor, is one of these inotropes. Recently, a number of clinical studies have been carried out to evaluate the effects of milrinone on cardiac function in patients with low ventricular ejection fraction undergoing CABG. However, it has been inconclusive because of the inconsistent results. In addition, some studies found that milrinone increased the incidence of postoperative atrial arrhythmias and did not show any long-term beneficial effects on survival. Therefore, it is very important to perform a meta-analysis to summarize the results so as to determine the clinical efficacy and safety of milrinone. Method Several databases and websites for clinical trials were searched until October 2015 for prospective clinical studies comparing milrinone versus placebo on cardiac functions in patients undergoing CAGB. Results Four articles were identified by our search strategy. 1) Milrinone decreased incidence of myocardial ischemia and myocardial infarction (15.6% versus 44.4%; 4.7% versus 18% in milrinone and control group, respectively). 2) Milrinone decreased duration of inotropic support (95% confidence interval [CI]: −6.52 to −1.68; P=0.0009) and mechanical ventilation (h) support (95% CI −5.00 to −0.69; P=0.010), but did not decrease the requirement for intra-aortic balloon pump or inotropic support (P>0.05). 3) Milrinone did not decrease the overall mortality or morbidity, intensive care unit stay (P>0.05). Conclusion Perioperative continuous infusion of milrinone is effective to lower incidence of myocardial ischemia and myocardial infarction in patients post-CABG, but it was unable to improve the overall morbidity and mortality or decreased duration of intensive care unit stay. The available sample size is small; therefore, future studies should be directed toward a better understanding of the benefit of milrinone to CABG patients. PMID:26766900

  5. Effect of milrinone on cardiac functions in patients undergoing coronary artery bypass graft: a meta-analysis of randomized clinical trials.

    PubMed

    You, Zhigang; Huang, Lin; Cheng, Xiaoshu; Wu, Qinghua; Jiang, Xinghua; Wu, Yanqing

    2016-01-01

    Inotropes are commonly used to treat myocardial dysfunction, which is the major complication after coronary artery bypass graft (CABG). Milrinone, a phosphodiesterase 3 inhibitor, is one of these inotropes. Recently, a number of clinical studies have been carried out to evaluate the effects of milrinone on cardiac function in patients with low ventricular ejection fraction undergoing CABG. However, it has been inconclusive because of the inconsistent results. In addition, some studies found that milrinone increased the incidence of postoperative atrial arrhythmias and did not show any long-term beneficial effects on survival. Therefore, it is very important to perform a meta-analysis to summarize the results so as to determine the clinical efficacy and safety of milrinone. Several databases and websites for clinical trials were searched until October 2015 for prospective clinical studies comparing milrinone versus placebo on cardiac functions in patients undergoing CAGB. Four articles were identified by our search strategy. 1) Milrinone decreased incidence of myocardial ischemia and myocardial infarction (15.6% versus 44.4%; 4.7% versus 18% in milrinone and control group, respectively). 2) Milrinone decreased duration of inotropic support (95% confidence interval [CI]: -6.52 to -1.68; P=0.0009) and mechanical ventilation (h) support (95% CI -5.00 to -0.69; P=0.010), but did not decrease the requirement for intra-aortic balloon pump or inotropic support (P>0.05). 3) Milrinone did not decrease the overall mortality or morbidity, intensive care unit stay (P>0.05). Perioperative continuous infusion of milrinone is effective to lower incidence of myocardial ischemia and myocardial infarction in patients post-CABG, but it was unable to improve the overall morbidity and mortality or decreased duration of intensive care unit stay. The available sample size is small; therefore, future studies should be directed toward a better understanding of the benefit of milrinone to CABG patients.

  6. Myocardial ischemia induced by nebulized fenoterol for severe childhood asthma.

    PubMed

    Zanoni, L Z; Palhares, D B; Consolo, L C T

    2005-10-01

    We examined for myocardial ischemia induced by continuous inhalation of fenoterol in children with severe acute asthma. Thirty children with severe acute asthma were evaluated for signs of myocardial ischemia when treated with 0.5 mg kg dose (maximum 15 mg) of inhaled fenoterol for one hour. The heart rate was measured before and after inhalation. Cardiac enzymes (creatine kinase, creatine kinase MB fraction and troponin levels) were measured at admission and 12 hours later. An EKG was recorded before inhalation was started and immediately after its completion to detect the presence of any evidence of myocardial ischemia. All patients developed significant increase in heart rate. Six patients showed EKG changes compatible with myocardial ischemia, despite normal enzyme levels. Patients with severe acute asthma show tachycardia and may show EKG changes of myocardial ischemia.

  7. Regenerative Medicine at Early Echelons: Changing Medical Care & Outcomes

    DTIC Science & Technology

    2010-04-01

    HFM-182 combat lifesaver. First aid includes tourniquet application, fracture stabilization with splints , and application of sterile dressings to...dysfunction and remodeling after myocardial infarction. Stem Cells. 2008; 26:1646-1655. PMID: 18420834. [72] Shin D.M., Zuba-Surma E.K., Wu W

  8. Endothelin A receptor antagonists in congestive heart failure: blocking the beast while leaving the beauty untouched?

    PubMed

    Spieker, L E; Noll, G; Ruschitzka, F T; Lüscher, T F

    2001-12-01

    Congestive heart failure (CHF) is a disease process characterized by impaired left ventricular function, increased peripheral and pulmonary vascular resistance and reduced exercise tolerance and dyspnea. Thus, mediators involved in the control of myocardial function and vascular tone may be involved in its pathophysiology. The family of endothelins (ET) consists of four closely related peptides, ET-1, ET-2, ET-3, and ET-4, which cause vasoconstriction, cell proliferation, and myocardial effects through activation of ET(A) receptors. In contrast, endothelial ET(B) receptors mediate vasodilation via release of nitric oxide and prostacyclin. In addition, ET(B) receptors in the lung are a major pathway for the clearance of ET-1 from plasma. Thus, infusion of an ET(A) receptor antagonist into the brachial artery in healthy humans leads to vasodilation whereas infusion of an ET(B) receptor antagonist causes vasoconstriction. ET-1 plasma levels are elevated in CHF and correlate both with the hemodynamic severity and with symptoms. Plasma levels of ET-1 and its precursor, big ET-1, are strong independent predictors of death in patients after myocardial infarction and with CHF. ET-1 contributes to increased systemic and pulmonary vascular resistance, vascular dysfunction, myocardial ischemia, and renal impairment in CHF. Selective ET(A) as well as combined ET(A/B) receptor antagonists have been studied in patients with CHF showing impressive hemodynamic improvements (i.e. reduced peripheral vascular and pulmonary resistance as well as increased cardiac output). These results indicate that ET receptor antagonists indeed have a potential to improve hemodynamics, symptoms, and potentially prognosis of CHF which still carries a high mortality.

  9. Electrical cardioversion

    PubMed Central

    Sucu, Murat; Davutoglu, Vedat; Ozer, Orhan

    2009-01-01

    External electrical cardioversion was first performed in the 1950s. Urgent or elective cardioversions have specific advantages, such as termination of atrial and ventricular tachycardia and recovery of sinus rhythm. Electrical cardioversion is life-saving when applied in urgent circumstances. The succcess rate is increased by accurate tachycardia diagnosis, careful patient selection, adequate electrode (paddles) application, determination of the optimal energy and anesthesia levels, prevention of embolic events and arrythmia recurrence and airway conservation while minimizing possible complications. Potential complications include ventricular fibrillation due to general anesthesia or lack of synchronization between the direct current (DC) shock and the QRS complex, thromboembolus due to insufficient anticoagulant therapy, non-sustained VT, atrial arrhythmia, heart block, bradycardia, transient left bundle branch block, myocardial necrosis, myocardial dysfunction, transient hypotension, pulmonary edema and skin burn. Electrical cardioversion performed in patients with a pacemaker or an incompatible cardioverter defibrillator may lead to dysfunction, namely acute or chronic changes in the pacing or sensitivity threshold. Although this procedure appears fairly simple, serious consequences might occur if inappropriately performed. PMID:19448376

  10. Treatment of Angina Pectoris Associated with Coronary Microvascular Dysfunction.

    PubMed

    Ong, Peter; Athanasiadis, Anastasios; Sechtem, Udo

    2016-08-01

    Treatment of angina pectoris associated with coronary microvascular dysfunction is challenging as the underlying mechanisms are often diverse and overlapping. Patients with type 1 coronary microvascular dysfunction (i.e. absence of epicardial coronary artery disease and myocardial disease) should receive strict control of their cardiovascular risk factors and thus receive statins and ACE-inhibitors in most cases. Antianginal medication consists of ß-blockers and/or calcium channel blockers. Second line drugs are ranolazine and nicorandil with limited evidence. Despite individually titrated combinations of these drugs up to 30 % of patients have refractory angina. Rho-kinase inhibitors and endothelin-receptor antagonists represent potential drugs that may prove useful in these patients in the future.

  11. Beneficial effects of intracoronary nicorandil on microvascular dysfunction after primary percutaneous coronary intervention: demonstration of its superiority to nitroglycerin in a cross-over study.

    PubMed

    Ito, Noritoshi; Nanto, Shinsuke; Doi, Yasuji; Kurozumi, Yuma; Natsukawa, Tomoaki; Shibata, Hiroyuki; Morita, Masaya; Kawata, Atsushi; Tsuruoka, Ayumu; Sawano, Hirotaka; Okada, Ken-ichiro; Sakata, Yasuhiko; Kai, Tatsuro; Hayashi, Toru

    2013-08-01

    In patients undergoing primary percutaneous coronary intervention (PCI) for the treatment of ST-segment elevation myocardial infarction (STEMI), coronary microvascular dysfunction is associated with poor prognosis. Coronary microvascular resistance is predominantly regulated by ATP-sensitive potassium (KATP) channels. The aim of this study was to clarify whether nicorandil, a hybrid KATP channel opener and nitric oxide donor, may be a good candidate for improving microvascular dysfunction even when administered after primary PCI. We compared the beneficial effects of nicorandil and nitroglycerin on microvascular function in 60 consecutive patients with STEMI. After primary PCI, all patients received single intracoronary administrations of nitroglycerin (250 μg) and nicorandil (2 mg) in a randomized order; 30 received nicorandil first, while the other 30 received nitroglycerin first. Microvascular dysfunction was evaluated with the index of microcirculatory resistance (IMR), defined as the distal coronary pressure multiplied by the hyperemic mean transit time. As a first administration, nicorandil decreased IMR significantly more than did nitroglycerin (median [interquartile ranges]: 10.8[5.2-20.7] U vs. 2.1[1.0-6.0] U, p=0.0002).As a second administration, nicorandil further decreased IMR, while nitroglycerin did not (median [interquartile ranges]: 6.0[1.3-12.7] U vs. -1.4[-2.6 to 1.3] U, p<0.0001). The IMR after the second administration was significantly associated with myocardial blush grade, angiographic TIMI frame count after the procedure, and peak creatine kinase level. Intracoronary nicorandil reduced microvascular dysfunction after primary PCI more effectively than did nitroglycerin in patients with STEMI, probably via its KATP channel-opening effect.

  12. Mitochondrial Cardiomyopathy Caused by Elevated Reactive Oxygen Species and Impaired Cardiomyocyte Proliferation.

    PubMed

    Zhang, Donghui; Li, Yifei; Heims-Waldron, Danielle; Bezzerides, Vassilios; Guatimosim, Silvia; Guo, Yuxuan; Gu, Fei; Zhou, Pingzhu; Lin, Zhiqiang; Ma, Qing; Liu, Jianming; Wang, Da-Zhi; Pu, William T

    2018-01-05

    Although mitochondrial diseases often cause abnormal myocardial development, the mechanisms by which mitochondria influence heart growth and function are poorly understood. To investigate these disease mechanisms, we studied a genetic model of mitochondrial dysfunction caused by inactivation of Tfam (transcription factor A, mitochondrial), a nuclear-encoded gene that is essential for mitochondrial gene transcription and mitochondrial DNA replication. Tfam inactivation by Nkx2.5 Cre caused mitochondrial dysfunction and embryonic lethal myocardial hypoplasia. Tfam inactivation was accompanied by elevated production of reactive oxygen species (ROS) and reduced cardiomyocyte proliferation. Mosaic embryonic Tfam inactivation confirmed that the block to cardiomyocyte proliferation was cell autonomous. Transcriptional profiling by RNA-seq demonstrated the activation of the DNA damage pathway. Pharmacological inhibition of ROS or the DNA damage response pathway restored cardiomyocyte proliferation in cultured fetal cardiomyocytes. Neonatal Tfam inactivation by AAV9-cTnT-Cre caused progressive, lethal dilated cardiomyopathy. Remarkably, postnatal Tfam inactivation and disruption of mitochondrial function did not impair cardiomyocyte maturation. Rather, it elevated ROS production, activated the DNA damage response pathway, and decreased cardiomyocyte proliferation. We identified a transient window during the first postnatal week when inhibition of ROS or the DNA damage response pathway ameliorated the detrimental effect of Tfam inactivation. Mitochondrial dysfunction caused by Tfam inactivation induced ROS production, activated the DNA damage response, and caused cardiomyocyte cell cycle arrest, ultimately resulting in lethal cardiomyopathy. Normal mitochondrial function was not required for cardiomyocyte maturation. Pharmacological inhibition of ROS or DNA damage response pathways is a potential strategy to prevent cardiac dysfunction caused by some forms of mitochondrial dysfunction. © 2017 American Heart Association, Inc.

  13. Pyridostigmine prevents peripheral vascular endothelial dysfunction in rats with myocardial infarction.

    PubMed

    Qin, Fangfang; Lu, Yi; He, Xi; Zhao, Ming; Bi, Xueyuan; Yu, Xiaojiang; Liu, Jinjun; Zang, Weijin

    2014-03-01

    1. Myocardial infarction (MI) is characterized by the withdrawal of vagal activity and increased sympathetic activity. We have shown previously that pyridostigmine (PYR), an acetylcholinesterase inhibitor, was able to improve vagal activity and ameliorate cardiac dysfunction following MI. However, the effect of PYR on endothelial dysfunction in peripheral arteries after MI remains unclear. 2. In the present study, MI was induced by coronary artery ligation in adult Sprague-Dawley rats. Rats were treated intragastrically with saline or PYR (approximately 31 mg/kg per day) for 2 weeks, at which time haemodynamic and parasympathetic parameters and the vascular reactivity of isolated mesenteric arteries were measured and the ultrastructure of the endothelium evaluated. 3. Compared with the MI group, PYR not only improved cardiac function, vagal nerve activity and endothelial impairment, but also reduced intravascular superoxide anion and malondialdehyde. In addition, in the PYR-treated MI group, nitric oxide (NO) bioavailability was increased and attenuated endothelium-dependent relaxations were improved, whereas restored vasodilator responses were inhibited by N(G)-nitro-L-arginine methyl ester. 4. Based on our results, PYR is able to attenuate the impairment of peripheral endothelial function and maintain endothelial ultrastructural integrity in MI rats by inhibiting reactive oxygen species production, enhancing NO bioavailability and improving vagal activity. © 2014 Wiley Publishing Asia Pty Ltd.

  14. Mitochondrial Bioenergetics and Dysfunction in Failing Heart.

    PubMed

    Sheeran, Freya L; Pepe, Salvatore

    2017-01-01

    Energy insufficiency has been recognized as a key feature of systolic heart failure. Although mitochondria have long been known to sustain myocardial work energy supply, the capacity to therapeutically target mitochondrial bioenergetics dysfunction is hampered by a complex interplay of multiple perturbations that progressively compound causing myocardial failure and collapse. Compared to non-failing human donor hearts, activity rates of complexes I and IV, nicotinamide nucleotide transhydrogenase (NADPH-transhydrogenase, Nnt) and the Krebs cycle enzymes isocitrate dehydrogenase, malate dehydrogenase and aconitase are markedly decreased in end-stage heart failure. Diminished REDOX capacity with lower total glutathione and coenzyme Q 10 levels are also a feature of chronic left ventricular failure. Decreased enzyme activities in part relate to abundant and highly specific oxidative, nitrosylative, and hyperacetylation modifications. In this brief review we highlight that energy deficiency in end-stage failing human left ventricle predominantly involves concomitantly impaired activities of key electron transport chain and Krebs cycle enzymes rather than altered expression of respective genes or proteins. Augmented oxidative modification of these enzyme subunit structures, and the formation of highly reactive secondary metabolites, implicates dysfunction due to diminished capacity for management of mitochondrial reactive oxygen species, which contribute further to progressive decreases in bioenergetic capacity and contractile function in human heart failure.

  15. Dobutamine stress magnetic resonance imaging suffices for the demonstration of myocardial ischaemia and viability

    PubMed Central

    Lamers, F.P.L.; van Dijkman, P.R.M.; Kuijpers, Th.J.A.; van Herpen, G.

    2003-01-01

    We report three patients in whom dobutamine stress magnetic imaging (DS-MRI) was essential in assessing myocardial ischaemia. Two patients were referred to the cardiologist because of chest pain. Patient A had typical exertional angina and a normal resting electrocardiogram (ECG). Patient B had typical exercise-induced angina and had recently experienced an attack of severe chest pain at rest for 15 minutes. The ECG showed a complete left bundle branch block (LBBB). Patient C was referred for heart failure of unknown origin. There were no symptoms of chest pain during rest or exercise. Echocardiography in this patient demonstrated global left ventricular (LV) dilatation, systolic dysfunction and a small dyskinetic segment in the inferior wall. In all these patients exercise stress testing had failed to demonstrate myocardial ischaemia. Patients A and C produced normal findings whereas in patient B the abnormal repolarisation due to pre-existent LBBB precluded a diagnosis of ischaemia. Breath-hold DS-MRI was performed to study LV wall motion and wall thickening at rest through increasing doses of dobutamine. A test was considered positive for myocardial ischaemia if wall motion abnormalities developed at high-dose levels of the drug (20 μg/kg/min or more with a maximum of 40 μg/kg/min) in previously normal vascular territories or worsened in a segment that was normal at baseline. Recovery of wall thickening in a previously hypokinetic or akinetic segment at a low dose of dobutamine (5-10 μg/kg/min) was taken as proof of viability. Patients A and B developed hypokinesia progressing into akinesia at high-dose dobutamine in the anteroseptal area of the LV indicative of ischaemia. These findings were corroborated by coronary angiography demonstrating severe coronary artery disease which led to coronary artery bypass grafting (CABG) in patient A and balloon angioplasty in patient B. In patient C global recovery of LV contractions during low-dose dobutamine was followed by hypokinesia in the inferoseptal area during high-dose dobutamine. This biphasic response indicates myocardial viability as well as ischaemia. CABG was carried out because of multiple stenoses in the left coronary artery. Post-operatively LV function normalised. DS-MRI is a valuable method for detecting myocardial ischaemia and viability in patients with suspected coronary artery, and can be applied in every hospital with MRI equipment at its disposal. ImagesFigure 1Figure 2 PMID:25696185

  16. A 1-year randomized controlled trial of deferasirox vs deferoxamine for myocardial iron removal in β-thalassemia major (CORDELIA)

    PubMed Central

    Porter, John B.; Piga, Antonio; Lai, Yongrong; El-Beshlawy, Amal; Belhoul, Khawla M.; Elalfy, Mohsen; Yesilipek, Akif; Kilinç, Yurdanur; Lawniczek, Tomasz; Habr, Dany; Weisskopf, Marianne; Zhang, Yiyun; Aydinok, Yesim

    2014-01-01

    Randomized comparison data on the efficacy and safety of deferasirox for myocardial iron removal in transfusion dependent patients are lacking. CORDELIA was a prospective, randomized comparison of deferasirox (target dose 40 mg/kg per day) vs subcutaneous deferoxamine (50-60 mg/kg per day for 5-7 days/week) for myocardial iron removal in 197 β-thalassemia major patients with myocardial siderosis (T2* 6-20 milliseconds) and no signs of cardiac dysfunction (mean age, 19.8 years). Primary objective was to demonstrate noninferiority of deferasirox for myocardial iron removal, assessed by changes in myocardial T2* after 1 year using a per-protocol analysis. Geometric mean (Gmean) myocardial T2* improved with deferasirox from 11.2 milliseconds at baseline to 12.6 milliseconds at 1 year (Gmeans ratio, 1.12) and with deferoxamine (11.6 milliseconds to 12.3 milliseconds; Gmeans ratio, 1.07). The between-arm Gmeans ratio was 1.056 (95% confidence interval [CI], 0.998, 1.133). The lower 95% CI boundary was greater than the prespecified margin of 0.9, establishing noninferiority of deferasirox vs deferoxamine (P = .057 for superiority of deferasirox). Left ventricular ejection fraction remained stable in both arms. Frequency of drug-related adverse events was comparable between deferasirox (35.4%) and deferoxamine (30.8%). CORDELIA demonstrated the noninferiority of deferasirox compared with deferoxamine for myocardial iron removal. This trial is registered at www.clinicaltrials.gov as #NCT00600938. PMID:24385534

  17. Phloretin ameliorates 2-chlorohexadecanal-mediated brain microvascular endothelial cell dysfunction in vitro

    PubMed Central

    Üllen, Andreas; Fauler, Günter; Bernhart, Eva; Nusshold, Christoph; Reicher, Helga; Leis, Hans-Jörg; Malle, Ernst; Sattler, Wolfgang

    2012-01-01

    2-Chlorohexadecanal (2-ClHDA), a chlorinated fatty aldehyde, is formed via attack on ether-phospholipids by hypochlorous acid (HOCl) that is generated by the myeloperoxidase–hydrogen peroxide–chloride system of activated leukocytes. 2-ClHDA levels are elevated in atherosclerotic lesions, myocardial infarction, and neuroinflammation. Neuroinflammatory conditions are accompanied by accumulation of neutrophils (an ample source of myeloperoxidase) in the brain. Microvessel damage by inflammatory mediators and/or reactive oxidants can induce blood–brain barrier (BBB) dysfunction, a pathological condition leading to cerebral edema, brain hemorrhage, and neuronal death. In this in vitro study we investigated the impact of 2-ClHDA on brain microvascular endothelial cells (BMVEC), which constitute the morphological basis of the BBB. We show that exogenously added 2-ClHDA is subject to rapid uptake and metabolism by BMVEC. Using C16 structural analogues of 2-ClHDA we found that the cytotoxic potential decreases in the following order: 2-ClHDA>hexadecanal>palmitic acid>2-ClHDA-dimethylacetal. 2-ClHDA induces loss of barrier function, mitochondrial dysfunction, apoptosis via activation of caspase 3, and altered intracellular redox balance. Finally we investigated potential protective effects of several natural polyphenols on in vitro BBB function. Of the compounds tested, phloretin almost completely abrogated 2-ClHDA-induced BMVEC barrier dysfunction and cell death. These data suggest that 2-ClHDA has the potential to induce BBB breakdown under inflammatory conditions and that phloretin confers protection in this experimental setting. PMID:22982051

  18. Broken heart syndrome triggered by an obstructive goiter not associated with thyrotoxicosis.

    PubMed

    Hatzakorzian, Roupen; Bui, Helen; Schricker, Thomas; Backman, Steven B

    2013-08-01

    Takotsubo cardiomyopathy (TC) is described as transient ventricular dysfunction following emotional or physical trauma. A few reports have described patients with TC in association with various circumstances of thyrotoxicosis. We report an unusual case of TC in a patient with a large retrosternal goiter and normal thyroid function. We speculate that TC was triggered by compromise of tracheal flow induced by the goiter. A 68-yr-old woman without primary heart disease presented with cardiorespiratory collapse requiring ventilatory and cardiovascular support, including placement of an intra-aortic balloon pump. She was diagnosed with a severe form of TC based on characteristic echocardiography findings and clinical course. Within less than a week, her myocardial function completely normalized. The patient was later found to have a large retrosternal goiter compressing her trachea, though her thyroid function was normal. A total thyroidectomy was eventually performed, and she made a full recovery. Subsequently, the patient was found to have a positive JAK2 mutation for a myeloproliferative disorder. Takotsubo cardiomyopathy may be regarded as the final common pathway of cardiac dysfunction triggered by various stress conditions, in this case, a large retrosternal goiter not associated with thyrotoxicosis and likely exacerbated by severe leukocytosis related to a myeloproliferative disorder.

  19. Inhibitors of soluble epoxide hydrolase minimize ischemia-reperfusion-induced cardiac damage in normal, hypertensive, and diabetic rats.

    PubMed

    Islam, Oliul; Patil, Prashanth; Goswami, Sumanta K; Razdan, Rema; Inamdar, Mohammed N; Rizwan, Mohammed; Mathew, Jubin; Inceoglu, Bora; Stephen Lee, Kin S; Hwang, Sung H; Hammock, Bruce D

    2017-06-01

    We designed a study to evaluate the cardioprotective effect of two soluble epoxide hydrolase (sEH) inhibitors, 1-(1-propanoylpiperidin-4-yl)-3-(4-trifluoromethoxy)phenyl)urea (TPPU) and trans-4-{4-[3-(4-trifluoromethoxyphenyl)-ureido]cyclohexyloxy}benzoic acid (t-TUCB), in ischemia-reperfusion (IR) model. Cardioprotective effects of the sEH inhibitors were evaluated against IR-induced myocardial damage in hearts from normal, hypertensive, and diabetic rats using Langendorff's apparatus. In addition, the effect of sEH inhibitors on endothelial function was evaluated in vitro and ex vivo using isolated rat thoracic aorta. Ischemia-reperfusion (IR) increased the myocardial damage in hearts from normal rats. IR-induced myocardial damage was augmented in hearts isolated from hypertensive and diabetic rats. Myocardial damage as evident from increase in the activities of lactate dehydrogenase (LDH) and creatine kinase-MB (CK-MB) in heart perfusate was associated with significant decrease in the heart rate and developed tension, and increase in the resting tension in isolated heart. Both sEH inhibitors protected the heart in normal, hypertensive, and diabetic rats subjected to IR injury. The sEH inhibitor t-TUCB relaxed phenylephrine precontracted aorta from normal rats. Relaxant effect of acetylcholine (ACh) was reduced in aortas from diabetic and hypertensive rats compared to normal rats. Pretreatment of sEH inhibitors to diabetic and hypertensive rats increased relaxant effect of ACh on aortas isolated from these rats. Prophylactic treatment with sEH inhibitors decreased myocardial damage due to IR, hypertension and diabetes, and decreased endothelial dysfunction created by diabetes and hypertension. Therefore, inhibitors of sEH are useful probes to study cardiovascular pathology, and inhibition of the sEH is a potential approach in the management of IR-induced cardiac damage and endothelial dysfunction-related cardiovascular disorders. © 2017 John Wiley & Sons Ltd.

  20. Targeted Imaging of the Spatial and Temporal Variation of Matrix Metalloproteinase Activity in Porcine Model of Post-Infarct Remodeling: Relationship to Myocardial Dysfunction

    PubMed Central

    Sahul, Zakir H.; Mukherjee, Rupak; Song, James; McAteer, Jarod; Stroud, Robert E.; Dione, Donald P.; Staib, Lawrence; Papademetris, Xenophon; Dobrucki, Lawrence W.; Duncan, James S.; Spinale, Francis G.; Sinusas, Albert J.

    2011-01-01

    Background Matrix metalloproteinases (MMPs) are known to modulate left ventricular (LV) remodeling after a myocardial infarction (MI). However, the temporal and spatial variation of MMP activation and their relationship to mechanical dysfunction post MI remains undefined. Methods and Results MI was surgically induced in pigs (n=23) and cine MR and dual isotope hybrid SPECT/CT imaging obtained using thallium-201 (201Tl) and a technetium-99m labeled MMP targeted tracer (99mTc-RP805) at 1, 2 and 4 weeks post MI along with controls (n=5). Regional myocardial strain was computed from MR images and related to MMP zymography and ex vivo myocardial 99mTc-RP805 retention. MMP activation as assessed by in vivo and ex vivo 99mTc-RP805 imaging/retention studies was increased nearly 5-fold within the infarct region at 1 week post-MI and remained elevated up to 1 month post-MI. The post-MI change in LV end-diastolic volumes was correlated with MMP activity (y=31.34e0.48x, p=0.04). MMP activity was increased within the border and remote regions early post-MI, but declined over 1 month. There was a high concordance between regional 99mTc-RP805 uptake and ex vivo MMP-2 activity. Conclusions A novel, multimodality non-invasive hybrid SPECT/CT imaging approach was validated and applied for in vivo evaluation of MMP activation in combination with cine MR analysis of LV deformation. Increased 99mTc-RP805 retention was seen throughout the heart early post-MI and was not purely a reciprocal of 201Tl perfusion. 99mTc-RP805 SPECT/CT imaging may provide unique information regarding regional myocardial MMP activation and predict late post-MI LV remodeling. PMID:21505092

  1. CT Pulmonary Angiography: Increasingly Diagnosing Less Severe Pulmonary Emboli

    PubMed Central

    Schissler, Andrew J.; Rozenshtein, Anna; Kulon, Michal E.; Pearson, Gregory D. N.; Green, Robert A.; Stetson, Peter D.; Brenner, David J.; D'Souza, Belinda; Tsai, Wei-Yann; Schluger, Neil W.; Einstein, Andrew J.

    2013-01-01

    Background It is unknown whether the observed increase in computed tomography pulmonary angiography (CTPA) utilization has resulted in increased detection of pulmonary emboli (PEs) with a less severe disease spectrum. Methods Trends in utilization, diagnostic yield, and disease severity were evaluated for 4,048 consecutive initial CTPAs performed in adult patients in the emergency department of a large urban academic medical center between 1/1/2004 and 10/31/2009. Transthoracic echocardiography (TTE) findings and peak serum troponin levels were evaluated to assess for the presence of PE-associated right ventricular (RV) abnormalities (dysfunction or dilatation) and myocardial injury, respectively. Statistical analyses were performed using multivariate logistic regression. Results 268 CTPAs (6.6%) were positive for acute PE, and 3,780 (93.4%) demonstrated either no PE or chronic PE. There was a significant increase in the likelihood of undergoing CTPA per year during the study period (odds ratio [OR] 1.05, 95% confidence interval [CI] 1.04–1.07, P<0.01). There was no significant change in the likelihood of having a CTPA diagnostic of an acute PE per year (OR 1.03, 95% CI 0.95–1.11, P = 0.49). The likelihood of diagnosing a less severe PE on CTPA with no associated RV abnormalities or myocardial injury increased per year during the study period (OR 1.39, 95% CI 1.10–1.75, P = 0.01). Conclusions CTPA utilization has risen with no corresponding change in diagnostic yield, resulting in an increase in PE detection. There is a concurrent rise in the likelihood of diagnosing a less clinically severe spectrum of PEs. PMID:23776522

  2. Long-term benefit of early pre-reperfusion metoprolol administration in patients with acute myocardial infarction: results from the METOCARD-CNIC trial (Effect of Metoprolol in Cardioprotection During an Acute Myocardial Infarction).

    PubMed

    Pizarro, Gonzalo; Fernández-Friera, Leticia; Fuster, Valentin; Fernández-Jiménez, Rodrigo; García-Ruiz, José M; García-Álvarez, Ana; Mateos, Alonso; Barreiro, María V; Escalera, Noemí; Rodriguez, Maite D; de Miguel, Antonio; García-Lunar, Inés; Parra-Fuertes, Juan J; Sánchez-González, Javier; Pardillos, Luis; Nieto, Beatriz; Jiménez, Adriana; Abejón, Raquel; Bastante, Teresa; Martínez de Vega, Vicente; Cabrera, José A; López-Melgar, Beatriz; Guzman, Gabriela; García-Prieto, Jaime; Mirelis, Jesús G; Zamorano, José Luis; Albarrán, Agustín; Goicolea, Javier; Escaned, Javier; Pocock, Stuart; Iñiguez, Andrés; Fernández-Ortiz, Antonio; Sánchez-Brunete, Vicente; Macaya, Carlos; Ibanez, Borja

    2014-06-10

    The goal of this trial was to study the long-term effects of intravenous (IV) metoprolol administration before reperfusion on left ventricular (LV) function and clinical events. Early IV metoprolol during ST-segment elevation myocardial infarction (STEMI) has been shown to reduce infarct size when used in conjunction with primary percutaneous coronary intervention (pPCI). The METOCARD-CNIC (Effect of Metoprolol in Cardioprotection During an Acute Myocardial Infarction) trial recruited 270 patients with Killip class ≤II anterior STEMI presenting early after symptom onset (<6 h) and randomized them to pre-reperfusion IV metoprolol or control group. Long-term magnetic resonance imaging (MRI) was performed on 202 patients (101 per group) 6 months after STEMI. Patients had a minimal 12-month clinical follow-up. Left ventricular ejection fraction (LVEF) at the 6 months MRI was higher after IV metoprolol (48.7 ± 9.9% vs. 45.0 ± 11.7% in control subjects; adjusted treatment effect 3.49%; 95% confidence interval [CI]: 0.44% to 6.55%; p = 0.025). The occurrence of severely depressed LVEF (≤35%) at 6 months was significantly lower in patients treated with IV metoprolol (11% vs. 27%, p = 0.006). The proportion of patients fulfilling Class I indications for an implantable cardioverter-defibrillator (ICD) was significantly lower in the IV metoprolol group (7% vs. 20%, p = 0.012). At a median follow-up of 2 years, occurrence of the pre-specified composite of death, heart failure admission, reinfarction, and malignant arrhythmias was 10.8% in the IV metoprolol group versus 18.3% in the control group, adjusted hazard ratio (HR): 0.55; 95% CI: 0.26 to 1.04; p = 0.065. Heart failure admission was significantly lower in the IV metoprolol group (HR: 0.32; 95% CI: 0.015 to 0.95; p = 0.046). In patients with anterior Killip class ≤II STEMI undergoing pPCI, early IV metoprolol before reperfusion resulted in higher long-term LVEF, reduced incidence of severe LV systolic dysfunction and ICD indications, and fewer heart failure admissions. (Effect of METOprolol in CARDioproteCtioN During an Acute Myocardial InfarCtion. The METOCARD-CNIC Trial; NCT01311700). Copyright © 2014 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  3. The Predictive Role of Serum Triglyceride to High-Density Lipoprotein Cholesterol Ratio According to Renal Function in Patients with Acute Myocardial Infarction

    PubMed Central

    Woo, Jong Shin; Lee, Tae Won; Ihm, Chun Gyoo; Kim, Yang Gyoon; Moon, Joo Young; Lee, Sang Ho; Jeong, Myung Ho; Jeong, Kyung Hwan

    2016-01-01

    Objective A high serum triglyceride to high-density lipoprotein cholesterol (TG/HDL-C) ratio has been reported as an independent predictor for cardiovascular events in the general population. However, the prognostic value of this ratio in patients with renal dysfunction is unclear. We examined the association of the TG/HDL-C ratio with major adverse cardiovascular events (MACEs) according to renal function in patients with acute myocardial infarction (AMI). Method This study was based on the Korea Acute Myocardial Infarction Registry database. Of 13,897 patients who were diagnosed with AMI, the study population included the 7,016 patients with available TG/HDL-C ratio data. Patients were stratified into three groups according to their estimated glomerular filtration rate (eGFR), and the TG/HDL-C ratio was categorized into tertiles. We investigated 12-month MACEs, which included cardiac death, myocardial infarction, and repeated percutaneous coronary intervention or coronary artery bypass grafting. Results During the 12-month follow up period, 593 patients experienced MACEs. There was a significant association between the TG/HDL-C ratio and MACEs (p<0.001) in the entire study cohort. Having a TG/HDL-C ratio value in the highest tertile of TG/HDL-C ratio was an independent factor associated with increased risk of MACEs (hazard ratio [HR], 1.56; 95% confidence interval [CI], 1.26–1.93; p<0.001). Then we performed subgroup analyses according to renal function. In patients with normal renal function (eGFR ≥ 90 ml/min/1.73m2) and mild renal dysfunction (eGFR ≥ 60 to < 90ml/min/1.73m2), a higher TG/HDL-C ratio was significantly associated with increased risk of MACEs (HR, 1.64; 95% CI, 1.04–2.60; p = 0.035; and HR, 1.56; 95% CI, 1.14–2.12; p = 0.005, respectively). However, in patients with moderate renal dysfunction (eGFR < 60 ml/min/1.73m2), TG/HDL-C ratio lost its predictive value on the risk of MACEs (HR, 1.23; 95% CI, 0.82–1.83; p = 0.317). Conclusions In patients with AMI, TG/HDL-C ratio is a useful independent predictor of 12-month MACEs. However, this ratio does not have predictive power in patients with moderate renal dysfunction. PMID:27788233

  4. Cardiovascular Consequences of Metabolic Syndrome

    PubMed Central

    Tune, Johnathan D.; Goodwill, Adam G.; Sassoon, Daniel J.; Mather, Kieren J.

    2017-01-01

    The metabolic syndrome (MetS) is defined as the concurrence of obesity-associated cardiovascular risk factors including abdominal obesity, impaired glucose tolerance, hypertriglyceridemia, decreased HDL cholesterol, and/or hypertension. Earlier conceptualizations of the MetS focused on insulin resistance as a core feature, and it is clearly coincident with the above list of features. Each component of the MetS is an independent risk factor for cardiovascular disease and the combination of these risk factors elevates rates and severity of cardiovascular disease, related to a spectrum of cardiovascular conditions including microvascular dysfunction, coronary atherosclerosis and calcification, cardiac dysfunction, myocardial infarction, and heart failure. While advances in understanding the etiology and consequences of this complex disorder have been made, the underlying pathophysiologic mechanisms remain incompletely understood, and it is unclear how these concurrent risk factors conspire to produce the variety of obesity-associated adverse cardiovascular diseases. In this review we highlight current knowledge regarding the pathophysiologic consequences of obesity and the MetS on cardiovascular function and disease, including considerations of potential physiologic and molecular mechanisms that may contribute to these adverse outcomes. PMID:28130064

  5. Association between aortic valve calcification and myocardial ischemia, especially in asymptomatic patients.

    PubMed

    Yamazato, Ryo; Yamamoto, Hideya; Tadehara, Futoshi; Teragawa, Hiroki; Kurisu, Satoshi; Dohi, Yoshihiro; Ishibashi, Ken; Kunita, Eiji; Utsunomiya, Hiroto; Oka, Toshiharu; Kihara, Yasuki

    2012-08-01

    Aortic valve calcification (AVC) is recognized as a manifestation of systemic arteriosclerosis. However, it is unclear whether AVC is associated with myocardial ischemia. Stress myocardial perfusion SPECT (MPS) is widely used for the diagnosis of myocardial ischemia. However, routine MPS is not recommended, particularly in asymptomatic patients. Accordingly, we investigated the hypothesis that the presence of AVC is strongly associated with inducible myocardial ischemia, even among asymptomatic patients. We investigated 669 consecutive patients who underwent both adenosine stress (201)Tl MPS and echocardiography. We evaluated the extent and severity of myocardial ischemia by the summed difference score (SDS). We defined the presence of myocardial ischemia as SDS ≥ 3 and moderate to severe ischemia as SDS ≥ 8. We classified the severity of AVC according to the number of affected aortic leaflets. We also compared the mean SDS and the prevalence of SDS ≥ 3 and SDS ≥ 8 among patients stratified by the severity of AVC. The presence of AVC was significantly associated with myocardial ischemia (odds ratio [OR], 1.56; 95% confidence interval [CI], 1.10-2.23; P = 0.013) and moderate to severe ischemia (OR, 2.16; 95% CI, 1.26-3.80; P = 0.0061). In 311 asymptomatic patients, AVC was strongly associated with moderate to severe ischemia (OR, 4.31; 95% CI, 1.67-12.8; P = 0.0043). However, the SDS value and the prevalence of SDS ≥ 3 and SDS ≥ 8 did not increase with increasing number of affected aortic leaflets. The presence of AVC may be associated with the presence of myocardial ischemia, particularly in asymptomatic patients. However, we found no association between the extent of AVC and inducible myocardial ischemia. The presence of AVC may be a useful anatomic marker to help identify patients at high risk of myocardial ischemia, particularly asymptomatic patients.

  6. The role of advanced echocardiography and cardiovascular magnetic resonance in the assessment of myocardial function in Marfan syndrome-An update.

    PubMed

    Kiotsekoglou, Anatoli; Moggridge, James C; Child, Anne H; Rask, Peter

    2017-05-01

    Cardiovascular assessment of patients with Marfan syndrome has normally focused on the aortic root and vascular manifestations of the disease due to the high risk of aortic dissection. Although primary myocardial impairment has long been suspected in these patients, the evidence has been controversial. Advanced echocardiography and cardiovascular magnetic resonance imaging have proven to be effective, accurate, and more sensitive in the detection of subtle cardiac dysfunction. The application of these techniques to Marfan syndrome over the last 10 years has made significant progress in demonstrating the presence of primary myocardial impairment in these patients, but further work is still required to obtain confirmatory molecular, pathophysiological, and prognostic clinical data. Phenotypic expression of the disease has prognostic value, also suggesting potential effective medical therapy. © 2017, Wiley Periodicals, Inc.

  7. Nitric Oxide Bioavailability and Adiponectin Production in Chronic Systolic Heart Failure: Relation to Severity of Cardiac Dysfunction

    PubMed Central

    Tang, W.H. Wilson; Shrestha, Kevin; Tong, Wilson; Wang, Zeneng; Troughton, Richard W.; Borowski, Allen G.; Klein, Allan L.; Hazen, Stanley L.

    2013-01-01

    Adiponectin is an anti-inflammatory, anti-atherogenic adipokine elevated in heart failure (HF) that may protect against endothelial dysfunction by influencing underlying nitric oxide bioavailablity. In this study, we examine the relationship between plasma adiponectin levels and measures of nitric oxide bioavailability and myocardial performance in patients with chronic systolic HF. In 139 ambulatory patients with stable, chronic systolic HF (left ventricular [LV] ejection fraction ≤40%, New York Heart Association [NYHA] class I to IV), we measured plasma levels of adiponectin, asymmetric dimethylarginine (ADMA) and global arginine bioavailability (GABR), and performed comprehensive echocardiography with assessment of cardiac structure and performance. Adverse events (all-cause mortality or cardiac transplantation) were prospectively tracked for a median of 39 months. Plasma adiponectin levels directly correlated with plasma ADMA levels (Spearman’s r=0.41, p<0.001) and NT-proBNP levels (r=0.55, p<0.001), inversely correlated with GABR (r= −0.39, p<0.001), and were not associated with hsCRP (p=0.81) or MPO (p=0.07). Interestingly, increased plasma adiponectin levels remained positively correlated with plasma ADMA levels only in patients with elevated NT-proBNP levels (r= 0.33, p=0.009). Higher plasma adiponectin levels were associated with worse LV diastolic dysfunction (rank sums p=0.002), RV systolic dysfunction (rank sums p=0.002), and RV diastolic dysfunction (rank sums p=0.011), but not after adjustment for plasma ADMA and NT-proBNP levels. Plasma adiponectin levels predicted increased risk of adverse clinical events (HR [95% CI]: 1.45 [1.02–2.07], p=0.038) but not after adjustment for plasma ADMA and NT-proBNP levels, or echocardiographic indices of diastolic or RV systolic dysfunction. In patients with chronic systolic HF, adiponectin production is more closely linked with nitric oxide bioavailability than inflammation, and appears to be more robust in the setting of cardiac dysfunction or elevated natriuretic peptide levels. PMID:23499315

  8. Ultrasound tissue characterization does not differentiate genotype, but indexes ejection fraction deterioration in becker muscular dystrophy.

    PubMed

    Giglio, Vincenzo; Puddu, Paolo Emilio; Holland, Mark R; Camastra, Giovanni; Ansalone, Gerardo; Ricci, Enzo; Mela, Julia; Sciarra, Federico; Di Gennaro, Marco

    2014-12-01

    The aims of the study were, first, to assess whether myocardial ultrasound tissue characterization (UTC) in Becker muscular dystrophy (BMD) can be used to differentiate between patients with deletions and those without deletions; and second, to determine whether UTC is helpful in diagnosing the evolution of left ventricular dysfunction, a precursor of dilated cardiomyopathy. Both cyclic variation of integrated backscatter and calibrated integrated backscatter (cIBS) were assessed in 87 patients with BMD and 70 controls. The average follow-up in BMD patients was 48 ± 12 mo. UTC analysis was repeated only in a subgroup of 40 BMD patients randomly selected from the larger overall group (15 with and 25 without left ventricular dysfunction). Discrimination between BMD patients with and without dystrophin gene deletion was not possible on the basis of UTC data: average cvIBS was 5.2 ± 1.2 and 5.5 ± 1.4 dB, and average cIBS was 29.9 ± 4.7 and 29.6 ± 5.8, respectively, significantly different (p < 0.001) only from controls (8.6 ± 0.5 and 24.6 ± 1.2 dB). In patients developing left ventricular dysfunction during follow-up, cIBS increased to 31.3 ± 5.4 dB, but not significantly (p = 0.08). The highest cIBS values (34.6 ± 5.3 dB, p < 0.09 vs. baseline, p < 0.01 vs BMD patients without left ventricular dysfunction) were seen in the presence of severe left ventricular dysfunction. Multivariate statistics indicated that an absolute change of 6 dB in cIBS is associated with a high probability of left ventricular dysfunction. UTC analysis does not differentiate BMD patients with or without dystrophin gene deletion, but may be useful in indexing left ventricular dysfunction during follow-up. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  9. Coronary Care Medicine: It's Not Your Father's CCU Anymore.

    PubMed Central

    Antman, Elliott M.

    2004-01-01

    The management of ST-elevation MI (STEMI) has gone through four phases: 1. The "clinical observation phase"; 2. the "coronary care unit phase"; 3. the "high-technology phase"; and 4. the "evidence-based coronary care phase". A significant advance in the care of patients with acute myocardial infarction that arose as an outgrowth of the evidence-based era was introduction of a lexicon that more accurately reflected contemporary concepts of the pathophysiology underlying myocardial ischemia and infarction. Although considerable improvement has occurred in the process of care for patient with STEMI, room for improvement exists. Despite strong evidence in the literature that prompt use of reperfusion therapy improves survival of STEMI patients such treatment is underutilized and often not administered in an expeditious timeframe relative to the onset of symptom. Even in the reperfusion era, left ventricular dysfunction remains the single most important predictor of mortality following STEMI. After administration of aspirin, initiating reperfusion strategies and, where appropriate, beta blockade all STEMI patients should be considered for inhibition of the renin-angiotensin-aldosterone system. Several adjunctive pharmacotherapies have been investigated to prevent inflammatory damage in the infarct zone. Contrary to earlier beliefs that the heart is a terminally differentiated organ without the capacity to regenerate, evidence now exists that human cardiac myocytes divide after STEMI and stem cells can promote regeneration of cardiac tissue. These observations open up the possibility of myocardial replacement therapy after STEMI. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:17060962

  10. Cardiovascular dysfunction in symptomatic primary hyperparathyroidism and its reversal after curative parathyroidectomy: results of a prospective case control study.

    PubMed

    Agarwal, Gaurav; Nanda, Gitika; Kapoor, Aditya; Singh, Kul Ranjan; Chand, Gyan; Mishra, Anjali; Agarwal, Amit; Verma, Ashok K; Mishra, Saroj K; Syal, Sanjeev K

    2013-12-01

    Cardiovascular mortality in primary hyperparathyroidism (PHPT) is attributed to myocardial and endothelial dysfunction. In this prospective, case-control study we assessed cardiovascular dysfunction in patients with symptomatic PHPT and its reversal after successful parathyroidectomy. Fifty-six patients with symptomatic PHPT underwent two-dimensional echocardiography, tissue Doppler (diastolic function assessment), serum N-terminal pro-brain natriuretic peptide (s-NTproBNP, a myocardial damage marker), and endothelial- and smooth muscle-dependent vasodilatory response (vascular dysfunction) studies before, 3, and 6 months after parathyroidectomy; 25 age-matched controls were studied similarly. Patients had greater left ventricular mass (192 ± 70 vs. 149 ± 44 g; P = .006), interventricular septal thickness (10.8 ± 2.5 vs. 9.0 ± 1.6 mm; P = .001), posterior wall thickness (9.9 ± 2.0 vs. 8.6 ± 2.2 mm; P = .004), and diastolic dysfunction (lower E/A trans-mitral flow velocity ratio [1.0 ± 0.4 vs. 1.3 ± 0.4; P = .01). Patients had greater s-NTproBNP (4,625 ± 1,130 vs. 58 ± 49 pg/mL; P = .002) and lower endothelial-mediated vasodilation (9.3 ± 8.6 vs. 11.7 ± 6.3%; P = .03) and smooth muscle-mediated vasodilation (20.1 ± 17.9 vs. 23.8 ± 11.2%; P = .01). Improvements in left ventricular mass, systolic and diastolic function, and smooth muscle-mediated vasodilation were noted from 3 to 6 months after parathyroidectomy. Endothelial-mediated vasodilation did not improve significantly. S-NTproBNP levels mirrored echocardiographic changes with a substantial, sustained decrease. Results were similar in hypertensive and normotensive patients. Symptomatic PHPT patients have substantial cardiac and vascular dysfunction, which improve by 6 months after parathyroidectomy. Objective cardiovascular evaluation may improve outcomes in symptomatic PHPT patients. Copyright © 2013 Mosby, Inc. All rights reserved.

  11. Coronary arterial BK channel dysfunction exacerbates ischemia/reperfusion-induced myocardial injury in diabetic mice.

    PubMed

    Lu, Tong; Jiang, Bin; Wang, Xiao-Li; Lee, Hon-Chi

    2016-09-01

    The large conductance Ca(2+)-activated K(+) (BK) channels, abundantly expressed in coronary artery smooth muscle cells (SMCs), play a pivotal role in regulating coronary circulation. A large body of evidence indicates that coronary arterial BK channel function is diminished in both type 1 and type 2 diabetes. However, the consequence of coronary BK channel dysfunction in diabetes is not clear. We hypothesized that impaired coronary BK channel function exacerbates myocardial ischemia/reperfusion (I/R) injury in streptozotocin-induced diabetic mice. Combining patch-clamp techniques and cellular biological approaches, we found that diabetes facilitated the colocalization of angiotensin II (Ang II) type 1 receptors and BK channel α-subunits (BK-α), but not BK channel β1-subunits (BK-β1), in the caveolae of coronary SMCs. This caveolar compartmentation in vascular SMCs not only enhanced Ang II-mediated inhibition of BK-α but also produced a physical disassociation between BK-α and BK-β1, leading to increased infarct size in diabetic hearts. Most importantly, genetic ablation of caveolae integrity or pharmacological activation of coronary BK channels protected the cardiac function of diabetic mice from experimental I/R injury in both in vivo and ex vivo preparations. Our results demonstrate a vascular ionic mechanism underlying the poor outcome of myocardial injury in diabetes. Hence, activation of coronary BK channels may serve as a therapeutic target for cardiovascular complications of diabetes.

  12. Effect of hypercholesterolaemia on myocardial function, ischaemia–reperfusion injury and cardioprotection by preconditioning, postconditioning and remote conditioning

    PubMed Central

    Iliodromitis, Efstathios K; Lazou, Antigone; Görbe, Anikó; Giricz, Zoltán; Schulz, Rainer

    2017-01-01

    Hypercholesterolaemia is considered to be a principle risk factor for cardiovascular disease, having direct negative effects on the myocardium itself, in addition to the development of atherosclerosis. Since hypercholesterolaemia affects the global cardiac gene expression profile, among many other factors, it results in increased myocardial oxidative stress, mitochondrial dysfunction and inflammation triggered apoptosis, all of which may account for myocardial dysfunction and increased susceptibility of the myocardium to infarction. In addition, numerous experimental and clinical studies have revealed that hyperlcholesterolaemia may interfere with the cardioprotective potential of conditioning mechanisms. Although not fully elucidated, the underlying mechanisms for the lost cardioprotection in hypercholesterolaemic animals have been reported to involve dysregulation of the endothelial NOS‐cGMP, reperfusion injury salvage kinase, peroxynitrite‐MMP2 signalling pathways, modulation of ATP‐sensitive potassium channels and apoptotic pathways. In this review article, we summarize the current knowledge on the effect of hypercholesterolaemia on the non‐ischaemic and ischaemic heart as well as on the cardioprotection induced by drugs or ischaemic preconditioning, postconditioning and remote conditioning. Future perspectives concerning the mechanisms and the design of preclinical and clinical trials are highlighted. Linked Articles This article is part of a themed section on Redox Biology and Oxidative Stress in Health and Disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.12/issuetoc PMID:28060997

  13. Continuous cardiac troponin I release in Fabry disease.

    PubMed

    Feustel, Andreas; Hahn, Andreas; Schneider, Christian; Sieweke, Nicole; Franzen, Wolfgang; Gündüz, Dursun; Rolfs, Arndt; Tanislav, Christian

    2014-01-01

    Fabry disease (FD) is a rare lysosomal storage disorder also affecting the heart. The aims of this study were to determine the frequency of cardiac troponin I (cTNI) elevation, a sensitive parameter reflecting myocardial damage, in a smaller cohort of FD-patients, and to analyze whether persistent cTNI can be a suitable biomarker to assess cardiac dysfunction in FD. cTNI values were determined at least twice per year in 14 FD-patients (6 males and 8 females) regularly followed-up in our centre. The data were related to other parameters of heart function including cardiac magnetic resonance imaging (cMRI). Three patients (21%) without specific vascular risk factors other than FD had persistent cTNI-elevations (range 0.05-0.71 ng/ml, normal: <0.01). cMRI disclosed late gadolinium enhancement (LGE) in all three individuals with cTNI values ≥0.01, while none of the 11 patients with cTNI <0.01 showed a pathological enhancement (p<0.01). Two subjects with increased cTNI-values underwent coronary angiography, excluding relevant stenoses. A myocardial biopsy performed in one during this procedure demonstrated substantial accumulation of globotriaosylceramide (Gb3) in cardiomyocytes. Continuous cTNI elevation seems to occur in a substantial proportion of patients with FD. The high accordance with LGE, reflecting cardiac dysfunction, suggests that cTNI-elevation can be a useful laboratory parameter for assessing myocardial damage in FD.

  14. Is 2D speckle tracking echocardiography useful for detecting and monitoring myocardial dysfunction in adult m.3243A>G carriers? - a retrospective pilot study.

    PubMed

    Koene, S; Timmermans, J; Weijers, G; de Laat, P; de Korte, C L; Smeitink, J A M; Janssen, M C H; Kapusta, L

    2017-03-01

    Cardiomyopathy is a common complication of mitochondrial disorders, associated with increased mortality. Two dimensional speckle tracking echocardiography (2DSTE) can be used to quantify myocardial deformation. Here, we aimed to determine the usefulness of 2DSTE in detecting and monitoring subtle changes in myocardial dysfunction in carriers of the 3243A>G mutation in mitochondrial DNA. In this retrospective pilot study, 30 symptomatic and asymptomatic carriers of the mitochondrial 3243A>G mutation of whom two subsequent echocardiograms were available were included. We measured longitudinal, circumferential and radial strain using 2DSTE. Results were compared to published reference values. Speckle tracking was feasible in 90 % of the patients for longitudinal strain. Circumferential and radial strain showed low face validity (low number of images with sufficient quality; suboptimal tracking) and were therefore rejected for further analysis. Global longitudinal strain showed good face validity, and was abnormal in 56-70 % (depending on reference values used) of the carriers (n = 27). Reproducibility was good (mean difference of 0.83 for inter- and 0.40 for intra-rater reproducibility; ICC 0.78 and 0.89, respectively). The difference between the first and the second measurement exceeded the measurement variance in 39 % of the cases (n = 23; feasibility of follow-up 77 %). Even in data collected as part of clinical care, two-dimensional strain echocardiography seems a feasible method to detect and monitor subtle changes in longitudinal myocardial deformation in adult carriers of the mitochondrial 3243A>G mutation. Based on our data and the reported accuracy of global longitudinal strain in other studies, we suggest the use of global longitudinal strain in a prospective follow-up or intervention study.

  15. Relationship Between Beta Cell Dysfunction and Severity of Disease Among Critically Ill Children: A STROBE-Compliant Prospective Observational Study.

    PubMed

    Liu, Ping-Ping; Lu, Xiu-Lan; Xiao, Zheng-Hui; Qiu, Jun; Zhu, Yi-Min

    2016-05-01

    Although beta cell dysfunction has been proved to predict prognosis among humans and animals, its prediction on severity of disease remains unclear among children. The present study was aimed to examine the relationship between beta cell dysfunction and severity of disease among critically ill children.This prospective study included 1146 critically ill children, who were admitted to Pediatric Intensive Care Unit (PICU) of Hunan Children's Hospital from November 2011 to August 2013. Information on characteristics, laboratory tests, and prognostic outcomes was collected. Homeostasis model assessment (HOMA)-β, evaluating beta cell function, was used to divide all participants into 4 groups: HOMA-β = 100% (group I, n = 339), 80% ≤ HOMA-β < 100% (group II, n = 71), 40% ≤ HOMA-β < 80% (group III, n = 293), and HOMA-β < 40% (group IV, n = 443). Severity of disease was assessed using the worst Sequential Organ Failure Assessment (SOFA) score, Pediatric Risk of Mortality (PRISM) III score, incidence of organ damage, septic shock, multiple organ dysfunction syndrome (MODS), mechanical ventilation (MV) and mortality. Logistic regression analysis was used to evaluate the risk of developing poor outcomes among patients in different HOMA-β groups, with group I as the reference group.Among 1146 children, incidence of HOMA-β < 100% was 70.41%. C-peptide and insulin declined with the decrement of HOMA-β (P < 0.01). C-reactive protein and procalcitonin levels, rather than white blood cell, were significantly different among 4 groups (P < 0.01). In addition, the worst SOFA score and the worst PRISMIII score increased with declined HOMA-β. For example, the worst SOFA score in group I, II, III, and IV was 1.55 ± 1.85, 1.71 ± 1.93, 1.92 ± 1.63, and 2.18 ± 1.77, respectively. Furthermore, patients with declined HOMA-β had higher risk of developing septic shock, MODS, MV, and mortality, even after adjusting age, gender, myocardial injury, and lung injury. For instance, compared with group I, the multivariate-adjusted odds ratio (95% confidence interval) for developing septic shock was 2.17 (0.59, 8.02), 2.94 (2.18, 6.46), and 2.76 (1.18, 6.46) among patients in group II, III, and IV, respectively.Beta cell dysfunction reflected the severity of disease among critically ill children. Therefore, assessment of beta cell function is critically important to reduce incidence of adverse events in PICU.

  16. Toll-like receptor 3 plays a role in myocardial infarction and ischemia/reperfusion injury.

    PubMed

    Lu, Chen; Ren, Danyang; Wang, Xiaohui; Ha, Tuanzhu; Liu, Li; Lee, Eric J; Hu, Jing; Kalbfleisch, John; Gao, Xiang; Kao, Race; Williams, David; Li, Chuanfu

    2014-01-01

    Innate immune and inflammatory responses mediated by Toll like receptors (TLRs) have been implicated in myocardial ischemia/reperfusion (I/R) injury. This study examined the role of TLR3 in myocardial injury induced by two models, namely, myocardial infarction (MI) and I/R. First, we examined the role of TLR3 in MI. TLR3 deficient (TLR3(-/-)) and wild type (WT) mice were subjected to MI induced by permanent ligation of the left anterior descending (LAD) coronary artery for 21days. Cardiac function was measured by echocardiography. Next, we examined whether TLR3 contributes to myocardial I/R injury. TLR3(-/-) and WT mice were subjected to myocardial ischemia (45min) followed by reperfusion for up to 3days. Cardiac function and myocardial infarct size were examined. We also examined the effect of TLR3 deficiency on I/R-induced myocardial apoptosis and inflammatory cytokine production. TLR3(-/-) mice showed significant attenuation of cardiac dysfunction after MI or I/R. Myocardial infarct size and myocardial apoptosis induced by I/R injury were significantly attenuated in TLR3(-/-) mice. TLR3 deficiency increases B-cell lymphoma 2 (BCL2) levels and attenuates I/R-increased Fas, Fas ligand or CD95L (FasL), Fas-Associated protein with Death Domain (FADD), Bax and Bak levels in the myocardium. TLR3 deficiency also attenuates I/R-induced myocardial nuclear factor KappaB (NF-κB) binding activity, Tumor necrosis factor alpha (TNF-α) and Interleukin-1 beta (IL-1β) production as well as I/R-induced infiltration of neutrophils and macrophages into the myocardium. TLR3 plays an important role in myocardial injury induced by MI or I/R. The mechanisms involve activation of apoptotic signaling and NF-κB binding activity. Modulation of TLR3 may be an effective approach for ameliorating heart injury in heart attack patients. © 2013.

  17. Prevention of Adverse Electrical and Mechanical Remodeling with Bi-Ventricular Pacing in a Rabbit Model of Myocardial Infarction

    PubMed Central

    Saba, Samir; Mathier, Michael A.; Mehdi, Haider; Gursoy, Erdal; Liu, Tong; Choi, Bum-Rak; Salama, Guy; London, Barry

    2008-01-01

    Background: Biventricular (BIV) pacing can improve cardiac function in heart failure (HF). Objective: To investigate the mechanisms of benefit of BIV pacing using a rabbit model of myocardial infarction (MI). Methods: New Zealand White rabbits were divided into 4 groups: sham-operated (C), MI with no pacing (MI), MI with right ventricular pacing (MI+RV), and MI with BIV pacing (MI+BIV), and underwent serial electrocardiograms and echocardiograms. At 4 weeks, hearts were excised and tissue was extracted from various areas of the left ventricle (LV). Results: Four weeks after coronary ligation, BIV pacing prevented systolic and diastolic dilation of the LV as well as the reduction in its fractional shortening, restored the QRS width and the rate-dependent QT intervals to their baseline values, and prevented the decline of the ether-a-go-go (erg) protein levels. This prevention of remodeling was not documented in the MI+RV groups. Conclusions: In this rabbit model of BIV pacing and MI, we demonstrate prevention of adverse mechanical and electrical remodeling of the heart. These changes may underlie some of the benefits seen with BIV pacing in HF patients with more severe LV dysfunction. PMID:18180026

  18. Association between left ventricular mechanics and diffuse myocardial fibrosis in patients with repaired Tetralogy of Fallot: a cross-sectional study.

    PubMed

    Haggerty, Christopher M; Suever, Jonathan D; Pulenthiran, Arichanah; Mejia-Spiegeler, Abba; Wehner, Gregory J; Jing, Linyuan; Charnigo, Richard J; Fornwalt, Brandon K; Fogel, Mark A

    2017-12-11

    Patients with repaired tetralogy of Fallot (TOF) have progressive, adverse biventricular remodeling, leading to abnormal contractile mechanics. Defining the mechanisms underlying this dysfunction, such as diffuse myocardial fibrosis, may provide insights into poor long-term outcomes. We hypothesized that left ventricular (LV) diffuse fibrosis is related to impaired LV mechanics. Patients with TOF were evaluated with cardiac magnetic resonance in which modified Look-Locker (MOLLI) T1-mapping and spiral cine Displacement encoding (DENSE) sequences were acquired at three LV short-axis positions. Linear mixed modeling was used to define the association between regional LV mechanics from DENSE based on regional T1-derived diffuse fibrosis measures, such as extracellular volume fraction (ECV). Forty patients (26 ± 11 years) were included. LV ECV was generally within normal range (0.24 ± 0.05). For LV mechanics, peak circumferential strains (-15 ± 3%) and dyssynchrony indices (16 ± 8 ms) were moderately impaired, while peak radial strains (29 ± 8%) were generally normal. After adjusting for patient age, sex, and regional LV differences, ECV was associated with log-adjusted LV dyssynchrony index (β = 0.67) and peak LV radial strain (β = -0.36), but not LV circumferential strain. Moreover, post-contrast T1 was associated with log-adjusted LV diastolic circumferential strain rate (β = 0.37). We observed several moderate associations between measures of fibrosis and impaired mechanics, particularly the LV dyssynchrony index and peak radial strain. Diffuse fibrosis may therefore be a causal factor in some ventricular dysfunction in TOF.

  19. Impaired Right Ventricular-Pulmonary Arterial Coupling and Effect of Sildenafil in Heart Failure With Preserved Ejection Fraction: An Ancillary Analysis From the Phosphodiesterase-5 Inhibition to Improve Clinical Status And Exercise Capacity in Diastolic Heart Failure (RELAX) Trial.

    PubMed

    Hussain, Imad; Mohammed, Selma F; Forfia, Paul R; Lewis, Gregory D; Borlaug, Barry A; Gallup, Dianne S; Redfield, Margaret M

    2016-04-01

    Right ventricular (RV) dysfunction (RVD) is a poor prognostic factor in heart failure with preserved ejection fraction (HFpEF). The physiological perturbations associated with RVD or RV function indexed to load (RV-pulmonary arterial [PA] coupling) in HFpEF have not been defined. HFpEF patients with marked impairment in RV-PA coupling may be uniquely sensitive to sildenafil. In a subset of HFpEF patients enrolled in the Phosphodiesteas-5 Inhibition to Improve Clinical Status And Exercise Capacity in Diastolic Heart Failure (RELAX) trial, physiological variables and therapeutic effect of sildenafil were examined relative to the severity of RVD (tricuspid annular plane systolic excursion [TAPSE]) and according to impairment in RV-PA coupling (TAPSE/pulmonary artery systolic pressure) ratio. The prevalence of atrial fibrillation and diuretic use, n-terminal probrain natriuretic peptide levels, renal dysfunction, neurohumoral activation, myocardial necrosis and fibrosis biomarkers, and the severity of diastolic dysfunction all increased with severity of RVD. Peak oxygen consumption decreased and ventilatory inefficiency (VE/VCO2 slope) increased with increasing severity of RVD. Many but not all physiological derangements were more closely associated with the TAPSE/pulmonary artery systolic pressure ratio. Compared with placebo, at 24 weeks, TAPSE decreased, and peak oxygen consumption and VE/CO2 slope were unchanged with sildenafil. There was no interaction between RV-PA coupling and treatment effect, and sildenafil did not improve TAPSE, peak oxygen consumption, or VE/VCO2 in patients with pulmonary hypertension and RVD. HFpEF patients with RVD and impaired RV-PA coupling have more advanced heart failure. In RELAX patients with RVD and impaired RV-PA coupling, sildenafil did not improve RV function, exercise capacity, or ventilatory efficiency. URL: http://www.clinicaltrials.gov. Unique identifier: NCT00763867. © 2016 American Heart Association, Inc.

  20. First-pass myocardial perfusion MRI with reduced subendocardial dark-rim artifact using optimized Cartesian sampling.

    PubMed

    Zhou, Zhengwei; Bi, Xiaoming; Wei, Janet; Yang, Hsin-Jung; Dharmakumar, Rohan; Arsanjani, Reza; Bairey Merz, C Noel; Li, Debiao; Sharif, Behzad

    2017-02-01

    The presence of subendocardial dark-rim artifact (DRA) remains an ongoing challenge in first-pass perfusion (FPP) cardiac magnetic resonance imaging (MRI). We propose a free-breathing FPP imaging scheme with Cartesian sampling that is optimized to minimize the DRA and readily enables near-instantaneous image reconstruction. The proposed FPP method suppresses Gibbs ringing effects-a major underlying factor for the DRA-by "shaping" the underlying point spread function through a two-step process: 1) an undersampled Cartesian sampling scheme that widens the k-space coverage compared to the conventional scheme; and 2) a modified parallel-imaging scheme that incorporates optimized apodization (k-space data filtering) to suppress Gibbs-ringing effects. Healthy volunteer studies (n = 10) were performed to compare the proposed method against the conventional Cartesian technique-both using a saturation-recovery gradient-echo sequence at 3T. Furthermore, FPP imaging studies using the proposed method were performed in infarcted canines (n = 3), and in two symptomatic patients with suspected coronary microvascular dysfunction for assessment of myocardial hypoperfusion. Width of the DRA and the number of DRA-affected myocardial segments were significantly reduced in the proposed method compared to the conventional approach (width: 1.3 vs. 2.9 mm, P < 0.001; number of segments: 2.6 vs. 8.7; P < 0.0001). The number of slices with severe DRA was markedly lower for the proposed method (by 10-fold). The reader-assigned image quality scores were similar (P = 0.2), although the quantified myocardial signal-to-noise ratio was lower for the proposed method (P < 0.05). Animal studies showed that the proposed method can detect subendocardial perfusion defects and patient results were consistent with the gold-standard invasive test. The proposed free-breathing Cartesian FPP imaging method significantly reduces the prevalence of severe DRAs compared to the conventional approach while maintaining similar resolution and image quality. 2 J. Magn. Reson. Imaging 2017;45:542-555. © 2016 International Society for Magnetic Resonance in Medicine.

  1. Changes in skeletal muscle biochemistry and histology relative to fiber type in rats with heart failure.

    PubMed

    Delp, M D; Duan, C; Mattson, J P; Musch, T I

    1997-10-01

    One of the primary consequences of left ventricular dysfunction (LVD) after myocardial infarction is a decrement in exercise capacity. Several factors have been hypothesized to account for this decrement, including alterations in skeletal muscle metabolism and aerobic capacity. The purpose of this study was to determine whether LVD-induced alterations in skeletal muscle enzyme activities, fiber composition, and fiber size are 1) generalized in muscles or specific to muscles composed primarily of a given fiber type and 2) related to the severity of the LVD. Female Wistar rats were divided into three groups: sham-operated controls (n = 13) and rats with moderate (n = 10) and severe (n = 7) LVD. LVD was surgically induced by ligating the left main coronary artery and resulted in elevations (P < 0.05) in left ventricular end-diastolic pressure (sham, 5 +/- 1 mmHg; moderate LVD, 11 +/- 1 mmHg; severe LVD, 25 +/- 1 mmHg). Moderate LVD decreased the activities of phosphofructokinase (PFK) and citrate synthase in one muscle composed of type IIB fibers but did not modify fiber composition or size of any muscle studied. However, severe LVD diminished the activity of enzymes involved in terminal and beta-oxidation in muscles composed primarily of type I fibers, type IIA fibers, and type IIB fibers. In addition, severe LVD induced a reduction in the activity of PFK in type IIB muscle, a 10% reduction in the percentage of type IID/X fibers, and a corresponding increase in the portion of type IIB fibers. Atrophy of type I fibers, type IIA fibers, and/or type IIB fibers occurred in soleus and plantaris muscles of rats with severe LVD. These data indicate that rats with severe LVD after myocardial infarction exhibit 1) decrements in mitochondrial enzyme activities independent of muscle fiber composition, 2) a reduction in PFK activity in type IIB muscle, 3) transformation of type IID/X to type IIB fibers, and 4) atrophy of type I, IIA, and IIB fibers.

  2. Changes in skeletal muscle biochemistry and histology relative to fiber type in rats with heart failure

    NASA Technical Reports Server (NTRS)

    Delp, M. D.; Duan, C.; Mattson, J. P.; Musch, T. I.

    1997-01-01

    One of the primary consequences of left ventricular dysfunction (LVD) after myocardial infarction is a decrement in exercise capacity. Several factors have been hypothesized to account for this decrement, including alterations in skeletal muscle metabolism and aerobic capacity. The purpose of this study was to determine whether LVD-induced alterations in skeletal muscle enzyme activities, fiber composition, and fiber size are 1) generalized in muscles or specific to muscles composed primarily of a given fiber type and 2) related to the severity of the LVD. Female Wistar rats were divided into three groups: sham-operated controls (n = 13) and rats with moderate (n = 10) and severe (n = 7) LVD. LVD was surgically induced by ligating the left main coronary artery and resulted in elevations (P < 0.05) in left ventricular end-diastolic pressure (sham, 5 +/- 1 mmHg; moderate LVD, 11 +/- 1 mmHg; severe LVD, 25 +/- 1 mmHg). Moderate LVD decreased the activities of phosphofructokinase (PFK) and citrate synthase in one muscle composed of type IIB fibers but did not modify fiber composition or size of any muscle studied. However, severe LVD diminished the activity of enzymes involved in terminal and beta-oxidation in muscles composed primarily of type I fibers, type IIA fibers, and type IIB fibers. In addition, severe LVD induced a reduction in the activity of PFK in type IIB muscle, a 10% reduction in the percentage of type IID/X fibers, and a corresponding increase in the portion of type IIB fibers. Atrophy of type I fibers, type IIA fibers, and/or type IIB fibers occurred in soleus and plantaris muscles of rats with severe LVD. These data indicate that rats with severe LVD after myocardial infarction exhibit 1) decrements in mitochondrial enzyme activities independent of muscle fiber composition, 2) a reduction in PFK activity in type IIB muscle, 3) transformation of type IID/X to type IIB fibers, and 4) atrophy of type I, IIA, and IIB fibers.

  3. Right Ventricular Dysfunction in Chronic Lung Disease

    PubMed Central

    Kolb, Todd M.; Hassoun, Paul M.

    2012-01-01

    Right ventricular dysfunction arises in chronic lung disease when chronic hypoxemia and disruption of pulmonary vascular beds contribute to increase ventricular afterload, and is generally defined by hypertrophy with preserved myocardial contractility and cardiac output. Although the exact prevalence is unknown, right ventricular hypertrophy appears to be a common complication of chronic lung disease, and more frequently complicates advanced lung disease. Right ventricular failure is rare, except during acute exacerbations of chronic lung disease or when multiple co-morbidities are present. Treatment is targeted at correcting hypoxia and improving pulmonary gas exchange and mechanics. There are presently no convincing data to support the use of pulmonary hypertension-specific therapies in patients with right ventricular dysfunction secondary to chronic lung disease. PMID:22548815

  4. Cardiomyocyte Ogt limits ventricular dysfunction in mice following pressure overload without affecting hypertrophy.

    PubMed

    Dassanayaka, Sujith; Brainard, Robert E; Watson, Lewis J; Long, Bethany W; Brittian, Kenneth R; DeMartino, Angelica M; Aird, Allison L; Gumpert, Anna M; Audam, Timothy N; Kilfoil, Peter J; Muthusamy, Senthilkumar; Hamid, Tariq; Prabhu, Sumanth D; Jones, Steven P

    2017-05-01

    The myocardial response to pressure overload involves coordination of multiple transcriptional, posttranscriptional, and metabolic cues. The previous studies show that one such metabolic cue, O-GlcNAc, is elevated in the pressure-overloaded heart, and the increase in O-GlcNAcylation is required for cardiomyocyte hypertrophy in vitro. Yet, it is not clear whether and how O-GlcNAcylation participates in the hypertrophic response in vivo. Here, we addressed this question using patient samples and a preclinical model of heart failure. Protein O-GlcNAcylation levels were increased in myocardial tissue from heart failure patients compared with normal patients. To test the role of OGT in the heart, we subjected cardiomyocyte-specific, inducibly deficient Ogt (i-cmOgt -/- ) mice and Ogt competent littermate wild-type (WT) mice to transverse aortic constriction. Deletion of cardiomyocyte Ogt significantly decreased O-GlcNAcylation and exacerbated ventricular dysfunction, without producing widespread changes in metabolic transcripts. Although some changes in hypertrophic and fibrotic signaling were noted, there were no histological differences in hypertrophy or fibrosis. We next determined whether significant differences were present in i-cmOgt -/- cardiomyocytes from surgically naïve mice. Interestingly, markers of cardiomyocyte dedifferentiation were elevated in Ogt-deficient cardiomyocytes. Although no significant differences in cardiac dysfunction were apparent after recombination, it is possible that such changes in dedifferentiation markers could reflect a larger phenotypic shift within the Ogt-deficient cardiomyocytes. We conclude that cardiomyocyte Ogt is not required for cardiomyocyte hypertrophy in vivo; however, loss of Ogt may exert subtle phenotypic differences in cardiomyocytes that sensitize the heart to pressure overload-induced ventricular dysfunction.

  5. Severity of erectile dysfunction is highly correlated with the syntax score in patients undergoing coronariography

    PubMed Central

    Andrade, Weslley Santiago; Oliveira, Paulo; Laydner, Humberto; Ferreira, Eduardo Jose Pereira; Barreto, Jose Augusto Soares

    2016-01-01

    ABSTRACT Objective To investigate the association between the severity of erectile dysfunction (ED) and coronary artery disease (CAD) in men undergoing coronary angiography for angina or acute myocardial infarct (AMI). Material and Methods We studied 132 males who underwent coronary angiography for first time between January and November 2010. ED severity was assessed by the international index of erectile function (IIEF-5) and CAD severity was assessed by the Syntax score. Patients with CAD (cases) and without CAD (controls) had their IIEF-5 compared. In the group with CAD, their IIEF-5 scores were compared to their Syntax score results. Results We identified 86 patients with and 46 without CAD. The IIEF-5 score of the group without CAD (22.6±0.8) was significantly higher than the group with CAD (12.5±0.5; p<0.0001). In patients without ED, the Syntax score average was 6.3±3.5, while those with moderate or severe ED had a mean Syntax score of 39.0±11.1. After adjustment, ED was independently associated to CAD, with an odds ratio of 40.6 (CI 95%, 14.3-115.3, p<0.0001). The accuracy of the logistic model to correctly identify presence or absence of CAD was 87%, with 92% sensitivity and 78% specificity. The average time that ED was present in patients with CAD was 38.8±2.3 months before coronary symptoms, about twice as high as patients without CAD (18.0±5.1 months). Conclusions ED severity is strongly and independently correlated with CAD complexity, as assessed by the Syntax score in patients undergoing coronariography for evaluation of new onset coronary symptoms. PMID:27136478

  6. Effects of aluminum oxide (Al2O3) nanoparticles on ECG, myocardial inflammatory cytokines, redox state, and connexin 43 and lipid profile in rats: possible cardioprotective effect of gallic acid.

    PubMed

    El-Hussainy, El-Hussainy M A; Hussein, Abdelaziz M; Abdel-Aziz, Azza; El-Mehasseb, Ibrahim

    2016-08-01

    The objectives of present study were to examine the effects of aluminum oxide (Al2O3) nanoparticles on myocardial functions, electrical activities, morphology, inflammation, redox state, and myocardial expression of connexin 43 (Cx43) and the effect of gallic acid (GA) on these effects in a rat animal model. Forty male albino rats were divided into 4 equal groups: the control (normal) group; the Al2O3 group, rats received Al2O3 (30 mg·kg(-1), i.p.) daily for 14 days; the nano-alumina group, rats received nano-alumina (30 mg·kg(-1), i.p.) daily for 14 days; and the nano-alumina + GA group, rats received GA (100 mg·kg(-1) orally once daily) for 14 days before nano-alumina administration. The results showed disturbed ECG variables and significant increases in serum levels of LDH, creatine phosphokinase (CPK), CK-MB, triglycerides (TGs), cholesterol and LDL, nitric oxide (NO), and TNF-α and myocardial concentrations of NO, TNF-α, and malondialdehyde (MDA), with significant decreases in serum HDL and myocardial GSH, SOD, catalase (CAT), and Cx43 expression in the nano-alumina group. Pretreatment with GA improved significantly all parameters except serum and myocardial NO. We concluded that chronic administration of Al2O3 NPs caused myocardial dysfunctions, and pretreatment with GA ameliorates myocardial injury induced by nano-alumina, probably through its hypolipidaemic, anti-inflammatory, and antioxidant effects and upregulation of Cx43 in heart.

  7. Tissue Inhibitor of Matrix Metalloproteinase-1 Promotes Myocardial Fibrosis by Mediating CD63-Integrin β1 Interaction.

    PubMed

    Takawale, Abhijit; Zhang, Pu; Patel, Vaibhav B; Wang, Xiuhua; Oudit, Gavin; Kassiri, Zamaneh

    2017-06-01

    Myocardial fibrosis is excess accumulation of the extracellular matrix fibrillar collagens. Fibrosis is a key feature of various cardiomyopathies and compromises cardiac systolic and diastolic performance. TIMP1 (tissue inhibitor of metalloproteinase-1) is consistently upregulated in myocardial fibrosis and is used as a marker of fibrosis. However, it remains to be determined whether TIMP1 promotes tissue fibrosis by inhibiting extracellular matrix degradation by matrix metalloproteinases or via an matrix metalloproteinase-independent pathway. We examined the function of TIMP1 in myocardial fibrosis using Timp1 -deficient mice and 2 in vivo models of myocardial fibrosis (angiotensin II infusion and cardiac pressure overload), in vitro analysis of adult cardiac fibroblasts, and fibrotic myocardium from patients with dilated cardiomyopathy (DCM). Timp1 deficiency significantly reduced myocardial fibrosis in both in vivo models of cardiomyopathy. We identified a novel mechanism for TIMP1 action whereby, independent from its matrix metalloproteinase-inhibitory function, it mediates an association between CD63 (cell surface receptor for TIMP1) and integrin β1 on cardiac fibroblasts, initiates activation and nuclear translocation of Smad2/3 and β-catenin, leading to de novo collagen synthesis. This mechanism was consistently observed in vivo, in cultured cardiac fibroblasts, and in human fibrotic myocardium. In addition, after long-term pressure overload, Timp1 deficiency persistently reduced myocardial fibrosis and ameliorated diastolic dysfunction. This study defines a novel matrix metalloproteinase-independent function of TIMP1 in promoting myocardial fibrosis. As such targeting TIMP1 could prove to be a valuable approach in developing antifibrosis therapies. © 2017 American Heart Association, Inc.

  8. Current views on neurostimulation in the treatment of cardiac ischemic syndromes.

    PubMed

    Jessurun, G A; DeJongste, M J; Blanksma, P K

    1996-08-01

    Most clinicians are still unacquainted with the beneficial effects of neurostimulation as an additional therapeutic strategy for severe angina pectoris. Patients with therapeutically refractory angina pectoris suffer from chest discomfort during minimal exercise, despite maximal tolerated antianginal drug therapy (at least 2 out of a beta-blocker, calcium-antagonist or long-acting nitrate). In these patients, revascularization procedures, such as a percutaneous transluminal coronary angioplasty or coronary artery bypass surgery, are often technically impossible because of diffuse coronary artery disease or should be withheld as a consequence of absolute contraindications such as severe left ventricular dysfunction. All patients have inoperable multivessel disease, experienced one or more myocardial infarctions, and were treated by earlier invasive interventions. This group of patients are severely physically and psychologically disabled by their intractable angina pectoris. Available published data and the neurostimulation experience of the authors are reviewed in relation to the treatment of cardiac ischemic syndromes. We conclude that neurostimulation is an effective therapeutic adjuvant for patients with severe angina pectoris unresponsive to standard treatment. This treatment modality appears to be safe, and a promising tool for other ischemic cardiac syndromes.

  9. Acute impairment of regional myocardial glucose uptake in the apical ballooning (takotsubo) syndrome.

    PubMed

    Bybee, Kevin A; Murphy, Joseph; Prasad, Abhiram; Wright, R Scott; Lerman, Amir; Rihal, Charanjit S; Chareonthaitawee, Panithaya

    2006-01-01

    Apical ballooning syndrome (ABS) is a poorly understood clinical entity characterized by acute, transient systolic dysfunction of the left ventricular (LV) apex in the absence of epicardial coronary artery disease and commonly associated with acute emotional stress. We report abnormal regional myocardial perfusion and glucose uptake in 4 consecutive ABS patients studied using positron emission tomography with 13N-ammonia and 18F-fluorodeoxyglucose within 72 hours of presentation with ABS. All patients were postmenopausal females, 3 of whom had a major recent life stress event. Coronary angiography revealed no or minimal obstructive epicardial coronary artery disease. All patients exhibited reduced glucose uptake in the mid-LV and apical myocardial segments, which was out of proportion to perfusion abnormalities in half of the cases. In all 4 patients, affected regions subsequently recovered regional LV systolic function within 6 weeks.

  10. Incretin-related drug therapy in heart failure.

    PubMed

    Vest, Amanda R

    2015-02-01

    The new pharmacological classes of GLP-1 agonists and DPP-4 inhibitors are now widely used in diabetes and have been postulated as beneficial in heart failure. These proposed benefits arise from the inter-related pathophysiologies of diabetes and heart failure (diabetes increases the risk of heart failure, and heart failure can induce insulin resistance) and also in light of the dysfunctional myocardial energetics seen in heart failure. The normal heart utilizes predominantly fatty acids for energy production, but there is some evidence to suggest that increased myocardial glucose uptake may be beneficial for the failing heart. Thus, GLP-1 agonists, which stimulate glucose-dependent insulin release and enhance myocardial glucose uptake, have become a focus of investigation in both animal models and humans with heart failure. Limited pilot data for GLP-1 agonists shows potential improvements in systolic function, hemodynamics, and quality of life, forming the basis for current phase II trials.

  11. Discrete microstructural cues for the attenuation of fibrosis following myocardial infarction.

    PubMed

    Pinney, James R; Du, Kim T; Ayala, Perla; Fang, Qizhi; Sievers, Richard E; Chew, Patrick; Delrosario, Lawrence; Lee, Randall J; Desai, Tejal A

    2014-10-01

    Chronic fibrosis caused by acute myocardial infarction (MI) leads to increased morbidity and mortality due to cardiac dysfunction. We have developed a therapeutic materials strategy that aims to mitigate myocardial fibrosis by utilizing injectable polymeric microstructures to mechanically alter the microenvironment. Polymeric microstructures were fabricated using photolithographic techniques and studied in a three-dimensional culture model of the fibrotic environment and by direct injection into the infarct zone of adult rats. Here, we show dose-dependent down-regulation of expression of genes associated with the mechanical fibrotic response in the presence of microstructures. Injection of this microstructured material into the infarct zone decreased levels of collagen and TGF-β, increased elastin deposition and vascularization in the infarcted region, and improved functional outcomes after six weeks. Our results demonstrate the efficacy of these discrete anti-fibrotic microstructures and suggest a potential therapeutic materials approach for combatting pathologic fibrosis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. A case of reversible dilated cardiomyopathy after alpha-interferon therapy in a patient with renal cell carcinoma.

    PubMed

    Kuwata, Akiko; Ohashi, Masuo; Sugiyama, Masaya; Ueda, Ryuzo; Dohi, Yasuaki

    2002-12-01

    A 47-year-old man with renal cell carcinoma underwent nephrectomy, and postoperative chemotherapy was performed with recombinant alpha-interferon. Five years later, he experienced dyspnea during physical exertion. An echocardiogram revealed dilatation and systolic dysfunction of the left ventricle, and thallium-201 myocardial scintigraphy showed diffuse heterogeneous perfusion. We diagnosed congestive heart failure because of cardiomyopathy induced by alpha-interferon therapy. Withdrawal of interferon therapy and the combination of an angiotensin-converting enzyme inhibitor, diuretics, and digitalis improved left ventricular systolic function. Furthermore, myocardial scintigraphy using [123I] beta-methyl-p-iodophenylpentadecanoic acid (123I-BMIPP) or [123 I]metaiodobenzylguanidine (123I-MIBG) revealed normal perfusion after the improvement of congestive heart failure. This is a rare case of interferon-induced cardiomyopathy that resulted in normal myocardial images in 123I-BMIPP and 123I-MIBG scintigrams after withdrawal of interferon therapy.

  13. Fisetin Confers Cardioprotection against Myocardial Ischemia Reperfusion Injury by Suppressing Mitochondrial Oxidative Stress and Mitochondrial Dysfunction and Inhibiting Glycogen Synthase Kinase 3β Activity.

    PubMed

    Shanmugam, Karthi; Ravindran, Sriram; Kurian, Gino A; Rajesh, Mohanraj

    2018-01-01

    Acute myocardial infarction (AMI) is the leading cause of morbidity and mortality worldwide. Timely reperfusion is considered an optimal treatment for AMI. Paradoxically, the procedure of reperfusion can itself cause myocardial tissue injury. Therefore, a strategy to minimize the reperfusion-induced myocardial tissue injury is vital for salvaging the healthy myocardium. Herein, we investigated the cardioprotective effects of fisetin, a natural flavonoid, against ischemia/reperfusion (I/R) injury (IRI) using a Langendorff isolated heart perfusion system. I/R produced significant myocardial tissue injury, which was characterized by elevated levels of lactate dehydrogenase and creatine kinase in the perfusate and decreased indices of hemodynamic parameters. Furthermore, I/R resulted in elevated oxidative stress, uncoupling of the mitochondrial electron transport chain, increased mitochondrial swelling, a decrease of the mitochondrial membrane potential, and induction of apoptosis. Moreover, IRI was associated with a loss of the mitochondrial structure and decreased mitochondrial biogenesis. However, when the animals were pretreated with fisetin, it significantly attenuated the I/R-induced myocardial tissue injury, blunted the oxidative stress, and restored the structure and function of mitochondria. Mechanistically, the fisetin effects were found to be mediated via inhibition of glycogen synthase kinase 3 β (GSK3 β ), which was confirmed by a biochemical assay and molecular docking studies.

  14. Diabetes-induced changes in specific lipid molecular species in rat myocardium.

    PubMed Central

    Han, X; Abendschein, D R; Kelley, J G; Gross, R W

    2000-01-01

    Intrinsic cardiac dysfunction during the diabetic state has been causally linked to changes in myocardial lipid metabolism. However, the precise alterations in the molecular species of myocardial polar and non-polar lipids during the diabetic state and their responses to insulin have not been investigated. Herein we demonstrate four specific alterations in rat myocardial lipid molecular species after induction of the diabetic state by streptozotocin treatment: (i) a massive remodelling of triacylglycerol molecular species including a >5-fold increase in tripalmitin mass and a 60% decrease in polyunsaturated triacylglycerol molecular species mass (i.e. triacylglycerols containing at least one acyl residue with more than two double bonds); (ii) a 46% increase in myocardial phosphatidylinositol mass; (iii) a 44% increase in myocardial plasmenylethanolamine mass and (iv) a 22% decrease in 1-stearoyl-2-arachidonoyl phosphatidylethanolamine content. Each of the changes in phospholipid classes, subclasses and individual molecular species were prevented by insulin treatment after induction of the diabetic state. In sharp contrast, the alterations in triacylglycerol molecular species were not preventable by peripheral insulin treatment after induction of the diabetic state. These results segregate diabetes-induced alterations in myocardial lipid metabolism into changes that can be remedied or not by routine peripheral insulin treatment and suggest that peripheral insulin therapy alone may not be sufficient to correct all of the metabolic alterations present in diabetic myocardium. PMID:11062060

  15. Extracts of Crataegus oxyacantha and Rosmarinus officinalis Attenuate Ischemic Myocardial Damage by Decreasing Oxidative Stress and Regulating the Production of Cardiac Vasoactive Agents.

    PubMed

    Cuevas-Durán, Raúl Enrique; Medrano-Rodríguez, Juan Carlos; Sánchez-Aguilar, María; Soria-Castro, Elizabeth; Rubio-Ruíz, María Esther; Del Valle-Mondragón, Leonardo; Sánchez-Mendoza, Alicia; Torres-Narvaéz, Juan Carlos; Pastelín-Hernández, Gustavo; Ibarra-Lara, Luz

    2017-11-14

    Numerous studies have supported a role for oxidative stress in the development of ischemic damage and endothelial dysfunction. Crataegus oxyacantha ( Co ) and Rosmarinus officinalis ( Ro ) extracts are polyphenolic-rich compounds that have proven to be efficient in the treatment of cardiovascular diseases. We studied the effect of extracts from Co and Ro on the myocardial damage associated with the oxidative status and to the production of different vasoactive agents. Rats were assigned to the following groups: (a) sham; (b) vehicle-treated myocardial infarction (MI) (MI-V); (c) Ro extract-treated myocardial infarction (MI- Ro ); (d) Co extract-treated myocardial infarction (MI- Co ); or (e) Ro+Co -treated myocardial infarction (MI- Ro+Co ). Ro and Co treatments increased total antioxidant capacity, the expression of superoxide dismutase (SOD)-Cu 2+ /Zn 2+ , SOD-Mn 2+ , and catalase, with the subsequent decline of malondialdehyde and 8-hydroxy-2'-deoxyguanosine levels. The extracts diminished vasoconstrictor peptide levels (angiotensin II and endothelin-1), increased vasodilators agents (angiotensin 1-7 and bradikinin) and improved nitric oxide metabolism. Polyphenol treatment restored the left intraventricular pressure and cardiac mechanical work. We conclude that Ro and Co treatment attenuate morphological and functional ischemic-related changes by both an oxidant load reduction and improvement of the balance between vasoconstrictors and vasodilators.

  16. Extracts of Crataegus oxyacantha and Rosmarinus officinalis Attenuate Ischemic Myocardial Damage by Decreasing Oxidative Stress and Regulating the Production of Cardiac Vasoactive Agents

    PubMed Central

    Cuevas-Durán, Raúl Enrique; Medrano-Rodríguez, Juan Carlos; Sánchez-Aguilar, María; Soria-Castro, Elizabeth; Del Valle-Mondragón, Leonardo; Sánchez-Mendoza, Alicia; Torres-Narvaéz, Juan Carlos; Pastelín-Hernández, Gustavo; Ibarra-Lara, Luz

    2017-01-01

    Numerous studies have supported a role for oxidative stress in the development of ischemic damage and endothelial dysfunction. Crataegus oxyacantha (Co) and Rosmarinus officinalis (Ro) extracts are polyphenolic-rich compounds that have proven to be efficient in the treatment of cardiovascular diseases. We studied the effect of extracts from Co and Ro on the myocardial damage associated with the oxidative status and to the production of different vasoactive agents. Rats were assigned to the following groups: (a) sham; (b) vehicle-treated myocardial infarction (MI) (MI-V); (c) Ro extract-treated myocardial infarction (MI-Ro); (d) Co extract-treated myocardial infarction (MI-Co); or (e) Ro+Co-treated myocardial infarction (MI-Ro+Co). Ro and Co treatments increased total antioxidant capacity, the expression of superoxide dismutase (SOD)-Cu2+/Zn2+, SOD-Mn2+, and catalase, with the subsequent decline of malondialdehyde and 8-hydroxy-2′-deoxyguanosine levels. The extracts diminished vasoconstrictor peptide levels (angiotensin II and endothelin-1), increased vasodilators agents (angiotensin 1–7 and bradikinin) and improved nitric oxide metabolism. Polyphenol treatment restored the left intraventricular pressure and cardiac mechanical work. We conclude that Ro and Co treatment attenuate morphological and functional ischemic-related changes by both an oxidant load reduction and improvement of the balance between vasoconstrictors and vasodilators. PMID:29135932

  17. Myocardial strain estimation from CT: towards computer-aided diagnosis on infarction identification

    NASA Astrophysics Data System (ADS)

    Wong, Ken C. L.; Tee, Michael; Chen, Marcus; Bluemke, David A.; Summers, Ronald M.; Yao, Jianhua

    2015-03-01

    Regional myocardial strains have the potential for early quantification and detection of cardiac dysfunctions. Although image modalities such as tagged and strain-encoded MRI can provide motion information of the myocardium, they are uncommon in clinical routine. In contrary, cardiac CT images are usually available, but they only provide motion information at salient features such as the cardiac boundaries. To estimate myocardial strains from a CT image sequence, we adopted a cardiac biomechanical model with hyperelastic material properties to relate the motion on the cardiac boundaries to the myocardial deformation. The frame-to-frame displacements of the cardiac boundaries are obtained using B-spline deformable image registration based on mutual information, which are enforced as boundary conditions to the biomechanical model. The system equation is solved by the finite element method to provide the dense displacement field of the myocardium, and the regional values of the three principal strains and the six strains in cylindrical coordinates are computed in terms of the American Heart Association nomenclature. To study the potential of the estimated regional strains on identifying myocardial infarction, experiments were performed on cardiac CT image sequences of ten canines with artificially induced myocardial infarctions. The leave-one-subject-out cross validations show that, by using the optimal strain magnitude thresholds computed from ROC curves, the radial strain and the first principal strain have the best performance.

  18. Alterations in left ventricular diastolic function in conscious dogs with pacing-induced heart failure

    NASA Technical Reports Server (NTRS)

    Komamura, K.; Shannon, R. P.; Pasipoularides, A.; Ihara, T.; Lader, A. S.; Patrick, T. A.; Bishop, S. P.; Vatner, S. F.

    1992-01-01

    We investigated in conscious dogs (a) the effects of heart failure induced by chronic rapid ventricular pacing on the sequence of development of left ventricular (LV) diastolic versus systolic dysfunction and (b) whether the changes were load dependent or secondary to alterations in structure. LV systolic and diastolic dysfunction were evident within 24 h after initiation of pacing and occurred in parallel over 3 wk. LV systolic function was reduced at 3 wk, i.e., peak LV dP/dt fell by -1,327 +/- 105 mmHg/s and ejection fraction by -22 +/- 2%. LV diastolic dysfunction also progressed over 3 wk of pacing, i.e., tau increased by +14.0 +/- 2.8 ms and the myocardial stiffness constant by +6.5 +/- 1.4, whereas LV chamber stiffness did not change. These alterations were associated with increases in LV end-systolic (+28.6 +/- 5.7 g/cm2) and LV end-diastolic stresses (+40.4 +/- 5.3 g/cm2). When stresses and heart rate were matched at the same levels in the control and failure states, the increases in tau and myocardial stiffness were no longer observed, whereas LV systolic function remained depressed. There were no increases in connective tissue content in heart failure. Thus, pacing-induced heart failure in conscious dogs is characterized by major alterations in diastolic function which are reversible with normalization of increased loading condition.

  19. Endothelial dysfunction in patients with coronary atherosclerosis.

    PubMed

    Chapidze, L; Kapanadze, S; Dolidze, N; Bakhutashvili, Z; Latsabidze, N

    2007-01-01

    It is well known that endothelial dysfunction as a nontraditional risk factor is an important early event in the pathogenesis of coronary atherosclerosis, contributing to plaque initiation and progression. In order to assess endothelial function plasma nitric oxide (NO) concentrations were determined. A total of 157 patients (119 men and 38 women, mean age 57+/-5,4 years) with coronary atherosclerosis were enrolled in the research. The study was cross-sectional in design. Most of the patients (n=127) had undergone myocardial revascularization procedures. There was statistically significant difference in mean values of plasma nitric oxide levels between patients with coronary atherosclerosis and healthy subjects (11,1+/-2,52 mkmol/L and 22,3+/-3,27 mkmol/L, respectively. p<0,01). Among all 157 patients only 17% had normal NO concentrations. In 59% cases low and in 24% cases high nitric oxide levels were found. Extent of coronary artery disease was associated with severity of endothelial dysfunction. The patients with three-vessel disease had the lowest mean plasma NO concentration. There was statistically significant negative correlation between mean plasma NO level and extent of coronary artery disease. Measurement of plasma nitric oxide concentration will give useful information for cardiologists, modification of abnormal levels of this parameter may delay progression of aggressive atherosclerotic process and thus, may prevent recurrent coronary events in patients with coronary atherosclerosis.

  20. The Psycho-cardiac Coupling, Myocardial Remodeling, and Neuroendocrine Factor Levels: The Psychosomatics of Major Depressive Disorder.

    PubMed

    Syeda, Javeria N; Rutkofsky, Ian H; Muhammad, Adnan S; Balla Abdalla, Tarig H; Saghir, Zahid

    2018-04-11

    The association of major depressive disorder (MDD) with myocardial infarction (MI) and vice versa is not unknown. Depression, along with many other systemic factors like atherosclerosis, obesity, diabetes and vascular dysfunction, contributes to the development of adverse cardiac events in the future and, has always been a topic of interest in the fields of cardiology and psychosomatics. We wrote this review article to elaborate this relationship in detail. This article suggests that the individuals with type D personality who already had cardiovascular disease had undergone more serious myocardial damage. In addition, we elucidated the effects of depression on sympathetic activity and remodeling of myocardium after MI. The alterations in the neuroendocrine factors, which included the changes in levels of Serotonin (5-HT), Norepinephrine and Corticosterone, also geared towards the changes associated with depression-induced myocardial injury. However, we need more studies in the near future to further dig into this association process. Therefore, we recommend more research to explore the relationship of psychological factors and adverse cardiac outcomes.

  1. [Structural and functional changes of myocardium in Chernobyl disaster clean-up workers with atrial fibrillation].

    PubMed

    Khomaziuk, I M; Habulavichene, Zh M; Khomaziuk, V A

    2011-01-01

    Particularities and clinical importance of the structural and functional changes of myocardium were estimated in Chernobyl disaster clean-up workers with atrial fibrillation (AF). We examined 122 men with AF, which was associated with ischemic heart disease and arterial hypertension. Paroxysmal AF was diagnosed in 42 patients, 80 patients had permanent AE Control group comprised 80 men without AF. Echocardiography and Doppler studies were performed using ultrasound scanner Aloka SSD-630 (Japan). Significant structural and functional changes of the heart were revealed already in paroxysmal AF and became more pronounced in permanent AF. Increased left atrial size, its ratio to left ventricular end diastolic diameter, diastolic dysfunction were important echocardiographic predictors of AF. Heart walls thickening was accompanied by disorders of myocardial relaxation, increase in myocardial mass led to ischemia, and together they promoted overload, dysfunction of atrium and development of AF. Obligatory echocardiographic examination of the Chernobyl disaster clean-up workers with ischemic heart disease and arterial hypertension is necessary for predicting AF early, ordering adequate therapy in proper time and improving prognosis.

  2. Combining neuroendocrine inhibitors in heart failure: reflections on safety and efficacy.

    PubMed

    Jneid, Hani; Moukarbel, George V; Dawson, Bart; Hajjar, Roger J; Francis, Gary S

    2007-12-01

    Neuroendocrine activation in heart failure has become the major target of pharmacotherapy for this growing epidemic. Agents targeting the renin-angiotensin-aldosterone and sympathetic nervous systems have shown cardiovascular and survival benefits in clinical trials. Beta-blockers and angiotensin-converting enzyme (ACE) inhibitors remain the mainstream initial therapy. The benefits of aldosterone antagonists have been demonstrated in advanced heart failure (spironolactone) and after myocardial infarction complicated by left ventricular dysfunction and heart failure (eplerenone). Emerging clinical evidence demonstrated that angiotensin receptor blockers may be a reasonable alternative to ACE inhibitors in patients with heart failure (candesartan) and following myocardial infarction complicated by heart failure or left ventricular dysfunction (valsartan). Angiotensin receptor blockers (candesartan) also provided incremental benefits when added to ACE inhibitors in chronic heart failure. Thus, combining neuroendocrine inhibitors in heart failure appears both biologically plausible and evidence-based. However, this approach raised concerns about side effects, such as hypotension, renal insufficiency, hyperkalemia, and others. Close follow-up and implementation of evidence-based medicine (ie, using agents and doses proven beneficial in clinical trials) should therefore be undertaken when combining neuroendocrine inhibitors.

  3. Low molecular weight fibroblast growth factor-2 signals via protein kinase C and myofibrillar proteins to protect against postischemic cardiac dysfunction.

    PubMed

    Manning, Janet R; Perkins, Sarah O; Sinclair, Elizabeth A; Gao, Xiaoqian; Zhang, Yu; Newman, Gilbert; Pyle, W Glen; Schultz, Jo El J

    2013-05-15

    Among its many biological roles, fibroblast growth factor-2 (FGF2) acutely protects the heart from dysfunction associated with ischemia/reperfusion (I/R) injury. Our laboratory has demonstrated that this is due to the activity of the low molecular weight (LMW) isoform of FGF2 and that FGF2-mediated cardioprotection relies on the activity of protein kinase C (PKC); however, which PKC isoforms are responsible for LMW FGF2-mediated cardioprotection, and their downstream targets, remain to be elucidated. To identify the PKC pathway(s) that contributes to postischemic cardiac recovery by LMW FGF2, mouse hearts expressing only LMW FGF2 (HMWKO) were bred to mouse hearts not expressing PKCα (PKCαKO) or subjected to a selective PKCε inhibitor (εV(1-2)) before and during I/R. Hearts only expressing LMW FGF2 showed significantly improved postischemic recovery of cardiac function following I/R (P < 0.05), which was significantly abrogated in the absence of PKCα (P < 0.05) or presence of PKCε inhibition (P < 0.05). Hearts only expressing LMW FGF2 demonstrated differences in actomyosin ATPase activity as well as increases in the phosphorylation of troponin I and T during I/R compared with wild-type hearts; several of these effects were dependent on PKCα activity. This evidence indicates that both PKCα and PKCε play a role in LMW FGF2-mediated protection from cardiac dysfunction and that PKCα signaling to the contractile apparatus is a key step in the mechanism of LMW FGF2-mediated protection against myocardial dysfunction.

  4. Phloretin ameliorates 2-chlorohexadecanal-mediated brain microvascular endothelial cell dysfunction in vitro.

    PubMed

    Ullen, Andreas; Fauler, Günter; Bernhart, Eva; Nusshold, Christoph; Reicher, Helga; Leis, Hans-Jörg; Malle, Ernst; Sattler, Wolfgang

    2012-11-01

    2-Chlorohexadecanal (2-ClHDA), a chlorinated fatty aldehyde, is formed via attack on ether-phospholipids by hypochlorous acid (HOCl) that is generated by the myeloperoxidase-hydrogen peroxide-chloride system of activated leukocytes. 2-ClHDA levels are elevated in atherosclerotic lesions, myocardial infarction, and neuroinflammation. Neuroinflammatory conditions are accompanied by accumulation of neutrophils (an ample source of myeloperoxidase) in the brain. Microvessel damage by inflammatory mediators and/or reactive oxidants can induce blood-brain barrier (BBB) dysfunction, a pathological condition leading to cerebral edema, brain hemorrhage, and neuronal death. In this in vitro study we investigated the impact of 2-ClHDA on brain microvascular endothelial cells (BMVEC), which constitute the morphological basis of the BBB. We show that exogenously added 2-ClHDA is subject to rapid uptake and metabolism by BMVEC. Using C16 structural analogues of 2-ClHDA we found that the cytotoxic potential decreases in the following order: 2-ClHDA>hexadecanal>palmitic acid>2-ClHDA-dimethylacetal. 2-ClHDA induces loss of barrier function, mitochondrial dysfunction, apoptosis via activation of caspase 3, and altered intracellular redox balance. Finally we investigated potential protective effects of several natural polyphenols on in vitro BBB function. Of the compounds tested, phloretin almost completely abrogated 2-ClHDA-induced BMVEC barrier dysfunction and cell death. These data suggest that 2-ClHDA has the potential to induce BBB breakdown under inflammatory conditions and that phloretin confers protection in this experimental setting. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Role of myocardial collagen degradation and fibrosis in right ventricle dysfunction in transposition of the great arteries after atrial switch.

    PubMed

    Ladouceur, Magalie; Baron, Stephanie; Nivet-Antoine, Valérie; Maruani, Gérard; Soulat, Gilles; Pereira, Helena; Blanchard, Anne; Boutouyrie, Pierre; Paul, Jean Louis; Mousseaux, Elie

    2018-05-01

    Heart failure is a serious event in patients with transposition of the great arteries (D-TGA) after atrial redirection surgery. We aimed to determine the association between myocardial fibrosis and systolic and diastolic systemic right ventricle (sRV) dysfunction. Diastolic and systolic function of sRV was prospectively assessed using echocardiography and cardiac magnetic resonance imaging (CMR) in 48 patients with atrially switched D-TGA and 26 healthy subjects. Diastolic function of the subaortic ventricle was assessed by echocardiography Doppler and DTI. In CMR, ejection fraction of sRV and wall stress defined as the product of the systolic blood pressure and volume/mass ratio were assessed. Fibrosis extent within sRV myocardium was evaluated using gadolinium-enhanced magnetic resonance and serum collagen turnover biomarkers. Late gadolinium enhancement (LGE) was found in 35% of D-TGA patients, and the collagen degradation biomarker pro-MMP1:TIMP1 ratio was significantly increased in D-TGA patients compared to healthy subjects (1.0 × 10 -2 vs. 2.5 × 10 -2 , p = 0.04). Increase in sRV wall stress was significantly associated with LGE (p = 0.01) and pro-MMP1:TIMP1 ratio (r = 0.77, p < 0.01). After adjustment for age, sex, BMI, blood pressure and cardiac treatment, pro-MMP1:TIMP1 ratio was the strongest determinant of sRVEF (R 2  = 0.85, p < 0.01). Pro-MMP1:TIMP1 ratio was also significantly correlated with the early diastolic filling parameter E/E' (r = 0.53, p = 0.02), but this was not anymore the case after adjustment. Diastolic and systolic sRV dysfunction is related to myocardial collagen degradation and fibrosis. Research in medical therapies that reduce systemic sRV afterload and limit collagen degradation is warranted in this setting. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Chronic plus binge ethanol feeding induces myocardial oxidative stress, mitochondrial and cardiovascular dysfunction, and steatosis

    PubMed Central

    Matyas, Csaba; Varga, Zoltan V.; Mukhopadhyay, Partha; Paloczi, Janos; Lajtos, Tamas; Erdelyi, Katalin; Nemeth, Balazs T.; Nan, Mintong; Hasko, Gyorgy; Gao, Bin

    2016-01-01

    Alcoholic cardiomyopathy in humans develops in response to chronic excessive alcohol consumption; however, good models of alcohol-induced cardiomyopathy in mice are lacking. Herein we describe mouse models of alcoholic cardiomyopathies induced by chronic and binge ethanol (EtOH) feeding and characterize detailed hemodynamic alterations, mitochondrial function, and redox signaling in these models. Mice were fed a liquid diet containing 5% EtOH for 10, 20, and 40 days (d) combined with single or multiple EtOH binges (5 g/kg body wt). Isocalorically pair-fed mice served as controls. Left ventricular (LV) function and morphology were assessed by invasive pressure-volume conductance approach and by echocardiography. Mitochondrial complex (I, II, IV) activities, 3-nitrotyrosine (3-NT) levels, gene expression of markers of oxidative stress (gp91phox, p47phox), mitochondrial biogenesis (PGC1α, peroxisome proliferator-activated receptor α), and fibrosis were examined. Cardiac steatosis and fibrosis were investigated by histological/immunohistochemical methods. Chronic and binge EtOH feeding (already in 10 days EtOH plus single binge group) was characterized by contractile dysfunction (decreased slope of end-systolic pressure-volume relationship and preload recruitable stroke work), impaired relaxation (decreased time constant of LV pressure decay and maximal slope of systolic pressure decrement), and vascular dysfunction (impaired arterial elastance and lower total peripheral resistance). This was accompanied by enhanced myocardial oxidative/nitrative stress (3-NT; gp91phox; p47phox; angiotensin II receptor, type 1a) and deterioration of mitochondrial complex I, II, IV activities and mitochondrial biogenesis, excessive cardiac steatosis, and higher mortality. Collectively, chronic plus binge EtOH feeding in mice leads to alcohol-induced cardiomyopathies (National Institute on Alcohol Abuse and Alcoholism models) characterized by increased myocardial oxidative/nitrative stress, impaired mitochondrial function and biogenesis, and enhanced cardiac steatosis. PMID:27106042

  7. Chronic plus binge ethanol feeding induces myocardial oxidative stress, mitochondrial and cardiovascular dysfunction, and steatosis.

    PubMed

    Matyas, Csaba; Varga, Zoltan V; Mukhopadhyay, Partha; Paloczi, Janos; Lajtos, Tamas; Erdelyi, Katalin; Nemeth, Balazs T; Nan, Mintong; Hasko, Gyorgy; Gao, Bin; Pacher, Pal

    2016-06-01

    Alcoholic cardiomyopathy in humans develops in response to chronic excessive alcohol consumption; however, good models of alcohol-induced cardiomyopathy in mice are lacking. Herein we describe mouse models of alcoholic cardiomyopathies induced by chronic and binge ethanol (EtOH) feeding and characterize detailed hemodynamic alterations, mitochondrial function, and redox signaling in these models. Mice were fed a liquid diet containing 5% EtOH for 10, 20, and 40 days (d) combined with single or multiple EtOH binges (5 g/kg body wt). Isocalorically pair-fed mice served as controls. Left ventricular (LV) function and morphology were assessed by invasive pressure-volume conductance approach and by echocardiography. Mitochondrial complex (I, II, IV) activities, 3-nitrotyrosine (3-NT) levels, gene expression of markers of oxidative stress (gp91phox, p47phox), mitochondrial biogenesis (PGC1α, peroxisome proliferator-activated receptor α), and fibrosis were examined. Cardiac steatosis and fibrosis were investigated by histological/immunohistochemical methods. Chronic and binge EtOH feeding (already in 10 days EtOH plus single binge group) was characterized by contractile dysfunction (decreased slope of end-systolic pressure-volume relationship and preload recruitable stroke work), impaired relaxation (decreased time constant of LV pressure decay and maximal slope of systolic pressure decrement), and vascular dysfunction (impaired arterial elastance and lower total peripheral resistance). This was accompanied by enhanced myocardial oxidative/nitrative stress (3-NT; gp91phox; p47phox; angiotensin II receptor, type 1a) and deterioration of mitochondrial complex I, II, IV activities and mitochondrial biogenesis, excessive cardiac steatosis, and higher mortality. Collectively, chronic plus binge EtOH feeding in mice leads to alcohol-induced cardiomyopathies (National Institute on Alcohol Abuse and Alcoholism models) characterized by increased myocardial oxidative/nitrative stress, impaired mitochondrial function and biogenesis, and enhanced cardiac steatosis. Copyright © 2016 the American Physiological Society.

  8. Gender Differences in Left Ventricular Function Following Percutaneous Coronary Intervention for First Anterior Wall ST-Segment Elevation Myocardial Infarction.

    PubMed

    Weissler-Snir, Adaya; Kornowski, Ran; Sagie, Alexander; Vaknin-Assa, Hana; Perl, Leor; Porter, Avital; Lev, Eli; Assali, Abid

    2014-11-15

    Little is known regarding gender differences in left ventricular (LV) function after anterior wall ST-segment elevation myocardial infarction (STEMI), despite it being a major determinant of patients' morbidity and mortality. We therefore sought to investigate the impact of gender on LV function after primary percutaneous coronary intervention (PCI) for first anterior wall STEMI. Seven hundred eighty-nine consecutive patients (625 men) with first anterior STEMI were included in the analysis. All patients underwent an echocardiographic study within 48 hours of PCI. Women were older and more likely to have diabetes, hypertension, chronic renal failure, and a higher Killip score. Women had prolonged ischemic time, which was driven by prolonged symptom-to-presentation time (2.75 [interquartile range 1.5 to 4] vs 2 [interquartile range 1 to 3.5] hours, p = 0.005). A higher percentage of women had moderate or worse LV dysfunction (LV ejection fraction <40%; 61.6% vs 48%, p = 0.002). In a univariable analysis female gender was associated with moderate or worse LV function (p = 0.002). However, after accounting for variable baseline risk profiles between the 2 groups using multivariable and propensity score techniques, ischemic time >3.5 hours, leukocytosis, and pre-PCI Thrombolysis In Myocardial Infarction flow grade <2 were independent predictors of moderate or worse LV dysfunction, whereas female gender was not. Data on LV function recovery at 6 months, which were available for 45% of female and male patients with moderate or worse LV dysfunction early after PCI, showed no significant gender related difference in LV function recovery. In conclusion, women undergoing PCI for the first event of anterior STEMI demonstrate worse LV function than that of men, which might be partially attributed to delay in presentation. Hence greater efforts should be devoted to increasing women's awareness of cardiac symptoms during the prehospital course of STEMI. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Adenosine A2A receptor agonist prevents cardiac remodeling and dysfunction in spontaneously hypertensive male rats after myocardial infarction

    PubMed Central

    da Silva, Jaqueline S; Gabriel-Costa, Daniele; Sudo, Roberto T; Wang, Hao; Groban, Leanne; Ferraz, Emanuele B; Nascimento, José Hamilton M; Fraga, Carlos Alberto M; Barreiro, Eliezer J; Zapata-Sudo, Gisele

    2017-01-01

    Background This work evaluated the hypothesis that 3,4-methylenedioxybenzoyl-2-thienylhydrazone (LASSBio-294), an agonist of adenosine A2A receptor, could be beneficial for preventing cardiac dysfunction due to hypertension associated with myocardial infarction (MI). Methods Male spontaneously hypertensive rats (SHR) were randomly divided into four groups (six animals per group): sham-operation (SHR-Sham), and myocardial infarction rats (SHR-MI) were treated orally either with vehicle or LASSBio-294 (10 and 20 mg.kg−1.d−1) for 4 weeks. Echocardiography and in vivo hemodynamic parameters measured left ventricle (LV) structure and function. Exercise tolerance was evaluated using a treadmill test. Cardiac remodeling was accessed by LV collagen deposition and tumor necrosis factor α expression. Results Early mitral inflow velocity was significantly reduced in the SHR-MI group, and there was significant recovery in a dose-dependent manner after treatment with LASSBio-294. Exercise intolerance observed in the SHR-MI group was prevented by 10 mg.kg−1.d−1 of LASS-Bio-294, and exercise tolerance exceeded that of the SHR-Sham group at 20 mg.kg−1.d−1. LV end-diastolic pressure increased after MI, and this was prevented by 10 and 20 mg.kg−1.d−1 of LASSBio-294. Sarcoplasmic reticulum Ca2+ ATPase levels were restored in a dose-dependent manner after treatment with LASSBio-294. Fibrosis and inflammatory processes were also counteracted by LASSBio-294, with reductions in LV collagen deposition and tumor necrosis factor α expression. Conclusion In summary, oral administration of LASSBio-294 after MI in a dose-dependent manner prevented the development of cardiac dysfunction, demonstrating this compound’s potential as an alternative treatment for heart failure in the setting of ischemic heart disease with superimposed chronic hypertension. PMID:28293100

  10. Perioperative Assessment of Myocardial Deformation

    PubMed Central

    Duncan, Andra E.; Alfirevic, Andrej; Sessler, Daniel I.; Popovic, Zoran B.; Thomas, James D.

    2014-01-01

    Evaluation of left ventricular performance improves risk assessment and guides anesthetic decisions. However, the most common echocardiographic measure of myocardial function, the left ventricular ejection fraction (LVEF), has important limitations. LVEF is limited by subjective interpretation which reduces accuracy and reproducibility, and LVEF assesses global function without characterizing regional myocardial abnormalities. An alternative objective echocardiographic measure of myocardial function is thus needed. Myocardial deformation analysis, which performs quantitative assessment of global and regional myocardial function, may be useful for perioperative care of surgical patients. Myocardial deformation analysis evaluates left ventricular mechanics by quantifying strain and strain rate. Strain describes percent change in myocardial length in the longitudinal (from base to apex) and circumferential (encircling the short-axis of the ventricle) direction and change in thickness in the radial direction. Segmental strain describes regional myocardial function. Strain is a negative number when the ventricle shortens longitudinally or circumferentially and is positive with radial thickening. Reference values for normal longitudinal strain from a recent meta-analysis using transthoracic echocardiography are (mean ± SD) −19.7 ± 0.4%, while radial and circumferential strain are 47.3 ± 1.9 and −23.3 ± 0.7%, respectively. The speed of myocardial deformation is also important and is characterized by strain rate. Longitudinal systolic strain rate in healthy subjects averages −1.10 ± 0.16 sec−1. Assessment of myocardial deformation requires consideration of both strain (change in deformation), which correlates with LVEF, and strain rate (speed of deformation), which correlates with rate of rise of left ventricular pressure (dP/dt). Myocardial deformation analysis also evaluates ventricular relaxation, twist, and untwist, providing new and noninvasive methods to assess components of myocardial systolic and diastolic function. Myocardial deformation analysis is based on either Doppler or a non-Doppler technique, called speckle-tracking echocardiography. Myocardial deformation analysis provides quantitative measures of global and regional myocardial function for use in the perioperative care of the surgical patient. For example, coronary graft occlusion after coronary artery bypass grafting is detected by an acute reduction in strain in the affected coronary artery territory. In addition, assessment of left ventricular mechanics detects underlying myocardial pathology before abnormalities become apparent on conventional echocardiography. Certainly, patients with aortic regurgitation demonstrate reduced longitudinal strain before reduction in LVEF occurs, which allows detection of subclinical left ventricular dysfunction and predicts increased risk for heart failure and impaired myocardial function after surgical repair. In this review we describe the principles, techniques, and clinical application of myocardial deformation analysis. PMID:24557101

  11. The left and right ventricle of a patient with a R723G mutation of the beta-myosin heavy chain and severe hypertrophic cardiomyopathy show no differences in the expression of myosin mRNA.

    PubMed

    Borchert, Bianca; Tripathi, Snigdha; Francino, Antonio; Navarro-Lopez, Francisco; Kraft, Theresia

    2010-01-01

    In familial hypertrophic cardiomyopathy (FHC), asymmetric left ventricular (LV) hypertrophy has been considered to be the predominant phenotypic expression, whereas right ventricular (RV) involvement is still ambiguous. In most cases, the right ventricle remains unaffected until secondary pulmonary hypertension develops. Several FHC-causing mutations of genes encoding sarcomere-related proteins have been identified which are transmitted in an autosomal-dominant manner. We report the case of a 61 year old member of a Catalan family with a Arg723Gly missense mutation of the β-myosin heavy chain (β-MHC), that is associated with a malignant phenotype characterized by sudden cardiac death and heart failure. Because of progressive systolic LV dysfunction, the patient received a heart transplant in 2003. Molecular analysis of the myocardial tissue of the explanted heart, taken from the left and right ventricle, showed a similar deviation of the ratio of mutant vs wild type mRNA of the β-MHC of 71.8 ± 5% and 68.5 ± 3%, respectively. This finding was confirmed for LV biopsies of this patient on protein level, showing a similar proportion of mutated β-myosin. But since the patient is heterozygous for the β-MHC mutation and the mutation is located in a coding region, the relative increase of the expression of the mutant allele is unexpected. It has been demonstrated before by our group for several β-MHC mutations that the relative abundance of mutated mRNA/protein correlates with the clinical severity of the disease. But since the right ventricle shows no (or only minor) manifestation in terms of hypertrophy or dysfunction, the level of mRNA and protein expression is not the only factor responsible for the development of the phenotype of FHC. Several mechanisms through which cardiac stresses may incite maladaptive cardiac remodeling primarily of the left ventricle that result in myocardial hypertrophy and heart failure are proposed. One of those triggers could be the enhanced work load of the left ventricle, especially if a LV outflow tract gradient is present, in contrast to the lesser demands to the right ventricle which is adapted to the low pressure system of the pulmonary circulation. Further studies are needed to confirm the results of this case, as well as functional studies involving both ventricles.

  12. Static cardiomyoplasty with synthetic elastic net suppresses ventricular dilatation and dysfunction after myocardial infarction in the rat: a chronic study.

    PubMed

    Kato, Nobusuke; Kawaguchi, Akira T; Kishida, Akio; Yamaoka, Tetsuji

    2013-07-01

    Although static cardiomyoplasty prevents the left ventricle (LV) from dilatation, it may interfere with diastolic relaxation, or cause restriction. We developed a synthetic net with dual elasticity and tested its effect late after myocardial infarction in the rat. LV pressure-volume relationships (PVR) were successively analyzed before, after intravenous volume load, and 10 minutes after occlusion of the left anterior descending artery. Rats were then randomized into groups receiving synthetic net wrapping around the heart (NET+, n = 8) and only partially behind LV (NET-, n = 9), and they underwent the same PVR studies 6 weeks later. End-diastolic and end-systolic PVR were defined, and LV size and function were compared under standardized loading conditions. Although there was no difference in Day 0, increase in LV end-diastolic and end-systolic volumes were significantly attenuated in NET+ rats 6 weeks later when there was a significant correlation between LV volumes by PVR estimation and actual measurements, with significant differences in both measures between the groups: NET+ < NET-. The presence or absence of net did not show restrictive hemodynamics under acute volume load. Static cardiomyoplasty using a synthetic elastic net significantly attenuated LV dilatation and dysfunction without restriction late after myocardial infarction in the rat. © 2013, Copyright the Authors. Artificial Organs © 2013, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  13. Increase in parasympathetic tone by pyridostigmine prevents ventricular dysfunction during the onset of heart failure.

    PubMed

    Lataro, Renata M; Silva, Carlos A A; Fazan, Rubens; Rossi, Marcos A; Prado, Cibele M; Godinho, Rosely O; Salgado, Helio C

    2013-10-15

    Heart failure (HF) is characterized by elevated sympathetic activity and reduced parasympathetic control of the heart. Experimental evidence suggests that the increase in parasympathetic function can be a therapeutic alternative to slow HF evolution. The parasympathetic neurotransmission can be improved by acetylcholinesterase inhibition. We investigated the long-term (4 wk) effects of the acetylcholinesterase inhibitor pyridostigmine on sympathovagal balance, cardiac remodeling, and cardiac function in the onset of HF following myocardial infarction. Myocardial infarction was elicited in adult male Wistar rats. After 4 wk of pyridostigmine administration, per os, methylatropine and propranolol were used to evaluate the cardiac sympathovagal balance. The tachycardic response caused by methylatropine was considered to be the vagal tone, whereas the bradycardic response caused by propranolol was considered to be the sympathetic tone. In conscious HF rats, pyridostigmine reduced the basal heart rate, increased vagal, and reduced sympathetic control of heart rate. Pyridostigmine reduced the myocyte diameter and collagen density of the surviving left ventricle. Pyridostigmine also increased vascular endothelial growth factor protein in the left ventricle, suggesting myocardial angiogenesis. Cardiac function was assessed by means of the pressure-volume conductance catheter system. HF rats treated with pyridostigmine exhibited a higher stroke volume, ejection fraction, cardiac output, and contractility of the left ventricle. It was demonstrated that the long-term administration of pyridostigmine started right after coronary artery ligation augmented cardiac vagal and reduced sympathetic tone, attenuating cardiac remodeling and left ventricular dysfunction during the progression of HF in rats.

  14. EXOGENOUS CYTOCHROME C RESTORES MYOCARDIAL CYTOCHROME OXIDASE ACTIVITY INTO THE LATE PHASE OF SEPSIS

    PubMed Central

    Piel, David A.; Deutschman, Clifford S.; Levy, Richard J.

    2009-01-01

    Mitochondrial dysfunction is thought to play a role in the pathogenesis of a variety of disease states, including sepsis. An acquired defect in oxidative phosphorylation potentially causes sepsis-induced organ dysfunction. Cytochrome oxidase (CcOX), the terminal oxidase of the respiratory chain, is competitively inhibited early in sepsis and progresses, becoming noncompetitive during the late phase. We have previously demonstrated that exogenous cytochrome c can overcome myocardial CcOX competitive inhibition and improve cardiac function during murine sepsis at the 24-h point. Here, we evaluate the effect of exogenous cytochrome c on CcOX activity and survival in mice at the later time points. Exogenous cytochrome c (800 μg) or saline was intravenously injected 24 h after cecal ligation and puncture (CLP) or sham operation. Steady-state mitochondrial cytochrome c levels and heme c content increased significantly 48 h post-CLP and remained elevated at 72 h in cytochrome c-injected mice compared with saline injection. Cecal ligation and puncture inhibited CcOX at 48 h in saline-injected mice. However, cytochrome c injection abrogated this inhibition and restored CcOX kinetic activity to sham values at 48 h. Survival after CLP to 96 h after cytochrome c injection approached 50% compared with only 15% after saline injection. Thus, a single injection of exogenous cytochrome c 24 h post-CLP repletes mitochondrial substrate levels for up to 72 h, restores myocardial COX activity, and significantly improves survival. PMID:18414235

  15. Continuous Cardiac Troponin I Release in Fabry Disease

    PubMed Central

    Schneider, Christian; Sieweke, Nicole; Franzen, Wolfgang; Gündüz, Dursun; Rolfs, Arndt

    2014-01-01

    Background Fabry disease (FD) is a rare lysosomal storage disorder also affecting the heart. The aims of this study were to determine the frequency of cardiac troponin I (cTNI) elevation, a sensitive parameter reflecting myocardial damage, in a smaller cohort of FD-patients, and to analyze whether persistent cTNI can be a suitable biomarker to assess cardiac dysfunction in FD. Methods cTNI values were determined at least twice per year in 14 FD-patients (6 males and 8 females) regularly followed-up in our centre. The data were related to other parameters of heart function including cardiac magnetic resonance imaging (cMRI). Results Three patients (21%) without specific vascular risk factors other than FD had persistent cTNI-elevations (range 0.05–0.71 ng/ml, normal: <0.01). cMRI disclosed late gadolinium enhancement (LGE) in all three individuals with cTNI values ≥0.01, while none of the 11 patients with cTNI <0.01 showed a pathological enhancement (p<0.01). Two subjects with increased cTNI-values underwent coronary angiography, excluding relevant stenoses. A myocardial biopsy performed in one during this procedure demonstrated substantial accumulation of globotriaosylceramide (Gb3) in cardiomyocytes. Conclusion Continuous cTNI elevation seems to occur in a substantial proportion of patients with FD. The high accordance with LGE, reflecting cardiac dysfunction, suggests that cTNI-elevation can be a useful laboratory parameter for assessing myocardial damage in FD. PMID:24626231

  16. Comparison of five-year outcomes of coronary artery bypass grafting versus percutaneous coronary intervention in patients with left ventricular ejection fractions≤50% versus >50% (from the CREDO-Kyoto PCI/CABG Registry Cohort-2).

    PubMed

    Marui, Akira; Kimura, Takeshi; Nishiwaki, Noboru; Mitsudo, Kazuaki; Komiya, Tatsuhiko; Hanyu, Michiya; Shiomi, Hiroki; Tanaka, Shiro; Sakata, Ryuzo

    2014-10-01

    Coronary heart disease is a major risk factor for left ventricular (LV) systolic dysfunction. However, limited data are available regarding long-term benefits of percutaneous coronary intervention (PCI) in the era of drug-eluting stent or coronary artery bypass grafting (CABG) in patients with LV systolic dysfunction with severe coronary artery disease. We identified 3,584 patients with 3-vessel and/or left main disease of 15,939 patients undergoing first myocardial revascularization enrolled in the CREDO-Kyoto PCI/CABG Registry Cohort-2. Of them, 2,676 patients had preserved LV systolic function, defined as an LV ejection fraction (LVEF) of >50% and 908 had impaired LV systolic function (LVEF≤50%). In patients with preserved LV function, 5-year outcomes were not different between PCI and CABG regarding propensity score-adjusted risk of all-cause and cardiac deaths. In contrast, in patients with impaired LV systolic function, the risks of all-cause and cardiac deaths after PCI were significantly greater than those after CABG (hazard ratio 1.49, 95% confidence interval 1.04 to 2.14, p=0.03 and hazard ratio 2.39, 95% confidence interval 1.43 to 3.98, p<0.01). In both patients with moderate (35%

  17. Mangiferin protect myocardial insults through modulation of MAPK/TGF-β pathways.

    PubMed

    Suchal, Kapil; Malik, Salma; Gamad, Nanda; Malhotra, Rajiv Kumar; Goyal, Sameer N; Ojha, Shreesh; Kumari, Santosh; Bhatia, Jagriti; Arya, Dharamvir Singh

    2016-04-05

    Mangiferin, a xanthone glycoside isolated from leaves of Mangifera indica (Anacardiaceae) is known to modulate many biological targets in inflammation and oxidative stress. The present study was designed to investigate whether mangiferin exerts protection against myocardial ischemia-reperfusion (IR) injury and possible role of Mitogen Activated Protein Kinase (MAPKs) and Transforming Growth Factor-β (TGF-β) pathways in its cardioprotection. Male albino Wistar rats were treated with mangiferin (40 mg/kg, i.p.) for 15 days. At the end of the treatment protocol, rats were subjected to IR injury consisting of 45 min ischemia followed by 1h reperfusion. IR-control rats caused significant cardiac dysfunction, increased serum cardiac injury markers, lipid peroxidation and a significant decrease in tissue antioxidants as compared to sham group. Histopathological examination of IR rats revealed myocardial necrosis, edema and infiltration of inflammatory cells. However, pretreatment with mangiferin significantly restored myocardial oxidant-antioxidant status, maintained membrane integrity, and attenuated the levels of proinflammatory cytokines, pro-apoptotic proteins and TGF-β. Furthermore, mangiferin significantly reduced the phosphorylation of p38, and JNK and enhanced phosphorylation of ERK1/2. These results suggest that mangiferin protects against myocardial IR injury by modulating MAPK mediated inflammation and apoptosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Myocardial protection induced by fentanyl in pigs exposed to high-dose adrenaline.

    PubMed

    da Luz, Vinicius Fernando; Otsuki, Denise Aya; Gonzalez, Maria Margarita Castro; Negri, Elnara Marcia; Caldini, Elia Garcia; Damaceno-Rodrigues, Nilsa Regina; Malbouisson, Luiz Marcelo Sá; Viana, Bruno Gonçalves; Vane, Matheus Fachini; Carmona, Maria Jose Carvalho

    2015-10-01

    The use of high doses of adrenaline is common in critical patients, especially during cardiac arrest. During these situations, myocardial dysfunction can be a result of multiple factors, including adrenaline use. In addition, opioids have been shown to have anti-arrhythmic and anti-ischemic mechanisms that may confer cardiac protection. This study aimed to evaluate the effects of fentanyl on myocardial function in pigs exposed to high-dose adrenaline. After institutional ethics committee approval, 26 pigs were randomly allocated to receive either 20 μg/kg fentanyl (n = 10; fentanyl group) administered 5 min before five doses of adrenaline (20 μg/kg), equivalent-volume saline (n = 10; saline group) using the same adrenaline dosing protocol, or neither fentanyl nor adrenaline (n = 6; sham group). The fentanyl group showed lower levels of troponin at the end of the sixth hour compared with the saline group (1.91 ± 1.47 vs 5.44 ± 5.35 ng/mL, P = 0.019). Transmission electron microscopy and immunohistochemistry also showed less myocardial injury in the fentanyl group. The conclusion was reached that fentanyl attenuates myocardial injury caused by high-dose adrenaline without blunting the hemodynamic effect of adrenaline. © 2015 Wiley Publishing Asia Pty Ltd.

  19. A web-based tool to predict acute kidney injury in patients with ST-elevation myocardial infarction: Development, internal validation and comparison.

    PubMed

    Zambetti, Benjamin R; Thomas, Fridtjof; Hwang, Inyong; Brown, Allen C; Chumpia, Mason; Ellis, Robert T; Naik, Darshan; Khouzam, Rami N; Ibebuogu, Uzoma N; Reed, Guy L

    2017-01-01

    In ST-elevation myocardial infarction (STEMI), acute kidney injury (AKI) may increase subsequent morbidity and mortality. Still, it remains difficult to predict AKI risk in these patients. We sought to 1) determine the frequency and clinical outcomes of AKI and, 2) develop, validate and compare a web-based tool for predicting AKI. In a racially diverse series of 1144 consecutive STEMI patients, Stage 1 or greater AKI occurred in 12.9% and was severe (Stage 2-3) in 2.9%. AKI was associated with increased mortality (5.7-fold, unadjusted) and hospital stay (2.5-fold). AKI was associated with systolic dysfunction, increased left ventricular end-diastolic pressures, hypotension and intra-aortic balloon counterpulsation. A computational algorithm (UT-AKI) was derived and internally validated. It showed higher sensitivity and improved overall prediction for AKI (area under the curve 0.76) vs. other published indices. Higher UT-AKI scores were associated with more severe AKI, longer hospital stay and greater hospital mortality. In a large, racially diverse cohort of STEMI patients, Stage 1 or greater AKI was relatively common and was associated with significant morbidity and mortality. A web-accessible, internally validated tool was developed with improved overall value for predicting AKI. By identifying patients at increased risk, this tool may help physicians tailor post-procedural diagnostic and therapeutic strategies after STEMI to reduce AKI and its associated morbidity and mortality.

  20. Deficiency of Rac1 Blocks NADPH Oxidase Activation, Inhibits Endoplasmic Reticulum Stress, and Reduces Myocardial Remodeling in a Mouse Model of Type 1 Diabetes

    PubMed Central

    Li, Jianmin; Zhu, Huaqing; Shen, E; Wan, Li; Arnold, J. Malcolm O.; Peng, Tianqing

    2010-01-01

    OBJECTIVE Our recent study demonstrated that Rac1 and NADPH oxidase activation contributes to cardiomyocyte apoptosis in short-term diabetes. This study was undertaken to investigate if disruption of Rac1 and inhibition of NADPH oxidase would prevent myocardial remodeling in chronic diabetes. RESEARCH DESIGN AND METHODS Diabetes was induced by injection of streptozotocin in mice with cardiomyocyte-specific Rac1 knockout and their wild-type littermates. In a separate experiment, wild-type diabetic mice were treated with vehicle or apocynin in drinking water. Myocardial hypertrophy, fibrosis, endoplasmic reticulum (ER) stress, inflammatory response, and myocardial function were investigated after 2 months of diabetes. Isolated adult rat cardiomyocytes were cultured and stimulated with high glucose. RESULTS In diabetic hearts, NADPH oxidase activation, its subunits' expression, and reactive oxygen species production were inhibited by Rac1 knockout or apocynin treatment. Myocardial collagen deposition and cardiomyocyte cross-sectional areas were significantly increased in diabetic mice, which were accompanied by elevated expression of pro-fibrotic genes and hypertrophic genes. Deficiency of Rac1 or apocynin administration reduced myocardial fibrosis and hypertrophy, resulting in improved myocardial function. These effects were associated with a normalization of ER stress markers' expression and inflammatory response in diabetic hearts. In cultured cardiomyocytes, high glucose–induced ER stress was inhibited by blocking Rac1 or NADPH oxidase. CONCLUSIONS Rac1 via NADPH oxidase activation induces myocardial remodeling and dysfunction in diabetic mice. The role of Rac1 signaling may be associated with ER stress and inflammation. Thus, targeting inhibition of Rac1 and NADPH oxidase may be a therapeutic approach for diabetic cardiomyopathy. PMID:20522592

  1. Intra-renal delivery of mesenchymal stem cells attenuates myocardial injury after reversal of hypertension in porcine renovascular disease.

    PubMed

    Eirin, Alfonso; Zhu, Xiang-Yang; Ferguson, Christopher M; Riester, Scott M; van Wijnen, Andre J; Lerman, Amir; Lerman, Lilach O

    2015-01-19

    Percutaneous transluminal renal angioplasty (PTRA) fails to fully improve cardiac injury and dysfunction in patients with renovascular hypertension (RVH). Mesenchymal stem cells (MSCs) restore renal function, but their potential for attenuating cardiac injury after reversal of RVH has not been explored. We hypothesized that replenishment of MSCs during PTRA would improve cardiac function and oxygenation, and decrease myocardial injury in porcine RVH. Pigs were studied after 16 weeks of RVH, RVH treated 4 weeks earlier with PTRA with or without adjunct intra-renal delivery of MSC (10^6 cells), and controls. Cardiac structure, function (fast-computed tomography (CT)), and myocardial oxygenation (Blood-Oxygen-Level-Dependent- magnetic resonance imaging) were assessed in-vivo. Myocardial microvascular density (micro-CT) and myocardial injury were evaluated ex-vivo. Kidney venous and systemic blood levels of inflammatory markers were measured and their renal release calculated. PTRA normalized blood pressure, yet stenotic-kidney glomerular filtration rate, similarly blunted in RVH and RVH + PTRA, normalized only in PTRA + MSC-treated pigs. PTRA attenuated left ventricular remodeling, whereas myocardial oxygenation, subendocardial microvascular density, and diastolic function remained decreased in RVH + PTRA, but normalized in RVH + PTRA-MSC. Circulating isoprostane levels and renal release of inflammatory cytokines increased in RVH and RVH + PTRA, but normalized in RVH + PTRA-MSC, as did myocardial oxidative stress, inflammation, collagen deposition, and fibrosis. Intra-renal MSC delivery during PTRA preserved stenotic-kidney function, reduced systemic oxidative stress and inflammation, and thereby improved cardiac function, oxygenation, and myocardial injury four weeks after revascularization, suggesting a therapeutic potential for adjunctive MSC delivery to preserve cardiac function and structure after reversal of experimental RVH.

  2. Toll-like receptor 2 mediates mesenchymal stem cell-associated myocardial recovery and VEGF production following acute ischemia-reperfusion injury

    PubMed Central

    Abarbanell, Aaron M.; Wang, Yue; Herrmann, Jeremy L.; Weil, Brent R.; Poynter, Jeffrey A.; Manukyan, Mariuxi C.

    2010-01-01

    Toll-like receptor 2 (TLR2), a key component of the innate immune system, is linked to inflammation and myocardial dysfunction after ischemia-reperfusion injury (I/R). Treatment of the heart with mesenchymal stem cells (MSCs) is known to improve myocardial recovery after I/R in part by paracrine factors such as VEGF. However, it is unknown whether TLR2 activation on the MSCs affects MSC-mediated myocardial recovery and VEGF production. We hypothesized that the knockout of TLR2 on the MSCs (TLR2KO MSCs) would 1) improve MSC-mediated myocardial recovery and 2) increase myocardial and MSC VEGF release. With the isolated heart perfusion system, Sprague-Dawley rat hearts were subjected to I/R and received one of three intracoronary treatments: vehicle, male wild-type MSCs (MWT MSCs), or TL2KO MSCs. All treatments were performed immediately before ischemia, and heart function was measured continuously. Postreperfusion, heart homogenates were analyzed for myocardial VEGF production. Contrary to our hypothesis, only MWT MSC treatment significantly improved the recovery of left ventricular developed pressure and the maximal positive and negative values of the first derivative of pressure. In addition, VEGF production was greatest in hearts treated with MWT MSCs. To investigate MSC production of VEGF, MSCs were activated with TNF in vitro and the supernatants collected for ELISA. In vitro basal levels of MSC VEGF production were similar. However, with TNF activation, MWT MSCs produced significantly more VEGF, whereas activated TLR2KO MSC production of VEGF was unchanged. Finally, we observed that MWT MSCs proliferated more rapidly than TLR2KO MSCs. These data indicate that TLR2 may be essential to MSC-mediated myocardial recovery and VEGF production. PMID:20173040

  3. Mechanisms and Predictors of Mitral Regurgitation after High-Risk Myocardial Infarction

    PubMed Central

    Meris, Alessandra; Amigoni, Maria; Verma, Anil; Thune, Jens Jakob; Køber, Lars; Velazquez, Eric; McMurray, John J. V.; Pfeffer, Marc A.; Califf, Robert; Levine, Robert A.; Solomon, Scott D.

    2012-01-01

    Background Mitral regurgitation (MR) has been associated with adverse outcomes after myocardial infarction (MI). Without structural valve disease, functional MR has been related to left ventricular (LV) remodeling and geometric deformation of the mitral apparatus. The aims of this study were to elucidate the mechanistic components of MR after high-risk MI and to identify predictors of MR progression during follow-up. Methods The Valsartan in Acute Myocardial Infarction Echo substudy prospectively enrolled 610 patients with LV dysfunction, heart failure, or both after MI. MR at baseline, 1 month, and 20 months was quantified by mapping jet expansion in the left atrium in 341 patients with good-quality echocardiograms. Indices of LV remodeling, left atrial size, and diastolic function and parameters of mitral valve deformation, including tenting area, coaptation depth, anterior leaflet concavity, annular diameters, and contractility, were assessed and related to baseline MR. The progression of MR was further analyzed, and predictors of worsening among the baseline characteristics were identified. Results Tenting area, coaptation depth, annular dilatation, and left atrial size were all associated with the degree of baseline MR. Tenting area was the only significant and independent predictor of worsening MR; a tenting area of 4 cm2 was a useful cutoff to identify worsening of MR after MI and moderate to severe MR after 20 months. Conclusions Increased mitral tenting and larger mitral annular area are determinants of MR degree at baseline, and tenting area is an independent predictor of progression of MR after MI. Although LV remodeling itself contributes to ischemic MR, this influence is directly dependent on alterations in mitral geometry. PMID:22305962

  4. AMPKα2 regulates expression of estrogen-related receptor alpha, a metabolic transcription factor related to heart failure development

    PubMed Central

    Hu, Xinli; Xu, Xin; Lu, Zhongbing; Zhang, Ping; Fassett, John; Zhang, Ying; Xin, Yi; Hall, Jennifer L.; Viollet, Benoit; Bache, Robert J.; Huang, Yimin; Chen, Yingjie

    2011-01-01

    The normal expression of myocardial mitochondrial enzymes is essential to maintain the cardiac energy reserve and facilitate responses to stress, but the molecular mechanisms to maintain myocardial mitochondrial enzyme expression have been elusive. Here we report that congestive heart failure is associated with a significant decrease of myocardial Estrogen-Related Receptor alpha (ERRα), but not PPAR gamma coactivator-1 alpha (PGC1α), in human heart failure samples. In addition, chronic pressure overload in mice caused a decrease of ERRα expression that was significantly correlated to the degree of LV dysfunction, pulmonary congestion and decreases of a group of myocardial energy metabolism related genes. We found that the metabolic sensor AMP activated protein kinase (AMPK) regulates ERRα expression in vivo and in vitro. AMPKα2 KO decreased myocardial ERRα (both mRNA and protein) and its downstream targets under basal conditions, with no change in myocardial PGC1α expression. Using cultured rat neonatal cardiac myocytes, we found that overexpression of constitutively active AMPKα significantly induced ERRα mRNA, protein and promoter activity. Conversely, selective gene silencing of AMPKα2 repressed ERRα and its target gene levels, indicating that AMPKα2 is involved in the regulation of ERRα expression. In addition, over-expression of ERRα in AMPKα2 KO neonatal cardiac myocytes partially rescued the repressed expression of some energy metabolism related genes. These data support an important role for AMPKα2 in regulating the expression of myocardial ERRα and its downstream mitochondrial enzymes. PMID:21825219

  5. Protective effect of N-acetylcysteine activated carbon release microcapsule on myocardial ischemia-reperfusion injury in rats

    PubMed Central

    Cai, Zhaobin; Shi, Tingting; Zhuang, Rangxiao; Fang, Hongying; Jiang, Xiaojie; Shao, Yidan; Zhou, Hongping

    2018-01-01

    With the development of science and technology, and development of artery bypass, methods such as cardiopulmonary cerebral resuscitation have been practiced in recent years. Despite this, some methods fail to promote or recover the function of tissues and organs, and in some cases, may aggravate dysfunction and structural damage to tissues. The latter is typical of ischemia-reperfusion (IR) injury. Lipid peroxidation mediated by free radicals is an important process of myocardial IR injury. Myocardial IR has been demonstrated to induce the formation of large numbers of free radicals in rats, which promotes the peroxidation of lipids within unsaturated fatty acids in the myocardial cell membrane. Markers of lipid peroxidation include malondialdehyde, superoxide dismutase and lactic dehydrogenase. Recent studies have demonstrated that N-acetylcysteine (NAC) is able to dilate blood vessels, prevent oxidative damage, improve immunity, inhibit apoptosis and the inflammatory response and promote glutathione synthesis in cells. NAC also improves the systolic function of myocardial cells and cardiac function, prevents myocardial apoptosis, protects ventricular remodeling and vascular remodeling, reduces opiomelanocortin levels in the serum and increases the content of nitric oxide in the serum, thus improving vascular endothelial function. Therefore, NAC has potent pharmacological activity; however, the relatively fast metabolism of NAC, along with its large clinical dose and low bioavailability, limit its applications. The present study combined NAC with medicinal activated carbons, and prepared N-acetylcysteine activated carbon sustained-release microcapsules (ACNACs) to overcome the limitations of NAC. It was demonstrated that ACNACs exerted greater effective protective effects than NAC alone on myocardial IR injury in rats. PMID:29434769

  6. Mitochondrial JNK activation triggers autophagy and apoptosis and aggravates myocardial injury following ischemia/reperfusion.

    PubMed

    Xu, Jie; Qin, Xinghua; Cai, Xiaoqing; Yang, Lu; Xing, Yuan; Li, Jun; Zhang, Lihua; Tang, Ying; Liu, Jiankang; Zhang, Xing; Gao, Feng

    2015-02-01

    c-Jun N-terminal kinase (JNK) is a stress-activated mitogen-activated protein kinase that plays a central role in initiating apoptosis in disease conditions. Recent studies have shown that mitochondrial JNK signaling is partly responsible for ischemic myocardial dysfunction; however, the underlying mechanism remains unclear. Here we report for the first time that activation of mitochondrial JNK, rather than JNK localization on mitochondria, induces autophagy and apoptosis and aggravates myocardial ischemia/reperfusion injury. Myocardial ischemia/reperfusion induced a dominant increase of mitochondrial JNK phosphorylation, while JNK mitochondrial localization was reduced. Treatment with Tat-SabKIM1, a retro-inverso peptide which blocks JNK interaction with mitochondria, decreased mitochondrial JNK activation without affecting JNK mitochondrial localization following reperfusion. Tat-SabKIM1 treatment reduced Bcl2-regulated autophagy, cytochrome c-mediated apoptosis and myocardial infarct size. Notably, selective inhibition of mitochondrial JNK activation using Tat-SabKIM1 produced a similar infarct size-reducing effect as inhibiting universal JNK activation with JNK inhibitor SP600125. Moreover, insulin-treated animals exhibited significantly dampened mitochondrial JNK activation accompanied by reduced infarct size and diminished autophagy and apoptosis following reperfusion. Taken together, these findings demonstrate that mitochondrial JNK activation, rather than JNK mitochondrial localization, induces autophagy and apoptosis and exacerbates myocardial ischemia/reperfusion injury. Insulin selectively inhibits mitochondrial JNK activation, contributing to insulin cardioprotection against myocardial ischemic/reperfusion injury. This article is part of a Special Issue entitled: Autophagy and protein quality control in cardiometabolic diseases. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Low-dose adenosine stress echocardiography: detection of myocardial viability.

    PubMed

    Djordjevic-Dikic, Ana; Ostojic, Miodrag; Beleslin, Branko; Nedeljkovic, Ivana; Stepanovic, Jelena; Stojkovic, Sinisa; Petrasinovic, Zorica; Nedeljkovic, Milan; Saponjski, Jovica; Giga, Vojislav

    2003-06-03

    The aim of this study was to evaluate the diagnostic potential of low-dose adenosine stress echocardiography in detection of myocardial viability. Vasodilation through low dose dipyridamole infusion may recruit contractile reserve by increasing coronary flow or by increasing levels of endogenous adenosine. Forty-three patients with resting dyssynergy, due to previous myocardial infarction, underwent low-dose adenosine (80, 100, 110 mcg/kg/min in 3 minutes intervals) echocardiography test. Gold standard for myocardial viability was improvement in systolic thickening of dyssinergic segments of >or= 1 grade at follow-up. Coronary angiography was done in 41 pts. Twenty-seven patients were revascularized and 16 were medically treated. Echocardiographic follow up data (12 +/- 2 months) were available in 24 revascularized patients. Wall motion score index improved from rest 1.55 +/- 0.30 to 1.33 +/- 0.26 at low-dose adenosine (p < 0.001). Of the 257 segments with baseline dyssynergy, adenosine echocardiography identified 122 segments as positive for viability, and 135 as necrotic since no improvement of systolic thickening was observed. Follow-up wall motion score index was 1.31 +/- 0.30 (p < 0.001 vs. rest). The sensitivity of adenosine echo test for identification of viable segments was 87%, while specificity was 95%, and diagnostic accuracy 90%. Positive and negative predictive values were 97% and 80%, respectively. Low-dose adenosine stress echocardiography test has high diagnostic potential for detection of myocardial viability in the group of patients with left ventricle dysfunction due to previous myocardial infarction. Low dose adenosine stress echocardiography may be adequate alternative to low-dose dobutamine test for evaluation of myocardial viability.

  8. Cardiac-specific knockout of ETA receptor mitigates low ambient temperature-induced cardiac hypertrophy and contractile dysfunction

    PubMed Central

    Zhang, Yingmei; Li, Linlin; Hua, Yinan; Nunn, Jennifer M.; Dong, Feng; Yanagisawa, Masashi; Ren, Jun

    2012-01-01

    Cold exposure is associated with oxidative stress and cardiac dysfunction. The endothelin (ET) system, which plays a key role in myocardial homeostasis, may participate in cold exposure-induced cardiovascular dysfunction. This study was designed to examine the role of ET-1 in cold stress-induced cardiac geometric and contractile responses. Wild-type (WT) and ETA receptor knockout (ETAKO) mice were assigned to normal or cold exposure (4°C) environment for 2 and 5 weeks prior to evaluation of cardiac geometry, contractile, and intracellular Ca2+ properties. Levels of the temperature sensor transient receptor potential vanilloid (TRPV1), mitochondrial proteins for biogenesis and oxidative phosphorylation, including UCP2, HSP90, and PGC1α were evaluated. Cold stress triggered cardiac hypertrophy, depressed myocardial contractile capacity, including fractional shortening, peak shortening, and maximal velocity of shortening/relengthening, reduced intracellular Ca2+ release, prolonged intracellular Ca2+ decay and relengthening duration, generation of ROS and superoxide, as well as apoptosis, the effects of which were blunted by ETAKO. Western blotting revealed downregulated TRPV1 and PGC1α as well as upregulated UCP2 and activation of GSK3β, GATA4, and CREB in cold-stressed WT mouse hearts, which were obliterated by ETAKO. Levels of HSP90, an essential regulator for thermotolerance, were unchanged. The TRPV1 agonist SA13353 attenuated whereas TRPV1 antagonist capsazepine mimicked cold stress- or ET-1-induced cardiac anomalies. The GSK3β inhibitor SB216763 ablated cold stress-induced cardiac contractile (but not remodeling) changes and ET-1-induced TRPV1 downregulation. These data suggest that ETAKO protects against cold exposure-induced cardiac remodeling and dysfunction mediated through TRPV1 and mitochondrial function. PMID:22442497

  9. Demonstration of free radical generation in the "stunned" myocardium in the conscious dog and identification of major differences between conscious and open-chest dogs.

    PubMed Central

    Li, X Y; McCay, P B; Zughaib, M; Jeroudi, M O; Triana, J F; Bolli, R

    1993-01-01

    Conscious dogs undergoing a 15-min coronary occlusion were given alpha-phenyl N-tert-butyl nitrone (PBN) and the local coronary venous plasma was analyzed by electron paramagnetic resonance spectroscopy. A prolonged myocardial release of PBN radical adducts was observed, which exhibited a burst in the initial minutes of reflow (peaking at 3 min) and then abated but continued for 1-3 h after reperfusion. Computer simulation revealed the presence of at least two PBN adducts (aN = 15.2 G and a beta H = 6.0 G; aN = 14.6 G and a beta H = 3.0 G), both consistent with the trapping of secondary carbon-centered radicals. No appreciable PBN adduct production was observed when collateral flow exceeded 30-40% of nonischemic flow, indicating that a flow reduction of at least 60% is necessary to trigger free radical reactions. There was a direct relationship between the magnitude of PBN adduct production and the severity of contractile dysfunction (r = 0.77), suggesting that the radicals generated upon reperfusion play a causal role in the subsequent stunning. The total release of PBN adducts after 3 h of reperfusion following a 15-min coronary occlusion was found to be approximately five times greater in open-chest compared with conscious dogs; at the same time, the recovery of wall thickening was markedly less in open-chest dogs. This study represents the first application of spin trapping to a conscious animal model of myocardial ischemia. The results demonstrate (a) that free radicals are generated in the stunned myocardium in the absence of the artificial or abnormal conditions associated with previously used models (isolated hearts, open-chest preparations), and (b) that both the severity of postischemic dysfunction and the magnitude of the attendant free radical production are greatly exaggerated in the open-chest dog, implying that previous conclusions derived from this model may not be applicable to conscious animals or to humans. This investigation also provides a method to measure free radicals in awake animals. PMID:8394382

  10. [The theory of cardiac lesions from blunt chest injury].

    PubMed

    Tumanov, E V; Sokolova, Z Iu

    2010-01-01

    The main theories of myocardial lesions associated with a blunt chest injury proposed starting from the XIXth century till the present time are considered based on the overview of the literature data. It is shown that the theory of selective mechanical activation of ATP-dependent K+ channels is most promising for further investigations into the mechanisms of myocardial dysfunction resulting from blunt chest injuries. The authors emphasize the absence of the universally accepted theory explaining the mechanism behind traumatic cardiac troubles and its fatal outcome despite numerous studies of cardiac lesions in patients with a blunt chest injury. It dictates the necessity of further research, both clinical and experimental, for a deeper insight into the problem.

  11. Electrocardiographic abnormalities in Trypanosoma cruzi seropositive and seronegative former blood donors.

    PubMed

    Ribeiro, Antonio L; Sabino, Ester C; Marcolino, Milena S; Salemi, Vera M C; Ianni, Barbara M; Fernandes, Fábio; Nastari, Luciano; Antunes, André; Menezes, Márcia; Oliveira, Cláudia Di Lorenzo; Sachdev, Vandana; Carrick, Danielle M; Busch, Michael P; Murphy, Eduard L

    2013-01-01

    Blood donor screening leads to large numbers of new diagnoses of Trypanosoma cruzi infection, with most donors in the asymptomatic chronic indeterminate form. Information on electrocardiogram (ECG) findings in infected blood donors is lacking and may help in counseling and recognizing those with more severe disease. To assess the frequency of ECG abnormalities in T.cruzi seropositive relative to seronegative blood donors, and to recognize ECG abnormalities associated with left ventricular dysfunction. The study retrospectively enrolled 499 seropositive blood donors in São Paulo and Montes Claros, Brazil, and 483 seronegative control donors matched by site, gender, age, and year of blood donation. All subjects underwent a health clinical evaluation, ECG, and echocardiogram (Echo). ECG and Echo were reviewed blindly by centralized reading centers. Left ventricular (LV) dysfunction was defined as LV ejection fraction (EF)<0.50%. Right bundle branch block and left anterior fascicular block, isolated or in association, were more frequently found in seropositive cases (p<0.0001). Both QRS and QTc duration were associated with LVEF values (correlation coefficients -0.159,p<0.0003, and -0.142,p = 0.002) and showed a moderate accuracy in the detection of reduced LVEF (area under the ROC curve: 0.778 and 0.790, both p<0.0001). Several ECG abnormalities were more commonly found in seropositive donors with depressed LVEF, including rhythm disorders (frequent supraventricular ectopic beats, atrial fibrillation or flutter and pacemaker), intraventricular blocks (right bundle branch block and left anterior fascicular block) and ischemic abnormalities (possible old myocardial infarction and major and minor ST abnormalities). ECG was sensitive (92%) for recognition of seropositive donors with depressed LVEF and had a high negative predictive value (99%) for ruling out LV dysfunction. ECG abnormalities are more frequent in seropositive than in seronegative blood donors. Several ECG abnormalities may help the recognition of seropositive cases with reduced LVEF who warrant careful follow-up and treatment.

  12. Predictive value of myocardial perfusion single-photon emission computed tomography and the impact of renal function on cardiac death.

    PubMed

    Hakeem, Abdul; Bhatti, Sabha; Dillie, Kathryn Sullivan; Cook, Jeffrey R; Samad, Zainab; Roth-Cline, Michelle D; Chang, Su Min

    2008-12-09

    Patients with chronic kidney disease (CKD) have worse cardiovascular outcomes than those without CKD. The prognostic utility of myocardial perfusion single-photon emission CT (MPS) in patients with varying degrees of renal dysfunction and the impact of CKD on cardiac death prediction in patients undergoing MPS have not been investigated. We followed up 1652 consecutive patients who underwent stress MPS (32% exercise, 95% gated) for cardiac death for a mean of 2.15+/-0.8 years. MPS defects were defined with a summed stress score (normal summed stress score <4, abnormal summed stress score>or=4). Ischemia was defined as a summed stress score >or=4 plus a summed difference score >or=2, and scar was defined as a summed difference score <2 plus a summed stress score >or=4. Renal function was calculated with the Modified Diet in Renal Disease equation. CKD (estimated glomerular filtration rate <60 mL . min(-1) . 1.73 m(-2)) was present in 36%. Cardiac death increased with worsening levels of perfusion defects across the entire spectrum of renal function. Presence of ischemia was independently predictive of cardiac death, all-cause mortality, and nonfatal myocardial infarction. Patients with normal MPS and CKD had higher unadjusted cardiac death event rates than those with no CKD and normal MPS (2.7% versus 0.8%, P=0.001). Multivariate Cox proportional hazards models revealed that both perfusion defects (hazard ratio 1.90, 95% CI 1.47 to 2.46) and CKD (hazard ratio 1.96, 95% CI 1.29 to 2.95) were independent predictors of cardiac death after accounting for risk factors, left ventricular dysfunction, pharmacological stress, and symptom status. Both MPS and CKD had incremental power for cardiac death prediction over baseline risk factors and left ventricular dysfunction (global chi(2) 207.5 versus 169.3, P<0.0001). MPS provides effective risk stratification across the entire spectrum of renal function. Renal dysfunction is also an important independent predictor of cardiac death in patients undergoing MPS. Renal function and MPS have additive value in risk stratisfying patients with suspected coronary artery disease. Patients with CKD appear to have a relatively less benign prognosis than those without CKD, even in the presence of a normal scan.

  13. CaMKII determines mitochondrial stress responses in heart

    PubMed Central

    Joiner, Mei-ling A.; Koval, Olha M.; Jingdong, Li; He, B. Julie; Allamargot, Chantal; Gao, Zhan; Luczak, Elizabeth D.; Hall, Duane D.; Fink, Brian D.; Chen, Biyi; Yang, Jinying; Moore, Steven A.; Scholz, Thomas D.; Strack, Stefan; Mohler, Peter J.; Sivitz, William I.; Song, Long-Sheng; Anderson, Mark E.

    2012-01-01

    Myocardial cell death is initiated by excessive mitochondrial Ca2+ entry, causing Ca2+ overload, mitochondrial permeability transition pore (mPTP) opening and dissipation of the mitochondrial inner membrane potential (ΔΨm)1,2. However, the signaling pathways that control mitochondrial Ca2+ entry through the inner membrane mitochondrial Ca2+ uniporter (MCU)3–5 are not known. The multifunctional Ca2+ and calmodulin-dependent protein kinase II (CaMKII) is activated in ischemia reperfusion (I/R), myocardial infarction (MI) and neurohumoral injury, common causes of myocardial death and heart failure, suggesting CaMKII could couple disease stress to mitochondrial injury. Here we show that CaMKII promotes mPTP opening and myocardial death by increasing MCU current (IMCU). Mitochondrial-targeted CaMKII inhibitory protein or cyclosporin A (CsA), an mPTP antagonist with clinical efficacy in I/R injury6, equivalently prevent mPTP opening, ΔΨm deterioration and diminish mitochondrial disruption and programmed cell death in response to I/R injury. Mice with myocardial and mitochondrial-targeted CaMKII inhibition are resistant to I/R injury, MI and neurohumoral injury, suggesting pathological actions of CaMKII are substantially mediated by increasing IMCU. Our findings identify CaMKII activity as a central mechanism for mitochondrial Ca2+ entry and suggest mitochondrial-targeted CaMKII inhibition could prevent or reduce myocardial death and heart failure dysfunction in response to common experimental forms of pathophysiological stress. PMID:23051746

  14. Myocardial Oxidative Stress in Infants Undergoing Cardiac Surgery.

    PubMed

    Sznycer-Taub, Nathaniel; Mackie, Stewart; Peng, Yun-Wen; Donohue, Janet; Yu, Sunkyung; Aiyagari, Ranjit; Charpie, John

    2016-04-01

    Cardiac surgery for congenital heart disease often necessitates a period of myocardial ischemia during cardiopulmonary bypass and cardioplegic arrest, followed by reperfusion after aortic cross-clamp removal. In experimental models, myocardial ischemia-reperfusion is associated with significant oxidative stress and ventricular dysfunction. A prospective observational study was conducted in infants (<1 year) who underwent elective surgical repair of a ventricular septal defect (VSD) or tetralogy of Fallot (TOF). Blood samples were drawn following anesthetic induction (baseline) and directly from the coronary sinus at 1, 3, 5, and 10 min following aortic cross-clamp removal. Samples were analyzed for oxidant stress using assays for thiobarbituric acid-reactive substances, protein carbonyl, 8-isoprostane, and total antioxidant capacity. For each subject, raw assay data were normalized to individual baseline samples and expressed as fold-change from baseline. Results were compared using a one-sample t test with Bonferroni correction for multiple comparisons. Sixteen patients (ten with TOF and six with VSD) were enrolled in the study, and there were no major postoperative complications observed. For the entire cohort, there was an immediate, rapid increase in myocardial oxidative stress that was sustained for 10 min following aortic cross-clamp removal in all biomarker assays (all P < 0.01), except total antioxidant capacity. Infant cardiac surgery is associated with a rapid, robust, and time-dependent increase in myocardial oxidant stress as measured from the coronary sinus in vivo. Future studies with larger enrollment are necessary to assess any association between myocardial oxidative stress and early postoperative outcomes.

  15. Positron emission tomography for the assessment of myocardial viability: an evidence-based analysis.

    PubMed

    2010-01-01

    In July 2009, the Medical Advisory Secretariat (MAS) began work on Non-Invasive Cardiac Imaging Technologies for the Assessment of Myocardial Viability, an evidence-based review of the literature surrounding different cardiac imaging modalities to ensure that appropriate technologies are accessed by patients undergoing viability assessment. This project came about when the Health Services Branch at the Ministry of Health and Long-Term Care asked MAS to provide an evidentiary platform on effectiveness and cost-effectiveness of non-invasive cardiac imaging modalities.After an initial review of the strategy and consultation with experts, MAS identified five key non-invasive cardiac imaging technologies that can be used for the assessment of myocardial viability: positron emission tomography, cardiac magnetic resonance imaging, dobutamine echocardiography, and dobutamine echocardiography with contrast, and single photon emission computed tomography.A 2005 review conducted by MAS determined that positron emission tomography was more sensitivity than dobutamine echocardiography and single photon emission tomography and dominated the other imaging modalities from a cost-effective standpoint. However, there was inadequate evidence to compare positron emission tomography and cardiac magnetic resonance imaging. Thus, this report focuses on this comparison only. For both technologies, an economic analysis was also completed.The Non-Invasive Cardiac Imaging Technologies for the Assessment of Myocardial Viability is made up of the following reports, which can be publicly accessed at the MAS website at: www.health.gov.on.ca/mas or at www.health.gov.on.ca/english/providers/program/mas/mas_about.htmlPOSITRON EMISSION TOMOGRAPHY FOR THE ASSESSMENT OF MYOCARDIAL VIABILITY: An Evidence-Based AnalysisMAGNETIC RESONANCE IMAGING FOR THE ASSESSMENT OF MYOCARDIAL VIABILITY: An Evidence-Based Analysis The objective of this analysis is to assess the effectiveness and safety of positron emission tomography (PET) imaging using F-18-fluorodeoxyglucose (FDG) for the assessment of myocardial viability. To evaluate the effectiveness of FDG PET viability imaging, the following outcomes are examined: the diagnostic accuracy of FDG PET for predicting functional recovery;the impact of PET viability imaging on prognosis (mortality and other patient outcomes); andthe contribution of PET viability imaging to treatment decision making and subsequent patient outcomes. CONDITION AND TARGET POPULATION LEFT VENTRICULAR SYSTOLIC DYSFUNCTION AND HEART FAILURE: Heart failure is a complex syndrome characterized by the heart's inability to maintain adequate blood circulation through the body leading to multiorgan abnormalities and, eventually, death. Patients with heart failure experience poor functional capacity, decreased quality of life, and increased risk of morbidity and mortality. In 2005, more than 71,000 Canadians died from cardiovascular disease, of which, 54% were due to ischemic heart disease. Left ventricular (LV) systolic dysfunction due to coronary artery disease (CAD) is the primary cause of heart failure accounting for more than 70% of cases. The prevalence of heart failure was estimated at one percent of the Canadian population in 1989. Since then, the increase in the older population has undoubtedly resulted in a substantial increase in cases. Heart failure is associated with a poor prognosis: one-year mortality rates were 32.9% and 31.1% for men and women, respectively in Ontario between 1996 and 1997. IN GENERAL, THERE ARE THREE OPTIONS FOR THE TREATMENT OF HEART FAILURE: medical treatment, heart transplantation, and revascularization for those with CAD as the underlying cause. Concerning medical treatment, despite recent advances, mortality remains high among treated patients, while, heart transplantation is affected by the limited availability of donor hearts and consequently has long waiting lists. The third option, revascularization, is used to restore the flow of blood to the heart via coronary artery bypass grafting (CABG) or through minimally invasive percutaneous coronary interventions (balloon angioplasty and stenting). Both methods, however, are associated with important perioperative risks including mortality, so it is essential to properly select patients for this procedure. Left ventricular dysfunction may be permanent if a myocardial scar is formed, or it may be reversible after revascularization. Reversible LV dysfunction occurs when the myocardium is viable but dysfunctional (reduced contractility). Since only patients with dysfunctional but viable myocardium benefit from revascularization, the identification and quantification of the extent of myocardial viability is an important part of the work-up of patients with heart failure when determining the most appropriate treatment path. Various non-invasive cardiac imaging modalities can be used to assess patients in whom determination of viability is an important clinical issue, specifically: dobutamine echocardiography (echo),stress echo with contrast,SPECT using either technetium or thallium,cardiac magnetic resonance imaging (cardiac MRI), andpositron emission tomography (PET). Stress echocardiography can be used to detect viable myocardium. During the infusion of low dose dobutamine (5 - 10 μg/kg/min), an improvement of contractility in hypokinetic and akentic segments is indicative of the presence of viable myocardium. Alternatively, a low-high dose dobutamine protocol can be used in which a biphasic response characterized by improved contractile function during the low-dose infusion followed by a deterioration in contractility due to stress induced ischemia during the high dose dobutamine infusion (dobutamine dose up to 40 ug/kg/min) represents viable tissue. Newer techniques including echocardiography using contrast agents, harmonic imaging, and power doppler imaging may help to improve the diagnostic accuracy of echocardiographic assessment of myocardial viability. Intravenous contrast agents, which are high molecular weight inert gas microbubbles that act like red blood cells in the vascular space, can be used during echocardiography to assess myocardial viability. These agents allow for the assessment of myocardial blood flow (perfusion) and contractile function (as described above), as well as the simultaneous assessment of perfusion to make it possible to distinguish between stunned and hibernating myocardium. SPECT: SPECT can be performed using thallium-201 (Tl-201), a potassium analogue, or technetium-99 m labelled tracers. When Tl-201 is injected intravenously into a patient, it is taken up by the myocardial cells through regional perfusion, and Tl-201 is retained in the cell due to sodium/potassium ATPase pumps in the myocyte membrane. The stress-redistribution-reinjection protocol involves three sets of images. The first two image sets (taken immediately after stress and then three to four hours after stress) identify perfusion defects that may represent scar tissue or viable tissue that is severely hypoperfused. The third set of images is taken a few minutes after the re-injection of Tl-201 and after the second set of images is completed. These re-injection images identify viable tissue if the defects exhibit significant fill-in (> 10% increase in tracer uptake) on the re-injection images. The other common Tl-201 viability imaging protocol, rest-redistribution, involves SPECT imaging performed at rest five minutes after Tl-201 is injected and again three to four hours later. Viable tissue is identified if the delayed images exhibit significant fill-in of defects identified in the initial scans (> 10% increase in uptake) or if defects are fixed but the tracer activity is greater than 50%. There are two technetium-99 m tracers: sestamibi (MIBI) and tetrofosmin. The uptake and retention of these tracers is dependent on regional perfusion and the integrity of cellular membranes. Viability is assessed using one set of images at rest and is defined by segments with tracer activity greater than 50%. Cardiac magnetic resonance imaging (cardiac MRI) is a non-invasive, x-ray free technique that uses a powerful magnetic field, radio frequency pulses, and a computer to produce detailed images of the structure and function of the heart. Two types of cardiac MRI are used to assess myocardial viability: dobutamine stress magnetic resonance imaging (DSMR) and delayed contrast-enhanced cardiac MRI (DE-MRI). DE-MRI, the most commonly used technique in Ontario, uses gadolinium-based contrast agents to define the transmural extent of scar, which can be visualized based on the intensity of the image. Hyper-enhanced regions correspond to irreversibly damaged myocardium. As the extent of hyper-enhancement increases, the amount of scar increases, so there is a lower the likelihood of functional recovery. Positron emission tomography (PET) is a nuclear medicine technique used to image tissues based on the distinct ways in which normal and abnormal tissues metabolize positron-emitting radionuclides. Radionuclides are radioactive analogs of common physiological substrates such as sugars, amino acids, and free fatty acids that are used by the body. The only licensed radionuclide used in PET imaging for viability assessment is F-18 fluorodeoxyglucose (FDG). During a PET scan, the radionuclides are injected into the body and as they decay, they emit positively charged particles (positrons) that travel several millimetres into tissue and collide with orbiting electrons. (ABSTRACT TRUNCATED)

  16. Cold ischemia contributes to the development of chronic rejection and mitochondrial injury after cardiac transplantation.

    PubMed

    Schneeberger, Stefan; Amberger, Albert; Mandl, Julia; Hautz, Theresa; Renz, Oliver; Obrist, Peter; Meusburger, Hugo; Brandacher, Gerald; Mark, Walter; Strobl, Daniela; Troppmair, Jakob; Pratschke, Johann; Margreiter, Raimund; Kuznetsov, Andrey V

    2010-12-01

    Chronic rejection (CR) remains an unsolved hurdle for long-term heart transplant survival. The effect of cold ischemia (CI) on progression of CR and the mechanisms resulting in functional deficit were investigated by studying gene expression, mitochondrial function, and enzymatic activity. Allogeneic (Lew→F344) and syngeneic (Lew→Lew) heart transplantations were performed with or without 10 h of CI. After evaluation of myocardial contraction, hearts were excised at 2, 10, 40, and 60 days for investigation of vasculopathy, gene expression, enzymatic activities, and mitochondrial respiration. Gene expression studies identified a gene cluster coding for subunits of the mitochondrial electron transport chain regulated in response to CI and CR. Myocardial performance, mitochondrial function, and mitochondrial marker enzyme activities declined in all allografts with time after transplantation. These declines were more rapid and severe in CI allografts (CR-CI) and correlated well with progression of vasculopathy and fibrosis. Mitochondria related gene expression and mitochondrial function are substantially compromised with the progression of CR and show that CI impacts on progression, gene profile, and mitochondrial function of CR. Monitoring mitochondrial function and enzyme activity might allow for earlier detection of CR and cardiac allograft dysfunction. © 2010 The Authors. Journal compilation © 2010 European Society for Organ Transplantation.

  17. Effects of increased left ventricular wall thickness on the myocardium in severe aortic stenosis with normal left ventricular ejection fraction: Two- and three-dimensional multilayer speckle tracking echocardiography.

    PubMed

    Cho, Eun Jeong; Park, Sung-Ji; Kim, Eun Kyoung; Lee, Ga Yeon; Chang, Sung-A; Choi, Jin-Oh; Lee, Sang-Chol; Park, Seung Woo

    2017-04-01

    The aim of this study was to determine the capability of real time three-dimensional echocardiography (RT3DE) and two-dimensional (2D) multilayer speckle tracking echocardiography (MSTE) for evaluation of early myocardial dysfunction triggered by increased left ventricular (LV) wall thickness in severe aortic stenosis (AS) with normal LV ejection fraction (EF≥55%). Conventional, RT3D STE and 2D MSTE were performed in 45 patients (mean 68.9±9.0 years) with severe AS (aortic valve area <1 cm 2 , aortic velocity Vmax >4 m/s or mean PG >40 mm Hg) and normal left ventricular ejection fraction (LVEF) without overt coronary artery disease and in 18 age-, sex-matched healthy controls. Global longitudinal strain (GLS), global circumferential strain (GCS), global area strain (GAS), and global radial strain (GRS) were calculated using RT3DE and MSTE. The severe AS group had lower 3D GLS, GRS, GAS and 2D epicardium, and mid-wall and endocardium GLS compared to healthy controls. In MSTE analysis, 2D LS and CS values decreased from the endocardial layer toward the epicardial layer. Severe AS patients with increased LV wall thickness had lower 3D GLS and 2D epicardium, and mid-wall and endocardium GLS compared with severe AS patients without LV wall thickening. GLS on RT3D STE was correlated with GLS on 2D MSTE, left ventricular mass index, LVEF, left atrial volume index, and lnNT-proBNP. RT3DE and 2D MSTE can be used to identify subtle contractile dysfunction triggered by increased LV wall thickness in severe AS with normal LVEF. Therefore, RT3D STE and 2D MSTE may provide additional information that can facilitate decision-making regarding severe AS patients with increased LV wall thickness and normal LV function. © 2017, Wiley Periodicals, Inc.

  18. Tako-tsubo-like syndrome, a case report.

    PubMed

    Patanè, Salvatore; Marte, Filippo

    2008-02-29

    Tako-tsubo-like (Japanese word for octopus-catcher) left ventricular dysfunction is an enigmatic cardiomyopathy. Typically, the patients have a history of recent stressful incidents immediately preceding onset of mild to moderate chest pain, have ST-segment elevation in leads V3 through V6, ECG changes that typically demonstrate diffuse T-wave inversions and abnormal QS-wave development, discrete wall motion abnormalities involving the lower anterior wall and apex on echocardiography or left ventriculography, and limited myocardial enzyme release without evidence for hemodynamically significant coronary arterial stenoses by angiography. We describe a case of a Tako-tsubo-like left ventricular dysfunction in a 72-year-old female Italian woman.

  19. Cardiac-specific inactivation of LPP3 in mice leads to myocardial dysfunction and heart failure.

    PubMed

    Chandra, Mini; Escalante-Alcalde, Diana; Bhuiyan, Md Shenuarin; Orr, Anthony Wayne; Kevil, Christopher; Morris, Andrew J; Nam, Hyung; Dominic, Paari; McCarthy, Kevin J; Miriyala, Sumitra; Panchatcharam, Manikandan

    2018-04-01

    Lipid Phosphate phosphatase 3 (LPP3), encoded by the Plpp3 gene, is an enzyme that dephosphorylates the bioactive lipid mediator lysophosphatidic acid (LPA). To study the role of LPP3 in the myocardium, we generated a cardiac specific Plpp3 deficient mouse strain. Although these mice were viable at birth in contrast to global Plpp3 knockout mice, they showed increased mortality ~ 8 months. LPP3 deficient mice had enlarged hearts with reduced left ventricular performance as seen by echocardiography. Cardiac specific Plpp3 deficient mice had longer ventricular effective refractory periods compared to their Plpp3 littermates. We observed that lack of Lpp3 enhanced cardiomyocyte hypertrophy based on analysis of cell surface area. We found that lack of Lpp3 signaling was mediated through the activation of Rho and phospho-ERK pathways. There are increased levels of fetal genes Natriuretic Peptide A and B (Nppa and Nppb) expression indicating myocardial dysfunction. These mice also demonstrate mitochondrial dysfunction as evidenced by a significant decrease (P < 0.001) in the basal oxygen consumption rate, mitochondrial ATP production, and spare respiratory capacity as measured through mitochondrial bioenergetics. Histology and transmission electron microscopy of these hearts showed disrupted sarcomere organization and intercalated disc, with a prominent disruption of the cristae and vacuole formation in the mitochondria. Our findings suggest that LPA/LPP3-signaling nexus plays an important role in normal function of cardiomyocytes. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Effects of Incretin-Based Therapies on Neuro-Cardiovascular Dynamic Changes Induced by High Fat Diet in Rats.

    PubMed

    Marques-Neto, Silvio Rodrigues; Castiglione, Raquel Carvalho; Pontes, Aiza; Oliveira, Dahienne Ferreira; Ferraz, Emanuelle Baptista; Nascimento, José Hamilton Matheus; Bouskela, Eliete

    2016-01-01

    Obesity promotes cardiac and cerebral microcirculatory dysfunction that could be improved by incretin-based therapies. However, the effects of this class of compounds on neuro-cardiovascular system damage induced by high fat diet remain unclear. The aim of this study was to investigate the effects of incretin-based therapies on neuro-cardiovascular dysfunction induced by high fat diet in Wistar rats. We have evaluated fasting glucose levels and insulin resistance, heart rate variability quantified on time and frequency domains, cerebral microcirculation by intravital microscopy, mean arterial blood pressure, ventricular function and mitochondrial swelling. High fat diet worsened biometric and metabolic parameters and promoted deleterious effects on autonomic, myocardial and haemodynamic parameters, decreased capillary diameters and increased functional capillary density in the brain. Biometric and metabolic parameters were better improved by glucagon like peptide-1 (GLP-1) compared with dipeptdyl peptidase-4 (DPP-4) inhibitor. On the other hand, both GLP-1 agonist and DPP-4 inhibitor reversed the deleterious effects of high fat diet on autonomic, myocardial, haemodynamic and cerebral microvascular parameters. GLP-1 agonist and DPP-4 inhibitor therapy also increased mitochondrial permeability transition pore resistance in brain and heart tissues of rats subjected to high fat diet. Incretin-based therapies improve deleterious cardiovascular effects induced by high fat diet and may have important contributions on the interplay between neuro-cardiovascular dynamic controls through mitochondrial dysfunction associated to metabolic disorders.

  1. Future Perspectives for Management of Stage A Heart Failure.

    PubMed

    Tanaka, Hidekazu

    2018-05-07

    Patients with Stage A heart failure (HF) show no HF symptoms but have related comorbid diseases with a high risk of progressing to HF. Screening for comorbid diseases warrants closer attention because of the growing interest in addressing Stage A HF as the best means of preventing eventual progression to overt HF such as Stages C and D. The identification of individuals of Stage A HF is potentially useful for the implementation of HF-prevention strategies; however, not all Stage A HF patients develop left ventricular (LV) structural heart disease or symptomatic HF, which lead to advanced HF stages. Therefore, Stage A HF requires management with the long-term goal of avoiding HF development; likewise, Stage B HF patients are ideal targets for HF prevention. Although the early detection of subclinical LV dysfunction is, thus, essential for delaying the progression to HF, the assessment of subclinical LV dysfunction can be challenging. Global longitudinal strain (GLS) as assessed by speckle-tracking echocardiography has recently been reported to be a sensitive marker of early subtle LV myocardial abnormalities, helpful for the prediction of the outcomes for various cardiac diseases, and superior to conventional echocardiographic indices. GLS reflects LV longitudinal myocardial systolic function, and can be assessed usually by means of two-dimensional speckle-tracking. This article reviews the importance of the assessment of subclinical LV dysfunction in Stage A HF patients by means of GLS, and its current potential to prevent progression to later stage HF.

  2. Berberine inhibits the ischemia-reperfusion injury induced inflammatory response and apoptosis of myocardial cells through the phosphoinositide 3-kinase/RAC-α serine/threonine-protein kinase and nuclear factor-κB signaling pathways.

    PubMed

    Wang, Lixin; Ma, Hao; Xue, Yan; Shi, Haiyan; Ma, Teng; Cui, Xiaozheng

    2018-02-01

    Myocardial ischemia-reperfusion injury is one of the most common cardiovascular diseases, and can lead to serious damage and dysfunction of the myocardial tissue. Previous studies have demonstrated that berberine exhibits ameliorative effects on cardiovascular disease. The present study further investigated the efficacy and potential mechanism underlying the effects of berberine on ischemia-reperfusion injury in a mouse model. Inflammatory markers were measured in the serum and levels of inflammatory proteins in myocardial cells were investigated after treatment with berberine. In addition, the apoptosis of myocardial cells was investigated after berberine treatment. Apoptosis-associated gene expression levels and apoptotic signaling pathways were analyzed in myocardial cells after treatment with berberine. The phosphoinositide 3-kinase (PI3K)/RAC-α serine/threonine-protein kinase (AKT) and nuclear factor (NF)-κB signaling pathways were also analyzed in myocardial cells after treatment with berberine. Histological analysis was used to analyze the potential benefits of berberine in ischemia-reperfusion injury. The present study identified that inflammatory responses and inflammatory factors were decreased in the myocardial cells of the mouse model of ischemia-reperfusion injury. Mechanism analysis demonstrated that berberine inhibited apoptotic protease-activating factor 1, caspase-3 and caspase-9 expression in myocardial cells. The expression of Bcl2-associated agonist of cell death, Bcl-2-like protein 1 and cellular tumor antigen p53 was upregulated. Expression of NF-κB p65, inhibitor of NF-κB kinase subunit β (IKK-β), NF-κB inhibitor α (IκBα), and NF-κB activity, were inhibited in myocardial cells in the mouse model of ischemia-reperfusion injury. In conclusion, the results of the present study indicate that berberine inhibits inflammatory responses through the NF-κB signaling pathway and suppresses the apoptosis of myocardial cells via the PI3K/AKT signaling pathway in a mouse model of ischemia-reperfusion injury. These results suggest that berberine is a potential drug for the treatment of patients with ischemia-reperfusion injury.

  3. Berberine inhibits the ischemia-reperfusion injury induced inflammatory response and apoptosis of myocardial cells through the phosphoinositide 3-kinase/RAC-α serine/threonine-protein kinase and nuclear factor-κB signaling pathways

    PubMed Central

    Wang, Lixin; Ma, Hao; Xue, Yan; Shi, Haiyan; Ma, Teng; Cui, Xiaozheng

    2018-01-01

    Myocardial ischemia-reperfusion injury is one of the most common cardiovascular diseases, and can lead to serious damage and dysfunction of the myocardial tissue. Previous studies have demonstrated that berberine exhibits ameliorative effects on cardiovascular disease. The present study further investigated the efficacy and potential mechanism underlying the effects of berberine on ischemia-reperfusion injury in a mouse model. Inflammatory markers were measured in the serum and levels of inflammatory proteins in myocardial cells were investigated after treatment with berberine. In addition, the apoptosis of myocardial cells was investigated after berberine treatment. Apoptosis-associated gene expression levels and apoptotic signaling pathways were analyzed in myocardial cells after treatment with berberine. The phosphoinositide 3-kinase (PI3K)/RAC-α serine/threonine-protein kinase (AKT) and nuclear factor (NF)-κB signaling pathways were also analyzed in myocardial cells after treatment with berberine. Histological analysis was used to analyze the potential benefits of berberine in ischemia-reperfusion injury. The present study identified that inflammatory responses and inflammatory factors were decreased in the myocardial cells of the mouse model of ischemia-reperfusion injury. Mechanism analysis demonstrated that berberine inhibited apoptotic protease-activating factor 1, caspase-3 and caspase-9 expression in myocardial cells. The expression of Bcl2-associated agonist of cell death, Bcl-2-like protein 1 and cellular tumor antigen p53 was upregulated. Expression of NF-κB p65, inhibitor of NF-κB kinase subunit β (IKK-β), NF-κB inhibitor α (IκBα), and NF-κB activity, were inhibited in myocardial cells in the mouse model of ischemia-reperfusion injury. In conclusion, the results of the present study indicate that berberine inhibits inflammatory responses through the NF-κB signaling pathway and suppresses the apoptosis of myocardial cells via the PI3K/AKT signaling pathway in a mouse model of ischemia-reperfusion injury. These results suggest that berberine is a potential drug for the treatment of patients with ischemia-reperfusion injury. PMID:29403554

  4. Methanolic seed extract of Vitis vinifera ameliorates oxidative stress, inflammation and ATPase dysfunction in infarcted and non-infarcted heart of streptozotocin-nicotinamide induced male diabetic rats.

    PubMed

    Giribabu, Nelli; Roslan, Josef; Rekha, Somesula Swapna; Salleh, Naguib

    2016-11-01

    We hypothesized that consumption of Vitis vinifera seed by diabetics could help to ameliorate myocardial damage. Therefore, in this study, we investigated effects of V. vinifera seed methanolic extract (VVSME) on parameters related to myocardial damage in diabetes with or without myocardial infarction (MI). Streptozotocin-nicotinamide induced diabetic rats received oral VVSME for 28days. MI was induced by intraperitoneal injection of isoproterenol on last two days. Prior to sacrifice, blood was collected and fasting blood glucose (FBG), glycated hemoglobin (HbA1c), lipid profile and insulin levels were measured. Levels of serum cardiac injury marker (troponin-I and CK-MB) were determined and histopathological changes in the heart were observed following harvesting. Levels of oxidative stress (LPO, SOD, CAT, GPx and RAGE), inflammation (NF-κB, TNF-α, IL-1β and IL-6) and cardiac ATPases (Na(+)/K(+)-ATPase and Ca(2+)-ATPase) were determined in heart homogenates. LC-MS was used to identify constituents in the extracts. Consumption of VVSME by diabetic rats with or without MI improved the metabolic profiles while decreased the cardiac injury marker levels with lesser myocardial damage observed. Additionally, VVSME consumption reduced the levels of LPO, RAGE, TNF-α, Iκκβ, NF-κβ, IL-1β and IL-6 while increased the levels of SOD, CAT, GPx, Na(+)/K(+)-ATPase and Ca(2+)-ATPase in the infarcted and non-infarcted heart of diabetic rats (p<0.05). LC-MS analysis revealed 17 major compounds in VVSME which might be responsible for the observed effects. Consumption of VVSME by diabetics helps to ameliorate damage to the infarcted and non-infarcted myocardium by decreasing oxidative stress, inflammation and cardiac ATPases dysfunctions. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Oestradiol supplement minimises coronary occlusion-induced myocardial infarction and ventricular dysfunction in oophorectomised female rats.

    PubMed

    Zheng, Xiao-Pu; Ma, Ai-Qun; Dong, An-Ping; Wang, Shun; Jiang, Wen-Hui; Wang, Ting-Zhong; Fan, Fen-Ling; Ling, Shanhong

    2011-09-15

    Endogenous oestrogen deficiency after menopause is associated with high risk of acute cardiac events and the protection of exogenous oestrogen supplements remains uncertain. This study investigates whether oestrogen therapy protects the heart from ischemic injury in oophorectomised rats. Sexually mature female Sprague-Dawley rats (6 for each group) with bilateral oophorectomy underwent selective ligation (occlusion) of left coronary artery for 4 weeks. 17β-oestradiol (E2) supplements (10 μg, i.m., every other day) were started before (preventive-therapeutic supplement) or after coronary occlusion (therapeutic supplement). In oophorectomised rats plasma levels of E2 declined from 1301 ± 80 to 196 ± 48 pmol/L (p<0.01) and cardiac expression of oestrogen receptors (ER) decreased by ∼60%. E2 supplements recovered the ER expression. Selective ligation of left coronary led myocardial infarction in the left ventricle, with an increase in plasma cardiac troponin I (cTn-I), decrease in systolic blood pressure (SBP), and reduction of left ventricular pressures. Preventive-therapeutic but not therapeutic E2 supplement reduced cTn-I levels (from 21.9 ± 2.0 to 6.0 ± 0.3 ng/mL, p<0.01), minimised infarction (from 37.0 ± 1.2% to 18.1 ± 2.3%, p<0.05), increased SBP (from 82 ± 4.2 to 97 ± 4.4mm Hg, p<0.05), and improved left ventricular end pressures in the oophorectomised rats following coronary occlusion. Postmenopausal (ooporectomised) oestrogen supplement commenced before establishment of myocardial ischemia minimises myocardial infarction and ventricular dysfunction following the coronary artery occlusion. Cellular and molecular mechanisms underlying the cardiac protection of oestrogen therapy remain unclear, in which activation of cardiac ER expression and increasing in circulating CD90(+) stem cells may be involved. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  6. Complex inhibition of autophagy by mitochondrial aldehyde dehydrogenase shortens lifespan and exacerbates cardiac aging.

    PubMed

    Zhang, Yingmei; Wang, Cong; Zhou, Jingmin; Sun, Aijun; Hueckstaedt, Lindsay K; Ge, Junbo; Ren, Jun

    2017-08-01

    Autophagy, a conservative degradation process for long-lived and damaged proteins, participates in a cascade of biological processes including aging. A number of autophagy regulators have been identified. Here we demonstrated that mitochondrial aldehyde dehydrogenase (ALDH2), an enzyme with the most common single point mutation in humans, governs cardiac aging through regulation of autophagy. Myocardial mechanical and autophagy properties were examined in young (4months) and old (26-28months) wild-type (WT) and global ALDH2 transgenic mice. ALDH2 overexpression shortened lifespan by 7.7% without affecting aging-associated changes in plasma metabolic profiles. Myocardial function was compromised with aging associated with cardiac hypertrophy, the effects were accentuated by ALDH2. Aging overtly suppressed autophagy and compromised autophagy flux, the effects were exacerbated by ALDH2. Aging dampened phosphorylation of JNK, Bcl-2, IKKβ, AMPK and TSC2 while promoting phosphorylation of mTOR, the effects of which were exaggerated by ALDH2. Co-immunoprecipitation revealed increased dissociation between Bcl-2 and Beclin-1 (result of decreased Bcl-2 phosphorylation) in aging, the effect of which was exacerbated with ALDH2. Chronic treatment of the autophagy inducer rapamycin alleviated aging-induced cardiac dysfunction in both WT and ALDH2 mice. Moreover, activation of JNK and inhibition of either Bcl-2 or IKKβ overtly attenuated ALDH2 activation-induced accentuation of cardiomyocyte aging. Examination of the otherwise elderly individuals revealed a positive correlation between cardiac function/geometry and ALDH2 gene mutation. Taken together, our data revealed that ALDH2 enzyme may suppress myocardial autophagy possibly through a complex JNK-Bcl-2 and IKKβ-AMPK-dependent mechanism en route to accentuation of myocardial remodeling and contractile dysfunction in aging. This article is part of a Special Issue entitled: Genetic and epigenetic control of heart failure - edited by Jun Ren & Megan Yingmei Zhang. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Ablation of toll-like receptor 4 attenuates aging-induced myocardial remodeling and contractile dysfunction through NCoRI-HDAC1-mediated regulation of autophagy.

    PubMed

    Wang, Shuyi; Ge, Wei; Harns, Carrie; Meng, Xianzhong; Zhang, Yingmei; Ren, Jun

    2018-04-13

    Aging is usually accompanied with overt structural and functional changes as well as suppressed autophagy in the heart although the precise regulatory mechanisms are somewhat unknown. Here we evaluated the role of the innate proinflammatory mediator toll-like receptor 4 (TLR4) in cardiac aging and the underlying mechanism with a focus on autophagy. Cardiac geometry and function were monitored in young or old wild-type (WT) and TLR4 knockout (TLR4 -/- ) mice using echocardiography, IonOptix® edge-detection and fura-2 techniques. Levels of autophagy and mitophagy, nuclear receptor corepressor 1 (NCoR1) and histone deacetylase I (HDAC1) were examined using western blot. Transmission electronic microscopy (TEM) was employed to monitor myocardial ultrastructure. Our results revealed that TLR4 ablation alleviated advanced aging (24 months)-induced changes in myocardial remodeling (increased heart weight, chamber size, cardiomyocyte cross-sectional area), contractile function and intracellular Ca 2+ handling as well as autophagy and mitophagy [Beclin-1, Atg5, LC3B, PTEN-induced putative kinase 1 (PINK1), Parkin and p62]. Aging downregulated levels of NCoR1 and HDAC1 as well as their interaction, the effects were significantly attenuated or negated by TLR4 ablation. Advanced aging disturbed myocardial ultrastructure as evidenced by loss of myofilament alignment and swollen mitochondria, which was obliterated by TLR4 ablation. Moreover, aging suppressed autophagy (GFP-LC3B puncta) in neonatal mouse cardiomyocytes, the effect of which was negated by the TLR4 inhibitor CLI-095. Inhibition of HDCA1 using apicidin cancelled off CLI095-induced beneficial response of GFP-LC3B puncta against aging. Our data collectively indicate a role for TLR4-mediated autophagy in cardiac remodeling and contractile dysfunction in aging through a HDAC1-NCoR1-dependent mechanism. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Long term effects of cocaine on the heart assessed by cardiovascular magnetic resonance at 3T

    PubMed Central

    2014-01-01

    Background Cocaine is an addictive, sympathomimetic drug with potentially lethal effects. The prevalence and features of cocaine cardiotoxicity are not well known. We aimed to assess these effects using a comprehensive cardiovascular magnetic resonance (CMR) protocol in a large group of asymptomatic cocaine users. Methods Consecutive (n = 94, 81 males, 36.6 ±7 years), non-selected, cocaine abusers were recruited and had a medical history, examination, ECG, blood test and CMR. The CMR study included measurement of left and right ventricular (LV, RV) dimensions and ejection fraction (EF), sequences for detection of myocardial oedema and late gadolinium enhancement (LGE). Images were compared to a cohort of healthy controls. Results Years of regular cocaine use were 13.9 ± 9. When compared to the age-matched healthy cohort, the cocaine abusers had increased LV end-systolic volume, LV mass index and RV end-systolic volume, with decreased LVEF and RVEF. No subject had myocardial oedema, but 30% had myocardial LGE indicating myocardial damage. Conclusions CMR detected cardiovascular disease in 71% of this cohort of consecutive asymptomatic cocaine abusers and mean duration of abuse was related to probability of LV systolic dysfunction. PMID:24758161

  9. Use of wave intensity analysis of carotid arteries in identifying and monitoring left ventricular systolic function dynamics in rabbits.

    PubMed

    Zhang, Hui; Zheng, Rongqin; Qian, Xiaoxian; Zhang, Chengxi; Hao, Baoshun; Huang, Zeping; Wu, Tao

    2014-03-01

    Wave intensity analysis (WIA) of the carotid artery was conducted to determine the changes that occur in left ventricular systolic function after administration of doxorubicin in rabbits. Each randomly selected rabbit was subject to routine ultrasound, WIA of the carotid artery, cardiac catheterization and pathologic examination every week and was followed for 16 wk. The first positive peak (WI1) of the carotid artery revealed that left ventricular systolic dysfunction occurred earlier than conventional indexes of heart function. WI1 was highly, positively correlated with the maximum rate of rise in left ventricular pressure in cardiac catheterization (r = 0.94, p < 0.01) and moderately negatively correlated with the apoptosis index of myocardial cells, an indicator of myocardial damage (r = -0.69, p < 0.01). Ultrasound WIA of the carotid artery sensitively reflects early myocardial damage and cardiac function, and the result is highly consistent with cardiac catheterization findings and the apoptosis index of myocardial cells. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  10. Takotsubo cardiomyopathy: Pathophysiology, diagnosis and treatment.

    PubMed

    Komamura, Kazuo; Fukui, Miho; Iwasaku, Toshihiro; Hirotani, Shinichi; Masuyama, Tohru

    2014-07-26

    In 1990, takotsubo cardiomyopathy (TCM) was first discovered and reported by a Japanese cardiovascular specialist. Since then, this heart disease has gained worldwide acceptance as an independent disease entity. TCM is an important entity that differs from acute myocardial infarction. It occurs more often in postmenopausal elderly women, is characterized by a transient hypokinesis of the left ventricular (LV) apex, and is associated with emotional or physical stress. Wall motion abnormality of the LV apex is generally transient and resolves within a few days to several weeks. Its prognosis is generally good. However, there are some reports of serious TCM complications, including hypotension, heart failure, ventricular rupture, thrombosis involving the LV apex, and torsade de pointes. It has been suggested that coronary spasm, coronary microvascular dysfunction, catecholamine toxicity and myocarditis might contribute to the pathogenesis of TCM. However, its pathophysiology is not clearly understood.

  11. Kawasaki syndrome in an adult: endomyocardial histology and ventricular function during acute and recovery phases of illness.

    PubMed

    Marcella, J J; Ursell, P C; Goldberger, M; Lovejoy, W; Fenoglio, J J; Weiss, M B

    1983-08-01

    Kawasaki syndrome, an acute systemic inflammatory illness of unknown origin usually affecting children, may develop into a serious illness complicated by coronary artery aneurysms or myocarditis. This report describes an adult with Kawasaki syndrome studied by right ventricular endomyocardial biopsy and cardiac catheterization during the acute and recovery phases of illness. The initial biopsy specimen showed acute myocarditis and was associated with hemodynamic evidence of biventricular dysfunction, a severely depressed left ventricular ejection fraction and global hypokinesia. With time, there was spontaneous and rapid resolution of the inflammatory cell infiltrate with concurrent return to normal myocardial function. Right ventricular endomyocardial biopsy studies early in the course of the cardiac disease associated with Kawasaki syndrome may correlate with ventricular function and may be useful for monitoring immunosuppressive therapy in patients with this syndrome.

  12. Cardiovascular and systemic effects of gastric dilatation and volvulus in dogs.

    PubMed

    Sharp, Claire R; Rozanski, Elizabeth A

    2014-09-01

    Gastric dilatation and volvulus (GDV) is a common emergency condition in large and giant breed dogs that is associated with high morbidity and mortality. Dogs with GDV classically fulfill the criteria for the systemic inflammatory response syndrome (SIRS) and can go on to develop multiple organ dysfunction syndrome (MODS). Previously reported organ dysfunctions in dogs with GDV include cardiovascular, respiratory, gastrointestinal, coagulation and renal dysfunction. Cardiovascular manifestations of GDV include shock, cardiac arrhythmias and myocardial dysfunction. Respiratory dysfunction is also multifactorial, with contributory factors including decreased respiratory excursion due to gastric dilatation, decreased pulmonary perfusion and aspiration pneumonia. Gastrointestinal dysfunction includes gastric necrosis and post-operative gastrointestinal upset such as regurgitation, vomiting, and ileus. Coagulation dysfunction is another common feature of MODS in dogs with GDV. Disseminated intravascular coagulation can occur, putting them at risk of complications associated with thrombosis in the early hypercoagulable state and hemorrhage in the subsequent hypocoagulable state. Acute kidney injury, acid-base and electrolyte disturbances are also reported in dogs with GDV. Understanding the potential for systemic effects of GDV allows the clinician to monitor patients astutely and detect such complications early, facilitating early intervention to maximize the chance of successful management. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Maternal left ventricular hypertrophy and diastolic dysfunction and brain natriuretic peptide concentration in early- and late-onset pre-eclampsia.

    PubMed

    Borges, V T M; Zanati, S G; Peraçoli, M T S; Poiati, J R; Romão-Veiga, M; Peraçoli, J C; Thilaganathan, B

    2018-04-01

    Pre-eclampsia (PE) is associated with maternal cardiac remodeling and diastolic dysfunction. The aim of this study was to assess and compare maternal left ventricular structure and diastolic function and levels of brain natriuretic peptide (BNP) in women with early-onset (< 34 weeks' gestation) vs those with late-onset (≥ 34 weeks' gestation) PE. This was a prospective, cross-sectional, observational study of 30 women with early-onset PE, 32 with late-onset PE and 23 normotensive controls. Maternal cardiac structure and diastolic function were assessed by echocardiography and plasma levels of BNP were measured by enzyme immunoassay. Early- and late-onset PE were associated with increased left ventricular mass index and relative wall thickness compared with normotensive controls. In women with early-onset PE, the prevalence of concentric hypertrophy (40%) and diastolic dysfunction (23%) was also significantly higher (both P < 0.05) compared with women with late-onset PE (16% for both). Maternal serum BNP levels were significantly higher (P < 0.05) in women with early-onset PE and correlated with relative wall thickness and left ventricular mass index. Early-onset PE is associated with more severe cardiac impairment than is late-onset PE, as evidenced by an increased prevalence of concentric hypertrophy, diastolic dysfunction and higher levels of BNP. These findings suggest that early-onset PE causes greater myocardial damage, increasing the risk of both peripartum and postpartum cardiovascular morbidity. Although these cardiovascular effects are easily identified by echocardiographic parameters and measuring BNP, further studies are needed to assess their clinical utility. Copyright © 2017 ISUOG. Published by John Wiley & Sons Ltd. Copyright © 2017 ISUOG. Published by John Wiley & Sons Ltd.

  14. Proteomic analysis of cardiac metabolic enzymes in asphyxiated newborn piglets.

    PubMed

    Fert-Bober, Justyna; Sawicki, Grzegorz; Lopaschuk, Gary D; Cheung, Po-Yin

    2008-11-01

    Hypoxia/reoxygenation (H/R) creates an energetic deficiency in the heart, which may contribute to myocardial dysfunction. We hypothesized that H/R-induced impairment of cardioenergetic enzymes occurs in asphyxiated newborn animals. After hypoxia for 2 h (10-15% oxygen), newborn piglets were resuscitated with 100% oxygen for 1 h, followed by 21% oxygen for 3 h. Sham-operated control piglets had no H/R. Hemodynamic parameters in the piglets were continuously measured. At the end of experiment, hearts were isolated for proteomic analysis. In asphyxiated hearts, the level of isocitrate dehydrogenase and malate dehydrogenase was reduced compared to controls. Inverse correlations between the level of myocardial malate dehydrogenase and cardiac function were observed in the control, but not the H/R hearts. We conclude that reoxygenation of asphyxiated newborn piglets reduces the level of myocardial isocitrate dehydrogenase and malate dehydrogenase. While the cause is not clear, it may be related to the impaired tricarboxylic acid cycle pathway and energy production in the heart.

  15. Strain Analysis in the Assessment of a Mouse Model of Cardiotoxicity due to Chemotherapy: Sample for Preclinical Research.

    PubMed

    Rea, Domenica; Coppola, Carmela; Barbieri, Antonio; Monti, Maria Gaia; Misso, Gabriella; Palma, Giuseppe; Bimonte, Sabrina; Zarone, Mayra Rachele; Luciano, Antonio; Liccardo, Davide; Maiolino, Piera; Cittadini, Antonio; Ciliberto, Gennaro; Arra, Claudio; Maurea, Nicola

    2016-01-01

    In recent years, the development of more effective anticancer drugs has provided great benefits in patients' quality of life by improving both prognosis and disease-free survival. Nevertheless, the frequency and severity of side-effects, with particular reference to cardiac toxicity, have gained particular attention. The purpose of this study was to create a precise and sensitive preclinical model, able to identify early contractile dysfunction in mice treated with chemotherapy, through use of speckle-tracking echocardiography. We generated a mouse model of cardiotoxicity induced by doxorubicin. C57BL 6 mice were divided into two groups, treated for 7 days by intraperitoneal injections of placebo (vehicle) or doxorubicin (2.17 mg/kg), in order to characterize the cardiac phenotype in vivo. We demonstrated that doxorubicin caused ealy remodeling of the left ventricle: after two days of therapy, the radial, circumferential and strain rates were reduced respectively by 35%, 34%, and 39% (p-value ≤0.001). Moreover, histological analysis revealed that doxorubicin treatment increased fibrosis, cardiomyocyte diameter and apoptosis. In a murine model of doxorubicin-induced cardiac injury, we detected left ventricular dysfunction followed by alterations in conventional echocardiographic indices. Our study suggests that a change in strain could be an effective early marker of myocardial dysfunction for new anticancer treatments and, in preclinical studies, it might also be a valuable indicator for the assessment of activity of cardioprotective agents. Copyright © 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  16. Obesity, metabolic dysfunction and cardiac fibrosis: pathophysiologic pathways, molecular mechanisms and therapeutic opportunities

    PubMed Central

    Cavalera, Michele; Wang, Junhong; Frangogiannis, Nikolaos G

    2014-01-01

    Cardiac fibrosis is strongly associated with obesity and metabolic dysfunction and may contribute to the increased incidence of heart failure, atrial arrhythmias and sudden cardiac death in obese subjects. Our review discusses the evidence linking obesity and myocardial fibrosis in animal models and human patients, focusing on the fundamental pathophysiologic alterations that may trigger fibrogenic signaling, the cellular effectors of fibrosis and the molecular signals that may regulate the fibrotic response. Obesity is associated with a wide range of pathophysiologic alterations (such as pressure and volume overload, metabolic dysregulation, neurohumoral activation and systemic inflammation); their relative role in mediating cardiac fibrosis is poorly defined. Activation of fibroblasts likely plays a major role in obesity-associated fibrosis; however, inflammatory cells, cardiomyocytes and vascular cells may also contribute to fibrogenic signaling. Several molecular processes have been implicated in regulation of the fibrotic response in obesity. Activation of the Renin-Angiotensin-Aldosterone System, induction of Transforming Growth Factor-β, oxidative stress, advanced glycation end-products (AGEs), endothelin-1, Rho-kinase signaling, leptin-mediated actions and upregulation of matricellular proteins (such as thrombospondin-1) may play a role in the development of fibrosis in models of obesity and metabolic dysfunction. Moreover, experimental evidence suggests that obesity and insulin resistance profoundly affect the fibrotic and remodeling response following cardiac injury. Understanding the pathways implicated in obesity-associated fibrosis may lead to development of novel therapies to prevent heart failure and to attenuate post-infarction cardiac remodeling in obese patients. PMID:24880146

  17. Roselle is cardioprotective in diet-induced obesity rat model with myocardial infarction.

    PubMed

    Si, Lislivia Yiang-Nee; Ali, Siti Aishah Mohd; Latip, Jalifah; Fauzi, Norsyahida Mohd; Budin, Siti Balkis; Zainalabidin, Satirah

    2017-12-15

    Obesity increase the risks of hypertension and myocardial infarction (MI) mediated by oxidative stress. This study was undertaken to investigate the actions of roselle aqueous extract (R) on cardiotoxicity in obese (OB) rats and thereon OB rats subjected to MI. Male Sprague-Dawley rats were fed with either normal diet or high-fat diet for 8weeks. Firstly, OB rats were divided into (1) OB and (2) OB+R (100mg/kg, p.o, 28days). Then, OB rats were subjected to MI (ISO, 85mg/kg, s.c, 2days) and divided into three groups: (1) OB+MI, (2) OB+MI+R and (3) OB+MI+enalapril for another 4weeks. Roselle ameliorated OB and OB+MI's cardiac systolic dysfunction and reduced cardiac hypertrophy and fibrosis. The increased oxidative markers and decreased antioxidant enzymes in OB and OB+MI groups were all attenuated by roselle. These observations indicate the protective effect of roselle on cardiac dysfunction in OB and OB+MI rats, which suggest its potential to be developed as a nutraceutical product for obese and obese patients with MI in the future. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Allogeneic mesenchymal precursor cells (MPCs): an innovative approach to treating advanced heart failure.

    PubMed

    Westerdahl, Daniel E; Chang, David H; Hamilton, Michele A; Nakamura, Mamoo; Henry, Timothy D

    2016-09-01

    Over 37 million people worldwide are living with Heart Failure (HF). Advancements in medical therapy have improved mortality primarily by slowing the progression of left ventricular dysfunction and debilitating symptoms. Ultimately, heart transplantation, durable mechanical circulatory support (MCS), or palliative care are the only options for patients with end-stage HF. Regenerative therapies offer an innovative approach, focused on reversing myocardial dysfunction and restoring healthy myocardial tissue. Initial clinical trials using autologous (self-donated) bone marrow mononuclear cells (BMMCs) demonstrated excellent safety, but only modest efficacy. Challenges with autologous stem cells include reduced quality and efficacy with increased patient age. The use of allogeneic mesenchymal precursor cells (MPCs) offers an "off the shelf" therapy, with consistent potency and less variability than autologous cells. Preclinical and initial clinical trials with allogeneic MPCs have been encouraging, providing the support for a large ongoing Phase III trial-DREAM-HF. We provide a comprehensive review of preclinical and clinical data supporting MPCs as a therapeutic option for HF patients. The current data suggest allogeneic MPCs are a promising therapy for HF patients. The results of DREAM-HF will determine whether allogeneic MPCs can decrease major adverse clinical events (MACE) in advanced HF patients.

  19. Mechanical Dyssynchrony Precedes QRS Widening in ATP‐Sensitive K+ Channel–Deficient Dilated Cardiomyopathy

    PubMed Central

    Yamada, Satsuki; Arrell, D. Kent; Kane, Garvan C.; Nelson, Timothy J.; Perez‐Terzic, Carmen M.; Behfar, Atta; Purushothaman, Saranya; Prinzen, Frits W.; Auricchio, Angelo; Terzic, Andre

    2013-01-01

    Background Contractile discordance exacerbates cardiac dysfunction, aggravating heart failure outcome. Dissecting the genesis of mechanical dyssynchrony would enable an early diagnosis before advanced disease. Methods and Results High‐resolution speckle‐tracking echocardiography was applied in a knockout murine surrogate of adult‐onset human cardiomyopathy caused by mutations in cardioprotective ATP‐sensitive K+ (KATP) channels. Preceding the established criteria of cardiac dyssynchrony, multiparametric speckle‐based strain resolved nascent erosion of dysfunctional regions within cardiomyopathic ventricles of the KATP channel–null mutant exposed to hemodynamic stress. Not observed in wild‐type counterparts, intraventricular disparity in wall motion, validated by the degree, direction, and delay of myocardial speckle patterns, unmasked the disease substrate from asymptomatic to overt heart failure. Mechanical dyssynchrony preceded widening of the QRS complex and exercise intolerance and progressed into global myocardial discoordination and decompensated cardiac pump function, precipitating a low output syndrome. Conclusions The present study, with the use of high‐resolution imaging, prospectively resolved the origin and extent of intraventricular motion disparity in a KATP channel–knockout model of dilated cardiomyopathy. Mechanical dyssynchrony established as an early marker of cardiomyopathic disease offers novel insight into the pathodynamics of dyssynchronous heart failure. PMID:24308936

  20. The amelioration of cardiac dysfunction after myocardial infarction by the injection of keratin biomaterials derived from human hair.

    PubMed

    Shen, Deliang; Wang, Xiaofang; Zhang, Li; Zhao, Xiaoyan; Li, Jingyi; Cheng, Ke; Zhang, Jinying

    2011-12-01

    Cardiac dysfunction following acute myocardial infarction is a major cause of advanced cardiomyopathy. Conventional pharmacological therapies rely on prompt reperfusion and prevention of repetitive maladaptive pathways. Keratin biomaterials can be manufactured in an autologous fashion and are effective in various models of tissue regeneration. However, its potential application in cardiac regeneration has not been tested. Keratin biomaterials were derived from human hair and its structure morphology, carryover of beneficial factors, biocompatibility with cardiomyocytes, and in vivo degradation profile were characterized. After delivery into infarcted rat hearts, the keratin scaffolds were efficiently infiltrated by cardiomyocytes and endothelial cells. Injection of keratin biomaterials promotes angiogenesis but does not exacerbate inflammation in the post-MI hearts. Compared to control-injected animals, keratin biomaterials-injected animals exhibited preservation of cardiac function and attenuation of adverse ventricular remodeling over the 8 week following time course. Tissue western blot analysis revealed up-regulation of beneficial factors (BMP4, NGF, TGF-beta) in the keratin-injected hearts. The salient functional benefits, the simplicity of manufacturing and the potentially autologous nature of this biomaterial provide impetus for further translation to the clinic. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Atrial fibrillation: effects beyond the atrium?

    PubMed

    Wijesurendra, Rohan S; Casadei, Barbara

    2015-03-01

    Atrial fibrillation (AF) is the most common sustained clinical arrhythmia and is associated with significant morbidity, mostly secondary to heart failure and stroke, and an estimated two-fold increase in premature death. Efforts to increase our understanding of AF and its complications have focused on unravelling the mechanisms of electrical and structural remodelling of the atrial myocardium. Yet, it is increasingly recognized that AF is more than an atrial disease, being associated with systemic inflammation, endothelial dysfunction, and adverse effects on the structure and function of the left ventricular myocardium that may be prognostically important. Here, we review the molecular and in vivo evidence that underpins current knowledge regarding the effects of human or experimental AF on the ventricular myocardium. Potential mechanisms are explored including diffuse ventricular fibrosis, focal myocardial scarring, and impaired myocardial perfusion and perfusion reserve. The complex relationship between AF, systemic inflammation, as well as endothelial/microvascular dysfunction and the effects of AF on ventricular calcium handling and oxidative stress are also addressed. Finally, consideration is given to the clinical implications of these observations and concepts, with particular reference to rate vs. rhythm control. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Cardiology.

  2. The heartbreak of depression: 'Psycho-cardiac' coupling in myocardial infarction.

    PubMed

    Headrick, John P; Peart, Jason N; Budiono, Boris P; Shum, David H K; Neumann, David L; Stapelberg, Nicolas J C

    2017-05-01

    Ample evidence identifies strong links between major depressive disorder (MDD) and both risk of ischemic or coronary heart disease (CHD) and resultant morbidity and mortality. The molecular mechanistic bases of these linkages are poorly defined. Systemic factors linked to MDD, including vascular dysfunction, atherosclerosis, obesity and diabetes, together with associated behavioral changes, all elevate CHD risk. Nonetheless, experimental evidence indicates the myocardium is also directly modified in depression, independently of these factors, impairing infarct tolerance and cardioprotection. It may be that MDD effectively breaks the heart's intrinsic defense mechanisms. Four extrinsic processes are implicated in this psycho-cardiac coupling, presenting potential targets for therapeutic intervention if causally involved: sympathetic over-activity vs. vagal under-activity, together with hypothalamic-pituitary-adrenal (HPA) axis and immuno-inflammatory dysfunctions. However, direct evidence of their involvement remains limited, and whether targeting these upstream mediators is effective (or practical) in limiting the cardiac consequences of MDD is unknown. Detailing myocardial phenotype in MDD can also inform approaches to cardioprotection, yet cardiac molecular changes are similarly ill defined. Studies support myocardial sensitization to ischemic insult in models of MDD, including worsened oxidative and nitrosative damage, apoptosis (with altered Bcl-2 family expression) and infarction. Moreover, depression may de-sensitize hearts to protective conditioning stimuli. The mechanistic underpinnings of these changes await delineation. Such information not only advances our fundamental understanding of psychological determinants of health, but also better informs management of the cardiac consequences of MDD and implementing cardioprotection in this cohort. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Increased myocardial short-range forces in a rodent model of diabetes reflect elevated content of β myosin heavy chain.

    PubMed

    Chung, Charles S; Mitov, Mihail I; Callahan, Leigh Ann; Campbell, Kenneth S

    2014-06-15

    Diastolic dysfunction is a clinically significant problem for patients with diabetes and often reflects increased ventricular stiffness. Attached cross-bridges contribute to myocardial stiffness and produce short-range forces, but it is not yet known whether these forces are altered in diabetes. In this study, we tested the hypothesis that cross-bridge-based short-range forces are increased in the streptozotocin (STZ) induced rat model of type 1 diabetes. Chemically permeabilized myocardial preparations were obtained from 12week old rats that had been injected with STZ or vehicle 4weeks earlier, and activated in solutions with pCa (=-log10[Ca(2+)]) values ranging from 9.0 to 4.5. The short-range forces elicited by controlled length changes were ∼67% greater in the samples from the diabetic rats than in the control preparations. This change was mostly due to an increased elastic limit (the length change at the peak short-range force) as opposed to increased passive muscle stiffness. The STZ-induced increase in short-ranges forces is thus unlikely to reflect changes to titin and/or collagen filaments. Gel electrophoresis showed that STZ increased the relative expression of β myosin heavy chain. This molecular mechanism can explain the increased short-ranges forces observed in the diabetic tissue if β myosin molecules remain bound between the filaments for longer durations than α molecules during imposed movements. These results suggest that interventions that decrease myosin attachment times may be useful treatments for diastolic dysfunction associated with diabetes. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Early Treatment With Zofenopril and Ramipril in Combination With Acetyl Salicylic Acid in Patients With Left Ventricular Systolic Dysfunction After Acute Myocardial Infarction: Results of a 5-Year Follow-up of Patients of the SMILE-4 Study.

    PubMed

    Borghi, Claudio; Omboni, Stefano; Novo, Salvatore; Vinereanu, Dragos; Ambrosio, Giuseppe; Ambrosioni, Ettore

    2017-05-01

    The SMILE-4 study showed that in patients with left ventricular dysfunction (LVD) after acute myocardial infarction, early treatment with zofenopril plus acetyl salicylic acid is associated with an improved 1-year survival, free from death or hospitalization for cardiovascular (CV) causes, as compared to ramipril plus acetyl salicylic acid. We now report CV outcomes during a 5-year follow-up of the patients of the SMILE-4 study. Three hundred eighty-six of the 518 patients completing the study (51.2%) could be tracked after the study end and 265 could be included in the analysis. During the 5.5 (±2.1) years of follow-up, the primary endpoint occurred in 27.8% of patients originally randomized and treated with zofenopril and in 43.8% of patients treated with ramipril [odds ratio (OR) and 95% confidence interval, 0.65 (0.43-0.98), P = 0.041]. Such a result was achieved through a significantly larger reduction in CV hospitalization under zofenopril [OR: 0.61 (0.37-0.99), P = 0.047], whereas reduction in mortality rate with zofenopril did not achieve statistical significance versus ramipril [OR: 0.75 (0.36-1.59), P = 0.459]. These results were in line with those achieved during the initial 1-year follow-up. Benefits of early treatment of patients with LVD after acute myocardial infarction with zofenopril are sustained over many years as compared to ramipril.

  5. Early myocardial dysfunction in streptozotocin-induced diabetic mice: a study using in vivo magnetic resonance imaging (MRI)

    PubMed Central

    Yu, Xichun; Tesiram, Yasvir A; Towner, Rheal A; Abbott, Andrew; Patterson, Eugene; Huang, Shijun; Garrett, Marion W; Chandrasekaran, Suresh; Matsuzaki, Satoshi; Szweda, Luke I; Gordon, Brian E; Kem, David C

    2007-01-01

    Background Diabetes is associated with a cardiomyopathy that is independent of coronary artery disease or hypertension. In the present study we used in vivo magnetic resonance imaging (MRI) and echocardiographic techniques to examine and characterize early changes in myocardial function in a mouse model of type 1 diabetes. Methods Diabetes was induced in 8-week old C57BL/6 mice with two intraperitoneal injections of streptozotocin. The blood glucose levels were maintained at 19–25 mmol/l using intermittent low dosages of long acting insulin glargine. MRI and echocardiography were performed at 4 weeks of diabetes (age of 12 weeks) in diabetic mice and age-matched controls. Results After 4 weeks of hyperglycemia one marker of mitochondrial function, NADH oxidase activity, was decreased to 50% of control animals. MRI studies of diabetic mice at 4 weeks demonstrated significant deficits in myocardial morphology and functionality including: a decreased left ventricular (LV) wall thickness, an increased LV end-systolic diameter and volume, a diminished LV ejection fraction and cardiac output, a decreased LV circumferential shortening, and decreased LV peak ejection and filling rates. M-mode echocardiographic and Doppler flow studies of diabetic mice at 4 weeks showed a decreased wall thickening and increased E/A ratio, supporting both systolic and diastolic dysfunction. Conclusion Our study demonstrates that MRI interrogation can identify the onset of diabetic cardiomyopathy in mice with its impaired functional capacity and altered morphology. The MRI technique will lend itself to repetitive study of early changes in cardiac function in small animal models of diabetic cardiomyopathy. PMID:17309798

  6. Cannabidiol limits Tcell-mediated chronic autoimmune myocarditis: implications to autoimmune disorders and organ transplantation.

    PubMed

    Lee, Wen-Shin; Erdelyi, Katalin; Matyas, Csaba; Mukhopadhyay, Partha; Varga, Zoltan V; Liaudet, Lucas; Haskó, György; Čiháková, Daniela; Mechoulam, Raphael; Pacher, Pal

    2016-01-08

    Myocarditis is a major cause of heart failure and sudden cardiac death in young adults and adolescents. Many cases of myocarditis are associated with autoimmune processes in which cardiac myosin is a major autoantigen. Conventional immunosuppressive therapies often provide unsatisfactory results and are associated with adverse toxicities during the treatment of autoimmune myocarditis. Cannabidiol (CBD) is a non-psychoactive constituent of Marijuana which exerts antiinflammatory effects independent from classical cannabinoid receptors. Recently 80 clinical trials have been reported investigating the effects of CBD in various diseases from inflammatory bowel disease to graft-versus-host disease. CBD-based formulations are used for the management of multiple sclerosis in numerous countries, and CBD also received FDA approval for the treatment of refractory childhood epilepsy and glioblastoma multiforme. Herein, using a well-established mouse model of experimental autoimmune myocarditis (EAM) induced by immunization with cardiac myosin emmulsified in adjuvant resulting in T cell-mediated inflammation, cardiomyocyte cell death, fibrosis and myocardial dysfunction, we studied the potential beneficial effects of CBD. EAM was characterized by marked myocardial T cell-infiltration, profound inflammatory response, fibrosis (measured by qRT-PCR, histology and immunohistochemistry analyses) accompanied by marked attenuation of both systolic and diastolic cardiac functions measured with pressure-volume conductance catheter technique. Chronic treatment with CBD largely attenuated the CD3+ and CD4+ mediated inflammatory response and injury, myocardial fibrosis and cardiac dysfunction in mice. CBD may represent a promising novel treatment for management of autoimmune myocarditis and possibly other autoimmune disorders, and organ transplantation.

  7. Cannabidiol Limits T Cell–Mediated Chronic Autoimmune Myocarditis: Implications to Autoimmune Disorders and Organ Transplantation

    PubMed Central

    Lee, Wen-Shin; Erdelyi, Katalin; Matyas, Csaba; Mukhopadhyay, Partha; Varga, Zoltan V; Liaudet, Lucas; Hask’, György; ’iháková, Daniela; Mechoulam, Raphael; Pacher, Pal

    2016-01-01

    Myocarditis is a major cause of heart failure and sudden cardiac death in young adults and adolescents. Many cases of myocarditis are associated with autoimmune processes in which cardiac myosin is a major autoantigen. Conventional immunosuppressive therapies often provide unsatisfactory results and are associated with adverse toxicities during the treatment of autoimmune myocarditis. Cannabidiol (CBD) is a nonpsychoactive constituent of marijuana that exerts antiinflammatory effects independent of classical cannabinoid receptors. Recently, 80 clinical trials have investigated the effects of CBD in various diseases from inflammatory bowel disease to graft versus host disease. CBD-based formulations are used for the management of multiple sclerosis in numerous countries, and CBD also received U.S. Food and Drug Administration approval for the treatment of refractory childhood epilepsy and glioblastoma multiforme. Herein, using a well-established mouse model of experimental autoimmune myocarditis (EAM) induced by immunization with cardiac myosin emmulsified in adjuvant resulting in T cell–mediated inflammation, cardiomyocyte cell death, fibrosis and myocardial dysfunction, we studied the potential beneficial effects of CBD. EAM was characterized by marked myocardial T-cell infiltration, profound inflammatory response and fibrosis (measured by quantitative real-time polymerase chain reaction, histology and immunohistochemistry analyses) accompanied by marked attenuation of both systolic and diastolic cardiac functions measured with a pressure-volume conductance catheter technique. Chronic treatment with CBD largely attenuated the CD3+ and CD4+ T cell–mediated inflammatory response and injury, myocardial fibrosis and cardiac dysfunction in mice. In conclusion, CBD may represent a promising novel treatment for managing autoimmune myocarditis and possibly other autoimmune disorders and organ transplantation. PMID:26772776

  8. Assessment of left ventricular myocardial deformation by cardiac MRI strain imaging reveals myocardial dysfunction in patients with primary cardiac tumors.

    PubMed

    Chen, Jing; Yang, Zhi-Gang; Xu, Hua-Yan; Shi, Ke; Guo, Ying-Kun

    2018-02-15

    To assess left ventricular myocardial deformation in patients with primary cardiac tumors. MRI was retrospectively performed in 61 patients, including 31 patients with primary cardiac tumors and 30 matched normal controls. Left ventricular strain and function parameters were then assessed by MRI-tissue tracking. Differences between the tumor group and controls, left and right heart tumor groups, left ventricular wall tumor and non-left ventricular wall tumor groups, and tumors with and without LV enlargement groups were assessed. Finally, the correlations among tumor diameter, myocardial strain, and LV function were analyzed. Left ventricular myocardial strain was milder for tumor group than for normal group. Peak circumferential strain (PCS) and its diastolic strain rate, longitudinal strains (PLS) and its diastolic strain rates, and peak radial systolic and diastolic velocities of the right heart tumor group were lower than those of the left heart tumor group (all p<0.050), but the peak radial systolic strain rate of the former was higher than that of the latter (p=0.017). The corresponding strains were lower in the left ventricular wall tumor groups than in the non-left ventricular wall tumor group (p<0.050). Peak radial systolic velocities were generally higher for tumors with LV enlargement than for tumors without LV enlargement (p<0.050). Peak radial strain, PCS, and PLS showed important correlations with the left ventricular ejection fraction (all p<0.050). MRI-tissue tracking is capable of quantitatively assessing left ventricular myocardial strain to reveal sub-clinical abnormalities of myocardial contractile function. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Myosin Activator Omecamtiv Mecarbil Increases Myocardial Oxygen Consumption and Impairs Cardiac Efficiency Mediated by Resting Myosin ATPase Activity.

    PubMed

    Bakkehaug, Jens Petter; Kildal, Anders Benjamin; Engstad, Erik Torgersen; Boardman, Neoma; Næsheim, Torvind; Rønning, Leif; Aasum, Ellen; Larsen, Terje Steinar; Myrmel, Truls; How, Ole-Jakob

    2015-07-01

    Omecamtiv mecarbil (OM) is a novel inotropic agent that prolongs systolic ejection time and increases ejection fraction through myosin ATPase activation. We hypothesized that a potentially favorable energetic effect of unloading the left ventricle, and thus reduction of wall stress, could be counteracted by the prolonged contraction time and ATP-consumption. Postischemic left ventricular dysfunction was created by repetitive left coronary occlusions in 7 pigs (7 healthy pigs also included). In both groups, systolic ejection time and ejection fraction increased after OM (0.75 mg/kg loading for 10 minutes, followed by 0.5 mg/kg/min continuous infusion). Cardiac efficiency was assessed by relating myocardial oxygen consumption to the cardiac work indices, stroke work, and pressure-volume area. To circumvent potential neurohumoral reflexes, cardiac efficiency was additionally assessed in ex vivo mouse hearts and isolated myocardial mitochondria. OM impaired cardiac efficiency; there was a 31% and 23% increase in unloaded myocardial oxygen consumption in healthy and postischemic pigs, respectively. Also, the oxygen cost of the contractile function was increased by 63% and 46% in healthy and postischemic pigs, respectively. The increased unloaded myocardial oxygen consumption was confirmed in OM-treated mouse hearts and explained by an increased basal metabolic rate. Adding the myosin ATPase inhibitor, 2,3-butanedione monoxide abolished all surplus myocardial oxygen consumption in the OM-treated hearts. Omecamtiv mecarbil, in a clinically relevant model, led to a significant myocardial oxygen wastage related to both the contractile and noncontractile function. This was mediated by that OM induces a continuous activation in resting myosin ATPase. © 2015 American Heart Association, Inc.

  10. Low-dose adenosine stress echocardiography: Detection of myocardial viability

    PubMed Central

    Djordjevic-Dikic, Ana; Ostojic, Miodrag; Beleslin, Branko; Nedeljkovic, Ivana; Stepanovic, Jelena; Stojkovic, Sinisa; Petrasinovic, Zorica; Nedeljkovic, Milan; Saponjski, Jovica; Giga, Vojislav

    2003-01-01

    Objective The aim of this study was to evaluate the diagnostic potential of low-dose adenosine stress echocardiography in detection of myocardial viability. Background Vasodilation through low dose dipyridamole infusion may recruit contractile reserve by increasing coronary flow or by increasing levels of endogenous adenosine. Methods Forty-three patients with resting dyssynergy, due to previous myocardial infarction, underwent low-dose adenosine (80, 100, 110 mcg/kg/min in 3 minutes intervals) echocardiography test. Gold standard for myocardial viability was improvement in systolic thickening of dyssinergic segments of ≥ 1 grade at follow-up. Coronary angiography was done in 41 pts. Twenty-seven patients were revascularized and 16 were medically treated. Echocardiographic follow up data (12 ± 2 months) were available in 24 revascularized patients. Results Wall motion score index improved from rest 1.55 ± 0.30 to 1.33 ± 0.26 at low-dose adenosine (p < 0.001). Of the 257 segments with baseline dyssynergy, adenosine echocardiography identified 122 segments as positive for viability, and 135 as necrotic since no improvement of systolic thickening was observed. Follow-up wall motion score index was 1.31 ± 0.30 (p < 0.001 vs. rest). The sensitivity of adenosine echo test for identification of viable segments was 87%, while specificity was 95%, and diagnostic accuracy 90%. Positive and negative predictive values were 97% and 80%, respectively. Conclusion Low-dose adenosine stress echocardiography test has high diagnostic potential for detection of myocardial viability in the group of patients with left ventricle dysfunction due to previous myocardial infarction. Low dose adenosine stress echocardiography may be adequate alternative to low-dose dobutamine test for evaluation of myocardial viability. PMID:12812523

  11. Detecting Regional Myocardial Abnormalities in Patients With Wolff-Parkinson-White Syndrome With the Use of ECG-Gated Cardiac MDCT.

    PubMed

    Lee, Hye-Jeong; Uhm, Jae-Sun; Joung, Boyoung; Hong, Yoo Jin; Hur, Jin; Choi, Byoung Wook; Kim, Young Jin

    2016-04-01

    Myocardial dyskinesia caused by the accessory pathway and related reversible heart failure have been well documented in echocardiographic studies of pediatric patients with Wolff-Parkinson-White (WPW) syndrome. However, the long-term effects of dyskinesia on the myocardium of adult patients have not been studied in depth. The goal of the present study was to evaluate regional myocardial abnormalities on cardiac CT examinations of adult patients with WPW syndrome. Of 74 patients with WPW syndrome who underwent cardiac CT from January 2006 through December 2013, 58 patients (mean [± SD] age, 52.2 ± 12.7 years), 36 (62.1%) of whom were men, were included in the study after the presence of combined cardiac disease was excluded. Two observers blindly evaluated myocardial thickness and attenuation on cardiac CT scans. On the basis of CT findings, patients were classified as having either normal or abnormal findings. We compared the two groups for other clinical findings, including observations from ECG, echocardiography, and electrophysiologic study. Of the 58 patients studied, 16 patients (27.6%) were found to have myocardial abnormalities (i.e., abnormal wall thinning with or without low attenuation). All abnormal findings corresponded with the location of the accessory pathway. Patients with abnormal findings had statistically significantly decreased left ventricular function, compared with patients with normal findings (p < 0.001). The frequency of regional wall motion abnormality was statistically significantly higher in patients with abnormal findings (p = 0.043). However, echocardiography documented structurally normal hearts in all patients. A relatively high frequency (27.6%) of regional myocardial abnormalities was observed on the cardiac CT examinations of adult patients with WPW syndrome. These abnormal findings might reflect the long-term effects of dyskinesia, suggesting irreversible myocardial injury that ultimately causes left ventricular dysfunction.

  12. A large left ventricular thrombus.

    PubMed

    Patanè, Salvatore; Marte, Filippo

    2009-06-26

    The discovery of a left ventricular mass obliges the clinician to perform a differential diagnosis including tumour or lipoma versus thrombus and its assessment presents important clinical implications. Dilated cardiomyopathy has been associated with left ventricular thrombosis which leads to substantial morbidity and mortality as a site for peripheral emboli. There are some studies on patients with dilated cardiomyopathy showing altered hemostasis and platelet behavior despite sinus rhythm. An increased incidence of thromboembolism is also well recognized in patients with left ventricular systolic dysfunction complicating history of myocardial infarction. Clinical dilemmas in treating left ventricular thrombus have been described too. We present a case of a large mobile left ventricular thrombus in a 71-year-old Italian man with dilated cardiomyopathy and history of myocardial infarction.

  13. Extreme Right Axis Deviation in Acute Myocardial Infarction: A Hazardous Signal of Poor Prognosis.

    PubMed

    Wang, Qingyu; Pan, Shuo; Liu, Fuqiang; Yang, Dan; Wang, Jun-Kui

    2018-05-11

    BACKGROUND New-onset extreme right axis deviation and right bundle branch block (RBBB) are rare during acute myocardial infarction (AMI), and has only been reported in several cases reflecting the severity of AMI. It could predict severe clinical complications and higher risks in coronary artery disease. Although there is little electrophysiological explanation, the complications are severe. They should be emphasized in newly diagnosed extreme right axis deviation and RBBB in AMI. CASE REPORT A 72-year-old male was admitted to our department with a chief complaint of intermittent retrosternal chest pain and was diagnosed with extensive anterior myocardial infarction with RBBB, by elevated myocardial enzymes and ECG. The main wave direction of QRS in lead aVR was positive and showed an extreme right axis deviation. After a month, the patient's chest distress and the RBBB vanished, but a right axis deviation still existed. The echocardiogram showed prior extensive anterior myocardial infarction (including apex myocardia) and lower LVEF. CONCLUSIONS New diagnosed RBBB and right axis deviation is uncommon and could be a useful clue to evaluate myocardial ischemia in AMI cases. This electrocardiographic marker can identify coronary artery occlusion where ST-segments are hard to evaluate, and hence, patients may benefit most from early and complete revascularization strategies such as primary angioplasty.

  14. Right ventricular failure resulting from pressure overload: role of intra-aortic balloon counterpulsation and vasopressor therapy.

    PubMed

    Liakopoulos, Oliver J; Ho, Jonathan K; Yezbick, Aaron B; Sanchez, Elizabeth; Singh, Vivek; Mahajan, Aman

    2010-11-01

    Augmentation of coronary perfusion may improve right ventricular (RV) failure following acute increases of RV afterload. We investigated whether intra-aortic balloon counterpulsation (IABP) can improve cardiac function by enhancing myocardial perfusion and reversing compromised biventricular interactions using a model of acute pressure overload. In 10 anesthetized pigs, RV failure was induced by pulmonary artery constriction and systemic hypertension strategies with IABP, phenylephrine (PE), or the combination of both were tested. Systemic and ventricular hemodynamics [cardiac index(CI), ventricular pressures, coronary driving pressures (CDP)] were measured and echocardiography was used to assess tricuspid valve regurgitation, septal positioning (eccentricity index (ECI)), and changes in ventricular and septal dimensions and function [myocardial performance index (MPI), peak longitudinal strain]. Pulmonary artery constriction resulted in doubling of RV systolic pressure (54 ± 4mm Hg), RV distension, severe TR (4+) with decreased RV function (strain: -33%; MPI: +56%), septal flattening (Wt%: -35%) and leftward septal shift (ECI:1.36), resulting in global hemodynamic deterioration (CI: -51%; SvO(2): -26%), and impaired CDP (-30%; P<0.05). IABP support alone failed to improve RV function despite higher CDP (+33%; P<0.05). Systemic hypertension by PE improved CDP (+70%), RV function (strain: +22%; MPI: -21%), septal positioning (ECI:1.12) and minimized TR, but LV dysfunction (strain: -25%; MPI: +31%) occurred after LV afterloading (P<0.05). With IABP, less PE (-41%) was needed to maintain hypertension and CDP was further augmented (+25%). IABP resulted in LV unloading and restored LV function, and increased CI (+46%) and SvO(2) (+29%; P<0.05). IABP with minimal vasopressors augments myocardial perfusion pressure and optimizes RV function after pressure-induced failure. Copyright © 2010 Elsevier Inc. All rights reserved.

  15. Galectin-3: A Link between Myocardial and Arterial Stiffening in Patients with Acute Decompensated Heart Failure?

    PubMed

    Lala, Radu Ioan; Darabantiu, Dan; Pilat, Luminita; Puschita, Maria

    2016-02-01

    Heart failure is accompanied by abnormalities in ventricular-vascular interaction due to increased myocardial and arterial stiffness. Galectin-3 is a recently discovered biomarker that plays an important role in myocardial and vascular fibrosis and heart failure progression. The aim of this study was to determine whether galectin-3 is correlated with arterial stiffening markers and impaired ventricular-arterial coupling in decompensated heart failure patients. A total of 79 inpatients with acute decompensated heart failure were evaluated. Serum galectin-3 was determined at baseline, and during admission, transthoracic echocardiography and measurements of vascular indices by Doppler ultrasonography were performed. Elevated pulse wave velocity and low arterial carotid distensibility are associated with heart failure in patients with preserved ejection fraction (p = 0.04, p = 0.009). Pulse wave velocity, carotid distensibility and Young's modulus did not correlate with serum galectin-3 levels. Conversely, raised galectin-3 levels correlated with an increased ventricular-arterial coupling ratio (Ea/Elv) p = 0.047, OR = 1.9, 95% CI (1.0‑3.6). Increased galectin-3 levels were associated with lower rates of left ventricular pressure rise in early systole (dp/dt) (p=0.018) and raised pulmonary artery pressure (p = 0.046). High galectin-3 levels (p = 0.038, HR = 3.07) and arterial pulmonary pressure (p = 0.007, HR = 1.06) were found to be independent risk factors for all-cause mortality and readmissions. This study showed no significant correlation between serum galectin-3 levels and arterial stiffening markers. Instead, high galectin-3 levels predicted impaired ventricular-arterial coupling. Galectin-3 may be predictive of raised pulmonary artery pressures. Elevated galectin-3 levels correlate with severe systolic dysfunction and together with pulmonary hypertension are independent markers of outcome.

  16. Cardiac involvement in ANCA (+) and ANCA (-) Churg-Strauss syndrome evaluated by cardiovascular magnetic resonance.

    PubMed

    Mavrogeni, Sophie; Karabela, Georgia; Gialafos, Elias; Stavropoulos, Efthymios; Spiliotis, George; Katsifis, Gikas; Kolovou, Genovefa

    2013-10-01

    The cardiovascular magnetic resonance (CMR) pattern of Churg-Strauss syndrome (CSS) includes myopericarditis, diffuse subendocardial vasculitis or myocardial infarction with or without cardiac symptoms and is usually associated with lack of antineutrophil cytoplasmic antibodies (ANCA). To correlate the CMR pattern with ANCA in CSS, compare it with healthy controls and systemic lupus erythematosus (SLE) patients and re-evaluate 2 yrs after the first CMR. 28 consecutive CSS, aged 42±7 yrs, were referred for CMR and 2 yrs re-evaluation. The CMR included left ventricular ejection fraction (LVEF), T2-weighted (T2-W), early (EGE) and late gadolinium enhanced (LGE) imaging. Their results were compared with 28 systemic lupus erythematosus (SLE) under remission and 28 controls with normal myocardial perfusion, assessed by scintigraphy. CMR revealed acute cardiac lesions in all ANCA (-) CSS with active disease and acute cardiac symptoms and only in one asymptomatic ANCA (+) CSS, with active disease. Diffuse subendocardial fibrosis (DSF) or past myocarditis was identified in both ANCA(+) and ANCA (-) CSS, but with higher incidence and fibrosis amount in ANCA (-) CSS (p<0.05). In comparison to SLE, both ANCA (+) and ANCA (-) CSS had higher incidence of DSF, lower incidence of myocarditis and no evidence of myocardial infarction, due to coronary artery disease (p<0.05). In 2 yrs CMR follow up, 1/3 of CSS with DSF presented LV function deterioration and one died, although immunosuppressive treatment was given early after CSS diagnosis. Cardiac involvement either as DSF or myocarditis, can be detected in both ANCA (+) and ANCA (-) CSS, although more clinically overt in ANCA (-). DSF carries an ominous prognosis for LV function. CMR, due to its capability to detect disease severity, before cardiac dysfunction takes place, is an excellent tool for CSS risk stratification and treatment individualization.

  17. The Prognostic Value of the Left Ventricular Ejection Fraction Is Dependent upon the Severity of Mitral Regurgitation in Patients with Acute Myocardial Infarction

    PubMed Central

    Cho, Jung Sun; Youn, Ho-Joong; Her, Sung-Ho; Park, Maen Won; Kim, Chan Joon; Park, Gyung-Min; Cho, Jae Yeong; Ahn, Youngkeun; Kim, Kye Hun; Park, Jong Chun; Seung, Ki Bae; Cho, Myeong Chan; Kim, Chong Jin; Kim, Young Jo; Han, Kyoo Rok; Kim, Hyo Soo

    2015-01-01

    The prognostic value of the left ventricle ejection fraction (LVEF) after acute myocardial infarction (AMI) has been questioned even though it is an accurate marker of left ventricle (LV) systolic dysfunction. This study aimed to examine the prognostic impact of LVEF in patients with AMI with or without high-grade mitral regurgitation (MR). A total of 15,097 patients with AMI who received echocardiography were registered in the Korean Acute Myocardial Infarction Registry (KAMIR) between January 2005 and July 2011. Patients with low-grade MR (grades 0-2) and high-grade MR (grades 3-4) were divided into the following two sub-groups according to LVEF: LVEF ≤ 40% (n = 2,422 and 197, respectively) and LVEF > 40% (n = 12,252 and 226, respectively). The primary endpoints were major adverse cardiac events (MACE), cardiac death, and all-cause death during the first year after registration. Independent predictors of mortality in the multivariate analysis in AMI patients with low-grade MR were age ≥ 75 yr, Killip class ≥ III, N-terminal pro-B-type natriuretic peptide > 4,000 pg/mL, high-sensitivity C-reactive protein ≥ 2.59 mg/L, LVEF ≤ 40%, estimated glomerular filtration rate (eGFR), and percutaneous coronary intervention (PCI). However, PCI was an independent predictor in AMI patients with high-grade MR. No differences in primary endpoints between AMI patients with high-grade MR (grades 3-4) and EF ≤ 40% or EF > 40% were noted. MR is a predictor of a poor outcome regardless of ejection fraction. LVEF is an inadequate method to evaluate contractile function of the ischemic heart in the face of significant MR. PMID:26130953

  18. Radionuclide imaging in myocardial sarcoidosis. Demonstration of myocardial uptake of /sup 99m/Tc pyrophosphate and gallium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forman, M.B.; Sandler, M.P.; Sacks, G.A.

    1983-03-01

    A patient had severe congestive cardiomyopathy secondary to myocardial sarcoidosis. The clinical diagnosis was confirmed by radionuclide ventriculography, /sup 201/Tl, /sup 67/Ga, and /sup 99m/Tc pyrophosphate (TcPYP) scintigraphy. Myocardial TcPYP uptake has not been reported previously in sarcoidosis. In this patient, TcPYP was as useful as gallium scanning and thallium imaging in documenting the myocardial process.

  19. Magnetic resonance imaging (MRI) for the assessment of myocardial viability: an evidence-based analysis.

    PubMed

    2010-01-01

    In July 2009, the Medical Advisory Secretariat (MAS) began work on Non-Invasive Cardiac Imaging Technologies for the Assessment of Myocardial Viability, an evidence-based review of the literature surrounding different cardiac imaging modalities to ensure that appropriate technologies are accessed by patients undergoing viability assessment. This project came about when the Health Services Branch at the Ministry of Health and Long-Term Care asked MAS to provide an evidentiary platform on effectiveness and cost-effectiveness of noninvasive cardiac imaging modalities.After an initial review of the strategy and consultation with experts, MAS identified five key non-invasive cardiac imaging technologies that can be used for the assessment of myocardial viability: positron emission tomography, cardiac magnetic resonance imaging, dobutamine echocardiography, and dobutamine echocardiography with contrast, and single photon emission computed tomography.A 2005 review conducted by MAS determined that positron emission tomography was more sensitivity than dobutamine echocardiography and single photon emission tomography and dominated the other imaging modalities from a cost-effective standpoint. However, there was inadequate evidence to compare positron emission tomography and cardiac magnetic resonance imaging. Thus, this report focuses on this comparison only. For both technologies, an economic analysis was also completed.A summary decision analytic model was then developed to encapsulate the data from each of these reports (available on the OHTAC and MAS website).The Non-Invasive Cardiac Imaging Technologies for the Assessment of Myocardial Viability is made up of the following reports, which can be publicly accessed at the MAS website at: www.health.gov.on.ca/mas or at www.health.gov.on.ca/english/providers/program/mas/mas_about.htmlPOSITRON EMISSION TOMOGRAPHY FOR THE ASSESSMENT OF MYOCARDIAL VIABILITY: An Evidence-Based AnalysisMAGNETIC RESONANCE IMAGING FOR THE ASSESSMENT OF MYOCARDIAL VIABILITY: An Evidence-Based Analysis The objective of this analysis is to assess the effectiveness and cost-effectiveness of cardiovascular magnetic resonance imaging (cardiac MRI) for the assessment of myocardial viability. To evaluate the effectiveness of cardiac MRI viability imaging, the following outcomes were examined: the diagnostic accuracy in predicting functional recovery and the impact of cardiac MRI viability imaging on prognosis (mortality and other patient outcomes). CONDITION AND TARGET POPULATION LEFT VENTRICULAR SYSTOLIC DYSFUNCTION AND HEART FAILURE: Heart failure is a complex syndrome characterized by the heart's inability to maintain adequate blood circulation through the body leading to multiorgan abnormalities and, eventually, death. Patients with heart failure experience poor functional capacity, decreased quality of life, and increased risk of morbidity and mortality. In 2005, more than 71,000 Canadians died from cardiovascular disease, of which, 54% were due to ischemic heart disease. Left ventricular (LV) systolic dysfunction due to coronary artery disease (CAD) () is the primary cause of heart failure accounting for more than 70% of cases. The prevalence of heart failure was estimated at one percent of the Canadian population in 1989. Since then, the increase in the older population has undoubtedly resulted in a substantial increase in cases. Heart failure is associated with a poor prognosis: one-year mortality rates were 32.9% and 31.1% for men and women, respectively in Ontario between 1996 and 1997. IN GENERAL, THERE ARE THREE OPTIONS FOR THE TREATMENT OF HEART FAILURE: medical treatment, heart transplantation, and revascularization for those with CAD as the underlying cause. Concerning medical treatment, despite recent advances, mortality remains high among treated patients, while, heart transplantation is affected by the limited availability of donor hearts and consequently has long waiting lists. The third option, revascularization, is used to restore the flow of blood to the heart via coronary artery bypass grafting (CABG) or, in some cases, through minimally invasive percutaneous coronary interventions (balloon angioplasty and stenting). Both methods, however, are associated with important perioperative risks including mortality, so it is essential to properly select patients for this procedure. Left ventricular dysfunction may be permanent, due to the formation of myocardial scar, or it may be reversible after revascularization. Reversible LV dysfunction occurs when the myocardium is viable but dysfunctional (reduced contractility). Since only patients with dysfunctional but viable myocardium benefit from revascularization, the identification and quantification of the extent of myocardial viability is an important part of the work-up of patients with heart failure when determining the most appropriate treatment path. Various non-invasive cardiac imaging modalities can be used to assess patients in whom determination of viability is an important clinical issue, specifically: dobutamine echocardiography (echo),stress echo with contrast,SPECT using either technetium or thallium,cardiac magnetic resonance imaging (cardiac MRI), andpositron emission tomography (PET). Stress echocardiography can be used to detect viable myocardium. During the infusion of low dose dobutamine (5 - 10 µg/kg/min), an improvement of contractility in hypokinetic and akentic segments is indicative of the presence of viable myocardium. Alternatively, a low-high dose dobutamine protocol can be used in which a biphasic response characterized by improved contractile function during the low-dose infusion followed by a deterioration in contractility due to stress induced ischemia during the high dose dobutamine infusion (dobutamine dose up to 40 ug/kg/min) represents viable tissue. Newer techniques including echocardiography using contrast agents, harmonic imaging, and power doppler imaging may help to improve the diagnostic accuracy of echocardiographic assessment of myocardial viability. Intravenous contrast agents, which are high molecular weight inert gas microbubbles that act like red blood cells in the vascular space, can be used during echocardiography to assess myocardial viability. These agents allow for the assessment of myocardial blood flow (perfusion) and contractile function (as described above), as well as the simultaneous assessment of perfusion to make it possible to distinguish between stunned and hibernating myocardium. SPECT: SPECT can be performed using thallium-201 (Tl-201), a potassium analogue, or technetium-99 m labelled tracers. When Tl-201 is injected intravenously into a patient, it is taken up by the myocardial cells through regional perfusion, and Tl-201 is retained in the cell due to sodium/potassium ATPase pumps in the myocyte membrane. The stress-redistribution-reinjection protocol involves three sets of images. The first two image sets (taken immediately after stress and then three to four hours after stress) identify perfusion defects that may represent scar tissue or viable tissue that is severely hypoperfused. The third set of images is taken a few minutes after the re-injection of Tl-201 and after the second set of images is completed. These re-injection images identify viable tissue if the defects exhibit significant fill-in (> 10% increase in tracer uptake) on the re-injection images. The other common Tl-201 viability imaging protocol, rest-redistribution, involves SPECT imaging performed at rest five minutes after Tl-201 is injected and again three to four hours later. Viable tissue is identified if the delayed images exhibit significant fill-in of defects identified in the initial scans (> 10% increase in uptake) or if defects are fixed but the tracer activity is greater than 50%. There are two technetium-99 m tracers: sestamibi (MIBI) and tetrofosmin. The uptake and retention of these tracers is dependent on regional perfusion and the integrity of cellular membranes. Viability is assessed using one set of images at rest and is defined by segments with tracer activity greater than 50%. Positron emission tomography (PET) is a nuclear medicine technique used to image tissues based on the distinct ways in which normal and abnormal tissues metabolize positron-emitting radionuclides. Radionuclides are radioactive analogs of common physiological substrates such as sugars, amino acids, and free fatty acids that are used by the body. The only licensed radionuclide used in PET imaging for viability assessment is F-18 fluorodeoxyglucose (FDG). During a PET scan, the radionuclides are injected into the body and as they decay, they emit positively charged particles (positrons) that travel several millimetres into tissue and collide with orbiting electrons. This collision results in annihilation where the combined mass of the positron and electron is converted into energy in the form of two 511 keV gamma rays, which are then emitted in opposite directions (180 degrees) and captured by an external array of detector elements in the PET gantry. Computer software is then used to convert the radiation emission into images. The system is set up so that it only detects coincident gamma rays that arrive at the detectors within a predefined temporal window, while single photons arriving without a pair or outside the temporal window do not active the detector. This allows for increased spatial and contrast resolution. Cardiac magnetic resonance imaging (cardiac MRI) is a non-invasive, x-ray free technique that uses a powerful magnetic field, radio frequency pulses, and a computer to produce detailed images of the structure and function of the heart. (ABSTRACT TRUNCATED)

  20. The cardioprotective effect of salidroside against myocardial ischemia reperfusion injury in rats by inhibiting apoptosis and inflammation.

    PubMed

    Zhu, Lingpeng; Wei, Tingting; Gao, Jin; Chang, Xiayun; He, He; Luo, Fen; Zhou, Rui; Ma, Chunhua; Liu, Yu; Yan, Tianhua

    2015-11-01

    The main purpose of this study was to investigate effect of salidroside (Sal) on myocardial ischemia reperfusion injury in rats and the underlying mechanism. Myocardial ischemia reperfusion injury (MI/RI) model was treated with 30 min of left anterior descending (LAD) occlusion followed by 24 h of reperfusion. The male Sprague-Dawley rats were randomly divided into 7 groups: (1) Sham; (2) Sham + diltiazem (Dit, 10 mg/kg); (3) Sham + Sal (40 mg/kg); (4) I/R; (5) I/R + diltiazem (Dit, 10 mg/kg); (6) I/R + Sal (20 mg/kg); (7) I/R + Sal (40 mg/kg). Sal could ameliorate myocardial ischemia reperfusion injury as evidenced by Histopathological examination and triphenyl tetrazolium chloride (TTC) staining. Moreover, terminal deoxynucleotidyl transferase dUTP nickend labeling (TUNEL) assay demonstrated that Sal suppressed myocardial apoptosis, which may be related to up-regulation of Bcl-2/Bax ratio and inhibition of caspase-3, caspase-9 activation. Pretreatment with Sal affected serum biochemical parameters and cardiac dysfunction compared with I/R group. Sal also attenuated the pro-inflammatory cytokines including tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-6 in serum by inhibiting TLR4/NF-κB signaling pathway. Sal exerts strong favorable cardioprotective function on myocardial I/R injury which may relate to the down-regulation of the TLR4/NF-κB signaling pathway and the inhibition of cell apoptosis.

  1. Detecting Myocardial Ischemia With 99mTechnetium-Tetrofosmin Myocardial Perfusion Imaging in Ischemic Stroke.

    PubMed

    Giannopoulos, Sotirios; Markoula, Sofia; Sioka, Chrissa; Zouroudi, Sofia; Spiliotopoulou, Maria; Naka, Katerina K; Michalis, Lampros K; Fotopoulos, Andreas; Kyritsis, Athanassios P

    2017-10-01

    To assess the myocardial status in patients with stroke, employing myocardial perfusion imaging (MPI) with 99m Technetium-tetrofosmin ( 99m Tc-TF)-single-photon emission computed tomography (SPECT). Fifty-two patients with ischemic stroke were subjected to 99m Tc-TF-SPECT MPI within 1 month after stroke occurrence. None of the patients had any history or symptoms of coronary artery disease or other heart disease. Myocardial perfusion imaging was evaluated visually using a 17-segment polar map. Myocardial ischemia (MIS) was defined as present when the summed stress score (SSS) was >4; MIS was defined as mild when SSS was 4 to 8, and moderate/severe with SSS ≥9. Patients with SSS >4 were compared to patients with SSS <4. Parameters such as age, body mass index, waist perimeter, smoking habits, and medical history (diabetes mellitus, dyslipidemia, etc) were evaluated according to MPI results. Myocardial ischemia was present in 32 (62%) of 52 patients with stroke. Among them, 20 (62%) of 32 patients had mild abnormalities and 12 (38%) of 32 had moderate/severe. The age and waist perimeter showed a tendency to relate to severe MIS when patients with SSS >9 were compared to patients with SSS <4. In MPI-positive patients, an age was to be association with SSS, with the oldest age exhibiting the highest SSS ( P = .01). The association of age with SSS remained statistically significant in the multivariate analysis ( P = .04). The study suggested that more than half of patients with stroke without a history of cardiac disease have MIS. Although most of them have mild MIS, we suggest a thorough cardiological evaluation in this group of patients for future prevention of severe myocardial outcome.

  2. Deep sea minerals prolong life span of streptozotocin-induced diabetic rats by compensatory augmentation of the IGF-I-survival signaling and inhibition of apoptosis.

    PubMed

    Liao, Hung-En; Shibu, Marthandam Asokan; Kuo, Wei-Wen; Pai, Pei-Ying; Ho, Tsung-Jung; Kuo, Chia-Hua; Lin, Jing-Ying; Wen, Su-Ying; Viswanadha, Vijaya Padma; Huang, Chih-Yang

    2016-07-01

    Consumption of deep sea minerals (DSM), such as magnesium, calcium, and potassium, is known to reduce hypercholesterolemia-induced myocardial hypertrophy and cardiac-apoptosis and provide protection against cardiovascular diseases. Heart diseases develop as a lethal complication among diabetic patients usually due to hyperglycemia-induced cardiac-apoptosis that causes severe cardiac-damages, heart failure, and reduced life expectancy. In this study, we investigated the potential of DSM and its related cardio-protection to increase the life expectancy in diabetic rats. In this study, a heart failure rat model was developed by using streptozotocin (65 mg kg(-1) ) IP injection. Different doses of DSM-1× (37 mg kg(-1) day(-1) ), 2× (74 mg kg(-1) day(-1) ) and 3× (111 mg kg(-1) day(-1) ), were administered to the rats through gavages for 4 weeks. The positive effects of DSM on the survival rate of diabetes rats were determined with respect to the corresponding effects of MgSO4 . Further, to understand the mechanism by which DSM enhances the survival of diabetic rats, their potential to regulate cardiac-apoptosis and control cardiac-dysfunction were examined. Echocardiogram, tissue staining, TUNEL assay, and Western blotting assay were used to investigate modulations in the myocardial contractile function and related signaling protein expression. The results showed that DSM regulate apoptosis and complement the cardiomyocyte proliferation by enhancing survival mechanisms. Moreover DSM significantly reduced the mortality rate and enhanced the survival rate of diabetic rats. Experimental results show that DSM administration can be an effective strategy to improve the life expectancy of diabetic subjects by improving cardiac-cell proliferation and by controlling cardiac-apoptosis and associated cardiac-dysfunction. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 769-781, 2016. © 2015 Wiley Periodicals, Inc.

  3. MicroRNA-214 protects against hypoxia/reoxygenation induced cell damage and myocardial ischemia/reperfusion injury via suppression of PTEN and Bim1 expression.

    PubMed

    Wang, Xiaohui; Ha, Tuanzhu; Hu, Yuanping; Lu, Chen; Liu, Li; Zhang, Xia; Kao, Race; Kalbfleisch, John; Williams, David; Li, Chuanfu

    2016-12-27

    Myocardial apoptosis plays an important role in myocardial ischemia/reperfusion (I/R) injury. Activation of PI3K/Akt signaling protects the myocardium from I/R injury. This study investigated the role of miR-214 in hypoxia/reoxygenation (H/R)-induced cell damage in vitro and myocardial I/R injury in vivo. H9C2 cardiomyoblasts were transfected with lentivirus expressing miR-214 (LmiR-214) or lentivirus expressing scrambled miR-control (LmiR-control) respectively, to establish cell lines of LmiR-214 and LmiR-control. The cells were subjected to hypoxia for 4 h followed by reoxygenation for 24 h. Transfection of LmiR-214 suppresses PTEN expression, significantly increases the levels of Akt phosphorylation, markedly attenuates LDH release, and enhances the viability of the cells subjected to H/R. In vivo transfection of mouse hearts with LmiR-214 significantly attenuates I/R induced cardiac dysfunction and reduces I/R-induced myocardial infarct size. LmiR-214 transfection significantly attenuates I/R-induced myocardial apoptosis and caspase-3/7 and caspase-8 activity. Increased expression of miR-214 by transfection of LmiR-214 suppresses PTEN expression, increases the levels of phosphorylated Akt, represses Bim1 expression and induces Bad phosphorylation in the myocardium. In addition, in vitro data shows transfection of miR-214 mimics to H9C2 cells suppresses the expression and translocation of Bim1 from cytosol to mitochondria and induces Bad phosphorylation. Our in vitro and in vivo data suggests that miR-214 protects cells from H/R induced damage and attenuates I/R induced myocardial injury. The mechanisms involve activation of PI3K/Akt signaling by targeting PTEN expression, induction of Bad phosphorylation, and suppression of Bim1 expression, resulting in decreases in I/R-induced myocardial apoptosis.

  4. [Assessment of myocardial perfusion and left ventricular function with 99mTc-PPN 1011].

    PubMed

    Kumita, S; Mizumura, S; Oishi, T; Kumazaki, T; Sano, J; Yamazaki, Y; Munakata, K

    1993-04-01

    First-pass radionuclide angiography (FPRNA) was performed with the new myocardial perfusion agent 99mTc-1,2,bis[bis(2-ethoxyethyl)phosphino] ethane (99mTc-PPN 1011) on stress and at rest. One hour after that, myocardial perfusion was counted by 99mTc-PPN 1011 SPECT. Left ventricular ejection fraction (LVEF) obtained by FPRNA correlated with that by multigated image with 99mTc-HSAD (r = 0.94, n = 11). The reduction of left ventricular function under the exercise (delta LVEF) and the increase of severity score (delta Severity score) have a good relation (r = 0.88) in 7 patients with prior myocardial infarction. Thus 99mTc-PPN 1011 appears to be an ideal radiopharmaceutical for evaluation of ventricular function and myocardial perfusion.

  5. Clinical results with beta-methyl-p-(123I)iodophenylpentadecanoic acid, single-photon emission computed tomography in cardiac disease.

    PubMed

    Nishimura, T; Uehara, T; Shimonagata, T; Nagata, S; Haze, K

    1994-01-01

    This study was undertaken to evaluate the relationships, between myocardial perfusion and metabolism. Simultaneous beta-methyl-p(123I)iodophenylpentadecanoic acid (123I-BMIPP) and thallium 201 myocardial single-photon emission computed tomography (SPECT) were performed in 25 patients with myocardial infarction (group A) and 16 patients with hypertrophic cardiomyopathy (group B). The severity scores of 123I-BMIPP and 201Tl myocardial SPECT images were evaluated semiquantitatively by segmental analysis. In Group A, dissociations between thallium- and 123I-BMIPP-imaged defects were frequently observed in patients with successful reperfusion compared with those with no reperfusion and those with reinfarction. In four patients with successful reperfusion, repeated 123I-BMIPP and 201Tl myocardial SPECT showed gradual improvement of the 123I-BMIPP severity score compared with the thallium severity score. In group B, dissociations between thallium- and 123I-BMIPP-imaged defects were also demonstrated in hypertrophic myocardium. In addition, nonhypertrophic myocardium also had decreased 123I-BMIPP uptake. In groups A and B, 123I-BMIPP severity scores correlated well with left ventricular function compared with thallium severity scores. These findings indicate that 123I-BMIPP is a suitable agent for the assessment of functional integrity, because left ventricular wall motion is energy dependent and 123I-BMIPP may reflect an aspect of myocardial energy production. This agent may be useful for the early detection and patient management of various heart diseases as an alternative to positron emission tomographic study.

  6. Combined atorvastatin and coenzyme Q10 improve the left ventricular function in isoproterenol-induced heart failure in rat.

    PubMed

    Garjani, Alireza; Andalib, Sina; Biabani, Sajjad; Soraya, Hamid; Doustar, Yousef; Garjani, Afagh; Maleki-Dizaji, Nasrin

    2011-09-01

    The effect of atorvastatin on cardiac remodeling, function, and homodynamic parameters in isoproterenol-induced heart failure was evaluated in the present study. A subcutaneous injection of isoproterenol (5mg/kg/day) for 10 days was used for the induction of heart failure. Isoproterenol administration produced intensive myocardial necrosis and fibrosis with a significant decrease in the arterial pressure indices, heart rate, contractility (LVdP/dt(max)) and relaxation (LVdP/dt(min)), but an increase in the left ventricular end-diastolic pressure. Rats were randomly assigned to control, treatment with only atorvastatin, and treatment with atorvastatin plus coenzyme Q10. Histopathological analysis showed a marked attenuation of myocyte necrosis and interstitial fibrosis in all atorvastatin treated groups (P<0.001). A low dose of atorvastatin (5mg/kg/day) significantly improved the left ventricular systolic pressure, contractility and relaxation (P<0.01). On the contrary, a high dose of atorvastatin (20mg/kg/day) worsened the isoproterenol-induced left ventricular dysfunction by a further reduction of LVdP/dt(max) from +2780 ± 94 to +1588 ± 248 (mmHg/s; P<0.01) and LVdP/dt(min) from -2007 ± 190 to -2939 ± 291 (mmHg/s; P<0.05). Co-administration of coenzyme Q10 with atorvastatin reversed the hemodynamic depression and the left ventricular dysfunction to a high level (P<0.001). There was a lower level of LVEDPs in the atorvastatin+coenzyme Q10 treated groups (3 ± 1 and 4 ± 1.4 versus 8 ± 3.5 and 14 ± 3.6 mmHg, respectively), thereby suggesting improvement in the myocardial stiffness by the combined coenzyme Q10 and atorvastatin treatment. The atorvastatin therapy attenuated myocardial necrosis and fibrosis in isoproterenol-induced heart failure. However, a high dose of the drug considerably worsened the left ventricular dysfunction and hemodynamic depression, which was reversed by coenzyme Q10 co-administration. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. The metabolic and renal effects of adrenaline and milrinone in patients with myocardial dysfunction after coronary artery bypass grafting

    PubMed Central

    Heringlake, Matthias; Wernerus, Marit; Grünefeld, Julia; Klaus, Stephan; Heinze, Hermann; Bechtel, Matthias; Bahlmann, Ludger; Poeling, Jochen; Schön, Julika

    2007-01-01

    Introduction Myocardial dysfunction necessitating inotropic support is a typical complication after on-pump cardiac surgery. This prospective, randomized pilot study analyzes the metabolic and renal effects of the inotropes adrenaline and milrinone in patients needing inotropic support after coronary artery bypass grafting (CABG). Methods During an 18-month period, 251 patients were screened for low cardiac output upon intensive care unit (ICU) admission after elective, isolated CABG surgery. Patients presenting with a cardiac index (CI) of less than 2.2 liters/minute per square meter upon ICU admission – despite adequate mean arterial (titrated with noradrenaline or sodium nitroprusside) and filling pressures – were randomly assigned to 14-hour treatment with adrenaline (n = 7) or milrinone (n = 11) to achieve a CI of greater than 3.0 liters/minute per square meter. Twenty patients not needing inotropes served as controls. Hemodynamics, plasma lactate, pyruvate, glucose, acid-base status, insulin requirements, the urinary excretion of alpha-1-microglobuline, and creatinine clearance were determined during the treatment period, and cystatin-C levels were determined up to 48 hours after surgery (follow-up period). Results After two to four hours after ICU admission, the target CI was achieved in both intervention groups and maintained during the observation period. Plasma lactate, pyruvate, the lactate/pyruvate ratio, plasma glucose, and insulin doses were higher (p < 0.05) in the adrenaline-treated patients than during milrinone or control conditions. The urinary excretion of alpha-1-microglobuline was higher in the adrenaline than in the control group 6 to 14 hours after admission (p < 0.05). No between-group differences were observed in creatinine clearance, whereas plasma cystatin-C levels were significantly higher in the adrenaline than in the milrinone or the control group after 48 hours (p < 0.05). Conclusion This suggests that the use of adrenaline for the treatment of postoperative myocardial dysfunction – in contrast to treatment with the PDE-III inhibitor milrinone – is associated with unwarranted metabolic and renal effects. Clinical trials registration: ClinicalTrials.gov NCT00446017. PMID:17470271

  8. Resting electrocardiogram and stress myocardial perfusion imaging in the determination of left ventricular systolic function: an assessment enhancing the performance of gated SPET.

    PubMed

    Moralidis, Efstratios; Spyridonidis, Tryfon; Arsos, Georgios; Skeberis, Vassilios; Anagnostopoulos, Constantinos; Gavrielidis, Stavros

    2010-01-01

    This study aimed to determine systolic dysfunction and estimate resting left ventricular ejection fraction (LVEF) from information collected during routine evaluation of patients with suspected or known coronary heart disease. This approach was then compared to gated single photon emission tomography (SPET). Patients having undergone stress (201)Tl myocardial perfusion imaging followed by equilibrium radionuclide angiography (ERNA) were separated into derivation (n=954) and validation (n=309) groups. Logistic regression analysis was used to develop scoring systems, containing clinical, electrocardiographic (ECG) and scintigraphic data, for the discrimination of an ERNA-LVEF<0.50. Linear regression analysis provided equations predicting ERNA-LVEF from those scores. In 373 patients LVEF was also assessed with (201)Tl gated SPET. Our results showed that an ECG-Scintigraphic scoring system was the best simple predictor of an ERNA-LVEF<0.50 in comparison to other models including ECG, clinical and scintigraphic variables in both the derivation and validation subpopulations. A simple linear equation was derived also for the assessment of resting LVEF from the ECG-Scintigraphic model. Equilibrium radionuclide angiography-LVEF had a good correlation with the ECG-Scintigraphic model LVEF (r=0.716, P=0.000), (201)Tl gated SPET LVEF (r=0.711, P=0.000) and the average LVEF from those assessments (r=0.796, P=0.000). The Bland-Altman statistic (mean+/-2SD) provided values of 0.001+/-0.176, 0.071+/-0.196 and 0.040+/-0.152, respectively. The average LVEF was a better discriminator of systolic dysfunction than gated SPET-LVEF in receiver operating characteristic (ROC) analysis and identified more patients (89%) with a

  9. Direct and Indirect Effects of PM on the Cardiovascular System

    PubMed Central

    Nelin, Timothy D.; Joseph, Allan M.; Gorr, Matthew W.; Wold, Loren E.

    2011-01-01

    Human exposure to particulate matter (PM) elicits a variety of responses on the cardiovascular system through both direct and indirect pathways. Indirect effects of PM on the cardiovascular system are mediated through the autonomic nervous system, which controls heart rate variability, and inflammatory responses, which augment acute cardiovascular events and atherosclerosis. Recent research demonstrates that PM also affects the cardiovascular system directly by entry into the systemic circulation. This process causes myocardial dysfunction through mechanisms of reactive oxygen species production, calcium ion interference, and vascular dysfunction. In this review, we will present key evidence in both the direct and indirect pathways, suggest clinical applications of the current literature, and recommend directions for future research. PMID:22119171

  10. Myocardial Chemokine Expression and Intensity of Myocarditis in Chagas Cardiomyopathy Are Controlled by Polymorphisms in CXCL9 and CXCL10

    PubMed Central

    Nogueira, Luciana Gabriel; Santos, Ronaldo Honorato Barros; Ianni, Barbara Maria; Fiorelli, Alfredo Inácio; Mairena, Eliane Conti; Benvenuti, Luiz Alberto; Frade, Amanda; Donadi, Eduardo; Dias, Fabrício; Saba, Bruno; Wang, Hui-Tzu Lin; Fragata, Abilio; Sampaio, Marcelo; Hirata, Mario Hiroyuki; Buck, Paula; Mady, Charles; Bocchi, Edimar Alcides; Stolf, Noedir Antonio; Kalil, Jorge; Cunha-Neto, Edecio

    2012-01-01

    Background Chronic Chagas cardiomyopathy (CCC), a life-threatening inflammatory dilated cardiomyopathy, affects 30% of the approximately 8 million patients infected by Trypanosoma cruzi. Even though the Th1 T cell-rich myocarditis plays a pivotal role in CCC pathogenesis, little is known about the factors controlling inflammatory cell migration to CCC myocardium. Methods and Results Using confocal immunofluorescence and quantitative PCR, we studied cell surface staining and gene expression of the CXCR3, CCR4, CCR5, CCR7, CCR8 receptors and their chemokine ligands in myocardial samples from end-stage CCC patients. CCR5+, CXCR3+, CCR4+, CCL5+ and CXCL9+ mononuclear cells were observed in CCC myocardium. mRNA expression of the chemokines CCL5, CXCL9, CXCL10, CCL17, CCL19 and their receptors was upregulated in CCC myocardium. CXCL9 mRNA expression directly correlated with the intensity of myocarditis, as well as with mRNA expression of CXCR3, CCR4, CCR5, CCR7, CCR8 and their ligands. We also analyzed single-nucleotide polymorphisms for genes encoding the most highly expressed chemokines and receptors in a cohort of Chagas disease patients. CCC patients with ventricular dysfunction displayed reduced genotypic frequencies of CXCL9 rs10336 CC, CXCL10 rs3921 GG, and increased CCR5 rs1799988CC as compared to those without dysfunction. Significantly, myocardial samples from CCC patients carrying the CXCL9/CXCL10 genotypes associated to a lower risk displayed a 2–6 fold reduction in mRNA expression of CXCL9, CXCL10, and other chemokines and receptors, along with reduced intensity of myocarditis, as compared to those with other CXCL9/CXCL10 genotypes. Conclusions Results may indicate that genotypes associated to reduced risk in closely linked CXCL9 and CXCL10 genes may modulate local expression of the chemokines themselves, and simultaneously affect myocardial expression of other key chemokines as well as intensity of myocarditis. Taken together our results may suggest that CXCL9 and CXCL10 are master regulators of myocardial inflammatory cell migration, perhaps affecting clinical progression to the life-threatening form of CCC. PMID:23150742

  11. The prognostic value of biomarkers after a premature myocardial infarction.

    PubMed

    Pineda, Javier; Marín, Francisco; Marco, Pascual; Roldán, Vanessa; Valencia, José; Ruiz-Nodar, Juan Miguel; Romero, Diana Hernández; Sogorb, Francisco; Lip, Gregory Y H

    2010-09-03

    Intravascular thrombogenesis is influenced by a complex interplay of factors related to a procoagulant state, fibrinolysis, endothelial damage/dysfunction and inflammation. We hypothesised that abnormalities of these biological systems would contribute to outcome of coronary artery disease presenting at a young age. We performed a prospective study of 142 subjects presenting with acute myocardial infarction (AMI) at a young age (defined as age ≤45 years), to determine the clinical and laboratory predictors of cardiovascular events during 36 months of follow-up. We assessed conventional risk factors and abnormalities of thrombophilia [total homocysteine (tHcy), lipoprotein (a) [Lp(a)], antiphospholipid antibodies (APA)], as well as lipid profile (total cholesterol, HDL-cholesterol, LDL-cholesterol and triglycerides), fibrinogen and fibrin D-dimer (as indices of a hypercoagulable state and thrombogenesis), von Willebrand factor (vWF, an index of endothelial damage/dysfunction), tissue plasminogen activator [t-PA antigen] and its inhibitor [PAI-1 antigen] (as indices of fibrinolysis), and C-reactive protein [CRP] (an index of inflammation). In a multivariate analysis, the variables independently associated with cardiovascular events at follow-up were levels of homocysteine (OR 3.73, 95% CI (1.54-9.02); p=0.003), left ventricle systolic dysfunction (OR 3.04, 95% CI (1.00-9.25); p=0.050), and smoking habit (OR 2.79, 95% CI (1.09-7.14) p=0.032). Prognostic markers associated with cardiovascular events in premature CAD (young AMI subjects) were cigarette smoking and EF<50% of left ventricle as conventional clinical risk factors, as well as higher levels of homocysteine. Copyright © 2009 Elsevier Ireland Ltd. All rights reserved.

  12. Cardiac and renal function in a large cohort of amateur marathon runners.

    PubMed

    Hewing, Bernd; Schattke, Sebastian; Spethmann, Sebastian; Sanad, Wasiem; Schroeckh, Sabrina; Schimke, Ingolf; Halleck, Fabian; Peters, Harm; Brechtel, Lars; Lock, Jürgen; Baumann, Gert; Dreger, Henryk; Borges, Adrian C; Knebel, Fabian

    2015-03-21

    Participation of amateur runners in endurance races continues to increase. Previous studies of marathon runners have raised concerns about exercise-induced myocardial and renal dysfunction and damage. In our pooled analysis, we aimed to characterize changes of cardiac and renal function after marathon running in a large cohort of mostly elderly amateur marathon runners. A total of 167 participants of the Berlin-Marathon (female n = 89, male n = 78; age = 50.3 ± 11.4 years) were included and cardiac and renal function was analyzed prior to, immediately after and 2 weeks following the race by echocardiography and blood tests (including cardiac troponin T, NT-proBNP and cystatin C). Among the runners, 58% exhibited a significant increase in cardiac biomarkers after completion of the marathon. Overall, the changes in echocardiographic parameters for systolic or diastolic left and right ventricular function did not indicate relevant myocardial dysfunction. Notably, 30% of all participants showed >25% decrease in cystatin C-estimated glomerular filtration rate (GFR) from baseline directly after the marathon; in 8%, we observed a decline of more than 50%. All cardiac and renal parameters returned to baseline ranges within 2 weeks after the marathon. The increase in cardiac biomarkers after completing a marathon was not accompanied by relevant cardiac dysfunction as assessed by echocardiography. After the race, a high proportion of runners experienced a decrease in cystatin C-estimated GFR, which is suggestive of transient, exercise-related alteration of renal function. However, we did not observe persistent detrimental effects on renal function.

  13. Dobutamine stress echocardiography for assessment of systolic function in dogs with experimentally induced mitral regurgitation.

    PubMed

    Suzuki, R; Matsumoto, H; Teshima, T; Mochizuki, Y; Koyama, H

    2014-01-01

    Systolic dysfunction is associated with poor outcomes in dogs with myxomatous mitral valve disease. However, assessment of systolic variables by conventional echocardiographic methods is difficult in these dogs because of mitral regurgitation (MR). We hypothesized that assessment of systolic function by dobutamine stress may identify systolic dysfunction in dogs with MR, and that 2-dimensional speckle-tracking echocardiography (2D-STE) could quantitatively evaluate myocardial function. Anesthetized dogs with experimentally induced MR. Dogs were examined for systolic myocardial deformations using 2D-STE during dobutamine infusion before and 3 and 6 months after MR induction. We evaluated peak systolic rotation and rotation rate in each basal and apical view; peak systolic torsion and torsion rate were also calculated. Invasive peak positive first derivatives of left ventricular pressure (dp/dt) were significantly decreased in dogs 6 months after induction of MR compared with pre-MR results. After 3 and 6 months of MR, dogs had diminished peak systolic torsion values and torsion rates in response to dobutamine infusion compared with pre-MR results (3 months, P < .001 and P = .006; 6 months, P = .003 and P = .021). These results were significantly correlated with overall invasive dp/dt (r = 0.644, P < .001; r = 0.696, P < .001). Decreased torsion during dobutamine infusion in dogs with MR may reflect latent systolic dysfunction. Dobutamine infusion, therefore, may be useful for the assessment of systolic function in dogs with MR. Copyright © 2014 by the American College of Veterinary Internal Medicine.

  14. Delayed expression of cytokines after reperfused myocardial infarction: possible trigger for cardiac dysfunction and ventricular remodeling.

    PubMed

    Moro, Cécile; Jouan, Marie-Gabrielle; Rakotovao, Andry; Toufektsian, Marie-Claire; Ormezzano, Olivier; Nagy, Norbert; Tosaki, Arpad; de Leiris, Joël; Boucher, François

    2007-11-01

    Previous studies have shown that 1 wk after permanent coronary artery ligation in rats, some cellular mechanisms involving TNF-alpha occur and contribute to the development of cardiac dysfunction and subsequent heart failure. The aim of the present study was to determine whether similar phenomena also occur after ischemia-reperfusion and whether cytokines other than TNF-alpha can also be involved. Anesthetized male Wistar rats were subjected to 1 h coronary occlusion followed by reperfusion. Cardiac geometry and function were assessed by echocardiography at days 5, 7, 8, and 10 postligation. Before death, heart function was assessed in vivo under basal conditions, as well as after volume overload. Finally, hearts were frozen for histoenzymologic assessment of infarct size and remodeling. The profile of cardiac cytokines was determined by ELISA and ChemiArray on heart tissue extracts. As expected, ischemia-reperfusion induced a progressive remodeling of the heart, characterized by left ventricular free-wall thinning and cavity dilation. Heart function was also decreased in ischemic rats during the first week after surgery. Interestingly, a transient and marked increase in TNF-alpha, IL-1beta, IL-6, cytokine-induced neutrophil chemoattractant (CINC) 2, CINC3, and macrophage inflammatory protein-3alpha was also observed in the myocardium of myocardial ischemia (MI) animals at day 8, whereas the expression of anti-inflammatory interleukins IL-4 and IL-10 remained unchanged. These results suggest that overexpression of proinflammatory cytokines occurring during the first week after ischemia-reperfusion may play a role in the adaptative process in the myocardium and contribute to early dysfunction and remodeling.

  15. Pathophysiology of Cardiopulmonary Bypass: Current Strategies for the Prevention and Treatment of Anemia, Coagulopathy, and Organ Dysfunction.

    PubMed

    Esper, Stephen A; Subramaniam, Kathirvel; Tanaka, Kenichi A

    2014-06-01

    The techniques and equipment of cardiopulmonary bypass (CPB) have evolved over the past 60 years, and numerous numbers of cardiac surgical procedures are conducted around the world using CPB. Despite more widespread applications of percutaneous coronary and valvular interventions, the need for cardiac surgery using CPB remains the standard approach for certain cardiac pathologies because some patients are ineligible for percutaneous procedures, or such procedures are unsuccessful in some. The ageing patient population for cardiac surgery poses a number of clinical challenges, including anemia, decreased cardiopulmonary reserve, chronic antithrombotic therapy, neurocognitive dysfunction, and renal insufficiency. The use of CPB is associated with inductions of systemic inflammatory responses involving both cellular and humoral interactions. Inflammatory pathways are complex and redundant, and thus, the reactions can be profoundly amplified to produce a multiorgan dysfunction that can manifest as capillary leak syndrome, coagulopathy, respiratory failure, myocardial dysfunction, renal insufficiency, and neurocognitive decline. In this review, pathophysiological aspects of CPB are considered from a practical point of view, and preventive strategies for hemodilutional anemia, coagulopathy, inflammation, metabolic derangement, and neurocognitive and renal dysfunction are discussed. © The Author(s) 2014.

  16. Obesity and heart failure.

    PubMed

    De Pergola, Giovanni; Nardecchia, Adele; Giagulli, Vito Angelo; Triggiani, Vincenzo; Guastamacchia, Edoardo; Minischetti, Manuela Castiglione; Silvestris, Franco

    2013-03-01

    Epidemiological studies have recently shown that obesity, and abdominal obesity in particular, is an independent risk factor for the development of heart failure (HF). Higher cardiac oxidative stress is the early stage of heart dysfunction due to obesity, and it is the result of insulin resistance, altered fatty acid and glucose metabolism, and impaired mitochondrial biogenesis. Extense myocyte hypertrophy and myocardial fibrosis are early microscopic changes in patients with HF, whereas circumferential strain during the left ventricular (LV) systole, LV increase in both chamber size and wall thickness (LV hypertrophy), and LV dilatation are the early macroscopic and functional alterations in obese developing heart failure. LV hypertrophy leads to diastolic dysfunction and subendocardial ischemia in obesity, and pericardial fat has been shown to be significantly associated with LV diastolic dysfunction. Evolving abnormalities of diastolic dysfunction may include progressive hypertrophy and systolic dysfunction, and various degrees of eccentric and/or concentric LV hypertrophy may be present with time. Once HF is established, overweight and obese have a better prognosis than do their lean counterparts with the same level of cardiovascular disease, and this phenomenon is called "obesity paradox". It is mainly due to lower muscle protein degradation, brain natriuretic peptide circulating levels and cardio-respiratory fitness than normal weight patients with HF.

  17. Temporal Trends in the Prevalence, Severity, and Localization of Myocardial Ischemia and Necrosis at Myocardial Perfusion Imaging After Myocardial Infarction.

    PubMed

    Nudi, Francesco; Schillaci, Orazio; Di Belardino, Natale; Versaci, Francesco; Tomai, Fabrizio; Pinto, Annamaria; Neri, Giandomenico; Procaccini, Enrica; Nudi, Alessandro; Frati, Giacomo; Biondi-Zoccai, Giuseppe

    2017-10-15

    The definition, presentation, and management of myocardial infarction (MI) have changed substantially in the last decade. Whether these changes have impacted on the presence, severity, and localization of necrosis at myocardial perfusion imaging (MPI) has not been appraised to date. Subjects undergoing MPI and reporting a history of clinical MI were shortlisted. We focused on the presence, severity, and localization of necrosis at MPI with a retrospective single-center analysis. A total of 10,476 patients were included, distinguishing 5 groups according to the period in which myocardial perfusion scintigraphy had been performed (2004 to 2005, 2006 to 2007, 2008 to 2009, 2010 to 2011, 2012 to 2013). Trend analysis showed over time a significant worsening in baseline features (e.g., age, diabetes mellitus, and Q waves at electrocardiogram), whereas medical therapy and revascularization were offered with increasing frequency. Over the years, there was also a lower prevalence of normal MPI (from 16.8% to 13.6%) and ischemic MPI (from 35.6% to 32.8%), and a higher prevalence of ischemic and necrotic MPI (from 12.0% to 12.7%) or solely necrotic MPI (from 35.7% to 40.9%, p <0.001). Yet the prevalence of severe ischemia decreased over time from 11.4% to 2.0%, with a similar trend for moderate ischemia (from 15.9% to 11.8%, p <0.001). Similarly sobering results were wound for the prevalence of severe necrosis (from 19.8% to 8.2%) and moderate necrosis (from 8.5% to 7.8%, p = 0.028). These trends were largely confirmed at regional level and after propensity score matching. In conclusion, the outlook of stable patients with previous MI has substantially improved in the last decade, with a decrease in the severity of residual myocardial ischemia and necrosis, despite an apparent worsening in baseline features. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. An unusual reason for severe bradycardia leading to cardiac arrest during general anaesthesia: a case report.

    PubMed

    Struzkova, Klara; Stourac, Petr; Kanovsky, Jan; Krikava, Ivo; Toukalkova, Michaela; Sevcik, Pavel

    2014-12-01

    Takotsubo cardiomyopathy also known as transient balooning syndrome is an increasingly reported phenomenon characterized by acute reversible apical or midventricular dysfunction. This stress- induced cardiomyopathy mimics myocardial infarction, but without significant coronary artery disease, and rarely presents in perioperative period. We report a case of postmenopausal woman scheduled to undergo elective cholecystectomy, with no history of coronary artery disease. She presented perioperatively with Takotsubo cardiomyopathy by unique manifestation-asystoly. This uncommon cause of cardiac arrest during anaesthesia was possibly induced by preoperative emotional stress. There was full recovery thanks to intensive management. In Takotsubo cardiomyopathy related cardiogenic shock we used the calcium sensitiser levosimendan successfully. Takotsubo cardiomyopathy has an excellent long-term prognosis and nearly all patients have full recovery of left ventricular function. We emphasize the importance of heavy premedication by stress compromised patients and the need of sufficiently deep anaesthesia and analgesia during surgeries.

  19. TRPC5 channels participate in pressure-sensing in aortic baroreceptors

    PubMed Central

    Lau, On-Chai; Shen, Bing; Wong, Ching-On; Tjong, Yung-Wui; Lo, Chun-Yin; Wang, Hui-Chuan; Huang, Yu; Yung, Wing-Ho; Chen, Yang-Chao; Fung, Man-Lung; Rudd, John Anthony; Yao, Xiaoqiang

    2016-01-01

    Blood pressure is maintained within a normal physiological range by a sophisticated regulatory mechanism. Baroreceptors serve as a frontline sensor to detect the change in blood pressure. Nerve signals are then sent to the cardiovascular control centre in the brain in order to stimulate baroreflex responses. Here, we identify TRPC5 channels as a mechanical sensor in aortic baroreceptors. In Trpc5 knockout mice, the pressure-induced action potential firings in the afferent nerve and the baroreflex-mediated heart rate reduction are attenuated. Telemetric measurements of blood pressure demonstrate that Trpc5 knockout mice display severe daily blood pressure fluctuation. Our results suggest that TRPC5 channels represent a key pressure transducer in the baroreceptors and play an important role in maintaining blood pressure stability. Because baroreceptor dysfunction contributes to a variety of cardiovascular diseases including hypertension, heart failure and myocardial infarction, our findings may have important future clinical implications. PMID:27411851

  20. Takotsubo cardiomyopathy: Pathophysiology, diagnosis and treatment

    PubMed Central

    Komamura, Kazuo; Fukui, Miho; Iwasaku, Toshihiro; Hirotani, Shinichi; Masuyama, Tohru

    2014-01-01

    In 1990, takotsubo cardiomyopathy (TCM) was first discovered and reported by a Japanese cardiovascular specialist. Since then, this heart disease has gained worldwide acceptance as an independent disease entity. TCM is an important entity that differs from acute myocardial infarction. It occurs more often in postmenopausal elderly women, is characterized by a transient hypokinesis of the left ventricular (LV) apex, and is associated with emotional or physical stress. Wall motion abnormality of the LV apex is generally transient and resolves within a few days to several weeks. Its prognosis is generally good. However, there are some reports of serious TCM complications, including hypotension, heart failure, ventricular rupture, thrombosis involving the LV apex, and torsade de pointes. It has been suggested that coronary spasm, coronary microvascular dysfunction, catecholamine toxicity and myocarditis might contribute to the pathogenesis of TCM. However, its pathophysiology is not clearly understood. PMID:25068020

  1. Case report: paradoxical ventricular septal motion in the setting of primary right ventricular myocardial failure.

    PubMed

    Maslow, Andrew; Schwartz, Carl; Mahmood, Feroze; Singh, Arun; Heerdt, Paul M

    2009-07-01

    In this report, a case of right ventricular (RV) failure, hemodynamic instability, and systemic organ failure is described to highlight how paradoxical ventricular systolic septal motion (PVSM), or a rightward systolic displacement of the interventricular septum, may contribute to RV ejection. Multiple inotropic medications and vasopressors were administered to treat right heart failure and systemic hypotension in a patient following combined aortic and mitral valve replacement. In the early postoperative period, echocardiographic evaluation revealed adequate left ventricular systolic function, akinesis of the RV myocardial tissues, and PVSM. In the presence of PVSM, RV fractional area of contraction was > or =35% despite akinesis of the primary RV myocardial walls. The PVSM appeared to contribute toward RV ejection. As a result, the need for multiple inotropes was re-evaluated, in considering that end-organ dysfunction was the result of systemic hypotension and prolonged vasopressor administration. After discontinuation of phosphodiesterase inhibitors, native vascular tone returned and the need for vasopressors declined. This was followed by recovery of systemic organ function. Echocardiographic re-evaluation two years later, revealed persistent akinesis of the RV myocardial tissues and PVSM, the latter appearing to contribute toward RV ejection. This case highlights the importance of left to RV interactions, and how PVSM may mediate these hemodynamic interactions.

  2. Postinfarction Functional Recovery Driven by a Three-Dimensional Engineered Fibrin Patch Composed of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells.

    PubMed

    Roura, Santiago; Soler-Botija, Carolina; Bagó, Juli R; Llucià-Valldeperas, Aida; Férnandez, Marco A; Gálvez-Montón, Carolina; Prat-Vidal, Cristina; Perea-Gil, Isaac; Blanco, Jerónimo; Bayes-Genis, Antoni

    2015-08-01

    Considerable research has been dedicated to restoring myocardial cell slippage and limiting ventricular remodeling after myocardial infarction (MI). We examined the ability of a three-dimensional (3D) engineered fibrin patch filled with human umbilical cord blood-derived mesenchymal stem cells (UCBMSCs) to induce recovery of cardiac function after MI. The UCBMSCs were modified to coexpress luciferase and fluorescent protein reporters, mixed with fibrin, and applied as an adhesive, viable construct (fibrin-cell patch) over the infarcted myocardium in mice (MI-UCBMSC group). The patch adhered well to the heart. Noninvasive bioluminescence imaging demonstrated early proliferation and differentiation of UCBMSCs within the construct in the postinfarct mice in the MI-UCBMSC group. The implanted cells also participated in the formation of new, functional microvasculature that connected the fibrin-cell patch to both the subjacent myocardial tissue and the host circulatory system. As revealed by echocardiography, the left ventricular ejection fraction and fractional shortening at sacrifice were improved in MI-UCBMSC mice and were markedly reduced in mice treated with fibrin alone and untreated postinfarction controls. In conclusion, a 3D engineered fibrin patch composed of UCBMSCs attenuated infarct-derived cardiac dysfunction when transplanted locally over a myocardial wound. ©AlphaMed Press.

  3. A critical courier role of volatile oils from Dalbergia odorifera for cardiac protection in vivo by QiShenYiQi.

    PubMed

    Yu, Jiahui; Zhang, Wen; Zhang, Yiqian; Wang, Yadong; Zhang, Boli; Fan, Guanwei; Zhu, Yan

    2017-08-04

    Component-based Chinese medicine (CCM) is derived from traditional Chinese medicine but produced with modern pharmaceutical standard and clearer clinical indications. However, it still faces challenges of defining individual component contribution in the complex formula. Using QiShenYiQi (QSYQ) as a model CCM, we investigated the role of Dalbergia odorifera (DO), an herbal component, in preventing myocardial damage. We showed that in vitro, QSYQ exerted considerable protective activities on cardiomyocytes from H 2 O 2 -induced mitochondrial dysfunction with or without DO. However, in isolated rat hearts, myocardial protection by QSYQ was significantly weakened without DO. In everted gut sac model, DO significantly enhanced absorption of the major QSYQ ingredients in different regions of rat intestine. Finally, in in vivo mouse model of doxorubicin (DOX)-induced myocardial damage, only QSYQ, but not QiShenYiQi without DO (QSYQ-DO), exerted a full protection. Taken together, our results showed that instead of directly contributing to the myocardial protection, Dalbergia odorifera facilitates the major active ingredients absorption and increases their efficacy, eventually enhancing the in vivo potency of QSYQ. These findings may shed new lights on our understanding of the prescription compatibility theory, as well as the impacts of "courier herbs" in component-based Chinese medicine.

  4. Diagnostic and Prognostic Value of CMR T1-Mapping in Patients With Heart Failure and Preserved Ejection Fraction.

    PubMed

    Rommel, Karl-Philipp; Lücke, Christian; Lurz, Philipp

    2017-10-01

    Heart failure with preserved ejection fraction (HFpEF) presents a major challenge in modern cardiology. Although this syndrome is of increasing prevalence and is associated with unfavorable outcomes, treatment trials have failed to establish effective therapies. Currently, solutions to this dilemma are being investigated, including categorizing and characterizing patients more diversely to individualize treatment. In this regard, new imaging techniques might provide important information. Diastolic dysfunction is a diagnostic and pathophysiological cornerstone in HFpEF and is believed to be caused by systemic inflammation with the development of interstitial myocardial fibrosis and myocardial stiffening. Cardiac magnetic resonance (CMR) T 1 -mapping is a novel tool, which allows noninvasive quantification of the extracellular space and diffuse myocardial fibrosis. This review provides an overview of the potential of myocardial tissue characterization with CMR T 1 mapping in HFpEF patients, outlining its diagnostic and prognostic implications and discussing future directions. We conclude that CMR T 1 mapping is potentially an effective tool for patient characterization in large-scale epidemiological, diagnostic, and therapeutic HFpEF trials beyond traditional imaging parameters. Copyright © 2017 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  5. In-hospital outcome in patients with ST elevation myocardial infarction and right bundle branch block. A sub-study from RENASICA II, a national multicenter registry.

    PubMed

    Juárez-Herrera, Ursulo; Jerjes Sánchez, Carlos; González-Pacheco, Héctor; Martínez-Sánchez, Carlos

    2010-01-01

    Compare in-hospital outcome in patients with ST-elevation myocardial infarction with right versus left bundle branch block. RENASICA II, a national Mexican registry enrolled 8098 patients with final diagnosis of acute coronary syndrome secondary to ischemic heart disease. In 4555 STEMI patients, 545 had bundle branch block, 318 (58.3%) with right and 225 patients with left (41.6%). Both groups were compared in terms of in-hospital outcome through major cardiovascular adverse events; (cardiovascular death, recurrent ischemia and reinfarction). Multivariable analysis was performed to identify in-hospital mortality risk among right and left bundle branch block patients. There were not statistical differences in both groups regarding baseline characteristics, time of ischemia, myocardial infarction location, ventricular dysfunction and reperfusion strategies. In-hospital outcome in bundle branch block group was characterized by a high incidence of major cardiovascular adverse events with a trend to higher mortality in patients with right bundle branch block (OR 1.70, CI 1.19 - 2.42, p < 0.003), compared to left bundle branch block patients. In this sub-study right bundle branch block accompanying ST-elevation myocardial infarction of any location at emergency room presentation was an independent predictor of high in-hospital mortality.

  6. Oxidative stress and myocardial dysfunction in young rabbits after short term anabolic steroids administration.

    PubMed

    Germanakis, Ioannis; Tsarouhas, Konstantinos; Fragkiadaki, Persefoni; Tsitsimpikou, Christina; Goutzourelas, Nikolaos; Champsas, Maria Christakis; Stagos, Demetrios; Rentoukas, Elias; Tsatsakis, Aristidis M

    2013-11-01

    The present study focuses on the short term effects of repeated low level administration of turinabol and methanabol on cardiac function in young rabbits (4 months-old). The experimental scheme consisted of two oral administration periods, lasting 1 month each, interrupted by 1-month wash-out period. Serial echocardiographic evaluation at the end of all three experimental periods was performed in all animals. Oxidative stress markers have also been monitored at the end of each administration period. Treated animals originally showed significantly increased myocardial mass and systolic cardiac output, which normalized at the end of the wash out period. Re-administration led to increased cardiac output, at the cost though of a progressive myocardial mass reduction. A dose-dependent trend towards impaired longitudinal systolic, diastolic and global myocardial function was also observed. The adverse effects were more pronounced in the methanabol group. For both anabolic steroids studied, the low dose had no significant effects on oxidative stress markers monitored, while the high dose created a hostile oxidative environment. In conclusion, anabolic administration has been found to create a possible deleterious long term effect on the growth of the immature heart and should be strongly discouraged especially in young human subjects. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Association between periodontal flap surgery for periodontitis and vasculogenic erectile dysfunction in Koreans.

    PubMed

    Lee, Jae-Hong; Choi, Jung-Kyu; Kim, Sang-Hyun; Cho, Kyung-Hyun; Kim, Young-Taek; Choi, Seong-Ho; Jung, Ui-Won

    2017-04-01

    The National Health Insurance Service-National Sample Cohort and medical checkup data from 2002 to 2013 were used to evaluate the association between periodontal surgery for the treatment of periodontitis (PSTP) and vasculogenic erectile dysfunction (VED). Bivariate and multivariate logistic regression analyses were applied to a longitudinal retrospective database to assess the association between PSTP and VED while adjusting for the potential confounding effects of sociodemographic factors (age, household income, insurance status, health status, residence area, and smoking status) and comorbidities (diabetes mellitus, angina pectoris, cerebral infarction, and myocardial infarction). Among the 7,148 PSTP within the 268,296 recruited subjects, the overall prevalence of VED in PSTP was 1.43% (n=102). The bivariate analysis showed that VED was significantly related to PSTP (odds ratio [OR], 1.99; 95% confidence interval [CI], 1.38-2.06; P <0.001), and this was confirmed in the multivariate analysis after adjusting for sociodemographic factors and comorbidities (OR, 1.29; 95% CI, 1.06-1.58; P =0.002). Subjects with a history of periodontal flap surgery had a significantly higher risk of VED, after adjusting for potential confounding factors. Further studies are required to identify the key mechanisms underlying the association between severe periodontal disease and VED.

  8. Association between periodontal flap surgery for periodontitis and vasculogenic erectile dysfunction in Koreans

    PubMed Central

    2017-01-01

    Purpose The National Health Insurance Service-National Sample Cohort and medical checkup data from 2002 to 2013 were used to evaluate the association between periodontal surgery for the treatment of periodontitis (PSTP) and vasculogenic erectile dysfunction (VED). Methods Bivariate and multivariate logistic regression analyses were applied to a longitudinal retrospective database to assess the association between PSTP and VED while adjusting for the potential confounding effects of sociodemographic factors (age, household income, insurance status, health status, residence area, and smoking status) and comorbidities (diabetes mellitus, angina pectoris, cerebral infarction, and myocardial infarction). Results Among the 7,148 PSTP within the 268,296 recruited subjects, the overall prevalence of VED in PSTP was 1.43% (n=102). The bivariate analysis showed that VED was significantly related to PSTP (odds ratio [OR], 1.99; 95% confidence interval [CI], 1.38–2.06; P<0.001), and this was confirmed in the multivariate analysis after adjusting for sociodemographic factors and comorbidities (OR, 1.29; 95% CI, 1.06–1.58; P=0.002). Conclusions Subjects with a history of periodontal flap surgery had a significantly higher risk of VED, after adjusting for potential confounding factors. Further studies are required to identify the key mechanisms underlying the association between severe periodontal disease and VED. PMID:28462008

  9. Dynamin-Related Protein 1 as a therapeutic target in cardiac arrest

    PubMed Central

    Sharp, Willard W.

    2015-01-01

    Despite improvements in cardiopulmonary resuscitation (CPR) quality, defibrillation technologies, and implementation of therapeutic hypothermia, less than 10% of out-of-hospital cardiac arrest (OHCA) victims survive to hospital discharge. New resuscitation therapies have been slow to develop, in part, because the pathophysiologic mechanisms critical for resuscitation are not understood. During cardiac arrest, systemic cessation of blood flow results in whole body ischemia. CPR, and the restoration of spontaneous circulation (ROSC), both result in immediate reperfusion injury of the heart that is characterized by severe contractile dysfunction. Unlike diseases of localized ischemia/reperfusion (IR) injury (myocardial infarction and stroke), global IR injury of organs results in profound organ dysfunction with far shorter ischemic times. The two most commonly injured organs following cardiac arrest resuscitation, the heart and brain, are critically dependent on mitochondrial function. New insights into mitochondrial dynamics and the role of the mitochondrial fission protein Dynamin-related protein 1 (Drp1) in apoptosis have made targeting these mechanisms attractive for IR therapy. In animal models, inhibiting Drp1 following IR injury or cardiac arrest confers protection to both the heart and brain. In this review, the relationship of the major mitochondrial fission protein Drp1 to ischemic changes in the heart and its targeting as a new therapeutic target following cardiac arrest are discussed. PMID:25659608

  10. Hibernating myocardium, morphological studies on intraoperatory myocardial biopsies and on chronic ischemia experimental model.

    PubMed

    Laky, D; Parascan, Liliana

    2007-01-01

    Hibernating myocardium represent a prolonged but potentially reversible myocardial contractile dysfunction, an incomplete adaptation caused by chronic myocardial ischemia and persisting at least until blood flow restored. The purpose of this study was to investigate the morphological changes and weather relations exist among function, metabolism and structure in left ventricular hibernating myocardium. Material and methods. Experimental study is making on 12 dogs incomplete coronary obstruction during six weeks for morphologic studies of ischemic zones. On 48 patients with coronary stenosis myocardial biopsies was effectuated during aorto-coronarian bypass graft. On 60 patients with valvular disease associated with segmental coronary atherosclerotic obstructions during surgical interventions on a effectuated repeatedly biopsies from ischemic zones. Dyskinetic ischemic areas was identified by angiography, scintigraphy, low dose dobutamine echography to identify the cells viability. On myocardial biopsies various histological, histoenzymological, immunohistochemical and ultrastructural methods were performed. The morphological cardiomyocytic changes can summarized: loss of myofilaments, accumulation of glycogen, small mitochondria with reversible lesions, decrease of smooth reticulum, absence of T tubules, depression of titin in puncted pattern, loss of cardiotonin, disorganization of cytoskeleton, dispersed nuclear heterochromatin, embryofetal dedifferentiation, and persistence of viability. Extracellular matrix is enlarged with early matrix protein such fibronectin, tenascin, fibroblasts. In experimental material the morphological changes present similarities with the human biopsies, but intermixed with postinfarction scar tissue. Redifferentiation of hibernanting cells end remodeling of extracellular matrix is possible after quigle revascularization through aorto-coronary bypass grafts.

  11. TGF-β improves myocardial function and prevents apoptosis induced by anoxia-reoxygenation, through the reduction of endoplasmic reticulum stress.

    PubMed

    Wang, Yufeng; Zong, Ligeng; Wang, Xiaolei

    2016-01-01

    Transforming growth factor-β (TGF-β) is known for its role in ventricular remodeling, inflammatory response, cell survival, and apoptosis. However, its role in improving myocardial function in rat hearts subjected to ischemia-reperfusion (I/R) and protecting against apoptosis induced in cardiomyocytes by anoxia-reoxygenation (A/R) has not been elucidated. This study investigated the protective effects and molecular mechanisms of TGF-β on myocardial function and cardiomyocyte apoptosis. We used TUNEL staining, we tested cell viability, and we measured mitochondrial membrane potential and levels of mitochondrial ROS after 6 h of simulated anoxia together with various durations of simulated reoxygenation in H9c2 cells. We further observed the contractile function in rat hearts after they were subjected to 30 min global ischemia and 180 min reperfusion. Pretreatment with TGF-β markedly inhibited apoptosis in H9c2 cells, as evidenced by increased cell viability and decreased numbers of TUNEL-positive cells, maintained mitochondrial membrane potential, and diminished mitochondrial production of reactive oxygen species (ROS). These changes were associated with the inhibition of endoplasmic reticulum (ER) stress-dependent markers of apoptosis (GRP78, CHOP, caspase-12, and JNK), and the modulation of the expression of Bcl2/Bax. Furthermore, TGF-β improved I/R-induced myocardial contractile dysfunction. All of these protective effects were concentration-dependent. Our results show that TGF-β prevents A/R-induced apoptosis of cardiomyocytes and improves myocardial function in rat hearts injured by I/R.

  12. Impact of rosiglitazone and glyburide on nitrosative stress and myocardial blood flow regulation in type 2 diabetes mellitus.

    PubMed

    Pop-Busui, Rodica; Oral, Elif; Raffel, David; Byun, Jaeman; Bajirovic, Valida; Vivekanandan-Giri, Anuradha; Kellogg, Aaron; Pennathur, Subramaniam; Stevens, Martin J

    2009-07-01

    Cardiovascular disease, the leading cause of death in patients with type 2 diabetes mellitus (T2DM), is usually preceded by endothelial dysfunction and altered myocardial blood flow (MBF) regulation. Hyperglycemia, oxidative-nitrosative stress, systemic inflammation, and insulin resistance are implicated in the pathogenesis of abnormal MBF regulation, myocardial ischemia, and apoptosis. However, the impact of oral antihyperglycemic therapy on myocardial perfusion is controversial. Our objective was to explore the effect of rosiglitazone and glyburide on nitrosative stress and MBF regulation in subjects with T2DM. [(13)N]ammonia positron emission tomography and cold pressor testing were used in 27 diabetic subjects (mean age, 49 +/- 11 years; glycohemoglobin, 7% +/- 1.5%) randomized to either rosiglitazone 8 mg/d or glyburide 10 mg/d for 6 months. Isotope dilution gas chromatography-mass spectrometry was used to quantify plasma 3-nitrotyrosine, a stable marker of reactive nitrogen species. At 6 months, there were no significant differences between groups in the mean glycohemoglobin, blood pressure, or plasma lipids. Rosiglitazone significantly reduced plasma nitrotyrosine, high-sensitivity C-reactive protein, and von Willebrand antigen (P < .03 for all) and significantly increased plasma adiponectin (P < .05). No significant changes in these parameters were observed with glyburide. Treatment with glyburide, but not rosiglitazone, resulted in a significant deterioration in both resting and stress MBF. Rosiglitazone, but not glyburide, ameliorated markers of nitrosative stress and inflammation in subjects with T2DM without impairing myocardial perfusion.

  13. High-sugar intake does not exacerbate metabolic abnormalities or cardiac dysfunction in genetic cardiomyopathy.

    PubMed

    Hecker, Peter A; Galvao, Tatiana F; O'Shea, Karen M; Brown, Bethany H; Henderson, Reney; Riggle, Heather; Gupte, Sachin A; Stanley, William C

    2012-05-01

    A high-sugar intake increases heart disease risk in humans. In animals, sugar intake accelerates heart failure development by increased reactive oxygen species (ROS). Glucose-6-phosphate dehydrogenase (G6PD) can fuel ROS production by providing reduced nicotinamide adenine dinucleotide phosphate (NADPH) for superoxide generation by NADPH oxidase. Conversely, G6PD also facilitates ROS scavenging using the glutathione pathway. We hypothesized that a high-sugar intake would increase flux through G6PD to increase myocardial NADPH and ROS and accelerate cardiac dysfunction and death. Six-week-old TO-2 hamsters, a non-hypertensive model of genetic cardiomyopathy caused by a δ-sarcoglycan mutation, were fed a long-term diet of high starch or high sugar (57% of energy from sucrose plus fructose). After 24 wk, the δ-sarcoglycan-deficient animals displayed expected decreases in survival and cardiac function associated with cardiomyopathy (ejection fraction: control 68.7 ± 4.5%, TO-2 starch 46.1 ± 3.7%, P < 0.05 for TO-2 starch versus control; TO-2 sugar 58.0 ± 4.2%, NS, versus TO-2 starch or control; median survival: TO-2 starch 278 d, TO-2 sugar 318 d, P = 0.133). Although the high-sugar intake was expected to exacerbate cardiomyopathy, surprisingly, there was no further decrease in ejection fraction or survival with high sugar compared with starch in cardiomyopathic animals. Cardiomyopathic animals had systemic and cardiac metabolic abnormalities (increased serum lipids and glucose and decreased myocardial oxidative enzymes) that were unaffected by diet. The high-sugar intake increased myocardial superoxide, but NADPH and lipid peroxidation were unaffected. A sugar-enriched diet did not exacerbate ventricular function, metabolic abnormalities, or survival in heart failure despite an increase in superoxide production. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. L-arginine fails to prevent ventricular remodeling and heart failure in the spontaneously hypertensive rat.

    PubMed

    Brooks, Wesley W; Conrad, Chester H; Robinson, Kathleen G; Colucci, Wilson S; Bing, Oscar H L

    2009-02-01

    The effects of long-term oral administration of L-arginine, a substrate for nitric oxide (NO) production, on left ventricular (LV) remodeling, myocardial function and the prevention of heart failure (HF) was compared to the angiotensin-converting enzyme (ACE) inhibitor captopril in a rat model of hypertensive HF (aged spontaneously hypertensive rat (SHR)). SHRs and age-matched normotensive Wistar-Kyoto (WKY) rats were assigned to either no treatment, treatment with L-arginine (7.5 g/l in drinking water) or captopril (1 g/l in drinking water) beginning at 14 months of age, a time when SHRs exhibit stable compensated hypertrophy with no hemodynamic impairment; animals were studied at 23 months of age or at the time of HF. In untreated SHR, relative to WKY, there was significant LV hypertrophy, myocardial fibrosis, and isolated LV muscle performance and response to isoproterenol (ISO) were depressed; and, 7 of 10 SHRs developed HF. Captopril administration to six SHRs attenuated hypertrophy and prevented impaired inotropic responsiveness to ISO, contractile dysfunction, fibrosis, increased passive stiffness, and HF. In contrast, L-arginine administration to SHR increased LV hypertrophy and myocardial fibrosis while cardiac performance was depressed; and 7 of 9 SHRs developed HF. In WKY, L-arginine treatment but not captopril resulted in increased LV weight and the contractile response to ISO was blunted. Neither L-arginine nor captopril treatment of WKY changed fibrosis and HF did not occur. These data demonstrate that in contrast to captopril, long-term treatment with L-arginine exacerbates age-related cardiac hypertrophy, fibrosis, and did not prevent contractile dysfunction or the development of HF in aging SHR.

  15. Stress Cardiac MRI in Women With Myocardial Infarction and Nonobstructive Coronary Artery Disease.

    PubMed

    Mauricio, Rina; Srichai, Monvadi B; Axel, Leon; Hochman, Judith S; Reynolds, Harmony R

    2016-10-01

    In a prospective study, cardiac MRI (CMR) and intravascular ultrasound were performed in women with myocardial infarction (MI) and nonobstructive coronary artery disease (MINOCA). Forty participants underwent adenosine-stress CMR (sCMR). Abnormal perfusion may co-localize with ischemic late gadolinium enhancement (LGE) and T2-weighted signal hyperintensity (T2+), suggesting microvascular dysfunction contributed to MI. Qualitative perfusion analysis was performed by 2 independent readers. Abnormal myocardial perfusion reserve index (MPRI) was defined as global average ≤1.84. Abnormal rest perfusion was present in 10 patients (25%) and stress perfusion abnormalities in 25 (63%). Abnormal stress perfusion was not associated with LGE but tended to occur with T2+. Among patients with abnormal perfusion and LGE, the LGE pattern was ischemic in half. The locations of abnormal perfusion and LGE matched in 75%, T2+ in 100%. Abnormal stress perfusion was not associated with plaque disruption and matched in location in 63%. MPRI was abnormal in 10 patients (25%) and was not associated with LGE, T2+ or plaque disruption. Abnormal perfusion on sCMR is common among women with MINOCA. Abnormal perfusion usually co-localized with LGE and/or T2+ when present. Variability in LGE pattern leads to uncertainty about whether the finding of abnormal perfusion was cause or consequence of the tissue state leading to LGE. Low MPRI, possibly indicating diffuse microvascular disease, was observed with and without LGE and T2+. Multiple mechanisms may lead to abnormal perfusion on sCMR. Microvascular dysfunction may contribute to the pathogenesis of and coexist with other causes of MINOCA. © 2016 Wiley Periodicals, Inc.

  16. Rho-Kinase Inhibition During Early Cardiac Development Causes Arrhythmogenic Right Ventricular Cardiomyopathy in Mice.

    PubMed

    Ellawindy, Alia; Satoh, Kimio; Sunamura, Shinichiro; Kikuchi, Nobuhiro; Suzuki, Kota; Minami, Tatsuro; Ikeda, Shohei; Tanaka, Shinichi; Shimizu, Toru; Enkhjargal, Budbazar; Miyata, Satoshi; Taguchi, Yuhto; Handoh, Tetsuya; Kobayashi, Kenta; Kobayashi, Kazuto; Nakayama, Keiko; Miura, Masahito; Shimokawa, Hiroaki

    2015-10-01

    Arrhythmogenic right ventricular cardiomyopathy (ARVC) is characterized by fibrofatty changes of the right ventricle, ventricular arrhythmias, and sudden death. Though ARVC is currently regarded as a disease of the desmosome, desmosomal gene mutations have been identified only in half of ARVC patients, suggesting the involvement of other associated mechanisms. Rho-kinase signaling is involved in the regulation of intracellular transport and organizes cytoskeletal filaments, which supports desmosomal protein complex at the myocardial cell-cell junctions. Here, we explored whether inhibition of Rho-kinase signaling is involved in the pathogenesis of ARVC. Using 2 novel mouse models with SM22α- or αMHC-restricted overexpression of dominant-negative Rho-kinase, we show that mice with Rho-kinase inhibition in the developing heart (SM22α-restricted) spontaneously develop cardiac dilatation and dysfunction, myocardial fibrofatty changes, and ventricular arrhythmias, resulting in premature sudden death, phenotypes fulfilling the criteria of ARVC in humans. Rho-kinase inhibition in the developing heart results in the development of ARVC phenotypes in dominant-negative Rho-kinase mice through 3 mechanisms: (1) reduction of cardiac cell proliferation and ventricular wall thickness, (2) stimulation of the expression of the proadipogenic noncanonical Wnt ligand, Wnt5b, and the major adipogenic transcription factor, PPARγ (peroxisome proliferator activated receptor-γ), and inhibition of Wnt/β-catenin signaling, and (3) development of desmosomal abnormalities. These mechanisms lead to the development of cardiac dilatation and dysfunction, myocardial fibrofatty changes, and ventricular arrhythmias, ultimately resulting in sudden premature death in this ARVC mouse model. This study demonstrates a novel crucial role of Rho-kinase inhibition during cardiac development in the pathogenesis of ARVC in mice. © 2015 American Heart Association, Inc.

  17. Early changes of left ventricular filling pattern after reperfused ST-elevation myocardial infarction and doxycycline therapy: Insights from the TIPTOP trial.

    PubMed

    Cerisano, Giampaolo; Buonamici, Piergiovanni; Parodi, Guido; Santini, Alberto; Moschi, Guia; Valenti, Renato; Migliorini, Angela; Colonna, Paolo; Bellandi, Benedetta; Gori, Anna Maria; Antoniucci, David

    2017-08-01

    Metalloproteinases inhibition by doxycycline reduces cardiac protein degradation at extracellular and intracellular level in the experimental model ischemia/reperfusion injury. Since both extracellular cardiac matrix and titin filaments inside the cardiomyocyte are responsible for the myocardial stiffness, we hypothesized that doxycycline could favorably act on left ventricular (LV) filling pressures in patients after reperfused acute ST-elevation myocardial infarction (STEMI). Seventy-three of 110 patients of the TIPTOP trial underwent a 2D-Echo-Doppler on admission, and at pre-discharge and at 6-month after a primary PCI for STEMI and LV dysfunction. From admission to pre-discharge, LV filling changed from a high filling pressure (HFP) to a normal filling pressure (NFP) pattern in 91% of the doxycycline-group, and in 67% of the control-group. Conversely, 1% of the doxycycline-group, and 37% of the control-group changed the LV filling from NFP to HFP pattern. Overall, a pre-discharge HFP pattern was present in 4 patients (11%) of the doxycycline-group and in 13 patients (36%) of the control-group (p=0.025). The evaluation of metalloproteinases and their tissue inhibitors plasma concentrations provide possible favorable action of doxycycline. On the multivariate analyses, troponine I peak (p=0.026), doxycycline (p=0.033), and on admission to pre-discharge LVEF changes (p=0.044) were found to be associated with pre-discharge HFP pattern. Independently of their baseline LV filling behavior, the 6-month remodeling was less in patients with pre-discharge NFP pattern than in patients with HFP pattern. In patients with STEMI and LV dysfunction doxycycline can favorably modulate the LV filling pattern early after primary PCI. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  18. Cardiac and Noncardiac Causes of Long-Term Mortality in ST-Segment-Elevation Acute Myocardial Infarction Patients Who Underwent Primary Percutaneous Coronary Intervention.

    PubMed

    Yamashita, Yugo; Shiomi, Hiroki; Morimoto, Takeshi; Yaku, Hidenori; Furukawa, Yutaka; Nakagawa, Yoshihisa; Ando, Kenji; Kadota, Kazushige; Abe, Mitsuru; Nagao, Kazuya; Shizuta, Satoshi; Ono, Koh; Kimura, Takeshi

    2017-01-01

    In patients with ST-segment-elevation acute myocardial infarction (STEMI) who underwent primary percutaneous coronary intervention, long-term risks for cardiac and noncardiac death beyond acute phase of STEMI have not been thoroughly evaluated yet. We identified 3942 STEMI patients who had primary percutaneous coronary intervention within 24 hours after onset between January 2005 and December 2007 in the CREDO-Kyoto AMI registry (Coronary Revascularization Demonstrating Outcome study in Kyoto Acute Myocardial Infarction) and evaluated their short-term (within 6-month) and long-term (beyond 6-month) incidences and causes of deaths. The cumulative 5-year incidence of all-cause death in the current study population was 20.4% (cardiac death, 12.2% and noncardiac death, 9.4%, respectively). The vast majority of deaths were cardiac in origin within 6-month (cardiac death, 8.0% and noncardiac death, 0.9%), whereas noncardiac death accounted for nearly two thirds of all-cause death beyond 6-month (cardiac death, 4.6% and noncardiac death, 8.5%). In the stratified analysis according to age, the proportion of noncardiac death was similar regardless of age although the absolute mortality rate was higher with increasing age. By the multivariable Cox regression models, the independent risk factors of all-cause death were advanced age, cardiogenic shock, renal dysfunction, large infarct size, and anterior wall infarction within 6 months after STEMI, and advanced age, previous heart failure, renal dysfunction, and liver cirrhosis beyond 6 months after STEMI, respectively. In STEMI patients who underwent primary percutaneous coronary intervention, the long-term risk for cardiac death was relatively low compared with that for noncardiac death, which accounted for nearly two thirds of all-cause death beyond 6 months. © 2017 American Heart Association, Inc.

  19. Effects of exercise training on systo-diastolic ventricular dysfunction in patients with hypertension: an echocardiographic study with tissue velocity and strain imaging evaluation.

    PubMed

    Leggio, Massimo; Mazza, Andrea; Cruciani, Giancarlo; Sgorbini, Luca; Pugliese, Marco; Bendini, Maria Grazia; Severi, Paolo; Jesi, Anna Patrizia

    2014-07-01

    There is a lack of detailed data regarding the effect of exercise training in pharmacologically treated hypertensive patients. Therefore, the aim of this study was to evaluate the effects of exercise training on left and right ventricular morphologic and functional parameters by means of conventional echocardiography and sensitive new echocardiographic techniques including tissue Doppler velocity and strain imaging, that were performed in pharmacologically treated hypertensive patients at baseline and at the end of a specific exercise training protocol for primary prevention of cardiovascular disease. We selected 116 pharmacologically treated hypertensive patients who completed the exercise training protocol. All patients underwent a clinical history and examination; transthoracic echocardiography and exercise testing were performed at baseline and at the end of the exercise training protocol. Conventional echocardiography revealed a mild degree of diastolic dysfunction without significant differences or variations from baseline to the end of the exercise training protocol. In contrast, tissue Doppler velocity and strain imaging measurements demonstrated and highlighted the positive influence of exercise training: for both left and right ventricle myocardial early peak diastolic velocities (Em), the ratio of myocardial early-late peak diastolic velocity (Em/Am), myocardial peak systolic velocities (Sm) and peak strain and strain rate values significantly increased at the end of the exercise training protocol, suggesting a relationship between exercise capacity and both left and right ventricular systo-diastolic function. Our study, by means of newer more sensitive echocardiographic techniques, clearly demonstrated the positive impact of exercise training on both left and right ventricular systo-diastolic function, in terms of adjunctive subclinical improvement, in pharmacologically treated hypertensive patients.

  20. Left ventricular function quantified by myocardial strain imaging in small-breed dogs with chronic mitral regurgitation.

    PubMed

    Smith, Danielle N; Bonagura, John D; Culwell, Nicole M; Schober, Karsten E

    2012-03-01

    The presence of left ventricular (LV) systolic dysfunction may influence prognosis or therapy in dogs with chronic mitral regurgitation (MR). Assessment of LV function in MR by conventional echocardiography is confounded by altered ventricular loading. Myocardial deformation (strain) imaging might offer more sensitive estimates of LV function in this disease. Prospectively measure myocardial strain in dogs with asymptomatic MR compared to a control group. Forty healthy dogs (3.5-11.5 kg): 20 Controls; 20 dogs with MR and LV remodeling (Stage B2), were evaluated in this study. LV size and function were assessed in a short-axis plane. Segmental radial strain and strain rate and global circumferential strain were measured using a 2D echocardiographic speckle-tracking algorithm (GE EchoPAC). Groups were compared using Bonferroni t-tests. Influences of heart rate and body weight were explored with linear regression. The MR group had significantly greater mean values for heart rate, LV size, and LV systolic function. Specifically, LV diastolic diameter, diastole area, shortening fraction, averaged peak systolic and early diastolic radial strain, global circumferential strain, and averaged radial strain rate were significantly greater in the MR group (p < 0.015 to p < 0.001). Strain was unrelated to weight, but weakly correlated with heart rate. Similar to conventional indices, Stage B2 dogs with MR demonstrate hyperdynamic deformation in the short-axis plane. Short-axis strain variables measured by 2D speckle tracking are greater than for controls of similar age and weight. These results imply either preserved LV systolic function or that LV dysfunction is masked by altered ventricular loading. Copyright © 2012 Elsevier B.V. All rights reserved.

Top