Chapter 6: Fire damage of wood structures
B. Kukay; R.H. White; F. Woeste
2012-01-01
Depending on the severity, fire damage can compromise the structural integrity of wood structures such as buildings or residences. Fire damage of wood structures can incorporate several models that address (1) the type, cause, and spread of the fire, (2) the thermal gradients and fire-resistance ratings, and (3) the residual load capacity (Figure 6.1). If there is a...
NASA Astrophysics Data System (ADS)
Park, Hyo Seon; Oh, Byung Kwan
2018-03-01
This paper presents a new approach for the damage detection of building structures under ambient excitation based on the inherent modal characteristics. In this study, without the extraction of modal parameters widely utilized in the previous studies on damage detection, a new index called the modal participation ratio (MPR), which is a representative value of the modal response extracted from dynamic responses measured in ambient vibration tests, is proposed to evaluate the change of the system of a structure according to the reduction of the story stiffness. The relationship between the MPR, representing a modal contribution for a specific mode and degree of freedom in buildings, and the story stiffness damage factor (SSDF), representing the extent of reduction in the story stiffness, is analyzed in various damage scenarios. From the analyses with three examples, several rules for the damage localization of building structures are found based on the characteristics of the MPR variation for the first mode subject to change in the SSDF. In addition, a damage severity function, derived from the relationship between the MPR for the first mode in the lowest story and the SSDF, is constructed to identify the severity of story stiffness reduction. Furthermore, the locations and severities of multiple damages are identified via the superposition of the presented damage severity functions. The presented method was applied to detect damage in a three-dimensional reinforced concrete (RC) structure.
McCrink, T.P.; Wills, C.J.; Real, C.R.; Manson, M.W.
2010-01-01
A statistical evaluation of shaking damage to wood-framed houses caused by the 2003 M6.5 San Simeon earthquake indicates that both the rate and severity of damage, independent of structure type, are significantly greater on hilltops compared to hill slopes when underlain by Cretaceous or Tertiary sedimentary rocks. This increase in damage is interpreted to be the result of topographic amplification. An increase in the damage rate is found for all structures built on Plio-Pleistocene rocks independent of topographic position, and this is interpreted to be the result of amplified shaking caused by geologic site response. Damage rate and severity to houses built on Tertiary rocks suggest that amplification due to both topographic position and geologic site response may be occurring in these rocks, but effects from other topographic parameters cannot be ruled out. For all geologic and topographic conditions, houses with raised foundations are more frequently damaged than those with slab foundations. However, the severity of damage to houses on raised foundations is only significantly greater for those on hill slopes underlain by Tertiary rocks. Structures with some damage-resistant characteristics experienced greater damage severity on hilltops, suggesting a spectral response to topographic amplification. ?? 2010, Earthquake Engineering Research Institute.
Assessment and control of structural damage
NASA Technical Reports Server (NTRS)
Jeong, G. D.; Stubbs, N.; Yao, J. T. P.
1988-01-01
The objective of this paper is to summarize and review several investigations on the assessment and control of structural damage in civil engineering. Specifically, the definition of structural damage is discussed. A candidate method for the evaluation of damage is then reviewed and demonstrated. Various ways of implementing passive and active control of civil engineering structures are next summarized. Finally, the possibility of applying expert systems is discussed.
Xu, Kai; Deng, Qingshan; Cai, Lujun; Ho, Siuchun; Song, Gangbing
2018-04-28
Some of the most severe structural loadings come in the form of blast loads, which may be caused by severe accidents or even terrorist activities. Most commonly after exposure to explosive forces, a structure will suffer from different degrees of damage, and even progress towards a state of collapse. Therefore, damage detection of a structure subject to explosive loads is of importance. This paper proposes a new approach to damage detection of a concrete column structure subjected to blast loads using embedded piezoceramic smart aggregates (SAs). Since the sensors are embedded in the structure, the proposed active-sensing based approach is more sensitive to internal or through cracks than surface damage. In the active sensing approach, the embedded SAs act as actuators and sensors, that can respectively generate and detect stress waves. If the stress wave propagates across a crack, the energy of the wave attenuates, and the reduction of the energy compared to the healthy baseline is indicative of a damage. With a damage index matrix constructed by signals obtained from an array of SAs, cracks caused by blast loads can be detected throughout the structure. Conventional sensing methods such as the measurement of dynamic strain and acceleration were included in the experiment. Since columns are critical elements needed to prevent structural collapse, knowledge of their integrity and damage conditions is essential for safety after exposure to blast loads. In this research, a concrete column with embedded SAs was chosen as the specimen, and a series of explosive tests were conducted on the column. Experimental results reveal that surface damages, though appear severe, cause minor changes in the damage index, and through cracks result in significant increase of the damage index, demonstrating the effectiveness of the active sensing, enabled by embedded SAs, in damage monitoring of the column under blast loads, and thus providing a reliable indication of structural integrity in the event of blast loads.
Damage Detection of a Concrete Column Subject to Blast Loads Using Embedded Piezoceramic Transducers
Deng, Qingshan; Cai, Lujun; Ho, Siuchun; Song, Gangbing
2018-01-01
Some of the most severe structural loadings come in the form of blast loads, which may be caused by severe accidents or even terrorist activities. Most commonly after exposure to explosive forces, a structure will suffer from different degrees of damage, and even progress towards a state of collapse. Therefore, damage detection of a structure subject to explosive loads is of importance. This paper proposes a new approach to damage detection of a concrete column structure subjected to blast loads using embedded piezoceramic smart aggregates (SAs). Since the sensors are embedded in the structure, the proposed active-sensing based approach is more sensitive to internal or through cracks than surface damage. In the active sensing approach, the embedded SAs act as actuators and sensors, that can respectively generate and detect stress waves. If the stress wave propagates across a crack, the energy of the wave attenuates, and the reduction of the energy compared to the healthy baseline is indicative of a damage. With a damage index matrix constructed by signals obtained from an array of SAs, cracks caused by blast loads can be detected throughout the structure. Conventional sensing methods such as the measurement of dynamic strain and acceleration were included in the experiment. Since columns are critical elements needed to prevent structural collapse, knowledge of their integrity and damage conditions is essential for safety after exposure to blast loads. In this research, a concrete column with embedded SAs was chosen as the specimen, and a series of explosive tests were conducted on the column. Experimental results reveal that surface damages, though appear severe, cause minor changes in the damage index, and through cracks result in significant increase of the damage index, demonstrating the effectiveness of the active sensing, enabled by embedded SAs, in damage monitoring of the column under blast loads, and thus providing a reliable indication of structural integrity in the event of blast loads. PMID:29710807
Impacts and recovery from severe tropical cyclone Yasi on the Great Barrier Reef.
Beeden, Roger; Maynard, Jeffrey; Puotinen, Marjetta; Marshall, Paul; Dryden, Jen; Goldberg, Jeremy; Williams, Gareth
2015-01-01
Full recovery of coral reefs from tropical cyclone (TC) damage can take decades, making cyclones a major driver of habitat condition where they occur regularly. Since 1985, 44 TCs generated gale force winds (≥17 metres/second) within the Great Barrier Reef Marine Park (GBRMP). Of the hurricane strength TCs (≥H1-Saffir Simpson scale; ≥ category 3 Australian scale), TC Yasi (February, 2011) was the largest. In the weeks after TC Yasi crossed the GBRMP, participating researchers, managers and rangers assessed the extent and severity of reef damage via 841 Reef Health and Impact Surveys at 70 reefs. Records were scaled into five damage levels representing increasingly widespread colony-level damage (1, 2, 3) and reef structural damage (4, 5). Average damage severity was significantly affected by direction (north vs south of the cyclone track), reef shelf position (mid-shelf vs outer-shelf) and habitat type. More outer-shelf reefs suffered structural damage than mid-shelf reefs within 150 km of the track. Structural damage spanned a greater latitudinal range for mid-shelf reefs than outer-shelf reefs (400 vs 300 km). Structural damage was patchily distributed at all distances, but more so as distance from the track increased. Damage extended much further from the track than during other recent intense cyclones that had smaller circulation sizes. Just over 15% (3,834 km2) of the total reef area of the GBRMP is estimated to have sustained some level of coral damage, with ~4% (949 km2) sustaining a degree of structural damage. TC Yasi likely caused the greatest loss of coral cover on the GBR in a 24-hour period since 1985. Severely impacted reefs have started to recover; coral cover increased an average of 4% between 2011 and 2013 at re-surveyed reefs. The in situ assessment of impacts described here is the largest in scale ever conducted on the Great Barrier Reef following a reef health disturbance.
Impacts and Recovery from Severe Tropical Cyclone Yasi on the Great Barrier Reef
Beeden, Roger; Maynard, Jeffrey; Puotinen, Marjetta; Marshall, Paul; Dryden, Jen; Goldberg, Jeremy; Williams, Gareth
2015-01-01
Full recovery of coral reefs from tropical cyclone (TC) damage can take decades, making cyclones a major driver of habitat condition where they occur regularly. Since 1985, 44 TCs generated gale force winds (≥17 metres/second) within the Great Barrier Reef Marine Park (GBRMP). Of the hurricane strength TCs (≥H1—Saffir Simpson scale; ≥ category 3 Australian scale), TC Yasi (February, 2011) was the largest. In the weeks after TC Yasi crossed the GBRMP, participating researchers, managers and rangers assessed the extent and severity of reef damage via 841 Reef Health and Impact Surveys at 70 reefs. Records were scaled into five damage levels representing increasingly widespread colony-level damage (1, 2, 3) and reef structural damage (4, 5). Average damage severity was significantly affected by direction (north vs south of the cyclone track), reef shelf position (mid-shelf vs outer-shelf) and habitat type. More outer-shelf reefs suffered structural damage than mid-shelf reefs within 150 km of the track. Structural damage spanned a greater latitudinal range for mid-shelf reefs than outer-shelf reefs (400 vs 300 km). Structural damage was patchily distributed at all distances, but more so as distance from the track increased. Damage extended much further from the track than during other recent intense cyclones that had smaller circulation sizes. Just over 15% (3,834 km2) of the total reef area of the GBRMP is estimated to have sustained some level of coral damage, with ~4% (949 km2) sustaining a degree of structural damage. TC Yasi likely caused the greatest loss of coral cover on the GBR in a 24-hour period since 1985. Severely impacted reefs have started to recover; coral cover increased an average of 4% between 2011 and 2013 at re-surveyed reefs. The in situ assessment of impacts described here is the largest in scale ever conducted on the Great Barrier Reef following a reef health disturbance. PMID:25874718
NASA Astrophysics Data System (ADS)
Behtani, A.; Bouazzouni, A.; Khatir, S.; Tiachacht, S.; Zhou, Y.-L.; Abdel Wahab, M.
2017-05-01
In this paper, the problem of using measured modal parameters to detect and locate damage in beam composite stratified structures with four layers of graphite/epoxy [0°/902°/0°] is investigated. A technique based on the residual force method is applied to composite stratified structure with different boundary conditions, the results of damage detection for several damage cases demonstrate that using residual force method as damage index, the damage location can be identified correctly and the damage extents can be estimated as well.
Structural behavior of composites with progressive fracture
NASA Technical Reports Server (NTRS)
Minnetyan, L.; Murthy, P. L. N.; Chamis, C. C.
1989-01-01
The objective of the study is to unify several computational tools developed for the prediction of progressive damage and fracture with efforts for the prediction of the overall response of damaged composite structures. In particular, a computational finite element model for the damaged structure is developed using a computer program as a byproduct of the analysis of progressive damage and fracture. Thus, a single computational investigation can predict progressive fracture and the resulting variation in structural properties of angleplied composites.
Feasibility Investigation into Strengthening of Timber Bridge Stringers
2007-05-01
life . They exhibit several types of damage, which occurs in their structural elements such as timber stringers. The most commonly encountered damage...United States are nearing, or at the end of their service life , which means they exhibit several types of damage. This occurs mostly on structural... life of a timber bridge is approximately 30–40 years, the majority of timber bridges in the United States are nearing the end of their service life
Options for NDE Assessment of Heat and Fire Damaged Wood
Robert H. White; Brian Kukay; James P. Wacker
2013-01-01
Depending on the duration and temperature, heat can adversely affect structural properties of wood. While severe temperatures will result in damage that is visually obvious, damage to wood in terms of structural performance extends to wood that visually appears to be unaffected or only mildly affected. The loss in structural capacity includes both reductions for the...
Experimental validation of a structural damage detection method based on marginal Hilbert spectrum
NASA Astrophysics Data System (ADS)
Banerji, Srishti; Roy, Timir B.; Sabamehr, Ardalan; Bagchi, Ashutosh
2017-04-01
Structural Health Monitoring (SHM) using dynamic characteristics of structures is crucial for early damage detection. Damage detection can be performed by capturing and assessing structural responses. Instrumented structures are monitored by analyzing the responses recorded by deployed sensors in the form of signals. Signal processing is an important tool for the processing of the collected data to diagnose anomalies in structural behavior. The vibration signature of the structure varies with damage. In order to attain effective damage detection, preservation of non-linear and non-stationary features of real structural responses is important. Decomposition of the signals into Intrinsic Mode Functions (IMF) by Empirical Mode Decomposition (EMD) and application of Hilbert-Huang Transform (HHT) addresses the time-varying instantaneous properties of the structural response. The energy distribution among different vibration modes of the intact and damaged structure depicted by Marginal Hilbert Spectrum (MHS) detects location and severity of the damage. The present work investigates damage detection analytically and experimentally by employing MHS. The testing of this methodology for different damage scenarios of a frame structure resulted in its accurate damage identification. The sensitivity of Hilbert Spectral Analysis (HSA) is assessed with varying frequencies and damage locations by means of calculating Damage Indices (DI) from the Hilbert spectrum curves of the undamaged and damaged structures.
Effects of fire damage on the structural properties of steel bridge elements.
DOT National Transportation Integrated Search
2011-04-30
It is well known that fire can cause severe damage to steel bridges. There are documented cases where fire has directly led to the collapse or significant sagging of a steel bridge. However, when the damage is less severe, the effects of the fire, if...
Structural Health Monitoring in Composite Structures by Fiber-Optic Sensors.
Güemes, Alfredo; Fernández-López, Antonio; F Díaz-Maroto, Patricia; Lozano, Angel; Sierra-Perez, Julian
2018-04-04
Fiber-optic sensors cannot measure damage; to get information about damage from strain measurements, additional strategies are needed, and several alternatives are available in the existing literature. This paper discusses two independent procedures. The first is based on detecting new strains appearing around a damage spot. The structure does not need to be under loads, the technique is very robust, and damage detectability is high, but it requires sensors to be located very close to the damage, so it is a local technique. The second approach offers wider coverage of the structure; it is based on identifying the changes caused by damage on the strain field in the whole structure for similar external loads. Damage location does not need to be known a priori, and detectability is dependent upon the sensor's network density, the damage size, and the external loads. Examples of application to real structures are given.
Structural Health Monitoring in Composite Structures by Fiber-Optic Sensors †
Güemes, Alfredo; Díaz-Maroto, Patricia F.; Lozano, Angel; Sierra-Perez, Julian
2018-01-01
Fiber-optic sensors cannot measure damage; to get information about damage from strain measurements, additional strategies are needed, and several alternatives are available in the existing literature. This paper discusses two independent procedures. The first is based on detecting new strains appearing around a damage spot. The structure does not need to be under loads, the technique is very robust, and damage detectability is high, but it requires sensors to be located very close to the damage, so it is a local technique. The second approach offers wider coverage of the structure; it is based on identifying the changes caused by damage on the strain field in the whole structure for similar external loads. Damage location does not need to be known a priori, and detectability is dependent upon the sensor’s network density, the damage size, and the external loads. Examples of application to real structures are given. PMID:29617345
Yang, Yaowen; Divsholi, Bahador Sabet
2010-01-01
The electromechanical (EM) impedance technique using piezoelectric lead zirconate titanate (PZT) transducers for structural health monitoring (SHM) has attracted considerable attention in various engineering fields. In the conventional EM impedance technique, the EM admittance of a PZT transducer is used as a damage indicator. Statistical analysis methods such as root mean square deviation (RMSD) have been employed to associate the damage level with the changes in the EM admittance signatures, but it is difficult to determine the location of damage using such methods. This paper proposes a new approach by dividing the large frequency (30–400 kHz) range into sub-frequency intervals and calculating their respective RMSD values. The RMSD of the sub-frequency intervals (RMSD-S) will be used to study the severity and location of damage. An experiment is carried out on a real size concrete structure subjected to artificial damage. It is observed that damage close to the PZT changes the high frequency range RMSD-S significantly, while the damage far away from the PZT changes the RMSD-S in the low frequency range significantly. The relationship between the frequency range and the PZT sensing region is also presented. Finally, a damage identification scheme is proposed to estimate the location and severity of damage in concrete structures. PMID:22163548
Multi-level damage identification with response reconstruction
NASA Astrophysics Data System (ADS)
Zhang, Chao-Dong; Xu, You-Lin
2017-10-01
Damage identification through finite element (FE) model updating usually forms an inverse problem. Solving the inverse identification problem for complex civil structures is very challenging since the dimension of potential damage parameters in a complex civil structure is often very large. Aside from enormous computation efforts needed in iterative updating, the ill-condition and non-global identifiability features of the inverse problem probably hinder the realization of model updating based damage identification for large civil structures. Following a divide-and-conquer strategy, a multi-level damage identification method is proposed in this paper. The entire structure is decomposed into several manageable substructures and each substructure is further condensed as a macro element using the component mode synthesis (CMS) technique. The damage identification is performed at two levels: the first is at macro element level to locate the potentially damaged region and the second is over the suspicious substructures to further locate as well as quantify the damage severity. In each level's identification, the damage searching space over which model updating is performed is notably narrowed down, not only reducing the computation amount but also increasing the damage identifiability. Besides, the Kalman filter-based response reconstruction is performed at the second level to reconstruct the response of the suspicious substructure for exact damage quantification. Numerical studies and laboratory tests are both conducted on a simply supported overhanging steel beam for conceptual verification. The results demonstrate that the proposed multi-level damage identification via response reconstruction does improve the identification accuracy of damage localization and quantization considerably.
NASA Astrophysics Data System (ADS)
Sanders, B. F.; Gallegos, H. A.; Schubert, J. E.
2011-12-01
The Baldwin Hills dam-break flood and associated structural damage is investigated in this study. The flood caused high velocity flows exceeding 5 m/s which destroyed 41 wood-framed residential structures, 16 of which were completed washed out. Damage is predicted by coupling a calibrated hydrodynamic flood model based on the shallow-water equations to structural damage models. The hydrodynamic and damage models are two-way coupled so building failure is predicted upon exceedance of a hydraulic intensity parameter, which in turn triggers a localized reduction in flow resistance which affects flood intensity predictions. Several established damage models and damage correlations reported in the literature are tested to evaluate the predictive skill for two damage states defined by destruction (Level 2) and washout (Level 3). Results show that high-velocity structural damage can be predicted with a remarkable level of skill using established damage models, but only with two-way coupling of the hydrodynamic and damage models. In contrast, when structural failure predictions have no influence on flow predictions, there is a significant reduction in predictive skill. Force-based damage models compare well with a subset of the damage models which were devised for similar types of structures. Implications for emergency planning and preparedness as well as monetary damage estimation are discussed.
NASA Astrophysics Data System (ADS)
Omenzetter, Piotr; de Lautour, Oliver R.
2010-04-01
Developed for studying long, periodic records of various measured quantities, time series analysis methods are inherently suited and offer interesting possibilities for Structural Health Monitoring (SHM) applications. However, their use in SHM can still be regarded as an emerging application and deserves more studies. In this research, Autoregressive (AR) models were used to fit experimental acceleration time histories from two experimental structural systems, a 3- storey bookshelf-type laboratory structure and the ASCE Phase II SHM Benchmark Structure, in healthy and several damaged states. The coefficients of the AR models were chosen as damage sensitive features. Preliminary visual inspection of the large, multidimensional sets of AR coefficients to check the presence of clusters corresponding to different damage severities was achieved using Sammon mapping - an efficient nonlinear data compression technique. Systematic classification of damage into states based on the analysis of the AR coefficients was achieved using two supervised classification techniques: Nearest Neighbor Classification (NNC) and Learning Vector Quantization (LVQ), and one unsupervised technique: Self-organizing Maps (SOM). This paper discusses the performance of AR coefficients as damage sensitive features and compares the efficiency of the three classification techniques using experimental data.
MDC1: The art of keeping things in focus.
Jungmichel, Stephanie; Stucki, Manuel
2010-08-01
The chromatin structure is important for recognition and repair of DNA damage. Many DNA damage response proteins accumulate in large chromatin domains flanking sites of DNA double-strand breaks. The assembly of these structures-usually termed DNA damage foci-is primarily regulated by MDC1, a large nuclear mediator/adaptor protein that is composed of several distinct structural and functional domains. Here, we are summarizing the latest discoveries about the mechanisms by which MDC1 mediates DNA damage foci formation, and we are reviewing the considerable efforts taken to understand the functional implication of these structures.
Acoustic impact testing and waveform analysis for damage detection in glued laminated timber
Feng Xu; Xiping Wang; Marko Teder; Yunfei Liu
2017-01-01
Delamination and decay are common structural defects in old glued laminated timber (glulam) buildings, which, if left undetected, could cause severe structural damage. This paper presents a new damage detection method for glulam inspection based on moment analysis and wavelet transform (WT) of impact acoustic signals. Acoustic signals were collected from a glulam arch...
Behavior of Frame-Stiffened Composite Panels with Damage
NASA Technical Reports Server (NTRS)
Jegley, Dawn C.
2013-01-01
NASA, the Air Force Research Laboratory and The Boeing Company have worked to develop new low-cost, light-weight composite structures for aircraft. A Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept has been developed which offers advantages over traditional metallic structures. In this concept, a stitched carbon-epoxy material system has been developed with the potential for reducing the weight and cost of transport aircraft structure by eliminating fasteners, thereby reducing part count and labor. Stitching and the use of thin skins with rod-stiffeners to move loading away from the morevulnerable outer surface produces a structurally efficient, damage tolerant design. This study focuses on the behavior of PRSEUS panels loaded in the frame direction and subjected to severe damage in the form of a severed central frame in a three-frame panel. Experimental results for a pristine two-frame panel and analytical predictions for pristine two-frame and three-frame panels as well as damaged three-frame panels are described.
Structural Health Monitoring of Large Structures
NASA Technical Reports Server (NTRS)
Kim, Hyoung M.; Bartkowicz, Theodore J.; Smith, Suzanne Weaver; Zimmerman, David C.
1994-01-01
This paper describes a damage detection and health monitoring method that was developed for large space structures using on-orbit modal identification. After evaluating several existing model refinement and model reduction/expansion techniques, a new approach was developed to identify the location and extent of structural damage with a limited number of measurements. A general area of structural damage is first identified and, subsequently, a specific damaged structural component is located. This approach takes advantage of two different model refinement methods (optimal-update and design sensitivity) and two different model size matching methods (model reduction and eigenvector expansion). Performance of the proposed damage detection approach was demonstrated with test data from two different laboratory truss structures. This space technology can also be applied to structural inspection of aircraft, offshore platforms, oil tankers, ridges, and buildings. In addition, its applications to model refinement will improve the design of structural systems such as automobiles and electronic packaging.
Structural Integrity Evaluation of the Lear Fan 2100 Aircraft
NASA Technical Reports Server (NTRS)
Kan, H. P.; Dyer, T. A.
1996-01-01
An in-situ nondestructive inspection was conducted to detect manufacturing and assembly induced defects in the upper two wing surfaces (skin s) and upper fuselage skin of the Lear Fan 2100 aircraft E009. The effects of the defects, detected during the inspection, on the integrity of the structure was analytically evaluated. A systematic evaluation was also conducted to determine the damage tolerance capability of the upper wing skin against impact threats and assembly induced damage. The upper wing skin was divided into small regions for damage tolerance evaluations. Structural reliability, margin of safety, allowable strains, and allowable damage size were computed. The results indicated that the impact damage threat imposed on composite military aircraft structures is too severe for the Lear Fan 2100 upper wing skin. However, the structural integrity is not significantly degraded by the assembly induced damage for properly assembled structures, such as the E009 aircraft.
NASA Technical Reports Server (NTRS)
Nettles, A. T.
2011-01-01
In this study, a direct comparison of the compression-after-impact (CAI) strength of impact-damaged, hat-stiffened and honeycomb sandwich structure for launch vehicle use was made. The specimens used consisted of small substructure designed to carry a line load of approx..3,000 lb/in. Damage was inflicted upon the specimens via drop weight impact. Infrared thermography was used to examine the extent of planar damage in the specimens. The specimens were prepared for compression testing to obtain residual compression strength versus damage severity curves. Results show that when weight of the structure is factored in, both types of structure had about the same CAI strength for a given damage level. The main difference was that the hat-stiffened specimens exhibited a multiphase failure whereas the honeycomb sandwich structure failed catastrophically.
Full-scale testing and progressive damage modeling of sandwich composite aircraft fuselage structure
NASA Astrophysics Data System (ADS)
Leone, Frank A., Jr.
A comprehensive experimental and computational investigation was conducted to characterize the fracture behavior and structural response of large sandwich composite aircraft fuselage panels containing artificial damage in the form of holes and notches. Full-scale tests were conducted where panels were subjected to quasi-static combined pressure, hoop, and axial loading up to failure. The panels were constructed using plain-weave carbon/epoxy prepreg face sheets and a Nomex honeycomb core. Panel deformation and notch tip damage development were monitored during the tests using several techniques, including optical observations, strain gages, digital image correlation (DIC), acoustic emission (AE), and frequency response (FR). Additional pretest and posttest inspections were performed via thermography, computer-aided tap tests, ultrasound, x-radiography, and scanning electron microscopy. The framework to simulate damage progression and to predict residual strength through use of the finite element (FE) method was developed. The DIC provided local and full-field strain fields corresponding to changes in the state-of-damage and identified the strain components driving damage progression. AE was monitored during loading of all panels and data analysis methodologies were developed to enable real-time determination of damage initiation, progression, and severity in large composite structures. The FR technique has been developed, evaluating its potential as a real-time nondestructive inspection technique applicable to large composite structures. Due to the large disparity in scale between the fuselage panels and the artificial damage, a global/local analysis was performed. The global FE models fully represented the specific geometries, composite lay-ups, and loading mechanisms of the full-scale tests. A progressive damage model was implemented in the local FE models, allowing the gradual failure of elements in the vicinity of the artificial damage. A set of modifications to the definitions of the local FE model boundary conditions is proposed and developed to address several issues related to the scalability of progressive damage modeling concepts, especially in regards to full-scale fuselage structures. Notable improvements were observed in the ability of the FE models to predict the strength of damaged composite fuselage structures. Excellent agreement has been established between the FE model predictions and the experimental results recorded by DIC, AE, FR, and visual observations.
Damage detection on sudden stiffness reduction based on discrete wavelet transform.
Chen, Bo; Chen, Zhi-wei; Wang, Gan-jun; Xie, Wei-ping
2014-01-01
The sudden stiffness reduction in a structure may cause the signal discontinuity in the acceleration responses close to the damage location at the damage time instant. To this end, the damage detection on sudden stiffness reduction of building structures has been actively investigated in this study. The signal discontinuity of the structural acceleration responses of an example building is extracted based on the discrete wavelet transform. It is proved that the variation of the first level detail coefficients of the wavelet transform at damage instant is linearly proportional to the magnitude of the stiffness reduction. A new damage index is proposed and implemented to detect the damage time instant, location, and severity of a structure due to a sudden change of structural stiffness. Numerical simulation using a five-story shear building under different types of excitation is carried out to assess the effectiveness and reliability of the proposed damage index for the building at different damage levels. The sensitivity of the damage index to the intensity and frequency range of measurement noise is also investigated. The made observations demonstrate that the proposed damage index can accurately identify the sudden damage events if the noise intensity is limited.
Field investigation on severely damaged aseismic buildings in 2014 Ludian earthquake
NASA Astrophysics Data System (ADS)
Lin, Xuchuan; Zhang, Haoyu; Chen, Hongfu; Chen, Hao; Lin, Junqi
2015-03-01
The 2014 magnitude 6.5 Ludian earthquake caused a death toll of 617, many landslides and tens of thousands of collapsed buildings. A field investigation to evaluate the damage to buildings was carried out immediately after the occurrence of the earthquake. Severely damaged aseismic buildings, which were basically observed in the downtown of Longtoushan Town, were carefully examined one by one with the aim to improve design codes. This paper summarizes the damage observed to the investigated aseismic buildings in both the structural and local levels. A common failure mode was observed that most of the aseismic buildings, such as RC frame structures and confined masonry structures, were similarly destroyed by severe damage or complete collapse of the first story. The related strong ground motion, which was recorded at the nearby station, had a short duration of less than 20 s but a very large PGA up to 1.0 g. The RC frames based on the new design codes still failed to achieve the design target for "strong column, weak beam". Typical local failure details, which were related to the interaction between RC columns and infill walls and between constructional columns and masonry walls, are summarized with preliminary analyses.
Curvature methods of damage detection using digital image correlation
NASA Astrophysics Data System (ADS)
Helfrick, Mark N.; Niezrecki, Christopher; Avitabile, Peter
2009-03-01
Analytical models have shown that local damage in a structure can be detected by studying changes in the curvature of the structure's displaced shape while under an applied load. In order for damage to be detected, located, and quantified using curvature methods, a spatially dense set of measurement points is required on the structure of interest and the change in curvature must be measurable. Experimental testing done to validate the theory is often plagued by sparse data sets and experimental noise. Furthermore, the type of load, the location and severity of the damage, and the mechanical properties (material and geometry) of the structure have a significant effect on how much the curvature will change. Within this paper, three-dimensional (3D) Digital Image Correlation (DIC) as one possible method for detecting damage through curvature methods is investigated. 3D DIC is a non-contacting full-field measurement technique which uses a stereo pair of digital cameras to capture surface shape. This approach allows for an extremely dense data set across the entire visible surface of an object. A test is performed to validate the approach on an aluminum cantilever beam. A dynamic load is applied to the beam which allows for measurements to be made of the beam's response at each of its first three resonant frequencies, corresponding to the first three bending modes of the structure. DIC measurements are used with damage detection algorithms to predict damage location with varying levels of damage inflicted in the form of a crack with a prescribed depth. The testing demonstrated that this technique will likely only work with structures where a large displaced shape is easily achieved and in cases where the damage is relatively severe. Practical applications and limitations of the technique are discussed.
Damage identification via asymmetric active magnetic bearing acceleration feedback control
NASA Astrophysics Data System (ADS)
Zhao, Jie; DeSmidt, Hans; Yao, Wei
2015-04-01
A Floquet-based damage detection methodology for cracked rotor systems is developed and demonstrated on a shaft-disk system. This approach utilizes measured changes in the system natural frequencies to estimate the severity and location of shaft structural cracks during operation. The damage detection algorithms are developed with the initial guess solved by least square method and iterative damage parameter vector by updating the eigenvector updating. Active Magnetic Bearing is introduced to break the symmetric structure of rotor system and the tuning range of proper stiffness/virtual mass gains is studied. The system model is built based on energy method and the equations of motion are derived by applying assumed modes method and Lagrange Principle. In addition, the crack model is based on the Strain Energy Release Rate (SERR) concept in fracture mechanics. Finally, the method is synthesized via harmonic balance and numerical examples for a shaft/disk system demonstrate the effectiveness in detecting both location and severity of the structural damage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ingham, Jeremy P., E-mail: inghamjp@halcrow.com
The number of building fires has doubled over the last 50 years. There has never been a greater need for structures to be assessed for fire damage to ensure safety and enable appropriate repairs to be planned. Fortunately, even after a severe fire, concrete and masonry structures are generally capable of being repaired rather than demolished. By allowing direct examination of microcracking and mineralogical changes, petrographic examination has become widely used to determine the depth of fire damage for reinforced concrete elements. Petrographic examination can also be applied to fire-damaged masonry structures built of materials such as stone, brick andmore » mortar. Petrography can ensure accurate detection of damaged geomaterials, which provides cost savings during building repair and increased safety reassurance. This paper comprises a review of the role of petrography in fire damage assessments, drawing on a range of actual fire damage investigations.« less
Vibration-response due to thickness loss on steel plate excited by resonance frequency
NASA Astrophysics Data System (ADS)
Kudus, S. A.; Suzuki, Y.; Matsumura, M.; Sugiura, K.
2018-04-01
The degradation of steel structure due to corrosion is a common problem found especially in the marine structure due to exposure to the harsh marine environment. In order to ensure safety and reliability of marine structure, the damage assessment is an indispensable prerequisite for plan of remedial action on damaged structure. The main goal of this paper is to discuss simple vibration measurement on plated structure to give image on overview condition of the monitored structure. The changes of vibration response when damage was introduced in the plate structure were investigated. The damage on plate was simulated in finite element method as loss of thickness section. The size of damage and depth of loss of thickness were varied for different damage cases. The plate was excited with lower order of resonance frequency in accordance estimate the average remaining thickness based on displacement response obtain in the dynamic analysis. Significant reduction of natural frequency and increasing amplitude of vibration can be observed in the presence of severe damage. The vibration analysis summarized in this study can serve as benchmark and reference for researcher and design engineer.
Design for inadvertent damage in composite laminates
NASA Technical Reports Server (NTRS)
Singhal, Surendra N.; Chamis, Christos C.
1992-01-01
Simplified predictive methods and models to computationally simulate durability and damage in polymer matrix composite materials/structures are described. The models include (1) progressive fracture, (2) progressively damaged structural behavior, (3) progressive fracture in aggressive environments, (4) stress concentrations, and (5) impact resistance. Several examples are included to illustrate applications of the models and to identify significant parameters and sensitivities. Comparisons with limited experimental data are made.
Structural Vulnerability of the Boeing B-29 Aircraft Wing to Damage by Warhead Fragments
NASA Technical Reports Server (NTRS)
Kordes, Eldon E.; OSullivan, William J., Jr.
1952-01-01
An elementary type of analysis has been used to determine the amount of wing tip that must be severed to produce irrevocable loss of control of a B-29 airplane. The remaining inboard structure of the Boeing B-29 wing has then been analyzed and curves are presented for the estimated reduction in structural strength due to four general types of damage produced by rod-type warhead fragments. The curves indicate the extent of structural damage required to produce a kill of the aircraft within 10 seconds.
Kim, Hee Kyung; Shiraj, Sahar; Kang, Chang Ho; Anton, Christopher; Kim, Dong Hoon; Horn, Paul S
2016-06-01
The purpose of this study was to compare MRI findings between groups with and without patellofemoral instability and to correlate the MRI findings with the severity of patellar cartilage damage. Fifty-three children with patellofemoral instability and 53 age- and sex-matched children without patellofemoral instability (15.9 ± 2.4 years) were included. Knee MRI with T2-weighted mapping was performed. On MR images, femoral trochlear dysplasia, patellofemoral malalignment, medial retinaculum injury, and bone marrow edema were documented. The degree of patellar cartilage damage was evaluated on MR images by use of a morphologic grading scale (0-4) and on T2 maps with mean T2 values at the medial, central, and lateral facets. MRI findings were compared between the two groups. In cases of patellofemoral instability, MRI findings were correlated with the severity of cartilage damage at each region. Trochlear structure and alignment were significantly different between the two groups (Wilcoxon p < 0.0001). In patellofemoral instability, a high-riding patella was associated with central patellar cartilage damage with a higher morphologic grade and T2 value (Spearman p < 0.05). The severity of medial retinacular injury and presence of bone marrow edema at either the medial patella or the lateral femoral condyle were associated with a higher grade of medial patellar cartilage damage (Wilcoxon p < 0.05). None of the other findings correlated with the severity of patellar cartilage damage. Patients with patellofemoral instability have significantly different trochlear structure and alignment than those who do not, and these differences are known risk factors for patellofemoral instability. However, the only risk factors or injury patterns that directly correlated with the severity of patellar cartilage damage were patella alta, medial stabilizer injury, and bone marrow edema.
NASA Astrophysics Data System (ADS)
Leone, Frank A., Jr.; Ozevin, Didem; Mosinyi, Bao; Bakuckas, John G., Jr.; Awerbuch, Jonathan; Lau, Alan; Tan, Tein-Min
2008-03-01
Preliminary tests were conducted using frequency response (FR) characteristics to determine damage initiation and growth in a honeycomb sandwich graphite/epoxy curved panel. This investigation was part of a more general study investigating the damage tolerance characteristics of several such panels subjected to quasi-static internal pressurization combined with hoop and axial loading. The panels were tested at the Full-Scale Aircraft Structural Test Evaluation and Research (FASTER) facility located at the Federal Aviation Administration William J. Hughes Technical Center in Atlantic City, NJ. The overall program objective was to investigate the damage tolerance characteristics of full-scale composite curved aircraft fuselage panels and the evolution of damage under quasi-static loading up to failure. This paper focuses on one aspect of this comprehensive investigation: the effect of state-of-damage on the characteristics of the frequency response of the subject material. The results presented herein show that recording the frequency response could be used for real-time monitoring of damage growth and in determining damage severity in full-scale composites fuselage aircraft structures.
REDARS 2 demonstration project for seismic risk analysis of highway systems.
DOT National Transportation Integrated Search
2006-06-01
Effects of earthquake damage to highway components such as bridges and roadways can go well beyond life-safety risks and costs to repair damaged structures. Such damage can also severely disrupt traffic flows that can : impact the regions economy ...
NASA Astrophysics Data System (ADS)
Turnbull, Heather; Omenzetter, Piotr
2017-04-01
The recent shift towards development of clean, sustainable energy sources has provided a new challenge in terms of structural safety and reliability: with aging, manufacturing defects, harsh environmental and operational conditions, and extreme events such as lightning strikes wind turbines can become damaged resulting in production losses and environmental degradation. To monitor the current structural state of the turbine, structural health monitoring (SHM) techniques would be beneficial. Physics based SHM in the form of calibration of a finite element model (FEMs) by inverse techniques is adopted in this research. Fuzzy finite element model updating (FFEMU) techniques for damage severity assessment of a small-scale wind turbine blade are discussed and implemented. The main advantage is the ability of FFEMU to account in a simple way for uncertainty within the problem of model updating. Uncertainty quantification techniques, such as fuzzy sets, enable a convenient mathematical representation of the various uncertainties. Experimental frequencies obtained from modal analysis on a small-scale wind turbine blade were described by fuzzy numbers to model measurement uncertainty. During this investigation, damage severity estimation was investigated through addition of small masses of varying magnitude to the trailing edge of the structure. This structural modification, intended to be in lieu of damage, enabled non-destructive experimental simulation of structural change. A numerical model was constructed with multiple variable additional masses simulated upon the blades trailing edge and used as updating parameters. Objective functions for updating were constructed and minimized using both particle swarm optimization algorithm and firefly algorithm. FFEMU was able to obtain a prediction of baseline material properties of the blade whilst also successfully predicting, with sufficient accuracy, a larger magnitude of structural alteration and its location.
NASA Astrophysics Data System (ADS)
Hsieh, S. Y.; Neubauer, F.; Genser, J.
2012-04-01
The aim of this project is to study the surface expression of strike-slip faults with main aim to find rules how these structures can be extrapolated to depth. In the first step, several basic properties of the fault architecture are in focus: (1) Is it possible to define the fault architecture by studying surface structures of the damage zone vs. the fault core, particularly the width of the damage zone? (2) Which second order structures define the damage zone of strike-slip faults, and how relate these to such reported in basement fault strike-slip analog experiments? (3) Beside classical fault bend structures, is there a systematic along-strike variation of the damage zone width and to which properties relates the variation of the damage zone width. We study the above mentioned properties on the dextral Altyn fault, which is one of the largest strike-slip on Earth with the advantage to have developed in a fully arid climate. The Altyn fault includes a ca. 250 to 600 m wide fault valley, usually with the trace of actual fault in its center. The fault valley is confined by basement highs, from which alluvial fans develop towards the center of the fault valley. The active fault trace is marked by small scale pressure ridges and offset of alluvial fans. The fault valley confining basement highs are several kilometer long and ca. 0.5 to 1 km wide and confined by rotated dextral anti-Riedel faults and internally structured by a regular fracture pattern. Dextral anti-Riedel faults are often cut by Riedel faults. Consequently, the Altyn fault comprises a several km wide damage zone. The fault core zone is a barrier to fluid flow, and the few springs of the region are located on the margin of the fault valley implying the fractured basement highs as the reservoir. Consequently, the southern Silk Road was using the Altyn fault valley. The preliminary data show that two or more orders of structures exist. Small-scale develop during a single earthquake. These finally accumulate to a several 100 m wide fault core, which is in part exposed at surface to arid climate and a km wide damage zone. The basic structures of analog experiments can be well transferred to nature, although along strike changes are common due to fault bending and fracture failure of country rocks.
NASA Astrophysics Data System (ADS)
Marco, Shmuel
2008-06-01
Archaeological structures that exhibit seismogenic damage expand our knowledge of temporal and spatial distribution of earthquakes, afford independent examination of historical accounts, provide information on local earthquake intensities and enable the delineation of macroseismic zones. They also illustrate what might happen in future earthquakes. In order to recover this information, we should be able to distinguish earthquake damage from anthropogenic damage and from other natural processes of wear and tear. The present paper reviews several types of damage that can be attributed with high certainty to earthquakes and discusses associated caveats. In the rare cases, where faults intersect with archaeological sites, offset structures enable precise determination of sense and size of slip, and constrain its time. Among the characteristic off-fault damage types, I consider horizontal shifting of large building blocks, downward sliding of one or several blocks from masonry arches, collapse of heavy, stably-built walls, chipping of corners of building blocks, and aligned falling of walls and columns. Other damage features are less conclusive and require additional evidence, e.g., fractures that cut across several structures, leaning walls and columns, warps and bulges in walls. Circumstantial evidence for catastrophic earthquake-related destruction includes contemporaneous damage in many sites in the same area, absence of weapons or other anthropogenic damage, stratigraphic data on collapse of walls and ceilings onto floors and other living horizons and burial of valuable artifacts, as well as associated geological palaeoseismic phenomena such as liquefaction, land- and rock-slides, and fault ruptures. Additional support may be found in reliable historical accounts. Special care must be taken in order to avoid circular reasoning by maintaining the independence of data acquisition methods.
Concepts for improving the damage tolerance of composite compression panels. [aircraft structures
NASA Technical Reports Server (NTRS)
Rhodes, M. D.; Williams, J. G.
1984-01-01
The residual strength of specimens with damage and the sensitivity to damage while subjected to an applied inplane compression load were determined for flatplate specimens and blade-stiffened panels. The results suggest that matrix materials that fail by delamination have the lowest damage tolerance capability. Alternate matrix materials or laminates which are transversely reinforced suppress the delamination mode of failure and change the failure mode to transverse shear crippling which occurs at a higher strain value. Several damage-tolerant blade-stiffened panel design concepts are evaluated. Structural efficiency studies conducted show only small mass penalties may result from incorporating these damage-tolerant features in panel design. The implication of test results on the design of aircraft structures was examined with respect to FAR requirements.
Detection of multiple damages employing best achievable eigenvectors under Bayesian inference
NASA Astrophysics Data System (ADS)
Prajapat, Kanta; Ray-Chaudhuri, Samit
2018-05-01
A novel approach is presented in this work to localize simultaneously multiple damaged elements in a structure along with the estimation of damage severity for each of the damaged elements. For detection of damaged elements, a best achievable eigenvector based formulation has been derived. To deal with noisy data, Bayesian inference is employed in the formulation wherein the likelihood of the Bayesian algorithm is formed on the basis of errors between the best achievable eigenvectors and the measured modes. In this approach, the most probable damage locations are evaluated under Bayesian inference by generating combinations of various possible damaged elements. Once damage locations are identified, damage severities are estimated using a Bayesian inference Markov chain Monte Carlo simulation. The efficiency of the proposed approach has been demonstrated by carrying out a numerical study involving a 12-story shear building. It has been found from this study that damage scenarios involving as low as 10% loss of stiffness in multiple elements are accurately determined (localized and severities quantified) even when 2% noise contaminated modal data are utilized. Further, this study introduces a term parameter impact (evaluated based on sensitivity of modal parameters towards structural parameters) to decide the suitability of selecting a particular mode, if some idea about the damaged elements are available. It has been demonstrated here that the accuracy and efficiency of the Bayesian quantification algorithm increases if damage localization is carried out a-priori. An experimental study involving a laboratory scale shear building and different stiffness modification scenarios shows that the proposed approach is efficient enough to localize the stories with stiffness modification.
NASA Astrophysics Data System (ADS)
Yun, Jinsik; Ha, Dong Sam; Inman, Daniel J.; Owen, Robert B.
2011-03-01
Structural damage for spacecraft is mainly due to impacts such as collision of meteorites or space debris. We present a structural health monitoring (SHM) system for space applications, named Adverse Event Detection (AED), which integrates an acoustic sensor, an impedance-based SHM system, and a Lamb wave SHM system. With these three health-monitoring methods in place, we can determine the presence, location, and severity of damage. An acoustic sensor continuously monitors acoustic events, while the impedance-based and Lamb wave SHM systems are in sleep mode. If an acoustic sensor detects an impact, it activates the impedance-based SHM. The impedance-based system determines if the impact incurred damage. When damage is detected, it activates the Lamb wave SHM system to determine the severity and location of the damage. Further, since an acoustic sensor dissipates much less power than the two SHM systems and the two systems are activated only when there is an acoustic event, our system reduces overall power dissipation significantly. Our prototype system demonstrates the feasibility of the proposed concept.
Modelling and Holographic Visualization of Space Radiation-Induced DNA Damage
NASA Technical Reports Server (NTRS)
Plante, Ianik
2017-01-01
Space radiation is composed by a mixture of ions of different energies. Among these, heavy inos are of particular importance because their health effects are poorly understood. In. the recent years, a software named RITRACKS (Relativistic Ion Tracks) was developed to simulate the detailed radiation track structure, several DNA models and DNA damage. As the DNA structure is complex due to packing, it is difficult to the damage using a regular computer screen.
Grant T. Kirker; Samuel L. Zelinka; Leandro Passarini
2016-01-01
Salt damage is a frequent problem in wood exposed to seawater and other saline environments. Symptoms of salt damage are often referred to as fuzzy wood and have been historically considered non-structural damage, but a growing number of customer inquiries have prompted a re-evaluation of this phenomenon. This paper details several case studies involving salt damage,...
Structural damage identification using an enhanced thermal exchange optimization algorithm
NASA Astrophysics Data System (ADS)
Kaveh, A.; Dadras, A.
2018-03-01
The recently developed optimization algorithm-the so-called thermal exchange optimization (TEO) algorithm-is enhanced and applied to a damage detection problem. An offline parameter tuning approach is utilized to set the internal parameters of the TEO, resulting in the enhanced heat transfer optimization (ETEO) algorithm. The damage detection problem is defined as an inverse problem, and ETEO is applied to a wide range of structures. Several scenarios with noise and noise-free modal data are tested and the locations and extents of damages are identified with good accuracy.
NASA Astrophysics Data System (ADS)
Hoell, Simon; Omenzetter, Piotr
2016-04-01
Fueled by increasing demand for carbon neutral energy, erections of ever larger wind turbines (WTs), with WT blades (WTBs) with higher flexibilities and lower buckling capacities lead to increasing operation and maintenance costs. This can be counteracted with efficient structural health monitoring (SHM), which allows scheduling maintenance actions according to the structural state and preventing dramatic failures. The present study proposes a novel multi-step approach for vibration-based structural damage localization and severity estimation for application in operating WTs. First, partial autocorrelation coefficients (PACCs) are estimated from vibrational responses. Second, principal component analysis is applied to PACCs from the healthy structure in order to calculate scores. Then, the scores are ranked with respect to their ability to differentiate different damage scenarios. This ranking information is used for constructing hierarchical adaptive neuro-fuzzy inference systems (HANFISs), where cross-validation is used to identify optimal numbers of hierarchy levels. Different HANFISs are created for the purposes of structural damage localization and severity estimation. For demonstrating the applicability of the approach, experimental data are superimposed with signals from numerical simulations to account for characteristics of operational noise. For the physical experiments, a small scale WTB is excited with a domestic fan and damage scenarios are introduced non-destructively by attaching small masses. Numerical simulations are also performed for a representative fully functional small WT operating in turbulent wind. The obtained results are promising for future applications of vibration-based SHM to facilitate improved safety and reliability of WTs at lower costs.
Damage Detection Sensor System for Aerospace and Multiple Applications
NASA Technical Reports Server (NTRS)
Williams, M.; Lewis, M.; Gibson, T.; Medelius, P.; Lane, J.
2017-01-01
The damage detection sensory system is an intelligent damage detection ‘skin’ that can be embedded into rigid or flexible structures, providing a lightweight capability for in-situ health monitoring for applications such as spacecraft, expandable or inflatable structures, extravehicular activities (EVA) suits, smart wearables, and other applications where diagnostic impact damage monitoring might be critical. The sensor systems can be customized for detecting location, damage size, and depth, with velocity options and can be designed for particular environments for monitoring of impact or physical damage to a structure. The operation of the sensor detection system is currently based on the use of parallel conductive traces placed on a firm or flexible surface. Several detection layers can be implemented, where alternate layers are arranged in orthogonal direction with respect to the adjacent layers allowing for location and depth calculations. Increased flexibility of the damage detection sensor system designs will also be introduced.
2011-09-01
isolated AO mode first arrival, recorded at PZT 2, is shown at 3 different fatigue levels. Figure 5. The area under the PSD curve, calculated twice...Structural Damage Identification in Stiffened Plate Fatigue Specimens Using Piezoelectric Active Sensing B. L. GRISSO, G. PARK, L. W. SALVINO...with several challenges including limited performance knowledge of the materials, aluminum sensitization, structural fatigue performance, and
NASA Technical Reports Server (NTRS)
Ricles, James M.
1991-01-01
Spacecraft are susceptible to structural damage over their operating life from impact, environmental loads, and fatigue. Structural damage that is not detected and not corrected may potentially cause more damage and eventually catastrophic structural failure. NASA's current fleet of reusable spacecraft, namely the Space Shuttle, has been flown on several missions. In addition, configurations of future NASA space structures, e.g. Space Station Freedom, are larger and more complex than current structures, making them more susceptible to damage as well as being more difficult to inspect. Consequently, a reliable structural damage detection capability is essential to maintain the flight safety of these structures. Visual inspections alone can not locate impending material failure (fatigue cracks, yielding); it can only observe post-failure situations. An alternative approach is to develop an inspection and monitoring system based on vibration characterization that assesses the integrity of structural and mechanical components. A methodology for detecting structural damage is presented. This methodology is based on utilizing modal test data in conjunction with a correlated analytical model of the structure to: (1) identify the structural dynamic characteristics (resonant frequencies and mode shapes) from measurements of ambient motions and/or force excitation; (2) calculate modal residual force vectors to identify the location of structural damage; and (3) conduct a weighted sensitivity analysis in order to assess the extent of mass and stiffness variations, where structural damage is characterized by stiffness reductions. The approach is unique from other existing approaches in that varying system mass and stiffness, mass center locations, the perturbation of both the natural frequencies and mode shapes, and statistical confidence factors for structural parameters and experimental instrumentation are all accounted for directly.
Fractal dimension based damage identification incorporating multi-task sparse Bayesian learning
NASA Astrophysics Data System (ADS)
Huang, Yong; Li, Hui; Wu, Stephen; Yang, Yongchao
2018-07-01
Sensitivity to damage and robustness to noise are critical requirements for the effectiveness of structural damage detection. In this study, a two-stage damage identification method based on the fractal dimension analysis and multi-task Bayesian learning is presented. The Higuchi’s fractal dimension (HFD) based damage index is first proposed, directly examining the time-frequency characteristic of local free vibration data of structures based on the irregularity sensitivity and noise robustness analysis of HFD. Katz’s fractal dimension is then presented to analyze the abrupt irregularity change of the spatial curve of the displacement mode shape along the structure. At the second stage, the multi-task sparse Bayesian learning technique is employed to infer the final damage localization vector, which borrow the dependent strength of the two fractal dimension based damage indication information and also incorporate the prior knowledge that structural damage occurs at a limited number of locations in a structure in the absence of its collapse. To validate the capability of the proposed method, a steel beam and a bridge, named Yonghe Bridge, are analyzed as illustrative examples. The damage identification results demonstrate that the proposed method is capable of localizing single and multiple damages regardless of its severity, and show superior robustness under heavy noise as well.
Vibration characteristics and damage detection in a suspension bridge
NASA Astrophysics Data System (ADS)
Wickramasinghe, Wasanthi R.; Thambiratnam, David P.; Chan, Tommy H. T.; Nguyen, Theanh
2016-08-01
Suspension bridges are flexible and vibration sensitive structures that exhibit complex and multi-modal vibration. Due to this, the usual vibration based methods could face a challenge when used for damage detection in these structures. This paper develops and applies a mode shape component specific damage index (DI) to detect and locate damage in a suspension bridge with pre-tensioned cables. This is important as suspension bridges are large structures and damage in them during their long service lives could easily go un-noticed. The capability of the proposed vibration based DI is demonstrated through its application to detect and locate single and multiple damages with varied locations and severity in the cables of the suspension bridge. The outcome of this research will enhance the safety and performance of these bridges which play an important role in the transport network.
NASA Astrophysics Data System (ADS)
Sierra-Pérez, Julián; Torres-Arredondo, M.-A.; Alvarez-Montoya, Joham
2018-01-01
Structural health monitoring consists of using sensors integrated within structures together with algorithms to perform load monitoring, damage detection, damage location, damage size and severity, and prognosis. One possibility is to use strain sensors to infer structural integrity by comparing patterns in the strain field between the pristine and damaged conditions. In previous works, the authors have demonstrated that it is possible to detect small defects based on strain field pattern recognition by using robust machine learning techniques. They have focused on methodologies based on principal component analysis (PCA) and on the development of several unfolding and standardization techniques, which allow dealing with multiple load conditions. However, before a real implementation of this approach in engineering structures, changes in the strain field due to conditions different from damage occurrence need to be isolated. Since load conditions may vary in most engineering structures and promote significant changes in the strain field, it is necessary to implement novel techniques for uncoupling such changes from those produced by damage occurrence. A damage detection methodology based on optimal baseline selection (OBS) by means of clustering techniques is presented. The methodology includes the use of hierarchical nonlinear PCA as a nonlinear modeling technique in conjunction with Q and nonlinear-T 2 damage indices. The methodology is experimentally validated using strain measurements obtained by 32 fiber Bragg grating sensors bonded to an aluminum beam under dynamic bending loads and simultaneously submitted to variations in its pitch angle. The results demonstrated the capability of the methodology for clustering data according to 13 different load conditions (pitch angles), performing the OBS and detecting six different damages induced in a cumulative way. The proposed methodology showed a true positive rate of 100% and a false positive rate of 1.28% for a 99% of confidence.
Narberhaus, A; Segarra-Castells, M D; Verger-Maestre, K; Serra-Grabulosa, J M; Salgado-Pineda, P; Bartomeus-Jené, F; Mercader-Sobrequés, J M
Diffuse damage secondary to traumatic brain injury (TBI) can be studied through volumetric analysis of several structures that are sensible to this kind of injury, such as corpus callosum, ventricular system, hippocampus, basal ganglia and the volume of cerebrospinal fluid spaces. Our aim is to describe how closed head injury (CHI) occurred in early years produce diffuse damage, and how this damage affects general cognitive functioning at long term. Initially the group of subjects was composed of 27 head injured children and adolescents following paediatric moderate to severe TBI. From this initial group we selected 15 patients without focal lesion, or in case of having suffered focal lesion, this was smaller than 2,600 mm3. These subjects were assessed by means of volumetric analysis of cerebrospinal fluid spaces, corpus callosum, hippocampus and caudate nucleus, comparing the results with a matched control group. We calculated the degree of general cognitive ability of these subjects through tests of intellectual, memory, frontal lobe and motor speed functioning. This study demonstrates that early CHI produce a volume decrease in all measured structures. Corpus callosum atrophy is the factor that better explains general cognitive impairment. Diffuse damage secondary to moderate to severe peadiatric TBI has long term effects on several cerebral structures and on cognitive performance. Corpus callosum atrophy is the best predictor for general cognitive impairment, compared with other affected structures.
NASA Astrophysics Data System (ADS)
Dlugosch, M.; Spiegelhalter, B.; Soot, T.; Lukaszewicz, D.; Fritsch, J.; Hiermaier, S.
2017-05-01
With car manufacturers simultaneously facing increasing passive safety and efficiency requirements, FRP-metal hybrid material systems are one way to design lightweight and crashworthy vehicle structures. Generic automotive hybrid structural concepts have been tested under crash loading conditions. In order to assess the state of overall damage and structural integrity, and primarily to validate simulation data, several NDT techniques have been assessed regarding their potential to detect common damage mechanisms in such hybrid systems. Significant potentials were found particularly in combining 3D-topography laser scanning and X-Ray imaging results. Ultrasonic testing proved to be limited by the signal coupling quality on damaged or curved surfaces.
Active damage interrogation system for structural health monitoring
NASA Astrophysics Data System (ADS)
Lichtenwalner, Peter F.; Dunne, James P.; Becker, Ronald S.; Baumann, Erwin W.
1997-05-01
An integrated and automated smart structures approach for in situ damage assessment has been implemented and evaluated in a laboratory environment for health monitoring of a realistic aerospace structural component. This approach, called Active Damage Interrogation (ADI), utilizes an array of piezoelectric transducers attached to or embedded within the structure for both actuation and sensing. The ADI system, which is model independent, actively interrogates the structure through broadband excitation of multiple actuators across the desired frequency range. Statistical analysis of the changes in transfer functions between actuator/sensor pairs is used to detect, localize, and assess the severity of damage in the structure. This paper presents the overall concept of the ADI system and provides experimental results of damage assessment studies conducted for a composite structural component of the MD-900 Explorer helicopter rotor system. The potential advantages of this approach include simplicity (no need for a model), sensitivity, and low cost implementation. The results obtained thus far indicate considerably promise for integrated structural health monitoring of aerospace vehicles, leading to the practice of condition-based maintenance and consequent reduction in life cycle costs.
NASA Technical Reports Server (NTRS)
Krishnamurthy, T.; Hochhalter, Jacob D.; Gallegos, Adam M.
2012-01-01
The development of validated multidisciplinary Integrated Vehicle Health Management (IVHM) tools, technologies, and techniques to enable detection, diagnosis, prognosis, and mitigation in the presence of adverse conditions during flight will provide effective solutions to deal with safety related challenges facing next generation aircraft. The adverse conditions include loss of control caused by environmental factors, actuator and sensor faults or failures, and damage conditions. A major concern in these structures is the growth of undetected damage (cracks) due to fatigue and low velocity foreign impacts that can reach a critical size during flight, resulting in loss of control of the aircraft. Hence, development of efficient methodologies to determine the presence, location, and severity of damage in critical structural components is highly important in developing efficient structural health management systems.
Damage Characterization Using the Extended Finite Element Method for Structural Health Management
NASA Technical Reports Server (NTRS)
Krishnamurthy, Thiagarajan; Gallegos, Adam M.
2011-01-01
The development of validated multidisciplinary Integrated Vehicle Health Management (IVHM) tools, technologies, and techniques to enable detection, diagnosis, prognosis, and mitigation in the presence of adverse conditions during flight will provide effective solutions to deal with safety related challenges facing next generation aircraft. The adverse conditions include loss of control caused by environmental factors, actuator and sensor faults or failures, and damage conditions. A major concern in these structures is the growth of undetected damage/cracks due to fatigue and low velocity foreign impact that can reach a critical size during flight, resulting in loss of control of the aircraft. Hence, development of efficient methodologies to determine the presence, location, and severity of damage/cracks in critical structural components is highly important in developing efficient structural health management systems.
A modal H∞-norm-based performance requirement for damage-tolerant active controller design
NASA Astrophysics Data System (ADS)
Genari, Helói F. G.; Mechbal, Nazih; Coffignal, Gérard; Nóbrega, Eurípedes G. O.
2017-04-01
Damage-tolerant active control (DTAC) is a recent research area that encompasses control design methodologies resulting from the application of fault-tolerant control methods to vibration control of structures subject to damage. The possibility of damage occurrence is not usually considered in the active vibration control design requirements. Damage changes the structure dynamics, which may produce unexpected modal behavior of the closed-loop system, usually not anticipated by the controller design approaches. A modal H∞ norm and a respective robust controller design framework were recently introduced, and this method is here extended to face a new DTAC strategy implementation. Considering that damage affects each vibration mode differently, this paper adopts the modal H∞ norm to include damage as a design requirement. The basic idea is to create an appropriate energy distribution over the frequency range of interest and respective vibration modes, guaranteeing robustness, damage tolerance, and adequate overall performance, taking into account that it is common to have previous knowledge of the structure regions where damage may occur during its operational life. For this purpose, a structural health monitoring technique is applied to evaluate modal modifications caused by damage. This information is used to create modal weighing matrices, conducting to the modal H∞ controller design. Finite element models are adopted for a case study structure, including different damage severities, in order to validate the proposed control strategy. Results show the effectiveness of the proposed methodology with respect to damage tolerance.
Structural damage to periodontal tissues at varying rate of anesthetic injection.
Sarapultseva, Maria; Sarapultsev, Alexey; Medvedeva, Svetlana; Danilova, Irina
2018-04-01
Incorrect administration of an anesthetic during local anesthesia is one of the most important causes of pain symptoms in patients scheduled for dental procedures. The current study assessed the severity of damage to periodontal tissue following different rates of anesthetic administration. The research was conducted on 50 outbred male rats with a body mass of 180-240 g. The anesthetic used was 1% articaine. The results showed that administration of the anesthetic at a rapid pace caused structural damage to the periodontal tissue. Further, signs of impaired microcirculation were noted at all rates of administration. Biochemical studies demonstrated changes in the level of glucose and enzymes with the rapid introduction of the anesthetic, indicating severe systemic stress response of the body. Injection of local anesthetic at any rate of introduction induces vascular congestion in the microcirculatory bloodstream and exudative reactions. Rapid introduction of an anesthetic causes progression of structural changes in the gingival tissue.
NASA Astrophysics Data System (ADS)
Felipe-Sesé, Luis; Díaz, Francisco A.
2018-02-01
The recent improvement in accessibility to high speed digital cameras has enabled three dimensional (3D) vibration measurements employing full-field optical techniques. Moreover, there is a need to develop a cost-effective and non-destructive testing method to quantify the severity of damages arising from impacts and thus, enhance the service life. This effect is more interesting in composite structures since possible internal damage has low external manifestation. Those possible damages have been previously studied experimentally by using vibration testing. Namely, those analyses were focused on variations in the modal frequencies or, more recently, mode shapes variations employing punctual accelerometers or vibrometers. In this paper it is presented an alternative method to investigate the severity of damage on a composite structure and how the damage affects to its integrity through the analysis of the full field modal behaviour. In this case, instead of punctual measurements, displacement maps are analysed by employing a combination of FP + 2D-DIC during vibration experiments in an industrial component. In addition, to analyse possible mode shape changes, differences between damaged and undamaged specimens are studied by employing a recent methodology based on Adaptive Image Decomposition (AGMD) procedure. It will be demonstrated that AGMD Image decomposition procedure, which decompose the displacement field into shape descriptors, is capable to detect and quantify the differences between mode shapes. As an application example, the proposed approach has been evaluated on two large industrial components (car bonnets) made of short-fibre reinforced composite. Specifically, the evolution of normalized AGMD shape descriptors has been evaluated for three different components with different damage levels. Results demonstrate the potential of the presented approach making it possible to measure the severity of a structural damage by evaluating the mode shape based in the analysis of its shape descriptors.
Bonded repair of composite aircraft structures: A review of scientific challenges and opportunities
NASA Astrophysics Data System (ADS)
Katnam, K. B.; Da Silva, L. F. M.; Young, T. M.
2013-08-01
Advanced composite materials have gained popularity in high-performance structural designs such as aerospace applications that require lightweight components with superior mechanical properties in order to perform in demanding service conditions as well as provide energy efficiency. However, one of the major challenges that the aerospace industry faces with advanced composites - because of their inherent complex damage behaviour - is structural repair. Composite materials are primarily damaged by mechanical loads and/or environmental conditions. If material damage is not extensive, structural repair is the only feasible solution as replacing the entire component is not cost-effective in many cases. Bonded composite repairs (e.g. scarf patches) are generally preferred as they provide enhanced stress transfer mechanisms, joint efficiencies and aerodynamic performance. With an increased usage of advanced composites in primary and secondary aerospace structural components, it is thus essential to have robust, reliable and repeatable structural bonded repair procedures to restore damaged composite components. But structural bonded repairs, especially with primary structures, pose several scientific challenges with the current existing repair technologies. In this regard, the area of structural bonded repair of composites is broadly reviewed - starting from damage assessment to automation - to identify current scientific challenges and future opportunities.
Quantification of Energy Release in Composite Structures
NASA Technical Reports Server (NTRS)
Minnetyan, Levon
2003-01-01
Energy release rate is usually suggested as a quantifier for assessing structural damage tolerance. Computational prediction of energy release rate is based on composite mechanics with micro-stress level damage assessment, finite element structural analysis and damage progression tracking modules. This report examines several issues associated with energy release rates in composite structures as follows: Chapter I demonstrates computational simulation of an adhesively bonded composite joint and validates the computed energy release rates by comparison with acoustic emission signals in the overall sense. Chapter II investigates the effect of crack plane orientation with respect to fiber direction on the energy release rates. Chapter III quantifies the effects of contiguous constraint plies on the residual stiffness of a 90 ply subjected to transverse tensile fractures. Chapter IV compares ICAN and ICAN/JAVA solutions of composites. Chapter V examines the effects of composite structural geometry and boundary conditions on damage progression characteristics.
Quantification of Energy Release in Composite Structures
NASA Technical Reports Server (NTRS)
Minnetyan, Levon; Chamis, Christos C. (Technical Monitor)
2003-01-01
Energy release rate is usually suggested as a quantifier for assessing structural damage tolerance. Computational prediction of energy release rate is based on composite mechanics with micro-stress level damage assessment, finite element structural analysis and damage progression tracking modules. This report examines several issues associated with energy release rates in composite structures as follows: Chapter I demonstrates computational simulation of an adhesively bonded composite joint and validates the computed energy release rates by comparison with acoustic emission signals in the overall sense. Chapter II investigates the effect of crack plane orientation with respect to fiber direction on the energy release rates. Chapter III quantifies the effects of contiguous constraint plies on the residual stiffness of a 90 deg ply subjected to transverse tensile fractures. Chapter IV compares ICAN and ICAN/JAVA solutions of composites. Chapter V examines the effects of composite structural geometry and boundary conditions on damage progression characteristics.
Inhibitory effect of essential oils on decay fungi and mold growth on wood
Vina W. Yang; Carol A. Clausen
2007-01-01
Structural damage and potential health risks caused by wood decay and mold fungi in residential structures have been a major concern for homeowners, building contractors and insurance companies alike. The combined damage from decay fungi and mold claims exceeds several billion US dollars annually. Protection against decay and mold growth on wood is a critical economic...
Akakura, Shin; Ostrakhovitch, Elena; Sanokawa-Akakura, Reiko; Tabibzadeh, Siamak
2014-06-13
Instead of relying on mitochondrial oxidative phosphorylation, most cancer cells rely heavily on aerobic glycolysis, a phenomenon termed as "the Warburg effect". We considered that this effect is a direct consequence of damage which persists in cancer cells that recover from damage. To this end, we studied glycolysis and rate of cell proliferation in cancer cells that recovered from severe damage. We show that in vitro Damage-Recovered (DR) cells exhibit mitochondrial structural remodeling, display Warburg effect, and show increased in vitro and in vivo proliferation and tolerance to damage. To test whether cancer cells derived from tumor microenvironment can show similar properties, we isolated Damage-Recovered (T(DR)) cells from tumors. We demonstrate that T(DR) cells also show increased aerobic glycolysis and a high proliferation rate. These findings show that Warburg effect and its consequences are induced in cancer cells that survive severe damage. Copyright © 2014 Elsevier Inc. All rights reserved.
Structural Health Monitoring challenges on the 10-MW offshore wind turbine model
NASA Astrophysics Data System (ADS)
Di Lorenzo, E.; Kosova, G.; Musella, U.; Manzato, S.; Peeters, B.; Marulo, F.; Desmet, W.
2015-07-01
The real-time structural damage detection on large slender structures has one of its main application on offshore Horizontal Axis Wind Turbines (HAWT). The renewable energy market is continuously pushing the wind turbine sizes and performances. This is the reason why nowadays offshore wind turbines concepts are going toward a 10 MW reference wind turbine model. The aim of the work is to perform operational analyses on the 10-MW reference wind turbine finite element model using an aeroelastic code in order to obtain long-time-low- cost simulations. The aeroelastic code allows simulating the damages in several ways: by reducing the edgewise/flapwise blades stiffness, by adding lumped masses or considering a progressive mass addiction (i.e. ice on the blades). The damage detection is then performed by means of Operational Modal Analysis (OMA) techniques. Virtual accelerometers are placed in order to simulate real measurements and to estimate the modal parameters. The feasibility of a robust damage detection on the model has been performed on the HAWT model in parked conditions. The situation is much more complicated in case of operating wind turbines because the time periodicity of the structure need to be taken into account. Several algorithms have been implemented and tested in the simulation environment. They are needed in order to carry on a damage detection simulation campaign and develop a feasible real-time damage detection method. In addition to these algorithms, harmonic removal tools are needed in order to dispose of the harmonics due to the rotation.
Self-centering connections for traffic sign supporting structures.
DOT National Transportation Integrated Search
2015-03-01
Steel structures supporting traffic sign panels are designed as intended to dissipate energy by : yielding structural members during severe wind loading (ex. strong hurricanes). Yielding results : in inelastic deformations, which are permanent damage...
Impact and Penetration Simulations for Composite Wing-like Structures
NASA Technical Reports Server (NTRS)
Knight, Norman F.
1998-01-01
The goal of this research project was to develop methodologies for the analysis of wing-like structures subjected to impact loadings. Low-speed impact causing either no damage or only minimal damage and high-speed impact causing severe laminate damage and possible penetration of the structure were to be considered during this research effort. To address this goal, an assessment of current analytical tools for impact analysis was performed. Assessment of the analytical tools for impact and penetration simulations with regard to accuracy, modeling, and damage modeling was considered as well as robustness, efficient, and usage in a wing design environment. Following a qualitative assessment, selected quantitative evaluations will be performed using the leading simulation tools. Based on this assessment, future research thrusts for impact and penetration simulation of composite wing-like structures were identified.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akakura, Shin; Ostrakhovitch, Elena; Sanokawa-Akakura, Reiko
2014-06-13
Highlights: • Some cancer cells recover from severe damage that causes cell death in majority of cells. • Damage-Recovered (DR) cancer cells show reduced mitochondria, mDNA and mitochondrial enzymes. • DR cells show increased aerobic glycolysis, ATP, cell proliferation, and resistance to damage. • DR cells recovered from in vivo damage also show increased glycolysis and proliferation rate. - Abstract: Instead of relying on mitochondrial oxidative phosphorylation, most cancer cells rely heavily on aerobic glycolysis, a phenomenon termed as “the Warburg effect”. We considered that this effect is a direct consequence of damage which persists in cancer cells that recovermore » from damage. To this end, we studied glycolysis and rate of cell proliferation in cancer cells that recovered from severe damage. We show that in vitro Damage-Recovered (DR) cells exhibit mitochondrial structural remodeling, display Warburg effect, and show increased in vitro and in vivo proliferation and tolerance to damage. To test whether cancer cells derived from tumor microenvironment can show similar properties, we isolated Damage-Recovered (T{sup DR}) cells from tumors. We demonstrate that T{sup DR} cells also show increased aerobic glycolysis and a high proliferation rate. These findings show that Warburg effect and its consequences are induced in cancer cells that survive severe damage.« less
Kachadoorian, Reuben
1968-01-01
The great earthquake that struck Alaska about 5:36 p.m., Alaska standard time, Friday, March 27, 1964 (03:36:1.3.0, Greenwich mean time, March 28, 1964), severely crippled the highway system in the south-central part of the State. All the major highways and most secondary roads were impaired. Damage totaled more than $46 million, well over $25 million to bridges and nearly $21 million to roadways. Of the 204 bridges in south-central Alaska, 141 were damaged; 92 were severely damaged or destroyed. The earthquake damaged 186 of the 830 miles of roadway in south-central Alaska, 83 miles so severely that replacement or relocation was required. Earthquake damage to the roadways and bridges was chiefly by (1) seismic shaking, (2) compaction of fills as well as the underlying sediments, (3) lateral displacement of the roadway and bridges, (4) fractures, (5) landslides, (6) avalanches, (7) inundation by seismic sea waves, (8) scouring by seismic sea waves, (9) regional tectonic subsidence, causing inundation and erosion by high tides in subsided areas. The intensity of damage was controlled primarily by the geologic environment (including the depth of the water table) upon which the highway structures rested, and secondarily by the engineering characteristics of the structures. Structures on bedrock were only slightly damaged if at all, whereas those on unconsolidated sediments were slightly to severely damaged, or were completely destroyed by seismic shaking. The low-lying areas underlain by saturated sediments, such as the Snow River Crossing and Turnagain Arm sections of the Seward-Anchorage Highway, were the most severely damaged stretches of the highway system in south-central Alaska. At Snow River and Turnagain Arm, the sediments underlying the roadway are fine grained and the water table is shallow. These factors were responsible for the intense damage along this stretch of the highway. All the bridges on the Copper River Highway except for one on bedrock were damaged by seismic shaking. Lateral displacement of sediments toward a free face, which placed the bridges in compression, was the chief cause for the damage. This type of failure was extensive and widespread throughout the highway system. The chief engineering characteristics responsible for the type and intensity of damage include (1) thickness of roadway fills, (2) type of pile bents and masonry piers, (3) the weight ratio between the substructure and superstructure, and (4) the tie between the substructure and superstructure. The thicker the roadway fills, the more severe the damage. Wood piles did not break as extensively as piles constructed of three railroad rails welded together. Bridges that had relatively heavy superstructures, for example those with concrete decks on wood piles, were more severely damaged than those with all-wood or concrete decks or concrete piers. Failure first occurred at the tie between the superstructure and the substructure; the poorer this tie, the sooner the failure. Seismic sea waves destroyed 12 bridges on the Chiniak Highway on Kodiak Island, one bridge on Point Whitshed road near Cordova, and about 14 miles of roadway. The combination of regional tectonic subsidence and local subsidence and compaction of sediments caused inundation of many miles of highway by high tides, especially around Turnagain Arm. Total subsidence in some places amounted to more than 13 feet.
NASA Astrophysics Data System (ADS)
Du, Fangzhu; Li, Dongsheng
2018-03-01
As a new kind of composite structures, the using of steel confined reinforced concrete column attract increasing attention in civil engineer. During the damage process, this new structure offers highly complex and invisible failure mechanism due to the combination effects of steel tubes, concrete, and steel rebar. Acoustic emission (AE) technique has been extensively studied in nondestructive testing (NDT) and is currently applied in civil engineering for structural health monitoring (SHM) and damage evaluation. In the present study, damage property and failure evolution of steel confined and unconfined reinforced concrete (RC) columns are investigated under quasi-static loading through (AE) signal. Significantly improved loading capacity and excellent energy dissipation characteristic demonstrated the practicality of that proposed structure. AE monitoring results indicated that the progressive deformation of the test specimens occur in three stages representing different damage conditions. Sentry function compares the logarithm ratio between the stored strain energy (Es) and the released acoustic energy (Ea); explicitly disclose the damage growth and failure mechanism of the test specimens. Other extended AE features including index of damage (ID), and relax ratio are calculated to quantitatively evaluate the damage severity and critical point. Complicated temporal evolution of different AE features confirms the potential importance of integrated analysis of two or more parameters. The proposed multi-indicators analysis is capable of revealing the damage growth and failure mechanism for steel confined RC columns, and providing critical warning information for structure failure.
Development of a rocking R/C shear wall system implementing repairable structural fuses
NASA Astrophysics Data System (ADS)
Parsafar, Saeed; Moghadam, Abdolreza S.
2017-09-01
In the last decades, the concept of earthquake resilient structural systems is becoming popular in which the rocking structure is considered as a viable option for buildings in regions of high seismicity. To this end, a novel wall-base connection based on the " repairable structure" approach is proposed and evaluated. The proposed system is made of several steel plates and high strength bolts act as a friction connection. To achieve the desired rocking motion in the proposed system, short-slotted holes are used in vertical directions for connecting the steel plates to the shear wall (SW). The experimental and numerical studies were performed using a series of displacement control quasi-static cyclic tests on a reference model and four different configurations of the proposed connection installed at the wall corners. The seismic response of the proposed system is compared to the conventional SW in terms of energy dissipation and damage accumulation. In terms of energy dissipation, the proposed system depicted better performance with 95% more energy dissipation capability compared to conventional SW. In terms of damage accumulation, the proposed SW system is nearly undamaged compared to the conventional wall system, which was severely damaged at the wall-base region. Overall, the introduced concept presents a feasible solution for R/C structures when a low-damage design is targeted, which can improve the seismic performance of the structural system significantly.
Floods of August and September 2004 in Eastern Ohio: FEMA Disaster Declaration 1556
Ebner, Andrew D.; Straub, David E.; Lageman, Jonathan D.
2008-01-01
A band of severe thunderstorms at the end of August 2004 and the passage of the remnants of Hurricanes Frances and Ivan during September 2004 caused severe flooding in eastern Ohio during August and September 2004. Record peak streamflow occurred at 12 U.S. Geological Survey (USGS) streamgages. Damages caused by the flooding produced by these storms were severe enough for 21 counties in eastern Ohio to be declared Federal disaster areas. In all, there were 4 storm- or flood-related deaths, 2,563 private structures damaged or destroyed, and an estimated $81 million in damages. This report describes the meteorological factors that resulted in severe flooding in eastern Ohio during August 27-September 27, 2004, and examines the damages caused by the storms and flooding. Peak-stage, peak-streamflow, and recurrence-interval data are reported for selected USGS streamgages. Flood profiles determined by the USGS are presented for selected streams.
NASA Astrophysics Data System (ADS)
Kessler, Seth S.; Spearing, S. Mark
2002-07-01
Cost-effective and reliable damage detection is critical for the utilization of composite materials. This paper presents the conclusions of an experimental and analytical survey of candidate methods for in-situ damage detection in composite structures. Experimental results are presented for the application of modal analysis and Lamb wave techniques to quasi-isotropic graphite/epoxy test specimens containing representative damage. Piezoelectric patches were used as actuators and sensors for both sets of experiments. Modal analysis methods were reliable for detecting small amounts of global damage in a simple composite structure. By comparison, Lamb wave methods were sensitive to all types of local damage present between the sensor and actuator, provided useful information about damage presence and severity, and present the possibility of estimating damage type and location. Analogous experiments were also performed for more complex built-up structures. These techniques are suitable for structural health monitoring applications since they can be applied with low power conformable sensors and can provide useful information about the state of a structure during operation. Piezoelectric patches could also be used as multipurpose sensors to detect damage by a variety of methods such as modal analysis, Lamb wave, acoustic emission and strain based methods simultaneously, by altering driving frequencies and sampling rates. This paper present guidelines and recommendations drawn from this research to assist in the design of a structural health monitoring system for a vehicle. These systems will be an important component in future designs of air and spacecraft to increase the feasibility of their missions.
Damage Identification in Beam Structure using Spatial Continuous Wavelet Transform
NASA Astrophysics Data System (ADS)
Janeliukstis, R.; Rucevskis, S.; Wesolowski, M.; Kovalovs, A.; Chate, A.
2015-11-01
In this paper the applicability of spatial continuous wavelet transform (CWT) technique for damage identification in the beam structure is analyzed by application of different types of wavelet functions and scaling factors. The proposed method uses exclusively mode shape data from the damaged structure. To examine limitations of the method and to ascertain its sensitivity to noisy experimental data, several sets of simulated data are analyzed. Simulated test cases include numerical mode shapes corrupted by different levels of random noise as well as mode shapes with different number of measurement points used for wavelet transform. A broad comparison of ability of different wavelet functions to detect and locate damage in beam structure is given. Effectiveness and robustness of the proposed algorithms are demonstrated experimentally on two aluminum beams containing single mill-cut damage. The modal frequencies and the corresponding mode shapes are obtained via finite element models for numerical simulations and by using a scanning laser vibrometer with PZT actuator as vibration excitation source for the experimental study.
NASA Technical Reports Server (NTRS)
Hodge, Andrew J.; Walker, James L., II
2008-01-01
A probability of detection study was performed for the detection of impact damage using flash heating infrared thermography on a full scale honeycomb composite structure. The honeycomb structure was an intertank structure from a previous NASA technology demonstration program. The intertank was fabricated from IM7/8552 carbon fiber/epoxy facesheets and aluminum honeycomb core. The intertank was impacted in multiple locations with a range of impact energies utilizing a spherical indenter. In a single blind study, the intertank was inspected with thermography before and after impact damage was incurred. Following thermographic inspection several impact sites were sectioned from the intertank and cross-sectioned for microscopic comparisons of NDE detection and actual damage incurred. The study concluded that thermographic inspection was a good method of detecting delamination damage incurred by impact. The 90/95 confidence level on the probability of detection was close to the impact energy that delaminations were first observed through cross-sectional analysis.
NASA Astrophysics Data System (ADS)
Scheerer, M.; Cardone, T.; Rapisarda, A.; Ottaviano, S.; Ftancesconi, D.
2012-07-01
In the frame of ESA funded programme Future Launcher Preparatory Programme Period 1 “Preparatory Activities on M&S”, Aerospace & Advanced Composites and Thales Alenia Space-Italia, have conceived and tested a structural health monitoring approach based on integrated Acoustic Emission - Active Ultrasound Damage Identification. The monitoring methods implemented in the study are both passive and active methods and the purpose is to cover large areas with a sufficient damage size detection capability. Two representative space sub-structures have been built and tested: a composite overwrapped pressure vessel (COPV) and a curved, stiffened Al-Li panel. In each structure, typical critical damages have been introduced: delaminations caused by impacts in the COPV and a crack in the stiffener of the Al-Li panel which was grown during a fatigue test campaign. The location and severity of both types of damages have been successfully assessed online using two commercially available systems: one 6 channel AE system from Vallen and one 64 channel AU system from Acellent.
Active sensing of fatigue damage using embedded ultrasonics
NASA Astrophysics Data System (ADS)
Zagrai, Andrei; Kruse, Walter A.; Gigineishvili, Vlasi
2009-03-01
Embedded ultrasonics has demonstrated considerable utility in structural health monitoring of aeronautical vehicle. This active sensing approach has been widely used to detect and monitor cracks, delaminations, and disbonds in a broad spectrum of metallic and composite structures. However, application of the embedded ultrasonics for active sensing of incipient damage before fracture has received limited attention. The aim of this study was to investigate the suitability of embedded ultrasonics and nonlinear acoustic signatures for monitoring pre-crack fatigue damage in aerospace structural material. A harmonic load was applied to structural specimens in order to induce fatigue damage accumulation and growth. Specimens of simple geometry were considered and piezoelectric active sensors were employed for generation and reception of elastic waves. The elastic wave signatures were analyzed in the frequency domain using nonlinear impedance and nonlinear resonance methods. A relationship between fatigue severity and linear as well as nonlinear acoustic signatures was investigated and considered in the damage classification procedure. Practical aspects of the active sensing of the fatigue damage before fracture were discussed and prospective avenues for future research were suggested.
Autoregressive statistical pattern recognition algorithms for damage detection in civil structures
NASA Astrophysics Data System (ADS)
Yao, Ruigen; Pakzad, Shamim N.
2012-08-01
Statistical pattern recognition has recently emerged as a promising set of complementary methods to system identification for automatic structural damage assessment. Its essence is to use well-known concepts in statistics for boundary definition of different pattern classes, such as those for damaged and undamaged structures. In this paper, several statistical pattern recognition algorithms using autoregressive models, including statistical control charts and hypothesis testing, are reviewed as potentially competitive damage detection techniques. To enhance the performance of statistical methods, new feature extraction techniques using model spectra and residual autocorrelation, together with resampling-based threshold construction methods, are proposed. Subsequently, simulated acceleration data from a multi degree-of-freedom system is generated to test and compare the efficiency of the existing and proposed algorithms. Data from laboratory experiments conducted on a truss and a large-scale bridge slab model are then used to further validate the damage detection methods and demonstrate the superior performance of proposed algorithms.
Si, Liang; Wang, Qian
2016-01-01
Through the use of the wave reflection from any damage in a structure, a Hilbert spectral analysis-based rapid multi-damage identification (HSA-RMDI) technique with piezoelectric wafer sensor arrays (PWSA) is developed to monitor and identify the presence, location and severity of damage in carbon fiber composite structures. The capability of the rapid multi-damage identification technique to extract and estimate hidden significant information from the collected data and to provide a high-resolution energy-time spectrum can be employed to successfully interpret the Lamb waves interactions with single/multiple damage. Nevertheless, to accomplish the precise positioning and effective quantification of multiple damage in a composite structure, two functional metrics from the RMDI technique are proposed and used in damage identification, which are the energy density metric and the energy time-phase shift metric. In the designed damage experimental tests, invisible damage to the naked eyes, especially delaminations, were detected in the leftward propagating waves as well as in the selected sensor responses, where the time-phase shift spectra could locate the multiple damage whereas the energy density spectra were used to quantify the multiple damage. The increasing damage was shown to follow a linear trend calculated by the RMDI technique. All damage cases considered showed completely the developed RMDI technique potential as an effective online damage inspection and assessment tool. PMID:27153070
NASA Astrophysics Data System (ADS)
Cao, Pei; Qi, Shuai; Tang, J.
2018-03-01
The impedance/admittance measurements of a piezoelectric transducer bonded to or embedded in a host structure can be used as damage indicator. When a credible model of the healthy structure, such as the finite element model, is available, using the impedance/admittance change information as input, it is possible to identify both the location and severity of damage. The inverse analysis, however, may be under-determined as the number of unknowns in high-frequency analysis is usually large while available input information is limited. The fundamental challenge thus is how to find a small set of solutions that cover the true damage scenario. In this research we cast the damage identification problem into a multi-objective optimization framework to tackle this challenge. With damage locations and severities as unknown variables, one of the objective functions is the difference between impedance-based model prediction in the parametric space and the actual measurements. Considering that damage occurrence generally affects only a small number of elements, we choose the sparsity of the unknown variables as another objective function, deliberately, the l 0 norm. Subsequently, a multi-objective Dividing RECTangles (DIRECT) algorithm is developed to facilitate the inverse analysis where the sparsity is further emphasized by sigmoid transformation. As a deterministic technique, this approach yields results that are repeatable and conclusive. In addition, only one algorithmic parameter, the number of function evaluations, is needed. Numerical and experimental case studies demonstrate that the proposed framework is capable of obtaining high-quality damage identification solutions with limited measurement information.
A Tensor-Based Structural Damage Identification and Severity Assessment
Anaissi, Ali; Makki Alamdari, Mehrisadat; Rakotoarivelo, Thierry; Khoa, Nguyen Lu Dang
2018-01-01
Early damage detection is critical for a large set of global ageing infrastructure. Structural Health Monitoring systems provide a sensor-based quantitative and objective approach to continuously monitor these structures, as opposed to traditional engineering visual inspection. Analysing these sensed data is one of the major Structural Health Monitoring (SHM) challenges. This paper presents a novel algorithm to detect and assess damage in structures such as bridges. This method applies tensor analysis for data fusion and feature extraction, and further uses one-class support vector machine on this feature to detect anomalies, i.e., structural damage. To evaluate this approach, we collected acceleration data from a sensor-based SHM system, which we deployed on a real bridge and on a laboratory specimen. The results show that our tensor method outperforms a state-of-the-art approach using the wavelet energy spectrum of the measured data. In the specimen case, our approach succeeded in detecting 92.5% of induced damage cases, as opposed to 61.1% for the wavelet-based approach. While our method was applied to bridges, its algorithm and computation can be used on other structures or sensor-data analysis problems, which involve large series of correlated data from multiple sensors. PMID:29301314
Novel SHM method to locate damages in substructures based on VARX models
NASA Astrophysics Data System (ADS)
Ugalde, U.; Anduaga, J.; Martínez, F.; Iturrospe, A.
2015-07-01
A novel damage localization method is proposed, which is based on a substructuring approach and makes use of Vector Auto-Regressive with eXogenous input (VARX) models. The substructuring approach aims to divide the monitored structure into several multi-DOF isolated substructures. Later, each individual substructure is modelled as a VARX model, and the health of each substructure is determined analyzing the variation of the VARX model. The method allows to detect whether the isolated substructure is damaged, and besides allows to locate and quantify the damage within the substructure. It is not necessary to have a theoretical model of the structure and only the measured displacement data is required to estimate the isolated substructure's VARX model. The proposed method is validated by simulations of a two-dimensional lattice structure.
Experimental validation of a damage detection approach on a full-scale highway sign support truss
NASA Astrophysics Data System (ADS)
Yan, Guirong; Dyke, Shirley J.; Irfanoglu, Ayhan
2012-04-01
Highway sign support structures enhance traffic safety by allowing messages to be delivered to motorists related to directions and warning of hazards ahead, and facilitating the monitoring of traffic speed and flow. These structures are exposed to adverse environmental conditions while in service. Strong wind and vibration accelerate their deterioration. Typical damage to this type of structure includes local fatigue fractures and partial loosening of bolted connections. The occurrence of these types of damage can lead to a failure in large portions of the structure, jeopardizing the safety of passing traffic. Therefore, it is important to have effective damage detection approaches to ensure the integrity of these structures. In this study, an extension of the Angle-between-String-and-Horizon (ASH) flexibility-based approach [32] is applied to locate damage in sign support truss structures at bay level. Ambient excitations (e.g. wind) can be considered as a significant source of vibration in these structures. Considering that ambient excitation is immeasurable, a pseudo ASH flexibility matrix constructed from output-only derived operational deflection shapes is proposed. A damage detection method based on the use of pseudo flexibility matrices is proposed to address several of the challenges posed in real-world applications. Tests are conducted on a 17.5-m long full-scale sign support truss structure to validate the effectiveness of the proposed method. Damage cases associated with loosened bolts and weld failures are considered. These cases are realistic for this type of structure. The results successfully demonstrate the efficacy of the proposed method to locate the two common forms of damage on sign support truss structures instrumented with a few accelerometers.
Vibration-based health monitoring and model refinement of civil engineering structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farrar, C.R.; Doebling, S.W.
1997-10-01
Damage or fault detection, as determined by changes in the dynamic properties of structures, is a subject that has received considerable attention in the technical literature beginning approximately 30 years ago. The basic idea is that changes in the structure`s properties, primarily stiffness, will alter the dynamic properties of the structure such as resonant frequencies and mode shapes, and properties derived from these quantities such as modal-based flexibility. Recently, this technology has been investigated for applications to health monitoring of large civil engineering structures. This presentation will discuss such a study undertaken by engineers from New Mexico Sate University, Sandiamore » National Laboratory and Los Alamos National Laboratory. Experimental modal analyses were performed in an undamaged interstate highway bridge and immediately after four successively more severe damage cases were inflicted in the main girder of the structure. Results of these tests provide insight into the abilities of modal-based damage ID methods to identify damage and the current limitations of this technology. Closely related topics that will be discussed are the use of modal properties to validate computer models of the structure, the use of these computer models in the damage detection process, and the general lack of experimental investigation of large civil engineering structures.« less
Schwartz, Naomi B; Uriarte, María; DeFries, Ruth; Bedka, Kristopher M; Fernandes, Katia; Gutiérrez-Vélez, Victor; Pinedo-Vasquez, Miguel A
2017-09-01
Tropical second-growth forests could help mitigate climate change, but the degree to which their carbon potential is achieved will depend on exposure to disturbance. Wind disturbance is common in tropical forests, shaping structure, composition, and function, and influencing successional trajectories. However, little is known about the impacts of extreme winds on second-growth forests in fragmented landscapes, though these ecosystems are often located in mosaics of forest, pasture, cropland, and other land cover types. Indirect evidence suggests that fragmentation increases risk of wind damage in tropical forests, but no studies have found such impacts following severe storms. In this study, we ask whether fragmentation and forest type (old vs. second growth) were associated with variation in wind damage after a severe convective storm in a fragmented production landscape in western Amazonia. We applied linear spectral unmixing to Landsat 8 imagery from before and after the storm, and combined it with field observations of damage to map wind effects on forest structure and biomass. We also used Landsat 8 imagery to map land cover with the goals of identifying old- and second-growth forest and characterizing fragmentation. We used these data to assess variation in wind disturbance across 95,596 ha of forest, distributed over 6,110 patches. We find that fragmentation is significantly associated with wind damage, with damage severity higher at forest edges and in edgier, more isolated patches. Damage was also more severe in old-growth than in second-growth forests, but this effect was weaker than that of fragmentation. These results illustrate the importance of considering landscape context in planning tropical forest restoration and natural regeneration projects. Assessments of long-term carbon sequestration potential need to consider spatial variation in disturbance exposure. Where risk of extreme winds is high, minimizing fragmentation and isolation could increase carbon sequestration potential. © 2017 by the Ecological Society of America.
NASA Astrophysics Data System (ADS)
Sun, Baitao; Zhao, Hexian; Yan, Peilei
2017-08-01
The damage of masonry structures in earthquakes is generally more severe than other structures. Through the analysis of two typical earthquake damage buildings in the Wenchuan earthquake in Xuankou middle school, we found that the number of storeys and the construction measures had great influence on the seismic performance of masonry structures. This paper takes a teachers’ dormitory in Xuankou middle school as an example, selected the structure arrangement and storey number as two independent variables to design working conditions. Finally we researched on the seismic performance difference of masonry structure under two variables by finite element analysis method.
Full-Scale Test and Analysis of a PRSEUS Fuselage Panel to Assess Damage-Containment Features
NASA Technical Reports Server (NTRS)
Bergan, Andrew; Bakuckas, John G.; Lovejoy, Andrew E.; Jegley, Dawn C.; Linton, Kim A.; Korkosz, Gregory; Awerbuch, Jonathan; Tan, Tein-Min
2011-01-01
Stitched composite technology has the potential to substantially decrease structural weight through enhanced damage containment capabilities. The most recent generation of stitched composite technology, the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept, has been shown to successfully arrest damage at the sub-component level through tension testing of a three stringer panel with damage in the form of a two-bay notch. In a joint effort undertaken by the National Aeronautics and Space Administration (NASA), the Federal Aviation Administration (FAA), and the Boeing Company, further studies are being conducted to characterize the damage containment features of the PRSEUS concept. A full-scale residual strength test will be performed on a fuselage panel to determine if the load capacity will meet strength, deformation, and damage tolerance requirements. A curved panel was designed, fabricated, and prepared for residual strength testing. A pre-test Finite Element Model (FEM) was developed using design allowables from previous test programs to predict test panel deformation characteristics and margins of safety. Three phases of testing with increasing damage severity include: (1) as manufactured; (2) barely visible impact damage (BVID) and visible impact damage (VID); and (3) discrete source damage (DSD) where the panel will be loaded to catastrophic failure. This paper presents the background information, test plan, and experimental procedure. This paper is the first of several future articles reporting the test preparations, results, and analysis conducted in the test program.
Health Monitoring of Composite Material Structures using a Vibrometry Technique
NASA Technical Reports Server (NTRS)
Schulz, Mark J.
1997-01-01
Large composite material structures such as aircraft and Reusable Launch Vehicles (RLVS) operate in severe environments comprised of vehicle dynamic loads, aerodynamic loads, engine vibration, foreign object impact, lightning strikes, corrosion, and moisture absorption. These structures are susceptible to damage such as delamination, fiber breaking/pullout, matrix cracking, and hygrothermal strain. To ensure human safety and load-bearing integrity, these structures must be inspected to detect and locate often invisible damage and faults before becoming catastrophic. Moreover, nearly all future structures will need some type of in-service inspection technique to increase their useful life and reduce maintenance and overall costs. Possible techniques for monitoring the health and indicating damage on composite structures include: c-scan, thermography, acoustic emissions using piezoceramic actuators or fiber-optic wires with gratings, laser ultrasound, shearography, holography, x-ray, and others. These techniques have limitations in detecting damage that is beneath the surface of the structure, far away from a sensor location, or during operation of the vehicle. The objective of this project is to develop a more global method for damage detection that is based on structural dynamics principles, and can inspect for damage when the structure is subjected to vibratory loads to expose faults that may not be evident by static inspection. A Transmittance Function Monitoring (TFM) method is being developed in this project for ground-based inspection and operational health monitoring of large composite structures as a RLV. A comparison of the features of existing health monitoring approaches and the proposed TFM method is given.
Plant Mulches Can Help Weed Management in Ukraine
USDA-ARS?s Scientific Manuscript database
Producers in the United States are interested in restoring the health of their soils to improve crop production. Decades of tillage have severely damaged soil structure and functioning. Eliminating tillage from production systems has repaired some of this damage to soil. Producers and scientists ...
A performance-based approach to landslide risk analysis
NASA Astrophysics Data System (ADS)
Romeo, R. W.
2009-04-01
An approach for the risk assessment based on a probabilistic analysis of the performance of structures threatened by landslides is shown and discussed. The risk is a possible loss due to the occurrence of a potentially damaging event. Analytically the risk is the probability convolution of hazard, which defines the frequency of occurrence of the event (i.e., the demand), and fragility that defines the capacity of the system to withstand the event given its characteristics (i.e., severity) and those of the exposed goods (vulnerability), that is: Risk=p(D>=d|S,V) The inequality sets a damage (or loss) threshold beyond which the system's performance is no longer met. Therefore a consistent approach to risk assessment should: 1) adopt a probabilistic model which takes into account all the uncertainties of the involved variables (capacity and demand), 2) follow a performance approach based on given loss or damage thresholds. The proposed method belongs to the category of the semi-empirical ones: the theoretical component is given by the probabilistic capacity-demand model; the empirical component is given by the observed statistical behaviour of structures damaged by landslides. Two landslide properties alone are required: the area-extent and the type (or kinematism). All other properties required to determine the severity of landslides (such as depth, speed and frequency) are derived via probabilistic methods. The severity (or intensity) of landslides, in terms of kinetic energy, is the demand of resistance; the resistance capacity is given by the cumulative distribution functions of the limit state performance (fragility functions) assessed via damage surveys and cards compilation. The investigated limit states are aesthetic (of nominal concern alone), functional (interruption of service) and structural (economic and social losses). The damage probability is the probabilistic convolution of hazard (the probability mass function of the frequency of occurrence of given severities) and vulnerability (the probability of a limit state performance be reached, given a certain severity). Then, for each landslide all the exposed goods (structures and infrastructures) within the landslide area and within a buffer (representative of the maximum extension of a landslide given a reactivation), are counted. The risk is the product of the damage probability and the ratio of the exposed goods of each landslide to the whole assets exposed to the same type of landslides. Since the risk is computed numerically and by the same procedure applied to all landslides, it is free from any subjective assessment such as those implied in the qualitative methods.
Structural health monitoring of inflatable structures for MMOD impacts
NASA Astrophysics Data System (ADS)
Anees, Muhammad; Gbaguidi, Audrey; Kim, Daewon; Namilae, Sirish
2017-04-01
Inflatable structures for space habitat are highly prone to damage caused by micrometeoroid and orbital debris impacts. Although the structures are effectively shielded against these impacts through multiple layers of impact resistant materials, there is a necessity for a health monitoring system to monitor the structural integrity and damage state within the structures. Assessment of damage is critical for the safety of personnel in the space habitat, as well as predicting the repair needs and the remaining useful life of the habitat. In this paper, we propose a unique impact detection and health monitoring system based on hybrid nanocomposite sensors. The sensors are composed of two fillers, carbon nanotubes and coarse graphene platelets with an epoxy matrix material. The electrical conductivity of these flexible nanocomposite sensors is highly sensitive to strains as well as presence of any holes and damage in the structure. The sensitivity of the sensors to the presence of 3mm holes due to an event of impact is evaluated using four point probe electrical resistivity measurements. An array of these sensors when sandwiched between soft good layers in a space habitat can act as a damage detection layer for inflatable structures. An algorithm is developed to determine the event of impact, its severity and location on the sensing layer for active health monitoring.
Review of Repair Materials for Fire-Damaged Reinforced Concrete Structures
NASA Astrophysics Data System (ADS)
Zahid, MZA Mohd; Abu Bakar, BH; Nazri, FM; Ahmad, MM; Muhamad, K.
2018-03-01
Reinforced concrete (RC) structures perform well during fire and may be repaired after the fire incident because their low heat conductivity prevents the loss or degradation of mechanical strength of the concrete core and internal reinforcing steel. When an RC structure is heated to more than 500 °C, mechanical properties such as compressive strength, stiffness, and tensile strength start to degrade and deformations occur. Although the fire-exposed RC structure shows no visible damage, its residual strength decreases compared with that in the pre-fire state. Upon thorough assessment, the fire-damaged RC structure can be repaired or strengthened, instead of subjecting to partial or total demolition followed by reconstruction. The structure can be repaired using several materials, such as carbon fiber-reinforced polymer, glass fiber-reinforced polymer, normal strength concrete, fiber-reinforced concrete, ferrocement, epoxy resin mortar, and high-performance concrete. Selecting an appropriate repair material that must be compatible with the substrate or base material is a vital step to ensure successful repair. This paper reviews existing repair materials and factors affecting their performance. Of the materials considered, ultra-high-performance fiber-reinforced concrete (UHPFRC) exhibits huge potential for repairing fire-damaged RC structures but lack of information available. Hence, further studies must be performed to assess the potential of UHPFRC in rehabilitating fire-damaged RC structures.
[Operating room during natural disaster: lessons from the 2011 Tohoku earthquake].
Fukuda, Ikuo; Hashimoto, Hiroshi; Suzuki, Yasuyuki; Satomi, Susumu; Unno, Michiaki; Ohuchi, Noriaki; Nakaji, Shigeyuki
2012-03-01
Objective of this study is to clarify damages in operating rooms after the 2011 Tohoku Earthquake. To survey structural and non-structural damage in operating theaters, we sent questionnaires to 155 acute care hospitals in Tohoku area. Questionnaires were sent back from 105 hospitals (70.3%). Total of 280 patients were undergoing any kinds of operations during the earthquake and severe seismic tremor greater than JMA Seismic Intensity 6 hit 49 hospitals. Operating room staffs experienced life-threatening tremor in 41 hospitals. Blackout occurred but emergency electronic supply unit worked immediately in 81 out of 90 hospitals. However, emergency power plant did not work in 9 hospitals. During earthquake some materials fell from shelves in 44 hospitals and medical instruments fell down in 14 hospitals. In 5 hospitals, they experienced collapse of operating room wall or ceiling causing inability to maintain sterile operative field. Damage in electric power and water supply plus damage in logistics made many operating rooms difficult to perform routine surgery for several days. The 2011 Tohoku earthquake affected medical supply in wide area of Tohoku district and induced dysfunction of operating room. Supply-chain management of medical goods should be reconsidered to prepare severe natural disaster.
White, B D; Firth, J L; Rowles, J M
1993-02-01
Only 10 occupants escaped uninjured from the wreckage of the East Midlands Boeing 737/400 aircraft accident. The remaining 116 suffered injuries similar in pattern, but ranging in severity from simple bruising to fatal crushing trauma. Overall, the individual's degree of injury and likelihood of death was proportional to the local structural damage of the aircraft. Limb injuries were particularly severe in the forward section of the wreckage where the floor failed. In areas where structural damage appeared to be survivable, a number of passengers suffered disproportionately severe head injuries. Many of these had trauma to the posterior aspect of their head, some of whom died as a result. It is likely that these injuries were caused by falling overhead lockers or unrestrained cabin furniture. The significance of these injuries and their future prevention is discussed.
NASA Astrophysics Data System (ADS)
Vinson, T. S.; Hulsey, L.; Ma, J.; Connor, B.; Brooks, T. E.
2002-12-01
More than two dozen major bridges were subjected to severe ground motions during the October-November 2002 Earthquake Sequence on the Denali Fault, Alaska. The bridges represented a number of conventional designs constructed over the past three to four decades. The objective of the field investigation presented herein was to determine the extent of the damage, if any, to the bridge structures, foundations and approach embankments. This was accomplished by direct inspection of the bridges by the authors (or employees of their organizations) along the Richardson, Alaska, Parks, and Denali Highways, the Tok Cutoff, and the railroad bridges for the railroad alignment between Trapper Creek and Fairbanks. More specifically, the members of the investigation team (represented by the authors) conducted more than three days of field inspections of bridges within the zone of severe ground shaking during the M6.7 and M7.9 Denali fault events. The primary conclusion noted was that while a substantial number of bridges were subjected to intense shaking they all performed very well and were not damaged to the extent that remedial repairs to the bridge structure were necessary. There were occurrences of lateral spreading/liquefaction related damage to the approach embankments and slight separation of the approach embankment from the abutment foundation systems. Overall, considering the severity of ground shaking, much greater damage to the bridge structures, foundations and approach embankments would be predicted. Had the earthquakes occurred during winter when the ground was frozen and the ductility of the structures was substantially reduced events comparable to the October-November 2002 Earthquake Sequence on the Denali Fault, Alaska could have resulted in significant damage to bridges. This reconnaissance was supported by the National Science Foundation, Alaska Dept. of Transportation and Public Facilities, and the Alaska Railroad Corporation.
NASA Technical Reports Server (NTRS)
Abdul-Aziz, Ali; Roth, D. J.; Cotton, R.; Studor, George F.; Christiansen, Eric; Young, P. C.
2011-01-01
This study utilizes microfocus x-ray computed tomography (CT) slice sets to model and characterize the damage locations and sizes in thermal protection system materials that underwent impact testing. ScanIP/FE software is used to visualize and process the slice sets, followed by mesh generation on the segmented volumetric rendering. Then, the local stress fields around several of the damaged regions are calculated for realistic mission profiles that subject the sample to extreme temperature and other severe environmental conditions. The resulting stress fields are used to quantify damage severity and make an assessment as to whether damage that did not penetrate to the base material can still result in catastrophic failure of the structure. It is expected that this study will demonstrate that finite element modeling based on an accurate three-dimensional rendered model from a series of CT slices is an essential tool to quantify the internal macroscopic defects and damage of a complex system made out of thermal protection material. Results obtained showing details of segmented images; three-dimensional volume-rendered models, finite element meshes generated, and the resulting thermomechanical stress state due to impact loading for the material are presented and discussed. Further, this study is conducted to exhibit certain high-caliber capabilities that the nondestructive evaluation (NDE) group at NASA Glenn Research Center can offer to assist in assessing the structural durability of such highly specialized materials so improvements in their performance and capacities to handle harsh operating conditions can be made.
NASA Astrophysics Data System (ADS)
Howser, Rachel; Moslehy, Yashar; Gu, Haichang; Dhonde, Hemant; Mo, Y. L.; Ayoub, Ashraf; Song, Gangbing
2011-07-01
Structural health monitoring is an important aspect of the maintenance of large civil infrastructures, especially for bridge columns in areas of high seismic activity. In this project, recently developed innovative piezoceramic-based sensors were utilized to perform the health monitoring of a shear-critical reinforced concrete (RC) bridge column subjected to reversed cyclic loading. After the column failed, it was wrapped with fiber reinforced polymer (FRP) sheets, commonly used to retrofit seismically damaged structures. The FRP-strengthened column was retested under the same reversed cyclic loading pattern. Innovative piezoceramic-based sensors, called 'smart aggregates', were utilized as transducers for health monitoring purposes. On the basis of the smart aggregates developed, an active-sensing approach and an impact-hammer-based approach were used to evaluate the health status of the RC column during the loading procedure. Wave transmission energy is attenuated by the existence of cracks during the loading procedure, and this attenuation phenomenon alters the curve of the transfer function between the actuator and sensor. To detect the damage occurrence and evaluate the damage severity, transfer function curves were compared with those obtained during the period of healthy status. A transfer-function-based damage index matrix was developed to demonstrate the damage severity at different locations. Experimental results verified the effectiveness of the smart aggregates in health monitoring of the FRP-strengthened column as well as the unstrengthened column. The experimental results show that the proposed smart-aggregate-based approach can successfully detect damage occurrence and evaluate its severity.
Kislin, Mikhail; Sword, Jeremy; Fomitcheva, Ioulia V.; Croom, Deborah; Pryazhnikov, Evgeny; Lihavainen, Eero; Toptunov, Dmytro; Rauvala, Heikki; Ribeiro, Andre S.
2017-01-01
Mitochondria play a variety of functional roles in cortical neurons, from metabolic support and neuroprotection to the release of cytokines that trigger apoptosis. In dendrites, mitochondrial structure is closely linked to their function, and fragmentation (fission) of the normally elongated mitochondria indicates loss of their function under pathological conditions, such as stroke and brain trauma. Using in vivo two-photon microscopy in mouse brain, we quantified mitochondrial fragmentation in a full spectrum of cortical injuries, ranging from severe to mild. Severe global ischemic injury was induced by bilateral common carotid artery occlusion, whereas severe focal stroke injury was induced by Rose Bengal photosensitization. The moderate and mild traumatic injury was inflicted by focal laser lesion and by mild photo-damage, respectively. Dendritic and mitochondrial structural changes were tracked longitudinally using transgenic mice expressing fluorescent proteins localized either in cytosol or in mitochondrial matrix. In response to severe injury, mitochondrial fragmentation developed in parallel with dendritic damage signified by dendritic beading. Reconstruction from serial section electron microscopy confirmed mitochondrial fragmentation. Unlike dendritic beading, fragmentation spread beyond the injury core in focal stroke and focal laser lesion models. In moderate and mild injury, mitochondrial fragmentation was reversible with full recovery of structural integrity after 1–2 weeks. The transient fragmentation observed in the mild photo-damage model was associated with changes in dendritic spine density without any signs of dendritic damage. Our findings indicate that alterations in neuronal mitochondria structure are very sensitive to the tissue damage and can be reversible in ischemic and traumatic injuries. SIGNIFICANCE STATEMENT During ischemic stroke or brain trauma, mitochondria can either protect neurons by supplying ATP and adsorbing excessive Ca2+, or kill neurons by releasing proapoptotic factors. Mitochondrial function is tightly linked to their morphology: healthy mitochondria are thin and long; dysfunctional mitochondria are thick (swollen) and short (fragmented). To date, fragmentation of mitochondria was studied either in dissociated cultured neurons or in brain slices, but not in the intact living brain. Using real-time in vivo two-photon microscopy, we quantified mitochondrial fragmentation during acute pathological conditions that mimic severe, moderate, and mild brain injury. We demonstrated that alterations in neuronal mitochondria structural integrity can be reversible in traumatic and ischemic injuries, highlighting mitochondria as a potential target for therapeutic interventions. PMID:28077713
On the modal characteristics of damaging structures subjected to earthquakes
NASA Astrophysics Data System (ADS)
Carlo Ponzo, Felice; Ditommaso, Rocco; Auletta, Gianluca; Iacovino, Chiara; Mossucca, Antonello; Nigro, Antonella; Nigro, Domenico
2015-04-01
Structural Health Monitoring, especially for structures located in seismic prone areas, has assumed a meaning of great importance in last years, for the possibility to make a more objective and more rapid estimation of the damage occurred on buildings after a seismic event. In the last years many researchers are working to set-up new methodologies for Non-destructive Damage Evaluation based on the variation of the dynamic behaviour of structures under seismic loads. The NDE methods for damage detection and evaluation can be classified into four levels, according to the specific criteria provided by the Rytter. Each level of identification is correlated with specific information related to monitored structure. In fact, by increasing the level it is possible to obtain more information about the state of the health of the structures, to know if damage occurred on the structures, to quantify and localize the damage and to evaluate its impact on the monitored structure. Several authors discussed on the possibility to use the mode shape curvature to localize damage on structural elements, for example, by applying the curvature-based method to frequency response function instead of mode shape, and demonstrated the potential of this approach by considering real data. Damage detection approach based on dynamic monitoring of structural properties over time has received a considerable attention in recent scientific literature. In earthquake engineering field, the recourse to experimental research is necessary to understand the mechanical behaviour of the various structural and non-structural components. In this paper a new methodology to detect and localize a possible damage occurred on a framed structure after an earthquake is presented and discussed. The main outcomes retrieved from many numerical non linear dynamic models of reinforced concrete framed structures characterized by 3, 5 and 8 floors with different geometric configurations and designed for gravity loads only are here presented. In addition, the main results of experimental shaking table tests carried out on a steel framed model are also showed to confirm the effectiveness of the proposed procedure. Acknowledgements This study was partially funded by the Italian Civil Protection Department within the project DPC-RELUIS 2014 - RS4 ''Seismic observatory of structures and health monitoring''.
NASA Technical Reports Server (NTRS)
Harris, Charles E.; Starnes, James H., Jr.; Shuart, Mark J.
2003-01-01
Aerospace vehicles are designed to be durable and damage tolerant. Durability is largely an economic life-cycle design consideration whereas damage tolerance directly addresses the structural airworthiness (safety) of the vehicle. However, both durability and damage tolerance design methodologies must address the deleterious effects of changes in material properties and the initiation and growth of microstructural damage that may occur during the service lifetime of the vehicle. Durability and damage tolerance design and certification requirements are addressed for commercial transport aircraft and NASA manned spacecraft systems. The state-of-the-art in advanced design and analysis methods is illustrated by discussing the results of several recently completed NASA technology development programs. These programs include the NASA Advanced Subsonic Technology Program demonstrating technologies for large transport aircraft and the X-33 hypersonic test vehicle demonstrating technologies for a single-stage-to-orbit space launch vehicle.
Quantitative nondestructive evaluation of materials and structures
NASA Technical Reports Server (NTRS)
Smith, Barry T.
1991-01-01
An experimental investigation was undertaken to quantify damage tolerance and resistance in composite materials impacted using the drop-weight method. Tests were conducted on laminates of several different carbon-fiber composite systems, such as epoxies, modified epoxies, and amorphous and semicrystalline thermoplastics. Impacted composite specimens were examined using destructive and non-destructive techniques to establish the characteristic damage states. Specifically, optical microscopy, ultrasonic, and scanning electron microscopy techniques were used to identify impact induced damage mechanisms. Damage propagation during post impact compression was also studied.
Floods of May and June 2004 in Central and Eastern Ohio: FEMA Disaster Declaration 1519
Ebner, Andrew D.; Straub, David E.; Lageman, Jonathan D.
2008-01-01
Several severe thunderstorms that passed through Ohio between May 17 and June 17, 2004, produced large amounts of rain in an already wet central and eastern Ohio, resulting in flooding in this region from May 18 to June 21, 2004. Record peak streamflow occurred at three U.S. Geological Survey (USGS) streamgages. Damages caused by the flooding resulting from these storms were severe enough that 25 counties in central and eastern Ohio were declared Federal disaster areas. In all, there were two storm- or flood-related deaths, 3,529 private structures damaged or destroyed, and an estimated $43 million in damages. This report describes the meteorological factors that resulted in severe flooding in central and eastern Ohio between May 18 and June 21, 2004, and addresses the damages caused by the storms and flooding. Peak-stage, peak-streamflow, and recurrence-interval data are reported for selected USGS streamgages. Flood profiles determined by the USGS are presented for selected streams.
Application of Laser Based Ultrasound for NDE of Damage in Thick Stitched Composites
NASA Technical Reports Server (NTRS)
Anastasi, Robert F.; Friedman, Adam D.; Hinders, Mark K.; Madaras, Eric I.
1997-01-01
As design engineers implement new composite systems such as thick, load bearing composite structures, they must have certifiable confidence in structure s durability and worthiness. This confidence builds from understanding the structural response and failure characteristics of simple components loaded in testing machines to tests on full scale sections. Nondestructive evaluation is an important element which can provide quantitative information on the damage initiation, propagation, and final failure modes for the composite structural components. Although ultrasound is generally accepted as a test method, the use of conventional ultrasound for in-situ monitoring of damage during tests of large structures is not practical. The use of lasers to both generate and detect ultrasound extends the application of ultrasound to in- situ sensing of damage in a deformed structure remotely and in a non-contact manner. The goal of the present research is to utilize this technology to monitor damage progression during testing. The present paper describes the application of laser based ultrasound to quantify damage in thick stitched composite structural elements to demonstrate the method. This method involves using a Q-switched laser to generate a rapid, local linear thermal strain on the surface of the structure. This local strain causes the generation of ultrasonic waves into the material. A second laser used with a Fabry-Perot interferometer detects the surface deflections. The use of fiber optics provides for eye safety and a convenient method of delivering the laser over long distances to the specimens. The material for these structural elements is composed of several stacks of composite material assembled together by stitching through the laminate thickness that ranging from 0.5 to 0.8 inches. The specimens used for these nondestructive evaluation studies had either impact damage or skin/stiffener interlaminar failure. Although little or no visible surface damage existed, internal damage was detected by laser based ultrasound.
The structural basis of moderate disability after traumatic brain damage
Adams, J; Graham, D; Jennett, B
2001-01-01
The objective was to discover the nature of brain damage in survivors of head injury who are left with moderate disability. Macroscopic and microscopic examination was carried out on the brains of 20 persons who had died long after a head injury that had been treated in a neurosurgical unit. All had become independent but had various disabilities (moderate disability on the Glasgow outcome scale) Most deaths had been sudden, which had led to their referral from forensic pathologists. Post-traumatic epilepsy was a feature in 75%. An intracranial haematoma had been evacuated in 75%, and in 11 of the 15 with epilepsy. Diffuse axonal injury was found in six patients, five of the mildest type (grade 1) and one of grade 2. No patient had diffuse thalamic damage but one had a small focal ischaemic lesion in the thalamus. No patient had severe ischaemic brain damage, but three had moderate lesions which were bilateral in only one. No patient had severe cortical contusions. In conclusion, the dominant lesion was focal damage from an evacuated intracranial haematoma. Severe diffuse damage was not found, with diffuse axonal injury only mild and thalamic damage in only one patient. PMID:11561038
Structural modifications induced by ion irradiation and temperature in boron carbide B4C
NASA Astrophysics Data System (ADS)
Victor, G.; Pipon, Y.; Bérerd, N.; Toulhoat, N.; Moncoffre, N.; Djourelov, N.; Miro, S.; Baillet, J.; Pradeilles, N.; Rapaud, O.; Maître, A.; Gosset, D.
2015-12-01
Already used as neutron absorber in the current French nuclear reactors, boron carbide (B4C) is also considered in the future Sodium Fast Reactors of the next generation (Gen IV). Due to severe irradiation conditions occurring in these reactors, it is of primary importance that this material presents a high structural resistance under irradiation, both in the ballistic and electronic damage regimes. Previous works have shown an important structural resistance of boron carbide even at high neutron fluences. Nevertheless, the structural modification mechanisms due to irradiation are not well understood. Therefore the aim of this paper is to study structural modifications induced in B4C samples in different damage regimes. The boron carbide pellets were shaped and sintered by using spark plasma sintering method. They were then irradiated in several conditions at room temperature or 800 °C, either by favoring the creation of ballistic damage (between 1 and 3 dpa), or by favoring the electronic excitations using 100 MeV swift iodine ions (Se ≈ 15 keV/nm). Ex situ micro-Raman spectroscopy and Doppler broadening of annihilation radiation technique with variable energy slow positrons were coupled to follow the evolution of the B4C structure under irradiation.
Building destruction from waves and surge on the bolivar peninsula during hurricane ike
Kennedy, A.; Rogers, S.; Sallenger, A.; Gravois, U.; Zachry, B.; Dosa, M.; Zarama, F.
2011-01-01
The Bolivar Peninsula in Texas was severely impacted by Hurricane Ike with strong winds, large waves, widespread inundation, and severe damage. This paper examines the wave and surge climate on Bolivar during the storm and the consequent survival and destruction of buildings. Emphasis is placed on differences between buildings that survived (with varying degrees of damage) and buildings that were completely destroyed. Building elevations are found to be the primary indicator of survival for areas with large waves. Here, buildings that were sufficiently elevated above waves and surge suffered relatively little structural damage, while houses at lower elevations were impacted by large waves and generally completely destroyed. In many areas, the transition from destruction to survival was over a very small elevation range of around 0.5 m. In areas where waves were smaller, survival was possible at much lower elevations. Higher houses that were not inundated still survived, but well-built houses at lower elevations could also survive as the waves were not large enough to cause structural damage. However, the transition height where waves became damaging could not be determined from this study. ?? 2011 American Society of Civil Engineers.
Fiber optic system for deflection and damage detection in morphing wing structures
NASA Astrophysics Data System (ADS)
Scheerer, M.; Djinovic, Z.; Schüller, M.
2013-04-01
Within the EC Clean Sky - Smart Fixed Wing Aircraft initiative concepts for actuating morphing wing structures are under development. In order for developing a complete integrated system including the actuation, the structure to be actuated and the closed loop control unit a hybrid deflection and damage monitoring system is required. The aim of the project "FOS3D" is to develop and validate a fiber optic sensing system based on low-coherence interferometry for simultaneous deflection and damage monitoring. The proposed system uses several distributed and multiplexed fiber optic Michelson interferometers to monitor the strain distribution over the actuated part. In addition the same sensor principle will be used to acquire and locate the acoustic emission signals originated from the onset and growth of defects like impact damages, cracks and delamination's. Within this paper the authors present the concept, analyses and first experimental results of the mentioned system.
NASA Astrophysics Data System (ADS)
Clément, A.; Laurens, S.
2011-07-01
The Structural Health Monitoring of civil structures subjected to ambient vibrations is very challenging. Indeed, the variations of environmental conditions and the difficulty to characterize the excitation make the damage detection a hard task. Auto-regressive (AR) models coefficients are often used as damage sensitive feature. The presented work proposes a comparison of the AR approach with a state-space feature formed by the Jacobian matrix of the dynamical process. Since the detection of damage can be formulated as a novelty detection problem, Mahalanobis distance is applied to track new points from an undamaged reference collection of feature vectors. Data from a concrete beam subjected to temperature variations and damaged by several static loading are analyzed. It is observed that the damage sensitive features are effectively sensitive to temperature variations. However, the use of the Mahalanobis distance makes possible the detection of cracking with both of them. Early damage (before cracking) is only revealed by the AR coefficients with a good sensibility.
NASA Technical Reports Server (NTRS)
Avery, D. E.
1984-01-01
A flight-weight, metallic thermal protection system (TPS) model applicable to Earth-entry and hypersonic-cruise vehicles was subjected to multiple cycles of both radiant and aerothermal heating in order to evaluate its aerothermal performance, structural integrity, and damage tolerance. The TPS was designed for a maximum operating temperature of 2060 R and featured a shingled, corrugation-stiffened corrugated-skin heat shield of Rene 41, a nickel-base alloy. The model was subjected to 10 radiant heating tests and to 3 radiant preheat/aerothermal tests. Under radiant-heating conditions with a maximum surface temperature of 2050 R, the TPS performed as designed and limited the primary structure away from the support ribs to temperatures below 780 R. During the first attempt at aerothermal exposure, a failure in the panel-holder test fixture severely damaged the model. However, two radiant preheat/aerothermal tests were made with the damaged model to test its damage tolerance. During these tests, the damaged area did not enlarge; however, the rapidly increasing structural temperature measuring during these tests indicates that had the damaged area been exposed to aerodynamic heating for the entire trajectory, an aluminum burn-through would have occurred.
Assessment of compressive failure process of cortical bone materials using damage-based model.
Ng, Theng Pin; R Koloor, S S; Djuansjah, J R P; Abdul Kadir, M R
2017-02-01
The main failure factors of cortical bone are aging or osteoporosis, accident and high energy trauma or physiological activities. However, the mechanism of damage evolution coupled with yield criterion is considered as one of the unclear subjects in failure analysis of cortical bone materials. Therefore, this study attempts to assess the structural response and progressive failure process of cortical bone using a brittle damaged plasticity model. For this reason, several compressive tests are performed on cortical bone specimens made of bovine femur, in order to obtain the structural response and mechanical properties of the material. Complementary finite element (FE) model of the sample and test is prepared to simulate the elastic-to-damage behavior of the cortical bone using the brittle damaged plasticity model. The FE model is validated in a comparative method using the predicted and measured structural response as load-compressive displacement through simulation and experiment. FE results indicated that the compressive damage initiated and propagated at central region where maximum equivalent plastic strain is computed, which coincided with the degradation of structural compressive stiffness followed by a vast amount of strain energy dissipation. The parameter of compressive damage rate, which is a function dependent on damage parameter and the plastic strain is examined for different rates. Results show that considering a similar rate to the initial slope of the damage parameter in the experiment would give a better sense for prediction of compressive failure. Copyright © 2016 Elsevier Ltd. All rights reserved.
Aftershock collapse vulnerability assessment of reinforced concrete frame structures
Raghunandan, Meera; Liel, Abbie B.; Luco, Nicolas
2015-01-01
In a seismically active region, structures may be subjected to multiple earthquakes, due to mainshock–aftershock phenomena or other sequences, leaving no time for repair or retrofit between the events. This study quantifies the aftershock vulnerability of four modern ductile reinforced concrete (RC) framed buildings in California by conducting incremental dynamic analysis of nonlinear MDOF analytical models. Based on the nonlinear dynamic analysis results, collapse and damage fragility curves are generated for intact and damaged buildings. If the building is not severely damaged in the mainshock, its collapse capacity is unaffected in the aftershock. However, if the building is extensively damaged in the mainshock, there is a significant reduction in its collapse capacity in the aftershock. For example, if an RC frame experiences 4% or more interstory drift in the mainshock, the median capacity to resist aftershock shaking is reduced by about 40%. The study also evaluates the effectiveness of different measures of physical damage observed in the mainshock-damaged buildings for predicting the reduction in collapse capacity of the damaged building in subsequent aftershocks. These physical damage indicators for the building are chosen such that they quantify the qualitative red tagging (unsafe for occupation) criteria employed in post-earthquake evaluation of RC frames. The results indicated that damage indicators related to the drift experienced by the damaged building best predicted the reduced aftershock collapse capacities for these ductile structures.
Structural health monitoring of helicopter hard landing using 3D digital image correlation
NASA Astrophysics Data System (ADS)
LeBlanc, Bruce; Niezrecki, Christopher; Avitabile, Peter
2010-03-01
During operation of vehicles and structures, excessive transient loading can lead to reduced fatigue life and even mechanical failure. It has been shown that when a structure undergoes a damaging sequence of events, such as those occurring during a helicopter hard landing, the structural health of a specimen can be severely affected. In order to effectively quantify damage and monitor the structural health of the specimen, experimental data is required across a wide area of the helicopter. Within this paper the use of three-dimensional (3D) digital image correlation (DIC) and dynamic photogrammetry (DP) is examined as a possible method to acquire the necessary data to perform structural health monitoring in a non-obtrusive manner. DIC and DP are a non-contacting measurement techniques that utilizes a stereo pair of digital cameras to track prescribed surface pattern or optical targets placed on the structure. The approaches can provide global information about changes to the structure over the entire field of view. A scale laboratory test is performed on a helicopter to simulate several loading scenarios. The changes in the structural shape and strain field of the model helicopter fuselage as a direct result of the loadings are identified. The tests demonstrate that this technique is a valid way to determine the damage inflicted on the structure due to an excessive applied loading or dynamic maneuver. Practical applications and common limitations of the technique are discussed.
NASA Astrophysics Data System (ADS)
Khazaeli, S.; Ravandi, A. G.; Banerji, S.; Bagchi, A.
2016-04-01
Recently, data-driven models for Structural Health Monitoring (SHM) have been of great interest among many researchers. In data-driven models, the sensed data are processed to determine the structural performance and evaluate the damages of an instrumented structure without necessitating the mathematical modeling of the structure. A framework of data-driven models for online assessment of the condition of a structure has been developed here. The developed framework is intended for automated evaluation of the monitoring data and structural performance by the Internet technology and resources. The main challenges in developing such framework include: (a) utilizing the sensor measurements to estimate and localize the induced damage in a structure by means of signal processing and data mining techniques, and (b) optimizing the computing and storage resources with the aid of cloud services. The main focus in this paper is to demonstrate the efficiency of the proposed framework for real-time damage detection of a multi-story shear-building structure in two damage scenarios (change in mass and stiffness) in various locations. Several features are extracted from the sensed data by signal processing techniques and statistical methods. Machine learning algorithms are deployed to select damage-sensitive features as well as classifying the data to trace the anomaly in the response of the structure. Here, the cloud computing resources from Amazon Web Services (AWS) have been used to implement the proposed framework.
NASA Astrophysics Data System (ADS)
Martínez, Darwin; Mahalingam, Jamuna J.; Soddu, Andrea; Franco, Hugo; Lepore, Natasha; Laureys, Steven; Gómez, Francisco
2015-01-01
Disorders of consciousness (DOC) are a consequence of a variety of severe brain injuries. DOC commonly results in anatomical brain modifications, which can affect cortical and sub-cortical brain structures. Postmortem studies suggest that severity of brain damage correlates with level of impairment in DOC. In-vivo studies in neuroimaging mainly focus in alterations on single structures. Recent evidence suggests that rather than one, multiple brain regions can be simultaneously affected by this condition. In other words, DOC may be linked to an underlying cerebral network of structural damage. Recently, geometrical spatial relationships among key sub-cortical brain regions, such as left and right thalamus and brain stem, have been used for the characterization of this network. This approach is strongly supported on automatic segmentation processes, which aim to extract regions of interests without human intervention. Nevertheless, patients with DOC usually present massive structural brain changes. Therefore, segmentation methods may highly influence the characterization of the underlying cerebral network structure. In this work, we evaluate the level of characterization obtained by using the spatial relationships as descriptor of a sub-cortical cerebral network (left and right thalamus) in patients with DOC, when different segmentation approaches are used (FSL, Free-surfer and manual segmentation). Our results suggest that segmentation process may play a critical role for the construction of robust and reliable structural characterization of DOC conditions.
Chan, Eugene; Rose, L R Francis; Wang, Chun H
2015-05-01
Existing damage imaging algorithms for detecting and quantifying structural defects, particularly those based on diffraction tomography, assume far-field conditions for the scattered field data. This paper presents a major extension of diffraction tomography that can overcome this limitation and utilises a near-field multi-static data matrix as the input data. This new algorithm, which employs numerical solutions of the dynamic Green's functions, makes it possible to quantitatively image laminar damage even in complex structures for which the dynamic Green's functions are not available analytically. To validate this new method, the numerical Green's functions and the multi-static data matrix for laminar damage in flat and stiffened isotropic plates are first determined using finite element models. Next, these results are time-gated to remove boundary reflections, followed by discrete Fourier transform to obtain the amplitude and phase information for both the baseline (damage-free) and the scattered wave fields. Using these computationally generated results and experimental verification, it is shown that the new imaging algorithm is capable of accurately determining the damage geometry, size and severity for a variety of damage sizes and shapes, including multi-site damage. Some aspects of minimal sensors requirement pertinent to image quality and practical implementation are also briefly discussed. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Krasnoveikin, V. A.; Kozulin, A. A.; Skripnyak, V. A.
2017-11-01
Severe plastic deformation by equal channel angular pressing has been performed to produce light aluminum and magnesium alloy billets with ultrafine-grained structure. The physical and mechanical properties of the processed alloys are examined by studying their microstructure, measuring microhardness, yield strength, and uniaxial tensile strength. A nondestructive testing technique using three-dimensional X-ray tomography is proposed for detecting internal structural defects and monitoring damage formation in the structure of alloys subjected to severe plastic deformation. The investigation results prove the efficiency of the chosen method and selected mode of producing ultrafine-grained light alloys.
Dynamic permeability in fault damage zones induced by repeated coseismic fracturing events
NASA Astrophysics Data System (ADS)
Aben, F. M.; Doan, M. L.; Mitchell, T. M.
2017-12-01
Off-fault fracture damage in upper crustal fault zones change the fault zone properties and affect various co- and interseismic processes. One of these properties is the permeability of the fault damage zone rocks, which is generally higher than the surrounding host rock. This allows large-scale fluid flow through the fault zone that affects fault healing and promotes mineral transformation processes. Moreover, it might play an important role in thermal fluid pressurization during an earthquake rupture. The damage zone permeability is dynamic due to coseismic damaging. It is crucial for earthquake mechanics and for longer-term processes to understand how the dynamic permeability structure of a fault looks like and how it evolves with repeated earthquakes. To better detail coseismically induced permeability, we have performed uniaxial split Hopkinson pressure bar experiments on quartz-monzonite rock samples. Two sample sets were created and analyzed: single-loaded samples subjected to varying loading intensities - with damage varying from apparently intact to pulverized - and samples loaded at a constant intensity but with a varying number of repeated loadings. The first set resembles a dynamic permeability structure created by a single large earthquake. The second set resembles a permeability structure created by several earthquakes. After, the permeability and acoustic velocities were measured as a function of confining pressure. The permeability in both datasets shows a large and non-linear increase over several orders of magnitude (from 10-20 up to 10-14 m2) with an increasing amount of fracture damage. This, combined with microstructural analyses of the varying degrees of damage, suggests a percolation threshold. The percolation threshold does not coincide with the pulverization threshold. With increasing confining pressure, the permeability might drop up to two orders of magnitude, which supports the possibility of large coseismic fluid pulses over relatively large distances along a fault. Also, a relatively small threshold could potentially increase permeability in a large volume of rock, given that previous earthquakes already damaged these rocks.
USDA-ARS?s Scientific Manuscript database
Polyphenols are natural substances with variable phenolic structures and are found in vegetables, fruits, grains, bark, roots, tea, and wine. There are over 8000 polyphenolic structures identified in plants, but edible plants contain only several hundred polyphenolic structures. Recent interest in...
NASA Technical Reports Server (NTRS)
Przekop, Adam; Jegley, Dawn C.; Lovejoy, Andrew E.; Rouse, Marshall; Wu, Hsi-Yung T.
2016-01-01
The Environmentally Responsible Aviation Project aimed to develop aircraft technologies enabling significant fuel burn and community noise reductions. Small incremental changes to the conventional metallic alloy-based 'tube and wing' configuration were not sufficient to achieve the desired metrics. One airframe concept identified by the project as having the potential to dramatically improve aircraft performance was a composite-based hybrid wing body configuration. Such a concept, however, presented inherent challenges stemming from, among other factors, the necessity to transfer wing loads through the entire center fuselage section which accommodates a pressurized cabin confined by flat or nearly flat panels. This paper discusses a finite element analysis and the testing of a large-scale hybrid wing body center section structure developed and constructed to demonstrate that the Pultruded Rod Stitched Efficient Unitized Structure concept can meet these challenging demands of the next generation airframes. Part II of the paper considers the final test to failure of the test article in the presence of an intentionally inflicted severe discrete source damage under the wing up-bending loading condition. Finite element analysis results are compared with measurements acquired during the test and demonstrate that the hybrid wing body test article was able to redistribute and support the required design loads in a severely damaged condition.
Method of repairing discontinuity in fiberglass structures
NASA Technical Reports Server (NTRS)
Gelb, L. L.; Helbert, W. B., Jr.; Enie, R. B.; Mulliken, R. F. (Inventor)
1974-01-01
Damaged fiberglass structures are repaired by substantially filling the irregular surfaced damaged area with a liquid, self-curing resin, preferably an epoxy resin mixed with chopped fiberglass, and then applying to the resin surface the first of several woven fiberglass swatches which has stitching in a zig-zag pattern parallel to each of its edges and a fringe of warp and fill glass fibers about the edges outward of the stitching. The method is especially applicable to repair of fiberglass rocket engine casings and is particularly advantageous since it restores the repaired fiberglass structure to substantially its original strength without any significant changes in the geometry or mass of the structure.
Structural damages of L'Aquila (Italy) earthquake
NASA Astrophysics Data System (ADS)
Kaplan, H.; Bilgin, H.; Yilmaz, S.; Binici, H.; Öztas, A.
2010-03-01
On 6 April 2009 an earthquake of magnitude 6.3 occurred in L'Aquila city, Italy. In the city center and surrounding villages many masonry and reinforced concrete (RC) buildings were heavily damaged or collapsed. After the earthquake, the inspection carried out in the region provided relevant results concerning the quality of the materials, method of construction and the performance of the structures. The region was initially inhabited in the 13th century and has many historic structures. The main structural materials are unreinforced masonry (URM) composed of rubble stone, brick, and hollow clay tile. Masonry units suffered the worst damage. Wood flooring systems and corrugated steel roofs are common in URM buildings. Moreover, unconfined gable walls, excessive wall thicknesses without connection with each other are among the most common deficiencies of poorly constructed masonry structures. These walls caused an increase in earthquake loads. The quality of the materials and the construction were not in accordance with the standards. On the other hand, several modern, non-ductile concrete frame buildings have collapsed. Poor concrete quality and poor reinforcement detailing caused damage in reinforced concrete structures. Furthermore, many structural deficiencies such as non-ductile detailing, strong beams-weak columns and were commonly observed. In this paper, reasons why the buildings were damaged in the 6 April 2009 earthquake in L'Aquila, Italy are given. Some suggestions are made to prevent such disasters in the future.
Samoilov, M O; Churilova, A V; Glushchenko, T S
2015-01-01
In 5 groups of rats (6 animals in each), the changes of neurons in hippocampal fields CA1 and CA4 were studied 7 days after severe hypobaric hypoxia (180 mm Hg, for 3 h) preceded by various numbers (1, 3 and 6) of sessions of preconditioning (PC) by mild hypobaric hypoxia (360 mm Hg, for 2 h, 24 h prior to severe hypoxia). It was found that a single session of PC did not prevent the damage to the structure of neurons and their death after exposure to severe hypoxia. Meanwhile, 6, and especially 3 sessions of PC induced protective mechanisms of neuronal damage prevention. In rats after 6 sessions of PC, unlike those exposed to 3 sessions, mild chromatolysis of hippocampal neurons was demonstrated. This could result from prolonged hypermetabolic activity of neurons and indicate their functional overloading.
Stewart, James A.; Brookman, G.; Price, Patrick Michael; ...
2018-04-25
In this study, the evolution and characterization of single-isolated-ion-strikes are investigated by combining atomistic simulations with selected-area electron diffraction (SAED) patterns generated from these simulations. Five molecular dynamics simulations are performed for a single 20 keV primary knock-on atom in bulk crystalline Si. The resulting cascade damage is characterized in two complementary ways. First, the individual cascade events are conventionally quantified through the evolution of the number of defects and the atomic (volumetric) strain associated with these defect structures. These results show that (i) the radiation damage produced is consistent with the Norgett, Robinson, and Torrens model of damage productionmore » and (ii) there is a net positive volumetric strain associated with the cascade structures. Second, virtual SAED patterns are generated for the resulting cascade-damaged structures along several zone axes. The analysis of the corresponding diffraction patterns shows the SAED spots approximately doubling in size, on average, due to broadening induced by the defect structures. Furthermore, the SAED spots are observed to exhibit an average radial outward shift between 0.33% and 0.87% depending on the zone axis. Finally, this characterization approach, as utilized here, is a preliminary investigation in developing methodologies and opportunities to link experimental observations with atomistic simulations to elucidate microstructural damage states.« less
Structural health monitoring in composite materials using frequency response methods
NASA Astrophysics Data System (ADS)
Kessler, Seth S.; Spearing, S. Mark; Atalla, Mauro J.; Cesnik, Carlos E. S.; Soutis, Constantinos
2001-08-01
Cost effective and reliable damage detection is critical for the utilization of composite materials in structural applications. Non-destructive evaluation techniques (e.g. ultrasound, radiography, infra-red imaging) are available for use during standard repair and maintenance cycles, however by comparison to the techniques used for metals these are relatively expensive and time consuming. This paper presents part of an experimental and analytical survey of candidate methods for the detection of damage in composite materials. The experimental results are presented for the application of modal analysis techniques applied to rectangular laminated graphite/epoxy specimens containing representative damage modes, including delamination, transverse ply cracks and through-holes. Changes in natural frequencies and modes were then found using a scanning laser vibrometer, and 2-D finite element models were created for comparison with the experimental results. The models accurately predicted the response of the specimems at low frequencies, but the local excitation and coalescence of higher frequency modes make mode-dependent damage detection difficult and most likely impractical for structural applications. The frequency response method was found to be reliable for detecting even small amounts of damage in a simple composite structure, however the potentially important information about damage type, size, location and orientation were lost using this method since several combinations of these variables can yield identical response signatures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart, James A.; Brookman, G.; Price, Patrick Michael
In this study, the evolution and characterization of single-isolated-ion-strikes are investigated by combining atomistic simulations with selected-area electron diffraction (SAED) patterns generated from these simulations. Five molecular dynamics simulations are performed for a single 20 keV primary knock-on atom in bulk crystalline Si. The resulting cascade damage is characterized in two complementary ways. First, the individual cascade events are conventionally quantified through the evolution of the number of defects and the atomic (volumetric) strain associated with these defect structures. These results show that (i) the radiation damage produced is consistent with the Norgett, Robinson, and Torrens model of damage productionmore » and (ii) there is a net positive volumetric strain associated with the cascade structures. Second, virtual SAED patterns are generated for the resulting cascade-damaged structures along several zone axes. The analysis of the corresponding diffraction patterns shows the SAED spots approximately doubling in size, on average, due to broadening induced by the defect structures. Furthermore, the SAED spots are observed to exhibit an average radial outward shift between 0.33% and 0.87% depending on the zone axis. Finally, this characterization approach, as utilized here, is a preliminary investigation in developing methodologies and opportunities to link experimental observations with atomistic simulations to elucidate microstructural damage states.« less
NASA Astrophysics Data System (ADS)
Stewart, J. A.; Brookman, G.; Price, P.; Franco, M.; Ji, W.; Hattar, K.; Dingreville, R.
2018-04-01
The evolution and characterization of single-isolated-ion-strikes are investigated by combining atomistic simulations with selected-area electron diffraction (SAED) patterns generated from these simulations. Five molecular dynamics simulations are performed for a single 20 keV primary knock-on atom in bulk crystalline Si. The resulting cascade damage is characterized in two complementary ways. First, the individual cascade events are conventionally quantified through the evolution of the number of defects and the atomic (volumetric) strain associated with these defect structures. These results show that (i) the radiation damage produced is consistent with the Norgett, Robinson, and Torrens model of damage production and (ii) there is a net positive volumetric strain associated with the cascade structures. Second, virtual SAED patterns are generated for the resulting cascade-damaged structures along several zone axes. The analysis of the corresponding diffraction patterns shows the SAED spots approximately doubling in size, on average, due to broadening induced by the defect structures. Furthermore, the SAED spots are observed to exhibit an average radial outward shift between 0.33% and 0.87% depending on the zone axis. This characterization approach, as utilized here, is a preliminary investigation in developing methodologies and opportunities to link experimental observations with atomistic simulations to elucidate microstructural damage states.
Spatially Informed Plant PRA Models for Security Assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wheeler, Timothy A.; Thomas, Willard; Thornsbury, Eric
2006-07-01
Traditional risk models can be adapted to evaluate plant response for situations where plant systems and structures are intentionally damaged, such as from sabotage or terrorism. This paper describes a process by which traditional risk models can be spatially informed to analyze the effects of compound and widespread harsh environments through the use of 'damage footprints'. A 'damage footprint' is a spatial map of regions of the plant (zones) where equipment could be physically destroyed or disabled as a direct consequence of an intentional act. The use of 'damage footprints' requires that the basic events from the traditional probabilistic riskmore » assessment (PRA) be spatially transformed so that the failure of individual components can be linked to the destruction of or damage to specific spatial zones within the plant. Given the nature of intentional acts, extensive modifications must be made to the risk models to account for the special nature of the 'initiating events' associated with deliberate adversary actions. Intentional acts might produce harsh environments that in turn could subject components and structures to one or more insults, such as structural, fire, flood, and/or vibration and shock damage. Furthermore, the potential for widespread damage from some of these insults requires an approach that addresses the impacts of these potentially severe insults even when they occur in locations distant from the actual physical location of a component or structure modeled in the traditional PRA. (authors)« less
Information-theoretical noninvasive damage detection in bridge structures
NASA Astrophysics Data System (ADS)
Sudu Ambegedara, Amila; Sun, Jie; Janoyan, Kerop; Bollt, Erik
2016-11-01
Damage detection of mechanical structures such as bridges is an important research problem in civil engineering. Using spatially distributed sensor time series data collected from a recent experiment on a local bridge in Upper State New York, we study noninvasive damage detection using information-theoretical methods. Several findings are in order. First, the time series data, which represent accelerations measured at the sensors, more closely follow Laplace distribution than normal distribution, allowing us to develop parameter estimators for various information-theoretic measures such as entropy and mutual information. Second, as damage is introduced by the removal of bolts of the first diaphragm connection, the interaction between spatially nearby sensors as measured by mutual information becomes weaker, suggesting that the bridge is "loosened." Finally, using a proposed optimal mutual information interaction procedure to prune away indirect interactions, we found that the primary direction of interaction or influence aligns with the traffic direction on the bridge even after damaging the bridge.
Damage Tolerance and Reliability of Turbine Engine Components
NASA Technical Reports Server (NTRS)
Chamis, Christos C.
1999-01-01
A formal method is described to quantify structural damage tolerance and reliability in the presence of multitude of uncertainties in turbine engine components. The method is based at the materials behaviour level where primitive variables with their respective scatters are used to describe the behavior. Computational simulation is then used to propagate those uncertainties to the structural scale where damage tolerance and reliability are usually specified. Several sample cases are described to illustrate the effectiveness, versatility, and maturity of the method. Typical results from these methods demonstrate that the methods are mature and that they can be used for future strategic projections and planning to assure better, cheaper, faster, products for competitive advantages in world markets. These results also indicate that the methods are suitable for predicting remaining life in aging or deteriorating structures.
Damage Tolerance and Reliability of Turbine Engine Components
NASA Technical Reports Server (NTRS)
Chamis, Christos C.
1998-01-01
A formal method is described to quantify structural damage tolerance and reliability in the presence of multitude of uncertainties in turbine engine components. The method is based at the materials behavior level where primitive variables with their respective scatters are used to describe that behavior. Computational simulation is then used to propagate those uncertainties to the structural scale where damage tolerance and reliability are usually specified. Several sample cases are described to illustrate the effectiveness, versatility, and maturity of the method. Typical results from these methods demonstrate that the methods are mature and that they can be used for future strategic projections and planning to assure better, cheaper, faster products for competitive advantages in world markets. These results also indicate that the methods are suitable for predicting remaining life in aging or deteriorating structures.
NASA Technical Reports Server (NTRS)
McQuigg, Thomas D.
2011-01-01
A better understanding of the effect of impact damage on composite structures is necessary to give the engineer an ability to design safe, efficient structures. Current composite structures suffer severe strength reduction under compressive loading conditions, due to even light damage, such as from low velocity impact. A review is undertaken to access the current state-of-development in the areas of experimental testing, and analysis methods. A set of experiments on honeycomb core sandwich panels, with thin woven fiberglass cloth facesheets, is described, which includes detailed instrumentation and unique observation techniques.
Bojórquez, Edén; Reyes-Salazar, Alfredo; Ruiz, Sonia E; Terán-Gilmore, Amador
2014-01-01
Several studies have been devoted to calibrate damage indices for steel and reinforced concrete members with the purpose of overcoming some of the shortcomings of the parameters currently used during seismic design. Nevertheless, there is a challenge to study and calibrate the use of such indices for the practical structural evaluation of complex structures. In this paper, an energy-based damage model for multidegree-of-freedom (MDOF) steel framed structures that accounts explicitly for the effects of cumulative plastic deformation demands is used to estimate the cyclic drift capacity of steel structures. To achieve this, seismic hazard curves are used to discuss the limitations of the maximum interstory drift demand as a performance parameter to achieve adequate damage control. Then the concept of cyclic drift capacity, which incorporates information of the influence of cumulative plastic deformation demands, is introduced as an alternative for future applications of seismic design of structures subjected to long duration ground motions.
Bojórquez, Edén; Reyes-Salazar, Alfredo; Ruiz, Sonia E.; Terán-Gilmore, Amador
2014-01-01
Several studies have been devoted to calibrate damage indices for steel and reinforced concrete members with the purpose of overcoming some of the shortcomings of the parameters currently used during seismic design. Nevertheless, there is a challenge to study and calibrate the use of such indices for the practical structural evaluation of complex structures. In this paper, an energy-based damage model for multidegree-of-freedom (MDOF) steel framed structures that accounts explicitly for the effects of cumulative plastic deformation demands is used to estimate the cyclic drift capacity of steel structures. To achieve this, seismic hazard curves are used to discuss the limitations of the maximum interstory drift demand as a performance parameter to achieve adequate damage control. Then the concept of cyclic drift capacity, which incorporates information of the influence of cumulative plastic deformation demands, is introduced as an alternative for future applications of seismic design of structures subjected to long duration ground motions. PMID:25089288
A model for the progressive failure of laminated composite structural components
NASA Technical Reports Server (NTRS)
Allen, D. H.; Lo, D. C.
1991-01-01
Laminated continuous fiber polymeric composites are capable of sustaining substantial load induced microstructural damage prior to component failure. Because this damage eventually leads to catastrophic failure, it is essential to capture the mechanics of progressive damage in any cogent life prediction model. For the past several years the authors have been developing one solution approach to this problem. In this approach the mechanics of matrix cracking and delamination are accounted for via locally averaged internal variables which account for the kinematics of microcracking. Damage progression is predicted by using phenomenologically based damage evolution laws which depend on the load history. The result is a nonlinear and path dependent constitutive model which has previously been implemented to a finite element computer code for analysis of structural components. Using an appropriate failure model, this algorithm can be used to predict component life. In this paper the model will be utilized to demonstrate the ability to predict the load path dependence of the damage and stresses in plates subjected to fatigue loading.
Computation of structural flexibility for bridge health monitoring using ambient modal data
DOT National Transportation Integrated Search
1996-01-01
The issues surrounding the use of ambient vibration modes for the location of structural damage via dynamically : measured flexibility are examined. Several methods for obtaining the required mass-normalized : dynamic mode shapes from ambient modal d...
Damage detection based on acceleration data using artificial immune system
NASA Astrophysics Data System (ADS)
Chartier, Sandra; Mita, Akira
2009-03-01
Nowadays, Structural Health Monitoring (SHM) is essential in order to prevent damages occurrence in civil structures. This is a particularly important issue as the number of aged structures is increasing. Damage detection algorithms are often based on changes in the modal properties like natural frequencies, modal shapes and modal damping. In this paper, damage detection is completed by using Artificial Immune System (AIS) theory directly on acceleration data. Inspired from the biological immune system, AIS is composed of several models like negative selection which has a great potential for this study. The negative selection process relies on the fact that T-cells, after their maturation, are sensitive to non self cells and can not detect self cells. Acceleration data were provided by using the numerical model of a 3-story frame structure. Damages were introduced, at particular times, by reduction of story's stiffness. Based on these acceleration data, undamaged data (equivalent to self data) and damaged data (equivalent to non self data) can be obtained and represented in the Hamming shape-space with a binary representation. From the undamaged encoded data, detectors (equivalent to T-cells) are derived and are able to detect damaged encoded data really efficiently by using the rcontiguous bits matching rule. Indeed, more than 95% of detection can be reached when efficient combinations of parameters are used. According to the number of detected data, the localization of damages can even be determined by using the differences between story's relative accelerations. Thus, the difference which presents the highest detection rate, generally up to 89%, is directly linked to the location of damage.
Seismic vulnerability: theory and application to Algerian buildings
NASA Astrophysics Data System (ADS)
Mebarki, Ahmed; Boukri, Mehdi; Laribi, Abderrahmane; Farsi, Mohammed; Belazougui, Mohamed; Kharchi, Fattoum
2014-04-01
When dealing with structural damages, under the effect of natural hazards such as earthquakes, it is still a scientific challenge to predict the potential damages, before occurrence of a given hazard, as well as to evaluate the damages once the earthquake has occurred. In the present study, two distinct methods addressing these topics are developed. Thousands (˜54,000) of existing buildings damaged during the Boumerdes earthquake that occurred in Algeria (Mw = 6.8, May 21, 2003) are considered in order to study their accuracy and sensitivity. Once an earthquake has occurred, quick evaluations of the damages are required in order to distinguish which structures should be demolished or evacuated immediately from those which can be kept in service without evacuation of its inhabitants. For this purpose, visual inspections are performed by trained and qualified engineers. For the case of Algeria, an evaluation form has been developed and is still in use since the early 80s: Five categories of damages are considered (no damage or very slight, slight, moderate, major, and very severe/collapse). This paper develops a theoretical methodology that processes the observed damages caused to the structural and nonstructural components (foundations, roofs, slabs, walls, beams, columns, fillings, partition walls, stairways, balconies, etc.), in order to help the evaluator to derive the global damage evaluation. This theoretical methodology transforms the damage category into a corresponding "residual" risk of failure ranging from zero (no damage) to one (complete damage). The global failure risk, in fact its corresponding damage category, is then derived according to given combinations of probabilistic events in order to express the influence of any component on the global damage and behavior. The method is calibrated on a set of ˜54,000 buildings inspected after Boumerdes earthquake. Almost 80 % of accordance (same damage category) is obtained, when comparing the theoretical results to the observed damages. For pre-earthquake analysis, the methodology widely used around the world relies on the prior calibration of the seismic response of the structures under given expected scenarios. As the structural response is governed by the constitutive materials and structural typology as well as the seismic input and soil conditions, the damage prediction depends intimately on the accuracy of the so-called fragility curve and response spectrum established for each type of structure (RC framed structures, confined or unconfined masonry, etc.) and soil (hard rock, soft soil, etc.). In the present study, the adaptation to Algerian buildings concerns the specific soil conditions as well as the structural dynamic response. The theoretical prediction of the expected damages is helpful for the calibration of the methodology. Thousands (˜3,700) of real structures and the damages caused by the earthquake (Algeria, Boumerdes: Mw = 6.8, May 21, 2003) are considered for the a posteriori calibration and validation process. The theoretical predictions show the importance of the elastic response spectrum, the local soil conditions, and the structural typology. Although the observed and predicted categories of damage are close, it appears that the existing form used for the visual damage inspection would still require further improvements, in order to allow easy evaluation and identification of the damage level. These methods coupled to databases, and GIS tools could be helpful for the local and technical authorities during the post-earthquake evaluation process: real time information on the damage extent at urban or regional scales as well as the extent of losses and the required resources for reconstruction, evacuation, strengthening, etc.
Indoor microbiota in severely moisture damaged homes and the impact of interventions.
Jayaprakash, Balamuralikrishna; Adams, Rachel I; Kirjavainen, Pirkka; Karvonen, Anne; Vepsäläinen, Asko; Valkonen, Maria; Järvi, Kati; Sulyok, Michael; Pekkanen, Juha; Hyvärinen, Anne; Täubel, Martin
2017-10-13
The limited understanding of microbial characteristics in moisture-damaged buildings impedes efforts to clarify which adverse health effects in the occupants are associated with the damage and to develop effective building intervention strategies. The objectives of this current study were (i) to characterize fungal and bacterial microbiota in house dust of severely moisture-damaged residences, (ii) to identify microbial taxa associated with moisture damage renovations, and (iii) to test whether the associations between the identified taxa and moisture damage are replicable in another cohort of homes. We applied bacterial 16S rRNA gene and fungal ITS amplicon sequencing complemented with quantitative PCR and chemical-analytical approaches to samples of house dust, and also performed traditional cultivation of bacteria and fungi from building material samples. Active microbial growth on building materials had significant though small influence on the house dust bacterial and fungal communities. Moisture damage interventions-including actual renovation of damaged homes and cases where families moved to another home-had only a subtle effect on bacterial community structure, seen as shifts in abundance weighted bacterial profiles after intervention. While bacterial and fungal species richness were reduced in homes that were renovated, they were not reduced for families that moved houses. Using different discriminant analysis tools, we were able identify taxa that were significantly reduced in relative abundance during renovation of moisture damage. For bacteria, the majority of candidates belonged to different families within the Actinomycetales order. Results for fungi were overall less consistent. A replication study in approximately 400 homes highlighted some of the identified taxa, confirming associations with observations of moisture damage and mold. The present study is one of the first studies to analyze changes in microbiota due to moisture damage interventions using high-throughput sequencing. Our results suggest that effects of moisture damage and moisture damage interventions may appear as changes in the abundance of individual, less common, and especially bacterial taxa, rather than in overall community structure.
Damage Tolerance and Reliability of Turbine Engine Components
NASA Technical Reports Server (NTRS)
Chamis, Christos C.
1999-01-01
This report describes a formal method to quantify structural damage tolerance and reliability in the presence of a multitude of uncertainties in turbine engine components. The method is based at the material behavior level where primitive variables with their respective scatter ranges are used to describe behavior. Computational simulation is then used to propagate the uncertainties to the structural scale where damage tolerance and reliability are usually specified. Several sample cases are described to illustrate the effectiveness, versatility, and maturity of the method. Typical results from this method demonstrate that it is mature and that it can be used to probabilistically evaluate turbine engine structural components. It may be inferred from the results that the method is suitable for probabilistically predicting the remaining life in aging or deteriorating structures, for making strategic projections and plans, and for achieving better, cheaper, faster products that give competitive advantages in world markets.
Loren D. Kellogg; Stephen J. Pilkerton
2013-01-01
Since the early 1990s, several studies have been undertaken to determine the planning requirements, productivity, costs, and residual stand damage of harvest operations in thinning treatments designed to promote development of complex forest structure in order to enhance ecological functioning and biological diversity. Th ese studies include the Oregon State...
Survivability characteristics of composite compression structure
NASA Technical Reports Server (NTRS)
Avery, John G.; Allen, M. R.; Sawdy, D.; Avery, S.
1990-01-01
Test and evaluation was performed to determine the compression residual capability of graphite reinforced composite panels following perforation by high-velocity fragments representative of combat threats. Assessments were made of the size of the ballistic damage, the effect of applied compression load at impact, damage growth during cyclic loading and residual static strength. Several fiber/matrix systems were investigated including high-strain fibers, tough epoxies, and APC-2 thermoplastic. Additionally, several laminate configurations were evaluated including hard and soft laminates and the incorporation of buffer strips and stitching for improved damage resistance of tolerance. Both panels (12 x 20-inches) and full scale box-beam components were tested to assure scalability of results. The evaluation generally showed small differences in the responses of the material systems tested. The soft laminate configurations with concentrated reinforcement exhibited the highest residual strength. Ballistic damage did not grow or increase in severity as a result of cyclic loading, and the effects of applied load at impact were not significant under the conditions tested.
Structural health monitoring using a hybrid network of self-powered accelerometer and strain sensors
NASA Astrophysics Data System (ADS)
Alavi, Amir H.; Hasni, Hassene; Jiao, Pengcheng; Lajnef, Nizar
2017-04-01
This paper presents a structural damage identification approach based on the analysis of the data from a hybrid network of self-powered accelerometer and strain sensors. Numerical and experimental studies are conducted on a plate with bolted connections to verify the method. Piezoelectric ceramic Lead Zirconate Titanate (PZT)-5A ceramic discs and PZT-5H bimorph accelerometers are placed on the surface of the plate to measure the voltage changes due to damage progression. Damage is defined by loosening or removing one bolt at a time from the plate. The results show that the PZT accelerometers provide a fairly more consistent behavior than the PZT strain sensors. While some of the PZT strain sensors are not sensitive to the changes of the boundary condition, the bimorph accelerometers capture the mode changes from undamaged to missing bolt conditions. The results corresponding to the strain sensors are better indicator to the location of damage compared to the accelerometers. The characteristics of the overall structure can be monitored with even one accelerometer. On the other hand, several PZT strain sensors might be needed to localize the damage.
Youssef, P N; Sheibani, N; Albert, D M
2011-01-01
The ability of light to enact damage on the neurosensory retina and underlying structures has been well understood for hundreds of years. While the eye has adapted several mechanisms to protect itself from such damage, certain exposures to light can still result in temporal or permanent damage. Both clinical observations and laboratory studies have enabled us to understand the various ways by which the eye can protect itself from such damage. Light or electromagnetic radiation can result in damage through photothermal, photomechanical, and photochemical mechanisms. The following review seeks to describe these various processes of injury and many of the variables, which can mitigate these modes of injury. PMID:21178995
NASA Astrophysics Data System (ADS)
Wahyudi, S. I.; Adi, H. P.
2018-04-01
Many areas of the northern coastal in Central Java, Indonesia, have been suffering from damage. One of the areas is Jepara, which has been experiencing this kind of damage for 7.6 kilometres from total 72 kilometres long beach. All damages are mostly caused by coastal erosion, sedimentation, environment and tidal flooding. Several efforts have been done, such as replanting mangroves, building revetment and groins, but it still could not mitigated the coastal damage. The purposes of this study are to map the coastal damages, to analyze handling priority and to determine coastal protection model. The method used are by identifying and plotting the coastal damage on the map, assessing score of each variable, and determining the handling priority and suitable coastal protection model. There are five levels of coastal damage used in this study, namely as light damage, medium, heavy, very heavy, and extremely heavy. Based on the priority assessment of coastal damage, it needs to be followed up by designing in detail and implementing through soft structure for example mangrove, sand nourishes and hard structure, such as breakwater, groins and revetment.
NASA Technical Reports Server (NTRS)
Bergan, Andrew; Bakuckas, John G., Jr.; Lovejoy, Andrew; Jegley, Dawn; Linton, Kim; Neal, Bert; Korkosz, Gregory; Awerbuch, Jonathan; Tan, Tein-Min
2012-01-01
Integrally stitched composite technology is an area that shows promise in enhancing the structural integrity of aircraft and aerospace structures. The most recent generation of this technology is the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept. The goal of the PRSEUS concept relevant to this test is to provide damage containment capability for composite structures while reducing overall structural weight. The National Aeronautics and Space Administration (NASA), the Federal Aviation Administration (FAA), and The Boeing Company have partnered in an effort to assess the damage containment features of a full-scale curved PRSEUS panel using the FAA Full-Scale Aircraft Structural Test Evaluation and Research (FASTER) facility. A single PRSEUS test panel was subjected to axial tension, internal pressure, and combined axial tension and internal pressure loads. The test results showed excellent performance of the PRSEUS concept. No growth of Barely Visible Impact Damage (BVID) was observed after ultimate loads were applied. With a two-bay notch severing the central stringer, damage was contained within the two-bay region well above the required limit load conditions. Catastrophic failure was well above the ultimate load level. Information describing the test panel and procedure has been previously presented, so this paper focuses on the experimental procedure, test results, nondestructive inspection results, and preliminary test and analysis correlation.
LIDAR Investigation Of The 2004 Niigata Ken Chuetsu, Japan, Earthquake
NASA Astrophysics Data System (ADS)
Kayen, R.; Pack, R. T.; Sugimoto, S.; Tanaka, H.
2005-12-01
The 23 October 2004 Niigata Ken Chuetsu, Japan, Mw 6.6 earthquake was the most significant earthquake to affect Japan since the 1995 Kobe earthquake. Forty people were killed, almost 3,000 injured, and numerous landslides destroyed entire upland villages. Landslides and permanent ground deformation caused extensive damage to roads, rail lines and other lifelines, resulting in major economic disruption. The cities and towns most significantly affected by the earthquake were Nagaoka, Ojiya, and the mountainous rural areas of Yamakoshi village and Kawaguchi town. Our EERI team traveled with a tripod mounted LIDAR (Light Detection and Ranging) unit, a scanning-laser that creates ultra high-resolution 3-D digital terrain models of the earthquake damaged surfaces the ground, structures, and life-lines. This new technology allows for rapid and remote sensing of damaged terrain. Ground-based LIDAR has an accuracy range of 0.5-2.5 cm, and can illuminate targets up to 400m away from the sensor. During a single tripod-mounted LIDAR scan of 10 minutes, several million survey points are collected and processed into an ultra-high resolution terrain model of the damaged ground or structure. There are several benefits in acquiring these LIDAR data in the initial reconnaissance effort after the earthquake. First, we record the detailed failure morphologies of damaged ground and structures in order to make measurements that are either impractical or impossible by conventional survey means. The digital terrain models allow us to enlarge, enhance and rotate data in order to visualize damage in orientations and scales not previously possible. This ability to visualize damage allows us to better understand failure modes. Finally, LIDAR allows us to archive 3-D terrain models so that the engineering community can evaluate analytical and numerical models of deformation potential against detailed field measurements. Here, we discuss the findings of this 2004 Niigata Chuetsu Earthquake (M6.6) reconnaissance presented with LIDAR examples for damage-visualization.
Developments in seismic monitoring for risk reduction
Celebi, M.
2007-01-01
This paper presents recent state-of-the-art developments to obtain displacements and drift ratios for seismic monitoring and damage assessment of buildings. In most cases, decisions on safety of buildings following seismic events are based on visual inspections of the structures. Real-time instrumental measurements using GPS or double integration of accelerations, however, offer a viable alternative. Relevant parameters, such as the type of connections and structural characteristics (including storey geometry), can be estimated to compute drifts corresponding to several pre-selected threshold stages of damage. Drift ratios determined from real-time monitoring can then be compared to these thresholds in order to estimate damage conditions drift ratios. This approach is demonstrated in three steel frame buildings in San Francisco, California. Recently recorded data of strong shaking from these buildings indicate that the monitoring system can be a useful tool in rapid assessment of buildings and other structures following an earthquake. Such systems can also be used for risk monitoring, as a method to assess performance-based design and analysis procedures, for long-term assessment of structural characteristics of a building, and as a possible long-term damage detection tool.
NASA Astrophysics Data System (ADS)
Gresil, Matthieu; Yu, Lingyu; Sutton, Mike; Guo, Siming; Pollock, Patrick
2012-04-01
The advancement of composite materials in aircraft structures has led to on increased need for effective structural health monitoring (SHM) technologies that are able to detect and assess damage present in composites structures. The work presented in this paper is interested in understanding using self-sensing piezoelectric wafer active sensors (PWAS) to conduct electromechanical impedance spectroscopy (EMIS) in glass fiber reinforced plastic (GFRP) to perform structures health monitoring. PWAS are bonded to the composite material and the EMIS method is used to analyze the changes in the structural resonance and anti-resonance. As the damage progresses in the specimen, the impedance spectrum will change. In addition, multi-physics based finite element method (MP-FEM) is used to model the electromechanical behavior of a free PWAS and its interaction with the host structure on which it is bonded. The MPFEM permits the input and the output variables to be expressed directly in electric terms while the two way electromechanical conversion is done internally in the MP_FEM formulation. To reach the goal of using the EMIS approach to detect damage, several damages models are generated on laminated GFRP structures. The effects of the modeling are carefully studied through experimental validation. A good match has been observed for low and very high frequencies.
Li, Ping; Murphy, Timothy H
2008-11-12
Filament occlusion of the middle cerebral artery (MCA) is a well accepted animal model of focal ischemia. Advantages of the model are relatively long occlusion times and a large penumbra region that simulates aspects of human stroke. Here, we use two-photon and confocal microscopy in combination with regional measurement of blood flow using laser speckle to assess the spatial relationship between the borders of the MCA ischemic territory and loss of dendrite structure, as well as the effect of reperfusion on dendritic damage in adult YFP (yellow fluorescent protein) and GFP (green fluorescent protein) C57BL/6 transgenic mice with fluorescent (predominantly layer 5) neurons. By examining the spatial extent of dendritic damage, we determined that 60 min of MCA occlusion produced a core with severe structural damage that did not recover after reperfusion (begins approximately 3.8 mm lateral to midline), a reversibly damaged area up to 0.6 mm medial to the core that recovered after reperfusion (penumbra), and a relatively structurally intact area ( approximately 1 mm wide; medial penumbra) with hypoperfusion. Loss of structure was preceded by a single ischemic depolarization 122.1 +/- 10.2 s after occlusion onset. Reperfusion of animals after 60 min of ischemia was not associated with exacerbation of damage (reperfusion injury) and resulted in a significant restoration of blebbed dendritic structure, but only within approximately 0.6 mm lateral of the dendritic damage structural border. In summary, we find that recovery of dendritic structure can occur after reperfusion after even 60 min of ischemia, but is likely restricted to a relatively small penumbra region with partial blood flow or oxygenation.
Winged Scapula: A Comprehensive Review of Surgical Treatment
Charran, Ordessia; Yilmaz, Emre; Edwards, Bryan; Muhleman, Mitchel A; Oskouian, Rod J; Tubbs, R. Shane; Loukas, Marios
2017-01-01
Winged scapula is caused by paralysis of the serratus anterior or trapezius muscles due to damage to the long thoracic or accessory nerves, resulting in loss of strength and range of motion of the shoulder. Because this nerve damage can happen in a variety of ways, initial diagnosis may be overlooked. This paper discusses the anatomical structures involved in several variations of winged scapula, the pathogenesis of winged scapula, and several historical and contemporary surgical procedures used to treat this condition. Additionally, this review builds upon the conclusions of several studies in order to suggest areas for continued research regarding the treatment of winged scapula. PMID:29456903
NASA Technical Reports Server (NTRS)
Miller, Sandi G.; Roberts, Gary D.; Kohlman, Lee W.; Heimann, Paula J.; Pereira, J. Michael; Ruggeri, Charles R.; Martin, Richard E.; McCorkle, Linda S.
2015-01-01
Impact damage tolerance and damage resistance is a critical metric for application of polymer matrix composites where failure caused by impact damage could compromise structural performance and safety. As a result, several materials and/or design approaches to improve impact damage tolerance have been investigated over the past several decades. Many composite toughening methodologies impart a trade-off between increased fracture toughness and compromised in-plane strength and modulus. In large part, mechanical tests to evaluate composite damage tolerance include static methods such as Mode I, Mode II, and mixed mode failures. However, ballistic impact damage resistance does not always correlate with static properties. The intent of this paper is to evaluate the influence of a thermoplastic polyurethane veil interleave on the static and dynamic performance of composite test articles. Static coupon tests included tension, compression, double cantilever beam, and end notch flexure. Measurement of the resistance to ballistic impact damage were made to evaluate the composites response to high speed impact. The interlayer material showed a decrease of in-plane performance with only a moderate improvement to Mode I and Mode II fracture toughness. However, significant benefit to impact damage tolerance was observed through ballistic tests.
Real-time seismic monitoring and functionality assessment of a building
Celebi, M.; ,
2005-01-01
This paper presents recent developments and approaches (using GPS technology and real-time double-integration) to obtain displacements and, in turn, drift ratios, in real-time or near real-time to meet the needs of the engineering and user community in seismic monitoring and assessing the functionality and damage condition of structures. Drift ratios computed in near real-time allow technical assessment of the damage condition of a building. Relevant parameters, such as the type of connections and story structural characteristics (including geometry) are used in computing drifts corresponding to several pre-selected threshold stages of damage. Thus, drift ratios determined from real-time monitoring can be compared to pre-computed threshold drift ratios. The approaches described herein can be used for performance evaluation of structures and can be considered as building health-monitoring applications.
Recent advances to obtain real - Time displacements for engineering applications
Celebi, M.
2005-01-01
This paper presents recent developments and approaches (using GPS technology and real-time double-integration) to obtain displacements and, in turn, drift ratios, in real-time or near real-time to meet the needs of the engineering and user community in seismic monitoring and assessing the functionality and damage condition of structures. Drift ratios computed in near real-time allow technical assessment of the damage condition of a building. Relevant parameters, such as the type of connections and story structural characteristics (including geometry) are used in computing drifts corresponding to several pre-selected threshold stages of damage. Thus, drift ratios determined from real-time monitoring can be compared to pre-computed threshold drift ratios. The approaches described herein can be used for performance evaluation of structures and can be considered as building health-monitoring applications.
Acoustic Emission of Large PRSEUS Structures (Pultruded Rod Stitched Efficient Unitized Structure)
NASA Technical Reports Server (NTRS)
Horne, Michael R.; Juarez, Peter D.
2016-01-01
In the role of structural health monitoring (SHM), Acoustic Emission (AE) analysis is being investigated as an effective method for tracking damage development in large composite structures under load. Structures made using Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) for damage tolerant, light, and economical airframe construction are being pursued by The Boeing Company and NASA under the Environmentally Responsible Aircraft initiative (ERA). The failure tests of two PRSEUS substructures based on the Boeing Hybrid Wing Body fuselage concept were conducted during third quarter 2011 and second quarter 2015. One fundamental concern of these tests was determining the effectiveness of the stitched integral stiffeners to inhibit damage progression. By design, severe degradation of load carrying capability should not occur prior to Design Ultimate Load (DUL). While minor damage prior to DUL was anticipated, the integral stitching should not fail since this would allow a stiffener-skin delamination to progress rapidly and alter the transfer of load into the stiffeners. In addition, the stiffeners should not fracture because they are fundamental to structural integrity. Getting the best information from each AE sensor is a primary consideration because a sparse network of sensors is implemented. Sensitivity to stiffener-contiguous degradation is supported by sensors near the stiffeners, which increases the coverage per sensor via AE waveguide actions. Some sensors are located near potentially critical areas or "critical zones" as identified by numerical analyses. The approach is compared with the damage progression monitored by other techniques (e.g. ultrasonic C-scan).
Delamination Assessment Tool for Spacecraft Composite Structures
NASA Astrophysics Data System (ADS)
Portela, Pedro; Preller, Fabian; Wittke, Henrik; Sinnema, Gerben; Camanho, Pedro; Turon, Albert
2012-07-01
Fortunately only few cases are known where failure of spacecraft structures due to undetected damage has resulted in a loss of spacecraft and launcher mission. However, several problems related to damage tolerance and in particular delamination of composite materials have been encountered during structure development of various ESA projects and qualification testing. To avoid such costly failures during development, launch or service of spacecraft, launcher and reusable launch vehicles structures a comprehensive damage tolerance verification approach is needed. In 2009, the European Space Agency (ESA) initiated an activity called “Delamination Assessment Tool” which is led by the Portuguese company HPS Lda and includes academic and industrial partners. The goal of this study is the development of a comprehensive damage tolerance verification approach for launcher and reusable launch vehicles (RLV) structures, addressing analytical and numerical methodologies, material-, subcomponent- and component testing, as well as non-destructive inspection. The study includes a comprehensive review of current industrial damage tolerance practice resulting from ECSS and NASA standards, the development of new Best Practice Guidelines for analysis, test and inspection methods and the validation of these with a real industrial case study. The paper describes the main findings of this activity so far and presents a first iteration of a Damage Tolerance Verification Approach, which includes the introduction of novel analytical and numerical tools at an industrial level. This new approach is being put to the test using real industrial case studies provided by the industrial partners, MT Aerospace, RUAG Space and INVENT GmbH
A vibro-haptic human-machine interface for structural health monitoring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mascarenas, David; Plont, Crystal; Brown, Christina
The structural health monitoring (SHM) community’s goal has been to endow physical systems with a nervous system not unlike those commonly found in living organisms. Typically the SHM community has attempted to do this by instrumenting structures with a variety of sensors, and then applying various signal processing and classification procedures to the data in order to detect the presence of damage, the location of damage, the severity of damage, and to estimate the remaining useful life of the structure. This procedure has had some success, but we are still a long way from achieving the performance of nervous systemsmore » found in biology. This is primarily because contemporary classification algorithms do not have the performance required. In many cases expert judgment is superior to automated classification. This work introduces a new paradigm. We propose interfacing the human nervous system to the distributed sensor network located on the structure and developing new techniques to enable human-machine cooperation. Results from the field of sensory substitution suggest this should be possible. This study investigates a vibro-haptic human-machine interface for SHM. The investigation was performed using a surrogate three-story structure. The structure features three nonlinearity-inducing bumpers to simulate damage. Accelerometers are placed on each floor to measure the response of the structure to a harmonic base excitation. The accelerometer measurements are preprocessed. As a result, the preprocessed data is then encoded encoded as a vibro-tactile stimulus. Human subjects were then subjected to the vibro-tactile stimulus and asked to characterize the damage in the structure.« less
A vibro-haptic human-machine interface for structural health monitoring
Mascarenas, David; Plont, Crystal; Brown, Christina; ...
2014-11-01
The structural health monitoring (SHM) community’s goal has been to endow physical systems with a nervous system not unlike those commonly found in living organisms. Typically the SHM community has attempted to do this by instrumenting structures with a variety of sensors, and then applying various signal processing and classification procedures to the data in order to detect the presence of damage, the location of damage, the severity of damage, and to estimate the remaining useful life of the structure. This procedure has had some success, but we are still a long way from achieving the performance of nervous systemsmore » found in biology. This is primarily because contemporary classification algorithms do not have the performance required. In many cases expert judgment is superior to automated classification. This work introduces a new paradigm. We propose interfacing the human nervous system to the distributed sensor network located on the structure and developing new techniques to enable human-machine cooperation. Results from the field of sensory substitution suggest this should be possible. This study investigates a vibro-haptic human-machine interface for SHM. The investigation was performed using a surrogate three-story structure. The structure features three nonlinearity-inducing bumpers to simulate damage. Accelerometers are placed on each floor to measure the response of the structure to a harmonic base excitation. The accelerometer measurements are preprocessed. As a result, the preprocessed data is then encoded encoded as a vibro-tactile stimulus. Human subjects were then subjected to the vibro-tactile stimulus and asked to characterize the damage in the structure.« less
He, Xiao-Sheng; Xiang, Zhang; Zhou, Fei; Fu, Luo-An; Shuang, Wang
2004-05-01
The study investigated morphologically axonal calcium overloading and its relationship with axonal structural changes. Twelve SD rats were divided into an injury and a sham group. The rat model of traumatic axonal injury (TAI) by lateral head rotation was produced. The oxalate-pyroantimonate technique for calcium localization was used to process the rat's medulla oblongata tissues with thin sections observed electron-microscopically for axonal structure and calcium precipitates on it. The axonal damage in medulla oblongata appeared at 2 h post-injury, gradually became diffuse and severe, and continued to exist at 24 hours. At 2 hours, calcium precipitates were deposited on separated lamellae and axolemma, but were rarely distributed in the axoplasm. At 6 hours, calcium precipitates occurred on separated lamellae and axolemma in much higher density, but on axoplasm in extremely small amounts. Some axons, though lacking structural changes of the myelin sheath, sequestered plenty of calcium deposits on their swollen mitochondria. At 24 hours, damaged axons presented with much more severe lamellae separation and calcium deposits. Axonal calcium overloading developed in rat TAI model using lateral head rotation. This was significantly related to structural damage in the axons. These findings suggest the feasibility of using calcium antagonists in cope the management of human DAI in its very early stage.
Corrosion monitoring using high-frequency guided ultrasonic waves
NASA Astrophysics Data System (ADS)
Fromme, Paul
2014-02-01
Corrosion develops due to adverse environmental conditions during the life cycle of a range of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Both pitting corrosion and generalized corrosion leading to wall thickness loss can cause the degradation of the structural integrity. The nondestructive detection and monitoring of corrosion damage in difficult to access areas can be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic transducers with single sided access to the structure, guided wave modes were generated that penetrate through the complete thickness of the structure. The wave propagation and interference of the different guided wave modes depends on the thickness of the structure. Laboratory experiments were conducted and the wall thickness reduced by consecutive milling of the steel structure. Further measurements were conducted using accelerated corrosion in a salt water bath and the damage severity monitored. From the measured signal change due to the wave mode interference the wall thickness reduction was monitored. The high frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.
NASA Astrophysics Data System (ADS)
Prabowo, A. R.; Baek, S. J.; Lee, S. G.; Bae, D. M.; Sohn, J. M.
2018-01-01
Phenomena of impact loads on the marine structures has attracted attention to be predicted regarding its influences to structural damage. This part demands sustainable analysis and observation as tendency may vary from one to others since impact involves various scenario models and the structure itself experiences continuous development. Investigation of the damage extent can be conducted by observation on the energy behaviour during two entities involve in a contact. This study aimed to perform numerical investigation to predict structural damage by assessing absorbed strain energy represented by the internal energy during a series of ship collisions. The collision target in ship-ship interactions were determined on the single and double hulls part of a passenger ship. Tendency of the internal energy by the steel structures was summarized, and verification was presented by several crashworthiness criteria. It was found that steel structures applied by the material grades A and B produced different tendencies compared to the material grades D and E. Effect of the structural arrangement to structural responses in terms of strain and stress indicated that the single hull presented contour expansion mainly on the longitudinal directions.
Linear Static Behavior of Damaged Laminated Composite Plates and Shells
2017-01-01
A mathematical scheme is proposed here to model a damaged mechanical configuration for laminated and sandwich structures. In particular, two kinds of functions defined in the reference domain of plates and shells are introduced to weaken their mechanical properties in terms of engineering constants: a two-dimensional Gaussian function and an ellipse shaped function. By varying the geometric parameters of these distributions, several damaged configurations are analyzed and investigated through a set of parametric studies. The effect of a progressive damage is studied in terms of displacement profiles and through-the-thickness variations of stress, strain, and displacement components. To this end, a posteriori recovery procedure based on the three-dimensional equilibrium equations for shell structures in orthogonal curvilinear coordinates is introduced. The theoretical framework for the two-dimensional shell model is based on a unified formulation able to study and compare several Higher-order Shear Deformation Theories (HSDTs), including Murakami’s function for the so-called zig-zag effect. Thus, various higher-order models are used and compared also to investigate the differences which can arise from the choice of the order of the kinematic expansion. Their ability to deal with several damaged configurations is analyzed as well. The paper can be placed also in the field of numerical analysis, since the solution to the static problem at issue is achieved by means of the Generalized Differential Quadrature (GDQ) method, whose accuracy and stability are proven by a set of convergence analyses and by the comparison with the results obtained through a commercial finite element software. PMID:28773170
NASA Astrophysics Data System (ADS)
Farnan, I.; Trachenko, K.
2003-04-01
29Si nuclear magnetic resonance (NMR) is a one of the most useful probes of the local structure of silicates. One of the results of recent studies of naturally radiation damaged zircons is that there is an evolution of the local structure in both crystalline and amorphous fractions of partially metamict zircon as a function of accumulated α-dose. We have examined the evolution of this local structure within the framework of several models of damage accumulation. The total number of displaced atoms produced per α-decay as function of accumulated dose, as measured by NMR, is not consistent with the idea of multiple overlap events being responsible for the evolution of the total damaged fraction. However, increased connectivity in the damaged region as the number of α-events increases is correlated to the degree of cascade overlap. The results of large scale atomistic (MD) simulations of heavy nuclei recoils at realistic energies (70keV) are consistent with the NMR quantification and also with TEM estimates of the diameters of damaged regions. The local heterogeneity (density and bonding) in the damaged area in the simulations is consistent with the existence of connected silicate tetrahedra. Detailed experiments on the annealing of damaged zircons at 500 and 600^oC have been performed. These show that a significant energetic barrier to the recrystallisation exists at these temperatures once a small fraction of damaged material has been recrystallised. This correlates well with the degree of cascade overlap. Indicating that the more connected SiO_4 tetrahedra present this barrier. A sample with very little cascade overlap can be annealed to ˜97% crystallinity at these temperatures.
Community-level destruction of hard corals by the sea urchin Diadema setosum.
Qiu, Jian-Wen; Lau, Dickey C C; Cheang, Chi-chiu; Chow, Wing-kuen
2014-08-30
Sea urchins are common herbivores and bioeroders of coral ecosystems, but rarely have they been reported as corallivores. We determined the spatial pattern of hard coral damage due to corallivory and bioerosion by the sea urchin Diadema setosum Leske in Hong Kong waters. Coral damage was common at the northeastern sites, with 23.7 - 90.3% colonies being either collapsed or severely damaged with >25% tissue loss. Many genera of corals were impacted by the sea urchin but the damage was most obvious for the structure forming genus Platygyra. The percentage of severely damaged and collapsed coral had significant positive correlation with the abundance of D. setosum, which ranged from 0.01 to 5.2 individuals per coral head or 0.1 - 21.1 individuals m(-2) across the study sites. Remedial management actions such as sea urchin removal are urgently needed to save these fringing coral communities. Copyright © 2013 Elsevier Ltd. All rights reserved.
Multi-Dimensional Damage Detection for Surfaces and Structures
NASA Technical Reports Server (NTRS)
Williams, Martha; Lewis, Mark; Roberson, Luke; Medelius, Pedro; Gibson, Tracy; Parks, Steen; Snyder, Sarah
2013-01-01
Current designs for inflatable or semi-rigidized structures for habitats and space applications use a multiple-layer construction, alternating thin layers with thicker, stronger layers, which produces a layered composite structure that is much better at resisting damage. Even though such composite structures or layered systems are robust, they can still be susceptible to penetration damage. The ability to detect damage to surfaces of inflatable or semi-rigid habitat structures is of great interest to NASA. Damage caused by impacts of foreign objects such as micrometeorites can rupture the shell of these structures, causing loss of critical hardware and/or the life of the crew. While not all impacts will have a catastrophic result, it will be very important to identify and locate areas of the exterior shell that have been damaged by impacts so that repairs (or other provisions) can be made to reduce the probability of shell wall rupture. This disclosure describes a system that will provide real-time data regarding the health of the inflatable shell or rigidized structures, and information related to the location and depth of impact damage. The innovation described here is a method of determining the size, location, and direction of damage in a multilayered structure. In the multi-dimensional damage detection system, layers of two-dimensional thin film detection layers are used to form a layered composite, with non-detection layers separating the detection layers. The non-detection layers may be either thicker or thinner than the detection layers. The thin-film damage detection layers are thin films of materials with a conductive grid or striped pattern. The conductive pattern may be applied by several methods, including printing, plating, sputtering, photolithography, and etching, and can include as many detection layers that are necessary for the structure construction or to afford the detection detail level required. The damage is detected using a detector or sensory system, which may include a time domain reflectometer, resistivity monitoring hardware, or other resistance-based systems. To begin, a layered composite consisting of thin-film damage detection layers separated by non-damage detection layers is fabricated. The damage detection layers are attached to a detector that provides details regarding the physical health of each detection layer individually. If damage occurs to any of the detection layers, a change in the electrical properties of the detection layers damaged occurs, and a response is generated. Real-time analysis of these responses will provide details regarding the depth, location, and size estimation of the damage. Multiple damages can be detected, and the extent (depth) of the damage can be used to generate prognostic information related to the expected lifetime of the layered composite system. The detection system can be fabricated very easily using off-the-shelf equipment, and the detection algorithms can be written and updated (as needed) to provide the level of detail needed based on the system being monitored. Connecting to the thin film detection layers is very easy as well. The truly unique feature of the system is its flexibility; the system can be designed to gather as much (or as little) information as the end user feels necessary. Individual detection layers can be turned on or off as necessary, and algorithms can be used to optimize performance. The system can be used to generate both diagnostic and prognostic information related to the health of layer composite structures, which will be essential if such systems are utilized for space exploration. The technology is also applicable to other in-situ health monitoring systems for structure integrity.
GENOA-PFA: Progressive Fracture in Composites Simulated Computationally
NASA Technical Reports Server (NTRS)
Murthy, Pappu L. N.
2000-01-01
GENOA-PFA is a commercial version of the Composite Durability Structural Analysis (CODSTRAN) computer program that simulates the progression of damage ultimately leading to fracture in polymer-matrix-composite (PMC) material structures under various loading and environmental conditions. GENOA-PFA offers several capabilities not available in other programs developed for this purpose, making it preferable for use in analyzing the durability and damage tolerance of complex PMC structures in which the fiber reinforcements occur in two- and three-dimensional weaves and braids. GENOA-PFA implements a progressive-fracture methodology based on the idea that a structure fails when flaws that may initially be small (even microscopic) grow and/or coalesce to a critical dimension where the structure no longer has an adequate safety margin to avoid catastrophic global fracture. Damage is considered to progress through five stages: (1) initiation, (2) growth, (3) accumulation (coalescence of propagating flaws), (4) stable propagation (up to the critical dimension), and (5) unstable or very rapid propagation (beyond the critical dimension) to catastrophic failure. The computational simulation of progressive failure involves formal procedures for identifying the five different stages of damage and for relating the amount of damage at each stage to the overall behavior of the deteriorating structure. In GENOA-PFA, mathematical modeling of the composite physical behavior involves an integration of simulations at multiple, hierarchical scales ranging from the macroscopic (lamina, laminate, and structure) to the microscopic (fiber, matrix, and fiber/matrix interface), as shown in the figure. The code includes algorithms to simulate the progression of damage from various source defects, including (1) through-the-thickness cracks and (2) voids with edge, pocket, internal, or mixed-mode delaminations.
NASA Technical Reports Server (NTRS)
Bergan, Andrew C.; Bakuckas, John G., Jr.; Lovejoy, Andrew E.; Jegley, Dawn C.; Awerbuch, Jonathan; Tan, Tein-Min
2012-01-01
An area that shows promise in enhancing structural integrity of aircraft and aerospace structures is the integrally stitched composite technology. The most recent generation of this technology is the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept developed by Boeing Research and Technology and the National Aeronautics and Space Administration. A joint test program on the assessment of damage containment capabilities of the PRSEUS concept for curved fuselage structures was conducted recently at the Federal Aviation Administration William J. Hughes Technical Center. The panel was subjected to axial tension, internal pressure, and combined axial tension and internal pressure load conditions up to fracture, with a through-the-thickness, two-bay notch severing the central stiffener. For the purpose of future progressive failure analysis development and verification, extensive post failure nondestructive and teardown inspections were conducted. Detailed inspections were performed directly ahead of the notch tip where stable damage progression was observed. These examinations showed: 1) extensive delaminations developed ahead of the notch tip, 2) the extent and location of damage, 3) the typical damage mechanisms observed in composites, and 4) the role of stitching and warp-knitting in the failure mechanisms. The objective of this paper is to provide a summary of results from these posttest inspections.
NASA Astrophysics Data System (ADS)
Nag, A.; Mahapatra, D. Roy; Gopalakrishnan, S.
2003-10-01
A hierarchical Genetic Algorithm (GA) is implemented in a high peformance spectral finite element software for identification of delaminations in laminated composite beams. In smart structural health monitoring, the number of delaminations (or any other modes of damage) as well as their locations and sizes are no way completely known. Only known are the healthy structural configuration (mass, stiffness and damping matrices updated from previous phases of monitoring), sensor measurements and some information about the load environment. To handle such enormous complexity, a hierarchical GA is used to represent heterogeneous population consisting of damaged structures with different number of delaminations and their evolution process to identify the correct damage configuration in the structures under monitoring. We consider this similarity with the evolution process in heterogeneous population of species in nature to develop an automated procedure to decide on what possible damaged configuration might have produced the deviation in the measured signals. Computational efficiency of the identification task is demonstrated by considering a single delamination. The behavior of fitness function in GA, which is an important factor for fast convergence, is studied for single and multiple delaminations. Several advantages of the approach in terms of computational cost is discussed. Beside tackling different other types of damage configurations, further scope of research for development of hybrid soft-computing modules are highlighted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, B; Georgia Institute of Technology, Atlanta, GA; Wang, C
Purpose: To correlate the damage produced by particles of different types and qualities to cell survival on the basis of nanodosimetric analysis and advanced DNA structures in the cell nucleus. Methods: A Monte Carlo code was developed to simulate subnuclear DNA chromatin fibers (CFs) of 30nm utilizing a mean-free-path approach common to radiation transport. The cell nucleus was modeled as a spherical region containing 6000 chromatin-dense domains (CDs) of 400nm diameter, with additional CFs modeled in a sparser interchromatin region. The Geant4-DNA code was utilized to produce a particle track database representing various particles at different energies and dose quantities.more » These tracks were used to stochastically position the DNA structures based on their mean free path to interaction with CFs. Excitation and ionization events intersecting CFs were analyzed using the DBSCAN clustering algorithm for assessment of the likelihood of producing DSBs. Simulated DSBs were then assessed based on their proximity to one another for a probability of inducing cell death. Results: Variations in energy deposition to chromatin fibers match expectations based on differences in particle track structure. The quality of damage to CFs based on different particle types indicate more severe damage by high-LET radiation than low-LET radiation of identical particles. In addition, the model indicates more severe damage by protons than of alpha particles of same LET, which is consistent with differences in their track structure. Cell survival curves have been produced showing the L-Q behavior of sparsely ionizing radiation. Conclusion: Initial results indicate the feasibility of producing cell survival curves based on the Monte Carlo cell nucleus method. Accurate correlation between simulated DNA damage to cell survival on the basis of nanodosimetric analysis can provide insight into the biological responses to various radiation types. Current efforts are directed at producing cell survival curves for high-LET radiation.« less
Linguistic Structures in Stereotyped Aphasic Speech
ERIC Educational Resources Information Center
Buckingham, Hugh W., Jr.; And Others
1975-01-01
The linguistic structure of specific introductory type clauses, which appear at a relatively high frequency in the utterances of a severely brain damaged fluent aphasic with neologistic jargon speech, is examined. The analysis is restricted to one fifty-six-year-old male patient who suffered massive subdural hematoma. (SCC)
NASA Astrophysics Data System (ADS)
Sagasta, Francisco; Zitto, Miguel E.; Piotrkowski, Rosa; Benavent-Climent, Amadeo; Suarez, Elisabet; Gallego, Antolino
2018-03-01
A modification of the original b-value (Gutenberg-Richter parameter) is proposed to evaluate local damage of reinforced concrete structures subjected to dynamical loads via the acoustic emission (AE) method. The modification, shortly called energy b-value, is based on the use of the true energy of the AE signals instead of its peak amplitude, traditionally used for the calculation of b-value. The proposal is physically supported by the strong correlation between the plastic strain energy dissipated by the specimen and the true energy of the AE signals released during its deformation and cracking process, previously demonstrated by the authors in several publications. AE data analysis consisted in the use of guard sensors and the Continuous Wavelet Transform in order to separate primary and secondary emissions as much as possible according to particular frequency bands. The approach has been experimentally applied to the AE signals coming from a scaled reinforced concrete frame structure, which was subjected to sequential seismic loads of incremental acceleration peak by means of a 3 × 3 m2 shaking table. For this specimen two beam-column connections-one exterior and one interior-were instrumented with wide band low frequency sensors properly attached on the structure. Evolution of the energy b-value along the loading process accompanies the evolution of the severe damage at the critical regions of the structure (beam-column connections), thus making promising its use for structural health monitoring purposes.
Ultrasonic nonlinear guided wave inspection of microscopic damage in a composite structure
NASA Astrophysics Data System (ADS)
Zhang, Li; Borigo, Cody; Owens, Steven; Lissenden, Clifford; Rose, Joseph; Hakoda, Chris
2017-02-01
Sudden structural failure is a severe safety threat to many types of military and industrial composite structures. Because sudden structural failure may occur in a composite structure shortly after macroscale damage initiates, reliable early diagnosis of microdamage formation in the composite structure is critical to ensure safe operation and to reduce maintenance costs. Ultrasonic guided waves have been widely used for long-range defect detection in various structures. When guided waves are generated under certain excitation conditions, in addition to the traditional linear wave mode (known as the fundamental harmonic wave mode), a number of nonlinear higher-order harmonic wave modes are also be generated. Research shows that the nonlinear parameters of a higher-order harmonic wave mode could have excellent sensitivity to microstructural changes in a material. In this work, we successfully employed a nonlinear guided wave structural health monitoring (SHM) method to detect microscopic impact damage in a 32-layer carbon/epoxy fiber-reinforced composite plate. Our effort has demonstrated that, utilizing appropriate transducer design, equipment, excitation signals, and signal processing techniques, nonlinear guided wave parameter measurements can be reliably used to monitor microdamage initiation and growth in composite structures.
Baeza, Francisco Javier; Galao, Oscar; Zornoza, Emilio; Garcés, Pedro
2013-01-01
In this research, strain-sensing and damage-sensing functional properties of cement composites have been studied on a conventional reinforced concrete (RC) beam. Carbon nanofiber (CNFCC) and fiber (CFCC) cement composites were used as sensors on a 4 m long RC beam. Different casting conditions (in situ or attached), service location (under tension or compression) and electrical contacts (embedded or superficial) were compared. Both CNFCC and CFCC were suitable as strain sensors in reversible (elastic) sensing condition testing. CNFCC showed higher sensitivities (gage factor up to 191.8), while CFCC only reached gage factors values of 178.9 (tension) or 49.5 (compression). Furthermore, damage-sensing tests were run, increasing the applied load progressively up to the RC beam failure. In these conditions, CNFCC sensors were also strain sensitive, but no damage sensing mechanism was detected for the strain levels achieved during the tests. Hence, these cement composites could act as strain sensors, even for severe damaged structures near to their collapse. PMID:28809343
Baeza, Francisco Javier; Galao, Oscar; Zornoza, Emilio; Garcés, Pedro
2013-03-06
In this research, strain-sensing and damage-sensing functional properties of cement composites have been studied on a conventional reinforced concrete (RC) beam. Carbon nanofiber (CNFCC) and fiber (CFCC) cement composites were used as sensors on a 4 m long RC beam. Different casting conditions ( in situ or attached), service location (under tension or compression) and electrical contacts (embedded or superficial) were compared. Both CNFCC and CFCC were suitable as strain sensors in reversible (elastic) sensing condition testing. CNFCC showed higher sensitivities (gage factor up to 191.8), while CFCC only reached gage factors values of 178.9 (tension) or 49.5 (compression). Furthermore, damage-sensing tests were run, increasing the applied load progressively up to the RC beam failure. In these conditions, CNFCC sensors were also strain sensitive, but no damage sensing mechanism was detected for the strain levels achieved during the tests. Hence, these cement composites could act as strain sensors, even for severe damaged structures near to their collapse.
Construction on dolomite in south Africa
NASA Astrophysics Data System (ADS)
Wagener, Fritz Von M.; Day, Peter W.
1986-03-01
Damage to structures and loss of life have been more severe on dolomite than on any other geological formation in southern Africa. The subsidence that occurs on dolomitic terrain following development or during dewatering has given dolomite a notorious reputation and engineers and geologists became reluctant to recommend development on the material. This has led to the pioneering of founding methods for a wide variety of structures aimed at reducing the risk of severity of damage due to subsidence settlement Structures successfully founded on dolomitic terrane include residential and industrial buildings, gold mine reduction works and shaft structures, tailings dams, water retaining structures, and road and rail links. In this article, various methods of construction, some ot which were developed by the authors, are presented. It commences with a classification of a dolomite site in terms of overburden thickness followed by a discussion of the relevant construction methods The methods include mattresses of compacted soil supported by pinnacles or “floating” in residuum, deep foundations such as caissons, the use of specialized piling techniques, and soil improvement by dynamic consolidation
Damage Tolerance Testing of a NASA TransHab Derivative Woven Inflatable Module
NASA Technical Reports Server (NTRS)
Edgecombe, John; delaFuente, Horacio; Valle, Gerard
2009-01-01
Current options for Lunar habitat architecture include inflatable habitats and airlocks. Inflatable structures can have mass and volume advantages over conventional structures. However, inflatable structures carry different inherent risks and are at a lower Technical Readiness Level (TRL) than more conventional metallic structures. One of the risks associated with inflatable structures is in understanding the tolerance to induced damage. The Damage Tolerance Test (DTT) is designed to study the structural integrity of an expandable structure. TransHab (Figure 1) was an experimental inflatable module developed at the NASA/Johnson Space Center in the 1990 s. The TransHab design was originally envisioned for use in Mars Transits but was also studied as a potential habitat for the International Space Station (ISS). The design of the TransHab module was based on a woven design using an Aramid fabric. Testing of this design demonstrated a high level of predictability and repeatability with analytical predictions of stresses and deflections. Based on JSC s experience with the design and analysis of woven inflatable structures, the Damage Tolerance Test article was designed and fabricated using a woven design. The DTT article was inflated to 45 psig, representing 25% of the ultimate burst pressure, and one of the one-inch wide longitudinal structural members was severed by initiating a Linear Shaped Charge (LSC). Strain gage measurements, at the interface between the expandable elements (straps) and the nonexpandable metallic elements for pre-selected longitudinal straps, were taken throughout pressurization of the module and strap separation. Strain gage measurements show no change in longitudinal strap loading at the bulkhead interface after strap separation indicating loads in the restraint layer were re-distributed local to the damaged area due to the effects of friction under high internal pressure loading. The test completed all primary objectives with better than expected results. This paper will discuss space inflatable structures, damage tolerance analysis, test results, and applicability to the Lunar architecture.
Claire A. Zugmeyer; John L. Koprowski
2009-01-01
Severe disturbance may alter or eliminate important habitat structure that helps preserve food caches of foodhoarding species. Recent recolonization of an insect-damaged forest by the endangered Mt. Graham red squirrel (Tamiasciurus hudsonicus grahamensis) provided an opportunity to examine habitat selection for midden (cache) sites following...
Logan, Malcolm H.; Burton, Lynn R.
1967-01-01
The March 27, 1964, Alaska earthquake and its associated aftershocks caused damage requiring several million dollars worth of repair to the Eklwtna Hydroelectric Project, 34 miles northeast of Anchorage. Electric service from the Eklutna powerplant was interrupted during the early phase of the March 27 earthquake, built was restored (intermittently) until May 9,1964, when the plant was closed for inspection and repair. Water for Eklutna project is transported from Eklutna Lake to the powerplant at tidewater on Knik Arm of Cook Inlet by an underwater intake connected to a 4.46-mile tunnel penstock. The primary damage caused by the earthquake was 1at the intake structure in Eklutna Lake. No damage to the power tunnel was observed. The piles-supported powerplant and appurtenant structures, Anchorage and Palmer substations, and the transmission lines suffered minor dammage. Most damage occurred to facilities constructed on un-consolidated sediments and overburden which densified and subsided during the earthquake. Structures built on bedrock experienced little or no damage. Underground communication and electrical systems in Anchorage were examined with a small-diameter television camera to locate damaged areas requiring repair. Most of the damage was concentrated at or near valley slopes. Those parts of the systems within the major slide areas of the city were destroyed.
Double hull grounding experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodd, J.L.; Sikora, J.P.
1995-12-31
In the last few years the public and governments of many nations have become increasingly aware of the need for improving oil tanker safety. The requirements for double hull tankers are an attempt to address this need through legislation. Even though a number of investigations on the mechanics of collisions have been done in the past, until recently very little research supported the development of structural improvements to reduce oil tanker damage during grounding and stranding accidents. An aggressive evaluation of double hull tanker crashworthiness in stranding and grounding accidents is underway at CD/NSWC (formerly the David Taylor Research Center).more » The ability to predict damage from grounding accidents accurately is not currently available. The objective of this paper is to present qualitatively the structural failure mechanisms associated with stranding and grounding events for candidate double hull tanker structures and to present some simple methods for comparing damage scenarios. A comparison of the structural performance of key features in several very different designs will provide useful information toward this understanding.« less
Chapter C. The Loma Prieta, California, Earthquake of October 17, 1989 - Building Structures
Çelebi, Mehmet
1998-01-01
Several approaches are used to assess the performance of the built environment following an earthquake -- preliminary damage surveys conducted by professionals, detailed studies of individual structures, and statistical analyses of groups of structures. Reports of damage that are issued by many organizations immediately following an earthquake play a key role in directing subsequent detailed investigations. Detailed studies of individual structures and statistical analyses of groups of structures may be motivated by particularly good or bad performance during an earthquake. Beyond this, practicing engineers typically perform stress analyses to assess the performance of a particular structure to vibrational levels experienced during an earthquake. The levels may be determined from recorded or estimated ground motions; actual levels usually differ from design levels. If a structure has seismic instrumentation to record response data, the estimated and recorded response and behavior of the structure can be compared.
Lymphocyte DNA damage in Turkish asphalt workers detected by the comet assay.
Bacaksiz, Aysegul; Kayaalti, Zeliha; Soylemez, Esma; Tutkun, Engin; Soylemezoglu, Tulin
2014-01-01
Asphalt has a highly complex structure and it contains several organic compounds including polycyclic aromatic hydrocarbons and heterocyclic compounds. In this study, comet assay was used to detect the DNA damage in blood lymphocytes of 30 workers exposed to asphalt fumes and 30 nonexposed controls. This is the first report on Turkish asphalt workers' investigated DNA damage using the alkaline single cell gel electrophoresis (SCGE). The DNA damage was evaluated by the percentage of DNA in the comet tail (% tail DNA) for each cell. According to our results, workers exposed to asphalt fumes had higher DNA damage than the control group (p < 0.01). The present study showed that asphalt fumes caused a significant increase in DNA damage and the comet assay is a suitable method for determining DNA damage in asphalt workers.
NASA Astrophysics Data System (ADS)
McGowan, S. M.; Jaiswal, K. S.; Wald, D. J.
2017-09-01
We make and analyze structural damage observations from within the Kathmandu valley following the 2015 M7.8 Gorkha, Nepal earthquake to derive macroseismic intensities at several locations including some located near ground motion recording sites. The macroseismic intensity estimates supplement the limited strong ground motion data in order to characterize the damage statistics. This augmentation allows for direct comparisons between ground motion amplitudes and structural damage characteristics and ultimately produces a more constrained ground shaking hazard map for the Gorkha earthquake. For systematic assessments, we focused on damage to three specific building categories: (a) low/mid-rise reinforced concrete frames with infill brick walls, (b) unreinforced brick masonry bearing walls with reinforced concrete slabs, and (c) unreinforced brick masonry bearing walls with partial timber framing. Evaluating dozens of photos of each construction type, assigning each building in the study sample to a European Macroseismic Scale (EMS)-98 Vulnerability Class based upon its structural characteristics, and then individually assigning an EMS-98 Damage Grade to each building allows a statistically derived estimate of macroseismic intensity for each of nine study areas in and around the Kathmandu valley. This analysis concludes that EMS-98 macroseismic intensities for the study areas from the Gorkha mainshock typically were in the VII-IX range. The intensity assignment process described is more rigorous than the informal approach of assigning intensities based upon anecdotal media or first-person accounts of felt-reports, shaking, and their interpretation of damage. Detailed EMS-98 macroseismic assessments in urban areas are critical for quantifying relations between shaking and damage as well as for calibrating loss estimates. We show that the macroseismic assignments made herein result in fatality estimates consistent with the overall and district-wide reported values.
McGowan, Sean; Jaiswal, Kishor; Wald, David J.
2017-01-01
We make and analyze structural damage observations from within the Kathmandu valley following the 2015 M7.8 Gorkha, Nepal earthquake to derive macroseismic intensities at several locations including some located near ground motion recording sites. The macroseismic intensity estimates supplement the limited strong ground motion data in order to characterize the damage statistics. This augmentation allows for direct comparisons between ground motion amplitudes and structural damage characteristics and ultimately produces a more constrained ground shaking hazard map for the Gorkha earthquake. For systematic assessments, we focused on damage to three specific building categories: (a) low/mid-rise reinforced concrete frames with infill brick walls, (b) unreinforced brick masonry bearing walls with reinforced concrete slabs, and (c) unreinforced brick masonry bearing walls with partial timber framing. Evaluating dozens of photos of each construction type, assigning each building in the study sample to a European Macroseismic Scale (EMS)-98 Vulnerability Class based upon its structural characteristics, and then individually assigning an EMS-98 Damage Grade to each building allows a statistically derived estimate of macroseismic intensity for each of nine study areas in and around the Kathmandu valley. This analysis concludes that EMS-98 macroseismic intensities for the study areas from the Gorkha mainshock typically were in the VII–IX range. The intensity assignment process described is more rigorous than the informal approach of assigning intensities based upon anecdotal media or first-person accounts of felt-reports, shaking, and their interpretation of damage. Detailed EMS-98 macroseismic assessments in urban areas are critical for quantifying relations between shaking and damage as well as for calibrating loss estimates. We show that the macroseismic assignments made herein result in fatality estimates consistent with the overall and district-wide reported values.
Performance evaluation of existing building structure with pushover analysis
NASA Astrophysics Data System (ADS)
Handana, MAP; Karolina, R.; Steven
2018-02-01
In the management of the infrastructure of the building, during the period of buildings common building damage as a result of several reasons, earthquakes are common. The building is planned to work for a certain service life. But during the certain service life, the building vulnerable to damage due to various things. Any damage to cultivate can be detected as early as possible, because the damage could spread, triggering and exacerbating the latest. The newest concept to earthquake engineering is Performance Based Earthquake Engineering (PBEE). PBEE divided into two, namely Performance Based Seismic Design (PBSD) and Performance Based Seismic Evaluation (PBSE). Evaluation on PBSE one of which is the analysis of nonlinear pushover. Pushover analysis is a static analysis of nonlinear where the influence of the earthquake plan on building structure is considered as burdens static catch at the center of mass of each floor, which it was increased gradually until the loading causing the melting (plastic hinge) first within the building structure, then the load increases further changes the shapes of post-elastic large it reached the condition of elastic. Then followed melting (plastic hinge) in the location of the other structured.
Damage detection in bridges through fiber optic structural health monitoring
NASA Astrophysics Data System (ADS)
Doornink, J. D.; Phares, B. M.; Wipf, T. J.; Wood, D. L.
2006-10-01
A fiber optic structural health monitoring (SHM) system was developed and deployed by the Iowa State University (ISU) Bridge Engineering Center (BEC) to detect gradual or sudden damage in fracture-critical bridges (FCBs). The SHM system is trained with measured performance data, which are collected by fiber optic strain sensors to identify typical bridge behavior when subjected to ambient traffic loads. Structural responses deviating from the trained behavior are considered to be signs of structural damage or degradation and are identified through analytical procedures similar to control chart analyses used in statistical process control (SPC). The demonstration FCB SHM system was installed on the US Highway 30 bridge near Ames, IA, and utilizes 40 fiber bragg grating (FBG) sensors to continuously monitor the bridge response when subjected to ambient traffic loads. After the data is collected and processed, weekly evaluation reports are developed that summarize the continuous monitoring results. Through use of the evaluation reports, the bridge owner is able to identify and estimate the location and severity of the damage. The information presented herein includes an overview of the SHM components, results from laboratory and field validation testing on the system components, and samples of the reduced and analyzed data.
Predicting severe winter coastal storm damage
NASA Astrophysics Data System (ADS)
Hondula, David M.; Dolan, Robert
2010-07-01
Over the past 40 years residents of, and visitors to, the North Carolina coastal barrier islands have experienced the destructive forces of several 'named' extratropical storms. These storms have caused large-scale redistributions of sand and loss of coastal structures and infrastructure. While most of the population living on the islands are familiar with the wintertime storms, the damage and scars of the 'super northeasters'—such as the Ash Wednesday storm of 7 March 1962, and the Halloween storm of 1989—are slipping away from the public's memory. In this research we compared the damage zones of the 1962 Ash Wednesday storm, as depicted on aerial photographs taken after the storm, with photos taken of the same areas in 2003. With these high-resolution aerial photos we were able to estimate the extent of new development which has taken place along the Outer Banks of North Carolina since 1962. Three damage zones were defined that extend across the islands from the ocean landward on the 1962 aerial photos: (1) the zone of almost total destruction on the seaward edge of the islands where the storm waves break; (2) the zone immediately inland where moderate structural damage occurs during severe storms; and (3) the zone of flood damage at the landward margin of the storm surge and overwash. We considered the rate of coastal erosion, the rate of development, and increases in property values as factors which may contribute to changing the financial risk for coastal communities. In comparing the values of these four factors with the 1962 damage data, we produced a predicted dollar value for storm damage should another storm of the magnitude of the 1962 Ash Wednesday storm occur in the present decade. This model also provides an opportunity to estimate the rate of increase in the potential losses through time as shoreline erosion continues to progressively reduce the buffer between the development and the edge of the sea. Our data suggest that the losses along the North Carolina coast would rank amongst the all-time most costly natural disasters to have occurred in the United States, with up to 1 billion in losses in North Carolina alone.
Simulation of Delamination-Migration and Core Crushing in a CFRP Sandwich Structure
NASA Technical Reports Server (NTRS)
McElroy, M.; Leone, F.; Ratcliffe, J.; Czabaj, M.; Yuan, F. G.
2015-01-01
Following the onset of damage caused by an impact load on a composite laminate structure, delaminations often form propagating outwards from the point of impact and in some cases can migrate via matrix cracks between plies as they grow. The goal of the present study is to develop an accurate finite element modeling technique for simulation of the delamination-migration phenomena in laminate impact damage processes. An experiment was devised where, under a quasi-static indentation load, an embedded delamination in the facesheet of a laminate sandwich specimen migrates via a transverse matrix crack and then continues to grow on a new ply interface. The quasistatic nature of the indentation results in structural behavior equivalent to that seen in low-velocity impact and also allows for highly detailed real time damage characterization. Several finite element damage simulation methods were investigated. Comparing the experimental results with those of the different models reveals certain modeling features that are important to include in a numerical simulation of delamination-migration and some that may be neglected.
Advanced DPSM approach for modeling ultrasonic wave scattering in an arbitrary geometry
NASA Astrophysics Data System (ADS)
Yadav, Susheel K.; Banerjee, Sourav; Kundu, Tribikram
2011-04-01
Several techniques are used to diagnose structural damages. In the ultrasonic technique structures are tested by analyzing ultrasonic signals scattered by damages. The interpretation of these signals requires a good understanding of the interaction between ultrasonic waves and structures. Therefore, researchers need analytical or numerical techniques to have a clear understanding of the interaction between ultrasonic waves and structural damage. However, modeling of wave scattering phenomenon by conventional numerical techniques such as finite element method requires very fine mesh at high frequencies necessitating heavy computational power. Distributed point source method (DPSM) is a newly developed robust mesh free technique to simulate ultrasonic, electrostatic and electromagnetic fields. In most of the previous studies the DPSM technique has been applied to model two dimensional surface geometries and simple three dimensional scatterer geometries. It was difficult to perform the analysis for complex three dimensional geometries. This technique has been extended to model wave scattering in an arbitrary geometry. In this paper a channel section idealized as a thin solid plate with several rivet holes is formulated. The simulation has been carried out with and without cracks near the rivet holes. Further, a comparison study has been also carried out to characterize the crack. A computer code has been developed in C for modeling the ultrasonic field in a solid plate with and without cracks near the rivet holes.
Qiu, Lei; Yuan, Shenfang; Mei, Hanfei; Fang, Fang
2016-02-26
Structural Health Monitoring (SHM) technology is considered to be a key technology to reduce the maintenance cost and meanwhile ensure the operational safety of aircraft structures. It has gradually developed from theoretic and fundamental research to real-world engineering applications in recent decades. The problem of reliable damage monitoring under time-varying conditions is a main issue for the aerospace engineering applications of SHM technology. Among the existing SHM methods, Guided Wave (GW) and piezoelectric sensor-based SHM technique is a promising method due to its high damage sensitivity and long monitoring range. Nevertheless the reliability problem should be addressed. Several methods including environmental parameter compensation, baseline signal dependency reduction and data normalization, have been well studied but limitations remain. This paper proposes a damage propagation monitoring method based on an improved Gaussian Mixture Model (GMM). It can be used on-line without any structural mechanical model and a priori knowledge of damage and time-varying conditions. With this method, a baseline GMM is constructed first based on the GW features obtained under time-varying conditions when the structure under monitoring is in the healthy state. When a new GW feature is obtained during the on-line damage monitoring process, the GMM can be updated by an adaptive migration mechanism including dynamic learning and Gaussian components split-merge. The mixture probability distribution structure of the GMM and the number of Gaussian components can be optimized adaptively. Then an on-line GMM can be obtained. Finally, a best match based Kullback-Leibler (KL) divergence is studied to measure the migration degree between the baseline GMM and the on-line GMM to reveal the weak cumulative changes of the damage propagation mixed in the time-varying influence. A wing spar of an aircraft is used to validate the proposed method. The results indicate that the crack propagation under changing structural boundary conditions can be monitored reliably. The method is not limited by the properties of the structure, and thus it is feasible to be applied to composite structure.
Vitola, Jaime; Pozo, Francesc; Tibaduiza, Diego A.; Anaya, Maribel
2017-01-01
Civil and military structures are susceptible and vulnerable to damage due to the environmental and operational conditions. Therefore, the implementation of technology to provide robust solutions in damage identification (by using signals acquired directly from the structure) is a requirement to reduce operational and maintenance costs. In this sense, the use of sensors permanently attached to the structures has demonstrated a great versatility and benefit since the inspection system can be automated. This automation is carried out with signal processing tasks with the aim of a pattern recognition analysis. This work presents the detailed description of a structural health monitoring (SHM) system based on the use of a piezoelectric (PZT) active system. The SHM system includes: (i) the use of a piezoelectric sensor network to excite the structure and collect the measured dynamic response, in several actuation phases; (ii) data organization; (iii) advanced signal processing techniques to define the feature vectors; and finally; (iv) the nearest neighbor algorithm as a machine learning approach to classify different kinds of damage. A description of the experimental setup, the experimental validation and a discussion of the results from two different structures are included and analyzed. PMID:28230796
Vitola, Jaime; Pozo, Francesc; Tibaduiza, Diego A; Anaya, Maribel
2017-02-21
Civil and military structures are susceptible and vulnerable to damage due to the environmental and operational conditions. Therefore, the implementation of technology to provide robust solutions in damage identification (by using signals acquired directly from the structure) is a requirement to reduce operational and maintenance costs. In this sense, the use of sensors permanently attached to the structures has demonstrated a great versatility and benefit since the inspection system can be automated. This automation is carried out with signal processing tasks with the aim of a pattern recognition analysis. This work presents the detailed description of a structural health monitoring (SHM) system based on the use of a piezoelectric (PZT) active system. The SHM system includes: (i) the use of a piezoelectric sensor network to excite the structure and collect the measured dynamic response, in several actuation phases; (ii) data organization; (iii) advanced signal processing techniques to define the feature vectors; and finally; (iv) the nearest neighbor algorithm as a machine learning approach to classify different kinds of damage. A description of the experimental setup, the experimental validation and a discussion of the results from two different structures are included and analyzed.
Energy behavior on side structure in event of ship collision subjected to external parameters.
Prabowo, Aditya Rio; Bae, Dong Myung; Sohn, Jung Min; Cao, Bo
2016-11-01
The safety of ships in regards to collisions and groundings, as well as the navigational and structural aspects of ships, has been improved and developed up to this day by technical, administrative and nautical parties. The damage resulting from collisions could be reduced through several techniques such as designing appropriate hull structures, ensuring tightness of cargo tanks as well as observation and review on structural behaviors, whilst accounting for all involved parameters. The position during a collision can be influenced by the collisions' location and angle as these parts are included in the external dynamics of ship collisions. In this paper, the results of several collision analyses using the finite element method were used and reviewed regarding the effect of location and angle on energy characteristic. Firstly, the capabilities of the structure and its ability to resist destruction in a collision process were presented and comparisons were made to other collision cases. Three types of collisions were identified based on the relative location of contact points to each other. From the results, it was found that the estimation of internal energy by the damaged ships differed in range from 12%-24%. In the second stage, the results showed that a collision between 30 to 60 degrees produced higher level energy than a collision in the perpendicular position. Furthermore, it was concluded that striking and struck objects in collision contributed to energy and damage shape.
Two-stage damage diagnosis based on the distance between ARMA models and pre-whitening filters
NASA Astrophysics Data System (ADS)
Zheng, H.; Mita, A.
2007-10-01
This paper presents a two-stage damage diagnosis strategy for damage detection and localization. Auto-regressive moving-average (ARMA) models are fitted to time series of vibration signals recorded by sensors. In the first stage, a novel damage indicator, which is defined as the distance between ARMA models, is applied to damage detection. This stage can determine the existence of damage in the structure. Such an algorithm uses output only and does not require operator intervention. Therefore it can be embedded in the sensor board of a monitoring network. In the second stage, a pre-whitening filter is used to minimize the cross-correlation of multiple excitations. With this technique, the damage indicator can further identify the damage location and severity when the damage has been detected in the first stage. The proposed methodology is tested using simulation and experimental data. The analysis results clearly illustrate the feasibility of the proposed two-stage damage diagnosis methodology.
Carmona, Gerard; Mendiguchía, Jurdan; Alomar, Xavier; Padullés, Josep M; Serrano, David; Nescolarde, Lexa; Rodas, Gil; Cussó, Roser; Balius, Ramón; Cadefau, Joan A
2018-01-01
Purpose: To investigate the extent and evolution of hamstring muscle damage caused by an intensive bout of eccentric leg curls (ELCs) by (1) assessing the time course and association of different indirect markers of muscle damage such as changes in the force-generating capacity (FGC), functional magnetic resonance (fMRI), and serum muscle enzyme levels and (2) analyzing differences in the degree of hamstring muscle damage between and within subjects (limb-to-limb comparison). Methods: Thirteen male participants performed six sets of 10 repetitions of an ELC with each leg. Before and at regular intervals over 7 days after the exercise, FGC was measured with maximal isometric voluntary contraction (MVC). Serum enzyme levels, fMRI transverse relaxation time (T2) and perceived muscle soreness were also assessed and compared against the FGC. Results: Two groups of subjects were identified according to the extent of hamstring muscle damage based on decreased FGC and increased serum enzyme levels: high responders ( n = 10, severe muscle damage) and moderate responders ( n = 3, moderate muscle damage). In the high responders, fMRI T2 analysis revealed that the semitendinosus (ST) muscle suffered severe damage in the three regions measured (proximal, middle, and distal). The biceps femoris short head (BFsh) muscle was also damaged and there were significant differences in the FGC within subjects in the high responders. Conclusion: FGC and serum enzyme levels measured in 10 of the subjects from the sample were consistent with severe muscle damage. However, the results showed a wide range of peak MVC reductions, reflecting different degrees of damage between subjects (high and moderate responders). fMRI analysis confirmed that the ST was the hamstring muscle most damaged by ELCs, with uniform T2 changes across all the measured sections of this muscle. During intensive ELCs, the ST muscle could suffer an anomalous recruitment pattern due to fatigue and damage, placing an excessive load on the BFsh and causing it to perform a synergistic compensation that leads to structural damage. Finally, T2 and MVC values did not correlate for the leg with the smaller FGC decrease in the hamstring muscles, suggesting that long-lasting increases in T2 signals after FGC markers have returned to baseline values might indicate an adaptive process rather than damage.
Carmona, Gerard; Mendiguchía, Jurdan; Alomar, Xavier; Padullés, Josep M.; Serrano, David; Nescolarde, Lexa; Rodas, Gil; Cussó, Roser; Balius, Ramón; Cadefau, Joan A.
2018-01-01
Purpose: To investigate the extent and evolution of hamstring muscle damage caused by an intensive bout of eccentric leg curls (ELCs) by (1) assessing the time course and association of different indirect markers of muscle damage such as changes in the force-generating capacity (FGC), functional magnetic resonance (fMRI), and serum muscle enzyme levels and (2) analyzing differences in the degree of hamstring muscle damage between and within subjects (limb-to-limb comparison). Methods: Thirteen male participants performed six sets of 10 repetitions of an ELC with each leg. Before and at regular intervals over 7 days after the exercise, FGC was measured with maximal isometric voluntary contraction (MVC). Serum enzyme levels, fMRI transverse relaxation time (T2) and perceived muscle soreness were also assessed and compared against the FGC. Results: Two groups of subjects were identified according to the extent of hamstring muscle damage based on decreased FGC and increased serum enzyme levels: high responders (n = 10, severe muscle damage) and moderate responders (n = 3, moderate muscle damage). In the high responders, fMRI T2 analysis revealed that the semitendinosus (ST) muscle suffered severe damage in the three regions measured (proximal, middle, and distal). The biceps femoris short head (BFsh) muscle was also damaged and there were significant differences in the FGC within subjects in the high responders. Conclusion: FGC and serum enzyme levels measured in 10 of the subjects from the sample were consistent with severe muscle damage. However, the results showed a wide range of peak MVC reductions, reflecting different degrees of damage between subjects (high and moderate responders). fMRI analysis confirmed that the ST was the hamstring muscle most damaged by ELCs, with uniform T2 changes across all the measured sections of this muscle. During intensive ELCs, the ST muscle could suffer an anomalous recruitment pattern due to fatigue and damage, placing an excessive load on the BFsh and causing it to perform a synergistic compensation that leads to structural damage. Finally, T2 and MVC values did not correlate for the leg with the smaller FGC decrease in the hamstring muscles, suggesting that long-lasting increases in T2 signals after FGC markers have returned to baseline values might indicate an adaptive process rather than damage. PMID:29467666
Observations of severe in-flight environments on airplane composite structural components
NASA Technical Reports Server (NTRS)
Howell, W. E.; Fisher, B. D.
1983-01-01
The development of relatively inexpensive, highly sophisticated avionics systems makes it now possible for general aviation aircraft to fly under more severe weather conditions than formerly. Increased instrument flying increases exposure of aircraft to potentially severe thunderstorm activity such as high rain rates, hail stones, and lightning strikes. In particular, the effects of lightning on aircraft can be catastrophic. Interest in aircraft lightning protection has been stimulated by the introduction of advanced composites as an aircraft structural material. The present investigation has the objective to report experiences with three composite components which have flown in thunderstorms, taking into account three F-106B composite fin caps. The only visible lightning strike damage to a flame sprayed aluminum coated glass/epoxy fin cap was a small area of the aluminum which was burned. Visible lightning strike damage to a Kevlar/epoxy fin cap was limited to the exterior ply of aluminum coated glass fabric. In the case of a graphite/epoxy fin cap, lightning currents could be conducted.
Wieczorek, Gerald F.; Larsen, Matthew C.; Eaton, L. Scott; Morgan, Benjamin A.; Blair, J. Luke
2002-01-01
Heavy rainfall from the storm of December 14?16, 1999, triggered thousands of shallow landslides on steep slopes of the Sierra de Avila north of Caracas, Venezuela, and caused flooding and massive debris flows in the channels of major drainages that severely damaged coastal communities along the Caribbean Sea. Within this region we characterized geologic conditions where landslides initiated on hillsides and examined the texture of debris-flow deposits in the channels of nine drainages. In one of the most severely damaged areas on a highly developed alluvial fan at Caraballeda, we measured debris-flow deposits that ranged up to 5 meters (m) in thickness, inundating structures and roads over a large portion of the fan. Boulders up to 5 m long were carried along by the flows, impacted structures causing serious damage, and were deposited on the fan. Using field measurements and comparing pre-event and post-event topography from aerial photographs, we determined the volume of debris-flow and flood deposition on the fan to be about 2 million cubic meters. The total volume of material transported and deposited by landslides throughout the Vargas region ranks this as one of the most severe historical erosional events worldwide.
Thermomechanical fatigue life prediction for several solders
NASA Astrophysics Data System (ADS)
Wen, Shengmin
Since solder connections operate at high homologous temperature, solders are high temperature materials. This feature makes their mechanical behavior and fatigue phenomena unique. Based on experimental findings, a physical damage mechanism is introduced for solders. The mechanism views the damage process as a series of independent local damage events characterized by the failure of individual grains, while the structural damage is the eventual percolation result of such local events. Fine's dislocation energy density concept and Mura's microcrack initiation theory are adopted to derive the fatigue formula for an individual grain. A physical damage metric is introduced to describe the material with damage. A unified creep and plasticity constitutive model is adopted to simulate the mechanical behavior of solders. The model is cast into a continuum damage mechanics framework to simulate material with damage. The model gives good agreement with the experimental results of 96.5Pb-3.5Sn and 96.5Sn-3.5Ag solders under uniaxial strain-controlled cyclic loading. The model is convenient for implementation into commercial computational packages. Also presented is a fatigue theory with its failure criterion for solders based on physical damage mechanism. By introducing grain orientation into the fatigue formula, an m-N curve (m is Schmid factor) at constant loading condition is suggested for fatigue of grains with different orientations. A solder structure is defined as fatigued when the damage metric reaches a critical threshold, since at this threshold the failed grains may form a cluster and percolate through the structure according to percolation theory. Fatigue data of 96.5Pb-3.5Sn solder bulk specimens under various uniaxial tension tests were analyzed. Results show that the theory gives consistent predictions under broad conditions, while inelastic strain theory does not. The theory is anisotropic with no size limitation to its application, which could be suitable for anisotropic small-scale (micron or nano scale) solder joints. More importantly, the theory is materials science based so that the parameters of the fatigue formula can be worked out by testing of bulk specimens while the formula can be applicable to small-scale structures. The theory suggests metallurgical control in the manufacturing process to optimize the fatigue life of solder structures.
Abate, Michele; Salini, Vincenzo; Andia, Isabel
Several epidemiological and clinical observations have definitely demonstrated that obesity has harmful effects on tendons. The pathogenesis of tendon damage is multi-factorial. In addition to overload, attributable to the increased body weight, which significantly affects load-bearing tendons, systemic factors play a relevant role. Several bioactive peptides (chemerin, leptin, adiponectin and others) are released by adipocytes, and influence tendon structure by means of negative activities on mesenchymal cells. The ensuing systemic state of chronic, sub-clinic, low-grade inflammation can damage tendon structure. Metabolic disorders (diabetes, impaired glucose tolerance, and dislipidemia), frequently associated with visceral adiposity, are concurrent pathogenetic factors. Indeed, high glucose levels increase the formation of Advanced Glycation End-products, which in turn form stable covalent cross-links within collagen fibers, modifying their structure and functionality.Sport activities, so useful for preventing important cardiovascular complications, may be detrimental for tendons if they are submitted to intense acute or chronic overload. Therefore, two caution rules are mandatory: first, to engage in personalized soft training program, and secondly to follow regular check-up for tendon pathology.
Liu, Chun-Hsin; Finke, Andreas; Díaz, Mariana; Rozhon, Wilfried; Poppenberger, Brigitte; Baubec, Tuncay; Pecinka, Ales
2015-01-01
DNA damage repair is an essential cellular mechanism that maintains genome stability. Here, we show that the nonmethylable cytidine analog zebularine induces a DNA damage response in Arabidopsis thaliana, independent of changes in DNA methylation. In contrast to genotoxic agents that induce damage in a cell cycle stage-independent manner, zebularine induces damage specifically during strand synthesis in DNA replication. The signaling of this damage is mediated by additive activity of ATAXIA TELANGIECTASIA MUTATED AND RAD3-RELATED and ATAXIA TELANGIECTASIA MUTATED kinases, which cause postreplicative cell cycle arrest and increased endoreplication. The repair requires a functional STRUCTURAL MAINTENANCE OF CHROMOSOMES5 (SMC5)-SMC6 complex and is accomplished predominantly by synthesis-dependent strand-annealing homologous recombination. Here, we provide insight into the response mechanism for coping with the genotoxic effects of zebularine and identify several components of the zebularine-induced DNA damage repair pathway. PMID:26023162
Natural frequency changes due to damage in composite beams
NASA Astrophysics Data System (ADS)
Negru, I.; Gillich, G. R.; Praisach, Z. I.; Tufoi, M.; Gillich, N.
2015-07-01
Transversal cracks in structures affect their stiffness as well as the natural frequency values. This paper presents a research performed to find the way how frequencies of sandwich beams change by the occurrence of damage. The influence of the locally stored energy, for ten transverse vibration modes, on the frequency shifts is derived from a study regarding the effect of stiffness decrease, realized by means of the finite element analysis. The relation between the local value of the bending moment and the frequency drop is exemplified by a concrete case. It is demonstrated that a reference curve representing the damage severity exists whence any frequency shift is derivable in respect to damage depth and location. This curve is obtained, for isotropic and multi-layer beams as well, from the stored energy (i.e. stiffness decrease), and is similar to that attained using the stress intensity factor in fracture mechanics. Also, it is proved that, for a given crack, irrespective to its depth, the frequency drop ratio of any two transverse modes is similar. This permitted separating the effect of damage location from that of its severity and to define a Damage Location Indicator as a sequence of squared of the normalized mode shape curvatures.
Studying Radiation Damage in Structural Materials by Using Ion Accelerators
NASA Astrophysics Data System (ADS)
Hosemann, Peter
2011-02-01
Radiation damage in structural materials is of major concern and a limiting factor for a wide range of engineering and scientific applications, including nuclear power production, medical applications, or components for scientific radiation sources. The usefulness of these applications is largely limited by the damage a material can sustain in the extreme environments of radiation, temperature, stress, and fatigue, over long periods of time. Although a wide range of materials has been extensively studied in nuclear reactors and neutron spallation sources since the beginning of the nuclear age, ion beam irradiations using particle accelerators are a more cost-effective alternative to study radiation damage in materials in a rather short period of time, allowing researchers to gain fundamental insights into the damage processes and to estimate the property changes due to irradiation. However, the comparison of results gained from ion beam irradiation, large-scale neutron irradiation, and a variety of experimental setups is not straightforward, and several effects have to be taken into account. It is the intention of this article to introduce the reader to the basic phenomena taking place and to point out the differences between classic reactor irradiations and ion irradiations. It will also provide an assessment of how accelerator-based ion beam irradiation is used today to gain insight into the damage in structural materials for large-scale engineering applications.
Study of ion-irradiated tungsten in deuterium plasma
NASA Astrophysics Data System (ADS)
Khripunov, B. I.; Gureev, V. M.; Koidan, V. S.; Kornienko, S. N.; Latushkin, S. T.; Petrov, V. B.; Ryazanov, A. I.; Semenov, E. V.; Stolyarova, V. G.; Danelyan, L. S.; Kulikauskas, V. S.; Zatekin, V. V.; Unezhev, V. N.
2013-07-01
Experimental study aimed at investigation of neutron induced damage influence on fusion reactor plasma facing materials is reported. Displacement damage was produced in tungsten by high-energy helium and carbon ions at 3-10 MeV. The reached level of displacement damage ranged from several dpa to 600 dpa. The properties of the irradiated tungsten were studied in steady-state deuterium plasma on the LENTA linear divertor simulator. Plasma exposures were made at 250 eV of ion energy to fluence 1021-1022 ion/сm2. Erosion dynamics of the damaged layer and deuterium retention were observed. Surface microstructure modifications and important damage of the 5 μm layer shown. Deuterium retention in helium-damaged tungsten (ERD) showed its complex behavior (increase or decrease) depending on implanted helium quantity and the structure of the surface layer.
Wang, Dansheng; Wang, Qinghua; Wang, Hao; Zhu, Hongping
2016-01-01
In the electromechanical impedance (EMI) method, the PZT patch performs the functions of both sensor and exciter. Due to the high frequency actuation and non-model based characteristics, the EMI method can be utilized to detect incipient structural damage. In recent years EMI techniques have been widely applied to monitor the health status of concrete and steel materials, however, studies on application to timber are limited. This paper will explore the feasibility of using the EMI technique for damage detection in timber specimens. In addition, the conventional damage index, namely root mean square deviation (RMSD) is employed to evaluate the level of damage. On that basis, a new damage index, Mahalanobis distance based on RMSD, is proposed to evaluate the damage severity of timber specimens. Experimental studies are implemented to detect notch and hole damage in the timber specimens. Experimental results verify the availability and robustness of the proposed damage index and its superiority over the RMSD indexes. PMID:27782088
Wang, Dansheng; Wang, Qinghua; Wang, Hao; Zhu, Hongping
2016-10-22
In the electromechanical impedance (EMI) method, the PZT patch performs the functions of both sensor and exciter. Due to the high frequency actuation and non-model based characteristics, the EMI method can be utilized to detect incipient structural damage. In recent years EMI techniques have been widely applied to monitor the health status of concrete and steel materials, however, studies on application to timber are limited. This paper will explore the feasibility of using the EMI technique for damage detection in timber specimens. In addition, the conventional damage index, namely root mean square deviation (RMSD) is employed to evaluate the level of damage. On that basis, a new damage index, Mahalanobis distance based on RMSD, is proposed to evaluate the damage severity of timber specimens. Experimental studies are implemented to detect notch and hole damage in the timber specimens. Experimental results verify the availability and robustness of the proposed damage index and its superiority over the RMSD indexes.
An analysis of penetration and ricochet phenomena in oblique hypervelocity impact
NASA Technical Reports Server (NTRS)
Schonberg, William P.; Taylor, Roy A.; Horn, Jennifer R.
1988-01-01
An experimental investigation of phenomena associated with the oblique hypervelocity impact of spherical projectiles on multisheet aluminum structures is described. A model that can be employed in the design of meteoroid and space debris protection systems for space structures is developed. The model consists of equations that relate crater and perforation damage of a multisheet structure to parameters such as projectile size, impact velocity, and trajectory obliquity. The equations are obtained through a regression analysis of oblique hypervelocity impact test data. This data shows that the response of a multisheet structure to oblique impact is significantly different from its response to normal hypervelocity impact. It was found that obliquely incident projectiles produce ricochet debris that can severely damage panels or instrumentation located on the exterior of a space structure. Obliquity effects of high-speed impact must, therefore, be considered in the design of any structure exposed to the meteoroid and space debris environment.
Mesh Convergence Requirements for Composite Damage Models
NASA Technical Reports Server (NTRS)
Davila, Carlos G.
2016-01-01
The ability of the finite element method to accurately represent the response of objects with intricate geometry and loading renders the finite element method as an extremely versatile analysis technique for structural analysis. Finite element analysis is routinely used in industry to calculate deflections, stress concentrations, natural frequencies, buckling loads, and much more. The method works by discretizing complex problems into smaller, simpler approximations that are valid over small uniform domains. For common analyses, the maximum size of the elements that can be used is often be determined by experience. However, to verify the quality of a solution, analyses with several levels of mesh refinement should be performed to ensure that the solution has converged. In recent years, the finite element method has been used to calculate the resistance of structures, and in particular that of composite structures. A number of techniques such as cohesive zone modeling, the virtual crack closure technique, and continuum damage modeling have emerged that can be used to predict cracking, delaminations, fiber failure, and other composite damage modes that lead to structural collapse. However, damage models present mesh refinement requirements that are not well understood. In this presentation, we examine different mesh refinement issues related to the representation of damage in composite materials. Damage process zone sizes and their corresponding mesh requirements will be discussed. The difficulties of modeling discontinuities and the associated need for regularization techniques will be illustrated, and some unexpected element size constraints will be presented. Finally, some of the difficulties in constructing models of composite structures capable of predicting transverse matrix cracking will be discussed. It will be shown that to predict the initiation and propagation of transverse matrix cracks, their density, and their saturation may require models that are significantly more refined than those that have been contemplated in the past.
Floods of December 2004 and January 2005 in Ohio: FEMA Disaster Declaration 1580
Ebner, Andrew D.; Straub, David E.; Lageman, Jonathan D.
2008-01-01
A large snowstorm at the end of December 2004 that left more than 20 inches of snow in some areas of Ohio, followed by unseasonably warm temperatures in early January 2005, caused snowmelt to begin filling river channels. Widespread rain showers during January 2005 combined with this snowmelt to cause flooding throughout Ohio and mudslides in some areas. Record peak streamflows occurred at nine U.S. Geological Survey (USGS) streamgages. Damages caused by the snowstorms, flooding, and mudslides were severe enough for 62 counties in Ohio to be declared Federal disaster areas. In all, approximately 3,664 private structures were damaged or destroyed, and an estimated $238 million in damages occurred. This report describes the meteorological factors that resulted in severe flooding throughout Ohio between December 22, 2004, and February 1, 2005, and examines the damages caused by the storms and flooding. Peak-stage, peak-streamflow, and recurrence-interval data are reported for selected USGS streamgages. Flood profiles determined by the USGS are presented for selected streams.
An Integrated Approach to Damage Accommodation in Flight Control
NASA Technical Reports Server (NTRS)
Boskovic, Jovan D.; Knoebel, Nathan; Mehra, Raman K.; Gregory, Irene
2008-01-01
In this paper we present an integrated approach to in-flight damage accommodation in flight control. The approach is based on Multiple Models, Switching and Tuning (MMST), and consists of three steps: In the first step the main objective is to acquire a realistic aircraft damage model. Modeling of in-flight damage is a highly complex problem since there is a large number of issues that need to be addressed. One of the most important one is that there is strong coupling between structural dynamics, aerodynamics, and flight control. These effects cannot be studied separately due to this coupling. Once a realistic damage model is available, in the second step a large number of models corresponding to different damage cases are generated. One possibility is to generate many linear models and interpolate between them to cover a large portion of the flight envelope. Once these models have been generated, we will implement a recently developed-Model Set Reduction (MSR) technique. The technique is based on parameterizing damage in terms of uncertain parameters, and uses concepts from robust control theory to arrive at a small number of "centered" models such that the controllers corresponding to these models assure desired stability and robustness properties over a subset in the parametric space. By devising a suitable model placement strategy, the entire parametric set is covered with a relatively small number of models and controllers. The third step consists of designing a Multiple Models, Switching and Tuning (MMST) strategy for estimating the current operating regime (damage case) of the aircraft, and switching to the corresponding controller to achieve effective damage accommodation and the desired performance. In the paper present a comprehensive approach to damage accommodation using Model Set Design,MMST, and Variable Structure compensation for coupling nonlinearities. The approach was evaluated on a model of F/A-18 aircraft dynamics under control effector damage, augmented by nonlinear cross-coupling terms and a structural dynamics model. The proposed approach achieved excellent performance under severe damage effects.
DART Support for Hurricane Matthew
2016-10-18
A damaged construction trailer and several pieces of associated debris, aftermath of Hurricane Matthew, are seen in front of the Mobile Launcher in the Launch Complex 39 area at NASA's Kennedy Space Center in Florida. Assessments and repairs are in progress at various structures and facilities across the spaceport, part of the ongoing recovery from Hurricane Matthew, which passed to the east of Kennedy on Oct. 6 and 7, 2016. The center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion. Beach erosion also occurred, although the storm surge was less than expected.
DART Support for Hurricane Matthew
2016-10-18
A damaged construction trailer and several pieces of associated debris, aftermath of Hurricane Matthew, are seen near the Mobile Launcher in the Launch Complex 39 area at NASA's Kennedy Space Center in Florida. Assessments and repairs are in progress at various structures and facilities across the spaceport, part of the ongoing recovery from Hurricane Matthew, which passed to the east of Kennedy on Oct. 6 and 7, 2016. The center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion. Beach erosion also occurred, although the storm surge was less than expected.
DART Support for Hurricane Matthew
2016-10-18
Damaged construction trailers and several pieces of associated debris, aftermath of Hurricane Matthew, are seen in front of the Mobile Launcher in the Launch Complex 39 area at NASA's Kennedy Space Center in Florida. Assessments and repairs are in progress at various structures and facilities across the spaceport, part of the ongoing recovery from Hurricane Matthew, which passed to the east of Kennedy on Oct. 6 and 7, 2016. The center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion. Beach erosion also occurred, although the storm surge was less than expected.
Seismic vulnerability assessment to earthquake at urban scale: A case of Mostaganem city in Algeria
Benanane, Abdelkader; Boutaraa, Zohra
2018-01-01
The focus of this study was the seismic vulnerability assessment of buildings constituting Mostaganem city in Algeria. Situated 320 km to the west of Algiers, Mostaganem city encompasses a valuable cultural and architectural built heritage. The city has suffered several moderate earthquakes in recent years; this has led to extensive structural damage to old structures, especially unreinforced historical buildings. This study was divided into two essential steps, the first step being to establish fragility curves based on a non-linear static pushover analysis for each typology and height of buildings. Twenty-seven pushover analyses were performed by means of SAP2000 software (three analyses for each type of building). The second step was to adopt the US HAZUS software and to modify it to suit the typical setting and parameters of the city of Mostaganem. A seismic vulnerability analysis of Mostaganem city was conducted using HAZUS software after inputting the new parameters of the fragility curves established within the first step. The results indicated that the number of poor-quality buildings expected to be totally destroyed under a 5.5 Mw earthquake scenario could reach more than 28 buildings. Three percent of unreinforced masonry (URM) buildings were completely damaged and 10% were extensively damaged. Of the concrete frame buildings, 6% were extensively damaged and 19% were moderately damaged. According to the built year, 6% of both concrete frame and URM buildings built before 1980 are estimated to be collapsing. Buildings constructed between 1980 and 1999 are more resistant; 8% of those structures were extensively damaged and 18% were moderately damaged. Only 10% of buildings constructed after 1999 were moderately damaged. The results also show that the main hospital of the city, built before 1960, will be extensively damaged during an earthquake of 5.5 Mw. The number of human casualties could reach several hundreds – 10.5% of residents of URM buildings are injured or dead. Compared with the URM buildings, concrete frame buildings have lower casualty rates of 1.5% and 0.5% for those built before and after 1980, respectively. It was concluded that Mostaganem city belongs to seismic vulnerable zones in Algeria; in this regard, an action plan is needed for the rehabilitation of old constructions. In addition, the effectiveness of establishing and introducing new and appropriate fragility curves was demonstrated.
Dynamics of combined forest damage risks for 21st century (SRES A1B, B1)
NASA Astrophysics Data System (ADS)
Panferov, Oleg; Merklein, Johannes; Sogachev, Andrey; Junghans, Udo; Ahrends, Bernd
2010-05-01
The ongoing climate change can result in increasing frequency of weather extremes (Leckebusch et al., 2008) which in turn can produce wide area forest damage (windthrows, droughts, insect attacks) within forest ecosystems in Europe. The probability and extent of damage, depend not only on a strength of a driving force itself but especially on combinations of effecting agents and their interactions with forest ecosystem structure and soil properties. The combined effect of several factors which are not the extremes themselves can lead to the biotic and/or abiotic damage so that the combination becomes an extreme event. As soon as a damage event occurs, the forest structure is changed. The changes in forest structure in their turn strengthen or inhibits the influence of different climatic factors thus increase or decrease the probability of the next damage event creating positive or negative feedbacks. To assess the roles of separate meteorological factors and their combinations in forest damage under present and future climatic conditions the coupled model was created in University of Goettingen, as a part of a Decision Support System (Jansen et al, 2008, Panferov et al., 2009). The model combines the 3D ABL Model SCADIS (Panferov and Sogachev, 2008) with modified soil hydrology model BROOK 90 (Federer, 2003, Ahrends et al. 2009) and the model of climate dependent biotic damage. The projected future developments of forest damage events in 21st Century were carried out under conditions of SRES scenarios A1B and B1; the present conditions were evaluated using the measured data of German Weather Service. Climate scenario data of coupled ECHAM5-MPIOM were downscaled by the regional climate model Climate Local Model (CLM) to the spatial resolution of 0.2° x 0.2° and temporal resolution of 24 hours. Using these data as input the small-scale coupled process based modeling was then carried out for example region of Solling, Germany calculating the water and energy balance of forest ecosystems, wind loading on trees and biotic damage for several tree species and typical soil types. The damage risks a certain forest stand at a given soil results from daily combinations of air and soil temperatures, soil water characteristics, static and gust wind loads on trees with dynamic LAI and of soil texture. Some damaged stands show higher vulnerability and thus - positive feedbacks to climate forcing (Vygodskaya et al., 2007). Therefore, changes of microclimate in remaining stands after changes in forest structure are taken into account. Model output is aggregated to 30-years periods and compared to "present conditions" of 1981-2010. The results show considerable increment of both biotic and abiotic risks towards 2100 relatively to "present" caused by weak changes in precipitation and wind patterns and strong increase of mean air temperature and soil temperatures. It is shown, e.g. that the wind- damage-induced changes of structure and microclimate provide a positive feedback i.e. - increase the probability of the next damage event. The study was financed by BMBF within the frames of joint project "Decision Support System - Forest and Climate Change" (DSS-WuK) and by Grant of Ministry for Science and Culture of Lower Saxony "KLIFF". We gratefully acknowledge this support.
NASA Astrophysics Data System (ADS)
Çaktı, Eser; Ercan, Tülay; Dar, Emrullah
2017-04-01
Istanbul's vast historical and cultural heritage is under constant threat of earthquakes. Historical records report repeated damages to the city's landmark buildings. Our efforts towards earthquake protection of several buildings in Istanbul involve earthquake monitoring via structural health monitoring systems, linear and non-linear structural modelling and analysis in search of past and future earthquake performance, shake-table testing of scaled models and non-destructive testing. More recently we have been using laser technology in monitoring structural deformations and damage in five monumental buildings which are Hagia Sophia Museum and Fatih, Sultanahmet, Süleymaniye and Mihrimah Sultan Mosques. This presentation is about these efforts with special emphasis on the use of laser scanning in monitoring of edifices.
Radiation damage free ghost diffraction with atomic resolution
Li, Zheng; Medvedev, Nikita; Chapman, Henry N.; ...
2017-12-21
The x-ray free electron lasers can enable diffractive structural determination of protein nanocrystals and single molecules that are too small and radiation-sensitive for conventional x-ray diffraction. However the electronic form factor may be modified during the ultrashort x-ray pulse due to photoionization and electron cascade caused by the intense x-ray pulse. For general x-ray imaging techniques, the minimization of the effects of radiation damage is of major concern to ensure reliable reconstruction of molecular structure. Here in this paper, we show that radiation damage free diffraction can be achieved with atomic spatial resolution by using x-ray parametric down-conversion and ghostmore » diffraction with entangled photons of x-ray and optical frequencies. We show that the formation of the diffraction patterns satisfies a condition analogous to the Bragg equation, with a resolution that can be as fine as the crystal lattice length scale of several Ångstrom. Since the samples are illuminated by low energy optical photons, they can be free of radiation damage.« less
A Progressive Damage Methodology for Residual Strength Predictions of Notched Composite Panels
NASA Technical Reports Server (NTRS)
Coats, Timothy W.; Harris, Charles E.
1998-01-01
The translaminate fracture behavior of carbon/epoxy structural laminates with through-penetration notches was investigated to develop a residual strength prediction methodology for composite structures. An experimental characterization of several composite materials systems revealed a fracture resistance behavior that was very similar to the R-curve behavior exhibited by ductile metals. Fractographic examinations led to the postulate that the damage growth resistance was primarily due to fractured fibers in the principal load-carrying plies being bridged by intact fibers of the adjacent plies. The load transfer associated with this bridging mechanism suggests that a progressive damage analysis methodology will be appropriate for predicting the residual strength of laminates with through-penetration notches. A progressive damage methodology developed by the authors was used to predict the initiation and growth of matrix cracks and fiber fracture. Most of the residual strength predictions for different panel widths, notch lengths, and material systems were within about 10% of the experimental failure loads.
Radiation damage free ghost diffraction with atomic resolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zheng; Medvedev, Nikita; Chapman, Henry N.
The x-ray free electron lasers can enable diffractive structural determination of protein nanocrystals and single molecules that are too small and radiation-sensitive for conventional x-ray diffraction. However the electronic form factor may be modified during the ultrashort x-ray pulse due to photoionization and electron cascade caused by the intense x-ray pulse. For general x-ray imaging techniques, the minimization of the effects of radiation damage is of major concern to ensure reliable reconstruction of molecular structure. Here in this paper, we show that radiation damage free diffraction can be achieved with atomic spatial resolution by using x-ray parametric down-conversion and ghostmore » diffraction with entangled photons of x-ray and optical frequencies. We show that the formation of the diffraction patterns satisfies a condition analogous to the Bragg equation, with a resolution that can be as fine as the crystal lattice length scale of several Ångstrom. Since the samples are illuminated by low energy optical photons, they can be free of radiation damage.« less
Vulnerability assessment of RC frames considering the characteristic of pulse-like ground motions
NASA Astrophysics Data System (ADS)
Xu, Chao; Wen, Zengping
2017-04-01
Pulse-like ground motions are a special class of ground motions that are particularly challenging to characterize for earthquake hazard assessment. These motions are characterized by a "pulse" in the velocity time history of the motion, and they are typically very intense and have been observed to cause severe damage to structures in past earthquakes. So it is particularly important to characterize these ground motions. Previous studies show that the severe response of structure is not entirely accounted for by measuring the intensity of the ground motion using spectral acceleration of the elastic first-mode period of a structure (Sa(T1)). This paper will use several alternative intensity measures to characterize the effect of pulse-like ground motions in vulnerability assessment. The ability of these intensity measures to characterize pulse-like ground motions will be evaluated. Pulse-like ground motions and ordinary ground motions are selected as input to carry out incremental dynamic analysis. Structural response and vulnerability are estimated by using Sa(T1) as the intensity measure. The impact of pulse period on structural response is studied through residual analysis. By comparing the difference between the structural response and vulnerability curves using pulse-like ground motions and ordinary ground motions as the input, the impact of velocity pulse on vulnerability is investigated and the shortcoming of using Sa(T1) to characterize pulse-like ground motion is analyzed. Then, vector-valued ground motion intensity measures(Sa(T1)&RT1,T2, Sa(T1)&RPGV,Sa) and inelastic displacement spectra(Sdi(T1)) are used to characterize the damage potential of pulse-like ground motions, the efficiency and sufficiency of these intensity measures are evaluated. The study shows that: have strong the damage potential of near fault ground motions with velocity pulse is closely related to the pulse period of strong motion as well as first mode period of vibration and nonlinear features of the structure. The above factors should be taken into account when choosing a reasonable ground motion parameter to characterize the damage potential of pulse-like ground motions. Vulnerability curves based on Sa(T1) show obvious differences between using near fault ground motions and ordinary ground motions, as well as pulse-like ground motions with different pulse periods as the input. When using vector-valued intensity measures such as Sa(T1)&RT1,T2, Sa(T1)&RPGV,Sa and inelastic displacement spectra, the results of vulnerability analysis are roughly the same. These ground motion intensity measures are more efficient and sufficient to characterize the damage potential of near fault ground motions with velocity pulse.
Assessment of the integrity of concrete bridge structures by acoustic emission technique
NASA Astrophysics Data System (ADS)
Yoon, Dong-Jin; Park, Philip; Jung, Juong-Chae; Lee, Seung-Seok
2002-06-01
This study was aimed at developing a new method for assessing the integrity of concrete structures. Especially acoustic emission technique was used in carrying out both laboratory experiment and field application. From the previous laboratory study, we confirmed that AE analysis provided a promising approach for estimating the level of damage and distress in concrete structures. The Felicity ratio, one of the key parameter for assessing damage, exhibits a favorable correlation with the overall damage level. The total number of AE events under stepwise cyclic loading also showed a good agreement with the damage level. In this study, a new suggested technique was applied to several concrete bridges in Korea in order to verify the applicability in field. The AE response was analyzed to obtain key parameters such as the total number and rate of AE events, AE parameter analysis for each event, and the characteristic features of the waveform as well as Felicity ratio analysis. Stepwise loading-unloading procedure for AE generation was introduced in field test by using each different weight of vehicle. According to the condition of bridge, for instance new or old bridge, AE event rate and AE generation behavior indicated many different aspects. The results showed that the suggested analyzing method would be a promising approach for assessing the integrity of concrete structures.
Online damage inspection of optics for ATP system
NASA Astrophysics Data System (ADS)
Chen, Jing; Jiang, Yu; Mao, Yao; Gan, Xun; Liu, Qiong
2016-09-01
In the Electro-Optical acquisition-tracking-pointing system (ATP), the optical components will be damaged with the several influencing factors. In this situation, the rate will increase sharply when the arrival of damage to some extent. As the complex processing techniques and long processing cycle of optical components, the damage will cause the great increase of the system development cost and cycle. Therefore, it is significant to detect the laser-induced damage in the ATP system. At present, the major research on the on-line damage detection technology of optical components is for the large optical system in the international. The relevant detection systems have complicated structures and many of components, and require enough installation space reserved, which do not apply for ATP system. To solve the problem mentioned before, This paper use a method based on machine vision to detect the damage on-line for the present ATP system. To start with, CCD and PC are used for image acquisition. Secondly, smoothing filters are used to restrain false damage points produced by noise. Then, with the shape feature included in the damage image, the OTSU Method which can define the best segmentation threshold automatically is used to achieve the goal to locate the damage regions. At last, we can supply some opinions for the lifetime of the optical components by analyzing the damage data, such as damage area, damage position. The method has the characteristics of few-detectors and simple-structures which can be installed without any changes of the original light path. With the method, experimental results show that it is stable and effective to achieve the goal of detecting the damage of optical components on-line in the ATP system.
Capellari, Giovanni; Eftekhar Azam, Saeed; Mariani, Stefano
2015-01-01
Health monitoring of lightweight structures, like thin flexible plates, is of interest in several engineering fields. In this paper, a recursive Bayesian procedure is proposed to monitor the health of such structures through data collected by a network of optimally placed inertial sensors. As a main drawback of standard monitoring procedures is linked to the computational costs, two remedies are jointly considered: first, an order-reduction of the numerical model used to track the structural dynamics, enforced with proper orthogonal decomposition; and, second, an improved particle filter, which features an extended Kalman updating of each evolving particle before the resampling stage. The former remedy can reduce the number of effective degrees-of-freedom of the structural model to a few only (depending on the excitation), whereas the latter one allows to track the evolution of damage and to locate it thanks to an intricate formulation. To assess the effectiveness of the proposed procedure, the case of a plate subject to bending is investigated; it is shown that, when the procedure is appropriately fed by measurements, damage is efficiently and accurately estimated. PMID:26703615
NASA Astrophysics Data System (ADS)
Gharibnezhad, Fahit; Mujica, Luis E.; Rodellar, José
2015-01-01
Using Principal Component Analysis (PCA) for Structural Health Monitoring (SHM) has received considerable attention over the past few years. PCA has been used not only as a direct method to identify, classify and localize damages but also as a significant primary step for other methods. Despite several positive specifications that PCA conveys, it is very sensitive to outliers. Outliers are anomalous observations that can affect the variance and the covariance as vital parts of PCA method. Therefore, the results based on PCA in the presence of outliers are not fully satisfactory. As a main contribution, this work suggests the use of robust variant of PCA not sensitive to outliers, as an effective way to deal with this problem in SHM field. In addition, the robust PCA is compared with the classical PCA in the sense of detecting probable damages. The comparison between the results shows that robust PCA can distinguish the damages much better than using classical one, and even in many cases allows the detection where classic PCA is not able to discern between damaged and non-damaged structures. Moreover, different types of robust PCA are compared with each other as well as with classical counterpart in the term of damage detection. All the results are obtained through experiments with an aircraft turbine blade using piezoelectric transducers as sensors and actuators and adding simulated damages.
Aeroelastic Modeling of a Nozzle Startup Transient
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Zhao, Xiang; Zhang, Sijun; Chen, Yen-Sen
2014-01-01
Lateral nozzle forces are known to cause severe structural damage to any new rocket engine in development during test. While three-dimensional, transient, turbulent, chemically reacting computational fluid dynamics methodology has been demonstrated to capture major side load physics with rigid nozzles, hot-fire tests often show nozzle structure deformation during major side load events, leading to structural damages if structural strengthening measures were not taken. The modeling picture is incomplete without the capability to address the two-way responses between the structure and fluid. The objective of this study is to develop a tightly coupled aeroelastic modeling algorithm by implementing the necessary structural dynamics component into an anchored computational fluid dynamics methodology. The computational fluid dynamics component is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, while the computational structural dynamics component is developed under the framework of modal analysis. Transient aeroelastic nozzle startup analyses at sea level were performed, and the computed transient nozzle fluid-structure interaction physics presented,
Probabilistic Methods for Structural Design and Reliability
NASA Technical Reports Server (NTRS)
Chamis, Christos C.; Whitlow, Woodrow, Jr. (Technical Monitor)
2002-01-01
This report describes a formal method to quantify structural damage tolerance and reliability in the presence of a multitude of uncertainties in turbine engine components. The method is based at the material behavior level where primitive variables with their respective scatter ranges are used to describe behavior. Computational simulation is then used to propagate the uncertainties to the structural scale where damage tolerance and reliability are usually specified. Several sample cases are described to illustrate the effectiveness, versatility, and maturity of the method. Typical results from this method demonstrate, that it is mature and that it can be used to probabilistically evaluate turbine engine structural components. It may be inferred from the results that the method is suitable for probabilistically predicting the remaining life in aging or in deteriorating structures, for making strategic projections and plans, and for achieving better, cheaper, faster products that give competitive advantages in world markets.
Wells, Lucy; Perez, Fernando; Hibbert, Marlon; Clerveaux, Luc; Johnson, Jodi; Goreau, Thomas J
2010-10-01
Artificial reefs are often discouraged in shallow waters over concerns of storm damage to structures and surrounding habitat. Biorock coral reef restoration projects were initiated in waters around 5 m deep in Grand Turk, at Oasis (October 2006) and at Governor's Beach (November 2007). Hemi-cylindrical steel modules, 6m long were used, four modules at Oasis and six at Governor's Beach. Each project has over 1200 corals transplanted from sites with high sedimentation damage, and are regularly monitored for coral growth, mortality and fish populations. Corals show immediate growth over wires used to attach corals. Growth has been measured from photographs using a software program and is faster at Governor's Beach. After hurricanes Hanna and Ike (September 2008) the Governor's Beach structure was fully standing since the waves passed straight through with little damage, the Oasis structures which were tie-wired rather than welded had one module collapse (since been replaced with a new, welded structure). Hurricane Ike was the strongest hurricane on record to hit Grand Turk. Most cables were replaced following the hurricanes due to damage from debris and high wave action. The projects lost about a third of the corals due to hurricanes. Most of those lost had only been wired a few days before and had not yet attached themselves firmly. These projects have regenerated corals and fish populations in areas of barren sand or bedrock and are now attractive to snorkelers. High coral survival and low structural damage after hurricanes indicate that Biorock reef restoration can be effective in storm-impacted areas.
Particle filtering based structural assessment with acoustic emission sensing
NASA Astrophysics Data System (ADS)
Yan, Wuzhao; Abdelrahman, Marwa; Zhang, Bin; Ziehl, Paul
2017-02-01
Nuclear structures are designed to withstand severe loading events under various stresses. Over time, aging of structural systems constructed with concrete and steel will occur. This deterioration may reduce service life of nuclear facilities and/or lead to unnecessary or untimely repairs. Therefore, online monitoring of structures in nuclear power plants and waste storage has drawn significant attention in recent years. Of many existing non-destructive evaluation and structural monitoring approaches, acoustic emission is promising for assessment of structural damage because it is non-intrusive and is sensitive to corrosion and crack growth in reinforced concrete elements. To provide a rapid, actionable, and graphical means for interpretation Intensity Analysis plots have been developed. This approach provides a means for classification of damage. Since the acoustic emission measurement is only an indirect indicator of structural damage, potentially corrupted by non-genuine data, it is more suitable to estimate the states of corrosion and cracking in a Bayesian estimation framework. In this paper, we will utilize the accelerated corrosion data from a specimen at the University of South Carolina to develop a particle filtering-based diagnosis and prognosis algorithm. Promising features of the proposed algorithm are described in terms of corrosion state estimation and prediction of degradation over time to a predefined threshold.
Seismic damage analysis of the outlet piers of arch dams using the finite element sub-model method
NASA Astrophysics Data System (ADS)
Song, Liangfeng; Wu, Mingxin; Wang, Jinting; Xu, Yanjie
2016-09-01
This study aims to analyze seismic damage of reinforced outlet piers of arch dams by the nonlinear finite element (FE) sub-model method. First, the dam-foundation system is modeled and analyzed, in which the effects of infinite foundation, contraction joints, and nonlinear concrete are taken into account. The detailed structures of the outlet pier are then simulated with a refined FE model in the sub-model analysis. In this way the damage mechanism of the plain (unreinforced) outlet pier is analyzed, and the effects of two reinforcement measures (i.e., post-tensioned anchor cables and reinforcing bar) on the dynamic damage to the outlet pier are investigated comprehensively. Results show that the plain pier is damaged severely by strong earthquakes while implementation of post-tensioned anchor cables strengthens the pier effectively. In addition, radiation damping strongly alleviates seismic damage to the piers.
Postencephalitic focal retrograde amnesia after bilateral anterior temporal lobe damage.
Tanaka, Y; Miyazawa, Y; Hashimoto, R; Nakano, I; Obayashi, T
1999-07-22
Marked retrograde amnesia with no or almost no anterograde amnesia is rare. Recently, a combination of ventrolateral prefrontal and temporopolar cortical lesions has been suggested as the cause of such isolated or focal retrograde amnesia. It is also assumed that when the right-sided cortical structures are damaged, autobiographical episodic memories are affected. To search for new anatomic substrates for focal retrograde amnesia. We performed extensive neuropsychological tests and obtained detailed neuroimages on a 43-year-old woman who showed a severe, persistent retrograde amnesia but only a limited anterograde amnesia after probable herpes simplex encephalitis. Tests of autobiographical memory revealed that she had a memory loss extending back to her childhood for both semantics and incidents; however, the ability to recall specific episodes appeared much more severely impaired than the ability to recall factual information about her past. The patient also showed profound impairments in recalling public memories; however, her scores improved nearly to a control level on forced-choice recognition memory tasks, although the recall of memories for a decade just before her illness remained mildly impaired. MRI revealed focal pathologies in the temporal poles and the anterior parts of the inferotemporal lobes on both sides, predominantly on the left, with some extension to the anterior parts of the medial temporal lobes. There was additional damage to the left insular cortex and its surrounding structures but no evidence of frontal lobe damage on MRIs or cognitive tests. A profound retrograde amnesia may be produced by damage to the bilateral temporal poles and anterior inferotemporal lobes in the absence of frontal lobe pathologies, and a dense and persistent episodic old memory loss can arise even with a relatively small lesion in the right anterior temporal lobe if it is combined with extensive damage to the left.
NASA Astrophysics Data System (ADS)
Li, Dongsheng; Du, Fangzhu; Ou, Jinping
2017-03-01
Glass-fiber reinforced plastic (GFRP)-confined circular concrete-filled steel tubular (CCFT) columns comprise of concrete, steel, and GFRP and show complex failure mechanics under cyclic loading. This paper investigated the failure mechanism and damage evolution of GFRP-CCFT columns by performing uniaxial cyclic loading tests that were monitored using the acoustic emission (AE) technique. Characteristic AE parameters were obtained during the damage evolution of GFRP-CCFT columns. Based on the relationship between the loading curve and these parameters, the damage evolution of GFRP-CCFT columns was classified into three stages that represented different damage degrees. Damage evolution and failure mode were investigated by analyzing the b-value and the ratio of rise time to waveform amplitude and average frequency. The damage severity of GFRP-CCFT columns were quantitatively estimated according to the modified index of damage and NDIS-2421 damage assessment criteria corresponding to each loading step. The proposed method can explain the damage evolution and failure mechanism for GFRP-CCFT columns and provide critical warning information for composite structures.
Smart materials and structures
NASA Technical Reports Server (NTRS)
Rogowski, Robert S.; Heyman, Joseph S.
1993-01-01
Embedded optical fibers allow not only the cure-monitoring and in-service lifetime measurements of composite materials, but the NDE of material damage and degradation with aging. The capabilities of such damage-detection systems have been extended to allow the quantitative determination of 2D strain in materials by several different methods, including the interferometric and the numerical. It remains to be seen, what effect the embedded fibers have on the strength of the 'smart' materials created through their incorporation.
Structural damage diagnostics via wave propagation-based filtering techniques
NASA Astrophysics Data System (ADS)
Ayers, James T., III
Structural health monitoring (SHM) of aerospace components is a rapidly emerging field due in part to commercial and military transport vehicles remaining in operation beyond their designed life cycles. Damage detection strategies are sought that provide real-time information of the structure's integrity. One approach that has shown promise to accurately identify and quantify structural defects is based on guided ultrasonic wave (GUW) inspections, where low amplitude attenuation properties allow for long range and large specimen evaluation. One drawback to GUWs is that they exhibit a complex multi-modal response, such that each frequency corresponds to at least two excited modes, and thus intelligent signal processing is required for even the simplest of structures. In addition, GUWs are dispersive, whereby the wave velocity is a function of frequency, and the shape of the wave packet changes over the spatial domain, requiring sophisticated detection algorithms. Moreover, existing damage quantification measures are typically formulated as a comparison of the damaged to undamaged response, which has proven to be highly sensitive to changes in environment, and therefore often unreliable. As a response to these challenges inherent to GUW inspections, this research develops techniques to locate and estimate the severity of the damage. Specifically, a phase gradient based localization algorithm is introduced to identify the defect position independent of excitation frequency and damage size. Mode separation through the filtering technique is central in isolating and extracting single mode components, such as reflected, converted, and transmitted modes that may arise from the incident wave impacting a damage. Spatially-integrated single and multiple component mode coefficients are also formulated with the intent to better characterize wave reflections and conversions and to increase the signal to noise ratios. The techniques are applied to damaged isotropic finite element plate models and experimental data obtained from Scanning Laser Doppler Vibrometry tests. Numerical and experimental parametric studies are conducted, and the current strengths and weaknesses of the proposed approaches are discussed. In particular, limitations to the damage profiling characterization are shown for low ultrasonic frequency regimes, whereas the multiple component mode conversion coefficients provide excellent noise mitigation. Multiple component estimation relies on an experimental technique developed for the estimation of Lamb wave polarization using a 1D Laser Vibrometer. Lastly, suggestions are made to apply the techniques to more structurally complex geometries.
NEUROPHYSIOLOGICAL CONSEQUENCES IN HIPPOCAMPUS AS A FUNCTION OF DEVELOPMENTAL HYPOTHYROIDISM.
Thyroid hormones are essential for maturation and function of the mammalian central nervous system. Severe congenital hypothyroidism results in irreversible structural damage and mental retardation in children. Although a variety of environmental contaminants have been demonstrat...
Laser-based structural sensing and surface damage detection
NASA Astrophysics Data System (ADS)
Guldur, Burcu
Damage due to age or accumulated damage from hazards on existing structures poses a worldwide problem. In order to evaluate the current status of aging, deteriorating and damaged structures, it is vital to accurately assess the present conditions. It is possible to capture the in situ condition of structures by using laser scanners that create dense three-dimensional point clouds. This research investigates the use of high resolution three-dimensional terrestrial laser scanners with image capturing abilities as tools to capture geometric range data of complex scenes for structural engineering applications. Laser scanning technology is continuously improving, with commonly available scanners now capturing over 1,000,000 texture-mapped points per second with an accuracy of ~2 mm. However, automatically extracting meaningful information from point clouds remains a challenge, and the current state-of-the-art requires significant user interaction. The first objective of this research is to use widely accepted point cloud processing steps such as registration, feature extraction, segmentation, surface fitting and object detection to divide laser scanner data into meaningful object clusters and then apply several damage detection methods to these clusters. This required establishing a process for extracting important information from raw laser-scanned data sets such as the location, orientation and size of objects in a scanned region, and location of damaged regions on a structure. For this purpose, first a methodology for processing range data to identify objects in a scene is presented and then, once the objects from model library are correctly detected and fitted into the captured point cloud, these fitted objects are compared with the as-is point cloud of the investigated object to locate defects on the structure. The algorithms are demonstrated on synthetic scenes and validated on range data collected from test specimens and test-bed bridges. The second objective of this research is to combine useful information extracted from laser scanner data with color information, which provides information in the fourth dimension that enables detection of damage types such as cracks, corrosion, and related surface defects that are generally difficult to detect using only laser scanner data; moreover, the color information also helps to track volumetric changes on structures such as spalling. Although using images with varying resolution to detect cracks is an extensively researched topic, damage detection using laser scanners with and without color images is a new research area that holds many opportunities for enhancing the current practice of visual inspections. The aim is to combine the best features of laser scans and images to create an automatic and effective surface damage detection method, which will reduce the need for skilled labor during visual inspections and allow automatic documentation of related information. This work enables developing surface damage detection strategies that integrate existing condition rating criteria for a wide range damage types that are collected under three main categories: small deformations already existing on the structure (cracks); damage types that induce larger deformations, but where the initial topology of the structure has not changed appreciably (e.g., bent members); and large deformations where localized changes in the topology of the structure have occurred (e.g., rupture, discontinuities and spalling). The effectiveness of the developed damage detection algorithms are validated by comparing the detection results with the measurements taken from test specimens and test-bed bridges.
NASA Technical Reports Server (NTRS)
McElroy, Mack; de Carvalho, Nelson; Estes, Ashley; Lin, Shih-yung
2017-01-01
Use of lightweight composite materials in space and aircraft structure designs is often challenging due to high costs associated with structural certification. Of primary concern in the use of composite structures is durability and damage tolerance. This concern is due to the inherent susceptibility of composite materials to both fabrication and service induced flaws. Due to a lack of general industry accepted analysis tools applicable to composites damage simulation, a certification procedure relies almost entirely on testing. It is this reliance on testing, especially compared to structures comprised of legacy metallic materials where damage simulation tools are available, that can drive costs for using composite materials in aerospace structures. The observation that use of composites can be expensive due to testing requirements is not new and as such, research on analysis tools for simulating damage in composite structures has been occurring for several decades. A convenient approach many researchers/model-developers in this area have taken is to select a specific problem relevant to aerospace structural certification and develop a model that is accurate within that scope. Some examples are open hole tension tests, compression after impact tests, low-velocity impact, damage tolerance of an embedded flaw, and fatigue crack growth to name a few. Based on the premise that running analyses is cheaper than running tests, one motivation that many researchers in this area have is that if generally applicable and reliable damage simulation tools were available the dependence on certification testing could be lessened thereby reducing overall design cost. It is generally accepted that simulation tools if applied in this manner would still need to be thoroughly validated and that composite testing will never be completely replaced by analysis. Research and development is currently occurring at NASA to create numerical damage simulation tools applicable to damage in composites. The Advanced Composites Project (ACP) at NASA Langley has supported the development of composites damage simulation tools in a consortium of aerospace companies with a goal of reducing the certification time of a commercial aircraft by 30%. And while the scope of ACP does not include spacecraft, much of the methodology and simulation capabilities can apply to spacecraft certification in the Space Launch System and Orion programs as well. Some specific applications of composite damage simulation models in a certification program are (1) evaluation of damage during service when maintenance may be difficult or impossible, (2) a tool for early design iterations, (3) gaining insight into a particular damage process and applying this insight towards a test coupon or structural design, and (4) analysis of damage scenarios that are difficult or impossible to recreate in a test. As analysis capabilities improve, these applications and more will become realized resulting in a reduction in cost for use of composites in aerospace vehicles. NASA is engaged in this process from both research and application perspectives. In addition to the background information discussed previously, this presentation covers a look at recent research at NASA in this area and some current/potential applications in the Orion program.
Study on Collapse Mechanism of Steel Frame Structure under High Temperature and Blast Loading
NASA Astrophysics Data System (ADS)
Baoxin, Qi; Yan, Shi; Bi, Jialiang
2018-03-01
Numerical simulation analysis for collapsing process and mechanism of steel frame structures under the combined effects of fire and explosion is performed in this paper. First of all, a new steel constitutive model considering fire (high temperature softening effect) and blast (strain rate effect) is established. On the basis of the traditional Johnson-Cook model and the Perzyna model, the relationship between strain and scaled distance as well as the EOUROCODE3 standard heating curve taking into account the temperature effect parameters is introduced, and a modified Johnson-Cook constitutive model is established. Then, the influence of considering the scaled distance is introduced in order to more effectively describe the destruction and collapse phenomena of steel frame structures. Some conclusions are obtained based on the numerical analysis that the destruction will be serious and even progressively collapse with decreasing of the temperature of the steel column for the same scaled distance under the combined effects of fire and blast; the damage will be serious with decreasing of the scaled distance of the steel column under the same temperature under the combined effects of fire and blast; in the case of the combined effects of fire and blast happening in the side-spans, the partial progressive collapse occurs as the scaled distance is less than or equal to 1.28; six kinds of damages which are no damage, minor damage, moderate damage, severe damage, critical collapse, and progressive collapse.
Development of an Aeroelastic Modeling Capability for Transient Nozzle Side Load Analysis
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Zhao, Xiang; Zhang, Sijun; Chen, Yen-Sen
2013-01-01
Lateral nozzle forces are known to cause severe structural damage to any new rocket engine in development during test. While three-dimensional, transient, turbulent, chemically reacting computational fluid dynamics methodology has been demonstrated to capture major side load physics with rigid nozzles, hot-fire tests often show nozzle structure deformation during major side load events, leading to structural damages if structural strengthening measures were not taken. The modeling picture is incomplete without the capability to address the two-way responses between the structure and fluid. The objective of this study is to develop a coupled aeroelastic modeling capability by implementing the necessary structural dynamics component into an anchored computational fluid dynamics methodology. The computational fluid dynamics component is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, while the computational structural dynamics component is developed in the framework of modal analysis. Transient aeroelastic nozzle startup analyses of the Block I Space Shuttle Main Engine at sea level were performed. The computed results from the aeroelastic nozzle modeling are presented.
NASA Astrophysics Data System (ADS)
Tibaduiza-Burgos, Diego Alexander; Torres-Arredondo, Miguel Angel
2015-08-01
Aeronautical structures are subjected to damage during their service raising the necessity for periodic inspection and maintenance of their components so that structural integrity and safe operation can be guaranteed. Cost reduction related to minimizing the out-of-service time of the aircraft, together with the advantages offered by real-time and safe-life service monitoring, have led to a boom in the design of inexpensive and structurally integrated transducer networks comprising actuators, sensors, signal processing units and controllers. These kinds of automated systems are normally referred to as smart structures and offer a multitude of new solutions to engineering problems and multi-functional capabilities. It is thus expected that structural health monitoring (SHM) systems will become one of the leading technologies for assessing and assuring the structural integrity of future aircraft. This study is devoted to the development and experimental investigation of an SHM methodology for the detection of damage in real scale complex aeronautical structures. The work focuses on each aspect of the SHM system and highlights the potentialities of the health monitoring technique based on acousto-ultrasonics and data-driven modelling within the concepts of sensor data fusion, feature extraction and pattern recognition. The methodology is experimentally demonstrated on an aircraft skin panel and fuselage panel for which several damage scenarios are analysed. The detection performance in both structures is quantified and presented.
Response of two identical seven-story structures to the San Fernando earthquake of February 9, 1971
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freeman, S.A.; Honda, K.K.
1973-10-01
The results of the structural dynamic investigation of two sevenstory reinforced concrete frame structures are presented here. The structures are both Holiday Inn rnotor hotels that are essentially identical: one is locrted about 13 miles and the other about 26 miles from the epicenter of the February 9, 1971, San Fernando earthquake. Appreciable nonstructural damage as well as some structural damage was observed. Strong-motion seismic records were obtained for the roof, intermediate story, and ground floor of each structure. The analyses are based on data from the structural drawings, architectural drawings, photographs, engineering reports, and seisrnogram records obtained before, during,more » and after the San Fernando earthquake. Both structures experienced motion well beyond the limits of the building code design criteria. A change in fundamental period was observed for each structure after several seconds of response to the earthquake, which indicated nonlinear response. The analyses indicated that the elastic capacity of some structural members was exceeded. Idealized linear models were constructed to approximate response at various time segments. A method for approximating the nonlinear response of each structure is presented. The effects of nonstructural elements, yielding beams, and column capacities are illustrated. Comparisons of the two buildings are made for ductility factors, dynarnic response characteristics, and damage. Conclusions are drawn concerning the effects of the earthquake on the structures and the future capacities of the structures. (auth)« less
Quantitative ultrasonic coda wave (diffuse field) NDE of carbon-fiber reinforced polymer plates
NASA Astrophysics Data System (ADS)
Livings, Richard A.
The increasing presence and applications of composite materials in aerospace structures precipitates the need for improved Nondestructive Evaluation (NDE) techniques to move from simple damage detection to damage diagnosis and structural prognosis. Structural Health Monitoring (SHM) with advanced ultrasonic (UT) inspection methods can potentially address these issues. Ultrasonic coda wave NDE is one of the advanced methods currently under investigation. Coda wave NDE has been applied to concrete and metallic specimens to assess damage with some success, but currently the method is not fully mature or ready to be applied for SHM. Additionally, the damage diagnosis capabilities and limitations of coda wave NDE applied to fibrous composite materials have not been widely addressed in literature. The central objective of this work, therefore, is to develop a quantitative foundation for the use of coda wave NDE for the inspection and evaluation of fibrous composite materials. Coda waves are defined as the superposition of late arriving wave modes that have been scattered or reflected multiple times. This results in long, complex signals where individual wave modes cannot be discriminated. One method of interpreting the changes in such signals caused by the introduction or growth of damage is to isolate and quantify the difference between baseline and damage signals. Several differential signal features are used in this work to quantify changes in the coda waves which can then be correlated to damage size and growth. Experimental results show that coda wave differential features are effective in detecting drilled through-holes as small as 0.4 mm in a 50x100x6 mm plate and discriminating between increasing hole diameter and increasing number of holes. The differential features are also shown to have an underlying basis function that is dependent on the hole volume and can be scaled by a material dependent coefficient to estimate the feature amplitude and size holes. The fundamental capabilities of the coda wave measurements, such as error, repeatability, and reproducibility, are also examined. Damage detection was found to be repeatable, reproducible, and relatively insensitive to noise. The measurements are found to be sensitive to thermal changes and absorbing boundaries. Several propagation models are also presented and discussed along with a brief analysis of coda wave signals and spectra.
An automatic damage detection algorithm based on the Short Time Impulse Response Function
NASA Astrophysics Data System (ADS)
Auletta, Gianluca; Carlo Ponzo, Felice; Ditommaso, Rocco; Iacovino, Chiara
2016-04-01
Structural Health Monitoring together with all the dynamic identification techniques and damage detection techniques are increasing in popularity in both scientific and civil community in last years. The basic idea arises from the observation that spectral properties, described in terms of the so-called modal parameters (eigenfrequencies, mode shapes, and modal damping), are functions of the physical properties of the structure (mass, energy dissipation mechanisms and stiffness). Damage detection techniques traditionally consist in visual inspection and/or non-destructive testing. A different approach consists in vibration based methods detecting changes of feature related to damage. Structural damage exhibits its main effects in terms of stiffness and damping variation. Damage detection approach based on dynamic monitoring of structural properties over time has received a considerable attention in recent scientific literature. We focused the attention on the structural damage localization and detection after an earthquake, from the evaluation of the mode curvature difference. The methodology is based on the acquisition of the structural dynamic response through a three-directional accelerometer installed on the top floor of the structure. It is able to assess the presence of any damage on the structure providing also information about the related position and severity of the damage. The procedure is based on a Band-Variable Filter, (Ditommaso et al., 2012), used to extract the dynamic characteristics of systems that evolve over time by acting simultaneously in both time and frequency domain. In this paper using a combined approach based on the Fourier Transform and on the seismic interferometric analysis, an useful tool for the automatic fundamental frequency evaluation of nonlinear structures has been proposed. Moreover, using this kind of approach it is possible to improve some of the existing methods for the automatic damage detection providing stable results also during the strong motion phase. This approach helps to overcome the limitation derived from the use of techniques based on simple Fourier Transform that provide good results when the response of the monitored system is stationary, but fails when the system exhibits a non-stationary behaviour. The main advantage derived from the use of the proposed approach for Structural Health Monitoring is based on the simplicity of the interpretation of the nonlinear variations of the fundamental frequency. The proposed methodology has been tested on numerical models of reinforced concrete structures designed for only gravity loads without and with the presence of infill panels. In order to verify the effectiveness of the proposed approach for the automatic evaluation of the fundamental frequency over time, the results of an experimental campaign of shaking table tests conducted at the seismic laboratory of University of Basilicata (SISLAB) have been used. Acknowledgements This study was partially funded by the Italian Civil Protection Department within the project DPC-RELUIS 2015 - RS4 ''Seismic observatory of structures and health monitoring''. References Ditommaso, R., Mucciarelli, M., Ponzo, F.C. (2012) Analysis of non-stationary structural systems by using a band-variable filter. Bulletin of Earthquake Engineering. DOI: 10.1007/s10518-012-9338-y.
Variable Complexity Optimization of Composite Structures
NASA Technical Reports Server (NTRS)
Haftka, Raphael T.
2002-01-01
The use of several levels of modeling in design has been dubbed variable complexity modeling. The work under the grant focused on developing variable complexity modeling strategies with emphasis on response surface techniques. Applications included design of stiffened composite plates for improved damage tolerance, the use of response surfaces for fitting weights obtained by structural optimization, and design against uncertainty using response surface techniques.
Indirect diagnosis of pavement structural damages using surface GPR reflection techniques
NASA Astrophysics Data System (ADS)
Benedetto, A.; Pensa, S.
2007-06-01
The safety and operability of road networks is, in part, dependent on the quality of the pavement. It is known that pavements suffer from many different structural problems which can lead to damage to the pavement surface. To minimize the effect of these problems programmed policies for pavement management are required. Additionally a given local anomaly on the road surface can affect the safety of the road to various degrees according to the category of the road, so it is possible to set up different programmes of repair according to the different standards of road. Programmed policies for pavement management are required because of the wide structural damage which occurs to pavements during their normal operating life. This has consequences for the safety and operability of road networks. During the last decade, road networks suffered from great structural damage. The damage occurs for different reasons, such as the increasing traffic or the lack of means for routine maintenance. Many forms of damage, originating in the bottom layers are invisible until the pavement cracks. They depend on the infiltration of water and the presence of cohesive soil greatly reduces the bearing capacity of the sub-asphalt layers and underlying soils. On the basis of an in-depth literature review, an experimental survey with Ground Penetrating Radar (GPR) was carried out to calibrate the geophysical parameters and to validate the reliability of an indirect diagnostic method of pavement damage. The experiments were set on a pavement under which water was injected over a period of several hours. GPR travel time data were used to estimate the dielectric constant and the water content in the unbound aggregate layer, the variations in water content with time and particular areas where rate of infiltration decreases. A new methodology has been proposed to extract the hydraulic permittivity fields in sub-asphalt structural layers and soils from the moisture maps observed with GPR. It is effective at diagnosing the presence of clay or cohesive soil that compromises the bearing capacity of sub-base and induces damage.
High-Frequency, High-Temperature Fretting Experiments
NASA Technical Reports Server (NTRS)
Matlik, J. F.; Farris, T. N.; Haake, F. K.; Swanson, G. R.; Duke, G. C.
2005-01-01
Fretting is a structural damage mechanism observed when two nominally clamped surfaces are subjected to an oscillatory loading. A critical location for fretting induced damage has been identified at the blade/disk and blade/damper interfaces of gas turbine engine turbomachinery and space propulsion components. The high-temperature, high-frequency loading environment seen by these components lead to severe stress gradients at the edge-of-contact. These contact stresses drive crack nucleation and propagation in fretting and are very sensitive to the geometry of the contacting bodies, the contact loads, materials, temperature, and contact surface tribology (friction). To diagnose the threat that small and relatively undetectable fretting cracks pose to damage tolerance and structural integrity of in-service components, the objective of this work is to develop a well-characterized experimental fretting rig capable of investigating fretting behavior of advanced aerospace alloys subjected to load and temperature conditions representative of such turbomachinery components.
NASA Technical Reports Server (NTRS)
Havican, Marie
2012-01-01
Objective: Develop infrared (IR) flash thermography application based on use of a calibration standard for inspecting graphite-epoxy laminated/honeycomb structures. Background: Graphite/Epoxy composites (laminated and honeycomb) are widely used on NASA programs. Composite materials are susceptible for impact damage that is not readily detected by visual inspection. IR inspection can provide required sensitivity to detect surface damage in composites during manufacturing and during service. IR contrast analysis can provide characterization of depth, size and gap thickness of impact damage. Benefits/Payoffs: The research provides an empirical method of calibrating the flash thermography response in nondestructive evaluation. A physical calibration standard with artificial flaws such as flat bottom holes with desired diameter and depth values in a desired material is used in calibration. The research devises several probability of detection (POD) analysis approaches to enable cost effective POD study to meet program requirements.
Crash tests of three identical low-wing single-engine airplane
NASA Technical Reports Server (NTRS)
Castle, C. B.; Alfaro-Bou, E.
1983-01-01
Three identical four place, low wing single engine airplane specimens with nominal masses of 1043 kg were crash tested under controlled free flight conditions. The tests were conducted at the same nominal velocity of 25 m/sec along the flight path. Two airplanes were crashed on a concrete surface (at 10 and 30 deg pitch angles), and one was crashed on soil (at a -30 deg pitch angle). The three tests revealed that the specimen in the -30 deg test on soil sustained massive structural damage in the engine compartment and fire wall. Also, the highest longitudinal cabin floor accelerations occurred in this test. Severe damage, but of lesser magnitude, occurred in the -30 deg test on concrete. The highest normal cabin floor accelerations occurred in this test. The least structural damage and lowest accelerations occurred in the 10 deg test on concrete.
Microwave detection of fatigue cracks in specially prepared steel specimens.
DOT National Transportation Integrated Search
1998-01-01
In the aging highway systems the problems of fatigue-induced damage and cracking in metal structures are very severe. Many such systems are operating even beyond their design lifetime, which requires more than the originally prescribed inspection cyc...
Kim, Ju-Won; Park, Seunghee
2018-01-02
In this study, a magnetic flux leakage (MFL) method, known to be a suitable non-destructive evaluation (NDE) method for continuum ferromagnetic structures, was used to detect local damage when inspecting steel wire ropes. To demonstrate the proposed damage detection method through experiments, a multi-channel MFL sensor head was fabricated using a Hall sensor array and magnetic yokes to adapt to the wire rope. To prepare the damaged wire-rope specimens, several different amounts of artificial damages were inflicted on wire ropes. The MFL sensor head was used to scan the damaged specimens to measure the magnetic flux signals. After obtaining the signals, a series of signal processing steps, including the enveloping process based on the Hilbert transform (HT), was performed to better recognize the MFL signals by reducing the unexpected noise. The enveloped signals were then analyzed for objective damage detection by comparing them with a threshold that was established based on the generalized extreme value (GEV) distribution. The detected MFL signals that exceed the threshold were analyzed quantitatively by extracting the magnetic features from the MFL signals. To improve the quantitative analysis, damage indexes based on the relationship between the enveloped MFL signal and the threshold value were also utilized, along with a general damage index for the MFL method. The detected MFL signals for each damage type were quantified by using the proposed damage indexes and the general damage indexes for the MFL method. Finally, an artificial neural network (ANN) based multi-stage pattern recognition method using extracted multi-scale damage indexes was implemented to automatically estimate the severity of the damage. To analyze the reliability of the MFL-based automated wire rope NDE method, the accuracy and reliability were evaluated by comparing the repeatedly estimated damage size and the actual damage size.
Strain rate effects on reinforcing steels in tension
NASA Astrophysics Data System (ADS)
Cadoni, Ezio; Forni, Daniele
2015-09-01
It is unquestionable the fact that a structural system should be able to fulfil the function for which it was created, without being damaged to an extent disproportionate to the cause of damage. In addition, it is an undeniable fact that in reinforced concrete structures under severe dynamic loadings, both concrete and reinforcing bars are subjected to high strain-rates. Although the behavior of the reinforcing steel under high strain rates is of capital importance in the structural assessment under the abovementioned conditions, only the behaviour of concrete has been widely studied. Due to this lack of data on the reinforcing steel under high strain rates, an experimental program on rebar reinforcing steels under high strain rates in tension is running at the DynaMat Laboratory. In this paper a comparison of the behaviour in a wide range of strain-rates of several types of reinforcing steel in tension is presented. Three reinforcing steels, commonly proposed by the European Standards, are compared: B500A, B500B and B500C. Lastly, an evaluation of the most common constitutive laws is performed.
Dynamic Structural Fault Detection and Identification
NASA Technical Reports Server (NTRS)
Smith, Timothy; Reichenbach, Eric; Urnes, James M.
2009-01-01
Aircraft structures are designed to guarantee safety of flight in some required operational envelope. When the aircraft becomes structurally impaired, safety of flight may not be guaranteed within that previously safe operational envelope. In this case the safe operational envelope must be redefined in-flight and a means to prevent excursion from this new envelope must be implemented. A specific structural failure mode that may result in a reduced safe operating envelope, the exceedance of which could lead to catastrophic structural failure of the aircraft, will be addressed. The goal of the DFEAP program is the detection of this failure mode coupled with flight controls adaptation to limit critical loads in the damaged aircraft structure. The DFEAP program is working with an F/A-18 aircraft model. The composite wing skins are bonded to metallic spars in the wing substructure. Over time, it is possible that this bonding can deteriorate due to fatigue. In this case, the ability of the wing spar to transfer loading between the wing skins is reduced. This failure mode can translate to a reduced allowable compressive strain on the wing skin and could lead to catastrophic wing buckling if load limiting of the wing structure is not applied. The DFEAP program will make use of a simplified wing strain model for the healthy aircraft. The outputs of this model will be compared in real-time to onboard strain measurements at several locations on the aircraft wing. A damage condition is declared at a given location when the strain measurements differ sufficiently from the strain model. Parameter identification of the damaged structure wing strain parameters will be employed to provide load limiting control adaptation for the aircraft. This paper will discuss the simplified strain models used in the implementation and their interaction with the strain sensor measurements. Also discussed will be the damage detection and identification schemes employed and the means by which the damaged aircraft parameters will be used to provide load limiting that keeps the aircraft within the safe operational envelope.
Seismic response and damage detection analyses of an instrumented steel moment-framed building
Rodgers, J.E.; Celebi, M.
2006-01-01
The seismic performance of steel moment-framed buildings has been of particular interest since brittle fractures were discovered at the beam-column connections in a number of buildings following the M 6.7 Northridge earthquake of January 17, 1994. A case study of the seismic behavior of an extensively instrumented 13-story steel moment frame building located in the greater Los Angeles area of California is described herein. Response studies using frequency domain, joint time-frequency, system identification, and simple damage detection analyses are performed using an extensive strong motion dataset dating from 1971 to the present, supported by engineering drawings and results of postearthquake inspections. These studies show that the building's response is more complex than would be expected from its highly symmetrical geometry. The response is characterized by low damping in the fundamental mode, larger accelerations in the middle and lower stories than at the roof and base, extended periods of vibration after the cessation of strong input shaking, beating in the response, elliptical particle motion, and significant torsion during strong shaking at the top of the concrete piers which extend from the basement to the second floor. The analyses conducted indicate that the response of the structure was elastic in all recorded earthquakes to date, including Northridge. Also, several simple damage detection methods employed did not indicate any structural damage or connection fractures. The combination of a large, real structure and low instrumentation density precluded the application of many recently proposed advanced damage detection methods in this case study. Overall, however, the findings of this study are consistent with the limited code-compliant postearthquake intrusive inspections conducted after the Northridge earthquake, which found no connection fractures or other structural damage. ?? ASCE.
Time domain nonlinear SMA damper force identification approach and its numerical validation
NASA Astrophysics Data System (ADS)
Xin, Lulu; Xu, Bin; He, Jia
2012-04-01
Most of the currently available vibration-based identification approaches for structural damage detection are based on eigenvalues and/or eigenvectors extracted from vibration measurements and, strictly speaking, are only suitable for linear system. However, the initiation and development of damage in engineering structures under severe dynamic loadings are typical nonlinear procedure. Studies on the identification of restoring force which is a direct indicator of the extent of the nonlinearity have received increasing attention in recent years. In this study, a date-based time domain identification approach for general nonlinear system was developed. The applied excitation and the corresponding response time series of the structure were used for identification by means of standard least-square techniques and a power series polynomial model (PSPM) which was utilized to model the nonlinear restoring force (NRF). The feasibility and robustness of the proposed approach was verified by a 2 degree-of-freedoms (DOFs) lumped mass numerical model equipped with a shape memory ally (SMA) damper mimicking nonlinear behavior. The results show that the proposed data-based time domain method is capable of identifying the NRF in engineering structures without any assumptions on the mass distribution and the topology of the structure, and provides a promising way for damage detection in the presence of structural nonlinearities.
The Cerebellum and Neurodevelopmental Disorders.
Stoodley, Catherine J
2016-02-01
Cerebellar dysfunction is evident in several developmental disorders, including autism, attention deficit-hyperactivity disorder (ADHD), and developmental dyslexia, and damage to the cerebellum early in development can have long-term effects on movement, cognition, and affective regulation. Early cerebellar damage is often associated with poorer outcomes than cerebellar damage in adulthood, suggesting that the cerebellum is particularly important during development. Differences in cerebellar development and/or early cerebellar damage could impact a wide range of behaviors via the closed-loop circuits connecting the cerebellum with multiple cerebral cortical regions. Based on these anatomical circuits, behavioral outcomes should depend on which cerebro-cerebellar circuits are affected. Here, we briefly review cerebellar structural and functional differences in autism, ADHD, and developmental dyslexia, and discuss clinical outcomes following pediatric cerebellar damage. These data confirm the prediction that abnormalities in different cerebellar subregions produce behavioral symptoms related to the functional disruption of specific cerebro-cerebellar circuits. These circuits might also be crucial to structural brain development, as peri-natal cerebellar lesions have been associated with impaired growth of the contralateral cerebral cortex. The specific contribution of the cerebellum to typical development may therefore involve the optimization of both the structure and function of cerebro-cerebellar circuits underlying skill acquisition in multiple domains; when this process is disrupted, particularly in early development, there could be long-term alterations of these neural circuits, with significant impacts on behavior.
The cerebellum and neurodevelopmental disorders
Stoodley, Catherine J.
2015-01-01
Cerebellar dysfunction is evident in several developmental disorders, including autism, attention deficit hyperactivity disorder (ADHD), and developmental dyslexia, and damage to the cerebellum early in development can have long-term effects on movement, cognition, and affective regulation. Early cerebellar damage is often associated with poorer outcomes than cerebellar damage in adulthood, suggesting that the cerebellum is particularly important during development. Differences in cerebellar development and/or early cerebellar damage could impact a wide range of behaviors via the closed-loop circuits connecting the cerebellum with multiple cerebral cortical regions. Based on these anatomical circuits, behavioral outcomes should depend on which cerebro-cerebellar circuits are affected. Here, we briefly review cerebellar structural and functional differences in autism, ADHD, and developmental dyslexia, and discuss clinical outcomes following pediatric cerebellar damage. These data confirm the prediction that abnormalities in different cerebellar subregions produce behavioral symptoms related to the functional disruption of specific cerebro-cerebellar circuits. These circuits might also be crucial to structural brain development, as peri-natal cerebellar lesions have been associated with impaired growth of the contralateral cerebral cortex. The specific contribution of the cerebellum to typical development may therefore involve the optimization of both the structure and function of cerebro-cerebellar circuits underlying skill acquisition in multiple domains; when this process is disrupted, particularly in early development, there could be long-term alterations of these neural circuits, with significant impacts on behavior. PMID:26298473
Cheaito, Ramez; Gorham, Caroline S.; Carnegie Mellon Univ., Pittsburgh, PA; ...
2015-05-01
The progressive build up of displacement damage and fission products inside different systems and components of a nuclear reactor can lead to significant defect formation, degradation, and damage of the constituent materials. This structural modification can highly influence the thermal transport mechanisms and various mechanical properties of solids. In this paper we demonstrate the use of time-domain thermoreflectance (TDTR), a non-destructive method capable of measuring the thermal transport in material systems from nano to bulk scales, to study the effect of radiation damage and the subsequent changes in the thermal properties of materials. We use TDTR to show that displacementmore » damage from ion irradiation can significantly reduce the thermal conductivity of Optimized ZIRLO, a material used as fuel cladding in several current nuclear reactors. We find that the thermal conductivity of copper-niobium nanostructured multilayers does not change with helium ion irradiation doses of up to 10 15 cm -2 and ion energy of 200 keV suggesting that these structures can be used and radiation tolerant materials in nuclear reactors. We compare the effect of ion doses and ion beam energies on the measured thermal conductivity of bulk silicon. Results demonstrate that TDTR thermal measurements can be used to quantify depth dependent damage.« less
Design for progressive fracture in composite shell structures
NASA Technical Reports Server (NTRS)
Minnetyan, Levon; Murthy, Pappu L. N.
1992-01-01
The load carrying capability and structural behavior of composite shell structures and stiffened curved panels are investigated to provide accurate early design loads. An integrated computer code is utilized for the computational simulation of composite structural degradation under practical loading for realistic design. Damage initiation, growth, accumulation, and propagation to structural fracture are included in the simulation. Progressive fracture investigations providing design insight for several classes of composite shells are presented. Results demonstrate the significance of local defects, interfacial regions, and stress concentrations on the structural durability of composite shells.
Progressive Failure Analysis Methodology for Laminated Composite Structures
NASA Technical Reports Server (NTRS)
Sleight, David W.
1999-01-01
A progressive failure analysis method has been developed for predicting the failure of laminated composite structures under geometrically nonlinear deformations. The progressive failure analysis uses C(exp 1) shell elements based on classical lamination theory to calculate the in-plane stresses. Several failure criteria, including the maximum strain criterion, Hashin's criterion, and Christensen's criterion, are used to predict the failure mechanisms and several options are available to degrade the material properties after failures. The progressive failure analysis method is implemented in the COMET finite element analysis code and can predict the damage and response of laminated composite structures from initial loading to final failure. The different failure criteria and material degradation methods are compared and assessed by performing analyses of several laminated composite structures. Results from the progressive failure method indicate good correlation with the existing test data except in structural applications where interlaminar stresses are important which may cause failure mechanisms such as debonding or delaminations.
DamaGIS: a multisource geodatabase for collection of flood-related damage data
NASA Astrophysics Data System (ADS)
Saint-Martin, Clotilde; Javelle, Pierre; Vinet, Freddy
2018-06-01
Every year in France, recurring flood events result in several million euros of damage, and reducing the heavy consequences of floods has become a high priority. However, actions to reduce the impact of floods are often hindered by the lack of damage data on past flood events. The present paper introduces a new database for collection and assessment of flood-related damage. The DamaGIS database offers an innovative bottom-up approach to gather and identify damage data from multiple sources, including new media. The study area has been defined as the south of France considering the high frequency of floods over the past years. This paper presents the structure and contents of the database. It also presents operating instructions in order to keep collecting damage data within the database. This paper also describes an easily reproducible method to assess the severity of flood damage regardless of the location or date of occurrence. A first analysis of the damage contents is also provided in order to assess data quality and the relevance of the database. According to this analysis, despite its lack of comprehensiveness, the DamaGIS database presents many advantages. Indeed, DamaGIS provides a high accuracy of data as well as simplicity of use. It also has the additional benefit of being accessible in multiple formats and is open access. The DamaGIS database is available at https://doi.org/10.5281/zenodo.1241089.
NASA Astrophysics Data System (ADS)
Grossman, Barry G.; Gonzalez, Frank S.; Blatt, Joel H.; Hooker, Jeffery A.
1992-03-01
The development of efficient high speed techniques to recognize, locate, and quantify damage is vitally important for successful automated inspection systems such as ones used for the inspection of undersea pipelines. Two critical problems must be solved to achieve these goals: the reduction of nonuseful information present in the video image and automatic recognition and quantification of extent and location of damage. Artificial neural network processed moire profilometry appears to be a promising technique to accomplish this. Real time video moire techniques have been developed which clearly distinguish damaged and undamaged areas on structures, thus reducing the amount of extraneous information input into an inspection system. Artificial neural networks have demonstrated advantages for image processing, since they can learn the desired response to a given input and are inherently fast when implemented in hardware due to their parallel computing architecture. Video moire images of pipes with dents of different depths were used to train a neural network, with the desired output being the location and severity of the damage. The system was then successfully tested with a second series of moire images. The techniques employed and the results obtained are discussed.
Lack of functional relevance of isolated cell damage in transplants of Parkinson's disease patients.
Cooper, Oliver; Astradsson, Arnar; Hallett, Penny; Robertson, Harold; Mendez, Ivar; Isacson, Ole
2009-08-01
Postmortem analyses from clinical neural transplantation trials of several subjects with Parkinson's disease revealed surviving grafted dopaminergic neurons after more than a decade. A subset of these subjects displayed isolated dopaminergic neurons within the grafts that contained Lewy body-like structures. In this review, we discuss why this isolated cell damage is unlikely to affect the overall graft function and how we can use these observations to help us to understand age-related neurodegeneration and refine our future cell replacement therapies.
Hurricane Harvey: Infrastructure Damage Assessment of Texas' Central Gulf Coast Region
NASA Astrophysics Data System (ADS)
Mooney, W. D.; Fovenyessy, S.; Patterson, S. F.
2017-12-01
We report a detailed ground-based damage survey for Hurricane Harvey, the first major hurricane to make landfall along the central Texas coast since the 1970 Category 3 Hurricane Celia. Harvey, a Category 4 storm, made landfall near Rockport, Texas on August 25th, 2017 at 10 PM local time. From September 2nd to 5th we visited Rockport and 22 nearby cities to assess the severity of the damage. Nearly all damage observed occurred as a direct result of the hurricane-force winds, rather than a storm surge. This observation is in contrast to the severe damage caused by both high winds and a significant storm surge, locally 3 to 5 m in height, in the 2013 Category 5 Hurricane Haiyan, that devastated the Philippines. We have adopted a damage scale and have given an average damage score for each of the areas investigated. Our damage contour map illustrates the areal variation in damage. The damage observed was widespread with a high degree of variability. Different types of damage included: (1) fallen fences and utility poles; (2) trees with branches broken or completely snapped in half; (3) business signs that were either partially or fully destroyed; (4) partially sunken or otherwise damaged boats; (5) and sheet metal sheds either completely or partially destroyed. There was also varying degrees of damage to both residential and commercial structures. Many homes had (6) roof damage, ranging from minor damage to complete destruction of the roof and second story, and (7) siding damage, where parts or whole sections of the homes siding had been removed. The area that had the lowest average damage score was Corpus Christi, and the areas that had the highest average damage score was both Fulton and Holiday Beach. There is no simple, uniform pattern of damage distribution. Rather, the damage was scattered, revealing hot spots of areas that received more damage than the surrounding area. However, when compared to the NOAA wind swath map, all of the damage was contained within the zone of highest wind speed.
Considerations in the design of large space structures
NASA Technical Reports Server (NTRS)
Hedgepeth, J. M.; Macneal, R. H.; Knapp, K.; Macgillivray, C. S.
1981-01-01
Several analytical studies of topics relevant to the design of large space structures are presented. Topics covered are: the types and quantitative evaluation of the disturbances to which large Earth-oriented microwave reflectors would be subjected and the resulting attitude errors of such spacecraft; the influence of errors in the structural geometry of the performance of radiofrequency antennas; the effect of creasing on the flatness of tensioned reflector membrane surface; and an analysis of the statistics of damage to truss-type structures due to meteoroids.
Moore, Jeremy K; Chen, Junjie; Pan, Hua; Gaut, Joseph P; Jain, Sanjay; Wickline, Samuel A
2018-06-01
To design a fluorine MRI/MR spectroscopy approach to quantify renal vascular damage after ischemia-reperfusion injury, and the therapeutic response to antithrombin nanoparticles (NPs) to protect kidney function. A total of 53 rats underwent 45 min of bilateral renal artery occlusion and were treated at reperfusion with either plain perfluorocarbon NPs or NPs functionalized with a direct thrombin inhibitor (PPACK:phenyalanine-proline-arginine-chloromethylketone). Three hours after reperfusion, kidneys underwent ex vivo fluorine MRI/MR spectroscopy at 4.7 T to quantify the extent and volume of trapped NPs, as an index of vascular damage and ischemia-reperfusion injury. Microscopic evaluation of structural damage and NP trapping in non-reperfused renal segments was performed. Serum creatinine was quantified serially over 7 days. The damaged renal cortico-medullary junction trapped a significant volume of NPs (P = 0.04), which correlated linearly (r = 0.64) with the severity of kidney injury 3 h after reperfusion. Despite global large vessel reperfusion, non-reperfusion in medullary peritubular capillaries was confirmed by MRI and microscopy, indicative of continuing hypoxia due to vascular compromise. Treatment of animals with PPACK NPs after acute kidney injury did not accelerate kidney functional recovery. Quantification of ischemia-reperfusion injury after acute kidney injury with fluorine MRI/MR spectroscopy of perfluorocarbon NPs objectively depicts the extent and severity of vascular injury and its linear relationship to renal dysfunction. The lack of kidney function improvement after early posttreatment thrombin inhibition confirms the rapid onset of ischemia-reperfusion injury as a consequence of vascular damage and non-reperfusion. The prolongation of medullary ischemia renders cortico-medullary tubular structures susceptible to continued necrosis despite restoration of large vessel flow, which suggests limitations to acute interventions after acute kidney injury, designed to interdict renal tubular damage. Magn Reson Med 79:3144-3153, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
The stomatopod dactyl club: a formidable damage-tolerant biological hammer.
Weaver, James C; Milliron, Garrett W; Miserez, Ali; Evans-Lutterodt, Kenneth; Herrera, Steven; Gallana, Isaias; Mershon, William J; Swanson, Brook; Zavattieri, Pablo; DiMasi, Elaine; Kisailus, David
2012-06-08
Nature has evolved efficient strategies to synthesize complex mineralized structures that exhibit exceptional damage tolerance. One such example is found in the hypermineralized hammer-like dactyl clubs of the stomatopods, a group of highly aggressive marine crustaceans. The dactyl clubs from one species, Odontodactylus scyllarus, exhibit an impressive set of characteristics adapted for surviving high-velocity impacts on the heavily mineralized prey on which they feed. Consisting of a multiphase composite of oriented crystalline hydroxyapatite and amorphous calcium phosphate and carbonate, in conjunction with a highly expanded helicoidal organization of the fibrillar chitinous organic matrix, these structures display several effective lines of defense against catastrophic failure during repetitive high-energy loading events.
The Stomatopod Dactyl Club: A Formidable Damage-Tolerant Biological Hammer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weaver J. C.; DiMasi E.; Milliron, G.W.
2012-06-08
Nature has evolved efficient strategies to synthesize complex mineralized structures that exhibit exceptional damage tolerance. One such example is found in the hypermineralized hammer-like dactyl clubs of the stomatopods, a group of highly aggressive marine crustaceans. The dactyl clubs from one species, Odontodactylus scyllarus, exhibit an impressive set of characteristics adapted for surviving high-velocity impacts on the heavily mineralized prey on which they feed. Consisting of a multiphase composite of oriented crystalline hydroxyapatite and amorphous calcium phosphate and carbonate, in conjunction with a highly expanded helicoidal organization of the fibrillar chitinous organic matrix, these structures display several effective lines ofmore » defense against catastrophic failure during repetitive high-energy loading events.« less
NASA Astrophysics Data System (ADS)
Nagendra, U.; Peterson, C.
2013-12-01
Forest disturbances such as tornadoes are expected to raise soil temperatures and increase soil respiration. Opening canopy gaps allows solar radiation to heat the forest floor, and damaged plant roots provide fuel for decomposition. Patches of disturbed forest can range from low severity (some defoliation, broken branches) to high severity (uprooted or snapped trees). Disturbance severity affects plant population and community processes, such as regeneration mode, species diversity, and community structure. We expect disturbance severity to also affect ecosystem processes such as soil respiration. Severe disturbances cause more distinct, and often larger, canopy gaps than mild disturbances, and damage more standing biomass, both above- and below-ground. We would expect these larger gaps and greater litter amounts to increase soil temperature and respiration in more severely disturbed forest patches. In April 2011, a moderate (EF-3) tornado damaged portions of the Chattahoochee National Forest in NE Georgia, USA. Our lab has been characterizing the damage and regeneration in sections of the forest since summer 2011. In Spring 2013, we installed 4 iButton temperature sensors in each of 14 plots across a range of disturbance severity (for a total of 56 sensors). Severity was determined by percent of initial tree basal area downed by the tornado, and ranged from 8% to 100% basal area down. The iButtons monitored soil temperature at a depth of 5 cm every hour for 85 days. In July 2013, integrated 24-hour soil respiration was measured at the same locations using soda lime absorption in sealed PVC collars. Soil temperature at 5 cm averaged 12.66 °C. Contrary to expectations, average daily temperatures did not increase with greater plot damage severity (R2 = 0.001). Daily variation was only slightly higher in plots of very high severity. Overall, soil temperatures appeared to have returned to pre-disturbance temperatures more quickly than expected. Results for upcoming months will be presented at the meeting. Soil respiration was relatively high in all plots (4.49 +/-1.19 g C m-2 hr-1). Contrary to expectations, respiration did not vary significantly with plot damage severity (R2 = 0.0676). The temperature and respiration data together suggest potentially rapid ecosystem recovery after these types of wind disturbances. The flush of understory growth in open patches may insulate the forest floor from solar radiation, even though the forest canopy is still open. These unexpected preliminary results may indicate that ecosystem processes in southern forests are more resilient to disturbances than previously thought. Although forests become carbon sinks immediately after disturbances, they may return to carbon neutral or sink status relatively quickly, given the right circumstances.
Online Simulation of Radiation Track Structure Project
NASA Technical Reports Server (NTRS)
Plante, Ianik
2015-01-01
Space radiation comprises protons, helium and high charged and energy (HZE) particles. High-energy particles are a concern for human space flight, because they are no known options for shielding astronauts from them. When these ions interact with matter, they damage molecules and create radiolytic species. The pattern of energy deposition and positions of the radiolytic species, called radiation track structure, is highly dependent on the charge and energy of the ion. The radiolytic species damage biological molecules, which may lead to several long-term health effects such as cancer. Because of the importance of heavy ions, the radiation community is very interested in the interaction of HZE particles with DNA, notably with regards to the track structure. A desktop program named RITRACKS was developed to simulate radiation track structure. The goal of this project is to create a web interface to allow registered internal users to use RITRACKS remotely.
Coughlan, H D; Darmanin, C; Kirkwood, H J; Phillips, N W; Hoxley, D; Clark, J N; Vine, D J; Hofmann, F; Harder, R J; Maxey, E; Abbey, B
2017-01-01
The proliferation of extremely intense synchrotron sources has enabled ever higher-resolution structures to be obtained using data collected from smaller and often more imperfect biological crystals (Helliwell, 1984). Synchrotron beamlines now exist that are capable of measuring data from single crystals that are just a few micrometres in size. This provides renewed motivation to study and understand the radiation damage behaviour of small protein crystals. Reciprocal-space mapping and Bragg coherent diffractive imaging experiments have been performed on cryo-cooled microcrystals of hen egg-white lysozyme as they undergo radiation damage. Several well established metrics, such as intensity-loss and lattice expansion, are applied to the diffraction data and the results are compared with several new metrics that can be extracted from the coherent imaging experiments. Individually some of these metrics are inconclusive. However, combining metrics, the results suggest that radiation damage behaviour in protein micro-crystals differs from that of larger protein crystals and may allow them to continue to diffract for longer. A possible mechanism to account for these observations is proposed.
Bragg coherent diffraction imaging and metrics for radiation damage in protein micro-crystallography
Coughlan, H. D.; Darmanin, C.; Kirkwood, H. J.; ...
2017-01-01
The proliferation of extremely intense synchrotron sources has enabled ever higher-resolution structures to be obtained using data collected from smaller and often more imperfect biological crystals. Synchrotron beamlines now exist that are capable of measuring data from single crystals that are just a few micrometres in size. This provides renewed motivation to study and understand the radiation damage behaviour of small protein crystals. Reciprocal-space mapping and Bragg coherent diffractive imaging experiments have been performed on cryo-cooled microcrystals of hen egg-white lysozyme as they undergo radiation damage. Several well established metrics, such as intensity-loss and lattice expansion, are applied to themore » diffraction data and the results are compared with several new metrics that can be extracted from the coherent imaging experiments. Individually some of these metrics are inconclusive. However, combining metrics, the results suggest that radiation damage behaviour in protein micro-crystals differs from that of larger protein crystals and may allow them to continue to diffract for longer. As a result, a possible mechanism to account for these observations is proposed.« less
Bragg coherent diffraction imaging and metrics for radiation damage in protein micro-crystallography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coughlan, H. D.; Darmanin, C.; Kirkwood, H. J.
The proliferation of extremely intense synchrotron sources has enabled ever higher-resolution structures to be obtained using data collected from smaller and often more imperfect biological crystals. Synchrotron beamlines now exist that are capable of measuring data from single crystals that are just a few micrometres in size. This provides renewed motivation to study and understand the radiation damage behaviour of small protein crystals. Reciprocal-space mapping and Bragg coherent diffractive imaging experiments have been performed on cryo-cooled microcrystals of hen egg-white lysozyme as they undergo radiation damage. Several well established metrics, such as intensity-loss and lattice expansion, are applied to themore » diffraction data and the results are compared with several new metrics that can be extracted from the coherent imaging experiments. Individually some of these metrics are inconclusive. However, combining metrics, the results suggest that radiation damage behaviour in protein micro-crystals differs from that of larger protein crystals and may allow them to continue to diffract for longer. As a result, a possible mechanism to account for these observations is proposed.« less
NASA Astrophysics Data System (ADS)
Masciotta, Maria-Giovanna; Ramos, Luís F.; Lourenço, Paulo B.; Vasta, Marcello
2017-02-01
Structural monitoring and vibration-based damage identification methods are fundamental tools for condition assessment and early-stage damage identification, especially when dealing with the conservation of historical constructions and the maintenance of strategic civil structures. However, although the substantial advances in the field, several issues must still be addressed to broaden the application range of such tools and to assert their reliability. This study deals with the experimental validation of a novel method for non-destructive damage identification purposes. This method is based on the use of spectral output signals and has been recently validated by the authors through a numerical simulation. After a brief insight into the basic principles of the proposed approach, the spectral-based technique is applied to identify the experimental damage induced on a masonry arch through statically increasing loading. Once the direct and cross spectral density functions of the nodal response processes are estimated, the system's output power spectrum matrix is built and decomposed in eigenvalues and eigenvectors. The present study points out how the extracted spectral eigenparameters contribute to the damage analysis allowing to detect the occurrence of damage and to locate the target points where the cracks appear during the experimental tests. The sensitivity of the spectral formulation to the level of noise in the modal data is investigated and discussed. As a final evaluation criterion, the results from the spectrum-driven method are compared with the ones obtained from existing non-model based damage identification methods.
NASA Astrophysics Data System (ADS)
Mucciarelli, M.; Contri, P.; Monachesi, G.; Calvano, G.; Gallipoli, M.
- The seismic vulnerability of existing buildings is usually estimated according to procedures based on checklists of main structural features. The relationship with damage is then assessed using experience from past events. An approach used in seismology for the evaluation of site amplification, based on horizontal-to-vertical ratio of weak motion and microtremors, has been applied to the structural field. This methodology provides an alternative, promising tool towards a quick and reliable estimate of seismic vulnerability. The advantages are:• The measurements are quick, simple and stable. They are non-invasive and do not affect at all, even temporarily, the functions housed in the buildings studied.• The site effect and the soil structure interaction are explicitly accounted for in the vulnerability estimate, when they are excluded in the traditional approaches.• The relationship with damage is established using meaningful physical parameters related to the construction technology, instead of adimensional, normalised indexes. The procedure has been applied to several case histories of buildings damaged in the recent Umbria-Marche earthquake which occurred in Italy in 1997. The same model has been applied to different structures (brick/stone masonry and infilled r.c. frames), on different geological conditions and under very different seismic loads. Using this combined site/building approach, it was possible to explain very sharp variations in the damage pattern.
NASA Astrophysics Data System (ADS)
Ibáñez, Flor; Baltazar, Arturo; Mijarez, Rito; Aranda, Jorge
2015-03-01
Multiwire cables are widely used in important civil structures. Since they are exposed to several dynamic and static loads, their structural health can be compromised. The cables can also be submitted to mechanical contact, tension and energy propagation in addition to changes in size and material within their wires. Due to the critical role played by multiwire cables, it is necessary to develop a non-destructive health monitoring method to maintain their structure and proper performance. Ultrasonic inspection using guided waves is a promising non-destructive damage monitoring technique for rods, single wires and multiwire cables. The propagated guided waves are composed by an infinite number of vibrational modes making their analysis difficult. In this work, an entropy-based method to identify small changes in non-stationary signals is proposed. A system to capture and post-process acoustic signals is implemented. The Discrete Wavelet Transform (DWT) is computed in order to obtain the reconstructed wavelet coefficients of the signals and to analyze the energy at different scales. The feasibility of using the concept of entropy evolution of non-stationary signals to detect damage in multiwire cables is evaluated. The results show that there is a high correlation between the entropy value and damage level of the cable. The proposed method has low sensitivity to noise and reduces the computational complexity found in a typical time-frequency analysis.
Nowicka, Anna M; Kowalczyk, Agata; Stojek, Zbigniew; Hepel, Maria
2010-01-01
Electrochemical and nanogravimetric DNA-hybridization biosensors have been developed for sensing single mismatches in the probe-target ssDNA sequences. The voltammetric transduction was achieved by coupling ferrocene moiety to streptavidin linked to biotinylated tDNA. The mass-related frequency transduction was implemented by immobilizing the sensory pDNA on a gold-coated quartz crystal piezoresonators oscillating in the 10MHz band. The high sensitivity of these sensors enabled us to study DNA damage caused by representative toxicants and environmental pollutants, including Cr(VI) species, common pesticides and herbicides. We have found that the sensor responds rapidly to any damage caused by Cr(VI) species, with more severe DNA damage observed for Cr(2)O(7)(2-) and for CrO(4)(2-) in the presence of H(2)O(2) as compared to CrO(4)(2-) alone. All herbicides and pesticides examined caused DNA damage or structural alterations leading to the double-helix unwinding. Among these compounds, paraoxon-ethyl and atrazine caused the fastest and most severe damage to DNA. The physico-chemical mechanism of damaging interactions between toxicants and DNA has been proposed. The methodology of testing voltammetric and nanogravimetric DNA-hybridization biosensors developed in this work can be employed as a simple protocol to obtain rapid comparative data concerning DNA damage caused by herbicide, pesticides and other toxic pollutants. The DNA-hybridization biosensor can, therefore, be utilized as a rapid screening device for classifying environmental pollutants and to evaluate DNA damage induced by these compounds.
Experimental investigation and damage assessment in a post tensioned concrete beam
NASA Astrophysics Data System (ADS)
Limongelli, Maria; Siegert, Dominique; Merliot, Erick; Waeytens, Julien; Bourquin, Frederic; Vidal, Roland; Le Corvec, Veronique; Guegen, Ivan; Cottineau, Louis-Marie
2017-04-01
This paper presents the results of an experimental campaign carried out on a prestressed concrete beam in the realm of the project SIPRIS (Systèmes Intelligents pour la Prévention des Risques Structurels), aimed to develop intelligent systems for the prevention of structural risk related to the aging of large infrastructures. The specimen was tested in several configurations aimed to re-produce several different phases of the 'life' of the beam: in the original undamaged state, under an increasing loss of tension in the cables, during and after cracking induced by a point load, after a strengthening intervention, after new cracking of the 'repaired' beam. Damage was introduced in a controlled way by means of three-point static bending tests. The transverse point loads were ap-plied at several different sections along the beam axis. Before and after each static test, the dy-namical response of the beam was measured under sine-sweep and impact tests by an extensive set of accelerometers deployed along the beam axis. The availability of both static and dynamic tests allows to investigate and compare their effectiveness to detect damages in the tensioned beam and to reliably identify the evolution of damage. The paper discusses the tests program and some results relevant to the dynamic characterization of the beam in the different phases.
A new survey tool to assess pluvial damage to residential buildings
NASA Astrophysics Data System (ADS)
Rözer, Viktor; Spekkers, Matthieu; ten Veldhuis, Marie-Claire; Kreibich, Heidi
2017-04-01
Pluvial floods have caused severe damage to urban dwellings in Europe and elsewhere in recent years. These type of flood events are caused by storm events with exceptionally high rainfall rates, which lead to inundation of streets and buildings and are commonly associated with a failure of the urban drainage system. Therefore, pluvial floods often happen with little warning and in areas that are not obviously prone to flooding. With a predicted increase in extreme weather events as well as an ongoing urbanization, pluvial flood damage is expected to increase in the future. So far little research was done on the adverse consequences of pluvial floods, as empirical damage data of pluvial flooding is scarce. Therefore, a newly developed survey tool to assess pluvial flood damage as well as the results of a comparison between two international pluvial flood case studies are presented. The questionnaire used in the two study areas was developed with the aim to create a harmonized transnational pluvial flood damage survey that can potentially be extended to other European countries. New indicator variables have been developed to account for different national and regional standards in building structure, early warning, socio-economic data and recovery. The surveys comprise interviews with 510 households in the Münster area (Germany) and 349 households in Amsterdam (the Netherlands), which were affected by the heavy rainfall events on July 28 2014. The respondents were asked more than 80 questions about the damage to their building structure and contents, as well as on topics such as early warning, emergency and precautionary measures, building properties and hazard characteristics. A comparison of the two surveys revealed strong similarities concerning damage reducing effects and the popularity of precautionary measures, besides significant differences between the mean water levels inside the house as well as the median of the building structure and content damage. A comparison between the relative damage contributions for different entry points of water into the house indicates an effect of regional distinctions in building topology on the total damage. The results of this comparison give important insights for the development and transferability of pluvial flood damage models.
Effects of Long-Term Treatment on Brain Volume in Patients with Obstructive Sleep Apnea Syndrome
Kim, Hosung; Joo, Eun Yeon; Suh, Sooyeon; Kim, Jae-Hun; Kim, Sung Tae; Hong, Seung Bong
2015-01-01
We assessed structural brain damage in obstructive sleep apnea syndrome (OSA) patients (21 males) and the effects of long-term continuous positive airway pressure (CPAP) treatment (18.2 ± 12.4 months; 8-44 months) on brain structures and investigated the relationship between severity of OSA and effects of treatment. Using deformation-based morphometry to measure local volume changes, we identified widespread neocortical and cerebellar atrophy in untreated patients compared to controls (59 males; Cohen's D = 0.6; FDR < 0.05). Analysis of longitudinally scanned magnetic resonance imaging (MRI) scans both before and after treatment showed increased brain volume following treatment (FDR < 0.05). Volume increase was correlated with longer treatment in the cortical areas that largely overlapped with the initial atrophy. The areas overlying the hippocampal dentate gyrus and the cerebellar dentate nucleus displayed a volume increase after treatment. Patients with very severe OSA (AHI > 64) presented with prefrontal atrophy and displayed an additional volume increase in this area following treatment. Higher impairment of working memory in patients prior to treatment correlated with prefrontal volume increase after treatment. The large overlap between the initial brain damage and the extent of recovery after treatment suggests partial recovery of non-permanent structural damage. Volume increases in the dentate gyrus and the dentate nucleus possibly likely indicate compensatory neurogenesis in response to diminishing oxidative stress. Such changes in other brain structures may explain gliosis, dendritic volume increase, or inflammation. This study provides neuroimaging evidence that revealed the positive effects of long-term CPAP treatment in patients with OSA. PMID:26503297
NASA Astrophysics Data System (ADS)
Vranken, L.; Van Turnhout, P.; Van Den Eeckhaut, M.; Vandekerckhove, L.; Vantilt, G.; Poesen, J.
2012-04-01
Several regions around the globe are at risk to incur damage from landslides. These landslides cause significant structural and functional damage to public and private buildings and infrastructure. Numerous studies investigated how natural factors and human activities control the (re-)activation of landslides. However, few studies have concentrated on a quantitative estimate of the overall damage caused by landslides at a regional scale. This study therefore starts with a quantitative economic assessment of the direct and indirect damage caused by landslides in the Flemish Ardennes (Belgium), a low-relief region (area=ca. 700 km2) susceptible to landslides. Based on focus interviews as well as on semi-structured interviews with homeowners, civil servants (e.g. from the technical services from the various towns), or with the owners and providers of lifelines such as electricity and sewage, we have quantitatively estimated the direct and indirect damage induced by landsliding and this for a 10 to 30 year period (depending on the type of infrastructure or buildings). Economic damage to public infrastructure and buildings was estimated for the entire region, while for private damage 10 cases with severe to small damage were quantified. For example, in the last 10 year, costs of road repair augmented to 814 560 €. Costs to repair damaged roads that have not yet been repaired, were estimated at 669 318 €. In the past 30 years, costs of measures to prevent road damage augmented to at least 14 872 380 €. More than 90% of this budget for preventive measures was spent 30 years ago, when an important freeway was damaged and had to be repaired. These preventive measures (building a grout wall and improving the drainage system) were effective as no further damage has been reported until present. To repair and prevent damage to waterworks and sewage systems, expenditures amounted to 551 044 € and this for the last 30 years. In the past 10 years, a new railway line connecting two important Belgian cities has been built and within that one project, the cost to prevent damage to railroads augmented already to at least 4 567 822 €. The value of real estate located in regions affected by landslides decreased with 15% to 35%. All these damage costs were then used to made potential damage maps. Based on the inventory of landslides, frequency of landslides' re-activation and land use, we categorized regions that are affected by landslides according to their temporal probability of landslide re-activation. This allowed us to produce a (semi-) qualitative risk map for regions that were affected by landslides in the past. This paper shows that, though generally not spectacular, landsliding in low-relief regions susceptible to landslides is a slow but continuously operating process with considerable damage allowing one to identify several medium to high landslide risk zones. As such this study provides important information for government officials, especially those in charge of spatial planning and of town and environmental planning, as it clearly informs about the costs associated with certain land use types in landslide prone areas. This information can be particularly useful for regions in which increasing demand for building land pressures government officials and (local) political leaders to expand the built environment.
Design considerations for composite fuselage structure of commercial transport aircraft
NASA Technical Reports Server (NTRS)
Davis, G. W.; Sakata, I. F.
1981-01-01
The structural, manufacturing, and service and environmental considerations that could impact the design of composite fuselage structure for commercial transport aircraft application were explored. The severity of these considerations was assessed and the principal design drivers delineated. Technical issues and potential problem areas which must be resolved before sufficient confidence is established to commit to composite materials were defined. The key issues considered are: definition of composite fuselage design specifications, damage tolerance, and crashworthiness.
Wavenumber Imaging For Damage Detection and Measurement
NASA Technical Reports Server (NTRS)
Rogge, Matthew D.; Johnson, Pat H.
2011-01-01
This paper presents a method for analyzing ultrasonic wavefield data using the Continuous Wavelet Transform (CWT) applied in the spatial domain. Unlike data obtained by sparse arrays of transducers, full wavefield data contains information local to the structure and can be used to obtain more detailed measurements of damage type, location, size, etc. By calculating the CWT of the wavefield in the spatial domain, the wavenumber spectrum is determined for the inspected locations. Because wavenumber is affected by the local geometry and material properties of the structure through which Lamb waves propagate, the wavenumber spectrum can be analyzed to assess the location, severity, and size of damage. The technique is first applied to experimental wavefield data obtained using a laser Doppler vibrometer and automated positioning stage. The out-of-plane velocity along the length of a composite stringer was measured to detect the presence of delaminations within the composite overwrap. Next, simulated corrosion is detected and measured within an aluminum plate using the two dimensional CWT. The experimental results show the usefulness of the technique for vehicle structure inspection applications.
Computational methods for structural load and resistance modeling
NASA Technical Reports Server (NTRS)
Thacker, B. H.; Millwater, H. R.; Harren, S. V.
1991-01-01
An automated capability for computing structural reliability considering uncertainties in both load and resistance variables is presented. The computations are carried out using an automated Advanced Mean Value iteration algorithm (AMV +) with performance functions involving load and resistance variables obtained by both explicit and implicit methods. A complete description of the procedures used is given as well as several illustrative examples, verified by Monte Carlo Analysis. In particular, the computational methods described in the paper are shown to be quite accurate and efficient for a material nonlinear structure considering material damage as a function of several primitive random variables. The results show clearly the effectiveness of the algorithms for computing the reliability of large-scale structural systems with a maximum number of resolutions.
NASA Astrophysics Data System (ADS)
Shrestha, S.; Reina Ortiz, M.; Gutland, M.; Napolitano, R.; Morris, I. M.; Santana Quintero, M.; Erochko, J.; Kawan, S.; Shrestha, R. G.; Awal, P.; Suwal, S.; Duwal, S.; Maharjan, D. K.
2017-08-01
On 25 April 2015, the Gorkha earthquake of magnitude 7.8, severely damaged the cultural heritage sites of Nepal. In particular, the seven monument zones of the Kathmandu Valley World Heritage Site suffered extensive damage. Out of 195 surveyed monuments, 38 have completely collapsed and 157 partially damaged (DoA, 2015). In particular, the world historic city of Bhaktapur was heavily affected by the earthquake. There is, in general, a lack of knowledge regarding the traditional construction technology used in many of the most important temple monuments in Bhaktapur. To address this limitation and to assist in reconstruction and rehabilitation of the area, this study documents the existing condition of different historic structures in the Kathmandu Valley. In particular, the Nyatapola Temple is studied in detail. To record and document the condition of this temple, a combination of laser scanning and terrestrial and aerial photogrammetry are used. By also including evaluation of the temple and its supporting plinth structure using non-destructive evaluation techniques like geo-radar and micro-tremor dynamic analysis, this study will form the basis of a structural analysis study to assess the anticipated future seismic performance of the Nyatapola Temple.
Structural integrity and containment aspects of small gas turbine engines
NASA Astrophysics Data System (ADS)
Gupta, S. S.; Gomuc, R.
1994-03-01
Structural integrity of rotating components in gas turbine engines is very crucial since their failure implies high impact energy, which, if uncontained, could mean damage to aircraft structures, controls, and so forth, and, in the worst scenario, even loss of lives. This final consequence has led to very stringent airworthiness regulations for engine/aircraft certifications. This paper discusses the historical statistics of noncontainment events in turbofans, turboprops, and turboshafts and shows how the damage severity varies between different applications and how changes to regulations are continuing in order to improve the reliability of aircraft/rotorcraft. The paper also presents design challenges resulting from the analysis complexity of containment/noncontainment event and the way Pratt & Whitney Canada design/analysis/test system caters to all the requirements. The weight and cost impact of possible changes to current regulations are also presented.
Integration of bridge damage detection concepts and components : tech transfer summary.
DOT National Transportation Integrated Search
2013-10-01
Although bridge testing has been an important tool for evaluating structures for several decades, it has only been within the last decade that specific effort has been given to develop systems that are capable of operating in an autonomous fashion. T...
Health monitoring and rehabilitation of a concrete structure using intelligent materials
NASA Astrophysics Data System (ADS)
Song, G.; Mo, Y. L.; Otero, K.; Gu, H.
2006-04-01
This paper presents the concept of an intelligent reinforced concrete structure (IRCS) and its application in structural health monitoring and rehabilitation. The IRCS has multiple functions which include self-rehabilitation, self-vibration damping, and self-structural health monitoring. These functions are enabled by two types of intelligent (smart) materials: shape memory alloys (SMAs) and piezoceramics. In this research, Nitinol type SMA and PZT (lead zirconate titanate) type piezoceramics are used. The proposed concrete structure is reinforced by martensite Nitinol cables using the method of post-tensioning. The martensite SMA significantly increases the concrete's damping property and its ability to handle large impact. In the presence of cracks due to explosions or earthquakes, by electrically heating the SMA cables, the SMA cables contract and close up the cracks. In this research, PZT patches are embedded in the concrete structure to detect possible cracks inside the concrete structure. The wavelet packet analysis method is then applied as a signal-processing tool to analyze the sensor signals. A damage index is defined to describe the damage severity for health monitoring purposes. In addition, by monitoring the electric resistance change of the SMA cables, the crack width can be estimated. To demonstrate this concept, a concrete beam specimen with reinforced SMA cables and with embedded PZT patches is fabricated. Experiments demonstrate that the IRC has the ability of self-sensing and self-rehabilitation. Three-point bending tests were conducted. During the loading process, a crack opens up to 0.47 inches. Upon removal of the load and heating the SMA cables, the crack closes up. The damage index formed by wavelet packet analysis of the PZT sensor data predicts and confirms the onset and severity of the crack during the loading. Also during the loading, the electrical resistance value of the SMA cable changes by up to 27% and this phenomenon is used to monitor the crack width.
Advances in Fatigue and Fracture Mechanics Analyses for Aircraft Structures
NASA Technical Reports Server (NTRS)
Newman, J. C., Jr.
1999-01-01
This paper reviews some of the advances that have been made in stress analyses of cracked aircraft components, in the understanding of the fatigue and fatigue-crack growth process, and in the prediction of residual strength of complex aircraft structures with widespread fatigue damage. Finite-element analyses of cracked structures are now used to determine accurate stress-intensity factors for cracks at structural details. Observations of small-crack behavior at open and rivet-loaded holes and the development of small-crack theory has lead to the prediction of stress-life behavior for components with stress concentrations under aircraft spectrum loading. Fatigue-crack growth under simulated aircraft spectra can now be predicted with the crack-closure concept. Residual strength of cracked panels with severe out-of-plane deformations (buckling) in the presence of stiffeners and multiple-site damage can be predicted with advanced elastic-plastic finite-element analyses and the critical crack-tip-opening angle (CTOA) fracture criterion. These advances are helping to assure continued safety of aircraft structures.
Advances in Fatigue and Fracture Mechanics Analyses for Metallic Aircraft Structures
NASA Technical Reports Server (NTRS)
Newman, J. C., Jr.
2000-01-01
This paper reviews some of the advances that have been made in stress analyses of cracked aircraft components, in the understanding of the fatigue and fatigue-crack growth process, and in the prediction of residual strength of complex aircraft structures with widespread fatigue damage. Finite-element analyses of cracked metallic structures are now used to determine accurate stress-intensity factors for cracks at structural details. Observations of small-crack behavior at open and rivet-loaded holes and the development of small-crack theory has lead to the prediction of stress-life behavior for components with stress concentrations under aircraft spectrum loading. Fatigue-crack growth under simulated aircraft spectra can now be predicted with the crack-closure concept. Residual strength of cracked panels with severe out-of-plane deformations (buckling) in the presence of stiffeners and multiple-site damage can be predicted with advanced elastic-plastic finite-element analyses and the critical crack-tip-opening angle (CTOA) fracture criterion. These advances are helping to assure continued safety of aircraft structures.
NASA Astrophysics Data System (ADS)
He, Jia; Xu, You-Lin; Zhan, Sheng; Huang, Qin
2017-03-01
When health monitoring system and vibration control system both are required for a building structure, it will be beneficial and cost-effective to integrate these two systems together for creating a smart building structure. Recently, on the basis of extended Kalman filter (EKF), a time-domain integrated approach was proposed for the identification of structural parameters of the controlled buildings with unknown ground excitations. The identified physical parameters and structural state vectors were then utilized to determine the control force for vibration suppression. In this paper, the possibility of establishing such a smart building structure with the function of simultaneous damage detection and vibration suppression was explored experimentally. A five-story shear building structure equipped with three magneto-rheological (MR) dampers was built. Four additional columns were added to the building model, and several damage scenarios were then simulated by symmetrically cutting off these columns in certain stories. Two sets of earthquakes, i.e. Kobe earthquake and Northridge earthquake, were considered as seismic input and assumed to be unknown during the tests. The structural parameters and the unknown ground excitations were identified during the tests by using the proposed identification method with the measured control forces. Based on the identified structural parameters and system states, a switching control law was employed to adjust the current applied to the MR dampers for the purpose of vibration attenuation. The experimental results show that the presented approach is capable of satisfactorily identifying structural damages and unknown excitations on one hand and significantly mitigating the structural vibration on the other hand.
The importance of fracture toughness in ultrafine and nanocrystalline bulk materials
Pippan, R.; Hohenwarter, A.
2016-01-01
ABSTRACT The suitability of high-strength ultrafine and nanocrystalline materials processed by severe plastic deformation methods and aimed to be used for structural applications will strongly depend on their resistance against crack growth. In this contribution some general available findings on the damage tolerance of this material class will be summarized. Particularly, the occurrence of a pronounced fracture anisotropy will be in the center of discussion. In addition, the great potential of this generated anisotropy to obtain high-strength materials with exceptionally high fracture toughness in specific loading and crack growth directions will be enlightened. IMPACT STATEMENT Severely plastically deformed materials are reviewed in light of their damage tolerance. The frequently observed toughness anisotropy allows unprecedented fracture toughness – strength combinations. PMID:27570712
NASA Astrophysics Data System (ADS)
Dumoulin, Jean; Crinière, Antoine; Averty, Rodolphe
2015-04-01
An infrared system has been developed to monitor transport infrastructures in a standalone configuration. Results obtained on bridges open to traffic allows to retrieve the inner structure of the decks. To complete this study, experiments were carried out over several months to monitor two reinforced concrete beams of 16 m long and 21 T each. Detection of a damaged area over one of the two beams was made by Pulse Phase Thermography approach. Measurements carried out over several months. Finally, conclusion on the robustness of the system is proposed and perspectives are presented.
Structural impact detection with vibro-haptic interfaces
NASA Astrophysics Data System (ADS)
Jung, Hwee-Kwon; Park, Gyuhae; Todd, Michael D.
2016-07-01
This paper presents a new sensing paradigm for structural impact detection using vibro-haptic interfaces. The goal of this study is to allow humans to ‘feel’ structural responses (impact, shape changes, and damage) and eventually determine health conditions of a structure. The target applications for this study are aerospace structures, in particular, airplane wings. Both hardware and software components are developed to realize the vibro-haptic-based impact detection system. First, L-shape piezoelectric sensor arrays are deployed to measure the acoustic emission data generated by impacts on a wing. Unique haptic signals are then generated by processing the measured acoustic emission data. These haptic signals are wirelessly transmitted to human arms, and with vibro-haptic interface, human pilots could identify impact location, intensity and possibility of subsequent damage initiation. With the haptic interface, the experimental results demonstrate that human could correctly identify such events, while reducing false indications on structural conditions by capitalizing on human’s classification capability. Several important aspects of this study, including development of haptic interfaces, design of optimal human training strategies, and extension of the haptic capability into structural impact detection are summarized in this paper.
NASA Astrophysics Data System (ADS)
Zhou, Fulin; Tan, Ping
2018-01-01
China is a country where 100% of the territory is located in a seismic zone. Most of the strong earthquakes are over prediction. Most fatalities are caused by structural collapse. Earthquakes not only cause severe damage to structures, but can also damage non-structural elements on and inside of facilities. This can halt city life, and disrupt hospitals, airports, bridges, power plants, and other infrastructure. Designers need to use new techniques to protect structures and facilities inside. Isolation, energy dissipation and, control systems are more and more widely used in recent years in China. Currently, there are nearly 6,500 structures with isolation and about 3,000 structures with passive energy dissipation or hybrid control in China. The mitigation techniques are applied to structures like residential buildings, large or complex structures, bridges, underwater tunnels, historical or cultural relic sites, and industrial facilities, and are used for retrofitting of existed structures. This paper introduces design rules and some new and innovative devices for seismic isolation, energy dissipation and hybrid control for civil and industrial structures. This paper also discusses the development trends for seismic resistance, seismic isolation, passive and active control techniques for the future in China and in the world.
Molecular dynamics simulations of damage production by thermal spikes in Ge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopez, Pedro; Pelaz, Lourdes; Santos, Ivan
2012-02-01
Molecular dynamics simulation techniques are used to analyze damage production in Ge by the thermal spike process and to compare the results to those obtained for Si. As simulation results are sensitive to the choice of the inter-atomic potential, several potentials are compared in terms of material properties relevant for damage generation, and the most suitable potentials for this kind of analysis are identified. A simplified simulation scheme is used to characterize, in a controlled way, the damage generation through the local melting of regions in which energy is deposited. Our results show the outstanding role of thermal spikes inmore » Ge, since the lower melting temperature and thermal conductivity of Ge make this process much more efficient in terms of damage generation than in Si. The study is extended to the modeling of full implant cascades, in which both collision events and thermal spikes coexist. Our simulations reveal the existence of bigger damaged or amorphous regions in Ge than in Si, which may be formed by the melting and successive quenching induced by thermal spikes. In the particular case of heavy ion implantation, defect structures in Ge are not only bigger, but they also present a larger net content in vacancies than in Si, which may act as precursors for the growth of voids and the subsequent formation of honeycomb-like structures.« less
String Technique for Anterior Orbital Fish Hook Removal.
Starr, Matthew R; Choi, Michael B; Mahr, Michael A; Mettu, Pradeep; Patterson, David F
2018-06-13
Removing fish hooks is a common procedure performed by many emergency department providers. There are several techniques that are commonly employed to aid in successful removal. However, when a fish hook becomes embedded within the orbit, there are limited options as to avoid damaging vital surrounding structures. The authors report the removal of a fish hook within the anterior orbit using the string technique in a 25-year-old patient. The procedure was performed under general anesthesia with the aid of size 5 polyglactin suture wrapped around the hook. The procedure itself took less than 10 seconds and was successful in swiftly and safely removing the hook without damaging surrounding orbital structures. The patient recovered well without any permanent sequelae.
Multi-damage identification based on joint approximate diagonalisation and robust distance measure
NASA Astrophysics Data System (ADS)
Cao, S.; Ouyang, H.
2017-05-01
Mode shapes or operational deflection shapes are highly sensitive to damage and can be used for multi-damage identification. Nevertheless, one drawback of this kind of methods is that the extracted spatial shape features tend to be compromised by noise, which degrades their damage identification accuracy, especially for incipient damage. To overcome this, joint approximate diagonalisation (JAD) also known as simultaneous diagonalisation is investigated to estimate mode shapes (MS’s) statistically. The major advantage of JAD method is that it efficiently provides the common Eigen-structure of a set of power spectral density matrices. In this paper, a new criterion in terms of coefficient of variation (CV) is utilised to numerically demonstrate the better noise robustness and accuracy of JAD method over traditional frequency domain decomposition method (FDD). Another original contribution is that a new robust damage index (DI) is proposed, which is comprised of local MS distortions of several modes weighted by their associated vibration participation factors. The advantage of doing this is to include fair contributions from changes of all modes concerned. Moreover, the proposed DI provides a measure of damage-induced changes in ‘modal vibration energy’ in terms of the selected mode shapes. Finally, an experimental study is presented to verify the efficiency and noise robustness of JAD method and the proposed DI. The results show that the proposed DI is effective and robust under random vibration situations, which indicates that it has the potential to be applied to practical engineering structures with ambient excitations.
Neuroprotective Effects of Peptides during Ischemic Preconditioning.
Zarubina, I V; Shabanov, P D
2016-02-01
Experiments on rats showed that neurospecific protein preparations reduce the severity of neurological deficit, restore the structure of individual behavior of the animals with different hypoxia tolerance, and exert antioxidant action during chronic ischemic damage to the brain unfolding during the early and late phases of ischemic preconditioning.
Damage identification on spatial Timoshenko arches by means of genetic algorithms
NASA Astrophysics Data System (ADS)
Greco, A.; D'Urso, D.; Cannizzaro, F.; Pluchino, A.
2018-05-01
In this paper a procedure for the dynamic identification of damage in spatial Timoshenko arches is presented. The proposed approach is based on the calculation of an arbitrary number of exact eigen-properties of a damaged spatial arch by means of the Wittrick and Williams algorithm. The proposed damage model considers a reduction of the volume in a part of the arch, and is therefore suitable, differently than what is commonly proposed in the main part of the dedicated literature, not only for concentrated cracks but also for diffused damaged zones which may involve a loss of mass. Different damage scenarios can be taken into account with variable location, intensity and extension of the damage as well as number of damaged segments. An optimization procedure, aiming at identifying which damage configuration minimizes the difference between its eigen-properties and a set of measured modal quantities for the structure, is implemented making use of genetic algorithms. In this context, an initial random population of chromosomes, representing different damage distributions along the arch, is forced to evolve towards the fittest solution. Several applications with different, single or multiple, damaged zones and boundary conditions confirm the validity and the applicability of the proposed procedure even in presence of instrumental errors on the measured data.
Damage Tolerance of Large Shell Structures
NASA Technical Reports Server (NTRS)
Minnetyan, L.; Chamis, C. C.
1999-01-01
Progressive damage and fracture of large shell structures is investigated. A computer model is used for the assessment of structural response, progressive fracture resistance, and defect/damage tolerance characteristics. Critical locations of a stiffened conical shell segment are identified. Defective and defect-free computer models are simulated to evaluate structural damage/defect tolerance. Safe pressurization levels are assessed for the retention of structural integrity at the presence of damage/ defects. Damage initiation, growth, accumulation, and propagation to fracture are included in the simulations. Damage propagation and burst pressures for defective and defect-free shells are compared to evaluate damage tolerance. Design implications with regard to defect and damage tolerance of a large steel pressure vessel are examined.
The modal surface interpolation method for damage localization
NASA Astrophysics Data System (ADS)
Pina Limongelli, Maria
2017-05-01
The Interpolation Method (IM) has been previously proposed and successfully applied for damage localization in plate like structures. The method is based on the detection of localized reductions of smoothness in the Operational Deformed Shapes (ODSs) of the structure. The IM can be applied to any type of structure provided the ODSs are estimated accurately in the original and in the damaged configurations. If the latter circumstance fails to occur, for example when the structure is subjected to an unknown input(s) or if the structural responses are strongly corrupted by noise, both false and missing alarms occur when the IM is applied to localize a concentrated damage. In order to overcome these drawbacks a modification of the method is herein investigated. An ODS is the deformed shape of a structure subjected to a harmonic excitation: at resonances the ODS are dominated by the relevant mode shapes. The effect of noise at resonance is usually lower with respect to other frequency values hence the relevant ODS are estimated with higher reliability. Several methods have been proposed to reliably estimate modal shapes in case of unknown input. These two circumstances can be exploited to improve the reliability of the IM. In order to reduce or eliminate the drawbacks related to the estimation of the ODSs in case of noisy signals, in this paper is investigated a modified version of the method based on a damage feature calculated considering the interpolation error relevant only to the modal shapes and not to all the operational shapes in the significant frequency range. Herein will be reported the comparison between the results of the IM in its actual version (with the interpolation error calculated summing up the contributions of all the operational shapes) and in the new proposed version (with the estimation of the interpolation error limited to the modal shapes).
Effect of Curvature on the Impact Damage Characteristics and Residual Strength of Composite Plates
NASA Technical Reports Server (NTRS)
Ambur, Damodar R.; Starnes, James H., Jr.
1998-01-01
The results of a study of the response and failure characteristics of thin, cylindrically curved, composite plates subjected to low-speed impact damage are presented. The results indicate that the plate radius and the plate thickness are important structural parameters that influence the nonlinear response of a plate for a given amount of impact energy. Analytical and experimental contact-force results are compared for several plates and the results correlate well. The impact-energy levels required to cause damage initiation and barely visible impact damage are a function of the plate radius for a given plate thickness. The impact-energy levels required to initiate impact damage for plates with a certain range of radii are greater than plates with other radii. The contact-force results corresponding to these impact-energy levels follow a similar trend. Residual strength results for plates with barely visible impact damage suggest that the compression-after-impact residual strength is also a function of plate radius. The residual strength of impact-damaged flat plates appears to be lower than the residual strength of the corresponding cylindrically curved plates.
Adaptive Finite Element Methods for Continuum Damage Modeling
NASA Technical Reports Server (NTRS)
Min, J. B.; Tworzydlo, W. W.; Xiques, K. E.
1995-01-01
The paper presents an application of adaptive finite element methods to the modeling of low-cycle continuum damage and life prediction of high-temperature components. The major objective is to provide automated and accurate modeling of damaged zones through adaptive mesh refinement and adaptive time-stepping methods. The damage modeling methodology is implemented in an usual way by embedding damage evolution in the transient nonlinear solution of elasto-viscoplastic deformation problems. This nonlinear boundary-value problem is discretized by adaptive finite element methods. The automated h-adaptive mesh refinements are driven by error indicators, based on selected principal variables in the problem (stresses, non-elastic strains, damage, etc.). In the time domain, adaptive time-stepping is used, combined with a predictor-corrector time marching algorithm. The time selection is controlled by required time accuracy. In order to take into account strong temperature dependency of material parameters, the nonlinear structural solution a coupled with thermal analyses (one-way coupling). Several test examples illustrate the importance and benefits of adaptive mesh refinements in accurate prediction of damage levels and failure time.
NASA Astrophysics Data System (ADS)
Marhadi, Kun Saptohartyadi
Structural optimization for damage tolerance under various unforeseen damage scenarios is computationally challenging. It couples non-linear progressive failure analysis with sampling-based stochastic analysis of random damage. The goal of this research was to understand the relationship between alternate load paths available in a structure and its damage tolerance, and to use this information to develop computationally efficient methods for designing damage tolerant structures. Progressive failure of a redundant truss structure subjected to small random variability was investigated to identify features that correlate with robustness and predictability of the structure's progressive failure. The identified features were used to develop numerical surrogate measures that permit computationally efficient deterministic optimization to achieve robustness and predictability of progressive failure. Analysis of damage tolerance on designs with robust progressive failure indicated that robustness and predictability of progressive failure do not guarantee damage tolerance. Damage tolerance requires a structure to redistribute its load to alternate load paths. In order to investigate the load distribution characteristics that lead to damage tolerance in structures, designs with varying degrees of damage tolerance were generated using brute force stochastic optimization. A method based on principal component analysis was used to describe load distributions (alternate load paths) in the structures. Results indicate that a structure that can develop alternate paths is not necessarily damage tolerant. The alternate load paths must have a required minimum load capability. Robustness analysis of damage tolerant optimum designs indicates that designs are tailored to specified damage. A design Optimized under one damage specification can be sensitive to other damages not considered. Effectiveness of existing load path definitions and characterizations were investigated for continuum structures. A load path definition using a relative compliance change measure (U* field) was demonstrated to be the most useful measure of load path. This measure provides quantitative information on load path trajectories and qualitative information on the effectiveness of the load path. The use of the U* description of load paths in optimizing structures for effective load paths was investigated.
NASA Technical Reports Server (NTRS)
Bibb, Karen L.; Prabhu, Ramadas K.
2004-01-01
In support of the Columbia Accident Investigation, inviscid computations of the aerodynamic characteristics for various Shuttle Orbiter damage scenarios were performed using the FELISA unstructured CFD solver. Computed delta aerodynamics were compared with the reconstructed delta aerodynamics in order to postulate a progression of damage through the flight trajectory. By performing computations at hypervelocity flight and CF4 tunnel conditions, a bridge was provided between wind tunnel testing in Langley's 20-Inch CF4 facility and the flight environment experienced by Columbia during re-entry. The rapid modeling capability of the unstructured methodology allowed the computational effort to keep pace with the wind tunnel and, at times, guide the wind tunnel efforts. These computations provided a detailed view of the flowfield characteristics and the contribution of orbiter components (such as the vertical tail and wing) to aerodynamic forces and moments that were unavailable from wind tunnel testing. The damage scenarios are grouped into three categories. Initially, single and multiple missing full RCC panels were analyzed to determine the effect of damage location and magnitude on the aerodynamics. Next is a series of cases with progressive damage, increasing in severity, in the region of RCC panel 9. The final group is a set of wing leading edge and windward surface deformations that model possible structural deformation of the wing skin due to internal heating of the wing structure. By matching the aerodynamics from selected damage scenarios to the reconstructed flight aerodynamics, a progression of damage that is consistent with the flight data, debris forensics, and wind tunnel data is postulated.
Structure of single-wall carbon nanotubes purified and cut using polymer
NASA Astrophysics Data System (ADS)
Zhang, M.; Yudasaka, M.; Koshio, A.; Jabs, C.; Ichihashi, T.; Iijima, S.
2002-01-01
Following on from our previous report that a monochlorobenzene solution of polymethylmethacrylate is useful for purifying and cutting single-wall carbon nanotubes (SWNTs) and thinning SWNT bundles, we show in this report that polymer and residual amorphous carbon can be removed by burning in oxygen gas. The SWNTs thus obtained had many holes (giving them a worm-eaten look) and were thermally unstable. Such severe damage caused by oxidation is unusual for SWNTs; we think that they were chemically damaged during ultrasonication in the monochlorobenzene solution of polymethylmethacrylate.
Track structure model for damage to mammalian cell cultures during solar proton events
NASA Technical Reports Server (NTRS)
Cucinotta, F. A.; Wilson, J. W.; Townsend, L. W.; Shinn, J. L.; Katz, R.
1992-01-01
Solar proton events (SPEs) occur infrequently and unpredictably, thus representing a potential hazard to interplanetary space missions. Biological damage from SPEs will be produced principally through secondary electron production in tissue, including important contributions due to delta rays from nuclear reaction products. We review methods for estimating the biological effectiveness of SPEs using a high energy proton model and the parametric cellular track model. Results of the model are presented for several of the historically largest flares using typical levels and body shielding.
Prediction and experimental observation of damage dependent damping in laminated composite beams
NASA Technical Reports Server (NTRS)
Allen, D. H.; Harris, C. E.; Highsmith, A. L.
1987-01-01
The equations of motion are developed for laminated composite beams with load-induced matrix cracking. The damage is accounted for by utilizing internal state variables. The net result of these variables on the field equations is the introduction of both enhanced damping, and degraded stiffness. Both quantities are history dependent and spatially variable, thus resulting in nonlinear equations of motion. It is explained briefly how these equations may be quasi-linearized for laminated polymeric composites under certain types of structural loading. The coupled heat conduction equation is developed, and it is shown that an enhanced Zener damping effect is produced by the introduction of microstructural damage. The resulting equations are utilized to demonstrate how damage dependent material properties may be obtained from dynamic experiments. Finaly, experimental results are compared to model predictions for several composite layups.
Health monitoring of pipeline girth weld using empirical mode decomposition
NASA Astrophysics Data System (ADS)
Rezaei, Davood; Taheri, Farid
2010-05-01
In the present paper the Hilbert-Huang transform (HHT), as a time-series analysis technique, has been combined with a local diagnostic approach in an effort to identify flaws in pipeline girth welds. This method is based on monitoring the free vibration signals of the pipe at its healthy and flawed states, and processing the signals through the HHT and its associated signal decomposition technique, known as empirical mode decomposition (EMD). The EMD method decomposes the vibration signals into a collection of intrinsic mode functions (IMFs). The deviations in structural integrity, measured from a healthy-state baseline, are subsequently evaluated by two damage sensitive parameters. The first is a damage index, referred to as the EM-EDI, which is established based on an energy comparison of the first or second IMF of the vibration signals, before and after occurrence of damage. The second parameter is the evaluation of the lag in instantaneous phase, a quantity derived from the HHT. In the developed methodologies, the pipe's free vibration is monitored by piezoceramic sensors and a laser Doppler vibrometer. The effectiveness of the proposed techniques is demonstrated through a set of numerical and experimental studies on a steel pipe with a mid-span girth weld, for both pressurized and nonpressurized conditions. To simulate a crack, a narrow notch is cut on one side of the girth weld. Several damage scenarios, including notches of different depths and at various locations on the pipe, are investigated. Results from both numerical and experimental studies reveal that in all damage cases the sensor located at the notch vicinity could successfully detect the notch and qualitatively predict its severity. The effect of internal pressure on the damage identification method is also monitored. Overall, the results are encouraging and promise the effectiveness of the proposed approaches as inexpensive systems for structural health monitoring purposes.
NASA Astrophysics Data System (ADS)
Prabowo, A. R.; Cho, H. J.; Byeon, J. H.; Bae, D. M.; Sohn, J. M.
2018-01-01
Predicted loads, such as crew, cargo, and structure have been applied as main inputs during ship design and analysis. However, unexpected events on the sea has high possibility to deliver remarkable losses for ship, industry, and environment. Previous oil spill incident by the Exxon Valdez in Alaska is the perfect example which an environmental damage and industry loss are initiated by an impact phenomenon on the ship, i.e. grounding. Even though hull arrangement has adopted double hull system, grounding may threaten ship safety in various scenarios. This situation pushes society to demand sustainable investigation for impact phenomena on water transportation mode to update understanding in the phenomenon and ensure structural safety during ship operation. This work aimed to study structural behaviour of chemical tanker as a marine structure under impact, namely ship grounding. Bottom raking case was considered to be calculated by virtual experiment. The study was performed using nonlinear finite element (FE) method and an idealised geometry of seabed rock would be deployed to be hard obstruction. Observation on the selected crashworthiness criteria, i.e. internal energy and crushing force indicated that as advanced penetration occurred on the ship structure, the absorbed strain energy continued to increase, while major fluctuation appeared during the initial contact between obstruction and ship happened. Damage extent of several structural members during the crushing process was shown, which concluded that the bottom plating had the largest severity in forms of tearing mode among of all members on the bottom structure.
NASA Astrophysics Data System (ADS)
Schagerl, M.; Viechtbauer, C.; Hörrmann, S.
2015-07-01
Damage tolerance is a classical safety concept for the design of aircraft structures. Basically, this approach considers possible damages in the structure, predicts the damage growth under applied loading conditions and predicts the following decrease of the structural strength. As a fundamental result the damage tolerance approach yields the maximum inspection interval, which is the time a damage grows from a detectable to a critical level. The above formulation of the damage tolerance safety concept targets on metallic structures where the damage is typically a simple fatigue crack. Fiber-reinforced polymers show a much more complex damage behavior, such as delaminationsin laminated composites. Moreover, progressive damage in composites is often initiated by manufacturing defects. The complex manufacturing processes for composite structures almost certainly yield parts with defects, e.g. pores in the matrix or undulations of fibers. From such defects growing damages may start after a certain time of operation. The demand to simplify or even avoid the inspection of composite structures has therefore led to a comeback of the traditional safe-life safety concept. The aim of the so-called safe-life flaw tolerance concept is a structure that is capable of carrying the static loads during operation, despite significant damages and after a representative fatigue load spectrum. A structure with this property does not need to be inspected, respectively monitored at all during its service life. However, its load carrying capability is thereby not fully utilized. This article presents the possible refinement of the state-of-the-art safe-life flaw tolerance concept for composite structures towards a damage tolerance approach considering also the influence of manufacturing defects on damage initiation and growth. Based on fundamental physical relations and experimental observations the challenges when developing damage growth and residual strength curves are discussed.
Chronic impact of traumatic brain injury on outcome and quality of life: a narrative review.
Stocchetti, Nino; Zanier, Elisa R
2016-06-21
Traditionally seen as a sudden, brutal event with short-term impairment, traumatic brain injury (TBI) may cause persistent, sometimes life-long, consequences. While mortality after TBI has been reduced, a high proportion of severe TBI survivors require prolonged rehabilitation and may suffer long-term physical, cognitive, and psychological disorders. Additionally, chronic consequences have been identified not only after severe TBI but also in a proportion of cases previously classified as moderate or mild. This burden affects the daily life of survivors and their families; it also has relevant social and economic costs.Outcome evaluation is difficult for several reasons: co-existing extra-cranial injuries (spinal cord damage, for instance) may affect independence and quality of life outside the pure TBI effects; scales may not capture subtle, but important, changes; co-operation from patients may be impossible in the most severe cases. Several instruments have been developed for capturing specific aspects, from generic health status to specific cognitive functions. Even simple instruments, however, have demonstrated variable inter-rater agreement.The possible links between structural traumatic brain damage and functional impairment have been explored both experimentally and in the clinical setting with advanced neuro-imaging techniques. We briefly report on some fundamental findings, which may also offer potential targets for future therapies.Better understanding of damage mechanisms and new approaches to neuroprotection-restoration may offer better outcomes for the millions of survivors of TBI.
Pervasive growth reduction in Norway spruce forests following wind disturbance.
Seidl, Rupert; Blennow, Kristina
2012-01-01
In recent decades the frequency and severity of natural disturbances by e.g., strong winds and insect outbreaks has increased considerably in many forest ecosystems around the world. Future climate change is expected to further intensify disturbance regimes, which makes addressing disturbances in ecosystem management a top priority. As a prerequisite a broader understanding of disturbance impacts and ecosystem responses is needed. With regard to the effects of strong winds--the most detrimental disturbance agent in Europe--monitoring and management has focused on structural damage, i.e., tree mortality from uprooting and stem breakage. Effects on the functioning of trees surviving the storm (e.g., their productivity and allocation) have been rarely accounted for to date. Here we show that growth reduction was significant and pervasive in a 6.79 million hectare forest landscape in southern Sweden following the storm Gudrun (January 2005). Wind-related growth reduction in Norway spruce (Picea abies (L.) Karst.) forests surviving the storm exceeded 10% in the worst hit regions, and was closely related to maximum gust wind speed (R(2) = 0.849) and structural wind damage (R(2) = 0.782). At the landscape scale, wind-related growth reduction amounted to 3.0 million m(3) in the three years following Gudrun. It thus exceeds secondary damage from bark beetles after Gudrun as well as the long-term average storm damage from uprooting and stem breakage in Sweden. We conclude that the impact of strong winds on forest ecosystems is not limited to the immediately visible area of structural damage, and call for a broader consideration of disturbance effects on ecosystem structure and functioning in the context of forest management and climate change mitigation.
Pervasive Growth Reduction in Norway Spruce Forests following Wind Disturbance
Seidl, Rupert; Blennow, Kristina
2012-01-01
Background In recent decades the frequency and severity of natural disturbances by e.g., strong winds and insect outbreaks has increased considerably in many forest ecosystems around the world. Future climate change is expected to further intensify disturbance regimes, which makes addressing disturbances in ecosystem management a top priority. As a prerequisite a broader understanding of disturbance impacts and ecosystem responses is needed. With regard to the effects of strong winds – the most detrimental disturbance agent in Europe – monitoring and management has focused on structural damage, i.e., tree mortality from uprooting and stem breakage. Effects on the functioning of trees surviving the storm (e.g., their productivity and allocation) have been rarely accounted for to date. Methodology/Principal Findings Here we show that growth reduction was significant and pervasive in a 6.79·million hectare forest landscape in southern Sweden following the storm Gudrun (January 2005). Wind-related growth reduction in Norway spruce (Picea abies (L.) Karst.) forests surviving the storm exceeded 10% in the worst hit regions, and was closely related to maximum gust wind speed (R2 = 0.849) and structural wind damage (R2 = 0.782). At the landscape scale, wind-related growth reduction amounted to 3.0 million m3 in the three years following Gudrun. It thus exceeds secondary damage from bark beetles after Gudrun as well as the long-term average storm damage from uprooting and stem breakage in Sweden. Conclusions/Significance We conclude that the impact of strong winds on forest ecosystems is not limited to the immediately visible area of structural damage, and call for a broader consideration of disturbance effects on ecosystem structure and functioning in the context of forest management and climate change mitigation. PMID:22413012
Wing walls for enhancing the seismic performance of reinforced concrete frame structures
NASA Astrophysics Data System (ADS)
Yang, Weisong; Guo, Xun; Xu, Weixiao; Yuan, Xin
2016-06-01
A building retrofitted with wing walls in the bottom story, which was damaged during the 2008 M8.0 Wenchuan earthquake in China, is introduced and a corresponding 1/4 scale wing wall-frame model was subjected to shake table motions to study the seismic behavior of this retrofitted structural system. The results show that wing walls can effectively protect columns from damage by moving areas that bear reciprocating tension and compression to the sections of the wing walls, thus achieving an extra measure of seismic fortification. A `strong column-weak beam' mechanism was realized, the flexural rigidity of the vertical member was strengthened, and a more uniform distribution of deformation among all the stories was measured. In addition, the joint between the wing walls and the beams suffered severe damage during the tests, due to an area of local stress concentration. A longer area of intensive stirrup is suggested in the end of the beams.
High strain rate and quasi-static tensile behaviour of Ti-6Al-4V after cyclic damage
NASA Astrophysics Data System (ADS)
Galán López, J.; Verleysen, P.; Degrieck, J.
2012-08-01
It is common that energy absorbing structural elements are subjected to a number of loading cycles before a crash event. Several studies have shown that previous fatigue can significantly influence the tensile properties of some materials, and hence the behaviour of structural elements made of them. However, when the capacity of absorbing energy of engineering materials is determined, fresh material without any fatigue damage is most often used. This study investigates the effect of fatigue damage on the dynamic tensile properties of Ti-6Al-4V in thin-sheet form. Results are completed with tests at quasi-static strain rates and observations of the fracture surfaces, and compared with results obtained from other alloys and steel grades. The experiments show that the dynamic properties of Ti-6Al-4V are not affected by a number of fatigue loading cycles high enough to significantly reduce the energy absorbing capabilities of EDM machined samples.
Automated Detection of Alkali-silica Reaction in Concrete using Linear Array Ultrasound Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santos-Villalobos, Hector J; Clayton, Dwight A; Ezell, N Dianne Bull
Alkali-silica reaction (ASR) is a chemical reaction in either concrete or mortar between hydroxyl ions of the alkalis (sodium and potassium) from hydraulic cement (or other sources), and certain siliceous minerals present in some aggregates. The reaction product, an alkali-silica gel, is hygroscopic having a tendency to absorb water and swell, which under certain circumstances, leads to abnormal expansion and cracking of the concrete. This phenomenon affects the durability and performance of concrete structures severely since it can cause significant loss of mechanical properties. Developing reliable methods and tools that can evaluate the degree of the ASR damage in existingmore » structures, so that informed decisions can be made toward mitigating ASR progression and damage, is important to the long term operation of nuclear power plants especially if licenses are extended beyond 60 years. This paper examines an automated method of determining the extent of ASR damage in fabricated concrete specimens.« less
Thyroid hormones are essential for maturation and function of the mammalian central nervous system. Severe congenital hypothyroidism results in irreversible structural damage and mental retardation in children. Although a variety of environmental contaminants have been demonstrat...
Code of Federal Regulations, 2011 CFR
2011-04-01
... mortgage. A Plan issuer may be a State, an insurance company, a warranty company, a Risk Retention Group as...-site water supply or sewage disposal systems. State includes the several States, Puerto Rico, the... collapsible soils. Damage to the following nonload-bearing portions of the home is not considered a structural...
Code of Federal Regulations, 2014 CFR
2014-04-01
... mortgage. A Plan issuer may be a State, an insurance company, a warranty company, a Risk Retention Group as...-site water supply or sewage disposal systems. State includes the several States, Puerto Rico, the... collapsible soils. Damage to the following nonload-bearing portions of the home is not considered a structural...
Code of Federal Regulations, 2012 CFR
2012-04-01
... mortgage. A Plan issuer may be a State, an insurance company, a warranty company, a Risk Retention Group as...-site water supply or sewage disposal systems. State includes the several States, Puerto Rico, the... collapsible soils. Damage to the following nonload-bearing portions of the home is not considered a structural...
Code of Federal Regulations, 2013 CFR
2013-04-01
... mortgage. A Plan issuer may be a State, an insurance company, a warranty company, a Risk Retention Group as...-site water supply or sewage disposal systems. State includes the several States, Puerto Rico, the... collapsible soils. Damage to the following nonload-bearing portions of the home is not considered a structural...
Implications of Animal Object Memory Research for Human Amnesia
ERIC Educational Resources Information Center
Winters, Boyer D.; Saksida, Lisa M.; Bussey, Timothy J.
2010-01-01
Damage to structures in the human medial temporal lobe causes severe memory impairment. Animal object recognition tests gained prominence from attempts to model "global" human medial temporal lobe amnesia, such as that observed in patient HM. These tasks, such as delayed nonmatching-to-sample and spontaneous object recognition, for assessing…
USDA-ARS?s Scientific Manuscript database
The Formosan subterranean termite (Coptotermes formosanus) is an important worldwide pest, each year causing millions of dollars in structural damage and control costs. Termite colonies are composed of several phenotypically distinct castes. Termites utilize these multiple castes to efficiently perf...
Structural damage identification using damping: a compendium of uses and features
NASA Astrophysics Data System (ADS)
Cao, M. S.; Sha, G. G.; Gao, Y. F.; Ostachowicz, W.
2017-04-01
The vibration responses of structures under controlled or ambient excitation can be used to detect structural damage by correlating changes in structural dynamic properties extracted from responses with damage. Typical dynamic properties refer to modal parameters: natural frequencies, mode shapes, and damping. Among these parameters, natural frequencies and mode shapes have been investigated extensively for their use in damage characterization by associating damage with reduction in local stiffness of structures. In contrast, the use of damping as a dynamic property to represent structural damage has not been comprehensively elucidated, primarily due to the complexities of damping measurement and analysis. With advances in measurement technologies and analysis tools, the use of damping to identify damage is becoming a focus of increasing attention in the damage detection community. Recently, a number of studies have demonstrated that damping has greater sensitivity for characterizing damage than natural frequencies and mode shapes in various applications, but damping-based damage identification is still a research direction ‘in progress’ and is not yet well resolved. This situation calls for an overall survey of the state-of-the-art and the state-of-the-practice of using damping to detect structural damage. To this end, this study aims to provide a comprehensive survey of uses and features of applying damping in structural damage detection. First, we present various methods for damping estimation in different domains including the time domain, the frequency domain, and the time-frequency domain. Second, we investigate the features and applications of damping-based damage detection methods on the basis of two predominant infrastructure elements, reinforced concrete structures and fiber-reinforced composites. Third, we clarify the influential factors that can impair the capability of damping to characterize damage. Finally, we recommend future research directions for advancing damping-based damage detection. This work holds the promise of (a) helping researchers identify crucial components in damping-based damage detection theories, methods, and technologies, and (b) leading practitioners to better implement damping-based structural damage identification.
Structural Health Monitoring: Leveraging Pain in the Human Body
NASA Astrophysics Data System (ADS)
Nayak, Subhadarshi
2012-07-01
Tissue damage, or the perception thereof, is managed through pain experience. The neurobiological process of pain triggers most effective defense mechanisms for our safety. Structural health monitoring (SHM) is also a very similar function, albeit in engineering systems. SHM technology can leverage many aspects of pain mechanisms to progress in several critical areas. Discrimination between features from the undamaged and damaged structures can follow the threshold gate mechanism of the pain perception. Furthermore, the sensing mechanisms can be adaptive to changes by adjusting the threshold as does the pain perception. A distributed sensor network, often advanced by SHM, can be made fault-tolerant and robust by following the perception way of self-organization and redundancy. Data handling in real life is a huge challenge for large-scale SHM. As sensory data of pain is first cleaned, the threshold is then processed through experiential information gathering and use.
NASA Astrophysics Data System (ADS)
Themistocleous, Kyriacos; Neocleous, Kyriacos; Pilakoutas, Kypros; Hadjimitsis, Diofantos G.
2014-08-01
The predominant approach for conducting road condition surveys and analyses is still largely based on extensive field observations. However, visual assessment alone cannot identify the actual extent and severity of damage. New non-invasive and cost-effective non-destructive (NDT) remote sensing technologies can be used to monitor road pavements across their life cycle, including remotely sensed aerial and satellite visual and thermal image (AI) data, Unmanned Aerial Vehicles (UAVs), Spectroscopy and Ground Penetrating Radar (GRP). These non-contact techniques can be used to obtain surface and sub-surface information about damage in road pavements, including the crack depth, and in-depth structural failure. Thus, a smart and cost-effective methodology is required that integrates several of these non-destructive/ no-contact techniques for the damage assessment and monitoring at different levels. This paper presents an overview of how an integration of the above technologies can be used to conduct detailed road condition surveys. The proposed approach can also be used to predict the future needs for road maintenance; this information is proven to be valuable to a strategic decision making tools that optimizes maintenance based on resources and environmental issues.
Damage to offshore infrastructure in the Gulf of Mexico by hurricanes Katrina and Rita
NASA Astrophysics Data System (ADS)
Cruz, A. M.; Krausmann, E.
2009-04-01
The damage inflicted by hurricanes Katrina and Rita to the Gulf-of-Mexico's (GoM) oil and gas production, both onshore and offshore, has shown the proneness of industry to Natech accidents (natural hazard-triggered hazardous-materials releases). In order to contribute towards a better understanding of Natech events, we assessed the damage to and hazardous-materials releases from offshore oil and natural-gas platforms and pipelines induced by hurricanes Katrina and Rita. Data was obtained through a review of published literature and interviews with government officials and industry representatives from the affected region. We also reviewed over 60,000 records of reported hazardous-materials releases from the National Response Center's (NRC) database to identify and analyze the hazardous-materials releases directly attributed to offshore oil and gas platforms and pipelines affected by the two hurricanes. Our results show that hurricanes Katrina and Rita destroyed at least 113 platforms, and severely damaged at least 53 others. Sixty percent of the facilities destroyed were built 30 years ago or more prior to the adoption of the more stringent design standards that went into effect after 1977. The storms also destroyed 5 drilling rigs and severely damaged 19 mobile offshore drilling units (MODUs). Some 19 MODUs lost their moorings and became adrift during the storms which not only posed a danger to existing facilities but the dragging anchors also damaged pipelines and other infrastructure. Structural damage to platforms included toppling of sections, and tilting or leaning of platforms. Possible causes for failure of structural and non-structural components of platforms included loading caused by wave inundation of the deck. Failure of rigs attached to platforms was also observed resulting in significant damage to the platform or adjacent infrastructure, as well as damage to equipment, living quarters and helipads. The failures are attributable to tie-down components and occurred on both fixed and floating platforms. The total number of pipelines damaged by Hurricanes Katrina and Rita as of May 1, 2006, was 457. Pipeline damage was mostly caused by damage or failure of the host platform or its development and production piping, the impact of dragging and displaced objects, and pipeline interaction at a crossing. Damage to pipelines was a major contributing factor in delaying start up of offshore oil and gas production. During our analysis of the NRC database we identified 611 reported hazardous-materials releases directly attributed to offshore platforms and pipelines affected by the two hurricanes. There were twice as many releases during Hurricane Katrina than during Rita; 80% or more of the releases reported in the NRC database occurred from platforms. Our analysis suggests that the majority of releases were petroleum products, such as crude oil and condensate, followed by natural gas. In both Katrina and Rita, releases were more likely in the front, right quadrant of the storm. Storm-surge values were highest closer to the coastline. This may help explain the higher number of releases in shallow waters. The higher number of hazardous-materials releases from platforms during Katrina may partly be attributed to the higher wind speeds for this storm as it approached land.
Determination of Paleoseismic Ground Motions from Inversion of Block Failures in Masonry Structures
NASA Astrophysics Data System (ADS)
Yagoda-Biran, G.; Hatzor, Y. H.
2010-12-01
Accurate estimation of ground motion parameters such as expected peak ground acceleration (PGA), predominant frequency and duration of motion in seismically active regions, is crucial for hazard preparedness and sound engineering design. The best way to estimate quantitatively these parameters would be to investigate long term recorded data of past strong earthquakes in a studied region. In some regions of the world however recorded data are scarce due to lack of seismic network infrastructure, and in all regions the availability of recorded data is restricted to the late 19th century and onwards. Therefore, existing instrumental data are hardly representative of the true seismicity of a region. When recorded data are scarce or not available, alternative methods may be applied, for example adopting a quantitative paleoseismic approach. In this research we suggest the use of seismically damaged masonry structures as paleoseismic indicators. Visitors to archeological sites all over the world are often struck by structural failure features which seem to be "seismically driven", particularly when inspecting old masonry structures. While it is widely accepted that no other loading mechanism can explain the preserved damage, the actual driving mechanism remains enigmatic even now. In this research we wish to explore how such failures may be triggered by earthquake induced ground motions and use observed block displacements to determine the characteristic parameters of the paleoseismic earthquake motion, namely duration, frequency, and amplitude. This is performed utilizing a 3D, fully dynamic, numerical analysis performed with the Discontinuous Deformation Analysis (DDA) method. Several case studies are selected for 3D numerical analysis. First we study a simple structure in the old city of L'Aquila, Italy. L'Aquila was hit by an earthquake on April 6th, 2009, with over 300 casualties and many of its medieval buildings damaged. This case study is an excellent opportunity to validate our method, since in the case of L'Aquila, both the damaged structure and the ground motions are recorded. The 3D modeling of the structure is rather complicated, and is performed by first modeling the structure with CAD software and later "translating" the model to the numerical code used. In the future, several more case studies will be analyzed, such as Kedesh and Avdat in Israel, and in collaboration with Hugh and Bilham the Temple of Shiva at Pandrethan, Kashmir. Establishing a numerical 3D dynamic analysis for back analysis of stone displacement in masonry structures as a paleoseismic tool can provide much needed data on ground motion parameters in regions where instrumental data are scarce, or are completely absent.
Damage severity estimation from the global stiffness decrease
NASA Astrophysics Data System (ADS)
Nitescu, C.; Gillich, G. R.; Abdel Wahab, M.; Manescu, T.; Korka, Z. I.
2017-05-01
In actual damage detection methods, localization and severity estimation can be treated separately. The severity is commonly estimated using fracture mechanics approach, with the main disadvantage of involving empirically deduced relations. In this paper, a damage severity estimator based on the global stiffness reduction is proposed. This feature is computed from the deflections of the intact and damaged beam, respectively. The damage is always located where the bending moment achieves maxima. If the damage is positioned elsewhere on the beam, its effect becomes lower, because the stress is produced by a diminished bending moment. It is shown that the global stiffness reduction produced by a crack is the same for all beams with a similar cross-section, regardless of the boundary conditions. One mathematical relation indicating the severity and another indicating the effect of removing damage from the beam. Measurements on damaged beams with different boundary conditions and cross-sections are carried out, and the location and severity are found using the proposed relations. These comparisons prove that the proposed approach can be used to accurately compute the severity estimator.
NASA Technical Reports Server (NTRS)
Johnston, Patrick H.; Juarez, Peter D.
2016-01-01
The Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) is a structural concept developed by the Boeing Company to address the complex structural design aspects associated with a pressurized hybrid wing body (HWB) aircraft configuration. The HWB has long been a focus of NASA's environmentally responsible aviation (ERA) project, following a building block approach to structures development, culminating with the testing of a nearly full-scale multi-bay box (MBB), representing a segment of the pressurized, non-circular fuselage portion of the HWB. PRSEUS is an integral structural concept wherein skins, frames, stringers and tear straps made of variable number of layers of dry warp-knit carbon-fiber stacks are stitched together, then resin-infused and cured in an out-of-autoclave process. The PRSEUS concept has the potential for reducing the weight and cost and increasing the structural efficiency of transport aircraft structures. A key feature of PRSEUS is the damage-arresting nature of the stitches, which enables the use of fail-safe design principles. During the load testing of the MBB, ultrasonic nondestructive evaluation (NDE) was used to monitor several sites of intentional barely-visible impact damage (BVID) as well as to survey the areas surrounding the failure cracks after final loading to catastrophic failure. The damage-arresting ability of PRSEUS was confirmed by the results of NDE. In parallel with the large-scale structural testing of the MBB, mechanical tests were conducted of the PRSEUS rod-to-overwrap bonds, as measured by pushing the rod axially from a short length of stringer.
Inspection of Nuclear Power Plant Containment Structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graves, H.L.; Naus, D.J.; Norris, W.E.
1998-12-01
Safety-related nuclear power plant (NPP) structures are designed to withstand loadings from a number of low-probability external and interval events, such as earthquakes, tornadoes, and loss-of-coolant accidents. Loadings incurred during normal plant operation therefore generally are not significant enough to cause appreciable degradation. However, these structures are susceptible to aging by various processes depending on the operating environment and service conditions. The effects of these processes may accumulate within these structures over time to cause failure under design conditions, or lead to costly repair. In the late 1980s and early 1990s several occurrences of degradation of NPP structures were discoveredmore » at various facilities (e.g., corrosion of pressure boundary components, freeze- thaw damage of concrete, and larger than anticipated loss of prestressing force). Despite these degradation occurrences and a trend for an increasing rate of occurrence, in-service inspection of the safety-related structures continued to be performed in a somewhat cursory manner. Starting in 1991, the U.S. Nuclear Regulatory Commission (USNRC) published the first of several new requirements to help ensure that adequate in-service inspection of these structures is performed. Current regulatory in-service inspection requirements are reviewed and a summary of degradation experience presented. Nondestructive examination techniques commonly used to inspect the NPP steel and concrete structures to identify and quantify the amount of damage present are reviewed. Finally, areas where nondestructive evaluation techniques require development (i.e., inaccessible portions of the containment pressure boundary, and thick heavily reinforced concrete sections are discussed.« less
Jing, Xufeng; Shao, Jianda; Zhang, Junchao; Jin, Yunxia; He, Hongbo; Fan, Zhengxiu
2009-12-21
In order to more exactly predict femtosecond pulse laser induced damage threshold, an accurate theoretical model taking into account photoionization, avalanche ionization and decay of electrons is proposed by comparing respectively several combined ionization models with the published experimental measurements. In addition, the transmittance property and the near-field distribution of the 'moth eye' broadband antireflective microstructure directly patterned into the substrate material as a function of the surface structure period and groove depth are performed by a rigorous Fourier model method. It is found that the near-field distribution is strongly dependent on the periodicity of surface structure for TE polarization, but for TM wave it is insensitive to the period. What's more, the femtosecond pulse laser damage threshold of the surface microstructure on the pulse duration taking into account the local maximum electric field enhancement was calculated using the proposed relatively accurate theoretical ionization model. For the longer incident wavelength of 1064 nm, the weak linear damage threshold on the pulse duration is shown, but there is a surprising oscillation peak of breakdown threshold as a function of the pulse duration for the shorter incident wavelength of 532 nm.
Evidence for conformational capture mechanism for damage recognition by NER protein XPC/Rad4.
NASA Astrophysics Data System (ADS)
Chakraborty, Sagnik; Steinbach, Peter J.; Paul, Debamita; Min, Jung-Hyun; Ansari, Anjum
Altered flexibility of damaged DNA sites is considered to play an important role in damage recognition by DNA repair proteins. Characterizing lesion-induced DNA dynamics has remained a challenge. We have combined ps-resolved fluorescence lifetime measurements with cytosine analog FRET pair uniquely sensitive to local unwinding/twisting to analyze DNA conformational distributions. This innovative approach maps out with unprecedented sensitivity the alternative conformations accessible to a series of DNA constructs containing 3-base-pair mismatch, suitable model lesions for the DNA repair protein xeroderma pigmentosum C (XPC) complex. XPC initiates eukaryotic nucleotide excision repair by recognizing various DNA lesions primarily through DNA deformability. Structural studies show that Rad4 (yeast ortholog of XPC) unwinds DNA at the lesion site and flips out two nucleotide pairs. Our results elucidate a broad range of conformations accessible to mismatched DNA even in the absence of the protein. Notably, the most severely distorted conformations share remarkable resemblance to the deformed conformation seen in the crystal structure of the Rad4-bound ``recognition'' complex supporting for the first time a possible ``conformational capture'' mechanism for damage recognition by XPC/Rad4. NSF Univ of Illinois-Chicago.
A novel real-time health monitoring system for unmanned vehicles
NASA Astrophysics Data System (ADS)
Zhang, David C.; Ouyang, Lien; Qing, Peter; Li, Irene
2008-04-01
Real-time monitoring the status of in-service structures such as unmanned vehicles can provide invaluable information to detect the damages to the structures on time. The unmanned vehicles can be maintained and repaired in time if such damages are found. One typical cause of damages of unmanned vehicles is from impacts caused by bumping into some obstacles or being hit by some objects such as hostile fire. This paper introduces a novel impact event sensing system that can detect the location of the impact events and the force-time history of the impact events. The system consists of the Piezo-electric sensor network, the hardware platform and the analysis software. The new customized battery-powered impact event sensing system supports up to 64-channel parallel data acquisition. It features an innovative low-power hardware trigger circuit that monitors 64 channels simultaneously. The system is in the sleep mode most of the time. When an impact event happens, the system will wake up in micro-seconds and detect the impact location and corresponding force-time history. The system can be combined with the SMART sensing system to further evaluate the impact damage severity.
Remodeling Functional Connectivity in Multiple Sclerosis: A Challenging Therapeutic Approach.
Stampanoni Bassi, Mario; Gilio, Luana; Buttari, Fabio; Maffei, Pierpaolo; Marfia, Girolama A; Restivo, Domenico A; Centonze, Diego; Iezzi, Ennio
2017-01-01
Neurons in the central nervous system are organized in functional units interconnected to form complex networks. Acute and chronic brain damage disrupts brain connectivity producing neurological signs and/or symptoms. In several neurological diseases, particularly in Multiple Sclerosis (MS), structural imaging studies cannot always demonstrate a clear association between lesion site and clinical disability, originating the "clinico-radiological paradox." The discrepancy between structural damage and disability can be explained by a complex network perspective. Both brain networks architecture and synaptic plasticity may play important roles in modulating brain networks efficiency after brain damage. In particular, long-term potentiation (LTP) may occur in surviving neurons to compensate network disconnection. In MS, inflammatory cytokines dramatically interfere with synaptic transmission and plasticity. Importantly, in addition to acute and chronic structural damage, inflammation could contribute to reduce brain networks efficiency in MS leading to worse clinical recovery after a relapse and worse disease progression. These evidence suggest that removing inflammation should represent the main therapeutic target in MS; moreover, as synaptic plasticity is particularly altered by inflammation, specific strategies aimed at promoting LTP mechanisms could be effective for enhancing clinical recovery. Modulation of plasticity with different non-invasive brain stimulation (NIBS) techniques has been used to promote recovery of MS symptoms. Better knowledge of features inducing brain disconnection in MS is crucial to design specific strategies to promote recovery and use NIBS with an increasingly tailored approach.
Quantitative Study of Vulnerability / Damage Curves in South Africa
NASA Astrophysics Data System (ADS)
Pule, Tebogo
2014-05-01
Southern Africa is considered a stable continental region in spite of several cases of reported earthquakes, which caused considerable damage and casualties particularly in the mining industry. Most buildings and structures in South Africa are not designed to resist any intensity of earthquake and most architects, engineers and builders in the country do not consider seismic resistance as a design requirement. This is mainly because the region has not experienced any large and serious destructive earthquake in recent years. The most destructive earthquake recorded in South Africa is the Ceres earthquake of 1969. The earthquake with a magnitude of 6.3 occurred on September 29, 1969 in the Ceres-Tulbagh region of the Western Cape Province about 100 km northeast of Cape Town. Serious damage occurred to certain buildings in the area (amounting to a total of U.S. 24 million). The structural damage varied from almost total destruction of old and poorly constructed buildings to large cracks in the better-built ones, twelve people were killed and many more were injured. Another event that caused severe damage to infrastructure occurred on March 9, 2005 at Stilfontein near Klerksdorp. It is known that up to 40 or more tremors are recorded monthly in Southern Africa, the locations are predominantly in the places surrounding the gold mining areas with many events around the Carletonville and Klerksdorp areas. Recent years have seen at least four mining induced tremors causing significant damage (Welkom 1976, Klerksdorp 1977, Welkom 1989 and Carletonville 1992). Such events show that it is very necessary to take seismic events into account in the design of any infrastructure. Assessing and understanding the risk facing the South African cities as a result of major seismic activity has been paid little attention. The main focus of this study is to use results of a deterministic hazard assessment to develop the most suitable damage curves for twelve of the most common building classes in four of the major cities in South Africa, namely, Johannesburg, Cape Town, Durban and Port Elizabeth.
A new method to assess damage to RCMRFs from period elongation and Park-Ang damage index using IDA
NASA Astrophysics Data System (ADS)
Aghagholizadeh, Mehrdad; Massumi, Ali
2016-09-01
Despite a significant progress in loading and design codes of seismic resistant structures and technology improvements in building structures, the field of civil engineering is still facing critical challenges. An example of those challenges is the assessment of the state of damage that has been imposed to a structure after earthquakes of different intensities. To determine the operability of a structure and its resistance to probable future earthquakes, quick assessment of damages and determining the operability of a structure after an earthquake are crucial. Present methods to calculate damage to structures are time consuming and do not accurately provide the rate of damage. Damage estimation is important task in the fields of structural health monitoring and decision-making. This study examines the relationship between period elongation and the Park-Ang damage index. A dynamic non-linear analysis is employed with IDARC program to calculate the amount of damage and period of the current state. This new method is shown to be a quick and accurate technique for damage assessment. It is easy to calculate the period of an existing structure and changes in the period which reflects changes in the stiffness matrix.
Covariance of dynamic strain responses for structural damage detection
NASA Astrophysics Data System (ADS)
Li, X. Y.; Wang, L. X.; Law, S. S.; Nie, Z. H.
2017-10-01
A new approach to address the practical problems with condition evaluation/damage detection of structures is proposed based on the distinct features of a new damage index. The covariance of strain response function (CoS) is a function of modal parameters of the structure. A local stiffness reduction in structure would cause monotonous increase in the CoS. Its sensitivity matrix with respect to local damages of structure is negative and narrow-banded. The damage extent can be estimated with an approximation to the sensitivity matrix to decouple the identification equations. The CoS sensitivity can be calibrated in practice from two previous states of measurements to estimate approximately the damage extent of a structure. A seven-storey plane frame structure is numerically studied to illustrate the features of the CoS index and the proposed method. A steel circular arch in the laboratory is tested. Natural frequencies changed due to damage in the arch and the damage occurrence can be judged. However, the proposed CoS method can identify not only damage happening but also location, even damage extent without need of an analytical model. It is promising for structural condition evaluation of selected components.
Ciesielski, Mariusz; Stereńczak, Krzysztof; Borowski, Zbigniew
2016-01-01
The increase in the deer population observed in recent decades has strongly impacted forest regeneration and the forest itself. The reduction in the quality of raw wood material, as a consequence of deer-mediated damage, constitutes a significant burden on forest owners. The basis for the commencement of preventive actions in this setting is the understanding of the populations and behaviors of deer in their natural environment. Although multiple studies have been carried out regarding this subject, only a few suggested topography as an important factor that may influence the distribution and intensity of deer-mediated damage. The detailed terrain models based on LiDAR data as well as the data on damage caused by deer from the State Forests database enabled thorough analyses of the distribution and intensity of damage in relation to land form in this study. These analyses were performed on three mountain regions in Poland: the Western Sudety Mountains, the Eastern Sudety Mountains, and the Beskidy Mountains. Even though these three regions are located several dozen to several hundred kilometers apart from each other, not all evaluated factors appeared common among them, and therefore, these regions have been analyzed separately. The obtained results indicated that the forest damage caused by deer increased with increasing altitude above 1000 m ASL. However, much larger areas of damage by deer were observed at elevations ranging from 401 to 1000 m ASL than at elevations below 400 m ASL. Moreover, the locations of damage (forest thickets and old stands) indicated that red deer is the species that exerts the strongest pressure on forest ecosystems. Our results show the importance of deer foraging behavior to the structure of the environment. PMID:27851776
Anderson, J.E.; Ducey, Mark J.; Fast, A.; Martin, M.E.; Lepine, L.; Smith, M.-L.; Lee, T.D.; Dubayah, R.O.; Hofton, M.A.; Hyde, P.; Peterson, Birgit; Blair, J.B.
2011-01-01
Waveform lidar imagery was acquired on September 26, 1999 over the Bartlett Experimental Forest (BEF) in New Hampshire (USA) using NASA's Laser Vegetation Imaging Sensor (LVIS). This flight occurred 20 months after an ice storm damaged millions of hectares of forestland in northeastern North America. Lidar measurements of the amplitude and intensity of ground energy returns appeared to readily detect areas of moderate to severe ice storm damage associated with the worst damage. Southern through eastern aspects on side slopes were particularly susceptible to higher levels of damage, in large part overlapping tracts of forest that had suffered the highest levels of wind damage from the 1938 hurricane and containing the highest levels of sugar maple basal area and biomass. The levels of sugar maple abundance were determined through analysis of the 1997 Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) high resolution spectral imagery and inventory of USFS Northern Research Station field plots. We found a relationship between field measurements of stem volume losses and the LVIS metric of mean canopy height (r2 = 0.66; root mean square errors = 5.7 m3/ha, p < 0.0001) in areas that had been subjected to moderate-to-severe ice storm damage, accurately documenting the short-term outcome of a single disturbance event.
Modeling and Characterization of Damage Processes in Metallic Materials
NASA Technical Reports Server (NTRS)
Glaessgen, E. H.; Saether, E.; Smith, S. W.; Hochhalter, J. D.; Yamakov, V. I.; Gupta, V.
2011-01-01
This paper describes a broad effort that is aimed at understanding the fundamental mechanisms of crack growth and using that understanding as a basis for designing materials and enabling predictions of fracture in materials and structures that have small characteristic dimensions. This area of research, herein referred to as Damage Science, emphasizes the length scale regimes of the nanoscale and the microscale for which analysis and characterization tools are being developed to predict the formation, propagation, and interaction of fundamental damage mechanisms. Examination of nanoscale processes requires atomistic and discrete dislocation plasticity simulations, while microscale processes can be examined using strain gradient plasticity, crystal plasticity and microstructure modeling methods. Concurrent and sequential multiscale modeling methods are being developed to analytically bridge between these length scales. Experimental methods for characterization and quantification of near-crack tip damage are also being developed. This paper focuses on several new methodologies in these areas and their application to understanding damage processes in polycrystalline metals. On-going and potential applications are also discussed.
Numerical investigation of contact stresses for fretting fatigue damage initiation
NASA Astrophysics Data System (ADS)
Bhatti, N. A.; Abdel Wahab, M.
2017-05-01
Fretting fatigue phenomena occurs due to interaction between contacting bodies under application of cyclic and normal loads. In addition to environmental conditions and material properties, the response at the contact interface highly depends on the combination of applied loads. High stress concentration is present at the contact interface, which can start the damage nucleation process. At the culmination of nucleation process several micro cracks are initiated, ultimately leading to the structural failure. In this study, effect of ratio of tangential to normal load on contact stresses, slip amplitude and damage initiation is studied using finite element analysis. The results are evaluated for Ruiz parameter as it involves the slip amplitude which in an important factor in fretting fatigue conditions. It is observed that tangential to normal load ratio influences the stick zone size and damage initiation life. Furthermore, it is observed that tensile stress is the most important factor that drives the damage initiation to failure for the cases where failure occurs predominantly in mode I manner.
Real-Time Continuous Response Spectra Exceedance Calculation
NASA Astrophysics Data System (ADS)
Vernon, Frank; Harvey, Danny; Lindquist, Kent; Franke, Mathias
2017-04-01
A novel approach is presented for near real-time earthquake alarms for critical structures at distributed locations using real-time estimation of response spectra obtained from near free-field motions. Influential studies dating back to the 1980s identified spectral response acceleration as a key ground motion characteristic that correlates well with observed damage in structures. Thus, monitoring and reporting on exceedance of spectra-based thresholds are useful tools for assessing the potential for damage to facilities or multi-structure campuses based on input ground motions only. With as little as one strong-motion station per site, this scalable approach can provide rapid alarms on the damage status of remote towns, critical infrastructure (e.g., hospitals, schools) and points of interests (e.g., bridges) for a very large number of locations enabling better rapid decision making during critical and difficult immediate post-earthquake response actions. Real-time calculation of PSA exceedance and alarm dissemination are enabled with Bighorn, a module included in the Antelope software package that combines real-time spectral monitoring and alarm capabilities with a robust built-in web display server. Examples of response spectra from several M 5 events recorded by the ANZA seismic network in southern California will be presented.
Kachadoorian, Reuben; Plafker, George
1967-01-01
The great earthquake (Richter magnitude of 8.4–8.5) that struck south-central Alaska at 5:36 p.m., Alaska standard time, on March 27, 1964 (03:36, March 28, Greenwich mean time), was felt in every community on Kodiak Island and the nearby islands. It was the most severe earthquake to strike this part of Alaska in modern time, and took the lives of 18 persons in the area by drowning; this includes two in Kodiak and three at Kaguyak. Property damage and loss of income to the communities is estimated at more than $45 million. The largest community, Kodiak, had the greatest loss from the earthquake. Damage was caused chiefly by 5.6 feet of tectonic subsidence and a train of 10 seismic sea waves that inundated the low-lying areas of the town. The seismic sea waves destroyed all but one of the docking facilities and more than 215 structures; many other structures were severely damaged. The waves struck the town during the evening hours of March 27 and early morning hours of March 28. They moved from the southwest and northeast: and reached their maximum height of 20–30 feet above mean lower low water at Shahafka Cove between 11:00 and 11:45 p.m., March 27. The violently destructive seismic sea waves not only severely damaged homes, shops, and naval-station structures but also temporarily crippled the fishing industry in Kodiak by destroying the processing plants and most of the fishing vessels. The waves scoured out 10 feet of sediments in the channel between Kodiak Island and Near Island and exposed bedrock. This bedrock presented a major post-earthquake construction problem because no sediments remained into which piles could be driven for foundations of waterfront facilities. Because of tectonic subsidence, high tides now flood Mission and Potatopatch Lakes which, before the earthquake, had not been subject to tidal action. The subsidence also accelerated erosion of the unconsolidated sediments along the shoreline in the city of Kodiak. Seismic shaking lasted 4½–5½ minutes at Kodiak and had a rolling motion. Inasmuch as most of Kodiak is underlain by bedrock or by only a thin veneer of unconsolidated sediments, very little if any damage occurred from ground motion or seismic shaking. The ground motion, however, did cause a massive short circuit and power failure at Kodiak. The Kodiak Naval Station, 5 miles southwest of Kodiak, was also severely damaged by the earthquake. The station was inundated by at least 10 seismic sea waves which reached a maximum height of 25 feet above post-earthquake mean lower low water between 11:16 and 11:34 p.m. on March 27, 1964. The first seismic sea wave that inundated the station did not do severe damage because it behaved much like a rapid rise of tide, but the subsequent and more violent waves destroyed most of the docking facilities and several other shoreline structures. The waves struck the station from the southwest and from the east. The shoreline structures that were not destroyed required rehabilitation because the 5.6 feet of tectonic subsidence put them under water during the highest tides. Furthermore the subsidence accelerated erosion during high tide of the soft unconsolidated sediments and fill in the low-lying areas of the station. Seismic shaking did little damage to the station housing facility, but it was responsible for compaction of sediments, lateral displacement of a seawall, and the development of fissures in the aircraft parking area. The ground motion was as south-southeast–north-northwest to north-south in direction. An unusual case of radioactive contamination was reported at the naval station. The inundating seismic sea waves entered a building in which radionuclides were stored. The contamination was restricted to the building only, however, and did not spread throughout the station. Afognak was abandoned because of the extensive damage incurred from tectonic subsistence and seismic sea waves. The seismic effects, estimated Mercalli intensity VI-VII, did not directly cause any significant property damage at Afognak Serious long-term damage, however, resulted from tectonic subsidence estimated to be from 3½ to 5½ feet. The subsidence has resulted in rapid erosion of the coast, landward shift and building up of bench berms to the new higher sea levels, and flooding of extensive low-lying areas behind the barrier beaches. Inundation of low-lying parts of the village by a train of seismic sea waves having maximum heights of 10.8 feet above post-earthquake tide level (14.5 ft above post-earthquake mean lower low water) caused losses of about half a million dollars to homes, vehicles, bridges, and personal possessions. Uzinki was damaged by tectonic subsidence and seismic sea waves. No significant damage resulted from the ground motion during the earthquake; the Mercalli intensity was about VI. However, tectonic subsidence, estimated to be 5 feet, caused inundation of a narrow zone along the waterfront. Structures and vessels were damaged as a result of the seismic sea waves that repeatedly flooded the waterfront area after the earthquake. Old Harbor was damaged by seismic shock, subsidence, and seismic sea waves. The tremors, which had a Mercalli intensity estimated at VII-VIII, toppled two concrete-block chimneys, cracked interior walls, and caused minor breakage of personal property in the homes. Regional tectonic subsidence and superficial subsidence of the unconsolidated deposits on which the village is situated apparently caused incursion of salt water into the school well. A quarter of million yards of fill was required to raise the waterfront areas to their pre-earthquake elevations relative to sea level. Seismic sea waves having a maximum runup of about 12 feet above tide level (16 ft above post-earthquake mean lower low water) destroyed 34 of the 35 residences in the village and presumably drowned one man who lived immediately across the strait from Old Harbor. At Kaguyak, seismic sea waves having a maximum runup of about 25 feet above mean lower low water carried away all 10 buildings in the village, took three lives, and damaged an unknown number of fishing vessels. The village site has been abandoned. The communities of Akhiok, Karluk, and Larsen Bay were virtually undamaged by the earthquake tremors, which had estimated Mercalli intensities of VI-VII, but tectonic subsidence of about 2–2½ feet at Larsen Bay made it necessary to raise the cannery dock level at an estimated cost of $80,000.
NDE scanning and imaging of aircraft structure
NASA Astrophysics Data System (ADS)
Bailey, Donald; Kepler, Carl; Le, Cuong
1995-07-01
The Science and Engineering Lab at McClellan Air Force Base, Sacramento, Calif. has been involved in the development and use of computer-based scanning systems for NDE (nondestructive evaluation) since 1985. This paper describes the history leading up to our current applications which employ eddy current and ultrasonic scanning of aircraft structures that contain both metallics and advanced composites. The scanning is performed using industrialized computers interfaced to proprietary acquisition equipment and software. Examples are shown that image several types of damage such as exfoliation and fuselage lap joint corrosion in aluminum, impact damage, embedded foreign material, and porosity in Kevlar and graphite epoxy composites. Image analysis techniques are reported that are performed using consumer oriented computer hardware and software that are not NDE specific and not expensive
[What is a "Considerable Damage to One's Health" in the Sense of German Guardianship Law?
Steinert, Tilman; Heinz, Andreas; Hohl-Radke, Felix; Koller, Manfred; Müller, Jürgen; Müller, Sabine; Zinkler, Martin
2016-10-01
The term of a "considerable damage to one's health" is central in German guardianship law with respect to judge's decisions on involuntary commitment and coercive treatment. A legal definition has not been provided, and up to now no explanations from the part of medicine have been available what a "considerable damage to one's health" is in the case of mental illness and how it can be determined. A consensus paper of the German Association of Psychiatry and Psychotherapy (DGPPN) explains four possible scenarios of manifestation of such kind of damage, corresponding to somatic illnesses: evidence of structural brain lesions (rare), subjective suffering (sufficient, but not necessary), impairment of functioning in important areas of life, and severe impairment of social participation (e. g. by dangerous behaviour against others). This view corresponds with the WHO's bio-psycho-social concept of health. © Georg Thieme Verlag KG Stuttgart · New York.
An extension of fracture mechanics/technology to larger and smaller cracks/defects
Abé, Hiroyuki
2009-01-01
Fracture mechanics/technology is a key science and technology for the design and integrity assessment of the engineering structures. However, the conventional fracture mechanics has mostly targeted a limited size of cracks/defects, say of from several hundred microns to several tens of centimeters. The author and his group has tried to extend that limited size and establish a new version of fracture technology for very large cracks used in geothermal energy extraction and for very small cracks/defects or damage often appearing in the combination of mechanical and electronic components of engineering structures. Those new versions are reviewed in this paper. PMID:19907123
An extension of fracture mechanics/technology to larger and smaller cracks/defects.
Abé, Hiroyuki
2009-01-01
Fracture mechanics/technology is a key science and technology for the design and integrity assessment of the engineering structures. However, the conventional fracture mechanics has mostly targeted a limited size of cracks/defects, say of from several hundred microns to several tens of centimeters. The author and his group has tried to extend that limited size and establish a new version of fracture technology for very large cracks used in geothermal energy extraction and for very small cracks/defects or damage often appearing in the combination of mechanical and electronic components of engineering structures. Those new versions are reviewed in this paper.
Frost induced damages within porous materials - from concrete technology to fuel cells technique
NASA Astrophysics Data System (ADS)
Palecki, Susanne; Gorelkov, Stanislav; Wartmann, Jens; Heinzel, Angelika
2017-12-01
Porous media like concrete or layers of membrane electrode assemblies (MEA) within fuel cells are affected by a cyclic frost exposure due to different damage mechanisms which could lead to essential degradation of the material. In general, frost damages can only occur in case of a specific material moisture content. In fuel cells, residual water is generally available after shut down inside the membrane i.e. the gas diffusion layer (GDL). During subsequent freezing, this could cause various damage phenomena such as frost heaves and delamination effects of the membrane electrode assembly, which depends on the location of pore water and on the pore structure itself. Porous materials possess a pore structure that could range over several orders of magnitudes with different properties and freezing behaviour of the pore water. Latter can be divided into macroscopic, structured and pre-structured water, influenced by surface interactions. Therefore below 0 °C different water modifications can coexist in a wide temperature range, so that during frost exposure a high amount of unfrozen and moveable water inside the pore system is still available. This induces transport mechanisms and shrinkage effects. The physical basics are similar for porous media. While the freezing behaviour of concrete has been studied over decades of years, in order to enhance the durability, the know-how about the influence of a frost attack on fuel cell systems is not fully understood to date. On the basis of frost damage models for concrete structures, an approach to describe the impact of cyclic freezing and thawing on membrane electrode assemblies has been developed within this research work. Major aim is beyond a better understanding of the frost induced mechanisms, the standardization of a suitable test procedure for the assessment of different MEA materials under such kind of attack. Within this contribution first results will be introduced.
NASA Astrophysics Data System (ADS)
de Medeiros, Ricardo; Sartorato, Murilo; Vandepitte, Dirk; Tita, Volnei
2016-11-01
The basic concept of the vibration based damage identification methods is that the dynamic behaviour of a structure can change if damage occurs. Damage in a structure can alter the structural integrity, and therefore, the physical properties like stiffness, mass and/or damping may change. The dynamic behaviour of a structure is a function of these physical properties and will, therefore, directly be affected by the damage. The dynamic behaviour can be described in terms of time, frequency and modal domain parameters. The changes in these parameters (or properties derived from these parameters) are used as indicators of damage. Hence, this work has two main objectives. The first one is to provide an overview of the structural vibration based damage identification methods. For this purpose, a fundamental description of the structural vibration based damage identification problem is given, followed by a short literature overview of the damage features, which are commonly addressed. The second objective is to create a damage identification method for detection of the damage in composite structures. To aid in this process, two basic principles are discussed, namely the effect of the potential damage case on the dynamic behaviour, and the consequences involved with the information reduction in the signal processing. Modal properties from the structural dynamic output response are obtained. In addition, experimental and computational results are presented for the application of modal analysis techniques applied to composite specimens with and without damage. The excitation of the structures is performed using an impact hammer and, for measuring the output data, accelerometers as well as piezoelectric sensors. Finite element models are developed by shell elements, and numerical results are compared to experimental data, showing good correlation for the response of the specimens in some specific frequency range. Finally, FRFs are analysed using suitable metrics, including a new one, which are compared in terms of their capability for damage identification. The experimental and numerical results show that the vibration-based damage methods combined to the metrics can be used in Structural Health Monitoring (SHM) systems to identify the damage in the structure.
Xu, Zihao; Yang, Ming; Wang, Xianghui; Wang, Zhong
2015-01-01
Because of pulsatile blood flow's benefit for myocardial recovery, perfusion of coronary arteries and end organs, pulsatile ventricular assist devices (VADs) are still widely used as paracorporeal mechanical circulatory support devices in clinical applications, especially in pediatric heart failure patients. However, severe blood damage limits the VAD's service period. Besides optimizing the VAD geometry to reduce blood damage, the blood damage may also be decreased by changing the operating conditions. In this article, a pulsatile VAD was used to investigate the influence of operating conditions on its blood damage, including hemolysis, platelet activation, and platelet deposition. Three motion profiles of pusher plate (sine, cosine, and polynomial), three stroke volumes (ejection fractions) (56 ml [70%], 42 ml [52.5%], and 28 ml [35%]), three pulsatile rates (75, 100, and 150 bpm), and two assist modes (copulsation and counterpulsation) were implemented respectively in VAD fluid-structure interaction simulations to calculate blood damage. The blood damage indices indicate that cosine motion profile, higher ejection fraction, higher pulsatile rate, and counterpulsation can decrease platelet deposition whereas increase hemolysis and platelet activation, and vice versa. The results suggest that different operating conditions have different effects on pulsatile VAD's blood damage and may be beneficial to choose suitable operating condition to reduce blood damage in clinical applications.
Ogara, María F; Sirkin, Pablo F; Carcagno, Abel L; Marazita, Mariela C; Sonzogni, Silvina V; Ceruti, Julieta M; Cánepa, Eduardo T
2013-01-01
The maintenance of genomic integrity is of main importance to the survival and health of organisms which are continuously exposed to genotoxic stress. Cells respond to DNA damage by activating survival pathways consisting of cell cycle checkpoints and repair mechanisms. However, the signal that triggers the DNA damage response is not necessarily a direct detection of the primary DNA lesion. In fact, chromatin defects may serve as initiating signals to activate those mechanisms. If the modulation of chromatin structure could initiate a checkpoint response in a direct manner, this supposes the existence of specific chromatin sensors. p19INK4d, a member of the INK4 cell cycle inhibitors, plays a crucial role in regulating genomic stability and cell viability by enhancing DNA repair. Its expression is induced in cells injured by one of several genotoxic treatments like cis-platin, UV light or neocarzinostatin. Nevertheless, when exogenous DNA damaged molecules are introduced into the cell, this induction is not observed. Here, we show that p19INK4d is enhanced after chromatin relaxation even in the absence of DNA damage. This induction was shown to depend upon ATM/ATR, Chk1/Chk2 and E2F activity, as is the case of p19INK4d induction by endogenous DNA damage. Interestingly, p19INK4d improves DNA repair when the genotoxic damage is caused in a relaxed-chromatin context. These results suggest that changes in chromatin structure, and not DNA damage itself, is the actual trigger of p19INK4d induction. We propose that, in addition to its role as a cell cycle inhibitor, p19INK4d could participate in a signaling network directed to detecting and eventually responding to chromatin anomalies.
Acoustic emission characterization of microcracking in laboratory-scale hydraulic fracturing tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hampton, Jesse; Gutierrez, Marte; Matzar, Luis
Understanding microcracking near coalesced fracture generation is critically important for hydrocarbon and geothermal reservoir characterization as well as damage evaluation in civil engineering structures. Dense and sometimes random microcracking near coalesced fracture formation alters the mechanical properties of the nearby virgin material. Individual microcrack characterization is also significant in quantifying the material changes near the fracture faces (i.e. damage). Acoustic emission (AE) monitoring and analysis provide unique information regarding the microcracking process temporally, and information concerning the source characterization of individual microcracks can be extracted. In this context, laboratory hydraulic fracture tests were carried out while monitoring the AEs frommore » several piezoelectric transducers. In-depth post-processing of the AE event data was performed for the purpose of understanding the individual source mechanisms. Several source characterization techniques including moment tensor inversion, event parametric analysis, and volumetric deformation analysis were adopted. Post-test fracture characterization through coring, slicing and micro-computed tomographic imaging was performed to determine the coalesced fracture location and structure. Distinct differences in fracture characteristics were found spatially in relation to the openhole injection interval. Individual microcrack AE analysis showed substantial energy reduction emanating spatially from the injection interval. Lastly, it was quantitatively observed that the recorded AE signals provided sufficient information to generalize the damage radiating spatially away from the injection wellbore.« less
Acoustic emission characterization of microcracking in laboratory-scale hydraulic fracturing tests
Hampton, Jesse; Gutierrez, Marte; Matzar, Luis; ...
2018-06-11
Understanding microcracking near coalesced fracture generation is critically important for hydrocarbon and geothermal reservoir characterization as well as damage evaluation in civil engineering structures. Dense and sometimes random microcracking near coalesced fracture formation alters the mechanical properties of the nearby virgin material. Individual microcrack characterization is also significant in quantifying the material changes near the fracture faces (i.e. damage). Acoustic emission (AE) monitoring and analysis provide unique information regarding the microcracking process temporally, and information concerning the source characterization of individual microcracks can be extracted. In this context, laboratory hydraulic fracture tests were carried out while monitoring the AEs frommore » several piezoelectric transducers. In-depth post-processing of the AE event data was performed for the purpose of understanding the individual source mechanisms. Several source characterization techniques including moment tensor inversion, event parametric analysis, and volumetric deformation analysis were adopted. Post-test fracture characterization through coring, slicing and micro-computed tomographic imaging was performed to determine the coalesced fracture location and structure. Distinct differences in fracture characteristics were found spatially in relation to the openhole injection interval. Individual microcrack AE analysis showed substantial energy reduction emanating spatially from the injection interval. Lastly, it was quantitatively observed that the recorded AE signals provided sufficient information to generalize the damage radiating spatially away from the injection wellbore.« less
Recent Developments in the Code RITRACKS (Relativistic Ion Tracks)
NASA Technical Reports Server (NTRS)
Plante, Ianik; Ponomarev, Artem L.; Blattnig, Steve R.
2018-01-01
The code RITRACKS (Relativistic Ion Tracks) was developed to simulate detailed stochastic radiation track structures of ions of different types and energies. Many new capabilities were added to the code during the recent years. Several options were added to specify the times at which the tracks appear in the irradiated volume, allowing the simulation of dose-rate effects. The code has been used to simulate energy deposition in several targets: spherical, ellipsoidal and cylindrical. More recently, density changes as well as a spherical shell were implemented for spherical targets, in order to simulate energy deposition in walled tissue equivalent proportional counters. RITRACKS is used as a part of the new program BDSTracks (Biological Damage by Stochastic Tracks) to simulate several types of chromosome aberrations in various irradiation conditions. The simulation of damage to various DNA structures (linear and chromatin fiber) by direct and indirect effects has been improved and is ongoing. Many improvements were also made to the graphic user interface (GUI), including the addition of several labels allowing changes of units. A new GUI has been added to display the electron ejection vectors. The parallel calculation capabilities, notably the pre- and post-simulation processing on Windows and Linux machines have been reviewed to make them more portable between different systems. The calculation part is currently maintained in an Atlassian Stash® repository for code tracking and possibly future collaboration.
NASA Astrophysics Data System (ADS)
Masera, D.; Bocca, P.; Grazzini, A.
2011-07-01
In this experimental program the main goal is to monitor the damage evolution in masonry and concrete structures by Acoustic Emission (AE) signal analysis applying a well-know seismic method. For this reason the concept of the coda wave interferometry is applied to AE signal recorded during the tests. Acoustic Emission (AE) are very effective non-destructive techniques applied to identify micro and macro-defects and their temporal evolution in several materials. This technique permits to estimate the velocity of ultrasound waves propagation and the amount of energy released during fracture propagation to obtain information on the criticality of the ongoing process. By means of AE monitoring, an experimental analysis on a set of reinforced masonry walls under variable amplitude loading and strengthening reinforced concrete (RC) beams under monotonic static load has been carried out. In the reinforced masonry wall, cyclic fatigue stress has been applied to accelerate the static creep and to forecast the corresponding creep behaviour of masonry under static long-time loading. During the tests, the evaluation of fracture growth is monitored by coda wave interferometry which represents a novel approach in structural monitoring based on AE relative change velocity of coda signal. In general, the sensitivity of coda waves has been used to estimate velocity changes in fault zones, in volcanoes, in a mining environment, and in ultrasound experiments. This method uses multiple scattered waves, which travelled through the material along numerous paths, to infer tiny temporal changes in the wave velocity. The applied method has the potential to be used as a "damage-gauge" for monitoring velocity changes as a sign of damage evolution into masonry and concrete structures.
NASA Astrophysics Data System (ADS)
Srinivas, V.; Jeyasehar, C. Antony; Ramanjaneyulu, K.; Sasmal, Saptarshi
2012-02-01
Need for developing efficient non-destructive damage assessment procedures for civil engineering structures is growing rapidly towards structural health assessment and management of existing structures. Damage assessment of structures by monitoring changes in the dynamic properties or response of the structure has received considerable attention in recent years. In the present study, damage assessment studies have been carried out on a reinforced concrete beam by evaluating the changes in vibration characteristics with the changes in damage levels. Structural damage is introduced by static load applied through a hydraulic jack. After each stage of damage, vibration testing is performed and system parameters were evaluated from the measured acceleration and displacement responses. Reduction in fundamental frequencies in first three modes is observed for different levels of damage. It is found that a consistent decrease in fundamental frequency with increase in damage magnitude is noted. The beam is numerically simulated and found that the vibration characteristics obtained from the measured data are in close agreement with the numerical data.
14 CFR 23.251 - Vibration and buffeting.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Vibration and buffeting. 23.251 Section 23... Requirements § 23.251 Vibration and buffeting. There must be no vibration or buffeting severe enough to result in structural damage, and each part of the airplane must be free from excessive vibration, under any...
14 CFR 23.251 - Vibration and buffeting.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vibration and buffeting. 23.251 Section 23... Requirements § 23.251 Vibration and buffeting. There must be no vibration or buffeting severe enough to result in structural damage, and each part of the airplane must be free from excessive vibration, under any...
Time evolution of coherent structures in networks of Hindmarch Rose neurons
NASA Astrophysics Data System (ADS)
Mainieri, M. S.; Erichsen, R.; Brunnet, L. G.
2005-08-01
In the regime of partial synchronization, networks of diffusively coupled Hindmarch-Rose neurons show coherent structures developing in a region of the phase space which is wider than in the correspondent single neuron. Such structures are kept, without important changes, during several bursting periods. In this work, we study the time evolution of these structures and their dynamical stability under damage. This system may model the behavior of ensembles of neurons coupled through a bidirectional gap junction or, in a broader sense, it could also account for the molecular cascades present in the formation of flash and short time memory.
Seismic damage identification for steel structures using distributed fiber optics.
Hou, Shuang; Cai, C S; Ou, Jinping
2009-08-01
A distributed fiber optic monitoring methodology based on optic time domain reflectometry technology is developed for seismic damage identification of steel structures. Epoxy with a strength closely associated to a specified structure damage state is used for bonding zigzagged configured optic fibers on the surfaces of the structure. Sensing the local deformation of the structure, the epoxy modulates the signal change within the optic fiber in response to the damage state of the structure. A monotonic loading test is conducted on a steel specimen installed with the proposed sensing system using selected epoxy that will crack at the designated strain level, which indicates the damage of the steel structure. Then, using the selected epoxy, a varying degree of cyclic loading amplitudes, which is associated with different damage states, is applied on a second specimen. The test results show that the specimen's damage can be identified by the optic sensors, and its maximum local deformation can be recorded by the sensing system; moreover, the damage evolution can also be identified.
Xiao, Shu-hua; Xue, Jian; Shen, Bing-gui
2010-02-01
To observe the effect of mefloquine on the tegument of adult Schistosoma japonicum harbored in mice. Twelve mice were each infected with 60-80 S. japonicum cercariae. At 35 days post-infection, 10 mice were treated orally with mefloquine at a single dose of 400 mg/kg. Two mice were sacrificed at 8 h, 24 h, 3 days, 7 days, and 14 days post-treatment respectively, and schistosomes were collected by the perfusion technique, fixed and examined under a scanning electron microscope. Schistosomes obtained from the remaining 2 untreated mice served as control. 8 h post-treatment, male and female schistosomes showed focal swelling of the worm body accompanied by extensive swelling, tough junction and fusion of tegumental ridges. Meanwhile, some of the sensory structures showed enlargement and part of them collapsed. 24 h after mefloquine administration, head portion of some male and female worms revealed high swelling accompanied by severe damage to oral sucker. 3 days post-treatment, focal swelling of worm body along the whole worm was universal. In some male and female worms, the damaged tegument fused together to form a large mass protruding from the tegumental surface. In addition, focal or extensive peeling of tegumental ridges was seen or collapse of enlarged sensory structure resulted in formation of hole-like appearance. 7 days post administration, focal swelling of worm body and damage to tegument induced by mefloquine were similar to those aforementioned, but focal peeling, collapse of enlarged sensory structures, and deformation of oral sucker in male and female worms were universal. 14 days post-treatment, individual male worm survived the treatment revealed normal appearance of tegumental ridges in head portion, although light focal swelling of worm body was still observed. Mefloquine causes focal swelling of worm body, extensive and severe damage to the tegument in adult S. japonicum.
Evaluation of a Progressive Failure Analysis Methodology for Laminated Composite Structures
NASA Technical Reports Server (NTRS)
Sleight, David W.; Knight, Norman F., Jr.; Wang, John T.
1997-01-01
A progressive failure analysis methodology has been developed for predicting the nonlinear response and failure of laminated composite structures. The progressive failure analysis uses C plate and shell elements based on classical lamination theory to calculate the in-plane stresses. Several failure criteria, including the maximum strain criterion, Hashin's criterion, and Christensen's criterion, are used to predict the failure mechanisms. The progressive failure analysis model is implemented into a general purpose finite element code and can predict the damage and response of laminated composite structures from initial loading to final failure.
NASA Astrophysics Data System (ADS)
Liang, Yabin; Li, Dongsheng; Parvasi, Seyed Mohammad; Kong, Qingzhao; Lim, Ing; Song, Gangbing
2016-09-01
Concrete-encased composite structure is a type of structure that takes the advantages of both steel and concrete materials, showing improved strength, ductility, and fire resistance compared to traditional reinforced concrete structures. The interface between concrete and steel profiles governs the interaction between these two materials under loading, however, debonding damage between these two materials may lead to severe degradation of the load transferring capacity which will affect the structural performance significantly. In this paper, the electro-mechanical impedance (EMI) technique using piezoceramic transducers was experimentally investigated to detect the bond-slip occurrence of the concrete-encased composite structure. The root-mean-square deviation is used to quantify the variations of the impedance signatures due to the presence of the bond-slip damage. In order to verify the validity of the proposed method, finite element model analysis was performed to simulate the behavior of concrete-steel debonding based on a 3D finite element concrete-steel bond model. The computed impedance signatures from the numerical results are compared with the results obtained from the experimental study, and both the numerical and experimental studies verify the proposed EMI method to detect bond slip of a concrete-encased composite structure.
NASA Astrophysics Data System (ADS)
Abesamis, Rene A.; Langlois, Tim; Birt, Matthew; Thillainath, Emma; Bucol, Abner A.; Arceo, Hazel O.; Russ, Garry R.
2018-03-01
Baseline ecological studies of mesophotic coral ecosystems are lacking in the equatorial Indo-West Pacific region where coral reefs are highly threatened by anthropogenic and climate-induced disturbances. Here, we used baited remote underwater video to describe benthic habitat and fish assemblage structure from 10 to 80 m depth at Apo Island, a well-managed marine protected area in the Philippines. We conducted surveys 2 yr after two storms (in 2011 and 2012) caused severe damage to shallow coral communities within the no-take marine reserve (NTMR) of Apo Island, which led to declines in fish populations that had built up over three decades. We found that hard coral cover was restricted to < 40 m deep in the storm-impacted NTMR and a nearby fished area not impacted by storms. Benthic cover at mesophotic depths (> 30 m) was dominated by sand/rubble and rock (dead coral) with low cover of soft corals, sponges and macroalgae. Storm damage appeared to have reached the deepest limit of the fringing reef (40 m) and reduced variability in benthic structure within the NTMR. Species richness and/or abundance of most trophic groups of fish declined with increasing depth regardless of storm damage. There were differences in taxonomic and trophic structure and degree of targeting by fisheries between shallow and mesophotic fish assemblages. Threatened shark species and a fish species previously unreported in the Philippines were recorded at mesophotic depths. Our findings provide a first glimpse of the benthic and fish assemblage structure of Philippine coral reef ecosystems across a wide depth gradient. This work also underscores how a combination of limited coral reef development at mesophotic depths close to shallow reefs and severe habitat loss caused by storms would result in minimal depth refuge for reef fish populations.
The nucleosome: orchestrating DNA damage signaling and repair within chromatin.
Agarwal, Poonam; Miller, Kyle M
2016-10-01
DNA damage occurs within the chromatin environment, which ultimately participates in regulating DNA damage response (DDR) pathways and repair of the lesion. DNA damage activates a cascade of signaling events that extensively modulates chromatin structure and organization to coordinate DDR factor recruitment to the break and repair, whilst also promoting the maintenance of normal chromatin functions within the damaged region. For example, DDR pathways must avoid conflicts between other DNA-based processes that function within the context of chromatin, including transcription and replication. The molecular mechanisms governing the recognition, target specificity, and recruitment of DDR factors and enzymes to the fundamental repeating unit of chromatin, i.e., the nucleosome, are poorly understood. Here we present our current view of how chromatin recognition by DDR factors is achieved at the level of the nucleosome. Emerging evidence suggests that the nucleosome surface, including the nucleosome acidic patch, promotes the binding and activity of several DNA damage factors on chromatin. Thus, in addition to interactions with damaged DNA and histone modifications, nucleosome recognition by DDR factors plays a key role in orchestrating the requisite chromatin response to maintain both genome and epigenome integrity.
NASA Astrophysics Data System (ADS)
McKenna, Alice
One of the functions of graphite is as a moderator in several nuclear reactor designs, including the Advanced Gas-cooled Reactor (AGR). In the reactor graphite is used to thermalise the neutrons produced in the fission reaction thus allowing a self-sustained reaction to occur. The graphite blocks, acting as the moderator, are constantly irradiated and consequently suffer damage. This thesis examines the types of damage caused using molecular dynamic (MD) simulations and ab intio calculations. Neutron damage starts with a primary knock-on atom (PKA), which is travelling so fast that it creates damage through electronic and thermal excitation (this is addressed with thermal spike simulations). When the PKA has lost energy the subsequent cascade is based on ballistic atomic displacement. These two types of simulations were performed on single crystal graphite and other carbon structures such as diamond and amorphous carbon as a comparison. The thermal spike in single crystal graphite produced results which varied from no defects to a small number of permanent defects in the structure. It is only at the high energy range that more damage is seen but these energies are less likely to occur in the nuclear reactor. The thermal spike does not create damage but it is possible that it can heal damaged sections of the graphite, which can be demonstrated with the motion of the defects when a thermal spike is applied. The cascade simulations create more damage than the thermal spike even though less energy is applied to the system. A new damage function is found with a threshold region that varies with the square root of energy in excess of the energy threshold. This is further broken down in to contributions from primary and subsequent knock-on atoms. The threshold displacement energy (TDE) is found to be Ed=25eV at 300K. In both these types of simulation graphite acts very differently to the other carbon structures. There are two types of polycrystalline graphite structures which simulations have been performed on. The difference between the two is at the grain boundaries with one having dangling bonds and the other one being bonded. The cascade showed the grain boundaries acting as a trap for the knock-on atoms which produces more damage compared with the single crystal. Finally the effects of turbostratic disorder on damage is considered. Density functional theory (DFT) was used to look at interstitials in (002) twist boundaries and how they act compared to AB stacked graphite. The results of these calculations show that the spiro interstitial is more stable in these grain boundaries, so at temperatures where the interstitial can migrate along the c direction they will segregate to (002) twist boundaries.
Providing structural modules with self-integrity monitoring
NASA Astrophysics Data System (ADS)
Walton, W. B.; Ibanez, P.; Yessaie, G.
1988-08-01
With the advent of complex space structures (i.e., U.S. Space Station), the need for methods for remotely detecting structural damage will become greater. Some of these structures will have hundreds of individual structural elements (i.e., strut members). Should some of them become damaged, it could be virtually impossible to detect it using visual or similar inspection techniques. The damage of only a few individual members may or may not be a serious problem. However, should a significant number of the members be damaged, a significant problem could be created. The implementation of an appropriate remote damage detection scheme would greatly reduce the likelihood of a serious problem related to structural damage ever occurring. This report presents the results of the research conducted on remote structural damage detection approaches and the related mathematical algorithms. The research was conducted for the Small Business Innovation and Research (SBIR) Phase 2 National Aeronautics and Space Administration (NASA) Contract NAS7-961.
Providing structural modules with self-integrity monitoring
NASA Technical Reports Server (NTRS)
Walton, W. B.; Ibanez, P.; Yessaie, G.
1988-01-01
With the advent of complex space structures (i.e., U.S. Space Station), the need for methods for remotely detecting structural damage will become greater. Some of these structures will have hundreds of individual structural elements (i.e., strut members). Should some of them become damaged, it could be virtually impossible to detect it using visual or similar inspection techniques. The damage of only a few individual members may or may not be a serious problem. However, should a significant number of the members be damaged, a significant problem could be created. The implementation of an appropriate remote damage detection scheme would greatly reduce the likelihood of a serious problem related to structural damage ever occurring. This report presents the results of the research conducted on remote structural damage detection approaches and the related mathematical algorithms. The research was conducted for the Small Business Innovation and Research (SBIR) Phase 2 National Aeronautics and Space Administration (NASA) Contract NAS7-961.
NASA Astrophysics Data System (ADS)
Mao, Chenxi; Dong, Jinzhi; Li, Hui; Ou, Jinping
2012-04-01
Shear wall system is widely adopted in high rise buildings because of its high lateral stiffness in resisting earthquakes. According to the concept of ductility seismic design, coupling beams in shear wall structure are required to yield prior to the damage of wall limb. However, damage in coupling beams results in repair cost post earthquake and even in some cases it is difficult to repair the coupling beams if the damage is severe. In order to solve this problem, a novel passive SMA damper was proposed in this study. The coupling beams connecting wall limbs are split in the middle, and the dampers are installed between the ends of the two cantilevers. Then the relative flexural deformation of the wall limbs is transferred to the ends of coupling beams and then to the SMA dampers. After earthquakes the deformation of the dampers can recover automatically because of the pseudoelasticity of austenite SMA material. In order to verify the validity of the proposed dampers, seismic responses of a 12-story coupled shear wall with such passive SMA dampers in coupling beams was investigated. The additional stiffness and yielding deformation of the dampers and their ratios to the lateral stiffness and yielding displacements of the wall limbs are key design parameters and were addressed. Analytical results indicate that the displacement responses of the shear wall structure with such dampers are reduced remarkably. The deformation of the structure is concentrated in the dampers and the damage of coupling beams is reduced.
Practical issues in the implementation of electro-mechanical impedance technique for NDE
NASA Astrophysics Data System (ADS)
Bhalla, Suresh; Naidu, Akshay S. K.; Ong, Chin W.; Soh, Chee-Kiong
2002-11-01
The electro-mechanical impedance (EMI) technique, which utilizes "smart" piezoceramic (PZT) patches as collocated actuator-sensors, has recently emerged as a powerful technique for diagnosing incipient damages in structures and machines. This technique utilizes the electro-mechanical admittance of a PZT patch surface bonded to the structure as the diagnostic signature of the structure. The operating frequency is typically maintained in the kHz range for optimum sensitivity in damage detection. However, there are many impediments to the practical application of the technique for NDE of real-life structures, such as aerospace systems, machine parts, and civil-infrastructures like buildings and bridges. The main challenge lies in achieving consistent behavior of the bonded PZT patch over sufficiently long periods, typically of the order of years, under "harsh" environment. This necessitates protecting the PZT patch from environmental effects. This paper reports a dedicated investigation stretched over several months to ascertain the long-term consistency of the electro-mechanical admittance signatures of PZT patches. Possible protection of the patch by means of suitable covering layer as well as the effects of the layer on damage sensitivity of the patch are also investigated. It is found that a suitable cover is necessary to protect the PZT patch, especially against humidity and to ensure long life. It is also found that the patch exhibits a high sensitivity to damage even in the presence of the protection layer. The paper also includes a brief discussion on few recent applications of the EMI technique and possible use of multiplexing to optimize sensor interrogation time.
Proposed health state awareness of helicopter blades using an artificial neural network strategy
NASA Astrophysics Data System (ADS)
Lee, Andrew; Habtour, Ed; Gadsden, S. A.
2016-05-01
Structural health prognostics and diagnosis strategies can be classified as either model or signal-based. Artificial neural network strategies are popular signal-based techniques. This paper proposes the use of helicopter blades in order to study the sensitivity of an artificial neural network to structural fatigue. The experimental setup consists of a scale aluminum helicopter blade exposed to transverse vibratory excitation at the hub using single axis electrodynamic shaker. The intent of this study is to optimize an algorithm for processing high-dimensional data while retaining important information content in an effort to select input features and weights, as well as health parameters, for training a neural network. Data from accelerometers and piezoelectric transducers is collected from a known system designated as healthy. Structural damage will be introduced to different blades, which they will be designated as unhealthy. A variety of different tests will be performed to track the evolution and severity of the damage. A number of damage detection and diagnosis strategies will be implemented. A preliminary experiment was performed on aluminum cantilever beams providing a simpler model for implementation and proof of concept. Future work will look at utilizing the detection information as part of a hierarchical control system in order to mitigate structural damage and fatigue. The proposed approach may eliminate massive data storage on board of an aircraft through retaining relevant information only. The control system can then employ the relevant information to intelligently reconfigure adaptive maneuvers to avoid harmful regimes, thus, extending the life of the aircraft.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-01
...-AJ52, 2120-AJ51 Damage Tolerance and Fatigue Evaluation for Composite Rotorcraft Structures, and Damage... Tolerance and Fatigue Evaluation for Composite Rotorcraft Structures'' (76 FR 74655), published December 1... December 2, 2011. In the ``Composite Rotorcraft Structures'' rule, the FAA amended its regulations to...
Structural monitoring via microwave tomography-enhanced GPR: the Montagnole test site
NASA Astrophysics Data System (ADS)
Catapano, Ilaria; Di Napoli, Rosario; Soldovieri, Francesco; Bavusi, Massimo; Loperte, Antonio; Dumoulin, Jean
2012-08-01
Structural integrity assessment and monitoring of infrastructures are key factors to prevent and manage crisis events (natural disasters, terrorist attacks and so on) and ensure urban safety. This necessity motivates huge interest towards design, optimization and integration of non-invasive remote and in situ diagnostic techniques. In this framework, ground penetrating radar (GPR) is a well-assessed instrumentation, which allows one to attain information on the inner status of man-made structures while avoiding invasive tests. However, despite its potential, a more widespread use of GPR is actually affected by the difficulties in providing highly informative and easily interpretable images as an outcome of the overall diagnostics procedure. This drawback can be mitigated thanks to the use of microwave tomography (MT) as a data processing tool able to enhance the achievable reconstruction capabilities, and several proofs of its effectiveness have been already shown. In this paper, the potential of the MT approach is investigated in the framework of structural monitoring by an experiment carried out in the Montagnole test site in the French Alps, where the progressive damage of a one-scale concrete beam has been monitored thanks to the integration of several electromagnetic sensing techniques. In this framework, the capability of the MT-enhanced GPR strategy is examined with respect to the possibility of providing information about the damage of the rebar grid of the beam.
Multi-Scale Structure and Earthquake Properties in the San Jacinto Fault Zone Area
NASA Astrophysics Data System (ADS)
Ben-Zion, Y.
2014-12-01
I review multi-scale multi-signal seismological results on structure and earthquake properties within and around the San Jacinto Fault Zone (SJFZ) in southern California. The results are based on data of the southern California and ANZA networks covering scales from a few km to over 100 km, additional near-fault seismometers and linear arrays with instrument spacing 25-50 m that cross the SJFZ at several locations, and a dense rectangular array with >1100 vertical-component nodes separated by 10-30 m centered on the fault. The structural studies utilize earthquake data to image the seismogenic sections and ambient noise to image the shallower structures. The earthquake studies use waveform inversions and additional time domain and spectral methods. We observe pronounced damage regions with low seismic velocities and anomalous Vp/Vs ratios around the fault, and clear velocity contrasts across various sections. The damage zones and velocity contrasts produce fault zone trapped and head waves at various locations, along with time delays, anisotropy and other signals. The damage zones follow a flower-shape with depth; in places with velocity contrast they are offset to the stiffer side at depth as expected for bimaterial ruptures with persistent propagation direction. Analysis of PGV and PGA indicates clear persistent directivity at given fault sections and overall motion amplification within several km around the fault. Clear temporal changes of velocities, probably involving primarily the shallow material, are observed in response to seasonal, earthquake and other loadings. Full source tensor properties of M>4 earthquakes in the complex trifurcation area include statistically-robust small isotropic component, likely reflecting dynamic generation of rock damage in the source volumes. The dense fault zone instruments record seismic "noise" at frequencies >200 Hz that can be used for imaging and monitoring the shallow material with high space and time details, and numerous minute local earthquakes that contribute to the high frequency "noise". Updated results will be presented in the meeting. *The studies have been done in collaboration with Frank Vernon, Amir Allam, Dimitri Zigone, Zach Ross, Gregor Hillers, Ittai Kurzon, Michel Campillo, Philippe Roux, Lupei Zhu, Dan Hollis, Mitchell Barklage and others.
Multi-tiered sensing and data processing for monitoring ship structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farrar, Charles; Salvino, Liming; Lynch, Jerome
2009-01-01
A comprehensive structural health monitoring (SHM) system is a critical mechanism to ensure hull integrity and evaluate structural performance over the life of a ship, especially for lightweight high-speed ships. One of the most important functions of a SHM system is to provide real-time performance guidance and reduce the risk of structural damage during operations at sea. This is done by continuous feedback from onboard sensors providing measurements of seaway loads and structural responses. Applications of SHM should also include diagnostic capabilities such as identifying the presence of damage, assessing the location and extent of damage when it does occurmore » in order to plan for future inspection and maintenance. The development of such SHM systems is extremely challenging because of the physical size of these structures, the widely varying and often extreme operational and environmental conditions associated with the missions of high performance ships, the lack of data from known damage conditions, the limited sensing that was not designed specifically for SHM, the management of the vast amounts of data, and the need for continued, real-time data processing. This paper will discuss some of these challenges and several outstanding issues that need to be addressed in the context of applying various SHM approaches to sea trials data measured on an aluminum high-speed catamaran, the HSV-2 Swift. A multi-tiered approach for sensing and data processing will be discussed as potential SHM architecture for future shipboard application. This approach will involve application of low cost and dense sensor arrays such as wireless communications in selected areas of the ship hull in addition to conventional sensors measuring global structural response of the ship. A recent wireless hull monitoring demo on FSF-I SeaFighter will be discussed as an example to show how this proposed architecture is a viable approach for long-term and real-time hull monitoring.« less
Diabetic Kidney Disease: A Syndrome Rather Than a Single Disease
Piccoli, Giorgina B.; Grassi, Giorgio; Cabiddu, Gianfranca; Nazha, Marta; Roggero, Simona; Capizzi, Irene; De Pascale, Agostino; Priola, Adriano M.; Di Vico, Cristina; Maxia, Stefania; Loi, Valentina; Asunis, Anna M.; Pani, Antonello; Veltri, Andrea
2015-01-01
The term "diabetic kidney" has recently been proposed to encompass the various lesions, involving all kidney structures that characterize protean kidney damage in patients with diabetes. While glomerular diseases may follow the stepwise progression that was described several decades ago, the tenet that proteinuria identifies diabetic nephropathy is disputed today and should be limited to glomerular lesions. Improvements in glycemic control may have contributed to a decrease in the prevalence of glomerular lesions, initially described as hallmarks of diabetic nephropathy, and revealed other types of renal damage, mainly related to vasculature and interstitium, and these types usually present with little or no proteinuria. Whilst glomerular damage is the hallmark of microvascular lesions, ischemic nephropathies, renal infarction, and cholesterol emboli syndrome are the result of macrovascular involvement, and the presence of underlying renal damage sets the stage for acute infections and drug-induced kidney injuries. Impairment of the phagocytic response can cause severe and unusual forms of acute and chronic pyelonephritis. It is thus concluded that screening for albuminuria, which is useful for detecting "glomerular diabetic nephropathy", does not identify all potential nephropathies in diabetes patients. As diabetes is a risk factor for all forms of kidney disease, diagnosis in diabetic patients should include the same combination of biochemical, clinical, and imaging tests as employed in non-diabetic subjects, but with the specific consideration that chronic kidney disease (CKD) may develop more rapidly and severely in diabetic patients. PMID:26676663
Speech and motor disturbances in Rett syndrome.
Bashina, V M; Simashkova, N V; Grachev, V V; Gorbachevskaya, N L
2002-01-01
Rett syndrome is a severe, genetically determined disease of early childhood which produces a defined clinical phenotype in girls. The main clinical manifestations include lesions affecting speech functions, involving both expressive and receptive speech, as well as motor functions, producing apraxia of the arms and profound abnormalities of gait in the form of ataxia-apraxia. Most investigators note that patients have variability in the severity of derangement to large motor acts and in the damage to fine hand movements and speech functions. The aims of the present work were to study disturbances of speech and motor functions over 2-5 years in 50 girls aged 12 months to 14 years with Rett syndrome and to analyze the correlations between these disturbances. The results of comparing clinical data and EEG traces supported the stepwise involvement of frontal and parietal-temporal cortical structures in the pathological process. The ability to organize speech and motor activity is affected first, with subsequent development of lesions to gnostic functions, which are in turn followed by derangement of subcortical structures and the cerebellum and later by damage to structures in the spinal cord. A clear correlation was found between the severity of lesions to motor and speech functions and neurophysiological data: the higher the level of preservation of elements of speech and motor functions, the smaller were the contributions of theta activity and the greater the contributions of alpha and beta activities to the EEG. The possible pathogenetic mechanisms underlying the motor and speech disturbances in Rett syndrome are discussed.
October 1, 1989 tornado at the Savannah River Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, M.J.; Kurzeja, R.J.
1990-01-01
A tornado with wind speeds in the 113 to 157 mph range struck the southern portion of the Savannah River Site near Aiken, SC at around 7:30 pm on October 1, 1989. The tornado was spawned from a severe thunderstorm with a height of 57,000 ft in a warm and humid air mass. Two million dollars in timber damage occurred over 2,500 acres along a ten-mile swath, but no onsite structural damage or personal injury occurred. Tree-fall patterns indicated that some of this damage was the result of thunderstorm downbursts which accompanied the tornado. Ground-based and aerial photography showed bothmore » snapped and mowed over trees which indicate that the tornado was elevated at times. 4 refs., 25 figs., 2 tabs.« less
Probabilistic Seismic Risk Model for Western Balkans
NASA Astrophysics Data System (ADS)
Stejskal, Vladimir; Lorenzo, Francisco; Pousse, Guillaume; Radovanovic, Slavica; Pekevski, Lazo; Dojcinovski, Dragi; Lokin, Petar; Petronijevic, Mira; Sipka, Vesna
2010-05-01
A probabilistic seismic risk model for insurance and reinsurance purposes is presented for an area of Western Balkans, covering former Yugoslavia and Albania. This territory experienced many severe earthquakes during past centuries producing significant damage to many population centres in the region. The highest hazard is related to external Dinarides, namely to the collision zone of the Adriatic plate. The model is based on a unified catalogue for the region and a seismic source model consisting of more than 30 zones covering all the three main structural units - Southern Alps, Dinarides and the south-western margin of the Pannonian Basin. A probabilistic methodology using Monte Carlo simulation was applied to generate the hazard component of the model. Unique set of damage functions based on both loss experience and engineering assessments is used to convert the modelled ground motion severity into the monetary loss.
Sheets, Cherilyn G; Wu, Jean C; Earthman, James C
2017-11-29
Structural damage may remain even after a tooth is restored. Conventional diagnostic aids do not quantify the severity of structural damage or allow the monitoring of structural changes after restoration. The purpose of this retrospective clinical study was to provide an in-depth analysis of 9 high-risk sites after restoration. The analysis followed structural defects found upon disassembly, restorative materials used, therapeutic procedures provided, current longevity, and long-term quantitative percussion diagnostics (QPD) to monitor results. The hypothesis was that QPD can be used to quantify positive and negative changes in structural stability. Sixty sites requiring restoration were part of an institutional review board-approved clinical study. Each participant was examined comprehensively, including QPD testing, at each follow-up. Long-term changes in normal fit error (NFE) values after restoration were evaluated according to a pathology rating system established in an earlier publication. Nine highly compromised sites were chosen for further analysis and monitored for an additional 6 years. Of the 9 high-risk sites (NFE>0.04), 7 sites improved and 2 sites deteriorated. Potential causes for each trend were documented. The data support the hypothesis that QPD can be used to monitor changes in structural stability after restoration. Knowledge of changes in advance of any symptoms allows further preventive or therapeutic intervention before serious structural damage can occur. Follow-up QPD indications of site improvement can also assure the clinician of the desired structural outcome. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Stiffness degradation-based damage model for RC members and structures using fiber-beam elements
NASA Astrophysics Data System (ADS)
Guo, Zongming; Zhang, Yaoting; Lu, Jiezhi; Fan, Jian
2016-12-01
To meet the demand for an accurate and highly efficient damage model with a distinct physical meaning for performance-based earthquake engineering applications, a stiffness degradation-based damage model for reinforced concrete (RC) members and structures was developed using fiber beam-column elements. In this model, damage indices for concrete and steel fibers were defined by the degradation of the initial reloading modulus and the low-cycle fatigue law. Then, section, member, story and structure damage was evaluated by the degradation of the sectional bending stiffness, rod-end bending stiffness, story lateral stiffness and structure lateral stiffness, respectively. The damage model was realized in Matlab by reading in the outputs of OpenSees. The application of the damage model to RC columns and a RC frame indicates that the damage model is capable of accurately predicting the magnitude, position, and evolutionary process of damage, and estimating story damage more precisely than inter-story drift. Additionally, the damage model establishes a close connection between damage indices at various levels without introducing weighting coefficients or force-displacement relationships. The development of the model has perfected the damage assessment function of OpenSees, laying a solid foundation for damage estimation at various levels of a large-scale structure subjected to seismic loading.
2014-01-01
Background Blunt thoracic trauma is one of the critical injury mechanisms in multiply injured trauma victims. Although these patients present a plethora of potential structural damages to vital organs, it remains debated which injuries actually influence outcome and thereby should be addressed initially. Hence, the aim of this study was to identify the influence of critical structural damages on mortality. Methods All patients in the database of the TraumaRegister DGU® (TR-DGU) from 2002–2011 with AIS Chest ≥ 2, blunt trauma, age of 16 or older and an ISS ≥ 16 were analyzed. Outcome parameters were in-hospital mortality as well as ventilation time in patients surviving the initial 14 days after trauma. Results 22613 Patients were included (mean ISS 30.5 ± 12.6; 74.7% male; Mean Age 46.1 ± 197 years; mortality 17.5%; mean duration of ventilation 7.3 ± 11.5; mean ICU stay 11.7 ± 14.1 days). Only a limited number of specific injuries had a significant impact on survival. Major thoracic vessel injuries (AIS ≥5), bilateral lung contusion, bilateral flail chest, structural heart injury (AIS ≥3) significantly influence mortality in study patients. Several extrathoracic factors (age, blood transfusion, systolic blood pressure and extrathoracic severe injuries) were also predictive of increased mortality. Most injuries of the thoracic wall had no or only a moderate effect on the duration of ventilation. Injuries to the lung (laceration, contusion or pneumothoraces) had a moderate prolonging effect. Cardiac injuries and severe injuries to the thoracic vessels induced a substantially prolonged ventilation interval. Conclusions We demonstrate quantitatively the influence of specific structural damages of the chest on critical outcome parameters. While most injuries of the chest wall have no or only limited impact in the study collective, injuries to the lung overall show adverse outcome. Injuries to the heart or thoracic vessels have a devastating prognosis following blunt chest trauma. PMID:25204466
Huber, Stephan; Biberthaler, Peter; Delhey, Patrick; Trentzsch, Heiko; Winter, Hauke; van Griensven, Martijn; Lefering, Rolf; Huber-Wagner, Stefan
2014-09-03
Blunt thoracic trauma is one of the critical injury mechanisms in multiply injured trauma victims. Although these patients present a plethora of potential structural damages to vital organs, it remains debated which injuries actually influence outcome and thereby should be addressed initially. Hence, the aim of this study was to identify the influence of critical structural damages on mortality. All patients in the database of the TraumaRegister DGU® (TR-DGU) from 2002-2011 with AIS Chest ≥ 2, blunt trauma, age of 16 or older and an ISS ≥ 16 were analyzed. Outcome parameters were in-hospital mortality as well as ventilation time in patients surviving the initial 14 days after trauma. 22613 Patients were included (mean ISS 30.5 ± 12.6; 74.7% male; Mean Age 46.1 ± 197 years; mortality 17.5%; mean duration of ventilation 7.3 ± 11.5; mean ICU stay 11.7 ± 14.1 days). Only a limited number of specific injuries had a significant impact on survival. Major thoracic vessel injuries (AIS ≥5), bilateral lung contusion, bilateral flail chest, structural heart injury (AIS ≥3) significantly influence mortality in study patients. Several extrathoracic factors (age, blood transfusion, systolic blood pressure and extrathoracic severe injuries) were also predictive of increased mortality. Most injuries of the thoracic wall had no or only a moderate effect on the duration of ventilation. Injuries to the lung (laceration, contusion or pneumothoraces) had a moderate prolonging effect. Cardiac injuries and severe injuries to the thoracic vessels induced a substantially prolonged ventilation interval. We demonstrate quantitatively the influence of specific structural damages of the chest on critical outcome parameters. While most injuries of the chest wall have no or only limited impact in the study collective, injuries to the lung overall show adverse outcome. Injuries to the heart or thoracic vessels have a devastating prognosis following blunt chest trauma.
Human cytomegalovirus inhibits a DNA damage response by mislocalizing checkpoint proteins
NASA Astrophysics Data System (ADS)
Gaspar, Miguel; Shenk, Thomas
2006-02-01
The DNA damage checkpoint pathway responds to DNA damage and induces a cell cycle arrest to allow time for DNA repair. Several viruses are known to activate or modulate this cellular response. Here we show that the ataxia-telangiectasia mutated checkpoint pathway, which responds to double-strand breaks in DNA, is activated in response to human cytomegalovirus DNA replication. However, this activation does not propagate through the pathway; it is blocked at the level of the effector kinase, checkpoint kinase 2 (Chk2). Late after infection, several checkpoint proteins, including ataxia-telangiectasia mutated and Chk2, are mislocalized to a cytoplasmic virus assembly zone, where they are colocalized with virion structural proteins. This colocalization was confirmed by immunoprecipitation of virion proteins with an antibody that recognizes Chk2. Virus replication was resistant to ionizing radiation, which causes double-strand breaks in DNA. We propose that human CMV DNA replication activates the checkpoint response to DNA double-strand breaks, and the virus responds by altering the localization of checkpoint proteins to the cytoplasm and thereby inhibiting the signaling pathway. ionizing radiation | ataxia-telangiectasia mutated pathway
Piattella, Maria Cristina; Upadhyay, N; Bologna, M; Sbardella, E; Tona, F; Formica, A; Petsas, N; Berardelli, A; Pantano, P
2015-08-01
To evaluate gray matter (GM) and white matter (WM) abnormalities and their clinical correlates in patients with progressive supranuclear palsy (PSP). Sixteen PSP patients and sixteen age-matched healthy subjects underwent a clinical evaluation and multimodal magnetic resonance imaging, including three-dimensional T1-weighted imaging and diffusion tensor imaging (DTI). Volumetric and DTI analyses were computed using SPM and FSL tools. PSP patients showed GM volume decrease, involving the frontal cortex, putamen, pallidum, thalamus and accumbens nucleus, cerebellum, and brainstem. Additionally, they had widespread changes in WM bundles, mainly affecting cerebellar peduncles, thalamic radiations, corticospinal tracts, corpus callosum, and longitudinal fasciculi. GM volumes did not correlate with WM abnormalities. DTI indices of WM damage, but not GM volumes, correlated with clinical scores of disease severity and cognitive impairment. The neurodegenerative changes that occur in PSP involve both GM and WM structures and develop concurrently though independently. WM damage in PSP correlates with clinical scores of disease severity and cognitive impairment, thus providing further insight into the pathophysiology of the disease.
NASA Astrophysics Data System (ADS)
Beirau, Tobias; Nix, William D.; Pöllmann, Herbert; Ewing, Rodney C.
2018-05-01
Several different models are known to describe the structure-dependent radiation-induced damage accumulation process in materials (e.g. Gibbons Proc IEEE 60:1062-1096, 1972; Weber Nuc Instr Met Phys Res B 166-167:98-106, 2000). In the literature, two different models of damage accumulation due to α-decay events in natural ZrSiO4 (zircon) have been described. The direct impact damage accumulation model is based on amorphization occurring directly within the collision cascade. However, the double cascade-overlap damage accumulation model predicts that amorphization will only occur due to the overlap of disordered domains within the cascade. By analyzing the dose-dependent evolution of mechanical properties (i.e., Poisson's ratios, compliance constants, elastic modulus, and hardness) as a measure of the increasing amorphization, we provide support for the double cascade-overlap damage accumulation model. We found no evidence to support the direct impact damage accumulation model. Additionally, the amount of radiation damage could be related to an anisotropic-to-isotropic transition of the Poisson's ratio for stress along and perpendicular to the four-fold c-axis and of the related compliance constants of natural U- and Th-bearing zircon. The isotropification occurs in the dose range between 3.1 × and 6.3 × 1018 α-decays/g.
Dynamic Impact Analyses and Tests of Concrete Overpacks - 13638
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Sanghoon; Cho, Sang-Soon; Kim, Ki-Young
Concrete cask is an option for spent nuclear fuel interim storage which is prevailingly used in US. A concrete cask usually consists of metallic canister which confines the spent nuclear fuel and concrete overpack. When the overpack undergoes a severe missile impact which might be caused by a tornado or an aircraft crash, it should sustain acceptable level of structural integrity so that its radiation shielding capability and the retrievability of canister are maintained. Missile impact against a concrete overpack involves two damage modes, local damage and global damage. Local damage of concrete is usually evaluated by empirical formulas whilemore » the global damage is evaluated by finite element analysis. In many cases, those two damage modes are evaluated separately. In this research, a series of numerical simulations are performed using finite element analysis to evaluate the global damage of concrete overpack as well as its local damage under high speed missile impact. We consider two types of concrete overpack, one with steel in-cased concrete without reinforcement and the other with partially-confined reinforced concrete. The numerical simulation results are compared with test results and it is shown that appropriate modeling of material failure is crucial in this analysis and the results are highly dependent on the choice of failure parameters. (authors)« less
NASA Astrophysics Data System (ADS)
Beirau, Tobias; Nix, William D.; Pöllmann, Herbert; Ewing, Rodney C.
2017-11-01
Several different models are known to describe the structure-dependent radiation-induced damage accumulation process in materials (e.g. Gibbons Proc IEEE 60:1062-1096, 1972; Weber Nuc Instr Met Phys Res B 166-167:98-106, 2000). In the literature, two different models of damage accumulation due to α-decay events in natural ZrSiO4 (zircon) have been described. The direct impact damage accumulation model is based on amorphization occurring directly within the collision cascade. However, the double cascade-overlap damage accumulation model predicts that amorphization will only occur due to the overlap of disordered domains within the cascade. By analyzing the dose-dependent evolution of mechanical properties (i.e., Poisson's ratios, compliance constants, elastic modulus, and hardness) as a measure of the increasing amorphization, we provide support for the double cascade-overlap damage accumulation model. We found no evidence to support the direct impact damage accumulation model. Additionally, the amount of radiation damage could be related to an anisotropic-to-isotropic transition of the Poisson's ratio for stress along and perpendicular to the four-fold c-axis and of the related compliance constants of natural U- and Th-bearing zircon. The isotropification occurs in the dose range between 3.1 × and 6.3 × 1018 α-decays/g.
Nonlinear damage identification of breathing cracks in Truss system
NASA Astrophysics Data System (ADS)
Zhao, Jie; DeSmidt, Hans
2014-03-01
The breathing cracks in truss system are detected by Frequency Response Function (FRF) based damage identification method. This method utilizes damage-induced changes of frequency response functions to estimate the severity and location of structural damage. This approach enables the possibility of arbitrary interrogation frequency and multiple inputs/outputs which greatly enrich the dataset for damage identification. The dynamical model of truss system is built using the finite element method and the crack model is based on fracture mechanics. Since the crack is driven by tensional and compressive forces of truss member, only one damage parameter is needed to represent the stiffness reduction of each truss member. Assuming that the crack constantly breathes with the exciting frequency, the linear damage detection algorithm is developed in frequency/time domain using Least Square and Newton Raphson methods. Then, the dynamic response of the truss system with breathing cracks is simulated in the time domain and meanwhile the crack breathing status for each member is determined by the feedback from real-time displacements of member's nodes. Harmonic Fourier Coefficients (HFCs) of dynamical response are computed by processing the data through convolution and moving average filters. Finally, the results show the effectiveness of linear damage detection algorithm in identifying the nonlinear breathing cracks using different combinations of HFCs and sensors.
NASA Astrophysics Data System (ADS)
Abdeljaber, Osama; Avci, Onur; Kiranyaz, Serkan; Gabbouj, Moncef; Inman, Daniel J.
2017-02-01
Structural health monitoring (SHM) and vibration-based structural damage detection have been a continuous interest for civil, mechanical and aerospace engineers over the decades. Early and meticulous damage detection has always been one of the principal objectives of SHM applications. The performance of a classical damage detection system predominantly depends on the choice of the features and the classifier. While the fixed and hand-crafted features may either be a sub-optimal choice for a particular structure or fail to achieve the same level of performance on another structure, they usually require a large computation power which may hinder their usage for real-time structural damage detection. This paper presents a novel, fast and accurate structural damage detection system using 1D Convolutional Neural Networks (CNNs) that has an inherent adaptive design to fuse both feature extraction and classification blocks into a single and compact learning body. The proposed method performs vibration-based damage detection and localization of the damage in real-time. The advantage of this approach is its ability to extract optimal damage-sensitive features automatically from the raw acceleration signals. Large-scale experiments conducted on a grandstand simulator revealed an outstanding performance and verified the computational efficiency of the proposed real-time damage detection method.
Research in seismology and earthquake engineering in Venezuela
Urbina, L.; Grases, J.
1983-01-01
After the July 29, 1967, damaging earthquake (with a moderate magnitude of 6.3) caused widespread damage to the northern coastal area of Venezuela and to the Caracas Valley, the Venezuelan Government decided to establish a Presidential Earthquake Commission. This commission undertook the task of coordinating the efforts to study the after-effects of the earthquake. The July 1967 earthquake claimed numerous lives and caused extensive damage to the capital of Venezuela. In 1968, the U.S Geological Survey conducted a seismological field study in the northern coastal area and in the Caracas Valley of Venezuela. the objective was to study the area that sustained severe, moderate, and no damage to structures. A reported entitled Ground Amplification Studies in Earthquake Damage Areas: The Caracas Earthquake of 1967 documented, for the first time, short-period seismic wave ground-motion amplifications in the Caracas Valley. Figure 1 shows the area of severe damage in the Los Palos Grantes suburb and the correlation with depth of alluvium and the arabic numbers denote the ground amplification factor at each site in the area. the Venezuelan Government initiated many programs to study in detail the damage sustained and to investigate the ongoing construction practices. These actions motivated professionals in the academic, private, and Government sectors to develops further capabilities and self-sufficiency in the fields of engineering and seismology. Allocation of funds was made to assist in training professionals and technicians and in developing new seismological stations and new programs at the national level in earthquake engineering and seismology. A brief description of the ongoing programs in Venezuela is listed below. these programs are being performed by FUNVISIS and by other national organizations listed at the end of this article.
Imaging tools to measure treatment response in gout.
Dalbeth, Nicola; Doyle, Anthony J
2018-01-01
Imaging tests are in clinical use for diagnosis, assessment of disease severity and as a marker of treatment response in people with gout. Various imaging tests have differing properties for assessing the three key disease domains in gout: urate deposition (including tophus burden), joint inflammation and structural joint damage. Dual-energy CT allows measurement of urate deposition and bone damage, and ultrasonography allows assessment of all three domains. Scoring systems have been described that allow radiological quantification of disease severity and these scoring systems may play a role in assessing the response to treatment in gout. This article reviews the properties of imaging tests, describes the available scoring systems for quantification of disease severity and discusses the challenges and controversies regarding the use of imaging tools to measure treatment response in gout. © The Author 2018. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Irinotecan-induced mucositis: the interactions and potential role of GLP-2 analogues.
Mayo, Bronwen J; Stringer, Andrea M; Bowen, Joanne M; Bateman, Emma H; Keefe, Dorothy M
2017-02-01
A common side effect of irinotecan administration is gastrointestinal mucositis, often manifesting as severe diarrhoea. The damage to the structure and function of the gastrointestinal tract caused by this cytotoxic agent is debilitating and often leads to alterations in patients' regimens, hospitalisation or stoppage of treatment. The purpose of this review is to identify mechanisms of irinotecan-induced intestinal damage and a potential role for GLP-2 analogues for intervention. This is a review of current literature on irinotecan-induced mucositis and GLP-2 analogues mechanisms of action. Recent studies have found alterations that appear to be crucial in the development of severe intestinal mucositis, including early apoptosis, alterations in proliferation and cell survival pathways, as well as induction of inflammatory cascades. Several studies have indicated a possible role for glucagon-like peptide-2 analogues in treating this toxicity, due to its proven intestinotrophic, anti-apoptotic and anti-inflammatory effects in other models of gastrointestinal disease. This review provides evidence as to why and how this treatment may improve mucositis through the possible molecular crosstalk that may be occurring in models of severe intestinal mucositis.
Intelligent-based Structural Damage Detection Model
NASA Astrophysics Data System (ADS)
Lee, Eric Wai Ming; Yu, Kin Fung
2010-05-01
This paper presents the application of a novel Artificial Neural Network (ANN) model for the diagnosis of structural damage. The ANN model, denoted as the GRNNFA, is a hybrid model combining the General Regression Neural Network Model (GRNN) and the Fuzzy ART (FA) model. It not only retains the important features of the GRNN and FA models (i.e. fast and stable network training and incremental growth of network structure) but also facilitates the removal of the noise embedded in the training samples. Structural damage alters the stiffness distribution of the structure and so as to change the natural frequencies and mode shapes of the system. The measured modal parameter changes due to a particular damage are treated as patterns for that damage. The proposed GRNNFA model was trained to learn those patterns in order to detect the possible damage location of the structure. Simulated data is employed to verify and illustrate the procedures of the proposed ANN-based damage diagnosis methodology. The results of this study have demonstrated the feasibility of applying the GRNNFA model to structural damage diagnosis even when the training samples were noise contaminated.
Nishida, Kotaro; Kakutani, Kenichiro; Maeno, Koichiro; Takada, Toru; Yurube, Takashi; Kuroda, Ryosuke; Kurosaka, Masahiro
2013-10-01
A laboratory investigation using porcine model. To clarify the effectiveness of the soft coagulation system for stopping bleeding from the epidural vein using different outputs and the safety in terms of tissue damage including spinal cord injury. Problems associated with coagulation using an electrosurgical device, such as carbonization of tissue or adhesion to the electrode, have been highlighted. So called "soft coagulation" has been developed to solve these problems. Its' utility as well as the safety of the neural structure in spine surgery has never been reported. A total of 3 animals and 45 spinal segments were used. Total laminectomy was performed to expose the dural tube and epidural venous plexus. Stable bleeding was induced by a 22 G needle puncture. Soft coagulation monopolar output (SCM), soft coagulation bipolar output (SCB), and conventional bipolar output (CB) were used as the coagulators. Valid hemostasis was defined as macroscopically complete bleeding stoppage by coagulation within 3 minutes. The neurological assessment was evaluated by somatosensory evoked potential. Histologic analysis was performed to determine the area of thermal damage. Valid hemostasis ratio was 75.0% of SCM group, 68.8% of SCB group, and 30.8% of CB group. Somatosensory evoked potential monitoring revealed that spinal cord injury was observed in 4 lesions (25%) of the SCM group. Neither bipolar groups (SCB and CB) showed any changes in waveform pattern. Histologic analysis revealed that severe thermal damages were observed in the epidural space of the SCM group. The usefulness of soft coagulation is revealed in terms of bleeding stoppage from epidural vessels and reduced soft-tissue damage compared with the conventional electric device. However, assessing the potential risk of severe neural tissue damage including spinal cord injury, a bipolar soft coagulation is strongly recommended for use in spine surgery.
The 7.9 Denali Fault Earthquake: Damage to Structures and Lifelines
NASA Astrophysics Data System (ADS)
Cox, T.; Hreinsdöttir, S.; Larsen, C.; Estes, S.
2002-12-01
In the early afternoon of Sunday, November 3rd, the residents of many interior Alaska towns were shaken up by a magnitude 7.9 earthquake. The shaking lasted an average of three minutes and when it stopped, nearly 300 km of the Denali Fault had ruptured. In the hours that followed, the Alaska Earthquake Information Center (AEIC) fielded reports of structural damage from Cantwell to Tok and other earthquake effects as far away as Louisiana. Upon investigation, the most severe effects were found in the village of Mentasta where basic utilities were interrupted and the school and several houses suffered major damage. Almost 3000 reports submitted to a community internet intensity map show a maximum Mercalli intensity VIII along the eastern end of the rupture area. The Richardson and Parks Highways, two main north-south thoroughfares in Alaska, both buckled and split as a result of the fault rupture. Traffic was stopped for a few hours while repairs were made. Between the Richardson Highway the Tok Cutoff, a section of the Glenn Highway that connects Tok and Glennallen, the maximum offsets on the Denali Fault were observed. Designed to withstand a magnitude 8.5 earthquake at the Denali Fault crossing, the 800-mile long Trans-Alaska Pipeline suffered relatively minor damage. According to Alyeska Pipeline Service Company press releases, the pipeline was shut down shortly after the earthquake occurred. Repairs to pipeline supports and engineering evaluations began immediately thereafter, and oil began flowing through the pipeline Thursday, November 7th . Through it all, the AEIC has collected and archived many photographs, emails, and eyewitness accounts of those who experienced the destruction firsthand. We will detail the effects that the M7.9 Denali Fault earthquake had from near and far.
Frequency Response of an Aircraft Wing with Discrete Source Damage Using Equivalent Plate Analysis
NASA Technical Reports Server (NTRS)
Krishnamurthy, T.; Eldred, Lloyd B.
2007-01-01
An equivalent plate procedure is developed to provide a computationally efficient means of matching the stiffness and frequencies of flight vehicle wing structures for prescribed loading conditions. Several new approaches are proposed and studied to match the stiffness and first five natural frequencies of the two reference models with and without damage. One approach divides the candidate reference plate into multiple zones in which stiffness and mass can be varied using a variety of materials including aluminum, graphite-epoxy, and foam-core graphite-epoxy sandwiches. Another approach places point masses along the edge of the stiffness-matched plate to tune the natural frequencies. Both approaches are successful at matching the stiffness and natural frequencies of the reference plates and provide useful insight into determination of crucial features in equivalent plate models of aircraft wing structures.
Development of a stitched/RFI composite transport wing
NASA Technical Reports Server (NTRS)
Kropp, Yury
1995-01-01
Development of a composite wing primary structure for commercial transport aircraft is being undertaken at McDonnell Douglas under NASA contract. The focus of the program is to design and manufacture a low cost composite wing which can effectively compete with conventional metal wing structures in terms of cost, weight, and ability to withstand damage. These goals are being accomplished by utilizing the stitched/RFI manufacturing process during which the dry fiber preforms consisting of several stacks of warp-knit material are stitched together, impregnated with resin and cured. The stitched/RFI wing skin panels have exceptional damage tolerance and fatigue characteristics, are easily repairable, and can carry higher gross stress than their metal counterparts. This paper gives an overview of the program, describes the key features of the composite wing design and addresses major issues on analysis and manufacturing.
Applications of matched field processing to damage detection in composite wind turbine blades
NASA Astrophysics Data System (ADS)
Tippmann, Jeffery D.; Lanza di Scalea, Francesco
2015-03-01
There are many structures serving vital infrastructure, energy, and national security purposes. Inspecting the components and areas of the structure most prone to failure during maintenance operations by using non- destructive evaluation methods has been essential in avoiding costly, but preventable, catastrophic failures. In many cases, the inspections are performed by introducing acoustic, ultrasonic, or even thermographic waves into the structure and then evaluating the response. Sometimes the structure, or a component, is not accessible for active inspection methods. Because of this, there is a growing interest to use passive methods, such as using ambient noise, or sources of opportunity, to produce a passive impulse response function similar to the active approach. Several matched field processing techniques most notably used in oceanography and seismology applications are examined in more detail. While sparse array imaging in structures has been studied for years, all methods studied previously have used an active interrogation approach. Here, structural damage detection is studied by use of the reconstructed impulse response functions in ambient noise within sparse array imaging techniques, such as matched-field processing. This has been studied in experiments on a 9-m wind turbine blade.
NASA Astrophysics Data System (ADS)
Gao, Liang; Zhang, Shan; Zhang, Junfa; Wu, Xiangnan
2017-06-01
Rockfall impact on bridge piers threats severely the mountain bridge structures of lifeline engineering. Intended for mountain bridge pier protection against rockfall impact, the paper conducted comprehensive reviews on the research status of impact effects, anti-collision structure, impact response to rockfall, and protective design at home and abroad, and proposed a new-type protective structure against rockfall impact. In addition, the paper carried out deep studies on such key scientific issues as impact effect calculation, protective materials against rockfall impact, damage mechanism of protective units, and parameter optimization on the system of protective structures against rockfall impact as well, aiming to strength disaster prevention of mountain bridge structures.
Raman spectroscopy of synovial fluid as a tool for diagnosing osteoarthritis
NASA Astrophysics Data System (ADS)
Esmonde-White, Karen A.; Mandair, Gurjit S.; Raaii, Farhang; Jacobson, Jon A.; Miller, Bruce S.; Urquhart, Andrew G.; Roessler, Blake J.; Morris, Michael D.
2009-05-01
For many years, viscosity has been the primary method used by researchers in rheumatology to assess the physiochemical properties of synovial fluid in both normal and osteoarthritic patients. However, progress has been limited by the lack of methods that provide multiple layers of information, use small sample volumes, and are rapid. Raman spectroscopy was used to assess the biochemical composition of synovial fluid collected from 40 patients with clinical evidence of knee osteoarthritis (OA) at the time of elective surgical treatment. Severity of knee osteoarthritis was assessed by a radiologist using Kellgren/Lawrence (K/L) scores from knee joint x rays, while light microscopy and Raman spectroscopy were used to examine synovial fluid (SF) aspirates (2 to 10 μL), deposited on fused silica slides. We show that Raman bands used to describe protein secondary structure and content can be used to detect changes in synovial fluid from osteoarthritic patients. Several Raman band intensity ratios increased significantly in spectra collected from synovial fluid in patients with radiological evidence of moderate-to-severe osteoarthritis damage. These ratios can be used to provide a ``yes/no'' damage assessment. These studies provide evidence that Raman spectroscopy would be a suitable candidate in the evaluation of joint damage in knee osteoarthritis patients.
Neurophysiologic intraoperative monitoring of the vestibulocochlear nerve.
Simon, Mirela V
2011-12-01
Neurosurgical procedures involving the skull base and structures within can pose a significant risk of damage to the brain stem and cranial nerves. This can have life-threatening consequences and/or result in devastating neurologic deficits. Over the past decade, intraoperative neurophysiology has significantly evolved and currently offers a great tool for live monitoring of the integrity of nervous structures. Thus, dysfunction can be identified early and prompt modification of the surgical management or operating conditions, leads to avoidance of permanent structural damage.Along these lines, the vestibulocochlear nerve (CN VIII) and, to a greater extent, the auditory pathways as they pass through the brain stem are especially at risk during cerebelopontine angle (CPA), posterior/middle fossa, or brain stem surgery. CN VIII can be damaged by several mechanisms, from vascular compromise to mechanical injury by stretch, compression, dissection, and heat injury. Additionally, cochlea itself can be significantly damaged during temporal bone drilling, by noise, mechanical destruction, or infarction, and because of rupture, occlusion, or vasospasm of the internal auditory artery.CN VIII monitoring can be successfully achieved by live recording of the function of one of its parts, the cochlear or auditory nerve (AN), using the brain stem auditory evoked potentials (BAEPs), electrocochleography (ECochG), and compound nerve action potentials (CNAPs) of the cochlear nerve.This is a review of these techniques, their principle, applications, methodology, interpretation of the evoked responses, and their change from baseline, within the context of surgical and anesthesia environments, and finally the appropriate management of these changes.
Sreerangaiah, Dee; Grayer, Michael; Fisher, Benjamin A; Ho, Meilien; Abraham, Sonya; Taylor, Peter C
2016-01-01
To assess the value of quantitative vascular imaging by power Doppler US (PDUS) as a tool that can be used to stratify patient risk of joint damage in early seropositive RA while still biologic naive but on synthetic DMARD treatment. Eighty-five patients with seropositive RA of <3 years duration had clinical, laboratory and imaging assessments at 0 and 12 months. Imaging assessments consisted of radiographs of the hands and feet, two-dimensional (2D) high-frequency and PDUS imaging of 10 MCP joints that were scored for erosions and vascularity and three-dimensional (3D) PDUS of MCP joints and wrists that were scored for vascularity. Severe deterioration on radiographs and ultrasonography was seen in 45 and 28% of patients, respectively. The 3D power Doppler volume and 2D vascularity scores were the most useful US predictors of deterioration. These variables were modelled in two equations that estimate structural damage over 12 months. The equations had a sensitivity of 63.2% and specificity of 80.9% for predicting radiographic structural damage and a sensitivity of 54.2% and specificity of 96.7% for predicting structural damage on ultrasonography. In seropositive early RA, quantitative vascular imaging by PDUS has clinical utility in predicting which patients will derive benefit from early use of biologic therapy. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Gold, Mark S.; Kobeissy, Firas H.; Wang, Kevin K.W.; Merlo, Lisa J.; Bruijnzeel, Adriaan W.; Krasnova, Irina N.; Cadet, Jean Lud
2009-01-01
The use of methamphetamine (METH) is a growing public health problem because its abuse is associated with long-term biochemical and structural effects on the human brain. Neurodegeneration is often observed in humans as a result of mechanical injuries (e.g. traumatic brain injury, TBI) and ischemic damage (strokes). In this review, we discuss recent findings documenting the fact that the psychostimulant drug, METH, can cause neuronal damage in several brain regions. The accumulated evidence from our laboratories and those of other investigators indicates that acute administration of METH leads to activation of calpain and caspase proteolytic systems. These systems are also involved in causing neuronal damage secondary to traumatic and ischemic brain injuries. Protease activation is accompanied by proteolysis of endogenous neuronal structural proteins (αII-spectrin and MAP-tau protein) evidenced by the appearance of their breakdown products after these injuries. When taken together, these observations suggest that METH exposure, like TBI, can cause substantial damage to the brain by causing both apoptotic and necrotic cell death in the brains of METH addicts who use large doses of the drug during their lifetimes. Finally, because METH abuse is accompanied by functional and structural changes in the brain similar to those in TBI, METH addicts might experience greater benefit if their treatment involved greater emphasis on rehabilitation in conjunction with the use of potential neuroprotective pharmacological agents such as calpain and caspase inhibitors similar to those used in TBI. PMID:19345341
Damage Model and Progressive Failure Analyses for Filament Wound Composite Laminates
NASA Astrophysics Data System (ADS)
Ribeiro, Marcelo Leite; Vandepitte, Dirk; Tita, Volnei
2013-10-01
Recent improvements in manufacturing processes and materials properties associated with excellent mechanical characteristics and low weight have made composite materials very attractive for application on civil aircraft structures. However, even new designs are still very conservative, because the composite failure phenomenon is very complex. Several failure criteria and theories have been developed to describe the damage process and how it evolves, but the solution of the problem is still open. Moreover, modern filament winding techniques have been used to produce a wide variety of structural shapes not only cylindrical parts, but also “flat” laminates. Therefore, this work presents the development of a damage model and its application to simulate the progressive failure of flat composite laminates made using a filament winding process. The damage model was implemented as a UMAT (User Material Subroutine), in ABAQUSTM Finite Element (FE) framework. Progressive failure analyses were carried out using FE simulation in order to simulate the failure of flat filament wound composite structures under different loading conditions. In addition, experimental tests were performed in order to identify parameters related to the material model, as well as to evaluate both the potential and the limitations of the model. The difference between numerical and the average experimental results in a four point bending set-up is only 1.6 % at maximum load amplitude. Another important issue is that the model parameters are not so complicated to be identified. This characteristic makes this model very attractive to be applied in an industrial environment.
Analysis of cracked RC beams under vibration
NASA Astrophysics Data System (ADS)
Capozucca, R.; Magagnini, E.
2017-05-01
Among the methods of monitoring of integrity, vibration analysis is more convenient as non-destructive testing (NDT) method. Many aspects regarding the vibration monitoring of the structural integrity of damaged RC elements have not been completely analysed in literature. The correlation between the development of the crack pattern on concrete surface under bending loadings, as well as the width and depth of cracks, and the variation of dynamic parameters on a structural element is an important aspects that has to be more investigated. This paper deals with cracked RC beams controlled by NDT based on natural vibration, which may be correlated to damage degree due to cracking of concrete under severe state of loading. An experimental investigation on the assessment of RC beams in different scale under loading has been done through dynamic tests in different constraint conditions of edges measuring frequency values and frequency variation. Envelope of Frequency Response Functions (FRFs) are shown and the changes of natural frequency values are related to the damage degree of RC beams subjected to static tests. Finally, a comparison between data obtained by finite element analysis and experimental results is shown.
[Assessment on the yield loss risk of longan caused by cold damage in South China].
Zhao, Jun-fang; Yu, Hui-kang
2016-02-01
Using daily climate variables gathered from 64 meteorological stations in South China from 1961 to 2012, recognized hazard indicators about disaster grades of cold damage for longan, and methods on agricultural meteorological disasters risk and simulation technology, the yield loss risks of longan caused by cold damage in South China during different developmental periods were assessed. The results showed that during the period of physiologic differentiation of flower bud, the disasters of longan affected by mild cold damage in South China were the most common, followed by severe cold damage and moderate cold damage. The hazards caused by cold damage under different grades varied. In particular, under mild cold damage, light disaster of longan was found in Fujian, followed by Guangdong and Hainan, and Guangxi was serious. Under moderate cold damage, light disaster of longan was found in Hainan, followed by Guangdong and Guangxi, and Fujian was serious. Under severe cold damage, light disaster of longan was found in Hainan, followed by Guangdong and Guangxi, Fujian was serious. During the period of morphologic differentiation of flower bud, the disasters of longan affected by mild cold damage in South China were the most common, followed by severe cold damage and moderate cold damage, while the disasters of longan under mild, moderate and severe cold damages within this period were similar. Specifically, light disasters of longan were all found in Hainan, followed by Guangdong, Guangxi and Fujian. During the period of dormancy, the disaster of longan affected by mild cold damage in South China was the most common, followed by severe cold damage and moderate cold damage. Under mild and severe cold damage, light disaster of longan was found in Fujian, followed by Guangdong and Hainan, and Guangxi was serious. However, under moderate cold damage, light disaster of longan was found in Hainan and Guangxi, followed by Guangdong, and Fujian was serious. At the same level of hazard, the largest risk indices of yield loss of longan during different developmental stages significantly differed. Under mild cold damage, serious disasters of longan were found in the period of physiologic differentiation of flower bud, followed by the period of morphologic differentiation of flower bud and the period of dormancy. However, under moderate and severe cold damage, serious disasters of longan were found in the period of physiologic differentiation of flower bud, followed by the period of dormancy and the period of morphologic differentiation of flower bud.
USDA Forest Products Laboratory's Debris Launcher
James J. Bridwell; Robert J. Ross; Zhiyong Cai; David E. Kretschmann
2013-01-01
Throughout the United States, hundreds of tornados and several hurricanes affect peopleâs livelihoods each year. These natural disasters not only cause structural damage to property, they also cause numerous injuries, and regrettably, far too many deaths of people caught in their path. In an effort to increase the probability of surviving the strong winds and...
Predicting abundance and productivity of blueberry plants under insect defoliation in Alaska
Robin Reich; Nathan Lojewski; John Lundquist; Vanessa Bravo
2018-01-01
Unprecedented outbreaks of defoliating insects severely damaged blueberry crops near Port Graham on the Kenai Peninsula in Alaska from 2008-2012. The Native people in this region rely heavily on gathered blueberries and other foods for sustenance and nourishment. Influences of topography and stand structure on blueberry abundance and fruiting were examined and used to...
USDA-ARS?s Scientific Manuscript database
Several aspects of the biology of USA populations of wheat powdery mildew (Blumeria graminis f. sp. tritici, or Bgt) have been investigated for their importance to the integrated management of this widespread and potentially damaging pathogen. For example, the virulence profiles of U.S. Bgt populat...
Lin, Tzu-Hsuan; Lu, Yung-Chi; Hung, Shih-Lin
2014-01-01
This study developed an integrated global-local approach for locating damage on building structures. A damage detection approach with a novel embedded frequency response function damage index (NEFDI) was proposed and embedded in the Imote2.NET-based wireless structural health monitoring (SHM) system to locate global damage. Local damage is then identified using an electromechanical impedance- (EMI-) based damage detection method. The electromechanical impedance was measured using a single-chip impedance measurement device which has the advantages of small size, low cost, and portability. The feasibility of the proposed damage detection scheme was studied with reference to a numerical example of a six-storey shear plane frame structure and a small-scale experimental steel frame. Numerical and experimental analysis using the integrated global-local SHM approach reveals that, after NEFDI indicates the approximate location of a damaged area, the EMI-based damage detection approach can then identify the detailed damage location in the structure of the building.
Schlichting, Luís Henrique; Resende, Tayane Holz; Reis, Kátia Rodrigues; Magne, Pascal
2016-10-01
Restorative treatment for patients with dental erosion requires an analysis of the degree of structural damage. Patients affected by moderate to severe dental erosion are particularly challenging because complex occlusal reconstruction will be needed. Ultrathin bonded occlusal veneers represent a conservative alternative to traditional onlays and complete coverage crowns for the treatment of severe erosion. This article describes a complete mouth rehabilitation with ultrathin computer-aided design and computer-aided manufacturing (CAD-CAM) composite resin occlusal veneers in a patient with a severely eroded dentition. In the maxillary anterior teeth, the bilaminar approach was chosen with lingual composite resin veneers and labial porcelain veneers. The main benefit of this approach is the possibility of using additive adhesive techniques, allowing only strategic reduction of sound dental structure or no preparation. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Characterization of building materials from the aqueduct of Antioch-on-the-Orontes (Turkey)
NASA Astrophysics Data System (ADS)
Benjelloun, Yacine; de Sigoyer, Julia; Carlut, Julie; Hubert-Ferrari, Aurélia; Dessales, Hélène; Pamir, Hatice; Karabacak, Volkan
2015-07-01
The Roman aqueduct of Antioch-on-the-Orontes (Turkey), a city located near the junction between the active Dead Sea fault and the East Anatolian fault, has been damaged several times due to historical earthquakes, as mentioned in ancient texts. The traces of repairs are studied in order to identify their potential seismic origin. The deformations of the structure were characterised thanks to a LIDAR scan. Several bricks were sampled on different parts of the city's aqueducts, on the original structure and on repaired parts. The bricks were characterized through a petrological approach. 14C and archaeomagnetism were tested on the bricks in order to constrain the age of their production. The synthesis of all the data showed a local origin for the bricks, and led to the identification of several manufacturing techniques and several types of production, thus, confirming the potentiality of this approach to date and characterise post-seismic repairs.
1987-12-01
with increasing frequency of oscillation, while Reed and Batter (Ref. 25) reported a decrease in fretting damage in 4140 steel when the frequency was...fatigue with reference to aircraft structures. SAE Tech. Pap. no. 790612, 1979. 15. Suresh, S. and Ritchie, R.O. Propagation of short ’atigue cracks...Library British Library, Document Supply Centre CAARC Co-ordinator, Structures Welding Institute, Library British Aerospace Kingston-upon-Thames
Lee, Byung Jae; Hyun, Jung Hwan; Kim, Yun Yong; Shin, Kyung Joon
2014-08-11
The development of cracking in concrete structures leads to significant permeability and to durability problems as a result. Approaches to controlling crack development and crack width in concrete structures have been widely debated. Recently, it was recognized that a high-performance fiber-reinforced cement composite (HPFRCC) provides a possible solution to this inherent problem of cracking by smearing one or several dominant cracks into many distributed microcracks under tensile loading conditions. However, the chloride permeability of HPFRCC under compressive loading conditions is not yet fully understood. Therefore, the goal of the present study is to explore the chloride diffusion characteristics of HPFRCC damaged by compressive loads. The chloride diffusivity of HPFRCC is measured after being subjected to various repeated loads. The results show that the residual axial strain, lateral strain and specific crack area of HPFRCC specimens increase with an increase in the damage induced by repeated loads. However, the chloride diffusion coefficient increases only up to 1.5-times, whereas the specific crack area increases up to 3-times with an increase in damage. Although HPFRCC shows smeared distributed cracks in tensile loads, a significant reduction in the diffusion coefficient of HPFRCC is not obtained compared to plain concrete when the cyclic compressive load is applied below 85% of the strength.
Rotor damage detection by using piezoelectric impedance
NASA Astrophysics Data System (ADS)
Qin, Y.; Tao, Y.; Mao, Y. F.
2016-04-01
Rotor is a core component of rotary machinery. Once the rotor has the damage, it may lead to a major accident. Thus the quantitative rotor damage detection method based on piezoelectric impedance is studied in this paper. With the governing equation of piezoelectric transducer (PZT) in a cylindrical coordinate, the displacement along the radius direction is derived. The charge of PZT is calculated by the electric displacement. Then, by the use of the obtained displacement and charge, an analytic piezoelectric impedance model of the rotor is built. Given the circular boundary condition of a rotor, annular elements are used as the analyzed objects and spectral element method is used to set up the damage detection model. The Electro-Mechanical (E/M) coupled impedance expression of an undamaged rotor is deduced with the application of a low-cost impedance test circuit. A Taylor expansion method is used to obtain the approximate E/M coupled impedance expression for the damaged rotor. After obtaining the difference between the undamaged and damaged rotor impedance, a rotor damage detection method is proposed. This method can directly calculate the change of bending stiffness of the structural elements, it follows that the rotor damage can be effectively detected. Finally, a preset damage configuration is used for the numerical simulation. The result shows that the quantitative damage detection algorithm based on spectral element method and piezoelectric impedance proposed in this paper can identify the location and the severity of the damaged rotor accurately.
A damage mechanics based approach to structural deterioration and reliability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattcharya, B.; Ellingwood, B.
1998-02-01
Structural deterioration often occurs without perceptible manifestation. Continuum damage mechanics defines structural damage in terms of the material microstructure, and relates the damage variable to the macroscopic strength or stiffness of the structure. This enables one to predict the state of damage prior to the initiation of a macroscopic flaw, and allows one to estimate residual strength/service life of an existing structure. The accumulation of damage is a dissipative process that is governed by the laws of thermodynamics. Partial differential equations for damage growth in terms of the Helmholtz free energy are derived from fundamental thermodynamical conditions. Closed-form solutions tomore » the equations are obtained under uniaxial loading for ductile deformation damage as a function of plastic strain, for creep damage as a function of time, and for fatigue damage as function of number of cycles. The proposed damage growth model is extended into the stochastic domain by considering fluctuations in the free energy, and closed-form solutions of the resulting stochastic differential equation are obtained in each of the three cases mentioned above. A reliability analysis of a ring-stiffened cylindrical steel shell subjected to corrosion, accidental pressure, and temperature is performed.« less
Probabilistic Assessment of Fracture Progression in Composite Structures
NASA Technical Reports Server (NTRS)
Chamis, Christos C.; Minnetyan, Levon; Mauget, Bertrand; Huang, Dade; Addi, Frank
1999-01-01
This report describes methods and corresponding computer codes that are used to evaluate progressive damage and fracture and to perform probabilistic assessment in built-up composite structures. Structural response is assessed probabilistically, during progressive fracture. The effects of design variable uncertainties on structural fracture progression are quantified. The fast probability integrator (FPI) is used to assess the response scatter in the composite structure at damage initiation. The sensitivity of the damage response to design variables is computed. The methods are general purpose and are applicable to stitched and unstitched composites in all types of structures and fracture processes starting from damage initiation to unstable propagation and to global structure collapse. The methods are demonstrated for a polymer matrix composite stiffened panel subjected to pressure. The results indicated that composite constituent properties, fabrication parameters, and respective uncertainties have a significant effect on structural durability and reliability. Design implications with regard to damage progression, damage tolerance, and reliability of composite structures are examined.
Peterson, M A; de Gelder, B; Rapcsak, S Z; Gerhardstein, P C; Bachoud-Lévi, A
2000-01-01
In three experiments we investigated whether conscious object recognition is necessary or sufficient for effects of object memories on figure assignment. In experiment 1, we examined a brain-damaged participant, AD, whose conscious object recognition is severely impaired. AD's responses about figure assignment do reveal effects from memories of object structure, indicating that conscious object recognition is not necessary for these effects, and identifying the figure-ground test employed here as a new implicit test of access to memories of object structure. In experiments 2 and 3, we tested a second brain-damaged participant, WG, for whom conscious object recognition was relatively spared. Nevertheless, effects from memories of object structure on figure assignment were not evident in WG's responses about figure assignment in experiment 2, indicating that conscious object recognition is not sufficient for effects of object memories on figure assignment. WG's performance sheds light on AD's performance, and has implications for the theoretical understanding of object memory effects on figure assignment.
Approaches to nonlinear cointegration with a view towards applications in SHM
NASA Astrophysics Data System (ADS)
Cross, E. J.; Worden, K.
2011-07-01
One of the major problems confronting the application of Structural Health Monitoring (SHM) to real structures is that of divorcing the effect of environmental changes from those imposed by damage. A recent development in this area is the import of the technique of cointegration from the field of econometrics. While cointegration is a mature technology within economics, its development has been largely concerned with linear time-series analysis and this places a severe constraint on its application - particularly in the new context of SHM where damage can often make a given structure nonlinear. The objective of the current paper is to introduce two possible approaches to nonlinear cointegration: the first is an optimisation-based method; the second is a variation of the established Johansen procedure based on the use of an augmented basis. Finally, the ideas of nonlinear cointegration will be explored through application to real SHM data from the benchmark project on the Z24 Highway Bridge.
Providing structural modules with self-integrity monitoring software user's manual
NASA Technical Reports Server (NTRS)
1990-01-01
National Aeronautics and Space Administration (NASA) Contract NAS7-961 (A Small Business Innovation and Research (SBIR) contract from NASA) involved research dealing with remote structural damage detection using the concept of substructures. Several approaches were developed. The main two were: (1) the module (substructure) transfer function matrix (MTFM) approach; and (2) modal strain energy distribution method (MSEDM). Either method can be used with a global structure; however, the focus was on substructures. As part of the research contract, computer software was to be developed which would implement the developed methods. This was done and it was used to process all the finite element generated numerical data for the research. The software was written for the IBM AT personal computer. Copies of it were placed on floppy disks. This report serves as a user's manual for the two sets of damage detection software. Sections 2.0 and 3.0 discuss the use of the MTFM and MSEDM software, respectively.
Structural Health Management of Damaged Aircraft Structures Using the Digital Twin Concept
NASA Technical Reports Server (NTRS)
Seshadri, Banavara R.; Krishnamurthy, Thiagarajan
2017-01-01
The development of multidisciplinary integrated Structural Health Management (SHM) tools will enable accurate detection, and prognosis of damaged aircraft under normal and adverse conditions during flight. As part of the digital twin concept, methodologies are developed by using integrated multiphysics models, sensor information and input data from an in-service vehicle to mirror and predict the life of its corresponding physical twin. SHM tools are necessary for both damage diagnostics and prognostics for continued safe operation of damaged aircraft structures. The adverse conditions include loss of control caused by environmental factors, actuator and sensor faults or failures, and structural damage conditions. A major concern in these structures is the growth of undetected damage/cracks due to fatigue and low velocity foreign object impact that can reach a critical size during flight, resulting in loss of control of the aircraft. To avoid unstable, catastrophic propagation of damage during a flight, load levels must be maintained that are below a reduced load-carrying capacity for continued safe operation of an aircraft. Hence, a capability is needed for accurate real-time predictions of damage size and safe load carrying capacity for structures with complex damage configurations. In the present work, a procedure is developed that uses guided wave responses to interrogate damage. As the guided wave interacts with damage, the signal attenuates in some directions and reflects in others. This results in a difference in signal magnitude as well as phase shifts between signal responses for damaged and undamaged structures. Accurate estimation of damage size, location, and orientation is made by evaluating the cumulative signal responses at various pre-selected sensor locations using a genetic algorithm (GA) based optimization procedure. The damage size, location, and orientation is obtained by minimizing the difference between the reference responses and the responses obtained by wave propagation finite element analysis of different representative cracks, geometries, and sizes.
NASA Astrophysics Data System (ADS)
Messaoudi, Akila; Laouami, Nasser; Mezouar, Nourredine
2017-07-01
During the May 21, 2003 M w 6.8 Boumerdes earthquake, in the "Cité des 102 Logements" built on a hilltop, in Corso, heavy damages were observed: near the crest, a four-story RC building collapsed while others experienced severe structural damage and far from the crest, slight damage was observed. In the present paper, we perform a 2D slope topography seismic analysis and investigate its effects on the response at the plateau as well as the correlation with the observed damage distribution. A site-specific seismic scenario is used involving seismological, geological, and geotechnical data. 2D finite element numerical seismic study of the idealized Corso site subjected to vertical SV wave propagation is carried out by the universal code FLUSH. The results highlighted the main factors that explain the causes of block collapse, located 8-26 m far from the crest. These are as follows: (i) a significant spatial variation of ground response along the plateau due to the topographic effect, (ii) this spatial variation presents high loss of coherence, (iii) the seismic ground responses (PGA and response spectra) reach their maxima, and (iv) the fundamental frequency of the collapsed blocks coincides with the frequency content of the topographic component. For distances far from the crest where slight damages were observed, the topographic contribution is found negligible. On the basis of these results, it is important to take into account the topographic effect and the induced spatial variability in the seismic design of structures sited near the crest of slope.
NASA Astrophysics Data System (ADS)
Lanouette, Anne-Marie
Space structures are more and more likely to be impacted at hypervelocities, velocities greater than 3km/s, as the number of orbital debris has rapidly grown in the last two decades. These debris are mostly composed of pieces jettisoned from a launcher or a satellite during the deployment of a structure, dead spacecrafts and fragmentation debris. Collision between two debris, generating many smaller new debris, are more likely to happen. Large space debris (diameter over 10cm) are tracked by different space organizations and their position at all time is known. It is however impossible to track the smaller debris while several studies have already demonstrated that they can also cause significant damage to structures. It is now more and more common to add a kind of protection against collisions to the space structures, but the great majority of space structures currently in orbit, as the Canadarm2, are not protected against hypervelocity impacts. Damage caused by such impacts to different space materials such as aluminum, sandwich panels and laminates has already been characterized during different studies since the end of the 1980s while no study, dedicated to the experimental evaluation of the mechanical properties of a space structure after an impact, relevant to the case of the Canadarm2, has been published. It is only possible to find, in the literature, studies determining the residual mechanical properties after an impact at much lower velocities; the energy of impact is generally three orders of magnitude smaller. The Canadarm2, or Space Station Remote Manipulator System (SSRMS), is installed on the International Space Station (ISS) since 2001. It had an initial 10-year lifespan, but it is still very useful today for maintenance operations and to capture and release incoming space capsules. Understanding the effects of an orbital debris impact on the Canadarm2 structure is now primordial in order to adequately redefine the load levels that can be applied on the arm as a function of the observable damage on the thermal blankets. The main objectives of this study are: first, to obtain a correlation between the visible damage on the booms and the corresponding internal damage of the structure, second to study the cracks caused by the impact growth under different cyclic loads, and finally to provide considerations on the load levels to be applied on the robotic arm as a function of the observable damage. To achieve these objectives, samples representative of the Canadarm2 structure, four cylindrical samples of carbon fibers IM7/PEEK with an external diameter of 35cm and a thickness of 2.7mm, were obtained and covered by pieces of thermal blankets also representative of the Canadarm2. These four samples were impacted at the University of New Brunswick hypervelocity facility, HIT Dynamics. Two samples were impacted by projectiles 5.556mm in diameter and the two remaining samples were impacted with 7.938mm in diameter projectiles. All projectiles were aluminum spheres travelling at ˜7km/s. The samples underwent ultrasonic scanning thereafter to obtain images of their internal damage. In the case of the 5.556mm diameter projectiles, the damage left on the front side was an entry crater 6.2cm in diameter on the thermal blanket and a crater 14.8mm in diameter on the composite wall accompanied by no visual damage on the opposite side of the cylinder. In the case of the 7.938mm diameter projectiles, the damage left on the front side was an entry crater 9.2cm in diameter on the thermal blanket and a crater 17.0mm in diameter on the composite wall accompanied by visible damage on the opposite side in a zone 25.5cm in diameter. The suggestions given for the utilization of the Canadarm2 after an impact are thus the followings. If a crater ≤ 14mm on the composite wall is visible on one side accompanied by no damage on the opposite side of the structure, then the flight and emergency load levels can be maintained. However, if a crater ≤ 17.0mm on the composite wall is visible on one side accompanied by damage in a zone ≤ 25.5cm on the opposite side of the cylinder, only the flight load level can still be used for any position of the damaged zones. If the emergency level must be used, then the damaged zones must absolutely be positioned close to the bending neutral plan, otherwise the applied loads will aggravate the damage caused by the orbital debris impact. (Abstract shortened by ProQuest.).
Research on FBG-Based CFRP Structural Damage Identification Using BP Neural Network
NASA Astrophysics Data System (ADS)
Geng, Xiangyi; Lu, Shizeng; Jiang, Mingshun; Sui, Qingmei; Lv, Shanshan; Xiao, Hang; Jia, Yuxi; Jia, Lei
2018-06-01
A damage identification system of carbon fiber reinforced plastics (CFRP) structures is investigated using fiber Bragg grating (FBG) sensors and back propagation (BP) neural network. FBG sensors are applied to construct the sensing network to detect the structural dynamic response signals generated by active actuation. The damage identification model is built based on the BP neural network. The dynamic signal characteristics extracted by the Fourier transform are the inputs, and the damage states are the outputs of the model. Besides, damages are simulated by placing lumped masses with different weights instead of inducing real damages, which is confirmed to be feasible by finite element analysis (FEA). At last, the damage identification system is verified on a CFRP plate with 300 mm × 300 mm experimental area, with the accurate identification of varied damage states. The system provides a practical way for CFRP structural damage identification.
NASA Astrophysics Data System (ADS)
Behmanesh, Iman; Yousefianmoghadam, Seyedsina; Nozari, Amin; Moaveni, Babak; Stavridis, Andreas
2018-07-01
This paper investigates the application of Hierarchical Bayesian model updating for uncertainty quantification and response prediction of civil structures. In this updating framework, structural parameters of an initial finite element (FE) model (e.g., stiffness or mass) are calibrated by minimizing error functions between the identified modal parameters and the corresponding parameters of the model. These error functions are assumed to have Gaussian probability distributions with unknown parameters to be determined. The estimated parameters of error functions represent the uncertainty of the calibrated model in predicting building's response (modal parameters here). The focus of this paper is to answer whether the quantified model uncertainties using dynamic measurement at building's reference/calibration state can be used to improve the model prediction accuracies at a different structural state, e.g., damaged structure. Also, the effects of prediction error bias on the uncertainty of the predicted values is studied. The test structure considered here is a ten-story concrete building located in Utica, NY. The modal parameters of the building at its reference state are identified from ambient vibration data and used to calibrate parameters of the initial FE model as well as the error functions. Before demolishing the building, six of its exterior walls were removed and ambient vibration measurements were also collected from the structure after the wall removal. These data are not used to calibrate the model; they are only used to assess the predicted results. The model updating framework proposed in this paper is applied to estimate the modal parameters of the building at its reference state as well as two damaged states: moderate damage (removal of four walls) and severe damage (removal of six walls). Good agreement is observed between the model-predicted modal parameters and those identified from vibration tests. Moreover, it is shown that including prediction error bias in the updating process instead of commonly-used zero-mean error function can significantly reduce the prediction uncertainties.
Acoustic emissions (AE) monitoring of large-scale composite bridge components
NASA Astrophysics Data System (ADS)
Velazquez, E.; Klein, D. J.; Robinson, M. J.; Kosmatka, J. B.
2008-03-01
Acoustic Emissions (AE) has been successfully used with composite structures to both locate and give a measure of damage accumulation. The current experimental study uses AE to monitor large-scale composite modular bridge components. The components consist of a carbon/epoxy beam structure as well as a composite to metallic bonded/bolted joint. The bonded joints consist of double lap aluminum splice plates bonded and bolted to carbon/epoxy laminates representing the tension rail of a beam. The AE system is used to monitor the bridge component during failure loading to assess the failure progression and using time of arrival to give insight into the origins of the failures. Also, a feature in the AE data called Cumulative Acoustic Emission counts (CAE) is used to give an estimate of the severity and rate of damage accumulation. For the bolted/bonded joints, the AE data is used to interpret the source and location of damage that induced failure in the joint. These results are used to investigate the use of bolts in conjunction with the bonded joint. A description of each of the components (beam and joint) is given with AE results. A summary of lessons learned for AE testing of large composite structures as well as insight into failure progression and location is presented.
Elevated Rate of Genome Rearrangements in Radiation-Resistant Bacteria.
Repar, Jelena; Supek, Fran; Klanjscek, Tin; Warnecke, Tobias; Zahradka, Ksenija; Zahradka, Davor
2017-04-01
A number of bacterial, archaeal, and eukaryotic species are known for their resistance to ionizing radiation. One of the challenges these species face is a potent environmental source of DNA double-strand breaks, potential drivers of genome structure evolution. Efficient and accurate DNA double-strand break repair systems have been demonstrated in several unrelated radiation-resistant species and are putative adaptations to the DNA damaging environment. Such adaptations are expected to compensate for the genome-destabilizing effect of environmental DNA damage and may be expected to result in a more conserved gene order in radiation-resistant species. However, here we show that rates of genome rearrangements, measured as loss of gene order conservation with time, are higher in radiation-resistant species in multiple, phylogenetically independent groups of bacteria. Comparison of indicators of selection for genome organization between radiation-resistant and phylogenetically matched, nonresistant species argues against tolerance to disruption of genome structure as a strategy for radiation resistance. Interestingly, an important mechanism affecting genome rearrangements in prokaryotes, the symmetrical inversions around the origin of DNA replication, shapes genome structure of both radiation-resistant and nonresistant species. In conclusion, the opposing effects of environmental DNA damage and DNA repair result in elevated rates of genome rearrangements in radiation-resistant bacteria. Copyright © 2017 Repar et al.
An embedded fibre optic sensor for impact damage detection in composite materials
NASA Astrophysics Data System (ADS)
Glossop, Neil David William
1989-09-01
A structurally embedded fiber optic damage detection sensor for composite materials is described. The system is designed specifically for the detection of barely visible damage resulting from low velocity impacts in Kevlar-epoxy laminates. By monitoring the light transmission properties of optical fiber embedded in the composite, it was shown that the integrity of the material can be accurately determined. The effect of several parameters on the sensitivity of the system was investigated, including the effect of the optical fiber orientation and depth of embedding within the composite. A novel surface was also developed for the optical fibers to ensure they will fracture at the requisite damage level. The influence of the optical fiber sensors on the tensile and compressive material properties and on the impact resistance of the laminate was also studied. Extensive experimental results from impact tests are reported and a numerical model of the impact event is presented which is able to predict and model the damage mechanism and sensor system. A new and powerful method of nondestructive evaluation for translucent composite materials based on image enhanced backlighting is also described.
The ELGAN study of the brain and related disorders in extremely low gestational age newborns.
O'Shea, T M; Allred, E N; Dammann, O; Hirtz, D; Kuban, K C K; Paneth, N; Leviton, A
2009-11-01
Extremely low gestational age newborns (ELGANs) are at increased risk for structural and functional brain abnormalities. To identify factors that contribute to brain damage in ELGANs. Multi-center cohort study. We enrolled 1506 ELGANs born before 28 weeks gestation at 14 sites; 1201 (80%) survived to 2 years corrected age. Information about exposures and characteristics was collected by maternal interview, from chart review, microbiologic and histological examination of placentas, and measurement of proteins in umbilical cord and early postnatal blood spots. Indicators of white matter damage, i.e. ventriculomegaly and echolucent lesions, on protocol cranial ultrasound scans; head circumference and developmental outcomes at 24 months adjusted age, i.e., cerebral palsy, mental and motor scales of the Bayley Scales of Infant Development, and a screen for autism spectrum disorders. ELGAN Study publications thus far provide evidence that the following are associated with ultrasongraphically detected white matter damage, cerebral palsy, or both: preterm delivery attributed to preterm labor, prelabor premature rupture of membranes, or cervical insufficiency; recovery of microorganisms in the placenta parenchyma, including species categorized as human skin microflora; histological evidence of placental inflammation; lower gestational age at delivery; greater neonatal illness severity; severe chronic lung disease; neonatal bacteremia; and necrotizing enterocolitis. In addition to supporting a potential role for many previously identified antecedents of brain damage in ELGANs, our study is the first to provide strong evidence that brain damage in extremely preterm infants is associated with microorganisms in placenta parenchyma.
Feature and Statistical Model Development in Structural Health Monitoring
NASA Astrophysics Data System (ADS)
Kim, Inho
All structures suffer wear and tear because of impact, excessive load, fatigue, corrosion, etc. in addition to inherent defects during their manufacturing processes and their exposure to various environmental effects. These structural degradations are often imperceptible, but they can severely affect the structural performance of a component, thereby severely decreasing its service life. Although previous studies of Structural Health Monitoring (SHM) have revealed extensive prior knowledge on the parts of SHM processes, such as the operational evaluation, data processing, and feature extraction, few studies have been conducted from a systematical perspective, the statistical model development. The first part of this dissertation, the characteristics of inverse scattering problems, such as ill-posedness and nonlinearity, reviews ultrasonic guided wave-based structural health monitoring problems. The distinctive features and the selection of the domain analysis are investigated by analytically searching the conditions of the uniqueness solutions for ill-posedness and are validated experimentally. Based on the distinctive features, a novel wave packet tracing (WPT) method for damage localization and size quantification is presented. This method involves creating time-space representations of the guided Lamb waves (GLWs), collected at a series of locations, with a spatially dense distribution along paths at pre-selected angles with respect to the direction, normal to the direction of wave propagation. The fringe patterns due to wave dispersion, which depends on the phase velocity, are selected as the primary features that carry information, regarding the wave propagation and scattering. The following part of this dissertation presents a novel damage-localization framework, using a fully automated process. In order to construct the statistical model for autonomous damage localization deep-learning techniques, such as restricted Boltzmann machine and deep belief network, are trained and utilized to interpret nonlinear far-field wave patterns. Next, a novel bridge scour estimation approach that comprises advantages of both empirical and data-driven models is developed. Two field datasets from the literature are used, and a Support Vector Machine (SVM), a machine-learning algorithm, is used to fuse the field data samples and classify the data with physical phenomena. The Fast Non-dominated Sorting Genetic Algorithm (NSGA-II) is evaluated on the model performance objective functions to search for Pareto optimal fronts.
NASA Astrophysics Data System (ADS)
Jeong, C.; Om, J.; Hwang, J.; Joo, K.; Heo, J.
2013-12-01
In recent, the frequency of extreme flood has been increasing due to climate change and global warming. Highly flood damages are mainly caused by the collapse of flood control structures such as dam and dike. In order to reduce these disasters, the disaster management system (DMS) through flood forecasting, inundation mapping, EAP (Emergency Action Plan) has been studied. The estimation of inundation damage and practical EAP are especially crucial to the DMS. However, it is difficult to predict inundation and take a proper action through DMS in real emergency situation because several techniques for inundation damage estimation are not integrated and EAP is supplied in the form of a document in Korea. In this study, the integrated simulation system including rainfall frequency analysis, rainfall-runoff modeling, inundation prediction, surface runoff analysis, and inland flood analysis was developed. Using this system coupled with standard GIS data, inundation damage can be estimated comprehensively and automatically. The standard EAP based on BIM (Building Information Modeling) was also established in this system. It is, therefore, expected that the inundation damages through this study over the entire area including buildings can be predicted and managed.
Damage detection in composite materials using Lamb wave methods
NASA Astrophysics Data System (ADS)
Kessler, Seth S.; Spearing, S. Mark; Soutis, Constantinos
2002-04-01
Cost-effective and reliable damage detection is critical for the utilization of composite materials. This paper presents part of an experimental and analytical survey of candidate methods for in situ damage detection of composite materials. Experimental results are presented for the application of Lamb wave techniques to quasi-isotropic graphite/epoxy test specimens containing representative damage modes, including delamination, transverse ply cracks and through-holes. Linear wave scans were performed on narrow laminated specimens and sandwich beams with various cores by monitoring the transmitted waves with piezoceramic sensors. Optimal actuator and sensor configurations were devised through experimentation, and various types of driving signal were explored. These experiments provided a procedure capable of easily and accurately determining the time of flight of a Lamb wave pulse between an actuator and sensor. Lamb wave techniques provide more information about damage presence and severity than previously tested methods (frequency response techniques), and provide the possibility of determining damage location due to their local response nature. These methods may prove suitable for structural health monitoring applications since they travel long distances and can be applied with conformable piezoelectric actuators and sensors that require little power.
NASA Astrophysics Data System (ADS)
de Lautour, Oliver R.; Omenzetter, Piotr
2010-07-01
Developed for studying long sequences of regularly sampled data, time series analysis methods are being increasingly investigated for the use of Structural Health Monitoring (SHM). In this research, Autoregressive (AR) models were used to fit the acceleration time histories obtained from two experimental structures: a 3-storey bookshelf structure and the ASCE Phase II Experimental SHM Benchmark Structure, in undamaged and limited number of damaged states. The coefficients of the AR models were considered to be damage-sensitive features and used as input into an Artificial Neural Network (ANN). The ANN was trained to classify damage cases or estimate remaining structural stiffness. The results showed that the combination of AR models and ANNs are efficient tools for damage classification and estimation, and perform well using small number of damage-sensitive features and limited sensors.
NASA Astrophysics Data System (ADS)
Al-Homoud, A.
2003-04-01
This study reflects in some details on the following aspects related to the region: geological and tectonic setting, seismicity, swarms activity data base and seismic hazard assessment. Moreover, it documents the following aspects of the November 22, 1995 earthquake: tectonic, seismological, instrumental seismic data, strong motion recordings and response spectral and local site effect analysis, geotechnical effects and structural observations in the region affected by the earthquake. The study identifies local site effects on structural damages. These observations were analyzed in connection with the observed damages. It is concluded that liquefaction potential, effect of soil column, poor quality of construction, and underestimating the design base shear are the main factors that contributed to the observed damages. Practical recommendations are suggested for the authorities to avoid similar damages in newly constructed buildings and lifelines during future similar earthquakes. On November 22, 1995, the Gulf of Aqaba region was shaken by a strong earthquake that was felt from Sudan to Lebanon. The epicenter was located in the gulf water midway between the Egyptian cities of Dahab and Nuweiba on the Sinai Peninsula. The main shock was followed by thousands of aftershocks, the strongest of which occurred on November 23, 1995 with a local magnitude of 5.4. The main shock triggered strong motion accelerographs belonging to the Jordanian and Israeli networks at Aqaba and Eilat cities, respectively. Structural damages to buildings and lifeline systems were reported in several cities located along the gulf coast including Aqaba in Jordan,Haql in Saudi Arabia, Sharm Al-Sheik, Dahab and Nuweiba in Egypt, and Eilat in Israel. In the city of Nuweiba, located 40 km north of the epicenter, surveyed damage suggests that the horizontal peak ground was in the range of 0.16 g - 0.25 g. Strong motion records indicated that at the port cit of Eilat (a distance of 92.7 km from the epicenter) maximum peak ground acceleration was 0.110 g. Almost, similar values were obtained at the Jordanian side. In general, buildings and lifeline systems in the epicentral region performed poorly during the earthquake .
Parodi, S; Balbi, C; Abelmoschi, M L; Pala, M; Russo, P; Santi, L
1983-12-01
Alkaline elution is a well-known method for detecting DNA damage. Recently we have developed a viscosimetric method that is even more sensitive than alkaline elution. Here we report that the two methods, although apparently both revealing alkaline DNA fragmentation, can give dramatically different results for a significant series of compounds. We suspect that alkaline elution might reveal not only DNA fragmentation but also the extent of disentanglement of chromatin structure, whereas this DNA disentanglement rate, when evaluated viscosimetrically , is more strictly correlated with the initiation of DNA unwinding.
NASA Astrophysics Data System (ADS)
Turnbull, Heather; Omenzetter, Piotr
2018-03-01
vDifficulties associated with current health monitoring and inspection practices combined with harsh, often remote, operational environments of wind turbines highlight the requirement for a non-destructive evaluation system capable of remotely monitoring the current structural state of turbine blades. This research adopted a physics based structural health monitoring methodology through calibration of a finite element model using inverse techniques. A 2.36m blade from a 5kW turbine was used as an experimental specimen, with operational modal analysis techniques utilised to realize the modal properties of the system. Modelling the experimental responses as fuzzy numbers using the sub-level technique, uncertainty in the response parameters was propagated back through the model and into the updating parameters. Initially, experimental responses of the blade were obtained, with a numerical model of the blade created and updated. Deterministic updating was carried out through formulation and minimisation of a deterministic objective function using both firefly algorithm and virus optimisation algorithm. Uncertainty in experimental responses were modelled using triangular membership functions, allowing membership functions of updating parameters (Young's modulus and shear modulus) to be obtained. Firefly algorithm and virus optimisation algorithm were again utilised, however, this time in the solution of fuzzy objective functions. This enabled uncertainty associated with updating parameters to be quantified. Varying damage location and severity was simulated experimentally through addition of small masses to the structure intended to cause a structural alteration. A damaged model was created, modelling four variable magnitude nonstructural masses at predefined points and updated to provide a deterministic damage prediction and information in relation to the parameters uncertainty via fuzzy updating.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terentyev, V S; Simonov, V A
2016-02-28
Numerical modelling demonstrates the possibility of fabricating an all-fibre multibeam two-mirror reflection interferometer based on a metal–dielectric diffraction structure in its front mirror. The calculations were performed using eigenmodes of a double-clad single-mode fibre. The calculation results indicate that, using a metallic layer in the structure of the front mirror of such an interferometer and a diffraction effect, one can reduce the Ohmic loss by a factor of several tens in comparison with a continuous thin metallic film. (laser crystals and braggg ratings)
The Loma Prieta, California, Earthquake of October 17, 1989: Performance of the Built Environment
Coordinated by Holzer, Thomas L.
1998-01-01
Professional Paper 1552 focuses on the response of buildings, lifelines, highway systems, and earth structures to the earthquake. Losses to these systems totaled approximated $5.9 billion. The earthquake displaced many residents from their homes and severely disrupted transportation systems. Some significant findings were: * Approximately 16,000 housing units were uninhabitable after the earthquake including 13,000 in the San Francisco Bay region. Another 30,000-35,000 units were moderately damaged in the earthquake. Renters and low-income residents were particularly hard hit. * Failure of highway systems was the single largest cause of loss of life during the earthquake. Forty-two of the 63 earthquake fatalities died when the Cypress Viaduct in Oakland collapsed. The cost to repair and replace highways damaged by the earthquake was $2 billion, about half of which was to replace the Cypress Viaduct. * Major bridge failures were the result of antiquated designs and inadequate anticipation of seismic loading. * Twenty one kilometers (13 mi) of gas-distribution lines had to be replaced in several communities and more than 1,200 leaks and breaks in water mains and service connections had to be excavated and repaired. At least 5 electrical substations were badly damaged, overwhelming the designed redundancy of the electrical system. * Instruments in 28 buildings recorded their response to earthquake shaking that provided opportunities to understand how different types of buildings responded, the importance of site amplification, and how buildings interact with their foundation when shaken (soil structure interaction).
NASA Technical Reports Server (NTRS)
Seshadri, Banavara R.; Krishnamurthy, Thiagarajan; Ross, Richard W.
2016-01-01
The development of multidisciplinary Integrated Vehicle Health Management (IVHM) tools will enable accurate detection, diagnosis and prognosis of damage under normal and adverse conditions during flight. The adverse conditions include loss of control caused by environmental factors, actuator and sensor faults or failures, and structural damage conditions. A major concern is the growth of undetected damage/cracks due to fatigue and low velocity foreign object impact that can reach a critical size during flight, resulting in loss of control of the aircraft. To avoid unstable catastrophic propagation of damage during a flight, load levels must be maintained that are below the load-carrying capacity for damaged aircraft structures. Hence, a capability is needed for accurate real-time predictions of safe load carrying capacity for aircraft structures with complex damage configurations. In the present work, a procedure is developed that uses guided wave responses to interrogate damage. As the guided wave interacts with damage, the signal attenuates in some directions and reflects in others. This results in a difference in signal magnitude as well as phase shifts between signal responses for damaged and undamaged structures. Accurate estimation of damage size and location is made by evaluating the cumulative signal responses at various pre-selected sensor locations using a genetic algorithm (GA) based optimization procedure. The damage size and location is obtained by minimizing the difference between the reference responses and the responses obtained by wave propagation finite element analysis of different representative cracks, geometries and sizes.
Progressive Fracture of Fiber Composite Build-Up Structures
NASA Technical Reports Server (NTRS)
Gotsis, Pascal K.; Chamis, C. C.; Minnetyan, Levon
1997-01-01
Damage progression and fracture of built-up composite structures is evaluated by using computational simulation. The objective is to examine the behavior and response of a stiffened composite (0/ +/- 45/90)(sub s6) laminate panel by simulating the damage initiation, growth, accumulation, progression and propagation to structural collapse. An integrated computer code, CODSTRAN, was augmented for the simulation of the progressive damage and fracture of built-up composite structures under mechanical loading. Results show that damage initiation and progression have significant effect on the structural response. Influence of the type of loading is investigated on the damage initiation, propagation and final fracture of the build-up composite panel.
Progressive Fracture of Fiber Composite Build-Up Structures
NASA Technical Reports Server (NTRS)
Minnetyan, Levon; Gotsis, Pascal K.; Chamis, C. C.
1997-01-01
Damage progression and fracture of built-up composite structures is evaluated by using computational simulation. The objective is to examine the behavior and response of a stiffened composite (0 +/-45/90)(sub s6) laminate panel by simulating the damage initiation, growth, accumulation, progression and propagation to structural collapse. An integrated computer code CODSTRAN was augmented for the simulation of the progressive damage and fracture of built-up composite structures under mechanical loading. Results show that damage initiation and progression to have significant effect on the structural response. Influence of the type of loading is investigated on the damage initiation, propagation and final fracture of the build-up composite panel.
Triplex technology in studies of DNA damage, DNA repair, and mutagenesis.
Mukherjee, Anirban; Vasquez, Karen M
2011-08-01
Triplex-forming oligonucleotides (TFOs) can bind to the major groove of homopurine-homopyrimidine stretches of double-stranded DNA in a sequence-specific manner through Hoogsteen hydrogen bonding to form DNA triplexes. TFOs by themselves or conjugated to reactive molecules can be used to direct sequence-specific DNA damage, which in turn results in the induction of several DNA metabolic activities. Triplex technology is highly utilized as a tool to study gene regulation, molecular mechanisms of DNA repair, recombination, and mutagenesis. In addition, TFO targeting of specific genes has been exploited in the development of therapeutic strategies to modulate DNA structure and function. In this review, we discuss advances made in studies of DNA damage, DNA repair, recombination, and mutagenesis by using triplex technology to target specific DNA sequences. Copyright © 2011 Elsevier Masson SAS. All rights reserved.
On binding specificity of (6-4) photolyase to a T(6-4)T DNA photoproduct*
NASA Astrophysics Data System (ADS)
Jepsen, Katrine Aalbæk; Solov'yov, Ilia A.
2017-06-01
Different factors lead to DNA damage and if it is not repaired in due time, the damaged DNA could initiate mutagenesis and cancer. To avoid this deadly scenario, specific enzymes can scavenge and repair the DNA, but the enzymes have to bind first to the damaged sites. We have investigated this binding for a specific enzyme called (6-4) photolyase, which is capable of repairing certain UV-induced damage in DNA. Through molecular dynamics simulations we describe the binding between photolyase and the DNA and reveal that several charged amino acid residues in the enzyme, such as arginines and lysines turn out to be important. Especially R421 is crucial, as it keeps the DNA strands at the damaged site inside the repair pocket of the enzyme separated. DNA photolyase is structurally highly homologous to a protein called cryptochrome. Both proteins are biologically activated similarly, namely through flavin co-factor photoexcitation. It is, however, striking that cryptochrome cannot repair UV-damaged DNA. The present investigation allowed us to conclude on the small but, apparently, critical differences between photolyase and cryptochrome. The performed analysis gives insight into important factors that govern the binding of UV-damaged DNA and reveal why cryptochrome cannot have this functionality.
Using quantum filters to process images of diffuse axonal injury
NASA Astrophysics Data System (ADS)
Pineda Osorio, Mateo
2014-06-01
Some images corresponding to a diffuse axonal injury (DAI) are processed using several quantum filters such as Hermite Weibull and Morse. Diffuse axonal injury is a particular, common and severe case of traumatic brain injury (TBI). DAI involves global damage on microscopic scale of brain tissue and causes serious neurologic abnormalities. New imaging techniques provide excellent images showing cellular damages related to DAI. Said images can be processed with quantum filters, which accomplish high resolutions of dendritic and axonal structures both in normal and pathological state. Using the Laplacian operators from the new quantum filters, excellent edge detectors for neurofiber resolution are obtained. Image quantum processing of DAI images is made using computer algebra, specifically Maple. Quantum filter plugins construction is proposed as a future research line, which can incorporated to the ImageJ software package, making its use simpler for medical personnel.
NASA Astrophysics Data System (ADS)
van Velden, Julia L.; Smith, Tanya; Ryan, Peter G.
2016-12-01
The Western Cape population of Blue Cranes ( Anthropoides paradiseus) in South Africa is of great importance as the largest population throughout its range. However, Blue Cranes are strongly associated with agricultural lands in the Western Cape, and therefore may come into conflict with farmers who perceive them as damaging to crops. We investigated the viability of this population by exploring farmer attitudes toward crane damage in two regions of the Western Cape, the Swartland and Overberg, using semi-structured interviews. Perceptions of cranes differed widely between regions: farmers in the Swartland perceived crane flocks to be particularly damaging to the feed crop sweet lupin (65 % of farmers reported some level of damage by cranes), and 40 % of these farmers perceived cranes as more problematic than other common bird pests. Farmers in the Overberg did not perceive cranes as highly damaging, although there was concern about cranes eating feed at sheep troughs. Farmers who had experienced large flocks on their farms and farmers who ranked cranes as more problematic than other bird pests more often perceived cranes to be damaging to their livelihoods. Biographical variables and crop profiles could not be related to the perception of damage, indicating the complexity of this human-wildlife conflict. Farmers' need for management alternatives was related to the perceived severity of damage. These results highlight the need for location-specific management solutions to crop damage by cranes, and contribute to the management of this vulnerable species.
Zavaleta-Muñiz, S A; Gonzalez-Lopez, L; Murillo-Vazquez, J D; Saldaña-Cruz, A M; Vazquez-Villegas, M L; Martín-Márquez, B T; Vasquez-Jimenez, J C; Sandoval-Garcia, F; Ruiz-Padilla, A J; Fajardo-Robledo, N S; Ponce-Guarneros, J M; Rocha-Muñoz, A D; Alcaraz-Lopez, M F; Cardona-Müller, D; Totsuka-Sutto, S E; Rubio-Arellano, E D; Gamez-Nava, J I
2016-12-19
Several interleukin 6 gene (IL6) polymorphisms are implicated in susceptibility to rheumatoid arthritis (RA). It has not yet been established with certainty if these polymorphisms are associated with the severe radiographic damage observed in some RA patients, particularly those with the development of joint bone ankylosis (JBA). The objective of the present study was to evaluate the association between severe radiographic damage in hands and the -174G/C and -572G/C IL6 polymorphisms in Mexican Mestizo people with RA. Mestizo adults with RA and long disease duration (>5 years) were classified into two groups according to the radiographic damage in their hands: a) severe radiographic damage (JBA and/or joint bone subluxations) and b) mild or moderate radiographic damage. We compared the differences in genotype and allele frequencies of -174G/C and -572G/C IL6 polymorphisms (genotyped using polymerase chain reaction-restriction fragment length polymorphism) between these two groups. Our findings indicated that the -174G/C polymorphism of IL6 is associated with severe joint radiographic damage [maximum likelihood odds ratios (MLE_OR): 8.03; 95%CI 1.22-187.06; P = 0.03], whereas the -572G/C polymorphism of IL6 exhibited no such association (MLE_OR: 1.5; 95%CI 0.52-4.5; P = 0.44). Higher anti-cyclic citrullinated peptide antibody levels were associated with more severe joint radiographic damage (P = 0.04). We conclude that there is a relevant association between the -174G/C IL6 polymorphism and severe radiographic damage. Future studies in other populations are required to confirm our findings.
NASA Astrophysics Data System (ADS)
Kreitcberg, Alena
Severe plastic deformation (SPD) is commonly used for nanostructure formation in Ti-Ni shape memory alloys (SMAs), but it increases the risk of damage during processing and, consequently, negatively affects functional fatigue resistance of these materials. The principal objective of this project is, therefore, to study the interrelations between the processing conditions, damageability during processing, microstructure and the functional properties of Ti-Ni SMAs with the aim of improving long-term functional performances of these materials by optimizing their processing conditions. First, microstructure and fatigue properties of Ti-Ni SMAs were studied after thermomechanical treatment (TMT) with different combinations of severe cold and warm rolling (CR and WR), as well as intermediate and post-deformation annealing (IA and PDA) technological steps. It was shown that either when WR and IA were introduced into the TMT schedule, or CR intensity was decreased, the fatigue life was improved as a consequence of less processing-induced damage and higher density of the favorable B2-austenite texture. This improvement was reached, however, at a price of a lower multi-cycle functional stability of these materials, the latter being a direct consequence of the microstructure coarsening after higher-temperature lower-intensity processing. At the end of this study, however, it was not possible to distinguish between contributions to the functional performances of Ti-Ni SMAs from different processing-related features: a) grain/subgrain size; b) texture; and c) level of rolling-induced defects. To be capable of separating contributions to the functional properties of Ti-Ni alloys from grain/subgrain size and from texture, the theoretical crystallographic resource of recovery strain after different TMTs and, therefore, different textures, were calculated and compared with the experiment. The comparative analysis showed that the structural factors (grain/subgrain size) strongly dominate the texture contributions, and therefore, there is no real alternative to having nanocrystalline Ti-Ni alloys, if one needs to maximize the Ti-Ni alloys functional properties. Since the creation of such a microstructure requires the use of severe cold deformation techniques and neither of these techniques can be completely exempt from defects, it was deemed necessary to compare the damage tolerance of nanocrystalline Ti-Ni alloys to that of their nanosubgrained and mixed nanocrystalline/nanosubgrained counterparts. With this objective in mind, a detailed analysis of interrelations between the level of the CR/WR-induced damage (edge microcrack size and concentration) and the fatigue life of Ti- Ni SMAs was carried out. It was shown that nanocrystalline structure provides higher tolerance to small-crack propagation than nanosubgrained or mixed nanocrystalline/ nanosubgrained structures, and that low-temperature deformability of these alloys has to be improved to benefit from the property-enhancement potential of nanocrystalline structure. To broaden our knowledge in the field of Ti-Ni alloy deformability, the strain-rate sensitivity of these alloys was studied. Different microstructures, varying from the coarse- to ultrafinegrained, were created by means of equal-channel angular pressing (ECAP) and subjected to strain-rate sensitivity testing. As a result, the material with ultrafine-grained microstructure demonstrated an improved deformability as compared to the coarse-grained structure, at any deformation temperature. Moreover, it was determined that the smaller the grain size, the lower the temperature and the higher the strain-rate at which superplasticity occurs. Based on the results obtained, combined thermomechanical processing (ECAP at elevated temperatures followed by CR) was proposed and validated in terms of structural refinement with reduced level of processing-induced defects. Scientific contributions. This thesis contributes to the advancement of knowledge in the field of Ti-Ni SMAs' processing-structure-properties interactions, and the main conclusions of this study can be summed-up as follows: • Nanocrystalline Ti-Ni alloys significantly outperform nanosubgrain Ti-Ni alloys in terms of the absolute values and stability of their single- and multiple-cycle functional properties (superelasticity and shape memory characteristics). The main factor limiting the number of cycles to failure of the nanocrystalline alloys is the processingrelated damage. • The structure of Ti-Ni alloys plays significantly higher role in the realization of their functional potential that does their texture. • In terms of fatigue life, the nanocrystalline structure has lower small-crack sensitivity than does the nanosubgrained structure. • Grain refinement makes it possible to improve deformability of Ti-Ni alloys at any temperature. • To produce nanocrystalline Ti-Ni SMAs free of processing-induced-defects, a novel three-step processing is proposed (ECAP+CR+PDA): grain-refining severe plastic deformation at elevated temperatures (ECAP), followed-up by amorphizing SPD at low temperatures (CR), and ended-up by nanocrystallizing post-deformation heat treatment (PDA).
Characterizing fretting damage in different test media for cardiovascular device durability testing.
Weaver, J D; Ramirez, L; Sivan, S; Di Prima, M
2018-06-01
In vitro durability tests of cardiovascular devices are often used to evaluate the potential for fretting damage during clinical use. Evaluation of fretting damage is important because severe fretting can concentrate stress and lead to the loss of structural integrity. Most international standards call for the use of phosphate buffered saline (PBS) for such tests although there has been little evidence to date that the use of PBS is appropriate in terms of predicting the amount of fretting damage that would occur in vivo. In order to determine an appropriate test media for in vitro durability tests where fretting damage is being evaluated, we utilized an in vitro test that is relevant to cardiovascular devices both in terms of dimensions and materials (nitinol, cobalt-chromium, and stainless steel) to characterize fretting damage in PBS, deionized water (DIW), and heparinized porcine blood. Overall, tests conducted in blood were found to have increased levels of fretting damage over tests in DIW or PBS, although the magnitude of this difference was smaller than the variability for each test media. Tests conducted in DIW and PBS led to mostly similar amounts of fretting damage with the exception of one material combination where DIW had greatly reduced damage compared to PBS and blood. Differences in fretting damage among materials were also observed with nitinol having less fretting damage than stainless steel or cobalt-chromium. In general, evaluating fretting damage in PBS or DIW may be appropriate although caution should be used when selecting test media and interpreting results given some of the differences observed across different materials. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Lin, Y. Q.; Ren, W. X.; Fang, S. E.
2011-11-01
Although most vibration-based damage detection methods can acquire satisfactory verification on analytical or numerical structures, most of them may encounter problems when applied to real-world structures under varying environments. The damage detection methods that directly extract damage features from the periodically sampled dynamic time history response measurements are desirable but relevant research and field application verification are still lacking. In this second part of a two-part paper, the robustness and performance of the statistics-based damage index using the forward innovation model by stochastic subspace identification of a vibrating structure proposed in the first part have been investigated against two prestressed reinforced concrete (RC) beams tested in the laboratory and a full-scale RC arch bridge tested in the field under varying environments. Experimental verification is focused on temperature effects. It is demonstrated that the proposed statistics-based damage index is insensitive to temperature variations but sensitive to the structural deterioration or state alteration. This makes it possible to detect the structural damage for the real-scale structures experiencing ambient excitations and varying environmental conditions.
Impact response of graphite/epoxy fabric structures
NASA Technical Reports Server (NTRS)
Lagace, Paul A.; Kraft, Michael J.
1990-01-01
The impact damage resistance and damage tolerance of graphite/epoxy fabric plate (coupon) and cylinder structures were investigated and compared in an analytical and experimental study. Hercules A370-5H/3501-6 five-harness satin weave cloth in a quasi-isotropic (0,45)(sub s) laminate configuration was utilized. Specimens were impacted with 12.7 mm diameter steel spheres at velocities ranging from 10 m/s to 100 m/s. Damage resistance of the specimens was determined through the use of dye penetrant enhanced x-radiography, sectioning, epoxy burnoff, and visual methods. Damage tolerance of the flat plate structures was assessed in a residual tensile test while damage tolerance of the cylinder structures was assessed via pressurization tests. Impacted fabric laminates exhibited matrix crushing, fiber breakage, delamination, and fiber bundle disbonds; the latter being a unique damage mode for fabric laminates. Plate delamination and bundle disbonding was found to be more extensive around the central core area of fiber damage in the coupon specimens than in the cylinder specimens which showed a cleaner damage area due to impact. Damage resistance and damage tolerance were predicted by utilizing a five-step analysis approach previously utilized for coupon configurations. Two of the five steps were adapted to account for the effects of the structural configuration of the pressurized cylinder. The damage resistance analysis provided good correlation to the fiber damage region of both the coupon and cylinder specimens. There was little difference in the size of this region in the two specimen types. However, the analysis was not able to predict the distribution of damage through-the-thickness. This was important in assessing the damage tolerance of the cylinders. The damage tolerance analysis was able to predict the residual tensile strength of the coupons. A general methodology to predict the impact damage resistance and damage tolerance of composite structures utilizing coupon data is presented.
Assessing Hurricane Katrina Damage to the Mississippi Gulf Coast Using IKONOS Imagery
NASA Technical Reports Server (NTRS)
Spruce, Joseph P.; McKellip, Rodney
2007-01-01
Hurricane Katrina hit southwestern Mississippi on August 29, 2005, at 10 a.m. CDT as a category 3 event with storm surges up to approximately 9 m and sustained winds of approximately 120 mph. The hurricane ravaged several coastal towns, destroying or severely damaging hundreds of homes. Hurricand Katrina deposited millions of tons of debris and caused severe damage to coastal forests. In response, several Federal agencies have been using a broad range of remotely sensed data (e.g., IKONOS) to aid damage assessment and disaster recovery efforts. This presentation discusses an effort to use IKONOS data for damage assessment, based on data collected over southwestern coastal Mississippi on September 2, 2005.
A Practical Engineering Approach to Predicting Fatigue Crack Growth in Riveted Lap Joints
NASA Technical Reports Server (NTRS)
Harris, Charles E.; Piascik, Robert S.; Newman, James C., Jr.
1999-01-01
An extensive experimental database has been assembled from very detailed teardown examinations of fatigue cracks found in rivet holes of fuselage structural components. Based on this experimental database, a comprehensive analysis methodology was developed to predict the onset of widespread fatigue damage in lap joints of fuselage structure. Several computer codes were developed with specialized capabilities to conduct the various analyses that make up the comprehensive methodology. Over the past several years, the authors have interrogated various aspects of the analysis methods to determine the degree of computational rigor required to produce numerical predictions with acceptable engineering accuracy. This study led to the formulation of a practical engineering approach to predicting fatigue crack growth in riveted lap joints. This paper describes the practical engineering approach and compares predictions with the results from several experimental studies.
A Practical Engineering Approach to Predicting Fatigue Crack Growth in Riveted Lap Joints
NASA Technical Reports Server (NTRS)
Harris, C. E.; Piascik, R. S.; Newman, J. C., Jr.
2000-01-01
An extensive experimental database has been assembled from very detailed teardown examinations of fatigue cracks found in rivet holes of fuselage structural components. Based on this experimental database, a comprehensive analysis methodology was developed to predict the onset of widespread fatigue damage in lap joints of fuselage structure. Several computer codes were developed with specialized capabilities to conduct the various analyses that make up the comprehensive methodology. Over the past several years, the authors have interrogated various aspects of the analysis methods to determine the degree of computational rigor required to produce numerical predictions with acceptable engineering accuracy. This study led to the formulation of a practical engineering approach to predicting fatigue crack growth in riveted lap joints. This paper describes the practical engineering approach and compares predictions with the results from several experimental studies.
Damage Evaluation of Concrete Column under Impact Load Using a Piezoelectric-Based EMI Technique.
Fan, Shuli; Zhao, Shaoyu; Qi, Baoxin; Kong, Qingzhao
2018-05-17
One of the major causes of damage to column-supported concrete structures, such as bridges and highways, are collisions from moving vehicles, such as cars and ships. It is essential to quantify the collision damage of the column so that appropriate actions can be taken to prevent catastrophic events. A widely used method to assess structural damage is through the root-mean-square deviation (RMSD) damage index established by the collected data; however, the RMSD index does not truly provide quantitative information about the structure. Conversely, the damage volume ratio that can only be obtained via simulation provides better detail about the level of damage in a structure. Furthermore, as simulation can also provide the RMSD index relating to that particular damage volume ratio, the empirically obtained RMSD index can thus be related to the structural damage degree through comparison of the empirically obtained RMSD index to numerically-obtained RMSD. Thus, this paper presents a novel method in which the impact-induced damage to a structure is simulated in order to obtain the relationship between the damage volume ratio to the RMSD index, and the relationship can be used to predict the true damage degree by comparison to the empirical RMSD index. In this paper, the collision damage of a bridge column by moving vehicles was simulated by using a concrete beam model subjected to continuous impact loadings by a freefalling steel ball. The variation in admittance signals measured by the surface attached lead zirconate titanate (PZT) patches was used to establish the RMSD index. The results demonstrate that the RMSD index and the damage ratio of concrete have a linear relationship for the particular simulation model.
Ren, Yuanqiang; Qiu, Lei; Yuan, Shenfang; Bao, Qiao
2017-05-11
Structural health monitoring (SHM) of aircraft composite structure is helpful to increase reliability and reduce maintenance costs. Due to the great effectiveness in distinguishing particular guided wave modes and identifying the propagation direction, the spatial-wavenumber filter technique has emerged as an interesting SHM topic. In this paper, a new scanning spatial-wavenumber filter (SSWF) based imaging method for multiple damages is proposed to conduct on-line monitoring of aircraft composite structures. Firstly, an on-line multi-damage SSWF is established, including the fundamental principle of SSWF for multiple damages based on a linear piezoelectric (PZT) sensor array, and a corresponding wavenumber-time imaging mechanism by using the multi-damage scattering signal. Secondly, through combining the on-line multi-damage SSWF and a PZT 2D cross-shaped array, an image-mapping method is proposed to conduct wavenumber synthesis and convert the two wavenumber-time images obtained by the PZT 2D cross-shaped array to an angle-distance image, from which the multiple damages can be directly recognized and located. In the experimental validation, both simulated multi-damage and real multi-damage introduced by repeated impacts are performed on a composite plate structure. The maximum localization error is less than 2 cm, which shows good performance of the multi-damage imaging method. Compared with the existing spatial-wavenumber filter based damage evaluation methods, the proposed method requires no more than the multi-damage scattering signal and can be performed without depending on any wavenumber modeling or measuring. Besides, this method locates multiple damages by imaging instead of the geometric method, which helps to improve the signal-to-noise ratio. Thus, it can be easily applied to on-line multi-damage monitoring of aircraft composite structures.
Ren, Yuanqiang; Qiu, Lei; Yuan, Shenfang; Bao, Qiao
2017-01-01
Structural health monitoring (SHM) of aircraft composite structure is helpful to increase reliability and reduce maintenance costs. Due to the great effectiveness in distinguishing particular guided wave modes and identifying the propagation direction, the spatial-wavenumber filter technique has emerged as an interesting SHM topic. In this paper, a new scanning spatial-wavenumber filter (SSWF) based imaging method for multiple damages is proposed to conduct on-line monitoring of aircraft composite structures. Firstly, an on-line multi-damage SSWF is established, including the fundamental principle of SSWF for multiple damages based on a linear piezoelectric (PZT) sensor array, and a corresponding wavenumber-time imaging mechanism by using the multi-damage scattering signal. Secondly, through combining the on-line multi-damage SSWF and a PZT 2D cross-shaped array, an image-mapping method is proposed to conduct wavenumber synthesis and convert the two wavenumber-time images obtained by the PZT 2D cross-shaped array to an angle-distance image, from which the multiple damages can be directly recognized and located. In the experimental validation, both simulated multi-damage and real multi-damage introduced by repeated impacts are performed on a composite plate structure. The maximum localization error is less than 2 cm, which shows good performance of the multi-damage imaging method. Compared with the existing spatial-wavenumber filter based damage evaluation methods, the proposed method requires no more than the multi-damage scattering signal and can be performed without depending on any wavenumber modeling or measuring. Besides, this method locates multiple damages by imaging instead of the geometric method, which helps to improve the signal-to-noise ratio. Thus, it can be easily applied to on-line multi-damage monitoring of aircraft composite structures. PMID:28772879
14 CFR 29.573 - Damage Tolerance and Fatigue Evaluation of Composite Rotorcraft Structures.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Composite Rotorcraft Structures. 29.573 Section 29.573 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Structures. (a) Each applicant must evaluate the composite rotorcraft structure under the damage tolerance..., types, and sizes of damage, considering fatigue, environmental effects, intrinsic and discrete flaws...
14 CFR 27.573 - Damage Tolerance and Fatigue Evaluation of Composite Rotorcraft Structures.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Composite Rotorcraft Structures. 27.573 Section 27.573 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Structures. (a) Each applicant must evaluate the composite rotorcraft structure under the damage tolerance..., types, and sizes of damage, considering fatigue, environmental effects, intrinsic and discrete flaws...
14 CFR 27.573 - Damage Tolerance and Fatigue Evaluation of Composite Rotorcraft Structures.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Composite Rotorcraft Structures. 27.573 Section 27.573 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Structures. (a) Each applicant must evaluate the composite rotorcraft structure under the damage tolerance..., types, and sizes of damage, considering fatigue, environmental effects, intrinsic and discrete flaws...
14 CFR 29.573 - Damage Tolerance and Fatigue Evaluation of Composite Rotorcraft Structures.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Composite Rotorcraft Structures. 29.573 Section 29.573 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Structures. (a) Each applicant must evaluate the composite rotorcraft structure under the damage tolerance..., types, and sizes of damage, considering fatigue, environmental effects, intrinsic and discrete flaws...
14 CFR 27.573 - Damage Tolerance and Fatigue Evaluation of Composite Rotorcraft Structures.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Composite Rotorcraft Structures. 27.573 Section 27.573 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Structures. (a) Each applicant must evaluate the composite rotorcraft structure under the damage tolerance..., types, and sizes of damage, considering fatigue, environmental effects, intrinsic and discrete flaws...
14 CFR 29.573 - Damage Tolerance and Fatigue Evaluation of Composite Rotorcraft Structures.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Composite Rotorcraft Structures. 29.573 Section 29.573 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Structures. (a) Each applicant must evaluate the composite rotorcraft structure under the damage tolerance..., types, and sizes of damage, considering fatigue, environmental effects, intrinsic and discrete flaws...
Distributed sensing of Composite Over-wrapped Pressure Vessels using Fiber-Bragg Gratings
NASA Technical Reports Server (NTRS)
Grant, Joseph
2005-01-01
The increasing use of advanced composite materials in the wide range of applications including Space Structures is a great impetus to the development of smart materials. These materials offer a wide range of possibilities within the space program. But before they can be reliably incorporated into space flight applications, additional understanding is required in the area of damage tolerance of these materials. Efforts to enhance our understanding of failure modes, mechanical properties, long and short term environmental effects, cyclic damage accumulation and residual strength are needed. Thus we have employed the use of fiber optical sensors which offers an excellent opportunity exploit these materials through monitoring and characterizing their mechanical properties and thus the integrity of structures made from such materials during their life cycle. Use of these optical innovations provides an insight into structures that have not been available in the past, as well as the technology available to provide real time health monitoring throughout its life cycle. The embedded fiber optical sensor shows a clearly detectable sensitivity to changes in the near strain and stress fields of the host structure promoted by mechanical or thermal loading or, in certain conditions, structural damage. The last ten years have seen a large increase in the use of FBG based monitoring systems in a broad range of applications. Fiber Bragg gratings are use to monitor the structural properties of composite pressure vessels. These gratings optically inscribed into the core of a single mode fiber are used as a tool to monitor the stress strain relation in composite structures. The fiber Bragg sensors are both embedded within the composite laminates and bonded to the surface of the vessel with varying orientations with respect to the carbon fiber in the epoxy matrix. The response of these fiber-optic sensors is investigated by pressurizing the cylinder up to its burst pressure of around 4400 psi. This is done at both ambient and cryogenic temperatures using water and liquid nitrogen. The recorded response is compared with the response from conventional strain gauge also present on the vessel. Additionally, several vessels were tested that had been damaged to simulate different type of events, such as cut tow, delimitation and impact damage.
Structural Damage Detection Using Changes in Natural Frequencies: Theory and Applications
NASA Astrophysics Data System (ADS)
He, K.; Zhu, W. D.
2011-07-01
A vibration-based method that uses changes in natural frequencies of a structure to detect damage has advantages over conventional nondestructive tests in detecting various types of damage, including loosening of bolted joints, using minimum measurement data. Two major challenges associated with applications of the vibration-based damage detection method to engineering structures are addressed: accurate modeling of structures and the development of a robust inverse algorithm to detect damage, which are defined as the forward and inverse problems, respectively. To resolve the forward problem, new physics-based finite element modeling techniques are developed for fillets in thin-walled beams and for bolted joints, so that complex structures can be accurately modeled with a reasonable model size. To resolve the inverse problem, a logistical function transformation is introduced to convert the constrained optimization problem to an unconstrained one, and a robust iterative algorithm using a trust-region method, called the Levenberg-Marquardt method, is developed to accurately detect the locations and extent of damage. The new methodology can ensure global convergence of the iterative algorithm in solving under-determined system equations and deal with damage detection problems with relatively large modeling error and measurement noise. The vibration-based damage detection method is applied to various structures including lightning masts, a space frame structure and one of its components, and a pipeline. The exact locations and extent of damage can be detected in the numerical simulation where there is no modeling error and measurement noise. The locations and extent of damage can be successfully detected in experimental damage detection.
NASA Astrophysics Data System (ADS)
Scheyer, Austin G.; Anton, Steven R.
2017-04-01
Embedding sensors within additive manufactured (AM) structures gives the ability to develop smart structures that are capable of monitoring the mechanical health of a system. AM provides an opportunity to embed sensors within a structure during the manufacturing process. One major limitation of AM technology is the ability to verify the geometric and material properties of fabricated structures. Over the past several years, the electromechanical impedance (EMI) method for structural health monitoring (SHM) has been proven to be an effective method for sensing damage in structurers. The EMI method utilizes the coupling between the electrical and mechanical properties of a piezoelectric transducer to detect a change in the dynamic response of a structure. A piezoelectric device, usually a lead zirconate titanate (PZT) ceramic wafer, is bonded to a structure and the electrical impedance is measured across as range of frequencies. A change in the electrical impedance is directly correlated to changes made to the mechanical condition of the structure. In this work, the EMI method is employed on piezoelectric transducers embedded inside AM parts to evaluate the feasibility of performing SHM on parts fabricated using additive manufacturing. The fused deposition modeling (FDM) method is used to print specimens for this feasibility study. The specimens are printed from polylactic acid (PLA) in the shape of a beam with an embedded monolithic piezoelectric ceramic disc. The specimen is mounted as a cantilever while impedance measurements are taken using an HP 4194A impedance analyzer. Both destructive and nondestructive damage is simulated in the specimens by adding an end mass and drilling a hole near the free end of the cantilever, respectively. The Root Mean Square Deviation (RMSD) method is utilized as a metric for quantifying damage to the system. In an effort to determine a threshold for RMSD, the values are calculated for the variation associated with taking multiple measurements and with re-clamping the cantilever, and determined to be 0.154, and 3.125 respectively. The RMSD value of the cantilever with a 400 g end mass is 11.39, and the RMSD value of the cantilever with a 4 mm hole near the end is 12.15. From these results, it can be determined that the damaged cases have much higher RMSD values than the RMSD values associated with measurements and set up variability of the healthy structure.
NASA Astrophysics Data System (ADS)
Laudan, Jonas; Rözer, Viktor; Sieg, Tobias; Vogel, Kristin; Thieken, Annegret H.
2017-12-01
Flash floods are caused by intense rainfall events and represent an insufficiently understood phenomenon in Germany. As a result of higher precipitation intensities, flash floods might occur more frequently in future. In combination with changing land use patterns and urbanisation, damage mitigation, insurance and risk management in flash-flood-prone regions are becoming increasingly important. However, a better understanding of damage caused by flash floods requires ex post collection of relevant but yet sparsely available information for research. At the end of May 2016, very high and concentrated rainfall intensities led to severe flash floods in several southern German municipalities. The small town of Braunsbach stood as a prime example of the devastating potential of such events. Eight to ten days after the flash flood event, damage assessment and data collection were conducted in Braunsbach by investigating all affected buildings and their surroundings. To record and store the data on site, the open-source software bundle KoBoCollect was used as an efficient and easy way to gather information. Since the damage driving factors of flash floods are expected to differ from those of riverine flooding, a post-hoc data analysis was performed, aiming to identify the influence of flood processes and building attributes on damage grades, which reflect the extent of structural damage. Data analyses include the application of random forest, a random general linear model and multinomial logistic regression as well as the construction of a local impact map to reveal influences on the damage grades. Further, a Spearman's Rho correlation matrix was calculated. The results reveal that the damage driving factors of flash floods differ from those of riverine floods to a certain extent. The exposition of a building in flow direction shows an especially strong correlation with the damage grade and has a high predictive power within the constructed damage models. Additionally, the results suggest that building materials as well as various building aspects, such as the existence of a shop window and the surroundings, might have an effect on the resulting damage. To verify and confirm the outcomes as well as to support future mitigation strategies, risk management and planning, more comprehensive and systematic data collection is necessary.
Experimental study on Statistical Damage Detection of RC Structures based on Wavelet Packet Analysis
NASA Astrophysics Data System (ADS)
Zhu, X. Q.; Law, S. S.; Jayawardhan, M.
2011-07-01
A novel damage indicator based on wavelet packet transform is developed in this study for structural health monitoring. The response signal of a structure under an impact load is normalized and then decomposed into wavelet packet components. Energies of these wavelet packet components are then calculated to obtain the energy distribution. A statistical indicator is developed to describe the damage extent of the structure. This approach is applied to the test results from simply supported reinforced concrete beams in the laboratory. Cases with single damage are created from static loading, and accelerations of the structure from under impact loads are analyzed. Results show that the method can be used for the damage monitoring and assessment of the structure.
Sims, Neil C; De Barro, Paul; Newnham, Glenn J; Kalyebi, Andrew; Macfadyen, Sarina; Malthus, Tim J
2018-01-01
This study examines whether leaf spectra can be used to measure damage to cassava plants from whitefly (Bemisia tabaci), and the potential to translate measurements from leaf to landscape scale in eastern Africa. Symptoms of the cassava brown streak disease (CBSD) and cassava mosaic disease (CMD) viruses, and sooty mould (SM) blackening of lower leaves from whiteflies feeding on the upper leaves, were measured at the leaf scale with a high-resolution spectroradiometer and a single photon avalanche diode (SPAD) meter, which retrieves relative chlorophyll concentration. Spectral measurements were compared to the five-level visual scores used to assess the severity of each of the three damaging agents in the field, and also to leaf chemistry data. Leaves exhibiting severe CBSD and CMD were spectrally indistinguishable from leaves without any symptoms. Severe SM was spectrally distinctive but is likely to be difficult to map because of its occurrence in the lower crown. SPAD measurements were highly correlated with most foliar chemistry measurements and field scores of disease severity. Regression models between simulated Sentinel 2 bands, field scores and SPAD measurements were strongest using wavelengths with high importance weightings in random forest models. SPAD measurements are highly correlated to many foliar chemistry parameters, and should be considered for use in mapping disease severity over larger areas. Remaining challenges for mapping relate to the subtle expression of symptoms, the spatial distribution of disease severity within fields, and the small size and complex structure of the cassava fields themselves. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
De Barro, Paul; Newnham, Glenn J; Kalyebi, Andrew; Macfadyen, Sarina; Malthus, Tim J
2017-01-01
Abstract BACKGROUND This study examines whether leaf spectra can be used to measure damage to cassava plants from whitefly (Bemisia tabaci), and the potential to translate measurements from leaf to landscape scale in eastern Africa. Symptoms of the cassava brown streak disease (CBSD) and cassava mosaic disease (CMD) viruses, and sooty mould (SM) blackening of lower leaves from whiteflies feeding on the upper leaves, were measured at the leaf scale with a high‐resolution spectroradiometer and a single photon avalanche diode (SPAD) meter, which retrieves relative chlorophyll concentration. Spectral measurements were compared to the five‐level visual scores used to assess the severity of each of the three damaging agents in the field, and also to leaf chemistry data. RESULTS Leaves exhibiting severe CBSD and CMD were spectrally indistinguishable from leaves without any symptoms. Severe SM was spectrally distinctive but is likely to be difficult to map because of its occurrence in the lower crown. SPAD measurements were highly correlated with most foliar chemistry measurements and field scores of disease severity. Regression models between simulated Sentinel 2 bands, field scores and SPAD measurements were strongest using wavelengths with high importance weightings in random forest models. CONCLUSION SPAD measurements are highly correlated to many foliar chemistry parameters, and should be considered for use in mapping disease severity over larger areas. Remaining challenges for mapping relate to the subtle expression of symptoms, the spatial distribution of disease severity within fields, and the small size and complex structure of the cassava fields themselves. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:28851022
Hurricane impacts on forest resources in the Eastern United States: a post-sandy assessment
Greg C. Liknes; Susan J. Crocker; Randall S. Morin; Brian F. Walters
2015-01-01
Extreme weather events play a role in shaping the composition and structure of forests. Responding to and mitigating a storm event in a forested environment requires information about the location and severity of tree damage. However, this information can be difficult to obtain immediately following an event. Post-storm assessments using regularly collected forest...
Changes in Patterns of Understory Leaf Phenology and Herbivory following Hurricane Damage.
Pilar Angulo-Sandoval; H. Fernandez-Marin; J. K. Zimmerman; T. M. Aide
2004-01-01
Hurricanes are important disturbance events in many forested ecosystems. They can have strong effects on both forest structure and animal populations, and yet few studies have considered the impacts on plantâanimal interactions. Reduction of canopy cover by severe winds increases light availability to understory plants, providing an opportunity for increased growth. An...
Approaches to automated protein crystal harvesting
Deller, Marc C.; Rupp, Bernhard
2014-01-01
The harvesting of protein crystals is almost always a necessary step in the determination of a protein structure using X-ray crystallographic techniques. However, protein crystals are usually fragile and susceptible to damage during the harvesting process. For this reason, protein crystal harvesting is the single step that remains entirely dependent on skilled human intervention. Automation has been implemented in the majority of other stages of the structure-determination pipeline, including cloning, expression, purification, crystallization and data collection. The gap in automation between crystallization and data collection results in a bottleneck in throughput and presents unfortunate opportunities for crystal damage. Several automated protein crystal harvesting systems have been developed, including systems utilizing microcapillaries, microtools, microgrippers, acoustic droplet ejection and optical traps. However, these systems have yet to be commonly deployed in the majority of crystallography laboratories owing to a variety of technical and cost-related issues. Automation of protein crystal harvesting remains essential for harnessing the full benefits of fourth-generation synchrotrons, free-electron lasers and microfocus beamlines. Furthermore, automation of protein crystal harvesting offers several benefits when compared with traditional manual approaches, including the ability to harvest microcrystals, improved flash-cooling procedures and increased throughput. PMID:24637746
Identification of damage in composite structures using Gaussian mixture model-processed Lamb waves
NASA Astrophysics Data System (ADS)
Wang, Qiang; Ma, Shuxian; Yue, Dong
2018-04-01
Composite materials have comprehensively better properties than traditional materials, and therefore have been more and more widely used, especially because of its higher strength-weight ratio. However, the damage of composite structures is usually varied and complicated. In order to ensure the security of these structures, it is necessary to monitor and distinguish the structural damage in a timely manner. Lamb wave-based structural health monitoring (SHM) has been proved to be effective in online structural damage detection and evaluation; furthermore, the characteristic parameters of the multi-mode Lamb wave varies in response to different types of damage in the composite material. This paper studies the damage identification approach for composite structures using the Lamb wave and the Gaussian mixture model (GMM). The algorithm and principle of the GMM, and the parameter estimation, is introduced. Multi-statistical characteristic parameters of the excited Lamb waves are extracted, and the parameter space with reduced dimensions is adopted by principal component analysis (PCA). The damage identification system using the GMM is then established through training. Experiments on a glass fiber-reinforced epoxy composite laminate plate are conducted to verify the feasibility of the proposed approach in terms of damage classification. The experimental results show that different types of damage can be identified according to the value of the likelihood function of the GMM.
NASA Astrophysics Data System (ADS)
Song, Changyong
2017-05-01
Interest in high-resolution structure investigation has been zealous, especially with the advent of X-ray free electron lasers (XFELs). The intense and ultra-short X-ray laser pulses ( 10 GW) pave new routes to explore structures and dynamics of single macromolecules, functional nanomaterials and complex electronic materials. In the last several years, we have developed XFEL single-shot diffraction imaging by probing ultrafast phase changes directly. Pump-probe single-shot imaging was realized by synchronizing femtosecond (<10 fs in FWHM) X-ray laser (probe) with femtosecond (50 fs) IR laser (pump) at better than 1 ps resolution. Nanoparticles under intense fs-laser pulses were investigated with fs XFEL pulses to provide insight into the irreversible particle damage processes with nanoscale resolution. Research effort, introduced, aims to extend the current spatio-temporal resolution beyond the present limit. We expect this single-shot dynamic imaging to open new science opportunity with XFELs.
Design and Analysis of a Stiffened Composite Structure Repair Concept
NASA Technical Reports Server (NTRS)
Przekop, Adam
2011-01-01
A design and analysis of a repair concept applicable to a stiffened thin-skin composite panel based on the Pultruded Rod Stitched Efficient Unitized Structure is presented. Since the repair concept is a bolted repair using metal components, it can easily be applied in the operational environment. Initial analyses are aimed at validating the finite element modeling approach by comparing with available test data. Once confidence in the analysis approach is established several repair configurations are explored and the most efficient one presented. Repairs involving damage to the top of the stiffener alone are considered in addition to repairs involving a damaged stiffener, flange and underlying skin. High fidelity finite element modeling techniques such as mesh-independent definition of compliant fasteners, elastic-plastic metallic material properties and geometrically nonlinear analysis are utilized in the effort. The results of the analysis are presented and factors influencing the design are assessed and discussed.
NASA Technical Reports Server (NTRS)
Grant, Joseph
2005-01-01
Fiber Bragg gratings are use to monitor the structural properties of composite pressure vessels. These gratings optically inscribed into the core of a single mode fiber are used as a tool to monitor the stress strain relation in laminate structure. The fiber Bragg sensors are both embedded within the composite laminates and bonded to the surface of the vessel with varying orientations with respect to the carbon fiber in the epoxy matrix. The response of these fiber-optic sensors is investigated by pressurizing the cylinder up to its burst pressure of around 2800 psi. This is done at both ambient and cryogenic temperatures using water and liquid nitrogen. The recorded response is compared with the response from conventional strain gauge also present on the vessel. Additionally, several vessels were tested that had been damaged to simulate different type of events, such as cut tow, delimitation and impact damage.
NASA Technical Reports Server (NTRS)
Grant, Joseph
2004-01-01
Fiber Bragg gratings are use to monitor the structural properties of composite pressure vessels. These gratings optically inscribed into the core of a single mode fiber are used as a tool to monitor the stress strain relation in laminate structure. The fiber Bragg sensors are both embedded within the composite laminates and bonded to the surface of the vessel with varying orientations with respect to the carbon fiber in the epoxy matrix. The response of these fiber-optic sensors is investigated by pressurizing the cylinder up to its burst pressure of around 2800 psi. This is done at both ambient and cryogenic temperatures using water and liquid nitrogen. The recorded response is compared with the response from conventional strain gauge also present on the vessel. Additionally, several vessels were tested that had been damaged to simulate different type of events, such as cut tow, delimitation and impact damage.
Multi-scale Modeling of Radiation Damage: Large Scale Data Analysis
NASA Astrophysics Data System (ADS)
Warrier, M.; Bhardwaj, U.; Bukkuru, S.
2016-10-01
Modification of materials in nuclear reactors due to neutron irradiation is a multiscale problem. These neutrons pass through materials creating several energetic primary knock-on atoms (PKA) which cause localized collision cascades creating damage tracks, defects (interstitials and vacancies) and defect clusters depending on the energy of the PKA. These defects diffuse and recombine throughout the whole duration of operation of the reactor, thereby changing the micro-structure of the material and its properties. It is therefore desirable to develop predictive computational tools to simulate the micro-structural changes of irradiated materials. In this paper we describe how statistical averages of the collision cascades from thousands of MD simulations are used to provide inputs to Kinetic Monte Carlo (KMC) simulations which can handle larger sizes, more defects and longer time durations. Use of unsupervised learning and graph optimization in handling and analyzing large scale MD data will be highlighted.
NASA Astrophysics Data System (ADS)
Ren, W. X.; Lin, Y. Q.; Fang, S. E.
2011-11-01
One of the key issues in vibration-based structural health monitoring is to extract the damage-sensitive but environment-insensitive features from sampled dynamic response measurements and to carry out the statistical analysis of these features for structural damage detection. A new damage feature is proposed in this paper by using the system matrices of the forward innovation model based on the covariance-driven stochastic subspace identification of a vibrating system. To overcome the variations of the system matrices, a non-singularity transposition matrix is introduced so that the system matrices are normalized to their standard forms. For reducing the effects of modeling errors, noise and environmental variations on measured structural responses, a statistical pattern recognition paradigm is incorporated into the proposed method. The Mahalanobis and Euclidean distance decision functions of the damage feature vector are adopted by defining a statistics-based damage index. The proposed structural damage detection method is verified against one numerical signal and two numerical beams. It is demonstrated that the proposed statistics-based damage index is sensitive to damage and shows some robustness to the noise and false estimation of the system ranks. The method is capable of locating damage of the beam structures under different types of excitations. The robustness of the proposed damage detection method to the variations in environmental temperature is further validated in a companion paper by a reinforced concrete beam tested in the laboratory and a full-scale arch bridge tested in the field.
NASA Astrophysics Data System (ADS)
Xu, Y. L.; Huang, Q.; Zhan, S.; Su, Z. Q.; Liu, H. J.
2014-06-01
How to use control devices to enhance system identification and damage detection in relation to a structure that requires both vibration control and structural health monitoring is an interesting yet practical topic. In this study, the possibility of using the added stiffness provided by control devices and frequency response functions (FRFs) to detect damage in a building complex was explored experimentally. Scale models of a 12-storey main building and a 3-storey podium structure were built to represent a building complex. Given that the connection between the main building and the podium structure is most susceptible to damage, damage to the building complex was experimentally simulated by changing the connection stiffness. To simulate the added stiffness provided by a semi-active friction damper, a steel circular ring was designed and used to add the related stiffness to the building complex. By varying the connection stiffness using an eccentric wheel excitation system and by adding or not adding the circular ring, eight cases were investigated and eight sets of FRFs were measured. The experimental results were used to detect damage (changes in connection stiffness) using a recently proposed FRF-based damage detection method. The experimental results showed that the FRF-based damage detection method could satisfactorily locate and quantify damage.
Investigation of Fuselage Structure Subject to Widespread Fatigue Damage
DOT National Transportation Integrated Search
1996-01-01
This report documents the results of the "Investigation of Fuselage Structure Subject to Widespread Fatigue Damage" contract. The primary program objective was to obtain data on airplane fuselage structures subject to multiple site damage (MSD) in an...
Damage From the Nahrin, Afghanistan, Earthquake of 25 March, 2002
NASA Astrophysics Data System (ADS)
Madden, C. L.; Yeats, R. S.
2002-12-01
On 25 March, 2002, a destructive earthquake of mb = 6.1 struck the city of Nahrin and nearby villages in Baghlan Province in northeastern Afghanistan. The earthquake occurred on a southeast-dipping reverse fault that parallels the linear northeast-trending range front of the Hindu Kush Mountains, east of Nahrin. Field reconnaissance showed no disturbance of the ground by surface rupture, liquefaction, or lateral spreading, and virtually no evidence of landsliding or rockfall. United Nations and Afghan authorities estimate the death toll from the earthquake to be over 2000, with about 20,000 families impacted by the earthquake. We conducted a survey of damage in 68 villages affected by the earthquake and found that areas within 25 km of the epicenter experienced modified Mercalli intensities of between VI and VII. Shaking intensities were strong enough to cause complete building collapse in many villages. Site conditions were an important factor in the distribution of damage in the Nahrin area. Houses built on the narrow crests of ridges eroded in loess suffered major damage due to the focusing of near-surface seismic waves on ridge-tops. Houses on low fluvial terraces along the Nahrin River also suffered major damage, likely due to their close proximity to the water table. Structures built on metamorphic bedrock and alluvial fans along the range front of the Hindu Kush Mountains or on high terraces along the Nahrin River suffered comparatively less damage. Building failure was predominantly caused by the mud-block construction, characteristic of much of Afghanistan and adjacent countries. Most houses are built of mud blocks made from reworked loess, which contains a relatively low percentage of clay. The walls contain no bracing against lateral shear, and wall corners are not tied together, leading to failure at corners and roof collapse. In several villages, mosques were constructed to a higher standard and suffered significantly less damage than surrounding mud structures. The mosques often had concrete foundations and structural supports tied to the foundations. Had houses been built to the same standards as most mosques, loss of life would have been greatly reduced.
Cura, Vincent; Troffer-Charlier, Nathalie; Wurtz, Jean Marie; Bonnefond, Luc; Cavarelli, Jean
2014-09-01
Protein arginine methyltransferase 7 (PRMT7) is a type III arginine methyltransferase which has been implicated in several biological processes such as transcriptional regulation, DNA damage repair, RNA splicing, cell differentiation and metastasis. PRMT7 is a unique but less characterized member of the family of PRMTs. The crystal structure of full-length PRMT7 from Mus musculus refined at 1.7 Å resolution is described. The PRMT7 structure is composed of two catalytic modules in tandem forming a pseudo-dimer and contains only one AdoHcy molecule bound to the N-terminal module. The high-resolution crystal structure presented here revealed several structural features showing that the second active site is frozen in an inactive state by a conserved zinc finger located at the junction between the two PRMT modules and by the collapse of two degenerated AdoMet-binding loops.
Carcagno, Abel L.; Marazita, Mariela C.; Sonzogni, Silvina V.; Ceruti, Julieta M.; Cánepa, Eduardo T.
2013-01-01
The maintenance of genomic integrity is of main importance to the survival and health of organisms which are continuously exposed to genotoxic stress. Cells respond to DNA damage by activating survival pathways consisting of cell cycle checkpoints and repair mechanisms. However, the signal that triggers the DNA damage response is not necessarily a direct detection of the primary DNA lesion. In fact, chromatin defects may serve as initiating signals to activate those mechanisms. If the modulation of chromatin structure could initiate a checkpoint response in a direct manner, this supposes the existence of specific chromatin sensors. p19INK4d, a member of the INK4 cell cycle inhibitors, plays a crucial role in regulating genomic stability and cell viability by enhancing DNA repair. Its expression is induced in cells injured by one of several genotoxic treatments like cis-platin, UV light or neocarzinostatin. Nevertheless, when exogenous DNA damaged molecules are introduced into the cell, this induction is not observed. Here, we show that p19INK4d is enhanced after chromatin relaxation even in the absence of DNA damage. This induction was shown to depend upon ATM/ATR, Chk1/Chk2 and E2F activity, as is the case of p19INK4d induction by endogenous DNA damage. Interestingly, p19INK4d improves DNA repair when the genotoxic damage is caused in a relaxed-chromatin context. These results suggest that changes in chromatin structure, and not DNA damage itself, is the actual trigger of p19INK4d induction. We propose that, in addition to its role as a cell cycle inhibitor, p19INK4d could participate in a signaling network directed to detecting and eventually responding to chromatin anomalies. PMID:23593412
Progressive Fracture of Fiber Composite Builtup Structures
NASA Technical Reports Server (NTRS)
Gotsis, Pascal K.; Chamis, Christos C.; Minnetyan, Levon
1996-01-01
The damage progression and fracture of builtup composite structures was evaluated by using computational simulation to examine the behavior and response of a stiffened composite (0 +/- 45/90)(sub s6) laminate panel subjected to a bending load. The damage initiation, growth, accumulation, progression, and propagation to structural collapse were simulated. An integrated computer code (CODSTRAN) was augmented for the simulation of the progressive damage and fracture of builtup composite structures under mechanical loading. Results showed that damage initiation and progression have a significant effect on the structural response. Also investigated was the influence of different types of bending load on the damage initiation, propagation, and final fracture of the builtup composite panel.
NASA Astrophysics Data System (ADS)
Xie, Fengle; Jiang, Zhansi; Jiang, Hui
2018-05-01
This paper presents a multi-damages identification method for Cantilever Beam. First, the damage location is identified by using the mode shape curvatures. Second, samples of varying damage severities at the damage location and their corresponding natural frequencies are used to construct the initial Kriging surrogate model. Then a particle swarm optimization (PSO) algorithm is employed to identify the damage severities based on Kriging surrogate model. The simulation study of a double-damaged cantilever beam demonstrated that the proposed method is effective.
Global Failure Modes in High Temperature Composite Structures
NASA Technical Reports Server (NTRS)
Knauss, W. G.
1998-01-01
Composite materials have been considered for many years as the major advance in the construction of energy efficient aerospace structures. Notable advances have been made in understanding the special design considerations that set composites apart from the usual "isotropic" engineering materials such as the metals. As a result, a number of significant engineering designs have been accomplished. However, one shortcoming of the currently favored composites is their relatively unforgiving behavior with respect to failure (brittleness) under seemingly mild impact conditions and large efforts are underway to rectify that situation, much along the lines of introducing thermoplastic matrix materials. Because of their relatively more pronounced (thermo) viscoelastic behavior these materials respond with "toughness" in fracture situations. From the point of view of applications requiring material strength, this property is highly desirable. This feature impacts several important and distinct engineering problems which have been' considered under this grant and cover the 1) effect of impact damage on structural (buckling) stability of composite panels, the 2) effect of time dependence on the progression of buckling instabilities, and the 3) evolution of damage and fracture at generic thickness discontinuities in structures. The latter topic has serious implications for structural stability problems (buckling failure in reinforced shell structures) as well as failure progression in stringer-reinforced shell structures. This grant has dealt with these issues. Polymer "toughness" is usually associated with uncrosslinked or thermo-plastic polymers. But, by comparison with their thermoset counterparts they tend to exhibit more pronounced time dependent material behavior; also, that time dependence can occur at lower temperatures which places restriction in the high temperature use of these "newer and tougher" materials that are not quite so serious with the thermoset matrix materials. From a structural point of view the implications of this material behavior are potentially severe in that structural failure characteristics are no longer readily observed in short term qualification tests so characteristic for aerospace structures built from typical engineering metals.
Kaukinen, P; Podlipská, J; Guermazi, A; Niinimäki, J; Lehenkari, P; Roemer, F W; Nieminen, M T; Koski, J M; Arokoski, J P A; Saarakkala, S
2016-09-01
To determine the associations between multi-feature structural pathology assessed using magnetic resonance imaging (MRI) and the presence of knee pain, and to determine the associations between the locations of structural changes and different knee pain patterns. Eighty symptomatic subjects with knee pain and suspicion or diagnosis of knee OA and 63 asymptomatic subjects underwent knee MRI. Severity of structural changes was graded by MRI Osteoarthritis Knee Score (MOAKS) in separate knee locations. The associations between cartilage damage, bone marrow lesions (BMLs), osteophytes, Hoffa's synovitis, effusion-synovitis, meniscal damage and structural pathologies in ligaments, tendons and bursas and both the presence of pain and the knee pain patterns were assessed. The presence of Hoffa's synovitis (adjusted RR 1.6, 95% CI 1.2-1.3) and osteophytes in any region (2.07, 1.19-3.60) was significantly associated with the presence of pain. Any Hoffa's synovitis was associated with patellar pain (adjusted RR 4.70, 95% CI 1.19-3.60) and moderate-to-severe Hoffa's synovitis with diffuse pain (2.25, 1.13-4.50). Medial knee pain was associated with cartilage loss in the medial tibia (adjusted RR 2.66, 95% CI 1.22-5.80), osteophytes in the medial tibia (2.66, 1.17-6.07) and medial femur (2.55, 1.07-6.09), medial meniscal maceration (2.20, 1.01-4.79) and anterior meniscal extrusions (2.78, 1.14-6.75). Hoffa's synovitis and osteophytes were strongly associated with the presence of knee pain. Medial pain was associated most often with medially located structural pathologies. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Smartphone imagery to analyze animal-induced erosion in riverbanks
NASA Astrophysics Data System (ADS)
Sofia, Giulia; Masin, Roberta; Tarolli, Paolo
2016-04-01
Among the most invasive species, the Coypu (Myocastor coypus) best exemplifies the widespread damage caused by alien species to ecosystems, with effects on crops, riverine systems, and hydraulic structures. The extent of the latter impact is still rarely quantified, despite the increasing economic and social importance. In northern Italy, Coypu damages to the drainage network have multiple aspects. One main issue is related to the weakening of earthen structures: burrows significantly reduce the integrity of the banks, and potentially contribute to the bank failure. A second concern is related to the agricultural activities nearby the channels. When burrows are present, soil may collapse when subjected to the weight of heavy objects on the surface (such as vehicles and farm machinery). A third issue is connected on the impact of burrowing activities on riparian buffer zones. Coypu burrows create specific flowing paths for the water, delivering water and sediment from the fields directly to the drainage system, thus possibly reducing the efficiency of these zones, and improving the risk of surface water contamination. The purpose of this research is to provide a new perspective, from a geoscience point of view, on Coypu damages to riverbanks, showing the effectiveness of a low-cost approach to model surface burrowing damages and to quantify the related erosion. The work is based on the Structure-from-Motion (SfM) photogrammetric method. To quantify the damages, high-resolution 3D models of the riverbanks were reconstructed from imagery acquired with a smartphone (Prosdocimi et al. 2015). From these models, it was possible to determine the volume of the animal-induced erosion. Proven its effectiveness, the proposed method could allow the creation of a database of damages. Researchers could test the flexibility of the approach to determine the distribution of erosion along the whole drainage system as an index of damage region wide, and to determine the severity of damage as classified according to Coypu relative abundance ratings when available. This would offer the basis to compare biomes, identifying those suffering the most. The quantification of eroded sediment would also provide a scientific basis to improve the analysis of the impacts of burrowing animals on riparian habitats and native species as well as on the efficiency of buffer zones. Prosdocimi, M., Sofia, G., Dalla Fontana, G., Tarolli, P. (2015). Bank erosion in agricultural drainage networks: effectiveness of Structure-from-Motion photogrammetry for post-event analysis, Earth Surface Processes and Landforms, 40: 1891-1906. doi: 10.1002/esp.3767.
Cao, Hongyou; Liu, Quanmin; Wahab, Magd Abdel
2017-01-01
Output-based structural damage detection is becoming increasingly appealing due to its potential in real engineering applications without any restriction regarding excitation measurements. A new transmissibility-based damage detection approach is presented in this study by combining transmissibility with correlation analysis in order to strengthen its performance in discriminating damaged from undamaged scenarios. From this perspective, damage detection strategies are hereafter established by constructing damage-sensitive indicators from a derived transmissibility. A cantilever beam is numerically analyzed to verify the feasibility of the proposed damage detection procedure, and an ASCE (American Society of Civil Engineers) benchmark is henceforth used in the validation for its application in engineering structures. The results of both studies reveal a good performance of the proposed methodology in identifying damaged states from intact states. The comparison between the proposed indicator and the existing indicator also affirms its applicability in damage detection, which might be adopted in further structural health monitoring systems as a discrimination criterion. This study contributed an alternative criterion for transmissibility-based damage detection in addition to the conventional ones. PMID:28773218
A Generalized Orthotropic Elasto-Plastic Material Model for Impact Analysis
NASA Astrophysics Data System (ADS)
Hoffarth, Canio
Composite materials are now beginning to provide uses hitherto reserved for metals in structural systems such as airframes and engine containment systems, wraps for repair and rehabilitation, and ballistic/blast mitigation systems. These structural systems are often subjected to impact loads and there is a pressing need for accurate prediction of deformation, damage and failure. There are numerous material models that have been developed to analyze the dynamic impact response of polymer matrix composites. However, there are key features that are missing in those models that prevent them from providing accurate predictive capabilities. In this dissertation, a general purpose orthotropic elasto-plastic computational constitutive material model has been developed to predict the response of composites subjected to high velocity impacts. The constitutive model is divided into three components - deformation model, damage model and failure model, with failure to be added at a later date. The deformation model generalizes the Tsai-Wu failure criteria and extends it using a strain-hardening-based orthotropic yield function with a non-associative flow rule. A strain equivalent formulation is utilized in the damage model that permits plastic and damage calculations to be uncoupled and capture the nonlinear unloading and local softening of the stress-strain response. A diagonal damage tensor is defined to account for the directionally dependent variation of damage. However, in composites it has been found that loading in one direction can lead to damage in multiple coordinate directions. To account for this phenomena, the terms in the damage matrix are semi-coupled such that the damage in a particular coordinate direction is a function of the stresses and plastic strains in all of the coordinate directions. The overall framework is driven by experimental tabulated temperature and rate-dependent stress-strain data as well as data that characterizes the damage matrix and failure. The developed theory has been implemented in a commercial explicit finite element analysis code, LS-DYNARTM, as MAT213. Several verification and validation tests using a commonly available carbon-fiber composite, Toyobo's T800/F3900, have been carried and the results show that the theory and implementation are efficient, robust and accurate.
A symmetry measure for damage detection with mode shapes
NASA Astrophysics Data System (ADS)
Chen, Justin G.; Büyüköztürk, Oral
2017-11-01
This paper introduces a feature for detecting damage or changes in structures, the continuous symmetry measure, which can quantify the amount of a particular rotational, mirror, or translational symmetry in a mode shape of a structure. Many structures in the built environment have geometries that are either symmetric or almost symmetric, however damage typically occurs in a local manner causing asymmetric changes in the structure's geometry or material properties, and alters its mode shapes. The continuous symmetry measure can quantify these changes in symmetry as a novel indicator of damage for data-based structural health monitoring approaches. This paper describes the concept as a basis for detecting changes in mode shapes and detecting structural damage. Application of the method is demonstrated in various structures with different symmetrical properties: a pipe cross-section with a finite element model and experimental study, the NASA 8-bay truss model, and the simulated IASC-ASCE structural health monitoring benchmark structure. The applicability and limitations of the feature in applying it to structures of varying geometries is discussed.
Identification of structural damage using wavelet-based data classification
NASA Astrophysics Data System (ADS)
Koh, Bong-Hwan; Jeong, Min-Joong; Jung, Uk
2008-03-01
Predicted time-history responses from a finite-element (FE) model provide a baseline map where damage locations are clustered and classified by extracted damage-sensitive wavelet coefficients such as vertical energy threshold (VET) positions having large silhouette statistics. Likewise, the measured data from damaged structure are also decomposed and rearranged according to the most dominant positions of wavelet coefficients. Having projected the coefficients to the baseline map, the true localization of damage can be identified by investigating the level of closeness between the measurement and predictions. The statistical confidence of baseline map improves as the number of prediction cases increases. The simulation results of damage detection in a truss structure show that the approach proposed in this study can be successfully applied for locating structural damage even in the presence of a considerable amount of process and measurement noise.
NASA Astrophysics Data System (ADS)
Dushyanth, N. D.; Suma, M. N.; Latte, Mrityanjaya V.
2016-03-01
Damage in the structure may raise a significant amount of maintenance cost and serious safety problems. Hence detection of the damage at its early stage is of prime importance. The main contribution pursued in this investigation is to propose a generic optimal methodology to improve the accuracy of positioning of the flaw in a structure. This novel approach involves a two-step process. The first step essentially aims at extracting the damage-sensitive features from the received signal, and these extracted features are often termed the damage index or damage indices, serving as an indicator to know whether the damage is present or not. In particular, a multilevel SVM (support vector machine) plays a vital role in the distinction of faulty and healthy structures. Formerly, when a structure is unveiled as a damaged structure, in the subsequent step, the position of the damage is identified using Hilbert-Huang transform. The proposed algorithm has been evaluated in both simulation and experimental tests on a 6061 aluminum plate with dimensions 300 mm × 300 mm × 5 mm which accordingly yield considerable improvement in the accuracy of estimating the position of the flaw.
Lountos, George T; Tropea, Joseph E; Zhang, Di; Jobson, Andrew G; Pommier, Yves; Shoemaker, Robert H; Waugh, David S
2009-01-01
Checkpoint kinase 2 (Chk2), a ser/thr kinase involved in the ATM-Chk2 checkpoint pathway, is activated by genomic instability and DNA damage and results in either arrest of the cell cycle to allow DNA repair to occur or apoptosis if the DNA damage is severe. Drugs that specifically target Chk2 could be beneficial when administered in combination with current DNA-damaging agents used in cancer therapy. Recently, a novel inhibitor of Chk2, NSC 109555, was identified that exhibited high potency (IC50 = 240 nM) and selectivity. This compound represents a new chemotype and lead for the development of novel Chk2 inhibitors that could be used as therapeutic agents for the treatment of cancer. To facilitate the discovery of new analogs of NSC 109555 with even greater potency and selectivity, we have solved the crystal structure of this inhibitor in complex with the catalytic domain of Chk2. The structure confirms that the compound is an ATP-competitive inhibitor, as the electron density clearly reveals that it occupies the ATP-binding pocket. However, the mode of inhibition differs from that of the previously studied structure of Chk2 in complex with debromohymenialdisine, a compound that inhibits both Chk1 and Chk2. A unique hydrophobic pocket in Chk2, located very close to the bound inhibitor, presents an opportunity for the rational design of compounds with higher binding affinity and greater selectivity. PMID:19177354
Affective brain areas and sleep disordered breathing
Harper, Ronald M.; Kumar, Rajesh; Macey, Paul M.; Woo, Mary A.; Ogren, Jennifer A.
2014-01-01
The neural damage accompanying the hypoxia, reduced perfusion, and other consequences of sleep-disordered breathing found in obstructive sleep apnea, heart failure (HF), and congenital central hypoventilation syndrome (CCHS), appears in areas that serve multiple functions, including emotional drives to breathe, and involve systems that serve affective, cardiovascular, and breathing roles. The damage, assessed with structural magnetic resonance imaging (MRI) procedures, shows tissue loss or water content and diffusion changes indicative of injury, and impaired axonal integrity between structures; damage is preferentially unilateral. Functional MRI responses in affected areas also are time- or amplitude- distorted to ventilatory or autonomic challenges. Among the structures injured are the insular, cingulate, and ventral medial prefrontal cortices, as well as cerebellar deep nuclei and cortex, anterior hypothalamus, raphé, ventrolateral medulla, basal ganglia and, in CCHS, the locus coeruleus. Raphé and locus coeruleus injury may modify serotonergic and adrenergic modulation of upper airway and arousal characteristics. Since both axons and gray matter show injury, the consequences to function, especially to autonomic, cognitive, and mood regulation, are major. Several affected rostral sites, including the insular and cingulate cortices and hippocampus, mediate aspects of dyspnea, especially in CCHS, while others, including the anterior cingulate and thalamus, participate in initiation of inspiration after central breathing pauses, and the medullary injury can impair baroreflex and breathing control. The ancillary injury associated with sleep-disordered breathing to central structures can elicit multiple other distortions in cardiovascular, cognitive, and emotional functions in addition to effects on breathing regulation. PMID:24746053
Regulatory mechanisms of RNA function: emerging roles of DNA repair enzymes.
Jobert, Laure; Nilsen, Hilde
2014-07-01
The acquisition of an appropriate set of chemical modifications is required in order to establish correct structure of RNA molecules, and essential for their function. Modification of RNA bases affects RNA maturation, RNA processing, RNA quality control, and protein translation. Some RNA modifications are directly involved in the regulation of these processes. RNA epigenetics is emerging as a mechanism to achieve dynamic regulation of RNA function. Other modifications may prevent or be a signal for degradation. All types of RNA species are subject to processing or degradation, and numerous cellular mechanisms are involved. Unexpectedly, several studies during the last decade have established a connection between DNA and RNA surveillance mechanisms in eukaryotes. Several proteins that respond to DNA damage, either to process or to signal the presence of damaged DNA, have been shown to participate in RNA quality control, turnover or processing. Some enzymes that repair DNA damage may also process modified RNA substrates. In this review, we give an overview of the DNA repair proteins that function in RNA metabolism. We also discuss the roles of two base excision repair enzymes, SMUG1 and APE1, in RNA quality control.