This paper outlines a life-cycle cost analysis comparing a green (rain gardens) and gray (tunnels) infrastructure combination to a gray-only option to control combined sewer overflow in the Turkey Creek Combined Sewer Overflow Basin, in Kansas City, MO. The plan area of this Bas...
Sanitary Sewer Overflow Analysis and Planning (SSOAP) Toolbox
Rainfall-derived infiltration and inflow (RDII) into sanitary sewer systems has long been recognized as a source of operating problems in sewerage systems. RDII is the main cause of sanitary sewer overflows (SSOs) to basements, streets, or nearby receiving waters and can also ...
DEVELOPMENT OF SANITARY SEWER OVERFLOW ANALYSIS AND PLANNING (SSOAP) TOOLBOX
Rainfall Derived Infiltration and Inflow (RDII) into sanitary sewer systems has long been recognized as a source of operating problems in sewerage systems. RDII is the main cause of sanitary sewer overflows (SSOs) to basements, streets, or nearby streams. RDII can also cause se...
SSOAP - A TOOLBOX FOR SANITARY SEWER OVERFLOW ANALYSIS AND PLANNING
Rainfall Derived Infiltration and Inflow (RDII) into sanitary sewer systems has long been recognized as a source of operating problems in sewerage systems. RDII is the main cause of sanitary sewer overflows (SSOs) to basements, streets, or nearby streams and can also cause serio...
SSOAP - A TOOLBOX FOR SANITARY SEWER OVERFLOW ANALYSIS AND PLANNING
Rainfall Derived Infiltration and Inflow (RDII) into sanitary sewer systems has long been recognized as a source of operating problems in sewerage systems. RDII is the main cause of sanitary sewer overflows (SSOs) to basements, streets, or nearby streams and can also cause seriou...
A TOOLBOX FOR SANITARY SEWER OVERFLOW ANALYSIS AND PLANNING (SSOAP) AND APPLICATIONS
Rainfall Derived Infiltration and Inflow (RDII) into sanitary sewer systems has long been recognized as a source of operating problems in sewerage systems. RDII is the main cause of sanitary sewer overflows (SSOs) to basements, streets, or nearby streams and can also cause seriou...
COMBINED-SEWER OVERFLOW CONTROL AND TREATMENT
Combined-sewer overflow (CSO), along with sanitary-sewer overflow and stormwater are significant contributors of contamination to surface waters. During a rain event, the flow in a combined sewer system may exceed the capacity of the intercepting sewer leading to the wastewater t...
SSOAP Toolbox Enhancements and Case Study
Recognizing the need for tools to support the development of sanitary sewer overflow (SSO) control plans, in October 2009 the U.S. Environmental Protection Agency (EPA) released the first version of the Sanitary Sewer Overflow Analysis and Planning (SSOAP) Toolbox. This first ve...
Measuring Flow Reductions in a Combined Sewer System using Green Infrastructure - abstract
In 2009, the Louisville and Jefferson County Metropolitan Sewer District (MSD) submitted an Integrated Overflow Abatement Plan (IOAP) addressing combined sewer overflows (CSOs) and sanitary sewer overflows. Many of the solutions involve gray infrastructure, such as large, end-of...
Assessment of pollutant load emission from combined sewer overflows based on the online monitoring.
Brzezińska, Agnieszka; Zawilski, Marek; Sakson, Grażyna
2016-09-01
Cities equipped with combined sewer systems discharge during wet weather a lot of pollutants into receiving waters by combined storm overflows (CSOs). According to the Polish legislation, CSOs should be activated no more than ten times per year, but in Lodz, most of the 18 existing CSOs operate much more frequently. To assess the pollutant load emitted by one of the existing CSOs, the sensors for measuring the concentration of total suspended solids (SOLITAX sc) and dissolved chemical oxygen demand (UVAS plus) installed in the overflow chamber as well as two flowmeters placed in the outflow sewer were used. In order to check the data from sensors, laboratory tests of combined wastewater quality were conducted simultaneously. For the analysis of the total pollutant load emitted from the overflow, the raw data was denoised using the Savitzky-Golay method. Comparing the load calculated from the analytical results to online smoothed measurements, negligible differences were found, which confirms the usefulness of applying the sensors in the combined sewer system. Online monitoring of the quantity and quality of wastewater emitted by the combined sewer overflows to water receivers, provides a considerable amount of data very useful for combined sewerage upgrading based on computer modelling, and allows for a significant reduction of laboratory analysis.
Goulding, R; Jayasuriya, N; Horan, E
2012-10-15
Overflows from sanitary sewers during wet weather, which occur when the hydraulic capacity of the sewer system is exceeded, are considered a potential threat to the ecological and public health of the waterways which receive these overflows. As a result, water retailers in Australia and internationally commit significant resources to manage and abate sewer overflows. However, whilst some studies have contributed to an increased understanding of the impacts and risks associated with these events, they are relatively few in number and there still is a general lack of knowledge in this area. A Bayesian network model to assess the public health risk associated with wet weather sewer overflows is presented in this paper. The Bayesian network approach is shown to provide significant benefits in the assessment of public health risks associated with wet weather sewer overflows. In particular, the ability for the model to account for the uncertainty inherent in sewer overflow events and subsequent impacts through the use of probabilities is a valuable function. In addition, the paper highlights the benefits of the probabilistic inference function of the Bayesian network in prioritising management options to minimise public health risks associated with sewer overflows. Copyright © 2012. Published by Elsevier Ltd.
COMPUTER MODEL ANALYSIS FOR MITIGATION PLANNING OF SANITARY-SEWER OVERFLOWS
Sanitary sewer overflows (SSOs) are generally difficult to witness or document as they usually occur during rain events when people are indoors or out of sight. To anser where and when an SSO may occur, it is necessary to know the flow conveyance capacity at various parts of the ...
Sanitary sewer overflows (SSOs) occur when untreated sewage is discharged into water sources potentially causing contamination. SSOs are primarily caused by heavy rainfall, which is expected to become heavier and more episodic due to climate change. We conducted a case-crossover ...
MANAGEMENT AND CONTROL OF COMBINED SEWER OVERFLOWS
The paper gives a basic overview of the U.S. government's involvements in developing countermeasures for the abatement of combined sewer overflow pollution. batement or prevention of pollution stormwater runoff and combined sewer overflows is one of the most challenging areas in ...
SANITARY SEWER OVERFLOW ANALYSIS AND PLANNING (SSOAP) TOOLBOX
Description: The Nation's sanitary-sewer infrastructure is aging, with some sewers dating back over 100 years. Nationwide, there are more than 19,500 municipal sanitary-sewer collection systems serving an estimated 150 million people and about 40,000 SSO events per year. Becau...
Montserrat, A; Bosch, Ll; Kiser, M A; Poch, M; Corominas, Ll
2015-02-01
Using low-cost sensors, data can be collected on the occurrence and duration of overflows in each combined sewer overflow (CSO) structure in a combined sewer system (CSS). The collection and analysis of real data can be used to assess, improve, and maintain CSSs in order to reduce the number and impact of overflows. The objective of this study was to develop a methodology to evaluate the performance of CSSs using low-cost monitoring. This methodology includes (1) assessing the capacity of a CSS using overflow duration and rain volume data, (2) characterizing the performance of CSO structures with statistics, (3) evaluating the compliance of a CSS with government guidelines, and (4) generating decision tree models to provide support to managers for making decisions about system maintenance. The methodology is demonstrated with a case study of a CSS in La Garriga, Spain. The rain volume breaking point from which CSO structures started to overflow ranged from 0.6 mm to 2.8 mm. The structures with the best and worst performance in terms of overflow (overflow probability, order, duration and CSO ranking) were characterized. Most of the obtained decision trees to predict overflows from rain data had accuracies ranging from 70% to 83%. The results obtained from the proposed methodology can greatly support managers and engineers dealing with real-world problems, improvements, and maintenance of CSSs. Copyright © 2014 Elsevier B.V. All rights reserved.
USEPA CAPSTONE REPORT: CONTROL AND TREATMENT
Combined-sewer overflows (CSOs), sanitary-sewer overflows and stormwater (SW) are significant contributors of contamination to surface waters. During a rain event, the flow in a combined sewer system may exceed the capacity of the intercepting sewer leading to the wastewater trea...
COMPUTER MODEL ANALYSIS FOR CONTROL PLANNING OF SANITARY-SEWER OVERFLOWS
The Nation's sanitary-sewer infrastructure is aging with some sewers dating back over 100 years. There are more than 19,500 municipal sanitary-sewer collection systems nationwide serving an estimated 150 million people and comprising about 800,000 km (500,000 mi) of municipally ...
SEWER SEDIMENT AND CONTROL: A MANAGEMENT PRACTICES REFERENCES GUIDE
Sewer-solids sediment is one of major sources of pollutants in urban wet-weather flow (WWF) discharges that include combined-sewer overflow (CSO), separate sanitary-sewer overflow (SSO), and stormwater runoff. During low-flow, dry-weather periods, sanitary wastewater solids depo...
Locations of Combined Sewer Overflow Outfalls - US EPA Region 3
This data layer identifies the locations of Combined sewer overflow outfalls. Combined sewer systems are sewers that are designed to collect rainwater runoff, domestic sewage, and industrial wastewater in the same pipe. Most of the time, combined sewer systems transport all of their wastewater to a sewage treatment plant, where it is treated and then discharged to a water body. During periods of heavy rainfall or snowmelt, however, the wastewater volume in a combined sewer system can exceed the capacity of the sewer system or treatment plant. For this reason, combined sewer systems are designed to overflow occasionally and discharge excess untreated wastewater directly to nearby streams, rivers, or other water bodies. For further information visit: http://cfpub1.epa.gov/npdes/home.cfm?program_id=5
SSOAP - A USEPA Toolbox for Sanitary Sewer Overflow Analysis and Control Planning - Presentation
The United States Environmental Protection Agency (USEPA) has identified a need to use proven methodologies to develop computer tools that help communities properly characterize rainfall-derived infiltration and inflow (RDII) into sanitary sewer systems and develop sanitary sewer...
Focused Field Investigations for Sewer Condition Assessment with EPA SSOAP Toolbox
The Nation’s sanitary sewer infrastructure is aging, and is currently one of the top national water program priorities. The U.S. Environmental Protection Agency (EPA) developed the Sanitary Sewer Overflow Analysis and Planning (SSOAP) Toolbox to assist communities in developing ...
SANITARY-SEWER OVERFLOW CONTROL STRATEGY
This paper presents a strategy for the abatement of pollution from storm-generated sanitary-sewer overflows (SSO). Because of the great lengths of sanitary-sewer systems and their associated vast number of house-service laterals or building connections, it is often less expensive...
FLOCCULATION-FLOTATION AIDS FOR TREATMENT OF COMBINED SEWER OVERFLOWS
The objectives of this study were to investigate the flocculation/flotation characteristics of combined sewer overflow through laboratory and field testing. The concept involves the introduction of chemicals and buoyant flotation aids into the overflow and the subsequent cofloccu...
Sanitary sewer overflows (SSOs) occur when untreated sewage is discharged into water sources before reaching the treatment facility potentially contaminating them with gastrointestinal pathogens. Causes of SSOs include heavy rainfall and rupture/blockage of sewer lines. Few studi...
Focused Field Investigations for Sewer Condition Assessment with EPA SSOAP Toolbox - slides
The Nation’s sanitary sewer infrastructure is aging, and is currently one of the top national water program priorities. The U.S. Environmental Protection Agency (EPA) developed the Sanitary Sewer Overflow Analysis and Planning (SSOAP) Toolbox to assist communities in developing S...
CONTROL STRATEGY FOR STORM-GENERATED SANITARY-SEWER OVERFLOWS
This paper presents a strategy for the abatement of pollution from storm-generated sanitary-sewer overflows (SSO). Because of the great lengths of sanitary sewer systems, it is often less expensive to use alterantives to sewerline rehabilitation for infiltration/inflow (I/I) and ...
CONTROL STRATEGY FOR STORM-GENERATED SANITARY-SEWER OVERFLOWS
This paper presents a strategy for the abatement of pollution from storm-generated sanitary-sewer overflows (SSO). Because of the great lengths of sanitary-sewer systems and their associated vast number of house-service laterals or building connections, it is often less expensiv...
Control Strategy for Storm-Generated Sanitary Sewer Overflows
This presentation covers a strategy for the abatement of pollution from sanitary-sewer overflows (SSO). Because of the great lengths of sanitary sewer systems, it is often less expensive to use alternatives to sewerline rehabilitation for infiltration/inflow (I/I) and associated ...
Update on the Status of Sanitary Sewer Overflow Analysis and Planning (SSOAP) Toolbox
A properly designed, operated and maintained sanitary sewer system is meant to collect and convey all of the sewage that flows into it to a wastewater treatment plant. However, occasional unintentional discharges of raw sewage from municipal sanitary sewers – called sanitary sewe...
Focused Field Investigations for Sewer Condition Assessment with EPA SSOAP Toolbox - abstract
The Nation’s sanitary sewer infrastructure is aging, and it is currently one of the top national water program priorities, and is one of the top priorities of the U.S. Conference of Mayors. The U.S. Environmental Protection Agency developed the Sanitary Sewer Overflow Analysis a...
Martin, Jeffrey D.
1995-01-01
Concentrations of dissolved oxygen measured at the station in the middle of the combined-sewer overflows were less than the Indiana minimum ambient water-quality standard of 4.0 milligrams per liter during all storms. Concentrations of ammonia, oxygen demand, copper, lead, zinc, and fecal coliform bacteria at the stations downstream from the combined-sewer overflows were much higher in storm runoff than in base flow. Increased concentrations of oxygen demand in runoff probably were caused by combined-sewer overflows, urban runoff, and the resuspension of organic material deposited on the streambed. Some of the increased concentrations of lead, zinc, and probably copper can be attributed to the discharge and resuspension of filter backwash
Background: Combined sewer overflows (CSOs) occur in combined sewer systems when sewage and stormwater runoff discharge into waterbodies potentially contaminating water sources. CSOs are often caused by heavy precipitation and are expected to increase with increasing extreme pre...
Advanced Concepts Research Initiative
This initiative is investigating various approaches to controlling and treating wet-weather flow (WWF) discharges in the urban watershed. WWF, including combined sewer overflow (CSO), sanitary sewer overflow (SSO) and stormwater discharges are leading causes of receiving water q...
A Screening Assessment of the Potential Impacts of Climate ...
EPA announced the availability of the report, A Screening Assessment of the Potential Impacts of Climate Change on Combined Sewer Overflow (CSO) Mitigation in the Great Lakes and New England Regions. This report is a screening-level assessment of the potential implications climate change has had on combined sewer overflow (CSO) mitigation in the Great Lakes and New England Regions. This report describes the potential scope and magnitude of climate change impacts on combined sewer overflow (CSOs) mitigation efforts in the Great Lakes Region and New England Region.
USEPA CAPSTONE REPORT: DISINFECTION
Wet-weather flow (WWF), including combined-sewer overflow (CSO), sanitary-sewer overflow, and stormwater (SW) is a significant contributor of microbial contamination to surface water and ground water. Contamination with human-origin fecal coliform (FC) is of great concern for san...
VERIFICATION OF HIGH-RATE DISINFECTION TECHNOLOGIES FOR WET-WEATHER FLOWS
This paper describes the critical components of the USEPA's Environmental Technology Verification Program for two specific technologies categories: ultraviolet disinfection technologies for treating combined sewer overflow (CSO) and sanitary sewer overflow (SSO), and; induction m...
OPTIMIZATION OF COMBINED SEWER OVERFLOW CONTROL SYSTEMS
The highly variable and intermittent pollutant concentrations and flowrates associated with wet-weather events in combined sewersheds necessitates the use of storage-treatment systems to control pollution.An optimized combined-sewer-overflow (CSO) control system requires a manage...
MANAGEMENT OF COMBINED SEWER OVERFLOW: RESEARCH PROGRAM CAPSTONE
Combined-sewer overflow (CSO) is a mixture of urban storm drainage, municipal-industrial wastewater, and subterranean infiltration. Untreated discharges of CSOs have caused substantial pollution impacts on the quality of receiving-water bodies. Problem constituents include visi...
MANAGEMENT OF COMBINED SEWER OVERFLOW RESEARCH PROGRAM CAPSTONE
Combined-sewer overflow (CSO) is a mixture of urban storm drainage, municipal-industrial wastewater, and subterranean infiltration. Untreated discharges of CSOs have caused substantial pollution impacts on the quality of receiving-water bodies. Problem constituents include ...
Combined sewer overflows to surface waters detected by the anthropogenic marker caffeine.
Buerge, Ignaz J; Poiger, Thomas; Müller, Markus D; Buser, Hans-Rudolf
2006-07-01
Continuous progress in wastewater treatment technology and the growing number of households connected to wastewater treatment plants (WWTPs) have generally resulted in decreased environmental loading of many pollutants. Nonetheless, further reduction of pollutant inputs is required to improve the quality of surface waters in densely populated areas. In this context, the relative contribution of combined sewer overflows as sources of wastewater-derived contaminants has attracted more and more attention, but the quantitative importance of these overflows has barely been investigated. In this study, caffeine was successfully used as a chemical marker to estimate the fraction of sewer overflows in the catchment area of lake Greifensee, Switzerland. Caffeine is a ubiquitous compound in raw, domestic wastewater with typical per capita loads of approximately 16 mg person(-1) d(-1). In WWTPs of the Greifensee region, caffeine is largely eliminated (>99%), resulting in much smaller loads of < or = 0.15 mg person(-1) d(-1) in treated wastewater. However, in receiving streams as in the inflows to Greifensee, caffeine loads (0.1-1.6 mg person(-1) d(-1)) were higher than those in WWTP effluents, indicating additional sources. As the loads in the streams correlated with precipitation during sampling, it was concluded that combined sewer overflows were the most likely source of caffeine. Using a mass balance approach, it was possible to determine the fraction of wastewater (in dry weather equivalents) discharged untreated to the receiving streams (up to 10%, annual mean, approximately 2-3%). The concept of caffeine as a marker for combined sewer overflows was then applied to estimate phosphorus inputs to Greifensee with untreated and treated wastewater (approximately 1.5 and 2.0 t P y(-1), respectively), which corresponded well with P inputs determined in a separate study based on hydraulic considerations. For compounds with high elimination in WWTPs such as phosphorus (96-98% in the Greifensee area), inputs from combined sewer overflows are thus of similar magnitude as inputs from treated wastewater. The study demonstrated that caffeine is a suitable marker for untreated wastewater (from combined sewer overflows, direct discharges, etc.), but its sensitivity depends on regional conditions and decreases with decreasing elimination efficiency in WWTPs.
Emerging Contaminants in Wet-Weather Flow: Characterization and Treatability
An extensive literature review was conducted on the presence and magnitude of emerging contaminants (ECs) in wet-weather flow (WWF) including separate stormwater, combined sewer overflow (CSO), and sanitary sewer overflow (SSO). Although little information exists for stormwater ...
VERIFICATION OF HIGH-RATE DISINFECTION TECHNOLOGIES FOR WET-WEATHER FLOW APPLICATIONS
This paper describes the critical components of the USEPA's Environmental Technology Verification Program for two specific technologies categories: ultraviolet disinfection technologies for treating combined sewer overflow (CSO) and sanitary sewer overflow (SSO), and; and mechani...
HIGH-RATE DISINFECTION TECHNIQUES FOR COMBIND SEWER OVERFLOW
This paper presents high-rate disinfection technologies for combined sewer overflow (CSO). The high-rate disinfection technologies of interest are: chlorination/dechlorination, ultraviolet light irradiation (UV), chlorine dioxide (ClO2 ), ozone (O3), peracetic acid (CH3COOOH )...
Dynamics of rain-induced pollutographs of solubles in sewers.
Rutsch, M; Müller, I; Krebs, P
2005-01-01
When looking at acute receiving water impacts due to combined sewer overflows the characteristics of the background diurnal sewage flux variation may influence the peak loads from combined sewer overflows (CSO) and wastewater treatment plant (WWTP) effluent significantly. In this paper, effects on the dynamic compounds transported in the sewer, on CSO discharges and WWTP loading are evaluated by means of hydrodynamic simulations. The simulations are based on different scenarios for diurnal dry-weather flow variations induced by different infiltration rates.
EPA Office of Research and Development - I/I Research Information Update
The Nation’s sanitary sewer infrastructure is aging, and is currently one of the top national water program priorities. The U.S. Environmental Protection Agency (EPA) developed the Sanitary Sewer Overflow Analysis and Planning (SSOAP) Toolbox to assist communities in devel...
OVERVIEW OF EPA'S WET-WEATHER FLOW RESEARCH PROGRAM
Surface waters receive three types of urban wet-weather flow discharges: combined-sewer overflow (CSO), stormwater, and sanitary-sewer overflow (SSO); all are principally untreated discharges that occur during storm-flow events. WWFs have proven to generate a substantial amount o...
USING VISUAL PLUMES PREDICTIONS TO MODULATE COMBINED SEWER OVERFLOW (CSO) RATES
High concentrations of pathogens and toxic residues in creeks and rivers can pose risks to human health and ecological systems. Combined Sewer Overflows (CSOs) discharging into these watercourses often contribute significantly to elevating pollutant concentrations during wet weat...
Notification: Review of Atlanta Combined Sewer Overflow Consent Decree
Project #OPE-FY17-0014, March 30, 2017. The EPA OIG plans to begin a review of EPA Region 4’s oversight of the Atlanta combined sewer overflow consent decree. For more information, please click on the link above.
Urban Runoff and Combined Sewer Overflow.
ERIC Educational Resources Information Center
Field, Richard; Gardner, Bradford B.
1978-01-01
Presents a literature review of wastewater treatment, covering publications of 1976-77. This review includes areas such as: (1) urban runoff quality and quantity; (2) urban hydrology; (3) management practices; and (4) combined sewer overflows. A list of 140 references is also presented. (HM)
High-Rate Disinfection Techniques for Combined Sewer Overflow (Proceedings Paper)
This paper presents high-rate disinfection technologies for combined sewer overflow (CSO). The high-rate disinfection technologies of interest are: chlorination/dechlorination, ultraviolet light irradiation (UV), chlorine dioxide (ClO2 ), ozone (O3), peracetic acid (CH3COOOH ), a...
CHALLENGES OF COMBINED SEWER OVERFLOW DISINFECTION BY ULTRAVIOLET LIGHT IRRADIATION
This article examines the performance and effectiveness of ultraviolet (UV) light irradiation for disinfection of combined sewer overflow (CSO). Due to the negative impact of conventional water disinfectants on aquatic life, new agents (e.g., UV light) are being investigated for ...
Assessing, controlling, and treating combined-sewer overflows (CSO), sanitary sewer overflows (SSO), and urban stormwater runoff have become priorities for communities. Improved and cost effective treatment technologies are needed to reduce the adverse impacts that wet weather f...
PERFORMANCE OF OZONE AS A DISINFECTANT FOR COMBINED SEWER OVERFLOW
Disinfection of combined sewer overflow (CSO) minimizes the amount of disease-causing microorganisms (pathogens) released into receiving waters. Currently, the primary disinfecting agent used in the US for wastewater treatment is chlorine (Cl2); however, Cl2 produces problems in ...
SSOAP - A USEPA TOOLBOX FOR SSO ANALYSIS AND CONTROL PLANNING
Rainfall Derived Infiltration and Inflow (RDII) into sanitary sewer systems has long been recognized as a source of operating problems in sewerage systems. RDII is the main cause of sanitary sewer overflows (SSOs) to basements, streets, or nearby streams and can also cause seriou...
NASA Astrophysics Data System (ADS)
Pongmala, Khemngeun; Autixier, Laurène; Madoux-Humery, Anne-Sophie; Fuamba, Musandji; Galarneau, Martine; Sauvé, Sébastien; Prévost, Michèle; Dorner, Sarah
2015-12-01
Urban source water protection requires knowledge of sources of fecal contamination upstream of drinking water intakes. Combined and sanitary sewer overflows (CSOs and SSOs) are primary sources of microbiological contamination and wastewater micropollutants (WWMPs) in urban water supplies. To quantify the impact of sewer overflows, predictive simulation models are required and have not been widely applied for microbial contaminants such as fecal indicator bacteria and pathogens in urban drainage networks. The objective of this study was to apply a simulation model to estimate the dynamics of three contaminants in sewer overflows - total suspended solids, Escherichia coli (E. coli) and carbamazepine, a WWMP. A mixed combined and pseudo-sanitary drainage network in Québec, Canada was studied and modelled for a total of 7 events for which water quality data were available. Model results were significantly correlated with field water quality data. The model confirmed that the contributions of E. coli from runoff and sewer deposits were minor and their dominant source was from sewage. In contrast, the main sources of total suspended solids were stormwater runoff and sewer resuspension. Given that it is not present in stormwater, carbamazepine was found to be a useful stable tracer of sewage contributions to total contaminant loads and also provided an indication of the fraction of total suspended solids originating from sewer deposits because of its similar response to increasing flowrates.
ULTRAVIOLET LIGHT DISINFECTION OF COMBINED SEWER OVERFLOW (NEW ORLEANS)
The objective of this state-of-the-art review is to examine the performance and effectiveness of ultraviolet (UV) light disinfection for combined sewer overflow (CSO) applications. Topics presented include the use of UV light as a disinfecting agent, its practical applications, d...
APPROACH TO "FURTHER-REASONABLE-PROGRESS" TO ATTAIN WATER QUALITY STANDARDS
Watershed managers in urban areas in the US are pursuing optimum strategies or plans for managing wastewater treatment plants, stormwater systems, sanitary sewer overflows (SSO) and combined sewer overflows (CSO). Often these strategies are based on an iterative process or a "fur...
APPROACH TO "FURTHER-REASONABLE-PROGRESS" TO ATTAIN WATER QUALITY STANDARDS
Watershed managers in urban areas in the US are pursuing optimum strategies or plans for managing wastewater treatment plants, stormwater systems, sanitary sewer overflows (SSO) and combined sewer overflows (CSO). Often thes strategies are based on an iterative process or a "furt...
Enforcement to Address Sewer Overflows | Eliminating ...
2017-04-10
EPA's compliance goal is to eliminate sanitary sewer overflows (SSOs) from municipal collection systems and to ensure that wastewater is being conveyed to treatment plants in accordance with the requirements of the Clean Water Act. To eliminate SSOs, EPA uses a mix of compliance and enforcement tools.
Aziz, M A; Imteaz, M A; Huda, Nazmul; Naser, J
2014-01-01
After heavy rainfall, sewer overflow spills to receiving water bodies cause serious concern for the environment, aesthetics and public health. To overcome these problems this study investigated a new self-cleansing sewer overflow screening device. The device has a sewer overflow chamber, a rectangular tank and a slotted ogee weir to capture the gross pollutants. To design an efficient screening device a numerical computational fluid dynamic (CFD) model was used. A plausibility check of the CFD model was done using a one-dimensional analytical model. Results showed that an inlet parallel to the weir ensured better self-cleansing than an inlet perpendicular to the weir. Perforations should be at the bottom of the weir to get increased velocity and shear stress to create a favourable self-cleaning effect of the screening device. Increasing inlet length from 0.3 to 1.5 m reduced wave reflection up to 10%, which increased flow uniformity downstream and improved self-cleansing effect. The orientation of the ogee weir with the rectangular tank was found most uniform with a 1:3 (horizontal:vertical) slope. These results will help to maximise functional efficiency of the new sewer overflow screening device. Otherwise it would be too expensive to alter after installation and at times difficult to customise accordingly to existing urban drainage systems.
40 CFR 35.2024 - Combined sewer overflows.
Code of Federal Regulations, 2010 CFR
2010-07-01
... project priority list, it addresses impaired uses in priority water quality areas which are due to the... must demonstrate to the Administrator that the water quality goals of the Act will not be achieved... priority water quality areas in marine bays and estuaries due to the impacts of combined sewer overflows...
Demonstration of Green/Gray Infrastructure for Combined Sewer Overflow Control
This project is a major national demonstration of the integration of green and gray infrastructure for combined sewer overflow (CSO) control in a cost-effective and environmentally friendly manner. It will use Kansas City, MO, as a case example. The project will have a major in...
Water quality in the Mahoning River and selected tributaries in Youngstown, Ohio
Stoeckel, Donald M.; Covert, S. Alex
2002-01-01
The lower reaches of the Mahoning River in Youngstown, Ohio, have been characterized by the Ohio Environmental Protection Agency (OEPA) as historically having poor water quality. Most wastewater-treatment plants (WWTPs) in the watershed did not provide secondary sewage treatment until the late 1980s. By the late 1990s, the Mahoning River still received sewer-overflow discharges from 101 locations within the city of Youngstown, Ohio. The Mahoning River in Youngstown and Mill Creek, a principal tributary to the Mahoning River in Youngstown, have not met biotic index criteria since the earliest published assessment by OEPA in 1980. Youngstown and the OEPA are working together toward the goal of meeting water-quality standards in the Mahoning River. The U.S. Geological Survey collected information to help both parties assess water quality in the area of Youngstown and to estimate bacteria and inorganic nitrogen contributions from sewer-overflow discharges to the Mahoning River. Two monitoring networks were established in the lower Mahoning River: the first to evaluate hydrology and microbiological and chemical water quality and the second to assess indices of fish and aquatic-macroinvertebrate-community health. Water samples and water-quality data were collected from May through October 1999 and 2000 to evaluate where, when, and for how long water quality was affected by sewer-overflow discharges. Water samples were collected during dry- and wet-weather flow, and biotic indices were assessed during the first year (1999). The second year of sample collection (2000) was directed toward evaluating changes in water quality during wet-weather flow, and specifically toward assessing the effect of sewer-overflow discharges on water quality in the monitoring network. Water-quality standards for Escherichia coli (E. coli) concentration and draft criteria for nitrate plus nitrite and total phosphorus were the regulations most commonly exceeded in the Mahoning River and Mill Creek sampling networks. E. coli concentrations increased during wet-weather flow and remained higher than dry-weather concentrations for 48 hours after peak flow. E. coli concentration criteria were more commonly exceeded during wet-weather flow than during dry-weather flow. Exceedances of nutrient-concentration criteria were not substantially more common during wet-weather flow. The fish and aquatic macroinvertebrate network included Mill Creek and its tributaries but did not include the main stem of the Mahoning River. Persistent exceedances of chemical water-quality standards in Mill Creek and the presence of nutrient concentrations in excess of draft criteria may have contributed to biotic index scores that on only one occasion met State criteria throughout the fish and aquatic macroinvertebrate sampling network. Monitored tributary streams did not contribute concentrations of E. coli, nitrate plus nitrite, or total phosphorus to the Mahoning River and Mill Creek that were higher than main-stem concentrations, but monitored WWTP and sewer-overflow discharges did contribute. Twenty-four hour load estimates of sewer-overflow discharge contributions during wet-weather flow indicated that sewer-overflow discharges contributed large loads of bacteria and inorganic nitrogen to the Mahoning River relative to the instream load. The sewer-overflow loads appeared to move as a slug of highly enriched water that passed through Youngstown on the rising limb of the storm hydrograph. The median estimated sewer-overflow load contribution of bacteria was greater than the estimated instream load by a factor of five or more; however, the median estimated sewer-overflow load of inorganic nitrogen was less than half of the estimated instream load. Sewer-overflow discharges contributed loads of E. coli and nutrients to the Mahoning River and Mill Creek at a point where the streams already did not meet State water-quality regulations. Improvement of water quality of
PLANNING FOR SSO CONTROL: HENRICO COUNTY, VA - CASE STUDY
The nation's sanitary-sewer infrastructure is aging with some sewers over 100 years. There are more than 19,500 municipal sanitary-sewer collecton systems nationwide serving 150M people comprising 500,000 sewer miles. About 40,000 sanitary-sewer overflow (SSO) events nationwide y...
THE CHOICE OF REAL-TIME CONTROL STRATEGY FOR COMBINED SEWER OVERFLOW CONTROL
This paper focuses on the strategies used to operate a collection system in real-time control (RTC) in order to optimize use of system capacity and to reduce the cost of long-term combined sewer overflow (CSO) control. Three RTC strategies were developed and analyzed based on the...
This policy addresses significant noncompliance (SNC) violations associated with combined sewer overflows (CSOs), sanitary sewer overflows (SSOs), concentrated animal feeding operations (CAFOs), and storm water point source discharges covered by the National Pollutant Discharge Elimination System (NPDES) program under the Clean Water Act (CWA).
HIGH-RATE DISINFECTION OF COMBINED SEWER OVERFLOW USING CHLORINE DIOXIDE
This presentation is a state-of-the-art review of chlorine dioxide (ClO2) used for high-rate disinfection of combined sewer overflow (CSO). The review includes bench-, pilot-, and fullscale studies on the use of ClO2 as a disinfecting agent for a variety of wastewaters. Specific ...
Maté Marín, Ainhoa; Rivière, Nicolas; Lipeme Kouyi, Gislain
2018-06-01
In the past ten years, governments from the European Union have been encouraged to collect volume and quality data for all the effluent overflows from separated stormwater and combined sewer systems that result in a significant environmental impact on receiving water bodies. Methods to monitor and control these flows require improvements, particularly for complex Combined Sewer Overflow (CSO) structures. The DSM-flux (Device for Stormwater and combined sewer flows Monitoring and the control of pollutant fluxes) is a new pre-designed and pre-calibrated channel that provides appropriate hydraulic conditions suitable for measurement of overflow rates and volumes by means of one water level gauge. In this paper, a stage-discharge relation for the DSM-flux is obtained experimentally and validated for multiple inflow hydraulic configurations. Uncertainties in CSO discharges and volumes are estimated within the Guide to the expression of Uncertainty in Measurement (GUM) framework. Whatever the upstream hydraulic conditions are, relative uncertainties are lower than 15% and 2% for the investigated discharges and volumes, respectively. Copyright © 2018 Elsevier Ltd. All rights reserved.
Gervin, L; Brix, H
2001-01-01
Lake Utterslev is situated in a densely built-up area of Copenhagen, and is heavily eutrophicated from combined sewer overflows. At the same time the lake suffers from lack of water. Therefore, a 5,000 m2 vertical flow wetland system was constructed in 1998 to reduce the phosphorus discharge from combined sewer overflows without reducing the water supply to the lake. During dry periods the constructed wetland is used to remove phosphorus from the lake water. The system is designed as a 90 m diameter circular bed with a bed depth of c. 2 m. The system is isolated from the surroundings by a polyethylene membrane. The bed medium consists of a mixture of gravel and crushed marble, which has a high binding capacity for phosphorus. The bed is located within the natural littoral zone of the lake and is planted with common reed (Phragmites australis). The constructed wetland is intermittently loaded with combined sewer overflow water or lake water and, after percolation through the bed medium, the water is collected in a network of drainage pipes at the bottom of the bed and pumped to the lake. The fully automated loading cycle results in alternating wet and dry periods. During the initial two years of operation, the phosphorus removal for combined sewer overflows has been consistently high (94-99% of inflow concentrations). When loaded with lake water, the phosphorus removal has been high during summer (71-97%) and lower during winter (53-75%) partly because of lower inlet concentrations. Effluent phosphorus concentrations are consistently low (0.03-0.04 mg/L). Ammonium nitrogen is nitrified in the constructed wetland, and total suspended solids and COD are generally reduced to concentrations below 5 mg/L and 25 mg/L, respectively. The study documents that a subsurface flow constructed wetland system can be designed and operated to effectively remove phosphorus and other pollutants from combined sewer overflows and eutrophicated lake water.
FLUSHING FOR SEWER SEDIMENT, CORROSION, AND POLLUTION CONTROL
This presentation overviews causes of sewer deterioration and heavy pollutant discharges caused by rain events together with a discussion of their control methods. In particular, it covers in-sewer- and combined sewer overflow- (CSO-) storage-tank-flushing systems for removal of ...
In the United States, sanitary sewer infrastructure is aging, with some sewers dating back over 100 years. Nationwide, there are more than 19,500 municipal sanitary-sewer collection systems serving an estimated 150 million people and about 40,000 sanitary sewer overflow (SSO) ev...
U.S. EPA Issues Technical Guides and Computer Tools for Sewer Condition and Capacity Assessment
The nation's sanitary sewer infrastructure is aging, with some sewers more than100 years old. Nationwide, there are more than 19,500 municipal sanitary-sewer collection systems serving an estimated 150 million people and about 40,000 sanitary sewer overflow (SSO) events per year...
Klepiszewski, K; Schmitt, T G
2002-01-01
While conventional rule based, real time flow control of sewer systems is in common use, control systems based on fuzzy logic have been used only rarely, but successfully. The intention of this study is to compare a conventional rule based control of a combined sewer system with a fuzzy logic control by using hydrodynamic simulation. The objective of both control strategies is to reduce the combined sewer overflow volume by an optimization of the utilized storage capacities of four combined sewer overflow tanks. The control systems affect the outflow of four combined sewer overflow tanks depending on the water levels inside the structures. Both systems use an identical rule base. The developed control systems are tested and optimized for a single storm event which affects heterogeneously hydraulic load conditions and local discharge. Finally the efficiencies of the two different control systems are compared for two more storm events. The results indicate that the conventional rule based control and the fuzzy control similarly reach the objective of the control strategy. In spite of the higher expense to design the fuzzy control system its use provides no advantages in this case.
Identification of in-sewer sources of organic solids contributing to combined sewer overflows.
Ahyerre, M; Chebbo, G
2002-09-01
Previous research has shown that combined sewer systems are the main source of particle and organic pollution during rainfall events contributing to combined sewer overflow. The aim of this article is to identify in an urban catchment area called "Le Marais", in the center of Paris, the types of sediments that are eroded and contribute to the pollution of combined sewer overflow. Three sediment types are considered: granular material found in the inverts of pipes, organic biofilms and organic sediment at the water bed interface, identified as an immobile layer in the "Le Marais" catchment area. The method used consist, firstly, of sampling and assessing the organic pollutant loads and metallic loads of the particles in each type of sediment. Then, the mass of each type of sediment is assessed. The mass and the characteristics of each type of sediment is finally compared to the mass and characteristics of the particles eroded in the catchment area, estimated by mass balances, in order to find the source of eroded particles. The only identified type of deposit that can contribute to combined sewer overflows is the organic layer. Indeed, the solids of this layer have mean and metallic loads that are of the same order of magnitude as the eroded particles. Moreover, the mass of the organic layer considered over different time scales is of the same order of magnitude as the eroded masses during rainfall events and an erosion experiment showed that the organic layer is actually eroded.
EPA SSOAP Toolbox – Evolution and Applications
The nation’s sanitary sewer infrastructure is aging, with some sewers dating back more than 100 years. Nationwide, there are more than 19,500 municipal sanitary-sewer collection systems serving an estimated 150 million people and about 40,000 sanitary sewer overflow (SSO) ...
FLUSHING FOR SEWER SEDIMENT, CORROSION, AND POLLUTION CONTROL
This paper overviews causes of combined-sewer deterioration and their heavy pollutant discharges caused by rain events together with a discussion of their control methods. In particular, it covers in-sewer and combined-sewer overflow (CSO) storage-tank-flushing systems for removi...
Evaluation of effectiveness of combined sewer overflow control measures by operational data.
Schroeder, K; Riechel, M; Matzinger, A; Rouault, P; Sonnenberg, H; Pawlowsky-Reusing, E; Gnirss, R
2011-01-01
The effect of combined sewer overflow (CSO) control measures should be validated during operation based on monitoring of CSO activity and subsequent comparison with (legal) requirements. However, most CSO monitoring programs have been started only recently and therefore no long-term data is available for reliable efficiency control. A method is proposed that focuses on rainfall data for evaluating the effectiveness of CSO control measures. It is applicable if a sufficient time-series of rainfall data and a limited set of data on CSO discharges are available. The method is demonstrated for four catchments of the Berlin combined sewer system. The analysis of the 2000-2007 data shows the effect of CSO control measures, such as activation of in-pipe storage capacities within the Berlin system. The catchment, where measures are fully implemented shows less than 40% of the CSO activity of those catchments, where measures have not yet or not yet completely been realised.
EPA announced the availability of the report, A Screening Assessment of the Potential Impacts of Climate Change on Combined Sewer Overflow (CSO) Mitigation in the Great Lakes and New England Regions. This report is a screening-level assessment of the potential implications...
Bendel, David; Beck, Ferdinand; Dittmer, Ulrich
2013-01-01
In the presented study climate change impacts on combined sewer overflows (CSOs) in Baden-Wuerttemberg, Southern Germany, were assessed based on continuous long-term rainfall-runoff simulations. As input data, synthetic rainfall time series were used. The applied precipitation generator NiedSim-Klima accounts for climate change effects on precipitation patterns. Time series for the past (1961-1990) and future (2041-2050) were generated for various locations. Comparing the simulated CSO activity of both periods we observe significantly higher overflow frequencies for the future. Changes in overflow volume and overflow duration depend on the type of overflow structure. Both values will increase at simple CSO structures that merely divide the flow, whereas they will decrease when the CSO structure is combined with a storage tank. However, there is a wide variation between the results of different precipitation time series (representative for different locations).
The nation’s sanitary sewer infrastructure is aging, with some sewers dating back more than 100 years. Nationwide, there are more than 19,500 municipal sanitary-sewer collection systems serving an estimated 150 million people and about 40,000 sanitary sewer overflow (SSO) events ...
EPA SSOAP Toolbox Application for Condition and Capacity Assessment of Wastewater Collection Systems
The Nation’s sanitary sewer infrastructure is aging, with some sewers dating back over 100 years. Nationwide, there are more than 19,500 municipal sanitary-sewer collection systems serving an estimated 150 million people and about 40,000 sanitary sewer overflow (SSO) events per ...
URBAN WET-WEATHER FLOW MANAGEMENT: RESEARCH DIRECTIONS
There are three types of urban wet-weather flow (WWF) discharges: 1) combined-sewer overflow (CSO), which is a mixture of storm drainage and municipal-industrial wastewater discharged from combined sewers or dry-weather flow discharged from combined sewers due to clogged intercep...
Assessment of spill flow emissions on the basis of measured precipitation and waste water data
NASA Astrophysics Data System (ADS)
Hochedlinger, Martin; Gruber, Günter; Kainz, Harald
2005-09-01
Combined sewer overflows (CSOs) are substantial contributors to the total emissions into surface water bodies. The emitted pollution results from dry-weather waste water loads, surface runoff pollution and from the remobilisation of sewer deposits and sewer slime during storm events. One possibility to estimate overflow loads is a calculation with load quantification models. Input data for these models are pollution concentrations, e.g. Total Chemical Oxygen Demand (COD tot), Total Suspended Solids (TSS) or Soluble Chemical Oxygen Demand (COD sol), rainfall series and flow measurements for model calibration and validation. It is important for the result of overflow loads to model with reliable input data, otherwise this inevitably leads to bad results. In this paper the correction of precipitation measurements and the sewer online-measurements are presented to satisfy the load quantification model requirements already described. The main focus is on tipping bucket gauge measurements and their corrections. The results evidence the importance of their corrections due the effects on load quantification modelling and show the difference between corrected and not corrected data of storm events with high rain intensities.
Review of Sewer Design Criteria and RDII Prediction Methods
Rainfall-derived Infiltration and Inflow (RDII) into sanitary sewer systems has long been recognized as a source of operating problems in sewerage systems. RDII is the main cause of sanitary sewer overflows (SSOs) to basements, streets, or nearby streams and can also cause serio...
SEWER AND TANK FLUSHING FOR CORROSION AND POLLUTION CONTROL
This paper presents an overview of the causes of sewer deterioration and control methods that can prevent or arrest this deterioration. articular, the paper addresses the use of inline- and combined sewer overflow (CSO) storage tank-flushing systems for removing sediments and mi...
SEWER AND TANK FLUSHING FOR SEDIMENT, CORROSION AND POLLUTION CONTROL
This paper presents an overview of causes of sewer deterioration together with a discussion of control methods that can prevent or arrest this deterioration. In particular, the paper covers inline- and combined sewer overflow- (CSO) storage-tank-flushing systems for removal of se...
Sewer solids separation by sedimentation--the problem of modeling, validation and transferability.
Kutzner, R; Brombach, H; Geiger, W F
2007-01-01
Sedimentation of sewer solids in tanks, ponds and similar devices is the most relevant process for the treatment of stormwater and combined sewer overflows in urban collecting systems. In the past a lot of research work was done to develop deterministic models for the description of this separation process. But these modern models are not commonly accepted in Germany until today. Water Authorities are sceptical with regard to model validation and transferability. Within this paper it is checked whether this scepticism is reasonable. A framework-proposal for the validation of mathematical models with zero or one dimensional spatial resolution for particle separation processes for stormwater and combined sewer overflow treatment is presented. This proposal was applied to publications of repute on sewer solids separation by sedimentation. The result was that none of the investigated models described in literature passed the validation entirely. There is an urgent need for future research in sewer solids sedimentation and remobilization!
Flood Grouting for Infiltration Reduction on Private Side Sewers (WERF Report INFR5R11)
The sewers in Seattle’s Broadview neighborhood, built in the 1950s, experience significant inflow and infiltration. Intense wet weather events have resulted in sewer overflows into private residences and the environment and previous work indicates that the majority of this excess...
Focused Field Investigations for Sewer Condition Assessment with EPA SSOAP Toolbox
The Nation’s sanitary sewer infrastructure is aging, and it is currently one of the top national water program priorities, and is one of the top priorities of the U.S. Conference of Mayors. The U.S. Environmental Protection Agency (EPA) developed the Sanitary Sewer Overflow Anal...
Moving towards Total Water Management
The presentation will discuss the following topics: Stormwater Best Management Practice (BMP) Placement (SUSTAIN); Sanitary Sewer Overflow Toolbox (SSOAP); BMP and Low Impact Development (LID) Performance; Green/Grey Infrastructure for Stormwater; Combined Sewers and Reuse; Infra...
A vision-based tool for the control of hydraulic structures in sewer systems
NASA Astrophysics Data System (ADS)
Nguyen, L.; Sage, D.; Kayal, S.; Jeanbourquin, D.; Rossi, L.
2009-04-01
During rain events, the total amount of the wastewater/storm-water mixture cannot be treated in the wastewater treatment plant; the overflowed water goes directly into the environment (lakes, rivers, streams) via devices called combined sewers overflows (CSOs). This water is untreated and is recognized as an important source of pollution. In most cases, the quantity of overflowed water is unknown due to high hydraulic turbulences during rain events; this quantity is often significant. For this reason, the monitoring of the water flow and the water level is of crucial environmental importance. Robust monitoring of sewer systems is a challenging task to achieve. Indeed, the environment inside sewers systems is inherently harsh and hostile: constant humidity of 100%, fast and large water level changes, corrosive atmosphere, presence of gas, difficult access, solid debris inside the flow. A flow monitoring based on traditional probes placed inside the water (such as Doppler flow meter) is difficult to conduct because of the solid material transported by the flow. Probes placed outside the flow such as ultrasonic water level probes are often used; however the measurement is generally done on only one particular point. Experience has shown that the water level in CSOs during rain events is far from being constant due to hydraulic turbulences. Thus, such probes output uncertain information. Moreover, a check of the data reliability is impossible to achieve. The HydroPix system proposes a novel approach to the monitoring of sewers based on video images, without contact with the water flow. The goal of this system is to provide a monitoring tool for wastewater system managers (end-users). The hardware was chosen in order to suit the harsh conditions of sewers system: Cameras are 100% waterproof and corrosion-resistant; Infra-red LED illumination systems are used (waterproof, low power consumption); A waterproof case contains the registration and communication system. The monitoring software has the following requirements: visual analysis of particular hydraulic behavior, automatic vision-based flow measurements, automatic alarm system for particular events (overflows, risk of flooding, etc), database for data management (images, events, measurements, etc.), ability to be controlled remotely. The software is implemented in modular server/client architecture under LabVIEW development system. We have conducted conclusive in situ tests in various sewers configurations (CSOs, storm-water sewerage, WWTP); they have shown the ability of the HydroPix to perform accurate monitoring of hydraulic structures. Visual information demonstrated a better understanding of the flow behavior in complex and difficult environment.
Huang, Chengchen; Hu, Yue; Wang, Lin; Wang, Yuanfei; Li, Na; Guo, Yaqiong; Xiao, Lihua
2017-01-01
ABSTRACT The environmental transport of Cryptosporidium spp. through combined sewer overflow (CSO) and the occurrence of several emerging human-pathogenic Cryptosporidium species in developing countries remain unclear. In this study, we collected 40 CSO samples and 40 raw wastewater samples from Shanghai, China, and examined them by PCR and DNA sequencing for Cryptosporidium species (targeting the small subunit rRNA gene) and Giardia duodenalis (targeting the triosephosphate isomerase, β-giardin, and glutamate dehydrogenase genes) and Enterocytozoon bieneusi (targeting the ribosomal internal transcribed spacer) genotypes. Human-pathogenic Cryptosporidium species were further subtyped by sequence analysis of the 60-kDa glycoprotein gene, with additional multilocus sequence typing on the emerging zoonotic pathogen Cryptosporidium ubiquitum. Cryptosporidium spp., G. duodenalis, and E. bieneusi were detected in 12 and 15, 33 and 32, and 37 and 40 CSO and wastewater samples, respectively, including 10 Cryptosporidium species, 3 G. duodenalis assemblages, and 8 E. bieneusi genotypes. In addition to Cryptosporidium hominis and Cryptosporidium parvum, two new pathogens identified in industrialized nations, C. ubiquitum and Cryptosporidium viatorum, were frequently detected. The two novel C. ubiquitum subtype families identified appeared to be genetic recombinants of known subtype families. Similarly, the dominant group 1 E. bieneusi genotypes and G. duodenalis subassemblage AII are known human pathogens. The similar distribution of human-pathogenic Cryptosporidium species and E. bieneusi and G. duodenalis genotypes between wastewater and CSO samples reaffirms that storm overflow is potentially a significant contamination source of pathogens in surface water. The frequent identification of C. ubiquitum and C. viatorum in urban wastewater suggests that these newly identified human pathogens may be endemic in China. IMPORTANCE Cryptosporidium spp., Giardia duodenalis, and Enterocytozoon bieneusi are major waterborne pathogens. Their transport into surface water through combined sewer overflow, which remains largely untreated in developing countries, has not been examined. In addition, the identification of these pathogens to genotypes and subtypes in urban storm overflow and wastewater is necessary for rapid and accurate assessment of pathogen transmission in humans and transport in the environment. Data from this study suggest that, like untreated urban wastewater, combined sewer overflow is commonly contaminated with human-pathogenic Cryptosporidium, G. duodenalis, and E. bieneusi genotypes and subtypes, and urban storm overflow potentially plays a significant role in the contamination of drinking source water and recreational water with human pathogens. They also indicate that Cryptosporidium ubiquitum and Cryptosporidium viatorum, two newly identified human pathogens, may be common in China, and genetic recombination can lead to the emergence of novel C. ubiquitum subtype families. PMID:28600310
NASA Astrophysics Data System (ADS)
Luo, H.; Schmidt, A.; Garcia, M. H.; Oberg, N.
2016-12-01
The impact of changing climate patterns and rainfall extremes on sewer system and river basin has been brought to attention to the researchers worldwide. In 1972, the Metropolitan Water Reclamation District of Greater Chicago (MWRDGC) adopted the Tunnel and Reservoir Plan (TARP) to address combined sewer overflow (CSO) pollution and flooding problems in the Chicago land area. The hydrosystem laboratory in University of Illinois at Urbana-Champaign developed a series of numerical models accordingly to analyze the complex hydraulic behavior of the as-built TARP system. Due to the interconnected nature of City of Chicago sewer network and MS/DP TARP system, a tightly coupled hydrological and hydraulic model MetroFlow was developed to facilitate such analysis by integrating previous developed models. This study utilized MetroFlow to predict the hydrologic/hydraulic response of the system for a set of pre-determined design and historical storm events. Accordingly, combined sewer overflows (CSO) of Chicago combined sewer system and MS/DP TARP system were evaluated under current and future weather scenarios. The total CSOs from TARP system can be considered as urban point pollution source to the surrounding receiving bodies, hence the potential impact of climate change on CSO fluxes is essential reference to wastewater infrastructure design and operations of the hydraulic regulating structures under storm events to mitigate predicted risks.
Mauricio-Iglesias, Miguel; Montero-Castro, Ignacio; Mollerup, Ane L; Sin, Gürkan
2015-05-15
The design of sewer system control is a complex task given the large size of the sewer networks, the transient dynamics of the water flow and the stochastic nature of rainfall. This contribution presents a generic methodology for the design of a self-optimising controller in sewer systems. Such controller is aimed at keeping the system close to the optimal performance, thanks to an optimal selection of controlled variables. The definition of an optimal performance was carried out by a two-stage optimisation (stochastic and deterministic) to take into account both the overflow during the current rain event as well as the expected overflow given the probability of a future rain event. The methodology is successfully applied to design an optimising control strategy for a subcatchment area in Copenhagen. The results are promising and expected to contribute to the advance of the operation and control problem of sewer systems. Copyright © 2015 Elsevier Ltd. All rights reserved.
Mouri, Goro; Oki, Taikan
2010-01-01
Understanding of solids deposition, erosion, and transport processes in sewer systems has improved considerably in the past decade. This has provided guidance for controlling sewer solids and associated acute pollutants to protect the environment and improve the operation of wastewater systems. Although measures to decrease combined sewer overflow (CSO) events have reduced the amount of discharged pollution, overflows continue to occur during rainy weather in combined sewer systems. The solution lies in the amount of water allotted to various processes in an effluent treatment system, in impact evaluation of water quality and prediction technology, and in stressing the importance of developing a control technology. Extremely contaminated inflow has been a serious research subject, especially in connection with the influence of rainy weather on nitrogen and organic matter removal efficiency in wastewater treatment plants (WWTP). An intensive investigation of an extremely polluted inflow load to WWTP during rainy weather was conducted in the city of Matsuyama, the region used for the present research on total suspended solid (TSS) concentration. Since the inflow during rainy weather can be as much as 400 times that in dry weather, almost all sewers are unsettled and overflowing when a rain event is more than moderate. Another concern is the energy consumed by wastewater treatment; this problem has become important from the viewpoint of reducing CO(2) emissions and overall costs. Therefore, while establishing a prediction technology for the inflow water quality characteristics of a sewage disposal plant is an important priority, the development of a management/control method for an effluent treatment system that minimises energy consumption and CO(2) emissions due to water disposal is also a pressing research topic with regards to the quality of treated water. The procedure to improve water quality must make use of not only water quality and biotic criteria, but also modelling systems to enable the user to link the effect of changes in urban sewage systems with specific quality, energy consumption, CO(2) emission, and ecological improvements of the receiving water.
Toxicity and pollutant impact analysis in an urban river due to combined sewer overflows loads.
Casadio, A; Maglionico, M; Bolognesi, A; Artina, S
2010-01-01
The Navile Channel (Bologna, Italy) is an ancient artificial water course derived from the Reno river. It is the main receiving water body for the urban catchment of Bologna sewer systems and also for the Waste Water Treatment Plant (WWTP) main outlet. The aim of this work is to evaluate the Combined Sewer Overflows (CSOs) impact on Navile Channel's water quality. In order to collect Navile flow and water quality data in both dry and wet weather conditions, two measuring and sampling stations were installed, right upstream and downstream the WWTP outflow. The study shows that even in case of low intensity rain events, CSOs have a significant effect on both water quantity and quality, spilling a considerable amount of pollutants into the Navile Channel and presenting also acute toxicity effects. The collected data shown a good correlations between the concentrations of TSS and of chemical compounds analyzed, suggesting that the most part of such substances is attached to suspended solids. Resulting toxicity values are fairly high in both measuring points and seem to confirm synergistic interactions between heavy metals.
Peters, C; Keller, S; Sieker, H; Jekel, M
2007-01-01
River Panke (Berlin, Germany) suffers from hydraulic peak loads and pollutant loads from separate sewers and combined sewer overflows (CSOs). Pumping the wastewater through long pressure pipes causes extreme peak loads to the wastewater treatment plant (WWTP) during stormwater events. In order to find a good solution, it is essential not to decide on one approach at the beginning, but to evaluate a number of different approaches. For this reason, an integrated simulation study is carried out, assessing the potentials of real time control (RTC), stormwater infiltration, storage and urine separation. Criteria for the assessment are derived and multi-criteria analysis is applied. Despite spatial limitations, infiltration has the highest potential and is very effective with respect to both overflows and the WWTP. Due to a high percentage of separate systems, urine separation has a similar potential and causes the strongest benefits at the WWTP. Unconventional control strategies can lead to significant improvement (comparable to infiltrating the water from approximately 10% of the sealed area).
COLLABORATIVE RESEARCH ON URBAN BEST MANAGEMENT PRACTICES
Storm driven wet weather flow (WWF) which includes combined sewer and sanitary sewer overflows and stormwater discharges are a leading cause of water-quality impairment. Problem constituents in WWF include pathogens, solids, nutrients, and toxicants. New technologies to control...
OPIMIZATION OF COMBINED SEWER OVERFLOW CONTROL SYSTEMS
The highly variable and intermittent pollutant concentrations and flowrates associated with wet-weather events in combined sewersheds necessitates the use of storage-treatment systems to control pollution. A strategy should be adopted to develop an optimized combined sewer overfl...
STORAGE/SEDIMENTATION FACILITIES FOR CONTROL OF STORM AND COMBINED SEWER OVERFLOW: DESIGN MANUAL
This manual describes applications of storage facilities in wet-weather flow management and presents step-by-step procedures for analysis and design of storage-treatment facilities. Retention, detention, and sedimentation storage information is classified and described. Internati...
URBAN RUNOFF POLLUTION CONTROL - STATE-OF-THE-ART
Combined sewer overflows are major sources of water pollution problems, but even discharges of stormwater alone can seriously affect water quality. Current approaches involve control of overflows, treatment, and combinations of the two. Control may involve maximizing treatment wi...
76 FR 63954 - Notice of Lodging of Consent Decree Under the Clean Water Act
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-14
... overflows and correcting the effluent limitation violations. The City will comply with a mutually agreed... report on the status of any overflows from the Combined Sewer System (``CSS'') and their duration and...
Activities of Combined Sewer Overflows: A Comparison of Measured and Computed Data
NASA Astrophysics Data System (ADS)
Ostrowski, M. W.; Koch, J.; Wetzstein, A.
In order to relieve sewerage systems of excess stormwaters during heavy rainfalls overflow structures are necessary for a safe operation of urban drainage and wastew- ater treatment facilities. Overflow tanks have storage effects while pure overflows di- vide the discharges and route the excess water in the next watercourse. The outflows from combined sewage overflows can evoke significant effects on the receiving waters. Hydraulic effects ("hydraulic stress") result from the additional discharges, which are generally introduced at a single point. Toxic effects are caused by the pollutant load of the decanted discharges. In awareness of these effects an immission based consid- eration is required. The lack of reliable, measurement based data is obvious, although the generally accepted necessity of those is noted in recent research projects and regu- lations of public authorities. An immission based view necessitates data regarding the amount, number and duration of the overflows. Particularly with regard to the storm overflows this data is mostly achieved by means of computational simulations. The lack of measured data is the consequence of the adverse conditions in sewer pipes and the complex hydraulic situation at the overflow structures. Reliable data is necessary for the verification, the validation and the improvement of hydrological models. Within the scope of a research project, carried out in the section for Hydrology and Water Management of the Technical University of Darmstadt, a storm overflow was equipped with measuring devices. Aims of the investigations were to discover the limiting boundary conditions in measuring sewer discharges and to record reliable data, concerning the overflow activities of the observed structure. The measured data should be compared with the results of the model SMUSI, which is an evaluation model of the public authorities in the federal state of Hesse, Germany. It is the objective of the presentation to - specify the implementation and the perfor- mance of the measurement site - describe the processing and evaluation of the mea- suring data - compare the measured data with the computed data based on SMUSI simulations - discuss the opportunities and boundaries of measuring in urban hydro- logical systems regarding new approaches (measuring, modelling, managing) as well as the attainable accurracies of measurement.
U.S. EPA CSO CAPSTONE REPORT: CONTROL SYSTEM OPTIMIZATION
An optimized combined sewer overflow (CSO) requires a storage treatment system because storm flow in the combined sewer system is intermittent and highly variable in both pollutant concentration and flow rate. Storage and treatment alternatives are strongly influenced by input...
78 FR 41803 - Notice of Lodging of Proposed Amendment to Consent Decree Under the Clean Water Act
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-11
... original 2012 consent decree, the Metropolitan St. Louis Sewer District (``MSD'') agreed to undertake... specific combined sewer overflow control measures. MSD still is in the process of complying with the 2012...
Monitoring in inline storage sewers for stormwater treatment to determine efficiencies.
Frehmann, T; Mietzel, T; Kutzner, R; Spengler, B; Geiger, W F
2004-01-01
A special structure of combined sewer overflow tanks is the inline storage sewer with downstream discharge (SKU). This layout has the advantage that besides the sewer system, no other structures are required for storm water treatment. Consequently only very little space is required and compared to combined sewer overflow tanks, there is an enormous potential in reducing costs during construction. To investigate the efficiency of an inline storage sewer, a monitoring station was established in Dortmund-Scharnhorst, Germany. The monitoring station was in operation for a period of 2.5 years. Within this period water samples were taken during a total of 20 discharge events. Besides the complete hydraulic data collection, seven water samplers took more than 5,000 water samples during dry and wet weather. This adds up to a total of more than 20,000 individual lab analyses. The average of the total efficiency for the SKU-West is 86%. 29% of this efficiency can be attributed to the throttle flow. The remaining 57% can be divided into a part of 48% that can be attributed to the process storage and 9% that can be attributed to sedimentation and erosion process.
Detention storage volume for combined sewer overflow into a river.
Temprano, J; Tejero, I
2002-06-01
This article discusses the storage volume needed in a combined sewer system tank in order to preserve the water quality. There are a lot of design criteria which do not take into account the conditions of the receiving water, and as a result are inappropriate. A model was used to simulate the performance of a theoretical combined sewer system where a tank was located downstream. Results were obtained from the overflows produced by the rain recorded in Santander (Spain) for 11 years, with several combinations of storage volume and treatment capacity in the wastewater treatment plant. Quality criteria were also proposed for faecal coliforms, BOD, and total nitrogen to evaluate the effects from the overflows in the river water quality. Equations have been obtained which relate the number of overflows, the storage volume and the treatment plant capacity. The bacteriological pollution, quantified by means of faecal coliforms, was the analytical parameter which produced the most adverse effects in the river, so that more storage volume is needed (45 to 180 m3 ha(-1) net) than with other simulated pollutants (5 to 50 m3 ha(-1) net for BOD, and less than 4 m3 ha(-1) net for the total nitrogen). The increase in the treatment plant's capacity, from two to three times the flow in dry weather, reduces the impact on the river water in a more effective way, allowing a reduction of up to 65% in the number of overflows rather than increasing the storage volume.
Use long short-term memory to enhance Internet of Things for combined sewer overflow monitoring
NASA Astrophysics Data System (ADS)
Zhang, Duo; Lindholm, Geir; Ratnaweera, Harsha
2018-01-01
Combined sewer overflow causes severe water pollution, urban flooding and reduced treatment plant efficiency. Understanding the behavior of CSO structures is vital for urban flooding prevention and overflow control. Neural networks have been extensively applied in water resource related fields. In this study, we collect data from an Internet of Things monitoring CSO structure and build different neural network models for simulating and predicting the water level of the CSO structure. Through a comparison of four different neural networks, namely multilayer perceptron (MLP), wavelet neural network (WNN), long short-term memory (LSTM) and gated recurrent unit (GRU), the LSTM and GRU present superior capabilities for multi-step-ahead time series prediction. Furthermore, GRU achieves prediction performances similar to LSTM with a quicker learning curve.
US EPA CSO CAPSTONE REPORT: THE CSO PROBLEM
The history of combined sewer systems (CSS) and combined sewer overflows (CSOs) in the US provides unique insights into the complex challenge faced in reducing and eliminating their adverse environmental effects. The evolution of the "modern" CSS shows how early urban drainag sys...
78 FR 18629 - Notice of Lodging of Proposed Partial Consent Decree Under the Clean Water Act
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-27
... sewer system, perform initial work over the next four years to address sewer overflows, develop a..., DC 20044- 7611. Please enclose a check or money order for $84.50 (25 cents per page reproduction cost...
Characteristics of the overflow pollution of storm drains with inappropriate sewage entry.
Yin, Hailong; Lu, Yi; Xu, Zuxin; Li, Huaizheng; Schwegler, Benedict R
2017-02-01
To probe the overflow pollution of separate storm drains with inappropriate sewage entries, in terms of the relationship between sewage entries and the corresponding dry-weather and wet-weather overflow, the monitoring activities were conducted in a storm drainage system in the Shanghai downtown area (374 ha). In this study site, samples from inappropriately entered dry-weather sewage and the overflow due to storm pumps operation on dry-weather and wet-weather days were collected and then monitored for six water quality constituents. It was found that overflow concentrations of dry-weather period could be higher than those of wet-weather period; under wet-weather period, the overflow concentrations of storm drains were close to or even higher than that of combined sewers. Relatively strong first flush mostly occurred under heavy rain that satisfied critical rainfall amount, maximum rainfall intensity, and maximum pumping discharge, while almost no first flush effect or only weak first flush effect was found for the other rainfall events. Such phenomenon was attributed to lower in-line pipe storage as compared to that of the combined sewers, and serious sediment accumulation within the storm pipes due to sewage entry. For this kind of system, treating a continuous overflow rate is a better strategy than treating the maximum amount of early part of the overflow. Correcting the key inappropriate sewage entries into storm drains should also be focused.
Report #18-P-0206, May 30, 2018. Decreases in sewage overflows from Atlanta's wastewater treatment facilities and sewage transmission pipes reduce the risk of city residents being exposed to pathogens.
Water Quality of Combined Sewer Overflows, Stormwater, and Streams, Omaha, Nebraska, 2006-07
Vogel, Jason R.; Frankforter, Jill D.; Rus, David L.; Hobza, Christopher M.; Moser, Matthew T.
2009-01-01
The U.S. Geological Survey, in cooperation with the City of Omaha, investigated the water quality of combined sewer overflows, stormwater, and streams in the Omaha, Nebraska, area by collecting and analyzing 1,175 water samples from August 2006 through October 2007. The study area included the drainage area of Papillion Creek at Capeheart Road near Bellevue, Nebraska, which encompasses the tributary drainages of the Big and Little Papillion Creeks and Cole Creek, along with the Missouri River reach that is adjacent to Omaha. Of the 101 constituents analyzed during the study, 100 were detected in at least 1 sample during the study. Spatial and seasonal comparisons were completed for environmental samples. Measured concentrations in stream samples were compared to water-quality criteria for pollutants of concern. Finally, the mass loads of water-quality constituents in the combined sewer overflow discharges, stormwater outfalls, and streams were computed and compared. The results of the study indicate that combined sewer overflow and stormwater discharges are affecting the water quality of the streams in the Omaha area. At the Papillion Creek Basin sites, Escherichia coli densities were greater than 126 units per 100 milliliters in 99 percent of the samples (212 of 213 samples analyzed for Escherichia coli) collected during the recreational-use season from May through September (in 2006 and 2007). Escherichia coli densities in 76 percent of Missouri River samples (39 of 51 samples) were greater than 126 units per 100 milliliters in samples collected from May through September (in 2006 and 2007). None of the constituents with human health criteria for consumption of water, fish, and other aquatic organisms were detected at levels greater than the criteria in any of the samples collected during this study. Total phosphorus concentrations in water samples collected in the Papillion Creek Basin were in excess of the U.S. Environmental Protection Agency's proposed criterion in all but four stream samples (266 of 270). Similarly, only 2 of 84 Missouri River samples had total phosphorus concentrations less than the proposed criterion. The proposed total nitrogen criterion for the Corn Belt and Northern Great Plains ecoregion was surpassed in 80 percent of the water samples collected from the stream sites. Samples with total nitrogen concentrations greater than the proposed criterion were most common at Papillion Creek and Big Papillion Creek sites, where the proposed criterion was surpassed in 90 and 96 percent of the samples collected, respectively. Elevated concentrations of total nitrogen were less common at the Missouri River sites, with 33 percent of the samples analyzed having concentrations that surpassed the proposed nutrient criterion for total nitrogen. The three constituents with measured concentrations greater than their respective health-based screening levels were nickel, zinc, and dichlorvos. Differences in water quality during the beginning, middle, and end of the combined sewer overflow discharge and the stream hydrograph rise, peak, and recession were investigated. Concentrations from the ending part of the combined sewer overflow hydrograph were significantly different than those from the beginning and middle parts for 3 and 11 constituents, respectively. No constituents were significantly different between the beginning and middle parts of the combined sewer overflow discharge hydrograph. For the stream site upstream from combined sewer overflow outfalls on Cole Creek, the constituents with geometric mean values for the hydrograph rise that were at least twice those for the values of the peak and recession were specific conductance, magnesium, nitrite, N,N-diethyl-meta-toluamide (DEET), methyl salicylate, p-cresol, and Escherichia coli. Similarly, the constituents where the hydrograph peak was at least twice that for the rise and recession at the upstream Cole Creek site were total suspended solids, silver, an
Smart Water Conservation System for Irrigated Landscape
2016-05-01
purple pipe indicating reuse water) and properly labeled “not for human consumption”; • Do not connect rainwater overflow discharge to sanitary sewer...Report Smart Water Conservation System 75 May 2016 Condensate Capture If redirecting condensate from sanitary sewer, ensure sewer gases are managed...the spring/early summer to determine optimum irrigation safety factor. Irrigate at night or early morning. Set soak and cycle for clay soils. ET
SEMINAR PUBLICATION: NATIONAL CONFERENCE ON SANITARY SEWER OVERFLOWS (SSOS)
This seminar publication presents selected peer-reviewed papers from the conference. Thousands of municipalities across the nation are serviced by separate sanitary sewer systems. A chronic problem that faces many of these systems is the occurrence of SSOs, caused mainly by the i...
Quantifying fat, oil, and grease deposit formation kinetics
USDA-ARS?s Scientific Manuscript database
Fat, oil, and grease (FOG) deposits formed in sanitary sewers are calcium-based saponified solids that are responsible for a significant number of nationwide sanitary sewer overflows (SSOs) across United States. In the current study, the kinetics of lab-based saponified solids were determined to un...
A software-based sensor for combined sewer overflows.
Leonhardt, G; Fach, S; Engelhard, C; Kinzel, H; Rauch, W
2012-01-01
A new methodology for online estimation of excess flow from combined sewer overflow (CSO) structures based on simulation models is presented. If sufficient flow and water level data from the sewer system is available, no rainfall data are needed to run the model. An inverse rainfall-runoff model was developed to simulate net rainfall based on flow and water level data. Excess flow at all CSO structures in a catchment can then be simulated with a rainfall-runoff model. The method is applied to a case study and results show that the inverse rainfall-runoff model can be used instead of missing rain gauges. Online operation is ensured by software providing an interface to the SCADA-system of the operator and controlling the model. A water quality model could be included to simulate also pollutant concentrations in the excess flow.
Reducing pathogens in combined sewer overflows using ozonation or UV irradiation.
Tondera, Katharina; Klaer, Kassandra; Gebhardt, Jens; Wingender, Jost; Koch, Christoph; Horstkott, Marina; Strathmann, Martin; Jurzik, Lars; Hamza, Ibrahim Ahmed; Pinnekamp, Johannes
2015-11-01
Fecal contamination of water resources is a major public health concern in densely populated areas since these water bodies are used for drinking water production or recreational purposes. A main source of this contamination originates from combined sewer overflows (CSOs) in regions with combined sewer systems. Thus, the treatment of CSO discharges is urgent. In this study, we explored whether ozonation or UV irradiation can efficiently reduce pathogenic bacteria, viruses, and protozoan parasites in CSOs. Experiments were carried out in parallel settings at the outflow of a stormwater settling tank in the Ruhr area, Germany. The results showed that both techniques reduce most hygienically relevant bacteria, parasites and viruses. Under the conditions tested, ozonation yielded lower outflow values for the majority of the tested parameters. Copyright © 2015 Elsevier GmbH. All rights reserved.
Frehmann, T; Nafo, I; Niemann, A; Geiger, W F
2002-01-01
For the examination of the effects of different storm water management strategies in an urban catchment area on receiving water quality, an integrated simulation of the sewer system, wastewater treatment plant and receiving water is carried out. In the sewer system real-time control measures are implemented. As examples of source control measures the reduction of wastewater and the reduction of the amount of impervious surfaces producing storm water discharges are examined. The surface runoff calculation and the simulation of the sewer system and the WWTP are based on a MATLAB/SIMULINK simulation environment. The impact of the measures on the receiving water is simulated using AQUASIM. It can be shown that the examined storm water management measures, especially the source control measures, can reduce the combined sewer overflow volume and the pollutant discharge load considerably. All examined measures also have positive effects on the receiving water quality. Moreover, the reduction of impervious surfaces avoids combined sewer overflow activities, and in consequence prevents pollutants from discharging into the receiving water after small rainfall events. However, the receiving water quality improvement may not be seen as important enough to avoid acute receiving water effects in general.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holland, Robert C.
A Sewer System Management Plan (SSMP) is required by the State Water Resources Control Board (SWRCB) Order No. 2006-0003-DWQ Statewide General Waste Discharge Requirements (WDR) for Sanitary Sewer Systems (General Permit). DOE, National Nuclear Security Administration (NNSA), Sandia Field Office has filed a Notice of Intent to be covered under this General Permit. The General Permit requires a proactive approach to reduce the number and frequency of sanitary sewer overflows (SSOs) within the State. SSMPs must include provisions to provide proper and efficient management, operation, and maintenance of sanitary sewer systems and must contain a spill response plan.
Measuring Flow Reductions in a Combined Sewer System Using Green Infrastructure
A green infrastructure (GI) design approach was used in CSO Basin #130, a 17-acre sewershed in the Butchertown section of Louisville, Kentucky, to reduce combined sewer overflows (CSOs). For the design year, the modeled design was expected to reduce the CSO frequency from 34 to ...
Green Infrastructure in the Mix to Reduce District of Columbia Sewer Overflows
District of Columbia's Long Term Control Plan to keep sewage out of the city’s rivers is being modified to include a substantial greening component for the first time, making it a dominant feature of 2 of the 3 drainage areas of the combined sewer system.
STORM AND COMBINED SEWER OVERFLOW: AN OVERVIEW OF EPA'S RESEARCH PROGRAM (EPA/600/8-89/054)
This report represents an overview of the EPA's Storm & Combined Sewer Pollution Control Research Program performed over a 20-year period beginning with the mid-1960s. It covers program involvements in the development of a diverse technology including pollution-problem assessment...
40 CFR 35.2024 - Combined sewer overflows.
Code of Federal Regulations, 2014 CFR
2014-07-01
... ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2024 Combined sewer... project priority list, it addresses impaired uses in priority water quality areas which are due to the... must demonstrate to the Administrator that the water quality goals of the Act will not be achieved...
40 CFR 35.2024 - Combined sewer overflows.
Code of Federal Regulations, 2012 CFR
2012-07-01
... ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2024 Combined sewer... project priority list, it addresses impaired uses in priority water quality areas which are due to the... must demonstrate to the Administrator that the water quality goals of the Act will not be achieved...
40 CFR 35.2024 - Combined sewer overflows.
Code of Federal Regulations, 2011 CFR
2011-07-01
... ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2024 Combined sewer... project priority list, it addresses impaired uses in priority water quality areas which are due to the... must demonstrate to the Administrator that the water quality goals of the Act will not be achieved...
Flow measurements in sewers based on image analysis: automatic flow velocity algorithm.
Jeanbourquin, D; Sage, D; Nguyen, L; Schaeli, B; Kayal, S; Barry, D A; Rossi, L
2011-01-01
Discharges of combined sewer overflows (CSOs) and stormwater are recognized as an important source of environmental contamination. However, the harsh sewer environment and particular hydraulic conditions during rain events reduce the reliability of traditional flow measurement probes. An in situ system for sewer water flow monitoring based on video images was evaluated. Algorithms to determine water velocities were developed based on image-processing techniques. The image-based water velocity algorithm identifies surface features and measures their positions with respect to real world coordinates. A web-based user interface and a three-tier system architecture enable remote configuration of the cameras and the image-processing algorithms in order to calculate automatically flow velocity on-line. Results of investigations conducted in a CSO are presented. The system was found to measure reliably water velocities, thereby providing the means to understand particular hydraulic behaviors.
Li, He; Li, Tian
2006-08-01
The urban non-point pollution has become main pollution resource of urban water bodies of Shanghai. Character of combined sewer overflow from watershed SA in Shanghai was studied, and the correlation of influence factors to the EMCs of overflows was discussed. It is found that the EMCs of COD, BOD, SS, NH3-N, TN, TP are 614 mg/L, 208.5 mg/L, 684 mg/L, 17.6 mg/L, 29.8 mg/L, 3.0 mg/L respectively, and the values obtained herein are much higher than the documented data from other countries. From the probability plot of the EMCs, it is found that the BOD has the best fitness for lognormal distribution; and correlation between the EMCs of COD, SS and the ratio of antecedent dry weather time to rain duration is quite good.
This report develops a broad framework, or taxonomy, for identifying and organizing the socio-economic impacts of sewer infrastructure projects. It focuses on a green project in Cincinnati, Ohio that has adopted broader economic goals. The report then uses this example to illustr...
76 FR 35215 - Notice of EPA Workshop on Sanitary Sewer Overflows and Peak Wet Weather Discharges
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-16
... draft Peak Flows Policy. The workshop will include a facilitated discussion with representatives of organizations that represent POTWs, state NPDES permitting authorities, and non-for-profit environmental groups... maintained sanitary sewer systems are meant to collect and transport all of the sewage that flows into them...
Statistically based sustainable re-design of stormwater overflow control systems in urban catchments
NASA Astrophysics Data System (ADS)
Ganora, Daniele; Isacco, Silvia; Claps, Pierluigi
2017-04-01
Control and reduction of pollution from stormwater overflow is a major concern for municipalities to manage the quality of the receiving water bodies according to the Framework Water Directive 2000/60/CE. In this regard, assessment studies of the potential pollution load from sewer networks recognize the need for adaptation and upgrade of existing drainage systems, which can be achieved with either traditional water works (detention tanks, increase of wastewater treatment plant capacity, etc.) or even Nature-based solutions (constructed wetlands, restored floodplains, etc.) sometimes used in combination. Nature-based solutions are recently receiving consistent attentions as they are able to enhance urban and degraded environments being, in the same time, more resilient and adaptable to climatic and anthropic changes than most traditional engineering works. On the other hand, restoration of the urban environment using natural absorbing surfaces requires diffuse interventions, high costs and a considerable amount of time. In this work we investigate how simple, economically-sustainable and quick solutions to the problem at hand can be addressed by changes in the management rules when pumping stations play a role in sewer systems. In particular, we provide a statistically-based framework to be used in the calibration of the management rules, facing improved quality of overflows from sewer systems. Typical pumping rules favor a massive delivery of stormwater volumes to the wastewater treatment plans, requiring large storage tanks in the sewer network, heavy pumping power and reducing the efficiency of the treatment plant due to pollutant dilution. In this study we show that it is possible to optimize the pumping rule in order to reduce pumped volumes to the plant (thus saving energy), while simultaneously keeping high pollutant concentration. On the other hand, larger low-concentration overflow volumes are released outside the sewer network with respect to the standard pumping rules. Such released volumes could be efficiently processed by nature-based solutions, like for instance constructed wetlands, to reduce the final pollutant impact on the environment. The proposed procedure is based on the previous knowledge of the precipitation forcing and of a quantity/quality model of the sewer network. The method provides marginal and joint probability distributions of water volumes and pollutant concentration (or mass) delivered toward the wastewater treatment plant and the Nature-based system, with the aim of supporting a more efficient design of the whole sewer system. A practical example of application is provided for illustrative purposes.
Bayesian analysis for erosion modelling of sediments in combined sewer systems.
Kanso, A; Chebbo, G; Tassin, B
2005-01-01
Previous research has confirmed that the sediments at the bed of combined sewer systems are the main source of particulate and organic pollution during rain events contributing to combined sewer overflows. However, existing urban stormwater models utilize inappropriate sediment transport formulas initially developed from alluvial hydrodynamics. Recently, a model has been formulated and profoundly assessed based on laboratory experiments to simulate the erosion of sediments in sewer pipes taking into account the increase in strength with depth in the weak layer of deposits. In order to objectively evaluate this model, this paper presents a Bayesian analysis of the model using field data collected in sewer pipes in Paris under known hydraulic conditions. The test has been performed using a MCMC sampling method for calibration and uncertainty assessment. Results demonstrate the capacity of the model to reproduce erosion as a direct response to the increase in bed shear stress. This is due to the model description of the erosional strength in the deposits and to the shape of the measured bed shear stress. However, large uncertainties in some of the model parameters suggest that the model could be over-parameterised and necessitates a large amount of informative data for its calibration.
Modelling of sedimentation and remobilization in in-line storage sewers for stormwater treatment.
Frehmann, T; Flores, C; Luekewille, F; Mietzel, T; Spengler, B; Geiger, W F
2005-01-01
A special arrangement of combined sewer overflow tanks is the in-line storage sewer with downstream discharge (ISS-down). This layout has the advantage that, besides the sewer system, no other structures are required for stormwater treatment. The verification of the efficiency with respect to the processes of sedimentation and remobilization of sediment within the in-line storage sewer with downstream discharge is carried out in a combination of a field and a pilot plant study. The model study was carried out using a pilot plant model scaled 1:13. The following is intended to present some results of the pilot plant study and the mathematical empirical modelling of the sedimentation and remobilization process.
The influence of biodegradability of sewer solids for the management of CSOs.
Sakrabani, R; Ashley, R M; Vollertsen, J
2005-01-01
The re-suspension of sediments in combined sewers and the associated pollutants into the bulk water during wet weather flows can cause pollutants to be carried further downstream to receiving waters or discharged via Combined Sewer Overflows (CSO). A typical pollutograph shows the trend of released bulk pollutants with time but does not consider information on the biodegradability of these pollutants. A new prediction methodology based on Oxygen Utilisation Rate (respirometric method) and Erosionmeter (laboratory device replicating in-sewer erosion) experiments is proposed which is able to predict the trends in biodegradability during in-sewer sediment erosion in wet weather conditions. The proposed new prediction methodology is also based on COD fractionation techniques.
[Pollution Characteristics of Surface Runoff of Typical Town in Chongqing City].
Wang, Long-tao; Duan, Bing-zheng; Zhao, Jian-wei; Hua, Yu-mei; Zhu, Duan-wei
2015-08-01
Six kinds of impermeable underlying surface, cement tile roof, asbestos roof, cement flat roof, residential concrete pavement, asphalt pavement of restaurants, asphalt pavement of oil depot, and a combined sewer overflow canal in the Jiansheng town of Dadukou district in Chongqing city were chosen as sample plots to study the characteristics of nutritional pollutants and heavy metals in town runoff. The research showed that the average mass concentrations of TSS, COD, TN, TP in road runoff were (1681.2 +/- 677.2), (1154.7 +/- 415.5), (12.07 +/- 2.72), (3.32 +/- 1.15) mgL(-1), respectively. These pollutants were higher than those in roof runoff which were (13.3 +/- 6.5), (100.4 +/- 24.8), (3.58 +/- 0.70), (0.10 +/- 0.02) mg x L(-1), respectively. TDN accounted for 62.60% +/- 34.38% of TN, and TDP accounted for 42.22% +/- 33.94% of TP in the runoff of impermeable underlying surface. Compared with the central urban runoff, town runoff in our study had higher mass concentrations of these pollutants. The mass concentrations of TSS, COD, TDN, TN, TDP and TP in the combined sewer overflow were (281.57 +/- 308.38), (231.21 +/- 42.95), (8.16 +/- 2.78), (10.60 +/- 3.94), (0.38 +/- 0.23) and (1.51 +/- 0.75) mg x L(-1), respectively. The average levels of heavy metals in this kind of runoff did not exceed the class VI level of the surface water environmental quality standard. Most pollutants in the combined sewer overflow had first flush. However, this phenomenon was very rare for TSS. There was a significant positive correlation between TSS and COD, TP in the combined sewer overflow. And this correlation was significant between NH4+ -N and TP, TDP, TN, TDP. However, a negative correlation existed between NO3- -N and all other indicators.
The rivers in the Milwaukee estuary in Wisconsin drain into Lake Michigan. Wastewater treatment plants and combined sewer overflows contribute pollution which affects fish and wildlife and recreation.
Ahm, Malte; Thorndahl, Søren; Nielsen, Jesper E; Rasmussen, Michael R
2016-12-01
Combined sewer overflow (CSO) structures are constructed to effectively discharge excess water during heavy rainfall, to protect the urban drainage system from hydraulic overload. Consequently, most CSO structures are not constructed according to basic hydraulic principles for ideal measurement weirs. It can, therefore, be a challenge to quantify the discharges from CSOs. Quantification of CSO discharges are important in relation to the increased environmental awareness of the receiving water bodies. Furthermore, CSO discharge quantification is essential for closing the rainfall-runoff mass-balance in combined sewer catchments. A closed mass-balance is an advantage for calibration of all urban drainage models based on mass-balance principles. This study presents three different software sensor concepts based on local water level sensors, which can be used to estimate CSO discharge volumes from hydraulic complex CSO structures. The three concepts were tested and verified under real practical conditions. All three concepts were accurate when compared to electromagnetic flow measurements.
Ham, Young-Sik; Kobori, Hiromi; Takasago, Masahisa
2009-05-01
The indicator bacteria (standard plate count, total coliform, and fecal coliform bacteria) concentrations have been investigated using six ambient habitats (population density, percent sewer penetration, stream flow rate (m(3)/sec), percent residential area, percent forest area and percent agricultural area) in the Tama River basin in Tokyo, Japan during June 2003 to January 2005. The downstream and tributary Tama River showed higher concentrations of TC and FC bacteria than the upstream waters, which exceeded an environmental quality standard for rivers and a bathing water quality criterion. It was estimated that combined sewer overflow (CSO) and stormwater effluents contributed -4-23% to the indicator bacteria concentrations of the Tama River. The results of multiple regression analyses show that the indicator bacteria concentrations of Tama River basin are significantly affected by population density. It is concluded that the Tama River received a significant bacterial contamination load originating from the anthropogenic source.
Climate change impacts on the duration and frequency of combined sewer overflows
NASA Astrophysics Data System (ADS)
Fortier, C.; Mailhot, A.
2012-12-01
Combined sewer overflows (CSO) occur when large rainwater inflow from heavy precipitation exceeds the capacity of urban combined sewage systems. Many American and European cities with old sewage systems see their water quality significantly deteriorate during such events. In the long term, changes in the rainfall regime due to climate change may lead to more severe and more frequent CSO episodes and thus compel cities to review their global water management. The overall objective of this study is to investigate how climate change will impact CSO frequency and duration. Data from rain gauges located nearby 30 overflow outfalls, in southern Quebec, Canada, were used to identify rain events leading to overflows, using CSO monitored data from May to October during the period 2007-2009. For each site, occurrence and duration of CSO events were recorded and linked to a rainfall event. Many rain events features can be used to predict CSO events, such as total depth, duration, average intensity and peak intensity. Results based on Pearson product-moment correlation coefficients and multiple regression analysis show that CSO occurrence is best predicted by total rainfall. A methodology is proposed to calculate the CSO probability of occurrence and duration for each site of interest using rainfall series as input data. Monte Carlo method is then used to estimate CSO frequency. To evaluate the climate change impact on CSO, these relationships are used with simulated data from the Canadian Regional Climate Model to compare the distribution of annual number of CSO events over the 1960-1990 period and the 2070-2100 period.
Sandoval, S; Torres, A; Pawlowsky-Reusing, E; Riechel, M; Caradot, N
2013-01-01
The present study aims to explore the relationship between rainfall variables and water quality/quantity characteristics of combined sewer overflows (CSOs), by the use of multivariate statistical methods and online measurements at a principal CSO outlet in Berlin (Germany). Canonical correlation results showed that the maximum and average rainfall intensities are the most influential variables to describe CSO water quantity and pollutant loads whereas the duration of the rainfall event and the rain depth seem to be the most influential variables to describe CSO pollutant concentrations. The analysis of partial least squares (PLS) regression models confirms the findings of the canonical correlation and highlights three main influences of rainfall on CSO characteristics: (i) CSO water quantity characteristics are mainly influenced by the maximal rainfall intensities, (ii) CSO pollutant concentrations were found to be mostly associated with duration of the rainfall and (iii) pollutant loads seemed to be principally influenced by dry weather duration before the rainfall event. The prediction quality of PLS models is rather low (R² < 0.6) but results can be useful to explore qualitatively the influence of rainfall on CSO characteristics.
Separate and combined sewer systems: a long-term modelling approach.
Mannina, Giorgio; Viviani, Gaspare
2009-01-01
Sewer systems convey mostly dry weather flow, coming from domestic and industrial sanitary sewage as well as infiltration flow, and stormwater due to meteoric precipitations. Traditionally, in urban drainage two types of sewer systems are adopted: separate and combined sewers. The former convey dry and wet weather flow separately into two different networks, while the latter convey dry and wet weather flow together. Which is the best solution in terms of cost-benefit analysis still remains a controversial subject. The present study was aimed at comparing the pollution loads discharged to receiving bodies by Wastewater Treatment Plant (WWTP) and Combined Sewer Overflow (CSO) for different kinds of sewer systems (combined and separate). To accomplish this objective, a comparison between the two systems was carried out using results from simulations of catchments characterised by different dimensions, population densities and water supply rate. The analysis was based on a parsimonious mathematical model able to simulate the sewer system as well as the WWTP during both dry and wet weather. The rain series employed for the simulations was six years long. Several pollutants, both dissolved and particulate, were modelled. The results confirmed the uncertainties in the choice of one system versus the other, emphasising the concept that case-by-case solutions have to be undertaken. Further, the compared systems showed different responses in terms of effectiveness in reducing the discharged mass to the RWB in relation to the particular pollutant taken into account.
USDA-ARS?s Scientific Manuscript database
Long Chain Free Fatty Acids (LCFFAs) from the hydrolysis of fat, oil and grease (FOG) are major components in the formation of insoluble saponified solids known as FOG deposits that accumulate in sewer pipes and lead to sanitary sewer overflows (SSOs). A Double Wavenumber Extrapolative Technique (DW...
Autixier, Laurène; Mailhot, Alain; Bolduc, Samuel; Madoux-Humery, Anne-Sophie; Galarneau, Martine; Prévost, Michèle; Dorner, Sarah
2014-11-15
The implications of climate change and changing precipitation patterns need to be investigated to evaluate mitigation measures for source water protection. Potential solutions need first to be evaluated under present climate conditions to determine their utility as climate change adaptation strategies. An urban drainage network receiving both stormwater and wastewater was studied to evaluate potential solutions to reduce the impact of combined sewer overflows (CSOs) in a drinking water source. A detailed hydraulic model was applied to the drainage basin to model the implementation of best management practices at a drainage basin scale. The model was calibrated and validated with field data of CSO flows for seven events from a survey conducted in 2009 and 2010. Rain gardens were evaluated for their reduction of volumes of water entering the drainage network and of CSOs. Scenarios with different levels of implementation were considered and evaluated. Of the total impervious area within the basin directly connected to the sewer system, a maximum of 21% could be alternately directed towards rain gardens. The runoff reductions for the entire catchment ranged from 12.7% to 19.4% depending on the event considered. The maximum discharged volume reduction ranged from 13% to 62% and the maximum peak flow rate reduction ranged from 7% to 56%. Of concern is that in-sewer sediment resuspension is an important process to consider with regard to the efficacy of best management practices aimed at reducing extreme loads and concentrations. Rain gardens were less effective for large events, which are of greater importance for drinking water sources. These practices could increase peak instantaneous loads as a result of greater in-sewer resuspension during large events. Multiple interventions would be required to achieve the objectives of reducing the number, total volumes and peak contaminant loads of overflows upstream of drinking water intakes. Copyright © 2014 Elsevier B.V. All rights reserved.
Petruck, A; Holtmeier, E; Redder, A; Teichgräber, B
2003-01-01
Emschergenossenschaft and Lippeverband have developed a method to use radar-measured precipitation as an input for a real-time control of a combined sewer system containing several overflow structures. Two real-time control strategies have been developed and tested, one is solely volume-based, the other is volume and pollution-based. The system has been implemented in a pilot study in Gelsenkirchen, Germany. During the project the system was optimised and is now in constant operation. It was found, that the volume of combined sewage overflow could be reduced by 5 per cent per year. This was also found in simulations carried out in similar catchment areas. Most of the potential of improvement can already be achieved by local pollution-based control strategies.
2002 NPDES CSO Report to Congress
This report, delivered to Congress on January 29, 2002, identifies progress made in implementing and enforcing combined sewer overflow (CSO) controls prior to, and because of, the 1994 CSO control policy.
Priority substances in combined sewer overflows: case study of the Paris sewer network.
Gasperi, J; Garnaud, S; Rocher, V; Moilleron, R
2011-01-01
This study was undertaken to supply data on both priority pollutant (PP) occurrence and concentrations in combined sewer overflows (CSOs). A single rain event was studied on 13 sites within the Paris sewer network. For each sample, a total of 66 substances, including metals, polycyclic aromatic hydrocarbons (PAHs), pesticides, organotins, volatile organic compounds, chlorobenzenes, phthalates and alkylphenols were analyzed. Of the 66 compounds analyzed in all, 40 PPs including 12 priority hazardous substances were detected in CSOs. As expected, most metals were present in all samples, reflecting their ubiquitous nature. Chlorobenzenes and most pesticides were never quantified above the limit of quantification, while the majority of the other organic pollutants, except DEHP (median concentration: 22 μg.l(-1)), were found to lie in the μg.l(-1) range. For the particular rain event studied, the pollutant loads discharged by CSOs were evaluated and then compared to pollutant loads conveyed by the Seine River. Under the hydraulic conditions considered and according to the estimations performed, this comparison suggests that CSOs are potentially significant local source of metals, PAHs and DEHP. Depending on the substance, the ratio between the CSO and Seine River loads varied from 0.5 to 26, underscoring the important local impact of CSOs at the scale of this storm for most pollutants.
Dominic, Christopher Cyril Sandeep; Szakasits, Megan; Dean, Lisa O; Ducoste, Joel J
2013-01-01
Sanitary sewer overflows are caused by the accumulation of insoluble calcium salts of fatty acids, which are formed by the reaction between fats, oils and grease (FOG) and calcium found in wastewaters. Different sewer structural configurations (i.e., manholes, pipes, wet wells), which vary spatially, along with other obstructions (roots intrusion) and pipe deformations (pipe sags), may influence the detrimental buildup of FOG deposits. The purpose of this study was to quantify the spatial variation in FOG deposit formation and accumulation in a pilot-scale sewer collection system. The pilot system contained straight pipes, manholes, roots intrusion, and a pipe sag. Calcium and oil were injected into the system and operated at alkaline (pH = 10) and neutral (pH = 7) pH conditions. Results showed that solid accumulations were slightly higher at neutral pH. Fourier transform infrared (FTIR) analysis on the solids samples confirmed that the solids were indeed calcium-based fatty acid salts. However, the fatty acid profiles of the solids deviated from the profile found from FOG deposits in sewer systems, which were primarily saturated fatty acids. These results confirm the work done previously by researchers and suggest an alternative fate of unsaturated fatty acids that does not lead to their incorporation in FOG deposits in full-scale sewer systems.
Research of trace metals as markers of entry pathways in combined sewers.
Gounou, C; Varrault, G; Amedzro, K; Gasperi, J; Moilleron, R; Garnaud, S; Chebbo, G
2011-01-01
Combined sewers receive high toxic trace metal loads emitted by various sources, such as traffic, industry, urban heating and building materials. During heavy rain events, Combined Sewer Overflows (CSO) can occur and, if so, are discharged directly into the aquatic system and therefore could have an acute impact on receiving waters. In this study, the concentrations of 18 metals have been measured in 89 samples drawn from the three pollutant Entry Pathways in Combined Sewers (EPCS): i) roof runoff, ii) street runoff, and iii) industrial and domestic effluents and also drawn from sewer deposits (SD). The aim of this research is to identify metallic markers for each EPCS; the data matrix was submitted to principal component analysis in order to determine metallic markers for the three EPCS and SD. This study highlights the fact that metallic content variability across samples from different EPCS and SD exceeds the spatio-temporal variability of samples from the same EPCS. In the catchment studied here, the most valuable EPCS and SD markers are lead, sodium, boron, antimony and zinc; these markers could be used in future studies to identify the contributions of each EPCS to CSO metallic loads.
Mounce, S R; Shepherd, W; Sailor, G; Shucksmith, J; Saul, A J
2014-01-01
Combined sewer overflows (CSOs) represent a common feature in combined urban drainage systems and are used to discharge excess water to the environment during heavy storms. To better understand the performance of CSOs, the UK water industry has installed a large number of monitoring systems that provide data for these assets. This paper presents research into the prediction of the hydraulic performance of CSOs using artificial neural networks (ANN) as an alternative to hydraulic models. Previous work has explored using an ANN model for the prediction of chamber depth using time series for depth and rain gauge data. Rainfall intensity data that can be provided by rainfall radar devices can be used to improve on this approach. Results are presented using real data from a CSO for a catchment in the North of England, UK. An ANN model trained with the pseudo-inverse rule was shown to be capable of predicting CSO depth with less than 5% error for predictions more than 1 hour ahead for unseen data. Such predictive approaches are important to the future management of combined sewer systems.
Understanding and Mapping Water Quality for Lawrence, MA
EPA has created new maps of the lower Merrimack River that provide an overview of historic water quality data (E. coli concentrations); flood zones, precipitation, and combined sewer overflows (CSOs).
Yu, Yang; Kojima, Keisuke; An, Kyoungjin; Furumai, Hiroaki
2013-01-01
Combined sewer overflow (CSO) from urban areas is recognized as a major pollutant source to the receiving waters during wet weather. This study attempts to categorize rainfall events and corresponding CSO behaviours to reveal the relationship between rainfall patterns and CSO behaviours in the Shingashi urban drainage areas of Tokyo, Japan where complete service by a combined sewer system (CSS) and CSO often takes place. In addition, outfalls based on their annual overflow behaviours were characterized for effective storm water management. All 117 rainfall events recorded in 2007 were simulated by a distributed model InfoWorks CS to obtain CSO behaviours. The rainfall events were classified based on two sets of parameters of rainfall pattern as well as CSO behaviours. Clustered rainfall and CSO groups were linked by similarity analysis. Results showed that both small and extreme rainfalls had strong correlations with the CSO behaviours, while moderate rainfall had a weak relationship. This indicates that important and negligible rainfalls from the viewpoint of CSO could be identified by rainfall patterns, while influences from the drainage area and network should be taken into account when estimating moderate rainfall-induced CSO. Additionally, outfalls were finally categorized into six groups indicating different levels of impact on the environment.
NASA Astrophysics Data System (ADS)
Leitão, J. P.; Carbajal, J. P.; Rieckermann, J.; Simões, N. E.; Sá Marques, A.; de Sousa, L. M.
2018-01-01
The activation of available in-sewer storage volume has been suggested as a low-cost flood and combined sewer overflow mitigation measure. However, it is currently unknown what the attributes for suitable objective functions to identify the best location for flow control devices are and the impact of those attributes on the results. In this study, we present a novel location model and efficient algorithm to identify the best location(s) to install flow limiters. The model is a screening tool that does not require hydraulic simulations but rather considers steady state instead of simplistic static flow conditions. It also maximises in-sewer storage according to different reward functions that also considers the potential impact of flow control device failure. We demonstrate its usefulness on two real sewer networks, for which an in-sewer storage potential of approximately 2,000 m3 and 500 m3 was estimated with five flow control devices installed.
Simulating groundwater-induced sewer flooding
NASA Astrophysics Data System (ADS)
Mijic, A.; Mansour, M.; Stanic, M.; Jackson, C. R.
2016-12-01
During the last decade, Chalk catchments of southern England experienced severe groundwater flooding. High groundwater levels resulted in the groundwater ingress into the sewer network that led to restricted toilet use and the overflow of diluted, but untreated sewage to road surfaces, rivers and water courses. In response to these events the water and sewerage company Thames Water Utilities Ltd (TWUL) had to allocate significant funds to mitigate the impacts. It was estimated that approximately £19m was spent responding to the extreme wet weather of 2013-14, along with the use of a fleet of over 100 tankers. However, the magnitude of the event was so large that these efforts could not stop the discharge of sewage to the environment. This work presents the analysis of the risk of groundwater-induced sewer flooding within the Chalk catchment of the River Lambourn, Berkshire. A spatially distributed groundwater model was used to assess historic groundwater flood risk and the potential impacts of changes in future climate. We then linked this model to an urban groundwater model to enable us to simulate groundwater-sewer interaction in detail. The modelling setup was used to identify relationships between infiltration into sewers and groundwater levels at specific points on TWUL's sewer network, and to estimate historic and future groundwater flood risk, and how this varies across the catchment. The study showed the significance of understanding the impact of groundwater on the urban water systems, and producing information that can inform a water company's response to groundwater flood risk, their decision making process and their asset management planning. However, the knowledge gained through integrated modelling of groundwater-sewer interactions has highlighted limitations of existing approaches for the simulation of these coupled systems. We conclude this work with number of recommendations about how to improve such hydrological/sewer analysis.
Combined sewer overflow (CSO) is a significant source of pollution in receiving waters. However, implementing a real-time control scheme operates automatic regulators more efficiently to maximize a collection system's storage, treatment, and transport capacities, reducing the vol...
Assessing combined sewer overflows with long lead time for better surface water management.
Abdellatif, Mawada; Atherton, William; Alkhaddar, Rafid
2014-01-01
During high-intensity rainfall events, the capacity of combined sewer overflows (CSOs) can exceed resulting in discharge of untreated stormwater and wastewater directly into receiving rivers. These discharges can result in high concentrations of microbial pathogens, biochemical oxygen demand, suspended solids, and other pollutants in the receiving waters. The frequency and severity of the CSO discharge are strongly influenced by climatic factors governing the occurrence of urban stormwater runoff, particularly the amount and intensity of the rainfall. This study attempts to assess the impact of climate change (change in rainfall amount and frequency) on CSO under the high (A1FI) and low (B1) Special Report on Emissions Scenarios of the greenhouse concentration derived from three global circulation models in the north west of England at the end of the twenty-first century.
UV Disinfection of Wastewater and Combined Sewer Overflows.
Gibson, John; Drake, Jennifer; Karney, Bryan
2017-01-01
Municipal wastewater contains bacteria, viruses, and other pathogens that adversely affect the environment, human health, and economic activity. One way to mitigate these effects is a final disinfection step using ultraviolet light (UVL). The advantages of UVL disinfection, when compared to the more traditional chlorine, include no chlorinated by-products, no chemical residual, and relatively compact size. The design of most UV reactors is complex. It involves lamp selection, power supply design, optics, and hydraulics. In general, medium pressure lamps are more compact, powerful, and emit over a wider range of light than the more traditional low pressure lamps. Low pressure lamps, however, may be electrically more efficient. In UV disinfection, the fraction of surviving organisms (e.g. E. coli) will decrease exponentially with increasing UV dose. However, the level of disinfection that can be achieved is often limited by particle-associated organisms. Efforts to remove or reduce the effects of wastewater particles will often improve UV disinfection effectiveness. Regrowth, photoreactivation, or dark repair after UV exposure are sometimes cited as disadvantages of UV disinfection. Research is continuing in this area, however there is little evidence that human pathogens can photoreactivate in environmental conditions, at doses used in wastewater treatment. The UV disinfection of combined sewer overflows, a form of wet weather pollution, is challenging and remains largely at the research phase. Pre-treatment of combined sewer overflows (CSOs) with a cationic polymer to induce fast settling, and a low dose of alum to increase UV transmittance, has shown promise at the bench scale.
Modelling the influence of total suspended solids on E. coli removal in river water.
Qian, Jueying; Walters, Evelyn; Rutschmann, Peter; Wagner, Michael; Horn, Harald
2016-01-01
Following sewer overflows, fecal indicator bacteria enter surface waters and may experience different lysis or growth processes. A 1D mathematical model was developed to predict total suspended solids (TSS) and Escherichia coli concentrations based on field measurements in a large-scale flume system simulating a combined sewer overflow. The removal mechanisms of natural inactivation, UV inactivation, and sedimentation were modelled. For the sedimentation process, one, two or three particle size classes were incorporated separately into the model. Moreover, the UV sensitivity coefficient α and natural inactivation coefficient kd were both formulated as functions of TSS concentration. It was observed that the E. coli removal was predicted more accurately by incorporating two particle size classes. However, addition of a third particle size class only improved the model slightly. When α and kd were allowed to vary with the TSS concentration, the model was able to predict E. coli fate and transport at different TSS concentrations accurately and flexibly. A sensitivity analysis revealed that the mechanisms of UV and natural inactivation were more influential at low TSS concentrations, whereas the sedimentation process became more important at elevated TSS concentrations.
Newton, Ryan J.; Bootsma, Melinda J.; Morrison, Hilary G.; Sogin, Mitchell L.
2014-01-01
Urban coasts receive watershed drainage from ecosystems that include highly developed lands with sewer and stormwater infrastructure. In these complex ecosystems, coastal waters are often contaminated with fecal pollution, where multiple delivery mechanisms that often contain multiple fecal sources make it difficult to mitigate the pollution. Here, we exploit bacterial community sequencing of the V6 and V6V4 hypervariable regions of the bacterial 16S rRNA gene to identify bacterial distributions that signal the presence of sewer, fecal, and human fecal pollution. The sequences classified to three sewer infrastructure-associated bacterial genera, Acinetobacter, Arcobacter, and Trichococcus, and five fecal-associated bacterial families, Bacteroidaceae, Porphyromonadaceae, Clostridiaceae, Lachnospiraceae, and Ruminococcaceae, served as signatures of sewer and fecal contamination, respectively. The human fecal signature was determined with the Bayesian source estimation program SourceTracker, which we applied to a set of 40 sewage influent samples collected in Milwaukee, WI, USA to identify operational taxonomic units (≥97 % identity) that were most likely of human fecal origin. During periods of dry weather, the magnitudes of all three signatures were relatively low in Milwaukee's urban rivers and harbor and nearly zero in Lake Michigan. However, the relative contribution of the sewer and fecal signature frequently increased to >2 % of the measured surface water communities following sewer overflows. Also during combined sewer overflows, the ratio of the human fecal pollution signature to the fecal pollution signature in surface waters was generally close to that of sewage, but this ratio decreased dramatically during dry weather and rain events, suggesting that nonhuman fecal pollution was the dominant source during these weather-driven scenarios. The qPCR detection of two human fecal indicators, human Bacteroides and Lachno2, confirmed the urban fecal footprint in this ecosystem extends to at least 8 km offshore. PMID:23475306
Camden, New Jersey Uses Green Infrastructure to Manage Stormwater
Working with the EPA, CCMUA used the Climate Ready Evaluation and Awareness Tool (CREAT) to gain greater appreciation of the magnitude of its Combined Sewer Overflow (CSO) and other vulnerabilities and identify potential adaptation strategies.
Consent Decree for City of Hammond, Indiana
Consent Decree in this matter was entered by the District Court, put the Hammond Sanitary District (HSD) on an enforceable schedule to, among other things, undertake remedial measures by 2010 to address to address its combine sewer overflows
CADDIS Volume 2. Sources, Stressors and Responses: Urbanization - Wastewater Inputs
Intro to wastewater inputs associated with urbanization, overview of combined sewer overflows, overview of how wastewater inputs can contribute to enrichment or eutrophication, overview of how wastewater inputs can affect reproduction by stream fauna.
EPA's/MassDEP's Permit for MWRA's Outfall and Combined Sewer Overflows
The EPA and the MassDEP are issuing the Massachusetts Water Resource Authority's NPDES Permit to discharge industrial wastewater and domestic wastewater from 43 member communities through the Deer Island Wastewater Treatment Plant.
PARTICLE ASSOCIATION EFFECTS ON MICROBIAL INDICATOR CONCENTRATIONS AND CSO DISINFECTION
Combined sewer overflow (CSO) and wastewater disinfection effectiveness are evaluated by measuring microbial indicator concentrations before and after disinfection. The standard techniques for quantifying indicators are membrane filtration and multiple-tube fermentation/most pro...
Angerville, Ruth; Perrodin, Yves; Bazin, Christine; Emmanuel, Evens
2013-01-01
Discharges of Combined Sewer Overflows (CSOs) into periurban rivers present risks for the concerned aquatic ecosystems. In this work, a specific ecotoxicological risk assessment methodology has been developed as management tool to municipalities equipped with CSOs. This methodology comprises a detailed description of the spatio-temporal system involved, the choice of ecological targets to be preserved, and carrying out bioassays adapted to each compartment of the river receiving CSOs. Once formulated, this methodology was applied to a river flowing through the outskirts of the city of Lyon in France. The results obtained for the scenario studied showed a moderate risk for organisms of the water column and a major risk for organisms of the benthic and hyporheic zones of the river. The methodology enabled identifying the critical points of the spatio-temporal systems studied, and then making proposals for improving the management of CSOs. PMID:23812025
The use of hydrodynamic vortex separators and screening systems to improve water quality.
Andoh, R Y G; Saul, A J
2003-01-01
The paper reviews the evolution of Hydrodynamic Vortex Separators (HDVS) in the context of application as high rate rotary flow separators for achieving water quality improvements to meet with regulatory requirements in Europe and North America. The types of HDVS and their application for the control of wet-weather discharges such as combined sewer overflows (CSOs), sanitary sewer overflows (SSOs) and stormwater are outlined and a number of myths surrounding their use, dispelled. Reference is made to outputs of peer reviewed comprehensive monitoring, evaluation and demonstration projects on pilot and full-scale installations to demonstrate the efficacy and extensive track record of these systems. Recent developments and innovations in HDVS technologies are discussed, focusing on their combined use as solids liquid separators, contact vessels for wastewater disinfection, the incorporation of self-cleansing screening devices for the control of aesthetic pollutants (e.g. floatables) and the use of computational modelling for optimisation.
Peracetic acid as an alternative disinfection technology for wet weather flows.
Coyle, Elizabeth E; Ormsbee, Lindell E; Brion, Gail M
2014-08-01
Rain-induced wet weather flows (WWFs) consist of combined sewer overflows, sanitary sewer overflows, and stormwater, all of which introduce pathogens to surface waters when discharged. When people come into contact with the contaminated surface water, these pathogens can be transmitted resulting in severe health problems. As such, WWFs should be disinfected. Traditional disinfection technologies are typically cost-prohibitive, can yield toxic byproducts, and space for facilities is often limited, if available. More cost-effective alternative technologies, requiring less space and producing less harmful byproducts are currently being explored. Peracetic acid (PAA) was investigated as one such alternative and this research has confirmed the feasibility and applicability of using PAA as a disinfectant for WWFs. Peracetic acid doses ranging from 5 mg/L to 15 mg/L over contact times of 2 to 10 minutes were shown to be effective and directly applicable to WWF disinfection.
Impact of Redevelopment Projects on Waste Water Infrastructure
NASA Astrophysics Data System (ADS)
Bhave, Prashant; Rahate, Sarvesh
2018-05-01
In the last few decades there has been a tremendous increase in urban population globally. Metropolitan cities in India are experiencing rapid change in their population due to migration from rural to urban areas. Due to limited land Mumbai city is experiencing vertical growth in the form of redevelopment projects, signifying a change in population density. Wastewater collection systems greatly contribute to the cost of the overall municipal sewerage system. Present study is an attempt to understand the impact of the redevelopment activities on the wastewater infrastructure. Existing sewerage network of an urban area in Central Mumbai was redesigned and analysed for four different planning scenarios with Bentley's SewerGEM. Results have shown significant change in diameters of the conduits within the sewer network, thus making it inefficient by 13, 19, 31 and 42% with each changing scenario. The results and analysis derived from the study are significant with respect to the urban town planners, developing solutions in alleviating the rising problem of sewer overflows and the economic impact being caused.
Field performance of self-siphon sediment cleansing set for sediment removal in deep CSO chamber.
Zhou, Yongchao; Zhang, Yiping; Tang, Ping
2013-01-01
This paper presents a study of the self-siphon sediment cleansing set (SSCS), a system designed to remove sediment from the deep combined sewer overflow (CSO) chamber during dry-weather periods. In order to get a better understanding of the sediment removal effectiveness and operational conditions of the SSCS system, we carried out a full-scale field study and comparison analysis on the sediment depth changes in the deep CSO chambers under the conditions with and without the SSCS. The field investigation results demonstrated that the SSCS drains the dry-weather flow that accumulated for 50-57 min from the sewer channel to the intercepting system in about 10 min. It is estimated that the bed shear stress in the CSO chamber and sewer channel is improved almost 25 times on average. The SSCS acts to remove the near bed solids with high pollution load efficiently. Moreover, it cleans up not only the new sediment layer but also part of the previously accumulated sediment.
Combined sewer overflow control with LID based on SWMM: an example in Shanghai, China.
Liao, Z L; Zhang, G Q; Wu, Z H; He, Y; Chen, H
2015-01-01
Although low impact development (LID) has been commonly applied across the developed countries for mitigating the negative impacts of combined sewer overflows (CSOs) on urban hydrological environment, it has not been widely used in developing countries yet. In this paper, a typical combined sewer system in an urbanized area of Shanghai, China was used to demonstrate how to design and choose CSO control solutions with LID using stormwater management model. We constructed and simulated three types of CSO control scenarios. Our findings support the notion that LID measures possess favorable capability on CSO reduction. Nevertheless, the green scenarios which are completely comprised by LID measures fail to achieve the maximal effectiveness on CSO reduction, while the gray-green scenarios (LID measure combined with gray measures) achieve it. The unit cost-effectiveness of each type of scenario sorts as: green scenario > gray-green scenario > gray scenario. Actually, as the storage tank is built in the case catchment, a complete application of green scenario is inaccessible here. Through comprehensive evaluation and comparison, the gray-green scenario F which used the combination of storage tank, bio-retention and rain barrels is considered as the most feasible one in this case.
NASA Astrophysics Data System (ADS)
Heinz, B.; Birk, S.; Liedl, R.; Geyer, T.; Straub, K. L.; Andresen, J.; Bester, K.; Kappler, A.
2009-04-01
The concurrent use of karst aquifers as drinking water resources and receptors of combined sewer overflow lacking appropriate pre-treatment may cause conflicts between drinking water supply and storm water management. A storm water tank (SWT) for combined wastewater is identified as the source of sporadic contamination of a karst spring (Gallusquelle, “Schwäbische Alb”, SW Germany) used for public water supply. Spring water quality was examined by routine and event sampling and by evaluating physicochemical and microbiological parameters. The total number of microbial colonies growing at 20°C and the number of Escherichia coli colonies rose to values up to four orders of magnitude higher than background, 2-5 days after overflow of the SWT. High concentrations of chloride, sodium, and total organic carbon (TOC) and high values of turbidity coincide with this increase. However, high bacterial contamination is also observed while turbidity and TOC are low. Several wastewater-related organic micro-pollutants such as chlorinated and non-chlorinated organophosphates were detected in the SWT and, depending on their K ow values and their biodegradability, in lower concentrations at the spring.
NASA Astrophysics Data System (ADS)
Bachmann-Machnik, Anna; Meyer, Daniel; Waldhoff, Axel; Fuchs, Stephan; Dittmer, Ulrich
2018-04-01
Retention Soil Filters (RSFs), a form of vertical flow constructed wetlands specifically designed for combined sewer overflow (CSO) treatment, have proven to be an effective tool to mitigate negative impacts of CSOs on receiving water bodies. Long-term hydrologic simulations are used to predict the emissions from urban drainage systems during planning of stormwater management measures. So far no universally accepted model for RSF simulation exists. When simulating hydraulics and water quality in RSFs, an appropriate level of detail must be chosen for reasonable balancing between model complexity and model handling, considering the model input's level of uncertainty. The most crucial parameters determining the resultant uncertainties of the integrated sewer system and filter bed model were identified by evaluating a virtual drainage system with a Retention Soil Filter for CSO treatment. To determine reasonable parameter ranges for RSF simulations, data of 207 events from six full-scale RSF plants in Germany were analyzed. Data evaluation shows that even though different plants with varying loading and operation modes were examined, a simple model is sufficient to assess relevant suspended solids (SS), chemical oxygen demand (COD) and NH4 emissions from RSFs. Two conceptual RSF models with different degrees of complexity were assessed. These models were developed based on evaluation of data from full scale RSF plants and column experiments. Incorporated model processes are ammonium adsorption in the filter layer and degradation during subsequent dry weather period, filtration of SS and particulate COD (XCOD) to a constant background concentration and removal of solute COD (SCOD) by a constant removal rate during filter passage as well as sedimentation of SS and XCOD in the filter overflow. XCOD, SS and ammonium loads as well as ammonium concentration peaks are discharged primarily via RSF overflow not passing through the filter bed. Uncertainties of the integrated simulation of the sewer system and RSF model mainly originate from the model parameters of the hydrologic sewer system model.
Bi, Eustache Gooré; Monette, Frédéric; Gachon, Philippe; Gaspéri, Johnny; Perrodin, Yves
2015-08-01
Projections from the Canadian Regional Climate Model (CRCM) for the southern part of the province of Québec, Canada, suggest an increase in extreme precipitation events for the 2050 horizon (2041-2070). The main goal of this study consisted in a quantitative and qualitative assessment of the impact of the 20 % increase in rainfall intensity that led, in the summer of 2013, to overflows in the "Rolland-Therrien" combined sewer system in the city of Longueuil, Canada. The PCSWMM 2013 model was used to assess the sensitivity of this overflow under current (2013) and future (2050) climate conditions. The simulated quantitative variables (peak flow, Q(CSO), and volume discharged, VD) served as the basis for deriving ecotoxicological risk indices and event fluxes (EFs) transported to the St. Lawrence (SL) River. Results highlighted 15 to 500% increases in VD and 13 to 148% increases in Q(CSO) by 2050 (compared to 2013), based on eight rainfall events measured from May to October. These results show that (i) the relationships between precipitation and combined sewer overflow variables are not linear and (ii) the design criteria for current hydraulic infrastructure must be revised to account for the impact of climate change (CC) arising from changes in precipitation regimes. EFs discharged into the SL River will be 2.24 times larger in the future than they are now (2013) due to large VDs resulting from CC. This will, in turn, lead to excessive inputs of total suspended solids (TSSs) and tracers for numerous urban pollutants (organic matter and nutrients, metals) into the receiving water body. Ecotoxicological risk indices will increase by more than 100% by 2050 compared to 2013. Given that substantial VDs are at play, and although CC scenarios have many sources of uncertainty, strategies to adapt this drainage network to the effects of CC will have to be developed.
EPA RESEARCH IN URBAN STORMWATER POLLUTION CONTROL
This state-of-the-art on the Environmental Protection Agency' s research in urban stormwater and combined sewer overflow pollution control describes the major elements of the Urban Runoff Pollution Control Program. roblem definition, users assistance tools, management alternative...
Application of Green Infrastructure for Combined Sewer Overflow, Kansas City, MO
The U.S. Environmental Protection Agency (EPA) encourages communities to adopt environmentally friendly design practices and other “green” management techniques when addressing stormwater control and management. Advanced design concepts such as Low Impact Development (LID) and Gr...
Combined sewer overflows (CSOs) contain not only stormwater but also untreated human and industrial waste, toxic materials, and debris. Since the 1960's, CSOs have been recognized as a significant threat to water quality and public health for more than 1000 communities which serv...
VERIFICATION OF URBAN RUNOFF MODELS
Wet Weather Flow Models are used throughout the United States for evaluation of the sanitary, storm and combined sewer systems. Models are used for planning new systems or upgrading of existing systems to accommodate growth or to control undersirable overflows and associated wat...
CONTAMINATION OF URBAN SURFACE WATER BY VEHICLE EMISSIONS
DOT National Transportation Integrated Search
2017-10-01
Combined sewer overflows (CSOs) are a water management issue for Onondaga County and the city of Syracuse, NY. To reduce them, the County is investing in green infrastructure (GI). GI technologies such as green roofs, rain gardens, and bioswales are ...
Alp, E; Melching, C S; Zhang, H; Lanyon, R
2007-01-01
An Use Attainability Analysis (UAA) has been initiated to evaluate what water-quality standards can be achieved in the Chicago Waterway System (CWS). There are nearly 200 combined sewer overflow (CSO) locations discharging to the CWS by gravity. Three CSO pumping stations also drain approximately 140 km2. Because of the dynamic nature of the CWS the DUFLOW model that is capable of simulating hydraulics and water-quality processes under unsteady-flow conditions was used to evaluate the effectiveness of water-quality improvement techniques identified by the UAA including CSO treatment. Several CSO treatment levels were applied at gravity flow CSOs to evaluate improvement in dissolved oxygen (DO). The results show that pollutant removal at CSOs improves DO to a certain degree, but it still was not sufficient to bring DO concentrations to 5 mg/L or higher for 90% of the time during wet weather at most locations on the CWS. Flow from the pumping stations results in substantial stress on DO since a huge amount of un-treated water with a high pollution load is discharged into the CWS in a short period of time at a certain location. The simulation results indicate that CSO treatment does not effectively improve DO during wet-weather periods on the CWS.
Jung, Chanil; Oh, Jeill; Yoon, Yeomin
2015-07-01
The combined coagulation and adsorption of targeted acetaminophen and naproxen using activated biochar and aluminum sulfate were studied under various synthetic "combined sewer overflow" (CSO) conditions. The biochar demonstrated better adsorption performance for both acetaminophen and naproxen (removal, 94.1 and 97.7%, respectively) than that of commercially available powdered activated carbon (removal, 81.6 and 94.1%, respectively) due to superior carbonaceous structure and surface properties examined by nuclear magnetic resonance analysis. The adsorption of naproxen was more favorable, occupying active adsorption sites on the adsorbents by naproxen due to its higher adsorption affinity compared to acetaminophen. Three classified CSO components (i.e., representing hydrophobic organics, hydrophilic organics, and inorganics) played different roles in the adsorption of both adsorbates, resulted in inhibition by humic acid complexation or metal ligands and negative electrostatic repulsion under adsorption and coagulation combined system. Adsorption alone with biochar was determined to be the most effective adsorptive condition for the removal of both acetaminophen and naproxen under various CSO conditions, while both coagulation alone and combined adsorption and coagulation failed to remove the acetaminophen and naproxen adequately due to an increase in ionic strength in the presence of spiked aluminum species derived from the coagulant.
PARTICLE ASSOCIATION EFFECTS ON MICROBIAL INDICATOR CONCENTRATIONS FOR CSO DISINFECTION
The effect of blending on indicator microorganism concentrations in combined sewer overflow (CSO) was investigated due to concerns that standard techniques fail to measure particle-associated organisms found in sewage. It was shown that blending CSO samples diluted in a mixture ...
Greening the consent decree: the ORD-NRMRL experience
The prevalence of combined and septic sewer overflows in most US cities has led to numerous enforcement actions under the Clean Water Act (1972). Contemporary circumstances require a more comprehensive redress of violations due to CSO activity. The integration of green infrastru...
Workshops and Training | Eliminating Sanitary Sewer ...
2017-04-10
EPA New England is working with partners to develop outreach, workshops and tools to assist those working to prevent sewage overflows and improve the management of water/wastewater systems. We have ongoing efforts on CMOM (Capacity, Management, Operation and Maintenance), Asset Management and energy management.
Overview of Microbial Source Tracking Methods Targeting Human Fecal Pollution Sources
Exposure to human fecal waste can be a public health risk dueto the presence of human pathogens. Human fecal pollutioncan be introduced into water resources from damagedsewer lines, faulty septic systems, combined sewer overflows,illicit dumping activities, and even recreational ...
Peracetic Acid as a Green Disinfectant for Combined Sewer Overflows
This cooperative research and development agreement between U.S. EPA, Solvay, MSDGC, and CB&I is evaluating the potential of PAA for disinfection of Muddy Creek CSO wastewater and comparing that with sodium hypochlorite disinfection. This presentation will document the effectiven...
Report to Congress: Combined Sewer Overflows into the Great Lakes Basin
This report assesses the implementation status of long-term CSO control plans (LTCPs) in the Great Lakes Basin. The report also summarizes existing information on the occurrence and volume of discharges from CSOs in the Great Lakes Basin during 2014.
Karpf, Christian; Hoeft, Stefan; Scheffer, Claudia; Fuchs, Lothar; Krebs, Peter
2011-01-01
Sewer systems are closely interlinked with groundwater and surface water. Due to leaks and regular openings in the sewer system (e.g. combined sewer overflow structures with sometimes reverse pressure conditions), groundwater infiltration and surface water inflow as well as exfiltration of sewage take place and cannot be avoided. In the paper a new hydrodynamic sewer network modelling approach will be presented, which includes--besides precipitation--hydrographs of groundwater and surface water as essential boundary conditions. The concept of the modelling approach and the models to describe the infiltration, inflow and exfiltration fluxes are described. The model application to the sewerage system of the City of Dresden during a flood event with complex conditions shows that the processes of infiltration, exfiltration and surface water inflows can be described with a higher reliability and accuracy, showing that surface water inflow causes a pronounced system reaction. Further, according to the simulation results, a high sensitivity of exfiltration rates on the in-sewer water levels and a relatively low influence of the dynamic conditions on the infiltration rates were found.
Al Aukidy, M; Verlicchi, P
2017-12-31
The impact of combined sewer overflow (CSO) on the receiving water body is an issue of increasing concern, as it may lead to restrictions in the use and destination of the receiving body, such as bathing or recreational area closures, fish and shellfish consumption restrictions, and contamination of drinking water resources. Recent investigations have mainly referred to the occurrence and loads of suspended solids, organic compounds and, in some cases, micropollutants. Attempts have been made to find correlations between the discharged load and the size and characteristics of the catchment area, climate conditions, rainfall duration and intensity. This study refers to a touristic coastal area in the north-east of Italy, which is characterized by a combined sewer network including 5 CSO outfalls which, in the case of heavy rain events, directly discharge the exceeding water flow rate into channels which, after a short distance, reach the Adriatic Sea. The study analyzed: i) rainfall events during the summer period in 2014 which led to overflow in the different outfalls, ii) the inter- and intra-event variability with regard to E. coli, Enterococci and conductivity, and iii) the hydraulic and pollutant (E. coli and Enterococci) loads discharged by the local wastewater treatment plant and by all the CSO outfalls. Finally, it estimated the contribution of each source to the released hydraulic and pollutant loads into the receiving water body. Moreover, it was also found that the modest water volume discharged by all CSO outfalls (only 8% of the total volume discharged by the area) contains >90% of the microbial load. Copyright © 2017 Elsevier B.V. All rights reserved.
Lund, Andrea; McMillan, Joseph; Kelly, Rosmarie; Jabbarzadeh, Shirin; Mead, Daniel G; Burkot, Thomas R; Kitron, Uriel; Vazquez-Prokopec, Gonzalo M
2014-02-01
Combined sewers are a significant source of urban water pollution due to periodic discharges into natural streams. Such events (called combined sewer overflows, or CSOs) contribute to the impairment of natural waterways and are associated with increased mosquito productivity and elevated risk of West Nile virus transmission. We investigated the impact of CSOs on water quality and immature mosquito productivity in the city of Atlanta, Georgia, one year before and four years after CSO facility remediation. Water quality (ammonia, phosphate, nitrate and dissolved oxygen concentrations), immature mosquitoes (larvae and pupae), water temperature and rainfall were quantified biweekly between June-October at two urban creeks during 2008-2012. A before-after control-intervention design tested the impact of remediation on mosquito productivity and water quality, whereas generalized linear mixed-effect models quantified the factors explaining the long term impacts of remediation on mosquito productivity. Ammonia and phosphate concentrations and late immature (fourth-instar and pupae) mosquito populations were significantly higher in CSO than in non-CSO creeks, while dissolved oxygen concentrations were lower. Remediation significantly improved water quality estimates (particularly ammonia and dissolved oxygen) and reduced the number of overflows, mosquito productivity and the overall contribution of CSO-affected streams as sources of vectors of West Nile virus. The quality of water in CSOs provided a suitable habitat for immature mosquitoes. Remediation of the CSO facility through the construction of a deep storage tunnel improved water quality indices and reduced the productivity of mosquito species that can serve as vectors of West Nile virus. Copyright © 2013 Elsevier Inc. All rights reserved.
Modeling the Hydrologic Effects of Large-Scale Green Infrastructure Projects with GIS
NASA Astrophysics Data System (ADS)
Bado, R. A.; Fekete, B. M.; Khanbilvardi, R.
2015-12-01
Impervious surfaces in urban areas generate excess runoff, which in turn causes flooding, combined sewer overflows, and degradation of adjacent surface waters. Municipal environmental protection agencies have shown a growing interest in mitigating these effects with 'green' infrastructure practices that partially restore the perviousness and water holding capacity of urban centers. Assessment of the performance of current and future green infrastructure projects is hindered by the lack of adequate hydrological modeling tools; conventional techniques fail to account for the complex flow pathways of urban environments, and detailed analyses are difficult to prepare for the very large domains in which green infrastructure projects are implemented. Currently, no standard toolset exists that can rapidly and conveniently predict runoff, consequent inundations, and sewer overflows at a city-wide scale. We demonstrate how streamlined modeling techniques can be used with open-source GIS software to efficiently model runoff in large urban catchments. Hydraulic parameters and flow paths through city blocks, roadways, and sewer drains are automatically generated from GIS layers, and ultimately urban flow simulations can be executed for a variety of rainfall conditions. With this methodology, users can understand the implications of large-scale land use changes and green/gray storm water retention systems on hydraulic loading, peak flow rates, and runoff volumes.
Stochastic modeling of total suspended solids (TSS) in urban areas during rain events.
Rossi, Luca; Krejci, Vladimir; Rauch, Wolfgang; Kreikenbaum, Simon; Fankhauser, Rolf; Gujer, Willi
2005-10-01
The load of total suspended solids (TSS) is one of the most important parameters for evaluating wet-weather pollution in urban sanitation systems. In fact, pollutants such as heavy metals, polycyclic aromatic hydrocarbons (PAHs), phosphorous and organic compounds are adsorbed onto these particles so that a high TSS load indicates the potential impact on the receiving waters. In this paper, a stochastic model is proposed to estimate the TSS load and its dynamics during rain events. Information on the various simulated processes was extracted from different studies of TSS in urban areas. The model thus predicts the probability of TSS loads arising from combined sewer overflows (CSOs) in combined sewer systems as well as from stormwater in separate sewer systems in addition to the amount of TSS retained in treatment devices in both sewer systems. The results of this TSS model illustrate the potential of the stochastic modeling approach for assessing environmental problems.
Increased nutrient inputs globally have resulted in widespread eutrophication to many coastal water bodies including Narragansett Bay. Efforts to reduce point source nitrogen load¬ings from waste water treatment facilities (WWTFs) and combined sewer overflows (CSOs) started i...
Report #15-P-0280, September 16, 2015. By tracking environmental results, the EPA can show how the $32 billion that communities are spending to address discharges of untreated sewage and contaminated storm water improves water quality.
Under the terms of a Consent Decree lodged today in federal court to address noncompliance with the CWA, the City of Bangor, ME, will take action to prevent sewer overflows & contaminated stormwater from entering the Penobscot River & Kenduskeag Stream.
Comparing Peracetic Acid with Sodium Hypochlorite for Disinfection of Combined Sewer Overflows
This cooperative research and development agreement between U.S. EPA, Solvay, MSDGC, and CB&I is evaluating the potential of PAA for disinfection of Muddy Creek CSO wastewater and comparing that with sodium hypochlorite disinfection. This presentation will document the effective...
COMBINED SEWER OVERFLOW - BALANCING FLOW FOR CSO ABATEMENT
Instead of using conventional storage units, e.g., reinforced concrete tanks and lined earthen basins, which are relatively expensive and require a lot of urban land area, the in-receiving water flow balance method (FBM) facilities use the receiving water body itself for storage ...
Application of Green Infrastructure for Combined Sewer Overflow Kansas City, MO
Advanced design concepts such as Low Impact Development (LID) and Green Solutions (or upland runoff control techniques) are currently being encouraged by the United States Environmental Protection Agency (EPA) as a management practice to contain and control stormwater at the lot ...
EVALUATING CRYPTOSPORIDIUM AND GIARDIA CONCENTRATIONS IN COMBINED SEWER OVERFLOW
Since the first identified Cryptosporidium outbreaks occurred in the 1980s and the massive 1993 Milwaukee, WI outbreak affected more than 400,000 people (Fox & Lytle 1996), the concern over the public health risks linked to protozoan pathogens Cryptosporidium and Giardia has grow...
McFadden, M; Loconsole, J; Schockling, A J; Nerenberg, R; Pavissich, J P
2017-12-01
Peracetic acid (PAA) is an alternative disinfectant that may be effective for combined sewer overflow (CSO) disinfection, but little is known about the effect of particle size on PAA disinfection efficiency. In this work, PAA and hypochlorite were compared as disinfectants, with a focus on the effect of wastewater particles. Inactivation experiments were conducted on suspended cultures of Escherichia coli and wastewater suspended solids. Tested size fractions included particle diameters <10μm, <100μm, and raw wastewater. Chlorine disinfection efficiency decreased with increasing solids size. However, solids size had little effect on PAA disinfection. The PAA disinfection efficiency decreased at pH values above 7.5. Live/dead staining revealed that PAA disinfection leaves most cells in a viable but non-culturable condition. Fourier transform infrared spectroscopy (FTIR) analyses suggests that PAA and hypochlorite may inactivate E. coli bacteria by similar mechanisms. Copyright © 2017 Elsevier B.V. All rights reserved.
Chemical coagulation of combined sewer overflow: heavy metal removal and treatment optimization.
El Samrani, A G; Lartiges, B S; Villiéras, F
2008-02-01
The coagulation of combined sewer overflow (CSO) was investigated by jar-testing with two commercial coagulants, a ferric chloride solution (CLARFER) and a polyaluminium chloride (WAC HB). CSO samples were collected as a function of time during various wet-weather events from the inlet of Boudonville retention basin, Nancy, France. Jar-tests showed that an efficient turbidity removal can be achieved with both coagulants, though lower optimum dosages and higher re-stabilization concentrations were obtained with the aluminum-based coagulant. Optimum turbidity removal also yielded effective heavy metal elimination. However, the evolution with coagulant dosage of Cu, Zn, Pb, Cr, soluble and suspended solids contents followed various patterns. The removal behaviors can be explained by a selective aggregation of heavy metal carriers present in CSO and a specific interaction between hydrolyzed coagulant species and soluble metals. Stoichiometric relationships were established between optimal coagulant concentration, range of optimal dosing, and CSO conductivity, thus providing useful guidelines to adjust the coagulant demand during the course of CSO events.
NASA Astrophysics Data System (ADS)
Zhang, Mingkai; Liu, Yanchen; Cheng, Xun; Zhu, David Z.; Shi, Hanchang; Yuan, Zhiguo
2018-03-01
Quantifying rainfall-derived inflow and infiltration (RDII) in a sanitary sewer is difficult when RDII and overflow occur simultaneously. This study proposes a novel conductivity-based method for estimating RDII. The method separately decomposes rainfall-derived inflow (RDI) and rainfall-induced infiltration (RII) on the basis of conductivity data. Fast Fourier transform was adopted to analyze variations in the flow and water quality during dry weather. Nonlinear curve fitting based on the least squares algorithm was used to optimize parameters in the proposed RDII model. The method was successfully applied to real-life case studies, in which inflow and infiltration were successfully estimated for three typical rainfall events with total rainfall volumes of 6.25 mm (light), 28.15 mm (medium), and 178 mm (heavy). Uncertainties of model parameters were estimated using the generalized likelihood uncertainty estimation (GLUE) method and were found to be acceptable. Compared with traditional flow-based methods, the proposed approach exhibits distinct advantages in estimating RDII and overflow, particularly when the two processes happen simultaneously.
Spatial Distribution of Triclosan in Sediments and Water of an Urbanized Estuarine Embayment
Triclosan (TCS) is a broad spectrum anti-microbial compound found in many consumer and personal care products. TCS enters water bodies primarily through wastewater treatment plant (WWTP) effluent and may also be introduced by combined sewer overflows or surface water runoff. TC...
PROPOSED EPA SSO RULE AND THE NATIONAL SSO PROBLEM
It is estimated there are about 40,000 sanitary-sewer overflow (SSO) events nationwide yearly. In 1995, 65% of the 79 large municipalities responding to a national survey experiences SSOs. Another study estimated that approximately 75% of the nation's SS systems function at 50% o...
Scheurer, Marco; Heß, Stefanie; Lüddeke, Frauke; Sacher, Frank; Güde, Hans; Löffler, Herbert; Gallert, Claudia
2015-01-01
Combined sewer systems collect surface runoff as well as wastewater of industrial and domestic origin. During periods of heavy rainfall the capacity of the sewer system is exceeded and the overflow is discharged into receiving waters without any treatment. Consequently, combined sewer overflow (CSO) is considered as a major source of water pollution. This study investigates the effectiveness of a retention soil filter (RSF) for the removal of micropollutants as well as facultative pathogenic and antibiotic resistant bacteria from CSO. The removal of organic group parameters like total organic carbon was excellent and the removal efficiency for micropollutants of the RSF and the wastewater treatment plant (WWTP), which treats wastewater of the same origin during dry and normal weather conditions, was comparable. Compounds of high environmental concern like estrogens or certain pharmaceuticals, e.g. diclofenac, were completely eliminated or removed to a high degree during RSF passage. RSF treatment also reduced the number of E. coli, enterococci and staphylococci by 2.7, 2.2 and 2.4 log-units (median values), respectively. Obviously, some Staphylococcus species can better adapt to the conditions of the RSF than others as a shift of the abundance of the different species was observed when comparing the diversity of staphylococci obtained from the RSF influent and effluent. RSF treatment also decreased the absolute number of antibiotic resistant bacteria. The percentage of antibiotic resistant E. coli and staphylococci isolates also decreased during passage of the RSF, whereas the percentage of resistant enterococci did not change. For E. coli ampicillin and for enterococci and staphylococci erythromycin determined the antibiotic resistance level. The results demonstrate that RSFs can be considered as an adequate treatment option for CSO. The performance for the removal of micropollutants is comparable with a medium sized WWTP with conventional activated sludge treatment. The number of facultative pathogenic and antibiotic resistant bacteria was considerably decreased during RSF passage. However, as RSF effluents still contained antibiotic resistance genes and traces of micropollutants; receiving waters may still be at risk from negative environmental impacts.
MICROORGANISM DIE-OFF RATES UNDER VARIOUS CONDITIONS
New York-New Jersey (NY-NJ) Harbor Estuary Program is charged to undertake an assessment of New York City Combined Sewer Overflow (NYC CSO) model for use in developing Total Maximum Daily Loads (TMDLs) which are scheduled for submission to EPA Region 2 by May 2006. A TMDL is def...
Combined sewer overflows (CSOs) violate the Clean Water Act Enforcement of CWA boils down to settlements with US cities – typically billions of dollars Green Infrastructure (GI) has come into view as part of consent decree settlements These settlements are a primary way to rehab...
Wastewater Collection System Toolbox | Eliminating Sanitary ...
2017-04-10
Communities across the United States are working to find cost-effective, long-term approaches to managing their aging wastewater infrastructure and preventing the problems that lead to sanitary sewer overflows. The Toolbox is an effort by EPA New England to provide examples of programs and educational efforts from New England and beyond.
Update on Kansas City Middle Blue River Green Infrastructure Pilot Project - seminar
In 2010, Kansas City, MO (KCMO) signed a consent degree with EPA on combined sewer overflows. The City decided to use adaptive management in order to extensively utilize green infrastructure (GI) in lieu of, and in addition to, structural controls. KCMO installed 130 GI storm con...
STRUCTURAL CAPABILITIES OF NO-DIG MANHOLE REHABILITATION (WE&RF Report INFR1R12)
Failure of a manhole may have catastrophic consequences such as a sinkhole. At a minimum, wastewater flow will be blocked and flow upstream of the manhole will backup, causing a sanitary sewer overflow (SSO). Accordingly, the structural condition of a manhole is an important perf...
Our work centered on the possibility of using vacant land mass to infiltrate and otherwise absorb excess stormwater runoff quantity as a sustainable and putatively cost-effective way of managing combined sewer overflows (CSO). County-level, Order 2 soil surveys have been used for...
Advanced design concepts such as Low Impact Development (LID) and Green Solutions (or upland runoff control techniques) are currently being encouraged by the United States Environmental Protection Agency (EPA) as a management practice to contain and control stormwater at the lot ...
Since the first identified Cryptosporidium outbreaks occurred in the 1980s and the massive 1993 Milwaukee, Wisconsin outbreak affected more than 400,000 people (Fox & Lytle 1996), the concern over the public health risks related to protozoan pathogens Cryptosporidium
Update on Kansas City Middle Blue River Green Infrastructure Pilot Project
In 2010, Kansas City, MO (KCMO) signed a consent degree with EPA on combined sewer overflows. The City decided to use adaptive management in order to extensively utilize green infrastructure (GI) in lieu of, and in addition to, gray structural controls. KCMO installed 130 GI sto...
Kay, Paul; Hughes, Stephen R; Ault, James R; Ashcroft, Alison E; Brown, Lee E
2017-01-01
Research addressing the occurrence, fate and effects of pharmaceuticals in the aquatic environment has expanded rapidly over the past two decades, primarily due to the development of improved chemical analysis methods. Significant research gaps still remain, however, including a lack of longer term, repeated monitoring of rivers, determination of temporal and spatial changes in pharmaceutical concentrations, and inputs from sources other than wastewater treatment plants (WWTPs), such as combined sewer overflows (CSOs). In addressing these gaps it was found that the five pharmaceuticals studied were routinely (51-94% of the time) present in effluents and receiving waters at concentrations ranging from single ng to μg L -1 . Mean concentrations were in the tens to hundreds ng L -1 range and CSOs appear to be a significant source of pharmaceuticals to water courses in addition to WWTPs. Receiving water concentrations varied throughout the day although there were no pronounced peaks at particular times. Similarly, concentrations varied throughout the year although no consistent patterns were observed. No dissipation of the study compounds was found over a 5 km length of river despite no other known inputs to the river. In conclusion, pharmaceuticals are routinely present in semi-rural and urban rivers and require management alongside more traditional pollutants. Copyright © 2016 Elsevier Ltd. All rights reserved.
Bersinger, T; Le Hécho, I; Bareille, G; Pigot, T
2015-01-01
Eroded sewer sediments are a significant source of organic matter discharge by combined sewer overflows. Many authors have studied the erosion and sedimentation processes at the scale of a section of sewer pipe and over short time periods. The objective of this study was to assess these processes at the scale of an entire sewer network and over 1 month, to understand whether phenomena observed on a small scale of space and time are still valid on a larger scale. To achieve this objective the continuous monitoring of turbidity was used. First, the study of successive rain events allows observation of the reduction of the available sediment and highlights the widely different erosion resistance for the different sediment layers. Secondly, calculation of daily chemical oxygen demand (COD) fluxes during the entire month was performed showing that sediment storage in the sewer pipe after a rain period is important and stops after 5 days. Nevertheless, during rainfall events, the eroded fluxes are more important than the whole sewer sediment accumulated during a dry weather period. This means that the COD fluxes promoted by runoff are substantial. This work confirms, with online monitoring, most of the conclusions from other studies on a smaller scale.
NASA Astrophysics Data System (ADS)
Müller, Thomas; Schütze, Manfred; Bárdossy, András
2017-09-01
A property of natural processes is temporal irreversibility. However, this property cannot be reflected by most statistics used to describe precipitation time series and, consequently, is not considered in most precipitation models. In this paper, a new statistic, the asymmetry measure, is introduced and applied to precipitation enabling to detect and quantify irreversibility. It is used to analyze two different data sets of Singapore and Germany. The data of both locations show a significant asymmetry for high temporal resolutions. The asymmetry is more pronounced for Singapore where the climate is dominated by convective precipitation events. The impact of irreversibility on applications is analyzed on two different hydrological sewer system models. The results show that the effect of the irreversibility can lead to biases in combined sewer overflow statistics. This bias is in the same order as the effect that can be achieved by real time control of sewer systems. Consequently, wrong conclusion can be drawn if synthetic time series are used for sewer systems if asymmetry is present, but not considered in precipitation modeling.
Vision-based system for the control and measurement of wastewater flow rate in sewer systems.
Nguyen, L S; Schaeli, B; Sage, D; Kayal, S; Jeanbourquin, D; Barry, D A; Rossi, L
2009-01-01
Combined sewer overflows and stormwater discharges represent an important source of contamination to the environment. However, the harsh environment inside sewers and particular hydraulic conditions during rain events reduce the reliability of traditional flow measurement probes. In the following, we present and evaluate an in situ system for the monitoring of water flow in sewers based on video images. This paper focuses on the measurement of the water level based on image-processing techniques. The developed image-based water level algorithms identify the wall/water interface from sewer images and measure its position with respect to real world coordinates. A web-based user interface and a 3-tier system architecture enable the remote configuration of the cameras and the image-processing algorithms. Images acquired and processed by our system were found to reliably measure water levels and thereby to provide crucial information leading to better understand particular hydraulic behaviors. In terms of robustness and accuracy, the water level algorithm provided equal or better results compared to traditional water level probes in three different in situ configurations.
Rönner-Holm, S G E; Kaufmann Alves, I; Steinmetz, H; Holm, N C
2009-01-01
Integrated dynamic simulation analysis of a full-scale municipal sequential batch reactor (SBR) wastewater treatment plant (WWTP) was performed using the KOSMO pollution load simulation model for the combined sewer system (CSS) and the ASM3 + EAWAG-BioP model for the WWTP. Various optimising strategies for dry and storm weather conditions were developed to raise the purification and hydraulic performance and to reduce operation costs based on simulation studies with the calibrated WWTP model. The implementation of some strategies on the plant led to lower effluent values and an average annual saving of 49,000 euro including sewage tax, which is 22% of the total running costs. Dynamic simulation analysis of CSS for an increased WWTP influent over a period of one year showed high potentials for reducing combined sewer overflow (CSO) volume by 18-27% and CSO loads for COD by 22%, NH(4)-N and P(total) by 33%. In addition, the SBR WWTP could easily handle much higher influents without exceeding the monitoring values. During the integrated simulation of representative storm events, the total emission load for COD dropped to 90%, the sewer system emitted 47% less, whereas the pollution load in the WWTP effluent increased to only 14% with 2% higher running costs.
Murla, Damian; Gutierrez, Oriol; Martinez, Montse; Suñer, David; Malgrat, Pere; Poch, Manel
2016-04-15
During heavy rainfall, the capacity of sewer systems and wastewater treatment plants may be surcharged producing uncontrolled wastewater discharges and a depletion of the environmental quality. Therefore there is a need of advanced management tools to tackle with these complex problems. In this paper an environmental decision support system (EDSS), based on the integration of mathematical modeling and knowledge-based systems, has been developed for the coordinated management of urban wastewater systems (UWS) to control and minimize uncontrolled wastewater spills. Effectiveness of the EDSS has been tested in a specially designed virtual UWS, including two sewers systems, two WWTP and one river subjected to typical Mediterranean rain conditions. Results show that sewer systems, retention tanks and wastewater treatment plants improve their performance under wet weather conditions and that EDSS can be very effective tools to improve the management and prevent the system from possible uncontrolled wastewater discharges. Copyright © 2016 Elsevier B.V. All rights reserved.
Triclosan (TCS) is a broad spectrum anti-microbial compound added to many consumer and personal care products. TCS enters water bodies primarily through wastewater treatment plant (WWTP) effluent and may be introduced by combined sewer overflows or surface water runoff. In estu...
Since the first identified Cryptosporidium outbreaks occurred in the 1980s and the massive 1993 Milwaukee, WI outbreak affected more than 400,000 people, the concern over the public health risks related to protozoan pathogens Cryptosporidium and Giardia has g...
Increased residential demolitions have made vacant lots a ubiquitous feature of the contemporary urban landscape. Vacant lots may provide ecosystem services such as stormwater runoff capture, but the extent of these functions will be regulated by soil hydrology. We evaluated soil...
Since the first identified Cryptosporidium outbreak in the United Kingdom in 1983, emerging protozoa pathogens Cryptosporidium and Giardia have become the subject of growing local, state, and national concerns. Both organisms have been the causative agent of many gastrointestina...
77 FR 42332 - Notice of Lodging of Consent Decree Modification Under the Clean Water Act
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-18
... September 24, 2009 (``Decree''). The Decree resolved claims of the United States and State of New Hampshire... discharges from the combined sewer overflow (``CSO'') outfalls, propose a schedule for construction of a..., and upon inclusion of the schedule in the Decree, comply with the construction schedule. The City...
In 2010, Kansas City, MO (KCMO) signed a consent degree with EPA on combined sewer overflows. The City decided to use adaptive management in order to extensively utilize green infrastructure (GI) in lieu of, and in addition to, structural controls. KCMO installed 130 GI storm co...
Chemical disinfection of combined sewer overflow waters using performic acid or peracetic acids.
Chhetri, Ravi Kumar; Thornberg, Dines; Berner, Jesper; Gramstad, Robin; Öjstedt, Ulrik; Sharma, Anitha Kumari; Andersen, Henrik Rasmus
2014-08-15
We investigated the possibility of applying performic acid (PFA) and peracetic acid (PAA) for disinfection of combined sewer overflow (CSO) in existing CSO management infrastructures. The disinfection power of PFA and PAA towards Escherichia coli (E. coli) and Enterococcus was studied in batch-scale and pre-field experiments. In the batch-scale experiment, 2.5 mg L(-1) PAA removed approximately 4 log unit of E. coli and Enterococcus from CSO with a 360 min contact time. The removal of E. coli and Enterococcus from CSO was always around or above 3 log units using 2-4 mg L(-1) PFA; with a 20 min contact time in both batch-scale and pre-field experiments. There was no toxicological effect measured by Vibrio fischeri when CSO was disinfected with PFA; a slight toxic effect was observed on CSO disinfected with PAA. When the design for PFA based disinfection was applied to CSO collected from an authentic event, the disinfection efficiencies were confirmed and degradation rates were slightly higher than predicted in simulated CSO. Copyright © 2014 Elsevier B.V. All rights reserved.
Wilkison, Donald H.; Armstrong, Daniel J.; Blevins, Dale W.
2002-01-01
Samples were collected from 16 base-flow events and a minimum of 10 stormflow events between July 1998 and October 2000 to characterize the effects of wastewater and combined sewer overflows on water quality in the Blue River Basin, Kansas City, Missouri and Kansas. Waterquality effects were determined by analysis of nutrients, chloride, chemical and biochemical oxygen demand, and suspended sediment samples from three streams (Blue River, Brush Creek, and Indian Creek) in the basin as well as the determination of a suite of compounds known to be indicative of wastewater including antioxidants, caffeine, detergent metabolites, antimicrobials, and selected over-the-counter and prescription pharmaceuticals. Constituent loads were determined for both hydrologic regimes and a measure of the relative water-quality impact of selected stream reaches on the Blue River and Brush Creek was developed. Genetic fingerprint patterns of Escherichia coli bacteria from selected stream samples were compared to a data base of knownsource patterns to determine possible sources of bacteria. Water quality in the basin was affected by wastewater during both base flows and stormflows; however, there were two distinct sources that contributed to these effects. In the Blue River and Indian Creek, the nearly continuous discharge of treated wastewater effluent was the primary source of nutrients, wastewater indicator compounds, and pharmaceutical compounds detected in stream samples. Wastewater inputs into Brush Creek were largely the result of intermittent stormflow events that triggered the overflow of combined storm and sanitary sewers, and the subsequent discharge of untreated wastewater into the creek. A portion of the sediment, organic matter, and associated constituents from these events were trapped by a series of impoundments constructed along Brush Creek where they likely continued to affect water quality during base flow. Concentrations and loads of most wastewater constituents in the Blue River and Indian Creek were significantly greater than in Brush Creek, especially during base flow. However, wastewater indicator compound concentrations were sometimes greater in some Brush Creek stormflow samples. Selected stream reaches along the mid-portion of Brush Creek showed higher effects relative to other sites, primarily because these sites were in impounded reaches with the greatest density of wastewater inputs, or had relatively small drainage areas.
NASA Astrophysics Data System (ADS)
Jaffe, P. R.; Pennino, M. J.; McDonald, R.
2016-12-01
Despite the increasing use of urban stormwater green infrastructure (SGI), including detention ponds and rain gardens, few studies have quantified the cumulative effects of multiple SGI projects on hydrology and water quality at the watershed scale. To assess the effects of SGI, Baltimore County, MD, Montgomery County, MD, and Washington, DC, were selected based on the availability of data on SGI, water quality, and stream flow. The watershed scale impact of SGI was evaluated by assessing how increased spatial density of SGI correlates with stream hydrology and nitrogen exports over space and time. The most common SGI types were detention ponds (58%), followed by marshes (12%), sand filters (9%), wet ponds (7%), infiltration trenches (4%), and rain gardens (2%). When controlling for watersheds size and percent impervious surface cover, watersheds with greater amounts of SGI (>10% SGI) have 44% lower peak runoff, 26% less frequent runoff events, and 26% less variable runoff than watersheds with lower SGI. Watersheds with more SGI also show 44% less NO3- and 48% less total nitrogen exports compared to watersheds with minimal SGI. There was no significant reduction in combined sewer overflows in watersheds with greater SGI. Based on specific SGI types, infiltration trenches (R2 = 0.35) showed the strongest correlation with hydrologic metrics, likely due to their ability to attenuate flow, while bioretention (R2 = 0.19) and wet ponds (R2 = 0.12) showed stronger relationships with nitrogen compared to other SGI types, possibly due to greater denitrification in these sites. When comparing individual watersheds over time, increases in SGI corresponded to non-significant reductions in hydrologic flashiness and combined sewer overflows compared to watersheds with no change in SGI. This study shows that while implementation of SGI is ongoing, some regions are beginning to have enough SGI to see significant impacts on hydrology and water quality at the watershed scale.
Pennino, Michael J; McDonald, Rob I; Jaffe, Peter R
2016-09-15
Stormwater green infrastructure (SGI), including rain gardens, detention ponds, bioswales, and green roofs, is being implemented in cities across the globe to reduce flooding, combined sewer overflows, and pollutant transport to streams and rivers. Despite the increasing use of urban SGI, few studies have quantified the cumulative effects of multiple SGI projects on hydrology and water quality at the watershed scale. To assess the effects of SGI, Washington, DC, Montgomery County, MD, and Baltimore County, MD, were selected based on the availability of data on SGI, water quality, and stream flow. The cumulative impact of SGI was evaluated over space and time by comparing watersheds with and without SGI, and by assessing how long-term changes in SGI impact hydrologic and water quality metrics over time. Most Mid-Atlantic municipalities have a goal of achieving 10-20% of the landscape drain runoff through SGI by 2030. Of these areas, Washington, DC currently has the greatest amount of SGI (12.7% of the landscape drained through SGI), while Baltimore County has the lowest (7.9%). When controlling for watersheds size and percent impervious surface cover, watersheds with greater amounts of SGI have less flashy hydrology, with 44% lower peak runoff, 26% less frequent runoff events, and 26% less variable runoff. Watersheds with more SGI also show 44% less NO3(-) and 48% less total nitrogen exports compared to watersheds with minimal SGI. There was no significant reduction in phosphorus exports or combined sewer overflows in watersheds with greater SGI. When comparing individual watersheds over time, increases in SGI corresponded to non-significant reductions in hydrologic flashiness compared to watersheds with no change in SGI. While the implementation of SGI is somewhat in its infancy in some regions, cities are beginning to have a scale of SGI where there are statistically significant differences in hydrologic patterns and water quality. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Lawrence, Stephen J.; LaFontaine, Jacob H.
2010-01-01
The similarity in the pattern and distribution of OWICs in samples at sites upstream and downstream from known CSO outfalls indicates that CSOs were not the dominant source of OWICs during the study period. Other sources may include non-sewage discharges-both permitted, permitted but out of compliance, and non-permitted, contaminated groundwater from leaking sewer lines or septic systems, sanitary-sewer overflows, or dry-weather runoff from outdoor water use. These OWICs may be better suited for identifying sewage-contaminated groundwater than sewage-contaminated surface water because groundwater is not typically affected by the OWICs that are more common in urban runoff.
Factors that influence properties of FOG deposits and their formation in sewer collection systems.
Iasmin, Mahbuba; Dean, Lisa O; Lappi, Simon E; Ducoste, Joel J
2014-02-01
Understanding the formation of Fat, Oil, and Grease (FOG) deposits in sewer systems is critical to the sustainability of sewer collection systems since they have been implicated in causing sewerage blockages that leads to sanitary sewer overflows (SSOs). Recently, FOG deposits in sewer systems displayed strong similarities with calcium-based fatty acid salts as a result of a saponification reaction. The objective of this study was to quantify the factors that may affect the formation of FOG deposits and their chemical and rheological properties. These factors included the types of fats used in FSEs, environmental conditions (i.e. pH and temperature), and the source of calcium in sewer systems. The results of this study showed that calcium content in the calcium based salts seemed to depend on the solubility limit of the calcium source and influenced by pH and temperature conditions. The fatty acid profile of the calcium-based fatty acid salts produced under alkali driven hydrolysis were identical to the profile of the fat source and did not match the profile of field FOG deposits, which displayed a high fraction of palmitic, a long chain saturated fatty acid. It is hypothesized that selective microbial metabolism of fats and/or biologically induced hydrogenation may contribute to the FOG deposit makeup in sewer system. Therefore, selective removal of palmitic in pretreatment processes may be necessary prior to the discharge of FSE wastes into the sewer collection system. Copyright © 2013 Elsevier Ltd. All rights reserved.
Changes in water quality parameters due to in-sewer processes.
Boxall, J; Shepherd, W; Guymer, I; Fox, K
2003-01-01
Combined sewer systems contain a large number of organic and inorganic pollutants from both domestic and industrial sources. These pollutants are often retained within the combined sewer system for significant lengths of time before entering sewage treatment works, or being spilt to a watercourse via a combined sewer overflow (CSO) during storm conditions. Currently little knowledge exists concerning the effects of in sewer processes on pollutants. Understanding of in-sewer processes is important for the effective and efficient design of treatment works and CSO chambers and for impact assessments on receiving waters. A series of studies covering storm and dry weather flow conditions were undertaken with the aim of investigating the nature of in-sewer processes. These studies consisted of marking a body of water with a fluorescent tracer. The tracer was then monitored at a series of downstream sites, and discrete samples collected from the body of water as it progressed through the sewer. The samples were analysed for water quality parameters and these results investigated in tandem with the detailed hydraulic information gained through the tracer studies. The results highlight the hydraulic differences between storm and dry weather conditions such as increased travel times and mixing under storm conditions. The Advection Dispersion Equation (ADE) and Aggregated Dead Zone (ADZ) model parameters have been quantified for the tracer data. The ADE mixing coefficient is shown to increase by an order of magnitude for storm conditions. The ADZ dispersive fraction parameter is shown to be approximately constant with flow. Chemical reactions and decay within the sewer system were found to be consistent with oxygen limitation.
Distinct enantiomeric signals of ibuprofen and naproxen in treated wastewater and sewer overflow.
Khan, Stuart J; Wang, Lili; Hashim, Nor H; McDonald, James A
2014-11-01
Ibuprofen and naproxen are commonly used members of a class of pharmaceuticals known as 2-arylpropionic acids (2-APAs). Both are chiral chemicals and can exist as either of two (R)- and (S)-enantiomers. Enantioselective analyses of effluents from municipal wastewater treatment plants (WWTPs) and from untreated sewage overflow reveal distinctly different enantiomeric fractions for both pharmaceuticals. The (S)-enantiomers of both were dominant in untreated sewage overflow, but the relative proportions of the (R)-enantiomers were shown to be increased in WWTP effluents. (R)-naproxen was below method detection limits (<1 ng.L(-1)) in sewage overflow, but measurable at higher concentrations in WWTP effluents. Accordingly, enantiomeric fractions (EF) for naproxen were consistently 1.0 in sewage overflow, but ranged from 0.7–0.9 in WWTP effluents. Ibuprofen EF ranged from 0.6–0.8 in sewage overflow and receiving waters, and was 0.5 in two WWTP effluents. Strong evidence is provided to indicate that chiral inversion of (S)-2-APAs to produce (R)-2-APAs may occur during wastewater treatment processes. It is concluded that this characterization of the enantiomeric fractions for ibuprofen and naproxen in particular effluents could facilitate the distinction of treated and untreated sources of pharmaceutical contamination in surface waters.
NASA Astrophysics Data System (ADS)
van Daal-Rombouts, Petra; Sun, Siao; Langeveld, Jeroen; Bertrand-Krajewski, Jean-Luc; Clemens, François
2016-07-01
Optimisation or real time control (RTC) studies in wastewater systems increasingly require rapid simulations of sewer systems in extensive catchments. To reduce the simulation time calibrated simplified models are applied, with the performance generally based on the goodness of fit of the calibration. In this research the performance of three simplified and a full hydrodynamic (FH) model for two catchments are compared based on the correct determination of CSO event occurrences and of the total discharged volumes to the surface water. Simplified model M1 consists of a rainfall runoff outflow (RRO) model only. M2 combines the RRO model with a static reservoir model for the sewer behaviour. M3 comprises the RRO model and a dynamic reservoir model. The dynamic reservoir characteristics were derived from FH model simulations. It was found that M2 and M3 are able to describe the sewer behaviour of the catchments, contrary to M1. The preferred model structure depends on the quality of the information (geometrical database and monitoring data) available for the design and calibration of the model. Finally, calibrated simplified models are shown to be preferable to uncalibrated FH models when performing optimisation or RTC studies.
Despite the increasing use of urban stormwater green infrastructure (SGI), including detention ponds and rain gardens, few studies have quantified the cumulative effects of multiple SGI projects on hydrology and water quality at the watershed scale. To assess the effects of SGI, ...
De Vleeschauwer, K; Weustenraad, J; Nolf, C; Wolfs, V; De Meulder, B; Shannon, K; Willems, P
2014-01-01
Urbanization and climate change trends put strong pressures on urban water systems. Temporal variations in rainfall, runoff and water availability increase, and need to be compensated for by innovative adaptation strategies. One of these is stormwater retention and infiltration in open and/or green spaces in the city (blue-green water integration). This study evaluated the efficiency of three adaptation strategies for the city of Turnhout in Belgium, namely source control as a result of blue-green water integration, retention basins located downstream of the stormwater sewers, and end-of-pipe solutions based on river flood control reservoirs. The efficiency of these options is quantified by the reduction in sewer and river flood frequencies and volumes, and sewer overflow volumes. This is done by means of long-term simulations (100-year rainfall simulations) using an integrated conceptual sewer-river model calibrated to full hydrodynamic sewer and river models. Results show that combining open, green zones in the city with stormwater retention and infiltration for only 1% of the total city runoff area would lead to a 30 to 50% reduction in sewer flood volumes for return periods in the range 10-100 years. This is due to the additional surface storage and infiltration and consequent reduction in urban runoff. However, the impact of this source control option on downstream river floods is limited. Stormwater retention downstream of the sewer system gives a strong reduction in peak discharges to the receiving river. However due to the difference in response time between the sewer and river systems, this does not lead to a strong reduction in river flood frequency. The paper shows the importance of improving the interface between urban design and water management, and between sewer and river flood management.
Mutzner, Lena; Staufer, Philipp; Ort, Christoph
2016-11-01
Wet-weather discharges contribute to anthropogenic micropollutant loads entering the aquatic environment. Thousands of wet-weather discharges exist in Swiss sewer systems, and we do not have the capacity to monitor them all. We consequently propose a model-based approach designed to identify critical discharge points in order to support effective monitoring. We applied a dynamic substance flow model to four substances representing different entry routes: indoor (Triclosan, Mecoprop, Copper) as well as rainfall-mobilized (Glyphosate, Mecoprop, Copper) inputs. The accumulation on different urban land-use surfaces in dry weather and subsequent substance-specific wash-off is taken into account. For evaluation, we use a conservative screening approach to detect critical discharge points. This approach considers only local dilution generated onsite from natural, unpolluted areas, i.e. excluding upstream dilution. Despite our conservative assumptions, we find that the environmental quality standards for Glyphosate and Mecoprop are not exceeded during any 10-min time interval over a representative one-year simulation period for all 2500 Swiss municipalities. In contrast, the environmental quality standard is exceeded during at least 20% of the discharge time at 83% of all modelled discharge points for Copper and at 71% for Triclosan. For Copper, this corresponds to a total median duration of approximately 19 days per year. For Triclosan, discharged only via combined sewer overflows, this means a median duration of approximately 10 days per year. In general, stormwater outlets contribute more to the calculated effect than combined sewer overflows for rainfall-mobilized substances. We further evaluate the Urban Index (A urban,impervious /A natural ) as a proxy for critical discharge points: catchments where Triclosan and Copper exceed the corresponding environmental quality standard often have an Urban Index >0.03. A dynamic substance flow analysis allows us to identify the most critical discharge points to be prioritized for more detailed analyses and monitoring. This forms a basis for the efficient mitigation of pollution. Copyright © 2016 Elsevier Ltd. All rights reserved.
Launay, Marie A; Dittmer, Ulrich; Steinmetz, Heidrun
2016-11-01
To characterise emissions from combined sewer overflows (CSOs) regarding organic micropollutants, a monitoring study was undertaken in an urban catchment in southwest Stuttgart, Germany. The occurrence of 69 organic micropollutants was assessed at one CSO outfall during seven rain events as well as in the sewage network at the influent of the wastewater treatment plant (WWTP) and in the receiving water. Several pollutant groups like pharmaceuticals and personal care products (PPCPs), urban biocides and pesticides, industrial chemicals, organophosphorus flame retardants, plasticisers and polycyclic aromatic hydrocarbons (PAHs) were chosen for analysis. Out of the 69 monitored substances, 60 were detected in CSO discharges. The results of this study show that CSOs represent an important pathway for a wide range of organic micropollutants from wastewater systems to urban receiving waters. For most compounds detected in CSO samples, event mean concentrations varied between the different events in about one order of magnitude range. When comparing CSO concentrations with median wastewater concentrations during dry weather, two main patterns could be observed depending on the source of the pollutant: (i) wastewater is diluted by stormwater; (ii) stormwater is the most important source of a pollutant. Both wastewater and stormwater only play an important role in pollutant concentration for a few compounds. The proportion of stormwater calculated with the conductivity is a suitable indicator for the evaluation of emitted loads of dissolved wastewater pollutants, but not for all compounds. In fact, this study demonstrates that remobilisation of in-sewer deposits contributed from 10% to 65% to emissions of carbamazepine in CSO events. The contribution of stormwater to CSO emitted loads was higher than 90% for all herbicides as well as for PAHs. Regarding the priority substance di(2-ethylhexyl)phthalate (DEHP), this contribution varied between 39% and 85%. The PAH concentrations found along the river indicate environmental risk, especially during rainfall events. Copyright © 2016 Elsevier Ltd. All rights reserved.
Analysis of heavy metal sources in storm water from urban areas
NASA Astrophysics Data System (ADS)
Scherer, U.; Fuchs, S.
2009-04-01
The input of heavy metals into surface waters is a serious impairment of the aquatic environment. The emissions of heavy metals via point and diffuse pathways into the German river basins were thus quantified for the period of 1985 through 2005. The total emission into the German river systems decreased for each metal during the observed period. This reduction is mainly caused by the decline of emissions via point sources. The measures taken by industry and implemented within the scope of a stringently water legislation have decisively contributed to an improvement of environmental conditions. Today's emissions of heavy metals into river basins of Germany are dominated by the input via diffuse pathways. One of the most important diffuse input is the storm water discharged from paved urban areas into the surface waters via storm sewers and combined sewer overflows especially for the metals copper, zinc and lead. The objective of this project was to identify the sources of these three heavy metals washed of from paved urban areas. The use of copper, zinc and lead on the outsides of buildings results in emissions to water and soil via rainwater due to weathering and runoff of soluble and insoluble metallic compounds. Copper and zinc are traditionally used materials in the building sector especially for roofs, gutters and facades. Lead, in contrast, plays only a subordinate role due to its more limited outdoor use. The corrosion rates vary widely. Climatic factors (temperature, humidity etc.), above all the presence of corrosive gases (sulphur dioxide, nitrogen oxide, ozone etc.) influence the corrosion processes. Estimates of industrial associations were referred to in order to determine the corrosion relevant metal surfaces. Heavy metal emissions caused by traffic are complex and depend on many parameters which vary by locality, time and substance. In principle, substances can be emitted by vehicles, the road surface and by maintenance. Emissions of copper, lead and zinc are mainly caused by wear and tear of tyres and brake pads. The reference figures of the environmental emissions are usually the kilometres driven per vehicle. The emissions can then be calculated based on the road performance. Furthermore atmospheric deposition on paved urban areas was considered. The heavy metal emission from each individual source and the portion discharged into surface waters via storm sewers and combined sewer overflows was quantified. The emission sum of all sources was validated using emission data of storm sewers based on measured heavy metal concentrations and the discharge volume showing a good agreement.
Real-time control of sewer systems using turbidity measurements.
Lacour, C; Schütze, M
2011-01-01
Real-time control (RTC) of urban drainage systems has been proven useful as a means to reduce pollution by combined sewer overflow discharges. So far, RTC has been investigated mainly with a sole focus on water quantity aspects. However, as measurement techniques for pollution of wastewater are advancing, pollution-based RTC might be of increasing interest. For example, turbidity data sets from an extensive measurement programme in two Paris catchments allow a detailed investigation of the benefits of using pollution-based data for RTC. This paper exemplifies this, comparing pollution-based RTC with flow-based RTC. Results suggest that pollution-based RTC indeed has some potential, particularly when measurements of water-quality characteristics are readily available.
EPA has released this draft document solely for the purpose of pre-dissemination peer review under applicable information quality guidelines. This document has not been formally disseminated by EPA. It does not represent and should not be construed to represent any Agency policy ...
Combined sewer overflows: an environmental source of hormones and wastewater micropollutants
Phillips, P.J.; Chalmers, A.T.; Gray, J.L.; Kolpin, D.W.; Foreman, W.T.; Wall, G.R.
2012-01-01
Data were collected at a wastewater treatment plant (WWTP) in Burlington, Vermont, USA, (serving 30,000 people) to assess the relative contribution of CSO (combined sewer overflow) bypass flows and treated wastewater effluent to the load of steroid hormones and other wastewater micropollutants (WMPs) from a WWTP to a lake. Flow-weighted composite samples were collected over a 13 month period at this WWTP from CSO bypass flows or plant influent flows (n = 28) and treated effluent discharges (n = 22). Although CSO discharges represent 10% of the total annual water discharge (CSO plus treated plant effluent discharges) from the WWTP, CSO discharges contribute 40–90% of the annual load for hormones and WMPs with high (>90%) wastewater treatment removal efficiency. By contrast, compounds with low removal efficiencies (<90%) have less than 10% of annual load contributed by CSO discharges. Concentrations of estrogens, androgens, and WMPs generally are 10 times higher in CSO discharges compared to treated wastewater discharges. Compound concentrations in samples of CSO discharges generally decrease with increasing flow because of wastewater dilution by rainfall runoff. By contrast, concentrations of hormones and many WMPs in samples from treated discharges can increase with increasing flow due to decreasing removal efficiency.
Combined Sewer Overflows: An Environmental Source of Hormones and Wastewater Micropollutants
2012-01-01
Data were collected at a wastewater treatment plant (WWTP) in Burlington, Vermont, USA, (serving 30,000 people) to assess the relative contribution of CSO (combined sewer overflow) bypass flows and treated wastewater effluent to the load of steroid hormones and other wastewater micropollutants (WMPs) from a WWTP to a lake. Flow-weighted composite samples were collected over a 13 month period at this WWTP from CSO bypass flows or plant influent flows (n = 28) and treated effluent discharges (n = 22). Although CSO discharges represent 10% of the total annual water discharge (CSO plus treated plant effluent discharges) from the WWTP, CSO discharges contribute 40–90% of the annual load for hormones and WMPs with high (>90%) wastewater treatment removal efficiency. By contrast, compounds with low removal efficiencies (<90%) have less than 10% of annual load contributed by CSO discharges. Concentrations of estrogens, androgens, and WMPs generally are 10 times higher in CSO discharges compared to treated wastewater discharges. Compound concentrations in samples of CSO discharges generally decrease with increasing flow because of wastewater dilution by rainfall runoff. By contrast, concentrations of hormones and many WMPs in samples from treated discharges can increase with increasing flow due to decreasing removal efficiency. PMID:22540536
Hajj-Mohamad, M; Darwano, H; Duy, S Vo; Sauvé, S; Prévost, M; Arp, H P H; Dorner, S
2017-01-01
Pharmaceuticals are discharged to the environment from wastewater resource recovery facilities, sewer overflows, and illicit sewer connections. To understand the fate of pharmaceuticals, there is a need to better understand their sorption dynamics to suspended sediments (SS) and settled sediments (StS) in sewer systems. In this study, such sorption dynamics to both SS and StS were assessed using a batch equilibrium method under both static and dynamic conditions. Experiments were performed with natively occurring and artificially modified concentrations of sewer pharmaceuticals (acetaminophen, theophylline, carbamazepine, and a metabolite of carbamazepine) and caffeine. Differences in apparent distribution coefficients, K d,app , between SS and StS were related to differences in their organic carbon (OC) content, and the practice of artificially modifying the concentration. K d,app values of modified contaminant concentrations and high OC sediments were substantially higher. Pseudo-second order desorption rates for these mobile compounds were also quantified. Successive flushing events to simulate the addition of stormwater to sewer networks revealed that aqueous concentrations would not necessarily decrease, because the added water will rapidly return to equilibrium concentrations with the sediments. Sorption and desorption kinetics must be considered in addition to dilution, to avoid underestimating the influence of dilution on concentrations of pharmaceuticals discharged to the environment. Copyright © 2016 Elsevier Ltd. All rights reserved.
El Samrani, A G; Lartiges, B S; Ghanbaja, J; Yvon, J; Kohler, A
2004-04-01
The nature of trace element carriers contained in sewage and combined sewer overflow (CSO) was investigated by TEM-EDX-Electron diffraction and SEM-EDX. During dry weather, chalcophile elements were found to accumulate in sewer sediments as early diagenetic sulfide phases. The sulfurization of some metal alloys was also evidenced. Other heavy metal carriers detected in sewage include metal alloys, some iron oxihydroxide phases and neoformed phosphate minerals such as anapaite. During rain events, the detailed characterization of individual mineral species allowed to differentiate the contributions from various specific sources. Metal plating particles, barite from automobile brake, or rare earth oxides from catalytic exhaust pipes, originate from road runoff, whereas PbSn alloys and lead carbonates are attributed to zinc-works from roofs and paint from building siding. Soil contribution can be traced by the presence of clay minerals, iron oxihydroxides, zircons and rare earth phosphates. However, the most abundant heavy metal carriers in CSO samples were the sulfide particles eroded from sewer sediments. The evolution of relative abundances of trace element carriers during a single storm event, suggests that the pollution due to the "first flush" effect principally results from the sewer stock of sulfides and previously deposited metal alloys, rather than from urban surface runoff.
Relationships between rainfall and Combined Sewer Overflow (CSO) occurrences
NASA Astrophysics Data System (ADS)
Mailhot, A.; Talbot, G.; Lavallée, B.
2015-04-01
Combined Sewer Overflow (CSO) has been recognized as a major environmental issue in many countries. In Canada, the proposed reinforcement of the CSO frequency regulations will result in new constraints on municipal development. Municipalities will have to demonstrate that new developments do not increase CSO frequency above a reference level based on historical CSO records. Governmental agencies will also have to define a framework to assess the impact of new developments on CSO frequency and the efficiency of the various proposed measures to maintain CSO frequency at its historic level. In such a context, it is important to correctly assess the average number of days with CSO and to define relationships between CSO frequency and rainfall characteristics. This paper investigates such relationships using available CSO and rainfall datasets for Quebec. CSO records for 4285 overflow structures (OS) were analyzed. A simple model based on rainfall thresholds was developed to forecast the occurrence of CSO on a given day based on daily rainfall values. The estimated probability of days with CSO have been used to estimate the rainfall threshold value at each OS by imposing that the probability of exceeding this rainfall value for a given day be equal to the estimated probability of days with CSO. The forecast skill of this model was assessed for 3437 OS using contingency tables. The statistical significance of the forecast skill could be assessed for 64.2% of these OS. The threshold model has demonstrated significant forecast skill for 91.3% of these OS confirming that for most OS a simple threshold model can be used to assess the occurrence of CSO.
Wilkison, Donald H.; Davis, Jerri V.
2010-01-01
The occurrence and sources of Escherichia coli (E. coli), one of several fecal indicator bacteria, in metropolitan St. Louis streams known to receive nonpoint source runoff, occasional discharges from combined and sanitary sewers, and treated wastewater effluent were investigated from October 2004 through September 2007. Three Missouri River sites, five Mississippi River sites, and six small basin tributary stream sites were sampled during base flow and storm events for the presence of E. coli and their sources. E. coli host-source determinations were conducted using local library based genotypic methods. Human fecal contamination in stream samples was additionally confirmed by the presence of Bacteroides thetaiotaomicron, an anaerobic, enteric bacterium with a high occurrence in, and specificity to, humans. Missouri River E. coli densities and loads during base flow were approximately 10 times greater than those in the Mississippi River above its confluence with the Missouri River. Although substantial amounts of E. coli originated from within the study area during base flow and storm events, considerable amounts of E. coli in the Missouri River, as well as in the middle Mississippi River sections downstream from its confluence with the Missouri River, originated in Missouri River reaches upstream from the study area. In lower Mississippi River reaches, bacteria contributions from the numerous combined and sanitary sewer overflows within the study area, as well as contributions from nonpoint source runoff, greatly increased instream E. coli densities. Although other urban factors cannot be discounted, average E. coli densities in streams were strongly correlated with the number of upstream combined and sanitary sewer overflow points, and the percentage of upstream impervious cover. Small basin sites with the greatest number of combined and sanitary sewer overflows (Maline Creek and the River des Peres) had larger E. coli densities, larger loads, and a greater percentage of E. coli attributable to humans than other small basin sites; however, even though small basin E. coli densities typically were much larger than in large river receiving streams, small basins contributed, on average, only a small part (a maximum of 16 percent) of the total E. coli load to larger rivers. On average, approximately one-third of E. coli in metropolitan St. Louis streams was identified as originating from humans. Another one-third of the E. coli was determined to have originated from unidentified sources; dogs and geese contributed lesser amounts, 10 and 20 percent, of the total instream bacteria. Sources of E. coli were largely independent of hydrologic conditions-an indication that sources remained relatively consistent with time.
Monitoring and analysis of combined sewer overflows, Riverside and Evanston, Illinois, 1997-99
Waite, Andrew M.; Hornewer, Nancy J.; Johnson, Gary P.
2002-01-01
The U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, collected and analyzed flow data in combined sewer systems in Riverside and Evanston, northeastern Illinois, from March 1997 to December 1999. Continuous 2- and 5-minute stage and velocity data were collected during surcharged and nonsurcharged conditions at 12 locations. Mass balances were calculated to determine the volume of water flowing through the tide-gate openings to the Des Plaines River and the North Shore Channel and to determine the volume of water flowing past the sluice gate to the deep tunnel. The sewer systems consist of circular pipes ranging in diameter from 0.83 feet to 10.0 feet, elliptical siphon pipes, ledges, and tide and sluice gates. Pipes were constructed of either brick and mortar or concrete, and ranged from having smooth surfaces to rough, pitted and crumbling surfaces. One pipe was noticeably affected by water infiltration from saturated ground. During data analysis, many assumptions were necessary because of the complexity of the flow data and sewer-system configurations. These assumptions included estimating the volume of water entering an interceptor sewer at the ''Gage Street pipe'' at Riverside, the effect of infiltration on the ''brick pipe'' at Riverside, and the minimum velocity required for the meter to make an accurate velocity determination. Other factors affecting the analysis of flow data included possible non-instrumented sources of inflow, and backwater conditions in some pipes, which could have caused error in the data analysis. Variations of these assumptions potentially could cause appreciable changes to the final massbalance calculations. Mass-balance analysis at Riverside indicated a total inflow volume into chamber 3 of approximately 721,000 cubic feet (ft3) during April 22-26, 1999. Outflow volume to the Des Plaines River at Riverside through the tide gate was approximately 132,000 ft3; outflow volume to the deep tunnel through the sluice gate was approximately 267,000 ft3. The mass-balance analysis at Evanston indicated a total inflow volume into chamber 3 of approximately 5,970,000 ft3 during April 21-26, 1999. The outflow volume to the North Shore Channel through the tide gates at Evanston was approximately 2,920,000 ft3; outflow volume to the deep tunnel through the sluice gates was approximately 3,050,000 ft3.
NASA Astrophysics Data System (ADS)
Krein, Andreas; Pailler, Jean-Yannick; Guignard, Cédric; Pfister, Laurent; Hoffmann, Lucien
2010-05-01
This investigation focuses on the analysis of four classes of veterinary and human pharmaceuticals in surface water in Luxembourg. The selected pharmaceuticals include four sulfonamides, two tetracyclines, two analgesics, and three hormones. Solid-phase extraction with liquid chromatography-tandem mass spectrometry resulted in detection limits ranging from 0.3 to 2.0 ng/L, allowing the determination of pharmaceuticals in storm waters. The analysis of pharmaceuticals by liquid chromatography-tandem mass spectrometry is a useful tool to trace their behaviour in the aquatic environment. Application of this method to river concentration and flood events revealed high concentrations of ibuprofen, with highest levels during flood events, while concentrations of estrogens and sulfonamides were comparatively low. So far, the yeast estrogen screen has been applied for some of the samples. The measured steroid values were converted to estrogenic activity by taking into account the relative potency of each chemical compared to the reference, estradiol. This method considers the relative affinity of the steroids for the hormone receptor. The measured estrogenic activity in the surface water is regularly at levels larger than 5 ng/L estradiol equivalents which might be of concern to reproductive success of native fish populations. The concentration and transport of xenobiotics in surface waters depend on hydraulic conditions including rainfall pattern and sewage overflow, on the properties of the substances, including sorption, degradation, and metabolism. The analysis of flood events using the rainfall pattern, the hydrograph, and dissolved pharmaceutical chemographs provides an insight into the temporal structure of flood events. The corresponding anthropogenic sources show a high temporal and spatial variability that is caused by different rainfall patterns and distributions, and the different characteristics (e.g. retention capacities) of the combined sewer systems. We can show that the combined sewer overflows deliver an important part of the dissolved pharmaceuticals into the river network.
Jalliffier-Verne, Isabelle; Leconte, Robert; Huaringa-Alvarez, Uriel; Madoux-Humery, Anne-Sophie; Galarneau, Martine; Servais, Pierre; Prévost, Michèle; Dorner, Sarah
2015-03-01
This study presents an analysis of climate change impacts on a large river located in Québec (Canada) used as a drinking water source. Combined sewer overflow (CSO) effluents are the primary source of fecal contamination of the river. An analysis of river flowrates was conducted using historical data and predicted flows from a future climate scenario. A spatio-temporal analysis of water quality trends with regard to fecal contamination was performed and the effects of changing flowrates on the dilution of fecal contaminants were analyzed. Along the river, there was a significant spatial trend for increasing fecal pollution downstream of CSO outfalls. Escherichia coli concentrations (upper 95th percentile) increased linearly from 2002 to 2012 at one drinking water treatment plant intake. Two critical periods in the current climate were identified for the drinking water intakes considering both potential contaminant loads and flowrates: local spring snowmelt that precedes river peak flow and extra-tropical storm events that occur during low flows. Regionally, climate change is expected to increase the intensity of the impacts of hydrological conditions on water quality in the studied basin. Based on climate projections, it is expected that spring snowmelt will occur earlier and extreme spring flowrates will increase and low flows will generally decrease. High and low flows are major factors related to the potential degradation of water quality of the river. However, the observed degradation of water quality over the past 10 years suggests that urban development and population growth may have played a greater role than climate. However, climate change impacts will likely be observed over a longer period. Source water protection plans should consider climate change impacts on the dilution of contaminants in addition to local land uses changes in order to maintain or improve water quality. Copyright © 2014 Elsevier B.V. All rights reserved.
Combined Sewer Overflows as a Source of Hormones to Surface Water
NASA Astrophysics Data System (ADS)
Phillips, P.; Chalmers, A.; Gray, J. L.; Foreman, W.; Kolpin, D. W.; Wall, G.; Esposito, K.
2009-12-01
Some sources of hormones to surface water, such as wastewater-treatment-plant (WWTP) effluent, have been well documented, but other sources, particularly wet-weather discharges from combined-sewer-overflows (CSOs), are not well characterized. Flow-weighted composite samples of secondarily treated WWTP effluent and untreated sewage discharges from WWTP inflows and CSO discharges were collected during 12 storms and 6 non-storm conditions from November 2007-December 2008 at the main Burlington Vermont WWTP. Concentrations of many androgens and estrogens were highest in samples from untreated sewage, and lower in samples from treated sewage. For example, concentrations of estriol in CSO samples ranged from 5 to over 100 ng/L (nanograms per liter), but were generally less than 1 ng/L in treated sewage. Many androgens were detected in CSO discharge samples in concentrations ranging from 1 to over 1000 ng/L, but were not detected above 1 ng/L in treated samples. For many of the hormones, including androgens and estriol, CSO discharges comprised over half of the total load discharged by the WWTP, even though annual CSO discharge is less than 10% of the treated plant discharge. These results indicate that untreated discharges during CSO events can be a major source of some hormones and other wastewater compounds to the environment.
Using Agent-Based Modeling to Enhance System-Level Real-time Control of Urban Stormwater Systems
NASA Astrophysics Data System (ADS)
Rimer, S.; Mullapudi, A. M.; Kerkez, B.
2017-12-01
The ability to reduce combined-sewer overflow (CSO) events is an issue that challenges over 800 U.S. municipalities. When the volume of a combined sewer system or wastewater treatment plant is exceeded, untreated wastewater then overflows (a CSO event) into nearby streams, rivers, or other water bodies causing localized urban flooding and pollution. The likelihood and impact of CSO events has only exacerbated due to urbanization, population growth, climate change, aging infrastructure, and system complexity. Thus, there is an urgent need for urban areas to manage CSO events. Traditionally, mitigating CSO events has been carried out via time-intensive and expensive structural interventions such as retention basins or sewer separation, which are able to reduce CSO events, but are costly, arduous, and only provide a fixed solution to a dynamic problem. Real-time control (RTC) of urban drainage systems using sensor and actuator networks has served as an inexpensive and versatile alternative to traditional CSO intervention. In particular, retrofitting individual stormwater elements for sensing and automated active distributed control has been shown to significantly reduce the volume of discharge during CSO events, with some RTC models demonstrating a reduction upwards of 90% when compared to traditional passive systems. As more stormwater elements become retrofitted for RTC, system-level RTC across complete watersheds is an attainable possibility. However, when considering the diverse set of control needs of each of these individual stormwater elements, such system-level RTC becomes a far more complex problem. To address such diverse control needs, agent-based modeling is employed such that each individual stormwater element is treated as an autonomous agent with a diverse decision making capabilities. We present preliminary results and limitations of utilizing the agent-based modeling computational framework for the system-level control of diverse, interacting stormwater elements.
Passerat, Julien; Ouattara, Nouho Koffi; Mouchel, Jean-Marie; Rocher, Vincent; Servais, Pierre
2011-01-01
For a better understanding of the short and mid-term impacts of a combined sewer overflow (CSO) on the microbiological quality of the receiving river, we studied the composition of a CSO discharge and monitored during several hours the changes in the concentration of fecal indicator bacteria (FIB) in the impacted river water mass. The CSO occurred at the Clichy outfall (Paris agglomeration, France) in summer 2008 as a result of the most intense rainfall of the year. In 6h, 578, 705 m(3) of sewage and 124 t of suspended matter (SM) were discharged into the Seine River. The CSO contained 1.5 × 10(6)E. coli and 4.0 × 10(5) intestinal enterococci per 100 mL on average, and 77% of the E. coli were attached to SM. It was estimated that 89% of the CSO discharge was contributed by surface water runoff, and that resuspension of sewer sediment contributed to ∼75% of the SM, 10-70% of the E. coli and 40-80% of the intestinal enterococci. Directly downstream from the CSO outfall, FIB concentrations in the impacted water mass of the Seine River (2.9 × 10(5)E. coli and 7.6 × 10(4) intestinal enterococci per 100 mL) exceeded by two orders of magnitude the usual dry weather concentrations. After 13-14 h of transit, these concentrations had decreased by 66% for E. coli and 79% for intestinal enterococci. This decline was well accounted for by our estimations of dilution, decay resulting from mortality or loss of culturability and sedimentation of the attached fraction of FIB. Copyright © 2010 Elsevier Ltd. All rights reserved.
Voelker, David C.
2012-01-01
During 2003–2008, the U.S. Geological Survey sampled 13 sites in the Indianapolis metropolitan area in Indiana for benthic invertebrates, fish communities, and streambed-sediment chemistry. Data from seven White River sites and six tributary sites complement surface-water chemistry data collected by the Indianapolis Department of Public Works. The information is being used to assess changes in water quality in conjunction with the City's programs to reduce combined sewer overflows and other point and nonpoint sources of pollution in the Indianapolis area. During the study, 233 benthic-invertebrate taxa were identified from which the Ephemeroptera, Plecoptera, and Trichoptera (EPT) Index, the Hilsenhoff Biotic Index (HBI), and the Invertebrate Community Index (ICI) were calculated. EPT index scores ranged from 2 to 16 on the White River and from 2 to 17 on the tributaries. EPT index scores indicate that these pollution-intolerant taxa are more prevalent upstream from and away from the combined-sewer areas of Indianapolis. HBI scores from sites on the White River ranged from 4.67 (good) to 9.55 (very poor), whereas on the tributaries, scores ranged from 4.21 (very good) to 8.14 (poor). Lower HBI scores suggest that less organic pollution was present and, like the EPT scores, indicate better conditions where combined-sewer overflows (CSOs) are not present. Similarly, ICI scores indicated better conditions upstream from the CSO outfalls on the White River. White River scores ranged from 12 to 46, where higher ICI scores indicate better conditions in the benthic-invertebrate community. ICI scores at the tributary sites ranged from 12 to 52, with the highest scores on streams without CSOs.
Identification of sewer pipes to be cleaned for reduction of CSO pollutant load.
Nagaiwa, Akihiro; Settsu, Katsushi; Nakajima, Fumiyuki; Furumai, Hiroaki
2007-01-01
To reduce the CSO (Combined Sewer Overflow) pollutant discharge, one of the effective options is cleaning of sewer pipes before rainfall events. To maximize the efficiency, identification of pipes to be cleaned is necessary. In this study, we discussed the location of pipe deposit in dry weather in a combined sewer system using a distributed model and investigated the effect of pipe cleaning to reduce the pollutant load from the CSO. First we simulated the dry weather flow in a combined sewer system. The pipe deposit distribution in the network was estimated after 3 days of dry weather period. Several specific pipes with structural defect and upper end pipes tend to have an accumulation of deposit. Wet weather simulations were conducted with and without pipe cleaning in rainfall events with different patterns. The SS loads in CSO with and without the pipe cleaning were compared. The difference in the estimated loads was interpreted as the contribution of wash-off in the cleaned pipe. The effect of pipe cleaning on reduction of the CSO pollutant load was quantitatively evaluated (e.g. the cleaning of one specific pipe could reduce 22% of total CSO load). The CSO simulations containing pipe cleaning options revealed that identification of pipes with accumulated deposit using the distributed model is very useful and informative to evaluate the applicability of pipe cleaning option for CSO pollutant reduction.
Biodegradability of organic matter associated with sewer sediments during first flush.
Sakrabani, Ruben; Vollertsen, Jes; Ashley, Richard M; Hvitved-Jacobsen, Thorkild
2009-04-01
The high pollution load in wastewater at the beginning of a rain event is commonly known to originate from the erosion of sewer sediments due to the increased flow rate under storm weather conditions. It is essential to characterize the biodegradability of organic matter during a storm event in order to quantify the effect it can have further downstream to the receiving water via discharges from Combined Sewer Overflow (CSO). The approach is to characterize the pollutograph during first flush. The pollutograph shows the variation in COD and TSS during a first flush event. These parameters measure the quantity of organic matter present. However these parameters do not indicate detailed information on the biodegradability of the organic matter. Such detailed knowledge can be obtained by dividing the total COD into fractions with different microbial properties. To do so oxygen uptake rate (OUR) measurements on batches of wastewater have shown itself to be a versatile technique. Together with a conceptual understanding of the microbial transformation taking place, OUR measurements lead to the desired fractionation of the COD. OUR results indicated that the highest biodegradability is associated with the initial part of a storm event. The information on physical and biological processes in the sewer can be used to better manage sediment in sewers which can otherwise result in depletion of dissolved oxygen in receiving waters via discharges from CSOs.
Modelling real-time control of WWTP influent flow under data scarcity.
Kroll, Stefan; Dirckx, Geert; Donckels, Brecht M R; Van Dorpe, Mieke; Weemaes, Marjoleine; Willems, Patrick
2016-01-01
In order to comply with effluent standards, wastewater operators need to avoid hydraulic overloading of the wastewater treatment plant (WWTP), as this can result in the washout of activated sludge from secondary settling tanks. Hydraulic overloading can occur in a systematic way, for instance when sewer network connections are extended without increasing the WWTP's capacity accordingly. This study demonstrates the use of rule-based real-time control (RTC) to reduce the load to the WWTP while restricting the overall overflow volume of the sewer system to a minimum. Further, it shows the added value of RTC despite the limited availability of monitoring data and information on the catchment through a parsimonious simulation approach, using relocation of spatial system boundaries and creating required input data through reverse modelling. Focus was hereby on the accurate modelling of pump hydraulics and control. Finally, two different methods of global sensitivity analysis were employed to verify the influence of parameters of both the model and the implemented control algorithm. Both methods show the importance of good knowledge of the system properties, but that monitoring errors play a minor role.
Identification of pollutant sources in a rapidly developing urban river catchment in China
NASA Astrophysics Data System (ADS)
Huang, Jingshui; Yin, Hailong; Jomma, Seifeddine; Rode, Michael; Zhou, Qi
2016-04-01
Rapid economic development and urbanization worldwide cause serious ecological and environmental problems. A typical region that is in transition and requires systemic research for effective intervention is the rapidly developing city of Hefei in central P. R. China. In order to investigate the sources of pollutants over a one-year period in Nanfei River catchment that drains the city of Hefei, discharges were measured and water samples were taken and measured along the 14km river section at 10 sites for 4 times from 2013 to 2014. Overflow concentrations of combined sewer and separate storm drains were also measured by selecting 15 rain events in 4 typical drainage systems. Loads and budgets of water and different pollutant sources i.e., wastewater treatment plant (WWTP) effluent, urban drainage overflow, unknown wastewater were calculated. The water balance demonstrated that >70% of the discharge originated from WWTP effluent. Lack of clean upstream inflow thereby is threatening ecological safety and water quality. Furthermore, mass fluxes calculations revealed that >40% of the COD (Chemical Oxygen Demand) loads were from urban drainage overflow because of a large amount of discharge of untreated wastewater in pumping stations during rain events. WWTP effluent was the predominant source of the total nitrogen loads (>60%) and ammonia loads (>45%). However, the total phosphorous loads from three different sources are similar (˜1/3). Thus, our research provided a basis for appropriate and prior mitigation strategies (state-of-art of WWTP upgrade, sewer systems modification, storm water regulation and storage capacity improvement, etc.) for different precedence-controlled pollutants with the limited infrastructure investments in these rapidly developing urban regions.
Madoux-Humery, Anne-Sophie; Dorner, Sarah; Sauvé, Sébastien; Aboulfadl, Khadija; Galarneau, Martine; Servais, Pierre; Prévost, Michèle
2013-09-01
A monitoring program was initiated for two sewage outfalls (OA and OB) with different land uses (mainly residential versus institutional) over the course of a year. Eleven CSO events resulting from fall and summer precipitations and a mixture of snowmelt and precipitation in late winter and early spring were monitored. Median concentrations measured in CSOs were 1.5 × 10(6)Escherichia coli/100 mL, 136.0 mg/L of Total Suspended Solids (TSS), 4599.0 ng/L of caffeine (CAF), 158.9 ng/L of carbamazepine (CBZ), in outfall OA and 5.1 × 10(4)E. coli/100 mL, 167.0 mg TSS/L, 300.8 ng CAF/L, 4.1 ng CBZ/L, in outfall OB. Concentration dynamics in CSOs were mostly related to the dilution by stormwater and the time of day of the onset of overflows. Snowmelt was identified as a critical period with regards to the protection of drinking water sources given the high contaminant concentrations and long duration of events in addition to a lack of restrictions on overflows during this period. Correlations among measured parameters reflected the origins and transport pathways of the contaminants, with E. coli being correlated with CBZ. TSS were not correlated with E. coli because E. coli was found to be mostly associated with raw sewage whereas TSS were additionally from the resuspension of in-sewer deposits and surface runoff. In receiving waters, E. coli remained the best indicator of fecal contamination in strongly diluted water samples as compared to WWMPs because WWMPs can be diluted to below their detection limits. Copyright © 2013 Elsevier Ltd. All rights reserved.
DeFlorio-Barker, Stephanie; Lin, Cynthia J.; Hilborn, Elizabeth D.; Wade, Timothy J.
2017-01-01
Background: Sanitary sewer overflows (SSOs) occur when untreated sewage is discharged into water sources before reaching the treatment facility, potentially contaminating the water source with gastrointestinal pathogens. Objectives: The objective of this paper is to assess associations between SSO events and rates of gastrointestinal (GI) illness in Massachusetts. Methods: A case-crossover study design was used to investigate association between SSO events and emergency room (ER) visits with a primary diagnosis of gastrointestinal (GI) illness in Massachusetts for 2006–2007. ER visits for GI were considered exposed if an SSO event occurred in the county of residence within three hazard periods, 0–4 d, 5–9 d, or 10–14 d, before the visit. A time-stratified bidirectional design was used to select control days for each ER visit on the same day of the week during the same month. Fixed effect logistic regression models were used to estimate the risk of ER visits following the SSO event. Results: During the study period, there were 270 SSO events for northeastern Massachusetts and 66,460 ER admissions with GI illness listed as the primary diagnostic code. The overall odds ratio (OR) for ER visits for GI illness was 1.09 [95% confidence interval (CI): 1.03, 1.16] in the 10–14 d period following an SSO event, with positive ORs for all age groups and for three of the four counties. The 0–4 d and 5–9 d periods following an SSO event were not associated with ER visits for GI illness overall, and associations by county or age were inconsistent. Conclusions: We demonstrated an association between SSO events and ER visits for GI illness using a case-crossover study design. In light of the aging water infrastructure in the United States and the expected increase in heavy rainfall events, our findings suggest a potential health impact associated with sewage overflows. https://doi.org/10.1289/EHP2048 PMID:29187322
Rocher, Vincent; Azimi, Sam; Moilleron, Régis; Chebbo, Ghassan
2004-05-05
The knowledge of the pollution stored in combined sewers is of prime importance in terms of management of wet weather flow pollution since sewer deposits play a significant role as source of pollution in combined sewer overflows. This work, which focused on the hydrocarbon (aliphatic and aromatic hydrocarbons) and metallic (Fe, Zn, Pb, Cu and Cd) pollution fixed to the different kinds of sewer deposits (gross bed sediment [GBS], organic layer [OL] and biofilm), was performed in order to provide a complete overview of the contaminant storage in the 'Le Marais' combined sewer (Central Paris, France). Firstly, our results have shown that, for all kinds of pollutants, a major part was stored in the GBS (87 to 98%), a lesser part in the OL (2 to 13%) and an insignificant part in the biofilm (<1%). These results demonstrated that the potential contribution of biofilm to wet weather pollution was negligible compared to the OL one. Secondly, the investigation of hydrocarbon fingerprints in each deposit has provided relevant information about contamination origins: (1) aliphatic hydrocarbon distributions were indicative of petroleum input in the GBS and reflected a mixture of biogenic and petroleum inputs in the OL and biofilm, (2) aromatic hydrocarbon distributions suggested an important pyrolytic contamination in all the deposits. Finally, the study of pollutant fingerprints in the different deposits and in the suspended solids going through the collector has shown that: (1) the suspended solids were the major component of OL and biofilm while urban runoff seemed to be the main transport mechanism introducing pollutants in the GBS and (2) the residence times in sewer of OL and biofilm were quite short compared to those for GBS.
Assessing the efficiency of different CSO positions based on network graph characteristics.
Sitzenfrei, R; Urich, C; Möderl, M; Rauch, W
2013-01-01
The technical design of urban drainage systems comprises two major aspects: first, the spatial layout of the sewer system and second, the pipe-sizing process. Usually, engineers determine the spatial layout of the sewer network manually, taking into account physical features and future planning scenarios. Before the pipe-sizing process starts, it is important to determine locations of possible weirs and combined sewer overflows (CSOs) based on, e.g. distance to receiving water bodies or to a wastewater treatment plant and available space for storage units. However, positions of CSOs are also determined by topological characteristics of the sewer networks. In order to better understand the impact of placement choices for CSOs and storage units in new systems, this work aims to determine case unspecific, general rules. Therefore, based on numerous, stochastically generated virtual alpine sewer systems of different sizes it is investigated how choices for placement of CSOs and storage units have an impact on the pipe-sizing process (hence, also on investment costs) and on technical performance (CSO efficiency and flooding). To describe the impact of the topological positions of these elements in the sewer networks, graph characteristics are used. With an evaluation of 2,000 different alpine combined sewer systems, it was found that, as expected, with CSOs at more downstream positions in the network, greater construction costs and better performance regarding CSO efficiency result. At a specific point (i.e. topological network position), no significant difference (further increase) in construction costs can be identified. Contrarily, the flooding efficiency increases with more upstream positions of the CSOs. Therefore, CSO and flooding efficiency are in a trade-off conflict and a compromise is required.
Ruppelt, Jan P; Tondera, Katharina; Schreiber, Christiane; Kistemann, Thomas; Pinnekamp, Johannes
2018-05-01
Combined sewer overflows (CSOs) introduce numerous pathogens from fecal contamination, such as bacteria and viruses, into surface waters, thus endangering human health. In Germany, retention soil filters (RSFs) treat CSOs at sensitive discharge points and can contribute to reducing these hygienically relevant microorganisms. In this study, we evaluated the extent of how dry period, series connection and filter layer thickness influence the reduction efficiency of RSFs for Escherichia coli (E. coli), intestinal enterococci (I. E.) and somatic coliphages. To accomplish this, we had four pilot scale RSFs built on a test field at the wastewater treatment plant Aachen-Soers. While two filters were replicates, the other two filters were installed in a series connection. Moreover, one filter had a thinner filtration layer than the other three. Between April 2015 and December 2016, the RSFs were loaded in 37 trials with pre-conditioned CSO after dry periods ranging from 4 to 40 days. During 17 trials, samples for microbial analysis were taken and analyzed. The series connection of two filters showed that the removal increases when two systems with a filter layer of the same height are operated in series. Since the microorganisms are exposed twice to the environmental conditions on the filter surface and in the upper filter layers, there is a greater chance for abiotic adsorption increase. The same effect could be shown when filters with different depths were compared: the removal efficiency increases as filter thickness increases. This study provides new evidence that regardless of seasonal effects and dry period, RSFs can improve hygienic situation significantly. Copyright © 2018 Elsevier GmbH. All rights reserved.
Vazquez-Prokopec, Gonzalo M; Vanden Eng, Jodi L; Kelly, Rosmarie; Mead, Daniel G; Kolhe, Priti; Howgate, James; Kitron, Uriel; Burkot, Thomas R
2010-10-01
At present, the factors favoring transmission and amplification of West Nile Virus (WNV) within urban environments are poorly understood. In urban Atlanta, Georgia, the highly polluted waters of streams affected by combined sewer overflow (CSO) represent significant habitats for the WNV mosquito vector Culex quinquefasciatus. However, their contribution to the risk of WNV infection in humans and birds remains unclear. Our goals were to describe and quantify the spatial distribution of WNV infection in mosquitoes, humans, and corvids, such as blue jays and American crows that are particularly susceptible to WNV infection, and to assess the relationship between WNV infection and proximity to CSO-affected streams in the city of Atlanta, Georgia. We applied spatial statistics to human, corvid, and mosquito WNV surveillance data from 2001 through 2007. Multimodel analysis was used to estimate associations of WNV infection in Cx. quinquefasciatus, humans, and dead corvids with selected risk factors including distance to CSO streams and catch basins, land cover, median household income, and housing characteristics. We found that WNV infection in mosquitoes, corvids, and humans was spatially clustered and statistically associated with CSO-affected streams. WNV infection in Cx. quinquefasciatus was significantly higher in CSO compared with non-CSO streams, and WNV infection rates among humans and corvids were significantly associated with proximity to CSO-affected streams, the extent of tree cover, and median household income. Our study strongly suggests that CSO-affected streams are significant sources of Cx. quinquefasciatus mosquitoes that may facilitate WNV transmission to humans within urban environments. Our findings may have direct implications for the surveillance and control of WNV in other urban centers that continue to use CSO systems as a waste management practice.
Phillips, P.; Chalmers, A.
2009-01-01
Some sources of organic wastewater compounds (OWCs) to streams, lakes, and estuaries, including wastewater-treatment-plant effluent, have been well documented, but other sources, particularly wet-weather discharges from combined-sewer-overflow (CSO) and urban runoff, may also be major sources of OWCs. Samples of wastewater-treatment-plant (WWTP) effluent, CSO effluent, urban streams, large rivers, a reference (undeveloped) stream, and Lake Champlain were collected from March to August 2006. The highest concentrations of many OWCs associated with wastewater were in WWTP-effluent samples, but high concentrations of some OWCs in samples of CSO effluent and storm runoff from urban streams subject to leaky sewer pipes or CSOs were also detected. Total concentrations and numbers of compounds detected differed substantially among sampling sites. The highest total OWC concentrations (10-100 ??g/l) were in samples of WWTP and CSO effluent. Total OWC concentrations in samples from urban streams ranged from 0.1 to 10 ??g/l, and urban stream-stormflow samples had higher concentrations than baseflow samples because of contributions of OWCs from CSOs and leaking sewer pipes. The relations between OWC concentrations in WWTP-effluent and those in CSO effluent and urban streams varied with the degree to which the compound is removed through normal wastewater treatment. Concentrations of compounds that are highly removed during normal wastewater treatment [including caffeine, Tris(2-butoxyethyl)phosphate, and cholesterol] were generally similar to or higher in CSO effluent than in WWTP effluent (and ranged from around 1 to over 10 ??g/l) because CSO effluent is untreated, and were higher in urban-stream stormflow samples than in baseflow samples as a result of CSO discharge and leakage from near-surface sources during storms. Concentrations of compounds that are poorly removed during treatment, by contrast, are higher in WWTP effluent than in CSO, due to dilution. Results indicate that CSO effluent and urban stormwaters can be a significant major source of OWCs entering large water bodies such as Burlington Bay. ?? 2008 American Water Resources Association.
Flood reduction as an ecosystem service of constructed wetlands for combined sewer overflow
NASA Astrophysics Data System (ADS)
Rizzo, A.; Bresciani, R.; Masi, F.; Boano, F.; Revelli, R.; Ridolfi, L.
2018-05-01
Urban runoff negatively impacts the receiving streams and different solutions have been proposed in literature to limit the effect of urbanization on the water balance. These solutions suggest to manage urban runoff in order to switch from a post-development river hydrograph (high peak and short duration) back again to a pre-development hydrograph (low peak and high duration). Combined sewer overflows (CSOs) represent severe pollutant sources for receiving streams due to the combination of first flush of roads and sewers and black water conveyed by combined sewer systems. Constructed wetlands for CSO treatment (CSO-CWs) are adopted with increasing frequency for reducing pollutant inputs to streams. Moreover, these systems exhibit the characteristic to behave similarly to ponds, wetlands, and bioretention systems that provide flood mitigation by decreasing the intensity of peak flows. This work aims to show the additional ecosystem service provided by CSO-CWs in term of limitation of the hydraulic impact of CSO on stream hydrograph. A mathematical model is developed to simulate the hydraulic behavior of a real case study situated in Gorla Maggiore (Italy), which includes vertical flow subsurface beds (VF) as first stage and a free water surface bed (FWS) as second stage. The model simulates the unsaturated flow within VF and the accumulation of water on the top of VF and within FWS. Results show a satisfactory lamination performance of the system for both single and up to 5 consecutive flood events, with a peak flow reduction ranging from 52.7% to 95.4%. Withdrawn of flow rate from the river in order to cope with long dry period does not significantly affect the lamination performances. The considered CSO-CW exhibits an excellent lamination efficiency also during more intense floods events, with a peak flow reduction of 86.2% for a CSO event with return period of 10 years. The flow rate frequency density function determined by the CSO-CW is more shifted towards lower values compared to untreated CSOs. These results indicate that CSO-CWs work properly in terms of reduction of CSO urbanization impact on stream hydrology.
NASA Astrophysics Data System (ADS)
Sikora, M. T.; Elliott, E. M.
2009-12-01
Excess nitrate (NO3-) contributes to the overall degraded quality of streams in many urban areas. These systems are often dominated by impervious surfaces and storm sewers that can route atmospherically deposited nitrogen, from both wet and dry deposition, to waterways. Moreover, in densely populated watersheds there is the potential for interaction between urban waterways and sewer systems. The affects of accumulated nitrate in riverine and estuary systems include low dissolved oxygen, loss of species diversity, increased mortality of aquatic species, and general eutrophication of the waterbody. However, the dynamics of nitrate pollution from each source and it’s affect on urban waterways is poorly constrained. The isotopes of nitrogen and oxygen in nitrate have been proven effective in helping to distinguish contamination sources to ground and surface waters. In order to improve our understanding of urban nitrate pollution sources and dynamics, we examined nitrate isotopes (δ15N and δ18O) in base- and stormflow samples collected over a two-year period from a restored urban stream in Pittsburgh, Pennsylvania (USA). Nine Mile Run drains a 1,600 hectare urban watershed characterized by 38% impervious surface cover. Prior work has documented high nitrate export from the watershed (~19 kg NO3- ha-1 yr-1). Potential nitrate sources to the watershed include observed sewer overflows draining directly to the stream, as well as atmospheric deposition (~23 kg NO3- ha-1 yr-1). In this and other urban systems with high percentages of impervious surfaces, there is likely minimal input from nitrate derived from soil or fertilizer. In this presentation, we examine spatial and temporal patterns in nitrate isotopic composition collected at five locations along Nine Mile Run characterized by both sanitary and combined-sewer cross-connections. Preliminary isotopic analysis of low-flow winter streamwater samples suggest nitrate export from Nine Mile Run is primarily influenced by inputs of human waste despite high rates of atmospheric nitrate deposition. Further isotopic analysis of nitrate will examine seasonal variations in nitrate sources; compare nitrate dynamics and sources during low- versus high-flows, and the influence of interannual climatic variability on nitrate export.
Peracetic Acid as a Green Disinfectant for Combined Sewer ...
This cooperative research and development agreement between U.S. EPA, Solvay, MSDGC, and CB&I is evaluating the potential of PAA for disinfection of Muddy Creek CSO wastewater and comparing that with sodium hypochlorite disinfection. This presentation will document the effectiveness of sodium hypochlorite and PAA for the inactivation of E. coli in CSO wastewater using laboratory bench-scale jar tests and Muddy Creek field site studies based on the following items:•Storage, shelf life, and application of the disinfectants.•Effectiveness of the disinfectants in the inactivation of E. coli.•Formation of harmful byproducts by the disinfectants.•Operation and maintenance costs, including the cost of the disinfectant, its storage, application, and neutralizing agent for the disinfectant to maintain the Ohio EPA guideline for residual disinfectant at the discharge point. Like many cities in the USA, Cincinnati, Ohio is attempting to find the best way to meet state and federal requirements concerning combined sewer overflow (CSO) wastewater. The Muddy Creek CSO treatment facility was constructed to provide treatment for CSO Numbers 198 and 216 from the Westwood Trunk sewer. The Metropolitan Sewer District of Greater Cincinnati (MSDGC) is currently using sodium hypochlorite for disinfection in this treatment facility. Because of degradation of hypochlorite during storage and the formation of chlorinated disinfection byproducts (DBPs), MSDGC is evaluating alternat
Jagai, Jyotsna S; Li, Quanlin; Wang, Shiliang; Messier, Kyle P; Wade, Timothy J; Hilborn, Elizabeth D
2015-09-01
Combined sewer overflows (CSOs) occur in combined sewer systems when sewage and stormwater runoff are released into water bodies, potentially contaminating water sources. CSOs are often caused by heavy precipitation and are expected to increase with increasing extreme precipitation associated with climate change. The aim of this study was to assess whether the association between heavy rainfall and rate of emergency room (ER) visits for gastrointestinal (GI) illness differed in the presence of CSOs. For the study period 2003-2007, time series of daily rate of ER visits for GI illness and meteorological data were organized for three exposure regions: a) CSOs impacting drinking water sources, b) CSOs impacting recreational waters, c) no CSOs. A distributed lag Poisson regression assessed cumulative effects for an 8-day lag period following heavy (≥ 90th and ≥ 95th percentile) and extreme (≥ 99th percentile) precipitation events, controlling for temperature and long-term time trends. The association between extreme rainfall and rate of ER visits for GI illness differed among regions. Only the region with drinking water exposed to CSOs demonstrated a significant increased cumulative risk for rate (CRR) of ER visits for GI for all ages in the 8-day period following extreme rainfall: CRR: 1.13 (95% CI: 1.00, 1.28) compared with no rainfall. The rate of ER visits for GI illness was associated with extreme precipitation in the area with CSO discharges to a drinking water source. Our findings suggest an increased risk for GI illness among consumers whose drinking water source may be impacted by CSOs after extreme precipitation. Jagai JS, Li Q, Wang S, Messier KP, Wade TJ, Hilborn ED. 2015. Extreme precipitation and emergency room visits for gastrointestinal illness in areas with and without combined sewer systems: an analysis of Massachusetts data, 2003-2007. Environ Health Perspect 123:873-879; http://dx.doi.org/10.1289/ehp.1408971.
Schaarup-Jensen, K; Rasmussen, M R; Thorndahl, S
2009-01-01
In urban drainage modelling long-term extreme statistics has become an important basis for decision-making e.g. in connection with renovation projects. Therefore it is of great importance to minimize the uncertainties with regards to long-term prediction of maximum water levels and combined sewer overflow (CSO) in drainage systems. These uncertainties originate from large uncertainties regarding rainfall inputs, parameters, and assessment of return periods. This paper investigates how the choice of rainfall time series influences the extreme events statistics of max water levels in manholes and CSO volumes. Traditionally, long-term rainfall series, from a local rain gauge, are unavailable. In the present case study, however, long and local rain series are available. 2 rainfall gauges have recorded events for approximately 9 years at 2 locations within the catchment. Beside these 2 gauges another 7 gauges are located at a distance of max 20 kilometers from the catchment. All gauges are included in the Danish national rain gauge system which was launched in 1976. The paper describes to what extent the extreme events statistics based on these 9 series diverge from each other and how this diversity can be handled, e.g. by introducing an "averaging procedure" based on the variability within the set of statistics. All simulations are performed by means of the MOUSE LTS model.
An unusual occupational accident: fall into a sewage plant tank with lethal outcome.
Padosch, Stephan A; Dettmeyer, Reinhard B; Kröner, Lars U; Preuss, Johanna; Madea, Burkhard
2005-04-20
Occupational accidents, often presenting with lethal outcomes, are a rarely reported issue in forensic literature. However, these incidents are part of medicolegal casework with special regard to reconstruction, liabilities and insurance law-related issues, respectively. We report on a lethal occupational accident in a metropolitan sewage plant. When performing routine controls, a technician fell into an overflow sewer and was immediately pulled into a 30 cm diameter drain. Rescue efforts were initiated immediately, but had to be terminated due to gas warning. Rescue teams continued the search, however, the body remained undiscoverable. Forty-eight hours later, the cadaver was found in an adjacent digester tank, from where it was finally rescued. It was concluded, that the body had been transported between the overflow sewer and the digester tank through a 120 m pipeline with several 90 degrees bendings and branch connections with a minimum diameter of 25 cm at the discharge valve. On medicolegal examination, the cadaver showed marked signs of advanced decomposition caused by anaerobic microorganisms in the 37 degrees C biomass environment. Moreover, as a consequence of the passage of the pipeline system, signs of massive trauma (several comminuted and compound fractures) were disclosed at autopsy. To us, this is the first report on a lethal occupational accident in a sewage plant; our observations demonstrate the rapid progress of putrefaction in a warm anaerobic bacterial environment and the massive trauma sustained.
Impacts of land use on phosphorus transport in a river system
NASA Astrophysics Data System (ADS)
Wang, J.; Pant, H. K.
2010-12-01
Phosphorus (P) is a primary limiting nutrient in freshwater systems, however, excessive P load in the systems cause eutriphication, resulting in algal blooms and oxygen depletion. This study estimated potential exchange of P between water column and sediments by P sorption, and identified P compounds in sediments by 31Phosphorus Nuclear Magnetic Resonance Spectroscopy in the samples collected from the Bronx River, New York City, NY. Similarly, mineralization, as well as enzymatic hydrolysis using native phosphoatases (NPase) and phosphodiesterase (PDEase) showed that land use changes and other anthropogenic factors had effects on the P availability in the river. Distinguished characteristics of P bioavailability appeared at major tributaries of Sprain Brook and Troublesome Brook, boundary between fresh and saline water at East Tremont Ave, and estuary close to Hunts Point Wastewater Treatment Plant. Incidental sewer overflows at Yonkers, oil spill at East Tremont Avenue Bridge, fertilizer application at Westchester’s lawns, and gardens, animal manure from the zoo, combined sewer overflows (CSOs), storm water runoff from Bronx River Parkway, and inputs from East River influenced spatial and temporal variations on P transport in the river. This study provides an overview of impacts of land use on nutrient transport in a river system, which may help to make effective policies to regulate P application in the river watersheds, in turn, improve water quality and ecological restoration of a river.
Fach, S; Sitzenfrei, R; Rauch, W
2009-01-01
It is state of the art to evaluate and optimise sewer systems with urban drainage models. Since spill flow data is essential in the calibration process of conceptual models it is important to enhance the quality of such data. A wide spread approach is to calculate the spill flow volume by using standard weir equations together with measured water levels. However, these equations are only applicable to combined sewer overflow (CSO) structures, whose weir constructions correspond with the standard weir layout. The objective of this work is to outline an alternative approach to obtain spill flow discharge data based on measurements with a sonic depth finder. The idea is to determine the relation between water level and rate of spill flow by running a detailed 3D computational fluid dynamics (CFD) model. Two real world CSO structures have been chosen due to their complex structure, especially with respect to the weir construction. In a first step the simulation results were analysed to identify flow conditions for discrete steady states. It will be shown that the flow conditions in the CSO structure change after the spill flow pipe acts as a controlled outflow and therefore the spill flow discharge cannot be described with a standard weir equation. In a second step the CFD results will be used to derive rating curves which can be easily applied in everyday practice. Therefore the rating curves are developed on basis of the standard weir equation and the equation for orifice-type outlets. Because the intersection of both equations is not known, the coefficients of discharge are regressed from CFD simulation results. Furthermore, the regression of the CFD simulation results are compared with the one of the standard weir equation by using historic water levels and hydrographs generated with a hydrodynamic model. The uncertainties resulting of the wide spread use of the standard weir equation are demonstrated.
NASA Astrophysics Data System (ADS)
Jaffe, P. R.; Pennino, M. J.; McDonald, R.
2015-12-01
Stormwater green infrastructure (SGI), including rain gardens, detention ponds, bioswales, and green roofs, is being implemented in cities across the globe to help reduce flooding, decrease combined sewer overflows, and lessen pollutant transport to streams and rivers. Despite the increasing use of urban SGI, there is much uncertainty regarding the cumulative effects of multiple SGI projects on hydrology and water quality at the watershed scale. To assess the cumulative effects of SGI, major cities across the mid-Atlantic were selected based on availability of SGI, water quality, and stream flow data. The impact of SGI was evaluated by comparing similar watersheds, with and without SGI or by assessing how long-term changes in SGI impact hydrologic and water quality metrics over time. Most mid-Atlantic cities have a goal of achieving 10-75% SGI by 2030. Of these cites, Washington D.C. currently has the highest density of SGI (15.5%), while Philadelphia, PA and New York, NY have the lowest (0.14% and 0.28%, respectively). When comparing watersheds of similar size and percent impervious surface cover, watersheds with lower amounts of SGI, on average, show up to 40% greater annual total nitrogen and 75% greater total phosphorus loads and show flashier hydrology (as indicated by 35% greater average peak discharge, 26% more peak discharge events per year, and 21% higher peak-to-volume ratio) compared to watersheds with higher amounts of SGI. However, for cities with combined sewer systems (e.g. Washington, D.C. and Philadelphia, PA), there was no relationship between the level of combined sewer overflows (CSOs) and the amount of SGI, indicating the level of SGI may not yet be sufficient to reduce CSOs as intended. When comparing individual watersheds over time, increases in SGI show no significant effect on the long-term trends in nutrient loads or hydrologic variables, potentially being obscured by the larger effect of interannual variability.
Kim, Geonha; Hur, Jin
2010-01-01
This research measured the mortality rates of pathogen indicator microorganisms discharged from various point and non-point sources in an urban area. Water samples were collected from a domestic sewer, a combined sewer overflow, the effluent of a wastewater treatment plant, and an urban river. Mortality rates of indicator microorganisms in sediment of an urban river were also measured. Mortality rates of indicator microorganisms in domestic sewage, estimated by assuming first order kinetics at 20 degrees C were 0.197 day(-1), 0.234 day(-1), 0.258 day(-1) and 0.276 day(-1) for total coliform, fecal coliform, Escherichia coli, and fecal streptococci, respectively. Effects of temperature, sunlight irradiation and settlement on the mortality rate were measured. Results of this research can be used as input data for water quality modeling or can be used as design factors for treatment facilities.
An analytical probabilistic model of the quality efficiency of a sewer tank
NASA Astrophysics Data System (ADS)
Balistrocchi, Matteo; Grossi, Giovanna; Bacchi, Baldassare
2009-12-01
The assessment of the efficiency of a storm water storage facility devoted to the sewer overflow control in urban areas strictly depends on the ability to model the main features of the rainfall-runoff routing process and the related wet weather pollution delivery. In this paper the possibility of applying the analytical probabilistic approach for developing a tank design method, whose potentials are similar to the continuous simulations, is proved. In the model derivation the quality issues of such devices were implemented. The formulation is based on a Weibull probabilistic model of the main characteristics of the rainfall process and on a power law describing the relationship between the dimensionless storm water cumulative runoff volume and the dimensionless cumulative pollutograph. Following this approach, efficiency indexes were established. The proposed model was verified by comparing its results to those obtained by continuous simulations; satisfactory agreement is shown for the proposed efficiency indexes.
Zirlewagen, Johannes; Licha, Tobias; Schiperski, Ferry; Nödler, Karsten; Scheytt, Traugott
2016-03-15
The identification and differentiation of different sources of contamination are crucial aspects of risk assessment in water resource protection. This is especially challenging in karst environments due to their highly heterogeneous flow fields. We have investigated the use of two artificial sweeteners, cyclamate and acesulfame, as an indicator set for contamination by wastewater within the rural catchment of a karst spring. The catchment was investigated in detail to identify the sources of artificial sweeteners and quantify their impact. Spring water was analysed following two different but typical recharge events: (1) a rain-on-snow event in winter, when no wastewater overflow from the sewer system was observed, and (2) an intense rainfall event in summer triggering an overflow from a stormwater detention basin. Acesulfame, which is known to be persistent, was quantified in all spring water samples. Its concentrations decreased after the winter event with no associated wastewater spillage but increased during the summer event following a recent input of untreated wastewater. Cyclamate, which is known to be degradable, was only detected following the wastewater inflow incident. The cyclamate signal matched very well the breakthrough of faecal indicator bacteria, indicating a common origin. Knowing the input function, cyclamate was used quantitatively as a tracer in transport modelling and the impact of 'combined sewer overflow' on spring water quality was quantified. Signals from artificial sweeteners were compared to those from bulk parameters (discharge, electrical conductivity and turbidity) and also to those from the herbicides atrazine and isoproturon, which indicate 'old' and 'fresh' flow components, respectively, both originating from croplands. High concentration levels of the artificial sweeteners in untreated wastewater (cyclamate and acesulfame) and in treated wastewater (acesulfame only) make them powerful indicators, especially in rural settings where wastewater input is relatively low, and in karst systems where dilution is often high. Copyright © 2015 Elsevier B.V. All rights reserved.
Influence of governance structure on green stormwater infrastructure investment
Hopkins, Kristina G.; Grimm, Nancy B.; York, Abigail M.
2018-01-01
Communities are faced with the challenge of meeting regulatory requirements mandating reductions in water pollution from stormwater and combined sewer overflows (CSO). Green stormwater infrastructure and gray stormwater infrastructure are two types of water management strategies communities can use to address water pollution. In this study, we used long-term control plans from 25 U.S. cities to synthesize: the types of gray and green infrastructure being used by communities to address combined sewer overflows; the types of goals set; biophysical characteristics of each city; and factors associated with the governance of stormwater management. These city characteristics were then used to identify common characteristics of “green leader” cities—those that dedicated >20% of the control plan budget in green infrastructure. Five “green leader” cities were identified: Milwaukee, WI, Philadelphia, PA, Syracuse, NY, New York City, NY, and Buffalo, NY. These five cities had explicit green infrastructure goals targeting the volume of stormwater or percentage of impervious cover managed by green infrastructure. Results suggested that the management scale and complexity of the management system are less important factors than the ability to harness a “policy window” to integrate green infrastructure into control plans. Two case studies—Philadelphia, PA, and Milwaukee, WI—indicated that green leader cities have a long history of building momentum for green infrastructure through a series of phases from experimentation, demonstration, and finally—in the case of Philadelphia—a full transition in the approach used to manage CSOs.
Gooré Bi, Eustache; Monette, Frederic; Gasperi, Johnny; Perrodin, Yves
2015-03-01
Very few tools are available for assessing the impact of combined sewer overflows (CSOs) on receiving aquatic environments. The main goal of the study was to assess the ecotoxicological risk of CSOs for a surface aquatic ecosystem using a coupled "substance and bioassay" approach. Wastewater samples from the city of Longueuil, Canada CSO were collected for various rainfall events during one summer season and analyzed for a large panel of substances (n = 116). Four bioassays were also conducted on representative organisms of surface aquatic systems (Pimephales promelas, Ceriodaphnia dubia, Daphnia magna, and Oncorhynchus mykiss). The analytical data did not reveal any ecotoxicological risk for St. Lawrence River organisms, mainly due to strong effluent dilution. However, the substance approach showed that, because of their contribution to the ecotoxicological hazard posed by the effluent, total phosphorus (Ptot), aluminum (Al), total residual chlorine, chromium (Cr), copper (Cu), pyrene, ammonia (N-NH4 (+)), lead (Pb), and zinc (Zn) require more targeted monitoring. While chronic ecotoxicity tests revealed a potential impact of CSO discharges on P. promelas and C. dubia, acute toxicity tests did not show any effect on D. magna or O. mykiss, thus underscoring the importance of chronic toxicity tests as part of efforts aimed at characterizing effluent toxicity. Ultimately, the study leads to the conclusion that the coupled "substance and bioassay" approach is a reliable and robust method for assessing the ecotoxicological risk associated with complex discharges such as CSOs.
Hata, Akihiko; Katayama, Hiroyuki; Kojima, Keisuke; Sano, Shoichi; Kasuga, Ikuro; Kitajima, Masaaki; Furumai, Hiroaki
2014-01-15
Rainfall events can introduce large amount of microbial contaminants including human enteric viruses into surface water by intermittent discharges from combined sewer overflows (CSOs). The present study aimed to investigate the effect of rainfall events on viral loads in surface waters impacted by CSO and the reliability of molecular methods for detection of enteric viruses. The reliability of virus detection in the samples was assessed by using process controls for virus concentration, nucleic acid extraction and reverse transcription (RT)-quantitative PCR (qPCR) steps, which allowed accurate estimation of virus detection efficiencies. Recovery efficiencies of poliovirus in river water samples collected during rainfall events (<10%) were lower than those during dry weather conditions (>10%). The log10-transformed virus concentration efficiency was negatively correlated with suspended solid concentration (r(2)=0.86) that increased significantly during rainfall events. Efficiencies of DNA extraction and qPCR steps determined with adenovirus type 5 and a primer sharing control, respectively, were lower in dry weather. However, no clear relationship was observed between organic water quality parameters and efficiencies of these two steps. Observed concentrations of indigenous enteric adenoviruses, GII-noroviruses, enteroviruses, and Aichi viruses increased during rainfall events even though the virus concentration efficiency was presumed to be lower than in dry weather. The present study highlights the importance of using appropriate process controls to evaluate accurately the concentration of water borne enteric viruses in natural waters impacted by wastewater discharge, stormwater, and CSOs. © 2013.
Fradet, Olivier; Pleau, Martin; Marcoux, Christiane
2011-01-01
After the construction of its wastewater treatment plants, the City of Quebec began to implement overflow control in wet weather to ultimately meet the effluent discharge objectives, i.e. no more than two overflows per summer season in the St. Lawrence River and no more than four in the St-Charles River. After several years of studies to determine which management strategies would best suit the purpose, and to propose optimum solutions, a first project to implement optimal and predictive management in real time, called "Pilot", came to life in 1999. Construction in phases soon followed and the work was completed in the fall of 2009. As a result, requirements with regard to environmental rejects were met in two sectors, namely the St-Charles River and the Jacques-Cartier Beach, and aquatic recreational activities could resume. Meanwhile, the City also worked at giving back access to the water courses to the public by developing sites at the Jacques-Cartier Beach and in the Bay of Beauport, and by rehabilitating the banks of the St-Charles River.
PPCPs wet weather mobilization in a combined sewer in NW Spain.
Del Río, Héctor; Suárez, Joaquín; Puertas, Jerónimo; Ures, Pablo
2013-04-01
An intense campaign was carried out over a 14 month period to characterize concentrations and loads of 7 well-known Pharmaceuticals and Personal Care Products (PPCPs), during dry and wet weather conditions, in an urban combined catchment in the northwest of Spain, a geographical zone with an average annual rainfall over 1500 mm. The main objective was to gather more in-depth knowledge of the mobilization of these "micropollutants" in an urban combined sewer and the possible pressures on water receiving bodies due to combined sewer overflows (CSOs). Hydrographs and pollutographs of these substances in dry weather flows (DWF), on weekdays and weekends, and wet weather flows (WWF) during 10 rain events have been characterized to obtain data that are sufficiently representative for statistical analysis. The research findings show that there is a considerable mobilization of these substances during rain events, mainly in the first part of the hydrographs, especially HHCB galaxolide, ibuprofen and paracetamol with maximum concentrations of 9.76, 8.51 and 5.71 μg/L respectively, whereas these concentrations in dry weather only reached 2.57, 2.11 and 0.72 μg/L respectively. There is a good correlation between the degree of mobilization in wet weather flows and the percentage of dry weather particulate phase of each studied substance, indicating that such mobilization may be associated with adsorption on the sediments deposited on the collectors during the antecedent dry period. These results are in good agreement with removal in conventional WWTP, especially for compounds that tend to adsorb onto sewage sludge. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Chang, Tsang-Jung; Wang, Chia-Ho; Chen, Albert S.
2015-05-01
In this study, we developed a novel approach to simulate dynamic flow interactions between storm sewers and overland surface for different land covers in urban areas. The proposed approach couples the one-dimensional (1D) sewer flow model (SFM) and the two-dimensional (2D) overland flow model (OFM) with different techniques depending on the land cover type of the study areas. For roads, pavements, plazas, and so forth where rainfall becomes surface runoff before entering the sewer system, the rainfall-runoff process is simulated directly in the 2D OFM, and the runoff is drained to the sewer network via inlets, which is regarded as the input to 1D SFM. For green areas on which rainfall falls into the permeable ground surface and the generated direct runoff traverses terrain, the deduction rate is applied to the rainfall for reflecting the soil infiltration in the 2D OFM. For flat building roofs with drainage facilities allowing rainfall to drain directly from the roof to sewer networks, the rainfall-runoff process is simulated using the hydrological module in the 1D SFM where no rainfall is applied to these areas in the 2D OFM. The 1D SFM is used for hydraulic simulations in the sewer network. Where the flow in the drainage network exceeds its capacity, a surcharge occurs and water may spill onto the ground surface if the pressure head in a manhole exceeds the ground elevation. The overflow discharge from the sewer system is calculated by the 1D SFM and considered a point source in the 2D OFM. The overland flow will return into the sewer network when it reaches an inlet that connects to an un-surcharged manhole. In this case, the inlet is considered as a point sink in the 2D OFM and an inflow to a manhole in the 1D SFM. The proposed approach was compared to other five urban flood modelling techniques with four rainfall events that had previously recorded inundation areas. The merits and drawbacks of each modelling technique were compared and discussed. Based on the simulated results, the proposed approach was found to simulate floodings closer to the survey records than other approaches because the physical rainfall-runoff phenomena in urban environment were better reflected.
Li, Quanlin; Wang, Shiliang; Messier, Kyle P.; Wade, Timothy J.; Hilborn, Elizabeth D.
2015-01-01
Background Combined sewer overflows (CSOs) occur in combined sewer systems when sewage and stormwater runoff are released into water bodies, potentially contaminating water sources. CSOs are often caused by heavy precipitation and are expected to increase with increasing extreme precipitation associated with climate change. Objectives The aim of this study was to assess whether the association between heavy rainfall and rate of emergency room (ER) visits for gastrointestinal (GI) illness differed in the presence of CSOs. Methods For the study period 2003–2007, time series of daily rate of ER visits for GI illness and meteorological data were organized for three exposure regions: a) CSOs impacting drinking water sources, b) CSOs impacting recreational waters, c) no CSOs. A distributed lag Poisson regression assessed cumulative effects for an 8-day lag period following heavy (≥ 90th and ≥ 95th percentile) and extreme (≥ 99th percentile) precipitation events, controlling for temperature and long-term time trends. Results The association between extreme rainfall and rate of ER visits for GI illness differed among regions. Only the region with drinking water exposed to CSOs demonstrated a significant increased cumulative risk for rate (CRR) of ER visits for GI for all ages in the 8-day period following extreme rainfall: CRR: 1.13 (95% CI: 1.00, 1.28) compared with no rainfall. Conclusions The rate of ER visits for GI illness was associated with extreme precipitation in the area with CSO discharges to a drinking water source. Our findings suggest an increased risk for GI illness among consumers whose drinking water source may be impacted by CSOs after extreme precipitation. Citation Jagai JS, Li Q, Wang S, Messier KP, Wade TJ, Hilborn ED. 2015. Extreme precipitation and emergency room visits for gastrointestinal illness in areas with and without combined sewer systems: an analysis of Massachusetts data, 2003–2007. Environ Health Perspect 123:873–879; http://dx.doi.org/10.1289/ehp.1408971 PMID:25855939
Nowcasting of rainfall and of combined sewage flow in urban drainage systems.
Achleitner, Stefan; Fach, Stefan; Einfalt, Thomas; Rauch, Wolfgang
2009-01-01
Nowcasting of rainfall may be used additionally to online rain measurements to optimize the operation of urban drainage systems. Uncertainties quoted for the rain volume are in the range of 5% to 10% mean square error (MSE), where for rain intensities 45% to 75% MSE are noted. For larger forecast periods up to 3 hours, the uncertainties will increase up to some hundred percents. Combined with the growing number of real time control concepts in sewer systems, rainfall forecast is used more and more in urban drainage systems. Therefore it is of interest how the uncertainties influence the final evaluation of a defined objective function. Uncertainty levels associated with the forecast itself are not necessarily transferable to resulting uncertainties in the catchment's flow dynamics. The aim of this paper is to analyse forecasts of rainfall and specific sewer output variables. For this study the combined sewer system of the city of Linz in the northern part of Austria located on the Danube has been selected. The city itself represents a total area of 96 km2 with 39 municipalities connected. It was found that the available weather radar data leads to large deviations in the forecast for precipitation at forecast horizons larger than 90 minutes. The same is true for sewer variables such a CSO overflow for small sub-catchments. Although the results improve for larger spatial scales, acceptable levels at forecast horizons larger than 90 minutes are not reached.
Heijs, J; Wilkinson, D; Couriel, E
2002-01-01
The people who live in North Shore City (New Zealand) consider the beaches as their greatest asset. Following public outcry on frequent beach pollution caused by wet weather sewer overflows, Project CARE commenced in 1998 to plan the improvements to the city's separated wastewater and stormwater systems to protect the streams and beaches, particularly from a public health perspective. The investigation included building hydrological and hydraulic models to represent the wastewater and stormwater systems and a receiving waters model to simulate the impacts on the beaches. These models were later used to explore options for improvement. It was found that North Shore City has a very leaky wastewater system that is under capacity. The resulting wet weather overflows (12 per year on average) are the most important contributor to the problem although stormwater pollution alone is big enough to cause problems (at a smaller magnitude). A cost optimisation model (iterative process using performance/cost relationships) was then used to assist in identifying the optimal set of improvement works (storage, repair and increased capacity, wastewater treatment plant) to meet different performance targets and to cater for growth up to the year 2050. Cost Benefit analyses, looking at improvements in system performance and water quality, show diminishing returns for performance levels better than 2 overflows per year. The total costs that meet this target are estimated at almost NZ$300M (US$135M).
McGinnis, Shannon; Spencer, Susan K.; Firnstahl, Aaron; Stokdyk, Joel; Borchardt, Mark A.; McCarthy, David; Murphy, Heather
2018-01-01
Combined sewer overflows (CSOs) are a known source of human fecal pollution and human pathogens in urban water bodies, which may present a significant public health threat. To monitor human fecal contamination in water, bacterial fecal indicator organisms (FIOs) are traditionally used. However, because FIOs are not specific to human sources and do not correlate with human pathogens, alternative fecal indicators detected using qPCR are becoming of interest to policymakers. For this reason, this study measured correlations between the number and duration of CSOs and mm of rainfall, concentrations of traditional FIOs and alternative indicators, and the presence of human pathogens in two urban creeks. Samples were collected May–July 2016 and analyzed for concentrations of FIOs (total coliforms and E. coli) using membrane filtration as well as for three alternative fecal indicators (human Bacteroides HF183 marker, human polyomavirus (HPoV), pepper mild mottle virus (PMMoV)) and nine human pathogens using qPCR. Four of the nine pathogens analyzed were detected at these sites including adenovirus, Enterohemorrhagic E. coli, norovirus, and Salmonella. Among all indicators studied, human Bacteroides and total coliforms were significantly correlated with recent CSO and rainfall events, while E. coli, PMMoV, and HPoV did not show consistent significant correlations. Further, human Bacteroides were a more specific indicator, while total coliforms were a more sensitive indicator of CSO and rainfall events. Results may have implications for the use and interpretation of these indicators in future policy or monitoring programs.
McGinnis, Shannon; Spencer, Susan; Firnstahl, Aaron; Stokdyk, Joel; Borchardt, Mark; McCarthy, David T; Murphy, Heather M
2018-07-15
Combined sewer overflows (CSOs) are a known source of human fecal pollution and human pathogens in urban water bodies, which may present a significant public health threat. To monitor human fecal contamination in water, bacterial fecal indicator organisms (FIOs) are traditionally used. However, because FIOs are not specific to human sources and do not correlate with human pathogens, alternative fecal indicators detected using qPCR are becoming of interest to policymakers. For this reason, this study measured correlations between the number and duration of CSOs and mm of rainfall, concentrations of traditional FIOs and alternative indicators, and the presence of human pathogens in two urban creeks. Samples were collected May-July 2016 and analyzed for concentrations of FIOs (total coliforms and E. coli) using membrane filtration as well as for three alternative fecal indicators (human Bacteroides HF183 marker, human polyomavirus (HPoV), pepper mild mottle virus (PMMoV)) and nine human pathogens using qPCR. Four of the nine pathogens analyzed were detected at these sites including adenovirus, Enterohemorrhagic E. coli, norovirus, and Salmonella. Among all indicators studied, human Bacteroides and total coliforms were significantly correlated with recent CSO and rainfall events, while E. coli, PMMoV, and HPoV did not show consistent significant correlations. Further, human Bacteroides were a more specific indicator, while total coliforms were a more sensitive indicator of CSO and rainfall events. Results may have implications for the use and interpretation of these indicators in future policy or monitoring programs. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Rose, Seth
2007-07-01
SummaryA comprehensive network of stream data ( n = 50) was used to assess the effects of urbanization upon the hydrochemical variation within base flow in the Chattahoochee River Basin (CRB), Georgia (USA). Base flow solute concentrations (particularly sulfate, chloride, bicarbonate alkalinity, and sodium) increase with the degree of urbanization and any degree of urbanization within the Atlanta Metropolitan Region (AMR) results in elevated base flow solute concentrations. This suggests that there are pervasive low-level non-point sources of contamination such as septic tanks systems and leaky sewer lines affecting the chemistry of shallow groundwater throughout much of the AMR and CRB. Six groups or subsets representing the "rural-to-urban gradient" were defined, characterized by the following order of increasing solute concentrations: rural basins < Chattahoochee River. semi-urbanized basins < urbanized basins < urban basins with main sewer trunk lines < urbanized basins directly receiving treated effluent and combined sewer overflow (CSO) basins. There is a strong and unusual basin-wide correlation ( r2 values >0.79) between Na-K-Cl within the CRB that likely reflects the widespread input of electrolytes present in human wastes and wastewater. The most likely source and pathway for contaminant input involves the mobilization of salts, originally present in waste water, within the riparian or hypoheric zone.
Ebtehaj, Isa; Bonakdari, Hossein
2014-01-01
The existence of sediments in wastewater greatly affects the performance of the sewer and wastewater transmission systems. Increased sedimentation in wastewater collection systems causes problems such as reduced transmission capacity and early combined sewer overflow. The article reviews the performance of the genetic algorithm (GA) and imperialist competitive algorithm (ICA) in minimizing the target function (mean square error of observed and predicted Froude number). To study the impact of bed load transport parameters, using four non-dimensional groups, six different models have been presented. Moreover, the roulette wheel selection method is used to select the parents. The ICA with root mean square error (RMSE) = 0.007, mean absolute percentage error (MAPE) = 3.5% show better results than GA (RMSE = 0.007, MAPE = 5.6%) for the selected model. All six models return better results than the GA. Also, the results of these two algorithms were compared with multi-layer perceptron and existing equations.
NASA Astrophysics Data System (ADS)
Borup, Morten; Grum, Morten; Linde, Jens Jørgen; Mikkelsen, Peter Steen
2016-08-01
Numerous studies have shown that radar rainfall estimates need to be adjusted against rain gauge measurements in order to be useful for hydrological modelling. In the current study we investigate if adjustment can improve radar rainfall estimates to the point where they can be used for modelling overflows from urban drainage systems, and we furthermore investigate the importance of the aggregation period of the adjustment scheme. This is done by continuously adjusting X-band radar data based on the previous 5-30 min of rain data recorded by multiple rain gauges and propagating the rainfall estimates through a hydraulic urban drainage model. The model is built entirely from physical data, without any calibration, to avoid bias towards any specific type of rainfall estimate. The performance is assessed by comparing measured and modelled water levels at a weir downstream of a highly impermeable, well defined, 64 ha urban catchment, for nine overflow generating rain events. The dynamically adjusted radar data perform best when the aggregation period is as small as 10-20 min, in which case it performs much better than static adjusted radar data and data from rain gauges situated 2-3 km away.
Measured and simulated runoff to the lower Charles River, Massachusetts, October 1999-September 2000
Zarriello, Phillip J.; Barlow, Lora K.
2002-01-01
The lower Charles River, the water body between the Watertown Dam and the New Charles River Dam, is an important recreational resource for the Boston, Massachusetts, metropolitan area, but impaired water quality has affected its use. The goal of making this resource fishable and swimmable requires a better understanding of combined-sewer-overflow discharges, non-combined-sewer-overflow stormwater runoff, and constituent loads. This report documents the modeling effort used to calculate non-combined-sewer-overflow runoff to the lower Charles River. During the 2000 water year, October 1, 1999?September 30, 2000, the U.S. Geological Survey collected precipitation data at Watertown Dam and compiled data from five other precipitation gages in or near the watershed. In addition, surface-water discharge data were collected at eight sites?three relatively homogenous land-use sites, four major tributary sites, and the Charles River at Watertown Dam, which is the divide between the upper and lower watersheds. The precipitation and discharge data were used to run and calibrate Stormwater Management Models developed for the three land-use subbasins (single-family, multi-family, and commercial), and the two tributary subbasins (Laundry and Faneuil Brooks). These calibrated models were used to develop a sixth model to simulate 54 ungaged outfalls to the lower Charles River. Models developed by the U.S. Geological Survey at gaged sites were calibrated with up to 24 storms. Each model was evaluated by comparing simulated discharge against measured discharge for all storms with appreciable precipitation and reliable discharge data. The model-fit statistics indicated that the models generally were well calibrated to peak discharge and runoff volumes. The model fit of the commercial land-use subbasin was not as well calibrated compared to the other models because the measured flows appear to be affected by variable conditions not represented in the model. A separate Stormwater Management Model of the Stony Brook Subbasin previously developed by others was evaluated with the newly collected data from this study; this model had a model fit comparable to the models developed by the U.S. Geological Survey. The total annual runoff to the lower Charles River during the 2000 water year, not including contributions from combined-sewer-overflows except from the Stony Brook Subbasin, was 16,500 million cubic feet; 92 percent of the inflow was from the Charles River above Watertown Dam, 3 percent was from the Stony Brook Subbasin, 2 percent was from the Muddy River Subbasin, and less than 1 percent was from the combined inflows of Laundry and Faneuil Brooks. The remaining ungaged drainage area contributed about 2 percent of the total annual inflow to the lower Charles River. Excluding discharge from the Charles River above Watertown Dam, total annual runoff to the lower Charles River was 1,240 million cubic feet; 39 percent was from the Stony Brook Subbasin, 27 percent was from the Muddy River, which includes runoff that drains to the Muddy River conduit, 7 percent was from the Laundry Brook Subbasin, and 4 percent was from the Faneuil Brook Subbasin. Flow from the ungaged areas composed about 23 percent of the total annual inflow to the lower Charles River, excluding discharge from the Charles River above Watertown Dam. Runoff to the lower Charles River was calculated for two design storms representing a 3-month and a 1-year event, 1.84 and 2.79 inches of total rainfall, respectively. These simulated discharges were provided to the Massachusetts Water Resources Authority for use in a receiving-water model of the lower Charles River. Total storm runoff to the lower Charles River was 111 and 257 million cubic feet for the 3-month and 1-year storms, respectively. Excluding discharge from the Charles River above Watertown Dam, total runoff to the lower Charles River was 30 and 53 million cubic feet for the 3-month and 1-year storms, respectively. Runoff from
NASA Astrophysics Data System (ADS)
De Bondt, Kevin; Claeys, Philippe
2014-05-01
In the last 20 years research has been conducted to quantify the infiltration of groundwater into the sewers. This groundwater, called parasitic water, increases the volume of waste-water to be treated and consequently the cost of this treatment. Moreover, in the case of combined sewer systems, the parasitic water also limits the sewer capacity and indirectly increases the risks of combined sewer overflows and floods. The infiltration of groundwater occurs trough cracks, sewer collapses and from direct connections with old springs. Different methods quantify the intrusion of parasitic water. Among these, the use of the stable isotopes of water (δ18O & δD) shows good result in catchments or cities close to Mountainous regions (example from Lyon, Zurich), where isotopic signals vary significantly because of continental and altitude effects. However many cities, such as Brussels, are located in more oceanic settings and theoretically offer less potential for the application of the stable isotopes method. In the case of Brussels, river-water from the Meuse is used to produce domestic-water. The catchment of this river extends into the Ardennes, which are affected by slightly different climatic conditions. δ18O & δD analyzes of groundwater from the main aquifer (Ledo-Paniselian-Brusselian) and domestic-water from the Callois reservoir fed by the Meuse River show sufficient isotopic differences in the south of Brussels, but only during the summer. The discrimination potential is better with δD than with δ18O. The improvement of δD measurements (precision, costs,...) brought by Cavity Ring Down Spectroscopy largely contributes to the potential of using stable isotopes method to trace water in Brussels. The first campaigns in the sewers also show a little enrichment (in heavy isotopes) of the waste-water in comparison with the reservoir waters and tap waters. This increases the potential of the method but constrains the sampling to pure waste-water in sewer segments without infiltration generally localized upstream. Anyway, it is in the localization of parasitic water entrance from upstream to downstream that the stable isotopes method is the most powerful. Other methods (e.g. minimum night flow,...) are available at the treatment plants or at flow measurement stations downstream but will not be able to localize parasitic water intrusion towards old springs.
Hao, Zisu; Malyala, Divya; Dean, Lisa; Ducoste, Joel
2017-04-01
Long Chain Free Fatty Acids (LCFFAs) from the hydrolysis of fat, oil and grease (FOG) are major components in the formation of insoluble saponified solids known as FOG deposits that accumulate in sewer pipes and lead to sanitary sewer overflows (SSOs). A Double Wavenumber Extrapolative Technique (DWET) was developed to simultaneously measure LCFFAs and FOG concentrations in oily wastewater suspensions. This method is based on the analysis of the Attenuated Total Reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) spectrum, in which the absorbance of carboxyl bond (1710cm -1 ) and triglyceride bond (1745cm -1 ) were selected as the characteristic wavenumbers for total LCFFAs and FOG, respectively. A series of experiments using pure organic samples (Oleic acid/Palmitic acid in Canola oil) were performed that showed a linear relationship between the absorption at these two wavenumbers and the total LCFFA. In addition, the DWET method was validated using GC analyses, which displayed a high degree of agreement between the two methods for simulated oily wastewater suspensions (1-35% Oleic acid in Canola oil/Peanut oil). The average determination error of the DWET approach was ~5% when the LCFFA fraction was above 10wt%, indicating that the DWET could be applied as an experimental method for the determination of both LCFFAs and FOG concentrations in oily wastewater suspensions. Potential applications of this DWET approach includes: (1) monitoring the LCFFAs and FOG concentrations in grease interceptor (GI) effluents for regulatory compliance; (2) evaluating alternative LCFFAs/FOG removal technologies; and (3) quantifying potential FOG deposit high accumulation zones in the sewer collection system. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Moreno Ródenas, Antonio Manuel; Cecinati, Francesca; ten Veldhuis, Marie-Claire; Langeveld, Jeroen; Clemens, Francois
2016-04-01
Maintaining water quality standards in highly urbanised hydrological catchments is a worldwide challenge. Water management authorities struggle to cope with changing climate and an increase in pollution pressures. Water quality modelling has been used as a decision support tool for investment and regulatory developments. This approach led to the development of integrated catchment models (ICM), which account for the link between the urban/rural hydrology and the in-river pollutant dynamics. In the modelled system, rainfall triggers the drainage systems of urban areas scattered along a river. When flow exceeds the sewer infrastructure capacity, untreated wastewater enters the natural system by combined sewer overflows. This results in a degradation of the river water quality, depending on the magnitude of the emission and river conditions. Thus, being capable of representing these dynamics in the modelling process is key for a correct assessment of the water quality. In many urbanised hydrological systems the distances between draining sewer infrastructures go beyond the de-correlation length of rainfall processes, especially, for convective summer storms. Hence, spatial and temporal scales of selected rainfall inputs are expected to affect water quality dynamics. The objective of this work is to evaluate how the use of rainfall data from different sources and with different space-time characteristics affects modelled output concentrations of dissolved oxygen in a simplified ICM. The study area is located at the Dommel, a relatively small and sensitive river flowing through the city of Eindhoven (The Netherlands). This river stretch receives the discharge of the 750,000 p.e. WWTP of Eindhoven and from over 200 combined sewer overflows scattered along its length. A pseudo-distributed water quality model has been developed in WEST (mikedhi.com); this is a lumped-physically based model that accounts for urban drainage processes, WWTP and river dynamics for several pollutant typologies. Different rainfall products are tested: 1) Block kriging of a single reliable rain gauge, 2) Block kriging product from a network of 13 rain gauges and, 3) Universal block kriging with 13 rain gauges and KNMI weather radar estimates as a covariate. Different temporal accumulation levels are compared ranging from 10min to 1h. A geostatistical approach is used to allocate the prediction of the rainfall input in each of the urban hydrological units composing the model. The change in model performance is then assessed by contrasting it with dissolved oxygen monitoring data in a series of events.
NASA Astrophysics Data System (ADS)
Zirlewagen, Johannes; Hillebrand, Olav; Nödler, Karsten; Licha, Tobias; Schiperski, Ferry; Stange, Claudia; Tiehm, Andreas; Scheytt, Traugott
2015-04-01
Karst aquifers are important drinking water resources in many parts of the world, though they are well known for their high vulnerability to contamination. Rainfall and snowmelt often trigger temporary contamination of karst water resources. Free-range animal breeding and application of manure on the one hand and sewage leakage or spillage on the other hand are usually regarded as main sources for fecal contamination. But distinction of their respective contributions is difficult. This study investigates the feasibility to track the origin of fecal contamination from the occurrences of indicator bacteria and chemical source indicators in karst spring water. The study site is the 45 km² rural catchment of the perennial karst spring Gallusquelle in SW-Germany (mean discharge: 0.5 m³/s). Overflow events of a stormwater detention basin (combined sewer system) are known to impact water quality at the spring. There is no free-range animal breeding in the catchment but intense application of manure. Following two heavy rainfall events with overflow of the stormwater detention basin, spring water was sampled over several days. Samples were analysed for indicator bacteria (total Coliform, E. coli, Enterococci) and 57 micropollutants, among them cyclamate and metazachlor. For the Gallusquelle catchment the artificial sweetener cyclamate and the herbicide metazachlor have been established as source specific indicators, the former for the sewer system and the latter for cropland. Though recharge in the Gallusquelle catchment is predominantly diffuse, there is a significant portion of direct recharge reflected by distinct breakthrough curves for cyclamate and metazachlor. The breakthrough of indicator bacteria coincides very well with the occurrence of both, cyclamate and metazachlor. However, indicator bacteria cannot be unambiguously tracked back to a specific source.
Evaluating Cryptosporidium and Giardia concentrations in combined sewer overflow.
Arnone, Russell D; Walling, Joyce Perdek
2006-06-01
Since the first identified Cryptosporidium outbreaks occurred in the 1980s and the massive 1993 Milwaukee, WI outbreak affected more than 400,000 people, the concern over the public health risks linked to protozoan pathogens Cryptosporidium and Giardia has grown. Cryptosporidium and Giardia, found in streams, rivers, groundwater, and soil, form hardy, disinfection-resistant oocysts and cysts. Both organisms are recognized causative agents of gastrointestinal illnesses linked to the consumption of contaminated surface or groundwater. This study, the first in a planned series to estimate the urban contribution to the total Cryptosporidium and Giardia receiving-water loads, focused on combined sewer overflow (CSO). CSOs are discharges of mixed untreated sewage and stormwater released directly into receiving waters during rainfall. This engineered relief is necessary to accommodate hydraulic strain when the combined rain and sanitary flows exceed the system capacity. Limited comprehensive data are available assessing the CSO discharge contribution as a source of these two pathogens. Works by States et al. and Gibson et al. each found Cryptosporidium and much greater Giardia concentrations in CSOs draining parts of Pittsburgh, PA. This project estimated the relative detection frequency and concentration of Cryptosporidium and Giardia in CSO. Analytical results were obtained using a modification of Method 1623, originally developed for much cleaner environmental samples. These data are useful for drinking water treatment plants located downstream of CSOs. It is also significant in determining the potential concentrations of parasites at treatment plant intakes and for assessing health risks for water contact and fishing activities. Commonly monitored indicator organisms (total coliform, fecal coliform, E. coli, Enterococcus, and fecal streptococcus), endospores, and selected physical and chemical parameters were analyzed to further describe the samples. CSO from urban areas was not found to be a significant contributor of Cryptosporidium, however, it was found to be a Giardia source.
Quantifying fat, oil, and grease deposit formation kinetics.
Iasmin, Mahbuba; Dean, Lisa O; Ducoste, Joel J
2016-01-01
Fat, oil, and grease (FOG) deposits formed in sanitary sewers are calcium-based saponified solids that are responsible for a significant number of nationwide sanitary sewer overflows (SSOs) across United States. In the current study, the kinetics of lab-based saponified solids were determined to understand the kinetics of FOG deposit formation in sewers for two types of fat (Canola and Beef Tallow) and two types of calcium sources (calcium chloride and calcium sulfate) under three pH (7 ± 0.5, 10 ± 0.5, and ≈14) and two temperature conditions (22 ± 0.5 and 45 ± 0.5 °C). The results of this study displayed quick reactions of a fraction of fats with calcium ions to form calcium based saponified solids. Results further showed that increased palmitic fatty acid content in source fats, the magnitude of the pH, and temperature significantly affect the FOG deposit formation and saponification rates. The experimental data of the kinetics were compared with two empirical models: a) Cotte saponification model and b) Foubert crystallization model and a mass-action based mechanistic model that included alkali driven hydrolysis of triglycerides. Results showed that the mass action based mechanistic model was able to predict changes in the rate of formation of saponified solids under the different experimental conditions compared to both empirical models. The mass-action based saponification model also revealed that the hydrolysis of Beef Tallow was slower compared to liquid Canola fat resulting in smaller quantities of saponified solids. This mechanistic saponification model, with its ability to track the saponified solids chemical precursors, may provide an initial framework to predict the spatial formation of FOG deposits in municipal sewers using system wide sewer collection modeling software. Copyright © 2015 Elsevier Ltd. All rights reserved.
The effects of combined sewer overflow events on riverine sources of drinking water.
Madoux-Humery, Anne-Sophie; Dorner, Sarah; Sauvé, Sébastien; Aboulfadl, Khadija; Galarneau, Martine; Servais, Pierre; Prévost, Michèle
2016-04-01
This study was set out to investigate the impacts of Combined Sewer Overflows (CSOs) on the microbiological water quality of a river used as a source of drinking water treatment plants. Escherichia coli concentrations were monitored at various stations of a river segment located in the Greater Montreal Area including two Drinking Water Intakes (DWIs) in different weather conditions (dry weather and wet weather (precipitation and snowmelt period)). Long-term monitoring data (2002-2011) at DWIs revealed good microbiological water quality with E. coli median concentrations of 20 and 30 CFU/100 mL for DWI-1 and DWI-2 respectively. However, E. coli concentration peaks reached up to 510 and 1000 CFU/100 mL for both DWIs respectively. Statistical Process Control (SPC) analysis allowed the identification of E. coli concentration peaks in almost a decade of routine monitoring data at DWIs. Almost 80% of these concentrations were linked to CSO discharges caused by precipitation exceeding 10 mm or spring snowmelt. Dry weather monitoring confirmed good microbiological water quality. Wet weather monitoring showed an increase of approximately 1.5 log of E. coli concentrations at DWIs. Cumulative impacts of CSO discharges were quantified at the river center with an increase of approximately 0.5 log of E. coli concentrations. Caffeine (CAF) was tested as a potential chemical indicator of CSO discharges in the river and CAF concentrations fell within the range of previous measurements performed for surface waters in the same area (∼20 ng/L). However, no significant differences were observed between CAF concentrations in dry and wet weather, as the dilution potential of the river was too high. CSO event based monitoring demonstrated that current bi-monthly or weekly compliance monitoring at DWIs underestimate E. coli concentrations entering DWIs and thus, should not be used to quantify the risk at DWIs. High frequency event-based monitoring is a desirable approach to establish the importance and duration of E. coli peak concentrations entering DWIs. Copyright © 2016 Elsevier Ltd. All rights reserved.
Bersinger, T; Bareille, G; Pigot, T; Bru, N; Le Hécho, I
2018-06-01
A good knowledge of the dynamic of pollutant concentration and flux in a combined sewer network is necessary when considering solutions to limit the pollutants discharged by combined sewer overflow (CSO) into receiving water during wet weather. Identification of the parameters that influence pollutant concentration and flux is important. Nevertheless, few studies have obtained satisfactory results for the identification of these parameters using statistical tools. Thus, this work uses a large database of rain events (116 over one year) obtained via continuous measurement of rainfall, discharge flow and chemical oxygen demand (COD) estimated using online turbidity for the identification of these parameters. We carried out a statistical study of the parameters influencing the maximum COD concentration, the discharge flow and the discharge COD flux. In this study a new test was used that has never been used in this field: the conditional regression tree test. We have demonstrated that the antecedent dry weather period, the rain event average intensity and the flow before the event are the three main factors influencing the maximum COD concentration during a rainfall event. Regarding the discharge flow, it is mainly influenced by the overall rainfall height but not by the maximum rainfall intensity. Finally, COD discharge flux is influenced by the discharge volume and the maximum COD concentration. Regression trees seem much more appropriate than common tests like PCA and PLS for this type of study as they take into account the thresholds and cumulative effects of various parameters as a function of the target variable. These results could help to improve sewer and CSO management in order to decrease the discharge of pollutants into receiving waters. Copyright © 2017 Elsevier B.V. All rights reserved.
Wang, Ranran; Eckelman, Matthew J; Zimmerman, Julie B
2013-10-01
A consequential life cycle assessment (LCA) is conducted to evaluate the trade-offs between water quality improvements and the incremental climate, resource, and economic costs of implementing green (bioretention basin, green roof, and permeable pavement) versus gray (municipal separate stormwater sewer systems, MS4) alternatives of stormwater infrastructure expansions against a baseline combined sewer system with combined sewer overflows in a typical Northeast US watershed for typical, dry, and wet years. Results show that bioretention basins can achieve water quality improvement goals (e.g., mitigating freshwater eutrophication) for the least climate and economic costs of 61 kg CO2 eq. and $98 per kg P eq. reduction, respectively. MS4 demonstrates the minimum life cycle fossil energy use of 42 kg oil eq. per kg P eq. reduction. When integrated with the expansion in stormwater infrastructure, implementation of advanced wastewater treatment processes can further reduce the impact of stormwater runoff on aquatic environment at a minimal environmental cost (77 kg CO2 eq. per kg P eq. reduction), which provides support and valuable insights for the further development of integrated management of stormwater and wastewater. The consideration of critical model parameters (i.e., precipitation intensity, land imperviousness, and infrastructure life expectancy) highlighted the importance and implications of varying local conditions and infrastructure characteristics on the costs and benefits of stormwater management. Of particular note is that the impact of MS4 on the local aquatic environment is highly dependent on local runoff quality indicating that a combined system of green infrastructure prior to MS4 potentially provides a more cost-effective improvement to local water quality.
NASA Astrophysics Data System (ADS)
Minsker, B. S.; Myers, J.; Liu, Y.; Bajcsy, P.
2010-12-01
Emerging sensing and information technology are rapidly creating a new paradigm for environmental research and management, in which data from multiple sensors and information sources can guide real-time adaptive observation and decision making. This talk will provide an overview of emerging cyberinfrastructure and three case studies that illustrate their potential: combined sewer overflows in Chicago, hypoxia in Corpus Christi Bay, Texas, and sustainable agriculture in Illinois. An advanced information system for real-time decision making and visual geospatial analytics will be presented as an example of cyberinfrastructure that enables easier implementation of numerous real-time applications.
NASA Astrophysics Data System (ADS)
Stamm, C.; Wittmer, I.; Bader, H.-P.; Scheidegger, R.; Alder, A.; Lück, A.; Hanke, I.; Singer, H.
2009-04-01
Organic pesticides and biocides that are found in surface waters, can originate from agricultural and urban sources. For a long time, agricultural pesticides have received substantially more attention than biocidal compounds from urban use like material protection or in-can preservatives (cosmetics etc.). Recent studies however revealed that the amounts of urban biocides used may exceed those of agricultural pesticides. This study aims at comparing the input of several important pesticides and biocides into a small Swiss stream with a special focus on loss events triggered by rainfall. A set of 16 substances was selected to represent urban and agricultural sources. The selected substances are either only used as biocides (irgarol, isothiazolinones, IPBC), as pesticides (atrazine, sulcotrione, dichlofluanid, tolylfluanid) or have a mixed use (isoproturon, terbutryn, terbutylazine, mecoprop, diazinon, carbendazim) The study catchment has an area of 25 km2 and is inhabited by about 12'000 people. Four sampling sites were selected in the river system in order to reflect different urban and agricultural sources. Additionally, we sampled a combined sewer overflow, a rain sewer and the outflow of a wastewater treatment plant. At each site discharge was measured continuously from March to November 2007. During 16 rain events samples were taken by automatic devices at a high temporal resolution. The results, based on more than 500 analyzed samples, revealed distinct concentration patterns for different compounds and sources. Agricultural pesticides exhibited a strong seasonality as expected based on the application periods. During the first one or two rain events after application the concentrations reached up to several thousand ng/l during peak flow (atrazine, isoproturon). The temporal patterns of urban biocides were more diverse. Some compounds obviously stem from permanent sources independent of rainfall because they were found mostly in the outlet of the wastewater treatment plant throughout the year. The insecticide diazinon for example showed a background concentration in treated waste water of approximately 50 ng/l. Substances like mecoprop, which are used in urban areas (roof protection, private gardens) and agriculture showed a mixed pattern. At the time scale of single events two concentration peaks have been observed. One of them was due to the fast reaction of sewer overflows or rain sewers carrying urban storm water. The delayed peak was caused by fast flow from agricultural soils. Overall, the study revealed complex concentration patterns for the different compounds. Source identification was only possible by means of a comprehensive approach including different nested measuring sites, a broad range of different compounds that were complemented by tracer substances like caffeine or drugs and their metabolites (sulfamethoxazole, N4-acetylsulfamethoxazole, diclofenac) that can be non-ambiguously attributed to sources like treated or untreated wastewater.
NASA Astrophysics Data System (ADS)
Müller, H.; Haberlandt, U.
2018-01-01
Rainfall time series of high temporal resolution and spatial density are crucial for urban hydrology. The multiplicative random cascade model can be used for temporal rainfall disaggregation of daily data to generate such time series. Here, the uniform splitting approach with a branching number of 3 in the first disaggregation step is applied. To achieve a final resolution of 5 min, subsequent steps after disaggregation are necessary. Three modifications at different disaggregation levels are tested in this investigation (uniform splitting at Δt = 15 min, linear interpolation at Δt = 7.5 min and Δt = 3.75 min). Results are compared both with observations and an often used approach, based on the assumption that a time steps with Δt = 5.625 min, as resulting if a branching number of 2 is applied throughout, can be replaced with Δt = 5 min (called the 1280 min approach). Spatial consistence is implemented in the disaggregated time series using a resampling algorithm. In total, 24 recording stations in Lower Saxony, Northern Germany with a 5 min resolution have been used for the validation of the disaggregation procedure. The urban-hydrological suitability is tested with an artificial combined sewer system of about 170 hectares. The results show that all three variations outperform the 1280 min approach regarding reproduction of wet spell duration, average intensity, fraction of dry intervals and lag-1 autocorrelation. Extreme values with durations of 5 min are also better represented. For durations of 1 h, all approaches show only slight deviations from the observed extremes. The applied resampling algorithm is capable to achieve sufficient spatial consistence. The effects on the urban hydrological simulations are significant. Without spatial consistence, flood volumes of manholes and combined sewer overflow are strongly underestimated. After resampling, results using disaggregated time series as input are in the range of those using observed time series. Best overall performance regarding rainfall statistics are obtained by the method in which the disaggregation process ends at time steps with 7.5 min duration, deriving the 5 min time steps by linear interpolation. With subsequent resampling this method leads to a good representation of manhole flooding and combined sewer overflow volume in terms of hydrological simulations and outperforms the 1280 min approach.
Selected Micropollutants as Indicators in a Karst Catchment
NASA Astrophysics Data System (ADS)
Zirlewagen, Johannes; Schiperski, Ferry; Hillebrand, Olav; Nödler, Karsten; Licha, Tobias; Scheytt, Traugott
2015-04-01
High flow dynamics and variations in water quality are typical for karst springs and reflect the complex interaction of different flow and storage components within a karst system. Event-based monitoring of mobile micropollutants in spring water combined with information on their input is used (1) to quantify the impact of certain contamination scenarios on spring water quality and (2) to gain additional information on the intrinsic characteristics of a karst system. We employ the artificial sweeteners acesulfame and cyclamate as source specific indicators for sewage along with the herbicides atrazine and isoproturon for agriculture. The study site is the 45 km² rural catchment of the perennial karst spring Gallusquelle in SW-Germany (mean discharge: 0.5 m³/s). Overflow events of a stormwater detention basin (SDB, combined sewer system) are known to impact water quality. Most of the sewer system is situated in the SW of the catchment. Most agricultural land is found in the NE. Neither atrazine nor significant amounts of isoproturon were detected in wastewater. Concentrations and mass fluxes of acesulfame and cyclamate in wastewater were determined. The combined evaluation of the persistent compound acesulfame with the rather degradable cyclamate allows for the distinction of long and short transit times and thus slow and fast flow components. The same applies for atrazine (persistent) and isoproturon (degradable). In Germany, acesulfame was licensed in 1990, atrazine was banned shortly after, in 1991. During low flow conditions only atrazine (max. 4 ng/L) and acesulfame (max. 20 ng/L) were detected in spring water. After a recharge event without SDB overflow concentrations as well as mass fluxes of both compounds decreased, reflecting an increasing portion of event water in spring discharge. A breakthrough of isoproturon (max. 9 ng/L) indicated the arrival of water from croplands. After a recharge event accompanied by a SDB overflow cyclamate was detected at max. 28 ng/L. Simultaneously, acesulfame concentrations show superposition of background dilution (old component) and a breakthrough (fresh component, max. 22 ng/L). 1-D-transport-modelling of the cyclamate breakthrough revealed results that are in good agreement with the results of other studies. Analyses of micropollutants might become very sensitive tools in karst hydrogeology where natural background concentrations and signal dampening are limiting factors for conventional investigation methods.
Assessing the performance of sewer rehabilitation on the reduction of infiltration and inflow.
Staufer, P; Scheidegger, A; Rieckermann, J
2012-10-15
Inflow and Infiltration (I/I) into sewer systems is generally unwanted, because, among other things, it decreases the performance of wastewater treatment plants and increases combined sewage overflows. As sewer rehabilitation to reduce I/I is very expensive, water managers not only need methods to accurately measure I/I, but also they need sound approaches to assess the actual performance of implemented rehabilitation measures. However, such performance assessment is rarely performed. On the one hand, it is challenging to adequately take into account the variability of influential factors, such as hydro-meteorological conditions. On the other hand, it is currently not clear how experimental data can indeed support robust evidence for reduced I/I. In this paper, we therefore statistically assess the performance of rehabilitation measures to reduce I/I. This is possible by using observations in a suitable reference catchment as a control group and assessing the significance of the observed effect by regression analysis, which is well established in other disciplines. We successfully demonstrate the usefulness of the approach in a case study, where rehabilitation reduced groundwater infiltration by 23.9%. A reduction of stormwater inflow of 35.7%, however, was not statistically significant. Investigations into the experimental design of monitoring campaigns confirmed that the variability of the data as well as the number of observations collected before the rehabilitation impact the detection limit of the effect. This implies that it is difficult to improve the data quality after the rehabilitation has been implemented. Therefore, future practical applications should consider a careful experimental design. Further developments could employ more sophisticated monitoring methods, such as stable environmental isotopes, to directly observe the individual infiltration components. In addition, water managers should develop strategies to effectively communicate statistically not significant I/I reduction ratios to decision makers. Copyright © 2012 Elsevier Ltd. All rights reserved.
Woźniak, R; Dittmer, U; Welker, A
2007-01-01
The EU Water Framework Directive (WFD) calls for a good quality of all water bodies. Retention soil filters (RSF) have been developed to treat discharges from combined sewers systems. RSF have proved over the past 15 years to be the most effective measure to meet the EU WFD standards, especially for small or particularly sensitive receiving waters, which require an enhanced reduction of emissions from combined sewer overflows (CSOs). The paper presents results from laboratory-scale experiments, in which the oxygen measurement in the filter plays a main role. The results show remarkable differences in oxygen concentrations in different filter depths. The highest oxygen consumption takes place in the upper part of the filter. In the lower part the re-aeration of sewage from the soil air dominates. This indicates that the biological activity is limited to the upper part of the filter. The availability of oxygen in the filter is a sign for degradation of wastewater compounds (ammonium, COD) under certain conditions and already takes place during the filter operation. The removal of ammonium especially cannot be strictly divided into phases of sorption during the loading and oxidation during the dry period any more.
Micropollutant loads in the urban water cycle.
Musolff, Andreas; Leschik, Sebastian; Reinstorf, Frido; Strauch, Gerhard; Schirmer, Mario
2010-07-01
The assessment of micropollutants in the urban aquatic environment is a challenging task since both the water balance and the contaminant concentrations are characterized by a pronounced variability in time and space. In this study the water balance of a central European urban drainage catchment is quantified for a period of one year. On the basis of a concentration monitoring of several micropollutants, a contaminant mass balance for the study area's wastewater, surface water, and groundwater is derived. The release of micropollutants from the catchment was mainly driven by the discharge of the wastewater treatment plant. However, combined sewer overflows (CSO) released significant loads of caffeine, bisphenol A, and technical 4-nonylphenol. Since an estimated fraction of 9.9-13.0% of the wastewater's dry weather flow was lost as sewer leakages to the groundwater, considerable loads of bisphenol A and technical 4-nonylphenol were also released by the groundwater pathway. The different temporal dynamics of release loads by CSO as an intermittent source and groundwater as well as treated wastewater as continuous pathways may induce acute as well as chronic effects on the receiving aquatic ecosystem. This study points out the importance of the pollution pathway CSO and groundwater for the contamination assessments of urban water resources.
Heinonen, M; Jokelainen, M; Fred, T; Koistinen, J; Hohti, H
2013-01-01
Municipal wastewater treatment plant (WWTP) influent is typically dependent on diurnal variation of urban production of liquid waste, infiltration of stormwater runoff and groundwater infiltration. During wet weather conditions the infiltration phenomenon typically increases the risk of overflows in the sewer system as well as the risk of having to bypass the WWTP. Combined sewer infrastructure multiplies the role of rainwater runoff in the total influent. Due to climate change, rain intensity and magnitude is tending to rise as well, which can already be observed in the normal operation of WWTPs. Bypass control can be improved if the WWTP is prepared for the increase of influent, especially if there is some storage capacity prior to the treatment plant. One option for this bypass control is utilisation of on-line weather-radar-based forecast data of rainfall as an input for the on-line influent model. This paper reports the Viikinmäki WWTP wet weather influent modelling project results where gridded exceedance probabilities of hourly rainfall accumulations for the next 3 h from the Finnish Meteorological Institute are utilised as on-line input data for the influent model.
An elutriation apparatus for assessing settleability of combined sewer overflows (CSOs).
Marsalek, J; Krishnappan, B G; Exall, K; Rochfort, Q; Stephens, R P
2006-01-01
An elutriation apparatus was proposed for testing the settleability of combined sewer outflows (CSOs) and applied to 12 CSO samples. In this apparatus, solids settling is measured under dynamic conditions created by flow through a series of settling chambers of varying diameters and upward flow velocities. Such a procedure reproduces better turbulent settling in CSO tanks than the conventional settling columns, and facilitates testing coagulant additions under dynamic conditions. Among the limitations, one could name the relatively large size of the apparatus and samples (60 L), and inadequate handling of floatables. Settleability results obtained for the elutriation apparatus and a conventional settling column indicate large inter-event variation in CSO settleability. Under such circumstances, settling tanks need to be designed for "average" conditions and, within some limits, the differences in test results produced by various settleability testing apparatuses and procedures may be acceptable. Further development of the elutriation apparatus is under way, focusing on reducing flow velocities in the tubing connecting settling chambers and reducing the number of settling chambers employed. The first measure would reduce the risk of floc breakage in the connecting tubing and the second one would reduce the required sample size.
An oyster-associated hepatitis A outbreak in France in 2007.
Guillois-Bécel, Y; Couturier, E; Le Saux, J C; Roque-Afonso, A M; Le Guyader, F S; Le Goas, A; Pernès, J; Le Bechec, S; Briand, A; Robert, C; Dussaix, E; Pommepuy, M; Vaillant, V
2009-03-12
Following the notification of nine hepatitis A cases clustered in the Cotes d Armor district in northwestern France, epidemiological, environmental and microbiological investigations were set up in order to identify the source and vehicle of contamination and implement control measures. In total, 111 cases were identified in the outbreak, all of whom lived or had stayed as tourists in the Cotes d Armor district. Of the cases, 87% had eaten raw shellfish, and 81% specifically oysters. Traceback investigations carried out on raw shellfish consumed by the cases showed that the raw shellfish originated from a single shellfish farm. The shellfish were probably contaminated either in the submersible tanks or in a depuration land-based tank where they were stored. The source of contamination was not identified but shellfish could have been tainted by sewage overflows or by wastewater releases from a polluted storm sewer close to the shellfish farm or from on-site sanitation facilities. To prevent future hepatitis A outbreaks due to shellfish consumption from this area, hazards specific to each farm should be analysed. Timely information on sewage overflows should also be part of communities efforts regarding sewage collection and treatment.
Eramo, Alessia; Delos Reyes, Hannah; Fahrenfeld, Nicole L.
2017-01-01
Combined sewer overflows (CSOs) degrade water quality through the release of microbial contaminants in CSO effluent. Improved understanding of the partitioning of microbial contaminants onto settleable particles can provide insight into their fate in end-of-pipe treatment systems or following release during CSO events. Sampling was performed across the hydrograph for three storm events as well as during baseflow and wet weather in three surface waters impacted by CSO. qPCR was performed for select antibiotic resistance genes (ARG) and a marker gene for human fecal indicator organisms (BacHum) in samples processed the partitioning of microbial contaminants on settleable particles versus suspended in the aqueous phase. Amplicon sequencing was performed on both fractions of storm samples to further define the timing and partitioning of microbial contaminants released during CSO events. Samples collected at the CSO outfall exhibited microbial community signatures of wastewater at select time points early or late in the storm events. CSOs were found to be a source of ARG. In surrounding surface waters, sul1 was higher in samples from select locations during wet weather compared to baseflow. Otherwise, ARG concentrations were variable with no differences between baseflow and wet weather conditions. The majority of ARG at the CSO outfall were observed on the attached fraction of samples: 64–79% of sul1 and 59–88% of tet(G). However, the timing of peak ARG and human fecal indicator marker gene BacHum did not necessarily coincide with observation of the microbial signature of wastewater in CSO effluent. Therefore, unit processes that remove settleable particles (e.g., hydrodynamic separators) operated throughout a CSO event would achieve up to (0.5–0.9)-log removal of ARG and fecal indicators by removing the attached fraction of measured genes. Secondary treatment would be required if greater removal of these targets is needed. PMID:29104562
Risk-based decision making to manage water quality failures caused by combined sewer overflows
NASA Astrophysics Data System (ADS)
Sriwastava, A. K.; Torres-Matallana, J. A.; Tait, S.; Schellart, A.
2017-12-01
Regulatory authorities set certain environmental permit for water utilities such that the combined sewer overflows (CSO) managed by these companies conform to the regulations. These utility companies face the risk of paying penalty or negative publicity in case they breach the environmental permit. These risks can be addressed by designing appropriate solutions such as investing in additional infrastructure which improve the system capacity and reduce the impact of CSO spills. The performance of these solutions is often estimated using urban drainage models. Hence, any uncertainty in these models can have a significant effect on the decision making process. This study outlines a risk-based decision making approach to address water quality failure caused by CSO spills. A calibrated lumped urban drainage model is used to simulate CSO spill quality in Haute-Sûre catchment in Luxembourg. Uncertainty in rainfall and model parameters is propagated through Monte Carlo simulations to quantify uncertainty in the concentration of ammonia in the CSO spill. A combination of decision alternatives such as the construction of a storage tank at the CSO and the reduction in the flow contribution of catchment surfaces are selected as planning measures to avoid the water quality failure. Failure is defined as exceedance of a concentration-duration based threshold based on Austrian emission standards for ammonia (De Toffol, 2006) with a certain frequency. For each decision alternative, uncertainty quantification results into a probability distribution of the number of annual CSO spill events which exceed the threshold. For each alternative, a buffered failure probability as defined in Rockafellar & Royset (2010), is estimated. Buffered failure probability (pbf) is a conservative estimate of failure probability (pf), however, unlike failure probability, it includes information about the upper tail of the distribution. A pareto-optimal set of solutions is obtained by performing mean- pbf optimization. The effectiveness of using buffered failure probability compared to the failure probability is tested by comparing the solutions obtained by using mean-pbf and mean-pf optimizations.
NASA Astrophysics Data System (ADS)
Cohen, J. S.; McGarity, A. E.
2017-12-01
The ability for mass deployment of green stormwater infrastructure (GSI) to intercept significant amounts of urban runoff has the potential to reduce the frequency of a city's combined sewer overflows (CSOs). This study was performed to aid in the Overbrook Environmental Education Center's vision of applying this concept to create a Green Commercial Corridor in Philadelphia's Overbrook Neighborhood, which lies in the Mill Creek Sewershed. In an attempt to further implement physical and social reality into previous work using simulation-optimization techniques to produce GSI deployment strategies (McGarity, et al., 2016), this study's models incorporated land use types and a specific neighborhood in the sewershed. The low impact development (LID) feature in EPA's Storm Water Management Model (SWMM) was used to simulate various geographic configurations of GSI in Overbrook. The results from these simulations were used to obtain formulas describing the annual CSO reduction in the sewershed based on the deployed GSI practices. These non-linear hydrologic response formulas were then implemented into the Storm Water Investment Strategy Evaluation (StormWISE) model (McGarity, 2012), a constrained optimization model used to develop optimal stormwater management practices on the watershed scale. By saturating the avenue with GSI, not only will CSOs from the sewershed into the Schuylkill River be reduced, but ancillary social and economic benefits of GSI will also be achieved. The effectiveness of these ancillary benefits changes based on the type of GSI practice and the type of land use in which the GSI is implemented. Thus, the simulation and optimization processes were repeated while delimiting GSI deployment by land use (residential, commercial, industrial, and transportation). The results give a GSI deployment strategy that achieves desired annual CSO reductions at a minimum cost based on the locations of tree trenches, rain gardens, and rain barrels in specified land use types.
Björklund, Karin; Bondelind, Mia; Karlsson, Anna; Karlsson, Dick; Sokolova, Ekaterina
2018-02-01
The risk from chemical substances in surface waters is often increased during wet weather, due to surface runoff, combined sewer overflows (CSOs) and erosion of contaminated land. There are strong incentives to improve the quality of surface waters affected by human activities, not only from ecotoxicity and ecosystem health perspectives, but also for drinking water and recreational purposes. The aim of this study is to investigate the influence of urban stormwater discharges and CSOs on receiving water in the context of chemical health risks and recreational water quality. Transport of copper (Cu) and benzo[a]pyrene (BaP) in the Göta River (Sweden) was simulated using a hydrodynamic model. Within the 16 km modelled section, 35 CSO and 16 urban stormwater point discharges, as well as the effluent from a major wastewater treatment plant, were included. Pollutant concentrations in the river were simulated for two rain events and investigated at 13 suggested bathing sites. The simulations indicate that water quality guideline values for Cu are exceeded at several sites, and that stormwater discharges generally give rise to higher Cu and BaP concentrations than CSOs. Due to the location of point discharges and the river current inhibiting lateral mixing, the north shore of the river is better suited for bathing. Peak concentrations have a short duration; increased concentrations of the pollutants may however be present for several days after a rain event. Monitoring of river water quality indicates that simulated Cu and BaP concentrations are in the same order of magnitude as measured concentrations. It is concluded that hydrodynamic modelling is a useful tool for identifying suitable bathing sites in urban surface waters and areas of concern where mitigation measures should be implemented to improve water quality. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zimmer, A. L.; Minsker, B. S.; Schmidt, A. R.; Ostfeld, A.
2011-12-01
Real-time mitigation of combined sewer overflows (CSOs) requires evaluation of multiple operational strategies during rapidly changing rainfall events. Simulation models for hydraulically complex systems can effectively provide decision support for short time intervals when coupled with efficient optimization. This work seeks to reduce CSOs for a test case roughly based on the North Branch of the Chicago Tunnel and Reservoir Plan (TARP), which is operated by the Metropolitan Water Reclamation District of Greater Chicago (MWRDGC). The North Branch tunnel flows to a junction with the main TARP system. The Chicago combined sewer system alleviates potential CSOs by directing high interceptor flows through sluice gates and dropshafts to a deep tunnel. Decision variables to control CSOs consist of sluice gate positions that control water flow to the tunnel as well as a treatment plant pumping rate that lowers interceptor water levels. A physics-based numerical model is used to simulate the hydraulic effects of changes in the decision variables. The numerical model is step-wise steady and conserves water mass and momentum at each time step by iterating through a series of look-up tables. The look-up tables are constructed offline to avoid extensive real-time calculations, and describe conduit storage and water elevations as a function of flow. A genetic algorithm (GA) is used to minimize CSOs at each time interval within a moving horizon framework. Decision variables are coded at 15-minute increments and GA solutions are two hours in duration. At each 15-minute interval, the algorithm identifies a good solution for a two-hour rainfall forecast. Three GA modifications help reduce optimization time. The first adjustment reduces the search alphabet by eliminating sluice gate positions that do not influence overflow volume. The second GA retains knowledge of the best decision at the previous interval by shifting the genes in the best previous sequence to initialize search at the new interval. The third approach is a micro-GA with a small population size and high diversity. Current tunnel operations attempt to avoid dropshaft geysers by simultaneously closing all sluice gates when the downstream end of the deep tunnel pressurizes. In an effort to further reduce CSOs, this research introduces a constraint that specifies a maximum allowable tunnel flow to prevent pressurization. The downstream junction depth is bounded by two flow conditions: a low tunnel water level represents inflow from the main system only, while a higher level includes main system flow as well as all possible North Branch inflow. If the lower of the two tunnel levels is pressurized, no North Branch flow is allowed to enter the junction. If only the higher level pressurizes, a linear rating is used to restrict the total North Branch flow below the volume that pressurizes the boundary. The numerical model is successfully calibrated to EPA SWMM and efficiently portrays system hydraulics in real-time. Results on the three GA approaches as well as impacts of various policies for the downstream constraint will be presented at the conference.
NASA Astrophysics Data System (ADS)
Quinn, Paul; Tellier, Sebastien; Wilkinson, Mark
2010-05-01
Expansion of the city of Newcastle included a new development of over 3000 houses and an associated commercial area on agricultural land. The development firmly signed up to the notion that the new estate should adhere to full SUDs design and implementation. In essence there should be no loss of floodplain capacity, the total runoff from the new housing should not increase flood risk downstream and benefits to ecology, recreation and amenity should be fully maximised. Credit must be given to Newcastle City Council, the Environment Agency, the local water company and the developers themselves as a full set of large scale SUDs now exist and they are clearly an asset to the city. However, such a large scale landscape engineering endeavour has not been without direct and indirect problems. This paper reviews some of the experiences, problems and lessons learnt from SUDs implementation, the function of SUDs during flood events and the perception of SUDs by the public. During the life of the project several older estates close to the new development suffered from two major flood events; including foul water inundation, the drowning out of sewer overflows and intense flash flooding. These floods at first gave rise to the public perception that the new development had caused the flooding. During a research project entitled 'making space for water', the instrumentation of the river in the area and the SUDs took place. The hydrological data this produced has given rise to a mixture of positive and negative aspects of SUDs implementation. The cause of one flood was due to the drowning out of key sewer overflows by locally generated by urban flood flow arising from an upstream estate. The second flood was caused by a 48 hour storm event giving rise to high runoff from the rural area again drowning out key sewer overflows. The SUDs were found to perform well during storm events and do not increase runoff from the new estates. The main fundamental complaint is that despite such a large investment in the Newcastle area, the older estates continue to be flooded. There is at this time no capability to think about holistic solutions to flooding in a catchment and the 'development' in the town gives rise to local solution only. A proposal to use the new SUDs and the floodplain to help lower flood risk for the older estates has met with a wall regulatory objections. The ability to manage runoff sources arising from rural areas could be addressed by investing in SUDs on agricultural land. Equally, putting SUDs into older estates could be very beneficial to the whole of the city. Holistic options and catchment management has to be at the heart of future planning considerations. The whole experience is great example of hydrology, engineering, planning and politics in action. The role of solid hydrological evidence in the debate has been significant. The most reassuring aspect of the work is that all the partners are endeavouring to learn and improve the flood management in the area and holistic thinking is now occurring.
Priority pollutants in urban stormwater: part 2 - case of combined sewers.
Gasperi, Johnny; Zgheib, Sally; Cladière, Mathieu; Rocher, Vincent; Moilleron, Régis; Chebbo, Ghassan
2012-12-15
This study has evaluated the quality of combined sewer overflows (CSOs) in an urban watershed, such as Paris, by providing accurate data on the occurrence of priority pollutants (PPs) and additional substances, as well as on the significance of their concentrations in comparison with wastewater and stormwater. Of the 88 substances monitored, 49 PPs were detected, with most of these also being frequently encountered in wastewater and stormwater, thus confirming their ubiquity in urban settings. For the majority of organic substances, concentrations range between 0.01 and 1 μgl(-1), while metals tend to display concentrations above 10 μgl(-1). Despite this ubiquity, CSO, wastewater and stormwater feature a number of differences in both their concentration ranges and pollutant patterns. For most hydrophobic organic pollutants and some particulate-bound metals, CSOs exhibit higher concentrations than those found in stormwater and wastewater, due to the contribution of in-sewer deposit erosion. For pesticides and Zn, CSOs have shown concentrations close to those of stormwater, suggesting runoff as the major contributor, while wastewater appears to be the main source of volatile organic compounds. Surprisingly, similar concentration ranges have been found for DEHP and tributyltin compounds in CSOs, wastewater and stormwater. The last section of this article identifies substances for which CSO discharges might constitute a major risk of exceeding Environmental Quality Standards in receiving waters and moreover indicates a significant risk for PAHs, tributyltin compounds and chloroalkanes. The data generated during this survey can subsequently be used to identify PPs of potential significance that merit further investigation. Copyright © 2011 Elsevier Ltd. All rights reserved.
The Detroit River, Michigan: an ecological profile
Manny, Bruce A.; Edsall, Thomas A.; Jaworski, Eugene
1988-01-01
A part of the connecting channel system between Lake Huron and Lake Erie, the Detroit River forms an integral link between the two lakes for both humans and biological resources such as fish, nutrients, and plant detritus. This profile summarizes existing scientific information on the ecological structure and functioning of this ecosystem. Topics include the geological history of the region, climatic influences, river hydrology, lower trophic-level biotic components, native and introduced fishes, waterfowl use, ecological interrelationships, commercial and recreational uses of the river, and current management issues. Despite urbanization, the river still supports diverse fish, waterfowl, and benthic populations. Management issues include sewer overflows; maintenance dredging for navigation and port activities; industrial discharges of potentially hazardous materials; and wetland, fishery, and waterfowl protection and enhancement.
NASA Astrophysics Data System (ADS)
Gooré Bi, Eustache; Monette, Frédéric; Gasperi, Johnny
2015-04-01
Urban rainfall runoff has been a topic of increasing importance over the past years, a result of both the increase in impervious land area arising from constant urban growth and the effects of climate change on urban drainage. The main goal of the present study is to assess and analyze the correlations between rainfall variables and common indicators of urban water quality, namely event mean concentrations (EMCs) and event fluxes (EFs), in order to identify and explain the impacts of each of the main rainfall variables on the generation process of urban pollutants during wet periods. To perform this analysis, runoff from eight summer rainfall events that resulted in combined sewer overflow (CSO) was sampled simultaneously from two distinct catchment areas in order to quantify discharges at the respective outfalls. Pearson statistical analysis of total suspended solids (TSS), chemical oxygen demand (COD), carbonaceous biochemical oxygen demand at 5 days (CBOD5), total phosphorus (Ptot) and total kedjal nitrogen (N-TKN) showed significant correlations (ρ = 0.05) between dry antecedent time (DAT) and EMCs on one hand, and between total rainfall (TR) and the volume discharged (VD) during EFs, on the other. These results show that individual rainfall variables strongly affect either EMCs or EFs and are good predictors to consider when selecting variables for statistical modeling of urban runoff quality. The results also show that in a combined sewer network, there is a linear relationship between TSS event fluxes and COD, CBOD5, Ptot, and N-TKN event fluxes; this explains 97% of the variability of these pollutants which adsorb onto TSS during wet weather, which therefore act as tracers. Consequently, the technological solution selected for TSS removal will also lead to a reduction of these pollutants. Given the huge volumes involved, urban runoffs contribute substantially to pollutant levels in receiving water bodies, a situation which, in a climate change context, may get much worse as a result of more frequent, shorter, but more intense rainfall events.
The U.S. Geological Survey and City of Atlanta water-quality and water-quantity monitoring network
Horowitz, Arthur J.; Hughes, W. Brian
2006-01-01
Population growth and urbanization affect the landscape, and the quality and quantity of water in nearby rivers and streams, as well as downstream receiving waters (Ellis, 1999). Typical impacts include: (1) disruption of the hydrologic cycle through increases in the extent of impervious surfaces (e.g., roads, roofs, sidewalks) that increase the velocity and volume of surface-water runoff; (2) increased chemical loads to local and downstream receiving waters from industrial sources, nonpoint-source runoff, leaking sewer systems, and sewer overflows; (3) direct or indirect soil contamination from industrial sources, power-generating facilities, and landfills; and (4) reduction in the quantity and quality of aquatic habitats. The City of Atlanta's monitoring network consists of 21 long-term sites. Eleven of these are 'fully instrumented' to provide real-time data on water temperature, pH, specific conductance, dissolved oxygen, turbidity (intended as a surrogate for suspended sediment concentration), water level (gage height, intended as a surrogate for discharge), and precipitation. Data are transmitted hourly and are available on a public Web site (http://ga.water.usgs.gov/). Two sites only measure water level and rainfall as an aid to stormwater monitoring. The eight remaining sites are used to assess water quality.
Caradot, Nicolas; Sonnenberg, Hauke; Rouault, Pascale; Gruber, Günter; Hofer, Thomas; Torres, Andres; Pesci, Maria; Bertrand-Krajewski, Jean-Luc
2015-01-01
This paper reports about experiences gathered from five online monitoring campaigns in the sewer systems of Berlin (Germany), Graz (Austria), Lyon (France) and Bogota (Colombia) using ultraviolet-visible (UV-VIS) spectrometers and turbidimeters. Online probes are useful for the measurement of highly dynamic processes, e.g. combined sewer overflows (CSO), storm events, and river impacts. The influence of local calibration on the quality of online chemical oxygen demand (COD) measurements of wet weather discharges has been assessed. Results underline the need to establish local calibration functions for both UV-VIS spectrometers and turbidimeters. It is suggested that practitioners calibrate locally their probes using at least 15-20 samples. However, these samples should be collected over several events and cover most of the natural variability of the measured concentration. For this reason, the use of automatic peristaltic samplers in parallel to online monitoring is recommended with short representative sampling campaigns during wet weather discharges. Using reliable calibration functions, COD loads of CSO and storm events can be estimated with a relative uncertainty of approximately 20%. If no local calibration is established, concentrations and loads are estimated with a high error rate, questioning the reliability and meaning of the online measurement. Similar results have been obtained for total suspended solids measurements.
Interaction of coastal urban groundwater with infrastructure due to tidal variation
NASA Astrophysics Data System (ADS)
Su, X.; Prigiobbe, V.
2017-12-01
The urbanization of coastal areas has been increasing during the last century. For these areas, groundwater is one of major source of potable water for the population, the industry, and the agriculture, with an average demand of 30 m3/s [1,2]. Simultaneously, the rate of sea-level rise has been recorded to be approximately 40 mm/yr [3], with potential negative consequences on the coastal groundwater. As the sea-level rises, sea-water intrusion into potable aquifers may become more important [4] and the water table of the shallow aquifer underneath the coastal areas may rise [5]. Therefore, the water quality of the aquifer decreases and interaction between the shallow aquifer and infrastructure may occur. In particular, in the latter case, disruptive events may become more frequent, such as infiltration of groundwater into damaged sewer causing discharge of untreated sewage (combined sewer overflows, CSOs). Here, a study is presented on the modeling of urban groundwater in coastal areas to identify the cause of frequent CSOs in dry weather conditions, i.e., CSOs are not expected to occur. The evolution of the water table was described in response of tidal variation to quantify the interaction between the shallow aquifer and an aging sewer. The watershed of the city of Hoboken (NJ), at the estuary of Hudson river, was implemented in MODFLOW. The model was built using dataset from various sources. Geostatistic was applied to create the aquifer geology and measurements of the water table from monitoring wells within the urban area were used as boundary conditions and model validation. Preliminary results of the simulations are shown the figure, where the water table over a period of 7 months was calculated. The groundwater model with the sewer will help identifying the parts of the network that might be submerged by the groundwater and, therefore, subjected to infiltration. Combining groundwater and sewer modeling with the hydrograph separation method [6], the model prediction of infiltration will be validated. References [1] Pimentel et al. BioScience, 54, 909-918, 2004. [2] Owolabi Glob. Ini., 11, 69-87, 2017. [3] Milne Astro. Geophys., 49, 224-228, 2008 [4] Vzquez-Su et al. Hydro. J. 13, 522-533, 2005. [5] Gburek et al. Ground Water, 37,175-184, 1999. [6] Prigiobbe and Giulianelli. Water Sci.Tech. 60, 727-735, 2009.
HANDBOOK: SEWER SYSTEM INFRASTRUCTURE ANALYSIS AND REHABILITATION
Many of our Nation's sewer systems date back to the 19th Century when brick sewers were common. hese and more recent sewer systems can be expected to fail in time, but because they are placed underground, signs of accelerated deterioration and capacity limitations are not readily...
Water contamination and environmental ecosystem in the Harlem River
NASA Astrophysics Data System (ADS)
Wang, J.
2013-12-01
Nutrients, bacteria, polychlorinated biphenyls (PCBs) and other contaminates have degraded water quality of the Harlem River. The Harlem River is a natural straight connected to the Hudson River and the East River, and it has been used for navigation and boating. Water samples have been collected and analyzed from 2011 to 2013. Phosphorus, ammonia, turbidity, fecal coliform, E.Coli., and enterococcus all exceed regulated levels for New York City waters. There is only one wastewater treatment plant (Wards Island WWTP) that serves this river. Combined sewer overflows (CSOs) discharge raw sewage into the river during storms in spring and summer. Commercial fishing is banned, .however, individuals still fish. While some fishermen catch and release, it is likely some fish are consumed, creating concern for the environmental health of the community along the river. Storm water runoff, CSOs, and wastewater effluents are major pollutant sources of PCB 11 (3,3' dichlorobiphenyl), nutrient and bacteria. Nutrients, bacteria levels and their spatial/temporal variations were analyzed, and PCB analysis is underway. This data is a critical first step towards improving the water quality and environmental ecosystem in the Harlem River.
NASA Astrophysics Data System (ADS)
Labbas, Mériem; Braud, Isabelle; Branger, Flora; Kralisch, Sven
2013-04-01
Growing urbanization and related anthropogenic processes have a high potential to influence hydrological process dynamics. Typical consequences are an increase of surface imperviousness and modifications of water flow paths due to artificial channels and barriers (combined and separated system, sewer overflow device, roads, ditches, etc.). Periurban catchments, at the edge of large cities, are especially affected by fast anthropogenic modifications. They usually consist of a combination of natural areas, rural areas with dispersed settlements and urban areas mostly covered by built zones and spots of natural surfaces. In the context of the European Water Framework Directive (2000) and the Floods Directive (2007), integrated and sustainable solutions are needed to reduce flooding risks and river pollution at the scale of urban conglomerations or whole catchments. Their thorough management requires models able to assess the vulnerability of the territory and to compare the impact of different rainwater management options and planning issues. To address this question, we propose a methodology based on a multi-scale distributed hydrological modelling approach. It aims at quantifying the impact of ongoing urbanization and stormwater management on the long-term hydrological cycle in medium-sized periurban watershed. This method focuses on the understanding and formalization of dominant periurban hydrological processes from small scales (few ha to few km2) to larger scales (few hundred km2). The main objectives are to 1) simulate both urban and rural hydrological processes and 2) test the effects of different long-term land use and water management scenarios. The method relies on several tools and data: a distributed hydrological model adapted to the characteristics of periurban areas, land use and land cover maps from different dates (past, present, future) and information about rainwater management collected from local authorities. For the application of the method, the medium-scaled catchment of Yzeron (France) is chosen. It is subjected to a fast progression of urbanization since the eighties and has been monitored for a long time period. The fully-distributed hydrological model J2000, available through the JAMS modelling framework, was found appropriate to simulate the water balance of the Yzeron catchment at a daily time step. However, it was not designed especially for periurban areas, so its structure and parameters are under adaptation. Firstly, as hydrological responses in urban areas are quicker than in rural areas, a sub-daily time step is necessary to improve the simulation of periurban hydrological processes. Therefore, J2000 was adapted to be run at a hourly time step. Secondly, in order to better take into account rainwater management, an explicit representation of sewer networks is implemented in the J2000 model whose periurban version is called J2000P. It receives urban rainwater coming from impervious surfaces connected to a combined sewer system and delivers this water to the treatment plant or directly to the river in case of sewer overflow device outflows. We will present the impact of these modifications on the simulated hydrological regime.
Anaerobic Digestion and Combined Heat and Power Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frank J. Hartz
2011-12-30
One of the underlying objectives of this study is to recover the untapped energy in wastewater biomass. Some national statistics worth considering include: (1) 5% of the electrical energy demand in the US is used to treat municipal wastewater; (2) This carbon rich wastewater is an untapped energy resource; (3) Only 10% of wastewater treatment plants (>5mgd) recover energy; (4) Wastewater treatment plants have the potential to produce > 575 MW of energy nationwide; and (5) Wastewater treatment plants have the potential to capture an additional 175 MW of energy from waste Fats, Oils and Grease. The WSSC conducted thismore » study to determine the feasibility of utilizing anaerobic digestion and combined heat and power (AD/CHP) and/or biosolids gasification and drying facilities to produce and utilize renewable digester biogas. Digester gas is considered a renewable energy source and can be used in place of fossil fuels to reduce greenhouse gas emissions. The project focus includes: (1) Converting wastewater Biomass to Electricity; (2) Using innovative technologies to Maximize Energy Recovery; and (3) Enhancing the Environment by reducing nutrient load to waterways (Chesapeake Bay), Sanitary Sewer Overflows (by reducing FOG in sewers) and Greenhouse Gas Emissions. The study consisted of these four tasks: (1) Technology screening and alternative shortlisting, answering the question 'what are the most viable and cost effective technical approaches by which to recover and reuse energy from biosolids while reducing disposal volume?'; (2) Energy recovery and disposal reduction potential verification, answering the question 'how much energy can be recovered from biosolids?'; (3) Economic environmental and community benefit analysis, answering the question 'what are the potential economic, environmental and community benefits/impacts of each approach?'; and (4) Recommend the best plan and develop a concept design.« less
Modelling the impacts of global change on concentrations of Escherichia coli in an urban river
NASA Astrophysics Data System (ADS)
Jalliffier-Verne, Isabelle; Leconte, Robert; Huaringa-Alvarez, Uriel; Heniche, Mourad; Madoux-Humery, Anne-Sophie; Autixier, Laurène; Galarneau, Martine; Servais, Pierre; Prévost, Michèle; Dorner, Sarah
2017-10-01
Discharges of combined sewer system overflows (CSOs) affect water quality in drinking water sources despite increasing regulation and discharge restrictions. A hydrodynamic model was applied to simulate the transport and dispersion of fecal contaminants from CSO discharges and to quantify the impacts of climate and population changes on the water quality of the river used as a drinking water source in Québec, Canada. The dispersion model was used to quantify Escherichia coli (E. coli) concentrations at drinking water intakes. Extreme flows during high and low water events were based on a frequency analysis in current and future climate scenarios. The increase of the number of discharges was quantified in current and future climate scenarios with regards to the frequency of overflows observed between 2009 and 2012. For future climate scenarios, effects of an increase of population were estimated according to current population growth statistics, independently of local changes in precipitation that are more difficult to predict than changes to regional scale hydrology. Under ;business-as-usual; scenarios restricting increases in CSO discharge frequency, mean E. coli concentrations at downstream drinking water intakes are expected to increase by up to 87% depending on the future climate scenario and could lead to changes in drinking water treatment requirements for the worst case scenarios. The greatest uncertainties are related to future local discharge loads. Climate change adaptation with regards to drinking water quality must focus on characterizing the impacts of global change at a local scale. Source water protection planning must consider the impacts of climate and population change to avoid further degradation of water quality.
Combined sewer overflows impact on water quality and environmental ecosystem in the Harlem River
NASA Astrophysics Data System (ADS)
Wang, J.
2017-12-01
Combined sewer overflows (CSOs) discharge untreated sewage into the Harlem River during wet weather conditions, and it elevated nutrients and pathogen levels. It is not safe for swimming, fishing or boating especially in rainstorms. The Harlem River, a 9.3 mile long natural straight, connects the Hudson and East Rivers in New York City. It had been historically used for swimming, fishing, boating. Anthropogenic impacts have degraded water quality, limiting current aquatic activity in the river. CSOs water samples were collected during rainstorms, and analyzed in the laboratories of the Chemistry and Biology Department, Bronx Community College, City University of New York. Results showed elevated bacteria/pathogen and nutrient levels. Most recent data showed an ammonia concentration of 2.6 mg/L on July 30, 2015 during a heavy afternoon thunderstorm, and an ammonia level 2.7mg/L during tropical storm Arthur on July 2, 2014. Both significantly exceeded the EPA regulation level for NYC waters of 0.23mg/L. Phosphate levels peaked at 0.197 mg/L during a heavy thunderstorm on Apr 28, 2011, which was much higher than regulated level of 0.033 mg/L. Turbidity was 319 FAU during the July 30 2015 heavy thunderstorm, and was 882 FAU during tropical storm Arthur; which was significantly higher than regulation level of 5.25 FAU. CSOs collected during a recent heavy rainstorm on Oct 28, 2015, showed fecal coliform of 1 million MPN/100ml, E.Coli. of 60,000 MPN/100ml, and enterococcus of 65,000 MPN/100ml; which exceeded regulated levels of fecal coliform-200 MPN/100ml, E.Coli.-126 MPN/100ml, enterococcus-104 MPN/100ml. It is critical to reduce CSOs, restore ecosystem and improve water quality of the Harlem River. Green wall, green roof, and wetland had been used to reduce stormwater runoff & CSOs in the Bronx River; these green infrastructures are going to be used along the Harlem River waterfront as well. The goal of this research is to make the Harlem River swimmable and fishable again in near future.
Eramo, Alessia; Medina, William Morales; Fahrenfeld, Nicole L
2017-01-01
Combined sewer overflows (CSOs) degrade water quality and end-of-pipe treatment is one potential solution for retrofitting this outdated infrastructure. The goal of this research was to evaluate peracetic acid (PAA) as a disinfectant for CSOs using viability based molecular methods for antibiotic resistance genes (ARGs), indicator organism marker gene BacHum, and 16S rRNA genes. Simulated CSO effluent was prepared using 23-40% wastewater, representing the higher end of the range of wastewater concentrations reported in CSO effluent. PAA residual following disinfection was greatest for samples with the lowest initial COD. Treatment of simulated CSO effluent (23% wastewater) with 100 mg∙min/L PAA (5 mg/L PAA, 20 min) was needed to reduce viable cell sul 1, tet (G), and BacHum (1.0±0.63-3.2±0.25-log) while 25 to 50 mg•min/L PAA (5 mg/L PAA, 5-10 min) was needed to reduce viable cell loads (0.62±0.56-1.6±0.08-log) in 40% wastewater from a different municipal treatment plant. Increasing contact time after the initial decrease in viable cell gene copies did not significantly improve treatment. A much greater applied Ct of 1200 mg∙min/L PAA (20 mg/L PAA, 60 min) was required for significant log reduction of 16S rRNA genes (3.29±0.13-log). No significant losses of mex B were observed during the study. Data were fitted to a Chick-Watson model and resulting inactivation constants for sul 1 and tet (G) > BacHum > 16S rRNA. Amplicon sequencing of the 16S rRNA gene indicated the initial viable and total microbial communities were distinct and that treatment with PAA resulted in marked increases of the relative abundance of select phyla, particularly Clostridia which increased by 1-1.5 orders of magnitude. Results confirm that membrane disruption is a mechanism for PAA disinfection and further treatment is needed to reduce total ARGs in CSO effluent.
Sewer deterioration modeling with condition data lacking historical records.
Egger, C; Scheidegger, A; Reichert, P; Maurer, M
2013-11-01
Accurate predictions of future conditions of sewer systems are needed for efficient rehabilitation planning. For this purpose, a range of sewer deterioration models has been proposed which can be improved by calibration with observed sewer condition data. However, if datasets lack historical records, calibration requires a combination of deterioration and sewer rehabilitation models, as the current state of the sewer network reflects the combined effect of both processes. Otherwise, physical sewer lifespans are overestimated as pipes in poor condition that were rehabilitated are no longer represented in the dataset. We therefore propose the combination of a sewer deterioration model with a simple rehabilitation model which can be calibrated with datasets lacking historical information. We use Bayesian inference for parameter estimation due to the limited information content of the data and limited identifiability of the model parameters. A sensitivity analysis gives an insight into the model's robustness against the uncertainty of the prior. The analysis reveals that the model results are principally sensitive to the means of the priors of specific model parameters, which should therefore be elicited with care. The importance sampling technique applied for the sensitivity analysis permitted efficient implementation for regional sensitivity analysis with reasonable computational outlay. Application of the combined model with both simulated and real data shows that it effectively compensates for the bias induced by a lack of historical data. Thus, the novel approach makes it possible to calibrate sewer pipe deterioration models even when historical condition records are lacking. Since at least some prior knowledge of the model parameters is available, the strength of Bayesian inference is particularly evident in the case of small datasets. Copyright © 2013 Elsevier Ltd. All rights reserved.
Majcher, Emily H.; Woytowitz, Ellen L.; Reisinger, Alexander J.; Groffman, Peter M.
2018-03-30
Factors affecting water-quality trends in urban streams are not well understood, despite current regulatory requirements and considerable ongoing investments in gray and green infrastructure. To address this gap, long-term water-quality trends and factors affecting these trends were examined in the Gwynns Falls, Maryland, watershed during 1998–2016 in cooperation with Blue Water Baltimore. Data on water-quality constituents and potential factors of influence were obtained from multiple sources and compiled for analysis, with a focus on data collected as part of the National Science Foundation funded Long-Term Ecological Research project, the Baltimore Ecosystem Study.Variability in climate (specifically, precipitation) and land cover can overwhelm actions taken to improve water quality and can present challenges for meeting regulatory goals. Analysis of land cover during 2001–11 in the Gwynns Falls watershed indicated minimal change during the study time frame; therefore, land-cover change is likely not a factor affecting trends in water quality. However, a modest increase in annual precipitation and a significant increase in winter precipitation were apparent in the region. A higher proportion of runoff producing storms was observed in the winter and a lower proportion in the summer, indicating that climate change may affect water quality in the watershed. The increase in precipitation was not reflected in annual or seasonal trends of streamflow in the watershed. Nonetheless, these precipitation changes may exacerbate the inflow and infiltration of water to gray infrastructure and reduce the effectiveness of green infrastructure. For streamflow and most water-quality constituents examined, no discernable trends were noted over the timeframe examined. Despite the increases in precipitation, no trends were observed for annual or seasonal discharge at the various sites within the study area. In some locations, nitrate, phosphate, and total nitrogen show downward trends, and total phosphorus and chloride show upward trends.Sanitary sewer overflows (gray infrastructure) and best management practices (green infrastructure) were identified as factors affecting water-quality change. The duration of sanitary sewer overflows was positively correlated with annual loads of nutrients and bacteria, and the drainage area of best management practices was negatively correlated with annual loads of phosphate and sulfate. Results of the study indicate that continued investments in gray and green infrastructure are necessary for urban water-quality improvement. Although this outcome is not unexpected, long-term datasets such as the one used in this study, allow the effects of gray and green infrastructures to be quantified.Results of this study have implications for the Gwynns Falls watershed and its residents and Baltimore City and County managers. Moreover, outcomes are relevant to other watersheds in the metropolitan region that do not have the same long-term dataset. Further, this study has established a framework for ongoing statistical analysis of primary factors affecting urban water-quality trends as regulatory programs mature.
Properties influencing fat, oil, and grease deposit formation.
Keener, Kevin M; Ducoste, Joel J; Holt, Leon M
2008-12-01
Fat, oil, and grease (FOG) deposits are the reported cause of 50 to 75% of sanitary sewer overflows in the United States, resulting in 1.8 X 10(6) m3 (500 mil. gal) of raw wastewater released into the environment annually. The objective of this research was to characterize the chemical and physical properties of FOG deposits. Twenty-three cities from around the United States contributed FOG samples for the study. The FOG deposits showed a wide range in yield strength (4 to 34 kPa), porosity (10 to 24%), and moisture content (10 to 60%), suggesting uncontrolled formation processes. A majority of these deposits display hard, sandstonelike texture, with distinct layering effects, suggesting a discontinuous formation process. The results found that 84% of FOG deposits contained high concentrations of saturated fatty acids and calcium, suggesting preferential accumulation.
Clean Watersheds Needs Survey (CWNS) 2008 Report to Congress
The Environmental Protection Agency's CWNS is required by Sections 205(a) and 516(b)(1) of the CWA. The CWNS is a summary of the estimated capital costs for water quality projects and other activities eligible for SRF support as authorized by the 1987 CWA Amendments. The Clean Watersheds Needs Survey (CWNS) 2008 Report to Congress summarizes the results of EPA's 15th national survey of capital costs to address water quality or water quality related public health problems. The total wastewater and stormwater management needs for the nation are $298.1 billion as of January 1, 2008. This amount includes $192.2 billion for wastewater treatment plants, pipe repairs, and buying and installing new pipes; $63.6 billion for combined sewer overflow correction; and $42.3 billion for stormwater management. Small communities have documented needs of $22.7 billion.
Sokolova, Ekaterina; Aström, Johan; Pettersson, Thomas J R; Bergstedt, Olof; Hermansson, Malte
2012-01-17
The implementation of microbial fecal source tracking (MST) methods in drinking water management is limited by the lack of knowledge on the transport and decay of host-specific genetic markers in water sources. To address these limitations, the decay and transport of human (BacH) and ruminant (BacR) fecal Bacteroidales 16S rRNA genetic markers in a drinking water source (Lake Rådasjön in Sweden) were simulated using a microbiological model coupled to a three-dimensional hydrodynamic model. The microbiological model was calibrated using data from outdoor microcosm trials performed in March, August, and November 2010 to determine the decay of BacH and BacR markers in relation to traditional fecal indicators. The microcosm trials indicated that the persistence of BacH and BacR in the microcosms was not significantly different from the persistence of traditional fecal indicators. The modeling of BacH and BacR transport within the lake illustrated that the highest levels of genetic markers at the raw water intakes were associated with human fecal sources (on-site sewers and emergency sewer overflow). This novel modeling approach improves the interpretation of MST data, especially when fecal pollution from the same host group is released into the water source from different sites in the catchment.
Damage estimation of sewer pipe using subtitles of CCTV inspection video
NASA Astrophysics Data System (ADS)
Park, Kitae; Kim, Byeongcheol; Kim, Taeheon; Seo, Dongwoo
2017-04-01
Recent frequent occurrence of urban sinkhole serves as a momentum of the periodic inspection of sewer pipelines. Sewer inspection using a CCTV device needs a lot of time and efforts. Many of previous studies which reduce the laborious tasks are mainly interested in the developments of image processing S/W and exploring H/W. And there has been no attempt to find meaningful information from the existing CCTV images stored by the sewer maintenance manager. This study adopts a cross-correlation based image processing method and extracts sewer inspection device's location data from CCTV images. As a result of the analysis of location-time relation, it show strong correlation between device stand time and the sewer damages. In case of using this method to investigate sewer inspection CCTV images, it will save the investigator's efforts and improve sewer maintenance efficiency and reliability.
Jackson, P. Ryan; Garcia, Carlos M.; Oberg, Kevin A.; Johnson, Kevin K.; Garcia, Marcelo H.
2008-01-01
Bidirectional flows in a river system can occur under stratified flow conditions and in addition to creating significant errors in discharge estimates, the upstream propagating currents are capable of transporting contaminants and affecting water quality. Detailed field observations of bidirectional flows were made in the Chicago River in Chicago, Illinois in the winter of 2005-06. Using multiple acoustic Doppler current profilers simultaneously with a water-quality profiler, the formation of upstream propagating density currents within the Chicago River both as an underflow and an overflow was observed on three occasions. Density differences driving the flow primarily arise from salinity differences between intersecting branches of the Chicago River, whereas water temperature is secondary in the creation of these currents. Deicing salts appear to be the primary source of salinity in the North Branch of the Chicago River, entering the waterway through direct runoff and effluent from a wastewater-treatment plant in a large metropolitan area primarily served by combined sewers. Water-quality assessments of the Chicago River may underestimate (or overestimate) the impairment of the river because standard water-quality monitoring practices do not account for density-driven underflows (or overflows). Chloride concentrations near the riverbed can significantly exceed concentrations at the river surface during underflows indicating that full-depth parameter profiles are necessary for accurate water-quality assessments in urban environments where application of deicing salt is common.
Thorndahl, S; Willems, P
2008-01-01
Failure of urban drainage systems may occur due to surcharge or flooding at specific manholes in the system, or due to overflows from combined sewer systems to receiving waters. To quantify the probability or return period of failure, standard approaches make use of the simulation of design storms or long historical rainfall series in a hydrodynamic model of the urban drainage system. In this paper, an alternative probabilistic method is investigated: the first-order reliability method (FORM). To apply this method, a long rainfall time series was divided in rainstorms (rain events), and each rainstorm conceptualized to a synthetic rainfall hyetograph by a Gaussian shape with the parameters rainstorm depth, duration and peak intensity. Probability distributions were calibrated for these three parameters and used on the basis of the failure probability estimation, together with a hydrodynamic simulation model to determine the failure conditions for each set of parameters. The method takes into account the uncertainties involved in the rainstorm parameterization. Comparison is made between the failure probability results of the FORM method, the standard method using long-term simulations and alternative methods based on random sampling (Monte Carlo direct sampling and importance sampling). It is concluded that without crucial influence on the modelling accuracy, the FORM is very applicable as an alternative to traditional long-term simulations of urban drainage systems.
Current state and development of the real-time control of the Berlin sewage system.
Schroeder, K; Pawlowsky-Reusing, E
2005-01-01
Since the 1970s, we have known about real-time control of urban drainage systems. However, global real-time control strategies still show a lack of implementation for large drainage systems of high complexity. In Berlin, Germany, a city of 3.5 million inhabitants covering an area of around 900 km2, the demand for enhanced protection of the environment and growing economic pressure have led to an increasing application of control assets and concepts within the sewage system. In the framework of the project "Integrated Sewage Management", the possibilities of a global and integrated control strategy for the Berlin system are examined. The paper is focused on the historical concept and design of the sewerage and the further improvement towards an environment-oriented system that builds the basis for today's considerations. The operational method and functionality of local regulators that have already been implemented are described. Further-more, the model-based methodology for the analysis of the system and the development of global control concepts, as well as the results of system analysis, are stated. On the basis of model simulations, it is shown that a global coordination of pump stations can lead to a reduction of sewer overflows, and consequently to an enhanced water protection.
COMPUTER TOOLS FOR SANITARY SEWER SYSTEM CAPACITY ANALYSIS AND PLANNING
Rainfall-derived infiltration and inflow (RDII) into sanitary sewer systems has long been recognized as a major source of operating problems, causing poor performance of many sewer systems. RDII is the main cause of SSOs to customer basements, streets, or nearby streams and can a...
Microbial sewage contamination associated with Superstorm Sandy flooding in New York City
NASA Astrophysics Data System (ADS)
O'Mullan, G.; Dueker, M.; Sahajpal, R.; Juhl, A. R.
2013-05-01
The lower Hudson River Estuary commonly experiences degraded water quality following precipitation events due to the influence of combined sewer overflows. During Super-storm Sandy large scale flooding occurred in many waterfront areas of New York City, including neighborhoods bordering the Gowanus Canal and Newtown Creek Superfund sites known to frequently contain high levels of sewage associated bacteria. Water, sediment, and surface swab samples were collected from Newtown Creek and Gowanus Canal flood impacted streets and basements in the days following the storm, along with samples from the local waterways. Samples were enumerated for the sewage indicating bacterium, Enterococcus, and DNA was extracted and amplified for 16S ribosomal rRNA gene sequence analysis. Waterways were found to have relatively low levels of sewage contamination in the days following the storm. In contrast, much higher levels of Enterococci were detected in basement and storm debris samples and these bacteria were found to persist for many weeks in laboratory incubations. These data suggest that substantial sewage contamination occurred in some flood impacted New York City neighborhoods and that the environmental persistence of flood water associated microbes requires additional study and management attention.
Approach and case-study of green infrastructure screening analysis for urban stormwater control.
Eaton, Timothy T
2018-03-01
Urban stormwater control is an urgent concern in megacities where increased impervious surface has disrupted natural hydrology. Water managers are increasingly turning to more environmentally friendly ways of capturing stormwater, called Green Infrastructure (GI), to mitigate combined sewer overflow (CSO) that degrades local water quality. A rapid screening approach is described to evaluate how GI strategies can reduce the amount of stormwater runoff in a low-density residential watershed in New York City. Among multiple possible tools, the L-THIA LID online software package, using the SCS-CN method, was selected to estimate relative runoff reductions expected with different strategies in areas of different land uses in the watershed. Results are sensitive to the relative areas of different land uses, and show that bioretention and raingardens provide the maximum reduction (∼12%) in this largely residential watershed. Although commercial, industrial and high-density residential areas in the watershed are minor, larger runoff reductions from disconnection strategies and porous pavement in parking lots are also possible. Total stormwater reductions from various combinations of these strategies can reach 35-55% for individual land uses, and between 23% and 42% for the entire watershed. Copyright © 2017. Published by Elsevier Ltd.
Rerouting Urban Waters: A Historic Examination of the Age of Imperviousness
NASA Astrophysics Data System (ADS)
Hopkins, K. G.; Bain, D. J.
2011-12-01
From the 1600's to the 1900's landscapes along the Eastern United States underwent dramatic changes, including transitions from forest to production agriculture and eventually urban development. Legacy effects from decisions on sewer and water infrastructure built during the early 1900's are emerging today in degraded urban waterways. Impervious cover is often a factor used to predict water impairment. However, does imperviousness age or change through the course of landscape evolution? This study reconstructs the history of imperviousness in the Panther Hollow watershed (161 ha, Pittsburgh, PA) to examine these changes. We reconstruct the importance of factors influencing effective imperviousness from the 1800's to present including; (1) pipe and road network technological transitions, (2) land cover changes, particularly the loss of forest cover, and (3) modifications to local topography. Analysis reveals effective imperviousness (impervious area in the basin directly connected to stream channels) increased dramatically after 1900. Prior to 1900, water and sewer infrastructure was very limited. Local drainage networks generally followed the natural topography and households accessed water supplies from wells, precipitation harvesting or surface water. Road networks were sparse and predominantly dirt or aggregate surfaces. Forests and large family farms dominated land cover. Around 1910 public water supply expanded, significantly increasing effective imperviousness due to installation of brick and ceramic sewer infrastructure that routed waste waters directly to stream channels. Road networks also expanded and began transitioning from dirt roads to brick and eventually asphalt. Shifting to impervious paving materials required the installation of stormwater drainage. New drainage systems altered historic flow paths by re-routed large quantities of water through macro-pore sewer networks to local waterways. While this improvement prevented flooding to roadways, it also created new flooding issues downstream of outfalls. Improvements to transit networks also increased mobility and connected towns together facilitating the expansion of development. Significant losses of urban tree canopy cover and the loss of water storage capacity in soils compounded issues, dramatically increasing effective imperviousness. From 1940 - 1960 concerns over polluted waterways resulted in the re-routing of sewage networks from streams to treatment facilities, decreasing sewage subsidies to effective imperviousness. However, connection of stormwater drainage networks to sewage infrastructure designed for earlier flow regimes and the increasing effective imperviousness resulted in frequent overflows of sewage directly to local waterways. Currently, aging infrastructure presents the opportunity to incorporate low impact development techniques in infrastructure repair. This has the potential to reduce effective imperviousness in urban areas by re-establishing lost hydrologic flow paths. This research indicates imperviousness as a parameter incorporates a complicated mix of processes. Examining the causal, mechanistic links between these systems can provide additional perspective on water impairments in urban landscapes throughout the course of landscape evolution.
Marine recreation and public health microbiology: Quest for the ideal indicator
Griffin, Dale W.; Lipp, Erin K.; McLaughlin, Molly R.; Rose, Joan B.
2001-01-01
Four-fifths of the population of the United States live in close proximity to the oceans or Great Lakes, and approximately 100 million Americans use the marine environment for recreation each year (Thurman 1994). Consequently, contamination of lakes, rivers, and coastal waters raises significant public health issues. Among the leading sources of chemical and biological contamination of these waters and associated beaches are sewer systems, septic tanks, stormwater runoff, industrial wastes, wastewater injection wells, cesspits, animal wastes, commercial and private boat wastes, and human recreation. In 1997, 649 beach closings or advisories were caused by sewage spills and overflows (NRDC 1998). In Florida alone, approximately 500 million gallons of sewage were released along the coast each year during the late 1980s (Neshyba 1987). Thus one of the primary concerns in public health is the risk that humans using the marine environment for recreational activities will encounter microbial pathogens.
Marine recreation and public health microbiology: quest for the ideal indicator
Griffin, Dale W.; Lipp, Erin K.; McLaughlin, Molly R.; Rose, Joan B.
2001-01-01
Four-fifths of the population of the United States live in close proximity to the oceans or Great Lakes, and approximately 100 million Americans use the marine environment for recreation each year (Thurman 1994). Consequently, contamination of lakes, rivers, and coastal waters raises significant public health issues. Among the leading sources of chemical and biological contamination of these waters and associated beaches are sewer systems, septic tanks, stormwater runoff, industrial wastes, wastewater injection wells, cesspits, animal wastes, commercial and private boat wastes, and human recreation. In 1997, 649 beach closings or advisories were caused by sewage spills and overflows (NRDC 1998). In Florida alone, approximately 500 million gallons of sewage were released along the coast each year during the late 1980s (Neshyba 1987). Thus one of the primary concerns in public health is the risk that humans using the marine environment for recreational activities will encounter microbial pathogens.
Development of the real-time control (RTC) system for Tokyo sewage system.
Maeda, M; Mizushima, H; Ito, K
2005-01-01
Tokyo Metropolitan government has decided to make the maximum possible use of the existing facilities while ensuring safety against inundation and to promote measures also from a software approach by introducing a system capable of minimizing combined sewer overflow, the real-time control system (RTC). A pilot RTC system was installed in August 2002 for the Shinozaki Pumping Station. The RTC system monitors the precipitation volume and the water level in the pipe. Simulations were carried out on the basis of these data. From the results, it was found that with the use of the RTC it is possible to reduce CSO by roughly 50% for small rainfalls with a total precipitation level of 20 mm or less by strong rainwater in the pipe routes at the beginning of the rain. It has also been shown that CSO can be reduced by about 80% through the use of rainfall forecasting.
Disinfection of low quality wastewaters by ultraviolet irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zukovs, G.; Kollar, J.; Monteith, H.D.
1986-03-01
Pilot-scale disinfection of simulated combined sewer overflow (CSO) by ultraviolet light (UV) and by high-rate chlorination were compared. Disinfection efficiency was evaluated over a range of dosages and contact times for fecal coliforms, enterococci, P. Aeruginosa, and Salmonella spp. Fecal coliform were reduced 3.0 to 3.2 logs at a UV dose of approximately 350,000..mu.. W s/cm/sup 2/. High-rate chlorination, at a contact time of 2.0 minutes and total residual chlorine concentration of approximately 25 mg/L (as Cl/sub 2/), reduced fecal coliforms by 4.0 logs. Pathogens were reduced to detection limits by both processes. Neither photoreactivation nor regrowth occurred int hemore » disinfected effluents. The estimated capital costs of CSO disinfection by UV irradiation were consistently higher than for chlorination/dechlorination; operation and maintenance costs were similar. 19 references.« less
Moura, P; Barraud, S; Baptista, M B; Malard, F
2011-01-01
Nowadays, stormwater infiltration systems are frequently used because of their ability to reduce flows and volumes in downstream sewers, decrease overflows in surface waters and make it possible to recharge groundwater. Moreover, they come in various forms with different uses. Despite these advantages the long term sustainability of these systems is questionable and their real performances have to be assessed taking into account various and sometimes conflicting aspects. To address this problem a decision support system is proposed. It is based on a multicriteria method built to help managers to evaluate the performance of an existing infiltration system at different stages of its lifespan and identify whether it performs correctly or not, according to environmental, socio-economic, technical and sanitary aspects. The paper presents successively: the performance indicators and the way they were built, the multicriteria method to identify if the system works properly and a case study.
New York harbor water-quality survey, 1988-1990. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brosnan, T.M.
1991-08-27
Fifty two stations were monitored over twelve weeks of each of the summers of 1988 through 1990 to provide the 79th, 80th, and 81st Annual Summer Water Quality Surveys of New York Harbor. Coliform bacteria continue to exhibit significant long-term improvements throughout the harbor due to water pollution control plant construction and upgrades. Only 4% of stations were out of compliance with coliform standards in 1990, with exceedances confined to waterways heavily impacted by combined sewer overflows (CSO's). In 1990, average summer dissolved oxygen (DO) met state standards at 94% of surface, and 85% of bottom sites; however many sitesmore » contravened DO standards at least once. While average DO compliance in 1990 was significantly better than any time since at least 1986, 1988 and 1989 were noticeably worse, particularly in waterways prone to phytoplankton blooms and density stratification. Nutrient and chlorophyll a concentrations displayed spatial trends.« less
Occurrence of alkylphenolic substances in a Great Lakes coastal marsh, Cootes Paradise, ON, Canada.
Mayer, T; Bennie, D; Rosa, F; Rekas, G; Palabrica, V; Schachtschneider, J
2007-06-01
Occurrence and fate of alkylphenols (APs), known endocrine disruptors, were investigated in a Great Lakes coastal wetland, Cootes Paradise, ON. The wetland, which receives discharges from a Wastewater Treatment Plant (WTP) and several Combined Sewer Overflows (CSOs), is an important spawning ground for fish and crucial habitat for other fauna. Elevated concentrations of nonylphenol ethoxylates (NPEs) and their degradation product nonylphenol (NP) were found in water and sediment samples near the sources. Since transfer of APs through the food chain is of concern, we compared their concentrations in invertebrates from clean and contaminated sites. The results reveal transfer of alkylphenolics from sediments to biota and their accumulation in the invertebrate tissue, particularly the highly hydrophobic 4-NP, whose concentrations ranged from 1.9 to 6.3 microg g(-1). To our knowledge, this is the first study to evaluate AP concentrations in tissue of benthic invertebrates under real environmental conditions.
Hansen, R; Thogersen, T; Rogalla, F
2007-01-01
In the early 1990s, the Wastewater Treatment Plant (WWTP) of Frederikshavn, Denmark, was extended to meet new requirements for nutrient removal (8 mg/L TN, 1.5 mg TP/L) as well as to increase its average daily flow to 16,500 m(3)/d (4.5 MGD). As the most economical upgrade of the existing activated sludge (AS) plant, a parallel biological aerated filter (BAF) was selected, and started up in 1995. Running two full scale processes in parallel for over ten years on the same wastewater and treatment objectives enabled a direct comparison in relation to operating performance, costs and experience. Common pretreatment consists of screening, an aerated grit and grease removal and three primary settlers with chemical addition. The effluent is then pumped to the two parallel biological treatment stages, AS with recirculation and an upflow BAF with floating media. The wastewater is a mixture of industrial and domestic wastewater, with a dominant discharge of fish processing effluent which can amount to 50% of the flow. The maximum hydraulic load on the pretreatment section as a whole is 1,530 m(3)/h. Approximately 60% of the sewer system is combined with a total of 32 overflow structures. To avoid the direct discharge of combined sewer overflows into the receiving waters, the total hydraulic wet weather capacity of the plant is increased to 4,330 m(3)/h, or 6 times average flow. During rain, some of the raw sewage can be directed through a stormwater bypass to the BAF, which can be modified in its operation to accommodate various treatment needs: either using simultaneous nitrification/denitrification in all filters with recirculation introducing bottom aeration with full nitrification in some filters for storm treatment and/or post-denitrification in one filter. After treatment, the wastewater is discharged to the Baltic Sea through a 500 m outfall. The BAF backwash sludge, approximately 1,900 m(3) per 24 h in dry weather, is redirected to the AS plant. Primary settler sludge and the combined biosolids from the AS plant are anaerobically digested, with methane gas being used for generation of heat and power. On-line measurements for the parameters NO3, NO2, NH4, temperature as well as dissolved oxygen (DO) are used for control of aeration and external carbon source (methanol). Dosing of flocculants for P-removal is carried out based on laboratory analysis and jar tests. This paper discusses the experience gained from the plant operation during the last ten years, compiling comparative performance and cost data of the two processes, as well as their optimisation.
Combined-sewer overflow data and methods of sample collection for selected sites, Detroit, Michigan
Sweat, M.J.; Wolf, J.R.
1997-01-01
The discharge of untreated sewage is illegal in Michigan unless permitted under Act 245 due to public health concerns. In October, 1992, the Michigan Department of Natural Resources (MDNR, now the Michigan Department of Environmental Quality) issued a discharge permit to Detroit authorizing discharge from the City's 78 combined-sewer overflows (CSOs), and requiring that a long-term control plan be developed to achieve mandated waterquality standards in receiving waters. The U.S. Environmental Protection Agency (USEPA) issued a national CSO policy in April, 1994, which requires (1) operational improvements of existing systems to minimize discharges and prevent their occurrence in dry weather; (2) publicly operated treatment works (POTW) to characterize the frequency and volume of discharges; and (3) construction of CSO discharge control projects where necessary.In 1993, the Southeast Michigan Council of Governments (SEMCOG) requested assistance from the U.S. Geological Survey (USGS), in cooperation with Detroit Water and Sewerage Department (DWSD) and MDNR, Surface Water Quality Division, to address part of the technical data requirements for requirement 2. The USGS scope of services for this interdisciplinary, multiagency investigation consisted of collection, compilation, and interpretation of the necessary hydrologic data, and documentation of results. In addition to USGS personnel, personnel from DWSD assisted with the field collection of samples and in alerting USGS personnel to CSO effluent discharges.From October 1, 1994 through December 31, 1995, four CSOs discharging to the Detroit River in Detroit, Michigan (figure 1) were monitored to characterize storm-related water quantity and quality. Water velocity, stage, and precipitation were measured continuously and recorded at 5-minute intervals. Water-quality samples were collected at discrete times during storms and analyzed for inorganic and organic pollutants. Discharges were sampled between 30 and 78 times for inorganic pollutants, and between 14 and 22 times for organic pollutants, depending on the site. These samples represented between 8 and 17 storms during which one or more of the four selected CSOs discharged. The monitored pollutants included fecal coliform, fecal streptococci, and Escherichia coli; antimony, arsenic, beryllium, cadmium, hexavalent chromium, total chromium, cobalt, copper, iron, lead, manganese, mercury, nickel, silver, thallium and zinc; and polychlorinated biphenyl congeners, volatile organic compounds, and polynuclear aromatic hydrocarbons. Metal and non-metal inorganic pollutants were detected at all sites. Many organic pollutants were not detected at all.
Quantification of sewer system infiltration using delta(18)O hydrograph separation.
Prigiobbe, V; Giulianelli, M
2009-01-01
The infiltration of parasitical water into two sewer systems in Rome (Italy) was quantified during a dry weather period. Infiltration was estimated using the hydrograph separation method with two water components and delta(18)O as a conservative tracer. The two water components were groundwater, the possible source of parasitical water within the sewer, and drinking water discharged into the sewer system. This method was applied at an urban catchment scale in order to test the effective water-tightness of two different sewer networks. The sampling strategy was based on an uncertainty analysis and the errors have been propagated using Monte Carlo random sampling. Our field applications showed that the method can be applied easily and quickly, but the error in the estimated infiltration rate can be up to 20%. The estimated infiltration into the recent sewer in Torraccia is 14% and can be considered negligible given the precision of the method, while the old sewer in Infernetto has an estimated infiltration of 50%.
NASA Astrophysics Data System (ADS)
Tryby, M.; Fries, J. S.; Baranowski, C.
2014-12-01
Extreme precipitation events can cause significant impacts to drinking water and wastewater utilities, including facility damage, water quality impacts, service interruptions and potential risks to human health and the environment due to localized flooding and combined sewer overflows (CSOs). These impacts will become more pronounced with the projected increases in frequency and intensity of extreme precipitation events due to climate change. To model the impacts of extreme precipitation events, wastewater utilities often develop Intensity, Duration, and Frequency (IDF) rainfall curves and "design storms" for use in the U.S. Environmental Protection Agency's (EPA) Storm Water Management Model (SWMM). Wastewater utilities use SWMM for planning, analysis, and facility design related to stormwater runoff, combined and sanitary sewers, and other drainage systems in urban and non-urban areas. SWMM tracks (1) the quantity and quality of runoff made within each sub-catchment; and (2) the flow rate, flow depth, and quality of water in each pipe and channel during a simulation period made up of multiple time steps. In its current format, EPA SWMM does not consider climate change projection data. Climate change may affect the relationship between intensity, duration, and frequency described by past rainfall events. Therefore, EPA is integrating climate projection data available in the Climate Resilience Evaluation and Awareness Tool (CREAT) into SWMM. CREAT is a climate risk assessment tool for utilities that provides downscaled climate change projection data for changes in the amount of rainfall in a 24-hour period for various extreme precipitation events (e.g., from 5-year to 100-year storm events). Incorporating climate change projections into SWMM will provide wastewater utilities with more comprehensive data they can use in planning for future storm events, thereby reducing the impacts to the utility and customers served from flooding and stormwater issues.
Liao, Hehuan; Krometis, Leigh-Anne H; Kline, Karen
2016-05-01
Within the United States, elevated levels of fecal indicator bacteria (FIB) remain the leading cause of surface water-quality impairments requiring formal remediation plans under the federal Clean Water Act's Total Maximum Daily Load (TMDL) program. The sufficiency of compliance with numerical FIB criteria as the targeted endpoint of TMDL remediation plans may be questionable given poor correlations between FIB and pathogenic microorganisms and varying degrees of risk associated with exposure to different fecal pollution sources (e.g. human vs animal). The present study linked a watershed-scale FIB fate and transport model with a dose-response model to continuously predict human health risks via quantitative microbial risk assessment (QMRA), for comparison to regulatory benchmarks. This process permitted comparison of risks associated with different fecal pollution sources in an impaired urban watershed in order to identify remediation priorities. Results indicate that total human illness risks were consistently higher than the regulatory benchmark of 36 illnesses/1000 people for the study watershed, even when the predicted FIB levels were in compliance with the Escherichia coli geometric mean standard of 126CFU/100mL. Sanitary sewer overflows were associated with the greatest risk of illness. This is of particular concern, given increasing indications that sewer leakage is ubiquitous in urban areas, yet not typically fully accounted for during TMDL development. Uncertainty analysis suggested the accuracy of risk estimates would be improved by more detailed knowledge of site-specific pathogen presence and densities. While previous applications of the QMRA process to impaired waterways have mostly focused on single storm events or hypothetical situations, the continuous modeling framework presented in this study could be integrated into long-term water quality management planning, especially the United States' TMDL program, providing greater clarity to watershed stakeholders and decision-makers. Copyright © 2016 Elsevier B.V. All rights reserved.
Enhancing future resilience in urban drainage system: Green versus grey infrastructure.
Dong, Xin; Guo, Hao; Zeng, Siyu
2017-11-01
In recent years, the concept transition from fail-safe to safe-to-fail makes the application of resilience analysis popular in urban drainage systems (UDSs) with various implications and quantifications. However, most existing definitions of UDSs resilience are confined to the severity of flooding, while uncertainties from climate change and urbanization are not considered. In this research, we take into account the functional variety, topological complexity, and disturbance randomness of UDSs and define a new formula of resilience based on three parts of system severity, i.e. social severity affected by urban flooding, environmental severity caused by sewer overflow, and technological severity considering the safe operation of downstream facilities. A case study in Kunming, China is designed to compare the effect of green and grey infrastructure strategies on the enhancement of system resilience together with their costs. Different system configurations with green roofs, permeable pavement and storage tanks are compared by scenario analysis with full consideration of future uncertainties induced by urbanization and climate change. The research contributes to the development of sustainability assessment of urban drainage system with consideration of the resilience of green and grey infrastructure under future change. Finding the response measures with high adaptation across a variety of future scenarios is crucial to establish sustainable urban drainage system in a long term. Copyright © 2017. Published by Elsevier Ltd.
Assessment of the urban water system with an open ...
Urban water systems convey complex environmental and man-made flows. The relationships among water flows and networked storages remains difficult to comprehensively evaluate. Such evaluation is important, however, as interventions are designed (e.g, conservation measures, green infrastructure) to modify specific flows of urban water (e.g. drinking water, stormwater) that may have systemic effects. We have developed a general model that specifies the relationships among urban water system components, and a set of tools for evaluating the model for any city as the R package CityWaterBalance. CityWaterBalance provides a reproducible workflow for assessing urban water system(s) by facilitating the retrieval of open data, largely via web services, and analysis of these data using open-source R functions. It allows the user to 1) quickly assemble a quantitative, unified picture of flows thorough an urban area, and 2) easily change the spatial and temporal boundaries of analysis to match scales relevant to local decision-making. We used CityWaterBalance to evaluate the water system in the Chicago metropolitan area on a monthly basis for water years 2001-2010. Results, including the relative magnitudes and temporal variability of major water flows in greater Chicago, are used to consider 1) trade-offs associated with management alternatives for stormwater and combined sewer overflows and 2) the significance of future changes in precipitation, which is the largest
Del Giudice, G; Padulano, R; Siciliano, D
2016-01-01
The lack of geometrical and hydraulic information about sewer networks often excludes the adoption of in-deep modeling tools to obtain prioritization strategies for funds management. The present paper describes a novel statistical procedure for defining the prioritization scheme for preventive maintenance strategies based on a small sample of failure data collected by the Sewer Office of the Municipality of Naples (IT). Novelty issues involve, among others, considering sewer parameters as continuous statistical variables and accounting for their interdependences. After a statistical analysis of maintenance interventions, the most important available factors affecting the process are selected and their mutual correlations identified. Then, after a Box-Cox transformation of the original variables, a methodology is provided for the evaluation of a vulnerability map of the sewer network by adopting a joint multivariate normal distribution with different parameter sets. The goodness-of-fit is eventually tested for each distribution by means of a multivariate plotting position. The developed methodology is expected to assist municipal engineers in identifying critical sewers, prioritizing sewer inspections in order to fulfill rehabilitation requirements.
Factors affecting economies of scale in combined sewer systems.
Maurer, Max; Wolfram, Martin; Anja, Herlyn
2010-01-01
A generic model is introduced that represents the combined sewer infrastructure of a settlement quantitatively. A catchment area module first calculates the length and size distribution of the required sewer pipes on the basis of rain patterns, housing densities and area size. These results are fed into the sewer-cost module in order to estimate the combined sewer costs of the entire catchment area. A detailed analysis of the relevant input parameters for Swiss settlements is used to identify the influence of size on costs. The simulation results confirm that an economy of scale exists for combined sewer systems. This is the result of two main opposing cost factors: (i) increased construction costs for larger sewer systems due to larger pipes and increased rain runoff in larger settlements, and (ii) lower costs due to higher population and building densities in larger towns. In Switzerland, the more or less organically grown settlement structures and limited land availability emphasise the second factor to show an apparent economy of scale. This modelling approach proved to be a powerful tool for understanding the underlying factors affecting the cost structure for water infrastructures.
NASA Astrophysics Data System (ADS)
Rioust, E.; Deroubaix, J. F.; Barroca, B.; Bonierbale, T.; de Gouvello, B.; Deutsch, J. C.; Hubert, G.
2009-04-01
This paper considers the resilience perspective as an approach for understanding social and political vulnerabilities of urban services. The authors examine to what extend uncertainty due to climate change may affect the resilience of these urban services. The resilience perspective is increasingly used for analysing social groups' capacities to adapt to and live with disturbances. A lot of work on resilience has focused on the capacity to absorb shocks and still maintain functions. But there is also another aspect of resilience, which leads to take into account systems vulnerabilities and to aim at understanding their equilibrium and re-organization capacity. The purpose with this paper is to assess sewage systems capacities to adapt to climate change. Indeed, climate change could cause an increase of extreme rain events and, as a matter of consequence, an increase of sewer overflows and flooding of urbanised areas. Sewer systems have to cope with this change that may gravely affect urban planning. In recent studies of political science, risk management has been considered as a public policy involving and resulting from complex social, political and technical processes (Gilbert et al. 2003). From this point of view, the management of wastewaters and storm waters has to be considered not only as a technical but also as a political and a social system. Therefore, political science can be a fruitful perspective to understand the stakeholders perceptions of uncertainty and the way they are going to integrate this issue in their practices. The authors analyse the adaptive capacities of two sewer systems located in the Parisian suburban area. The chosen areas are highly populated. Each network is managed within a political and administrative unit called "Département". Both authorities of these "Départements" implement a public sewage service. Nonetheless these networks are connected and part of the greater Paris sewage policy. In both areas a real time control of urban wastewater systems has been developed. At last, both sewage services have make flood management their prior objective. Both "Départements" have developed retention capacities. One of them has implemented a source control strategy including daywatering while the other one has intent on building up a "culture of risk" on the territory. In this paper we compare how these social and technical systems cope with risks and face to climate change. Relying on interviews conducted with engineers and technical agents of water and sewage services and with a few residents in the concerned areas, we define three types of actors who take part to the social and technical systems. There are, on the one hand, the technical actors, including the agents currently managing the sewer network. On the other hand, there are the political actors in charge of elaborating and implementing a policy of risk prevention and managing the security force. Last but not least, there are the inhabitants who take an important part in the crisis management and in the mobilisations against the existing risk policy. The first part of the paper describes the sewage systems while there is no crisis. We explicit the actors' perceptions of risk and the risk management strategies they develop. The risk perceptions of technicians are truly different than the citizens' ones. For the technicians, floods, and their possible worsening, could be controlled. The problem is generated by the increasing impervious areas but it can be solved with technologies (real time control, best management practices and compensatory measures). In the technicians' perceptions, the risk is inherent to technical failures and can be reduced. For citizens, the concern is more for economics and personal goods losses. However both types of actors deal with the matter of submerged territories as a problem of institutional inertia (lack of financial resource, problem of governance). The second part presents the crisis management in these areas. We explain how various actors cope with flood when the risk occurs. The analysis of the actors' reaction to the flood event contributes (1) to further characterise the social and political system dealing with the flooding risk and, (2) to assess the adaptive capacities of the technicians to the risk. The crisis moment gives a specific role for each actor of the social, political and technical systems. Technical actors manage natural hazard through the remote control system and their major concern is for network disruption. Once flood has occurred, they may assist residents cleaning out public space. Nonetheless, after the crisis, the technical actors are seen by the others as the responsible for the flood. They are considered as the ones in charge of preventing the future flood event, even if they claim that they cannot protect urban areas and population up to a determined risk threshold. Neither technicians nor other actor settle the question of urban planning or existing vulnerability of the flooded areas.
Marsalek, Jiri; Rochfort, Quintin
Discharges of urban stormwater and combined sewer overflows (CSOs) contribute to fecal contamination of urban waters and need to be considered in planning the protection of recreational waters and sources of drinking water. Stormwater characterization indicates that Escherichia coli counts in stormwater typically range from 103 to 104 units per 100 ml. Higher counts (10(5) units/100 ml) suggest the presence of cross-connections with sanitary sewers, and such connections should be identified and corrected. Fecal contamination of stormwater may be attenuated prior to discharge into surface waters by stormwater management measures, which typically remove suspended solids and attached bacteria. Exceptionally, stormwater discharges in the vicinity of swimming beaches are disinfected. The levels of indicator bacteria in CSOs can be as high as 10(6) E. coli per 100 ml. Consequently, the abatement of fecal contamination of CSOs is now considered in the design of CSO control and treatment, as for example stipulated in the Ontario Procedure F-5-5. CSO abatement options comprise combin ations of storage and treatment, in which the CSO treatment generally includes disinfection by ultraviolet (UV) irradiation. Finally, indicator bacteria data from Sarnia (Ontario) were used to demonstrate some fecal contamination impacts of wet-weather flows. In wet weather, the microbiological quality of riverine water worsened as a result of CSO and stormwater discharges, and the recreational water guidelines for indicator organisms were exceeded most of the time. Local improvements in water quality were feasible by source controls and diversion of polluted water.
Sixty-five-year old final clarifier performance rivals that of modern designs.
Barnard, James L; Kunetz, Thomas E; Sobanski, Joseph P
2008-01-01
The Stickney plant of the Metropolitan Wastewater Reclamation District of Greater Chicago (MWRDGC), one of the largest wastewater treatment plants in the world, treats an average dry weather flow of 22 m3/s and a sustained wet weather flow of 52 m3/s that can peak to 63 m3/s. Most of the inner city of Chicago has combined sewers, and in order to reduce pollution through combined sewer overflows (CSO), the 175 km Tunnel and Reservoir Plan (TARP) tunnels, up to 9.1 m in diameter, were constructed to receive and convey CSO to a reservoir from where it will be pumped to the Stickney treatment plant. Pumping back storm flows will result in sustained wet weather flows over periods of weeks. Much of the success of the plant will depend on the ability of 96 circular final clarifiers to produce an effluent of acceptable quality. The nitrifying activated sludge plant is arranged in a plug-flow configuration, and some denitrification takes place as a result of the high oxygen demand in the first pass of the four-pass aeration basins that have a length to width ratio of 18:1. The SVI of the mixed liquor varies between 60 and 80 ml/g. The final clarifiers, which were designed by the District's design office in 1938, have functioned for more than 65 years without major changes and are still producing very high-quality effluent. This paper will discuss the design and operation of these final clarifiers and compare the design with more modern design practices. (c) IWA Publishing 2008.
Characterizing the Organic Matter in Surface Sediments from ...
The San Juan Bay Estuary (SJBE) is located on the north coast of Puerto Rico and includes the San Juan Bay, San José Lagoon, La Torrecilla Lagoon and Piñones Lagoon, as well as the Martín Peña and the Suárez Canals. The SJBE watershed has the highest density of inhabitants and major industrial activities in Puerto Rico. As a result, the SJBE is impacted by wastewater from combined-sewer overflows, faulty sewer lines, and storm water runoff; these factors combined with trash accumulation and infilling of the Martín Peña canal, contribute to decreased tidal exchange and reduced flushing in the estuary. To quantify the impact of the obstruction of the Martín Peña canal on anthropogenic nutrient distribution in the SJBE, over 200 sediment grab samples were collected throughout the estuary in 2015. The samples were analyzed for carbonate content, organic matter, grain size, bulk density, percent phosphorus, percent nitrogen (%N), and stable isotopes (δ15N and δ13C). The %N values were highest in the surface sediments from the western portion of the Martín Peña canal, where %N was >0.86%. In contrast, %N from the adjacent San José lagoon averaged <0.2%. Grain size distributions across the SJBE were consistent with low flushing in the inner portions of the SJBE. While the Martín Peña canal remains phosphorus limited, N:P ratios suggest the San Juna Bay and San José Lagoon have undergone major ecological shifts in the past two decades. Our
CHARACTERIZING THE ORGANIC MATTER IN SURFACE ...
The San Juan Bay Estuary (SJBE) is located on the north coast of Puerto Rico and includes the San Juan Bay, San José Lagoon, La Torrecilla Lagoon and Piñones Lagoon, as well as the Martín Peña and the Suárez Canals. The SJBE watershed has the highest density of inhabitants and major industrial activities in Puerto Rico. As a result, the SJBE is impacted by wastewater from combined-sewer overflows, faulty sewer lines, and storm water runoff; these factors combined with trash accumulation and infilling of the Martín Peña canal, contribute to decreased tidal exchange and reduced flushing in the estuary. To quantify the impact of the obstruction of the Martín Peña canal on anthropogenic nutrient distribution in the SJBE, over 200 sediment grab samples were collected throughout the estuary in 2015. The samples were analyzed for carbonate content, organic matter, grain size, bulk density, percent phosphorus, percent nitrogen (%N), and stable isotopes (δ15N and δ13C). The %N values were highest in the surface sediments from the western portion of the Martín Peña canal, where %N was >0.86%. In contrast, %N from the adjacent San José lagoon averaged <0.2%. Grain size distributions across the SJBE were consistent with low flushing in the inner portions of the SJBE. While the Martín Peña canal remains phosphorus limited, N:P ratios suggest the San Juna Bay and San José Lagoon have undergone major ecological shifts in the past two decades. Our
NASA Astrophysics Data System (ADS)
Gooré Bi, Eustache; Gachon, Philippe; Vrac, Mathieu; Monette, Frédéric
2017-02-01
Changes in extreme precipitation should be one of the primary impacts of climate change (CC) in urban areas. To assess these impacts, rainfall data from climate models are commonly used. The main goal of this paper is to report on the state of knowledge and recent works on the study of CC impacts with a focus on urban areas, in order to produce an integrated review of various approaches to which future studies can then be compared or constructed. Model output statistics (MOS) methods are increasingly used in the literature to study the impacts of CC in urban settings. A review of previous works highlights the non-stationarity nature of future climate data, underscoring the need to revise urban drainage system design criteria. A comparison of these studies is made difficult, however, by the numerous sources of uncertainty arising from a plethora of assumptions, scenarios, and modeling options. All the methods used do, however, predict increased extreme precipitation in the future, suggesting potential risks of combined sewer overflow frequencies, flooding, and back-up in existing sewer systems in urban areas. Future studies must quantify more accurately the different sources of uncertainty by improving downscaling and correction methods. New research is necessary to improve the data validation process, an aspect that is seldom reported in the literature. Finally, the potential application of non-stationarity conditions into generalized extreme value (GEV) distribution should be assessed more closely, which will require close collaboration between engineers, hydrologists, statisticians, and climatologists, thus contributing to the ongoing reflection on this issue of social concern.
Corada-Fernández, Carmen; Candela, Lucila; Torres-Fuentes, Nivis; Pintado-Herrera, Marina G; Paniw, Maria; González-Mazo, Eduardo
2017-12-15
This study is focused on the Guadalete River basin (SW, Spain), where extreme weather conditions have become common, with and alternation between periods of drought and extreme rainfall events. Combined sewer overflows (CSOs) occur when heavy rainfall events exceed the capacity of the wastewater treatment plants (WWTP), as well as pollution episodes in parts of the basin due to uncontrolled sewage spills and the use of reclaimed water and sludge from the local WWTP. The sampling was carried out along two seasons and three campaigns during dry (March 2007) and extreme rainfall (April and December 2010) in the Guadalete River, alluvial aquifer and Jerez de la Frontera aquifer. Results showed minimum concentrations for synthetic surfactants in groundwater (<37.4μg·L -1 ) during the first campaign (dry weather conditions), whereas groundwater contaminants increased in December 2010 as the heavy rainfall caused the river to overflow. In surface water, surfactant concentrations showed similar trends to groundwater observations. In addition to surfactants, pharmaceuticals and personal care products (PPCPs) were analyzed in the third campaign, 22 of which were detected in surface waters. Two fragrances (OTNE and galaxolide) and one analgesic/anti-inflammatory (ibuprofen) were the most abundant PPCPs (up to 6540, 2748 and 1747ng·L -1 , respectively). Regarding groundwater, most PPCPs were detected in Jerez de la Frontera aquifer, where a synthetic fragrance (OTNE) was predominant (up to 1285ng·L -1 ). Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Rio, Marlène; Salles, Christian; Rodier, Claire; Cantet, Franck; Marchand, Pierre; Mosser, Thomas; Cernesson, Flavie; Monfort, Patrick; Tournoud, Marie-George
2017-10-01
In coastal catchments, rainfall events primarily drive bacterial inputs to the sea by causing land runoff, surface leaching and sewer overflow. Under semi-arid climate, extensive dry periods are interspersed with extreme precipitation. This paper aims to assess the impact of intense summer rainstorms events on Fecal Indicator Bacteria loadings to Mediterranean seawaters. Firstly, explanatory relationships were derived between an Antecedent Precipitation Index and the loads of thermo-tolerant coliforms and intestinal enterococci measured at three catchment outlets in the Gulf of Aigues-Mortes (southern France). Secondly, fecal bacterial loadings were simulated during summer season from 2006-2016, with a confidence interval arising from measurements uncertainties. On average, more than two rainstorms per summer season elevate bacterial loads at least by one order of magnitude, potentially leading to the degradation of bathing and fishing water quality observed in regulatory monitoring data. The results highlight the crucial importance of considering hydrological conditions in coastal water quality management.
Distributions of pharmaceuticals in an urban estuary during both dry- and wet-weather conditions
Benotti, M.J.; Brownawell, Bruce J.
2007-01-01
Pharmaceuticals and selected major human metabolites are ubiquitous in Jamaica Bay, a wastewater-impacted estuary at concentrations in the low ng/L to low ??g/L range. Concentrations throughout the bay are often consistent with conservative behavior during dry-weather conditions, as evidenced by nearly linear concentration-salinity relationships. Deviation from conservative behavior is noted for some pharmaceuticals and attributed to microbial degradation. Caffeine, cotinine, nicotine, and paraxanthine were detected with the greatest analytical signal, although evidence is presented for in situ removal, especially for nicotine and caffeine. There is little evidence for significant removal of carbamazepine and sulfamethoxazole, suggesting they are more conservative and useful wastewater tracers. Immediately following heavy precipitation, which induced a combined sewer overflow (CSO) event, the concentrations of all compounds but acetaminophen and nicotine decreased or disappeared. This observation is consistent with a simple model illustrating the effect of precipitation has on pharmaceutical concentration in the wastewater stream, given the balance between dilution from rain and the bypass of treatment. ?? 2007 American Chemical Society.
An Environmental Health Assessment: Fecal Coliform Contamination in San Francisco Waterbodies
NASA Astrophysics Data System (ADS)
Devillier, K. N.; Devine, M.; Negrete, R.; Rawley, A. L.; Neiss, J.
2007-12-01
Fecal coliform is a group of bacteria that exists in the digestive system and excrement of warm-blooded animals. It enters aquatic environments through fecal contamination of water. In the urban environment, contamination can occur not only by direct input from warm-blooded animals but also from storm water run-off and municipal sewer overflow. Fecal coliform itself does not cause disease but it is an indicator of the presence of pathogens that exist in the wastes of humans and animals that are a hazard to human health. We examined 12 locations in San Francisco for fecal coliform and recorded the types of human contact with water at each location. We found low levels of coliform in areas open to the San Francisco Bay and Pacific Ocean and high levels of coliform in inland lakes and ponds. Using Environmental Protection Agency guidelines for fecal coliform concentrations, we found all sites at acceptable levels for the recreational and human activities we observed.
Up from the beach: medical waste disposal rules!
Francisco, C J
1989-07-01
The recent incidents of floating debris, garbage, wood, and medical waste on our nation's beaches have focused public attention on waste management problems. The handling and disposal of solid waste remains a major unresolved national dilemma. Increased use of disposables by all consumers, including the medical profession, and the increasing costs of solid waste disposal options have aggravated the solid waste situation. Medical waste found on beaches in the summer of 1988 could have been generated by a number of sources, including illegal dumping; sewer overflow; storm water runoff; illegal drug users; and inadequate handling of solid waste at landfills and coastal transfer facilities, which receive waste from doctors' offices, laboratories, and even legitimate home users of syringes. As officials from New Jersey have determined, the beach garbage is no mystery. It's coming from you and me. In response to the perceived medical waste disposal problem, various state and federal agencies have adopted rules to regulate and control the disposal of medical waste. This article outlines the more significant rules that apply to medical waste.
Adaptive management of urban watersheds
NASA Astrophysics Data System (ADS)
Garmestani, A.; Shuster, W.; Green, O. O.
2013-12-01
Consent decree settlements for violations of the Clean Water Act (1972) increasingly include provisions for redress of combined sewer overflow activity through hybrid approaches that incorporate the best of both gray (e.g., storage tunnels) and green infrastructure (e.g., rain gardens). Adaptive management is an environmental management strategy that uses an iterative process of decision-making to improve environmental management via system monitoring. A central tenet of adaptive management is that management involves a learning process that can help regulated communities achieve environmental quality objectives. We are using an adaptive management approach to guide a green infrastructure retrofit of a neighborhood in the Slavic Village Development Corporation area (Cleveland, Ohio). We are in the process of gathering hydrologic and ecosystem services data and will use this data as a basis for collaboration with area citizens on a plan to use green infrastructure to contain stormflows. Monitoring data provides researchers with feedback on the impact of green infrastructure implementation and suggest where improvements can be made.
Christensen, Eric D.; Krempa, Heather M.
2013-01-01
Wastewater-treatment plant discharges during base flow, which elevated specific conductance and nutrient concentrations, combined sewer overflows, and nonpoint sources likely contributed to water-quality impairment and lower aquatic-life status at the Blue River Basin sites. Releases from upstream reservoirs to the Little Blue River likely decreased specific conductance, suspended-sediment, and dissolved constituent concentrations and may have benefitted water quality and aquatic life of main-stem sites. Chloride concentrations in base-flow samples, attributable to winter road salt application, had the highest correlation with the SUII (Spearman’s ρ equals 0.87), were negatively correlated with the SCI (Spearman’s ρ equals -0.53) and several pollution sensitive Ephemeroptera plus Plecoptera plus Trichoptera abundance and percent richness metrics, and were positively correlated with pollution tolerant Oligochaeta abundance and percent richness metrics. Study results show that the easily calculated SUII and the selected modeled multimetric indices are effective for comparing urban basins and for evaluation of water quality in the Kansas City metropolitan area.
Water quality in the Sugar Creek basin, Bloomington and Normal, Illinois
Prugh, Byron J.
1978-01-01
Urban runoff and overflows from combined sewers affect water quantity and quality in Sugar Creek within the twin cities of Bloomington and Normal, Illinois. Water-quality data from five primary and eight secondary locations showed three basic types of responses to climatic and hydrologic stresses. Stream temperatures and concentrations of dissolved oxygen, ammonia nitrogen, total phosphorus, biochemical oxygen demand, and fecal bacteria showed seasonal variations. Specific conductivity, pH, chloride, and suspended solids concentrations varied more closely with stream discharges. Total organic carbon, total nitrogen, total phosphorus, biochemical oxygen demand, and fecal coliform and fecal streptococcal bacteria concentrations exhibited variations indicative of intial flushing action during storm runoff. Selected analyses for herbicides, insecticides, and other complex organic compounds in solution and in bed material showed that these constituents were coming from sources other than the municipal sanitary treatment plant effluent. Analyses for 10 common metals: arsenic, cadmium, chromium, copper, iron, lead, manganese, mercury, nickel, and zinc showed changes in concentrations below the municipal sanitary plant outfall. (Woodard-USGS)
Spence, Porché L
2015-01-01
Caffeine has been suggested as a chemical indicator for domestic wastewater in freshwater systems, although it is not included in water quality monitoring programs. The Third Fork Creek watershed in Durham, NC, is highly urbanized, with a history of receiving untreated wastewater from leaking and overflowing sanitary sewers. The poor water quality originating in the Third Fork Creek watershed threatens its intended uses and jeopardizes drinking water, aquatic life, and recreational activities provided by Jordan Lake. Organic waste contaminants have been detected in both Third Fork Creek watershed and Jordan Lake; however, the sampling periods were temporary, resulting in a few samples collected during nonstorm periods. It is recommended that (1) the concentration of caffeine and other organic waste contaminants are determined during storm and nonstorm periods and (2) caffeine is monitored regularly with traditional water quality indicators to evaluate the health of Third Fork Creek watershed. PMID:26157335
Orion Launch Abort Vehicle Separation Analysis Using OVERFLOW
NASA Technical Reports Server (NTRS)
Booth, Tom
2010-01-01
This slide presentation reviews the use of OVERFLOW, a flow solver, to analyze the effect of separation for a launch abort vehicle (i.e., Orion capsule) if required. Included in the presentation are views of the geometry, and the Overset grids, listing of the assumptions, the general run strategy, inputs into the Overflow solver, the required computational resources, the results of the convergence study. Charts and graphics are presented to show the results.
Gibson, Jacqueline MacDonald
2015-01-01
Objectives. We examined the factors that affect access to municipal water and sewer service for unincorporated communities relying on wells and septic tanks. Methods. Using a multisite case study design, we conducted in-depth, semistructured interviews with 25 key informants from 3 unincorporated communities in Hoke, New Hanover, and Transylvania counties, North Carolina, July through September 2013. Interviewees included elected officials, health officials, utility providers, and community members. We coded the interviews in ATLAS.ti to identify common themes. Results. Financing for water and sewer service emerged as the predominant factor that influenced decisions to extend these services. Improved health emerged as a minor factor, suggesting that local officials may not place a high emphasis on the health benefits of extending public water and sewer services. Awareness of failed septic systems in communities can prompt city officials to extend sewer service to these areas; however, failed systems are often underreported. Conclusions. Understanding the health costs and benefits of water and sewer extension and integrating these findings into the local decision-making process may help address disparities in access to municipal services. PMID:26270307
Fulton, John W.; Wagner, Chad R.
2014-01-01
The U.S. Geological Survey (USGS), in cooperation with the Allegheny County Sanitary Authority, developed a validated two-dimensional Resource Management Associates2 (RMA2) hydrodynamic model of parts of the Allegheny, Monongahela, and Ohio Rivers (Three Rivers) to help assess the effects of combined sewer overflows (CSOs) and sanitary sewer overflows (SSOs) on the rivers. The hydrodynamic model was used to drive a water-quality model of the study area that was capable of simulating the transport and fate of fecal-indicator bacteria and chemical constituents under open-water conditions. The study area includes 14 tributary streams and parts of the Three Rivers where they enter and exit Allegheny County, an area of approximately 730 square miles (mi2). The city of Pittsburgh is near the center of the county, where the Allegheny and Monongahela Rivers join to form the headwaters of the Ohio River. The Three Rivers are regulated by a series of fixed-crest dams, gated dams, and radial (tainter) gates and serve as the receiving waters for tributary streams, CSOs, and SSOs. The RMA2 model was separated into four individual segments on the basis of the U.S. Army Corps of Engineers navigational pools in the study area (Dashields; Emsworth; Allegheny River, Pool 2; and Braddock), which were calibrated individually using measured water-surface slope, velocity, and discharge during high- and low-flow conditions. The model calibration process included the comparison of water-surface elevations at five locations and velocity profiles at more than 80 cross sections in the study area. On the basis of the calibration and validation results that included water-surface elevations and velocities, the model is a representative simulation of the Three Rivers flow patterns for discharges ranging from 4,050 to 47,400 cubic feet per second (ft3/s) on the Allegheny River, 2,550 to 40,000 ft3/s on the Monongahela River, and 10,900 to 99,000 ft3/s on the Ohio River. The Monongahela River was characterized by unsteady conditions during low and high flows, which affected the calibration range. The simulated low-flow water-surface elevations typically were within 0.2 feet (ft) of measured values, whereas the simulated high-flow water-surface elevations were typically within 0.3 ft of the measured values. The mean error between simulated and measured velocities was less than 0.07 ft/s for low-flow conditions and less than 0.17 ft/s for high-flow conditions.
NASA Astrophysics Data System (ADS)
Leschik, S.; Musolff, A.; Reinstorf, F.; Strauch, G.; Schirmer, M.
2009-05-01
Urban streams receive effluents of wastewater treatment plants and untreated wastewater during combined sewer overflow events. In the case of losing streams substances, which originate from wastewater, can reach the groundwater and deteriorate its quality. The estimation of mass flow rates Mex from losing streams to the groundwater is important to support groundwater management strategies, but is a challenging task. Variable inflow of wastewater with time-dependent concentrations of wastewater constituents causes a variable water composition in urban streams. Heterogeneities in the structure of the streambed and the connected aquifer lead, in combination with this variable water composition, to heterogeneous concentration patterns of wastewater constituents in the vicinity of urban streams. Groundwater investigation methods based on conventional point sampling may yield unreliable results under these conditions. Integral Pumping Tests (IPT) can overcome the problem of heterogeneous concentrations in an aquifer by increasing the sampled volume. Long-time pumping (several days) and simultaneous sampling yields reliable average concentrations Cav and mass flow rates Mcp for virtual control planes perpendicular to the natural flow direction. We applied the IPT method in order to estimate Mex of a stream section in Leipzig (Germany). The investigated stream is strongly influenced by combined sewer overflow events. Four pumping wells were installed up- and downstream of the stream section and operated for a period of five days. The study was focused on four inorganic (potassium, chloride, nitrate and sulfate) and two organic (caffeine and technical-nonylphenol) wastewater constituents with different transport properties. The obtained concentration-time series were used in combination with a numerical flow model to estimate Mcp of the respective wells. The difference of the Mcp's between up- and downstream wells yields Mex of wastewater constituents that increase downstream of the stream. In order to confirm the obtained Mcp's concentrations of additional measurements in the investigated stream were compared with the concentrations in the groundwater up- and downstream of the stream section. The results revealed increased Mcp's downstream of the stream section for chloride, potassium and nitrate, whereas Mcp of sulfate was decreased. Micropollutants caffeine and technical-nonylphenol showed decreased Mcp's downstream of the stream section in 75 % of the cases. Values of Mex could only be given for chloride, potassium, nitrate and caffeine. The comparison of concentrations in the stream with those in the groundwater points to the streambed as a zone where mass accumulation and degradation processes occur. The obtained results imply that the applied method can provide reliable data about the influence of losing streams on groundwater quality.
Stormwater quality modelling in combined sewers: calibration and uncertainty analysis.
Kanso, A; Chebbo, G; Tassin, B
2005-01-01
Estimating the level of uncertainty in urban stormwater quality models is vital for their utilization. This paper presents the results of application of a Monte Carlo Markov Chain method based on the Bayesian theory for the calibration and uncertainty analysis of a storm water quality model commonly used in available software. The tested model uses a hydrologic/hydrodynamic scheme to estimate the accumulation, the erosion and the transport of pollutants on surfaces and in sewers. It was calibrated for four different initial conditions of in-sewer deposits. Calibration results showed large variability in the model's responses in function of the initial conditions. They demonstrated that the model's predictive capacity is very low.
40 CFR 35.927 - Sewer system evaluation and rehabilitation.
Code of Federal Regulations, 2014 CFR
2014-07-01
... excessive infiltration/inflow. A determination of whether excessive infiltration/inflow exists may take into... excessive infiltration/inflow exists. It will consist of: (1) Certification by the State agency, as appropriate; and, when necessary, (2) An infiltration/inflow analysis; and, if appropriate, (3) A sewer system...
40 CFR 35.927 - Sewer system evaluation and rehabilitation.
Code of Federal Regulations, 2010 CFR
2010-07-01
... excessive infiltration/inflow. A determination of whether excessive infiltration/inflow exists may take into... excessive infiltration/inflow exists. It will consist of: (1) Certification by the State agency, as appropriate; and, when necessary, (2) An infiltration/inflow analysis; and, if appropriate, (3) A sewer system...
40 CFR 35.927 - Sewer system evaluation and rehabilitation.
Code of Federal Regulations, 2012 CFR
2012-07-01
... excessive infiltration/inflow. A determination of whether excessive infiltration/inflow exists may take into... excessive infiltration/inflow exists. It will consist of: (1) Certification by the State agency, as appropriate; and, when necessary, (2) An infiltration/inflow analysis; and, if appropriate, (3) A sewer system...
40 CFR 35.927 - Sewer system evaluation and rehabilitation.
Code of Federal Regulations, 2013 CFR
2013-07-01
... excessive infiltration/inflow. A determination of whether excessive infiltration/inflow exists may take into... excessive infiltration/inflow exists. It will consist of: (1) Certification by the State agency, as appropriate; and, when necessary, (2) An infiltration/inflow analysis; and, if appropriate, (3) A sewer system...
40 CFR 35.927 - Sewer system evaluation and rehabilitation.
Code of Federal Regulations, 2011 CFR
2011-07-01
... excessive infiltration/inflow. A determination of whether excessive infiltration/inflow exists may take into... excessive infiltration/inflow exists. It will consist of: (1) Certification by the State agency, as appropriate; and, when necessary, (2) An infiltration/inflow analysis; and, if appropriate, (3) A sewer system...
Background: Combined sewer systems (CSS) collect rainwater runoff, sewage, and industrial wastewater for transit to treatment facilities. With heavy precipitation, volumes can exceed capacity of treatment facilities, and wastewater discharges directly to receiving waters. These c...
Overset Grid Methods Applied to Nonlinear Potential Flows
NASA Technical Reports Server (NTRS)
Holst, Terry; Kwak, Dochan (Technical Monitor)
2000-01-01
The objectives of this viewgraph presentation are to develop Chimera-based potential methodology which is compatible with overflow and overflow infrastructure, creating options for an advanced problem solving environment and to significantly reduce turnaround time for aerodynamic analysis and design (primarily cruise conditions).
Micropollutants in urban watersheds : substance flow analysis as management tool
NASA Astrophysics Data System (ADS)
Rossi, L.; Copin, P. J.; Barry, A. D.; Bader, H.-P.; Scheidegger, R.; Chèvre, N.
2009-04-01
Micropollutants released by cities into water are of increasing concern as they are suspected of inducing long-term effects on both aquatic organisms and humans (eg., hormonally active substances). Substances found in the urban water cycle have different sources in the urban area and different fates in this cycle. For example, the pollutants emitted from traffic, like copper or PAHs get to surface water during rain events often without any treatment. Pharmaceuticals resulting from human medical treatments get to surface water mainly through wastewater treatment plants, where they are only partly treated and eliminated. One other source of contamination in urban areas for these compounds are combined sewer overflows (CSOs). Once in the receiving waters (lakes, rivers, groundwater), these substances may re-enter the cycle through drinking water. It is therefore crucial to study the behaviour of micropollutants in the urban water cycle and to get flexible tools for urban water management. Substance flow analysis (SFA) has recently been proposed as instrument for water pollution management in urban water systems. This kind of analysis is an extension of material flow analysis (MFA) originally developed in the economic sector and later adapted to regional investigations. In this study, we propose to test the application of SFA for a large number of classes of micropollutants to evaluate its use for urban water management. We chose the city of Lausanne as case study since the receiving water of this city (Lake Geneva) is an important source of drinking water for the surrounding population. Moreover a profound system-knowledge and many data were available, both on the sewer system and the water quality. We focus our study on one heavy metal (copper) and four pharmaceuticals (diclofenac, ibuprofen, carbamazepine and naproxen). Results conducted on copper reveals that around 1500 kg of copper enter the aquatic compartment yearly. This amount contributes to sediment enrichment, which may pose a long-term risk for the benthic organisms. The major sources (total of 73%) of copper in receiving surface water are roofs and contact lines of trolleybuses. Thus technical solutions have to be found to manage this specific source of contamination. Application of SFA approach to four pharmaceuticals reveals that CSOs represent an important source of contamination: Between 14% (carbamazepine) and 61% (ibuprofen) of the total annual loads of Lausanne city to the Lake are due to CSOs. These results will help in defining the best management strategy to limit Lake Geneva contamination. SFA is thus a promising tool for integrated urban water management.
[Environmental effects of combined sewage detention tank in central Shanghai].
Cheng, Jiang; Lü, Yong-peng; Huang, Xiao-fang; Guo, Sheng
2009-08-15
Through measuring the processes of precipitation, discharge and pollutant concentration over 20 times from 2006 to 2008 in Chendulu combined sewerage system (CSS) along Suzhou Creek in central Shanghai, the environmental effects of Chendulu combined sewage detention tank (CSDT), the first running CSDT in China, were studied. The results show that CSDT could improve CSS discharge capacity effectively with promoted interception ratio from 3.87 to 6.90-9.92. The mean annual combined sewer overflow (CSO) reduction and reduction rate are 9.10 x 10(4) m3 and 9.00%, respectively, and those of sanitary waste discharged directly to Suzhou Creek in non-rain-weather are 8.37 x 10(4) m(3) and 100% , respectively. The mean annual pollutants decrease rate of COD, BOD5, SS, NH4+ -N and TP of CSO are 13.76%, 19.69%, 15.29%, 18.24% and 15.10%, respectively, and those CSO pollutants decrease 41.21 t, 12.37 t, 50.10 t, 2.12 t and 0.29 t annually, respectively. The CSDT also could decrease sanitary waste discharged to Suzhou Creek totally, and those decreased pollutants are 20.75 t, 4.87 t, 14.90 t, 4.49 t and 0.30 t annually, respectively. The analysis shows that the CSDT design standard, running models and rainfall characteristics are the important influencing factors to realize the environmental effects of CSDT.
Previous studies have reported a temporal association between heavy rainfall and gastrointestinal infection (GI). Combined sewer systems (CSSs), which are present in many urban areas in the US, were designed to collect rainwater runoff, domestic sewage, and industrial wastewater ...
Hopkins, Kristina G.; Bain, Daniel J.
2018-01-01
Identifying areas where deteriorating sewer infrastructure is in close proximity to surface waterways is needed to map likely connections between sewers and streams. We present a method to estimate sewer installation year and deterioration status using historical maps of the sewer network, parcel-scale property assessment data, and pipe material. Areas where streams were likely buried into the sewer system were mapped by intersecting the historical stream network derived from a 10-m resolution digital elevation model with sewer pipe locations. Potential sewer leakage hotspots were mapped by identifying where aging sewer pipes are in close proximity (50-m) to surface waterways. Results from Pittsburgh, Pennsylvania (USA), indicated 41% of the historical stream length was lost or buried and the potential interface between sewers and streams is great. The co-location of aging sewer infrastructure (>75 years old) near stream channels suggests that 42% of existing streams are located in areas with a high potential for sewer leakage if sewer infrastructure fails. Mapping the sewer-stream interface provides an approach to better understand areas were failing sewers may contribute a disproportional amount of nutrients and other pathogens to surface waterways.
Impervious surfaces and sewer pipe effects on stormwater runoff temperature
NASA Astrophysics Data System (ADS)
Sabouri, F.; Gharabaghi, B.; Mahboubi, A. A.; McBean, E. A.
2013-10-01
The warming effect of the impervious surfaces in urban catchment areas and the cooling effect of underground storm sewer pipes on stormwater runoff temperature are assessed. Four urban residential catchment areas in the Cities of Guelph and Kitchener, Ontario, Canada were evaluated using a combination of runoff monitoring and modelling. The stormwater level and water temperature were monitored at 10 min interval at the inlet of the stormwater management ponds for three summers 2009, 2010 and 2011. The warming effect of the ponds is also studied, however discussed in detail in a separate paper. An artificial neural network (ANN) model for stormwater temperature was trained and validated using monitoring data. Stormwater runoff temperature was most sensitive to event mean temperature of the rainfall (EMTR) with a normalized sensitivity coefficient (Sn) of 1.257. Subsequent levels of sensitivity corresponded to the longest sewer pipe length (LPL), maximum rainfall intensity (MI), percent impervious cover (IMP), rainfall depth (R), initial asphalt temperature (AspT), pipe network density (PND), and rainfall duration (D), respectively. Percent impervious cover of the catchment area (IMP) was the key parameter that represented the warming effect of the paved surfaces; sensitivity analysis showed IMP increase from 20% to 50% resulted in runoff temperature increase by 3 °C. The longest storm sewer pipe length (LPL) and the storm sewer pipe network density (PND) are the two key parameters that control the cooling effect of the underground sewer system; sensitivity analysis showed LPL increase from 345 to 966 m, resulted in runoff temperature drop by 2.5 °C.
Breault, Robert F.; Sorenson, Jason R.; Weiskel, Peter K.
2002-01-01
Streamflow data and dry-weather and stormwater water-quality samples were collected from the main stem of the Charles River upstream of the lower Charles River (or the Basin) and from four partially culverted urban streams that drain tributary subbasins in the lower Charles River Watershed. Samples were collected between June 1999 and September 2000 and analyzed for a number of potential contaminants including nitrate (plus nitrite), ammonia, total Kjeldahl nitrogen, phosphorus, cadmium, chromium, copper, lead, and zinc; and water-quality properties including specific conductance, turbidity, biochemical oxygen demand, fecal coliform bacteria, Entero-coccus bacteria, total dissolved solids, and total suspended sediment. These data were used to identify the major pathways and to determine the magnitudes of contaminants loads that contribute to the poor water quality of the lower Charles River. Water-quality and streamflow data, for one small urban stream and two storm drains that drain subbasins with uniform (greater than 73 percent) land use (including single-family residential, multifamily residential, and commercial), also were collected. These data were used to elucidate relations among streamflow, water quality, and subbasin characteristics. Streamflow in the lower Charles River Watershed can be characterized as being unsettled and flashy. These characteristics result from the impervious character of the land and the complex infrastructure of pipes, pumps, diversionary canals, and detention ponds throughout the watershed. The water quality of the lower Charles River can be considered good?meeting water-quality standards and guidelines?during dry weather. After rainstorms, however, the water quality of the river becomes impaired, as in other urban areas. The poor quality of stormwater and its large quantity, delivered over short periods (hours and days), together with illicit sanitary cross connections, and combined sewer overflows, results in large contaminant loads that appear to exceed the river?s assimilative capacity. Annual contaminant loads from stormwater discharges directly to the lower Charles River are large, but most dry-weather and stormwater contaminant loads measured in this study originate from upstream of the Watertown Dam and are delivered to the lower Charles River in mainstem flows. An exception is fecal coliform bacteria. Stony Brook, a large tributary influenced by combined sewer overflow, contributed almost half of the annual fecal coliform load to the lower Charles River for Water Year 2000. Much of this fecal coliform bacteria load is discharged from Stony Brook to the lower Charles River during rain-storms. Estimated stormwater loads for future conditions suggest that sewer separation in the Stony Brook Subbasin might reduce loads of constituents associated with sewage but increase loads of constituents associated with street runoff. The unique environment offered by the lower Charles River must be considered when the environmental implications of large contaminant loads are interpreted. In particular, the lower Charles River has low hydraulic gradients, a lack of tidal flushing, a lack of natural uncontaminated sediment from erosion of upstream uncontaminated soils, and an anoxic, sulfide-rich bottom layer that forms a non-tidal salt wedge in the downstream part of the lower Charles River. Individually and in combination, these characteristics may increase the likelihood of adverse effects of some contaminants on the water, biota, and sediment of the lower Charles River.
Impact of reduced water consumption on sulfide and methane production in rising main sewers.
Sun, Jing; Hu, Shihu; Sharma, Keshab Raj; Bustamante, Heriberto; Yuan, Zhiguo
2015-05-01
Reduced water consumption (RWC), for water conservation purposes, is expected to change the wastewater composition and flow conditions in sewer networks and affect the in-sewer transformation processes. In this study, the impact of reduced water consumption on sulfide and methane production in rising main sewers was investigated. Two lab-scale rising main sewer systems fed with wastewater of different strength and flow rates were operated to mimic sewers under normal and RWC conditions (water consumption reduced by 40%). Sulfide concentration under the RWC condition increased by 0.7-8.0 mg-S/L, depending on the time of a day. Batch test results showed that the RWC did not change the sulfate-reducing activity of sewer biofilms, the increased sulfide production being mainly due to longer hydraulic retention time (HRT). pH in the RWC system was about 0.2 units lower than that in the normal system, indicating that more sulfide would be in molecular form under the RWC condition, which would result in increased sulfide emission to the atmosphere as confirmed by the model simulation. Model based analysis showed that the cost for chemical dosage for sulfide mitigation would increase significantly per unit volume of sewage, although the total cost would decrease due to a lower sewage flow. The dissolved methane concentration under the RWC condition was over two times higher than that under the normal flow condition and the total methane discharge was about 1.5 times higher, which would potentially result in higher greenhouse gas emissions. Batch tests showed that the methanogenic activity of sewer biofilms increased under the RWC condition, which along with the longer HRT, led to increased methane production. Copyright © 2015 Elsevier Ltd. All rights reserved.
Retention of pharmaceutical residues and microorganisms at the Altendorf retention soil filter.
Christoffels, E; Mertens, F M; Kistemann, T; Schreiber, C
2014-01-01
A study has been conducted on a retention soil filter (RSF) to test its effectiveness in removing pharmaceutical residues and microorganisms from combined sewer overflows (CSOs). Efficient removal of solids, nutrients and heavy metals has already been proven. The possibility that organic micropollutants and microorganisms are also retained by the use of RSFs has been identified, but data are lacking. Results obtained in this study, in which testing for removal by a RSF of numerous micro-pollutant substances was performed, are most promising. The pharmaceuticals diclofenac and ibuprofen are presented in detail as examples of such micropollutants. Both showed a reduction in positive samples of more than 55% as well as a significant reduction in median and maximum concentrations. For microorganisms such as Escherichia coli, coliphages and Giardia lamblia (cysts), an average reduction in concentrations by three logarithmic steps (99.9%) was achieved. These results add to the evidence that using a RSF in the advanced treatment of wastewater from CSOs reduces the exposure of water-courses to pharmaceutical residues and microbial contamination.
Yazdanfar, Zeinab; Sharma, Ashok
2015-01-01
Urban drainage systems are in general failing in their functions mainly due to non-stationary climate and rapid urbanization. As these systems are becoming less efficient, issues such as sewer overflows and increase in urban flooding leading to surge in pollutant loads to receiving water bodies are becoming pervasive rapidly. A comprehensive investigation is required to understand these factors impacting the functioning of urban drainage, which vary spatially and temporally and are more complex when weaving together. It is necessary to establish a cost-effective, integrated planning and design framework for every local area by incorporating fit for purpose alternatives. Carefully selected adaptive measures are required for the provision of sustainable drainage systems to meet combined challenges of climate change and urbanization. This paper reviews challenges associated with urban drainage systems and explores limitations and potentials of different adaptation alternatives. It is hoped that the paper would provide drainage engineers, water planners, and decision makers with the state of the art information and technologies regarding adaptation options to increase drainage systems efficiency under changing climate and urbanization.
Development of Software Sensors for Determining Total Phosphorus and Total Nitrogen in Waters
Lee, Eunhyoung; Han, Sanghoon; Kim, Hyunook
2013-01-01
Total nitrogen (TN) and total phosphorus (TP) concentrations are important parameters to assess the quality of water bodies and are used as criteria to regulate the water quality of the effluent from a wastewater treatment plant (WWTP) in Korea. Therefore, continuous monitoring of TN and TP using in situ instruments is conducted nationwide in Korea. However, most in situ instruments in the market are expensive and require a time-consuming sample pretreatment step, which hinders the widespread use of in situ TN and TP monitoring. In this study, therefore, software sensors based on multiple-regression with a few easily in situ measurable water quality parameters were applied to estimate the TN and TP concentrations in a stream, a lake, combined sewer overflows (CSOs), and WWTP effluent. In general, the developed software sensors predicted TN and TP concentrations of the WWTP effluent and CSOs reasonably well. However, they showed relatively lower predictability for TN and TP concentrations of stream and lake waters, possibly because the water quality of stream and lake waters is more variable than that of WWTP effluent or CSOs. PMID:23307350
Integrated modelling for the evaluation of infiltration effects.
Schulz, N; Baur, R; Krebs, P
2005-01-01
The objective of the present study is the estimation of the potential benefits of sewer pipe rehabilitation for the performance of the drainage system and the wastewater treatment plant (WWTP) as well as for the receiving water quality. The relation of sewer system status and the infiltration rate is assessed based on statistical analysis of 470 km of CCTV (Closed Circuit Television) inspected sewers of the city of Dresden. The potential reduction of infiltration rates and the consequent performance improvements of the urban wastewater system are simulated as a function of rehabilitation activities in the network. The integrated model is applied to an artificial system with input from a real sewer network. In this paper, the general design of the integrated model and its data requirements are presented. For an exemplary study, the consequences of the simulations are discussed with respect to the prioritisation of rehabilitation activities in the network.
Law, George S.
2002-01-01
Periodic flooding occurs at lowlands and sinkholes in and adjacent to the flood plain of the West Fork Stones River in the western part of Murfreesboro, Tennessee. Flooding in this area commonly occurs during the winter months from December through March. The maximum water level that flood waters will reach in a lowland or sinkhole is controlled by the elevation of the land surrounding the site or the overflow outlet. Maximum water levels, independent of overflow from the river, were estimated to be reached in lowlands and sinkholes in the study area every 1 to 4 years. Minor overflow from the West Fork Stones River (less than 1 foot in depth) into the study area has been estimated to occur every 10 to 20 years. Moderate overflow from the river (1 to 2 feet in depth) occurs on average every 20 to 50 years, while major river overflow (in excess of 2 feet in depth) can be expected every 50 years. Rainfall information for the area, and streamflow and water-level measurements from the West Fork Stones River, lowlands, sinkholes, caves, and wells in the study area were used to develop a flood-prone area map, independent of overflow from the river, for the study area. Water-level duration and frequency relations, independent of overflow from the river, were estimated for several lowlands, sinkholes, and wells in the study area. These relations are used to characterize flooding in lowland areas of western Murfreesboro, Rutherford County, Tennessee.
Analysis of the ecological water diversion project in Wenzhou City
NASA Astrophysics Data System (ADS)
Xu, Haibo; Fu, Lei; Lin, Tong
2018-02-01
As a developed city in China, Wenzhou City has been suffered from bad water quality for years. In order to improve the river network water quality, an ecological water diversion project was designed and executed by the regional government. In this study, an investigation and analysis of the regional ecological water diversion project is made for the purpose of examining the water quality improvements. A numerical model is also established, different water diversion flow rates and sewer interception levels are considered during the simulation. Simulation results reveal that higher flow rate and sewer interception level will greatly improve the river network water quality in Wenzhou City. The importance of the flow rate and interception level has been proved and future work will be focused on increasing the flow rate and upgrading the sewer interception level.
Wastewater-Enhanced Microbial Corrosion of Concrete Sewers.
Jiang, Guangming; Zhou, Mi; Chiu, Tsz Ho; Sun, Xiaoyan; Keller, Jurg; Bond, Philip L
2016-08-02
Microbial corrosion of concrete in sewers is known to be caused by hydrogen sulfide, although the role of wastewater in regulating the corrosion processes is poorly understood. Flooding and splashing of wastewater in sewers periodically inoculates the concrete surface in sewer pipes. No study has systematically investigated the impacts of wastewater inoculation on the corrosion of concrete in sewers. This study investigated the development of the microbial community, sulfide uptake activity, and the change of the concrete properties for coupons subjected to periodic wastewater inoculation. The concrete coupons were exposed to different levels of hydrogen sulfide under well-controlled conditions in laboratory-scale corrosion chambers simulating real sewers. It was evident that the periodic inoculation induced higher corrosion losses of the concrete in comparison to noninoculated coupons. Instantaneous measurements such as surface pH did not reflect the cumulative corrosion losses caused by long-term microbial activity. Analysis of the long-term profiles of the sulfide uptake rate using a Gompertz model supported the enhanced corrosion activity and greater corrosion loss. The enhanced corrosion rate was due to the higher sulfide uptake rates induced by wastewater inoculation, although the increasing trend of sulfide uptake rates was slower with wastewater. Increased diversity in the corrosion-layer microbial communities was detected when the corrosion rates were higher. This coincided with the environmental conditions of increased levels of gaseous H2S and the concrete type.
SeWeR: a customizable and integrated dynamic HTML interface to bioinformatics services.
Basu, M K
2001-06-01
Sequence analysis using Web Resources (SeWeR) is an integrated, Dynamic HTML (DHTML) interface to commonly used bioinformatics services available on the World Wide Web. It is highly customizable, extendable, platform neutral, completely server-independent and can be hosted as a web page as well as being used as stand-alone software running within a web browser.
Eren, Beytullah; Karadagli, Fatih
2012-03-06
Physical disintegration of representative toilet papers was investigated in this study to assess their disintegration potential in sewer systems. Characterization of toilet papers from different parts of the world indicated two main categories as premium and average quality. Physical disintegration experiments were conducted with representative products from each category according to standard protocols with improvements. The experimental results were simulated by mathematical model to estimate best-fit values of disintegration rate coefficients and fractional distribution ratios. Our results from mathematical modeling and experimental work show that premium products release more amounts of small fibers and disintegrate more slowly than average ones. Comparison of the toilet papers with the tampon applicators studied previously indicates that premium quality toilet papers present significant potential to persist in sewer pipes. Comparison of turbulence level in our experimental setup with those of partial flow conditions in sewer pipes indicates that drains and small sewer pipes are critical sections where disintegration of toilet papers will be limited. For improvement, requirements for minimum pipe slopes may be increased to sustain transport and disintegration of flushable products in small pipes. In parallel, toilet papers can be improved to disintegrate rapidly in sewer systems, while they meet consumer expectations.
Selective inspection planning with ageing forecast for sewer types.
Baur, R; Herz, R
2002-01-01
Investments in sewer rehabilitation must be based on inspection and evaluation of sewer conditions with respect to the severity of sewer damage and to environmental risks. This paper deals with the problems of forecasting the condition of sewers in a network from a small sample of inspected sewers. Transition functions from one into the next poorer condition class, which were empirically derived from this sample, are used to forecast the condition of sewers. By the same procedure, transition functions were subsequently calibrated for sub-samples of different types of sewers. With these transition functions, the most probable date of entering a critical condition class can be forecast from sewer characteristics, such as material, period of construction, location, use for waste and/or storm water, profile, diameter and gradient. Results are shown for the estimates about the actual condition of the Dresden sewer network and its deterioration in case of doing nothing about it. A procedure is proposed for scheduling the inspection dates for sewers which have not yet been inspected and for those which have been inspected before.
Moojong, Park; Hwandon, Jun; Minchul, Shin
2008-01-01
Sediments entering the sewer in urban areas reduce the conveyance in sewer pipes, which increases inundation risk. To estimate sediment yields, individual landuse areas in each sub-basin should be obtained. However, because of the complex nature of an urban area, this is almost impossible to obtain manually. Thus, a methodology to obtain individual landuse areas for each sub-basin has been suggested for estimating sediment yields. Using GIS, an urban area is divided into sub-basins with respect to the sewer layout, with the area of individual landuse estimated for each sub-basin. The sediment yield per unit area for each sub-basin is then calculated. The suggested method was applied to the GunJa basin in Seoul. For a relation analysis between sediments and inundation risk, sub-basins were ordered by the sediment yields per unit area and compared with historical inundation areas. From this analysis, sub-basins with higher order were found to match the historical inundation areas. Copyright IWA Publishing 2008.
Predicting concrete corrosion of sewers using artificial neural network.
Jiang, Guangming; Keller, Jurg; Bond, Philip L; Yuan, Zhiguo
2016-04-01
Corrosion is often a major failure mechanism for concrete sewers and under such circumstances the sewer service life is largely determined by the progression of microbially induced concrete corrosion. The modelling of sewer processes has become possible due to the improved understanding of in-sewer transformation. Recent systematic studies about the correlation between the corrosion processes and sewer environment factors should be utilized to improve the prediction capability of service life by sewer models. This paper presents an artificial neural network (ANN)-based approach for modelling the concrete corrosion processes in sewers. The approach included predicting the time for the corrosion to initiate and then predicting the corrosion rate after the initiation period. The ANN model was trained and validated with long-term (4.5 years) corrosion data obtained in laboratory corrosion chambers, and further verified with field measurements in real sewers across Australia. The trained model estimated the corrosion initiation time and corrosion rates very close to those measured in Australian sewers. The ANN model performed better than a multiple regression model also developed on the same dataset. Additionally, the ANN model can serve as a prediction framework for sewer service life, which can be progressively improved and expanded by including corrosion rates measured in different sewer conditions. Furthermore, the proposed methodology holds promise to facilitate the construction of analytical models associated with corrosion processes of concrete sewers. Copyright © 2016 Elsevier Ltd. All rights reserved.
Relationship between race and community water and sewer service in North Carolina, USA
MacDonald Gibson, Jacqueline
2018-01-01
Previous evidence has identified potential racial disparities in access to community water and sewer service in peri-urban areas adjacent to North Carolina municipalities. We performed the first quantitative, multi-county analysis of these disparities. Using publicly available data, we identified areas bordering municipalities and lacking community water and/or sewer service in 75 North Carolina counties. Logistic regression was performed to evaluate the relationship between race and access to service in peri-urban areas, controlling for population density, median home value, urban status, and percent white in the adjacent municipality. In the peri-urban areas analyzed, 67% of the population lacked community sewer service, and 33% lacked community water service. In areas other than those with no black residents, odds of having community water service (p<0.01) or at least one of the two services (p<0.05) were highest for census blocks with a small proportion of black residents and lowest in 100% black census blocks, though this trend did not hold for access to community sewer service alone. For example, odds of community water service were 85% higher in areas that were greater than 0% but less than 22% black than in 100% black areas (p<0.001). Peri-urban census blocks without black populations had the lowest odds of community water service, community sewer service, and at least one of the two services, but this difference was only statistically significant for sewer. Peri-urban areas lacking service with no black residents were wealthier than 100% black areas and areas with any percent black greater than 0%. Findings suggest two unserved groups of differing racial and socioeconomic status: (1) lower-income black populations potentially excluded from municipal services during the era of legal racial segregation and (2) higher-income non-black populations. Findings also suggest greater racial disparities in community water than community sewer services statewide. PMID:29561859
Weihmuller, F B; O'Dell, S J; Marshall, J F
1992-06-01
Repeated administrations of methamphetamine (m-AMPH) produce high extracellular levels of dopamine (DA) and subsequent striatal DA terminal damage. Pharmacological blockade of N-methyl-D-aspartate (NMDA) receptors has been shown previously to prevent m-AMPH-induced striatal DA terminal injury, but the mechanism for this protection is unclear. In the present study, in vivo microdialysis was used to determine the effects of blockade of NMDA receptors with the noncompetitive antagonist MK-801 on m-AMPH-induced striatal DA overflow. Four injections of MK-801 (0.5 mg/kg, ip) alone did not significantly change extracellular striatal DA concentrations from pretreatment values. Four treatments with m-AMPH (4.0 mg/kg, sc at 2-hr intervals) increased striatal DA overflow, and the overflow was particularly extensive following the fourth injection. This m-AMPH regimen produced a 40% reduction in striatal DA tissue content 1 week later. Treatment with MK-801 15 min before each of the four m-AMPH injections or prior to only the last two m-AMPH administrations attenuated the m-AMPH-induced increase in striatal DA overflow and protected completely against striatal DA depletions. Other MK-801 treatment regimens less effectively reduced the m-AMPH-induced striatal DA efflux and were ineffective in protecting against striatal DA depletions. Linear regression analysis indicated that cumulative DA overflow was strongly predictive (r = -.68) of striatal DA tissue levels measured one week later. These findings suggest that the extensive DA overflow seen during a neurotoxic regimen of m-AMPH is a crucial component of the subsequent neurotoxicity.(ABSTRACT TRUNCATED AT 250 WORDS)
A model for methane production in sewers.
Chaosakul, Thitirat; Koottatep, Thammarat; Polprasert, Chongrak
2014-09-19
Most sewers in developing countries are combined sewers which receive stormwater and effluent from septic tanks or cesspools of households and buildings. Although the wastewater strength in these sewers is usually lower than those in developed countries, due to improper construction and maintenance, the hydraulic retention time (HRT) could be relatively long and resulting considerable greenhouse gas (GHG) production. This study proposed an empirical model to predict the quantity of methane production in gravity-flow sewers based on relevant parameters such as surface area to volume ratio (A/V) of sewer, hydraulic retention time (HRT) and wastewater temperature. The model was developed from field survey data of gravity-flow sewers located in a peri-urban area, central Thailand and validated with field data of a sewer system of the Gold Coast area, Queensland, Australia. Application of this model to improve construction and maintenance of gravity-flow sewers to minimize GHG production and reduce global warming is presented.
Evidence of a sewer vapor transport pathway at the USEPA ...
The role of sewer lines as preferential pathways for vapor intrusion is poorly understood. Although the importance of sewer lines for volatile organic compound (VOC) transport has been documented at a small number of sites with vapor intrusion, sewer lines are not routinely sampled during most vapor intrusion investigations. We have used a tracer study and VOC concentration measurements to evaluate the role of the combined sanitary/storm sewer line in VOC transport at the USEPA vapor intrusion research duplex in Indianapolis, Indiana. The results from the tracer study demonstrated gas migration from the sewer main line into the duplex. The migration pathway appears to be complex and may include leakage from the sewer lateral at a location below the building foundation. Vapor samples collected from the sewer line demonstrated the presence of tetrachloroethene (PCE) and chloroform in the sewer main in front of the duplex and at multiple sample locations within the sewer line upstream of the duplex. These test results combined with results from the prior multi-year study of the duplex indicate that the sewer line plays an important role in transport of VOCs from the subsurface source to the immediate vicinity of the duplex building envelope. Highlights • The sewer line is an important pathway for VOC transport at the USEPA duplex. • The importance of this pathway was not identified during prior study of the duplex. • Sewer lines should be routinely evaluated
NASA Astrophysics Data System (ADS)
Piatyszek, E.; Voignier, P.; Graillot, D.
2000-05-01
One of the aims of sewer networks is the protection of population against floods and the reduction of pollution rejected to the receiving water during rainy events. To meet these goals, managers have to equip the sewer networks with and to set up real-time control systems. Unfortunately, a component fault (leading to intolerable behaviour of the system) or sensor fault (deteriorating the process view and disturbing the local automatism) makes the sewer network supervision delicate. In order to ensure an adequate flow management during rainy events it is essential to set up procedures capable of detecting and diagnosing these anomalies. This article introduces a real-time fault detection method, applicable to sewer networks, for the follow-up of rainy events. This method consists in comparing the sensor response with a forecast of this response. This forecast is provided by a model and more precisely by a state estimator: a Kalman filter. This Kalman filter provides not only a flow estimate but also an entity called 'innovation'. In order to detect abnormal operations within the network, this innovation is analysed with the binary sequential probability ratio test of Wald. Moreover, by crossing available information on several nodes of the network, a diagnosis of the detected anomalies is carried out. This method provided encouraging results during the analysis of several rains, on the sewer network of Seine-Saint-Denis County, France.
Long-term impacts on sewers following food waste disposer installation in housing areas.
Mattsson, Jonathan; Hedström, Annelie; Viklander, Maria
2014-01-01
To increase biogas generation and decrease vehicle transportation of solid waste, the integration of food waste disposers (FWDs) into the wastewater system has been proposed. However, concerns have been raised about the long-term impact of the additional load of the FWDs on sewer systems. To examine the said impact, this study has used closed-circuit television inspection techniques to evaluate the status of 181 concrete pipes serving single family housing areas with a diameter of 225 mm, ranging from a 100% connection rate of households with an FWD to none. A minor study was also performed on a multi-family housing area, where mainly plastic pipes (200 mm) were used. The extent and distribution of deposits related to the ratio of FWDs, inclination and pipe sagging (backfalls) were ascertained by using linear regression and analysis of variance. The results showed that FWDs have had an impact on the level of deposits in the sewer, but this has, in turn, been of minor significance. With a high connection rate of FWDs upstream of a pipe, the extent of the total level of deposits, as well as finer sediments, was statistically determined to be greater. However, the majority of the deposits were observed to be small, which would suggest the impact of FWDs on sewer performance to be minor. As food waste not compatible with the FWD was seen in the sewers, educational campaigns could be beneficial to further lower the risks of sewer blocking.
40 CFR 35.927-2 - Sewer system evaluation survey.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 1 2013-07-01 2013-07-01 false Sewer system evaluation survey. 35.927... § 35.927-2 Sewer system evaluation survey. (a) The sewer system evaluation survey shall identify the... results of the sewer system evaluation survey. In addition, the report shall include: (1) A justification...
40 CFR 35.927-2 - Sewer system evaluation survey.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Sewer system evaluation survey. 35.927... § 35.927-2 Sewer system evaluation survey. (a) The sewer system evaluation survey shall identify the... results of the sewer system evaluation survey. In addition, the report shall include: (1) A justification...
40 CFR 35.927-2 - Sewer system evaluation survey.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Sewer system evaluation survey. 35.927... § 35.927-2 Sewer system evaluation survey. (a) The sewer system evaluation survey shall identify the... results of the sewer system evaluation survey. In addition, the report shall include: (1) A justification...
40 CFR 35.927-2 - Sewer system evaluation survey.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Sewer system evaluation survey. 35.927... § 35.927-2 Sewer system evaluation survey. (a) The sewer system evaluation survey shall identify the... results of the sewer system evaluation survey. In addition, the report shall include: (1) A justification...
Searching for storm water inflows in foul sewers using fibre-optic distributed temperature sensing.
Schilperoort, Rémy; Hoppe, Holger; de Haan, Cornelis; Langeveld, Jeroen
2013-01-01
A major drawback of separate sewer systems is the occurrence of illicit connections: unintended sewer cross-connections that connect foul water outlets from residential or industrial premises to the storm water system and/or storm water outlets to the foul sewer system. The amount of unwanted storm water in foul sewer systems can be significant, resulting in a number of detrimental effects on the performance of the wastewater system. Efficient removal of storm water inflows into foul sewers requires knowledge of the exact locations of the inflows. This paper presents the use of distributed temperature sensing (DTS) monitoring data to localize illicit storm water inflows into foul sewer systems. Data results from two monitoring campaigns in foul sewer systems in the Netherlands and Germany are presented. For both areas a number of storm water inflow locations can be derived from the data. Storm water inflow can only be detected as long as the temperature of this inflow differs from the in-sewer temperatures prior to the event. Also, the in-sewer propagation of storm and wastewater can be monitored, enabling a detailed view on advection.
Evidence of a sewer vapor transport pathway at the USEPA vapor intrusion research duplex.
McHugh, Thomas; Beckley, Lila; Sullivan, Terry; Lutes, Chris; Truesdale, Robert; Uppencamp, Rob; Cosky, Brian; Zimmerman, John; Schumacher, Brian
2017-11-15
The role of sewer lines as preferential pathways for vapor intrusion is poorly understood. Although the importance of sewer lines for volatile organic compound (VOC) transport has been documented at a small number of sites with vapor intrusion, sewer lines are not routinely sampled during most vapor intrusion investigations. We have used a tracer study and VOC concentration measurements to evaluate the role of the combined sanitary/storm sewer line in VOC transport at the USEPA vapor intrusion research duplex in Indianapolis, Indiana. The results from the tracer study demonstrated gas migration from the sewer main line into the duplex. The migration pathway appears to be complex and may include leakage from the sewer lateral at a location below the building foundation. Vapor samples collected from the sewer line demonstrated the presence of tetrachloroethene (PCE) and chloroform in the sewer main in front of the duplex and at multiple sample locations within the sewer line upstream of the duplex. These test results combined with results from the prior multi-year study of the duplex indicate that the sewer line plays an important role in transport of VOCs from the subsurface source to the immediate vicinity of the duplex building envelope. Copyright © 2017 Elsevier B.V. All rights reserved.
Sulfide and methane production in sewer sediments: Field survey and model evaluation.
Liu, Yiwen; Tugtas, A Evren; Sharma, Keshab R; Ni, Bing-Jie; Yuan, Zhiguo
2016-02-01
Sewer sediment processes have been reported to significantly contribute to overall sulfide and methane production in sewers, at a scale comparable to that of sewer biofilms. The physiochemical and biological characteristics of sewer sediments are heterogeneous; however, the variability of in-sediments sulfide and methane production rates among sewers has not been assessed to date. In this study, five sewer sediment samples were collected from two cities in Australia with different climatic conditions. Batch assays were conducted to determine the rates of sulfate reduction and methane production under different flow velocity (shear stress) conditions as well as under completely mixed conditions. The tests showed substantial and variable sulfate reduction and methane production activities among different sediments. Sulfate reduction and methane production from sewer sediments were confirmed to be areal processes, and were dependent on flow velocity/shear stress. Despite of the varying characteristics and reactions kinetics, the sulfate reduction and methane production processes in all sediments could be well described by a one-dimensional sewer sediment model recently developed based on results obtained from a laboratory sewer sediment reactor. Model simulations indicated that the in-situ contribution of sewer sediment emissions could be estimated without the requirement of measuring the specific sediment characteristics or the sediment depths. Copyright © 2015 Elsevier Ltd. All rights reserved.
Evidence of a sewer vapor transport pathway at the USEPA vapor intrusion research duplex
McHugh, Thomas; Beckley, Lila; Sullivan, Terry; ...
2017-04-26
We report the role of sewer lines as preferential pathways for vapor intrusion is poorly understood. Although the importance of sewer lines for volatile organic compound (VOC) transport has been documented at a small number of sites with vapor intrusion, sewer lines are not routinely sampled during most vapor intrusion investigations. We have used a tracer study and VOC concentration measurements to evaluate the role of the combined sanitary/storm sewer line in VOC transport at the USEPA vapor intrusion research duplex in Indianapolis, Indiana. The results from the tracer study demonstrated gas migration from the sewer main line into themore » duplex. The migration pathway appears to be complex and may include leakage from the sewer lateral at a location below the building foundation. Vapor samples collected from the sewer line demonstrated the presence of tetrachloroethene (PCE) and chloroform in the sewer main in front of the duplex and at multiple sample locations within the sewer line upstream of the duplex. Finally, these test results combined with results from the prior multi-year study of the duplex indicate that the sewer line plays an important role in transport of VOCs from the subsurface source to the immediate vicinity of the duplex building envelope.« less
Evidence of a sewer vapor transport pathway at the USEPA vapor intrusion research duplex
DOE Office of Scientific and Technical Information (OSTI.GOV)
McHugh, Thomas; Beckley, Lila; Sullivan, Terry
We report the role of sewer lines as preferential pathways for vapor intrusion is poorly understood. Although the importance of sewer lines for volatile organic compound (VOC) transport has been documented at a small number of sites with vapor intrusion, sewer lines are not routinely sampled during most vapor intrusion investigations. We have used a tracer study and VOC concentration measurements to evaluate the role of the combined sanitary/storm sewer line in VOC transport at the USEPA vapor intrusion research duplex in Indianapolis, Indiana. The results from the tracer study demonstrated gas migration from the sewer main line into themore » duplex. The migration pathway appears to be complex and may include leakage from the sewer lateral at a location below the building foundation. Vapor samples collected from the sewer line demonstrated the presence of tetrachloroethene (PCE) and chloroform in the sewer main in front of the duplex and at multiple sample locations within the sewer line upstream of the duplex. Finally, these test results combined with results from the prior multi-year study of the duplex indicate that the sewer line plays an important role in transport of VOCs from the subsurface source to the immediate vicinity of the duplex building envelope.« less
Simulation of the wastewater temperature in sewers with TEMPEST.
Dürrenmatt, David J; Wanner, Oskar
2008-01-01
TEMPEST is a new interactive simulation program for the estimation of the wastewater temperature in sewers. Intuitive graphical user interfaces assist the user in managing data, performing calculations and plotting results. The program calculates the dynamics and longitudinal spatial profiles of the wastewater temperature in sewer lines. Interactions between wastewater, sewer air and surrounding soil are modeled in TEMPEST by mass balance equations, rate expressions found in the literature and a new empirical model of the airflow in the sewer. TEMPEST was developed as a tool which can be applied in practice, i.e., it requires as few input data as possible. These data include the upstream wastewater discharge and temperature, geometric and hydraulic parameters of the sewer, material properties of the sewer pipe and surrounding soil, ambient conditions, and estimates of the capacity of openings for air exchange between sewer and environment. Based on a case study it is shown how TEMPEST can be applied to estimate the decrease of the downstream wastewater temperature caused by heat recovery from the sewer. Because the efficiency of nitrification strongly depends on the wastewater temperature, this application is of practical relevance for situations in which the sewer ends at a nitrifying wastewater treatment plant.
Ayrault, S; Le Pape, P; Evrard, O; Priadi, C R; Quantin, C; Bonté, P; Roy-Barman, M
2014-03-01
Total lead (Pb) concentration and Pb isotopic ratio ((206)Pb/(20)7Pb) were determined in 140 samples from the Seine River basin (France), covering a period of time from 1945 to 2011 and including bed sediments (bulk and size fractionated samples), suspended particulate matter (SPM), sediment cores, and combined sewer overflow (CSO) particulate matter to constrain the spatial and temporal variability of the lead sources at the scale of the contaminated Seine River basin. A focus on the Orge River subcatchment, which exhibits a contrasted land-use pattern, allows documenting the relation between hydrodynamics, urbanization, and contamination sources. The study reveals that the Pb contamination due to leaded gasoline that peaked in the 1980s has a very limited impact in the river nowadays. In the upstream Seine River, the isotopic ratio analysis suggests a pervasive contamination which origin (coal combustion and/or gasoline lead) should be clarified. The current SPM contamination trend follows the urbanization/industrialization spatial trend. Downstream of Paris, the lead from historical use originating from the Rio Tinto mine, Spain ((206)Pb/(207)Pb=1.1634 ± 0.0001) is the major Pb source. The analysis of the bed sediments (bulk and grain size fractionated) highlights the diversity of the anthropogenic lead sources in relation with the diversity of the human activities that occurred in this basin over the years. The "urban" source, defined by waste waters including the CSO samples ((206)Pb/(207)Pb=1.157 ± 0.003), results of a thorough mixing of leaded gasoline with "historical" lead over the years. Finally, a contamination mixing scheme related to hydrodynamics is proposed.
Bergé, A; Gasperi, J; Rocher, V; Gras, L; Coursimault, A; Moilleron, R
2014-08-01
Phthalates and alkylphenols are toxics classified as endocrine disrupting compounds (EDCs). They are of particular concern due to their ubiquity and generally higher levels found in the environment comparatively to other EDCs. Industrial and domestic discharges might affect the quality of receiving waters by discharging organic matter and contaminants through treated waters and combined sewer overflows. Historically, industrial discharges are often considered as the principal vector of pollution in urban areas. If this observation was true in the past for some contaminants, no current data are today available to compare the quality of industrial and domestic discharges as regards EDCs. In this context, a total of 45 domestic samples as well as 101 industrial samples were collected from different sites, including 14 residential and 33 industrial facilities. This study focuses more specifically on 4 phthalates and 2 alkylphenols, among the most commonly studied congeners. A particular attention was also given to routine wastewater quality parameters. For most substances, wastewaters from the different sites were heavily contaminated; they display concentrations up to 1200 μg/l for di-(2-ethylhexyl) phthalate and between 10 and 100 μg/l for diethyl phthalate and nonylphenol. Overall, for the majority of compounds, the industrial contribution to the flux of contaminant reaching the wastewater treatment plants ranges between 1 and 3%. The data generated during this work constitutes one of the first studies conducted in Europe on industrial fluxes for a variety of sectors of activity. The study of the wastewater contribution was used to better predict the industrial and domestic contributions at the scale of a huge conurbation heavily urbanized but with a weak industrial cover, illustrated by Paris. Our results indicate that specific investigations on domestic discharges are necessary in order to reduce the release of phthalates and alkylphenols in the sewer systems for such conurbations. Copyright © 2014 Elsevier B.V. All rights reserved.
Weiskel, Peter K.
2007-01-01
Human activity has profoundly altered the Charles River and its watershed over the past 375 years. Restoration of environmental quality in the watershed has become a high priority for private- and public-sector organizations across the region. The U.S. Environmental Protection Agency and the Massachusetts Executive Office of Environmental Affairs worked together to coordinate the efforts of the various organizations. One result of this initiative has been a series of scientific studies that provide critical information concerning some of the major hydrologic and ecological concerns in the watershed. These studies have focused upon: * Streamflows - Limited aquifer storage, growing water demands, and the spread of impervious surfaces are some of the factors exacerbating low summer streamflows in headwater areas of the watershed. Coordinated management of withdrawals, wastewater returns, and stormwater runoff could substantially increase low streamflows in the summer. Innovative approaches to flood control, including preservation of upstream wetland storage capacity and construction of a specially designed dam at the river mouth, have greatly reduced flooding in the lower part of the watershed in recent decades. * Water quality - Since the mid-1990s, the bacterial quality of the Charles River has improved markedly, because discharges from combined sewer overflows and the number of illicit sewer connections to municipal storm drains have been reduced. Improved management of stormwater runoff will likely be required, however, for full attainment of State and Federal water-quality standards. Phosphorus inputs from a variety of sources remain an important water-quality problem. * Fish communities and habitat quality - The Charles River watershed supports a varied fish community of about 20 resident and migratory species. Habitat conditions for fish and other aquatic species have improved in many parts of the river system in recent years. However, serious challenges remain, including the control of nutrients, algae, and invasive plants, mitigation of dam impacts, addressing remaining sources of bacteria to the river, and remediation of contaminated bottom habitat and the nontidal salt wedge in the lower river.
NASA Astrophysics Data System (ADS)
Yakirevich, A.; Kuznetsov, M.; Livshitz, Y.; Gasser, G.; Pankratov, I.; Lev, O.; Adar, E.; Dvory, N. Z.
2016-12-01
Fast contamination of groundwater in karstic aquifers can be caused due to leaky sewers, for example, or overflow from sewer networks. When flowing through a karst system, wastewater has the potential to reach the aquifer in a relatively short time. The Western Mountain Aquifer (Yarkon-Taninim) of Israel is one of the country's major water resources. During late winter 2013, maintenance actions were performed on a central sewage pipe that caused raw sewage to leak into the creek located in the study area. The subsequent infiltration of sewage through the thick ( 100 m) fractured/karst unsaturated zone led to a sharp increase in contaminant concentrations in the groundwater, which was monitored in a well located 29 meters from the center of the creek. Carbamazepine (CBZ) was used as an indicator for the presence of untreated raw sewage and its quantification in groundwater. The ultimate research goal was to develop a mathematical model for quantifying flow and contaminant transport processes in the fractured-porous unsaturated zone and karstified groundwater system. A quasi-3D dual permeability numerical model, representing the 'vadose zone - aquifer' system, was developed by a series of 1D equations solved in variably-saturated zone and by 3D-saturated flow and transport equation in groundwater. The 1D and 3D equations were coupled at the moving phreatic surface. The model was calibrated and applied to a simulated water flow scenario and CBZ transport during and after the observed sewage leakage event. The results of simulation showed that after the leakage stopped, significant amounts of CBZ were retained in the porous matrix of the unsaturated zone below the creek. Water redistribution and slow recharge during the dry summer season contributed to elevated CBZ concentrations in the groundwater in the vicinity of the creek and tens of meters downstream. The resumption of autumn rains enhanced flushing of CBZ from the unsaturated zone and led to an increase in groundwater concentrations.
Tondera, Katharina; Koenen, Stefan; Pinnekamp, Johannes
2013-01-01
A main source of surface water pollution in Western Europe stems from combined sewer overflow. One of the few technologies available to reduce this pollution is the retention soil filter. In this research project, we evaluated the cleaning efficiency of retention soil filters measuring the concentration ratio of standard wastewater parameters and bacteria according to factors limiting efficiency, such as long dry phases or phases of long-lasting retention. Furthermore, we conducted an initial investigation on how well retention soil filters reduce certain micropollutants on large-scale plants. There was little precipitation during the 1-year sampling phase, which led to fewer samples than expected. Nevertheless, we could verify how efficiently retention soil filters clean total suspended solids. Our results show that retention soil filters are not only able to eliminate bacteria, but also to retain some of the micropollutants investigated here. As the filters were able to reduce diclofenac, bisphenol A and metoprolol by a median rate of almost 75%, we think that further investigations should be made into the reduction processes in the filter. At this point, a higher accuracy in the results could be achieved by conducting bench-scale experiments.
Cahoon, Lawrence B; Hanke, Marc H
2017-04-01
Aging wastewater collection and treatment systems have not received as much attention as other forms of infrastructure, even though they are vital to public health, economic growth, and environmental quality. Inflow and infiltration (I&I) are among potentially widespread problems facing central sewage collection and treatment systems, posing risks of sanitary system overflows (SSOs), system degradation, and water quality impairment, but remain poorly quantified. Whole-system analyses of I&I were conducted by regression analyses of system flow responses to rainfall and temperature for 93 wastewater treatment plants in 23 counties in eastern North Carolina, USA, a coastal plain region with high water tables and generally higher rainfalls than the continental interior. Statistically significant flow responses to rainfall were found in 92% of these systems, with 2-year average I&I values exceeding 10% of rainless system flow in over 40% of them. The effects of rainfall, which can be intense in this coastal region, have region-wide implications for sewer system performance and environmental management. The positive association between rainfall and excessive I&I parallels the effects of storm water runoff on water quality, in that excessive I&I can also drive SSOs, thus confounding water quality protection efforts.
A GIS-based methodology for selecting stormwater disconnection opportunities.
Moore, S L; Stovin, V R; Wall, M; Ashley, R M
2012-01-01
The purpose of this paper is to introduce a geographic information system (GIS)-based decision support tool that assists the user to select not only areas where (retrofit) sustainable drainage systems (SuDS) could be implemented within a large catchment (>100 ha), but also to allow discrimination between suitable SuDS techniques based on their likely feasibility and effectiveness. The tool is applied to a case study catchment within London, UK, with the aim of increasing receiving water quality by reducing combined sewer overflow (CSO) spill frequency and volume. The key benefit of the tool presented is to allow rapid assessment of the retrofit SuDS potential of large catchments. It is not intended to replace detailed site investigations, but may help to direct attention to sites that have the greatest potential for retrofit SuDS implementation. Preliminary InfoWorks CS modelling of 'global disconnections' within the case study catchment, e.g. the removal of 50% of the total impervious area, showed that CSO spill volume could be reduced by 55 to 78% during a typical year. Using the disconnection hierarchy developed by the authors, the feasibility of retrofit SuDS deployment within the case study catchment is assessed, and the implications discussed.
NASA Astrophysics Data System (ADS)
Luscz, E.; Kendall, A. D.; Martin, S. L.; Hyndman, D. W.
2011-12-01
Watershed nutrient loading models are important tools used to address issues including eutrophication, harmful algal blooms, and decreases in aquatic species diversity. Such approaches have been developed to assess the level and source of nutrient loading across a wide range of scales, yet there is typically a tradeoff between the scale of the model and the level of detail regarding the individual sources of nutrients. To avoid this tradeoff, we developed a detailed source nutrient loading model for every watershed in Michigan's lower peninsula. Sources considered include atmospheric deposition, septic tanks, waste water treatment plants, combined sewer overflows, animal waste from confined animal feeding operations and pastured animals, as well as fertilizer from agricultural, residential, and commercial sources and industrial effluents . Each source is related to readily-available GIS inputs that may vary through time. This loading model was used to assess the importance of sources and landscape factors in nutrient loading rates to watersheds, and how these have changed in recent decades. The results showed the value of detailed source inputs, revealing regional trends while still providing insight to the existence of variability at smaller scales.
Keupers, Ingrid; Willems, Patrick
2013-01-01
The impact of urban water fluxes on the river system outflow of the Grote Nete catchment (Belgium) was studied. First the impact of the Waste Water Treatment Plant (WWTP) and the Combined Sewer Overflow (CSO) outflows on the river system for the current climatic conditions was determined by simulating the urban fluxes as point sources in a detailed, hydrodynamic river model. Comparison was made of the simulation results on peak flow extremes with and without the urban point sources. In a second step, the impact of climate change scenarios on the urban fluxes and the consequent impacts on the river flow extremes were studied. It is shown that the change in the 10-year return period hourly peak flow discharge due to climate change (-14% to +45%) was in the same order of magnitude as the change due to the urban fluxes (+5%) in current climate conditions. Different climate change scenarios do not change the impact of the urban fluxes much except for the climate scenario that involves a strong increase in rainfall extremes in summer. This scenario leads to a strong increase of the impact of the urban fluxes on the river system.
Andersen, S T; Erichsen, A C; Mark, O; Albrechtsen, H-J
2013-12-01
Quantitative microbial risk assessments (QMRAs) often lack data on water quality leading to great uncertainty in the QMRA because of the many assumptions. The quantity of waste water contamination was estimated and included in a QMRA on an extreme rain event leading to combined sewer overflow (CSO) to bathing water where an ironman competition later took place. Two dynamic models, (1) a drainage model and (2) a 3D hydrodynamic model, estimated the dilution of waste water from source to recipient. The drainage model estimated that 2.6% of waste water was left in the system before CSO and the hydrodynamic model estimated that 4.8% of the recipient bathing water came from the CSO, so on average there was 0.13% of waste water in the bathing water during the ironman competition. The total estimated incidence rate from a conservative estimate of the pathogenic load of five reference pathogens was 42%, comparable to 55% in an epidemiological study of the case. The combination of applying dynamic models and exposure data led to an improved QMRA that included an estimate of the dilution factor. This approach has not been described previously.
Towards a hierarchical optimization modeling framework for ...
Background:Bilevel optimization has been recognized as a 2-player Stackelberg game where players are represented as leaders and followers and each pursue their own set of objectives. Hierarchical optimization problems, which are a generalization of bilevel, are especially difficult because the optimization is nested, meaning that the objectives of one level depend on solutions to the other levels. We introduce a hierarchical optimization framework for spatially targeting multiobjective green infrastructure (GI) incentive policies under uncertainties related to policy budget, compliance, and GI effectiveness. We demonstrate the utility of the framework using a hypothetical urban watershed, where the levels are characterized by multiple levels of policy makers (e.g., local, regional, national) and policy followers (e.g., landowners, communities), and objectives include minimization of policy cost, implementation cost, and risk; reduction of combined sewer overflow (CSO) events; and improvement in environmental benefits such as reduced nutrient run-off and water availability. Conclusions: While computationally expensive, this hierarchical optimization framework explicitly simulates the interaction between multiple levels of policy makers (e.g., local, regional, national) and policy followers (e.g., landowners, communities) and is especially useful for constructing and evaluating environmental and ecological policy. Using the framework with a hypothetical urba
Nitrogen Loading in Jamaica Bay, Long Island, New York: Predevelopment to 2005
Benotti, Mark J.; Abbene, Irene; Terracciano, Stephen A.
2007-01-01
Nitrogen loading to Jamaica Bay, a highly urbanized estuary on the southern shore of western Long Island, New York, has increased from an estimated rate of 35.6 kilograms per day (kg/d) under predevelopment conditions (pre-1900), chiefly as nitrate plus nitrite from ground-water inflow, to an estimated 15,800 kilograms per day as total nitrogen in 2005. The principal point sources are wastewater-treatment plants, combined sewer overflow/stormwater discharge during heavy precipitation, and subway dewatering, which account for 92 percent of the current (2005) nitrogen load. The principal nonpoint sources are landfill leachate, ground-water flow, and atmospheric deposition, which account for 8 percent of the current nitrogen load. The largest single source of nitrogen to Jamaica Bay is wastewater-treatment plants, which account for 89 percent of the nitrogen load. The current and historic contributions of nitrogen from seawater are unknown, although at present, the ocean likely serves as a sink for nitrogen from Jamaica Bay. Currently, concentrations of nitrogen in surface water are high throughout Jamaica Bay, but some areas with relatively little mixing have concentrations that are five times higher than areas that are well mixed.
Modelling the effects of on-site greywater reuse and low flush toilets on municipal sewer systems.
Penn, R; Schütze, M; Friedler, E
2013-01-15
On-site greywater reuse (GWR) and installation of water-efficient toilets (WET) reduce urban freshwater demand. Research on GWR and WET has generally overlooked the effects that GWR may have on municipal sewer systems. This paper discusses and quantifies these effects. The effects of GWR and WET, positive and negative, were studied by modelling a representative urban sewer system. GWR scenarios were modelled and analysed using the SIMBA simulation system. The results show that, as expected, the flow, velocity and proportional depth decrease as GWR increases. Nevertheless, the reduction is not evenly distributed throughout the day but mainly occurs during the morning and evening peaks. Examination of the effects of reduced toilet flush volumes revealed that in some of the GWR scenarios flows, velocities and proportional depths in the sewer were reduced, while in other GWR scenarios discharge volumes, velocities and proportional depths did not change. Further, it is indicated that as a result of GWR and installation of WET, sewer blockage rates are not expected to increase significantly. The results support the option to construct new sewer systems with smaller pipe diameters. The analysis shows that as the penetration of GWR systems increase, and with the installation of WET, concentrations of pollutants also increase. In GWR scenarios (when toilet flush volume is not reduced) the increase in pollutant concentrations is lower than the proportional reduction of sewage flow. Moreover, the results show that the spatial distribution of houses reusing GW does not significantly affect the parameters examined. Copyright © 2012 Elsevier Ltd. All rights reserved.
Severson, Wayne J.
1976-01-01
The overflow line for the reactor vessel of a liquid-metal-cooled nuclear reactor includes means for establishing and maintaining a continuous bleed flow of coolant amounting to 5 to 10% of the total coolant flow through the overflow line to prevent thermal shock to the overflow line when the reactor is restarted following a trip. Preferably a tube is disposed concentrically just inside the overflow line extending from a point just inside the reactor vessel to an overflow tank and a suction line is provided opening into the body of liquid metal in the reactor vessel and into the annulus between the overflow line and the inner tube.
Influence of high resolution rainfall data on the hydrological response of urban flat catchments
NASA Astrophysics Data System (ADS)
Cristiano, Elena; ten Veldhuis, Marie-claire; van de Giesen, Nick
2016-04-01
In the last decades, cities have become more and more urbanized and population density in urban areas is increased. At the same time, due to the climate changes, rainfall events present higher intensity and shorter duration than in the past. The increase of imperviousness degree, due to urbanization, combined with short and intense rainfall events, determinates a fast hydrological response of the urban catchment and in some cases it can lead to flooding. Urban runoff processes are sensitive to rainfall spatial and temporal variability and, for this reason, high resolution rainfall data are required as input for the hydrological model. A better knowledge of the hydrological response of system can help to prevent damages caused by flooding. This study aims to evaluate the sensitivity of urban hydrological response to spatial and temporal rainfall variability in urban areas, focusing especially on understanding the hydrological behaviour in lowland areas. In flat systems, during intense rainfall events, the flow in the sewer network can be pressurized and it can change direction, depending on the setting of pumping stations and CSOs (combined sewer overflow). In many cases these systems are also looped and it means that the water can follow different paths, depending on the pipe filling process. For these reasons, hydrological response of flat and looped catchments is particularly complex and it can be difficult characterize and predict it. A new dual polarimetric X-band weather radar, able to measure rainfall with temporal resolution of 1 min and spatial resolution of 100mX100m, was recently installed in the city of Rotterdam (NL). With this instrument, high resolution rainfall data were measured and used, in this work, as input for the hydrodynamic model. High detailed, semi-distributed hydrodynamic models of some districts of Rotterdam were used to investigate the hydrological response of flat catchments to high resolution rainfall data. In particular, the hydrological response of some subcatchments of the district of Kralingen was studied. Rainfall data were combined with level and discharge measurements at the pumping station that connects the sewer system with the waste water treatment plane. Using this data it was possible to study the water balance and to have a better idea of the amount of water that leave the system during a specific rainfall events. Results show that the hydrological response of flat and looped catchments is sensitive to spatial and temporal rainfall variability and it can be strongly influenced by rainfall event characteristics, such as intensity, velocity and intermittency of the storm.
The efficiency of asset management strategies to reduce urban flood risk.
ten Veldhuis, J A E; Clemens, F H L R
2011-01-01
In this study, three asset management strategies were compared with respect to their efficiency to reduce flood risk. Data from call centres at two municipalities were used to quantify urban flood risks associated with three causes of urban flooding: gully pot blockage, sewer pipe blockage and sewer overloading. The efficiency of three flood reduction strategies was assessed based on their effect on the causes contributing to flood risk. The sensitivity of the results to uncertainty in the data source, citizens' calls, was analysed through incorporation of uncertainty ranges taken from customer complaint literature. Based on the available data it could be shown that increasing gully pot blockage is the most efficient action to reduce flood risk, given data uncertainty. If differences between cause incidences are large, as in the presented case study, call data are sufficient to decide how flood risk can be most efficiently reduced. According to the results of this analysis, enlargement of sewer pipes is not an efficient strategy to reduce flood risk, because flood risk associated with sewer overloading is small compared to other failure mechanisms.
Tang, Ting; Stamm, Christian; van Griensven, Ann; Seuntjens, Piet; Bronders, Jan
2017-11-01
To properly estimate and manage pesticide occurrence in urban rivers, it is essential, but often highly challenging, to identify the key pesticide transport pathways in association to the main sources. This study examined the concentration-discharge hysteresis behaviour (hysteresis analysis) for three pesticides and the parent-metabolite concentration dynamics for two metabolites at sites with different levels of urban influence in a mixed land use catchment (25 km 2 ) within the Swiss Greifensee area, aiming to identify the dominant pesticide transport pathways. Combining an adapted hysteresis classification framework with prior knowledge of the field conditions and pesticide usage, we demonstrated the possibility of using hysteresis analysis to qualitatively infer the dominant pesticide transport pathway in mixed land-use catchments. The analysis showed that hysteresis types, and therefore the dominant transport pathway, vary among pesticides, sites and rainfall events. Hysteresis loops mostly correspond to dominant transport by flow components with intermediate response time, although pesticide sources indicate that fast transport pathways are responsible in most cases (e.g. urban runoff and combined sewer overflows). The discrepancy suggests the fast transport pathways can be slowed down due to catchment storages, such as topographic depressions in agricultural areas, a wastewater treatment plant (WWTP) and other artificial storage units (e.g. retention basins) in urban areas. Moreover, the WWTP was identified as an important factor modifying the parent-metabolite concentration dynamics during rainfall events. To properly predict and manage pesticide occurrence in catchments of mixed land uses, the hydrological delaying effect and chemical processes within the artificial structures need to be accounted for, in addition to the catchment hydrology and the diversity of pesticide sources. This study demonstrates that in catchments with diverse pesticide sources and complex transport mechanisms, the adapted hysteresis analysis can help to improve our understanding on pesticide transport behaviours and provide a basis for effective management strategies. Copyright © 2017 Elsevier Ltd. All rights reserved.
Liu, Yiwen; Ni, Bing-Jie; Sharma, Keshab R; Yuan, Zhiguo
2015-08-15
Recent studies have shown that sewer systems produce and emit a significant amount of methane. Methanogens produce methane under anaerobic conditions in sewer biofilms and sediments, and the stratification of methanogens and sulfate-reducing bacteria may explain the simultaneous production of methane and sulfide in sewers. No significant methane sinks or methanotrophic activities have been identified in sewers to date. Therefore, most of the methane would be emitted at the interface between sewage and atmosphere in gravity sewers, pumping stations, and inlets of wastewater treatment plants, although oxidation of methane in the aeration basin of a wastewater treatment plant has been reported recently. Online measurements have also revealed highly dynamic temporal and spatial variations in methane production caused by factors such as hydraulic retention time, area-to-volume ratio, temperature, and concentration of organic matter in sewage. Both mechanistic and empirical models have been proposed to predict methane production in sewers. Due to the sensitivity of methanogens to environmental conditions, most of the chemicals effective in controlling sulfide in sewers also suppress or diminish methane production. In this paper, we review the recent studies on methane emission from sewers, including the production mechanisms, quantification, modeling, and mitigation. Copyright © 2015 Elsevier B.V. All rights reserved.
Vroblesky, Don A.; Petkewich, Matthew D.; Landmeyer, James E.; Lowery, Mark A.
2009-01-01
Groundwater contamination by tetrachloroethene and its dechlorination products is present in two partially intermingled plumes in the surficial aquifer near a former dry-cleaning facility at Site 45, Marine Corps Recruit Depot, Parris Island, South Carolina. The northern plume originates from the vicinity of former above-ground storage tanks. Free-phase tetrachloroethene from activities in this area entered the groundwater and the storm sewer. The southern plume originates at a nearby new dry-cleaning facility, but probably was the result of contamination released to the aquifer from a leaking sanitary sewer line from the former dry-cleaning facility. Discharge of dissolved groundwater contamination is primarily to leaking storm sewers below the water table. Extensive biodegradation of the contamination takes place in the surficial aquifer; however, the biodegradation is insufficient to reduce trichloroethene to less than milligram-per-liter concentrations prior to discharging into the storm sewers. The groundwater volatile organic compounds entering the storm sewers are substantially diluted by tidal flushing upon entry and are subject to volatilization as they are transported through the storm sewer to a discharge point in a tributary to Ballast Creek. TCE concentrations of about 2-6 micrograms per liter were present in storm-sewer water near the discharge point (sampled at manhole STS26). On three out of four sampling events at manhole STS14, the storm-sewer water contained no vinyl chloride. During a time of relatively high groundwater levels, however, 20 micrograms per liter of vinyl chloride was present in STS14 storm-sewer water. Because groundwater leaks into that storm sewer and because the storm sewer upgradient from manhole STS14 is adjacent to part of the aquifer where 2,290 micrograms per liter of vinyl chloride have been detected, there is a potential for substantially increased concentrations of vinyl chloride to discharge at the storm-sewer outfall under conditions of high groundwater levels and low tidal flushing. In addition, the observation that free-phase tetrachloroethene may have entered the storm-sewer system during the 1994 discharge means that dense nonaqueous phase liquid tetrachloroethene could have leaked from various parts of the storm sewer or discharged to surface water at the storm-sewer outfall.
PLANNING FOR SSO CONTROL: HENRICO COUNTY, VA - CASE STUDY
The Nation's sanitary-sewer infrastructure is aging with some sewers dating back over 100 years. There are more than 19,500 municipal sanitary-sewer collection systems nationwide serving an estimated 150M people and comprising about 500,000 sewer miles. It is estimated that there...
Salar-García, María J; Bernal, Vicente; Pastor, José M; Salvador, Manuel; Argandoña, Montserrat; Nieto, Joaquín J; Vargas, Carmen; Cánovas, Manuel
2017-02-08
The halophilic bacterium Chromohalobacter salexigens has been proposed as promising cell factory for the production of the compatible solutes ectoine and hydroxyectoine. This bacterium has evolved metabolic adaptations to efficiently grow under high salt concentrations by accumulating ectoines as compatible solutes. However, metabolic overflow, which is a major drawback for the efficient conversion of biological feedstocks, occurs as a result of metabolic unbalances during growth and ectoines production. Optimal production of ectoines is conditioned by the interplay of carbon and nitrogen metabolisms. In this work, we set out to determine how nitrogen supply affects the production of ectoines. Chromohalobacter salexigens was challenged to grow in media with unbalanced carbon/nitrogen ratio. In C. salexigens, overflow metabolism and ectoines production are a function of medium composition. At low ammonium conditions, the growth rate decreased importantly, up to 80%. Shifts in overflow metabolism were observed when changing the C/N ratio in the culture medium. 13 C-NMR analysis of ectoines labelling revealed a high metabolic rigidity, with almost constant flux ratios in all conditions assayed. Unbalanced C/N ratio led to pyruvate accumulation, especially upon N-limitation. Analysis of an ect - mutant demonstrated the link between metabolic overflow and ectoine biosynthesis. Under non ectoine synthesizing conditions, glucose uptake and metabolic overflow decreased importantly. Finally, in fed-batch cultures, biomass yield was affected by the feeding scheme chosen. High growth (up to 42.4 g L -1 ) and volumetric ectoine yields (up to 4.21 g L -1 ) were obtained by minimizing metabolite overflow and nutrient accumulation in high density cultures in a low nitrogen fed-batch culture. Moreover, the yield coefficient calculated for the transformation of glucose into biomass was 30% higher in fed-batch than in the batch culture, demonstrating that the metabolic efficiency of C. salexigens can be improved by careful design of culture feeding schemes. Metabolic shifts observed at low ammonium concentrations were explained by a shift in the energy required for nitrogen assimilation. Carbon-limited fed-batch cultures with reduced ammonium supply were the best conditions for cultivation of C. salexigens, supporting high density growth and maintaining high ectoines production.
Recent Developments in OVERGRID, OVERFLOW-2 and Chimera Grid Tools Scripts
NASA Technical Reports Server (NTRS)
Chan, William M.
2004-01-01
OVERGRID and OVERFLOW-2 feature easy to use multiple-body dynamics. The new features of OVERGRID include a preliminary chemistry interface, standard atmosphere and mass properties calculators, a simple unsteady solution viewer, and a debris tracking interface. Script library development in Chimera Grid Tools has applications in turbopump grid generation. This viewgraph presentation profiles multiple component dynamics, validation test cases for a sphere, cylinder, and oscillating airfoil, and debris analysis.
Contaminant transport pathways between urban sewer networks and water supply wells
USDA-ARS?s Scientific Manuscript database
Water supply wells and sanitary sewers are critical components of urban infrastructure, but sewer leakage threatens the quality of groundwater in sewered areas. Previous work by our group has documented the presence of human enteric viruses in deep public supply wells. Our current research uses such...
Evidence of a sewer vapor transport pathway at the USEPA vapor intrusion research duplex
The role of sewer lines as preferential pathways for vapor intrusion is poorly understood. Although the importance of sewer lines for volatile organic compound (VOC) transport has been documented at a small number of sites with vapor intrusion, sewer lines are not routinely sampl...
Quantifying excessive mirror overflow in children with attention-deficit/hyperactivity disorder
MacNeil, L.K.; Xavier, P.; Garvey, M.A.; Gilbert, D.L.; Ranta, M.E.; Denckla, M.B.
2011-01-01
Objectives: Qualitative observations have revealed that children with attention-deficit/hyperactivity disorder (ADHD) show increased overflow movements, a motor sign thought to reflect impaired inhibitory control. The goal of this study was to develop and implement methods for quantifying excessive mirror overflow movements in children with ADHD. Methods: Fifty right-handed children aged 8.2–13.3 years, 25 with ADHD (12 girls) and 25 typically developing (TD) control children (10 girls), performed a sequential finger-tapping task, completing both left-handed (LHFS) and right-handed finger sequencing (RHFS). Phasic overflow of the index and ring fingers was assessed in 34 children with video recording, and total overflow in 48 children was measured by calculating the total angular displacement of the index and ring fingers with electrogoniometer recordings. Results: Phasic overflow and total overflow across both hands were greater in children with ADHD than in TD children, particularly during LHFS. Separate gender analyses revealed that boys, but not girls, with ADHD showed significantly more total phasic overflow and total overflow than did their gender-matched control children. Conclusions: The quantitative overflow measures used in this study support past qualitative findings that motor overflow persists to a greater degree in children with ADHD than in age-matched TD peers. The quantitative findings further suggest that persistence of mirror overflow is more prominent during task execution of the nondominant hand and reveal gender-based differences in developmental neural systems critical to motor control. These quantitative measures will assist future physiologic investigation of the brain basis of motor control in ADHD. PMID:21321336
An, Perry G.
2004-01-01
For roughly forty years, from 1870 to 1910, Americans recognized and feared gases emanating from sewers, believing that they were responsible for causing an array of diseases. Fears of sewer gas arose from deeper anxieties toward contact with decomposing organic matter and the vapors emitted from such refuse. These anxieties were exacerbated by the construction of sewers across the country during the mid-to-late-nineteenth century, which concentrated waste emanations and connected homes to one another. The result was the birth of sewer gas and the attribution of sickness and death to it, as well as the development of a host of plumbing devices and, especially, bathroom fixtures, to combat sewer gas. The rise of the germ theory, laboratory science, and belief in disease specificity, however, transformed the threat of sewer gas, eventually replacing it (and the larger fear of miasmas) with the threat of germs. The germ theory framework, by 1910, proved more suitable than the sewer gas framework in explaining disease causation; it is this suitability that often shapes the relationship between science and society. PMID:15829149
Cesium and strontium loads into a combined sewer system from rainwater runoff.
Kamei-Ishikawa, Nao; Yoshida, Daiki; Ito, Ayumi; Umita, Teruyuki
2016-12-01
In this study, combined sewage samples were taken with time in several rain events and sanitary sewage samples were taken with time in dry weather to calculate Cs and Sr loads to sewers from rainwater runoff. Cs and Sr in rainwater were present as particulate forms at first flush and the particulate Cs and Sr were mainly bound with inorganic suspended solids such as clay minerals in combined sewage samples. In addition, multiple linear regression analysis showed Cs and Sr loads from rainwater runoff could be estimated by the total amount of rainfall and antecedent dry weather days. The variation of the Sr load from rainwater to sewers was more sensitive to total amount of rainfall and antecedent dry weather days than that of the Cs load. Copyright © 2016 Elsevier Ltd. All rights reserved.
Remote Infrared Thermal Sensing of Sewer Voids, Four-Year Update
NASA Astrophysics Data System (ADS)
Weil, Gary J.
1988-01-01
When a sewer caves in, it often takes the street, sidewalks, and surrounding buildings along for the ride. These collapses endanger public health and safety. Repairing a sewer before such a cave-in is obviously the preferred method. Emergency repairs cost far more than prevention measures - often millions of dollars more. Many combined sewers in the St. Louis area, as in many of America's cities, are more than 125 years old and are subject to structural failure. In 1981 alone, St. Louis had 4,000 sewer collapses and an astronomical repair bill. These and similar problems have been described as "a crisis of national proportions. The question addressed by this paper is how to detect unseen problem areas in sewer systems before they give way. At the present, progressive sewer administrations may use crawl crews to inspect sewers when problems are suspected. This can be extremely costly and dangerous, and a void around the outside of the sewer is often invisible from within. Thus, even a crawl crew can fail to detect most voids. Infrared Thermography has been found by sewer districts and independent evaluation engineering firms to be an extremely accurate method of finding sewer voids, before they can cause expensive and dangerous problems. This technique uses a non-contact, remote sensing method, with the potential for surveying large areas quickly and efficiently. This paper reviews our initial paper presented to The International Society for Optical Engineering in October of 1983 and presents an update of our experience, both successes and failures, in several large-scale void detection projects. Infrared Thermographic techniques of non-destructive testing will have major implications for cities and for the engineering profession because it promises to make the crisis of infrastructure repair and rehabilitation more manageable. Intelligent, systematic use of this relatively low cost void detection method, Infrared Thermography, may revolutionize the way sewer problems are handled in the future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tremaine, Diana; Douglas, Steven G.
2012-07-01
The Y-12 National Security Complex in Oak Ridge, TN has faced an ongoing challenge from mercury entrapped in soils beneath and adjacent to buildings, storm sewers, and process pipelines. Previous actions to reduce the quantity and/or mobilization of mercury-contaminated media have included plugging of building floor drains, cleaning of sediment and sludge from sumps, manholes, drain lines, and storm sewers, lining/relining of storm sewers and replacement of a portion of the storm sewer trunk line, re-routing and removal of process piping, and installation of the Central Mercury Treatment System to capture and treat contaminated sump water. Despite the success ofmore » these actions, mercury flux in the storm sewer out-falls that discharge to Upper East Fork Poplar Creek (UEFPC) continues to pose a threat to long-term water quality. A video camera survey of the storm sewer network revealed several sections of storm sewer that had large cracks, separations, swells, and accumulations of sediment/sludge and debris. The selected remedy was to clean and line the sections of storm sewer pipe that were determined to be primary contributors to the mercury flux in the storm sewer out-falls. The project, referred to as the West End Mercury Area (WEMA) Storm Sewer Remediation Project, included cleaning sediment and debris from over 2,460 meters of storm sewer pipe followed by the installation of nearly 366 meters of cure-in-place pipe (CIPP) liner. One of the greatest challenges to the success of this project was the high cost of disposal associated with the mercury-contaminated sludge and wastewater generated from the storm sewer cleaning process. A contractor designed and operated an on-site wastewater pre-treatment system that successfully reduced mercury levels in 191 cubic meters of sludge to levels that allowed it to be disposed at Nevada Nuclear Security Site (NNSS) disposal cell as a non-hazardous, low-level waste. The system was also effective at pre-treating over 1,514,000 liters of wastewater to levels that met the waste acceptance criteria for the on-site West End [wastewater] Treatment Facility (WETF). This paper describes the storm sewer cleaning and lining process and the methods used to process the mercury-contaminated sludge and wastewater, as well as several 'lessons learned' that would be relevant to any future projects involving storm sewer cleaning and debris remediation. (authors)« less
Application of a High-Fidelity Icing Analysis Method to a Model-Scale Rotor in Forward Flight
NASA Technical Reports Server (NTRS)
Narducci, Robert; Orr, Stanley; Kreeger, Richard E.
2012-01-01
An icing analysis process involving the loose coupling of OVERFLOW-RCAS for rotor performance prediction and with LEWICE3D for thermal analysis and ice accretion is applied to a model-scale rotor for validation. The process offers high-fidelity rotor analysis for the noniced and iced rotor performance evaluation that accounts for the interaction of nonlinear aerodynamics with blade elastic deformations. Ice accumulation prediction also involves loosely coupled data exchanges between OVERFLOW and LEWICE3D to produce accurate ice shapes. Validation of the process uses data collected in the 1993 icing test involving Sikorsky's Powered Force Model. Non-iced and iced rotor performance predictions are compared to experimental measurements as are predicted ice shapes.
75 FR 53342 - Notice of Lodging of Proposed Consent Decree Under the Clean Water Act
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-31
... including raw sewage from the City's sanitary sewer system and its separate storm sewer system, as well as a... remedial measures, including necessary upgrades to its sanitary sewer system and separate storm sewer system, over a period of approximately twelve years and at an estimated cost of approximately $50 million...
Korving, H; Clemens, F
2002-01-01
In recent years, decision analysis has become an important technique in many disciplines. It provides a methodology for rational decision-making allowing for uncertainties in the outcome of several possible actions to be undertaken. An example in urban drainage is the situation in which an engineer has to decide upon a major reconstruction of a system in order to prevent pollution of receiving waters due to CSOs. This paper describes the possibilities of Bayesian decision-making in urban drainage. In particular, the utility of monitoring prior to deciding on the reconstruction of a sewer system to reduce CSO emissions is studied. Our concern is with deciding whether a price should be paid for new information and which source of information is the best choice given the expected uncertainties in the outcome. The influence of specific uncertainties (sewer system data and model parameters) on the probability of CSO volumes is shown to be significant. Using Bayes' rule, to combine prior impressions with new observations, reduces the risks linked with the planning of sewer system reconstructions.
Sulam, Dennis J
1979-09-01
From the 195O's to the early 1970's expansion of sanitary sewerage in southwest Nassau County contributed to progressive declines in ground-water levels. Since the early 197O's, however, 10 years after the area was fully sewered, water levels have not declined significantly, which suggests that the water table may have reached a new equilibrium position. Double-mass-curve analyses show that during 1953-76 the average weighted ground-water levels in a 32-square-mile (83-square-kilometer) part of the sewered area declined 12.2 feet (3.73 meters) more than those in the unsewered area to the east. However, by 1973 this decline was 13.5 feet (4.1 meters). Finite-difference digital-model results indicate that 3.6 feet (1.1 meters) of the relative 1953-76 decline was due to pumping in adjacent Queens County and that most of the remaining decline was a result of sewerage. Streamflow within the sewered area decreased in response to the lowered ground-water levels, and ground-water levels in the adjacent unsewered area were also lowered because of the sewerage.
Analysis of the microbial communities on corroded concrete sewer pipes--a case study.
Vincke, E; Boon, N; Verstraete, W
2001-12-01
Conventional as well as molecular techniques have been used to determine the microbial communities present on the concrete walls of sewer pipes. The genetic fingerprint of the microbiota on corroded concrete sewer pipes was obtained by means of denaturing gradient gel electrophoresis (DGGE) of 16S rRNA gene fragments. The DGGE profiles of the bacterial communities present on the concrete surface changed as observed by shifts occurring at the level of the dominance of bands from non-corroded places to the most severely corroded places. By means of statistical tools, it was possible to distinguish two different groups, corresponding to the microbial communities on corroded and non-corroded surfaces, respectively. Characterization of the microbial communities indicated that the sequences of typical bands showed the highest level of identity to sequences from the bacterial strains Thiobacillus thiooxidans, Acidithiobacillus sp., Mycobacterium sp. and different heterotrophs belonging to the alpha-, beta- and gamma-Proteobacteria, Acidobacteria and Actinobacteria. In addition, the presence of N-acyl-homoserine lactone signal molecules was shown by two bio-assays of the biofilm on the concrete under the water level and at the most severely corroded places on the concrete surface of the sewer pipe.
46 CFR 153.408 - Tank overflow control.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Tank overflow control. 153.408 Section 153.408 Shipping... Systems § 153.408 Tank overflow control. (a) When table 1 references this section, a cargo containment... the tank (automatic shutdown system). (b) The high level alarm and the cargo overflow alarm or...
76 FR 13572 - Proposed Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-14
.... Specifically, it addresses the following flooding sources: Left Bank Overflow Main Stem Skagit River, Left Bank Overflow Main Stem Skagit River/South Fork Skagit River, Left Bank Overflow North Fork Skagit River, Main Stem Skagit River, North Fork Skagit River, Overflow from the Main Stem Skagit River between the North...
Sulfide and methane production in sewer sediments.
Liu, Yiwen; Ni, Bing-Jie; Ganigué, Ramon; Werner, Ursula; Sharma, Keshab R; Yuan, Zhiguo
2015-03-01
Recent studies have demonstrated significant sulfide and methane production by sewer biofilms, particularly in rising mains. Sewer sediments in gravity sewers are also biologically active; however, their contribution to biological transformations in sewers is poorly understood at present. In this study, sediments collected from a gravity sewer were cultivated in a laboratory reactor fed with real wastewater for more than one year to obtain intact sediments. Batch test results show significant sulfide production with an average rate of 9.20 ± 0.39 g S/m(2)·d from the sediments, which is significantly higher than the areal rate of sewer biofilms. In contrast, the average methane production rate is 1.56 ± 0.14 g CH4/m(2)·d at 20 °C, which is comparable to the areal rate of sewer biofilms. These results clearly show that the contributions of sewer sediments to sulfide and methane production cannot be ignored when evaluating sewer emissions. Microsensor and pore water measurements of sulfide, sulfate and methane in the sediments, microbial profiling along the depth of the sediments and mathematical modelling reveal that sulfide production takes place near the sediment surface due to the limited penetration of sulfate. In comparison, methane production occurs in a much deeper zone below the surface likely due to the better penetration of soluble organic carbon. Modelling results illustrate the dependency of sulfide and methane productions on the bulk sulfate and soluble organic carbon concentrations can be well described with half-order kinetics. Copyright © 2014 Elsevier Ltd. All rights reserved.
Tree root intrusion in sewer systems: A review of extent and costs
T.B. Randrup; E.G. McPherson; L.R. Costello
2001-01-01
Interference between trees and sewer systems is likely to occur in old systems and in cracked pipes. Factors that contribute to damage include old pipes with joints, shallow pipes, small-dimension pipes, and fast-growing tree species. Because roots are reported to cause >50% of all sewer blockages, costs associated with root removal from sewers is substantial. In...
Choi, Il; Lee, Hyunjoo; Shin, Joungdu; Kim, Hyunook
2012-01-01
Sewer odors have been a concern to citizens of the Metropolitan Seoul region, which has installed combined sewer systems (CSSs) in 86% of its area. Although a variety of odorants are released from sewers, volatile sulfur compounds (VSCs) have been recognized as major ones. A number of technologies have been proposed to monitor or control odors from sewers. One of the most popular strategies adopted for the control of sewage odor is by applying a commercial odor-reducing agent into the sewer. In this study, the effectiveness of five different commercial odor-reducing agents (i.e., an odor masking agent, an alkaline solution, two microbial agents, and a chemical oxidant) was evaluated by continuously monitoring VSCs released from the sewer with an on-line total reduced sulfur (TRS) analyzer before and after each agent was sprayed into CSSs at five different locations of the city. In short, when the effectiveness of odor treatment was tested in the sewer system using five commercial odor reducing treatments, only the chemical oxidant was good enough to reduce the odor in terms of TRS levels measured before and after the application (p < 0.01). PMID:23223148
Fibre-optic distributed temperature sensing in combined sewer systems.
Schilperoort, R P S; Clemens, F H L R
2009-01-01
This paper introduces the application of fibre-optic distributed temperature sensing (DTS) in combined sewer systems. The DTS-technique uses a fibre-optic cable that is inserted into a combined sewer system in combination with a laser instrument that performs measurements and logs the data. The DTS-technique allows monitoring in-sewer temperatures with dense spatial and temporal resolutions. The installation of a fibre-optic cable in a combined sewer system has proven feasible. The use of a single instrument in an easy accessible and safe location that can simultaneously monitor up to several hundreds of monitoring locations makes the DTS set-up easy in use and nearly free of maintenance. Temperature data from a one-week monitoring campaign in an 1,850 m combined sewer system shows the level of detail with which in-sewer processes that affect wastewater temperatures can be studied. Individual discharges from house-connections can be tracked in time and space. With a dedicated cable configuration the confluence of wastewater flows can be observed with a potential to derive the relative contributions of contributary flows to a total flow. Also, the inflow and in-sewer propagation of stormwater can be monitored.
NASA Astrophysics Data System (ADS)
Haris, H.; Chow, M. F.; Usman, F.; Sidek, L. M.; Roseli, Z. A.; Norlida, M. D.
2016-03-01
Urbanization is growing rapidly in Malaysia. Rapid urbanization has known to have several negative impacts towards hydrological cycle due to decreasing of pervious area and deterioration of water quality in stormwater runoff. One of the negative impacts of urbanization is the congestion of the stormwater drainage system and this situation leading to flash flood problem and water quality degradation. There are many urban stormwater management softwares available in the market such as Storm Water Drainage System design and analysis program (DRAINS), Urban Drainage and Sewer Model (MOUSE), InfoWorks River Simulation (InfoWork RS), Hydrological Simulation Program-Fortran (HSPF), Distributed Routing Rainfall-Runoff Model (DR3M), Storm Water Management Model (SWMM), XP Storm Water Management Model (XPSWMM), MIKE-SWMM, Quality-Quantity Simulators (QQS), Storage, Treatment, Overflow, Runoff Model (STORM), and Hydrologic Engineering Centre-Hydrologic Modelling System (HEC-HMS). In this paper, we are going to discuss briefly about several softwares and their functionality, accessibility, characteristics and components in the quantity analysis of the hydrological design software and compare it with MSMA Design Aid and Database. Green Infrastructure (GI) is one of the main topics that has widely been discussed all over the world. Every development in the urban area is related to GI. GI can be defined as green area build in the develop area such as forest, park, wetland or floodway. The role of GI is to improve life standard such as water filtration or flood control. Among the twenty models that have been compared to MSMA SME, ten models were selected to conduct a comprehensive review for this study. These are known to be widely accepted by water resource researchers. These ten tools are further classified into three major categories as models that address the stormwater management ability of GI in terms of quantity and quality, models that have the capability of conducting the economic analysis of GI and models that can address both stormwater management and economic aspects together.
Zhang, Ziyang; Li, Kun; Zhang, Xiaoran; Li, Haiyan
2017-07-01
In this work, dissolved organic matter (DOM) was extracted from storm sewer sediments collected in four typical regions (residential, campus, traffic and business regions) in Beijing, China. The basic characteristics of DOM were analyzed by UV-visible spectroscopy (UV-Vis), excitation-emission matrix Fluorescence Spectroscopy and Fourier Transform Infrared Spectroscopy. Furthermore, the complexation between DOM and Cu(II) were investigated. The results showed that there were large amount of aromatic structure in the DOM extracted from storm sewer sediments. The microbial activities had also made a contribution to the DOM in storm sewer sediments. The composition of DOM influenced the complexing capacity of Cu(II) greatly, which may be attributed to the protein-like and humic-like substances in storm sewer sediments. This study demonstrated valuable information on the structure present in the DOM of storm sewer sediments and provided new insight for exploring the relationship between DOM and co-existing heavy metals in storm sewer sediments.
Thai, Phong K; O'Brien, Jake; Jiang, Guangming; Gernjak, Wolfgang; Yuan, Zhiguo; Eaglesham, Geoff; Mueller, Jochen F
2014-05-15
Creatinine was proposed to be used as a population normalising factor in sewage epidemiology but its stability in the sewer system has not been assessed. This study thus aimed to evaluate the fate of creatinine under different sewer conditions using laboratory sewer reactors. The results showed that while creatinine was stable in wastewater only, it degraded quickly in reactors with the presence of sewer biofilms. The degradation followed first order kinetics with significantly higher rate in rising main condition than in gravity sewer condition. Additionally, daily loads of creatinine were determined in wastewater samples collected on Census day from 10 wastewater treatment plants around Australia. The measured loads of creatinine from those samples were much lower than expected and did not correlate with the populations across the sampled treatment plants. The results suggested that creatinine may not be a suitable biomarker for population normalisation purpose in sewage epidemiology, especially in sewer catchment with high percentage of rising mains. Copyright © 2014 Elsevier Ltd. All rights reserved.
Rapidly solidified titanium alloys by melt overflow
NASA Technical Reports Server (NTRS)
Gaspar, Thomas A.; Bruce, Thomas J., Jr.; Hackman, Lloyd E.; Brasmer, Susan E.; Dantzig, Jonathan A.; Baeslack, William A., III
1989-01-01
A pilot plant scale furnace was designed and constructed for casting titanium alloy strips. The furnace combines plasma arc skull melting techniques with melt overflow rapid solidification technology. A mathematical model of the melting and casting process was developed. The furnace cast strip of a suitable length and width for use with honeycomb structures. Titanium alloys Ti-6Al-4V and Ti-14Al-21 Nb were successfully cast into strips. The strips were evaluated by optical metallography, microhardness measurements, chemical analysis, and cold rolling.
;height:auto;overflow:hidden}.poc_table .top_row{background-color:#eee;height:auto;overflow:hidden}.poc_table ;background-color:#FFF;height:auto;overflow:hidden;border-top:1px solid #ccc}.poc_table .main_row .name :200px;padding:5px;height:auto;overflow:hidden}.tli_grey_box{background-color:#eaeaea;text-align:center
Field data analysis of active chlorine-containing stormwater samples.
Zhang, Qianyi; Gaafar, Mohamed; Yang, Rong-Cai; Ding, Chen; Davies, Evan G R; Bolton, James R; Liu, Yang
2018-01-15
Many municipalities in Canada and all over the world use chloramination for drinking water secondary disinfection to avoid DBPs formation from conventional chlorination. However, the long-lasting monochloramine (NH 2 Cl) disinfectant can pose a significant risk to aquatic life through its introduction into municipal storm sewer systems and thus fresh water sources by residential, commercial, and industrial water uses. To establish general total active chlorine (TAC) concentrations in discharges from storm sewers, the TAC concentration was measured in stormwater samples in Edmonton, Alberta, Canada, during the summers of 2015 and 2016 under both dry and wet weather conditions. The field-sampling results showed TAC concentration variations from 0.02 to 0.77 mg/L in summer 2015, which exceeds the discharge effluent limit of 0.02 mg/L. As compared to 2015, the TAC concentrations were significantly lower during the summer 2016 (0-0.24 mg/L), for which it is believed that the higher precipitation during summer 2016 reduced outdoor tap water uses. Since many other cities also use chloramines as disinfectants for drinking water disinfection, the TAC analysis from Edmonton may prove useful for other regions as well. Other physicochemical and biological characteristics of stormwater and storm sewer biofilm samples were also analyzed, and no significant difference was found during these two years. Higher density of AOB and NOB detected in the storm sewer biofilm of residential areas - as compared with other areas - generally correlated to high concentrations of ammonium and nitrite in this region in both of the two years, and they may have contributed to the TAC decay in the storm sewers. The NH 2 Cl decay laboratory experiments illustrate that dissolved organic carbon (DOC) concentration is the dominant factor in determining the NH 2 Cl decay rate in stormwater samples. The high DOC concentrations detected from a downstream industrial sampling location may contribute to a high stormwater NH 2 Cl decay rate in this area. Copyright © 2017 Elsevier Ltd. All rights reserved.
On the occurrence of rainstorm damage based on home insurance and weather data
NASA Astrophysics Data System (ADS)
Spekkers, M. H.; Clemens, F. H. L. R.; ten Veldhuis, J. A. E.
2014-08-01
Rainstorm damage caused by malfunctioning of urban drainage systems and water intrusion due to defects in the building envelope can be considerable. Little research on this topic focused on the collection of damage data, the understanding of damage mechanisms and the deepening of data analysis methods. In this paper, the relative contribution of different failure mechanisms to the occurrence of rainstorm damage are investigated, as well as the extent to which these mechanisms relate to weather variables. For a case study in Rotterdam, the Netherlands, a property level home insurance database of around 3100 water-related damage claims was analysed. Records include comprehensive transcripts of communication between insurer, insured and damage assessment experts, which allowed claims to be classified according to their actual damage cause. Results show that roof and wall leakage is the most frequent failure mechanism causing precipitation-related claims, followed by blocked roof gutters, melting snow and sewer flooding. Claims related to sewer flooding were less present in the data, but are associated with significantly larger claim sizes than claims in the majority class, i.e. roof and wall leakages. Rare events logistic regression analysis revealed that maximum rainfall intensity and rainfall volume are significant predictors for the occurrence probability of precipitation-related claims. Moreover, it was found that claims associated with rainfall intensities smaller than 7-8 mm in a 60 min window are mainly related to failures processes in the private domain, such as roof and wall leakages. For rainfall events that exceed the 7-8 mm h-1 threshold, failure of systems in the public domain, such as sewer systems, start to contribute considerably to the overall occurrence probability of claims. The communication transcripts, however, lacked information to be conclusive about to extent to which sewer-related claims were caused by overloading of sewer systems or failure of system components.
On the occurrence of rainstorm damage based on home insurance and weather data
NASA Astrophysics Data System (ADS)
Spekkers, M. H.; Clemens, F. H. L. R.; ten Veldhuis, J. A. E.
2015-02-01
Rainstorm damage caused by the malfunction of urban drainage systems and water intrusion due to defects in the building envelope can be considerable. Little research on this topic focused on the collection of damage data, the understanding of damage mechanisms and the deepening of data analysis methods. In this paper, the relative contribution of different failure mechanisms to the occurrence of rainstorm damage is investigated, as well as the extent to which these mechanisms relate to weather variables. For a case study in Rotterdam, the Netherlands, a property level home insurance database of around 3100 water-related damage claims was analysed. The records include comprehensive transcripts of communication between insurer, insured and damage assessment experts, which allowed claims to be classified according to their actual damage cause. The results show that roof and wall leakage is the most frequent failure mechanism causing precipitation-related claims, followed by blocked roof gutters, melting snow and sewer flooding. Claims related to sewer flooding were less present in the data, but are associated with significantly larger claim sizes than claims in the majority class, i.e. roof and wall leakages. Rare events logistic regression analysis revealed that maximum rainfall intensity and rainfall volume are significant predictors for the occurrence probability of precipitation-related claims. Moreover, it was found that claims associated with rainfall intensities smaller than 7-8 mm in a 60-min window are mainly related to failure processes in the private domain, such as roof and wall leakages. For rainfall events that exceed the 7-8 mm h-1 threshold, the failure of systems in the public domain, such as sewer systems, start to contribute considerably to the overall occurrence probability of claims. The communication transcripts, however, lacked information to be conclusive about to which extent sewer-related claims were caused by overloading of sewer systems or failure of system components.
Analyzing a 35-Year Hourly Data Record: Why So Difficult?
NASA Technical Reports Server (NTRS)
Lynnes, Chris
2014-01-01
At the Goddard Distributed Active Archive Center, we have recently added a 35-Year record of output data from the North American Land Assimilation System (NLDAS) to the Giovanni web-based analysis and visualization tool. Giovanni (Geospatial Interactive Online Visualization ANd aNalysis Infrastructure) offers a variety of data summarization and visualization to users that operate at the data center, obviating the need for users to download and read the data themselves for exploratory data analysis. However, the NLDAS data has proven surprisingly resistant to application of the summarization algorithms. Algorithms that were perfectly happy analyzing 15 years of daily satellite data encountered limitations both at the algorithm and system level for 35 years of hourly data. Failures arose, sometimes unexpectedly, from command line overflows, memory overflows, internal buffer overflows, and time-outs, among others. These serve as an early warning sign for the problems likely to be encountered by the general user community as they try to scale up to Big Data analytics. Indeed, it is likely that more users will seek to perform remote web-based analysis precisely to avoid the issues, or the need to reprogram around them. We will discuss approaches to mitigating the limitations and the implications for data systems serving the user communities that try to scale up their current techniques to analyze Big Data.
Development of Sediment Deposition Height Capacity Equation in Sewer Networks
NASA Astrophysics Data System (ADS)
Song, Yangho; Jo, Deokjun; Lee, Jungho
2017-04-01
Sediment characteristics and transport processes in sewers are markedly different from river. There is a wide range of particle densities and smaller particle size variation in sewers. Sediment supply and the available erodible material are more limited in sewers, and the diverse hydraulic characteristics in sewer systems are more unsteady. Prevention of sewer sediment accumulation, which can cause major sewer operational problems, is imperative and has been an immense concern for engineers. The effects of sediment formation in sewer systems, an appropriate sediment transport modelling with the ability to determine the location and depth of sediment deposit is needed. It is necessary to design efficiently considering the transfer and settling phenomena of the sediment coming into the sewer systems. During transport in the sewer, the minimum shear flow velocity and possible shear stress at which the sediment is transported smoothly. However, the interaction of sediment and fluid within the sewer systems has been very complex and the rigorous theoretical handling of this problem has not been developed. It is derived from the empirical values obtained from the river bed. The basic theory that particles float is based on the balance between sedimentation of particles by gravity and turbulent diffusion of fluids. There are many variables related. Representative parameters include complex phenomena due to collisions between particles, particles and fluids, and interactions between particles and tube walls. In general, the main parameters that form the boundary between the main transport and sediment are particle size, density, volume fraction, pipe diameter and gravity. As the particle size and volume concentration increase, the minimum feed rate increases and the same tendency is observed for the change of the capillary diameter. Based on this tendency, this study has developed a sediment deposition height capacity formula to take into consideration the sewer discharge capacity. The main objective in undertaking this research is the assessment of the sediment scouring and transporting capacity of the discharged. Acknowledgements This research was supported by a grant(13AWMP-B066744-01) from Advanced Water Management Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government.
The Ecology of Acidophilic Microorganisms in the Corroding Concrete Sewer Environment
Li, Xuan; Kappler, Ulrike; Jiang, Guangming; Bond, Philip L.
2017-01-01
Concrete corrosion is one of the most significant problems affecting valuable sewer infrastructure on a global scale. This problem occurs in the aerobic zone of the sewer, where a layer of surface corrosion develops on the exposed concrete and the surface pH is typically lowered from around 11–10 (pristine concrete) to pH 2–4. Acidophilic microorganisms become established as biofilms within the concrete corrosion layer and enhance the loss of concrete mass. Until recently, the acidophilic community was considered to comprise relatively few species of microorganisms, however, the biodiversity of the corrosion community is now recognized as being extensive and varying from different sewer environmental conditions. The diversity of acidophiles in the corrosion communities includes chemolithoautotrophs, chemolithoheterotrophs, and chemoorganoheterotrophs. The activity of these microorganisms is strongly affected by H2S levels in the sewer gas phase, although CO2, organic matter, and iron in the corrosion layer influence this acidic ecosystem. This paper briefly presents the conditions within the sewer that lead to the development of concrete corrosion in that environment. The review focuses on the acidophilic microorganisms detected in sewer corrosion environments, and then summarizes their proposed functions and physiology, especially in relation to the corrosion process. To our knowledge, this is the first review of acidophilic corrosion microbial communities, in which, the ecology and the environmental conditions (when available) are considered. Ecological studies of sewer corrosion are limited, however, where possible, we summarize the important metabolic functions of the different acidophilic species detected in sewer concrete corrosion layers. It is evident that microbial functions in the acidic sewer corrosion environment can be linked to those occurring in the analogous acidic environments of acid mine drainage and bioleaching. PMID:28473816
The Ecology of Acidophilic Microorganisms in the Corroding Concrete Sewer Environment.
Li, Xuan; Kappler, Ulrike; Jiang, Guangming; Bond, Philip L
2017-01-01
Concrete corrosion is one of the most significant problems affecting valuable sewer infrastructure on a global scale. This problem occurs in the aerobic zone of the sewer, where a layer of surface corrosion develops on the exposed concrete and the surface pH is typically lowered from around 11-10 (pristine concrete) to pH 2-4. Acidophilic microorganisms become established as biofilms within the concrete corrosion layer and enhance the loss of concrete mass. Until recently, the acidophilic community was considered to comprise relatively few species of microorganisms, however, the biodiversity of the corrosion community is now recognized as being extensive and varying from different sewer environmental conditions. The diversity of acidophiles in the corrosion communities includes chemolithoautotrophs, chemolithoheterotrophs, and chemoorganoheterotrophs. The activity of these microorganisms is strongly affected by H 2 S levels in the sewer gas phase, although CO 2 , organic matter, and iron in the corrosion layer influence this acidic ecosystem. This paper briefly presents the conditions within the sewer that lead to the development of concrete corrosion in that environment. The review focuses on the acidophilic microorganisms detected in sewer corrosion environments, and then summarizes their proposed functions and physiology, especially in relation to the corrosion process. To our knowledge, this is the first review of acidophilic corrosion microbial communities, in which, the ecology and the environmental conditions (when available) are considered. Ecological studies of sewer corrosion are limited, however, where possible, we summarize the important metabolic functions of the different acidophilic species detected in sewer concrete corrosion layers. It is evident that microbial functions in the acidic sewer corrosion environment can be linked to those occurring in the analogous acidic environments of acid mine drainage and bioleaching.
[Research on pollution load of sediments in storm sewer in Beijing district].
Li, Hai-Yan; Xu, Bo-Ping; Xu, Shang-Ling; Cui, Shuang
2013-03-01
Based on the investigation of sewer sediments in Xi Cheng district in Beijing, scour-release pollution load in one rainfall from sewer sediments was studied by monitoring the pollutants in the run-off of manhole's section. It was shown that the contribution of scour-release pollutants from sewer sediments to sewer outflow was obvious. The contribution rate of the sediments pollution load to runoff outflow in the 84 m pipeline in one rainfall (9 Jul., 2010) was as follows: TN 8.5%, TP 8.2%, COD 18.3%, SS 7.7%, respectively. And the pollutant contribution rate in the 295 m pipeline in another rainfall (4 Aug., 2010) was TN 23.12%, TP 60.01%, COD 33.78%, SS 31.89%. Therefore, it is important to control the pollution from sewer sediments for the improvement of water environment.
Prioritizing sewer rehabilitation projects using AHP-PROMETHEE II ranking method.
Kessili, Abdelhak; Benmamar, Saadia
2016-01-01
The aim of this paper is to develop a methodology for the prioritization of sewer rehabilitation projects for Algiers (Algeria) sewer networks to support the National Sanitation Office in its challenge to make decisions on prioritization of sewer rehabilitation projects. The methodology applies multiple-criteria decision making. The study includes 47 projects (collectors) and 12 criteria to evaluate them. These criteria represent the different issues considered in the prioritization of the projects, which are structural, hydraulic, environmental, financial, social and technical. The analytic hierarchy process (AHP) is used to determine weights of the criteria and the Preference Ranking Organization Method for Enrichment Evaluations (PROMETHEE II) method is used to obtain the final ranking of the projects. The model was verified using the sewer data of Algiers. The results have shown that the method can be used for prioritizing sewer rehabilitation projects.
Peng, Liying; Jiang, Dandan; Wang, Zhenxin; Hua, Lei; Li, Haiyang
2016-06-01
Malodorous hydrogen sulfide (H2S) gas often exists in the sewer system and associates with the problems of releasing the dangerous odor to the atmosphere and causing sewer pipe to be corroded. A simple method is in demand for real-time measuring H2S level in the sewer gas. In this paper, an innovated method based on dopant-assisted negative photoionization ion mobility spectrometry (DANP-IMS) with on-line semiconductor cooling inlet was put forward and successfully applied for the real-time measurement of H2S in sewer gas. The influence of moisture was effectively reduced via an on-line cooling method and a non-equilibrium dilution with drift gas. The limits of quantitation for the H2S in ≥60% relative humidity air could be obtained at ≤79.0ng L(-1) with linear ranges of 129-2064ng L(-1). The H2S concentration in a sewer manhole was successfully determined while its product ions were identified by an ion-mobility time-of-fight mass spectrometry. Finally, the correlation between sewer H2S concentration and the daily routines and habits of residents was investigated through hourly or real-time monitoring the variation of sewer H2S in manholes, indicating the power of this DANP-IMS method in assessing the H2S concentration in sewer system. Copyright © 2016 Elsevier B.V. All rights reserved.
1999-11-01
Drinking water processing plant , Analysis, Calculation model, Field experiment 16. PRICE CODE 17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION...sewage effluents and from the sewer of the municipal sewage treatment plant in Berlin-Ruhleben. In the field trials, the MDWPUs that both apply reverse...waste water samples, along the municipal sewer system and In the influents and effluents of the receiving sewage treatment plants . To estimate the
Wilkison, Donald H.; Armstrong, Daniel J.; Brown, Rebecca E.; Poulton, Barry C.; Cahill, Jeffrey D.; Zaugg, Steven D.
2005-01-01
This report presents water-quality and biologic data collected in the Blue River Basin, metropolitan Kansas City, Missouri and Kansas, from October 2000 to October 2004. Data were collected in cooperation with the city of Kansas City, Missouri, Water Services Department as part of an ongoing study designed to characterize long-term water-quality trends in the basin and to provide data to support a strategy for combined sewer overflow control. These data include values of physical properties, fecal indicator bacteria densities, suspended sediment, and concentrations of major ions, nutrients, trace elements, organic wastewater compounds, and pharmaceutical compounds in base-flow and stormflow stream samples and bottom sediments. Six surface-water sites in the basin were sampled 13 times during base-flow conditions and during a minimum of 7 storms. Benthic macroinvertebrate communities are described at 10 sites in the basin and 1 site outside the basin. Water-column and bottom-sediment data from impounded reaches of Brush Creek are provided. Continuous specific conductance, pH, water-quality temperature, turbidity, and dissolved oxygen data are provided for two streams-the Blue River and Brush Creek. Sampling, analytical, and quality assurance methods used in data collection during the study also are described in the report.
A Random Forest Approach to Predict the Spatial Distribution ...
Modeling the magnitude and distribution of sediment-bound pollutants in estuaries is often limited by incomplete knowledge of the site and inadequate sample density. To address these modeling limitations, a decision-support tool framework was conceived that predicts sediment contamination from the sub-estuary to broader estuary extent. For this study, a Random Forest (RF) model was implemented to predict the distribution of a model contaminant, triclosan (5-chloro-2-(2,4-dichlorophenoxy)phenol) (TCS), in Narragansett Bay, Rhode Island, USA. TCS is an unregulated contaminant used in many personal care products. The RF explanatory variables were associated with TCS transport and fate (proxies) and direct and indirect environmental entry. The continuous RF TCS concentration predictions were discretized into three levels of contamination (low, medium, and high) for three different quantile thresholds. The RF model explained 63% of the variance with a minimum number of variables. Total organic carbon (TOC) (transport and fate proxy) was a strong predictor of TCS contamination causing a mean squared error increase of 59% when compared to permutations of randomized values of TOC. Additionally, combined sewer overflow discharge (environmental entry) and sand (transport and fate proxy) were strong predictors. The discretization models identified a TCS area of greatest concern in the northern reach of Narragansett Bay (Providence River sub-estuary), which was validated wi
Scheurer, Marco; Nödler, Karsten; Freeling, Finnian; Janda, Joachim; Happel, Oliver; Riegel, Marcel; Müller, Uwe; Storck, Florian Rüdiger; Fleig, Michael; Lange, Frank Thomas; Brunsch, Andrea; Brauch, Heinz-Jürgen
2017-12-01
Elevated concentrations of trifluoroacetate (TFA) of more than 100 μg/L in a major German river led to the occurrence of more than 20 μg/L TFA in bank filtration based tap waters. Several spatially resolved monitoring programs were conducted and discharges from an industrial company were identified as the point source of TFA contamination. Treatment options for TFA removal were investigated at full-scale waterworks and in laboratory batch tests. Commonly applied techniques like ozonation or granulated activated carbon filtration are inappropriate for TFA removal, whereas TFA was partly removed by ion exchange and completely retained by reverse osmosis. Further investigations identified wastewater treatment plants (WWTPs) as additional TFA dischargers into the aquatic environment. TFA was neither removed by biological wastewater treatment, nor by a retention soil filter used for the treatment of combined sewer overflows. WWTP influents can even bear a TFA formation potential, when appropriate CF 3 -containing precursors are present. Biological degradation and ozonation batch experiments with chemicals of different classes (flurtamone, fluopyram, tembotrione, flufenacet, fluoxetine, sitagliptine and 4:2 fluorotelomer sulfonate) proved that there are yet overlooked sources and pathways of TFA, which need to be addressed in the future. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lockaby, Graeme; Noori, Navideh; Morse, Wayde; Zipperer, Wayne; Kalin, Latif; Governo, Robin; Sawant, Rajesh; Ricker, Matthew
2016-12-01
The integrated effects of the many risk factors associated with West Nile virus (WNV) incidence are complex and not well understood. We studied an array of risk factors in and around Atlanta, GA, that have been shown to be linked with WNV in other locations. This array was comprehensive and included climate and meteorological metrics, vegetation characteristics, land use / land cover analyses, and socioeconomic factors. Data on mosquito abundance and WNV mosquito infection rates were obtained for 58 sites and covered 2009-2011, a period following the combined storm water - sewer overflow remediation in that city. Risk factors were compared to mosquito abundance and the WNV vector index (VI) using regression analyses individually and in combination. Lagged climate variables, including soil moisture and temperature, were significantly correlated (positively) with vector index as were forest patch size and percent pine composition of patches (both negatively). Socioeconomic factors that were most highly correlated (positively) with the VI included the proportion of low income households and homes built before 1960 and housing density. The model selected through stepwise regression that related risk factors to the VI included (in the order of decreasing influence) proportion of houses built before 1960, percent of pine in patches, and proportion of low income households. © 2016 The Society for Vector Ecology.
Accuracy Analysis and Parameters Optimization in Urban Flood Simulation by PEST Model
NASA Astrophysics Data System (ADS)
Keum, H.; Han, K.; Kim, H.; Ha, C.
2017-12-01
The risk of urban flooding has been increasing due to heavy rainfall, flash flooding and rapid urbanization. Rainwater pumping stations, underground reservoirs are used to actively take measures against flooding, however, flood damage from lowlands continues to occur. Inundation in urban areas has resulted in overflow of sewer. Therefore, it is important to implement a network system that is intricately entangled within a city, similar to the actual physical situation and accurate terrain due to the effects on buildings and roads for accurate two-dimensional flood analysis. The purpose of this study is to propose an optimal scenario construction procedure watershed partitioning and parameterization for urban runoff analysis and pipe network analysis, and to increase the accuracy of flooded area prediction through coupled model. The establishment of optimal scenario procedure was verified by applying it to actual drainage in Seoul. In this study, optimization was performed by using four parameters such as Manning's roughness coefficient for conduits, watershed width, Manning's roughness coefficient for impervious area, Manning's roughness coefficient for pervious area. The calibration range of the parameters was determined using the SWMM manual and the ranges used in the previous studies, and the parameters were estimated using the automatic calibration method PEST. The correlation coefficient showed a high correlation coefficient for the scenarios using PEST. The RPE and RMSE also showed high accuracy for the scenarios using PEST. In the case of RPE, error was in the range of 13.9-28.9% in the no-parameter estimation scenarios, but in the scenario using the PEST, the error range was reduced to 6.8-25.7%. Based on the results of this study, it can be concluded that more accurate flood analysis is possible when the optimum scenario is selected by determining the appropriate reference conduit for future urban flooding analysis and if the results is applied to various rainfall event scenarios and parameter optimization. Keywords: Parameters Optimization; PEST model; Urban area Acknowledgement This research was supported by a grant (17AWMP-B079625-04) from Water Management Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government.
Karpf, Christian; Krebs, Peter
2011-05-01
The management of sewer systems requires information about discharge and variability of typical wastewater sources in urban catchments. Especially the infiltration of groundwater and the inflow of surface water (I/I) are important for making decisions about the rehabilitation and operation of sewer networks. This paper presents a methodology to identify I/I and estimate its quantity. For each flow fraction in sewer networks, an individual model approach is formulated whose parameters are optimised by the method of least squares. This method was applied to estimate the contributions to the wastewater flow in the sewer system of the City of Dresden (Germany), where data availability is good. Absolute flows of I/I and their temporal variations are estimated. Further information on the characteristics of infiltration is gained by clustering and grouping sewer pipes according to the attributes construction year and groundwater influence and relating these resulting classes to infiltration behaviour. Further, it is shown that condition classes based on CCTV-data can be used to estimate the infiltration potential of sewer pipes. Copyright © 2011 Elsevier Ltd. All rights reserved.
On the Other Hand: Overflow Movements of Infants’ Hands and Legs During Unimanual Object Exploration
Soska, Kasey C.; Galeon, Margaret A.; Adolph, Karen E.
2011-01-01
Motor overflow is extraneous movement in a limb not involved in a motor action. Typically, overflow is observed in people with neurological impairments and in healthy children and adults during strenuous and attention-demanding tasks. In the current study, we found that young infants produce vast amounts of motor overflow, corroborating claims of symmetry being the default state of the motor system. While manipulating an object with one hand, all 27 of the typically-developing 4.5- to 7.5-month-old infants who we observed displayed overflow movements of the free hand (on 4/5 of unimanual actions). Mirror-image movements of the hands occurred on 1/8 of unimanual actions, and the hands and legs moved in synchrony on 1/3 of unimanual acts. Motor overflow was less frequent when infants were in a sitting posture and when infants watched their acting hand, suggesting that upright posture and visual examination may help to alleviate overflow and break obligatory symmetry in healthy infants. PMID:22487940
Modelling the viability of heat recovery from combined sewers.
Abdel-Aal, M; Smits, R; Mohamed, M; De Gussem, K; Schellart, A; Tait, S
2014-01-01
Modelling of wastewater temperatures along a sewer pipe using energy balance equations and assuming steady-state conditions was achieved. Modelling error was calculated, by comparing the predicted temperature drop to measured ones in three combined sewers, and was found to have an overall root mean squared error of 0.37 K. Downstream measured wastewater temperature was plotted against modelled values; their line gradients were found to be within the range of 0.9995-1.0012. The ultimate aim of the modelling is to assess the viability of recovering heat from sewer pipes. This is done by evaluating an appropriate location for a heat exchanger within a sewer network that can recover heat without impacting negatively on the downstream wastewater treatment plant (WWTP). Long sewers may prove to be more viable for heat recovery, as heat lost can be reclaimed before wastewater reaching the WWTP.
Simulation of sulfide buildup in wastewater and atmosphere of sewer networks.
Nielsen, A H; Yongsiri, C; Hvitved-Jacobsen, T; Vollertsen, J
2005-01-01
A model concept for prediction of sulfide buildup in sewer networks is presented. The model concept is an extension to--and a further development of--the WATS model (Wastewater Aerobic-anaerobic Transformations in Sewers), which has been developed by Hvitved-Jacobsen and co-workers at Aalborg University. In addition to the sulfur cycle, the WATS model simulates changes in dissolved oxygen and carbon fractions of different biodegradability. The sulfur cycle was introduced via six processes: 1. sulfide production taking place in the biofilm covering the permanently wetted sewer walls; 2. biological sulfide oxidation in the permanently wetted biofilm; 3. chemical and biological sulfide oxidation in the water phase; 4. sulfide precipitation with metals present in the wastewater; 5. emission of hydrogen sulfide to the sewer atmosphere and 6. adsorption and oxidation of hydrogen sulfide on the moist sewer walls where concrete corrosion may take place.
Vacuum Flushing of Sewer Solids
The vacuum sewer and tank cleaning (flushing) technology removes sewer solids from urban drainage systems, such as storage tanks and pipes. This technology is both effective and inexpensive. In addition, it can be considered a true green technology. It operates under atmospheri...
CFD Based Computations of Flexible Helicopter Blades for Stability Analysis
NASA Technical Reports Server (NTRS)
Guruswamy, Guru P.
2011-01-01
As a collaborative effort among government aerospace research laboratories an advanced version of a widely used computational fluid dynamics code, OVERFLOW, was recently released. This latest version includes additions to model flexible rotating multiple blades. In this paper, the OVERFLOW code is applied to improve the accuracy of airload computations from the linear lifting line theory that uses displacements from beam model. Data transfers required at every revolution are managed through a Unix based script that runs jobs on large super-cluster computers. Results are demonstrated for the 4-bladed UH-60A helicopter. Deviations of computed data from flight data are evaluated. Fourier analysis post-processing that is suitable for aeroelastic stability computations are performed.
40 CFR 35.927-1 - Infiltration/inflow analysis.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Infiltration/inflow analysis. 35.927-1... Infiltration/inflow analysis. (a) The infiltration/inflow analysis shall demonstrate the nonexistence or possible existence of excessive infiltration/inflow in the sewer system. The analysis should identify the...
40 CFR 35.927-1 - Infiltration/inflow analysis.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Infiltration/inflow analysis. 35.927-1... Infiltration/inflow analysis. (a) The infiltration/inflow analysis shall demonstrate the nonexistence or possible existence of excessive infiltration/inflow in the sewer system. The analysis should identify the...
40 CFR 35.927-1 - Infiltration/inflow analysis.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 1 2013-07-01 2013-07-01 false Infiltration/inflow analysis. 35.927-1... Infiltration/inflow analysis. (a) The infiltration/inflow analysis shall demonstrate the nonexistence or possible existence of excessive infiltration/inflow in the sewer system. The analysis should identify the...
40 CFR 35.927-1 - Infiltration/inflow analysis.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Infiltration/inflow analysis. 35.927-1... Infiltration/inflow analysis. (a) The infiltration/inflow analysis shall demonstrate the nonexistence or possible existence of excessive infiltration/inflow in the sewer system. The analysis should identify the...
40 CFR 35.927-1 - Infiltration/inflow analysis.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Infiltration/inflow analysis. 35.927-1... Infiltration/inflow analysis. (a) The infiltration/inflow analysis shall demonstrate the nonexistence or possible existence of excessive infiltration/inflow in the sewer system. The analysis should identify the...
City sewer collectors biocorrosion
NASA Astrophysics Data System (ADS)
Ksiażek, Mariusz
2014-12-01
This paper presents the biocorrosion of city sewer collectors impregnated with special polymer sulphur binders, polymerized sulphur, which is applied as the industrial waste material. The city sewer collectors are settled with a colony of soil bacteria which have corrosive effects on its structure. Chemoautotrophic nitrifying bacteria utilize the residues of halites (carbamide) which migrate in the city sewer collectors, due to the damaged dampproofing of the roadway and produce nitrogen salts. Chemoorganotrophic bacteria utilize the traces of organic substrates and produce a number of organic acids (formic, acetic, propionic, citric, oxalic and other). The activity of microorganisms so enables the origination of primary and secondary salts which affect physical properties of concretes in city sewer collectors unfavourably.
Hickman, R. Edward
1987-01-01
Loads of suspended sediment, phosphorus, nitrogen, biochemical oxygen demand, and dissolved silica discharged to the tidal Potomac River and Estuary during the !979-81 water years from three local nonpoint sources have been calculated. The loads in rain falling directly upon the tidal water surface and from overflows of the combined sewer system of the District of Columbia were determined from available information. Loads of materials in the streamflow from local watersheds draining directly to the tidal Potomac River and Estuary downstream from Chain Bridge in Washington, D.C., were calculated from samples of streamflow leaving five monitored watersheds. Average annual yields of substances leaving three urban watersheds (Rock Creek and the Northwest and Northeast Branches of the Anacostia River) and the rural Saint Clements Creek watershed were calculated either by developing relationships between concentration and streamflow or by using the mean of measured concentrations. Yields calculated for the 1979-81 water years are up to 2.3 times period-of-record yields because of greater than average streamflow and stormflow during this 3-year period. Period-of-record yields of suspended sediment from the three urban watersheds and the Saint Clements Creek watershed do not agree with yields reported by other studies. The yields from the urban watersheds are 17 to 51 percent of yields calculated using sediment-concentration data collected during the 1960-62 water years. Previous studies suggest that this decrease is at least partly due to the imposition of effective sediment controls at construction sites and to the construction of two multipurpose reservoirs. The yield calculated for the rural Saint Clements Creek watershed is at least twice the yields calculated for other rural watersheds, a result that may be due to most of the samples of this stream being taken during the summer of the 1981 water year, a very dry period. Loads discharged from all local tributary watersheds to the tidal Potomac River and Estuary during the 1979-81 water years were calculated by applying to the unsampled watersheds the yields determined for the monitored watersheds. The resulting loads are 2.7 million megagrams of suspended sedi- ment, 3,100 megagrams of phosphorus, 14,000 megagrams of nitrogen, 74,000 megagrams of ultimate biochemical oxygen demand, and 68,000 megagrams of dissolved silica. The value for the load of sediment is probably an overestimate because the sediment yield calculated for the Saint Clements Creek watershed does not appear to be representative of rural watersheds. Summed, the loads discharged from all local nonpoint sources (local tributary watersheds, rainfall, and combined sewer overflows) to the tidal Potomac River and Estuary during the 1979-81 water years are 2.7 million megagrams of suspended sediment, 3,300 megagrams of phosphorus, 18,000 megagrams of nitrogen, 78,000 megagrams of ultimate biochemical oxygen demand, and 69,000 megagrams of dissolved silica. These loads accounted for 17 to 38 percent of the loads discharged by major sources during this period.
Contribution of different sources to the pollution of wet weather flows in combined sewers.
Gromaire, M C; Garnaud, S; Saad, M; Chebbo, G
2001-02-01
Experiments performed on "Marais" catchment, in central Paris, aimed to follow up the quality of wet weather flows from the entry to the exit of a combined sewer network. SS, VSS, COD, BOD5, Cd, Cu, Pb, Zn concentrations were measured for an important number of rain events in roof, yard, street runoff, as well as in dry and wet weather flows at the catchment outlet. Mass entry-exit totals, at the scale of the catchment, were calculated over 31 rain events in order to evaluate the contribution of different types of runoff, of sanitary sewage and of sewer sediments to the total wet weather pollutant loads at the catchment outlet. The erosion of in-sewer pollutant stocks was found to be the main source of particles and of organic matter in wet weather flows, whereas heavy metal loads mainly originated from roof runoff, due to the corrosion of metallic roofs. Particles eroded inside the sewer during rain events were found to be quite different from the particles constituting the main part of sewer sediments: they are organic and biodegradable, with rather important settling velocities and seem to accumulate during dry weather periods. A change of the chemical form of heavy metals was noticed during the transport in the sewer and it is suspected that a fraction of the dissolved metals from the runoff is adsorbed on sewer sediments.
[Transport and sources of runoff pollution from urban area with combined sewer system].
Li, Li-Qing; Yin, Cheng-Qing
2009-02-15
Sampling and monitoring of runoff and sewage water in Wuhan urban area with combined sewer system were carried out during the period from 2003 to 2006, to study the transport and sources of runoff pollution at the catchment scale coupled with environmental geochemistry method. The results showed a change in quality between the runoff entering the sewer network and the combined storm water flow at the sewer's outlet. A significant increase was observed in the concentrations of total suspended solids (TSS), volatile suspended solids (VSS), COD, TN, and TP, and in the proportion of COD linked to particles. During the runoff production and transport, the concentrations of TSS and COD increased from 18.7 mg/L and 37.0 mg/L in roof runoff, to 225.3 mg/L and 176.5 mg/L in street runoff, and to 449.7 mg/L and 359.9 mg/L in combined storm water flow, respectively. The proportion of COD linked to particles was increased by 18%. In addition, the total phosphorus (P) and iron (Fe) contents in urban ground dust, storm drain sediment, sewage sewer sediment and combined sewer sediment were measured to identify the potential sources of suspended solids in the combined flow. The urban ground dust andstorm drain sediment wererich in Fe, whereas the sewage sewer sediment was rich in P. The P/Fe ratios in these groups were significantly distinct and able to differentiate them. A calculation of the two storm events based on the P/Fe rations showed that 56% +/- 26% of suspended solids in combined flow came from urban ground and storm drain. The rest wer e originated from the sewage sewer sediments which deposited in combined sewer on the dry weather days and were eroded on the wet weather days. The combined sewer network not only acts as a transport system, but also constitutes a physicochemical reactor that degrades the quality of urban water. Reducing the in-sewer pollution stocks would effectively control urban runoff pollution.
A neuromorphic model of motor overflow in focal hand dystonia due to correlated sensory input
NASA Astrophysics Data System (ADS)
Sohn, Won Joon; Niu, Chuanxin M.; Sanger, Terence D.
2016-10-01
Objective. Motor overflow is a common and frustrating symptom of dystonia, manifested as unintentional muscle contraction that occurs during an intended voluntary movement. Although it is suspected that motor overflow is due to cortical disorganization in some types of dystonia (e.g. focal hand dystonia), it remains elusive which mechanisms could initiate and, more importantly, perpetuate motor overflow. We hypothesize that distinct motor elements have low risk of motor overflow if their sensory inputs remain statistically independent. But when provided with correlated sensory inputs, pre-existing crosstalk among sensory projections will grow under spike-timing-dependent-plasticity (STDP) and eventually produce irreversible motor overflow. Approach. We emulated a simplified neuromuscular system comprising two anatomically distinct digital muscles innervated by two layers of spiking neurons with STDP. The synaptic connections between layers included crosstalk connections. The input neurons received either independent or correlated sensory drive during 4 days of continuous excitation. The emulation is critically enabled and accelerated by our neuromorphic hardware created in previous work. Main results. When driven by correlated sensory inputs, the crosstalk synapses gained weight and produced prominent motor overflow; the growth of crosstalk synapses resulted in enlarged sensory representation reflecting cortical reorganization. The overflow failed to recede when the inputs resumed their original uncorrelated statistics. In the control group, no motor overflow was observed. Significance. Although our model is a highly simplified and limited representation of the human sensorimotor system, it allows us to explain how correlated sensory input to anatomically distinct muscles is by itself sufficient to cause persistent and irreversible motor overflow. Further studies are needed to locate the source of correlation in sensory input.
Vacuum Flushing of Sewer Solids (Slides)
The vacuum sewer and tank cleaning (flushing) technology removes sewer solids from urban drainage systems, such as storage tanks and pipes. This technology is both effective and inexpensive. In addition, it can be considered a true green technology. It operates under atmospheri...
Del Mundo, Dann Marie N; Sutheerawattananonda, Manote
2017-11-01
Fat, oil, and grease (FOG) deposit, in the form of calcium soap, was found to cause sanitary sewer overflows due to its adhesion on pipe walls. To address this problem, laboratory-prepared calcium soaps have been used to investigate the formation mechanisms of FOG deposits. However, the fats and oils previously utilized were limited and some soap characteristics were not examined. This research attempted to probe through the properties of calcium soaps prepared from calcium chloride and the fats and oils of chicken, pork, palm olein, soybean, olive, and coconut to further understand FOG formation and stability. Results revealed that FOG deposits may occur as smooth, paste-like material or coarse, semi-solid substance depending on their exposure to excess fat/oil and calcium. The smooth soaps with more excess fat/oil demonstrated high apparent viscosity and consistency index, while the coarse soaps with large levels of calcium signified higher melting endset. Moreover, a soap microstructure showing evident networks and lesser void area displayed higher heat and rheological stability, respectively. Overall, fats and oils with higher oleic to palmitic acid ratio such as palm olein oil, olive oil, chicken fat, and pork fat produced soaps with greater yield and degree of saponification. Hence, establishments and authorities should be alert in managing and monitoring these wastes. On the other hand, soybean oil high in linoleic acid and coconut oil high in lauric acid do not pose an immediate threat to the sewer system since they only produced soaps in small quantity. However, their soaps showed high melting endset which could pose a serious effect when accumulated at large amount. On the whole, the fatty acid profile of fats and oils, the presence of excess fat/oil, and calcium content mainly dictate the appearance, melting, rheology, and microstructure of calcium soaps. Their distinct properties can be used as criteria in predicting the condition and stability of FOG deposits. Copyright © 2017 Elsevier Ltd. All rights reserved.