Science.gov

Sample records for sex pheromone traps

  1. Factors Influencing Capture of Invasive Sea Lamprey in Traps Baited With a Synthesized Sex Pheromone Component.

    PubMed

    Johnson, Nicholas S; Siefkes, Michael J; Wagner, C Michael; Bravener, Gale; Steeves, Todd; Twohey, Michael; Li, Weiming

    2015-10-01

    The sea lamprey, Petromyzon marinus, is emerging as a model organism for understanding how pheromones can be used for manipulating vertebrate behavior in an integrated pest management program. In a previous study, a synthetic sex pheromone component 7α,12α, 24-trihydroxy-5α-cholan-3-one 24-sulfate (3kPZS) was applied to sea lamprey traps in eight streams at a final in-stream concentration of 10(-12) M. Application of 3kPZS increased sea lamprey catch, but where and when 3kPZS had the greatest impact was not determined. Here, by applying 3kPZS to additional streams, we determined that overall increases in yearly exploitation rate (proportion of sea lampreys that were marked, released, and subsequently recaptured) were highest (20-40%) in wide streams (~40 m) with low adult sea lamprey abundance (<1000). Wide streams with low adult abundance may be representative of low-attraction systems for adult sea lamprey and, in the absence of other attractants (larval odor, sex pheromone), sea lamprey may have been more responsive to a partial sex pheromone blend emitted from traps. Furthermore, we found that the largest and most consistent responses to 3kPZS were during nights early in the trapping season, when water temperatures were increasing. This may have occurred because, during periods of increasing water temperatures, sea lamprey become more active and males at large may not have begun to release sex pheromone. In general, our results are consistent with those for pheromones of invertebrates, which are most effective when pest density is low and when pheromone competition is low.

  2. Factors influencing capture of invasive sea lamprey in traps baited with a synthesized sex pheromone component

    USGS Publications Warehouse

    Johnson, Nicholas; Siefkes, Michael J.; Wagner, C. Michael; Bravener, Gale; Steeves, Todd; Twohey, Michael; Li, Weiming

    2015-01-01

    The sea lamprey, Petromyzon marinus, is emerging as a model organism for understanding how pheromones can be used for manipulating vertebrate behavior in an integrated pest management program. In a previous study, a synthetic sex pheromone component 7α,12α, 24-trihydroxy-5α-cholan-3-one 24-sulfate (3kPZS) was applied to sea lamprey traps in eight streams at a final in-stream concentration of 10−12 M. Application of 3kPZS increased sea lamprey catch, but where and when 3kPZS had the greatest impact was not determined. Here, by applying 3kPZS to additional streams, we determined that overall increases in yearly exploitation rate (proportion of sea lampreys that were marked, released, and subsequently recaptured) were highest (20–40 %) in wide streams (~40 m) with low adult sea lamprey abundance (<1000). Wide streams with low adult abundance may be representative of low-attraction systems for adult sea lamprey and, in the absence of other attractants (larval odor, sex pheromone), sea lamprey may have been more responsive to a partial sex pheromone blend emitted from traps. Furthermore, we found that the largest and most consistent responses to 3kPZS were during nights early in the trapping season, when water temperatures were increasing. This may have occurred because, during periods of increasing water temperatures, sea lamprey become more active and males at large may not have begun to release sex pheromone. In general, our results are consistent with those for pheromones of invertebrates, which are most effective when pest density is low and when pheromone competition is low.

  3. Comparison of sex pheromone traps for monitoring pink hibiscus mealybug (Hemiptera: Pseudococcidae).

    PubMed

    Vitullo, Justin; Wang, Shifa; Zhang, Aijun; Mannion, Catharine; Bergh, J Christopher

    2007-04-01

    The pink hibiscus mealybug, Maconellicoccus hirsutus (Green) (Hemiptera: Pseudococcidae), is a highly polyphagous pest that invaded Florida in 2002 and has recently been reported from several locations in Louisiana. Although identification of its sex pheromone in 2004 improved monitoring capabilities tremendously, the effectiveness and efficiency of different pheromone trap designs for capturing males has not been evaluated. We deployed green Delta, Pherocon IlB, Pherocon V, Jackson, and Storgard Thinline traps in Homestead, FL, and compared the number of male M. hirsutus captured per trap, the number captured per unit of trapping surface area, the amount of extraneous material captured, and the time taken to count trapped mealybugs. Pheromone-baited traps with larger trapping surfaces (green Delta, Pherocon IIB, and Pherocon V) captured more males per trap than those with smaller surfaces (Jackson and Storgard Thinline), and fewest males were captured by Storgard Thinline traps. However, Jackson traps captured as many or more males per square centimeter of trapping surface as those with larger surfaces, and the time required to count males in Jackson traps was significantly less than in green Delta, Pherocon IIB, and Pherocon V traps. Although all trap designs accumulated some debris and nontarget insects, it was rated as light to moderate for all designs. Based on our measures of effectiveness and efficiency, the Jackson trap is most suitable for monitoring M. hirsutus populations. Additionally, unlike the other traps evaluated, which must be replaced entirely or inspected in the field and then redeployed, only the sticky liners of Jackson traps require replacement, enhancing the efficiency of trap servicing.

  4. A sea lamprey (Petromyzon marinus) sex pheromone mixture increases trap catch relative to a single synthesized component in specific environments

    USGS Publications Warehouse

    Johnson, Nicholas S.; Tix, John A.; Hlina, Benjamin L.; Wagner, C. Michael; Siefkes, Michael J.; Wang, Huiyong; Li, Weiming

    2015-01-01

    Spermiating male sea lamprey (Petromyzon marinus) release a sex pheromone, of which a component, 7α, 12α, 24-trihydoxy-3-one-5α-cholan-24-sulfate (3kPZS), has been identified and shown to induce long distance preference responses in ovulated females. However, other pheromone components exist, and when 3kPZS alone was used to control invasive sea lamprey populations in the Laurentian Great Lakes, trap catch increase was significant, but gains were generally marginal. We hypothesized that free-ranging sea lamprey populations discriminate between a partial and complete pheromone while migrating to spawning grounds and searching for mates at spawning grounds. As a means to test our hypothesis, and to test two possible uses of sex pheromones for sea lamprey control, we asked whether the full sex pheromone mixture released by males (spermiating male washings; SMW) is more effective than 3kPZS in capturing animals in traditional traps (1) en route to spawning grounds and (2) at spawning grounds. At locations where traps target sea lampreys en route to spawning grounds, SMW-baited traps captured significantly more sea lampreys than paired 3kPZS-baited traps (~10 % increase). At spawning grounds, no difference in trap catch was observed between 3kPZS and SMW-baited traps. The lack of an observed difference at spawning grounds may be attributed to increased pheromone competition and possible involvement of other sensory modalities to locate mates. Because fishes often rely on multiple and sometimes redundant sensory modalities for critical life history events, the addition of sex pheromones to traditionally used traps is not likely to work in all circumstances. In the case of the sea lamprey, sex pheromone application may increase catch when applied to specifically designed traps deployed in streams with low adult density and limited spawning habitat.

  5. A Sea Lamprey (Petromyzon marinus) Sex Pheromone Mixture Increases Trap Catch Relative to a Single Synthesized Component in Specific Environments.

    PubMed

    Johnson, Nicholas S; Tix, John A; Hlina, Benjamin L; Wagner, C Michael; Siefkes, Michael J; Wang, Huiyong; Li, Weiming

    2015-03-01

    Spermiating male sea lamprey (Petromyzon marinus) release a sex pheromone, of which a component, 7α, 12α, 24-trihydoxy-3-one-5α-cholan-24-sulfate (3kPZS), has been identified and shown to induce long distance preference responses in ovulated females. However, other pheromone components exist, and when 3kPZS alone was used to control invasive sea lamprey populations in the Laurentian Great Lakes, trap catch increase was significant, but gains were generally marginal. We hypothesized that free-ranging sea lamprey populations discriminate between a partial and complete pheromone while migrating to spawning grounds and searching for mates at spawning grounds. As a means to test our hypothesis, and to test two possible uses of sex pheromones for sea lamprey control, we asked whether the full sex pheromone mixture released by males (spermiating male washings; SMW) is more effective than 3kPZS in capturing animals in traditional traps (1) en route to spawning grounds and (2) at spawning grounds. At locations where traps target sea lampreys en route to spawning grounds, SMW-baited traps captured significantly more sea lampreys than paired 3kPZS-baited traps (~10% increase). At spawning grounds, no difference in trap catch was observed between 3kPZS and SMW-baited traps. The lack of an observed difference at spawning grounds may be attributed to increased pheromone competition and possible involvement of other sensory modalities to locate mates. Because fishes often rely on multiple and sometimes redundant sensory modalities for critical life history events, the addition of sex pheromones to traditionally used traps is not likely to work in all circumstances. In the case of the sea lamprey, sex pheromone application may increase catch when applied to specifically designed traps deployed in streams with low adult density and limited spawning habitat.

  6. Influence of within-orchard trap placement on catch of codling moth (Lepidoptera: Tortricidae) in sex pheromone-treated orchards.

    PubMed

    Knight, A L

    2007-04-01

    The influence of trap placement on catches of codling moth, Cydia pomonella L., was examined in a series of studies conducted in orchards treated with Isomate-C Plus sex pheromone dispensers. Mark-recapture tests with sterilized moths released along the interface of pairs of treated and untreated apple and pear plots found that significantly more male but not female moths were recaptured on interception traps placed in the treated plots. In a second test, significantly higher numbers of wild male and female moths were caught on interception traps placed in treated versus untreated plots within a heavily infested orchard. The highest numbers of male moths were caught on traps placed along the interior edge of the treated plots. Trap position had no influence on the captures of female moths. In a third test, north-south transects of sex pheromone-baited traps were placed through adjacent treated and untreated plots that received a uniform release of sterilized moths. Traps on the upwind edge of the treated plots caught similar numbers of moths as traps upwind from the treated plots. Moth catch was significantly reduced at all other locations inside versus outside of the treated plots, including traps placed on the downwind edge of the treated plot. In a fourth test, five apple orchards were monitored with groups of sex pheromone-baited traps placed either on the border or at three distances inside the orchards. The highest moth counts were in traps placed at the border, and the lowest moth counts were in traps placed 30 and 50 m from the border. In a fifth test, the proportion of traps failing to catch any moths despite the occurrence of local fruit injury was significantly higher in traps placed 50 versus 25 m from the border. The implications provided by these data for designing an effective monitoring program for codling moth in sex pheromone-treated orchards are discussed.

  7. Female sex pheromone of brinjal fruit and shoot borer, Leucinodes orbonalis (Lepidoptera: Pyralidae): trap optimization and application in IPM trials.

    PubMed

    Cork, A; Alam, S N; Rouf, F M A; Talekar, N S

    2003-04-01

    Delta and wing traps baited with synthetic female sex pheromone of Leucinodes orbonalis Guenée were found to catch and retain ten times more moths than either Spodoptera or uni-trap designs. Locally-produced water and funnel traps were as effective as delta traps, although 'windows' cut in the side panels of delta traps significantly increased trap catch from 0.4 to 2.3 moths per trap per night. Trap catch was found to be proportional to the radius of sticky disc traps in the range 5-20 cm radius, discs with a 2.5 cm radius caught no moths. Wing traps placed at crop height caught significantly more moths than traps placed 0.5 m above or below the crop canopy. Replicated integrated pest management (IPM) trials (3 x 0.5 ha per treatment) were conducted in farmers fields with young and mature eggplant crops. Farmers applied insecticides at least three times a week in all check and IPM plots. In addition pheromone traps were placed out at a density of 100 per ha and infested shoots removed weekly in the 0.5 ha IPM plots. Pheromone trap catches were reduced significantly from 2.0 to 0.4 moths per trap per night respectively in check and IPM plots in a young crop and 1.1 to 0.3 moths per trap per night in check and IPM plots respectively in a mature crop. Fruit damage was significantly reduced from an average of 41.8% and 51.2% in check plots of young and mature crops respectively to 22% and 26.4 respectively in the associated IPM plots. Significant differences in pheromone trap catches and fruit damage were attained four and two weeks respectively after IPM treatments began in the mature crop whereas in the immature crop significant differences were not observed for the first eight to nine weeks respectively. The relative impact of removing infested shoots and mass trapping on L. orbonalis larval populations was not established in these trials but in both cases there was an estimated increase of approximately 50% in marketable fruit obtained by the combination of

  8. Sex ratio and female sexual status of the coconut pest, Oryctes monoceros (Coleoptera: Dynastidae), differ in feeding galleries and pheromone-baited traps.

    PubMed

    Allou, K; Morin, J-P; Kouassi, P; Hala N'klo, F; Rochat, D

    2008-12-01

    Oryctes monoceros is a serious coconut pest, causing up to 40% damage in tropical Africa. Synthetic aggregation pheromone, ethyl 4-methyloctanoate, has been used to lure adults to traps. Traps with pheromone plus decaying palm material captured a high proportion of males. This raises the question whether individuals, which damage palms are receptive to the pheromone. We studied the sex ratio of the insects feeding on coconuts and those attracted to pheromone traps. Sixty two percent of adults from feeding galleries on living coconut palms were females. Pheromone with rotting palm material lured 43% females. To investigate the reasons for this difference, we compared the reproductive system of females lured to the odour traps or feeding in coconut galleries, or present in old rotting stems. Ninety six percent of the females trapped by pheromone had mated, and were sexually mature. In the galleries on living palms, 46% of females were immature, and 24% had not mated. In old rotting stems where eggs are laid and larvae develop, a mixture of 52% mated and 48% virgin females was found. Therefore, the pheromone together with the odour of rotting coconut stems signals a reproduction site to beetles, particularly mature females. In practice, the pheromone-baited traps will help in reducing the dissemination of gravid females, but will not affect directly the numbers of immature ones attacking palms. Our results show that when using pheromones for monitoring or controlling insects, the physiological status of the insects may have unexpected effects on the outcome. PMID:18662429

  9. Using sex pheromone trapping to explore threats to wheat from Hessian fly (Diptera: Cecidomyiidae) in the Upper Great Plains.

    PubMed

    Anderson, K M; Hillbur, Y; Reber, J; Hanson, B; Ashley, R O; Harris, M O

    2012-12-01

    Before embarking on the 5-10 yr effort it can take to transfer plant resistance (R) genes to adapted crop cultivars, a question must be asked: is the pest a sufficient threat to warrant this effort? We used the recently discovered female-produced sex pheromone of the Hessian fly, Mayetiola destructor (Say) (Diptera: Cecidomyiidae),to explore this question for populations in the Upper Great Plains. Methods for pheromone trapping were established and trapping data were used to explore geographic distribution, phenology, and density. The pheromone lure remained attractive for up to 10 d and only attracted male Hessian flies. Traps placed within the crop canopy caught flies but traps placed above the crop canopy did not. Hessian flies were trapped throughout North Dakota starting in the spring and continuing through the summer and autumn. Densities were low in the spring but increased greatly during the early part of the summer, with peak adult emergence taking place at a time (July/August) when spring wheat was being harvested and winter wheat had not yet been planted. In the autumn, adults were found at a time when winter wheat seedlings are growing. The discovery of flies on Conservation Reserve Program land supports the idea that pasture grasses serve as alternate hosts. We conclude that the Hessian fly is a risk to wheat in the Upper Great Plains and predict that global warming and the increasing cultivation of winter wheat will add to this risk.

  10. Sex pheromone chemistry and field trapping studies of the elm spanworm Ennomos subsignaria (Hübner) (Lepidoptera:Geometridae)

    NASA Astrophysics Data System (ADS)

    Ryall, Krista; Silk, Peter J.; Wu, Junping; Mayo, Peter; Lemay, Matthew A.; Magee, David

    2010-08-01

    The elm spanworm, Ennomos subsignaria (Hübner), occurs throughout Canada and the eastern United States and can be a destructive forest pest on a wide range of deciduous trees. Gas chromatography/mass spectrometry (GC/MS) and coupled gas chromatographic-electroantennographic detection (GC/EAD) analysis of pheromone gland extracts, in combination with chemical synthesis and field trapping studies have identified (2 S, 3 R)-2-(( Z)-oct-2'-enyl)-3-nonyl oxirane (hereafter Z6-9 S, 10 R-epoxy-19:H) as the female-produced sex pheromone. Significantly more male moths were captured between 1-100 μg loadings of this compound on red rubber septa in sticky traps compared to blank (unbaited) traps; catches then declined at higher dosages (500-1000 μg). The other isomeric enantiomer, (2 R, 3 S)-2-[( Z)-oct-2'-enyl]-3-nonyl oxirane ( Z6-9 R, 10 S-epoxy-19:H), at a 10-μg dosage did not elicit trap capture. The likely precursor to the active epoxide, ( Z, Z)-6, 9-nonadecadiene (( Z, Z)-6, 9-19:H), identified in virgin female sex pheromone glands, did not elicit trap capture either, and inhibited trap capture when combined with the active epoxide. Racemic 2-((Z)-oct-2'-enyl)-3-nonyl oxirane showed no significant difference in trap capture compared with Z6-9 S, 10 R-epoxy-19:H, indicating that the opposite enantiomer was not antagonistic. The addition of the EAD-active diene epoxide enantiomers (2 S, 3 R)-2-[( Z, Z)-octa-2', 5'-dienyl]-3-nonyl oxirane or (2 R, 3 S)-2-[( Z, Z)-octa-2', 5'-dienyl]-3-nonyl oxirane in admixture with Z6-9 S, 10 R-epoxy-19:H (at 10% of the latter) did not enhance or decrease trap capture compared to Z6-9 S, 10 R-epoxy-19:H oxirane alone, so they are not likely pheromone components. This pheromone, impregnated in rubber septa at less than 100-μg dosage, can now be used as a trap bait to develop detection and monitoring strategies for this insect.

  11. Sex pheromone chemistry and field trapping studies of the elm spanworm Ennomos subsignaria (Hübner) (Lepidoptera:Geometridae).

    PubMed

    Ryall, Krista; Silk, Peter J; Wu, Junping; Mayo, Peter; Lemay, Matthew A; MaGee, David

    2010-08-01

    The elm spanworm, Ennomos subsignaria (Hübner), occurs throughout Canada and the eastern United States and can be a destructive forest pest on a wide range of deciduous trees. Gas chromatography/mass spectrometry (GC/MS) and coupled gas chromatographic-electroantennographic detection (GC/EAD) analysis of pheromone gland extracts, in combination with chemical synthesis and field trapping studies have identified (2S, 3R)-2-((Z)-oct-2'-enyl)-3-nonyl oxirane (hereafter Z6-9S, 10R-epoxy-19:H) as the female-produced sex pheromone. Significantly more male moths were captured between 1-100 microg loadings of this compound on red rubber septa in sticky traps compared to blank (unbaited) traps; catches then declined at higher dosages (500-1000 microg). The other isomeric enantiomer, (2R, 3S)-2-[(Z)-oct-2'-enyl]-3-nonyl oxirane (Z6-9R, 10S-epoxy-19:H), at a 10-microg dosage did not elicit trap capture. The likely precursor to the active epoxide, (Z, Z)-6, 9-nonadecadiene ((Z, Z)-6, 9-19:H), identified in virgin female sex pheromone glands, did not elicit trap capture either, and inhibited trap capture when combined with the active epoxide. Racemic 2-((Z)-oct-2'-enyl)-3-nonyl oxirane showed no significant difference in trap capture compared with Z6-9S, 10R-epoxy-19:H, indicating that the opposite enantiomer was not antagonistic. The addition of the EAD-active diene epoxide enantiomers (2S, 3R)-2-[(Z, Z)-octa-2', 5'-dienyl]-3-nonyl oxirane or (2R, 3S)-2-[(Z, Z)-octa-2', 5'-dienyl]-3-nonyl oxirane in admixture with Z6-9S, 10R-epoxy-19:H (at 10% of the latter) did not enhance or decrease trap capture compared to Z6-9S, 10R-epoxy-19:H oxirane alone, so they are not likely pheromone components. This pheromone, impregnated in rubber septa at less than 100-microg dosage, can now be used as a trap bait to develop detection and monitoring strategies for this insect.

  12. Captures of Ostrinia furnacalis (Lepidoptera: Crambidae) With Sex Pheromone Traps in NE China Corn and Soybeans.

    PubMed

    Chen, Ri-Zhao; Li, Lian-Bing; Klein, Michael G; Li, Qi-Yun; Li, Peng-Pei; Sheng, Cheng-Fa

    2016-02-01

    Ostrinia furnacalis (Guenée) (Lepidoptera: Crambidae), commonly referred to as the Asian corn borer, is the most important corn pest in Asia. Although capturing males with pheromone traps has recently been the main monitoring tool and suppression technique, the best trap designs remain unclear. Commercially available Delta and funnel traps, along with laboratory-made basin and water traps, and modified Delta traps, were evaluated in corn and soybean fields during 2013-2014 in NE China. The water trap was superior for capturing first-generation O. furnacalis (1.37 times the Delta trap). However, the basin (8.3 ± 3.2 moths/trap/3 d), Delta (7.9 ± 2.5), and funnel traps (7.0 ± 2.3) were more effective than water traps (1.4 ± 0.4) during the second generation. Delta traps gave optimal captures when deployed at ca. 1.57 × the highest corn plants, 1.36× that of average soybean plants, and at the field borders. In Delta traps modified by covering 1/3 of their ends, captures increased by ca. 15.7 and 8.1% in the first and second generations, respectively. After 35 d in the field, pheromone lures were still ca. 50% as attractive as fresh lures, and retained this level of attraction for ca. 25 more days. Increased captures (first and second generation: 90.9 ± 9.5%; 78.3 ± 9.3%) were obtained by adding a lure exposed for 5 d to funnel traps baited with a 35-d lure. PMID:26362111

  13. Sex Pheromone of Anastrepha striata.

    PubMed

    Cruz-López, Leopoldo; Malo, Edi A; Rojas, Julio C

    2015-05-01

    The guava fruit fly, Anastrepha striata, is a pest of several cultivated species of Myrtaceae in the American tropics and subtropics. During calling, A. striata males release numerous volatiles. This study was conducted to identify which of the male volatiles function as the A. striata sex pheromone and to investigate the effects of age and time of day on the emission of pheromone components. Analysis of the volatiles from males collected by solid phase microextraction using gas chromatography coupled to electroantennographic detection (GC-EAD) showed that three volatile compounds elicited repeatable responses from the antennae of females. The EAD-active compounds were identified by GC/mass spectrometry as ethyl hexanoate, linalool, and ethyl octanoate. In two-choice tests using Multilure traps placed in field cages, traps baited with live males, ethyl hexanoate, or the three-component blend captured more females than unbaited traps. However, there was no difference in catches when traps baited with live males were compared against traps baited with ethyl hexanoate. Although traps baited with the three-component blend caught more females than traps baited with live males, the difference was not significant. Analyses of pheromonal components released by A. striata males 8 to 26 days old showed that there was an effect of age on pheromone production and also a significant effect of time of day on pheromone emission. Release of the volatile compounds occurred from 14.00 to 18.00 hr, although traces of linalool were detected from 08.00 hr. Peak emission of pheromone compounds occurred at 14.00 hr. PMID:25912228

  14. Determining circadian response of adult male Acrobasis nuxvorella (Lepidoptera: Pyralidae) to synthetic sex attractant pheromone through time-segregated trapping with a new clockwork timing trap.

    PubMed

    Stevenson, Douglass E; Harris, Marvin K

    2009-12-01

    Mate finding is a key lifecycle event for the pecan nut casebearer, Acrobasis nuxvorella Neunzig, as it is for virtually all Lepidoptera, many of which rely on long-range, species-specific sex pheromones, regulated largely by circadian clocks. Adult male moths were trapped at discrete time intervals during the first two seasonal flights for 6 yr to determine times of peak activity associated with male response to pheromones. From 1997 to 2002, the Harris-Coble automated clockwork timing trap was used for hourly time-segregated sampling. Analysis of variance with linear contrasts determined that circadian response of A. nuxvorella males to pecan nut casebearer pheromone began at approximately 2100 hours, the first hour of total darkness, lasting for 6-7 h. It peaked from midnight to 0400 hours and ended at the onset of morning twilight, approximately 0500 hours. The hours of peak activity are hours of minimal bat predation. The study shows that pecan nut casebearer males become responsive to pheromone several hours before females start calling and remain responsive for at least 1 h after they stop. The extended response period conforms to studies of other polygamous Lepidoptera in which a selective advantage is conferred on early responding males in scramble competition for available females. PMID:20021765

  15. The optimal sex pheromone release rate for trapping the codling moth Cydia pomonella (Lepidoptera: Tortricidae) in the field

    PubMed Central

    Liu, Wei; Xu, Jing; Zhang, Runzhi

    2016-01-01

    For successful pest management, codlemone (E, E-8,10-dodecadien-1-ol) is widely used to monitor codling moth. The pheromone release rate is essential for the lure’s attractiveness. The optimal sex pheromone release rate (V0) for trapping codling moth was evaluated during 2013–2014. The overwinter generation V0 was 6.7–33.4 μg wk−1, and moth catches (MCs) were 0.82 ± 0.11 adults/trap/week; MCs for lower (V1) and higher (V2) release rates were 52.4% and 46.3%, respectively, of that for V0. The first generation V0 was 18.4–29.6 μg wk−1, with MCs of 1.45 ± 0.29 adults/week/trap. V1 and V2 MCs were 34.5% and 31.7%, respectively, of those for V0. Combining across generations, the final V0 was 18.4–29.6 μg wk−1, with MCs of 1.07 ± 0.06 adults/week/trap. V1 and V2 MCs were 51.4% and 41.1%, respectively, of that for V0. Overwinter generation emergence was relatively concentrated, requiring a wider V0. Maintaining the release rate at 18.4–29.6 μg wk−1 could optimize the lure’s efficacy; this resulted in the capture of nearly 1.9 and 2.4 times more moths than V1 and V2, respectively. The results also indicate that a dispenser pheromone release rate of 200–300 times that of the female moth can perfectly outcompetes females in the field. PMID:26879373

  16. The joy of sex pheromones

    PubMed Central

    Gomez-Diaz, Carolina; Benton, Richard

    2013-01-01

    Sex pheromones provide an important means of communication to unite individuals for successful reproduction. Although sex pheromones are highly diverse across animals, these signals fulfil common fundamental roles in enabling identification of a mating partner of the opposite sex, the appropriate species and of optimal fecundity. In this review, we synthesize both classic and recent investigations on sex pheromones in a range of species, spanning nematode worms, insects and mammals. These studies reveal comparable strategies in how these chemical signals are produced, detected and processed in the brain to regulate sexual behaviours. Elucidation of sex pheromone communication mechanisms both defines outstanding models to understand the molecular and neuronal basis of chemosensory behaviours, and reveals how similar evolutionary selection pressures yield convergent solutions in distinct animal nervous systems. EMBO reports advance online publication 13 September 2013; doi:10.1038/embor.2013.140 PMID:24030282

  17. Monitoring oriental fruit moth (Lepidoptera: Tortricidae) with sticky traps baited with terpinyl acetate and sex pheromone

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies in Argentina and Chile during 2010-11 evaluated a new trap (Ajar) for monitoring the oriental fruit moth, Grapholita molesta (Busck). The Ajar trap was delta-shaped with a jar filled with a terpinyl acetate plus brown sugar bait attached to the bottom center of the trap. The screened lid of ...

  18. Sex and Aggregation-Sex Pheromones of Cerambycid Beetles: Basic Science and Practical Applications.

    PubMed

    Hanks, Lawrence M; Millar, Jocelyn G

    2016-07-01

    Research since 2004 has shown that the use of volatile attractants and pheromones is widespread in the large beetle family Cerambycidae, with pheromones now identified from more than 100 species, and likely pheromones for many more. The pheromones identified to date from species in the subfamilies Cerambycinae, Spondylidinae, and Lamiinae are all male-produced aggregation-sex pheromones that attract both sexes, whereas all known examples for species in the subfamilies Prioninae and Lepturinae are female-produced sex pheromones that attract only males. Here, we summarize the chemistry of the known pheromones, and the optimal methods for their collection, analysis, and synthesis. Attraction of cerambycids to host plant volatiles, interactions between their pheromones and host plant volatiles, and the implications of pheromone chemistry for invasion biology are discussed. We also describe optimized traps, lures, and operational parameters for practical applications of the pheromones in detection, sampling, and management of cerambycids. PMID:27501814

  19. Effect of Sex Pheromone and Kairomone Lures on Catches of Codling Moth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies in apple orchards treated with sex pheromone evaluated the performance of a clear vertical interception trap coated with oil and baited with either sex pheromone, pear ester, or both attractants (combo) for adult codling moth, Cydia pomonella (L.). Baited interception traps caught significan...

  20. Sex pheromone of purplestriped shootworm,Zeiraphera unfortunana powell.

    PubMed

    Silk, P J; Butterworth, E W; Kuenen, L P; Northcott, C J; Kettela, E G

    1988-05-01

    The analyses of virgin female sex pheromone gland extracts and gland volatiles by GC, GC-EAD and GC-MS, followed by field trapping experiments, have identified (E)-9-dodecenyl acetate (E9-12∶Ac) as the primary sex pheromone component of the purplestriped shootworm,Zeiraphera unfortunana. Dosages of 1.0-10.0 μg ofE9-12∶Ac impregnated in rubber septa provide an effective trap bait and can be used for monitoring purposes.

  1. Pheromone trap for the eastern tent caterpillar moth.

    PubMed

    Haynes, Kenneth F; McLaughlin, John; Stamper, Shelby; Rucker, Charlene; Webster, Francis X; Czokajlo, Darek; Kirsch, Philipp

    2007-10-01

    The discovery that the eastern tent caterpillar Malacosoma americanum (F.) causes mare reproductive loss syndrome (MRLS), and thus has the potential to continue to result in major economic losses to the equine industry of Kentucky, has resulted in an intensive effort to identify practical means to monitor and control this defoliator, including these experiments to optimize a sex pheromone trap for this pest. A pheromone-baited delta trap with a large opening, such as InterceptST Delta, was more effective than other tested traps. Orange delta traps caught more moths than other tested colors. ETC males are caught at all tested heights within the tree canopy. For monitoring flights, setting traps at 1.5 m would allow easy counting of moths. A 9:1 blend of (E,Z)-5,7-dodecadienal (ETC-Ald) and (E,Z)-5,7-dodecadienol (ETC-OH) was most effective in capturing males. Increasing loading doses of a 3:1 blend (Ald:OH) resulted in the capture of increasing numbers of moths, but a 9:1 blend was more effective than 3:1 blend even at a nine-fold lower loading rate. Pheromone-impregnated white septa caught more moths than gray septa at the same loading dose. The advantages and limitations of using pheromone traps for monitoring M. americanum are discussed.

  2. Hydrocarbon sex pheromone in tiger moths (Arctiidae).

    PubMed

    Roelofs, W L; Cardé, R T

    1971-02-19

    2-Methylheptadecane is a sex pheromone compound in many sibling species of the Holomelina aurantiaca complex, in Holomelina laeta, and in Pyrrharctia isabella, which are all arctiids. Habitat preference, temporal distribution , and differing diurnal cycles help effect reproductive isolation among the species, but secondary sex pheromone chemicals are also suggested by the field studies.

  3. Decrypting Cryptic Click Beetle Species by Analysis of Sex Pheromones.

    PubMed

    König, Christian; Steidle, Johannes L M; Tolasch, Till

    2015-08-01

    Despite sex pheromones being highly species specific, their use as phylogenetic characters and a tool for the verification of species status are still relatively few compared to use of morphological and molecular characters. Earlier studies revealed that within the click beetle species Idolus picipennis, two types can be separated based on pheromone composition. Gas chromatography/mass spectrometry analysis of pheromone from a third type of Idolus revealed the presence of geranyl hexanoate and geranyl octanoate in a ratio of ca. 1:9. Neryl esters and farnesyl esters, present in the glands of the other two species, are absent in this type. In field experiments, males of all three types were attracted specifically to synthetic mixtures of pheromone resembling their own females. This suggests that cross attraction among different types is unlikely and indicates that they are likely distinct species. Using the large numbers of male beetles caught in pheromone traps, morphological differences between the species were studied and an identification key derived. This study highlights the role of sex pheromones as a powerful tool in integrative taxonomy and systematics to study the phylogenetic position and evolution of taxa and to determine the taxonomic status of cryptic species.

  4. Moth Sex Pheromone Receptors and Deceitful Parapheromones

    PubMed Central

    Xu, Pingxi; Garczynski, Stephen F.; Atungulu, Elizabeth; Syed, Zainulabeuddin; Choo, Young-Moo; Vidal, Diogo M.; Zitelli, Caio H. L.; Leal, Walter S.

    2012-01-01

    The insect's olfactory system is so selective that male moths, for example, can discriminate female-produced sex pheromones from compounds with minimal structural modifications. Yet, there is an exception for this “lock-and-key” tight selectivity. Formate analogs can be used as replacement for less chemically stable, long-chain aldehyde pheromones, because male moths respond physiologically and behaviorally to these parapheromones. However, it remained hitherto unknown how formate analogs interact with aldehyde-sensitive odorant receptors (ORs). Neuronal responses to semiochemicals were investigated with single sensillum recordings. Odorant receptors (ORs) were cloned using degenerate primers, and tested with the Xenopus oocyte expression system. Quality, relative quantity, and purity of samples were evaluated by gas chromatography and gas chromatography-mass spectrometry. We identified olfactory receptor neurons (ORNs) housed in trichoid sensilla on the antennae of male navel orangeworm that responded equally to the main constituent of the sex pheromone, (11Z,13Z)-hexadecadienal (Z11Z13-16Ald), and its formate analog, (9Z,11Z)-tetradecen-1-yl formate (Z9Z11-14OFor). We cloned an odorant receptor co-receptor (Orco) and aldehyde-sensitive ORs from the navel orangeworm, one of which (AtraOR1) was expressed specifically in male antennae. AtraOR1•AtraOrco-expressing oocytes responded mainly to Z11Z13-16Ald, with moderate sensitivity to another component of the sex pheromone, (11Z,13Z)-hexadecadien-1-ol. Surprisingly, this receptor was more sensitive to the related formate than to the natural sex pheromone. A pheromone receptor from Heliothis virescens, HR13 ( = HvirOR13) showed a similar profile, with stronger responses elicited by a formate analog than to the natural sex pheromone, (11Z)-hexadecenal thus suggesting this might be a common feature of moth pheromone receptors. PMID:22911835

  5. A new class of mealybug pheromones: a hemiterpene ester in the sex pheromone of Crisicoccus matsumotoi

    NASA Astrophysics Data System (ADS)

    Tabata, Jun; Narai, Yutaka; Sawamura, Nobuo; Hiradate, Syuntaro; Sugie, Hajime

    2012-07-01

    Mealybugs, which include several agricultural pests, are small sap feeders covered with a powdery wax. They exhibit clear sexual dimorphism; males are winged but fragile and short lived, whereas females are windless and less mobile. Thus, sex pheromones emitted by females facilitate copulation and reproduction by serving as a key navigation tool for males. Although the structures of the hitherto known mealybug pheromones vary among species, they have a common structural motif; they are carboxylic esters of monoterpene alcohols with irregular non-head-to-tail linkages. However, in the present study, we isolated from the Matsumoto mealybug, Crisicoccus matsumotoi (Siraiwa), a pheromone with a completely different structure. Using gas chromatography-mass spectrometry and nuclear magnetic resonance spectroscopy, we identified the pheromone as 3-methyl-3-butenyl 5-methylhexanoate. Its attractiveness to males was confirmed in a series of field trapping experiments involving comparison between the isolated natural product and a synthetic sample. This is the first report of a hemiterpene mealybug pheromone. In addition, the acid moiety (5-methylhexanoate) appears to be rare in insect pheromones.

  6. Sex Pheromone of the Rare Click Beetle Betarmon bisbimaculatus.

    PubMed

    König, Christian; Szallies, Alexander; Steidle, Johannes L M; Tolasch, Till

    2016-01-01

    The click beetle Betarmon bisbimaculatus (Fabricius, 1803) (Coleoptera: Elateridae) has a scattered distribution throughout a large area in Europe and the near East. Due to its scarcity, little is known about the ecology, biology, and development of this peculiar species. Here, we studied the composition of the female-released sex pheromone of B. bisbimaculatus. Neryl hexanoate, neryl octanoate, and neryl decanoate, in a ratio of approximately 3:1:6, were the only volatile compounds present in the extracts of pheromone glands. A synthetic mixture of all three compounds in the natural ratio was highly attractive to males in field traps. When the compounds were tested individually, only traps baited with neryl hexanoate were attractive, but they caught only a sixth of the males compared to the mixture. Based on the similarity of their sex pheromones, we propose that the tribe Pomachiliini with B. bisbimaculatus is closely related to the tribe Agriotini. This study shows the potential of sex pheromone studies for monitoring of rare and threatened insects as well as for elucidating phylogenetic relationships.

  7. Influence of climatic conditions on the distribution, abundance and activity of Agriotes lineatus L. adults in sex pheromone traps in Croatia.

    PubMed

    Kozina, Antonela; Čačija, Maja; Igrc Barčić, Jasminka; Bažok, Renata

    2013-07-01

    The aims of this work were: (i) to determine the distribution and abundance of Agriotes lineatus, (ii) correlate the abundance with the prevailing climatic conditions to establish how temperature and rainfall are influencing the dominance, and (iii) to determine the activity characteristics of the adults. Investigations were conducted in 17 fields grouped in four regions characterized by different climatic conditions. Using sex pheromone traps the most important Agriotes species (A. lineatus L., A. sputator L., A. obscurus L., A. brevis Cand. and A. ustulatus Schall.) were collected. The monitoring period for A. brevis, A. sputator, A. lineatus and A. obscurus was from the 18th to the 32nd, and for A. ustulatus from the 23rd to the 32nd week of the year. A total of 61,247 individuals Agriotes were captured, of which 24,916 individuals were A. lineatus. Abundance and dominance of A. lineatus were significantly higher in the region of Zagreb compared to other regions. Moving east, rainfall decreased and temperatures increased and associated with that the abundance and dominance indices were lower. It was determined that the abundance of A. lineatus was negatively correlated with average air temperature (r = -0.5201; p < 0.0001). Compared to earlier data from the region of Zagreb the dominance index decreased. This might be a result of climate change as established average yearly temperature in these regions increased for 1.04 °C compared to the average data for the period 1961-1990. Other potentially damaging Agriotes species (A. brevis and A. ustulatus) were also present in high abundances in some micro-regions. PMID:22886342

  8. Influence of climatic conditions on the distribution, abundance and activity of Agriotes lineatus L. adults in sex pheromone traps in Croatia.

    PubMed

    Kozina, Antonela; Čačija, Maja; Igrc Barčić, Jasminka; Bažok, Renata

    2013-07-01

    The aims of this work were: (i) to determine the distribution and abundance of Agriotes lineatus, (ii) correlate the abundance with the prevailing climatic conditions to establish how temperature and rainfall are influencing the dominance, and (iii) to determine the activity characteristics of the adults. Investigations were conducted in 17 fields grouped in four regions characterized by different climatic conditions. Using sex pheromone traps the most important Agriotes species (A. lineatus L., A. sputator L., A. obscurus L., A. brevis Cand. and A. ustulatus Schall.) were collected. The monitoring period for A. brevis, A. sputator, A. lineatus and A. obscurus was from the 18th to the 32nd, and for A. ustulatus from the 23rd to the 32nd week of the year. A total of 61,247 individuals Agriotes were captured, of which 24,916 individuals were A. lineatus. Abundance and dominance of A. lineatus were significantly higher in the region of Zagreb compared to other regions. Moving east, rainfall decreased and temperatures increased and associated with that the abundance and dominance indices were lower. It was determined that the abundance of A. lineatus was negatively correlated with average air temperature (r = -0.5201; p < 0.0001). Compared to earlier data from the region of Zagreb the dominance index decreased. This might be a result of climate change as established average yearly temperature in these regions increased for 1.04 °C compared to the average data for the period 1961-1990. Other potentially damaging Agriotes species (A. brevis and A. ustulatus) were also present in high abundances in some micro-regions.

  9. Influence of climatic conditions on the distribution, abundance and activity of Agriotes lineatus L. adults in sex pheromone traps in Croatia

    NASA Astrophysics Data System (ADS)

    Kozina, Antonela; Čačija, Maja; Igrc Barčić, Jasminka; Bažok, Renata

    2013-07-01

    The aims of this work were: (i) to determine the distribution and abundance of Agriotes lineatus, (ii) correlate the abundance with the prevailing climatic conditions to establish how temperature and rainfall are influencing the dominance, and (iii) to determine the activity characteristics of the adults. Investigations were conducted in 17 fields grouped in four regions characterized by different climatic conditions. Using sex pheromone traps the most important Agriotes species ( A. lineatus L., A. sputator L., A. obscurus L., A. brevis Cand. and A. ustulatus Schall.) were collected. The monitoring period for A. brevis, A. sputator, A. lineatus and A. obscurus was from the 18th to the 32nd, and for A. ustulatus from the 23rd to the 32nd week of the year. A total of 61,247 individuals Agriotes were captured, of which 24,916 individuals were A. lineatus. Abundance and dominance of A. lineatus were significantly higher in the region of Zagreb compared to other regions. Moving east, rainfall decreased and temperatures increased and associated with that the abundance and dominance indices were lower. It was determined that the abundance of A. lineatus was negatively correlated with average air temperature ( r = -0.5201; p < 0.0001). Compared to earlier data from the region of Zagreb the dominance index decreased. This might be a result of climate change as established average yearly temperature in these regions increased for 1.04 °C compared to the average data for the period 1961-1990. Other potentially damaging Agriotes species ( A. brevis and A. ustulatus) were also present in high abundances in some micro-regions.

  10. Sex pheromone of South American tortricid moth Argyrotaenia sphaleropa.

    PubMed

    Nunez, S; De, Vlieger J J; Rodriquez, J J; Persoons, C J; Scatoni, I

    2002-02-01

    By means of electroantennographic detection and gas chromatography-mass spectrometry, the sex pheromone of Argyrotaenia sphaleropa was identified as a mixture of (Z)-11-tetradecenal, (Z)-11,13-tetradecadienal, (Z)-11-tetradecenyl acetate, and (Z)-11,13-tetradecadienyl acetate in the ratio of 1:4:10:40. Best trap catches were obtained with mixtures of (Z)-11-tetradecenal and (Z)-11,13-tetradecadienal in the ratio of 1:4 to 1:9.

  11. Modeling the suppression of sea lamprey populations by use of the male sex pheromone

    USGS Publications Warehouse

    Klassen, Waldemar; Adams, Jean V.; Twohey, Michael B.

    2005-01-01

    The suppression of sea lamprey populations, Petromyzon marinus (Linnaeus), was modeled using four different applications of the male sex pheromone: (1) pheromone-baited traps that remove females from the spawning population, (2) pheromone-baited decoys that exhaust females before they are able to spawn, (3) pheromone-enhanced sterile males that increase the proportion of non-fertile matings, and (4) camouflaging of the pheromone emitted by calling males to make it difficult for females to find a mate. The models indicated that thousands of traps or hundreds of thousands of decoys would be required to suppress a population of 100,000 animals. The potential efficacy of pheromone camouflages is largely unknown, and additional research is required to estimate how much pheromone is needed to camouflage the pheromone plumes of calling males. Pheromone-enhanced sterile males appear to be a promising application in the Great Lakes. Using this technique for three generations each of ca. 7 years duration could reduce sea lamprey populations by 90% for Lakes Huron and Ontario and by 98% for Lake Michigan, based on current trapping operations that capture 20 to 30% of the population each year.

  12. [Biosynthesis and endocrine regulation of sex pheromones in moth].

    PubMed

    Wang, Bo; Lin, Xin-da; Du, Yong-jun

    2015-10-01

    The crucial importance of sex pheromones in driving mating behaviors in moths has been well demonstrated in the process of sexual communication between individuals that produce and recognize species specific pheromones. Sex-pheromone molecules from different moth species are chemically characteristic, showing different terminal functional groups, various carbon chain lengths, different position and configuration of double bond system. This review summarized information on the biosynthetic pathways and enzymes involved in producing pheromone molecules in different moths. Then we listed the components and their ratios in the sex pheromones of 15 moth species belonging to different subfamilies in Noctuidae. We also discussed the various viewpoints regarding how sex pheromones with specific ratios are produced. In the discussion we attempted to classify the pheromone molecules based on their producers, characteristics of their functional groups and carbon chain lengths. In particular, composition and ratio variations of pheromones in closely related species or within a species were compared, and the possible molecular mechanisms for these variations and their evolutionary significance were discussed. Finally, we reviewed the endocrine regulation and signal transduction pathways, in which the pheromone biosynthesis activating neuropeptide (PBAN) is involved. Comparing the biosynthetic pathways of sex pheromones among different species, this article aimed to reveal the common principles in pheromone biosynthesis among moth species and the characteristic features associated with the evolutionary course of individual species. Subsequently, some future research directions were proposed.

  13. Identification of sex pheromone component of spruce budmothZeiraphera canadensis.

    PubMed

    Silk, P J; Butterworth, E W; Kuenen, L P; Northcott, C J; Dunkelblum, E; Kettela, E G

    1989-10-01

    The analyses of virgin female sex pheromone gland extracts by gas chromatography (GC), GC-electroantennographic detection (GC-EAD) and GC-mass spectrometry (GC-MS) followed by field-trapping experiments, have identified (E)-9-tetradecenyl acetate (E9-14:Ac) as the primary sex pheromone component of the spruce budmoth,Zeiraphera canadensis. Dosages of 1.0-100.0 [Symbol: see text]g ofE9-14:Ac impregnated in rubber septa provide effective trap baits.

  14. Monitoring Pseudococcus calceolariae (Hemiptera: Pseudococcidae) in Fruit Crops Using Pheromone-Baited Traps.

    PubMed

    Flores, M Fernanda; Romero, Alda; Oyarzun, M Soledad; Bergmann, Jan; Zaviezo, Tania

    2015-10-01

    The citrophilus mealybug, Pseudococcus calceolariae (Maskell), is an important pest of fruit crops in many regions of the world. Recently, its sex pheromone has been identified and synthesized. We carried out field experiments with the goal of developing monitoring protocols for P. calceolariae using pheromone-baited traps. Traps checked hourly for 24 hours showed a distinct diel pattern of male flight, between 18:00 and 21:00 h. The presence of unnatural stereoisomers did not affect trap captures, with isomeric mixtures capturing similar amounts of males as the biological active isomer. Dose of isomeric mixture pheromone (0-100 µg) had a nonlinear effect on male captures, with 10, 30, and 50 µg capturing similar amounts. The effective range of pheromone traps was determined by placing traps at different distances (15, 40, and 80 m) from an infested blueberry field, loaded with 0, 1 and 25 µg of the pheromone. For all distances, 25 µg dose captured more males, and was highly attractive up to 40 m. There was a significant effect of lure age on male captures (0-150 d), with similar amount of males captured up to 90-day-old lure, and lower captures in the 150-day-old lure compared with fresh ones. We found significant positive correlations between P. calceolariae males caught in pheromone traps with female abundance and fruit infestation at harvest. Our results show the usefulness of P. calceolariae pheromones for monitoring at field level and provide information for the design of monitoring protocols. PMID:26453728

  15. Monitoring Pseudococcus calceolariae (Hemiptera: Pseudococcidae) in Fruit Crops Using Pheromone-Baited Traps.

    PubMed

    Flores, M Fernanda; Romero, Alda; Oyarzun, M Soledad; Bergmann, Jan; Zaviezo, Tania

    2015-10-01

    The citrophilus mealybug, Pseudococcus calceolariae (Maskell), is an important pest of fruit crops in many regions of the world. Recently, its sex pheromone has been identified and synthesized. We carried out field experiments with the goal of developing monitoring protocols for P. calceolariae using pheromone-baited traps. Traps checked hourly for 24 hours showed a distinct diel pattern of male flight, between 18:00 and 21:00 h. The presence of unnatural stereoisomers did not affect trap captures, with isomeric mixtures capturing similar amounts of males as the biological active isomer. Dose of isomeric mixture pheromone (0-100 µg) had a nonlinear effect on male captures, with 10, 30, and 50 µg capturing similar amounts. The effective range of pheromone traps was determined by placing traps at different distances (15, 40, and 80 m) from an infested blueberry field, loaded with 0, 1 and 25 µg of the pheromone. For all distances, 25 µg dose captured more males, and was highly attractive up to 40 m. There was a significant effect of lure age on male captures (0-150 d), with similar amount of males captured up to 90-day-old lure, and lower captures in the 150-day-old lure compared with fresh ones. We found significant positive correlations between P. calceolariae males caught in pheromone traps with female abundance and fruit infestation at harvest. Our results show the usefulness of P. calceolariae pheromones for monitoring at field level and provide information for the design of monitoring protocols.

  16. Relationship between male moths of Cryptoblabes gnidiella (Millière) (Lepidoptera: Pyralidae) caught in sex pheromone traps and cumulative degree-days in vineyards in southern Uruguay.

    PubMed

    Vidart, María Valeria; Mujica, María Valentina; Calvo, María Victoria; Duarte, Felicia; Bentancourt, Carlos María; Franco, Jorge; Scatoni, Iris Beatriz

    2013-12-01

    Cryptoblabes gnidiella (Millière) (Lepidoptera: Pyralidae) has been known in Uruguay for 30 years and only in vineyards, despite being polyphagous. In recent years, this pest has caused sporadic but serious damage on some grapevine cultivars. Understanding the insect's phenology and developing a monitoring program are essential aspects of integrated pest management. We monitored males using sexual pheromone traps on four cultivars of vine, Pinot noir, Tannat, Gewürztraminer, and Cabernet Sauvignon, in two vine-growing establishments in the Department of Canelones and compiled data on the accumulated effective temperatures for the southern area of Uruguay. We determined that this species undergoes three generations per year and overwinters without diapause as larvae on dried grapes remaining after harvest. Using the proportion of cumulative male moths caught from December to May from 2003-2007 on the four cultivars and the sum of effective temperatures above two previously-published lower-threshold temperatures for development, 12.26°C and 13°C, statistically significant logistic models were estimated. Predictions based on the resulting models suggested that they would be acceptable tools to improve the efficiency of integrated management of this pest in Uruguay.

  17. Controlled release of insect sex pheromones from paraffin wax and emulsions.

    PubMed

    Atterholt, C A; Delwiche, M J; Rice, R E; Krochta, J M

    1999-02-22

    Paraffin wax and aqueous paraffin emulsions can be used as controlled release carriers for insect sex pheromones for mating disruption of orchard pests. Paraffin can be applied at ambient temperature as an aqueous emulsion, adheres to tree bark or foliage, releases pheromone for an extended period of time, and will slowly erode from bark and biodegrade in soil. Pheromone emulsions can be applied with simple spray equipment. Pheromone release-rates from paraffin were measured in laboratory flow-cell experiments. Pheromone was trapped from an air stream with an adsorbent, eluted periodically, and quantified by gas chromatography. Pheromone release from paraffin was partition-controlled, providing a constant (zero-order) release rate. A typical paraffin emulsion consisted of 30% paraffin, 4% pheromone, 4% soy oil, 1% vitamin E, 2% emulsifier, and the balance water. Soy oil and vitamin E acted as volatility suppressants. A constant release of oriental fruit moth pheromone from paraffin emulsions was observed in the laboratory for more than 100 days at 27 degreesC, with release-rates ranging from 0.4 to 2 mg/day, depending on the concentration and surface area of the dried emulsion. The use of paraffin emulsions is a viable method for direct application of insect pheromones for mating disruption. Sprayable formulations can be designed to release insect pheromones to the environment at a rate necessary for insect control by mating disruption. At temperatures below 38 degreesC, zero-order release was observed. At 38 degreesC and higher, pheromone oxidation occurred. A partition-controlled release mechanism was supported by a zero-order pheromone release-rate, low air/wax partition coefficients, and pheromone solubility in paraffin. PMID:9895411

  18. Controlled release of insect sex pheromones from paraffin wax and emulsions.

    PubMed

    Atterholt, C A; Delwiche, M J; Rice, R E; Krochta, J M

    1999-02-22

    Paraffin wax and aqueous paraffin emulsions can be used as controlled release carriers for insect sex pheromones for mating disruption of orchard pests. Paraffin can be applied at ambient temperature as an aqueous emulsion, adheres to tree bark or foliage, releases pheromone for an extended period of time, and will slowly erode from bark and biodegrade in soil. Pheromone emulsions can be applied with simple spray equipment. Pheromone release-rates from paraffin were measured in laboratory flow-cell experiments. Pheromone was trapped from an air stream with an adsorbent, eluted periodically, and quantified by gas chromatography. Pheromone release from paraffin was partition-controlled, providing a constant (zero-order) release rate. A typical paraffin emulsion consisted of 30% paraffin, 4% pheromone, 4% soy oil, 1% vitamin E, 2% emulsifier, and the balance water. Soy oil and vitamin E acted as volatility suppressants. A constant release of oriental fruit moth pheromone from paraffin emulsions was observed in the laboratory for more than 100 days at 27 degreesC, with release-rates ranging from 0.4 to 2 mg/day, depending on the concentration and surface area of the dried emulsion. The use of paraffin emulsions is a viable method for direct application of insect pheromones for mating disruption. Sprayable formulations can be designed to release insect pheromones to the environment at a rate necessary for insect control by mating disruption. At temperatures below 38 degreesC, zero-order release was observed. At 38 degreesC and higher, pheromone oxidation occurred. A partition-controlled release mechanism was supported by a zero-order pheromone release-rate, low air/wax partition coefficients, and pheromone solubility in paraffin.

  19. Unusual pheromone chemistry in the navel orangeworm: novel sex attractants and a behavioral antagonist

    NASA Astrophysics Data System (ADS)

    Leal, W. S.; Parra-Pedrazzoli, A. L.; Kaissling, K.-E.; Morgan, T. I.; Zalom, F. G.; Pesak, D. J.; Dundulis, E. A.; Burks, C. S.; Higbee, B. S.

    2005-03-01

    Using molecular- and sensory physiology-based approaches, three novel natural products, a simple ester, and a behavioral antagonist have been identified from the pheromone gland of the navel orangeworm, Amyelois transitella Walker (Lepidoptera: Pyralidae). In addition to the previously identified (Z,Z)-11,13-hexadecadienal, the pheromone blend is composed of (Z,Z,Z,Z,Z)-3,6,9,12,15-tricosapentaene, (Z,Z,Z,Z,Z)-3,6,9,12,15-pentacosapentaene, ethyl palmitate, ethyl-(Z,Z)-11,13-hexadecadienoate, and (Z,Z)-11,13-hexadecadien-1-yl acetate. The C23 and C25 pentaenes are not only novel sex pheromones, but also new natural products. In field tests, catches of A. transitella males in traps baited with the full mixture of pheromones were as high as those in traps with virgin females, whereas control and traps baited only with the previously known constituent did not capture any moths at all. The navel orangeworm sex pheromone is also an attractant for the meal moth, Pyralis farinalis L. (Pyralidae), but (Z,Z)-11,13-hexadecadien-1-yl acetate is a behavioral antagonist. The new pheromone blend may be highly effective in mating disruption and monitoring programs.

  20. [Electrophysiological and behavioral responses of male Apamea apameoides (Draudt) (Lepidoptera: Noctuidae) to sex pheromone components].

    PubMed

    Zhang, Ai-Liang; Zhou, Zhang-Ting; Zhang, Ya-Bo; Zhou, Zhi-Feng; Shen, Zhi-Lian; Wang, Hao-Jie; Shu, Jin-Ping

    2014-10-01

    The sex pheromone gland extracts collected from calling females of Apamea apameoides (Lepidoptera: Noctuidae) were analyzed with GC-MS, the electrophysiological and behavioral responses of the male adults to serial dilutions of sex pheromone components and their synthetic blends were investigated with Y-tube olfactometer in laboratory and in bamboo forest field. The results indicated that (Z)-11-hexadecenyl acetate and (Z)-11-hexadecen-1-ol were the functional components in the sex pheromone gland extracts. Electroantennogram (EAG) recordings showed that sex pheromone gland extracts, (Z)-11-hexadecenyl acetate, (Z)-11-hexadecen-1-ol and the mixture of (Z)-11-hexadecenyl acetate and (Z)-11-hexadecen-1-ol all could elicit strong EAG responses, and the average EAG values increased with the increasing concentration of the sex pheromone. The blends of (Z)-11-hexadecenyl acetate and (Z)-11-hexadecen-1-ol at the ratio of 57:43 elicited a higher EAG value than each singular component did. The results of behavioral assay by Y-tube olfactometer accorded with those of EAG responses on the whole, and the mixture of (Z)-11-hexadecenyl acetate and (Z)-11-hexadecen-1-ol at the ratio of 57:43 was more attractive than each component alone. In field tests with silicone rubber as pheromone dispensers (concentration = 10(4) ng · uL(-1)), the average number of male adults captured per trap by the mixture was (48.5 ± 6.7). PMID:25796914

  1. Mating Disruption of a Carpenter Moth, Cossus insularis (Lepidoptera: Cossidae) in Apple Orchards with Synthetic Sex Pheromone, and Registration of the Pheromone as an Agrochemical.

    PubMed

    Hoshi, Hirotsuna; Takabe, Masanori; Nakamuta, Kiyoshi

    2016-07-01

    Mating disruption of the carpenter moth, Cossus insularis (Staudinger) (Lepidoptera: Cossidae), with a synthetic version of its sex pheromone, a mixture of (E)-3-tetradecenyl acetate and (Z)-3-tetradecenyl acetate, was tested for three successive years in apple (Malus domestica Borkh.) orchards. Pheromone trap catches, percentage mating of tethered females and females enclosed with males in a mating cage, and tree damage were measured in both the pheromone-treated and untreated control orchards. The attraction of male moths to pheromone traps at heights of 1.5, 3, and 5 m was strongly disrupted when the pheromone dispensers were placed at 1.5 m height. Mating of tethered females placed at 1 m was completely inhibited, and the mating of tethered females at a height of 3 m was significantly reduced by the treatment in comparison to matings in an untreated control orchard. Similarly, mating of pairs of moths enclosed in mating cages was significantly reduced by the synthetic pheromone treatment in comparison to controls. The percentage of damaged trees in the pheromone-treated orchard also decreased significantly over the course of the experiment. These results suggest that mating disruption with the synthetic sex pheromone appears promising for reducing damage caused by C. insularis in apple orchards in Japan, and a commercial mating disruption product has been developed and registered. PMID:27369282

  2. Mating Disruption of a Carpenter Moth, Cossus insularis (Lepidoptera: Cossidae) in Apple Orchards with Synthetic Sex Pheromone, and Registration of the Pheromone as an Agrochemical.

    PubMed

    Hoshi, Hirotsuna; Takabe, Masanori; Nakamuta, Kiyoshi

    2016-07-01

    Mating disruption of the carpenter moth, Cossus insularis (Staudinger) (Lepidoptera: Cossidae), with a synthetic version of its sex pheromone, a mixture of (E)-3-tetradecenyl acetate and (Z)-3-tetradecenyl acetate, was tested for three successive years in apple (Malus domestica Borkh.) orchards. Pheromone trap catches, percentage mating of tethered females and females enclosed with males in a mating cage, and tree damage were measured in both the pheromone-treated and untreated control orchards. The attraction of male moths to pheromone traps at heights of 1.5, 3, and 5 m was strongly disrupted when the pheromone dispensers were placed at 1.5 m height. Mating of tethered females placed at 1 m was completely inhibited, and the mating of tethered females at a height of 3 m was significantly reduced by the treatment in comparison to matings in an untreated control orchard. Similarly, mating of pairs of moths enclosed in mating cages was significantly reduced by the synthetic pheromone treatment in comparison to controls. The percentage of damaged trees in the pheromone-treated orchard also decreased significantly over the course of the experiment. These results suggest that mating disruption with the synthetic sex pheromone appears promising for reducing damage caused by C. insularis in apple orchards in Japan, and a commercial mating disruption product has been developed and registered.

  3. Spider sex pheromones: emission, reception, structures, and functions.

    PubMed

    Gaskett, A C

    2007-02-01

    Spiders and their mating systems are useful study subjects with which to investigate questions of widespread interest about sexual selection, pre- and post-copulatory mate choice, sperm competition, mating strategies, and sexual conflict. Conclusions drawn from such studies are broadly applicable to a range of taxa, but rely on accurate understanding of spider sexual interactions. Extensive behavioural experimentation demonstrates the presence of sex pheromones in many spider species, and recent major advances in the identification of spider sex pheromones merit review. Synthesised here are the emission, transmission, structures, and functions of spider sex pheromones, with emphasis on the crucial and dynamic role of sex pheromones in female and male mating strategies generally. Techniques for behavioural, chemical and electrophysiological study are summarised, and I aim to provide guidelines for incorporating sex pheromones into future studies of spider mating. In the spiders, pheromones are generally emitted by females and received by males, but this pattern is not universal. Female spiders emit cuticular and/or silk-based sex pheromones, which can be airborne or received via contact with chemoreceptors on male pedipalps. Airborne pheromones primarily attract males or elicit male searching behaviour. Contact pheromones stimulate male courtship behaviour and provide specific information about the emitter's identity. Male spiders are generally choosy and are often most attracted to adult virgin females and juvenile females prior to their final moult. This suggests the first male to mate with a female has significant advantages, perhaps due to sperm priority patterns, or mated female disinterest. Both sexes may attempt to control female pheromone emission, and thus dictate the frequency and timing of female mating, reflecting the potentially different costs of female signalling and/or polyandry to both sexes. Spider sex pheromones are likely to be lipids or lipid

  4. State-dependent responses to sex pheromones in mouse.

    PubMed

    Stowers, Lisa; Liberles, Stephen D

    2016-06-01

    A single sensory cue can evoke different behaviors that vary by recipient. Responses may be influenced by sex, internal state, experience, genotype, and coincident environmental stimuli. Pheromones are powerful inducers of mouse behavior, yet pheromone responses are not always stereotyped. For example, male and female mice respond differently to sex pheromones while mothers and virgin females respond differently to pup cues. Here, we review the origins of variability in responses to reproductive pheromones. Recent advances have indicated how response variability may arise through modulation at different levels of pheromone-processing circuitry, from sensory neurons in the periphery to central neurons in the vomeronasal amygdala. Understanding mechanisms underlying conditional pheromone responses should reveal how neural circuits can be flexibly sculpted to alter behavior.

  5. State-dependent responses to sex pheromones in mouse.

    PubMed

    Stowers, Lisa; Liberles, Stephen D

    2016-06-01

    A single sensory cue can evoke different behaviors that vary by recipient. Responses may be influenced by sex, internal state, experience, genotype, and coincident environmental stimuli. Pheromones are powerful inducers of mouse behavior, yet pheromone responses are not always stereotyped. For example, male and female mice respond differently to sex pheromones while mothers and virgin females respond differently to pup cues. Here, we review the origins of variability in responses to reproductive pheromones. Recent advances have indicated how response variability may arise through modulation at different levels of pheromone-processing circuitry, from sensory neurons in the periphery to central neurons in the vomeronasal amygdala. Understanding mechanisms underlying conditional pheromone responses should reveal how neural circuits can be flexibly sculpted to alter behavior. PMID:27093585

  6. Isolation, identification and field tests of the sex pheromone of the carambola fruit borer, Eucosma notanthes.

    PubMed

    Hung, C C; Hwang, J S; Hung, M D; Yen, Y P; Hou, R F

    2001-09-01

    Two components, (Z)-8-dodecenyl acetate (Z8-12:Ac) and (Z)-8-dodecenol (Z8-12:OH), were isolated from sex pheromone glands of the carambola fruit borer, Eucosma notanthes, and were identified by GC, and GC-MS, chemical derivatization, and comparison of retention times. The ratio of the alcohol to acetate in the sex pheromone extracts was 2.7. However, synthetic mixtures (1 mg) in ratios ranging from 0.5 to 1.5 were more effective than other blends in trapping male moths in field tests.

  7. Identification and Differential Expression of a Candidate Sex Pheromone Receptor in Natural Populations of Spodoptera litura

    PubMed Central

    Lin, Xinda; Zhang, Qinhui; Wu, Zhongnan; Du, Yongjun

    2015-01-01

    Olfaction is primarily mediated by highly specific olfactory receptors (ORs), a subfamily of which are the pheromone receptors that play a key role in sexual communication and can contribute to reproductive isolation. Here we cloned and identified an olfactory receptor, SlituOR3 (Genbank NO. JN835270), from Spodoptera litura, to be the candidate pheromone receptor. It exhibited male-biased expression in the antennae, where they were localized at the base of sensilla trichoidea. Conserved orthologues of these receptors were found amongst known pheromone receptors within the Lepidoptera, and SlituOR3 were placed amongst a clade of candidate pheromone receptors in a phylogeny tree of insect ORs. SlituOR3 is required for the EAG responses to both Z9E11-14:OAc and Z9E12-14:OAc SlituOR3 showed differential expression in S. litura populations attracted to traps baited with a series of sex pheromone blends composed of different ratios of (9Z,11E)-tetradecadienyl acetate (Z9E11-14:OAc) and (9Z,12E)-tetradecadienyl acetate (Z9E12-14:OAc). The changes in the expression level of SlitOR3 and antennal responses after SlitOR3 silencing suggested that SlitOR3 is required for the sex pheromone signaling. We infer that variation in transcription levels of olfactory receptors may modulate sex pheromone perception in male moths and could affect both of pest control and monitoring efficiency by pheromone application after long time mass trapping with one particular ratio of blend in the field. PMID:26126192

  8. Identification of the sex pheromone of the diurnal hawk moth, Hemaris affinis.

    PubMed

    Uehara, Takuya; Naka, Hideshi; Matsuyama, Shigeru; Ando, Tetsu; Honda, Hiroshi

    2015-01-01

    Sex pheromones of nocturnal hawk moths have been identified previously, but not those of diurnal hawk moths. Here, we report laboratory analyses and field testing of the sex pheromone of the diurnal hawk moth, Hemaris affinis (Bremer 1861) (Lepidoptera: Sphingidae). Sex pheromone glands were removed and extracted in hexane during peak calling activity of virgin female moths. Analysis of gland extracts by gas chromatography (GC) with electroantennographic detection revealed three components that elicited responses from male moth antennae. These components were identified, based on their mass spectra and retention indices on two GC columns, as (Z)-11-hexadecenal and (10E, 12Z)- and (10E,12E)-10,12-hexadecadienals with a ratio of 45:20:35. In a field experiment, traps baited with the three-component synthetic blend, but none of the single- or two-component blends, caught male moths. All three pheromone components have been identified previously in pheromones of other Lepidoptera, including Sphingid moths, and thus the ternary blend is probably responsible for the species specificity of the pheromone of this moth.

  9. Sex pheromone components of Indian gypsy moth, Lymantria obfuscata.

    PubMed

    Gries, Regine; Schaefer, Paul W; Hahn, Roger; Khaskin, Grigori; Ramaseshiah, Gujjandadu; Singh, Balbir; Hehar, Gagandeep K; Gries, Gerhard

    2007-09-01

    The Indian gypsy moth, Lymantria obfuscata (Lepidoptera: Lymantriidae), has been recognized as a distinct species since 1865 but closely resembles a diminutive form of gypsy moth, Lymantria dispar. We tested the hypothesis that the sex pheromones of L. obfuscata and L. dispar are similar. In laboratory mate acceptance studies, very few male L. dispar made copulatory attempts when paired with female L. obfuscata, suggesting that female L. obfuscata emit one or more pheromone components antagonistic to male L. dispar. In coupled gas chromatographic-electroantennographic detection (GC-EAD) analyses of pheromone gland extract of female L. obfuscata, (Z)-2-methyloctadec-7-ene (2Me-7Z-18Hy) and (7R,8S)-cis-7,8-epoxy-2-methyloctadecane [(+)-disparlure] were most abundant and elicited the strongest responses from male L. obfuscata antennae. In field experiments near Solan (Himachal Pradesh, India), 2Me-7Z-18Hy and (+)-disparlure in combination attracted more male L. obfuscata than did either component alone. This two-component sex pheromone contrasts with the single-component sex pheromone [(+)-disparlure] of L. dispar. The contrasting composition of the lymantriid communities inhabited by L. obfuscata and L. dispar may explain why 2Me-7Z-18Hy is a pheromone component in L. obfuscata and a pheromone antagonist in L. dispar and why (-)-disparlure reduces pheromonal attraction of male L. dispar but not male L. obfuscata.

  10. Targeted disruption of a single sex pheromone receptor gene completely abolishes in vivo pheromone response in the silkmoth

    PubMed Central

    Sakurai, Takeshi; Mitsuno, Hidefumi; Mikami, Akihisa; Uchino, Keiro; Tabuchi, Masashi; Zhang, Feng; Sezutsu, Hideki; Kanzaki, Ryohei

    2015-01-01

    Male moths use species-specific sex pheromones to identify and orientate toward conspecific females. Odorant receptors (ORs) for sex pheromone substances have been identified as sex pheromone receptors in various moth species. However, direct in vivo evidence linking the functional role of these ORs with behavioural responses is lacking. In the silkmoth, Bombyx mori, female moths emit two sex pheromone components, bombykol and bombykal, but only bombykol elicits sexual behaviour in male moths. A sex pheromone receptor BmOR1 is specifically tuned to bombykol and is expressed in specialized olfactory receptor neurons (ORNs) in the pheromone sensitive long sensilla trichodea of male silkmoth antennae. Here, we show that disruption of the BmOR1 gene, mediated by transcription activator-like effector nucleases (TALENs), completely removes ORN sensitivity to bombykol and corresponding pheromone-source searching behaviour in male moths. Furthermore, transgenic rescue of BmOR1 restored normal behavioural responses to bombykol. Our results demonstrate that BmOR1 is required for the physiological and behavioural response to bombykol, demonstrating that it is the receptor that mediates sex pheromone responses in male silkmoths. This study provides the first direct evidence that a member of the sex pheromone receptor family in moth species mediates conspecific sex pheromone information for sexual behaviour. PMID:26047360

  11. Unraveling the pheromone biosynthesis activating neuropeptide (PBAN) signal transduction cascade that regulates sex pheromone production in moths

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies over the past three decades have demonstrated that female moths usually produce sex pheromones as multi-component blends in which the ratios of the individual components are precisely controlled, making it possible to generate species-specific pheromone blends. Most moth pheromone component...

  12. Aphid Sex Pheromone Compounds Interfere with Attraction of Common Green Lacewings to Floral Bait.

    PubMed

    Koczor, Sándor; Szentkirályi, Ferenc; Pickett, John A; Birkett, Michael A; Tóth, Miklós

    2015-06-01

    Common green lacewings (Chrysoperla carnea complex) form a group of generalist predators important for biological control. Several reports show attraction of these insects to plant volatiles, and a highly attractive ternary compound floral bait has been developed. With aphids being a preferred prey of larvae, one might expect these lacewings to be attracted to aphid semiochemicals, for instance, to aphid sex pheromones, as found for several other green lacewing species. However, in a previous study, we found that traps containing aphid sex pheromone compounds (1R,4aS,7S,7aR)-nepetalactol (NEPOH), (4aS,7S,7aR)-nepetalactone (NEPONE), and a ternary floral bait attracted fewer individuals than those containing the ternary floral bait alone. In the present study, possible causes for this effect of NEPOH and NEPONE on trap capture were studied. We established that C. carnea complex catches in traps with a ternary floral lure were not influenced by the presence of Chrysopa formosa individuals in traps (attracted by NEPOH and NEPONE) or by synthetic skatole (a characteristic component of Chrysopa defense secretion). A direct negative effect of NEPOH and NEPONE on attraction of C. carnea complex was found, suggesting active avoidance of these aphid sex pheromone components. This finding is surprising as the larvae of these lacewings prey preferentially on aphids. Possible mechanisms underlying this phenomenon are discussed. PMID:25956798

  13. Identification of sex pheromone components of jack pine budworm,Choristoneura pinus pinus freeman.

    PubMed

    Silk, P J; Kuenen, L P; Tan, S H; Roelofs, W L; Sanders, C J; Alford, A R

    1985-02-01

    Chemical identification and field-trapping experiments have shown that a blend of 85∶15 (E,Z)-11-tetradecenyl acetates and 85∶15 (E,Z)-11-tetradecen-1-ols (in a 9∶1 ratio) are female sex pheromone components for jack pine budworm,Choristoneura pinus pinus. This blend of chemicals, formulated in PVC (0.1 %, w/w) sources is as effective a trap bait as virgin females. Preliminary wind tunnel observations have indicated that this blend, effective as a trap bait, is not equivalent to females.

  14. The use of the sex pheromone as an evolutionary solution to food source selection in caterpillars.

    PubMed

    Poivet, Erwan; Rharrabe, Kacem; Monsempes, Christelle; Glaser, Nicolas; Rochat, Didier; Renou, Michel; Marion-Poll, Frédéric; Jacquin-Joly, Emmanuelle

    2012-01-01

    Sex pheromones are released by adults of a species to elicit a sexual interaction with the other sex of the same species. Here we report an unexpected effect of a moth sex pheromone on the caterpillars of the same species. We demonstrate that larvae of the cotton leafworm Spodoptera littoralis are attracted by the moth sex pheromone and that this phenomenon is independent of sex determination. In addition, we show that the olfactory sensilla carried by the caterpillar antennae are sensitive to the pheromone and that the caterpillar sensilla express pheromone-binding proteins that are used by adult antennae to bind pheromone components. Finally, we demonstrate that the larvae are preferentially attracted to a food source when it contains the sex pheromone main component. A possible interpretation of these results is that the sex pheromone is used to promote food search in caterpillars, opening potential new routes for insect pest management.

  15. Sex pheromone of orange wheat blossom midge, Sitodiplosis mosellana

    NASA Astrophysics Data System (ADS)

    Gries, Regine; Gries, G.; Khaskin, Grigori; King, Skip; Olfert, Owen; Kaminski, Lori-Ann; Lamb, Robert; Bennett, Robb

    Pheromone extract of the female orange wheat blossom midge, Sitodiplosis mosellana (Géhin) (SM) (Diptera: Cecidomyiidae), was analyzed by coupled gas chromatographic-electroantennographic detection (GC-EAD) and GC-mass spectrometry (MS), employing fused silica columns coated with DB-5, DB-210, DB-23 or SP-1000. These analyses revealed a single, EAD-active candidate pheromone which was identified as 2,7-nonanediyl dibutyrate. In experiments in wheat fields in Saskatchewan, traps baited with (2S,7S)-2,7-nonanediyl dibutyrate attracted significant numbers of male SM. The presence of other stereoisomers did not adversely affect trap captures. Facile synthesis of stereoisomeric 2,7-nonanediyl dibutyrate will facilitate the development of pheromone-based monitoring or even control of SM populations.

  16. Origin and diversification of a salamander sex pheromone system.

    PubMed

    Janssenswillen, Sunita; Vandebergh, Wim; Treer, Dag; Willaert, Bert; Maex, Margo; Van Bocxlaer, Ines; Bossuyt, Franky

    2015-02-01

    Sex pheromones form an important facet of reproductive strategies in many organisms throughout the Animal Kingdom. One of the oldest known sex pheromones in vertebrates are proteins of the Sodefrin Precursor-like Factor (SPF) system, which already had a courtship function in early salamanders. The subsequent evolution of salamanders is characterized by a diversification in courtship and reproduction, but little is known on how the SPF pheromone system diversified in relation to changing courtship strategies. Here, we combined transcriptomic, genomic, and phylogenetic analyses to investigate the evolution of the SPF pheromone system in nine salamandrid species with distinct courtship displays. First, we show that SPF originated from vertebrate three-finger proteins and diversified through multiple gene duplications in salamanders, while remaining a single copy in frogs. Next, we demonstrate that tail-fanning newts have retained a high phylogenetic diversity of SPFs, whereas loss of tail-fanning has been associated with a reduced importance or loss of SPF expression in the cloacal region. Finally, we show that the attractant decapeptide sodefrin is cleaved from larger SPF precursors that originated by a 62 bp insertion and consequent frameshift in an ancestral Cynops lineage. This led to the birth of a new decapeptide that rapidly evolved a pheromone function independently from uncleaved proteins.

  17. Molecular markers for identification of Hessian fly males caught on pheromone traps

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pheromone traps have been widely used to monitor insect populations in nature. However, pheromone traps for the Hessian fly (Mayetiola destructor), one of the most destructive insect pests of wheat, have been used only in recent years. Because Hessian fly male adults are small and fragile, it is d...

  18. Molecular and neural mechanisms of sex pheromone reception and processing in the silkmoth Bombyx mori

    PubMed Central

    Sakurai, Takeshi; Namiki, Shigehiro; Kanzaki, Ryohei

    2014-01-01

    Male moths locate their mates using species-specific sex pheromones emitted by conspecific females. One striking feature of sex pheromone recognition in males is the high degree of specificity and sensitivity at all levels, from the primary sensory processes to behavior. The silkmoth Bombyx mori is an excellent model insect in which to decipher the underlying mechanisms of sex pheromone recognition due to its simple sex pheromone communication system, where a single pheromone component, bombykol, elicits the full sexual behavior of male moths. Various technical advancements that cover all levels of analysis from molecular to behavioral also allow the systematic analysis of pheromone recognition mechanisms. Sex pheromone signals are detected by pheromone receptors expressed in olfactory receptor neurons in the pheromone-sensitive sensilla trichodea on male antennae. The signals are transmitted to the first olfactory processing center, the antennal lobe (AL), and then are processed further in the higher centers (mushroom body and lateral protocerebrum) to elicit orientation behavior toward females. In recent years, significant progress has been made elucidating the molecular mechanisms underlying the detection of sex pheromones. In addition, extensive studies of the AL and higher centers have provided insights into the neural basis of pheromone processing in the silkmoth brain. This review describes these latest advances, and discusses what these advances have revealed about the mechanisms underlying the specific and sensitive recognition of sex pheromones in the silkmoth. PMID:24744736

  19. [Study on trace component in sex pheromones of Dendrolimus spp].

    PubMed

    Kong, Xiangbo; Zhang, Zhen; Wang, Hongbin; Zhao, Chenghua

    2005-07-01

    Two compounds were isolated, as sex pheromone components, from the abdominal tips of the female pine caterpillar moth, Dendrolimus kikuchii. The major component was identified as (Z,E)-5,7-dodecadien-1-yl acetate by gas chromatography and mass spectrometry. There are some difficulties to elucidate the structure of the minor component due to its trace and coelution with other components. The derivatives of alkaline methanolysis and reacetylation of pheromone gland extracts of D. kikuchii were analyzed by high-resolution gas chromatography, which was performed to verify the functional group and stereo isomers of the trace component in the pheromone gland extracts. The trace component was characterized as (Z,E) -5,7-dodecadienol via microchemical reaction. The advantages of the conversion of acetates to corresponding alcohols or of alcohols to the corresponding acetates in identifying the trace component of pheromone gland extracts of D. kikuchii were discussed. The importance of identifying the trace component in pheromone chemical communication system of insects is emphasized.

  20. Sex pheromone of the winter moth, a geometrid with unusually low temperature precopulatory responses.

    PubMed

    Roelofs, W L; Hill, A S; Linn, C E; Meinwald, J; Jain, S C; Herbert, H J; Smith, R F

    1982-08-13

    The sex pheromone for the winter moth, Operophtera brumata (L.), has been identified as the novel compound (Z,Z,Z)-1,3,6,9-nonadecatetraene. The male moths respond to the pheromone at low temperatures (4 degrees to 15 degrees C) and exhibit an upper response limit that coincides with the lower response limit for other reported moth sex pheromone systems. The pheromone attracted two other geometrid species, O. bruceata (Bruce spanworm) and O. occidentalis. PMID:17817538

  1. A plant factory for moth pheromone production.

    PubMed

    Ding, Bao-Jian; Hofvander, Per; Wang, Hong-Lei; Durrett, Timothy P; Stymne, Sten; Löfstedt, Christer

    2014-02-25

    Moths depend on pheromone communication for mate finding and synthetic pheromones are used for monitoring or disruption of pheromone communication in pest insects. Here we produce moth sex pheromone, using Nicotiana benthamiana as a plant factory, by transient expression of up to four genes coding for consecutive biosynthetic steps. We specifically produce multicomponent sex pheromones for two species. The fatty alcohol fractions from the genetically modified plants are acetylated to mimic the respective sex pheromones of the small ermine moths Yponomeuta evonymella and Y. padella. These mixtures are very efficient and specific for trapping of male moths, matching the activity of conventionally produced pheromones. Our long-term vision is to design tailor-made production of any moth pheromone component in genetically modified plants. Such semisynthetic preparation of sex pheromones is a novel and cost-effective way of producing moderate to large quantities of pheromones with high purity and a minimum of hazardous waste.

  2. A plant factory for moth pheromone production

    PubMed Central

    Ding, Bao-Jian; Hofvander, Per; Wang, Hong-Lei; Durrett, Timothy P.; Stymne, Sten; Löfstedt, Christer

    2014-01-01

    Moths depend on pheromone communication for mate finding and synthetic pheromones are used for monitoring or disruption of pheromone communication in pest insects. Here we produce moth sex pheromone, using Nicotiana benthamiana as a plant factory, by transient expression of up to four genes coding for consecutive biosynthetic steps. We specifically produce multicomponent sex pheromones for two species. The fatty alcohol fractions from the genetically modified plants are acetylated to mimic the respective sex pheromones of the small ermine moths Yponomeuta evonymella and Y. padella. These mixtures are very efficient and specific for trapping of male moths, matching the activity of conventionally produced pheromones. Our long-term vision is to design tailor-made production of any moth pheromone component in genetically modified plants. Such semisynthetic preparation of sex pheromones is a novel and cost-effective way of producing moderate to large quantities of pheromones with high purity and a minimum of hazardous waste. PMID:24569486

  3. Total Synthesis, Stereochemical Assignment, and Field-Testing of the Sex Pheromone of the Strepsipteran Xenos peckii.

    PubMed

    Zhai, Huimin; Hrabar, Michael; Gries, Regine; Gries, Gerhard; Britton, Robert

    2016-04-25

    The sex pheromone of the endoparasitoid insect Xenos peckii (Strepsiptera: Xenidae) was recently identified as (7E,11E)-3,5,9,11-tetramethyl-7,11-tridecadienal. Herein we report the asymmetric synthesis of three candidate stereostructures for this pheromone using a synthetic strategy that relies on an sp(3) -sp(2) Suzuki-Miyaura coupling to construct the correctly configured C7-alkene function. Comparison of (1) H NMR spectra derived from the candidate stereostructures to that of the natural sex pheromone indicated a relative configuration of (3R*,5S*,9R*). Chiral gas chromatographic (GC) analyses of these compounds supported an assignment of (3R,5S,9R) for the natural product. Furthermore, in a 16-replicate field experiment, traps baited with the synthetic (3R,5S,9R)-enantiomer alone or in combination with the (3S,5R,9S)-enantiomer captured 23 and 18 X. peckii males, respectively (mean±SE: 1.4±0.33 and 1.1±0.39), whereas traps baited with the synthetic (3S,5R,9S)-enantiomer or a solvent control yielded no captures of males. These strong field trapping data, in combination with spectroscopic and chiral GC data, unambiguously demonstrate that (3R,5S,9R,7E,11E)-3,5,9,11-tetramethyl-7,11-tridecadienal is the X. peckii sex pheromone. PMID:27001535

  4. (R)-Desmolactone Is a Sex Pheromone or Sex Attractant for the Endangered Valley Elderberry Longhorn Beetle Desmocerus californicus dimorphus and Several Congeners (Cerambycidae: Lepturinae)

    PubMed Central

    Ray, Ann M.; Arnold, Richard A.; Swift, Ian; Schapker, Philip A.; McCann, Sean; Marshall, Christopher J.; McElfresh, J. Steven; Millar, Jocelyn G.

    2014-01-01

    We report here that (4R,9Z)-hexadec-9-en-4-olide [(R)-desmolactone] is a sex attractant or sex pheromone for multiple species and subspecies in the cerambycid genus Desmocerus. This compound was previously identified as a female-produced sex attractant pheromone of Desmocerus californicus californicus. Headspace volatiles from female Desmocerus aureipennis aureipennis contained (R)-desmolactone, and the antennae of adult males of two species responded strongly to synthetic (R)-desmolactone in coupled gas chromatography-electroantennogram analyses. In field bioassays in California, Oregon, and British Columbia, traps baited with synthetic (R)-desmolactone captured males of several Desmocerus species and subspecies. Only male beetles were captured, indicating that this compound acts as a sex-specific attractant, rather than as a signal for aggregation. In targeted field bioassays, males of the US federally threatened subspecies Desmocerus californicus dimorphus responded to the synthetic attractant in a dose dependent manner. Our results represent the first example of a “generic” sex pheromone used by multiple species in the subfamily Lepturinae, and demonstrate that pheromone-baited traps may be a sensitive and efficient method of monitoring the threatened species Desmocerus californicus dimorphus, commonly known as the valley elderberry longhorn beetle. PMID:25521293

  5. (7E,11E)-3,5,9,11-Tetramethyltridecadienal: Sex Pheromone of the Strepsipteran Xenos peckii.

    PubMed

    Hrabar, Michael; Zhai, Huimin; Gries, Regine; Schaefer, Paul W; Draper, Jason; Britton, Robert; Gries, Gerhard

    2015-08-01

    Xenos peckii is a strepsipteran parasitoid of the common North American paper wasp, Polistes fuscatus. Mate-seeking X. peckii males respond to a long-range sex pheromone emitted by the female, which remains permanently embedded within the abdomen of a mobile host wasp. During peak pheromone signalling, we excised the female from her host, severed the cephalothorax containing the pheromone gland, extracted it in hexane, and analyzed aliquots of combined extracts by coupled gas chromatographic-electroantennographic detection (GC-EAD). These analyses revealed a candidate pheromone component (CPC) that consistently elicited strong responses from male antennae. We identified the CPC as (7E,11E)-3,5,9,11-tetramethyltridecadienal based on its retention indices (RI) on three GC-columns, RI inter-column differentials, mass and NMR spectra, and synthesis of an authentic standard that matched the GC-retention and spectrometric characteristics of the CPC. For a field experiment, we prepared (7E,11E)-3,5,9R,11-tetramethyltridecadienal and (7E,11E)-3,5,9S,11-tetramethyltridecadienal. Xenos peckii males were caught in traps baited with either compound singly or a 1:1 mixture of the two but not in unbaited control traps. The sex pheromone of X. peckii resembles that reported for the strepsipterans Stylops mellittae and S. muelleri, (R,R,R)-3,5,9-trimethyldodecanal, suggesting a common biosynthetic pathway across taxonomic genera.

  6. (7E,11E)-3,5,9,11-Tetramethyltridecadienal: Sex Pheromone of the Strepsipteran Xenos peckii.

    PubMed

    Hrabar, Michael; Zhai, Huimin; Gries, Regine; Schaefer, Paul W; Draper, Jason; Britton, Robert; Gries, Gerhard

    2015-08-01

    Xenos peckii is a strepsipteran parasitoid of the common North American paper wasp, Polistes fuscatus. Mate-seeking X. peckii males respond to a long-range sex pheromone emitted by the female, which remains permanently embedded within the abdomen of a mobile host wasp. During peak pheromone signalling, we excised the female from her host, severed the cephalothorax containing the pheromone gland, extracted it in hexane, and analyzed aliquots of combined extracts by coupled gas chromatographic-electroantennographic detection (GC-EAD). These analyses revealed a candidate pheromone component (CPC) that consistently elicited strong responses from male antennae. We identified the CPC as (7E,11E)-3,5,9,11-tetramethyltridecadienal based on its retention indices (RI) on three GC-columns, RI inter-column differentials, mass and NMR spectra, and synthesis of an authentic standard that matched the GC-retention and spectrometric characteristics of the CPC. For a field experiment, we prepared (7E,11E)-3,5,9R,11-tetramethyltridecadienal and (7E,11E)-3,5,9S,11-tetramethyltridecadienal. Xenos peckii males were caught in traps baited with either compound singly or a 1:1 mixture of the two but not in unbaited control traps. The sex pheromone of X. peckii resembles that reported for the strepsipterans Stylops mellittae and S. muelleri, (R,R,R)-3,5,9-trimethyldodecanal, suggesting a common biosynthetic pathway across taxonomic genera. PMID:26271674

  7. Sex pheromone of Argyrotaenia pomililiana (Lepidoptera: Tortricidae), a leafroller pest of apples in Argentina.

    PubMed

    Cichón, L I; Trematerra, P; Coracini, M D A; Fernandez, D; Bengtsson, M; Witzgall, P

    2004-06-01

    Sex pheromone gland extracts of Argyrotaenia pomililiana Trematerra & Brown females contained seven 14-chain compounds, the Z and E isomers of 11-tetradecenyl acetate, 11-tetradecen-1-ol, and 11-tetradecenal, respectively, together with tetradecyl acetate. In field trapping tests, a 100:5 blend of Z11-14:Ac and Z11-14:Al was shown to be suitable for detection and monitoring of A. pomililiana. This species-specific lure will facilitate the use of mating disruption against codling moth, Cydia pomonella (L.), in Argentine fruit orchards.

  8. Identification of the sex pheromone of Isoceras sibirica Alpheraky (Lepidoptera, Cossidae).

    PubMed

    Zhang, Jintong; Liu, Hongxia; Zhao, Wenmei; Liu, Jinlong; Zong, Shixiang

    2011-01-01

    We discovered that extracts of the female sex pheromone gland of the carpenterworm moth Isoceras sibirica Alpheraky, a pest of Asparagus officinalis Linn., contained (Z)-7-tetradecen-1-ol (Z7-14:OH), (Z)-9-tetradecen-1-ol (Z9-14:OH), (Z)-7-tetradecenyl acetate (Z7-14:Ac), (Z)-9-tetradecenyl acetate (Z9-14:Ac), and (Z)-9-hexadecadecenyl acetate (Z9-16:Ac). The average levels of the chemicals in a single sex pheromone gland of a calling moth were (0.71 +/- 0.24) ng, (1.42 +/- 0.44) ng, (4.36 +/- 0.32) ng, (8.71 +/- 0.26) ng, and (0.82 +/- 0.38) ng, respectively. The electroantennography (EAG) analysis of these chemicals and their analogues demonstrated that Z9-14:Ac triggered significantly the male EAG response. Traps with rubber septa lure impregnated with Z9-14:Ac (500 microg/septum), Z7-14:Ac (250 microg/septum), and Z9-16:Ac (50 microg/septum) were more effective in catching male moths than traps with other baits or virgin females. Addition of Z7-14:OH and Z9-14:OH to rubber septa did not enhance the efficiency of the trap. PMID:22191219

  9. Sex Pheromone of Agriotes acuminatus (Stephens, 1830) (Coleoptera: Elateridae).

    PubMed

    Tolasch, Till; von Fragstein, Maximilian; Steidle, Johannes L M

    2010-03-01

    The click beetle species Agriotes acuminatus is distributed in open deciduous forests throughout a large area in Europe. In order to identify its sex pheromone, gland extracts of female beetles were investigated by using GC/MS. Neryl butanoate and 2,6-dimethyl-(Z,E)-2,6-octadien-1,8-diol dihexanoate, in a ratio of approximately 1:5, were the only volatile compounds present in the extracts. Structures of both esters were confirmed by synthesis. Field experiments revealed a strong attraction of A. acuminatus males towards neryl butanoate, which could be synergistically enhanced by addition of 2,6-dimethyl-(Z,E)-2,6-octadien-1,8-diol dihexanoate. The latter compound alone did not show any attractive effect. While all Agriotes spp. investigated to date use geranyl and/or (E,E)-farnesyl esters as sex pheromones, the nerol derivatives of A. acuminatus are the first (Z)-2-configurated pheromones within this genus.

  10. Behavioral evidence for the presence of a sex pheromone in male Phlebotomus papatasi scopoli (Diptera: Psychodidae).

    PubMed

    Chelbi, I; Zhioua, E; Hamilton, J G C

    2011-05-01

    Phlebotomus papatasi (Diptera: Psychodidae) is the Old World sand fly vector of zoonotic cutaneous leishmaniasis caused by Leishmania major (Trypanosomatidae: Kinetoplastida), a debilitating and disfiguring protist parasitic disease prevalent throughout southern Mediterranean countries, the Middle East, as well as southern and eastern European countries, where it is regarded as a serious public health problem. Little is known of the mating ecology of P. papatasi, and, in particular, the role (if any) of pheromones is not known. In this laboratory- and field-based study, we have shown that a male-produced sex pheromone exists in P. papatasi. Young female P. papatasi are attracted to the headspace volatiles of small groups of males, males and females together, but not females alone. Males were not attracted to males, females, or mixed groups of males and females in the laboratory. Larger groups of males or males and females together were repellent in the laboratory study. Field experiments showed that Centers for Disease Control (CDC) light traps baited with small groups of males and females together were attractive to females, but not males. CDC traps baited with large groups of males and females together caught significantly fewer females and males than the control traps; however, the proportion of females caught compared with males overall was much higher than with CDC traps baited with small numbers of males and females. These results suggest that females may be attracted in preference to males to the vicinity of the baited traps and are highly sensitive to the concentration of male pheromone. It also suggests that P. papatasi mating behavior is fundamentally different from that of Lutzomyia longipalpis, where large mating aggregations of males and females occur. PMID:21661311

  11. Behavioural and genetic analyses of Nasonia shed light on the evolution of sex pheromones.

    PubMed

    Niehuis, Oliver; Buellesbach, Jan; Gibson, Joshua D; Pothmann, Daniela; Hanner, Christian; Mutti, Navdeep S; Judson, Andrea K; Gadau, Jürgen; Ruther, Joachim; Schmitt, Thomas

    2013-02-21

    Sex pheromones play a pivotal role in the communication of many sexually reproducing organisms. Accordingly, speciation is often accompanied by pheromone diversification enabling proper mate finding and recognition. Current theory implies that chemical signals are under stabilizing selection by the receivers who thereby maintain the integrity of the signals. How the tremendous diversity of sex pheromones seen today evolved is poorly understood. Here we unravel the genetics of a newly evolved pheromone phenotype in wasps and present results from behavioural experiments indicating how the evolution of a new pheromone component occurred in an established sender-receiver system. We show that male Nasonia vitripennis evolved an additional pheromone compound differing only in its stereochemistry from a pre-existing one. Comparative behavioural studies show that conspecific females responded neutrally to the new pheromone phenotype when it evolved. Genetic mapping and gene knockdown show that a cluster of three closely linked genes accounts for the ability to produce this new pheromone phenotype. Our data suggest that new pheromone compounds can persist in a sender's population, without being selected against by the receiver and without the receiver having a pre-existing preference for the new pheromone phenotype, by initially remaining unperceived. Our results thus contribute valuable new insights into the evolutionary mechanisms underlying the diversification of sex pheromones. Furthermore, they indicate that the genetic basis of new pheromone compounds can be simple, allowing them to persist long enough in a population for receivers to evolve chemosensory adaptations for their exploitation.

  12. The Sex Attractant Pheromone of Male Brown Rats: Identification and Field Experiment.

    PubMed

    Takács, Stephen; Gries, Regine; Zhai, Huimin; Gries, Gerhard

    2016-05-10

    Trapping brown rats is challenging because they avoid newly placed traps in their habitat. Herein, we report the identification of the sex pheromone produced by male brown rats and its effect on trap captures of wild female brown rats. Collecting urine- and feces-soiled bedding material of laboratory-kept rats and comparing the soiled-bedding odorants of juvenile and adult males, as well as of adult males and females, we found nine compounds that were specific to, or most prevalent in, the odor profiles of sexually mature adult males. When we added a synthetic blend of six of these compounds (2-heptanone, 4-heptanone, 3-ethyl-2-heptanone, 2-octanone, 2-nonanone, 4-nonanone) to one of two paired food-baited trap boxes, these boxes attracted significantly more laboratory-strain female rats in laboratory experiments, and captured ten times more wild female rats in a field experiment than the corresponding control boxes. Our data show that the pheromone facilitates captures of wild female brown rats. PMID:27060700

  13. Management of Cosmopolites sordidus and Metamasius hemipterus in banana by pheromone-based mass trapping.

    PubMed

    Alpizar, D; Fallas, M; Oehlschlager, A C; Gonzalez, L M

    2012-03-01

    Mass trapping Cosmopolites sordidus (Coleoptera, Curculionidae) using a pheromone-baited pitfall trap and Metamasius hemipterus (Coleoptera, Curculionidae) using a pheromone-sugarcane-baited open gallon trap was conducted in commercial banana. Four traps for each insect per hectare were placed in each of two 5-hectare plots of banana. Two additional 5-hectare plots were designated as controls and treated according to the plantation protocol. Capture rates of C. sordidus and M. hemipterus declined by >75 % over 10-12 months. In the banana growing region studied, corm damage was due primarily to C. sordidus, while only a minor amount of damage was attributable to M. hemipterus. Corm damage reduction in trapping plots was, thus, attributed primarily to C. sordidus trapping. In trapping plots, corm damage decreased by 61-64 % during the experiment. Banana bunch weights increased 23 % relative to control plots after 11-12 months of trapping. Fruit diameter did not vary between bunches harvested from trapping plots vs. control plots. Plant vigor, however, as determined by stem circumference at one meter above ground increased in plots with traps compared to control plots. Trapping for C. sordidus in two plantations of over 200 hectares each, reduced corm damage 62-86 % relative to pre-trapping levels. Insecticide control measures in place when the experiment commenced resulted in about 20-30 % corm damage, while use of pheromone trapping to manage C. sordidus lowered corm damage to 10 % or less. It is estimated that the increase in value of increased yield obtained in this trial (23 %) is about $4,240 USD per year per hectare, while the cost of pheromone trapping is approximately $185 USD per year per hectare. The trapping program becomes revenue neutral if bunch weights increase by an average of 1 % per year of trapping. Approximately 10 % of all plantation area in Costa Rica use the pheromone trapping system described here. The system also is used in Martinique

  14. Management strategy evaluation of pheromone-baited trapping techniques to improve management of invasive sea lamprey

    USGS Publications Warehouse

    Dawson, Heather; Jones, Michael L.; Irwin, Brian J.; Johnson, Nicholas; Wagner, Michael C.; Szymanski, Melissa

    2016-01-01

    We applied a management strategy evaluation (MSE) model to examine the potential cost-effectiveness of using pheromone-baited trapping along with conventional lampricide treatment to manage invasive sea lamprey. Four pheromone-baited trapping strategies were modeled: (1) stream activation wherein pheromone was applied to existing traps to achieve 10−12 mol/L in-stream concentration, (2) stream activation plus two additional traps downstream with pheromone applied at 2.5 mg/hr (reverse-intercept approach), (3) trap activation wherein pheromone was applied at 10 mg/hr to existing traps, and (4) trap activation and reverse-intercept approach. Each new strategy was applied, with remaining funds applied to conventional lampricide control. Simulating deployment of these hybrid strategies on fourteen Lake Michigan streams resulted in increases of 17 and 11% (strategies 1 and 2) and decreases of 4 and 7% (strategies 3 and 4) of the lakewide mean abundance of adult sea lamprey relative to status quo. MSE revealed performance targets for trap efficacy to guide additional research because results indicate that combining lampricides and high efficacy trapping technologies can reduce sea lamprey abundance on average without increasing control costs.

  15. Larval sensilla of the moth Heliothis virescens respond to sex pheromone components.

    PubMed

    Zielonka, M; Gehrke, P; Badeke, E; Sachse, S; Breer, H; Krieger, J

    2016-10-01

    Female-released sex pheromones orchestrate the mating behaviour of moths. Recent studies have shown that sex pheromones not only attract adult males but also caterpillars. Single sensillum recordings revealed that larval antennal sensilla of the moth Heliothis virescens respond to specific sex pheromone components. In search for the molecular basis of pheromone detection in larvae, we found that olfactory sensilla on the larval antennae are equipped with the same molecular elements that mediate sex pheromone detection in adult male moths, including the Heliothis virescens receptors 6 (HR6) and HR13, as well as sensory neurone membrane protein 1 (SNMP1). Thirty-eight olfactory sensory neurones were identified in three large sensilla basiconica; six of these are considered as candidate pheromone responsive cells based on the expression of SNMP1. The pheromone receptor HR6 was found to be expressed in two cells and the receptor HR13 in three cells. These putative pheromone responsive neurones were accompanied by cells expressing pheromone-binding protein 1 (PBP1) and PBP2. The results indicate that the responsiveness of larval sensilla to female-emitted sex pheromones is based on the same molecular machinery as in the antennae of adult males. PMID:27465144

  16. Sex pheromone of Elater ferrugineus L. (Coleoptera: Elateridae).

    PubMed

    Tolasch, Till; von Fragstein, Maximilian; Steidle, Johannes L M

    2007-11-01

    The rare European click beetle, Elater ferrugineus L., develops exclusively in old, hollow deciduous trees. As a result of massive habitat loss caused by modern forestry, it is threatened throughout its entire distribution range and regarded as an indicator species for undamaged natural forests. As E. ferrugineus lives cryptically and its populations are frequently overlooked, we investigated its sex pheromone to develop a reliable detection tool. Pheromone gland extracts of single female E. ferrugineus were examined by using gas chromatography-mass spectrometry (GC-MS). All samples contained 7-methyloctyl 5-methylhexanoate, 7-methyloctyl octanoate, 7-methyloctyl 7-methyloctanoate, and 7-methyloctyl (Z)-4-decenoate in a ratio of approximately 1:1:3:3. Structures of all four esters, which have not been reported as pheromone compounds before, were confirmed by synthesis. A blend of the components was tested in the field and proved to be attractive for E. ferrugineus males, which were found to swarm exclusively during the day. This blend provides a noninvasive and effective monitoring method for this cryptic species, promising future collection records of E. ferrugineus in regions where it exists below the limit of detection by conventional collecting methods.

  17. Minor components in the sex pheromone of legume podborer: Maruca vitrata development of an attractive blend.

    PubMed

    Downham, M C A; Hall, D R; Chamberlain, D J; Cork, A; Farman, D I; Tamò, M; Dahounto, D; Datinon, B; Adetonah, S

    2003-04-01

    The legume podborer, Maruca vitrata (syn. M. testulalis) (F.) (Lepidoptera: Pyralidae) is a pantropical pest of legume crops. Sex pheromone was collected by gland extraction or trapping of volatiles from virgin female moths originating in India, West Africa, or Taiwan. Analysis by GC-EAG and GC-MS confirmed previously published findings that (E,E)-10,12-hexadecadienal is the most abundant EAG-active component with 2-5% of (E,E)-10,12-hexadecadienol also present. At least one other EAG response was detected at retention times typical of monounsaturated hexadecenals or tetradecenyl acetates, but neither could be detected by GC-MS. Laboratory wind-tunnel bioassays and a field bioassay of blends of (E,E)-10,12-hexadecadienal with (E,E )-10,12-hexadecadienol and a range of monounsaturated hexadecenal and tetradecenyl acetate isomers indicated greatest attraction of males was to those including (E,E)-10,12-hexadecadienol and (E)-10-hexadecenal as minor components. In subsequent trapping experiments in cowpea fields in Benin, traps baited with a three-component blend of (E,E)-10,12-hexadecadienal and these two minor components in a 100:5:5 ratio caught significantly more males than traps baited with the major component alone, either two-component blend, or virgin female moths. Further blend optimization experiments did not produce a more attractive blend. No significant differences in catches were found between traps baited with polyethylene vials or rubber septa, or between lures containing 0.01 and 0.1 mg of synthetic pheromone. Significant numbers of female M. vitrata moths, up to 50% of total catches, were trapped with synthetic blends but not with virgin females. At present there is no clear explanation for this almost unprecedented finding, but the phenomenon may improve the predictive power of traps for population monitoring.

  18. First Evidence of a Volatile Sex Pheromone in Lady Beetles

    PubMed Central

    Fassotte, Bérénice; Fischer, Christophe; Durieux, Delphine; Lognay, Georges; Haubruge, Eric; Francis, Frédéric; Verheggen, François J.

    2014-01-01

    To date, volatile sex pheromones have not been identified in the Coccinellidae family; yet, various studies have suggested that such semiochemicals exist. Here, we collected volatile chemicals released by virgin females of the multicolored Asian lady beetle, Harmonia axyridis (Pallas), which were either allowed or not allowed to feed on aphids. Virgin females in the presence of aphids, exhibited “calling behavior”, which is commonly associated with the emission of a sex pheromone in several Coleoptera species. These calling females were found to release a blend of volatile compounds that is involved in the remote attraction (i.e., from a distance) of males. Gas Chromatography-Mass Spectrometry (GC-MS) analyses revealed that (–)-β-caryophyllene was the major constituent of the volatile blend (ranging from 80 to 86%), with four other chemical components also being present; β-elemene, methyl-eugenol, α-humulene, and α-bulnesene. In a second set of experiments, the emission of the five constituents identified from the blend was quantified daily over a 9-day period after exposure to aphids. We found that the quantity of all five chemicals significantly increased across the experimental period. Finally, we evaluated the activity of a synthetic blend of these chemicals by performing bioassays which demonstrated the same attractive effect in males only. The results confirm that female H. axyridis produce a volatile sex pheromone. These findings have potential in the development of more specific and efficient biological pest-control management methods aimed at manipulating the behavior of this invasive lady beetle. PMID:25514321

  19. Green light synergistally enhances male sweetpotato weevil response to sex pheromone.

    PubMed

    McQuate, Grant T

    2014-01-01

    Sweetpotato, commercially grown in over 100 countries, is one of the ten most important staple crops in the world. Sweetpotato weevil is a major pest of sweetpotato in most areas of cultivation, the feeding of which induces production in the sweetpotato root of extremely bitter tasting and toxic sesquiterpenes which can render the sweetpotato unfit for consumption. A significant step towards improved management of this weevil species was the identification of a female-produced sex pheromone [(Z)-3-dodecenyl (E)-2-butenoate] to which males are highly attracted. Reported here are results of research that documents a nearly 5-fold increase in male sweetpotato weevil catch in traps baited with this pheromone and a green light provided by a solar-powered, light-emitting diode (LED). The combination of olfactory and night-visible visual cues significantly enhanced trap effectiveness for this nighttime-active insect species. These results provide promise for improved sweetpotato weevil detection and suppression in mass trapping programs. PMID:24675727

  20. Green Light Synergistally Enhances Male Sweetpotato Weevil Response to Sex Pheromone

    PubMed Central

    McQuate, Grant T.

    2014-01-01

    Sweetpotato, commercially grown in over 100 countries, is one of the ten most important staple crops in the world. Sweetpotato weevil is a major pest of sweetpotato in most areas of cultivation, the feeding of which induces production in the sweetpotato root of extremely bitter tasting and toxic sesquiterpenes which can render the sweetpotato unfit for consumption. A significant step towards improved management of this weevil species was the identification of a female-produced sex pheromone [(Z)-3-dodecenyl (E)-2-butenoate] to which males are highly attracted. Reported here are results of research that documents a nearly 5-fold increase in male sweetpotato weevil catch in traps baited with this pheromone and a green light provided by a solar-powered, light-emitting diode (LED). The combination of olfactory and night-visible visual cues significantly enhanced trap effectiveness for this nighttime-active insect species. These results provide promise for improved sweetpotato weevil detection and suppression in mass trapping programs. PMID:24675727

  1. Feeding regulates sex pheromone attraction and courtship in Drosophila females.

    PubMed

    Lebreton, Sébastien; Trona, Federica; Borrero-Echeverry, Felipe; Bilz, Florian; Grabe, Veit; Becher, Paul G; Carlsson, Mikael A; Nässel, Dick R; Hansson, Bill S; Sachse, Silke; Witzgall, Peter

    2015-01-01

    In Drosophila melanogaster, gender-specific behavioural responses to the male-produced sex pheromone cis-vaccenyl acetate (cVA) rely on sexually dimorphic, third-order neural circuits. We show that nutritional state in female flies modulates cVA perception in first-order olfactory neurons. Starvation increases, and feeding reduces attraction to food odour, in both sexes. Adding cVA to food odour, however, maintains attraction in fed females, while it has no effect in males. Upregulation of sensitivity and behavioural responsiveness to cVA in fed females is paralleled by a strong increase in receptivity to male courtship. Functional imaging of the antennal lobe (AL), the olfactory centre in the insect brain, shows that olfactory input to DA1 and VM2 glomeruli is also modulated by starvation. Knocking down insulin receptors in neurons converging onto the DA1 glomerulus suggests that insulin-signalling partly controls pheromone perception in the AL, and adjusts cVA attraction according to nutritional state and sexual receptivity in Drosophila females. PMID:26255707

  2. Feeding regulates sex pheromone attraction and courtship in Drosophila females

    PubMed Central

    Lebreton, Sébastien; Trona, Federica; Borrero-Echeverry, Felipe; Bilz, Florian; Grabe, Veit; Becher, Paul G.; Carlsson, Mikael A.; Nässel, Dick R.; Hansson, Bill S.; Sachse, Silke; Witzgall, Peter

    2015-01-01

    In Drosophila melanogaster, gender-specific behavioural responses to the male-produced sex pheromone cis-vaccenyl acetate (cVA) rely on sexually dimorphic, third-order neural circuits. We show that nutritional state in female flies modulates cVA perception in first-order olfactory neurons. Starvation increases, and feeding reduces attraction to food odour, in both sexes. Adding cVA to food odour, however, maintains attraction in fed females, while it has no effect in males. Upregulation of sensitivity and behavioural responsiveness to cVA in fed females is paralleled by a strong increase in receptivity to male courtship. Functional imaging of the antennal lobe (AL), the olfactory centre in the insect brain, shows that olfactory input to DA1 and VM2 glomeruli is also modulated by starvation. Knocking down insulin receptors in neurons converging onto the DA1 glomerulus suggests that insulin-signalling partly controls pheromone perception in the AL, and adjusts cVA attraction according to nutritional state and sexual receptivity in Drosophila females. PMID:26255707

  3. A Biologically Active Analog of the Sex Pheromone of the Emerald Ash Borer, Agrilus planipennis.

    PubMed

    Silk, P J; Ryall, K; Mayo, P; MaGee, D I; Leclair, G; Fidgen, J; Lavallee, R; Price, J; McConaghy, J

    2015-03-01

    The emerald ash borer, Agrilus planipennis (Coleoptera: Buprestidae) (EAB), is an invasive species causing unprecedented levels of mortality to ash trees in its introduced range. The female-produced sex pheromone of EAB has been shown to contain the macrocyclic lactone (3Z)-dodecen-12-olide. This compound and its geometrical isomer, (3E)-dodecen-12-olide, have been demonstrated previously to be EAG active and, in combination with a host-derived green leaf volatile, (3Z)-hexenol, to be attractive to male EAB in green prism traps deployed in the ash tree canopy. In the current study, we show that the saturated analog, dodecan-12-olide, is similarly active, eliciting an antennal response and significant attraction of EAB in both olfactometer and trapping bioassays in green traps with (3Z)-hexenol. Conformational modeling of the three lactones reveals that their energies and shapes are very similar, suggesting they might share a common receptor in EAB antennae. These findings provide new insight into the pheromone ecology of this species, highlighting the apparent plasticity in response of adults to the pheromone and its analog. Both of the unsaturated isomers are costly to synthesize, involving multistep, low-yielding processes. The saturated analog can be made cheaply, in high yield, and on large scale via Mitsunobu esterification of a saturated ω-hydroxy acid or more simply by Baeyer-Villiger oxidation of commercially available cyclododecanone. The analog can thus provide an inexpensive option as a lure for detection surveys as well as for possible mitigation purposes, such as mating disruption. PMID:25786893

  4. A Biologically Active Analog of the Sex Pheromone of the Emerald Ash Borer, Agrilus planipennis.

    PubMed

    Silk, P J; Ryall, K; Mayo, P; MaGee, D I; Leclair, G; Fidgen, J; Lavallee, R; Price, J; McConaghy, J

    2015-03-01

    The emerald ash borer, Agrilus planipennis (Coleoptera: Buprestidae) (EAB), is an invasive species causing unprecedented levels of mortality to ash trees in its introduced range. The female-produced sex pheromone of EAB has been shown to contain the macrocyclic lactone (3Z)-dodecen-12-olide. This compound and its geometrical isomer, (3E)-dodecen-12-olide, have been demonstrated previously to be EAG active and, in combination with a host-derived green leaf volatile, (3Z)-hexenol, to be attractive to male EAB in green prism traps deployed in the ash tree canopy. In the current study, we show that the saturated analog, dodecan-12-olide, is similarly active, eliciting an antennal response and significant attraction of EAB in both olfactometer and trapping bioassays in green traps with (3Z)-hexenol. Conformational modeling of the three lactones reveals that their energies and shapes are very similar, suggesting they might share a common receptor in EAB antennae. These findings provide new insight into the pheromone ecology of this species, highlighting the apparent plasticity in response of adults to the pheromone and its analog. Both of the unsaturated isomers are costly to synthesize, involving multistep, low-yielding processes. The saturated analog can be made cheaply, in high yield, and on large scale via Mitsunobu esterification of a saturated ω-hydroxy acid or more simply by Baeyer-Villiger oxidation of commercially available cyclododecanone. The analog can thus provide an inexpensive option as a lure for detection surveys as well as for possible mitigation purposes, such as mating disruption.

  5. Differential Octopaminergic Modulation of Olfactory Receptor Neuron Responses to Sex Pheromones in Heliothis virescens

    PubMed Central

    Hillier, N. Kirk; Kavanagh, Rhys M. B.

    2015-01-01

    Octopamine is an important neuromodulator of neural function in invertebrates. Octopamine increases male moth sensitivity to female sex pheromones, however, relatively little is known as to the role of octopamine in the female olfactory system, nor its possible effects on the reception of non-pheromone odorants. The purpose of this study was to determine relative effects of octopamine on the sensitivity of the peripheral olfactory system in male and female Heliothis virescens. Single sensillum recording was conducted in both sexes following injection with octopamine or Ringer solution, and during odorant stimulation with conspecific female sex pheromone or host plant volatiles. Results indicate that octopamine plays a significant modulatory role in female sex pheromone detection in female moths; and that male and female pheromone detection neurons share distinct pharmacological and physiological similarities in H. virescens despite sexual dimorphism at the antennal level. PMID:26650832

  6. Attraction of dispersing boll weevils from surrounding habitats relative to simulated pheromone diffusion from traps

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ability to detect populations of boll weevils, Anthonomus grandis (Boheman), with pheromone traps has contributed significantly in progress toward eradication of the boll weevil. However, new information is needed to aid in the interpretation of trap captures, such as identification of habitats...

  7. Evaluation of pheromone-baited traps for winter moth and Bruce spanworm (Lepidoptera: Geometridae).

    PubMed

    Elkinton, Joseph S; Lance, David; Boettner, George; Khrimian, Ashot; Leva, Natalie

    2011-04-01

    We tested different pheromone-baited traps for surveying winter moth, Operophtera brumata (L.) (Lepidoptera: Geometridae), populations in eastern North America. We compared male catch at Pherocon 1C sticky traps with various large capacity traps and showed that Universal Moth traps with white bottoms caught more winter moths than any other trap type. We ran the experiment on Cape Cod, MA, where we caught only winter moth, and in western Massachusetts, where we caught only Bruce spanworm, Operophtera bruceata (Hulst) (Lepidoptera: Geometridae), a congener of winter moth native to North America that uses the same pheromone compound [(Z,Z,Z)-1,3,6,9-nonadecatetraene] and is difficult to distinguish from adult male winter moths. With Bruce spanworm, the Pherocon 1C sticky traps caught by far the most moths. We tested an isomer of the pheromone [(E,Z,Z)-1,3,6,9-nonadecatetraene] that previous work had suggested would inhibit captures of Bruce spanworm but not winter moths. We found that the different doses and placements of the isomer suppressed captures of both species to a similar degree. We are thus doubtful that we can use the isomer to trap winter moths without also catching Bruce spanworm. Pheromone-baited survey traps will catch both species.

  8. Balanced olfactory antagonism as a concept for understanding evolutionary shifts in moth sex pheromone blends.

    PubMed

    Baker, Thomas C

    2008-07-01

    In the sex pheromone communication systems of moths, both heterospecific sex pheromone components and individual conspecific pheromone components may act as behavioral antagonists when they are emitted at excessive rates and ratios. In such cases, the resulting blend composition does not comprise the sex pheromone of a given species. That is, unless these compounds are emitted at optimal rates and ratios with other compounds, they act as behavioral antagonists. Thus, the array of blend compositions that are attractive to males is centered around the characterized female-produced sex pheromone blend of a species. I suggest here that the resulting optimal attraction of males to a sex pheromone is the result of olfactory antagonistic balance, compared to the would-be olfactory antagonistic imbalance imparted by behaviorally active compounds when they are emitted individually or in other off-ratio blends. Such balanced olfactory antagonism might be produced in any number of ways in olfactory pathways, one of which would be mutual, gamma-aminobutyric-acid-related disinhibition by local interneurons in neighboring glomeruli that receive excitatory inputs from pheromone-stimulated olfactory receptor neurons. Such mutual disinhibition would facilitate greater excitatory transmission to higher centers by projection interneurons arborizing in those glomeruli. I propose that in studies of moth sex pheromone olfaction, we should no longer artificially compartmentalize the olfactory effects of heterospecific behavioral antagonists into a special category distinct from olfaction involving conspecific sex pheromone components. Indeed, continuing to impose such a delineation among these compounds may retard advances in understanding how moth olfactory systems can evolve to allow males to exhibit correct behavioral responses (that is, attraction) to novel sex-pheromone-related compositions emitted by females.

  9. Sex pheromone production and perception in European corn borer moths is determined by both autosomal and sex-linked genes

    PubMed Central

    Roelofs, Wendell; Glover, Thomas; Tang, Xian-Han; Sreng, Isabelle; Robbins, Paul; Eckenrode, Charles; Löfstedt, Christer; Hansson, Bill S.; Bengtsson, Bengt O.

    1987-01-01

    Inheritance patterns for sex pheromone production in females, pheromone detection on male antennal olfactory receptor cells, and male pheromone behavioral responses were studied in pheromonally distinct populations of European corn borers from New York State. Gas chromatographic analyses of pheromone glands, single sensillum recordings, and flight tunnel behavioral analyses were carried out on progeny from reciprocal crosses, as well as on progeny from subsequent F2 and maternal and paternal backcrosses. The data show that the production of the female pheromone blend primarily is controlled by a single autosomal factor, that pheromone-responding olfactory cells are controlled by another autosomal factor, and that behavioral response to pheromone is controlled by a sex-linked gene. F1 males were found to possess olfactory receptor cells that give spike amplitudes to the two pheromone isomers that are intermediate to those of the high and low amplitude cells of the parent populations. Fifty-five percent of the F1 males tested responded fully to pheromone sources ranging from the hybrid (E)-11-tetradecenyl acetate/(Z)-11-tetradecenyl acetate (E/Z) molar blend of 65:35 to the E/Z molar blend of 3:97 for the Z morph parents, but very few responded to the E/Z molar blend of 99:1 for the E morph parents. Data on the inheritance patterns support speculation that the Z morph is the ancestral and that the E morph is the derived European corn borer population. PMID:16593886

  10. Receptor for detection of a Type II sex pheromone in the winter moth Operophtera brumata.

    PubMed

    Zhang, Dan-Dan; Wang, Hong-Lei; Schultze, Anna; Froß, Heidrun; Francke, Wittko; Krieger, Jürgen; Löfstedt, Christer

    2016-01-01

    How signal diversity evolves under stabilizing selection in a pheromone-based mate recognition system is a conundrum. Female moths produce two major types of sex pheromones, i.e., long-chain acetates, alcohols and aldehydes (Type I) and polyenic hydrocarbons and epoxides (Type II), along different biosynthetic pathways. Little is known on how male pheromone receptor (PR) genes evolved to perceive the different pheromones. We report the identification of the first PR tuned to Type II pheromones, namely ObruOR1 from the winter moth, Operophtera brumata (Geometridae). ObruOR1 clusters together with previously ligand-unknown orthologues in the PR subfamily for the ancestral Type I pheromones, suggesting that O. brumata did not evolve a new type of PR to match the novel Type II signal but recruited receptors within an existing PR subfamily. AsegOR3, the ObruOR1 orthologue previously cloned from the noctuid Agrotis segetum that has Type I acetate pheromone components, responded significantly to another Type II hydrocarbon, suggesting that a common ancestor with Type I pheromones had receptors for both types of pheromones, a preadaptation for detection of Type II sex pheromone. PMID:26729427

  11. Receptor for detection of a Type II sex pheromone in the winter moth Operophtera brumata

    PubMed Central

    Zhang, Dan-Dan; Wang, Hong-Lei; Schultze, Anna; Froß, Heidrun; Francke, Wittko; Krieger, Jürgen; Löfstedt, Christer

    2016-01-01

    How signal diversity evolves under stabilizing selection in a pheromone-based mate recognition system is a conundrum. Female moths produce two major types of sex pheromones, i.e., long-chain acetates, alcohols and aldehydes (Type I) and polyenic hydrocarbons and epoxides (Type II), along different biosynthetic pathways. Little is known on how male pheromone receptor (PR) genes evolved to perceive the different pheromones. We report the identification of the first PR tuned to Type II pheromones, namely ObruOR1 from the winter moth, Operophtera brumata (Geometridae). ObruOR1 clusters together with previously ligand-unknown orthologues in the PR subfamily for the ancestral Type I pheromones, suggesting that O. brumata did not evolve a new type of PR to match the novel Type II signal but recruited receptors within an existing PR subfamily. AsegOR3, the ObruOR1 orthologue previously cloned from the noctuid Agrotis segetum that has Type I acetate pheromone components, responded significantly to another Type II hydrocarbon, suggesting that a common ancestor with Type I pheromones had receptors for both types of pheromones, a preadaptation for detection of Type II sex pheromone. PMID:26729427

  12. Identification of a sex pheromone from male yellow mealworm beetles, Tenebrio molitor.

    PubMed

    Bryning, Gareth P; Chambers, John; Wakefield, Maureen E

    2005-11-01

    The sex pheromone released by the adult female Tenebrio molitor, 4-methyl-1-nonanol, is well known. In addition, there is evidence that adult males release a pheromone that attracts females. The purpose of the present study was to isolate and identify male-released pheromone(s). Emissions from virgin adult males and females were collected on filter paper and extracted with pentane. Extracts were analyzed by gas chromatography-mass spectrometry. One male-specific compound was detected and identified as (Z)-3-dodecenyl acetate (Z3-12:Ac). In arena bioassays, E3-12:Ac was attractive to females only, at 1 and 10 microg doses. E3-12:Ac was also attractive to females at a 10-microg dose. The presence of both male and female pheromones, each attracting the opposite sex, may contribute to maintaining a high-density population of both sexes. PMID:16273437

  13. Geometric isomers of sex pheromone components do not affect attractancy of Conopomorpha cramerella in cocoa plantations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sex pheromone of cocoa pod borer (CPB), Conopomorpha cramerella, has previously been identified as a blend of (E,Z,Z)- and (E,E,Z)-4,6,10-hexadecatrienyl acetates and the corresponding alcohols. These pheromone components have been synthesized with modification of the existing method and relative at...

  14. Field evaluation of effect of temperature on release of disparlure from a pheromone-baited trapping system used to monitor gypsy moth (Lepidoptera: Lymantriidae).

    PubMed

    Tobin, Patrick C; Zhang, Aijun; Onufrieva, Ksenia; Leonard, Donna S

    2011-08-01

    Traps baited with disparlure, the synthetic form of the gypsy moth, Lymantria dispar (L.) (Lepidoptera: Lymantriidae), sex pheromone are used to detect newly founded populations and estimate population density across the United States. The lures used in trapping devices are exposed to field conditions with varying climates, which can affect the rate of disparlure release. We evaluated the release rate of disparlure from delta traps baited with disparlure string dispenser from 1 to 3 yr across a broad geographic gradient, from northern Minnesota to southern North Carolina. Traps were deployed over approximately 12 wk that coincided with the period of male moth flight and the deployment schedule of traps under gypsy moth management programs. We measured a uniform rate of release across all locations when considered over the accumulation of degree-days; however, due to differences in degree-day accumulation across locations, there were significant differences in release rates over time among locations. The initial lure load seemed to be sufficient regardless of climate, although rapid release of the pheromone in warmer climates could affect trap efficacy in late season. Daily rates of release in colder climates, such as Minnesota and northern Wisconsin, may not be optimal in detection efforts. This work highlights the importance of local temperatures when deploying pheromone-baited traps for monitoring a species across a large and climatically diverse landscape.

  15. Non-Host Plant Volatiles Disrupt Sex Pheromone Communication in a Specialist Herbivore.

    PubMed

    Wang, Fumin; Deng, Jianyu; Schal, Coby; Lou, Yonggen; Zhou, Guoxin; Ye, Bingbing; Yin, Xiaohui; Xu, Zhihong; Shen, Lize

    2016-01-01

    The ecological effects of plant volatiles on herbivores are manifold. Little is known, however, about the impacts of non-host plant volatiles on intersexual pheromonal communication in specialist herbivores. We tested the effects of several prominent constitutive terpenoids released by conifers and Eucalyptus trees on electrophysiological and behavioral responses of an oligophagous species, Plutella xylostella, which feeds on Brassicaceae. The non-host plant volatile terpenoids adversely affected the calling behavior (pheromone emission) of adult females, and the orientation responses of adult males to sex pheromone were also significantly inhibited by these terpenoids in a wind tunnel and in the field. We suggest that disruption of both pheromone emission and orientation to sex pheromone may explain, at least in part, an observed reduction in herbivore attack in polyculture compared with monoculture plantings. We also propose that mating disruption of both male and female moths with non-host plant volatiles may be a promising alternative pest management strategy. PMID:27585907

  16. Non-Host Plant Volatiles Disrupt Sex Pheromone Communication in a Specialist Herbivore

    NASA Astrophysics Data System (ADS)

    Wang, Fumin; Deng, Jianyu; Schal, Coby; Lou, Yonggen; Zhou, Guoxin; Ye, Bingbing; Yin, Xiaohui; Xu, Zhihong; Shen, Lize

    2016-09-01

    The ecological effects of plant volatiles on herbivores are manifold. Little is known, however, about the impacts of non-host plant volatiles on intersexual pheromonal communication in specialist herbivores. We tested the effects of several prominent constitutive terpenoids released by conifers and Eucalyptus trees on electrophysiological and behavioral responses of an oligophagous species, Plutella xylostella, which feeds on Brassicaceae. The non-host plant volatile terpenoids adversely affected the calling behavior (pheromone emission) of adult females, and the orientation responses of adult males to sex pheromone were also significantly inhibited by these terpenoids in a wind tunnel and in the field. We suggest that disruption of both pheromone emission and orientation to sex pheromone may explain, at least in part, an observed reduction in herbivore attack in polyculture compared with monoculture plantings. We also propose that mating disruption of both male and female moths with non-host plant volatiles may be a promising alternative pest management strategy.

  17. Non-Host Plant Volatiles Disrupt Sex Pheromone Communication in a Specialist Herbivore.

    PubMed

    Wang, Fumin; Deng, Jianyu; Schal, Coby; Lou, Yonggen; Zhou, Guoxin; Ye, Bingbing; Yin, Xiaohui; Xu, Zhihong; Shen, Lize

    2016-09-02

    The ecological effects of plant volatiles on herbivores are manifold. Little is known, however, about the impacts of non-host plant volatiles on intersexual pheromonal communication in specialist herbivores. We tested the effects of several prominent constitutive terpenoids released by conifers and Eucalyptus trees on electrophysiological and behavioral responses of an oligophagous species, Plutella xylostella, which feeds on Brassicaceae. The non-host plant volatile terpenoids adversely affected the calling behavior (pheromone emission) of adult females, and the orientation responses of adult males to sex pheromone were also significantly inhibited by these terpenoids in a wind tunnel and in the field. We suggest that disruption of both pheromone emission and orientation to sex pheromone may explain, at least in part, an observed reduction in herbivore attack in polyculture compared with monoculture plantings. We also propose that mating disruption of both male and female moths with non-host plant volatiles may be a promising alternative pest management strategy.

  18. Non-Host Plant Volatiles Disrupt Sex Pheromone Communication in a Specialist Herbivore

    PubMed Central

    Wang, Fumin; Deng, Jianyu; Schal, Coby; Lou, Yonggen; Zhou, Guoxin; Ye, Bingbing; Yin, Xiaohui; Xu, Zhihong; Shen, Lize

    2016-01-01

    The ecological effects of plant volatiles on herbivores are manifold. Little is known, however, about the impacts of non-host plant volatiles on intersexual pheromonal communication in specialist herbivores. We tested the effects of several prominent constitutive terpenoids released by conifers and Eucalyptus trees on electrophysiological and behavioral responses of an oligophagous species, Plutella xylostella, which feeds on Brassicaceae. The non-host plant volatile terpenoids adversely affected the calling behavior (pheromone emission) of adult females, and the orientation responses of adult males to sex pheromone were also significantly inhibited by these terpenoids in a wind tunnel and in the field. We suggest that disruption of both pheromone emission and orientation to sex pheromone may explain, at least in part, an observed reduction in herbivore attack in polyculture compared with monoculture plantings. We also propose that mating disruption of both male and female moths with non-host plant volatiles may be a promising alternative pest management strategy. PMID:27585907

  19. Pheromone Lure and Trap Color Affects Bycatch in Agricultural Landscapes of Utah.

    PubMed

    Spears, Lori R; Looney, Chris; Ikerd, Harold; Koch, Jonathan B; Griswold, Terry; Strange, James P; Ramirez, Ricardo A

    2016-08-01

    Aerial traps, using combinations of color and attractive lures, are a critical tool for detecting and managing insect pest populations. Yet, despite improvements in trap efficacy, collection of nontarget species ("bycatch") plagues many insect pest surveys. Bycatch can influence survey effectiveness by reducing the available space for target species and increasing trap screening time, especially in areas where thousands of insects are captured as bycatch in a given season. Additionally, bycatch may negatively impact local nontarget insect populations, including beneficial predators and pollinators. Here, we tested the effect of pheromone lures on bycatch rates of Coccinellidae (Coleoptera), Apoidea (Hymenoptera), and nontarget Lepidoptera. Multicolored (primarily yellow and white) bucket traps containing a pheromone lure for capturing one of three survey target species, Spodoptera litura (F.), S. littoralis (Boisduval), or Helicoverpa armigera (Hübner), were placed in alfalfa and corn fields, and compared to multicolored traps without a pheromone lure. All-green traps with and without H. armigera lures were employed in a parallel study investigating the effect of lure and trap color on bycatch. Over 2,600 Coccinellidae representing seven species, nearly 6,400 bees in 57 species, and >9,000 nontarget moths in 17 genera were captured across 180 traps and seven temporal sampling events. Significant effects of lure and color were observed for multiple taxa. In general, nontarget insects were attracted to the H. armigera lure and multicolored trap, but further studies of trap color and pheromone lure specificity are needed to better understand these interactions and to minimize nontarget captures. PMID:27412193

  20. Pheromone Lure and Trap Color Affects Bycatch in Agricultural Landscapes of Utah.

    PubMed

    Spears, Lori R; Looney, Chris; Ikerd, Harold; Koch, Jonathan B; Griswold, Terry; Strange, James P; Ramirez, Ricardo A

    2016-08-01

    Aerial traps, using combinations of color and attractive lures, are a critical tool for detecting and managing insect pest populations. Yet, despite improvements in trap efficacy, collection of nontarget species ("bycatch") plagues many insect pest surveys. Bycatch can influence survey effectiveness by reducing the available space for target species and increasing trap screening time, especially in areas where thousands of insects are captured as bycatch in a given season. Additionally, bycatch may negatively impact local nontarget insect populations, including beneficial predators and pollinators. Here, we tested the effect of pheromone lures on bycatch rates of Coccinellidae (Coleoptera), Apoidea (Hymenoptera), and nontarget Lepidoptera. Multicolored (primarily yellow and white) bucket traps containing a pheromone lure for capturing one of three survey target species, Spodoptera litura (F.), S. littoralis (Boisduval), or Helicoverpa armigera (Hübner), were placed in alfalfa and corn fields, and compared to multicolored traps without a pheromone lure. All-green traps with and without H. armigera lures were employed in a parallel study investigating the effect of lure and trap color on bycatch. Over 2,600 Coccinellidae representing seven species, nearly 6,400 bees in 57 species, and >9,000 nontarget moths in 17 genera were captured across 180 traps and seven temporal sampling events. Significant effects of lure and color were observed for multiple taxa. In general, nontarget insects were attracted to the H. armigera lure and multicolored trap, but further studies of trap color and pheromone lure specificity are needed to better understand these interactions and to minimize nontarget captures.

  1. The sex pheromone system of Enterococcus faecalis. More than just a plasmid-collection mechanism?

    PubMed

    Wirth, R

    1994-06-01

    The sex pheromone system of Enterococcus faecalis was discovered by observing a clumping reaction of E. faecalis strains during conjugative transfer of plasmids. It was found that only a special type of E. faecalis plasmids, the so-called sex pheromone plasmids, are transferred via this mechanism. Various experiments, especially by the group of D. B. Clewell, led to the formulation of a model describing how the sex pheromone system works. Small linear peptides, the so-called sex pheromones, are excreted by strains not possessing the corresponding sex pheromone plasmid. Donor strains harboring the plasmid do not produce the corresponding sex pheromone; they react to the presence of the peptide by production of a plasmid-encoded adhesin, the so-called aggregation substance. This adhesin allows contact between the non-motile mating partners; after conjugative transfer of the plasmid, the former recipient possesses and replicates the new plasmid. Thereby the population of E. faecalis strains is shifted to a high percentage of donor strains. This is especially true because a donor strain will still excrete sex pheromones corresponding to plasmids it does not harbor; therefore, such a strain can also function as recipient for other sex pheromone plasmids it does not possess. Various aspects of this unique plasmid collection mechanism have been studied during the last few years. The data indicate that, with the exception of pAM373, all sex pheromone plasmids possess one DNA region which is highly similar to and codes for the adhesin. It is also becoming more and more clear that regulatory functions/proteins are not conserved between different sex pheromone plasmids. Induction of adhesin synthesis needs the action of a regulatory cascade composed of unique features; at the moment we are just beginning to understand this cascade. By sequencing the first structural gene for one of those adhesins, we realized that the aggregation substance might act also as an adhesin for

  2. Sex pheromone recognition and characterization of three pheromone-binding proteins in the legume pod borer, Maruca vitrata Fabricius (Lepidoptera: Crambidae)

    PubMed Central

    Mao, Aping; Zhou, Jing; Bin Mao; Zheng, Ya; Wang, Yufeng; Li, Daiqin; Wang, Pan; Liu, Kaiyu; Wang, Xiaoping; Ai, Hui

    2016-01-01

    Pheromone-binding proteins (PBPs) are essential for the filtering, binding and transporting of sex pheromones across sensillum lymph to membrane-associated pheromone receptors of moths. In this study, three novel PBP genes were expressed in Escherichia coli to examine their involvement in the sex pheromone perception of Maruca vitrata. Fluorescence binding experiments indicated that MvitPBP1-3 had strong binding affinities with four sex pheromones. Moreover, molecular docking results demonstrated that six amino acid residues of three MvitPBPs were involved in the binding of the sex pheromones. These results suggested that MvitPBP1-3 might play critical roles in the perception of female sex pheromones. Additionally, the binding capacity of MvitPBP3 with the host-plant floral volatiles was high and was similar to that of MvitGOBP2. Furthermore, sequence alignment and docking analysis showed that both MvitGOBP2 and MvitPBP3 possessed an identical key binding site (arginine, R130/R140) and a similar protein pocket structure around the binding cavity. Therefore, we hypothesized that MvitPBP3 and MvitGOBP2 might have synergistic roles in binding different volatile ligands. In combination, the use of synthetic sex pheromones and floral volatiles from host-plant may be used in the exploration for more efficient monitoring and integrated management strategies for the legume pod borer in the field. PMID:27698435

  3. Pheromones, male lures and trapping of tephritid fruit flies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The dipteran family of Tephritidae consists of many genera, of which several namely, Anastrepha, Bactrocera, Ceratitis, Dacus, Rhagoletis and Toxotrypana possess species of high economic importance as major pests of fruits and vegetables. Hitherto, pheromones isolated and identified for possible use...

  4. Discovery of a disused desaturase gene from the pheromone gland of the moth Ascotis selenaria, which secretes an epoxyalkenyl sex pheromone.

    PubMed

    Fujii, Takeshi; Suzuki, Masataka G; Katsuma, Susumu; Ito, Katsuhiko; Rong, Yu; Matsumoto, Shogo; Ando, Tetsu; Ishikawa, Yukio

    2013-11-29

    Female Ascotis selenaria (Geometridae) moths use 3,4-epoxy-(Z,Z)-6,9-nonadecadiene, which is synthesized from linolenic acid, as the main component of their sex pheromone. While the use of dietary linolenic or linoleic fatty acid derivatives as sex pheromone components has been observed in moth species belonging to a few families including Geometridae, the majority of moths use derivatives of a common saturated fatty acid, palmitic acid, as their sex pheromone components. We attempted to gain insight into the differentiation of pheromone biosynthetic pathways in geometrids by analyzing the desaturase genes expressed in the pheromone gland of A. selenaria. We demonstrated that a Δ11-desaturase-like gene (Asdesat1) was specifically expressed in the pheromone gland of A. selenaria in spite of the absence of a desaturation step in the pheromone biosynthetic pathway in this species. Further analysis revealed that the presumed transmembrane domains were degenerated in Asdesat1. Phylogenetic analysis demonstrated that Asdesat1 anciently diverged from the lineage of Δ11-desaturases, which are currently widely used in the biosynthesis of sex pheromones by moths. These results suggest that an ancestral Δ11-desaturase became dysfunctional in A. selenaria after a shift in pheromone biosynthetic pathways.

  5. Beyond species recognition: somatic state affects long-distance sex pheromone communication.

    PubMed

    Chemnitz, Johanna; Jentschke, Petra C; Ayasse, Manfred; Steiger, Sandra

    2015-08-01

    Long-range sex pheromones have been subjected to substantial research with a particular focus on their biosynthesis, peripheral perception, central processing and the resulting orientation behaviour of perceivers. Fundamental to the research on sex attractants was the assumption that they primarily coordinate species recognition. However, especially when they are produced by the less limiting sex (usually males), the evolution of heightened condition dependence might be expected and long-range sex pheromones might, therefore, also inform about a signaller's quality. Here we provide, to our knowledge, the first comprehensive study of the role of a male's long-range pheromone in mate choice that combines chemical analyses, video observations and field experiments with a multifactorial manipulation of males' condition. We show that the emission of the long-distance sex pheromone of the burying beetle, Nicrophorus vespilloides is highly condition-dependent and reliably reflects nutritional state, age, body size and parasite load--key components of an individual's somatic state. Both, the quantity and ratio of the pheromone components were affected but the time invested in pheromone emission was largely unaffected by a male's condition. Moreover, the variation in pheromone emission caused by the variation in condition had a strong effect on the attractiveness of males in the field, with males in better nutritional condition, of older age, larger body size and bearing less parasites being more attractive. That a single pheromone is influenced by so many aspects of the somatic state and causes such variation in a male's attractiveness under field conditions was hitherto unknown and highlights the need to integrate indicator models of sexual selection into pheromone research. PMID:26180067

  6. Beyond species recognition: somatic state affects long-distance sex pheromone communication

    PubMed Central

    Chemnitz, Johanna; Jentschke, Petra C.; Ayasse, Manfred; Steiger, Sandra

    2015-01-01

    Long-range sex pheromones have been subjected to substantial research with a particular focus on their biosynthesis, peripheral perception, central processing and the resulting orientation behaviour of perceivers. Fundamental to the research on sex attractants was the assumption that they primarily coordinate species recognition. However, especially when they are produced by the less limiting sex (usually males), the evolution of heightened condition dependence might be expected and long-range sex pheromones might, therefore, also inform about a signaller's quality. Here we provide, to our knowledge, the first comprehensive study of the role of a male's long-range pheromone in mate choice that combines chemical analyses, video observations and field experiments with a multifactorial manipulation of males' condition. We show that the emission of the long-distance sex pheromone of the burying beetle, Nicrophorus vespilloides is highly condition-dependent and reliably reflects nutritional state, age, body size and parasite load—key components of an individual's somatic state. Both, the quantity and ratio of the pheromone components were affected but the time invested in pheromone emission was largely unaffected by a male's condition. Moreover, the variation in pheromone emission caused by the variation in condition had a strong effect on the attractiveness of males in the field, with males in better nutritional condition, of older age, larger body size and bearing less parasites being more attractive. That a single pheromone is influenced by so many aspects of the somatic state and causes such variation in a male's attractiveness under field conditions was hitherto unknown and highlights the need to integrate indicator models of sexual selection into pheromone research. PMID:26180067

  7. Beyond species recognition: somatic state affects long-distance sex pheromone communication.

    PubMed

    Chemnitz, Johanna; Jentschke, Petra C; Ayasse, Manfred; Steiger, Sandra

    2015-08-01

    Long-range sex pheromones have been subjected to substantial research with a particular focus on their biosynthesis, peripheral perception, central processing and the resulting orientation behaviour of perceivers. Fundamental to the research on sex attractants was the assumption that they primarily coordinate species recognition. However, especially when they are produced by the less limiting sex (usually males), the evolution of heightened condition dependence might be expected and long-range sex pheromones might, therefore, also inform about a signaller's quality. Here we provide, to our knowledge, the first comprehensive study of the role of a male's long-range pheromone in mate choice that combines chemical analyses, video observations and field experiments with a multifactorial manipulation of males' condition. We show that the emission of the long-distance sex pheromone of the burying beetle, Nicrophorus vespilloides is highly condition-dependent and reliably reflects nutritional state, age, body size and parasite load--key components of an individual's somatic state. Both, the quantity and ratio of the pheromone components were affected but the time invested in pheromone emission was largely unaffected by a male's condition. Moreover, the variation in pheromone emission caused by the variation in condition had a strong effect on the attractiveness of males in the field, with males in better nutritional condition, of older age, larger body size and bearing less parasites being more attractive. That a single pheromone is influenced by so many aspects of the somatic state and causes such variation in a male's attractiveness under field conditions was hitherto unknown and highlights the need to integrate indicator models of sexual selection into pheromone research.

  8. Effects of Pheromone Release Rate and Trap Placement on Trapping of Agrilus planipennis (Coleoptera: Buprestidae) in Canada.

    PubMed

    Ryall, Krista L; Silk, Peter J; Fidgen, Jeff; Mayo, Peter; Lavallée, Robert; Guertin, Claude; Scarr, Taylor

    2015-06-01

    The emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), is a devastating insect pest in its introduced range. A trapping system that increases trap catches or detection rates in low-density populations would be beneficial for survey programs. Five trapping experiments were conducted to investigate factors influencing capture rates of male beetles on dark green traps baited with the A. planipennis pheromone, (3Z)-dodecen-12-olide ((3Z)-lactone), plus the green leaf volatile, (3Z)-hexenol. Low doses (0.001-1.0 mg) of (3Z)-lactone + (3Z)-hexenol did not consistently increase captures of male A. planipennis. In other experiments, mean captures of males were significantly higher on traps baited with a moderate dose (3.0 mg/septum) of (3Z)-lactone + (3Z)-hexenol, compared with lower doses (0.001, 0.1, and 1.0 mg) or (3Z)-hexenol alone. Next, we demonstrated that addition of (3Z)-lactone to traps baited with (3Z)-hexenol resulted in significantly greater increases in male captures when pairs of traps were placed on the same tree, than when traps were placed on adjacent trees. Moreover, significantly more A. planipennis were captured on pheromone-baited traps placed in the southern versus northern aspect of the crown. These results highlight the importance of experimental set-up for elucidating lure treatment effects and also suggests the (3Z)-lactone may be more active at close range. Our findings increase our understanding of the pheromone ecology of this species and lend support toward the use of dark green traps baited with 3.0 mg (3Z)-lactone + (3Z)-hexenol deployed in the south aspect of the canopy for detection programs for this insect. PMID:26313980

  9. Sex pheromone component ratios and mating isolation among three Lygus plant bug species of North America.

    PubMed

    Byers, John A; Fefer, Daniela; Levi-Zada, Anat

    2013-12-01

    The plant bugs Lygus hesperus, Lygus lineolaris, and Lygus elisus (Hemiptera: Miridae) are major pests of many agricultural crops in North America. Previous studies suggested that females release a sex pheromone attractive to males. Other studies showed that males and females contain microgram amounts of (E)-4-oxo-2-hexenal, hexyl butyrate, and (E)-2-hexenyl butyrate that are emitted as a defense against predators. Using gas chromatography-mass spectrometry, we found that female L. lineolaris and L. elisus have a 4:10 ratio of hexyl butyrate to (E)-2-hexenyl butyrate that is reversed from the 10:1 ratio in female L. hesperus (males of the three species have ~10:1 ratio). These reversed ratios among females of the species suggest a behavioral role. Because both sexes have nearly equal amounts of the major volatiles, females should release more to attract males. This expectation was supported because L. hesperus females released more hexyl butyrate (mean of 86 ng/h) during the night (1800-0700 hours) than did males (<1 ng/h). We used slow-rotating pairs of traps to test the attraction of species to blends of the volatiles with a subtractive method to detect synergism. Each species' major butyrate ester was released at 3 μg/h, the minor butyrate according to its ratio, and (E)-4-oxo-2-hexenal at 2 μg/h. The resulting catches of only Lygus males suggest that (E)-4-oxo-2-hexenal is an essential sex pheromone component for all three species, (E)-2-hexenyl butyrate is essential for L. elisus and L. lineolaris, and hexyl butyrate is essential for L. hesperus. However, all three components are recognized by each species since ratios of the butyrate esters are critical for conspecific attraction and heterospecific avoidance by males and thus play a role in reproductive isolation among the three species. Because L. hesperus males and females are known to emit these major volatiles for repelling ant predators, our study links defensive allomones in Lygus bugs with an

  10. Sex pheromone component ratios and mating isolation among three Lygus plant bug species of North America

    NASA Astrophysics Data System (ADS)

    Byers, John A.; Fefer, Daniela; Levi-Zada, Anat

    2013-12-01

    The plant bugs Lygus hesperus, Lygus lineolaris, and Lygus elisus (Hemiptera: Miridae) are major pests of many agricultural crops in North America. Previous studies suggested that females release a sex pheromone attractive to males. Other studies showed that males and females contain microgram amounts of ( E)-4-oxo-2-hexenal, hexyl butyrate, and ( E)-2-hexenyl butyrate that are emitted as a defense against predators. Using gas chromatography-mass spectrometry, we found that female L. lineolaris and L. elisus have a 4:10 ratio of hexyl butyrate to ( E)-2-hexenyl butyrate that is reversed from the 10:1 ratio in female L. hesperus (males of the three species have ~10:1 ratio). These reversed ratios among females of the species suggest a behavioral role. Because both sexes have nearly equal amounts of the major volatiles, females should release more to attract males. This expectation was supported because L. hesperus females released more hexyl butyrate (mean of 86 ng/h) during the night (1800-0700 hours) than did males (<1 ng/h). We used slow-rotating pairs of traps to test the attraction of species to blends of the volatiles with a subtractive method to detect synergism. Each species' major butyrate ester was released at 3 μg/h, the minor butyrate according to its ratio, and ( E)-4-oxo-2-hexenal at 2 μg/h. The resulting catches of only Lygus males suggest that ( E)-4-oxo-2-hexenal is an essential sex pheromone component for all three species, ( E)-2-hexenyl butyrate is essential for L. elisus and L. lineolaris, and hexyl butyrate is essential for L. hesperus. However, all three components are recognized by each species since ratios of the butyrate esters are critical for conspecific attraction and heterospecific avoidance by males and thus play a role in reproductive isolation among the three species. Because L. hesperus males and females are known to emit these major volatiles for repelling ant predators, our study links defensive allomones in Lygus bugs with an

  11. Effects of sex pheromones and sexual maturation on locomotor activity in female sea lamprey (Petromyzon marinus)

    USGS Publications Warehouse

    Walaszczyk, Erin J.; Johnson, Nicholas S.; Steibel, Juan Pedro; Li, Weiming

    2013-01-01

    Synchronization of male and female locomotor rhythmicity can play a vital role in ensuring reproductive success. Several physiological and environmental factors alter these locomotor rhythms. As sea lamprey, Petromyzon marinus, progress through their life cycle, their locomotor activity rhythm changes multiple times. The goal of this study was to elucidate the activity patterns of adult female sea lamprey during the sexual maturation process and discern the interactions of these patterns with exposure to male pheromones. During these stages, preovulated and ovulated adult females are exposed to sex pheromone compounds, which are released by spermiated males and attract ovulated females to the nest for spawning. The locomotor behavior of adult females was monitored in a natural stream with a passive integrated tag responder system as they matured, and they were exposed to a sex pheromone treatment (spermiated male washings) or a control (prespermiated male washings). Results showed that, dependent on the hour of day, male sex pheromone compounds reduce total activity (p < 0.05) and cause increases in activity during several daytime hours in preovulated and ovulated females. These results are one of the first examples of how sex pheromones modulate a locomotor rhythm in a vertebrate, and they suggest that the interaction between maturity stage and sex pheromone exposure contributes to the differential locomotor rhythms found in adult female sea lamprey. This phenomenon may contribute to the reproductive synchrony of mature adults, thus increasing reproductive success in this species.

  12. Oryctes monoceros trapping with synthetic pheromone and palm material in Ivory Coast.

    PubMed

    Allou, Kouassi; Morin, Jean-Paul; Kouassi, Philippe; N'klo, François Hala; Rochat, Didier

    2006-08-01

    Oryctes monoceros is the most serious pest in coconut plantations, causing up to 40% damage in tropical Africa, especially in Ivory Coast. With a view to reducing pest populations by olfactory trapping, field trials were carried out to assess the efficiency of a synthetic aggregation pheromone: ethyl 4-methyloctanoate (1), 4-methyloctanoic acid (2), a related volatile produced by males, and decaying palm material, either oil palm empty fruit bunches (EFB) or pieces of coconut wood (CW) of various ages. Vertical polyvinyl chloride tube traps (2 x 0.16 m with two openings in the upper half), embedded in the soil, were more efficient than 30-L pail traps 1.5 m above ground. EFB, which were inactive alone, synergized captures with synthetic pheromone. CW was more effective than EFB in comparative trials. Compound 2 did not catch any beetles when assessed with EFB, and reduced catches by 1 + EFB when tested at >10% with the pheromone. Trapping over 6 mo in 2002 and 2003 in a 19-ha coconut plot inside a 4,000-ha oil palm estate reduced damage from 3.8% in 2001 to 0.5% in 2002, then to 0.2% in 2003. Damage was 0.0% in 2004 with routine trapping using 32 traps, which caught 3369 beetles in 9 mo. The results are discussed in relation to other Dynastid palm pests and coconut protection in Ivory Coast. PMID:16900429

  13. Putative pathway of sex pheromone biosynthesis and degradation by expression patterns of genes identified from female pheromone gland and adult antenna of Sesamia inferens (Walker).

    PubMed

    Zhang, Ya-Nan; Xia, Yi-Han; Zhu, Jia-Yao; Li, Sheng-Yun; Dong, Shuang-Lin

    2014-05-01

    The general pathway of biosynthesis and degradation for Type-I sex pheromones in moths is well established, but some genes involved in this pathway remain to be characterized. The purple stem borer, Sesamia inferens, employs a pheromone blend containing components with three different terminal functional groups (Z11-16:OAc, Z11-16:OH, and Z11-16:Ald) of Type-I sex pheromones. Thus, it provides a good model to study the diversity of genes involved in pheromone biosynthesis and degradation pathways. By analyzing previously obtained transcriptomic data of the sex pheromone glands and antennae, we identified 73 novel genes that are possibly related to pheromone biosynthesis (46 genes) or degradation (27 genes). Gene expression patterns and phylogenetic analysis revealed that one desaturase (SinfDes4), one fatty acid reductase (SinfFAR2), and one fatty acid xtransport protein (SinfFATP1) genes were predominantly expressed in pheromone glands, and clustered with genes involved in pheromone synthesis in other moth species. Ten genes including five carboxylesterases (SinfCXE10, 13, 14, 18, and 20), three aldehyde oxidases (SinfAOX1, 2 and 3), and two alcohol dehydrogenases (SinfAD1 and 3) were expressed specifically or predominantly in antennae, and could be candidate genes involved in pheromone degradation. SinfAD1 and 3 are the first reported alcohol dehydrogenase genes with antennae-biased expression. Based on these results we propose a pathway involving these potential enzyme-encoding gene candidates in sex pheromone biosynthesis and degradation in S. inferens. This study provides robust background information for further elucidation of the genetic basis of sex pheromone biosynthesis and degradation, and ultimately provides potential targets to disrupt sexual communication in S. inferens for control purposes. PMID:24817326

  14. Sticky Traps Baited with Synthetic Aggregation Pheromone Predict Fruit Orchard Infestations of Plautia stali (Hemiptera: Pentatomidae).

    PubMed

    Toyama, Masatoshi; Kishimoto, Hidenari; Mishiro, Koji; Nakano, Ryo; Ihara, Fumio

    2015-10-01

    The brown-winged green bug, Plautia stali Scott, mainly reproduces on Japanese cedar or cypress cones in Japanese plantation forests during summer and autumn. It often depletes its food sources in forest habitats and moves to cultivated crops in large numbers. To establish an easy method for assessing the risk of fruit orchard infestation by P. stali, we conducted a 3-yr field survey that monitored the attraction of bugs to the synthetic P. stali aggregation pheromone using a sticky trap. We used a morphological indicator, variable body size depending on food intake, to estimate the nutritional status in nymphs, which showed that nymphs attracted to the synthetic pheromone were starving. Comparisons between increasing changes in the number of stylet sheaths left on the cones by P. stali and the number of trapped nymphs show that monitoring nymphs with the pheromone-baited sticky trap is useful for inferring conditions regarding food resources in forest habitats. The trend toward trapping second instars can provide a timely overview of resource competition for cones. Trapping middle-to-late (third-fifth) instars is a warning that the cones are finally depleted and that there is a high probability that adults will leave the forests and invade the orchards. In addition, trends in trapping adults suggest that there is a potential risk of orchard infestation by the pest and predict the intensity and period of the invasion. The pheromone-baited sticky trap is an easy but useful survey tool for predicting P. stali orchard infestations. PMID:26453725

  15. A synthesized mating pheromone component increases adult sea lamprey (Petromyzon marinus) trap capture in management scenarios

    USGS Publications Warehouse

    Johnson, Nicholas S.; Siefkes, Michael J.; Wagner, C. Michael; Dawson, Heather; Wang, Huiyong; Steeves, Todd; Twohey, Michael; Li, Weiming

    2013-01-01

    Application of chemical cues to manipulate adult sea lamprey (Petromyzon marinus) behavior is among the options considered for new sea lamprey control techniques in the Laurentian Great Lakes. A male mating pheromone component, 7a,12a,24-trihydroxy-3-one-5a-cholan-24-sulfate (3kPZS), lures ovulated female sea lamprey upstream into baited traps in experimental contexts with no odorant competition. A critical knowledge gap is whether this single pheromone component influences adult sea lamprey behavior in management contexts containing free-ranging sea lampreys. A solution of 3kPZS to reach a final in-stream concentration of 10-12 mol·L-1 was applied to eight Michigan streams at existing sea lamprey traps over 3 years, and catch rates were compared between paired 3kPZS-baited and unbaited traps. 3kPZS-baited traps captured significantly more sexually immature and mature sea lampreys, and overall yearly trapping efficiency within a stream averaged 10% higher during years when 3kPZS was applied. Video analysis of a trap funnel showed that the likelihood of sea lamprey trap entry after trap encounter was higher when the trap was 3kPZS baited. Our approach serves as a model for the development of similar control tools for sea lamprey and other aquatic invaders.

  16. The brain organization of the lichen moth Eilema japonica, which secretes an alkenyl sex pheromone.

    PubMed

    Namiki, Shigehiro; Fujii, Takeshi; Ishikawa, Yukio; Kanzaki, Ryohei

    2012-10-01

    The neuroanatomy of the brain is important for the functional analysis of sex pheromone recognition in moths. Most moths use either of two types of compounds, aliphatic or alkenyl compounds, as sex pheromones. As previous studies on the neuroanatomy of moths have mostly been carried out using moths that use aliphatic compounds, information on the brain of moths that use alkenyl compounds is scarce. Here, we describe the brain anatomy of the male lichen-feeding moth Eilema japonica (Lepidoptera: Arctiidae), which uses a mixture of alkenyl compounds as a sex pheromone. We reconstructed the major neuropils in the midbrain of E. japonica and compared them with those of the silkmoth, which uses an aliphatic derivative as a sex pheromone. The brain organization of the two species was basically similar, except for the size of the macroglomerular complex, where pheromone information is processed. The macroglomerular complex in E. japonica consisted of four large glomeruli, which were positioned along dorsoventral and anterior-posterior axes. The glomerulus at the site of entry of the antennal nerve was shown to have the largest volume. The number of glomeruli was equal to the number of pheromone components that are crucial for orientation behavior in E. japonica.

  17. Plant odorants interfere with detection of sex pheromone signals by male Heliothis virescens

    PubMed Central

    Pregitzer, Pablo; Schubert, Marco; Breer, Heinz; Hansson, Bill S.; Sachse, Silke; Krieger, Jürgen

    2012-01-01

    In many insects, mate finding relies on female-released sex pheromones, which have to be deciphered by the male olfactory system within an odorous background of plant volatiles present in the environment of a calling female. With respect to pheromone-mediated mate localization, plant odorants may be neutral, favorable, or disturbing. Here we examined the impact of plant odorants on detection and coding of the major sex pheromone component, (Z)-11-hexadecenal (Z11-16:Ald) in the noctuid moth Heliothis virescens. By in vivo imaging the activity in the male antennal lobe (AL), we monitored the interference at the level of olfactory sensory neurons (OSN) to illuminate mixture interactions. The results show that stimulating the male antenna with Z11-16:Ald and distinct plant-related odorants simultaneously suppressed pheromone-evoked activity in the region of the macroglomerular complex (MGC), where Z11-16:Ald-specific OSNs terminate. Based on our previous findings that antennal detection of Z11-16:Ald involves an interplay of the pheromone binding protein (PBP) HvirPBP2 and the pheromone receptor (PR) HR13, we asked if the plant odorants may interfere with any of the elements involved in pheromone detection. Using a competitive fluorescence binding assay, we found that the plant odorants neither bind to HvirPBP2 nor affect the binding of Z11-16:Ald to the protein. However, imaging experiments analyzing a cell line that expressed the receptor HR13 revealed that plant odorants significantly inhibited the Z11-16:Ald-evoked calcium responses. Together the results indicate that plant odorants can interfere with the signaling process of the major sex pheromone component at the receptor level. Consequently, it can be assumed that plant odorants in the environment may reduce the firing activity of pheromone-specific OSNs in H. virescens and thus affect mate localization. PMID:23060749

  18. Effect of resistance to Bacillus thuringiensis cotton on pink bollworm (Lepidoptera: Gelechiidae) response to sex pheromone.

    PubMed

    Carrière, Yves; Nyboer, Megan E; Ellers-Kirk, Christa; Sollome, James; Colletto, Nick; Antilla, Larry; Dennehy, Timothy J; Staten, Robert T; Tabashnik, Bruce E

    2006-06-01

    Fitness costs associated with resistance to transgenic crops producing toxins from Bacillus thuringiensis (Bt) could reduce male response to pheromone traps. Such costs would cause underestimation of resistance frequency if monitoring was based on analysis of males caught in pheromone traps. To develop a DNA-based resistance monitoring program for pink bollworm, Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae), we compared the response to pheromone traps of males with and without cadherin alleles associated with resistance to Bt cotton (Gossypium hirsutum L.). When irradiated males from two hybrid laboratory strains with an intermediate frequency of resistance alleles were released in large field cages, the probability of capture in pheromone traps was not lower for males with resistance alleles than for males without resistance alleles. These results suggest that analysis of trapped males would not underestimate the frequency of resistance. As the time males spent in traps in the field increased from 3 to 15 d, the success of DNA amplification declined from 100 to 30%. Thus, the efficiency of a DNA-based resistance monitoring program would be improved by analyzing males remaining in traps for 3 d or less. PMID:16813335

  19. A new approach to determine the capture conditions of bark beetles in pheromone-baited traps

    PubMed Central

    Ozcan, Gonca Ece; Cicek, Osman; Enez, Korhan; Yildiz, Mustafa

    2014-01-01

    Forests form an organic unity with a great number of organic and inorganic components and tend to maintain the sustainability of their existing balance. However, some factors which adversely affect the balance of nature may interrupt this sustainability. The epidemic which is formed by bark beetles in their spreading region, due to various factors, changes the stability so much that interference is required. One of the most common methods used to monitor these beetles is pheromone-baited traps. The recognition of parameters, such as date (day/month/year), temperature and humidity, when bark beetles are captured in pheromone-baited traps, especially those used for monitoring will help to increase the trap efficiency on land and to develop an effective strategy for combating pests. In this study, an electronic control unit was added to pheromone-baited traps in order to obtain all of the above mentioned parameters. This unit operates with microcontrollers and data related to the parameters is saved in a storage unit. This is triggered by the beetle at the moment it is captured in the trap. A photovoltaic system was used to meet the energy needed for the system functioning and to complete the counting process in due time. PMID:26019592

  20. Stylopsal: the first identified female-produced sex pheromone of strepsiptera.

    PubMed

    Cvačka, Josef; Jiroš, Pavel; Kalinová, Blanka; Straka, Jakub; Cerná, Kateřina; Šebesta, Petr; Tomčala, Aleš; Vašíčková, Soňa; Jahn, Ullrich; Šobotník, Jan

    2012-12-01

    A female-produced sex pheromone of Stylops muelleri was identified as an unusually branched saturated aldehyde (9R)-3,5-syn-3,5,9-trimethyldodecanal. We named it stylopsal. Its structure was established by using mass spectrometry, infrared spectroscopy, and organic synthesis of candidate compounds. The synthetic standard of (9R)-3,5-syn-3,5,9-trimethyldodecanal gave identical chromatographic and mass spectrometric data as the natural pheromone and also was active in electroantennographic and behavioral assays. The female fat body lipids contained the corresponding fatty acid, indicating a possible link between lipid metabolism and the pheromone biosynthesis. PMID:23143664

  1. Identification and bioassay of sex pheromone components of carob moth,Ectomyelois ceratoniae (Zeller).

    PubMed

    Baker, T C; Francke, W; Millar, J G; Löfstedt, C; Hansson, B; Du, J W; Phelan, P L; Vetter, R S; Youngman, R; Todd, J L

    1991-10-01

    Three sex pheromone components of the carob moth were isolated and identified from the extract of female pheromone glands, using a variety of techniques including coupled gas chromatographic-electroantennographic recordings, coupled gas chromatographic-mass spectrometric analysis, microozonolysis, electroantennographic assays of monounsaturated standards, wind-tunnel bioassays, and field trials. The major component was identified as (Z,E)-9,11,13-tetradecatrienal, a novel lepidopterous pheromone component structure. Two minor components, either one of which improves the upwind flight response of males when blended with the major component, were identified as (Z,E)-9,11-tetradecadienal, and (Z)-9-tetra-decenal.

  2. A Sex Pheromone Receptor in the Hessian Fly Mayetiola destructor (Diptera, Cecidomyiidae)

    PubMed Central

    Andersson, Martin N.; Corcoran, Jacob A.; Zhang, Dan-Dan; Hillbur, Ylva; Newcomb, Richard D.; Löfstedt, Christer

    2016-01-01

    The Hessian fly, Mayetiola destructor Say (Diptera, Cecidomyiidae), is a pest of wheat and belongs to a group of gall-inducing herbivores. This species has a unique life history and several ecological features that differentiate it from other Diptera such as Drosophila melanogaster and blood-feeding mosquitoes. These features include a short, non-feeding adult life stage (1–2 days) and the use of a long-range sex pheromone produced and released by adult females. Sex pheromones are detected by members of the odorant receptor (OR) family within the Lepidoptera, but no receptors for similar long-range sex pheromones have been characterized from the Diptera. Previously, 122 OR genes have been annotated from the Hessian fly genome, with many of them showing sex-biased expression in the antennae. Here we have expressed, in HEK293 cells, five MdesORs that display male-biased expression in antennae, and we have identified MdesOR115 as a Hessian fly sex pheromone receptor. MdesOR115 responds primarily to the sex pheromone component (2S,8E,10E)-8,10-tridecadien-2-yl acetate, and secondarily to the corresponding Z,E-isomer. Certain sensory neuron membrane proteins (i.e., SNMP1) are important for responses of pheromone receptors in flies and moths. The Hessian fly genome is unusual in that it encodes six SNMP1 paralogs, of which five are expressed in antennae. We co-expressed each of the five antennal SNMP1 paralogs together with each of the five candidate sex pheromone receptors from the Hessian fly and found that they do not influence the response of MdesOR115, nor do they confer responsiveness in any of the non-responsive ORs to any of the sex pheromone components identified to date in the Hessian fly. Using Western blots, we detected protein expression of MdesOrco, all MdesSNMPs, and all MdesORs except for MdesOR113, potentially explaining the lack of response from this OR. In conclusion, we report the first functional characterization of an OR from the Cecidomyiidae

  3. A Sex Pheromone Receptor in the Hessian Fly Mayetiola destructor (Diptera, Cecidomyiidae)

    PubMed Central

    Andersson, Martin N.; Corcoran, Jacob A.; Zhang, Dan-Dan; Hillbur, Ylva; Newcomb, Richard D.; Löfstedt, Christer

    2016-01-01

    The Hessian fly, Mayetiola destructor Say (Diptera, Cecidomyiidae), is a pest of wheat and belongs to a group of gall-inducing herbivores. This species has a unique life history and several ecological features that differentiate it from other Diptera such as Drosophila melanogaster and blood-feeding mosquitoes. These features include a short, non-feeding adult life stage (1–2 days) and the use of a long-range sex pheromone produced and released by adult females. Sex pheromones are detected by members of the odorant receptor (OR) family within the Lepidoptera, but no receptors for similar long-range sex pheromones have been characterized from the Diptera. Previously, 122 OR genes have been annotated from the Hessian fly genome, with many of them showing sex-biased expression in the antennae. Here we have expressed, in HEK293 cells, five MdesORs that display male-biased expression in antennae, and we have identified MdesOR115 as a Hessian fly sex pheromone receptor. MdesOR115 responds primarily to the sex pheromone component (2S,8E,10E)-8,10-tridecadien-2-yl acetate, and secondarily to the corresponding Z,E-isomer. Certain sensory neuron membrane proteins (i.e., SNMP1) are important for responses of pheromone receptors in flies and moths. The Hessian fly genome is unusual in that it encodes six SNMP1 paralogs, of which five are expressed in antennae. We co-expressed each of the five antennal SNMP1 paralogs together with each of the five candidate sex pheromone receptors from the Hessian fly and found that they do not influence the response of MdesOR115, nor do they confer responsiveness in any of the non-responsive ORs to any of the sex pheromone components identified to date in the Hessian fly. Using Western blots, we detected protein expression of MdesOrco, all MdesSNMPs, and all MdesORs except for MdesOR113, potentially explaining the lack of response from this OR. In conclusion, we report the first functional characterization of an OR from the Cecidomyiidae

  4. A Sex Pheromone Receptor in the Hessian Fly Mayetiola destructor (Diptera, Cecidomyiidae).

    PubMed

    Andersson, Martin N; Corcoran, Jacob A; Zhang, Dan-Dan; Hillbur, Ylva; Newcomb, Richard D; Löfstedt, Christer

    2016-01-01

    The Hessian fly, Mayetiola destructor Say (Diptera, Cecidomyiidae), is a pest of wheat and belongs to a group of gall-inducing herbivores. This species has a unique life history and several ecological features that differentiate it from other Diptera such as Drosophila melanogaster and blood-feeding mosquitoes. These features include a short, non-feeding adult life stage (1-2 days) and the use of a long-range sex pheromone produced and released by adult females. Sex pheromones are detected by members of the odorant receptor (OR) family within the Lepidoptera, but no receptors for similar long-range sex pheromones have been characterized from the Diptera. Previously, 122 OR genes have been annotated from the Hessian fly genome, with many of them showing sex-biased expression in the antennae. Here we have expressed, in HEK293 cells, five MdesORs that display male-biased expression in antennae, and we have identified MdesOR115 as a Hessian fly sex pheromone receptor. MdesOR115 responds primarily to the sex pheromone component (2S,8E,10E)-8,10-tridecadien-2-yl acetate, and secondarily to the corresponding Z,E-isomer. Certain sensory neuron membrane proteins (i.e., SNMP1) are important for responses of pheromone receptors in flies and moths. The Hessian fly genome is unusual in that it encodes six SNMP1 paralogs, of which five are expressed in antennae. We co-expressed each of the five antennal SNMP1 paralogs together with each of the five candidate sex pheromone receptors from the Hessian fly and found that they do not influence the response of MdesOR115, nor do they confer responsiveness in any of the non-responsive ORs to any of the sex pheromone components identified to date in the Hessian fly. Using Western blots, we detected protein expression of MdesOrco, all MdesSNMPs, and all MdesORs except for MdesOR113, potentially explaining the lack of response from this OR. In conclusion, we report the first functional characterization of an OR from the Cecidomyiidae

  5. Sex Pheromone Evolution Is Associated with Differential Regulation of the Same Desaturase Gene in Two Genera of Leafroller Moths

    PubMed Central

    Albre, Jérôme; Liénard, Marjorie A.; Sirey, Tamara M.; Schmidt, Silvia; Tooman, Leah K.; Carraher, Colm; Greenwood, David R.; Löfstedt, Christer; Newcomb, Richard D.

    2012-01-01

    Chemical signals are prevalent in sexual communication systems. Mate recognition has been extensively studied within the Lepidoptera, where the production and recognition of species-specific sex pheromone signals are typically the defining character. While the specific blend of compounds that makes up the sex pheromones of many species has been characterized, the molecular mechanisms underpinning the evolution of pheromone-based mate recognition systems remain largely unknown. We have focused on two sets of sibling species within the leafroller moth genera Ctenopseustis and Planotortrix that have rapidly evolved the use of distinct sex pheromone blends. The compounds within these blends differ almost exclusively in the relative position of double bonds that are introduced by desaturase enzymes. Of the six desaturase orthologs isolated from all four species, functional analyses in yeast and gene expression in pheromone glands implicate three in pheromone biosynthesis, two Δ9-desaturases, and a Δ10-desaturase, while the remaining three desaturases include a Δ6-desaturase, a terminal desaturase, and a non-functional desaturase. Comparative quantitative real-time PCR reveals that the Δ10-desaturase is differentially expressed in the pheromone glands of the two sets of sibling species, consistent with differences in the pheromone blend in both species pairs. In the pheromone glands of species that utilize (Z)-8-tetradecenyl acetate as sex pheromone component (Ctenopseustis obliquana and Planotortrix octo), the expression levels of the Δ10-desaturase are significantly higher than in the pheromone glands of their respective sibling species (C. herana and P. excessana). Our results demonstrate that interspecific sex pheromone differences are associated with differential regulation of the same desaturase gene in two genera of moths. We suggest that differential gene regulation among members of a multigene family may be an important mechanism of molecular innovation in

  6. Female sex pheromone and male behavioral responses of the bombycid moth Trilocha varians: comparison with those of the domesticated silkmoth Bombyx mori

    NASA Astrophysics Data System (ADS)

    Daimon, Takaaki; Fujii, Takeshi; Yago, Masaya; Hsu, Yu-Feng; Nakajima, Yumiko; Fujii, Tsuguru; Katsuma, Susumu; Ishikawa, Yukio; Shimada, Toru

    2012-03-01

    Analysis of female sex pheromone components and subsequent field trap experiments demonstrated that the bombycid moth Trilocha varians uses a mixture of ( E, Z)-10,12-hexadecadienal (bombykal) and ( E,Z)-10,12-hexadecadienyl acetate (bombykyl acetate) as a sex pheromone. Both of these components are derivatives of ( E,Z)-10,12-hexadecadienol (bombykol), the sex pheromone of the domesticated silkmoth Bombyx mori. This finding prompted us to compare the antennal and behavioral responses of T. varians and B. mori to bombykol, bombykal, and bombykyl acetate in detail. The antennae of T. varians males responded to bombykal and bombykyl acetate but not to bombykol, and males were attracted only when lures contained both bombykal and bombykyl acetate. In contrast, the antennae of B. mori males responded to all the three components. Behavioral analysis showed that B. mori males responded to neither bombykal nor bombykyl acetate. Meanwhile, the wing fluttering response of B. mori males to bombykol was strongly inhibited by bombykal and bombykyl acetate, thereby indicating that bombykal and bombykyl acetate act as behavioral antagonists for B. mori males. T. varians would serve as a reference species for B. mori in future investigations into the molecular mechanisms underlying the evolution of sex pheromone communication systems in bombycid moths.

  7. Similar worldwide patterns in the sex pheromone signal and response in the oriental fruit moth, Grapholita molesta (Lepidoptera: Tortricidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The response of Grapholita molesta (Busck) males to three-component sex pheromone blends containing a 100% ratio of the major sex pheromone component, (Z)-8-dodecenyl acetate and a 10% ratio of (Z)-8-dodecenol, but with varying ratios of (E)-8-dodecenyl acetate (0.4%, 5.4%, 10.4%, 30.4%, and 100.1% ...

  8. Discrimination of cis-trans sex pheromone components in two sympatric Lepidopteran species.

    PubMed

    Zhang, Sufang; Kong, Xiangbo; Ze, Sangzi; Wang, Hongbin; Lin, Aizhu; Liu, Fu; Zhang, Zhen

    2016-06-01

    Pheromone-binding proteins (PBPs) play an important role in the recognition of pheromones by insects. However, the abilities of these PBPs to discriminate pheromone components and recognize the isomers are unclear. Dendrolimus houi and Dendrolimus kikuchii are two sympatric coniferous pests whose pheromones have cis-trans isomers. We used these insect species to detect the precise recognition abilities of PBPs. The four PBPs examined showed male-biased antenna-intensive expression patterns, whereas PBP1 showed higher expression than PBP2 in the antenna. DhouPBP1 only bound to a minor interspecific pheromone component, whereas DhouPBP2 bound to all three intraspecific components and another minor interspecific component. DkikPBP1 and DkikPBP2 could recognize all three intraspecific components with affinities negatively correlated with their ratios, and they bound to interspecific pheromones with affinity that was positively correlated with the ratios. The four PBPs have different cis-trans isomer discrimination abilities, i.e., DhouPBP1 and DkikPBP1 could not discriminate the two cis-trans isomer pairs of pheromones from the two species, whereas DhouPBP2 could discriminate between both pairs, and DkikPBP2 could only discriminate one pair. Overall, PBPs from D. houi and D. kikuchii use different strategies to help the moths to discriminate the intra- and interspecific pheromone components. Our work will contribute to better understanding of the sex pheromone recognition mechanism in these two sister species of moths and provide insights into more effective management practices of these pest species. PMID:27107681

  9. Discrimination of cis-trans sex pheromone components in two sympatric Lepidopteran species.

    PubMed

    Zhang, Sufang; Kong, Xiangbo; Ze, Sangzi; Wang, Hongbin; Lin, Aizhu; Liu, Fu; Zhang, Zhen

    2016-06-01

    Pheromone-binding proteins (PBPs) play an important role in the recognition of pheromones by insects. However, the abilities of these PBPs to discriminate pheromone components and recognize the isomers are unclear. Dendrolimus houi and Dendrolimus kikuchii are two sympatric coniferous pests whose pheromones have cis-trans isomers. We used these insect species to detect the precise recognition abilities of PBPs. The four PBPs examined showed male-biased antenna-intensive expression patterns, whereas PBP1 showed higher expression than PBP2 in the antenna. DhouPBP1 only bound to a minor interspecific pheromone component, whereas DhouPBP2 bound to all three intraspecific components and another minor interspecific component. DkikPBP1 and DkikPBP2 could recognize all three intraspecific components with affinities negatively correlated with their ratios, and they bound to interspecific pheromones with affinity that was positively correlated with the ratios. The four PBPs have different cis-trans isomer discrimination abilities, i.e., DhouPBP1 and DkikPBP1 could not discriminate the two cis-trans isomer pairs of pheromones from the two species, whereas DhouPBP2 could discriminate between both pairs, and DkikPBP2 could only discriminate one pair. Overall, PBPs from D. houi and D. kikuchii use different strategies to help the moths to discriminate the intra- and interspecific pheromone components. Our work will contribute to better understanding of the sex pheromone recognition mechanism in these two sister species of moths and provide insights into more effective management practices of these pest species.

  10. Sex pheromone receptor proteins. Visualization using a radiolabeled photoaffinity analog

    SciTech Connect

    Vogt, R.G.; Prestwich, G.D.; Riddiford, L.M.

    1988-03-15

    A tritium-labeled photoaffinity analog of a moth pheromone was used to covalently modify pheromone-selective binding proteins in the antennal sensillum lymph and sensory dendritic membranes of the male silk moth, Antheraea polyphemus. This analog, (E,Z)-6,11-(/sup 3/H)hexadecadienyl diazoacetate, allowed visualization of a 15-kilodalton soluble protein and a 69-kilodalton membrane protein in fluorescence autoradiograms of electrophoretically separated antennal proteins. Covalent modification of these proteins was specifically reduced when incubation and UV irradiation were conducted in the presence of excess unlabeled pheromone, (E,Z)-6,11-hexadecadienyl acetate. These experiments constitute the first direct evidence for a membrane protein of a chemosensory neuron interacting in a specific fashion with a biologically relevant odorant.

  11. Functional characterization of sex pheromone receptors in the purple stem borer, Sesamia inferens (Walker).

    PubMed

    Zhang, Y-N; Zhang, J; Yan, S-W; Chang, H-T; Liu, Y; Wang, G-R; Dong, S-L

    2014-10-01

    The sex pheromone communication system in moths is highly species-specific and extremely sensitive, and pheromone receptors (PRs) are thought to be the most important factors in males. In the present study, three full-length cDNAs encoding PRs were characterized from Sesamia inferens antennae. These three PRs were all male-specific in expression, but their relative expression levels were very different; SinfOR29 was 17- to 23-fold higher than the other two PRs. Phylogenetic and motif pattern analyses showed that these three PRs were allocated to different PR subfamilies with different motif patterns. Functional analysis using the heterologous expression system of Xenopus oocytes demonstrated that SinfOR29 specifically and sensitively responded to the major pheromone component, Z11-16:OAc [concentration for 50% of maximal effect (EC50 ) = 3.431 × 10(-7) M], while SinfOR21 responded robustly to a minor pheromone component Z11-16:OH (EC50  = 1.087 × 10(-6) M). SinfOR27, however, displayed no response to any of the three pheromone components, but, interestingly, it was sensitive to a non-sex pheromone component Z9,E12-14:OAc (EC50  = 1.522 × 10(-6) M). Our results provide insight into the molecular mechanisms of specificity and sensitivity of the sex pheromone communication system in moths. PMID:25039606

  12. (Z,Z)-6,9-heneicosadien-11-one, labile sex pheromone of the whitemarked tussock moth, Orgyia leucostigma.

    PubMed

    Grant, Gary G; Slessor, Keith N; Liu, Wei; Abou-Zaid, Mamdouh M

    2003-03-01

    The whitemarked tussock moth (WMTM), Orgyia leucostigma (J. E. Smith), is a major pest of coniferous and deciduous trees in eastern Canada. Chemical identification of its sex pheromone depended primarily on GC-EAD and HPLC analysis, with confirmation of behavioral activity by wind tunnel and field tests. We identified (Z,Z)-6,9-heneicosadien-11-one (Z,Z-6,9-ket) at 4-5 ng/female as the only essential sex pheromone component. Also detected in female extracts were (Z)-6-heneicosen-11-one (Z6-ket) at 2.5 ng/female, (Z,E)-6,8-heneicosadien-11-one (Z,E-6.8-ket) at about 0.5 ng/female, and a trace amount of (Z,E)-6,9-heneicosadien-11-one. Traps containing as little as 1 microg of Z,Z-6,9-ket attracted males at low population levels, indicating it is a potent sex attractant. Traps baited with Z6-ket attracted few males, and in windtunnel bioassays it was at least 100-fold less attractive to males than Z,Z-6,9-ket. No improvement in trap catch occurred with the addition of Z6-ket in various binary mixtures with Z,Z-6,9-ket, including the female ratio, and a ternary mixture of Z,Z-6.9-ket, Z6-ket, and Z,E-6,8-ket in the 9:5:1 ratio detected in females was no better than Z,Z-6,9-ket alone. We attribute the presence of Z,E-6,8-ket and Z,E-6,9-ket in female extracts to the spontaneous and rapid stereospecific isomerization of Z,Z-6,9-ket at room temperature. Male flight began at sunset but peaked during the second half of the night.

  13. Identification and Synthesis of the Male-produced Sex Pheromone of the Stink Bug, Pellaea stictica.

    PubMed

    Fávaro, Carla F; Millar, Jocelyn G; Zarbin, Paulo H G

    2015-09-01

    Stink bugs are major pests of a wide variety of agricultural crops worldwide. The species Pellaea stictica is a Neotropical stink bug found in several South American countries. Chromatographic analyses of volatiles released by adults of this species showed that males produce a sex-specific compound, and bioassays with a Y-tube olfactometer showed that the compound was attractive only to females, confirming that it is a sex pheromone. Gas chromatography coupled to mass spectrometry and Fourier transform infrared analyses of the natural compound and several derivatives suggested that the structure was an alcohol with a saturated carbon chain and several methyl branches. After synthesis of two proposed structures, the pheromone of P. stictica was identified as a novel compound, 2,4,8,13-tetramethyltetradecan-1-ol. Laboratory bioassays showed that the synthesized mixture of stereoisomers of 2,4,8,13-tetramethyltetradecan-1-ol was as attractive to P. stictica females as the natural pheromone. PMID:26318441

  14. Sex Pheromone Components of Pink Gypsy Moth, Lymantria mathura

    NASA Astrophysics Data System (ADS)

    Gries, Gerhard; Gries, Regine; Schaefer, Paul W.; Gotoh, Tadao; Higashiura, Yasutomo

    Pheromone extract of female pink gypsy moth, Lymantria mathura, was analyzed by coupled gas chromatographic-electroantennographic detection (GC-EAD) and coupled GC-mass spectrometry (MS), employing fused silica columns coated with DB-5, DB-210, or DB-23 and a custom-made GC column that separated enantiomers of unsaturated epoxides. These analyses revealed (9R,10S)-cis-9,10-epoxy-Z3,Z6-nonadecadiene [termed here (+)-mathuralure] and (9S,10R)-cis-9,10-epoxy-Z3,Z6-nonadecadiene [termed here (-)-mathuralure] at a 1 : 4 ratio as major candidate pheromone components. In field experiments in northern Japan (Morioka, Iwate Prefecture and Bibai, Hokkaido Prefecture), (+)- and (-)-mathuralure at a ratio of 1 : 4, but not 1 : 1 or singly, were attractive to male L. mathura. This is the first demonstration that attraction of male moths required the very same ratio of pheromone enantiomers as produced by conspecific females. Whether L. mathura employ different blend ratios in different geographic areas, and the role of five additional candidate pheromone components identified in this study remains to be investigated.

  15. Heritable variation of sex pheromone composition and the potential for evolution of resistance to pheromone-based control of the Indian meal moth, Plodia interpunctella.

    PubMed

    Svensson, Glenn P; Ryne, Camilla; Löfstedt, Christer

    2002-07-01

    The short-term evolutionary effect of pheromone-based mating disruption on the mating ability of the Indian meal moth, Plodia interpunctella, was investigated. Three independent selection lines were established, and the mating ability of moths in plastic tents treated with high doses of pheromone and in control tents was compared for two consecutive generations. In addition, the heritability of the sex pheromone blend, measured as the ratio of two major pheromone components (Z,E)-9,12-tetradecadienyl acetate and (Z,E)-9,12-tetradecadienol, was estimated. Based on a mother-daughter regression analysis including 21 families, the heritability of the pheromone blend was 0.65 +/- 0.14, indicating a potential for evolutionary change of the character. However, no increase in mating ability of females in pheromone-treated tents or alteration of the pheromone blend was observed in any selection line when compared with control lines, indicating no or weak selection on the pheromone blend as well as other traits influencing mating ability of this species under the created mating disruption conditions. Factors contributing to the lack of selection effects are discussed.

  16. Sex Pheromone Receptor Specificity in the European Corn Borer Moth, Ostrinia nubilalis

    PubMed Central

    Wanner, Kevin W.; Nichols, Andrew S.; Allen, Jean E.; Bunger, Peggy L.; Garczynski, Stephen F.; Linn, Charles E.; Robertson, Hugh M.; Luetje, Charles W.

    2010-01-01

    Background The European corn borer (ECB), Ostrinia nubilalis (Hubner), exists as two separate sex pheromone races. ECB(Z) females produce a 97∶3 blend of Z11- and E11-tetradecenyl acetate whereas ECB(E) females produce an opposite 1∶99 ratio of the Z and E isomers. Males of each race respond specifically to their conspecific female's blend. A closely related species, the Asian corn borer (ACB), O. furnacalis, uses a 3∶2 blend of Z12- and E12-tetradecenyl acetate, and is believed to have evolved from an ECB-like ancestor. To further knowledge of the molecular mechanisms of pheromone detection and its evolution among closely related species we identified and characterized sex pheromone receptors from ECB(Z). Methodology Homology-dependent (degenerate PCR primers designed to conserved amino acid motifs) and homology-independent (pyrophosphate sequencing of antennal cDNA) approaches were used to identify candidate sex pheromone transcripts. Expression in male and female antennae was assayed by quantitative real-time PCR. Two-electrode voltage clamp electrophysiology was used to functionally characterize candidate receptors expressed in Xenopus oocytes. Conclusion We characterized five sex pheromone receptors, OnOrs1 and 3–6. Their transcripts were 14–100 times more abundant in male compared to female antennae. OnOr6 was highly selective for Z11-tetradecenyl acetate (EC50 = 0.86±0.27 µM) and was at least three orders of magnitude less responsive to E11-tetradecenyl acetate. Surprisingly, OnOr1, 3 and 5 responded to all four pheromones tested (Z11- and E11-tetradecenyl acetate, and Z12- and E12-tetradecenyl acetate) and to Z9-tetradecenyl acetate, a behavioral antagonist. OnOr1 was selective for E12-tetradecenyl acetate based on an efficacy that was at least 5-fold greater compared to the other four components. This combination of specifically- and broadly-responsive pheromone receptors corresponds to published results of sensory neuron activity in vivo

  17. Identification of pheromone synergists for Rhynchophorus ferrugineus trapping systems from Phoenix canariensis palm volatiles.

    PubMed

    Vacas, Sandra; Abad-Payá, María; Primo, Jaime; Navarro-Llopis, Vicente

    2014-07-01

    Trapping systems for the red palm weevil, Rhynchophorus ferrugineus Olivier, rely on the use of natural plant odor sources to boost the attractiveness of the aggregation pheromone. The identification of the key odorants involved in attraction is essential in the development of a synthetic pheromone synergist to replace the nonstandardized use of plant material in traps. Canary Islands date palms (Phoenix canariensis) have become preferred hosts for R. ferrugineus in Europe; thus, the volatile profile of different P. canariensis plant materials, including healthy and infested tissues, is investigated in the present work by means of solid phase microextraction (SPME-GC-MS), aimed to identify pheromone synergists. The electroantennography (EAG) response of the compounds identified was recorded, as well as the preliminary field response of several EAG-active compounds. The so-called "palm esters" (ethyl acetate, ethyl propionate, ethyl butyrate, and propyl butyrate) elicit the strongest EAG responses but performed poorly in the field. Mixtures of esters and alcohols give evidence of better performance, but release rates need further optimization. PMID:24930773

  18. Identification of pheromone synergists for Rhynchophorus ferrugineus trapping systems from Phoenix canariensis palm volatiles.

    PubMed

    Vacas, Sandra; Abad-Payá, María; Primo, Jaime; Navarro-Llopis, Vicente

    2014-07-01

    Trapping systems for the red palm weevil, Rhynchophorus ferrugineus Olivier, rely on the use of natural plant odor sources to boost the attractiveness of the aggregation pheromone. The identification of the key odorants involved in attraction is essential in the development of a synthetic pheromone synergist to replace the nonstandardized use of plant material in traps. Canary Islands date palms (Phoenix canariensis) have become preferred hosts for R. ferrugineus in Europe; thus, the volatile profile of different P. canariensis plant materials, including healthy and infested tissues, is investigated in the present work by means of solid phase microextraction (SPME-GC-MS), aimed to identify pheromone synergists. The electroantennography (EAG) response of the compounds identified was recorded, as well as the preliminary field response of several EAG-active compounds. The so-called "palm esters" (ethyl acetate, ethyl propionate, ethyl butyrate, and propyl butyrate) elicit the strongest EAG responses but performed poorly in the field. Mixtures of esters and alcohols give evidence of better performance, but release rates need further optimization.

  19. Combined Sprays of Sex Pheromone and Insecticides to Attract and Kill Codling Moth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field trials were conducted to evaluate the potential of an "attract-and-kill" approach for control of codling moth by adding half-rates of microencapsulated (MEC) lambda-cyhalothrin or acetamiprid to a sex pheromone formulation in Turkey and the USA in 2006. Two apple orchards were divided into six...

  20. Flying faster: Flight height affects orthokinetic responses during moth flight to sex pheromone

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Male Grapholita molesta (Busck) were allowed to fly upwind along horizontal sex pheromone plumes in laboratory flight tunnels. Flying males experienced tunnel-width stripes perpendicular to the wind line, or pseudo randomly distributed dots (5cm diameter, equal to stripe width), and their flights we...

  1. Sex pheromone of queens of the slave-making ant, Polyergus breviceps.

    PubMed

    Greenberg, Les; Aliabadi, Ali; McElfresh, J Stephen; Topoff, Howard; Millar, Jocelyn G

    2004-06-01

    The sex attractant pheromone produced in mandibular glands of queens of the slave-making ant Polyergus breviceps has been identified as a blend of methyl 6-methylsalicylate and 3-ethyl-4-methylpentanol. In field trials, each compound alone was completely unattractive to males, whereas blends of the two compounds attracted hundreds of males within a couple of hours. PMID:15303331

  2. Phenyl propionate and sex pheromone for monitoring navel orangeworm in the presence of mating disruption

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The recent availability of sex pheromone lures for the navel orangeworm, Amyelois transitella (Walker) (Lepidoptera: Pyralidae), improves options for monitoring this key pest in conventionally-managed almonds. These lures are, however, minimally effective in the presence of mating disruption. Experi...

  3. Combined approaches using sex pheromone and pear ester for behavioral disruption of codling moth (Lepidoptera: Tortricidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies utilized the attractive properties of pear ester, ethyl (E,Z)-2,4-decadienoate, and codlemone, (E,E)-8,10-dodecadien-1-ol, the sex pheromone of codling moth, Cydia pomonella (L)., for behavioural disruption. Standard dispensers loaded with codlemone alone or in combination with pear ester (c...

  4. Sex Pheromone of the Pine False Webworm Acantholyda erythrocephala (Hymenoptera Pamphiliidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Females of the pine false webworm Acantholyda erythrocephala (L) produce the sex pheromone (Z)-6,14-pentadecadienal, which attracts flying males in the field. Using gas chromatography coupled with electroantennographic detection (GC-EAD) and mass spectrometry (GC-MS), we detected (Z)-6,14-pentadeca...

  5. Characterization and molecular cloning of conjugation-regulating sex pheromones in homothallic Closterium.

    PubMed

    Tsuchikane, Yuki; Kokubun, Yume; Sekimoto, Hiroyuki

    2010-09-01

    Conjugation-regulating pheromones were analyzed in homothallic Closterium for the first time. Members of the Closterium peracerosum-strigosum-littorale complex are unicellular charophycean algae in which there are two modes of zygospore formation: heterothallism and homothallism. A homothallic strain of Closterium (designation, kodama20) forms selfing zygospores via the conjugation of two sister gametangial cells derived from one vegetative cell. Conjugation-promoting and -suppressing activities, against cells at very low (1 x 10(2) cells ml(-1)) and normal (1 x 10(4) cells ml(-1)) cell density, respectively, were detected in the medium in which cells of a normal density had been cultured. Pheromone activities decreased to 20% after incubation at 60 °C for 10  min. The release and action of the pheromones was dependent on light. The culture medium was subjected to gel filtration, and both active substances had an apparent molecular mass of 17  kDa; this was similar to that previously reported for the heterothallic sex-specific pheromone protoplast-release-inducing protein (PR-IP) Inducer. cDNAs encoding the orthologs of PR-IP Inducer were isolated from the homothallic strain. Recombinant PR-IP Inducers produced by yeast cells showed conjugation-promoting activity. These results indicate that conjugation of the homothallic strain is regulated by an ortholog of a heterothallic sex-specific pheromone.

  6. Alkenyl sex pheromone analogs in the hemolymph of an arctiid Eilema japonica and several non-arctiid moths.

    PubMed

    Fujii, Takeshi; Yamamoto, Masanobu; Nakano, Ryo; Nirazawa, Takuya; Rong, Yu; Dong, Shuang-Lin; Ishikawa, Yukio

    2015-11-01

    The majority of moth species utilize compounds derived from de novo synthesized fatty acids as their sex pheromones (type I). In contrast, species belonging to two recently diverged moth families, Arctiidae and Geometridae, utilize alkenes and their epoxides, which are derived from dietary essential fatty acids (EFAs), as their sex pheromones (type II). In the latter species, EFAs are considered to be converted into alkenes, often after chain elongation, in specialized cells called oenocytes. These alkenes are transported through the hemolymph to the pheromone gland, from which they are secreted with or without further modifications. We confirmed that the appearance of EFA-derived alkenes in the hemolymph was closely associated with the completion of pheromone gland formation in an arctiid moth Eilema japonica. Analyses of the hemolymph of several moth species utilizing type-I sex pheromones demonstrated the occurrence of (Z,Z,Z)-3,6,9-tricosatriene (T23), a typical type-II component, in the hemolymph of a noctuid Mamestra brassicae and two crambids Ostrinia furnacalis and Ostrinia scapulalis. Our results demonstrated that moths utilizing type-I pheromones have the ability to synthesize type-II sex pheromones, and suggested that recently diverged groups of moths may have secondarily exploited EFA-derived alkenes as sex pheromones.

  7. Impact of trap design and density on effectiveness of a commercial pheromone lure for monitoring navel orangeworm (Lepidoptera: Pyralidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The navel orangeworm is an important pest of almonds, pistachios, and walnuts. A commercial pheromone lure for this pest became publicly available in 2013. We compared effectiveness of this synthetic lure (NOW Biolure) between common commercial trap designs, and with unmated females in wing traps. O...

  8. Phenology of Maconellicoccus hirsutus (Green) Hemiptera: Pseudococcidae) in Florida based on attraction of adult males to pheromone traps

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research was conducted in Florida to assess the phenology of pink hibiscus mealybug, Maconellicoccus hirsutus (Green), based on numbers of adult males captured at traps baited with a synthetic pheromone. Trapping was conducted at three locations in east central Florida in ornamental plantings of hib...

  9. Identification of female-produced sex pheromone of the honey locust gall midge, Dasineura gleditchiae.

    PubMed

    Molnár, Béla; Kárpáti, Zsolt; Szocs, Gábor; Hall, David R

    2009-06-01

    The honey locust gall midge, Dasineura gleditchiae Osten Sacken 1866 (Diptera: Cecidomyiidae) is the main pest of ornamental varieties of the honey locust tree, Gleditsia triacanthos L., in North America, and is now becoming a pest of concern in Europe. Female midges were observed to emerge in the early morning with their ovipositor extended until they mated. Volatiles were collected from virgin females in a closed-loop stripping apparatus and analyzed by gas chromatography (GC) coupled to electroantennographic (EAG) recording from the antenna of a male midge. A single EAG response was observed, which was assumed to be to the major component of the female sex pheromone. This was identified as (Z)-2-acetoxy-8-heptadecene by comparison of its mass spectrum and GC retention times on different columns with those of synthetic standards and by micro-analytical reactions. This compound was synthesized, and the individual enantiomers were produced by kinetic resolution with lipase from Candida antarctica. Analysis of the naturally-produced compound on a cyclodextrin GC column indicated it was the (R)-enantiomer. In EAG dose-response measurements, the (R)-enantiomer alone or in the racemic mixture evoked significant responses from the antennae of male D. gleditchiae, whereas the (S)-enantiomer did not. In field trapping tests, the (R)-enantiomer attracted male D. gleditchiae. The racemic compound was equally attractive, but the (S)-enantiomer was not attractive. Both the pure (R)-enantiomer or racemic (Z)-2-acetoxy-8-heptadecene, applied to red rubber septa in a dose range of 3-30 microg, constitute a strongly attractive bait in sticky traps for monitoring the flight of D. gleditchiae. PMID:19459010

  10. Effects of height and adjacent surfaces on captures of Indianmeal moth (Lepidoptera: Pyralidae) in pheromone-baited traps.

    PubMed

    Nansen, Christian; Phillips, Thomas W; Sanders, Stacy

    2004-08-01

    Diamond-shaped pheromone-baited traps are used widely in food storage and food processing facilities for monitoring of Plodia interpunctella (Hübner), and here we evaluated to what extent trap captures were affected by 1) vertical placement of traps, 2) deployment of a horizontal landing platform to the diamond-shaped pheromone trap, and 3) placement of traps either freely exposed or along a sidewall. In the small sheds (height 1.8 m), traps were placed in three heights and significantly highest trap captures were obtained near the ceiling. When the same experiment was conducted in a larger room (height 6 m) with traps at seven heights, highest captures were obtained at both the lowest and highest traps. In a subsequent experiment, we deployed a horizontal platform to traps at seven heights and found that the importance of vertical placement became less important. Thus, it seemed that male moths preferred to orient to a pheromone source associated with a physical surface, such as the floor, ceiling, or landing platform. In a comparison of P. interpunctella male trap captures in a completely dark room (no visual cues), traps with a landing platform caught significantly more than traps without the platform. In a final experiment, we evaluated the effect of hanging traps either freely or adjacent to sidewalls, and significantly highest trap captures were obtained along side-walls. The results presented here suggest that deployment of a horizontal platform reduces the importance of the vertical placement of traps and seems to increase the trap efficiency, and we recommend placement of traps along sidewalls and/or near the ground.

  11. Chemosterilization of male sea lampreys (Petromyzon marinus) does not affect sex pheromone release

    USGS Publications Warehouse

    Siefkes, Michael J.; Bergstedt, Roger A.; Twohey, Michael B.; Li, Weiming

    2003-01-01

    Release of males sterilized by injection with bisazir is an important experimental technique in management of sea lamprey (Petromyzon marinus), an invasive, nuisance species in the Laurentian Great Lakes. Sea lampreys are semelparous and sterilization can theoretically eliminate a male's reproductive capacity and, if the ability to obtain mates is not affected, waste the sex products of females spawning with him. It has been demonstrated that spermiating males release a sex pheromone that attracts ovulating females. We demonstrated that sterilized, spermiating males also released the pheromone and attracted ovulating females. In a two-choice maze, ovulating females increased searching behavior and spent more time in the side of the maze containing chemical stimuli from sterilized, spermiating males. This attraction response was also observed in spawning stream experiments. Also, electro-olfactograms showed that female olfactory organs were equally sensitive to chemical stimuli from sterilized and nonsterilized, spermiating males. Finally, fast atom bombardment mass spectrometry showed that extracts from water conditioned with sterilized and nonsterilized, spermiating males contained the same pheromonal molecule at similar levels. We concluded that injection of bisazir did not affect the efficacy of sex pheromone in sterilized males.

  12. [Sex pheromone secondary components of Indian meal moth Plodia interpunctella in China. HU wenlil 2, DU].

    PubMed

    Hu, Wenli; Du, Jiawei

    2005-09-01

    Indian meal moth Plodia interpunctella Hübner (Lepidoptera: Pyralidae) is considered as an important insect pest infesting stored grains and other products in China. The major sex pheromone component of P. interpunctella, Z9, E12-14: OAc (TDA), has already been identified. Though the efficiency of male capture by using the bait with this component alone is quite good, the pheromone system is far from fully understood. The identification with capillary chromatographic analysis and GC-MS methods showed that there were four main components, i. e., Z9, E12-14: OAc(A), Z9, E12-14: OH (B), Z9, E12-14: Ald(C), and Z9-14: OAc(D), in the sex pheromone gland of female P. interpunctella, and the ratio of these four components was A: B: C:D= 100:22: 12:9. Wind tunnel experimental results suggested that the response of male P. interpunctella to a blend (A: B: C: D = 8:2:1:0.8) was not significantly different from that to female sex pheromone gland extracts.

  13. A study of the female produced sex pheromone of Tenebrio molitor (Coleoptera: Tenebrionidae)

    NASA Astrophysics Data System (ADS)

    Mangat, Jaswinder

    regulation of pheromone biosynthesis in mature mated and virgin beetles. Further work is required to elucidate the biochemical basis for the inhibition of pheromone biosynthesis. Understanding the regulation of sex pheromone biosynthesis in this model organism will enhance our understanding of the process in beetles in general, and may (in the long term) lead to new pest control strategies.

  14. A nonspecific defensive compound evolves into a competition avoidance cue and a female sex pheromone

    PubMed Central

    Weiss, Ingmar; Rössler, Thomas; Hofferberth, John; Brummer, Michael; Ruther, Joachim; Stökl, Johannes

    2013-01-01

    The evolution of chemical communication and the origin of pheromones are among the most challenging issues in chemical ecology. Current theory predicts that chemical communication can arise from compounds primarily evolved for non-communicative purposes but experimental evidence showing a gradual evolution of non-informative compounds into cues and true signals is scarce. Here we report that females of the parasitic wasp Leptopilina heterotoma use the defensive compound (−)-iridomyrmecin as a semiochemical cue to avoid interference with con- and heterospecific competitors and as the main component of a species-specific sex pheromone. Although competition avoidance is mediated by (−)-iridomyrmecin alone, several structurally related minor compounds are necessary for reliable mate attraction and recognition. Our findings provide insights into the evolution of insect pheromones by demonstrating that the increasing specificity of chemical information is accompanied by an increasing complexity of the chemical messengers involved and the evolution of the chemosensory adaptations for their exploitation. PMID:24231727

  15. The scent of inbreeding: a male sex pheromone betrays inbred males

    PubMed Central

    van Bergen, Erik; Brakefield, Paul M.; Heuskin, Stéphanie; Zwaan, Bas J.; Nieberding, Caroline M.

    2013-01-01

    Inbreeding depression results from mating among genetically related individuals and impairs reproductive success. The decrease in male mating success is usually attributed to an impact on multiple fitness-related traits that reduce the general condition of inbred males. Here, we find that the production of the male sex pheromone is reduced significantly by inbreeding in the butterfly Bicyclus anynana. Other traits indicative of the general condition, including flight performance, are also negatively affected in male butterflies by inbreeding. Yet, we unambiguously show that only the production of male pheromones affects mating success. Thus, this pheromone signal informs females about the inbreeding status of their mating partners. We also identify the specific chemical component (hexadecanal) probably responsible for the decrease in male mating success. Our results advocate giving increased attention to olfactory communication as a major causal factor of mate-choice decisions and sexual selection. PMID:23466986

  16. A nonspecific defensive compound evolves into a competition avoidance cue and a female sex pheromone.

    PubMed

    Weiss, Ingmar; Rössler, Thomas; Hofferberth, John; Brummer, Michael; Ruther, Joachim; Stökl, Johannes

    2013-01-01

    The evolution of chemical communication and the origin of pheromones are among the most challenging issues in chemical ecology. Current theory predicts that chemical communication can arise from compounds primarily evolved for non-communicative purposes but experimental evidence showing a gradual evolution of non-informative compounds into cues and true signals is scarce. Here we report that females of the parasitic wasp Leptopilina heterotoma use the defensive compound (-)-iridomyrmecin as a semiochemical cue to avoid interference with con- and heterospecific competitors and as the main component of a species-specific sex pheromone. Although competition avoidance is mediated by (-)-iridomyrmecin alone, several structurally related minor compounds are necessary for reliable mate attraction and recognition. Our findings provide insights into the evolution of insect pheromones by demonstrating that the increasing specificity of chemical information is accompanied by an increasing complexity of the chemical messengers involved and the evolution of the chemosensory adaptations for their exploitation. PMID:24231727

  17. Female sex pheromone of the pickleworm,Diaphania nitidalis (Lepidoptera: Pyralidae).

    PubMed

    Klun, J A; Leonhardt, B A; Schwarz, M; Day, A; Raina, A K

    1986-01-01

    Heptane extracts of the ovipositors from pickleworm adults (Diaphania nitidalis) were found to contain (E)-11-hexadecenal along with proportionally smaller amounts of (Z)-11-hexadecenal, (E)- and (Z)-11-hexadecen-1-ol, hexadecanol, hexadecanal, and a trace amount of (E,Z)-10,12-hexadecadienal. Assays conducted in a flight tunnel and in the field showed that a synthetic mixture of the five unsaturated compounds elicited behavioral responses from pickleworm males that were indistinguishable from those elicited by extracts of the female or by mate-calling females. When any component was deleted from the set of five unsaturated compounds, the intensity and extent of male responses to the resulting mixtures were significantly attenuated. The female sex pheromone of the pickleworm resembles the pheromone of a congeneric species,D. hyalinata, but bioassays indicated that (E,E)-10,12-hexadecadienal, produced byD. hyalinata but not by the pickleworm, plays a role in pheromonal specificity. PMID:24306413

  18. Variation in courtship ultrasounds of three Ostrinia moths with different sex pheromones.

    PubMed

    Takanashi, Takuma; Nakano, Ryo; Surlykke, Annemarie; Tatsuta, Haruki; Tabata, Jun; Ishikawa, Yukio; Skals, Niels

    2010-01-01

    concordant evolution in sexual signals such as courtship ultrasounds and sex pheromones occurs in moths. PMID:20957230

  19. Enterococcal Sex Pheromones: Evolutionary Pathways to Complex, Two-Signal Systems.

    PubMed

    Dunny, Gary M; Berntsson, Ronnie Per-Arne

    2016-06-01

    Gram-positive bacteria carry out intercellular communication using secreted peptides. Important examples of this type of communication are the enterococcal sex pheromone systems, in which the transfer of conjugative plasmids is controlled by intercellular signaling among populations of donors and recipients. This review focuses on the pheromone response system of the conjugative plasmid pCF10. The peptide pheromones regulating pCF10 transfer act by modulating the ability of the PrgX transcription factor to repress the transcription of an operon encoding conjugation functions. Many Gram-positive bacteria regulate important processes, including the production of virulence factors, biofilm formation, sporulation, and genetic exchange using peptide-mediated signaling systems. The key master regulators of these systems comprise the RRNPP (RggRap/NprR/PlcR/PrgX) family of intracellular peptide receptors; these regulators show conserved structures. While many RRNPP systems include a core module of two linked genes encoding the regulatory protein and its cognate signaling peptide, the enterococcal sex pheromone plasmids have evolved to a complex system that also recognizes a second host-encoded signaling peptide. Additional regulatory genes not found in most RRNPP systems also modulate signal production and signal import in the enterococcal pheromone plasmids. This review summarizes several structural studies that cumulatively demonstrate that the ability of three pCF10 regulatory proteins to recognize the same 7-amino-acid pheromone peptide arose by convergent evolution of unrelated proteins from different families. We also focus on the selective pressures and structure/function constraints that have driven the evolution of pCF10 from a simple, single-peptide system resembling current RRNPPs in other bacteria to the current complex inducible plasmid transfer system. PMID:27021562

  20. Female sex pheromone blends and male response of the legume pod borer, Maruca vitrata (Lepidoptera: Crambidae), in two populations of mainland China.

    PubMed

    Lu, Peng-Fei; Qiao, Hai-Li; Luo, You-Qing

    2013-01-01

    The legume pod borer, Maruca vitrata (Lepidoptera: Crambidae; syn. M. testulalis), is a serious pantropical insect pest of grain legumes. Comparative studies of M. vitrata female sex pheromone components in two different geographic populations in China, Wuhan and Huazhou, confirmed that (E,E)-10,12-hexadecadienal (E10,E12-16:Ald) and (E)-10-hexadecenal (E10-16:Ald) were present in variable ratios in all pheromone gland extracts of both populations. (E,E)-10,12-hexadecadienol (E10,E12-16:OH) was always detected in minor amounts using polar DB-WAX columns, but was never detected using medium-polar DB-17 columns for the two populations. E10-16:OH was not found in any of the M. vitrata sex pheromone gland extracts. The average ratios of E10-16:Ald, E10,E12-16:Ald, and E10,E12-16:OH in the pheromone gland extracts of populations from Wuhan and Huazhou were 79.5:100:12.1 and 10.3:100:0.7, respectively. Electrophysiological testing suggested that E10,E12-16:Ald elicited the highest male electroantennography (EAG) response, followed by E10,E12-16:OH and E10-16:Ald. Field-trapping tests with single synthetic sex pheromone lures showed that E10,E12-16:OH alone could not attract males, whereas E10,E12-16:Ald or E10-16:Ald alone attracted few males. Wuhan and Huazhou males were most attracted by lures containing E10-16:Ald + E10,E12-16:Ald + E10,E12-16:OH in doses of (80 + 100 + 10) microg and (10 + 100 + 10) microg, respectively, per vial. Males could discriminate between the blends that were most attractive to their own geographic population and those that were most attractive to the reference population. Our findings suggest that geographic variation exists in the sex pheromone system of M. vitrata in China. The results are discussed with regard to the mechanisms underlying the sex pheromone variation.

  1. Methyl trisporate E. A sex pheromone in Phycomyces blakesleeanus.

    PubMed

    Miller, M L; Sutter, R P

    1984-05-25

    Combined mating type cultures of Phycomyces blakesleeanus accumulate 41 mg of trisporic acids/l of medium, of which 30% is trisporic acid E. The methyl ester of trisporic acid E exhibits the same zygophore -inducing activity in bioassays with P. blakesleeanus and Mucor mucedo as does the pheromone methyl trisporate C. The structure of methyl trisporate E is 1,5-dimethyl-2-hydroxyl-4-oxo-6-(2'-hydroxyl-6'- methylocta -5',7'-d ien-8'-yl) -5-cyclohexene-1-carboxylic acid methyl ester.

  2. Simultaneously Hermaphroditic Shrimp Use Lipophilic Cuticular Hydrocarbons as Contact Sex Pheromones

    PubMed Central

    Zhang, Dong; Terschak, John A.; Harley, Maggy A.; Lin, Junda; Hardege, Jörg D.

    2011-01-01

    Successful mating is essentially a consequence of making the right choices at the correct time. Animals use specific strategies to gain information about a potential mate, which is then applied to decision-making processes. Amongst the many informative signals, odor cues such as sex pheromones play important ecological roles in coordinating mating behavior, enabling mate and kin recognition, qualifying mate choice, and preventing gene exchange among individuals from different populations and species. Despite overwhelming behavioral evidence, the chemical identity of most cues used in aquatic organisms remains unknown and their impact and omnipresence have not been fully recognized. In many crustaceans, including lobsters and shrimps, reproduction happens through a cascade of events ranging from initial attraction to formation of a mating pair eventually leading to mating. We examined the hypothesis that contact pheromones on the female body surface of the hermaphroditic shrimp Lysmata boggessi are of lipophilic nature, and resemble insect cuticular hydrocarbon contact cues. Via chemical analyses and behavioural assays, we show that newly molted euhermaphrodite-phase shrimp contain a bouquet of odor compounds. Of these, (Z)-9-octadecenamide is the key odor with hexadecanamide and methyl linoleate enhancing the bioactivity of the pheromone blend. Our results show that in aquatic systems lipophilic, cuticular hydrocarbon contact sex pheromones exist; this raises questions on how hydrocarbon contact signals evolved and how widespread these are in the marine environment. PMID:21533136

  3. Intraspecific Variation in Female Sex Pheromone of the Codling Moth Cydia pomonella

    PubMed Central

    Duménil, Claire; Judd, Gary J. R.; Bosch, Dolors; Baldessari, Mario; Gemeno, César; Groot, Astrid T.

    2014-01-01

    The codling moth, Cydia pomonella L. (Lepidoptera, Tortricidae), is a major pest of apple, pear and walnut orchards worldwide. This pest is often controlled using the biologically friendly control method known as pheromone-based mating disruption. Mating disruption likely exerts selection on the sexual communication system of codling moth, as male and female moths will persist in their attempt to meet and mate. Surprisingly little is known on the intraspecific variation of sexual communication in this species. We started an investigation to determine the level of individual variation in the female sex pheromone composition of this moth and whether variation among different populations might be correlated with use of mating disruption against those populations. By extracting pheromone glands of individual females from a laboratory population in Canada and from populations from apple orchards in Spain and Italy, we found significant between- and within-population variation. Comparing females that had been exposed to mating disruption, or not, revealed a significant difference in sex pheromone composition for two of the minor components. Overall, the intraspecific variation observed shows the potential for a shift in female sexual signal when selection pressure is high, as is the case with continuous use of mating disruption. PMID:26462935

  4. Variation in relative quantities of airborne sex pheromone components from individual femaleEphestia cautella (Lepidoptera: Pyralidae).

    PubMed

    Barrer, P M; Lacey, M J; Shani, A

    1987-03-01

    The airborne sex pheromone components (Z,E)-9,12-tetradeca-dien-1-yl acetate and (Z)-9-tetradecen-1-y1 acetate from single calling females ofEphestia cautella (Walker) were trapped within glass capillary tubes and were measured by gas chromatography-mass spectrometry. Broad and similar distributions of relative quantities were found for a laboratory strain and three Australian field strains, and means differed strongly from those reported previously for this species. The overall mean proportion of the two components found for Australian females was 88∶12. The composition in individuals ranged from 63∶27 to 97∶3. The proportions for individuals appeared to vary slightly in a random fashion from day to day, and proportions for first-generation progeny were influenced by the maternal blend.

  5. Chemical composition of sex pheromone of oriental fruit moth and rates of release by individual female moths.

    PubMed

    Lacey, M J; Sanders, C J

    1992-08-01

    The sex pheromone emitted by individual calling females of the oriental fruit moth,Grapholita molesta, was trapped within glass capillaries, and the composition and release rates were determined by gas chromatography-mass spectrometry. Aerial release of (Z)-8-dodecenyl acetate ranged up to 25.3 ng/hr, while the mean release rate was 8.48 ± 7.26 ng/hr (±SD). The proportion of (E)-8-dodecenyl acetate to (Z)-8-dodecenyl acetate was remarkably constant (4.20 ± 0.60%). Significant amounts of dodecyl acetate were also recovered but, contrary to previous reports, only trace quantities of (Z)-8-dodecenol were detected in the effluvium.

  6. Modulation of the temporal pattern of calling behavior of female Spodoptera littoralis by exposure to sex pheromone.

    PubMed

    Sadek, Medhat M; von Wowern, Germund; Löfstedt, Christer; Rosén, Wen-Qi; Anderson, Peter

    2012-01-01

    We have examined the timing of calling behavior in the female Egyptian cotton leafworm, Spodoptera littoralis and its modification by exposure to sex pheromone. The calling rhythm of the female moth was found to be circadian, persistent for at least 4 days once it has been entrained, and could be phase shifted by altering the light:dark regime. We also found that female exposure to pheromone affected the rate and duration of calling. A brief exposure to pheromone gland extract increased the proportion of females calling in a constant dim light and this effect persisted for at least 2 days. In response to pheromone exposure, significantly more females also called late into scotophase when most unexposed control females had ceased calling. The adaptive significance of responding to conspecific sex pheromone is discussed. PMID:22001286

  7. Identification of sex pheromone of calendula plume mothPlatyptilia williamsii.

    PubMed

    Haynes, K F

    1987-04-01

    The sex pheromone of the calendula plume moth,Platyptilia williamsii was identified as (Z)-11-hexadecenal (Z11-16∶Aid). Extracts of female sex pheromone glands contained several compounds when analyzed by capillary and packed-column GLC. However, airborne collections of volatiles from glands contained only one of these compounds, having the same retention time asZ11-16∶Ald. GC-MS and microozonolysis analyses of the natural product were consistent with those of syntheticZ11-16∶Ald. In a flight tunnel, males oriented upwind and touched sources ofZ11-16∶Ald and gland extract with equal frequency. Field tests of syntheticZ11-16∶Ald already have shown it to be a potent sex attractant for males of this species. This study further supports the hypothesis thatP. williamsii and a sympatric species,Platyptilia carduidactyla, are not reproductively isolated by chemical differences in the composition of the sex pheromone, but rather by temporal differences in sexual activities. PMID:24302055

  8. Utilization of pheromones in the population management of moth pests.

    PubMed Central

    Cardé, R T

    1976-01-01

    Pheromones are substances emitted by one individual of a species and eliciting a specific response in a second individual of the same species. In moths (Lepidoptera) generally females lure males for mating by emission of a sex attractant pheromone comprised of either one or more components. Since 1966 the identification of the pheromone blends of many moth pests has allowed investigations into the use of these messengers for population manipulation. Pheromone-baited traps may be used both to detect pest presence and to estimate population density, so that conventional control tactics can be employed only as required and timed precisely for maximum effectiveness. Attractant traps also can be utilized for direct population suppression when the traps are deployed at a density effective in reducing mating success sufficiently to achieve control. A third use pattern of pheromones and related compounds is disruption of pheromone communication via atmospheric permeation with synthetic disruptants. The behavioral modifications involved in disruption of communication may include habituation of the normal response sequence (alteration of the pheromone response threshold) and "confusion" (inability of the organism to perceive and orient to the naturally emitted lure). Disruption of communication employing the natural pheromone components as the disruptant has been most successful, although nonattractant behavioral modifiers structurally similar to the pheromone components also may prove useful. Possible future resistance to direct pheromone manipulation may be expected to involve the evolution of behavioral and sensory changes that minimize the informational overlap between the natural pheromone system and the pheromone control technique. PMID:789060

  9. Suitability of commercially available insect traps and pheromones for monitoring dusky sap beetles (Coleoptera: Nitidulidae) and related insects in Bt sweet corn.

    PubMed

    Dowd, Patrick F

    2005-06-01

    Two trap types and pheromone sources for the dusky sap beetle, Carpophilus lugubris Murray (Coleoptera: Nitidulidae), were compared in Bacillus thuringiensis (Bt) and non-Bt sweet corn fields over a 3-yr period. Overall, commercial traps and pheromones were equally effective as experimental traps and pheromones used previously for capturing C. lugubris and other sap beetle species. The commercial trap often caught significantly more Glischrochilus quadrisignatus Say than the experimental trap that had been used in previous studies. Bt corn significantly reduced caterpillar damage to ears compared with the non-Bt isoline and did not adversely affect levels of Orius sp., the most common insect predator. Sap beetle damage was the most common insect damage to Bt sweet corn ears. Sap beetles were detected by traps at population levels below that which are likely to cause economic concern, indicating commercially available traps and pheromone lures for monitoring sap beetles should be suitable for detecting them under commercial growing conditions. PMID:16022314

  10. Selection on male sex pheromone composition contributes to butterfly reproductive isolation

    PubMed Central

    Bacquet, P. M. B.; Brattström, O.; Wang, H.-L.; Allen, C. E.; Löfstedt, C.; Brakefield, P. M.; Nieberding, C. M.

    2015-01-01

    Selection can facilitate diversification by inducing character displacement in mate choice traits that reduce the probability of maladaptive mating between lineages. Although reproductive character displacement (RCD) has been demonstrated in two-taxa case studies, the frequency of this process in nature is still debated. Moreover, studies have focused primarily on visual and acoustic traits, despite the fact that chemical communication is probably the most common means of species recognition. Here, we showed in a large, mostly sympatric, butterfly genus, a strong pattern of recurrent RCD for predicted male sex pheromone composition, but not for visual mate choice traits. Our results suggest that RCD is not anecdotal, and that selection for divergence in male sex pheromone composition contributed to reproductive isolation within the Bicyclus genus. We propose that selection may target olfactory mate choice traits as a more common sensory modality to ensure reproductive isolation among diverging lineages than previously envisaged. PMID:25740889

  11. Morganella morganii bacteria produces phenol as the sex pheromone of the New Zealand grass grub from tyrosine in the colleterial gland

    NASA Astrophysics Data System (ADS)

    Marshall, D. G.; Jackson, T. A.; Unelius, C. R.; Wee, S. L.; Young, S. D.; Townsend, R. J.; Suckling, D. M.

    2016-08-01

    Costelytra zealandica (Coleoptera: Scarabeidae) is a univoltine endemic species that has colonised and become a major pest of introduced clover and ryegrass pastures that form about half of the land area of New Zealand. Female beetles were previously shown to use phenol as their sex pheromone produced by symbiotic bacteria in the accessory or colleterial gland. In this study, production of phenol was confirmed from the female beetles, while bacteria were isolated from the gland and tested for attractiveness towards grass grub males in traps in the field. The phenol-producing bacterial taxon was identified by partial sequencing of the 16SrRNA gene, as Morganella morganii. We then tested the hypothesis that the phenol sex pheromone is biosynthesized from the amino acid tyrosine by the bacteria. This was shown to be correct, by addition of isotopically labelled tyrosine (13C) to the bacterial broth, followed by detection of the labelled phenol by SPME-GCMS. Elucidation of this pathway provides specific evidence how the phenol is produced as an insect sex pheromone by a mutualistic bacteria.

  12. Morganella morganii bacteria produces phenol as the sex pheromone of the New Zealand grass grub from tyrosine in the colleterial gland.

    PubMed

    Marshall, D G; Jackson, T A; Unelius, C R; Wee, S L; Young, S D; Townsend, R J; Suckling, D M

    2016-08-01

    Costelytra zealandica (Coleoptera: Scarabeidae) is a univoltine endemic species that has colonised and become a major pest of introduced clover and ryegrass pastures that form about half of the land area of New Zealand. Female beetles were previously shown to use phenol as their sex pheromone produced by symbiotic bacteria in the accessory or colleterial gland. In this study, production of phenol was confirmed from the female beetles, while bacteria were isolated from the gland and tested for attractiveness towards grass grub males in traps in the field. The phenol-producing bacterial taxon was identified by partial sequencing of the 16SrRNA gene, as Morganella morganii. We then tested the hypothesis that the phenol sex pheromone is biosynthesized from the amino acid tyrosine by the bacteria. This was shown to be correct, by addition of isotopically labelled tyrosine ((13)C) to the bacterial broth, followed by detection of the labelled phenol by SPME-GCMS. Elucidation of this pathway provides specific evidence how the phenol is produced as an insect sex pheromone by a mutualistic bacteria. PMID:27352077

  13. Morganella morganii bacteria produces phenol as the sex pheromone of the New Zealand grass grub from tyrosine in the colleterial gland.

    PubMed

    Marshall, D G; Jackson, T A; Unelius, C R; Wee, S L; Young, S D; Townsend, R J; Suckling, D M

    2016-08-01

    Costelytra zealandica (Coleoptera: Scarabeidae) is a univoltine endemic species that has colonised and become a major pest of introduced clover and ryegrass pastures that form about half of the land area of New Zealand. Female beetles were previously shown to use phenol as their sex pheromone produced by symbiotic bacteria in the accessory or colleterial gland. In this study, production of phenol was confirmed from the female beetles, while bacteria were isolated from the gland and tested for attractiveness towards grass grub males in traps in the field. The phenol-producing bacterial taxon was identified by partial sequencing of the 16SrRNA gene, as Morganella morganii. We then tested the hypothesis that the phenol sex pheromone is biosynthesized from the amino acid tyrosine by the bacteria. This was shown to be correct, by addition of isotopically labelled tyrosine ((13)C) to the bacterial broth, followed by detection of the labelled phenol by SPME-GCMS. Elucidation of this pathway provides specific evidence how the phenol is produced as an insect sex pheromone by a mutualistic bacteria.

  14. Female Sex Pheromone in Trails of the Minute Pirate Bug, Orius minutus (L).

    PubMed

    Maeda, Taro; Fujiwara-Tsujii, Nao; Yasui, Hiroe; Matsuyama, Shigeru

    2016-05-01

    Orius minutus (L.) (Heteroptera: Anthocoridae) is a natural enemy of agricultural pests such as thrips, aphids, and various newly hatched insect juveniles. In this study, we conducted 1) behavioral assays for evidence of contact sex pheromone activity in trails of O. minutus, and 2) chemical analysis to identify the essential chemical components of the trails. Males showed arrestment to trails of mature virgin females but not to trails from either conspecific nymphs or immature females. Females also showed arrestment to trails from conspecific males, although the response was weaker than that exhibited by males. The activity of female trails lasted for at least 46 h after deposition. Males showed a response irrespective of mating experience. Following confirmation that a contact sex pheromone was present in the trails of female O. minutus, we used a bioassay-driven approach to isolate the active chemicals. After fractionation on silica gel, the n-hexane fraction was found to be biologically active to males. A major compound in the active fraction was (Z)-9-nonacosene; this compound was found only in trail extracts of mature virgin females. Synthetic (Z)-9-nonacosene arrested O. minutus males, indicating that it is the major active component of the contact sex pheromone in the trails of female O. minutus. PMID:27184908

  15. Response of Aphidius colemani to aphid sex pheromone varies depending on plant synergy and prior experience.

    PubMed

    Fernández-Grandon, G M; Poppy, G M

    2015-08-01

    A critical stage in the success of a parasitoid is the ability to locate a host within its habitat. It is hypothesized that a series of olfactory cues may be involved in altering the parasitoid's movement patterns at this stage of foraging. This paper focuses specifically on host habitat location and host location and the olfactory stimuli necessary to mediate the transition between these stages. Firstly, we confirm the ability of the parasitoid Aphidius colemani to detect the aphid sex pheromone at an electrophysiological level. Following this we investigate the effect of the sex pheromone component (4aS,7S,7aR)-nepetalactone on the movement patterns of A. colemani and its retention within an area. The key findings of this work are that A. colemani is able to detect the sex pheromone components, that parasitoid retention is increased by a synergy of nepetalactone and other host-associated cues and that foraging patterns are augmented by the presence of nepetalactone or experience associated with nepetalactone. PMID:25991073

  16. Lobesia botrana IPM: electrospun polyester microfibers serve as biodegradable sex pheromone dispensers.

    PubMed

    Hummel, Hans E; Langner, S S

    2013-01-01

    Modern insect pest management is faced with an increasingly sophisticated set of requirements. Control agent/dispenser combinations must be at the same time safe, nontoxic, inexpensive, reproducibly efficacious, environmentally compatible, biodegradable, and sustainable, and should be based on renewable resources. The methods employed preferably should be suitable for the growing and tightly controlled organic growing sector as well. All this calls for a level of sophistication and reproducibility previously unknown. Only very few systems can offer this kind of performance, but fortunately can be found in the area of suitable pheromone/dispenser combinations. This report is an attempt to adapt electrospun Ecoflex polyester micro fibers of the Greiner-Wendorff type to the very specific needs of the grape growing industry. Specifically required are "semi-intelligent" dispenser materials. On a weight basis, the electrospun product should achieve as high a proportion as possible of "retainable" sex pheromone (E,Z)-7,9-dodecadienyl acetate of Lobesia botrana (Lep.: Tortricidae) and should release it as uniformly as possible into the surrounding airspace. Using the Doye bioassay, some progress indeed has recently been achieved with electrospun Ecoflex microfibers of 0.5-3.5 microm diameter. They were employed as dispensers for programmed sex pheromone release with an effective mating disruption duration of up to seven weeks. With one microfiber/pheromone treatment, this covers one entire flight period of the trivoltine L. botrana. Mechanical application of this microfiber/pheromone preparation (with the option of automation) is possible. Disruption effects are comparable with those of commercially available dispensers of the Isonet type. Exposed under vineyard conditions, Ecoflex polyester fibers are a spider silk like material which is biodegradable within half a year. Thus, after releasing its pheromone load, it does not need removal, which saves one cultivation step

  17. Release mechanism of sex pheromone in the female gypsy moth Lymantria dispar: a morpho-functional approach.

    PubMed

    Solari, Paolo; Crnjar, Roberto; Spiga, Saturnino; Sollai, Giorgia; Loy, Francesco; Masala, Carla; Liscia, Anna

    2007-07-01

    A morpho-functional investigation of the sex pheromone-producing area was correlated with the pheromone release mechanism in the female gypsy moth Lymantria dispar. As assessed by male electroantennograms (EAG) and morphological observations, the pheromone gland consists of a single-layered epithelium both in the dorsal and ventral halves of the intersegmental membrane between the 8th and 9th abdominal segments. By using the male EAG as a biosensor of real-time release of sex pheromone from whole calling females, we found this process time coupled with extension movements of the ovipositor. Nevertheless, in females in which normal calling behavior was prevented, pheromone release was detected neither in absence nor in presence of electrical stimulation of the ventral nerve cord/terminal abdominal ganglion (TAG) complex. Tetramethylrhodamine-conjugated dextran amine stainings also confirm the lack of any innervation of the gland from nerves IV to VI emerging from the TAG. These findings indicate that the release of sex pheromone from the glands in female gypsy moths is independent of any neural control exerted by the TAG on the glands, at least by way of its three most caudally located pairs of nerves, and appears as a consequence of a squeezing mechanism in the pheromone-producing area.

  18. Olfactory perception and behavioral effects of sex pheromone gland components in Helicoverpa armigera and Helicoverpa assulta

    PubMed Central

    Xu, Meng; Guo, Hao; Hou, Chao; Wu, Han; Huang, Ling-Qiao; Wang, Chen-Zhu

    2016-01-01

    Two sympatric species Helicoverpa armigera and Helicoverpa assulta use (Z)-11-hexadecenal and (Z)-9-hexadecenal as sex pheromone components in reverse ratio. They also share several other pheromone gland components (PGCs). We present a comparative study on the olfactory coding mechanism and behavioral effects of these additional PGCs in pheromone communication of the two species using single sensillum recording, in situ hybridization, calcium imaging, and wind tunnel. We classify antennal sensilla types A, B and C into A, B1, B2, C1, C2 and C3 based on the response profiles, and identify the glomeruli responsible for antagonist detection in both species. The abundance of these sensilla types when compared with the number of OSNs expressing each of six pheromone receptors suggests that HarmOR13 and HassOR13 are expressed in OSNs housed within A type sensilla, HarmOR14b within B and C type sensilla, while HassOR6 and HassOR16 within some of C type sensilla. We find that for H. armigera, (Z)-11-hexadecenol and (Z)-11-hexadecenyl acetate act as behavioral antagonists. For H. assulta, instead, (Z)-11-hexadecenyl acetate acts as an agonist, while (Z)-9-hexadecenol, (Z)-11-hexadecenol and (Z)-9-hexadecenyl acetate are antagonists. The results provide an overall picture of intra- and interspecific olfactory and behavioral responses to all PGCs in two sister species. PMID:26975244

  19. Quantitative Trait Locus Analysis of Mating Behavior and Male Sex Pheromones in Nasonia Wasps

    PubMed Central

    Diao, Wenwen; Mousset, Mathilde; Horsburgh, Gavin J.; Vermeulen, Cornelis J.; Johannes, Frank; van de Zande, Louis; Ritchie, Michael G.; Schmitt, Thomas; Beukeboom, Leo W.

    2016-01-01

    A major focus in speciation genetics is to identify the chromosomal regions and genes that reduce hybridization and gene flow. We investigated the genetic architecture of mating behavior in the parasitoid wasp species pair Nasonia giraulti and Nasonia oneida that exhibit strong prezygotic isolation. Behavioral analysis showed that N. oneida females had consistently higher latency times, and broke off the mating sequence more often in the mounting stage when confronted with N. giraulti males compared with males of their own species. N. oneida males produce a lower quantity of the long-range male sex pheromone (4R,5S)-5-hydroxy-4-decanolide (RS-HDL). Crosses between the two species yielded hybrid males with various pheromone quantities, and these males were used in mating trials with females of either species to measure female mate discrimination rates. A quantitative trait locus (QTL) analysis involving 475 recombinant hybrid males (F2), 2148 reciprocally backcrossed females (F3), and a linkage map of 52 equally spaced neutral single nucleotide polymorphism (SNP) markers plus SNPs in 40 candidate mating behavior genes revealed four QTL for male pheromone amount, depending on partner species. Our results demonstrate that the RS-HDL pheromone plays a role in the mating system of N. giraulti and N. oneida, but also that additional communication cues are involved in mate choice. No QTL were found for female mate discrimination, which points at a polygenic architecture of female choice with strong environmental influences. PMID:27172207

  20. Quantitative Trait Locus Analysis of Mating Behavior and Male Sex Pheromones in Nasonia Wasps.

    PubMed

    Diao, Wenwen; Mousset, Mathilde; Horsburgh, Gavin J; Vermeulen, Cornelis J; Johannes, Frank; van de Zande, Louis; Ritchie, Michael G; Schmitt, Thomas; Beukeboom, Leo W

    2016-01-01

    A major focus in speciation genetics is to identify the chromosomal regions and genes that reduce hybridization and gene flow. We investigated the genetic architecture of mating behavior in the parasitoid wasp species pair Nasonia giraulti and Nasonia oneida that exhibit strong prezygotic isolation. Behavioral analysis showed that N. oneida females had consistently higher latency times, and broke off the mating sequence more often in the mounting stage when confronted with N. giraulti males compared with males of their own species. N. oneida males produce a lower quantity of the long-range male sex pheromone (4R,5S)-5-hydroxy-4-decanolide (RS-HDL). Crosses between the two species yielded hybrid males with various pheromone quantities, and these males were used in mating trials with females of either species to measure female mate discrimination rates. A quantitative trait locus (QTL) analysis involving 475 recombinant hybrid males (F2), 2148 reciprocally backcrossed females (F3), and a linkage map of 52 equally spaced neutral single nucleotide polymorphism (SNP) markers plus SNPs in 40 candidate mating behavior genes revealed four QTL for male pheromone amount, depending on partner species. Our results demonstrate that the RS-HDL pheromone plays a role in the mating system of N. giraulti and N. oneida, but also that additional communication cues are involved in mate choice. No QTL were found for female mate discrimination, which points at a polygenic architecture of female choice with strong environmental influences. PMID:27172207

  1. Effect of mating disruption and lure load on the number of Plodia interpunctella males captured in pheromone traps

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using Indianmeal moth Plodia interpunctella (Hübner) males released under controlled conditions, we found that, in either the presence or absence of a commercial mating disruption dispensers, the number of males captured in traps baited with synthetic pheromone lures increased with doses of up to 30...

  2. Mammalian Pheromones

    PubMed Central

    Liberles, Stephen D.

    2015-01-01

    Mammalian pheromones control a myriad of innate social behaviors and acutely regulate hormone levels. Responses to pheromones are highly robust, reproducible, and stereotyped and likely involve developmentally predetermined neural circuits. Here, I review several facets of pheromone transduction in mammals, including (a) chemosensory receptors and signaling components of the main olfactory epithelium and vomeronasal organ involved in pheromone detection; (b) pheromone-activated neural circuits subject to sex-specific and state-dependent modulation; and (c) the striking chemical diversity of mammalian pheromones, which range from small, volatile molecules and sulfated steroids to large families of proteins. Finally, I review (d ) molecular mechanisms underlying various behavioral and endocrine responses, including modulation of puberty and estrous; control of reproduction, aggression, suckling, and parental behaviors; individual recognition; and distinguishing of own species from predators, competitors, and prey. Deconstruction of pheromone transduction mechanisms provides a critical foundation for understanding how odor response pathways generate instinctive behaviors. PMID:23988175

  3. Reproduction and the pheromonal regulation of sex type in fern gametophytes

    PubMed Central

    Atallah, Nadia M.; Banks, Jo Ann

    2015-01-01

    The fern life cycle includes a haploid gametophyte that is independent of the sporophyte and functions to produce the gametes. In homosporous ferns, the sex of the gametophyte is not fixed but can vary depending on its social environment. In many species, the sexual phenotype of the gametophyte is determined by the pheromone antheridiogen. Antheridiogen induces male development and is secreted by hermaphrodites once they become insensitive to its male-inducing effect. Recent genetic and biochemical studies of the antheridiogen response and sex-determination pathway in ferns, which are highlighted here, reveal many similarities and interesting differences to GA signaling and biosynthetic pathways in angiosperms. PMID:25798139

  4. A sex-inducing pheromone triggers cell cycle arrest and mate attraction in the diatom Seminavis robusta

    PubMed Central

    Moeys, Sara; Frenkel, Johannes; Lembke, Christine; Gillard, Jeroen T. F.; Devos, Valerie; Van den Berge, Koen; Bouillon, Barbara; Huysman, Marie J. J.; De Decker, Sam; Scharf, Julia; Bones, Atle; Brembu, Tore; Winge, Per; Sabbe, Koen; Vuylsteke, Marnik; Clement, Lieven; De Veylder, Lieven; Pohnert, Georg; Vyverman, Wim

    2016-01-01

    Although sexual reproduction is believed to play a major role in the high diversification rates and species richness of diatoms, a mechanistic understanding of diatom life cycle control is virtually lacking. Diatom sexual signalling is controlled by a complex, yet largely unknown, pheromone system. Here, a sex-inducing pheromone (SIP+) of the benthic pennate diatom Seminavis robusta was identified by comparative metabolomics, subsequently purified, and physicochemically characterized. Transcriptome analysis revealed that SIP+ triggers the switch from mitosis-to-meiosis in the opposing mating type, coupled with the transcriptional induction of proline biosynthesis genes, and the release of the proline-derived attraction pheromone. The induction of cell cycle arrest by a pheromone, chemically distinct from the one used to attract the opposite mating type, highlights the existence of a sophisticated mechanism to increase chances of mate finding, while keeping the metabolic losses associated with the release of an attraction pheromone to a minimum. PMID:26786712

  5. Within-population variability in a moth sex pheromone blend: genetic basis and behavioural consequences.

    PubMed

    Groot, Astrid T; Schöfl, Gerhard; Inglis, Ollie; Donnerhacke, Susanne; Classen, Alice; Schmalz, Antje; Santangelo, Richard G; Emerson, Jennifer; Gould, Fred; Schal, Coby; Heckel, David G

    2014-03-22

    Evolutionary diversification of sexual communication systems in moths is perplexing because signal and response are under stabilizing selection in many species, and this is expected to constrain evolutionary change. In the moth Heliothis virescens, we consistently found high phenotypic variability in the female sex pheromone blend within each of four geographically distant populations. Here, we assess the heritability, genetic basis and behavioural consequences of this variation. Artificial selection with field-collected moths dramatically increased the relative amount of the saturated compound 16:Ald and decreased its unsaturated counterpart Z11-16:Ald, the major sex pheromone component (high line). In a cross between the high- and low-selected lines, one quantitative trait locus (QTL) explained 11-21% of the phenotypic variance in the 16:Ald/Z11-16:Ald ratio. Because changes in activity of desaturase enzymes could affect this ratio, we measured their expression levels in pheromone glands and mapped desaturase genes onto our linkage map. A delta-11-desaturase had lower expression in females producing less Z11-16:Ald; however, this gene mapped to a different chromosome than the QTL. A model in which the QTL is a trans-acting repressor of delta-11 desaturase expression explains many features of the data. Selection favouring heterozygotes which produce more unsaturated components could maintain a polymorphism at this locus.

  6. Within-population variability in a moth sex pheromone blend: genetic basis and behavioural consequences

    PubMed Central

    Groot, Astrid T.; Schöfl, Gerhard; Inglis, Ollie; Donnerhacke, Susanne; Classen, Alice; Schmalz, Antje; Santangelo, Richard G.; Emerson, Jennifer; Gould, Fred; Schal, Coby; Heckel, David G.

    2014-01-01

    Evolutionary diversification of sexual communication systems in moths is perplexing because signal and response are under stabilizing selection in many species, and this is expected to constrain evolutionary change. In the moth Heliothis virescens, we consistently found high phenotypic variability in the female sex pheromone blend within each of four geographically distant populations. Here, we assess the heritability, genetic basis and behavioural consequences of this variation. Artificial selection with field-collected moths dramatically increased the relative amount of the saturated compound 16:Ald and decreased its unsaturated counterpart Z11–16:Ald, the major sex pheromone component (high line). In a cross between the high- and low-selected lines, one quantitative trait locus (QTL) explained 11–21% of the phenotypic variance in the 16:Ald/Z11–16:Ald ratio. Because changes in activity of desaturase enzymes could affect this ratio, we measured their expression levels in pheromone glands and mapped desaturase genes onto our linkage map. A delta-11-desaturase had lower expression in females producing less Z11–16:Ald; however, this gene mapped to a different chromosome than the QTL. A model in which the QTL is a trans-acting repressor of delta-11 desaturase expression explains many features of the data. Selection favouring heterozygotes which produce more unsaturated components could maintain a polymorphism at this locus. PMID:24500170

  7. A multifunctional desaturase involved in the biosynthesis of the processionary moth sex pheromone

    PubMed Central

    Serra, Montserrat; Piña, Benjamin; Abad, José Luis; Camps, Francisco; Fabriàs, Gemma

    2007-01-01

    The sex pheromone of the female processionary moth, Thaumetopoea pityocampa, is a unique C16 enyne acetate that is biosynthesized from palmitic acid. Three consecutive desaturation reactions transform this saturated precursor into the triunsaturated fatty acyl intermediate: formation of (Z)-11-hexadecenoic acid, acetylenation to 11-hexadecynoic acid, and final Δ13 desaturation to (Z)-13-hexadecen-11-ynoic acid. By using degenerate primers common to all reported insect desaturases, a single cDNA sequence was isolated from total RNA of T. pityocampa female pheromone glands. The full-length transcript of this putative desaturase was expressed in elo1Δ/ole1Δ yeast mutants (both elongase 1 and Δ9 desaturase-deficient) for functional assays. The construct fully rescued the Δole1 yeast phenotype, confirming its desaturase activity. Analysis of the unsaturated products from transformed yeast extracts demonstrated that the cloned enzyme showed Δ11 desaturase, Δ11 acetylenase, and Δ13 desaturase activities. Therefore, this single desaturase may account for the three desaturation steps involved in the sex pheromone biosynthetic pathway of the processionary moth. PMID:17921252

  8. Sex pheromone of the pink hibiscus mealybug, Maconellicoccus hirsutus, contains an unusual cyclobutanoid monoterpene

    PubMed Central

    Zhang, Aijun; Amalin, Divina; Shirali, Shyam; Serrano, Miguel S.; Franqui, Rosa A.; Oliver, James E.; Klun, Jerome A.; Aldrich, Jeffrey R.; Meyerdirk, Dale E.; Lapointe, Stephen L.

    2004-01-01

    Two compounds that together constitute the female sex pheromone of the pink hibiscus mealybug (PHM), Maconellicoccus hirsutus, were isolated, identified, and synthesized. They are (R)-2-isopropenyl-5-methyl-4-hexenyl (S)-2-methylbutanoate [common name is (R)-lavandulyl (S)-2-methylbutanoate] and [(R)-2,2-dimethyl-3-(1-methylethylidene)cyclobutyl]methyl (S)-2-methylbutanoate [which we refer to as (R)-maconelliyl (S)-2-methylbutanoate]. Maconelliol is an unusual cyclobutanoid monoterpene, and its structure has been established by enantioselective synthesis from precursors of known structure and configuration. A 1:5 synthetic mixture of the two RS esters (1 μg per rubber septum) proved to be a potent attractant of males in field bioassays. The pheromone component, maconelliyl 2-methylbutanoate, represents a heretofore undescribed natural product. PMID:15197282

  9. Queen sex pheromone of the slave-making ant, Polyergus breviceps.

    PubMed

    Greenberg, Les; Tröger, Armin G; Francke, Wittko; McElfresh, J Steven; Topoff, Howard; Aliabadi, Ali; Millar, Jocelyn G

    2007-05-01

    Workers of the slave-making ant, Polyergus breviceps, raid nests of Formica ants and return with Formica pupae that mature into worker ants in the slave-makers' colony. These Formica workers then tend the Polyergus brood, workers, and reproductives. During raids in the mating season, winged virgin Polyergus queens accompany the workers in the raiding columns. During the raid, the virgin queens release a pheromone that attracts males that quickly mate with the queens. We report the identification, synthesis, and bioassay of the sex attractant pheromone of the queens as an approximately 1:6 ratio of (R)-3-ethyl-4-methylpentan-1-ol and methyl 6-methylsalicylate. The ants produce exclusively the (R)-enantiomer of the alcohol, and the (S)-enantiomer has no biological activity, neither inhibiting nor increasing attraction to blends of methyl 6-methylsalicylate with the (R)-enantiomer. PMID:17393281

  10. Identification of the Female Sex Pheromone of the Leafroller Proeulia triquetra Obraztsov (Lepidoptera: Tortricidae).

    PubMed

    Bergmann, J; Reyes-Garcia, L; Ballesteros, C; Cuevas, Y; Flores, M F; Curkovic, T

    2016-08-01

    Proeulia triquetra Obraztsov (Lepidoptera: Tortricidae) is an occasional pest in fruit orchards in central-southern Chile. In order to develop species-specific lures for detection and monitoring of this species, we identified the female-produced sex pheromone. (Z)-11-Tetradecenyl acetate (Z11-14:OAc), (E)-9-dodecenyl acetate (E9-12:OAc), and (E)-11-Tetradecenyl acetate (E11-14:OAc) were identified as biologically active compounds present in female pheromone glands by solvent extraction of the gland and analysis of the extracts by gas chromatography-electroantennographic detection and gas chromatography-mass spectrometry. In field tests, lures baited with synthetic Z11-14:OAc and E9-12:OAc in a 10:1 ratio were highly attractive to males of the species.

  11. Evaluation of pheromones and a new trap for monitoring Agriotes lineatus and Agriotes obscurus in the Fraser Valley of British Columbia.

    PubMed

    Vernon, R S; Tóth, M

    2007-02-01

    A prototype ground-based pheromone trap design, baited with various pheromone lures, was field tested for effectiveness in trapping male Agriotes obscurus and Agriotes lineatus click beetles in British Columbia. Pheromone dispensers containing geranyl octanoate and geranyl hexanoate in a 1:1 ratio caught the greatest numbers of A. obscurus, whereas those containing geranyl octanoate and geranyl butanoate in a 9 or 10:1 ratio caught high numbers of A. lineatus. Some differences in A. obscurus attraction to traps were observed between dispensers according to the manufacturer and the number of dispensers deployed in traps. The trap design and optimal pheromone dispensers tested would be suitable for monitoring or surveying A. obscurus and A. lineatus populations in North America. PMID:17191156

  12. Differential Effects of Sex Pheromone Compounds on Adult Female Sea Lamprey (Petromyzon marinus) Locomotor Patterns.

    PubMed

    Walaszczyk, Erin J; Goheen, Benjamin B; Steibel, Juan Pedro; Li, Weiming

    2016-06-01

    Synchronization of male and female locomotor activity plays a critical role in ensuring reproductive success, especially in semelparous species. The goal of this study was to elucidate the effects of individual chemical signals, or pheromones, on the locomotor activity in the sea lamprey (Petromyzon marinus). In their native habitat, adult preovulated females (POF) and ovulated females (OF) are exposed to sex pheromone compounds that are released from spermiated males and attract females to nests during their migration and spawning periods. In this study, locomotor activity of individual POF and OF was measured hourly in controlled laboratory conditions using an automated video-tracking system. Differences in the activity between a baseline day (no treatment exposure) and a treatment day (sex pheromone compound or control exposure) were examined for daytime and nighttime periods. Results showed that different pheromone compound treatments affected both POF and OF sea lamprey (p < 0.05) but in different ways. Spermiated male washings (SMW) and one of its main components, 7α,12α,24-trihydroxy-5α-cholan-3-one 24 sulfate (3kPZS), decreased activity of POF during the nighttime. SMW also reduced activity in POF during the daytime. In contrast, SMW increased activity of OF during the daytime, and an additional compound found in SMW, petromyzonol sulfate (PZS), decreased the activity during the nighttime. In addition, we examined factors that allowed us to infer the overall locomotor patterns. SMW increased the maximum hourly activity during the daytime, decreased the maximum hourly activity during the nighttime, and reduced the percentage of nocturnal activity in OF. Our findings suggest that adult females have evolved to respond to different male compounds in regards to their locomotor activity before and after final maturation. This is a rare example of how species-wide chemosensory stimuli can affect not only the amounts of activity but also the overall locomotor

  13. Identification and Behavioral Evaluation of Sex Pheromone Components of the Chinese Pine Caterpillar Moth, Dendrolimus tabulaeformis

    PubMed Central

    Kong, Xiang-Bo; Liu, Kui-Wei; Wang, Hong-Bin; Zhang, Su-Fang; Zhang, Zhen

    2012-01-01

    Background The Chinese pine caterpillar moth, Dendrolimus tabulaeformis Tsai and Liu (Lepidoptera: Lasiocampidae) is the most important defoliator of coniferous trees in northern China. Outbreaks occur over enormous areas and often lead to the death of forests during 2–3 successive years of defoliation. The sex pheromone of D. tabulaeformis was investigated to define its chemistry and behavioral activity. Methodology/Principal Findings Sex pheromone was collected from calling female D. tabulaeformis by headspace solid phase microextraction (SPME) and by solvent extraction of pheromone glands. Extracts were analyzed by coupled gas chromatography/mass spectrometry (GC-MS) and coupled GC-electroantennographic detection (GC-EAD), using antennae from male moths. Five components from the extracts elicited antennal responses. These compounds were identified by a combination of retention indices, electron impact mass spectral matches, and derivatization as (Z)-5-dodecenyl acetate (Z5-12:OAc), (Z)-5-dodecenyl alcohol (Z5-12:OH), (5Z,7E)-5,7-dodecadien-1-yl acetate (Z5,E7-12:OAc), (5Z,7E)-5,7-dodecadien-1-yl propionate (Z5,E7-12:OPr), and (5Z,7E)-5,7-dodecadien-1-ol (Z5,E7-12:OH). Behavioral assays showed that male D. tabulaeformis strongly discriminated against incomplete and aberrant blend ratios. The correct ratio of Z5,E7-12:OAc, Z5,E7-12:OH, and Z5,E7-12:OPr was essential for optimal upwind flight and source contact. The two monoenes, Z5-12:OAc and Z5-12:OH, alone or binary mixtures, had no effect on behavioral responses when added to the optimal three-component blend. Conclusions/Significance The fact that deviations from the optimal ratio of 100∶100∶4.5 of Z5,E7-12:OAc, Z5,EZ7-12:OH, and Z5,E7-12:OPr resulted in marked decreases in male responses suggests that biosynthesis of the pheromone components is precisely controlled. The optimal blend of the sex pheromone components of D. tabulaeformis worked out in this study should find immediate use in monitoring this

  14. Pheromone-baited traps for assessment of seasonal activity and population densities of mealybug species (Hemiptera: Pseudococcidae) in nurseries producing ornamental plants.

    PubMed

    Waterworth, Rebeccah A; Redak, Richard A; Millar, Jocelyn G

    2011-04-01

    Operational parameters of traps baited with the pheromones of three mealybug species were optimized in nurseries producing ornamental plants. All pheromone doses (1-320 microg) attracted Pseudococcus longispinus (Targioni Tozzetti) and Pseudococcus viburni (Signoret) males, with the lowest dose (1 microg) attracting the fewest males for both species. Doses of 3.2-100 microg were as attractive to male P. longispinus as the highest dose (320 microg); doses from 10 to 320 microg were equally attractive for P. viburni males. Lures containing 25-microg doses of either pheromone had effective field lifetimes of at least 12 wk. Experiments were performed to test the efficacy of combining multiple pheromones to attract several species of mealybugs simultaneously. Lures loaded with a mixture of the pheromones of P. longispinus, P. viburni, and Planococcus citri (Risso) were as attractive to P. viburni and P. citri as lures with their individual pheromones. Response of P. longispinus to the blend was decreased by 38% compared with its pheromone as a single component. A subsequent trial with two-component blends showed that the pheromone ofP. citri was responsible for this modest decrease in P. longispinus response. This should not affect the overall efficacy of using these lures for monitoring the presence of all three mealybug species simultaneously. Pheromone traps were used to detect infestations of P. longispinus throughout the season and to track population cycles. When pheromone-baited traps for P. longispinus were compared with manual sampling, trap counts of male mealybugs were significantly correlated with mealybugs counted on plants in the vicinity of the traps.

  15. 1-Tridecene—male-produced sex pheromone of the tenebrionid beetle Parastizopus transgariepinus

    NASA Astrophysics Data System (ADS)

    Geiselhardt, Sven; Ockenfels, Peter; Peschke, Klaus

    2008-03-01

    Males of the genus Parastizopus (Coleoptera: Tenebrionidae) exhibit a special pheromone-emitting behaviour. They do a headstand, expose the aedeagus and remain in this posture for a few seconds. The pheromone emitted by P. transgariepinus was collected by solid-phase micro-extraction (100 μm polydimethylsiloxane fibre) and identified as 1-tridecene by gas chromatography/mass spectrometry. Presumably, this compound originates from the aedeagal gland, a special feature in Parastizopus, as 1-tridecene is the main compound in the gland reservoirs (23.6 ± 3.8%), accompanied by various less volatile fatty acid esters (25.2 ± 2.0%) and hydrocarbons (51.2 ± 5.7%). 1-Tridecene is also part of the pygidial defensive secretion of both sexes, together with other 1-alkenes, monoterpene hydrocarbons and 1,4-benzoquinones, but as none of these other compounds was detected during calling, the pygidial gland could be ruled out as pheromone source. Extracts of the aedeagal gland reservoirs and the pygidial defensive secretion contained comparable amounts of 1-tridecene, 1.24 ± 0.41 and 1.88 ± 0.54 μg/male, respectively. Chemo-orientation experiments using a servosphere showed that 1 μg of 1-tridecene was attractive to females but not to males.

  16. Responses of protocerebral neurons in Manduca sexta to sex-pheromone mixtures

    PubMed Central

    Lei, Hong; Chiu, Hong-Yan; Hildebrand, John G.

    2013-01-01

    Male Manduca sexta moths are attracted to a mixture of two components of the female's sex pheromone at the natural concentration ratio. Deviation from this ratio results in reduced attraction. Projection neurons innervating prominent male-specific glomeruli in the male's antennal lobe produce maximal synchronized spiking activity in response to synthetic mixtures of the two components centering around the natural ratio, suggesting that behaviorally effective mixture ratios are encoded by synchronous neuronal activity. We investigated the physiological activity and morphology of downstream protocerebral neurons that responded to antennal stimulation with single pheromone components and their mixtures at various concentration ratios. Among the tested neurons, only a few gave stronger responses to the mixture at the natural ratio whereas most did not distinguish among the mixtures that were tested. We also found that the population response distinguished among the two pheromone components and their mixtures, prior to the peak population response. This observation is consistent with our previous finding that synchronous firing of antennal-lobe projection neurons reaches its maximum before the firing rate reaches its peak. Moreover, the response patterns of protocerebral neurons are diverse, suggesting that the representation of olfactory stimuli at the level of protocerebrum is complex. PMID:23974854

  17. Amino Acid Change in an Orchid Desaturase Enables Mimicry of the Pollinator's Sex Pheromone.

    PubMed

    Sedeek, Khalid E M; Whittle, Edward; Guthörl, Daniela; Grossniklaus, Ueli; Shanklin, John; Schlüter, Philipp M

    2016-06-01

    Mimicry illustrates the power of selection to produce phenotypic convergence in biology [1]. A striking example is the imitation of female insects by plants that are pollinated by sexual deception of males of the same insect species [2-4]. This involves mimicry of visual, tactile, and chemical signals of females [2-7], especially their sex pheromones [8-11]. The Mediterranean orchid Ophrys exaltata employs chemical mimicry of cuticular hydrocarbons, particularly the 7-alkenes, in an insect sex pheromone to attract and elicit mating behavior in its pollinators, males of the cellophane bee Colletes cunicularius [11-13]. A difference in alkene double-bond positions is responsible for reproductive isolation between O. exaltata and closely related species, such as O. sphegodes [13-16]. We show that these 7-alkenes are likely determined by the action of the stearoyl-acyl-carrier-protein desaturase (SAD) homolog SAD5. After gene duplication, changes in subcellular localization relative to the ancestral housekeeping desaturase may have allowed proto-SAD5's reaction products to undergo further biosynthesis to both 7- and 9-alkenes. Such ancestral coproduction of two alkene classes may have led to pollinator-mediated deleterious pleiotropy. Despite possible evolutionary intermediates with reduced activity, amino acid changes at the bottom of the substrate-binding cavity have conferred enzyme specificity for 7-alkene biosynthesis by preventing the binding of longer-chained fatty acid (FA) precursors by the enzyme. This change in desaturase function enabled the orchid to perfect its chemical mimicry of pollinator sex pheromones by escape from deleterious pleiotropy, supporting a role of pleiotropy in determining the possible trajectories of adaptive evolution. PMID:27212404

  18. Amino Acid Change in an Orchid Desaturase Enables Mimicry of the Pollinator's Sex Pheromone.

    PubMed

    Sedeek, Khalid E M; Whittle, Edward; Guthörl, Daniela; Grossniklaus, Ueli; Shanklin, John; Schlüter, Philipp M

    2016-06-01

    Mimicry illustrates the power of selection to produce phenotypic convergence in biology [1]. A striking example is the imitation of female insects by plants that are pollinated by sexual deception of males of the same insect species [2-4]. This involves mimicry of visual, tactile, and chemical signals of females [2-7], especially their sex pheromones [8-11]. The Mediterranean orchid Ophrys exaltata employs chemical mimicry of cuticular hydrocarbons, particularly the 7-alkenes, in an insect sex pheromone to attract and elicit mating behavior in its pollinators, males of the cellophane bee Colletes cunicularius [11-13]. A difference in alkene double-bond positions is responsible for reproductive isolation between O. exaltata and closely related species, such as O. sphegodes [13-16]. We show that these 7-alkenes are likely determined by the action of the stearoyl-acyl-carrier-protein desaturase (SAD) homolog SAD5. After gene duplication, changes in subcellular localization relative to the ancestral housekeeping desaturase may have allowed proto-SAD5's reaction products to undergo further biosynthesis to both 7- and 9-alkenes. Such ancestral coproduction of two alkene classes may have led to pollinator-mediated deleterious pleiotropy. Despite possible evolutionary intermediates with reduced activity, amino acid changes at the bottom of the substrate-binding cavity have conferred enzyme specificity for 7-alkene biosynthesis by preventing the binding of longer-chained fatty acid (FA) precursors by the enzyme. This change in desaturase function enabled the orchid to perfect its chemical mimicry of pollinator sex pheromones by escape from deleterious pleiotropy, supporting a role of pleiotropy in determining the possible trajectories of adaptive evolution.

  19. Unsaturated cuticular hydrocarbons synergize responses to sex attractant pheromone in the yellow peach moth, Conogethes punctiferalis.

    PubMed

    Xiao, Wei; Matsuyama, Shigeru; Ando, Tetsu; Millar, Jocelyn G; Honda, Hiroshi

    2012-09-01

    Four trienyl hydrocarbons, (Z3, Z6, Z9)-tricosatriene (Z3, Z6, Z9-23:HC), (Z3, Z6, Z9)-pentacosatriene (Z3, Z6, Z9-25:HC), (Z3, Z6, Z9)-heptacosatriene (Z3, Z6, Z9-27:HC), and (Z3, Z6, Z9)-nonacosatriene (Z3, Z6, Z9-29:HC) were identified in a non-polar fraction of the body wax of male and female yellow peach moth, Conogethes punctiferalis. The relative amounts and ratios of these hydrocarbons differed between sexes. In females, the ratios in body wax and pheromone gland extracts were similar, with lesser amounts found in gland extracts. Synergistic effects of these hydrocarbons when added to the known aldehyde pheromone components were assessed in wind tunnel tests. A blend of (E)-10-hexadecenal (E10-16: Ald) and (Z)-10-hexadecenal (Z10-16: Ald) elicited upwind flight and orientation of males to the pheromone source, but arriving males did not remain close to source for very long. Among the hydrocarbons identified, only Z3, Z6, Z9-23:HC enhanced the activity of the aldehyde blend by increasing the time spent close to the source and the number of source contacts. Z3, Z6, Z9-23:HC and (Z9)-heptacosene (Z9-27:HC) also increased close-range responses to the aldehyde blend. The activity of the aldehyde blend plus these two hydrocarbons was similar to that of crude pheromone extract. Positive dose-response relationships between the aldehyde blend and two hydrocarbon mixtures were found. The lowest doses that elicited synergism were 10(-1) female equivalents (of body wax extracts) for the two hydrocarbons, and 10(-2) female equivalents for the total unsaturated hydrocarbon mixture.

  20. Behavioural evidence of male volatile pheromones in the sex-role reversed wolf spiders Allocosa brasiliensis and Allocosa alticeps.

    PubMed

    Aisenberg, Anita; Baruffaldi, Luciana; González, Macarena

    2010-01-01

    The use of chemical signals in a sexual context is widespread in the animal kingdom. Most studies in spiders report the use of female pheromones that attract potential sexual partners. Allocosa brasiliensis and Allocosa alticeps are two burrowing wolf spiders that show sex-role reversal. Females locate male burrows and initiate courtship before males perform any detectable visual or vibratory signal. So, females of these species would be detecting chemical or mechanical cues left by males. Our objective was to explore the potential for male pheromones to play a role in mate detection in A. brasiliensis and A. alticeps. We designed two experiments. In Experiment 1, we tested the occurrence of male contact pheromones by evaluating female courtship when exposed to empty burrows constructed by males or females (control). In Experiment 2, we tested the existence of male volatile pheromones by evaluating female behaviour when exposed to artificial burrows connected to tubes containing males, females or empty tubes (control). Our results suggest the occurrence of male volatile pheromones that trigger female courtship in both Allocosa species. The sex-role reversal postulated for these wolf spiders could be driving the consequent reversal in typical pheromone-emitter and detector roles expected for spiders.

  1. Behavioural evidence of male volatile pheromones in the sex-role reversed wolf spiders Allocosa brasiliensis and Allocosa alticeps

    NASA Astrophysics Data System (ADS)

    Aisenberg, Anita; Baruffaldi, Luciana; González, Macarena

    2010-01-01

    The use of chemical signals in a sexual context is widespread in the animal kingdom. Most studies in spiders report the use of female pheromones that attract potential sexual partners. Allocosa brasiliensis and Allocosa alticeps are two burrowing wolf spiders that show sex-role reversal. Females locate male burrows and initiate courtship before males perform any detectable visual or vibratory signal. So, females of these species would be detecting chemical or mechanical cues left by males. Our objective was to explore the potential for male pheromones to play a role in mate detection in A. brasiliensis and A. alticeps. We designed two experiments. In Experiment 1, we tested the occurrence of male contact pheromones by evaluating female courtship when exposed to empty burrows constructed by males or females (control). In Experiment 2, we tested the existence of male volatile pheromones by evaluating female behaviour when exposed to artificial burrows connected to tubes containing males, females or empty tubes (control). Our results suggest the occurrence of male volatile pheromones that trigger female courtship in both Allocosa species. The sex-role reversal postulated for these wolf spiders could be driving the consequent reversal in typical pheromone-emitter and detector roles expected for spiders.

  2. How to make a sexy snake: estrogen activation of female sex pheromone in male red-sided garter snakes.

    PubMed

    Parker, M Rockwell; Mason, Robert T

    2012-03-01

    Vertebrates indicate their genetic sex to conspecifics using secondary sexual signals, and signal expression is often activated by sex hormones. Among vertebrate signaling modalities, the least is known about how hormones influence chemical signaling. Our study species, the red-sided garter snake (Thamnophis sirtalis parietalis), is a model vertebrate for studying hormonal control of chemical signals because males completely rely on the female sex pheromone to identify potential mates among thousands of individuals. How sex hormones can influence the expression of this crucial sexual signal is largely unknown. We created two groups of experimental males for the first experiment: Sham (blank implants) and E2 (17β-estradiol implants). E2 males were vigorously courted by wild males in outdoor bioassays, and in a Y-maze E2 pheromone trails were chosen by wild males over those of small females and were indistinguishable from large female trails. Biochemically, the E2 pheromone blend was similar to that of large females, and it differed significantly from Shams. For the second experiment, we implanted males with 17β-estradiol in 2007 but removed the implants the following year (2008; Removal). That same year, we implanted a new group of males with estrogen implants (Implant). Removal males were courted by wild males in 2008 (implant intact) but not in 2009 (removed). Total pheromone quantity and quality increased following estrogen treatment, and estrogen removal re-established male-typical pheromone blends. Thus, we have shown that estrogen activates the production of female pheromone in adult red-sided garter snakes. This is the first known study to quantify both behavioral and biochemical responses in chemical signaling following sex steroid treatment of reptiles in the activation/organization context. We propose that the homogametic sex (ZZ, male) may possess the same targets for activation of sexual signal production, and the absence of the activator (17

  3. How to make a sexy snake: estrogen activation of female sex pheromone in male red-sided garter snakes.

    PubMed

    Parker, M Rockwell; Mason, Robert T

    2012-03-01

    Vertebrates indicate their genetic sex to conspecifics using secondary sexual signals, and signal expression is often activated by sex hormones. Among vertebrate signaling modalities, the least is known about how hormones influence chemical signaling. Our study species, the red-sided garter snake (Thamnophis sirtalis parietalis), is a model vertebrate for studying hormonal control of chemical signals because males completely rely on the female sex pheromone to identify potential mates among thousands of individuals. How sex hormones can influence the expression of this crucial sexual signal is largely unknown. We created two groups of experimental males for the first experiment: Sham (blank implants) and E2 (17β-estradiol implants). E2 males were vigorously courted by wild males in outdoor bioassays, and in a Y-maze E2 pheromone trails were chosen by wild males over those of small females and were indistinguishable from large female trails. Biochemically, the E2 pheromone blend was similar to that of large females, and it differed significantly from Shams. For the second experiment, we implanted males with 17β-estradiol in 2007 but removed the implants the following year (2008; Removal). That same year, we implanted a new group of males with estrogen implants (Implant). Removal males were courted by wild males in 2008 (implant intact) but not in 2009 (removed). Total pheromone quantity and quality increased following estrogen treatment, and estrogen removal re-established male-typical pheromone blends. Thus, we have shown that estrogen activates the production of female pheromone in adult red-sided garter snakes. This is the first known study to quantify both behavioral and biochemical responses in chemical signaling following sex steroid treatment of reptiles in the activation/organization context. We propose that the homogametic sex (ZZ, male) may possess the same targets for activation of sexual signal production, and the absence of the activator (17

  4. Impact of Trap Design and Density on Effectiveness of a Commercial Pheromone Lure for Monitoring Navel Orangeworm (Lepidoptera: Pyralidae).

    PubMed

    Burks, Charles S; Higbee, Bradley S

    2015-04-01

    The navel orangeworm is an important pest of almonds, pistachios, and walnuts. A commercial pheromone lure for this pest became publicly available in 2013. We compared effectiveness of this synthetic lure (NOW Biolure) between common commercial trap designs, and with unmated females in wing traps. Orange wing traps and delta traps captured similar numbers of males when each was baited with females, although there was a significantly greater density of captured males on the smaller glue area of the delta traps. In contrast, lure-baited wing traps captured about half the males captured in female-baited wing traps in single-night tests. In these single-night tests, wing traps baited with NOW Biolure captured significantly more males than delta traps baited with NOW Biolure, and bucket traps and delta traps baited with NOW Biolure captured similar numbers of males. When the sampling interval was extended to a week, the performance of lure-baited and female-baited wing traps was more similar. Delta and bucket traps baited with NOW Biolure generally performed more poorly than wing traps baited with NOW Biolure in these weekly monitoring tests. However, the bucket traps occasionally outperformed the other trap types during periods of peak abundance. Navel orangeworm traps at a density of one per 4 ha detected differences in abundance between adjacent walnut varieties, whereas such differences were not detected with one trap per 20 ha. The implications of these findings for monitoring for navel orangeworm in these different host crops are discussed. PMID:26470171

  5. Gypsy moth (Lepidoptera: Lymantriidae) flight behavior and phenology based on field-deployed automated pheromone-baited traps.

    PubMed

    Tobin, Patrick C; Klein, Kenneth T; Leonard, Donna S

    2009-12-01

    Populations of the gypsy moth, Lymantria dispar (L.), are extensively monitored in the United States through the use of pheromone-baited traps. We report on use of automated pheromone-baited traps that use a recording sensor and data logger to record the unique date-time stamp of males as they enter the trap. We deployed a total of 352 automated traps under field conditions across several U.S. states over a 5-yr period. In many cases, there was general congruence between male moth capture and the number of recorded events. Although it was difficult to decipher an individual recording event because of the tendency for over-recording, the overall distribution of recorded events was useful in assessing male gypsy moth flight behavior and phenology. The time stamp for recorded events corroborated a previous report of crepuscular gypsy moth male flight behavior, because, although most moths were trapped between 12 and 16 h, there was a consistent period of flight activity between 20 and 22 h. The median male flight duration was 24 d (228 DD, base threshold = 10 degrees C), but there were several traps that recorded flight periods >42 d that could not be explained by overcounting given the congruence between moth capture and the number of recorded events. Unusually long flight periods could indicate the introduction of male moths or other life stages that developed under different climatic conditions.

  6. Age and sex selectivity in trapping mule deer

    SciTech Connect

    Garrott, R.A.; White, G.C.

    1982-01-01

    A mule deer (Odocoileus hemionus) trapping experiment is described using modified Clover traps in which changes in the placement of bait and height of the trap door modified the ratio of adult does to male and female fawns captured. The mechanisms responsible for the changes in age-sex capture ratios are discussed and indicate that modified Clover traps selectivity capture mule deer, thus introducing bias into population sampling. (JMT)

  7. Identification of the sex pheromone of Lutzomyia longipalpis (Lutz & Neiva, 1912) (Diptera: Psychodidae) from Asunción, Paraguay

    PubMed Central

    Brazil, Reginaldo P; Caballero, Norath Natalia; Hamilton, James Gordon C

    2009-01-01

    The sand fly Lutzomyia longipalpis is the main vector of Leishmania (L.) infantum (Nicolle), the causative agent of American visceral leishmaniasis (AVL) in the New World. Male Lu. longipalpis have secretory glands which produce sex pheromones in either abdominal tergites 4 or 3 and 4. These glands are sites of sex pheromone production and each pheromone type may represent true sibling species. In Latin America, apart from Lu. pseudolongipalpis Arrivillaga and Feliciangeli from Venezuela, populations of Lu. longipalpis s.l. can be identified by their male-produced sex pheromones: (S)-9-methylgermacrene-B, 3-methyl-α-himachalene and the two cembrenes, 1 and 2. In this study, we present the results of a coupled gas chromatography - mass spectrometry analysis of the pheromones of males Lu. longipalpis captured in an endemic area of visceral leishmaniasis in Asunción, Paraguay. Our results show that Lu. longipalpis from this site produce (S)-9-methylgermacrene-B which has also been found in Lu. longipalpis from different areas of Brazil, Colombia and Central America. PMID:19883505

  8. Methyl paraben as a sex pheromone in canine urine--is the question still open?

    PubMed

    Dzięcioł, M; Politowicz, J; Szumny, A; Niżański, W

    2014-01-01

    The literature concerning the issue of canine sex pheromones includes reports presenting completely conflicting opinions about the chemical composition of the canine urine in the context of semiochemical communication. At present, the predominant report cited by many different authors is the article published in Science in 1979 by Goodwin at al., presenting methyl p-hydroxybenzoate (methyl paraben) as the main canine sex pheromone. While it has been proved that pure methyl paraben lacks semiochemical activity as do commercially available products containing this substance (Eau D'Estrus, Synbiotics, USA), in view of the conflicting published reports the aim of this study was to revaluate using modern techniques the presence of methyl p-hydroxybenzoate in canine urine during different phases of the ovarian cycle. Ten female dogs of different breeds were used. Urine samples from bitches collected during various stages of the ovarian cycle were examined with using the SPME and GC/MS methods. Methyl paraben was not detected in any of the samples. In conclusion, because of the lack of methyl-p-hydroxybenzoate in the samples examined, the present study confirmed negative opinions on the possibility of this substance playing a crucial role in semiochemical communication during reproduction in dogs (Canis familiaris).

  9. A contact sex pheromone component of the emerald ash borer Agrilus planipennis Fairmaire (Coleoptera: Buprestidae)

    NASA Astrophysics Data System (ADS)

    Silk, Peter J.; Ryall, Krista; Barry Lyons, D.; Sweeney, Jon; Wu, Junping

    2009-05-01

    Analyses of the elytral hydrocarbons from male and female emerald ash borer, Agrilus planipennis Fairmaire, that were freshly emerged vs. sexually mature (>10 days old) revealed a female-specific compound, 9-methyl-pentacosane (9-Me-C25), only present in sexually mature females. This material was synthesized by the Wittig reaction of 2-decanone with ( n-hexadecyl)-triphenylphosphonium bromide followed by catalytic reduction to yield racemic 9-Me C25, which matched the natural compound by gas chromatography/mass spectrometry (retention time and EI mass spectrum). In field bioassays with freeze-killed sexually mature A. planipennis females, feral males spent significantly more time in contact and attempting copulation with unwashed females than with females that had been washed in n-hexane to remove the cuticular lipids. Hexane-washed females to which 9-Me-C25 had been reapplied elicited similar contact time and percentage of time attempting copulation as unwashed females, indicating that 9-methyl-pentacosane is a contact sex pheromone component of A. planipennis. This is the first contact sex pheromone identified in the Buprestidae.

  10. Beyond 9-ODA: sex pheromone communication in the European honey bee Apis mellifera L.

    PubMed

    Brockmann, Axel; Dietz, Daniel; Spaethe, Johannes; Tautz, Jürgen

    2006-03-01

    The major component of the mandibular gland secretion of queen honeybees (Apis mellifera L.), 9-ODA ((2E)-9-oxodecenoic acid), has been known for more than 40 yr to function as a long-range sex pheromone, attracting drones at congregation areas and drone flyways. Tests of other mandibular gland components failed to demonstrate attraction. It remained unclear whether these components served any function in mating behavior. We performed dual-choice experiments, using a rotating drone carousel, to test the attractiveness of 9-ODA compared to mixtures of 9-ODA with three other most abundant components in virgin queen mandibular gland secretions: (2E)-9-hydroxydecenoic acid (9-HDA), (2E)-10-hydroxydecenoic acid (10-HDA), and p-hydroxybenzoate (HOB). We found no differences in the number of drones attracted to 9-ODA or the respective mixtures over a distance. However, adding 9-HDA and 10-HDA, or 9-HDA, 10-HDA, and HOB to 9-ODA increased the number of drones making contact with the baited dummy. On the basis of these results, we suggest that at least 9-HDA and 10-HDA are additional components of the sex pheromone blend of A. mellifera.

  11. A contact sex pheromone component of the emerald ash borer Agrilus planipennis Fairmaire (Coleoptera: Buprestidae).

    PubMed

    Silk, Peter J; Ryall, Krista; Barry Lyons, D; Sweeney, Jon; Wu, Junping

    2009-05-01

    Analyses of the elytral hydrocarbons from male and female emerald ash borer, Agrilus planipennis Fairmaire, that were freshly emerged vs. sexually mature (>10 days old) revealed a female-specific compound, 9-methyl-pentacosane (9-Me-C(25)), only present in sexually mature females. This material was synthesized by the Wittig reaction of 2-decanone with (n-hexadecyl)-triphenylphosphonium bromide followed by catalytic reduction to yield racemic 9-Me C(25), which matched the natural compound by gas chromatography/mass spectrometry (retention time and EI mass spectrum). In field bioassays with freeze-killed sexually mature A. planipennis females, feral males spent significantly more time in contact and attempting copulation with unwashed females than with females that had been washed in n-hexane to remove the cuticular lipids. Hexane-washed females to which 9-Me-C(25) had been reapplied elicited similar contact time and percentage of time attempting copulation as unwashed females, indicating that 9-methyl-pentacosane is a contact sex pheromone component of A. planipennis. This is the first contact sex pheromone identified in the Buprestidae.

  12. Relative abundance and flight phenology of two pheromone types of Acrobasis nuxvorella (Lepidoptera: Pyralidae).

    PubMed

    Hartfield, E A; Harris, M K; Medina, R F

    2011-08-01

    Two synthetic sex pheromones have been developed and are currently used to detect the flight of the pecan nut casebearer, Acrobasis nuxvorella Neunzig, the most damaging pest of pecan [Carya illinoinensis (Wangenh.) K. Koch]. One pheromone (referred to as standard) is attractive to moths in the southern United States, but not in Mexico. The other pheromone (referred to as Mexican) is attractive to moths in the southern United States and in Mexico. These two pheromones have been implemented by producers as an important tool in monitoring the activity of this pest and have allowed for more efficient pesticide use. In the future, these pheromones could be used as a means of population reduction through pheromone based control methods. Trapping data taken over a 3-yr period were used to determine if phenological differences exist between pheromone types of pecan nut casebearer. The relative abundance of each pheromone type at several locations in the United States also was evaluated. Results of this study indicate that no phenological differences exist between the two pheromone types studied in the United States and that significantly more males are attracted to field-deployed pheromone traps baited with the standard pheromone than to traps baited with the Mexican pheromone. PMID:22251690

  13. Female sex pheromone of brinjal fruit and shoot borer, Leucinodes orbonalis blend optimization.

    PubMed

    Cork, A; Alam, S N; Das, A; Das, C S; Ghosh, G C; Farman, D I; Hall, D R; Maslen, N R; Vedham, K; Phythian, S J; Rouf, F M; Srinivasan, K

    2001-09-01

    The brinjal fruit and shoot borer, Leucinodes orbonalis is the major pest of eggplant in South Asia. Analysis of female pheromone gland extracts prepared from insects of Indian and Taiwanese origin confirmed (E)-11-hexadecenyl acetate (E11-16:Ac) as the major pheromone component with 0.8 to 2.8% of the related (E)-11-hexadecen-1-ol (E11-16:OH), as previously reported from Sri Lanka. The average quantity of E11-16:Ac extracted per female was estimated to be 33 ng, with a range of 18.9 to 46.4 ng when collected 2 to 3 hr into the scotophase. In field trials conducted in India, blends containing between 1 and 10% E11-16:OH caught more male L. orbonalis than E11-16:Ac alone. At the 1,000 microg dose, on white rubber septa, addition of 1% E11-16:OH to E11-16:Ac was found to be more attractive to male L. orbonalis than either 0.1 or 10% E11-16:OH. Trap catch was found to be positively correlated with pheromone release rate, with the highest dose tested, 3,000 microg, on white rubber septa catching more male moths than lower doses. Field and wind tunnel release rate studies confirmed that E11-16:OH released from white rubber septa and polyethylene vials at approximately twice the rate of E11-16:Ac and that the release rate of both compounds was doubled in polyethylene vials compared to white rubber septa. This difference in release rate was reflected in field trials conducted in Bangladesh where polyethylene vial dispensers caught more male moths than either black or white rubber septa, each loaded with the same 100:1 blend of E11-16:Ac and E11-16:OH in a 3,000 microg loading. PMID:11545376

  14. Evaluation of novel semiochemical dispensers simultaneously releasing pear ester and sex pheromone for mating disruption of codling moth (Lepidoptera: Tortricidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The performance of polyvinyl chloride polymer (pvc) dispensers loaded with two rates of ethyl (E,Z)-2,4-decadienoate (pear ester) plus the sex pheromone, (E,E)-8,10-dodecadien-1-ol (codlemone) of codling moth, Cydia pomonella (L.), was compared with similar dispensers and two commercial dispensers l...

  15. Determination of HPLC fluorescence analysis of the natural enantiomers of sex pheromones in the New World screwworm fly, Cochliomyia hominivorax

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bioassays of 6 racemic synthesized candidate sex pheromone compounds against male New World Screwworm flies showed that the most potent bioactivity was found with 6-acetoxy-19-methylnonacosane and 7-acetoxy-15-methylnonacosane compared to 4 other isomeric acetoxy nonacosanes. Since all these methyl-...

  16. Creating Point Sources for Codling Moth (Lepidoptera: Tortricidae) with Low-Volume Sprays of a Microencapsulated Sex Pheromone Formulation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies were conducted to examine the depositioin of microcapsules and the attractiveness of treated apple leaves for codling moth, Cydia pomonella (L.), following low volume concentrated sprays of a microencapsulated (MEC) sex pheromone formulation (CheckMate CM-F). Nearly 30% of leaves collected f...

  17. Fungal pathogen uses sex pheromone receptor for chemotropic sensing of host plant signals.

    PubMed

    Turrà, David; El Ghalid, Mennat; Rossi, Federico; Di Pietro, Antonio

    2015-11-26

    For more than a century, fungal pathogens and symbionts have been known to orient hyphal growth towards chemical stimuli from the host plant. However, the nature of the plant signals as well as the mechanisms underlying the chemotropic response have remained elusive. Here we show that directed growth of the soil-inhabiting plant pathogen Fusarium oxysporum towards the roots of the host tomato (Solanum lycopersicum) is triggered by the catalytic activity of secreted class III peroxidases, a family of haem-containing enzymes present in all land plants. The chemotropic response requires conserved elements of the fungal cell integrity mitogen-activated protein kinase (MAPK) cascade and the seven-pass transmembrane protein Ste2, a functional homologue of the Saccharomyces cerevisiae sex pheromone α receptor. We further show that directed hyphal growth of F. oxysporum towards nutrient sources such as sugars and amino acids is governed by a functionally distinct MAPK cascade. These results reveal a potentially conserved chemotropic mechanism in root-colonizing fungi, and suggest a new function for the fungal pheromone-sensing machinery in locating plant hosts in a complex environment such as the soil. PMID:26503056

  18. 2,3-Dihydrohomofarnesal: female sex attractant pheromone component of Callosobruchus rhodesianus (Pic).

    PubMed

    Shimomura, Kenji; Koshino, Hiroyuki; Yajima, Arata; Matsumoto, Noriko; Kagohara, Yuuma; Kamada, Koichi; Yajima, Shunsuke; Ohsawa, Kanju

    2010-08-01

    Callosobruchus rhodesianus (Pic) (Coleoptera: Chrysomelidae: Bruchinae) is a pest of stored legumes through the Afro-tropical region. In laboratory bioassays, males of C. rhodesianus were attracted to volatiles collected from virgin females. Collections were purified by various chromatographic techniques, and the biologically active component isolated using gas chromatographic-electroantennographic detection analysis. Gas chromatography-mass spectrometry and NMR analyses suggested that the active compound was 2,3-dihydrohomofarnesal, i.e., 7-ethyl-3,11-dimethyl-6,10-dodecadienal. The structure was confirmed by non-stereoselective and enantioselective total synthesis. Using chiral gas chromatography, the absolute configuration of the natural compound was confirmed as (3S,6E)-7-ethyl-3,11-dimethyl-6,10-dodecadienal. Y-tube olfactomter assays showed that only the (S)-enantiomer attracted males of C. rhodesianus. The (R)-enantiomer and racemate did not attract males, suggesting that the (R)-enantiomer inhibits the activity of the natural compound. In combination with previous reports about sex attractant pheromones of congeners, we suggest that a saltational shift of the pheromone structure arose within the genus Callosobruchus.

  19. Hybrid Sex Pheromones of the Hibiscus Flower-bud Borer, Rehimena surusalis.

    PubMed

    Honda, Hiroshi; Yamasaki, Ryokuhei; Sumiuchi, Yoko; Uehara, Takuya; Matsuyama, Shigeru; Ando, Tetsu; Naka, Hideshi

    2015-11-01

    The sex pheromone of the hibiscus flower borer Rehimena surusalis (Walker) (Lepidoptera: Crambidae) was analyzed by gas chromatography with electroantennographic detection (GC-EAD) and GC-mass spectrometry (GC/MS). Three EAD-active components were found in crude pheromone gland extracts of calling females. GC/MS and GC analyses using synthetic chemicals and derivatization of the extracts identified three components as (10E,12Z)-hexadeca-10,12-dienal (E10,Z12-16:Ald,), (10E,12E)-hexadeca-10,12-dienyl acetate (E10,Z12-16:OAc), and (3Z,6Z,9Z)-tricosa-3,6,9-triene (Z3,Z6,Z9-23:HC). In field tests, male moths were strongly attracted to a ternary blend of E10,Z12-16:Ald, E10,Z12-16:OAc, and Z3,Z6,Z9-23:HC at a ratio of 1:5:14, but single and binary blends showed only weak or no attraction. PMID:26493050

  20. Solid-phase microextraction for the investigation of sex pheromone of Eucosma notanthes Meyrick.

    PubMed

    Chu, Tzu-Yun; Hung, Chau-Chin; Hsu, Chung-Yuan

    2005-02-15

    A simple and efficient technique that does not require solvent and uses less operating time for the investigation of sex pheromones of the carambola fruit borer (Eucosma notanthes Meyrick) by utilizing headspace solid-phase microextraction (SPME) followed by GC-MS analysis has been developed. Variables such as types of SPME fiber, number of pests, temperature and extraction time have been studied. Whole sex glands of Eucosma notanthes Meyrick were dissected from 5 virgin insects, placed in a 2mL vial, equilibrated at 170 degrees C for 10min, and then extracted by headspace SPME at room temperature for 5min. The results of the GC-MS analyses of headspace SPME of these sex glandular solid samples were much better than those obtained with hexane extraction of sex glandular from 117 insects followed by either headspace SPME or direct injection due to higher absorption efficiency. The simplicity of this technique renders it a very suitable method for research on the biological control of pests.

  1. Evaluation of long-term mating disruption of Ephestia kuehniella and Plodia interpunctella (Lepidoptera: Pyralidae) in indoor storage facilities by pheromone traps and monitoring of relative aerial concentrations of pheromone.

    PubMed

    Ryne, Camilla; Svensson, Glenn P; Anderbrant, Olle; Löfstedt, Christer

    2007-06-01

    The potential for pheromone-based mating disruption (MD) of Ephestia kuehniella (Walker) and Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae) was investigated in two flour mills and a pet food distributor. Plastic sachets emitting 2-3 mg per d (Z,E)-9,12-tetradecadienyl acetate, the major pheromone component of both moth species, were used as MD dispensers, which were applied in grid systems resulting in one dispenser per 100 m(3) of air volume. Pheromone traps with sticky inserts were used to monitor moth population fluctuations. To monitor pheromone levels in the air before, during, and after the treatment, electroantennographic (EAG) measurements were performed using a portable device. All localities showed decreased trap catches after application of MD. In two localities with low initial population densities, trap catches were reduced immediately after application of MD and remained very low, even several months after the MD treatment was terminated. In contrast, in a locality with a higher initial population density the reduction in trap catches was slower, and trap catches increased again soon after the termination of the MD treatment. Electrophysiological data showed not only increased aerial levels of pheromone during the treatment period but also levels that were higher than during pretreatment, even 12 mo after removal of MD dispensers. The localities had good ventilation, and the memory effect observed indicates that the pheromone adhered to surfaces that subsequently functioned as secondary dispensers. Customer complaints registered by one of the mills were 49% less in 2004, after 2 yr of MD compared with 2002, the year before the treatments began.

  2. A Sex Attractant for Trapping Crambus cypridalis (Lepidoptera: crambidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Traps in eastern Washington wheat fields, baited with a sex attractant for the moth of the wheat head armyworm Dargida diffusa (Walker), also captured numbers of males of a type of sod webworm, Crambus cypridalis. When the two components of the sex attractant were tested singly versus together in a ...

  3. Efficacy of aggregation pheromone in trapping red palm weevil (Rhynchophorus ferrugineus Olivier) and rhinoceros beetle (Oryctes rhinoceros Linn.) from infested coconut palms.

    PubMed

    Chakravarthy, A K; Chandrashekharaiah, M; Kandakoor, Subhash B; Nagaraj, D N

    2014-05-01

    Red palm weevil and Rhinoceros beetle are the major pests inflicting severe damage to coconut palms. Due to ineffectiveness of the current management practices to control the two important pests on coconut, a study was conducted to know the attractiveness of red palm weevil and rhinoceros beetle to aggregation pheromone. Olfactometer studies indicated that the aggregation pheromone of red palm weevil and rhinoceros beetle attracted significantly more number of weevils (13.4 females and 7.6 male weevils) and beetles (6.5 male and 12.3 female beetles), respectively than control. Similarly, field studies found that both 750 and 1000 mg pheromone dosage lures of red palm weevil and rhinoceros beetle trapped significantly higher numbers of weevils (695.80 and 789 weevils, respectively) and beetles (98 and 108 beetles, respectively) in traps (P < 0.05), respectively. On an average (n = 6 field trials) 80-85% red palm weevil and 72-78% rhinoceros beetle population got trapped. Observations indicated activity of red palm weevil throughout the year and of rhinoceros beetle from September to March around Bangalore, South India. Pheromone traps for red palm weevil can be placed in fields from June to August and October to December and September to February for rhinoceros beetle. Population reductions of the two coleopteran pests by pheromone traps are compatible with mechanical and cultural management tools with cumulative effects.

  4. Efficacy of aggregation pheromone in trapping red palm weevil (Rhynchophorus ferrugineus Olivier) and rhinoceros beetle (Oryctes rhinoceros Linn.) from infested coconut palms.

    PubMed

    Chakravarthy, A K; Chandrashekharaiah, M; Kandakoor, Subhash B; Nagaraj, D N

    2014-05-01

    Red palm weevil and Rhinoceros beetle are the major pests inflicting severe damage to coconut palms. Due to ineffectiveness of the current management practices to control the two important pests on coconut, a study was conducted to know the attractiveness of red palm weevil and rhinoceros beetle to aggregation pheromone. Olfactometer studies indicated that the aggregation pheromone of red palm weevil and rhinoceros beetle attracted significantly more number of weevils (13.4 females and 7.6 male weevils) and beetles (6.5 male and 12.3 female beetles), respectively than control. Similarly, field studies found that both 750 and 1000 mg pheromone dosage lures of red palm weevil and rhinoceros beetle trapped significantly higher numbers of weevils (695.80 and 789 weevils, respectively) and beetles (98 and 108 beetles, respectively) in traps (P < 0.05), respectively. On an average (n = 6 field trials) 80-85% red palm weevil and 72-78% rhinoceros beetle population got trapped. Observations indicated activity of red palm weevil throughout the year and of rhinoceros beetle from September to March around Bangalore, South India. Pheromone traps for red palm weevil can be placed in fields from June to August and October to December and September to February for rhinoceros beetle. Population reductions of the two coleopteran pests by pheromone traps are compatible with mechanical and cultural management tools with cumulative effects. PMID:24813002

  5. Desaturases from the spotted fireworm moth (Choristoneura parallela) shed light on the evolutionary origins of novel moth sex pheromone desaturases.

    PubMed

    Liu, Weitian; Rooney, Alejandro P; Xue, Bingye; Roelofs, Wendell L

    2004-11-24

    Six acyl-CoA desaturase-encoding cDNAs from mRNA isolated from the spotted fireworm moth, Choristoneura parallela (Lepidoptera: Tortricidae) were characterized and assayed for functionality. The expression levels of these cDNAs were determined in the pheromone gland and fat body by real-time PCR and the resulting patterns are in line with results from published studies on other moth sex pheromone desaturases. The cDNAs were found to correspond to six genes. Using both biochemical and phylogenetic analyses, four of these were found to belong to previously characterized desaturase functional groups [the Delta 10,11, the Delta 9 (16>18) and the Delta 9 (18>16) groups]. A desaturase highly expressed in the pheromone gland was a novel E11 desaturase that was specific to 14-carbon precursor acids. The fifth gene [CpaZ9(14-26)] was found to display a novel Z9 activity indicating that it belongs to a new Delta 9 functional group, whereas the sixth gene was determined to be nonfunctional with respect to desaturase activity. In accordance with previous studies, we find that desaturases of the Delta 10,11 and Delta 14 groups, which are the fastest evolving desaturases and possess the novel pheromone biosynthetic function, are expressed primarily in the pheromone gland whereas all other desaturases, which do not possess the novel reproductive function, evolve more slowly and display the ancestral metabolic function and pattern of gene expression.

  6. Epimerisation of chiral hydroxylactones by short-chain dehydrogenases/reductases accounts for sex pheromone evolution in Nasonia

    PubMed Central

    Ruther, Joachim; Hagström, Åsa K.; Brandstetter, Birgit; Hofferberth, John; Bruckmann, Astrid; Semmelmann, Florian; Fink, Michaela; Lowack, Helena; Laberer, Sabine; Niehuis, Oliver; Deutzmann, Rainer; Löfstedt, Christer; Sterner, Reinhard

    2016-01-01

    Males of all species of the parasitic wasp genus Nasonia use (4R,5S)-5-hydroxy-4-decanolide (RS) as component of their sex pheromone while only N. vitripennis (Nv), employs additionally (4R,5R)-5-hydroxy-4-decanolide (RR). Three genes coding for the NAD+-dependent short-chain dehydrogenases/reductases (SDRs) NV10127, NV10128, and NV10129 are linked to the ability of Nv to produce RR. Here we show by assaying recombinant enzymes that SDRs from both Nv and N. giraulti (Ng), the latter a species with only RS in the pheromone, epimerise RS into RR and vice versa with (4R)-5-oxo-4-decanolide as an intermediate. Nv-derived SDR orthologues generally had higher epimerisation rates, which were also influenced by NAD+ availability. Semiquantitative protein analyses of the pheromone glands by tandem mass spectrometry revealed that NV10127 as well as NV10128 and/or NV10129 were more abundant in Nv compared to Ng. We conclude that the interplay of differential expression patterns and SDR epimerisation rates on the ancestral pheromone component RS accounts for the evolution of a novel pheromone phenotype in Nv. PMID:27703264

  7. Transformation of the sex pheromone signal in the noctuid moth Agrotis ipsilon: from peripheral input to antennal lobe output.

    PubMed

    Jarriault, David; Gadenne, Christophe; Lucas, Philippe; Rospars, Jean-Pierre; Anton, Sylvia

    2010-10-01

    How information is transformed along synaptic processing stages is critically important to understand the neural basis of behavior in any sensory system. In moths, males rely on sex pheromone to find their mating partner. It is essential for a male to recognize the components present in a pheromone blend, their ratio, and the temporal pattern of the signal. To examine pheromone processing mechanisms at different levels of the olfactory pathway, we performed single-cell recordings of olfactory receptor neurons (ORNs) in the antenna and intracellular recordings of central neurons in the macroglomerular complex (MGC) of the antennal lobe of sexually mature Agrotis ipsilon male moths, using the same pheromone stimuli, stimulation protocol, and response analyses. Detailed characteristics of the ORN and MGC-neuron responses were compared to describe the transformation of the neuronal responses that takes place in the MGC. Although the excitatory period of the response is similar in both neuron populations, the addition of an inhibitory phase following the MGC neuron excitatory phase indicates participation of local interneurons (LN), which remodel the ORN input. Moreover, MGC neurons showed a wider tuning and a higher sensitivity to single pheromone components than ORNs.

  8. Influence of Fermenting Bait and Vertical Position of Traps on Attraction of Cerambycid Beetles to Pheromone Lures.

    PubMed

    Wong, Joseph C H; Hanks, Lawrence M

    2016-10-01

    Because larvae of cerambycid beetles feed within woody plants, they are difficult to detect, and are readily transported in lumber and other wooden products. As a result, increasing numbers of exotic cerambycid species are being introduced into new regions of the world through international commerce, and many of these species pose a threat to woody plants in natural and managed forests. There is a great need for effective methods for detecting exotic and potentially invasive cerambycid species, and for monitoring native species for conservation purposes. Here, we describe a field experiment in east-central Illinois which tested whether attraction of beetles to a blend of synthesized cerambycid pheromones would be enhanced by volatiles from fermenting bait composed of crushed fruit, sugars, yeast, and wood chips. A second experiment tested the same treatments, but also assessed how trap catch was influenced by the vertical position of traps within forests (understory versus within the canopy). During the two experiments, 885 cerambycid beetles of 37 species were caught, with Xylotrechus colonus (F.) (subfamily Cerambycinae) being the most numerous (∼52% of total). Adults of several cerambycid species were significantly attracted by the pheromone blend, but the fermenting bait significantly enhanced attraction only for X. colonus and Graphisurus fasciatus (Degeer) (subfamily Lamiinae). Traps in the forest understory caught the greatest number of X. colonus and G. fasciatus, whereas more adults of the cerambycine Neoclytus mucronatus mucronatus (F.) were caught in the forest canopy rather than the understory. PMID:27567221

  9. Influence of Fermenting Bait and Vertical Position of Traps on Attraction of Cerambycid Beetles to Pheromone Lures.

    PubMed

    Wong, Joseph C H; Hanks, Lawrence M

    2016-10-01

    Because larvae of cerambycid beetles feed within woody plants, they are difficult to detect, and are readily transported in lumber and other wooden products. As a result, increasing numbers of exotic cerambycid species are being introduced into new regions of the world through international commerce, and many of these species pose a threat to woody plants in natural and managed forests. There is a great need for effective methods for detecting exotic and potentially invasive cerambycid species, and for monitoring native species for conservation purposes. Here, we describe a field experiment in east-central Illinois which tested whether attraction of beetles to a blend of synthesized cerambycid pheromones would be enhanced by volatiles from fermenting bait composed of crushed fruit, sugars, yeast, and wood chips. A second experiment tested the same treatments, but also assessed how trap catch was influenced by the vertical position of traps within forests (understory versus within the canopy). During the two experiments, 885 cerambycid beetles of 37 species were caught, with Xylotrechus colonus (F.) (subfamily Cerambycinae) being the most numerous (∼52% of total). Adults of several cerambycid species were significantly attracted by the pheromone blend, but the fermenting bait significantly enhanced attraction only for X. colonus and Graphisurus fasciatus (Degeer) (subfamily Lamiinae). Traps in the forest understory caught the greatest number of X. colonus and G. fasciatus, whereas more adults of the cerambycine Neoclytus mucronatus mucronatus (F.) were caught in the forest canopy rather than the understory.

  10. The Trapping Of Laser-Generated Biradicals With Molecular Oxygen: The Synthesis Of Peroxides Related To Vitamin K, Insect Pheromones And Prostaglandins.

    NASA Astrophysics Data System (ADS)

    Wilson, R. M.

    1984-05-01

    The theoretical and experimental considerations involved in laser-generated biradical trapping with molecular oxygen are discussed. This method has been applied in the elucidation of the mechanism of the photodegradation of Vitamin K via oxygen trapping of a preoxe-tane biradical. The trapping of biradicals derived from azoalkanes has been applied to the syntheses of pine beetle pheromone mimics and prostaglandin endoperoxide analogues.

  11. Behavioral and electrophysiological activity of (Z,E)-7,9,11-dodecatrienyl formate, a mimic of the major sex pheromone component of carob moth,Ectomyelois ceratoniae.

    PubMed

    Todd, J L; Millar, J G; Vetter, R S; Baker, T C

    1992-12-01

    The behavioral and electrophysiological activity of a mimic [(Z,E)7,9,11-dodecatrienyl formate] of the major sex pheromone component [(Z,E) 9,11,13-tetradecatrienal] of carob moth was assessed. Wind-tunnel bioassays demonstrated that the formate was as effective as natural gland extracts, and significantly more effective than the trienal alone or than the trienal blended with two minor pheromone components, in evoking source contact. Dispensers containing the formate were as effective as trienal-containing blend lures in attracting males when placed at the same dosage in traps in date gardens. Single-cell recordings showed that at least two olfactory neurons, differentiated by spike amplitude, are located in the long trichoid hairs on male carob moth antennae. Dose-response relationships indicated that puffs from cartridges loaded with at least 0.1 μg of the formate or of the trienal were necessary to elicit spiking by either the small or the large-spiking cell within a sensillum. Cross-adaptation studies demonstrated that both compounds stimulated the same large-spiking cell. The frequencies of spikes evoked from the large cell when stimulated by emissions from 0.1-μg, 1-μg, or 10-μg cartridges of either the formate or the trienal were not significantly different, suggesting that the formate is an effective mimic of the trienal at the antennal receptor cell level.

  12. Comparison of pathogens infection level in Ips typographus (Coleoptera: Curculionidae) beetles sampled in pheromone traps and at place of overwintering.

    PubMed

    Lukášová, Karolina; Holuša, Jaroslav

    2015-09-01

    The importance of pathogens in the population dynamics of Ips typographus remains a subject of ongoing debate. The main objective of our experiment was to compare the pathogen infection levels of individuals overwintering in bark with the levels of individuals from the same population captured with pheromone traps and thereby to determine primary answers as to whether it can be confirmed that pathogenic organisms affect the flight ability of bark beetles or their ability to leave their places of overwintering. A total of 402 I. typographus individuals were analyzed at a study location under limited management. Three pathogens were confirmed to be present: the gregarine Gregarina typographi, the virus ItEPV, and the microsporidium Nosema typographi. Infection levels of Gregarina typographi and ItEPV were the same in beetles collected at places of overwintering and in those beetles collected in pheromone traps within the immediate vicinity. As these pathogens infect the host's intestine, the tendency to leave the places of overwintering is apparently not diminished. A similar analysis and comparison of pathogens located in the fat body might bring different results, as our study only detected N. typographi in a single dissected adult spruce bark beetle.

  13. Sex pheromones of three citrus leafrollers, Archips atrolucens, Adoxophyes privatana, and Homona sp., inhabiting the Mekong Delta of Vietnam.

    PubMed

    Van Vang, Le; Thuy, Ho Nhu; Khanh, Chau Nguyen Quoc; Son, Pham Kim; Yan, Qi; Yamamoto, Masanobu; Jinbo, Utsugi; Ando, Tetsu

    2013-06-01

    Archips atrolucens, Adoxophyes privatana, and Homona sp. are serious defoliators of citrus trees in the Mekong Delta of Vietnam. In order to establish a sustainable pest-management program for the three species, their female-produced sex pheromones were investigated by GC-EAD and GC-MS analyses, and the following multi-component pheromones were identified: (Z)-11-tetradecenyl acetate (Z11-14:OAc), (E)-11-tetradecenyl acetate (E11-14:OAc), and tetradecyl acetate (14:OAc) in a ratio of 64:32:4 for A. atrolucens; Z11-14:OAc and (Z)-9-tetradecenyl acetate (Z9-14:OAc) in a ratio of 92:8 for A. privatana; and Z11-14:OAc and (Z)-9-dodecenyl acetate (Z9-12:OAc) in a ratio of 96:4 for Homona sp. Each lure baited with synthetic components as a mimic of the natural pheromone attracted males of the target species specifically, indicating that each monounsaturated minor component plays a significant role for mating communication and reproductive isolation of the three species inhabiting the same citrus orchards. In an extract of the pheromone glands of A. atrolucens females, the content of 14:OAc was very low, but a synergistic effect was observed clearly when the saturated compound was mixed at the same level as the E11-14:OAc. The synthetic lures will provide useful tools for monitoring flights of adults of the three species.

  14. Sex pheromone blend discrimination by male moths fromE andZ strains of European corn borer.

    PubMed

    Glover, T J; Tang, X H; Roelofs, W L

    1987-01-01

    Sex pheromone behavioral responses were analyzed in a flight tunnel with European corn borer,Ostrinia nubilalis (Hübner), males from three distinct populations. Males from a bivoltine and a univoltine biotype using a 97.8∶2.2 blend (Z strains) of (Z)- and (E)-11-tetradecenyl acetate were assayed with treatments containing 0, 0.5, 1, and 3% of theE isomer. Males from neither population oriented in the plume to the 100%Z treatment, but bivoltine males oriented and flew to the source to the other three treatments, whereas univoltine males oriented and flew to the source only to the 1 % and 3 %E treatments. Males from a bivoltine biotype using a 1∶99 blend ofZ/E isomers (E strain) were assayed with sources containing 0, 0.5, 1, and 3% of theZ isomer. Males did not orient to the 0%Z source, but oriented and flew to the source to the other three treatments. In addition to using opposite geometric isomers for the main pheromone component, the bivoltineE strain differed from the bivoltineZ strain by producing and responding better to 1 % of the minor component and by storing 3 times more pheromone in the female glands. Contrary to previous reports, the blend of two pheromone components is significantly better than the main component alone in eliciting oriented flight and close-range behavior with males from all three populations of European corn borer. PMID:24301366

  15. Sex pheromones of three citrus leafrollers, Archips atrolucens, Adoxophyes privatana, and Homona sp., inhabiting the Mekong Delta of Vietnam.

    PubMed

    Van Vang, Le; Thuy, Ho Nhu; Khanh, Chau Nguyen Quoc; Son, Pham Kim; Yan, Qi; Yamamoto, Masanobu; Jinbo, Utsugi; Ando, Tetsu

    2013-06-01

    Archips atrolucens, Adoxophyes privatana, and Homona sp. are serious defoliators of citrus trees in the Mekong Delta of Vietnam. In order to establish a sustainable pest-management program for the three species, their female-produced sex pheromones were investigated by GC-EAD and GC-MS analyses, and the following multi-component pheromones were identified: (Z)-11-tetradecenyl acetate (Z11-14:OAc), (E)-11-tetradecenyl acetate (E11-14:OAc), and tetradecyl acetate (14:OAc) in a ratio of 64:32:4 for A. atrolucens; Z11-14:OAc and (Z)-9-tetradecenyl acetate (Z9-14:OAc) in a ratio of 92:8 for A. privatana; and Z11-14:OAc and (Z)-9-dodecenyl acetate (Z9-12:OAc) in a ratio of 96:4 for Homona sp. Each lure baited with synthetic components as a mimic of the natural pheromone attracted males of the target species specifically, indicating that each monounsaturated minor component plays a significant role for mating communication and reproductive isolation of the three species inhabiting the same citrus orchards. In an extract of the pheromone glands of A. atrolucens females, the content of 14:OAc was very low, but a synergistic effect was observed clearly when the saturated compound was mixed at the same level as the E11-14:OAc. The synthetic lures will provide useful tools for monitoring flights of adults of the three species. PMID:23674124

  16. 10-Methyldodecanal, a Novel Attractant Pheromone Produced by Males of the South American Cerambycid Beetle Eburodacrys vittata

    PubMed Central

    Millar, Jocelyn G.; Hanks, Lawrence M.; Bento, José Maurício S.

    2016-01-01

    We report the identification, synthesis, and field bioassay of a novel attractant pheromone produced by males of Eburodacrys vittata (Blanchard), a South American cerambycid beetle in the subfamily Cerambycinae. Headspace volatiles from males contained a sex-specific compound, identified as 10-methyldodecanal. In a field bioassay conducted in Brazil, significant numbers of males and females were caught in traps baited with synthesized racemic 10-methyldodecanal, consistent with the aggregation-sex pheromones produced by males of many cerambycine species. This compound represents a new structural class of cerambycid pheromones, and it is the first pheromone identified for a species in the tribe Eburiini. PMID:27512985

  17. 10-Methyldodecanal, a Novel Attractant Pheromone Produced by Males of the South American Cerambycid Beetle Eburodacrys vittata.

    PubMed

    Silva, Weliton D; Millar, Jocelyn G; Hanks, Lawrence M; Bento, José Maurício S

    2016-01-01

    We report the identification, synthesis, and field bioassay of a novel attractant pheromone produced by males of Eburodacrys vittata (Blanchard), a South American cerambycid beetle in the subfamily Cerambycinae. Headspace volatiles from males contained a sex-specific compound, identified as 10-methyldodecanal. In a field bioassay conducted in Brazil, significant numbers of males and females were caught in traps baited with synthesized racemic 10-methyldodecanal, consistent with the aggregation-sex pheromones produced by males of many cerambycine species. This compound represents a new structural class of cerambycid pheromones, and it is the first pheromone identified for a species in the tribe Eburiini. PMID:27512985

  18. Sex pheromone components and control of the citrus pock caterpillar, Prays endocarpa, found in the Mekong Delta of Vietnam.

    PubMed

    Vang, Le Van; Do, Nguyen Duc; An, Le Ky; Son, Pham Kim; Ando, Tetsu

    2011-01-01

    The citrus pock caterpillar, Prays endocarpa (Yponomeutidae; Praydinae), is a pest of pomelo (Citrus grandis L.) in Vietnam. Gas chromatography-mass spectrometry analyses of pheromone gland extracts from female moths identified three monoenyl compounds, (Z)-7-tetradecenal (Z7-14:Ald), (Z)-7-tetradecenyl acetate (tentatively identified, Z7-14:OAc), and (Z)-7-tetradecen-1-ol (Z7-14:OH), in a ratio of about 10:3:10. In the field, traps baited with synthetic Z7-14:Ald (0.5 mg) caught male P. endocarpa. The other two compounds, either alone or when added to Z7-14:Ald, did not elicit increases in trap catch (relative to the appropriate treatment). Synthetic Z7-14:Ald was used to monitor and control this species in pomelo orchards in Vinh Long Province. Monitoring revealed that adults were present throughout the year with discernible peaks in December, March, and April. A mass-trapping trial, using 20 traps in a 0.1 ha pomelo orchard, effectively suppressed fruit damage to levels similar to that achieved by an insecticide (Karate 2.5EC). Mating disruption trials, using polyethylene-tube dispensers, each filled with 80 mg of Z7-14:Ald at a rate of 200 or 400 dispensers/ha, also controlled damage by this pest to levels below that achieved by an insecticide treatment. This work demonstrates the potential for pheromone-based control of this pest in Vietnam.

  19. Cytotoxicity of a Quinone-containing Cockroach Sex Pheromone in Human Lung Adenocarcinoma Cells.

    PubMed

    Ma, Bennett; Carr, Brian A; Krolikowski, Paul; Chang, Frank N

    2007-01-01

    The cytotoxic effects of blattellaquinone (BTQ), a sex pheromone produced by adult female German cockroaches, have been studied using human lung adenocarcinoma A549 cells. 1,4-Benzoquinone (BQ), a toxic chemical implicated in benzene toxicity, was used as a reference compound. Both BQ and BTQ showed comparable toxicity toward A549 cells, with LD50 values estimated to be 14 and 19 microM, respectively. These two compounds increased the formation of an oxidized fluorescent probe, 2',7'-dichlorofluorescein, but had no effect on the cellular GSSG level. Interestingly, BTQ increased the level of 8-epi-prostaglandin F2alpha and was 4-fold more efficient in depleting cellular GSH content than BQ. Of the five GSH adducts of BTQ isolated, three were identified as mono-GSH conjugates, and the other two were di-conjugates. Mass spectrometric and NMR analyses of the di-conjugates showed that the second GSH molecule displaced the isovaleric acid moiety, potentially via a nucleophilic substitution reaction. The ability of BTQ to conjugate a second GSH molecule without quinone regeneration indicated that it may be a more effective cross-linking agent than BQ. Future experiments may be needed to evaluate the overall safety of BTQ before the commercialization of the compound as a cockroach attractant.

  20. Expression of a desaturase gene, desat1, in neural and nonneural tissues separately affects perception and emission of sex pheromones in Drosophila

    PubMed Central

    Bousquet, François; Nojima, Tetsuya; Houot, Benjamin; Chauvel, Isabelle; Chaudy, Sylvie; Dupas, Stéphane; Yamamoto, Daisuke; Ferveur, Jean-François

    2012-01-01

    Animals often use sex pheromones for mate choice and reproduction. As for other signals, the genetic control of the emission and perception of sex pheromones must be tightly coadapted, and yet we still have no worked-out example of how these two aspects interact. Most models suggest that emission and perception rely on separate genetic control. We have identified a Drosophila melanogaster gene, desat1, that is involved in both the emission and the perception of sex pheromones. To explore the mechanism whereby these two aspects of communication interact, we investigated the relationship between the molecular structure, tissue-specific expression, and pheromonal phenotypes of desat1. We characterized the five desat1 transcripts—all of which yielded the same desaturase protein—and constructed transgenes with the different desat1 putative regulatory regions. Each region was used to target reporter transgenes with either (i) the fluorescent GFP marker to reveal desat1 tissue expression, or (ii) the desat1 RNAi sequence to determine the effects of genetic down-regulation on pheromonal phenotypes. We found that desat1 is expressed in a variety of neural and nonneural tissues, most of which are involved in reproductive functions. Our results suggest that distinct desat1 putative regulatory regions independently drive the expression in nonneural and in neural cells, such that the emission and perception of sex pheromones are precisely coordinated in this species. PMID:22114190

  1. The attraction of virgin female hide beetles (Dermestes maculatus) to cadavers by a combination of decomposition odour and male sex pheromones

    PubMed Central

    2012-01-01

    Introduction The hide beetle Dermestes maculatus (Coleoptera: Dermestidae) feeds as an adult and larva on decomposing animal remains and can also be found on human corpses. Therefore, forensic entomological questions with regard to when and how the first receptive females appear on carcasses are important, as the developmental stages of their larvae can be used to calculate the post-mortem interval. To date, we know that freshly emerged males respond to the cadaver odour of post-bloated carcasses (approximately 9 days after death at Tmean = 27°C), being attracted by benzyl butyrate. This component occurs at its highest concentration at this stage of decay. The aim of our study was to determine the principle of attraction of virgin females to the feeding and breeding substrate. For this purpose, we tested the response of these females to headspace samples of piglet cadavers and male sex pheromones [(Z9)-unsaturated fatty acid isopropyl esters] in a Y-olfactometer. Because we expected that such an odour combination is of importance for virgin female attraction, we tested the following two questions: 1) Are virgin female hide beetles attracted by a combination of cadaver odour and male sex pheromones? 2) During which decomposition stage do the first virgin females respond to cadaver odour when combined with male sex pheromones? Results We found that young virgin females were attracted to the cadaver by a combination of cadaver odour and male sex pheromones. Neither cadaver odour alone nor male sex pheromones alone was significantly more attractive than a solvent control. Our results also gave a weak indication that the first young virgin females respond as early as the post-bloating stage to its associated decomposition odour when combined with male sex pheromones. Conclusions Our results indicate that freshly emerged males possibly respond to cadaver odour and visit carcasses before virgin females. Being attracted to cadavers when male sex pheromone is perceived as

  2. Unexpected Effects of Low Doses of a Neonicotinoid Insecticide on Behavioral Responses to Sex Pheromone in a Pest Insect

    PubMed Central

    Rabhi, Kaouther K.; Esancy, Kali; Voisin, Anouk; Crespin, Lucille; Le Corre, Julie; Tricoire-Leignel, Hélène; Anton, Sylvia; Gadenne, Christophe

    2014-01-01

    In moths, which include many agricultural pest species, males are attracted by female-emitted sex pheromones. Although integrated pest management strategies are increasingly developed, most insect pest treatments rely on widespread use of neurotoxic chemicals, including neonicotinoid insecticides. Residual accumulation of low concentrations of these insecticides in the environment is known to be harmful to beneficial insects such as honey bees. This environmental stress probably acts as an “info-disruptor” by modifying the chemical communication system, and therefore decreases chances of reproduction in target insects that largely rely on olfactory communication. However, low doses of pollutants could on the contrary induce adaptive processes in the olfactory pathway, thus enhancing reproduction. Here we tested the effects of acute oral treatments with different low doses of the neonicotinoid clothianidin on the behavioral responses to sex pheromone in the moth Agrotis ipsilon using wind tunnel experiments. We show that low doses of clothianidin induce a biphasic effect on pheromone-guided behavior. Surprisingly, we found a hormetic-like effect, improving orientation behavior at the LD20 dose corresponding to 10 ng clothianidin. On the contrary, a negative effect, disturbing orientation behavior, was elicited by a treatment with a dose below the LD0 dose corresponding to 0.25 ng clothianidin. No clothianidin effect was observed on behavioral responses to plant odor. Our results indicate that risk assessment has to include unexpected effects of residues on the life history traits of pest insects, which could then lead to their adaptation to environmental stress. PMID:25517118

  3. Isolation of a Female-Emitted Sex Pheromone Component of the Fungus Gnat, Lycoriella ingenua, Attractive to Males.

    PubMed

    Andreadis, Stefanos S; Cloonan, Kevin R; Myrick, Andrew J; Chen, Haibin; Baker, Thomas C

    2015-12-01

    Lycoriella ingenua Dufour (Diptera: Sciaridae) is acknowledged as the major pest species of the white button mushroom, Agaricus bisporus, throughout the world. Components of the female-produced sex pheromone of this species were identified previously as C15-C18 n-alkanes, with the major component n-heptadecane, and shown to be attractive to L. mali. However, a subsequent report could not repeat this work. We reinvestigated the sex pheromone of this species by confirming that virgin females were attractive to males in a Y-tube bioassay and by collection of extracts from virgin females. Extracts were analyzed by gas chromatography coupled to electroantennographic detection, and by the less widely-used technique of gas chromatography coupled to a behavioral bioassay to detect compounds causing wing-fanning and copulatory abdomen curling in males. A single, behaviorally-active pheromone component was isolated and characterized by gas chromatography coupled to mass spectrometry. This component was definitively not n-heptadecane or any of the other C15-C19 n-alkanes reported previously, but is proposed to be a sesquiterpene alcohol having analytical characteristics that closely matched those of reference germacradienols. PMID:26585193

  4. Total synthesis, proof of absolute configuration, and biosynthetic origin of stylopsal, the first isolated sex pheromone of strepsiptera.

    PubMed

    Lagoutte, Roman; Šebesta, Petr; Jiroš, Pavel; Kalinová, Blanka; Jirošová, Anna; Straka, Jakub; Černá, Kateřina; Šobotník, Jan; Cvačka, Josef; Jahn, Ullrich

    2013-06-24

    The asymmetric total synthesis of the diastereomers of stylopsal establishes the absolute configuration of the first reported sex pheromone of the twisted-wing parasite Stylops muelleri as (3R,5R,9R)-trimethyldodecanal. The key steps for the diastereo- and enantiodivergent introduction of the methyl groups are two different types of asymmetric conjugate addition reactions of organocopper reagents to α,β-unsaturated esters, whereas the dodecanal skeleton is assembled by Wittig reactions. The structure of the natural product was confirmed by chiral gas chromatography (GC) techniques, GC/MS and GC/electroantennography (EAD) as well as field tests. An investigation into the biosynthesis of the pheromone revealed that it is likely to be produced by decarboxylation of a 4,6,10-trimethyltridecanoic acid derivative, which was found in substantial amounts in the fat body of the female, but not in the host bee Andrena vaga. This triple-branched fatty acid precursor thus seems to be biosynthesized de novo through a polyketide pathway with two consecutive propionate-propionate-acetate assemblies to form the complete skeleton. The simplified, motionless and fully host-dependent female exploits a remarkable strategy to maximize its reproductive success by employing a relatively complex and potent sex pheromone. PMID:23630024

  5. Sites of release of Putative Sex Pheromone and Sexual Behaviour in Female Carcinus maenas(Crustacea: Decapoda)

    NASA Astrophysics Data System (ADS)

    Bamber, S. D.; Naylor, E.

    1997-02-01

    Pre-moult female Carcinus maenasurine was confirmed as a source of putative sex pheromone. The sexual and temporal specificity of bioactivity in pre-moult female urine was demonstrated when urine samples taken from inter-moult and pre-moult male crabs, and inter-moult females, failed to generate a sexual response from receptive males. Detection sensitivity of male crabs to pre-moult female urine was established at a dilution factor of 1 μl of urine in 10 ml of seawater. Experimental blockage of the site of urine release (the antennal gland opercula) failed to diminish the chemical attractiveness of pre-moult female crabs to test males, implicating at least one further site of putative pheromone release. Observations of female sexual behaviour demonstrated an active role by pre-moult and post-moult female crabs when introduced to male crabs whose locomotor movement had been temporarily restricted.

  6. Identification and functional characterization of sex pheromone receptors in beet armyworm Spodoptera exigua (Hübner).

    PubMed

    Liu, Chengcheng; Liu, Yang; Walker, William B; Dong, Shuanglin; Wang, Guirong

    2013-08-01

    In moths, males can detect a distinct blend of several pheromone components by specialized olfactory receptor neurons (ORNs) on the antennae. Four candidate pheromone receptors (PR) with seven transmembrane domains were identified by homology cloning from the antennae of Spodoptera exigua (Sexi). Phylogenetic analyses reveal that all four odorant receptors (OR) belong to pheromone receptor subtypes. Expression patterns revealed that PRs were male-specific in the antenna except for SexiOR11, which was female antenna-biased. Functional analyses of these PRs were conducted using heterologous expression in Xenopus oocytes. SexiOR13 and SexiOR16 were all broadly activated by multiple pheromone components. SexiOR13 responded robustly to the critical pheromone component, Z9, E12-14:OAc and the minor pheromone component, Z9-14:OAc at a concentration of 10(-4) M. Dose-response studies indicate that SexiOR13 was approximately 4 times more sensitive to Z9,E12-14:OAc (EC50 = 3.158 × 10(-6) M) compared to Z9-14:OAc (EC50 = 1.203 × 10(-5) M). While, SexiOR16 responded robustly to the secondary pheromone component Z9-14:OH with high sensitivity (EC50 = 9.690 × 10(-7) M). However, similar tests of the five pheromones with SexiOR6 and SexiOR11 failed to elicit any response. These results provide basic knowledge to further advance research on the molecular mechanisms of pheromone reception. PMID:23751753

  7. Multiple Δ11-desaturase genes selectively used for sex pheromone biosynthesis are conserved in Ostrinia moth genomes.

    PubMed

    Fujii, Takeshi; Yasukochi, Yuji; Rong, Yu; Matsuo, Takashi; Ishikawa, Yukio

    2015-06-01

    Regulation of the expression of fatty acyl-CoA desaturases, which introduce a double bond into the fatty acid moiety of the substrate, is crucial for the production of species-specific sex pheromones in moths. In Ostrinia moths, two distinct Δ11-desaturases and a Δ14-desaturase are known to be selectively used in the biosynthesis of sex pheromones. Of the two Δ11-desaturases, one identified from Ostrinia nubilalis and Ostrinia scapulalis, Z/EΔ11, forms the Z and E isomers of a double bond at position 11, whereas the other identified from Ostrinia latipennis, LATPG1(=EΔ11), exclusively forms an E double bond at position 11. Since the retroposon(ezi)-fused, non-functional Δ11-desaturase gene, ezi-Δ11α, in the genomes of O. nubilalis and O. furnacalis was previously suggested to be an orthologue of latpg1, we here explored Z/EΔ11 orthologues in the genome of O. latipennis. We newly identified two Δ11-desaturase genes, latpg2 and latpg3, which were orthologous to ezi-Δ11β and Z/EΔ11, respectively. We found that an ezi-like element was integrated in intron 1 of latpg1, and confirmed that only latpg1 was expressed in the pheromone gland of O. latipennis. Thus, at least three Δ11-desaturase genes are present in the genome of O. latipennis, and latpg1 is selectively transcribed in the pheromone gland of this moth. The non-functionality of ezi-inserted desaturase genes in O. nubilalis and O. furnacalis may not be a direct consequence of the insertion of an ezi- or ezi-like element into the gene.

  8. Synthesis of sex pheromone components of the forest tent caterpillar,Malacosoma disstria (Hübner) and of the western tent caterpillar,Malacosoma californicum (Packard).

    PubMed

    Chisholm, M D; Steck, W F; Bailey, B K; Underbill, E W

    1981-01-01

    All four geometrical isomers of 5,7-dodecadien-1-ol have been stereoselectively synthesized by using Wittig condensation reactions. (5 Z,7E)-5,7-Dodecadien-1-ol and its corresponding aldehyde are components of the sex pheromone of the forest tent caterpillar. (5 E,7 Z)-5,7-Dodecadienal is a component of the pheromone of the western tent caterpillar. These compounds have been successfully tested in the field.

  9. The effects of mating status and time since mating on female sex pheromone levels in the rice leaf bug, Trigonotylus caelestialium

    NASA Astrophysics Data System (ADS)

    Yamane, Takashi; Yasuda, Tetsuya

    2014-02-01

    Although mating status affects future mating opportunities, the biochemical changes that occur in response to mating are not well understood. This study investigated the effects of mating status on the quantities of sex pheromone components found in whole-body extracts and volatile emissions of females of the rice leaf bug, Trigonotylus caelestialium. When sampled at one of four time points within a 4-day postmating period, females that had copulated with a male had greater whole-body quantities of sex pheromone components than those of virgin females sampled at the same times. The quantities of sex pheromone components emitted by virgin females over a 24-h period were initially high but then steadily decreased, whereas 24-h emissions were persistently low among mated females when measured at three time points within the 4 days after mating. As a result, soon after mating, the mated females emitted less sex pheromones than virgin females, but there were no significant differences between mated and virgin females at the end of the experiment. Thus, postmating reduction in the rate of emission of sex pheromones could explain previously observed changes in female attractiveness to male T. caelestialium.

  10. Use of pheromone timed insecticide applications integrated with mating disruption or mass trapping against Ostrinia furnacalis (Lepidoptera: Pyralidae) in sweet corn.

    PubMed

    Chen, Ri-Zhao; Klein, Michael G; Sheng, Cheng-Fa; Li, Yu; Shao, Dong-Xiang; Li, Qi-Yun

    2013-12-01

    Mating disruption and mass trapping of Ostrinia furnacalis (Génuéé), often called the Asian corn borer, were incorporated with insecticides to reduce pesticide use. Pesticides alone are often ineffective owing to problems in timing applications before the larvae enter the protection of corn stalks. In addition, overuse of insecticides has caused environmental contamination and concerns about consumer health. In 2010, 15 insecticides were compared with mating disruption or mass trapping at various dispenser (disp.) densities for reducing egg masses, trap captures, and ear damage. Mass trapping with 30 and 40 disp./ha, mating disruption with 300 disp./ha, or endosulfan, chlorpyrifos, and monosultap (0.55, 0.35, and 0.55 kg/ha, respectively) gave ≍50% ear protection. In 2011, an insecticide alone, no treatments, pheromone alone, and pheromone + insecticide were examined. The same insecticides in combination with mating disruption or mass trapping at ≧200 or≧20 disp./ha gave >90% ear protection even when chemical applications were reduced to 1 from 3, and the rates were reduced 50-75%. Pheromone dispensers contained >50% of their initial load 30 d after exposure. PMID:24280487

  11. REPRODUCTIVE ISOLATION BY SEX PHEROMONES IN THE CLOSTERIUM PERACEROSUM-STRIGOSUM-LITTORALE COMPLEX (ZYGNEMATALES, CHAROPHYCEAE)(1).

    PubMed

    Tsuchikane, Yuki; Ito, Motomi; Sekimoto, Hiroyuki

    2008-10-01

    The Closterium peracerosum-strigosum-littorale (C. psl.) complex consists of unicellular algae and is known to be composed of several reproductively isolated mating groups of heterothallic strains. Group I-E is completely isolated from mating groups II-A and II-B, groups II-A and II-B are partially isolated from each other, and only mating-type plus (mt(+) ) cells of group II-A and mating-type minus (mt(-) ) cells of group II-B form zygotes. Based on the alignment of 1506 group I introns, significant phylogenetic relationships were observed among mating groups II-A and II-B, while mating group I-E was distant from groups II-A and II-B. Sexual cell division in both mating-type cells of group II-A was stimulated in conditioned media in which cells of group II-B had been cultured. When mt(-) cells of group II-B were stimulated in conditioned medium derived from group II-A, mt(+) cells of group II-B did not respond to the conditioned medium. Conditioned media derived from group I-E did not exhibit sexual cell division (SCD)-inducing activity against any strain except those within its own group. From the alignment of deduced amino acid sequences from orthologous protoplast-release-inducing protein (PR-IP) Inducer genes, we detected a significant similarity among groups II-A and II-B, and mating group I-E had low similarity to other mating groups. The existing degree of reproductive isolation can be partially explained by differences in molecular structures and physiological activities of sex pheromones of these heterothallic mating groups.

  12. Inhibition of the Responses to Sex Pheromone of the Fall Armyworm, Spodoptera frugiperda

    PubMed Central

    Malo, Edi A.; Rojas, Julio C.; Gago, Rafael; Guerrero, Ángel

    2013-01-01

    Trifluoromethyl ketones reversibly inhibit pheromone-degrading esterases in insect olfactory tissues, affecting pheromone detection and behavior of moth males. In this work, (Z)-9-tetradecenyl trifluoromethyl ketone (Z9-14:TFMK), a closely-related analogue of the pheromone of the fall armyworm, Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae), was prepared and tested in electroantennogram and field tests as possible inhibitors of the pheromone action. The electroantennogram parameters, amplitude, and the repolarization time of the antennal responses of S. frugiperda males were affected by Z9-14:TFMK vapors. Exposure of male antennae to a stream of air passing through 100 ìg of the ketone produced a significant reduction of the amplitude and an increase of 2/3 repolarization time signals to the pheromone. The effect was reversible and dose-dependent. In the field, the analogue significantly decreased the number of males caught when mixed with the pheromone in 10:1 ratio. The results suggest that Z9-14:TFMK is a mating disruptant of S. frugiperda and may be a good candidate to consider in future strategies to control this pest. PMID:24766416

  13. Chemical communication in termites: syn-4,6-dimethylundecan-1-ol as trail-following pheromone, syn-4,6-dimethylundecanal and (5E)-2,6,10-trimethylundeca-5,9-dienal as the respective male and female sex pheromones in Hodotermopsis sjoestedti (Isoptera, Archotermopsidae).

    PubMed

    Lacey, Michael J; Sémon, Etienne; Krasulová, Jana; Sillam-Dussès, David; Robert, Alain; Cornette, Richard; Hoskovec, Michal; Záček, Petr; Valterová, Irena; Bordereau, Christian

    2011-12-01

    The trail-following pheromone and sex pheromones were investigated in the Indomalayan termite Hodotermopsis sjoestedti belonging to the new family Archotermopsidae. Gas chromatography coupled to mass spectrometry (GC-MS) after solid phase microextraction (SPME) of the sternal gland secretion of pseudergates and trail-following bioassays demonstrated that the trail-following pheromone of H. sjoestedti was syn-4,6-dimethylundecan-1-ol, a new chemical structure for termite pheromones. GC-MS after SPME of the sternal gland secretion of alates also allowed the identification of sex-specific compounds. In female alates, the major sex-specific compound was identified as (5E)-2,6,10-trimethylundeca-5,9-dienal, a compound previously identified as the female sex pheromone of the termite Zootermopsis nevadensis. In male alates, the major sex-specific compound was identified as syn-4,6-dimethylundecanal, a homolog of syn-4,6-dimethyldodecanal, which has previously been confirmed as the male sex pheromone of Z. nevadensis. The presence of sex-specific compounds in alates of H. sjoestedti strongly suggests for this termite the presence of sex-specific pairing pheromones which were only known until now in Z. nevadensis. Our results showed therefore a close chemical relationship between the pheromones of the taxa Hodotermopsis and Zootermopsis and, in contrast, a clear difference with the taxa Stolotermes and Porotermes, which is in total agreement with the recent creation of the families Archotermopsidae and Stolotermitidae as a substitute for the former family Termopsidae.

  14. Pheromone production, male abundance, body size, and the evolution of elaborate antennae in moths

    PubMed Central

    Symonds, Matthew RE; Johnson, Tamara L; Elgar, Mark A

    2012-01-01

    The males of some species of moths possess elaborate feathery antennae. It is widely assumed that these striking morphological features have evolved through selection for males with greater sensitivity to the female sex pheromone, which is typically released in minute quantities. Accordingly, females of species in which males have elaborate (i.e., pectinate, bipectinate, or quadripectinate) antennae should produce the smallest quantities of pheromone. Alternatively, antennal morphology may be associated with the chemical properties of the pheromone components, with elaborate antennae being associated with pheromones that diffuse more quickly (i.e., have lower molecular weights). Finally, antennal morphology may reflect population structure, with low population abundance selecting for higher sensitivity and hence more elaborate antennae. We conducted a phylogenetic comparative analysis to test these explanations using pheromone chemical data and trapping data for 152 moth species. Elaborate antennae are associated with larger body size (longer forewing length), which suggests a biological cost that smaller moth species cannot bear. Body size is also positively correlated with pheromone titre and negatively correlated with population abundance (estimated by male abundance). Removing the effects of body size revealed no association between the shape of antennae and either pheromone titre, male abundance, or mean molecular weight of the pheromone components. However, among species with elaborate antennae, longer antennae were typically associated with lower male abundances and pheromone compounds with lower molecular weight, suggesting that male distribution and a more rapidly diffusing female sex pheromone may influence the size but not the general shape of male antennae. PMID:22408739

  15. Increased allocation of adult-acquired carbohydrate to egg production results in its decreased allocation to sex pheromone production in mated females of the moth Heliothis virescens.

    PubMed

    Foster, Stephen P; Anderson, Karin G; Harmon, J P

    2014-02-15

    Females of most species of moths produce a volatile sex pheromone that attracts conspecific males over distance. In females of the polyandrous moth Heliothis virescens, feeding on carbohydrate (e.g. nectar) supplies precursor, via hemolymph trehalose, for both sex pheromone and egg production. With limited carbohydrate acquisition these two reproductive physiologies might compete for hemolymph trehalose, resulting in an allocation deficit to either sex pheromone or egg production. Using virgin and mated females, which have low and high egg maturation rates, respectively, we fed females a limited diet of (13)C-labeled glucose daily and, using mass isotopomer distribution analysis, determined allocations of adult-acquired carbohydrate (AAC) to newly synthesized pheromone and ovarian and egg fats, our proxies for allocation to egg production. With increased number of feeds, AAC enrichment of hemolymph trehalose increased, as expected. This led to mated females increasing their proportional allocation of AAC to ovarian and egg fats, but decreasing their proportional allocation of AAC to pheromone production. By contrast, virgins increased their proportional allocation of AAC to pheromone production with increased feeds, consistent with increasing AAC enrichment of hemolymph trehalose. These results show that with limited AAC intake, enhanced egg maturation in mated females results in reduced AAC allocation to pheromone production; this does not occur in virgins because of their lower egg maturation rate. This physiological competition for AAC corresponded with decreased pheromone production in mated moths to levels unlikely to attract mates. Therefore, the availability and/or allocation of AAC may be a proximate mechanism underlying the incidence of polyandry in this and other species of moths.

  16. Sex Pheromones of C. elegans Males Prime the Female Reproductive System and Ameliorate the Effects of Heat Stress.

    PubMed

    Aprison, Erin Z; Ruvinsky, Ilya

    2015-12-01

    Pheromones are secreted molecules that mediate animal communications. These olfactory signals can have substantial effects on physiology and likely play important roles in organismal survival in natural habitats. Here we show that a blend of two ascaroside pheromones produced by C. elegans males primes the female reproductive system in part by improving sperm guidance toward oocytes. Worms have different physiological responses to different ratios of the same two molecules, revealing an efficient mechanism for increasing coding potential of a limited repertoire of molecular signals. The endogenous function of the male sex pheromones has an important side benefit. It substantially ameliorates the detrimental effects of prolonged heat stress on hermaphrodite reproduction because it increases the effectiveness with which surviving gametes are used following stress. Hermaphroditic species are expected to lose female-specific traits in the course of evolution. Our results suggest that some of these traits could have serendipitous utility due to their ability to counter the effects of stress. We propose that this is a general mechanism by which some mating-related functions could be retained in hermaphroditic species, despite their expected decay.

  17. Sex Pheromones of C. elegans Males Prime the Female Reproductive System and Ameliorate the Effects of Heat Stress

    PubMed Central

    Aprison, Erin Z.; Ruvinsky, Ilya

    2015-01-01

    Pheromones are secreted molecules that mediate animal communications. These olfactory signals can have substantial effects on physiology and likely play important roles in organismal survival in natural habitats. Here we show that a blend of two ascaroside pheromones produced by C. elegans males primes the female reproductive system in part by improving sperm guidance toward oocytes. Worms have different physiological responses to different ratios of the same two molecules, revealing an efficient mechanism for increasing coding potential of a limited repertoire of molecular signals. The endogenous function of the male sex pheromones has an important side benefit. It substantially ameliorates the detrimental effects of prolonged heat stress on hermaphrodite reproduction because it increases the effectiveness with which surviving gametes are used following stress. Hermaphroditic species are expected to lose female-specific traits in the course of evolution. Our results suggest that some of these traits could have serendipitous utility due to their ability to counter the effects of stress. We propose that this is a general mechanism by which some mating-related functions could be retained in hermaphroditic species, despite their expected decay. PMID:26645097

  18. The mating-related loci sexM and sexP of the zygomycetous fungus Mucor mucedo and their transcriptional regulation by trisporoid pheromones.

    PubMed

    Wetzel, Jana; Burmester, Anke; Kolbe, Melanie; Wöstemeyer, Johannes

    2012-04-01

    The putative mating type locus of mucoralean fungi consists of a single high mobility group (HMG)-domain transcription factor gene, sexM or sexP, flanked by genes for an RNA helicase and a triosephosphate transporter. We used degenerate primers derived from the amino acid sequence of the RNA helicase to sequence a fragment of this gene from Mucor mucedo. This fragment was extended by inverse PCR to obtain the complete sequences of the sex loci from both mating types of M. mucedo. The sex loci in M. mucedo reflect the general picture obtained previously for Phycomyces blakesleeanus, presenting a single HMG-domain transcription factor gene, sexM and sexP in the minus and plus mating types, respectively. These are located next to a gene for RNA helicase. Transcriptional analysis by quantitative real-time PCR showed that only transcription of sexM is considerably stimulated by adding trisporoid pheromones, thus mimicking sexual stimulation, whereas sexP is only slightly affected. These differences in regulation between sexM and sexP are supported by the observation that the promoter sequences controlling these genes show no similarities. The protein structures themselves are considerably different. The SexM, but not the SexP protein harbours a nuclear localization sequence. The SexM protein is indeed transported to nuclei. This was shown by means of a GFP fusion construct that was used to study the localization of SexM in the yeast Saccharomyces cerevisiae. The fusion protein is highly enriched in nuclei.

  19. Pheromone lure and trap color affects bycatch in agricultural landscapes of Utah

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aerial traps, using combinations of color and attractive lures, are a critical tool for detecting and managing insect pest populations. Yet, despite improvements in trap efficacy, collection of non-target species (“bycatch”) plagues many insect pest surveys. Bycatch can influence survey effectivenes...

  20. Spatial variability of western bean cutworm (Lepidoptera: Noctuidae) pheromone trap captures in sprinkler irrigated corn in eastern Colorado.

    PubMed

    Merrill, Scott C; Walter, Shawn M; Peairs, Frank B; Hoeting, Jennifer A

    2011-06-01

    Strategies for controlling pests are an integral part of any agricultural management plan. Most field crops, such as wheat (Triticum spp.) and corn (Zea mays L.) are managed as if they are homogeneous units. However, pests within fields are rarely homogenous. Development of plans that use targeted pest control tactics requires knowledge of the ecological drivers of the pest species. That is, by understanding the spatio-temporal factors influencing pest populations, we can develop management strategy to prevent or reduce pest damage. This study was conducted to quantify variables influencing the spatial variability of adult male western bean cutworm, Striacosta albicosta (Smith). Striacosta albicosta moths were collected in pheromone traps in two center pivot, irrigated corn fields near Wiggins, CO. We hypothesized that moth abundance would be influenced by the distance from the edge of the field, distance to nearest alternative corn crop and affected by anisotropic effects, such as prevailing wind direction. Greater trap catches of S. albicosta in each of the fields were found with increased proximity to the edge of the field, if the nearest neighboring crop was corn. Prevailing wind direction and directional effects were found to influence abundance. Results serve as a first step toward building a precision pest management system for controlling S. albicosta. PMID:22251644

  1. Individuality and Transgenerational Inheritance of Social Dominance and Sex Pheromones in Isogenic Male Mice.

    PubMed

    Fang, Qi; Zhang, Yao-Hua; Shi, Yao-Long; Zhang, Jin-Hua; Zhang, Jian-Xu

    2016-06-01

    Phenotypic variation and its epigenetic regulations within the inbred isogenic mice have long intrigued biologists. Here, we used inbred C57BL/6 mice to examine the individual differences and the inheritance of social dominance and male pheromones, expecting to create a model for studying the underlying epigenetic mechanisms for the evolution of these traits. We used a repeated male-male contest paradigm to form stable dominance-submission relationships between paired males and make superior or inferior quality manifest. Females showed olfactory preferences for the urine of dominant males to that of subordinate opponents. Gas chromatography-mass spectrometer analysis revealed that dominance-related or superior quality related pheromones were actually exaggerated male pheromone components (e.g., E-β-farnesene, hexadecanol, and 1-hexadecanol acetate) of preputial gland origin. Although the socially naïve sons of both dominant and subordinate males elicited the same female attraction when reaching adulthood, the former could dominated over the latter during undergoing the male-male competition and then gained more attraction of females. Our results demonstrated that social dominance or superior quality and the related pheromones were heritable and could be expressed through the interaction between aggression-related epigenotypes and male-male contests. It suggested that the evolution of sexually selected traits could be epigenetically determined and promoted through female mate choice. The epigenetic mechanisms driving the individual differences in behavior and male pheromones deserve further studies.

  2. Individuality and Transgenerational Inheritance of Social Dominance and Sex Pheromones in Isogenic Male Mice.

    PubMed

    Fang, Qi; Zhang, Yao-Hua; Shi, Yao-Long; Zhang, Jin-Hua; Zhang, Jian-Xu

    2016-06-01

    Phenotypic variation and its epigenetic regulations within the inbred isogenic mice have long intrigued biologists. Here, we used inbred C57BL/6 mice to examine the individual differences and the inheritance of social dominance and male pheromones, expecting to create a model for studying the underlying epigenetic mechanisms for the evolution of these traits. We used a repeated male-male contest paradigm to form stable dominance-submission relationships between paired males and make superior or inferior quality manifest. Females showed olfactory preferences for the urine of dominant males to that of subordinate opponents. Gas chromatography-mass spectrometer analysis revealed that dominance-related or superior quality related pheromones were actually exaggerated male pheromone components (e.g., E-β-farnesene, hexadecanol, and 1-hexadecanol acetate) of preputial gland origin. Although the socially naïve sons of both dominant and subordinate males elicited the same female attraction when reaching adulthood, the former could dominated over the latter during undergoing the male-male competition and then gained more attraction of females. Our results demonstrated that social dominance or superior quality and the related pheromones were heritable and could be expressed through the interaction between aggression-related epigenotypes and male-male contests. It suggested that the evolution of sexually selected traits could be epigenetically determined and promoted through female mate choice. The epigenetic mechanisms driving the individual differences in behavior and male pheromones deserve further studies. PMID:27283352

  3. Interaction of dopamine, female pheromones, locomotion and sex behavior in Drosophila melanogaster.

    PubMed

    Wicker-Thomas, Claude; Hamann, Mickael

    2008-01-01

    The regulation of female hydrocarbons and courtship behavior by dopamine and their relationship with locomotion, were investigated in Drosophila melanogaster. Ddc mutants and wild-type female flies treated with tyrosine hydroxylase inhibitors (alpha-methyltyrosine or 3-iodotyrosine) had fewer diene hydrocarbons (female pheromones) and there was a total (Ddc), partial (alpha-methyltyrosine) or no (3-iodotyrosine) rescue of hydrocarbon pattern after dopamine ingestion. There was a correlation between female pheromone level and male courtship intensity for these dopamine-depleted or rescued flies. Female locomotion was decreased in flies treated with tyrosine hydroxylase inhibitors and restored by dopamine, showing that decreased mobility of the female has little importance on male courtship. However, male courtship was inhibited by an increased mobility of dopamine-supplemented females. Tanning, which is altered in dopamine-deficient flies and in tan and ebony mutants, seemed to have no significant influence on female pheromones. Females with increased quantities of dopamine (by ingestion) exhibited larger quantities of pheromones. However, Catsup mutants did not, probably as a result of defects in the epidermis. The Dat mutation, which resulted in more dopamine being produced in the brain, showed no pheromone modification. Together, these data show a complex interaction between dopamine, female hydrocarbons, locomotion and male courtship behavior.

  4. Synthetic pheromones and plant volatiles alter the expression of chemosensory genes in Spodoptera exigua

    PubMed Central

    Wan, Xinlong; Qian, Kai; Du, Yongjun

    2015-01-01

    Pheromone and plant odorants are important for insect mating, foraging food sources and oviposition. To understand the molecular mechanisms regulating pheromone and odorant signaling, we employed qRT-PCR to study the circadian rhythms of ABP, OBP, PBP, and OR gene expression in the beet armyworm, Spodoptera exigua and their responses after a pre-exposure to sex pheromone compounds or plant volatiles. The neuronal responses of male S. exigua to 20 chemical compounds were recorded at three specific time periods using the electroantennogram. The results showed a circadian rhythm in the expression profiles of some chemosensory genes in the antennae similar to their behavioral rhythm. The expression profiles of OR3, OR6, OR11, OR13, OR16, OR18, Orco, ABP2, OBP1, OBP7, and PBP1, and EAG responses to chemical compounds, as well as their circadian rhythm were significantly affected after exposure to synthetic sex pheromones and plant volatiles. These findings provide the first evidence that the gene expression of chemosensory genes and olfactory sensitivity to sex pheromones are affected by pre-exposing insects to pheromone compounds and plant volatiles. It helps to understand the molecular mechanisms underlying pheromone activity, and the application of sex pheromones and plant volatiles in mating disruption or mass trapping. PMID:26611815

  5. Neurophysiological mechanisms underlying sex- and maturation-related variation in pheromone responses in honey bees (Apis mellifera).

    PubMed

    Villar, Gabriel; Baker, Thomas C; Patch, Harland M; Grozinger, Christina M

    2015-07-01

    In the honey bee (Apis mellifera), social organization is primarily mediated by pheromones. Queen-produced 9-oxo-2-decenoic acid (9-ODA) functions as both a social and sex pheromone, eliciting attraction in both female workers and male drones, but also affecting other critical aspects of worker physiology and behavior. These effects are also maturation related, as younger workers and sexually mature drones are most receptive to 9-ODA. While changes in the peripheral nervous system drive sex-related differences in sensitivity to 9-ODA, the mechanisms driving maturation-related shifts in receptivity to 9-ODA remain unknown. Here, we investigate the hypothesis that changes at the peripheral nervous system may be mediating plastic responses to 9-ODA by characterizing expression levels of AmOR11 (the olfactory receptor tuned to 9-ODA) and electrophysiological responses to 9-ODA. We find that receptor expression correlates significantly with behavioral receptivity to 9-ODA, with nurses and sexually mature drones exhibiting higher levels of expression than foragers and immature drones, respectively. Electrophysiological responses to 9-ODA were not found to correlate with behavioral receptivity or receptor expression, however. Thus, while receptor expression at the periphery exhibits a level of plasticity that correlates with behavior, the mechanisms driving maturation-dependent responsiveness to 9-ODA appear to function primarily in the central nervous system.

  6. Effect of Larvae Treated with Mixed Biopesticide Bacillus thuringiensis - Abamectin on Sex Pheromone Communication System in Cotton Bollworm, Helicoverpa armigera

    PubMed Central

    Shen, Li-Ze; Chen, Peng-Zhou; Xu, Zhi-Hong; Deng, Jian-Yu; Harris, Marvin-K; Wanna, Ruchuon; Wang, Fu-Min; Zhou, Guo-Xin; Yao, Zhang-Liang

    2013-01-01

    Third instar larvae of the cotton bollworm (Helicoverpa armigera) were reared with artificial diet containing a Bacillus thuringiensis - abamectin (BtA) biopesticide mixture that resulted in 20% mortality (LD20). The adult male survivors from larvae treated with BtA exhibited a higher percentage of “orientation” than control males but lower percentages of “approaching” and “landing” in wind tunnel bioassays. Adult female survivors from larvae treated with BtA produced higher sex pheromone titers and displayed a lower calling percentage than control females. The ratio of Z-11-hexadecenal (Z11–16:Ald) and Z-9-hexadecenal (Z9–16:Ald) in BtA-treated females changed and coefficients of variation (CV) of Z11–16:Ald and Z9–16:Ald were expanded compared to control females. The peak circadian calling time of BtA-treated females occurred later than that of control females. In mating choice experiment, both control males and BtA-treated males preferred to mate with control females and a portion of the Bt-A treated males did not mate whereas all control males did. Our Data support that treatment of larvae with BtA had an effect on the sex pheromone communication system in surviving H.armigera moths that may contribute to assortative mating. PMID:23874751

  7. Neurophysiological mechanisms underlying sex- and maturation-related variation in pheromone responses in honey bees (Apis mellifera).

    PubMed

    Villar, Gabriel; Baker, Thomas C; Patch, Harland M; Grozinger, Christina M

    2015-07-01

    In the honey bee (Apis mellifera), social organization is primarily mediated by pheromones. Queen-produced 9-oxo-2-decenoic acid (9-ODA) functions as both a social and sex pheromone, eliciting attraction in both female workers and male drones, but also affecting other critical aspects of worker physiology and behavior. These effects are also maturation related, as younger workers and sexually mature drones are most receptive to 9-ODA. While changes in the peripheral nervous system drive sex-related differences in sensitivity to 9-ODA, the mechanisms driving maturation-related shifts in receptivity to 9-ODA remain unknown. Here, we investigate the hypothesis that changes at the peripheral nervous system may be mediating plastic responses to 9-ODA by characterizing expression levels of AmOR11 (the olfactory receptor tuned to 9-ODA) and electrophysiological responses to 9-ODA. We find that receptor expression correlates significantly with behavioral receptivity to 9-ODA, with nurses and sexually mature drones exhibiting higher levels of expression than foragers and immature drones, respectively. Electrophysiological responses to 9-ODA were not found to correlate with behavioral receptivity or receptor expression, however. Thus, while receptor expression at the periphery exhibits a level of plasticity that correlates with behavior, the mechanisms driving maturation-dependent responsiveness to 9-ODA appear to function primarily in the central nervous system. PMID:25840687

  8. Mating system of the European hornet Vespa crabro: male seeking strategies and evidence for the involvement of a sex pheromone.

    PubMed

    Spiewok, S; Schmolz, E; Ruther, J

    2006-12-01

    We describe details of the mate finding strategy of drones of the European hornet, Vespa crabro, and present evidence for the involvement of sex pheromones. Tests were carried out with free flying drones in natural habitats. Males patrolled the nest site itself, as well as nearby nonresource-based sites, without showing territorial behavior. Patrolling was restricted to sunny spots in the vegetation, and thus, the locations changed throughout the day. Drones were attracted to both caged gynes and to dead workers treated with gyne extracts, indicating the presence of a female-produced sex attractant. Treated workers also elicited copulation attempts by the attracted drones. Extracts from gynes, workers, and drones contained exclusively cuticular lipids, and the profile from gynes was much more diverse than that of workers and drones. The most striking differences observed related to the alkenes, monomethyl- and dimethylalkanes. The results provide a lead for potential attracting and copulation-releasing semiochemicals in V. crabro.

  9. Assessment of commercially available pheromone lures for monitoring diamondback moth (Lepidoptera: Plutellidae) in canola.

    PubMed

    Evenden, M L; Gries, R

    2010-06-01

    Sex pheromone monitoring lures from five different commercial sources were compared for their attractiveness to male diamondback moth, Plutella xylostella L. (Lepidoptera: Plutellidae) in canola, Brassica napus L., fields in western Canada. Lures that had the highest pheromone release rate, as determined by aeration analyses in the laboratory, were the least attractive in field tests. Lures from all the commercial sources tested released more (Z)-11-hexadecenal than (Z)-11-hexadecenyl acetate and the most attractive lures released a significantly higher aldehyde to acetate ratio than less attractive lures. Traps baited with sex pheromone lures from APTIV Inc. (Portland, OR) and ConTech Enterprises Inc. (Delta, BC, Canada) consistently captured more male diamondback moths than traps baited with lures from the other sources tested. In two different lure longevity field trapping experiments, older lures were more attractive to male diamondback moths than fresh lures. Pheromone release from aged lures was constant at very low release rates. The most attractive commercially available sex pheromone lures tested attracted fewer diamondback moth males than calling virgin female moths suggesting that research on the development of a more attractive synthetic sex pheromone lure is warranted.

  10. Assessment of commercially available pheromone lures for monitoring diamondback moth (Lepidoptera: Plutellidae) in canola.

    PubMed

    Evenden, M L; Gries, R

    2010-06-01

    Sex pheromone monitoring lures from five different commercial sources were compared for their attractiveness to male diamondback moth, Plutella xylostella L. (Lepidoptera: Plutellidae) in canola, Brassica napus L., fields in western Canada. Lures that had the highest pheromone release rate, as determined by aeration analyses in the laboratory, were the least attractive in field tests. Lures from all the commercial sources tested released more (Z)-11-hexadecenal than (Z)-11-hexadecenyl acetate and the most attractive lures released a significantly higher aldehyde to acetate ratio than less attractive lures. Traps baited with sex pheromone lures from APTIV Inc. (Portland, OR) and ConTech Enterprises Inc. (Delta, BC, Canada) consistently captured more male diamondback moths than traps baited with lures from the other sources tested. In two different lure longevity field trapping experiments, older lures were more attractive to male diamondback moths than fresh lures. Pheromone release from aged lures was constant at very low release rates. The most attractive commercially available sex pheromone lures tested attracted fewer diamondback moth males than calling virgin female moths suggesting that research on the development of a more attractive synthetic sex pheromone lure is warranted. PMID:20568610

  11. Laboratory Syntheses of Insect Pheromones.

    ERIC Educational Resources Information Center

    Cormier, Russell A.; Hoban, James N.

    1984-01-01

    Provides background information and procedures for the multi-step synthesis of tiger moth and boll weevil pheromones (sex attractants). These syntheses require several laboratory periods. The tiger moth pheromone synthesis is suitable for introductory organic chemistry while the boll weevil pheromone is recommended for an advanced laboratory…

  12. Interpreting the relationship between pheromone component emission from commercial lures and captures of Helicoverpa zea (Boddie) in bucket and cone traps.

    PubMed

    Mitchell, E R; Mayer, M S

    2000-03-01

    Male corn earworm moths, Helicoverpa zea (Boddie), were captured in conical Texas pheromone traps (cone traps) and bucket traps baited with four different commercial lures manufactured by three different manufacturers. Because significant numbers were captured in bucket traps baited with some of the lures, and none with others, the volatile emissions from all of the lures were sampled and analyzed by gas chromatographic methods. The numbers of males captured in two types of trap were compared with bait emissions in an endeavor to define a more effective lure for bucket traps. The lure from one manufacturer captured the same numbers of males in both trap types; one captured more in bucket traps than in cone traps, and another captured only a small number in bucket traps. The emission rate of all active compounds from each of the different lures was approximately linear for the duration of the assays. A gas-liquid chromatographic peak associated with a third compound, (Z)-9-tetradecenal, which reduces behavioral responses, was observed in the emissions from all lures evaluated. The effectiveness of the Hercon (Emmigsville, PA) lure in capturing males in both types of trap was associated with a lower emission of (Z)-11-hexadecenal, (Z)-9-hexadecenal and (Z)-9-tetradecenal than from the other lures.

  13. [Relationship between sex hormones, pheromones, interleukine production and risk of drug dependence].

    PubMed

    Bokhan, N A; Nevidimova, T I

    2015-01-01

    Serum steroid hormones and production of proinflammatory cytokines in 109 individuals with substance dependence, 34 occasional users and 78 control subjects were examined. Immaturity of gender as a risk factor for the formation of drug dependence associated with infectious and inflammatory processes was estimated by olfactory pheromone tests. PMID:26852595

  14. Flying slower: Floor pattern object size affects orthokinetic responses during moth flight to sex pheromone

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous studies with Oriental Fruit Moth (OFM, Grapholita molesta) and Heliothis virescens males flying upwind along a pheromone plume showed that they increased their upwind flight speed as they flew higher above striped floor patterns and, for OFM, to a similar degree over dotted floor patterns. ...

  15. Olfactory protocerebral pathways processing sex pheromone and plant odor information in the male moth Agrotis segetum.

    PubMed

    Lei, H; Anton, S; Hansson, B S

    2001-04-01

    We investigated protocerebral processing of behaviorally relevant signals in the turnip moth, Agrotis segetum. Single neurons were studied both physiologically and morphologically using intracellular recording techniques. In moth pheromone communication systems, the presence of the complete, female-produced pheromone blend is necessary for male attraction. We predicted that more protocerebral neurons, compared with AL, would display blend interactions. However, only a few protocerebral neurons responded differently to the blend than could be deduced from the response to single components. The majority of the pheromone-sensitive protocerebral neurons identified in this study responded to the major pheromone component. In coding time, most AL neurons can follow a 5-Hz odor stimulus, whereas most protocerebral neurons failed at higher frequencies than 1 Hz. The majority of neurons that responded to the odorants tested innervated one or both of the protocerebral lateral accessory lobes. If only one of these was innervated, then the innervation always displayed a varicose appearance, suggesting a presynaptic function. Thus, information seems to be transferred from other protocerebral areas to the lateral accessory lobes. Into these, descending neurons sent smooth, postsynaptic branches. A majority of the neurons innervating the superior medial protocerebrum were found to display single-component specificity. Few additional correlations between odor specificity and structural characteristics were apparent.

  16. Common carp implanted with prostaglandin F2α release a sex pheromone complex that attracts conspecific males in both the laboratory and field.

    PubMed

    Lim, Hangkyo; Sorensen, Peter W

    2012-02-01

    When ovulated, female fish of many species are known to release a F-prostaglandin-derived sex pheromone that attracts conspecific males. Recently, this pheromone was identified in the common carp as a mixture of prostaglandin F(2α) (PGF(2α)) and unidentified body metabolites, which we termed a 'pheromone complex.' The present study sought to test the activity of this pheromone complex in the field by developing a system using carps implanted with PGF(2α) as pheromone donors. An initial experiment determined that osmotic pumps that delivered up to 0.4 mg of PGF(2α) per hour could be implanted into carp without any apparent effects on their health. A second experiment found that PGF(2α)-implanted male and female carp released biologically relevant (and equivalent) quantities of PGF(2α), along with two of its seemingly inactive metabolites, for up to 2 weeks. Laboratory experiments demonstrated that the odor of PGF(2α)-implanted carp was highly attractive to male conspecifics, and included necessary body metabolites; it attracted males as strongly as ovulated carp odor, and much better than PGF(2α) alone. Finally, a field test demonstrated that PGF(2α)-implanted female carp attracted mature male, but not female carp, from a distance of 20 m. This is the first demonstration of the activity of a PGF(2α)-based pheromone in a natural environment and confirms the use of a PGF-pheromone complex in the carp. We suggest that the implant technique may be useful in future studies of how PGF pheromones function and could be further developed to attract invasive fish for use in control.

  17. Targeting Cydia pomonella (L.)(Lepidoptera: Tortricidae) Adults with Low Volume Applications of Insecticides Alone and in Combination with Sex Pheromone

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies examined the effectiveness of adding insecticides to low volume sprays of a microencapsulated (MEC) sex pheromone to manage codling moth, Cydia pomonella (L). The activities of fifteen insecticides against the adult stage were first evaluated with a plastic cup assay. In general, moth longev...

  18. Evolution of moth sex pheromone composition by a single amino acid substitution in a fatty acid desaturase.

    PubMed

    Buček, Aleš; Matoušková, Petra; Vogel, Heiko; Šebesta, Petr; Jahn, Ullrich; Weißflog, Jerrit; Svatoš, Aleš; Pichová, Iva

    2015-10-13

    For sexual communication, moths primarily use blends of fatty acid derivatives containing one or more double bonds in various positions and configurations, called sex pheromones (SPs). To study the molecular basis of novel SP component (SPC) acquisition, we used the tobacco hornworm (Manduca sexta), which uses a blend of mono-, di-, and uncommon triunsaturated fatty acid (3UFA) derivatives as SP. We identified pheromone-biosynthetic fatty acid desaturases (FADs) MsexD3, MsexD5, and MsexD6 abundantly expressed in the M. sexta female pheromone gland. Their functional characterization and in vivo application of FAD substrates indicated that MsexD3 and MsexD5 biosynthesize 3UFAs via E/Z14 desaturation from diunsaturated fatty acids produced by previously characterized Z11-desaturase/conjugase MsexD2. Site-directed mutagenesis of sequentially highly similar MsexD3 and MsexD2 demonstrated that swapping of a single amino acid in the fatty acyl substrate binding tunnel introduces E/Z14-desaturase specificity to mutated MsexD2. Reconstruction of FAD gene phylogeny indicates that MsexD3 was recruited for biosynthesis of 3UFA SPCs in M. sexta lineage via gene duplication and neofunctionalization, whereas MsexD5 representing an alternative 3UFA-producing FAD has been acquired via activation of a presumably inactive ancestral MsexD5. Our results demonstrate that a change as small as a single amino acid substitution in a FAD enzyme might result in the acquisition of new SP compounds. PMID:26417103

  19. Evolution of moth sex pheromone composition by a single amino acid substitution in a fatty acid desaturase

    PubMed Central

    Buček, Aleš; Matoušková, Petra; Vogel, Heiko; Šebesta, Petr; Jahn, Ullrich; Weißflog, Jerrit; Svatoš, Aleš; Pichová, Iva

    2015-01-01

    For sexual communication, moths primarily use blends of fatty acid derivatives containing one or more double bonds in various positions and configurations, called sex pheromones (SPs). To study the molecular basis of novel SP component (SPC) acquisition, we used the tobacco hornworm (Manduca sexta), which uses a blend of mono-, di-, and uncommon triunsaturated fatty acid (3UFA) derivatives as SP. We identified pheromone-biosynthetic fatty acid desaturases (FADs) MsexD3, MsexD5, and MsexD6 abundantly expressed in the M. sexta female pheromone gland. Their functional characterization and in vivo application of FAD substrates indicated that MsexD3 and MsexD5 biosynthesize 3UFAs via E/Z14 desaturation from diunsaturated fatty acids produced by previously characterized Z11-desaturase/conjugase MsexD2. Site-directed mutagenesis of sequentially highly similar MsexD3 and MsexD2 demonstrated that swapping of a single amino acid in the fatty acyl substrate binding tunnel introduces E/Z14-desaturase specificity to mutated MsexD2. Reconstruction of FAD gene phylogeny indicates that MsexD3 was recruited for biosynthesis of 3UFA SPCs in M. sexta lineage via gene duplication and neofunctionalization, whereas MsexD5 representing an alternative 3UFA-producing FAD has been acquired via activation of a presumably inactive ancestral MsexD5. Our results demonstrate that a change as small as a single amino acid substitution in a FAD enzyme might result in the acquisition of new SP compounds. PMID:26417103

  20. Sex pheromone biosynthetic pathways are conserved between moths and the butterfly Bicyclus anynana

    PubMed Central

    Liénard, Marjorie A; Wang, Hong-Lei; Lassance, Jean-Marc; Löfstedt, Christer

    2014-01-01

    Although phylogenetically nested within the moths, butterflies have diverged extensively in a number of life history traits. Whereas moths rely greatly on chemical signals, visual advertisement is the hallmark of mate finding in butterflies. In the context of courtship, however, male chemical signals are widespread in both groups although they likely have multiple evolutionary origins. Here, we report that in males of the butterfly Bicyclus anynana, courtship scents are produced de novo via biosynthetic pathways shared with females of many moth species. We show that two of the pheromone components that play a major role in mate choice, namely the (Z)-9-tetradecenol and hexadecanal, are produced through the activity of a fatty acyl Δ11-desaturase and two specialized alcohol-forming fatty acyl reductases. Our study provides the first evidence of conservation and sharing of ancestral genetic modules for the production of FA-derived pheromones over a long evolutionary timeframe thereby reconciling mate communication in moths and butterflies. PMID:24862548

  1. Communication disruption of guava moth (Coscinoptycha improbana) using a pheromone analog based on chain length.

    PubMed

    Suckling, D M; Dymock, J J; Park, K C; Wakelin, R H; Jamieson, L E

    2013-09-01

    The guava moth, Coscinoptycha improbana, an Australian species that infests fruit crops in commercial and home orchards, was first detected in New Zealand in 1997. A four-component pheromone blend was identified but is not yet commercially available. Using single sensillum recordings from male antennae, we established that the same olfactory receptor neurons responded to two guava moth sex pheromone components, (Z)-11-octadecen-8-one and (Z)-12-nonadecen-9-one, and to a chain length analog, (Z)-13-eicosen-10-one, the sex pheromone of the related peach fruit moth, Carposina sasakii. We then field tested whether this non-specificity of the olfactory neurons might enable disruption of sexual communication by the commercially available analog, using male catch to synthetic lures in traps in single-tree, nine-tree and 2-ha plots. A disruptive pheromone analog, based on chain length, is reported for the first time. Trap catches for guava moth were disrupted by three polyethylene tubing dispensers releasing the analog in single-tree plots (86% disruption of control catches) and in a plots of nine trees (99% disruption). Where peach fruit moth pheromone dispensers were deployed at a density of 1000/ha in two 2-ha areas, pheromone traps for guava moth were completely disrupted for an extended period (up to 470 days in peri-urban gardens in Mangonui and 422 days in macadamia nut orchards in Kerikeri). In contrast, traps in untreated areas over 100 m away caught 302.8 ± 128.1 moths/trap in Mangonui and 327.5 ± 78.5 moths/ trap in Kerikeri. The longer chain length in the pheromone analog has greater longevity than the natural pheromone due to its lower volatility. Chain length analogs may warrant further investigation for mating disruption in Lepidoptera, and screening using single-sensillum recording is recommended.

  2. Communication disruption of guava moth (Coscinoptycha improbana) using a pheromone analog based on chain length.

    PubMed

    Suckling, D M; Dymock, J J; Park, K C; Wakelin, R H; Jamieson, L E

    2013-09-01

    The guava moth, Coscinoptycha improbana, an Australian species that infests fruit crops in commercial and home orchards, was first detected in New Zealand in 1997. A four-component pheromone blend was identified but is not yet commercially available. Using single sensillum recordings from male antennae, we established that the same olfactory receptor neurons responded to two guava moth sex pheromone components, (Z)-11-octadecen-8-one and (Z)-12-nonadecen-9-one, and to a chain length analog, (Z)-13-eicosen-10-one, the sex pheromone of the related peach fruit moth, Carposina sasakii. We then field tested whether this non-specificity of the olfactory neurons might enable disruption of sexual communication by the commercially available analog, using male catch to synthetic lures in traps in single-tree, nine-tree and 2-ha plots. A disruptive pheromone analog, based on chain length, is reported for the first time. Trap catches for guava moth were disrupted by three polyethylene tubing dispensers releasing the analog in single-tree plots (86% disruption of control catches) and in a plots of nine trees (99% disruption). Where peach fruit moth pheromone dispensers were deployed at a density of 1000/ha in two 2-ha areas, pheromone traps for guava moth were completely disrupted for an extended period (up to 470 days in peri-urban gardens in Mangonui and 422 days in macadamia nut orchards in Kerikeri). In contrast, traps in untreated areas over 100 m away caught 302.8 ± 128.1 moths/trap in Mangonui and 327.5 ± 78.5 moths/ trap in Kerikeri. The longer chain length in the pheromone analog has greater longevity than the natural pheromone due to its lower volatility. Chain length analogs may warrant further investigation for mating disruption in Lepidoptera, and screening using single-sensillum recording is recommended. PMID:24026215

  3. General principles of attraction and competitive attraction as revealed by large-cage studies of moths responding to sex pheromone

    PubMed Central

    Miller, J. R.; McGhee, P. S.; Siegert, P. Y.; Adams, C. G.; Huang, J.; Grieshop, M. J.; Gut, L. J.

    2009-01-01

    Knowledge of how insects are actually affected by sex pheromones deployed throughout a crop so as to disrupt mating has lacked a mechanistic framework sufficient for guiding optimization of this environmentally friendly pest-control tactic. Major hypotheses are competitive attraction, desensitization, and camouflage. Working with codling moths, Cydia pomonella, in field cages millions of times larger than laboratory test tubes and at substrate concentrations trillions of times less than those typical for enzymes, we nevertheless demonstrate that mating disruption sufficiently parallels enzyme (ligand) –substrate interactions so as to justify adoption of conceptual and analytical tools of biochemical kinetics. By doing so, we prove that commercial dispensers of codling moth pheromone first competitively attract and then deactivate males probably for the remainder of a night. No evidence was found for camouflage. We generated and now validate simple algebraic equations for attraction and competitive attraction that will guide optimization and broaden implementation of behavioral manipulations of pests. This analysis system also offers a unique approach to quantifying animal foraging behaviors and could find applications across the natural and social sciences. PMID:20018720

  4. Pheromone traps for monitoring Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae) in the presence of mating disruption

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High-dose pheromone lures have proved useful for monitoring some lepidopteran pests in the presence of mating disruption, but not others. We performed experiments in commercial and pilot scale facilities to examine the effect of pheromone dose on detection of Indianmeal moth, Plodia interpunctella (...

  5. Pheromone Autodetection: Evidence and Implications

    PubMed Central

    Holdcraft, Robert; Rodriguez-Saona, Cesar; Stelinski, Lukasz L.

    2016-01-01

    Olfactory communication research with insects utilizing sex pheromones has focused on the effects of pheromones on signal receivers. Early pheromone detection studies using the silkworm moth, Bombyx mori L., and Saturniids led to the assumption that emitters, especially females, are unable to detect their own pheromone. Pheromone anosmia, i.e., the inability of females to detect their conspecific sex pheromone, was often assumed, and initially little attention was paid to female behaviors that may result from autodetection, i.e., the ability of females to detect their sex pheromone. Detection of conspecific pheromone plumes from nearby females may provide information to improve chances of mating success and progeny survival. Since the first documented example in 1972, numerous occurrences of autodetection have been observed and verified in field and laboratory studies. We summarize here a significant portion of research relating to autodetection. Electrophysiological and behavioral investigations, as well as expression patterns of proteins involved in pheromone autodetection are included. We discuss problems inherent in defining a boundary between sex and aggregation pheromones considering the occurrence of autodetection, and summarize hypothesized selection pressures favoring autodetection. Importance of including autodetection studies in future work is emphasized by complications arising from a lack of knowledge combined with expanding the use of pheromones in agriculture. PMID:27120623

  6. Pheromone Autodetection: Evidence and Implications.

    PubMed

    Holdcraft, Robert; Rodriguez-Saona, Cesar; Stelinski, Lukasz L

    2016-01-01

    Olfactory communication research with insects utilizing sex pheromones has focused on the effects of pheromones on signal receivers. Early pheromone detection studies using the silkworm moth, Bombyx mori L., and Saturniids led to the assumption that emitters, especially females, are unable to detect their own pheromone. Pheromone anosmia, i.e., the inability of females to detect their conspecific sex pheromone, was often assumed, and initially little attention was paid to female behaviors that may result from autodetection, i.e., the ability of females to detect their sex pheromone. Detection of conspecific pheromone plumes from nearby females may provide information to improve chances of mating success and progeny survival. Since the first documented example in 1972, numerous occurrences of autodetection have been observed and verified in field and laboratory studies. We summarize here a significant portion of research relating to autodetection. Electrophysiological and behavioral investigations, as well as expression patterns of proteins involved in pheromone autodetection are included. We discuss problems inherent in defining a boundary between sex and aggregation pheromones considering the occurrence of autodetection, and summarize hypothesized selection pressures favoring autodetection. Importance of including autodetection studies in future work is emphasized by complications arising from a lack of knowledge combined with expanding the use of pheromones in agriculture. PMID:27120623

  7. Involvement of the G-protein-coupled dopamine/ecdysteroid receptor DopEcR in the behavioral response to sex pheromone in an insect.

    PubMed

    Abrieux, Antoine; Debernard, Stéphane; Maria, Annick; Gaertner, Cyril; Anton, Sylvia; Gadenne, Christophe; Duportets, Line

    2013-01-01

    Most animals including insects rely on olfaction to find their mating partners. In moths, males are attracted by female-produced sex pheromones inducing stereotyped sexual behavior. The behaviorally relevant olfactory information is processed in the primary olfactory centre, the antennal lobe (AL). Evidence is now accumulating that modulation of sex-linked behavioral output occurs through neuronal plasticity via the action of hormones and/or catecholamines. A G-protein-coupled receptor (GPCR) binding to 20-hydroxyecdysone, the main insect steroid hormone, and dopamine, has been identified in Drosophila (DmDopEcR), and was suggested to modulate neuronal signaling. In the male moth Agrotis ipsilon, the behavioral and central nervous responses to pheromone are age-dependent. To further unveil the mechanisms of this olfactory plasticity, we searched for DopEcR and tested its potential role in the behavioral response to sex pheromone in A. ipsilon males. Our results show that A. ipsilon DopEcR (named AipsDopEcR) is predominantly expressed in the nervous system. The corresponding protein was detected immunohistochemically in the ALs and higher brain centers including the mushroom bodies. Moreover, AipsDopEcR expression increased with age. Using a strategy of RNA interference, we also show that silencing of AipsDopEcR inhibited the behavioral response to sex pheromone in wind tunnel experiments. Altogether our results indicate that this GPCR is involved in the expression of sexual behavior in the male moth, probably by modulating the central nervous processing of sex pheromone through the action of one or both of its ligands.

  8. Comparative receptor surface analysis of agonists for tyramine receptor which inhibit sex-pheromone production in Plodia interpunctella.

    PubMed

    Hirashima, A; Eiraku, T; Kuwano, E; Eto, M

    2004-03-01

    The quantitative structure-activity relationship (QSAR) of a set of 29 agonists for tyramine (TA) receptor responsible for the inhibition of sex-pheromone production in Plodia interpunctella, was analyzed using comparative receptor surface analysis (CoRSA). Using the common steric and electrostatic features of the most active members of a series of compounds, CoRSA generated a virtual receptor model, represented as points on a surface complementary to the van der Waals or Wyvill steric surface of the aligned compounds. Three-dimensional energetics descriptors were calculated from receptor surface model (RSM)/ligand interaction and these three-dimensional descriptors were used in genetic partial least squares data analysis to generate a QSAR model, giving a 3D QSAR with r(2)=0.969 for calibration and CV- r(2)=0.635 for the leave-one-out cross validation.

  9. Control and monitoring of codling moth (Lepidoptera: Tortricidae) in walnut orchards treated with novel high-load, low-density “meso” dispensers of sex pheromone and pear ester

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Novel low-density per ha “meso” dispensers loaded with both pear ester, ethyl (E,Z)-2,4-decadienoate, kairomone and codlemone, (E,E)-8,10-dodecadien-1-ol, the sex pheromone of codling moth, Cydia pomonella (L)., were evaluated versus meso dispensers loaded with pheromone-alone for their mating disru...

  10. Synthetic sex pheromone in a long-lasting lure attracts the visceral leishmaniasis vector, Lutzomyia longipalpis, for up to 12 weeks in Brazil.

    PubMed

    Bray, Daniel P; Carter, Vicky; Alves, Graziella B; Brazil, Reginaldo P; Bandi, Krishna K; Hamilton, James G C

    2014-03-01

    Current control methodologies have not prevented the spread of visceral leishmaniasis (VL) across Brazil. Here, we describe the development of a new tool for controlling the sand fly vector of the disease: a long-lasting lure, which releases a synthetic male sex pheromone, attractive to both sexes of Lutzomyia longipalpis. This device could be used to improve the effectiveness of residual insecticide spraying as a means of sand fly control, attracting L. longipalpis to insecticide-treated animal houses, where they could be killed in potentially large numbers over a number of weeks. Different lure designs releasing the synthetic pheromone (±)-9-methylgermacrene-B (CAS 183158-38-5) were field-tested in Araçatuba, São Paulo (SP). Experiments compared numbers of sand flies caught overnight in experimental chicken sheds with pheromone lures, to numbers caught in control sheds without pheromone. Prototype lures, designed to last one night, were first used to confirm the attractiveness of the pheromone in SP, and shown to attract significantly more flies to test sheds than controls. Longer-lasting lures were tested when new, and at fortnightly intervals. Lures loaded with 1 mg of pheromone did not attract sand flies for more than two weeks. However, lures loaded with 10 mg of pheromone, with a releasing surface of 15 cm2 or 7.5 cm2, attracted female L. longipalpis for up to ten weeks, and males for up to twelve weeks. Approximately five times more sand flies were caught with 7.5 cm2 10 mg lures when first used than occurred naturally in non-experimental chicken resting sites. These results demonstrate that these lures are suitably long-lasting and attractive for use in sand fly control programmes in SP. To our knowledge, this is the first sex pheromone-based technology targeting an insect vector of a neglected human disease. Further studies should explore the general applicability of this approach for combating other insect-borne diseases.

  11. A degree-day model initiated by pheromone trap captures for managing pecan nut casebearer (Lepidoptera: Pyralidae) in pecans.

    PubMed

    Knutson, Allen E; Muegge, Mark A

    2010-06-01

    Field observations from pecan, Carya illinoinensis (Wangenh.) Koch, orchards in Texas were used to develop and validate a degree-day model of cumulative proportional adult flight and oviposition and date of first observed nut entry by larvae of the first summer generation of the pecan nut casebearer, Acrobasis nuxvorella Nuenzig (Lepidoptera: Pyralidae). The model was initiated on the date of first sustained capture of adults in pheromone traps. Mean daily maximum and minimum temperatures were used to determine the sum of degree-days from onset to 99% moth flight and oviposition and the date on which first summer generation larvae were first observed penetrating pecan nuts. Cumulative proportional oviposition (y) was described by a modified Gompertz equation, y = 106.05 x exp(-(exp(3.11 - 0.00669 x (x - 1), with x = cumulative degree-days at a base temperature of 3.33 degrees C. Cumulative proportional moth flight (y) was modeled as y = 102.62 x exp(- (exp(1.49 - 0.00571 x (x - 1). Model prediction error for dates of 10, 25, 50, 75, and 90% cumulative oviposition was 1.3 d and 83% of the predicted dates were within +/- 2 d of the observed event. Prediction error for date of first observed nut entry was 2.2 d and 77% of model predictions were within +/- 2 d of the observed event. The model provides ample lead time for producers to implement orchard scouting to assess pecan nut casebearer infestations and to apply an insecticide if needed to prevent economic loss. PMID:20568619

  12. Pan trapping soybean aphids (Hemiptera: Aphididae) using attractants.

    PubMed

    Behrens, Nicholas S; Zhu, Junwei; Coats, Joel R

    2012-06-01

    Since its introduction into the United States in the past 10 yr, soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), has been a damaging pest to soybean, Glycine max (L.) Merrill. During 2008 and 2009, fields in central and north central Iowa experienced pockets of high soybean aphid populations. Electroantennograms have shown that soybean aphid alatae are capable of detecting host plant volatiles and sex pheromones. Here, we evaluated baited pan traps as a potential soybean aphid attractant. Yellow pan traps were placed in soybean fields after planting along with lures that contained plant volatiles and sex pheromones in 2008 or sex pheromones only in 2009. Pan trap contents were collected weekly, and plant counts also were conducted. Aphids were identified, and soybean aphids were counted to determine whether one chemical lure was more attractive to spring migrants than other lures. In both years, soybean aphids collected in pan traps with lures were not significantly different from the other products tested. PMID:22812127

  13. Structure of Peptide Sex Pheromone Receptor PrgX and PrgX/Pheromone Complexes and Regulation of Conjugation in Enterococcus faecalis

    SciTech Connect

    Shi,K.; Brown, C.; Gu, Z.; Kozlowicz, B.; Dunny, G.; Ohlendorf, D.; Earhart, C.

    2005-01-01

    Many bacterial activities, including expression of virulence factors, horizontal genetic transfer, and production of antibiotics, are controlled by intercellular signaling using small molecules. To date, understanding of the molecular mechanisms of peptide-mediated cell-cell signaling has been limited by a dearth of published information about the molecular structures of the signaling components. Here, we present the molecular structure of PrgX, a DNA- and peptide-binding protein that regulates expression of the conjugative transfer genes of the Enterococcus faecalis plasmid pCF10 in response to an intercellular peptide pheromone signal. Comparison of the structures of PrgX and the PrgX/pheromone complex suggests that pheromone binding destabilizes PrgX tetramers, opening a 70-bp pCF10 DNA loop required for conjugation repression.

  14. Mating disruption of Paralobesia viteana in vineyards using pheromone deployed in SPLAT-GBM wax droplets.

    PubMed

    Jenkins, Paul E; Isaacs, Rufus

    2008-08-01

    A paraffin wax formulation releasing pheromone for mating disruption of insects was tested during 2005 and 2006 in Vitis labrusca vineyards infested by grape berry moth, Paralobesia viteana (Lepidoptera: Tortricidae). In early May of each year, 1-ml droplets of SPLAT-GBM wax containing 3% sex pheromone of P. viteana were applied to every wooden post at a rate of 400/ha in replicated 1.3-ha plots. Moth captures in sex pheromone baited traps placed at the vineyard borders and interiors revealed significant disruption of male moth captures in treated plots, with activity of one application lasting over 10 weeks during both years. Treatment with SPLAT-GBM did not affect the proportion of clusters infested until the end of the second growing season, when infestation was 27% lower in the treated plots than in the control plots. Comparisons of moth captures in traps placed inside 15.2 x 16.5 m vine plots that were untreated or received varying densities of 0.2-ml wax drops or Isomate-GBM hand-tied dispensers at the recommended rate of 450/ha indicated that orientational disruption increased with droplet density. Similar numbers of moths were captured in plots that received 10 or 30 drops per vine as were trapped in plots with twist ties spaced at 0.4 per vine. Moth captures in monitoring traps baited with increasing sizes of wax droplets (0.2, 0.5, or 1-ml drops) or red septa containing P. viteana sex pheromone suggest decreasing ability of male moths to reach traps with increasing pheromone loading. This study indicates that wax-deployed pheromone can reduce crop infestation by P. viteana after 2 years of deployment, and that the increasing of pheromone release by using application of greater droplet densities or by using larger droplets will improve the level of disruption achieved.

  15. Sticky traps saturate with navel orangeworm in a non-linear fashion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order to evaluate saturation thresholds as well as differences among wing-trap types, we used unmated female navel orangeworm (NOW) as sex pheromone baits in wing-traps that varied by color and glue/trapping surface. These results were compared to male capture in red delta and simple water cup tr...

  16. Identification of components of the female sex pheromone of the Simao pine caterpillar moth, Dendrolimus kikuchii Matsumura.

    PubMed

    Kong, Xiang-Bo; Sun, Xiao-Ling; Wang, Hong-Bin; Zhang, Zhen; Zhao, Cheng-Hua; Booij, Kees C J H

    2011-04-01

    The pine caterpillar moth, Dendrolimus kikuchii Matsumura (Lepidoptera: Lasiocampidae), is a pest of economic importance on pine in southwest China. Three active compounds were detected during analyses of solvent extracts and effluvia sampled by solid phase microextraction (SPME) from virgin female D. kikuchii using gas chromatography (GC) coupled with electroantennographic (EAG) recording with antennae from a male moth. The compounds were identified as (5Z,7E)-5,7-dodecadien-1-yl acetate (Z5,E7-12:OAc), (5Z,7E)-5,7-dodecadien-1-ol (Z5,E7-12:OH), and (5Z)-5-dodecenyl acetate (Z5-12:OAc) by comparison of their GC retention indices, mass spectra, and EAG activities with those of synthetic standards. Microchemical reactions of gland extracts provided further information confirming the identifications of the three components. Solvent extractions and SPME samples of pheromone effluvia from virgin calling females provided 100:18:0.6 and 100:7:1 ratios of Z5,E7-12:OAc:Z5,E7-12:OH:Z5-12:OAc, respectively. Field behavioral assays showed that Z5,E7-12:OAc and Z5,E7-12:OH were essential for attraction of male D. kikuchii moths. However, the most attractive blend contained these three components in a 100:20:25 ratio in a gray rubber septa. Our results demonstrated that the blend of Z5,E7-12:OAc, Z5,E7-12:OH, and Z5-12:OAc comprise the sex pheromone of D. kikuchii. The optimized three-component lure blend is recommended for monitoring D. kikuchii infestations.

  17. Dual Activation of a Sex Pheromone-Dependent Ion Channel from Insect Olfactory Dendrites by Protein Kinase C Activators and Cyclic GMP

    NASA Astrophysics Data System (ADS)

    Zufall, Frank; Hatt, Hanns

    1991-10-01

    Olfactory transduction is thought to take place in the outer dendritic membrane of insect olfactory receptor neurons. Here we show that the outer dendritic plasma membrane of silkmoth olfactory receptor neurons seems to be exclusively equipped with a specific ion channel activated by low concentrations of the species-specific sex pheromone component. This so-called AC_1 channel has a conductance of 56 pS and is nonselectively permeable to cations. The AC_1 channel can be activated from the intracellular side by protein kinase C activators such as diacylglycerol and phorbolester and by cGMP but not by Ca2+, inositol 1,4,5-trisphosphate, or cAMP. Our results imply that phosphorylation of this ion channel by protein kinase C could be the crucial step in channel opening by sex pheromones.

  18. How much is a pheromone worth?

    PubMed Central

    Bento, Jose Mauricio S.; Parra, Jose Roberto P.; de Miranda, Silvia H. G.; Adami, Andrea C. O.; Vilela, Evaldo F.; Leal, Walter S.

    2016-01-01

    Pheromone-baited traps have been widely used in integrated pest management programs, but their economic value for growers has never been reported.  We analyzed the economic benefits of long-term use of traps baited with the citrus fruit borer Gymnandrosoma aurantianum sex pheromone in Central-Southern Brazil. Our analysis show that from 2001 to 2013 citrus growers avoided accumulated pest losses of 132.7 million to 1.32 billion USD in gross revenues, considering potential crop losses in the range of 5 to 50%. The area analyzed, 56,600 to 79,100 hectares of citrus (20.4 to 29.4 million trees), corresponds to 9.7 to 13.5% of the total area planted with citrus in the state of São Paulo. The data show a benefit-to-cost ratio of US$ 2,655 to US$ 26,548 per dollar spent on research with estimated yield loss prevented in the range of 5-50%, respectively. This study demonstrates that, in addition to the priceless benefits for the environment, sex pheromones are invaluable tools for growers as their use for monitoring populations allows rational and reduced use of insecticides, a win-win situation. PMID:27583133

  19. How much is a pheromone worth?

    PubMed

    Bento, Jose Mauricio S; Parra, Jose Roberto P; de Miranda, Silvia H G; Adami, Andrea C O; Vilela, Evaldo F; Leal, Walter S

    2016-01-01

    Pheromone-baited traps have been widely used in integrated pest management programs, but their economic value for growers has never been reported.  We analyzed the economic benefits of long-term use of traps baited with the citrus fruit borer Gymnandrosoma aurantianum sex pheromone in Central-Southern Brazil. Our analysis show that from 2001 to 2013 citrus growers avoided accumulated pest losses of 132.7 million to 1.32 billion USD in gross revenues, considering potential crop losses in the range of 5 to 50%. The area analyzed, 56,600 to 79,100 hectares of citrus (20.4 to 29.4 million trees), corresponds to 9.7 to 13.5% of the total area planted with citrus in the state of São Paulo. The data show a benefit-to-cost ratio of US$ 2,655 to US$ 26,548 per dollar spent on research with estimated yield loss prevented in the range of 5-50%, respectively. This study demonstrates that, in addition to the priceless benefits for the environment, sex pheromones are invaluable tools for growers as their use for monitoring populations allows rational and reduced use of insecticides, a win-win situation.

  20. Mating disruption by a synthetic sex pheromone in the white grub beetle Dasylepida ishigakiensis (Coleoptera: Scarabaeidae) in the laboratory and sugarcane fields.

    PubMed

    Yasui, H; Wakamura, S; Fujiwara-Tsujii, N; Arakaki, N; Nagayama, A; Hokama, Y; Mochizuki, F; Fukumoto, T; Oroku, H; Harano, K; Tanaka, S

    2012-04-01

    A serious sugarcane pest, Dasylepida ishigakiensis, remains in the soil during most of its life cycle except for a short period for mating. Mating disruption by an artificial release of the sex pheromone (R)-2-butanol (R2B), therefore, may be a feasible method to control this pest. We examined the effects of artificial release of R2B and its related compounds, (S)-2-butanol (S2B) and the racemic 2-butanol (rac-2B), on the mating success of this beetle both in the laboratory and in the field. In flight tunnel experiments, almost all males orientated towards a R2B-releasing source and 40% of them landed on the source. When the atmosphere was permeated with R2B, the frequency of males landing on the model was significantly reduced. Both rac-2B and S2B were less effective, but substantial reduction in landing success by males was achieved at higher rac-2B concentrations. R2B released from polyethylene dispensers in sugarcane plots greatly reduced not only the proportion of females mated with males but also the number of males caught by R2B-baited traps, indicating that male mate-searching behaviour was strongly affected by the released R2B. Similar inhibitory effects on male behaviour were also observed when tube- or rope-type dispensers released high rac-2B concentrations in the field. These results indicate that it would be highly possible to control D. ishigakiensis through the disruption of the sexual communication by releasing either synthetic R2B or rac-2B.

  1. A Genetic Determinant in Streptococcus gordonii Challis Encodes a Peptide with Activity Similar to That of Enterococcal Sex Pheromone cAM373, Which Facilitates Intergeneric DNA Transfer▿

    PubMed Central

    Vickerman, M. M.; Flannagan, S. E.; Jesionowski, A. M.; Brossard, K. A.; Clewell, D. B.; Sedgley, C. M.

    2010-01-01

    Enterococcus faecalis strains secrete multiple peptides representing different sex pheromones that induce mating responses by bacteria carrying specific conjugative plasmids. The pheromone cAM373, which induces a response by the enterococcal plasmid pAM373, has been of interest because a similar activity is also secreted by Streptococcus gordonii and Staphylococcus aureus. The potential to facilitate intergeneric DNA transfer from E. faecalis is of concern because of extensive multiple antibiotic resistance, including vancomycin resistance, that has emerged among enterococci in recent years. Here, we characterize the related pheromone determinant in S. gordonii and show that the peptide it encodes, gordonii-cAM373, does indeed induce transfer of plasmid DNA from E. faecalis into S. gordonii. The streptococcal determinant camG encodes a lipoprotein with a leader sequence, the last 7 residues of which represent the gordonii-cAM373 heptapeptide SVFILAA. Synthetic forms of the peptide had activity similar to that of the enterococcal cAM373 AIFILAS. The lipoprotein moiety bore no resemblance to the lipoprotein encoded by E. faecalis. We also identified determinants in S. gordonii encoding a signal peptidase and an Eep-like zinc metalloprotease (lspA and eep, respectively) similar to those involved in processing certain pheromone precursors in E. faecalis. Mutations generated in camG, lspA, and eep each resulted in the ablation of gordonii-cAM373 activity in culture supernatants. This is the first genetic analysis of a potential sex pheromone system in a commensal oral streptococcal species, which may have implications for intergeneric gene acquisition in oral biofilms. PMID:20233933

  2. Pheromone Signalling

    ERIC Educational Resources Information Center

    Hart, Adam G.

    2011-01-01

    Pheromones are chemicals used to communicate with members of the same species. First described in insects, pheromones are often used to attract mates but in social insects, such as ants and bees, pheromone use is much more sophisticated. For example, ants use pheromones to make foraging trails and the chemical and physical properties of the…

  3. Monitoring oriental fruit moth and codling moth (Lepidoptera: Tortricidae) with combinations of pheromones and kairomoness

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Experiments were conducted in North and South America during 2012-2013 to evaluate the use of lure combinations of sex pheromones (PH), host plant volatiles (HPV), and food baits in traps to capture the oriental fruit moth, Grapholita molesta (Busck) and codling moth, Cydia pomonella (L.) in pome an...

  4. Identification of the sex pheromone of the invasive scale Acutaspis albopicta (Hemiptera: Diaspididae), arriving in California on shipments of avocados from Mexico.

    PubMed

    Millar, Jocelyn G; Chinta, Satya P; McElfresh, J Steven; Robinson, Lindsay J; Morse, Joseph G

    2012-04-01

    As a result of relaxation of importation restrictions ordered by the Animal and Plant Health Inspection Service of the U.S. Department of Agriculture, shipments of fresh avocados from Mexico began entering California year-round in 2007, despite the fact that these shipments were heavily infested with a number of exotic and potentially invasive armored scale species that are not thought to be present in California. Here, we report the identification of the sex pheromone of one of these species, Acutaspis albopicta (Cockerell), from a quarantine colony of these insects initiated from specimens collected from commercial shipments of Mexican avocados. The compound was identified as [(1S,3S)-2,2-dimethyl-3-(prop-1-en-2-yl)cyclobutyl)]methyl (R)-2-methylbutanoate, and was similar in structure to the pheromones of several other scale and mealybug species. In laboratory bioassays, the pheromone was highly attractive to male scales in microgram doses. The pheromone will provide a very sensitive and selective tool for detection of the scale to try and prevent its permanent establishment in California.

  5. Sex steroids as pheromones in mammals: the exceptional role of estradiol.

    PubMed

    deCatanzaro, Denys

    2015-02-01

    This article is part of a Special Issue (Chemosignals and Reproduction). Whether from endogenous or exogenous sources, 17β-estradiol (E2) has very powerful influences over mammalian female reproductive physiology and behavior. Given its highly lipophilic nature and low molecular mass, E2 readily enters excretions and can be absorbed from exogenous sources via nasal, cutaneous, and other modes of exposure. Indeed, systemic injection of tritiated estradiol ((3)H-E2) into a male mouse or bat has been shown to produce significant levels of radioactivity in the reproductive tissues and brain of cohabiting female conspecifics. Bioactive E2 and other steroids are naturally found in male mouse urine and other excretions, and males actively direct their urine at proximate females. Very low doses of E2 can mimic the Bruce effect (disruption of peri-implantation pregnancy by novel males), the Vandenbergh effect (early reproductive maturation induced by novel males), and male-induced estrus and ovulation. Males' capacities to induce the Bruce and Vandenbergh effects can both be diminished by manipulations that reduce their urinary E2. Uterine dynamics during the Bruce and Vandenbergh effects are consistent with the actions of E2. Collectively, these data demonstrate a critical role of male-sourced E2 in these major mammalian pheromonal effects.

  6. Discovery of pyrazines as pollinator sex pheromones and orchid semiochemicals: implications for the evolution of sexual deception.

    PubMed

    Bohman, Björn; Phillips, Ryan D; Menz, Myles H M; Berntsson, Ben W; Flematti, Gavin R; Barrow, Russell A; Dixon, Kingsley W; Peakall, Rod

    2014-08-01

    Sexually deceptive orchids employ floral volatiles to sexually lure their specific pollinators. How and why this pollination system has evolved independently on multiple continents remains unknown, although preadaptation is considered to have been important. Understanding the chemistry of sexual deception is a crucial first step towards solving this mystery. The combination of gas chromatography-electroantennographic detection (GC-EAD), GC-MS, synthesis and field bioassays allowed us to identify the volatiles involved in the interaction between the orchid Drakaea glyptodon and its sexually attracted male thynnine wasp pollinator, Zaspilothynnus trilobatus. Three alkylpyrazines and one novel hydroxymethyl pyrazine were identified as the sex pheromone of Z. trilobatus and are also used by D. glyptodon for pollinator attraction. Given that our findings revealed a new chemical system for plants, we surveyed widely across representative orchid taxa for the presence of these compounds. With one exception, our chemical survey failed to detect pyrazines in related genera. Collectively, no evidence for preadaptation was found. The chemistry of sexual deception is more diverse than previously known. Our results suggest that evolutionary novelty may have played a key role in the evolution of sexual deception and highlight the value of investigating unusual pollination systems for advancing our understanding of the role of chemistry in evolution. PMID:24697806

  7. A Challenge for a Male Noctuid Moth? Discerning the Female Sex Pheromone against the Background of Plant Volatiles.

    PubMed

    Badeke, Elisa; Haverkamp, Alexander; Hansson, Bill S; Sachse, Silke

    2016-01-01

    Finding a partner is an essential task for members of all species. Like many insects, females of the noctuid moth Heliothis virescens release chemical cues consisting of a species-specific pheromone blend to attract conspecific males. While tracking these blends, male moths are also continuously confronted with a wide range of other odor molecules, many of which are plant volatiles. Therefore, we analyzed how background plant odors influence the degree of male moth attraction to pheromones. In order to mimic a natural situation, we tracked pheromone-guided behavior when males were presented with the headspaces of each of two host plants in addition to the female pheromone blend. Since volatile emissions are also dependent on the physiological state of the plant, we compared pheromone attraction in the background of both damaged and intact plants. Surprisingly, our results show that a natural odor bouquet does not influence flight behavior at all, although previous studies had shown a suppressive effect at the sensory level. We also chose different concentrations of single plant-emitted volatiles, which have previously been shown to be neurophysiologically relevant, and compared their influence on pheromone attraction. We observed that pheromone attraction in male moths was significantly impaired in a concentration-dependent manner when single plant volatiles were added. Finally, we quantified the amounts of volatile emission in our experiments using gas chromatography. Notably, when the natural emissions of host plants were compared with those of the tested single plant compounds, we found that host plants do not release volatiles at concentrations that impact pheromone-guided flight behavior of the moth. Hence, our results lead to the conclusion that pheromone-plant interactions in Heliothis virescens might be an effect of stimulation with supra-natural plant odor concentrations, whereas under more natural conditions the olfactory system of the male moth appears

  8. A Challenge for a Male Noctuid Moth? Discerning the Female Sex Pheromone against the Background of Plant Volatiles

    PubMed Central

    Badeke, Elisa; Haverkamp, Alexander; Hansson, Bill S.; Sachse, Silke

    2016-01-01

    Finding a partner is an essential task for members of all species. Like many insects, females of the noctuid moth Heliothis virescens release chemical cues consisting of a species-specific pheromone blend to attract conspecific males. While tracking these blends, male moths are also continuously confronted with a wide range of other odor molecules, many of which are plant volatiles. Therefore, we analyzed how background plant odors influence the degree of male moth attraction to pheromones. In order to mimic a natural situation, we tracked pheromone-guided behavior when males were presented with the headspaces of each of two host plants in addition to the female pheromone blend. Since volatile emissions are also dependent on the physiological state of the plant, we compared pheromone attraction in the background of both damaged and intact plants. Surprisingly, our results show that a natural odor bouquet does not influence flight behavior at all, although previous studies had shown a suppressive effect at the sensory level. We also chose different concentrations of single plant-emitted volatiles, which have previously been shown to be neurophysiologically relevant, and compared their influence on pheromone attraction. We observed that pheromone attraction in male moths was significantly impaired in a concentration-dependent manner when single plant volatiles were added. Finally, we quantified the amounts of volatile emission in our experiments using gas chromatography. Notably, when the natural emissions of host plants were compared with those of the tested single plant compounds, we found that host plants do not release volatiles at concentrations that impact pheromone-guided flight behavior of the moth. Hence, our results lead to the conclusion that pheromone-plant interactions in Heliothis virescens might be an effect of stimulation with supra-natural plant odor concentrations, whereas under more natural conditions the olfactory system of the male moth appears

  9. Spruce budworm (Choristoneura fumiferana) pheromone chemistry and behavioral responses to pheromone components and analogs.

    PubMed

    Silk, P J; Kuenen, L P

    1986-02-01

    This paper reviews the sex pheromone chemistry and pheromone-mediated behavior of the spruce budworm and related coniferophagous (Choristoneura) budworms. InC. fumiferana, temporal changes in pheromone-gland monounsaturated fatty acids (pheromone precursors) enable the prediction of the primary sex pheromone components. This technique may also be applicable for predicting additional pheromone components. Tetradecanal (14∶ Ald), previously shown to enhance close-range precopulatory behavior, lowers the threshold of response by males for upwind flight to a pheromone-component source. Spruce budworm males maintain upwind flight to 95∶5 (E/Z)-1,12-pentadecadiene (diolefin analog) after initiating upwind flight to a primary-component pheromone source (95∶5E/Z11-14∶Ald). This is the first demonstration of apparently normal male flight responses to a pheromone analog.

  10. Attraction of spathius agrili yang (Hymenoptera: eulophidae) to male-produced "aggregation-sex pheromone:" differences between the sexes and mating status

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Male and female Spathius agrili Yang were tested for attraction to the synthetic male pheromone. Lures consisting of a 3-component pheromone blend were placed in the center of a white filter paper target used to activate upwind flight in the wind tunnel. When virgin males and females were tested for...

  11. Mating Type Gene Homologues and Putative Sex Pheromone-Sensing Pathway in Arbuscular Mycorrhizal Fungi, a Presumably Asexual Plant Root Symbiont

    PubMed Central

    Halary, Sébastien; Daubois, Laurence; Terrat, Yves; Ellenberger, Sabrina; Wöstemeyer, Johannes; Hijri, Mohamed

    2013-01-01

    The fungal kingdom displays a fascinating diversity of sex-determination systems. Recent advances in genomics provide insights into the molecular mechanisms of sex, mating type determination, and evolution of sexual reproduction in many fungal species in both ancient and modern phylogenetic lineages. All major fungal groups have evolved sexual differentiation and recombination pathways. However, sexuality is unknown in arbuscular mycorrhizal fungi (AMF) of the phylum Glomeromycota, an ecologically vital group of obligate plant root symbionts. AMF are commonly considered an ancient asexual lineage dating back to the Ordovician, approximately 460 M years ago. In this study, we used genomic and transcriptomic surveys of several AMF species to demonstrate the presence of conserved putative sex pheromone-sensing mitogen-activated protein (MAP) kinases, comparable to those described in Ascomycota and Basidiomycota. We also find genes for high mobility group (HMG) transcription factors, homologous to SexM and SexP genes in the Mucorales. The SexM genes show a remarkable sequence diversity among multiple copies in the genome, while only a single SexP sequence was detected in some isolates of Rhizophagus irregularis. In the Mucorales and Microsporidia, the sexM gene is flanked by genes for a triosephosphate transporter (TPT) and a RNA helicase, but we find no evidence for synteny in the vicinity of the Sex locus in AMF. Nonetheless, our results, together with previous observations on meiotic machinery, suggest that AMF could undergo a complete sexual reproduction cycle. PMID:24260466

  12. Mating type gene homologues and putative sex pheromone-sensing pathway in arbuscular mycorrhizal fungi, a presumably asexual plant root symbiont.

    PubMed

    Halary, Sébastien; Daubois, Laurence; Terrat, Yves; Ellenberger, Sabrina; Wöstemeyer, Johannes; Hijri, Mohamed

    2013-01-01

    The fungal kingdom displays a fascinating diversity of sex-determination systems. Recent advances in genomics provide insights into the molecular mechanisms of sex, mating type determination, and evolution of sexual reproduction in many fungal species in both ancient and modern phylogenetic lineages. All major fungal groups have evolved sexual differentiation and recombination pathways. However, sexuality is unknown in arbuscular mycorrhizal fungi (AMF) of the phylum Glomeromycota, an ecologically vital group of obligate plant root symbionts. AMF are commonly considered an ancient asexual lineage dating back to the Ordovician, approximately 460 M years ago. In this study, we used genomic and transcriptomic surveys of several AMF species to demonstrate the presence of conserved putative sex pheromone-sensing mitogen-activated protein (MAP) kinases, comparable to those described in Ascomycota and Basidiomycota. We also find genes for high mobility group (HMG) transcription factors, homologous to SexM and SexP genes in the Mucorales. The SexM genes show a remarkable sequence diversity among multiple copies in the genome, while only a single SexP sequence was detected in some isolates of Rhizophagus irregularis. In the Mucorales and Microsporidia, the sexM gene is flanked by genes for a triosephosphate transporter (TPT) and a RNA helicase, but we find no evidence for synteny in the vicinity of the Sex locus in AMF. Nonetheless, our results, together with previous observations on meiotic machinery, suggest that AMF could undergo a complete sexual reproduction cycle.

  13. Polar metabolites synergize the activity of prostaglandin F2α in a species-specific hormonal sex pheromone released by ovulated common carp.

    PubMed

    Lim, Hangkyo; Sorensen, Peter W

    2011-07-01

    Many species of teleost fish detect and release F prostaglandins (PGFs), but the specific identities of these compounds and how they function as species-specific pheromones have yet to be resolved. This study addressed these questions in the common carp. An initial set of experiments established that mature male common carp were attracted to chemicals released by ovulated conspecifics, whereas the odor of female goldfish, a close relative, was less attractive. Tests of fractionated holding water from ovulated carp revealed that only the non-polar fraction was attractive on its own. Mass spectrometry and immunoassay next demonstrated that the non-polar fraction contained large quantities of prostaglandin F(2α) (PGF(2α)), 15keto-prostaglandinF(2α), and 13,14-dihydro-15keto-prostaglandin F(2α) (100 g fish released over 1 μg of all 3 PGFs per h at a ratio of 1.0: 1.7: 0.7). Ovulated goldfish released the same three PGFs but at a slightly greater rate and in a different ratio. Tests of synthetic mixtures of these PGFs revealed that the carp-specific mixture attracted male carp but was no better than the goldfish-specific mixture or PGF(2α) alone and that PGF(2α) was just as attractive as mixture of all three PGFs. A final set of attraction tests revealed that although PGF(2α) could explain all of the activity of the non-polar portion of female carp holding water, it could not explain the entire activity of female water but that a mixture of PGFs and the polar fraction could. We conclude that ovulated female carp release a multi-component sex pheromone complex that is comprised of PGF(2α) and unknown species-specific polar compound(s) that synergize the activity of the former. The pheromone also might be useful in controlling this invasive species. The observation that a fish hormonal sex pheromone incorporates bodily metabolites in addition to relatively common hormonal products demonstrates a mechanism by which species specificity may be conferred to this

  14. Chirality and bioactivity of the sex pheromone of Madeira mealybug (Hemiptera: Pseudococcidae).

    PubMed

    Ho, Hsiao-Yung; Ko, Chi-Hung; Cheng, Chao-Chih; Su, Yu-Ting; Pola, Someshwar

    2011-06-01

    Two compounds (trans-1R,3R-chrysanthemyl R-2-methylbutanoate and R-lavandulyl R-2-methylbutanoate) identified from aeration extracts of virgin female Madeira mealybug, Phenacoccus madeirensis Green (Hemiptera: Pseudococcidae), were synthesized and tested in field bioassays in northern Taiwan over a 1-mo period. In total, 1,492 male P. madeirensis were captured in sticky traps. Our results showed that 1 microg of synthetic trans-1R,3R-chrysanthemyl R-2-methylbutanoate released from a plastic tube dispenser was attractive to the mealybugs. Different stereoisomers of chrysanthemyl 2-methylbutanoate also were tested. The insect-produced stereoisomer was the most attractive of all the isomers tested, and the stereochemistry of the acid moiety proved to be more critical than that of the alcohol moiety. The minor component found in extracts, R-lavandulyl R-2-methylbutanoate, alone was not attractive to male Madeira mealybugs nor did it act synergistically or additively with the main component.

  15. Differentiation in putative male sex pheromone components across and within populations of the African butterfly Bicyclus anynana as a potential driver of reproductive isolation.

    PubMed

    Bacquet, Paul M B; de Jong, Maaike A; Brattström, Oskar; Wang, Hong-Lei; Molleman, Freerk; Heuskin, Stéphanie; Lognay, George; Löfstedt, Christer; Brakefield, Paul M; Vanderpoorten, Alain; Nieberding, Caroline M

    2016-09-01

    Sexual traits are often the most divergent characters among closely related species, suggesting an important role of sexual traits in speciation. However, to prove this, we need to show that sexual trait differences accumulate before or during the speciation process, rather than being a consequence of it. Here, we contrast patterns of divergence among putative male sex pheromone (pMSP) composition and the genetic structure inferred from variation in the mitochondrial cytochrome oxidase 1 and nuclear CAD loci in the African butterfly Bicyclus anynana (Butler, 1879) to determine whether the evolution of "pheromonal dialects" occurs before or after the differentiation process. We observed differences in abundance of some shared pMSP components as well as differences in the composition of the pMSP among B. anynana populations. In addition, B. anynana individuals from Kenya displayed differences in the pMSP composition within a single population that appeared not associated with genetic differences. These differences in pMSP composition both between and within B. anynana populations were as large as those found between different Bicyclus species. Our results suggest that "pheromonal dialects" evolved within and among populations of B. anynana and may therefore act as precursors of an ongoing speciation process. PMID:27648226

  16. Likely Aggregation-Sex Pheromones of the Invasive Beetle Callidiellum villosulum, and the Related Asian Species Allotraeus asiaticus, Semanotus bifasciatus, and Xylotrechus buqueti (Coleoptera: Cerambycidae).

    PubMed

    Wickham, Jacob D; Lu, Wen; Zhang, Long-Wa; Chen, Yi; Zou, Yunfan; Hanks, Lawrence M; Millar, Jocelyn G

    2016-10-01

    During field trials of the two known cerambycid beetle pheromone components 3-hydroxyhexan-2-one and 1-(1H-pyrrol-2-yl)-1,2-propanedione (henceforth "pyrrole") in Guangxi and Anhui provinces in China, four species in the subfamily Cerambycinae were attracted to lures containing one of the two components, or the blend of the two. Thus, the invasive species Callidiellum villosulum (Fairmaire) (tribe Callidiini) and a second species, Xylotrechus buqueti (Castelnau & Gory) (tribe Clytini), were specifically attracted to the blend of 3-hydroxyhexan-2-one and the pyrrole. In contrast, Allotreus asiaticus (Schwarzer) (tribe Phoracanthini) and Semanotus bifasciatus Motschulsky (tribe Callidiini) were specifically attracted to the pyrrole as a single component. In most cases, both males and females were attracted, indicating that the compounds are likely to be aggregation-sex pheromones. The results indicate that the two compounds are conserved as pheromone components among species within at least three tribes within the subfamily Cerambycinae. For practical purposes, the attractants could find immediate use in surveillance programs aimed at detecting incursions of these species into new areas of the world, including the United States.

  17. Differentiation in putative male sex pheromone components across and within populations of the African butterfly Bicyclus anynana as a potential driver of reproductive isolation.

    PubMed

    Bacquet, Paul M B; de Jong, Maaike A; Brattström, Oskar; Wang, Hong-Lei; Molleman, Freerk; Heuskin, Stéphanie; Lognay, George; Löfstedt, Christer; Brakefield, Paul M; Vanderpoorten, Alain; Nieberding, Caroline M

    2016-09-01

    Sexual traits are often the most divergent characters among closely related species, suggesting an important role of sexual traits in speciation. However, to prove this, we need to show that sexual trait differences accumulate before or during the speciation process, rather than being a consequence of it. Here, we contrast patterns of divergence among putative male sex pheromone (pMSP) composition and the genetic structure inferred from variation in the mitochondrial cytochrome oxidase 1 and nuclear CAD loci in the African butterfly Bicyclus anynana (Butler, 1879) to determine whether the evolution of "pheromonal dialects" occurs before or after the differentiation process. We observed differences in abundance of some shared pMSP components as well as differences in the composition of the pMSP among B. anynana populations. In addition, B. anynana individuals from Kenya displayed differences in the pMSP composition within a single population that appeared not associated with genetic differences. These differences in pMSP composition both between and within B. anynana populations were as large as those found between different Bicyclus species. Our results suggest that "pheromonal dialects" evolved within and among populations of B. anynana and may therefore act as precursors of an ongoing speciation process.

  18. Attraction of a native Florida leafminer, Phyllocnistis insignis, to pheromone of an invasive citrus Leafminer, P. citrella.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We collected a native North American species, Phyllocnistis insignis (Frey & Boll) (Lepidoptera: Gracillariidae), in traps baited with a 3:1 blend of (Z,Z,E)-7,11,13-hexadecatrienal (triene) and (Z,Z)-7,11-hexadecadienal (diene), 2 components of the sex pheromone of the invasive citrus leafminer, P....

  19. Behavioral evidence for a contact sex pheromone component of the emerald ash borer, Agrilus planipennis Fairmaire.

    PubMed

    Lelito, Jonathan P; Böröczky, Katalin; Jones, Tappey H; Fraser, Ivich; Mastro, Victor C; Tumlinson, James H; Baker, Thomas C

    2009-01-01

    The cuticular hydrocarbon profiles of emerald ash borers, Agrilus planipennis, were examined to determine if there are differences in these compounds between the sexes. We also assessed feral male EAB in the field for behavioral changes based on the application of a female-specific compound to dead, solvent-washed beetles. Males in the field spent significantly more time attempting copulation with dead, pinned female beetles coated with a three-beetle-equivalent dose of 3-methyltricosane than with solvent-washed beetles or those coated in 3-methyltricosane at lower concentrations. Males in the field spent the most time investigating pinned dead, unwashed female beetles. In the laboratory, sexually mature males were presented with one of several mixtures applied in hexane to filter paper disks or to the elytra of dead female beetles first washed in solvent. Male EAB also spent more time investigating dead beetles treated with solution applications that contained 3-methyltricosane than dead beetles and filter paper disks treated with male body wash or a straight-chain hydrocarbon not found on the cuticle of EAB.

  20. Epigenetic-induced alterations in sex-ratios in response to climate change: An epigenetic trap?

    PubMed

    Consuegra, Sofia; Rodríguez López, Carlos M

    2016-10-01

    We hypothesize that under the predicted scenario of climate change epigenetically mediated environmental sex determination could become an epigenetic trap. Epigenetically regulated environmental sex determination is a mechanism by which species can modulate their breeding strategies to accommodate environmental change. Growing evidence suggests that epigenetic mechanisms may play a key role in phenotypic plasticity and in the rapid adaptation of species to environmental change, through the capacity of organisms to maintain a non-genetic plastic memory of the environmental and ecological conditions experienced by their parents. However, inherited epigenetic variation could also be maladaptive, becoming an epigenetic trap. This is because environmental sex determination can alter sex ratios by increasing the survival of one of the sexes at the expense of negative fitness consequences for the other, which could lead not only to the collapse of natural populations, but also have an impact in farmed animal and plant species.

  1. Epigenetic-induced alterations in sex-ratios in response to climate change: An epigenetic trap?

    PubMed

    Consuegra, Sofia; Rodríguez López, Carlos M

    2016-10-01

    We hypothesize that under the predicted scenario of climate change epigenetically mediated environmental sex determination could become an epigenetic trap. Epigenetically regulated environmental sex determination is a mechanism by which species can modulate their breeding strategies to accommodate environmental change. Growing evidence suggests that epigenetic mechanisms may play a key role in phenotypic plasticity and in the rapid adaptation of species to environmental change, through the capacity of organisms to maintain a non-genetic plastic memory of the environmental and ecological conditions experienced by their parents. However, inherited epigenetic variation could also be maladaptive, becoming an epigenetic trap. This is because environmental sex determination can alter sex ratios by increasing the survival of one of the sexes at the expense of negative fitness consequences for the other, which could lead not only to the collapse of natural populations, but also have an impact in farmed animal and plant species. PMID:27548838

  2. Identification of the Aggregation Pheromone of the Melon Thrips, Thrips palmi

    PubMed Central

    Akella, Sudhakar V. S.; Kirk, William D. J.; Lu, Yao-bin; Murai, Tamotsu; Walters, Keith F. A.; Hamilton, James G. C.

    2014-01-01

    The objective of this study was to identify the aggregation pheromone of the melon thrips Thrips palmi, a major pest of vegetable and ornamental plants around the world. The species causes damage both through feeding activities and as a vector of tospoviruses, and is a threat to world trade and European horticulture. Improved methods of detecting and controlling this species are needed and the identification of an aggregation pheromone will contribute to this requirement. Bioassays with a Y-tube olfactometer showed that virgin female T. palmi were attracted to the odour of live males, but not to that of live females, and that mixed-age adults of both sexes were attracted to the odour of live males, indicating the presence of a male-produced aggregation pheromone. Examination of the headspace volatiles of adult male T. palmi revealed only one compound that was not found in adult females. It was identified by comparison of its mass spectrum and chromatographic details with those of similar compounds. This compound had a structure like that of the previously identified male-produced aggregation pheromone of the western flower thrips Frankliniella occidentalis. The compound was synthesised and tested in eggplant crops infested with T. palmi in Japan. Significantly greater numbers of both males and females were attracted to traps baited with the putative aggregation pheromone compared to unbaited traps. The aggregation pheromone of T. palmi is thus identified as (R)-lavandulyl 3-methyl-3-butenoate by spectroscopic, chromatographic and behavioural analysis. PMID:25101871

  3. Diel periodicity of pheromone release by females of Planococcus citri and Planococcus ficus and the temporal flight activity of their conspecific males

    NASA Astrophysics Data System (ADS)

    Levi-Zada, Anat; Fefer, Daniela; David, Maayan; Eliyahu, Miriam; Franco, José Carlos; Protasov, Alex; Dunkelblum, Ezra; Mendel, Zvi

    2014-08-01

    The diel periodicity of sex pheromone release was monitored in two mealybug species, Planococcus citri and Planococcus ficus (Hemiptera; Pseudococcidae), using sequential SPME/GCMS analysis. A maximal release of 2 ng/h pheromone by 9-12-day-old P. citri females occurred 1-2 h before the beginning of photophase. The highest release of pheromone by P. ficus females was 1-2 ng/2 h of 10-20-day-old females, approximately 2 h after the beginning of photophase. Mating resulted in termination of the pheromone release in both mealybug species. The temporal flight activity of the males was monitored in rearing chambers using pheromone baited delta traps. Males of both P. citri and P. ficus displayed the same flight pattern and began flying at 06:00 hours when the light was turned on, reaching a peak during the first and second hour of the photophase. Our results suggest that other biparental mealybug species display also diel periodicities of maximal pheromone release and response. Direct evaluation of the diel periodicity of the pheromone release by the automatic sequential analysis is convenient and will be very helpful in optimizing the airborne collection and identification of other unknown mealybug pheromones and to study the calling behavior of females. Considering this behavior pattern may help to develop more effective pheromone-based management strategies against mealybugs.

  4. Diel periodicity of pheromone release by females of Planococcus citri and Planococcus ficus and the temporal flight activity of their conspecific males.

    PubMed

    Levi-Zada, Anat; Fefer, Daniela; David, Maayan; Eliyahu, Miriam; Franco, José Carlos; Protasov, Alex; Dunkelblum, Ezra; Mendel, Zvi

    2014-08-01

    The diel periodicity of sex pheromone release was monitored in two mealybug species, Planococcus citri and Planococcus ficus (Hemiptera; Pseudococcidae), using sequential SPME/GCMS analysis. A maximal release of 2 ng/h pheromone by 9-12-day-old P. citri females occurred 1-2 h before the beginning of photophase. The highest release of pheromone by P. ficus females was 1-2 ng/2 h of 10-20-day-old females, approximately 2 h after the beginning of photophase. Mating resulted in termination of the pheromone release in both mealybug species. The temporal flight activity of the males was monitored in rearing chambers using pheromone baited delta traps. Males of both P. citri and P. ficus displayed the same flight pattern and began flying at 06:00 hours when the light was turned on, reaching a peak during the first and second hour of the photophase. Our results suggest that other biparental mealybug species display also diel periodicities of maximal pheromone release and response. Direct evaluation of the diel periodicity of the pheromone release by the automatic sequential analysis is convenient and will be very helpful in optimizing the airborne collection and identification of other unknown mealybug pheromones and to study the calling behavior of females. Considering this behavior pattern may help to develop more effective pheromone-based management strategies against mealybugs.

  5. Characterisation of Acetyl-CoA Thiolase: The First Enzyme in the Biosynthesis of Terpenic Sex Pheromone Components in the Labial Gland of Bombus terrestris.

    PubMed

    Brabcová, Jana; Demianová, Zuzana; Kindl, Jiří; Pichová, Iva; Valterová, Irena; Zarevúcka, Marie

    2015-05-01

    Buff-tailed bumblebees, Bombus terrestris, use a male sex pheromone for premating communication. Its main component is a sesquiterpene, 2,3-dihydrofarnesol. This paper reports the isolation of a thiolase (acetyl-CoA thiolase, AACT_BT), the first enzyme involved in the biosynthetic pathway leading to formation of isoprenoids in the B. terrestris male sex pheromone. Characterisation of AACT_BT might contribute to a better understanding of pheromonogenesis in the labial gland of B. terrestris males. The protein was purified to apparent homogeneity by column chromatography with subsequent stepwise treatment. AACT_BT showed optimum acetyltransferase activity at pH 7.1 and was strongly inhibited by iodoacetamide. The enzyme migrated as a band with an apparent mass of 42.9 kDa on SDS-PAGE. MS analysis of an AACT_BT tryptic digest revealed high homology to representatives of the thiolase family. AACT_BT has 96 % amino acid sequence identity with the previously reported Bombus impatiens thiolase.

  6. Sex pheromone mimicry in the early spider orchid (ophrys sphegodes): patterns of hydrocarbons as the key mechanism for pollination by sexual deception.

    PubMed

    Schiestl, F P; Ayasse, M; Paulus, H F; Löfstedt, C; Hansson, B S; Ibarra, F; Francke, W

    2000-06-01

    We investigated the female-produced sex pheromone of the solitary bee Andrena nigroaenea and compared it with floral scent of the sexually deceptive orchid Ophrys sphegodes which is pollinated by Andrena nigroaenea males. We identified physiologically and behaviorally active compounds by gas chromatography with electroantennographic detection, gas chromatography-mass spectrometry, and behavioral tests in the field. Dummies scented with cuticle extracts of virgin females or of O. sphegodes labellum extracts elicited significantly more male reactions than odorless dummies. Therefore, copulation behavior eliciting semiochemicals are located on the surface of the females' cuticle and the surface of the flowers. Within bee and orchid samples, n-alkanes and n-alkenes, aldehydes, esters, all-trans-farnesol and all-trans-farnesyl hexanoate triggered electroantennographic responses in male antennae. Most of the alkanes and alkenes occurred in similar patterns both in the bees and orchids. O. sphegodes leaf extracts contained mostly the same compounds but in different proportions. In behavioral tests with synthetic compounds, blends of alkenes triggered significantly more approaches and pounces of the males whereas alkanes were not more attractive than odorless dummies. Since alkanes and alkenes together were most attractive, we conclude they constitute the bees' sex pheromone as well as the pseudocopulation-behavior releasing orchid-odor bouquet.

  7. Chemistry of the pheromones of mealybug and scale insects.

    PubMed

    Zou, Yunfan; Millar, Jocelyn G

    2015-07-01

    This article comprehensively reviews the syntheses of all known sex pheromones of scales and mealybugs, describes how they were identified, and how the synthetic pheromones are used in insect management.

  8. Evidence for the presence of a female produced sex pheromone in the banana weevil, Cosmopolites sordidus Germar (Coleoptera: Curculionidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Behavior-modifying chemicals such as pheromones and kairomones have great potential in pest management. Studies reported here investigated chemical cues involved in mating and aggregation behavior of banana weevil, Cosmopolites sordidus, a major insect pest of banana in every country where bananas a...

  9. Genetic Variation in the Strongly Canalized Sex Pheromone Communication System of the European Corn Borer, Ostrinia Nubilalis Hubner (Lepidoptera; Pyralidae)

    PubMed Central

    Zhu, J.; Lofstedt, C.; Bengtsson, B. O.

    1996-01-01

    The major difference in pheromone production between the so-called E and Z strains of the European corn borer Ostrinia nubilalis is controlled by two alleles at a single autosomal locus. E-strain females produce an (E)-11-tetradecenyl acetate pheromone with 1-3% of the Z isomer, whereas Z-strain females produce the opposite blend. In laboratory-reared insects we found that F(1) females produced, on average, a 71:29 E/Z ratio, but the distribution was clearly bimodal. The variability in pheromone blend produced by heterozygous females could be explained by the existence of two different alleles in the Z strain which in combination with the E-strain allele for the major production locus cause the production of a component mixture either high or low in the E isomer. In addition, evidence was found for an independently inherited factor, existing in the E strain, with a dominant effect on the amount of E isomer produced by females homozygous for Z-alleles at the major production locus. Thus, the low variability normally found in the pheromone mixture produced by O. nubilalis and other moth females may, by canalization, hide a considerable amount of underlying genetic variation. PMID:8889536

  10. Pheromone-based monitoring of Pseudococcus maritimus (Hemiptera: Pseudococcidae) populations in concord grape vineyards.

    PubMed

    Bahder, B W; Naidu, R A; Daane, K M; Millar, J G; Walsh, D B

    2013-02-01

    The grape mealybug, Pseudococcus maritimus (Ehrhorn), is the dominant mealybug in Washington's Concord grape vineyards (Vitis labrusca L.). It is a direct pest of fruit clusters and a vector of grapevine leafroll-associated viruses. Using traps baited with the sex pheromone of Ps. maritimus, we determined the optimal trap density for monitoring Ps. maritimus, with the goal of providing a more rapid monitoring method for Ps. maritimus than visual surveys. Varying densities of pheromone-baited traps (one, four, and eight traps per 12.14 ha) were deployed in Concord vineyards to monitor Ps. maritimus seasonal phenology in 2010 and 2011. In both years, flights of adult males were detected in early May and captures peaked twice per season in mid-June and mid-August, indicating two generations each year. Trap data were analyzed using Taylor's Power Law, Iwao's patchiness regression, and the K parameter of the negative binomial model to determine optimal sample size. The formula using the K parameter provided the lowest required sample size, showing that four to eight traps per 12.14 ha were needed to provide 30% sampling precision efficiency throughout the entire season. Fewer traps were needed during flight peaks when trap capture numbers were great. Only one pheromone-baited trap per 12.14 ha was sufficient to provide Ps. maritimus flight phenology data to make informed management decisions. Species-specific pheromone-baited traps deployed for Planococcus ficus (Signoret), Pseudococcus longispinus (Targioni Tozzetti), and Pseudococcus viburni (Signoret) did not detect any of these species in the vineyards sampled.

  11. Structure of the Mouse Sex Peptide Pheromone ESP1 Reveals a Molecular Basis for Specific Binding to the Class C G-protein-coupled Vomeronasal Receptor*

    PubMed Central

    Yoshinaga, Sosuke; Sato, Toru; Hirakane, Makoto; Esaki, Kaori; Hamaguchi, Takashi; Haga-Yamanaka, Sachiko; Tsunoda, Mai; Kimoto, Hiroko; Shimada, Ichio; Touhara, Kazushige; Terasawa, Hiroaki

    2013-01-01

    Exocrine gland-secreting peptide 1 (ESP1) is a sex pheromone that is released in male mouse tear fluids and enhances female sexual receptive behavior. ESP1 is selectively recognized by a specific class C G-protein-coupled receptor (GPCR), V2Rp5, among the hundreds of receptors expressed in vomeronasal sensory neurons (VSNs). The specific sensing mechanism of the mammalian peptide pheromone by the class C GPCR remains to be elucidated. Here we identified the minimal functional region needed to retain VSN-stimulating activity in ESP1 and determined its three-dimensional structure, which adopts a helical fold stabilized by an intramolecular disulfide bridge with extensive charged patches. We then identified the amino acids involved in the activation of VSNs by a structure-based mutational analysis, revealing that the highly charged surface is crucial for the ESP1 activity. We also demonstrated that ESP1 specifically bound to an extracellular region of V2Rp5 by an in vitro pulldown assay. Based on homology modeling of V2Rp5 using the structure of the metabotropic glutamate receptor, we constructed a docking model of the ESP1-V2Rp5 complex in which the binding interface exhibited good electrostatic complementarity. These experimental results, supported by the molecular docking simulations, reveal that charge-charge interactions determine the specificity of ESP1 binding to V2Rp5 in the large extracellular region characteristic of class C GPCRs. The present study provides insights into the structural basis for the narrowly tuned sensing of mammalian peptide pheromones by class C GPCRs. PMID:23576433

  12. Exceptional Use of Sex Pheromones by Parasitoids of the Genus Cotesia: Males Are Strongly Attracted to Virgin Females, but Are No Longer Attracted to or Even Repelled by Mated Females

    PubMed Central

    Xu, Hao; Veyrat, Nathalie; Degen, Thomas; Turlings, Ted C. J.

    2014-01-01

    Sex pheromones have rarely been studied in parasitoids, and it remains largely unknown how male and female parasitoids locate each other. We investigated possible attraction (and repellency) between the sexes of two braconid wasps belonging to the same genus, the gregarious parasitoid, Cotesia glomerata (L.), and the solitary parasitoid, Cotesia marginiventris (Cresson). Males of both species were strongly attracted to conspecific virgin females. Interestingly, in C. glomerata, the males were repelled by mated females, as well as by males of their own species. This repellency of mated females was only evident hours after mating, implying a change in pheromone composition. Males of C. marginiventris were also no longer attracted, but not repelled, by mated females. Females of both species showed no attraction to the odors of conspecific individuals, male or female, and C. glomerata females even appeared to be repelled by mated males. Moreover, the pheromones were found to be highly specific, as males were not attracted by females of the other species. Males of Cotesia glomerata even avoided the pheromones of female Cotesia marginiventris, indicating the recognition of non-conspecific pheromones. We discuss these unique responses in the context of optimal mate finding strategies in parasitoids. PMID:26462821

  13. Blend chemistry and field attraction of commercial sex pheromone lures to grape berry moth (Lepidoptera: Tortricidae), and a nontarget tortricid in vineyards.

    PubMed

    Jordan, T A; Zhang, A; Pfeiffer, D G

    2013-06-01

    Anecdotal reports by scientists and growers suggested commercial sex pheromone lures were ineffective with monitoring field populations of grape berry moth, Paralobesia viteana (Clemens), in vineyards. This study addressed the need to evaluate commercial sex pheromone lures for chemical purity and efficacy of attracting grape berry moth and a nontarget tortricid, the sumac moth, Episumus argutanus (Clemens). The percentage of chemical components from a set of eight lures from each manufacturer was found using gas chromatography-mass spectrometry and confirmed by chemical standards. No lures adhered to the 9:1 blend of (Z)-9-dodecenyl acetate (Z9-12:Ac) to (Z)-11-tetradecenyl acetate (Z11-14:Ac), though Suterra (9.1:1), ISCA (5.7:1), and Trécé (5.4:1) lures were closest. The Trécé lures contained ≍98 μg Z9-12:Ac, which is 3-51 times more than the other lures. The Suterra and ISCA lures were loaded with ≍29 and 33 μg Z9-12:Ac, and the Alpha Scents lures only contained ≍2 μg Z9-12:Ac. An antagonistic impurity, (E)-9-tetradecenyl acetate (E9-12:Ac), was found in all manufacturer lures at concentrations from 3.2 to 4.8%. Field attraction studies were done in summer 2010, and again in 2011, to evaluate commercial lures for their potential to attract P. viteana and E. argutanus in the presence of lures from other manufacturers. Separate experiments were established in two vineyards in Augusta County, VA, one with open and the other with wooded surroundings. In field experiments, Suterra lures detected P. viteana most often, Trécé lures detected more E. argutanus, and ISCA lures detected P. viteana in the open vineyard the least, while Alpha Scents lures were least attractive to E. argutanus in both environments. Fewer P. viteana were captured in the wooded versus open vineyard, which may limit the potential for sex pheromone monitoring of P. viteana in wooded vineyards.

  14. Morphology and ultrastructure of the allomone and sex-pheromone producing mandibular gland of the parasitoid wasp Leptopilina heterotoma (Hymenoptera: Figitidae).

    PubMed

    Stökl, Johannes; Herzner, Gudrun

    2016-07-01

    Chemical communication by the parasitoid wasp Leptopilina heterotoma is based largely on (-)-iridomyrmecin. The female wasps use (-)-iridomyrmecin as a defensive allomone, a chemical cue to avoid competition with con- and heterospecific females, and as a major component of their sex pheromone to attract males. Males of L. heterotoma produce (+)-isoiridomyrmecin, which is also used for chemical defense. In this study we show that females and males of L. heterotoma produce the iridomyrmecins in a pair of mandibular glands. Each gland consists of a secretory part composed of class 3 gland cells and their accompanying duct cells, as well as a reservoir bordered by a thin intima. The gland discharges between the mandible base and the clypeus. Males have considerably smaller glands than females, which corresponds to the lower amount of iridomyrmecins produced by males. Chemical analyses of the mandibular gland contents showed that the gland of females contained mainly (-)-iridomyrmecin, as well as low amounts of the other previously described iridoid pheromone compounds, while the glands of males contained only (+)-isoiridomyrmecin. The morphology and sizes of the mandibular glands of males and females of L. heterotoma have evolved to the multi-functional use of iridomyrmecin.

  15. Synchronous firing of antennal-lobe projection neurons encodes the behaviorally effective ratio of sex-pheromone components in male Manduca sexta

    PubMed Central

    Martin, Joshua P.; Lei, Hong; Riffell, Jeffrey A.; Hildebrand, John G.

    2013-01-01

    Olfactory stimuli that are essential to an animal's survival and reproduction are often complex mixtures of volatile organic compounds in characteristic proportions. Here, we investigated how these proportions are encoded in the primary olfactory processing center, the antennal lobe (AL), of male Manduca sexta moths. Two key components of the female's sex pheromone, present in an approximately 2:1 ratio, are processed in each of two neighboring glomeruli in the macroglomerular complex (MGC) of males of this species. In wind-tunnel flight experiments, males exhibited behavioral selectivity for ratios approximating the ratio released by conspecific females. The ratio between components was poorly represented, however, in the firing-rate output of uniglomerular MGC projection neurons (PNs). PN firing rate was mostly insensitive to the ratio between components, and individual PNs did not exhibit a preference for a particular ratio. Recording simultaneously from pairs of PNs in the same glomerulus, we found that the natural ratio between components elicited the most synchronous spikes, and altering the proportion of either component decreased the proportion of synchronous spikes. The degree of synchronous firing between PNs in the same glomerulus thus selectively encodes the natural ratio that most effectively evokes the natural behavioral response to pheromone. PMID:24002682

  16. Morphology and ultrastructure of the allomone and sex-pheromone producing mandibular gland of the parasitoid wasp Leptopilina heterotoma (Hymenoptera: Figitidae).

    PubMed

    Stökl, Johannes; Herzner, Gudrun

    2016-07-01

    Chemical communication by the parasitoid wasp Leptopilina heterotoma is based largely on (-)-iridomyrmecin. The female wasps use (-)-iridomyrmecin as a defensive allomone, a chemical cue to avoid competition with con- and heterospecific females, and as a major component of their sex pheromone to attract males. Males of L. heterotoma produce (+)-isoiridomyrmecin, which is also used for chemical defense. In this study we show that females and males of L. heterotoma produce the iridomyrmecins in a pair of mandibular glands. Each gland consists of a secretory part composed of class 3 gland cells and their accompanying duct cells, as well as a reservoir bordered by a thin intima. The gland discharges between the mandible base and the clypeus. Males have considerably smaller glands than females, which corresponds to the lower amount of iridomyrmecins produced by males. Chemical analyses of the mandibular gland contents showed that the gland of females contained mainly (-)-iridomyrmecin, as well as low amounts of the other previously described iridoid pheromone compounds, while the glands of males contained only (+)-isoiridomyrmecin. The morphology and sizes of the mandibular glands of males and females of L. heterotoma have evolved to the multi-functional use of iridomyrmecin. PMID:27349419

  17. Attraction of a native Florida leafminer, Phyllocnistis insignis (Lepidoptera: Gracillariidae), to pheromone of invasive citrus leafminer, P. citrella: Evidence for mating disruption of a native nontarget species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We collected a native North American species, Phyllocnistis insignis (Frey & Boll), in traps baited with a 3:1 blend of (Z,Z,E)-7,11,13-hexadecatrienal (triene) and (Z,Z)-7,11-hexadecadienal (diene), two components of the sex pheromone of the exotic citrus leafminer, Phyllocnistis citrella Stainton....

  18. Neurones in the preoptic area of the male goldfish are activated by a sex pheromone 17α,20β-dihydroxy-4-pregnen-3-one.

    PubMed

    Kawai, Takafumi; Yoshimura, Atsushi; Oka, Yoshitaka

    2015-02-01

    Pheromones are interesting molecules given their ability to evoke changes in the endocrine state and behaviours of animals. In goldfish, a sex pheromone, 17α,20β-dihydroxy-4-pregnen-3-one (17,20β-P), which is released by preovulatory females, is known to trigger the elevation of luteinising hormone (LH) levels, as well as reproductive behaviour in males. Interestingly, when 11-ketotestosterone (11-KT) is implanted into adult female fish, LH levels increase in response to the pheromone at any time of the day, which is normally a male-specific response. However, the neural mechanisms underlying the male-specific information processing of 17,20β-P and its androgen dependence are yet unknown. In the present study, we focused on the preoptic area (POA), which plays important roles in the regulation of reproduction and reproductive behaviours. We mapped activity in the POA evoked by 17,20β-P exposure using the immediate-early gene c-fos. We found that a population of ventral POA neurones close to kisspeptin2 (kiss2) neurones that appear to have important roles in reproduction was activated by 17,20β-P exposure, suggesting that these activated neurones are important for the 17,20β-P response. Next, we investigated the distribution of androgen receptor (ar) in the POA and its relationship with 17,20β-P-responsive and kiss2 neurones. We found that ar is widely expressed in the ventral POA, whereas it is only expressed in approximately 10% of 17,20β-P-activated neurones. On the other hand, it is expressed in almost 90% of the kiss2 neurones. Taken together, it is possible that ar expressing neurones in the ventral POA, most of which were not labelled by c-fos in the present study, may at least partly account for androgen effects on responses to primer pheromones; the ar-positive kiss2 neurones in the ventral POA may be a candidate. These results offer a novel insight into the mechanisms underlying male-specific information processing of 17,20β-P in goldfish.

  19. Monitoring oriental fruit moth (Lepidoptera:Tortricidae) with the ajar bait trap in pome and stone fruit orchards under mating disruption

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies in Oregon, California, Pennsylvania, and Italy evaluated the relative performance of the Ajar trap for Grapholita molesta (Busck), in pome and stone fruit orchards treated with sex pheromone dispensers for mating disruption. The Ajar is a delta-shaped trap with a screened jar filled with a t...

  20. Sex-Biased Captures of Sarcosaprophagous Diptera in Carrion-Baited Traps

    PubMed Central

    Martín-Vega, Daniel; Baz, Arturo

    2013-01-01

    The use of carrion-baited traps is a common and widely extended practice in the study of sarcosaprophagous Diptera. However, it implies different areas of bias, one of them being the different responses of males and females to carrion bait, which results in possible biased sex ratios in the captures. In the present study, the use of carrion-baited traps revealed significant female-biased captures in the families Calliphoridae, Muscidae, and Sarcophagidae, whereas the collected species of the families Piophilidae, Heleomyzidae, and Ulidiidae showed different patterns in the observed sex ratios. Possible explanations according to existing literature and the types of mating behaviors of the different families are discussed. PMID:23885859

  1. Evidence of female sex pheromones and characterization of the cuticular lipids of unfed, adult male versus female blacklegged ticks, Ixodes scapularis.

    PubMed

    Carr, Ann L; Sonenshine, Daniel E; Strider, John B; Roe, R Michael

    2016-04-01

    Copulation in Ixodes scapularis involves physical contact between the male and female (on or off the host), male mounting of the female, insertion/maintenance of the male chelicerae in the female genital pore (initiates spermatophore production), and the transfer of the spermatophore by the male into the female genital pore. Bioassays determined that male mounting behavior/chelicerae insertion required direct contact with the female likely requiring non-volatile chemical cues with no evidence of a female volatile sex pheromone to attract males. Unfed virgin adult females and replete mated adult females elicited the highest rates of male chelicerae insertion with part fed virgin adult females exhibiting a much lower response. Whole body surface hexane extracts of unfed virgin adult females and males, separately analyzed by GC-MS, identified a number of novel tick surface associated compounds: fatty alcohols (1-hexadecanol and 1-heptanol), a fatty amide (erucylamid), aromatic hydrocarbons, a short chain alkene (1-heptene), and a carboxylic acid ester (5β-androstane). These compounds are discussed in terms of their potential role in female-male communication. The two most abundant fatty acid esters found were butyl palmitate and butyl stearate present in ratios that were sex specific. Only 6 n-saturated hydrocarbons were identified in I. scapularis ranging from 10 to 18 carbons. PMID:26864785

  2. Female sex pheromone secreted by Carmenta mimosa (Lepidoptera: Sesiidae), a biological control agent for an invasive weed in Vietnam.

    PubMed

    Vang, Le Van; Khanh, Chau Nguyen Quoc; Shibasaki, Hiroshi; Ando, Tetsu

    2012-01-01

    Larvae of the clearwing moth, Carmenta mimosa (Lepidoptera: Sesiidae), bore into the trunk of Mimosa pigra L., which is one of the most invasive weeds in Vietnam. GC-EAD and GC-MS analyses of a pheromone gland extract revealed that the female moths produced (3Z,13Z)-3,13-octadecadienyl acetate. A lure baited with the synthetic acetate alone successfully attracted C. mimosa males in a field test. While the addition of a small amount of the corresponding alcohol did not strongly diminish the number of captured males, a trace of the aldehyde derivative or the (3E,13Z)-isomer markedly inhibited the attractiveness of the acetate. The diurnal males were mainly attracted from 6:00 am to 12:00 am.

  3. Using Sex Pheromone and a Multi-Scale Approach to Predict the Distribution of a Rare Saproxylic Beetle

    PubMed Central

    Musa, Najihah; Andersson, Klas; Burman, Joseph; Andersson, Fredrik; Hedenström, Erik; Jansson, Nicklas; Paltto, Heidi; Westerberg, Lars; Winde, Inis; Larsson, Mattias C.; Bergman, Karl-Olof; Milberg, Per

    2013-01-01

    The European red click beetle, Elater ferrugineus L., is associated with wood mould in old hollow deciduous trees. As a result of severe habitat fragmentation caused by human disturbance, it is threatened throughout its distribution range. A new pheromone-based survey method, which is very efficient in detecting the species, was used in the present study to relate the occurrence of E. ferrugineus to the density of deciduous trees. The latter data were from a recently completed regional survey in SE Sweden recording >120,000 deciduous trees. The occurrence of E. ferrugineus increased with increasing amount of large hollow and large non-hollow trees in the surrounding landscape. Quercus robur (oak) was found to be the most important substrate for E. ferrugineus, whereas two groups of tree species (Carpinus betulus, Fagus sylvatica, Ulmus glabra, vs. Acer platanoides, Aesculus hippocastanum, Fraxinus excelsior, Tilia cordata) were less important but may be a complement to oak in sustaining populations of the beetle. The occurrence of E. ferrugineus was explained by the density of oaks at two different spatial scales, within the circle radii 327 m and 4658 m. In conclusion, priority should be given to oaks in conservation management of E. ferrugineus, and then to the deciduous trees in the genera listed above. Conservation planning at large spatial and temporal scales appears to be essential for long-term persistence of E. ferrugineus. We also show that occurrence models based on strategic sampling might result in pessimistic predictions. This study demonstrates how pheromone-based monitoring make insects excellent tools for sustained feedback to models for landscape conservation management. PMID:23840415

  4. The male sex pheromone darcin stimulates hippocampal neurogenesis and cell proliferation in the subventricular zone in female mice

    PubMed Central

    Hoffman, Emma; Pickavance, Lucy; Thippeswamy, Thimmasettappa; Beynon, Robert J.; Hurst, Jane L.

    2015-01-01

    The integration of newly generated neurons persists throughout life in the mammalian olfactory bulb and hippocampus, regions involved in olfactory and spatial learning. Social cues can be potent stimuli for increasing adult neurogenesis; for example, odors from dominant but not subordinate male mice increase neurogenesis in both brain regions of adult females. However, little is known about the role of neurogenesis in social recognition or the assessment of potential mates. Dominant male mice scent-mark territories using urine that contains a number of pheromones including darcin (MUP20), a male-specific major urinary protein that stimulates rapid learned attraction to the spatial location and individual odor signature of the scent owner. Here we investigate whether exposure to darcin stimulates neurogenesis in the female brain. Hippocampal neurons and cellular proliferation in the lateral ventricles that supply neurons to the olfactory bulbs increased in females exposed for 7 days to male urine containing at least 0.5 μg/μl darcin. Darcin was effective whether presented alone or in the context of male urine, but other information in male urine appeared to modulate the proliferative response. When exposed to urine from wild male mice, hippocampal proliferation increased only if urine was from the same individual over 7 days, suggesting that consistency of individual scent signatures is important. While 7 days exposure to male scent initiated the first stages of increased neurogenesis, this caused no immediate increase in female attraction to the scent or in the strength or robustness of spatial learning in short-term conditioned place preference tests. The reliable and consistent stimulation of neurogenesis by a pheromone important in rapid social learning suggests that this may provide an excellent model to explore the relationship between the integration of new neurons and plasticity in spatial and olfactory learning in a socially-relevant context. PMID

  5. Synthesis of all the stereoisomers of 6-methyl-2-octadecanone, 14-methyl-2-octadecanone, and 6,14-dimethyl-2-octadecanone, sex pheromone components of the Lyclene dharma dharma moth, from the enantiomers of citronellal.

    PubMed

    Shikichi, Yasumasa; Mori, Kenji

    2012-01-01

    The enantiomers of citronellal were converted to all the stereoisomers of 6-methyl-2-octadecanone, 14-methyl-2-octadecanone, and 6,14-dimethyl-2-octadecanone, the female-produced sex pheromone components of the Lyclene dharma dharma moth. Three well-established procedures, the Wittig reaction, alkylation of alkynes, and acetoacetic ester synthesis, were employed for the carbon-carbon bond formation to connect the building blocks.

  6. Flight Tunnel Response of Male European Corn Borer Moths to Cross-Specific Mixtures of European and Asian Corn Borer Sex Pheromones: Evidence Supporting a Critical Stage in Evolution of a New Communication System.

    PubMed

    Martin, Nathan; Moore, Kevin; Musto, Callie J; Linn, Charles E

    2016-01-01

    Previous flight tunnel studies showed that 3-5 % of male European corn borer (ECB) moths, Ostrinia nubilalis, could fly upwind and make contact with sources releasing the sex pheromone of the closely related Asian corn borer (ACB), Ostrina furnacalis, [2:1 (Z)-12-tetradecenyl acetate (Z12-14:OAc) : (E)-12-teradecenyl acetate (E12-14:OAc)] and that 2-4 % of ACB males could similarly fly upwind to the sex pheromone blends of the ECB Z- [97:3 (Z)-tetradecenyl acetate (Z11-14:OAc) : (E)-tetradecenyl acetate (E11-14:Ac)] and E-strains (1:99 Z/E11-14:OAc) pheromones. The results supported the hypothesis that the evolution of the ACB pheromone system from an ECB-like ancestor included a stage in which males could be attracted to the unusual females emitting Z12- and E12-14:OAc while retaining their responsiveness to the ancestral pheromone blend of Z11- and E11-14:OAc. Here, we showed further that ECB E-strain males exhibited upwind oriented flight and source contacts to sources containing all combinations of ECB and ACB components. Maximal response levels were observed with the E-strain 99:1 E11/Z11-14:OAc blend, and high response levels also were observed with two other blends containing E11-14:OAc as the major component (E11:E12 and E11:Z12). Upwind flight and source contact also occurred at lower levels with the remaining blend combinations in which Z11-, E12-, or Z12-14:OAc was the major component. Our current results support the hypothesis concerning the evolution of ACB from an ECB-like ancester by showing that males were able to respond to females producing either the 12-14:Ac isomers, 11-14:Ac isomers, or even mixtures of all four components.

  7. Identification of a Male-Produced Pheromone Component of the Citrus Longhorned Beetle, Anoplophora chinensis.

    PubMed

    Hansen, Laura; Xu, Tian; Wickham, Jacob; Chen, Yi; Hao, Dejun; Hanks, Lawrence M; Millar, Jocelyn G; Teale, Stephen A

    2015-01-01

    The Asian wood-boring beetle Anoplophora chinensis (Forster) (Coleoptera: Cerambycidae) is an important pest of hardwood trees in its native range, and has serious potential to invade other areas of the world through worldwide commerce in woody plants and wood products. This species already has been intercepted in North America, and is the subject of ongoing eradication efforts in several countries in Europe. Attractants such as pheromones would be immediately useful as baits in traps for its detection. Because long-range pheromones are frequently conserved among closely related species of cerambycids, we evaluated two components of the volatile pheromone produced by males of the congener A. glabripennis (Motschulsky), 4-(n-heptyloxy)butan-1-ol and 4-(n-heptyloxy)butanal, as potential pheromones of A. chinensis. Both compounds subsequently were detected in headspace volatiles from male A. chinensis, but not in volatiles from females. Only 4-(n-heptyloxy)butanol elicited responses from beetle antennae in coupled gas chromatography-electroantennogram analyses, and this compound attracted adult A. chinensis of both sexes in field bioassays. These data suggest that 4-(n-heptyloxy)butan-1-ol is an important component of the male-produced attractant pheromone of A. chinensis, which should find immediate use in quarantine monitoring for this pest. PMID:26241651

  8. Ant Trail Pheromone Biosynthesis Is Triggered by a Neuropeptide Hormone

    PubMed Central

    Choi, Man-Yeon; Vander Meer, Robert K.

    2012-01-01

    Our understanding of insect chemical communication including pheromone identification, synthesis, and their role in behavior has advanced tremendously over the last half-century. However, endocrine regulation of pheromone biosynthesis has progressed slowly due to the complexity of direct and/or indirect hormonal activation of the biosynthetic cascades resulting in insect pheromones. Over 20 years ago, a neurohormone, pheromone biosynthesis activating neuropeptide (PBAN) was identified that stimulated sex pheromone biosynthesis in a lepidopteran moth. Since then, the physiological role, target site, and signal transduction of PBAN has become well understood for sex pheromone biosynthesis in moths. Despite that PBAN-like peptides (∼200) have been identified from various insect Orders, their role in pheromone regulation had not expanded to the other insect groups except for Lepidoptera. Here, we report that trail pheromone biosynthesis in the Dufour's gland (DG) of the fire ant, Solenopsis invicta, is regulated by PBAN. RNAi knock down of PBAN gene (in subesophageal ganglia) or PBAN receptor gene (in DG) expression inhibited trail pheromone biosynthesis. Reduced trail pheromone was documented analytically and through a behavioral bioassay. Extension of PBAN's role in pheromone biosynthesis to a new target insect, mode of action, and behavioral function will renew research efforts on the involvement of PBAN in pheromone biosynthesis in Insecta. PMID:23226278

  9. Ant trail pheromone biosynthesis is triggered by a neuropeptide hormone.

    PubMed

    Choi, Man-Yeon; Vander Meer, Robert K

    2012-01-01

    Our understanding of insect chemical communication including pheromone identification, synthesis, and their role in behavior has advanced tremendously over the last half-century. However, endocrine regulation of pheromone biosynthesis has progressed slowly due to the complexity of direct and/or indirect hormonal activation of the biosynthetic cascades resulting in insect pheromones. Over 20 years ago, a neurohormone, pheromone biosynthesis activating neuropeptide (PBAN) was identified that stimulated sex pheromone biosynthesis in a lepidopteran moth. Since then, the physiological role, target site, and signal transduction of PBAN has become well understood for sex pheromone biosynthesis in moths. Despite that PBAN-like peptides (∼200) have been identified from various insect Orders, their role in pheromone regulation had not expanded to the other insect groups except for Lepidoptera. Here, we report that trail pheromone biosynthesis in the Dufour's gland (DG) of the fire ant, Solenopsis invicta, is regulated by PBAN. RNAi knock down of PBAN gene (in subesophageal ganglia) or PBAN receptor gene (in DG) expression inhibited trail pheromone biosynthesis. Reduced trail pheromone was documented analytically and through a behavioral bioassay. Extension of PBAN's role in pheromone biosynthesis to a new target insect, mode of action, and behavioral function will renew research efforts on the involvement of PBAN in pheromone biosynthesis in Insecta. PMID:23226278

  10. First sex pheromone of the order strepsiptera: (3R,5R,9R)-3,5,9-trimethyldodecanal in Stylops melittae KIRBY, 1802.

    PubMed

    Tolasch, Till; Kehl, Siegfried; Dötterl, Stefan

    2012-12-01

    The twisted-wing parasites (Strepsiptera) are an unusual and small order of insects with about 600 known species. As obligate endoparasitoids, they develop and spend most of their lives living in other insects. Adults show an extreme sexual dimorphism: The free-living males have large eyes, branched antennae, reduced forewings, and well developed hind wings, while the neotenic females of most species lack all external characters that normally define an insect, remain endoparasitic, and only extrude the cephalothorax from the host. Due to the males' short life span of only a few hours, there must be an efficient means of mate finding. This is believed to be mediated by chemical cues released by virgin females. Here, we report the first identification and synthesis of a female-produced strepsipteran sex pheromone, (3R,5R,9R)-3,5,9-trimethyldodecanal, from Stylops melittae, a species parasitizing andrenid bees. We found this highly EAD-active compound to be present in cephalothoraxes of and released from unmated females, and synthetic samples proved to be extremely attractive when offered in the field during the swarming period of the males. The structural features of this new natural compound may further support the re-establishment of the Strepsiptera as the closest living relatives of the Coleoptera. PMID:23224569

  11. Cuticular hydrocarbons as sex pheromone of the bee Colletes cunicularius and the key to its mimicry by the sexually deceptive orchid, Ophrys exaltata.

    PubMed

    Mant, Jim; Brändli, Christoph; Vereecken, Nicolas J; Schulz, Claudia M; Francke, Wittko; Schiestl, Florian P

    2005-08-01

    Male Colletes cunicularius bees pollinate the orchid, Ophrys exaltata, after being sexually deceived by the orchid's odor-mimicry of the female bee's sex pheromone. We detected biologically active volatiles of C. cunicularius by using gas chromatographic-electroantennographic detection (GC-EAD) with simultaneous flame ionization detection. After identification of the target compounds by coupled gas chromatography mass spectrometry (GC-MS), we performed behavioral tests using synthetic blends of the active components. We detected 22 EAD active compounds in cuticular extracts of C. cunicularius females. Blends of straight chain, odd-numbered alkanes and (Z)-7-alkenes with 21-29 carbon atoms constituted the major biologically active compounds. Alkenes were the key compounds releasing mating behavior, especially those with (Z)-7 unsaturation. Comparison of patterns of bee volatiles with those of O. exaltata subsp. archipelagi revealed that all EAD-active compounds were also found in extracts of orchid labella. Previous studies of the mating behavior in C. cunicularius showed linalool to be an important attractant for patrolling males. We confirmed this with synthetic linalool but found that it rarely elicited copulatory behavior, in accordance with previous studies. A blend of active cuticular compounds with linalool elicited both attraction and copulation behavior in patrolling males. Thus, linalool appears to function as a long-range attractant, whereas cuticular hydrocarbons are necessary for inducing short-range mating behavior.

  12. An attempt to increase efficacy of moth mating disruption by co-releasing pheromones with kairomones and to understand possible underlying mechanisms of this technique.

    PubMed

    Stelinski, Lukasz L; Gut, Larry J; Miller, James R

    2013-02-01

    Pheromone-based mating disruption is used worldwide for management of the internal fruit feeding codling moth, Cydia pomonella (L.). There has been recent interest in the potential of improving mating disruption of C. pomonella, and potentially other insect species in general, by broadcasting combinations of pheromone and attractive host-plant kairomones. Given that such kairomones are attractive by themselves (often to both sexes), and also enhance male moth response to their pheromone, it is possible that the effects of competitive attraction and potentially other mechanisms of disruption might be increased. Herein, we tested the hypothesis that mating disruption of C. pomonella could be enhanced by co-deploying pheromone with either of two kairomones: (2E, 4Z)-2, 4-decadienoate (pear ester), or (E)-β-farnesene, as compared with various pheromone blend components alone. When deployed individually, each kairomone caused a low level of synthetic lure trap disruption and (E)-β-farnesene also caused disruption of mating as measured by tethering virgin females. However, combined release of either pear ester or (E)-β-farnesene with pheromone within the same dispenser or as a co-deployed dispenser treatment, respectively, did not increase the level of mating disruption as compared with deploying pheromone alone. Disruption efficacy did not decline when reducing the amount of (E,E)-8,10-dodecadien-1-ol (codlemone) in dispensers by fourfold, when combined with pear ester. C. pomonella readily were observed briefly approaching all dispenser types (with and without pheromone) in the field. Exposure of male C. pomonella to pear ester alone in a manner mimicking observed field exposures did not reduce the number of males able to contact a female-mimic pheromone lure in flight tunnel assays. Also, reduction of male moth behavioral response to pheromone was similar after exposure to codlemone alone, and codlemone and pear ester after exposures that mimicked those observed in

  13. First Record of the Scarab Beetle, Phyllophaga lissopyge from South America, with Descriptions of Adult Seasonal Activity and Male Response to Sex Attractants

    PubMed Central

    Morales-Rodriguez, Anuar; Peck, Daniel C.; Robbins, Paul S.

    2011-01-01

    Phyllophaga lissopyge (Bates) (Coleoptera: Scarabaeidae: Melolonthinae) is reported for the first time from South America. Male sex pheromone response is described for P. lissopyge and two other co-occurring Phyllophaga species. Adults of P. lissopyge and P. menetriesi (Blanchard) flew to traps baited with methyl 2-(methylthio) benzoate whereas adults of P. obsoleta (Blanchard) flew irregularly to four different pheromone compounds. Adult seasonal activity is described from males captures in Rionegro, Antioquia, Colombia. PMID:21529153

  14. Bed bug aggregation pheromone finally identified.

    PubMed

    Gries, Regine; Britton, Robert; Holmes, Michael; Zhai, Huimin; Draper, Jason; Gries, Gerhard

    2015-01-19

    Bed bugs have become a global epidemic and current detection tools are poorly suited for routine surveillance. Despite intense research on bed bug aggregation behavior and the aggregation pheromone, which could be used as a chemical lure, the complete composition of this pheromone has thus far proven elusive. Here, we report that the bed bug aggregation pheromone comprises five volatile components (dimethyl disulfide, dimethyl trisulfide, (E)-2-hexenal, (E)-2-octenal, 2-hexanone), which attract bed bugs to safe shelters, and one less-volatile component (histamine), which causes their arrestment upon contact. In infested premises, a blend of all six components is highly effective at luring bed bugs into traps. The trapping of juvenile and adult bed bugs, with or without recent blood meals, provides strong evidence that this unique pheromone bait could become an effective and inexpensive tool for bed bug detection and potentially their control. PMID:25529634

  15. Monitoring Oriental Fruit Moth (Lepidoptera: Tortricidae) and Peach Twig Borer (Lepidoptera: Gelechiidae) with Clear Delta-shaped Traps

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field studies evaluated the relative performance of a clear versus several colored delta traps baited with sex pheromone or a food bait for two key moth pests of stone fruits: oriental fruit moth, Graphollita molesta (Busck); and peach twig borer, Anarsia lineatella Zeller. Preliminary studies found...

  16. Male-male pheromone signalling in a lekking Drosophila.

    PubMed

    Widemo, Fredrik; Johansson, Björn G

    2006-03-22

    Interest in sex pheromones has mainly been focused on mate finding, while relatively little attention has been given to the role of sex pheromones in mate choice and almost none to competition over mates. Here, we study male response to male pheromones in the lekking Drosophila grimshawi, where males deposit long-lasting pheromone streaks that attract males and females to the leks and influence mate assessment. We used two stocks of flies and both stocks adjusted their pheromone depositing behaviour in response to experimental manipulation, strongly indicating male ability to distinguish between competitors from qualitative differences in pheromone streaks alone. This is the first example of an insect distinguishing between individual odour signatures. Pheromone signalling influenced competition over mates, as males adjusted their investment in pheromone deposition in response to foreign pheromone streaks. Both sexes adapt their behaviour according to information from olfactory cues in D. grimshawi, but the relative benefits from male-female, as compared to male-male signalling, remain unknown. It seems likely that the pheromone signalling system originally evolved for attracting females to leks. The transition to a signalling system for conveying information about individuals may well, however, at least in part have been driven by benefits from male-male signalling.

  17. Flight Tunnel Response of Male European Corn Borer Moths to Cross-Specific Mixtures of European and Asian Corn Borer Sex Pheromones: Evidence Supporting a Critical Stage in Evolution of a New Communication System.

    PubMed

    Martin, Nathan; Moore, Kevin; Musto, Callie J; Linn, Charles E

    2016-01-01

    Previous flight tunnel studies showed that 3-5 % of male European corn borer (ECB) moths, Ostrinia nubilalis, could fly upwind and make contact with sources releasing the sex pheromone of the closely related Asian corn borer (ACB), Ostrina furnacalis, [2:1 (Z)-12-tetradecenyl acetate (Z12-14:OAc) : (E)-12-teradecenyl acetate (E12-14:OAc)] and that 2-4 % of ACB males could similarly fly upwind to the sex pheromone blends of the ECB Z- [97:3 (Z)-tetradecenyl acetate (Z11-14:OAc) : (E)-tetradecenyl acetate (E11-14:Ac)] and E-strains (1:99 Z/E11-14:OAc) pheromones. The results supported the hypothesis that the evolution of the ACB pheromone system from an ECB-like ancestor included a stage in which males could be attracted to the unusual females emitting Z12- and E12-14:OAc while retaining their responsiveness to the ancestral pheromone blend of Z11- and E11-14:OAc. Here, we showed further that ECB E-strain males exhibited upwind oriented flight and source contacts to sources containing all combinations of ECB and ACB components. Maximal response levels were observed with the E-strain 99:1 E11/Z11-14:OAc blend, and high response levels also were observed with two other blends containing E11-14:OAc as the major component (E11:E12 and E11:Z12). Upwind flight and source contact also occurred at lower levels with the remaining blend combinations in which Z11-, E12-, or Z12-14:OAc was the major component. Our current results support the hypothesis concerning the evolution of ACB from an ECB-like ancester by showing that males were able to respond to females producing either the 12-14:Ac isomers, 11-14:Ac isomers, or even mixtures of all four components. PMID:26631407

  18. The trap of sex in social insects: from the female to the male perspective.

    PubMed

    Beani, Laura; Dessì-Fulgheri, Francesco; Cappa, Federico; Toth, Amy

    2014-10-01

    The phenotype of male Hymenoptera and the peculiar role of males has been neglected and greatly understudied, given the spectacular cooperative behavior of female social insects. In social insects there has been considerable progress in understanding the molecular mechanisms behind haplodiploid sex determination but, beyond that, very little is known concerning the neural, endocrine, and genetic correlates of sexual selection in males. An opportunity is being missed: the male phenotype in Hymenoptera is a natural experiment to compare the drives of natural versus sexual selection. In contrast to females, males do not work, they usually display far from the nest to gain mates, compete among rivals in nuptial flights or for a symbolic territory at leks, and engage in direct or ritualized conflicts. By comparing the available data on male paper wasps with studies on other social Hymenoptera, we summarize what we currently know about the physical, hormonal, neural and behavioral traits in a model system appropriate to examine current paradigms on sexual selection. Here we review male behavior in social Hymenoptera beyond sex stereotypes: the subtle role of "drones" in the colony, the lack of armaments and ornaments, the explosive mating crowds, the "endurance" race, the cognitive bases of the "choosy" male and his immune defense. Social insect males are not just simple-minded mating machines, they are shaped, constrained and perhaps trapped by sexual selection. PMID:25280909

  19. The trap of sex in social insects: from the female to the male perspective.

    PubMed

    Beani, Laura; Dessì-Fulgheri, Francesco; Cappa, Federico; Toth, Amy

    2014-10-01

    The phenotype of male Hymenoptera and the peculiar role of males has been neglected and greatly understudied, given the spectacular cooperative behavior of female social insects. In social insects there has been considerable progress in understanding the molecular mechanisms behind haplodiploid sex determination but, beyond that, very little is known concerning the neural, endocrine, and genetic correlates of sexual selection in males. An opportunity is being missed: the male phenotype in Hymenoptera is a natural experiment to compare the drives of natural versus sexual selection. In contrast to females, males do not work, they usually display far from the nest to gain mates, compete among rivals in nuptial flights or for a symbolic territory at leks, and engage in direct or ritualized conflicts. By comparing the available data on male paper wasps with studies on other social Hymenoptera, we summarize what we currently know about the physical, hormonal, neural and behavioral traits in a model system appropriate to examine current paradigms on sexual selection. Here we review male behavior in social Hymenoptera beyond sex stereotypes: the subtle role of "drones" in the colony, the lack of armaments and ornaments, the explosive mating crowds, the "endurance" race, the cognitive bases of the "choosy" male and his immune defense. Social insect males are not just simple-minded mating machines, they are shaped, constrained and perhaps trapped by sexual selection.

  20. Male Fishia yosemitae (Grote)(Lepidoptera: Noctuidae) captured in traps baited with (Z)-7-dodecenyl acetate and (Z)-9-tetradecenyl acetate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Traps baited with sex pheromone lures for the noctuid moths Chrysodeixis eriosoma (Doubleday) and Feltia jaculifera (Guenee) captured males of another noctuid moth Fishia yosemitae (Grote). These lures included both (Z)-7-dodecenyl acetate (Z7-12Ac) and (Z)-9-tetradecenyl acetate (Z9-14AC). When the...

  1. Expression of the mevalonate pathway enzymes in the Lutzomyia longipalpis (Diptera: Psychodidae) sex pheromone gland demonstrated by an integrated proteomic approach

    PubMed Central

    González-Caballero, Natalia; Rodríguez-Vega, Andrés; Dias-Lopes, Geovane; Valenzuela, Jesus G.; Ribeiro, Jose M.C.; Carvalho, Paulo Costa; Valente, Richard H.; Brazil, Reginaldo P.; Cuervo, Patricia

    2014-01-01

    In Latin America, Lutzomyia longipalpis is the main vector of the protozoan parasite Leishmania infantum, which is the causal agent of American Visceral Leishmaniasis. This insect uses male-produced pheromones for mate recognition. Elucidation of pheromone biogenesis or its regulation may enable molecular strategies for mating disruption and, consequently, the vector's population management. Motivated by our recent results of the transcriptomic characterization of the L. longipalpis pheromone gland, we performed a proteomic analysis of this tissue combining SDS-PAGE, and mass spectrometry followed by an integrative data analysis. Considering that annotated genome sequences of this sand fly are not available, we designed an alternative workflow searching MS/MS data against two customized databases using three search engines: Mascot, OMSSA and ProLuCID. A total of 542 proteins were confidently characterized, 445 of them using a Uniref100-insect protein database, and 97 using a transcript translated database. In addition, use of PEAKS for de novo peptide sequencing of MS/MS data confirmed ∼90% identifications made with the combination of the three search engines. Our results include the identification of six of the seven enzymes of the mevalonate-pathway, plus the enzymes involved in sesquiterpenoid biosynthesis, all of which are proposed to be involved in pheromone production in L. longipalpis. Biological significance L. longipalpis is the main vector of the protozoan parasite L. infantum, which is the causal agent of American Visceral Leishmaniasis. One of the control measures of such disease is focused on vector population control. As this insect uses male-produced pheromones for mate recognition, the elucidation of pheromone biogenesis or its regulating process may enable molecular strategies for mating disruption and, consequently, this vector's population management. On this regard, in this manuscript we report expression evidence, at the protein level, of

  2. Multiple sex pheromone genes are expressed in the abdominal glands of the smooth newt (Lissotriton vulgaris) and Montandon's Newt (L. montandoni) (Salamandridae).

    PubMed

    Artur, Osikowski; Wiesław, Babik; Paweł, Grzmil; Jacek M, Szymura

    2008-06-01

    The smooth newt (Lissotriton "Triturus" vulgaris) and Montandon's newt (L."T." montandoni) are sister species exhibiting pronounced differences in male secondary sexual traits but nevertheless hybridizing and producing fertile hybrids in nature. Since pheromonal communication is an important aspect of the reproductive biology of urodeles, structural differentiation of peptide pheromones and their receptors may contribute to incipient reproductive isolation. The aim of the study was the identification of genes encoding putative courtship pheromone precursors in two newt species and the reconstruction of phylogenetic relationships among them. Our analyses were based on cDNA obtained from the transcripts from the abdominal glands of male newts. We identified five unique cDNA sequences encoding the putative pheromone precursors in L. vulgaris and three additional unique sequences in L. montandoni. The results indicate that in the abdominal glands of Lissotriton newts more than one pheromone-encoding gene is expressed and that these loci form a gene family. Phylogenetic analysis indicates that the divergence of at least some of these genes predates the radiation of European newts.

  3. Geographic Variation in Sexual Attraction of Spodoptera frugiperda Corn- and Rice-Strain Males to Pheromone Lures

    PubMed Central

    Unbehend, Melanie; Hänniger, Sabine; Vásquez, Gissella M.; Juárez, María Laura; Reisig, Dominic; McNeil, Jeremy N.; Meagher, Robert L.; Jenkins, David A.; Heckel, David G.; Groot, Astrid T.

    2014-01-01

    The corn- and rice-strains of Spodoptera frugiperda exhibit several genetic and behavioral differences and appear to be undergoing ecological speciation in sympatry. Previous studies reported conflicting results when investigating male attraction to pheromone lures in different regions, but this could have been due to inter-strain and/or geographic differences. Therefore, we investigated whether corn- and rice-strain males differed in their response to different synthetic pheromone blends in different regions in North America, the Caribbean and South America. All trapped males were strain-typed by two strain-specific mitochondrial DNA markers. In the first experiment, we found a nearly similar response of corn- and rice-strain males to two different 4-component blends, resembling the corn- and rice-strain female blend we previously described from females in Florida. This response showed some geographic variation in fields in Canada, North Carolina, Florida, Puerto Rico, and South America (Peru, Argentina). In dose-response experiments with the critical secondary sex pheromone component (Z)-7-dodecenyl acetate (Z7-12:OAc), we found some strain-specific differences in male attraction. While the response to Z7-12:OAc varied geographically in the corn-strain, rice-strain males showed almost no variation. We also found that the minor compound (Z)-11-hexadecenyl acetate (Z11-16:OAc) did not increase attraction of both strains in Florida and of corn-strain males in Peru. In a fourth experiment, where we added the stereo-isomer of the critical sex pheromone component, (E)-7-dodecenyl acetate, to the major pheromone component (Z)-9-tetradecenyl acetate (Z9-14:OAc), we found that this compound was attractive to males in North Carolina, but not to males in Peru. Overall, our results suggest that both strains show rather geographic than strain-specific differences in their response to pheromone lures, and that regional sexual communication differences might cause geographic

  4. Peripheral, Central and Behavioral Responses to the Cuticular Pheromone Bouquet in Drosophila melanogaster Males

    PubMed Central

    Inoshita, Tsuyoshi; Martin, Jean-René; Marion-Poll, Frédéric; Ferveur, Jean-François

    2011-01-01

    Pheromonal communication is crucial with regard to mate choice in many animals including insects. Drosophila melanogaster flies produce a pheromonal bouquet with many cuticular hydrocarbons some of which diverge between the sexes and differently affect male courtship behavior. Cuticular pheromones have a relatively high weight and are thought to be — mostly but not only — detected by gustatory contact. However, the response of the peripheral and central gustatory systems to these substances remains poorly explored. We measured the effect induced by pheromonal cuticular mixtures on (i) the electrophysiological response of peripheral gustatory receptor neurons, (ii) the calcium variation in brain centers receiving these gustatory inputs and (iii) the behavioral reaction induced in control males and in mutant desat1 males, which show abnormal pheromone production and perception. While male and female pheromones induced inhibitory-like effects on taste receptor neurons, the contact of male pheromones on male fore-tarsi elicits a long-lasting response of higher intensity in the dedicated gustatory brain center. We found that the behavior of control males was more strongly inhibited by male pheromones than by female pheromones, but this difference disappeared in anosmic males. Mutant desat1 males showed an increased sensitivity of their peripheral gustatory neurons to contact pheromones and a behavioral incapacity to discriminate sex pheromones. Together our data indicate that cuticular hydrocarbons induce long-lasting inhibitory effects on the relevant taste pathway which may interact with the olfactory pathway to modulate pheromonal perception. PMID:21625481

  5. Moth pheromone receptors and deceitful parapheromones

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The insect’s olfactory system is so selective that male moths, for example, can discriminate female-produced sex pheromones from compounds with minimal structural modifications. Yet, there is an exception for this “lock-and-key” tight selectivity. Formate analogs can be used as replacement for less ...

  6. Pheromone Blend Analysis and Cross-Attraction among Populations of Maruca vitrata from Asia and West Africa.

    PubMed

    Schläger, Stefanie; Beran, Franziska; Groot, Astrid T; Ulrichs, Christian; Veit, Daniel; Paetz, Christian; Karumuru, Bhanu R M; Srinivasan, Ramasamy; Schreiner, Monika; Mewis, Inga

    2015-12-01

    The legume pod borer, Maruca vitrata, is a pantropical pest on leguminous crops. (E,E)-10,12-Hexadecadienal, (E,E)-10,12-hexadecadienol, and (E)-10-hexadecenal were described previously as sex pheromone components for this nocturnal moth. A blend of these components in a ratio of 100:5:5 attracted males in field trapping experiments in Benin, but not in Taiwan, Thailand, or Vietnam. This finding suggests geographic variation in the pheromone blend between Asian and West African populations of M. vitrata. We, therefore, determined the pheromone compositions of single pheromone glands of females from the three Asian regions and from Benin by gas chromatography-mass spectrometry. Additionally, we compared the responses of males from Taiwan and Benin to calling females and to gland extracts of females from both regions in laboratory no-choice and two-choice assays. Chemical analysis revealed the presence of (E,E)-10,12-hexadecadienal and (E,E)-10,12-hexadecadienol, as well as the absence of (E)-10-hexadecenal in all four populations. The relative amounts of the detected compounds did not vary significantly among the insect populations. The behavioral bioassays showed that Taiwanese and Beninese males were similarly attracted to females from both regions, as well as to their gland extracts. As a result, we did not find geographic variation in the sexual communication system of M. vitrata between West African and Asian insect populations.

  7. Western Pine Beetle Populations in Arizona and California Differ in the Composition of Their Aggregation Pheromones.

    PubMed

    Pureswaran, Deepa S; Hofstetter, Richard W; Sullivan, Brian T; Grady, Amanda M; Brownie, Cavell

    2016-05-01

    We compared pheromone production and response for populations of western pine beetle, Dendroctonus brevicomis LeConte, from sites in northern Arizona and northern California. Volatiles were collected from individuals of both sexes that had mined as a pair in a Pinus ponderosa log for 1 d, and they were subsequently analyzed by gas chromatography coupled to mass-spectrometry. Principal component analysis of quantities of Dendroctonus pheromone components indicated strong site-associated clustering of blend composition for females but not males. Much of the clustering in females evidently was due to differences in the production of endo- and exo-brevicomin, which occurred in average ratios of 0.1:1 and 19:1 for populations in the California and Arizona sites, respectively. In the California site, exo- was better than endo-brevicomin in enhancing trap catches of both sexes to lures containing the host-tree odor α-pinene and the male-produced aggregation pheromone component frontalin. In an identical test in the Arizona site, endo- was a better adjuvant than exo-brevicomin for male attraction, whereas females did not show a significant preference. At neither location were the isomers antagonistic to one another in activity. Thus, one aggregation pheromone has apparently diverged between these populations, concurrent with published evidence that D. brevicomis on either side of the Great Basin are genetically distinct and are possibly different species. Furthermore, production of and response to the isomers of brevicomin by flying Dendroctonus frontalis Zimmermann in the Arizona site were similar to those of sympatric D. brevicomis. This interspecific signal overlap is likely sustainable since joint species mass-attacks may assist both species in overcoming host defenses, thereby increasing host availability.

  8. Western Pine Beetle Populations in Arizona and California Differ in the Composition of Their Aggregation Pheromones.

    PubMed

    Pureswaran, Deepa S; Hofstetter, Richard W; Sullivan, Brian T; Grady, Amanda M; Brownie, Cavell

    2016-05-01

    We compared pheromone production and response for populations of western pine beetle, Dendroctonus brevicomis LeConte, from sites in northern Arizona and northern California. Volatiles were collected from individuals of both sexes that had mined as a pair in a Pinus ponderosa log for 1 d, and they were subsequently analyzed by gas chromatography coupled to mass-spectrometry. Principal component analysis of quantities of Dendroctonus pheromone components indicated strong site-associated clustering of blend composition for females but not males. Much of the clustering in females evidently was due to differences in the production of endo- and exo-brevicomin, which occurred in average ratios of 0.1:1 and 19:1 for populations in the California and Arizona sites, respectively. In the California site, exo- was better than endo-brevicomin in enhancing trap catches of both sexes to lures containing the host-tree odor α-pinene and the male-produced aggregation pheromone component frontalin. In an identical test in the Arizona site, endo- was a better adjuvant than exo-brevicomin for male attraction, whereas females did not show a significant preference. At neither location were the isomers antagonistic to one another in activity. Thus, one aggregation pheromone has apparently diverged between these populations, concurrent with published evidence that D. brevicomis on either side of the Great Basin are genetically distinct and are possibly different species. Furthermore, production of and response to the isomers of brevicomin by flying Dendroctonus frontalis Zimmermann in the Arizona site were similar to those of sympatric D. brevicomis. This interspecific signal overlap is likely sustainable since joint species mass-attacks may assist both species in overcoming host defenses, thereby increasing host availability. PMID:27125814

  9. Palm Weevil Pheromones - Discovery and Use.

    PubMed

    Oehlschlager, A C

    2016-07-01

    Male-produced aggregation pheromones of seven major pest species of weevils in the subfamily Rhynchophorinae have been identified as a closely related set of methyl-branched secondary alcohols. Although the weevils produce only one stereoisomer of these alcohols, no instances of isomeric inhibition have been observed, enabling stereoisomeric mixtures to be used in traps. Addition of fermenting plant material to traps synergizes attraction of weevils to the pheromones. The weevils are large, have long life cycles, and are strong fliers. These characteristics make mass trapping a suitable tactic to add to existing management strategies. When coupled with good phytosanitary practices, mass trapping of Rhynchophorus palmarum at 1 trap/5-ha significantly lowered the incidence of red ring nematode infection vectored by the weevil in commercial oil palm plantations in the Americas. Similarly, trap densities of 1-10 traps/ha have significantly lowered R. ferrugineus infestation of date palm throughout the Middle East. Although management of R. ferrugineus in urban areas is more problematic, trapping is an integral part of most programs aimed at protection of ornamental Canary palms in Europe. Overall, semiochemically-based management of these large weevils is now a mature and usually economically feasible control technology. PMID:27430563

  10. Analysis of Tea Geometrid (Ectropis grisescens) Pheromone Gland Extracts Using GC-EAD and GC×GC/TOFMS.

    PubMed

    Ma, Tao; Xiao, Qiang; Yu, Yu-Geng; Wang, Cai; Zhu, Cheng-Qi; Sun, Zhao-Hui; Chen, Xiao-Yang; Wen, Xiu-Jun

    2016-04-27

    The tea geometrid, Ectropis grisescens Warren, is one of the most severe defoliator insect pests in tea plantations, China. The use of insecticides, etc., is forbidden on organic tea plantations. No female-produced sex pheromones of E. grisescens had been previously identified. In the present study, female gland extracts were analyzed by gas chromatography coupled with electroantennographic detection (GC-EAD) and two-dimensional gas chromatography (GC×GC) using a time-of-flight mass spectrometric detector (TOFMS). Two components, (Z,Z,Z)-3,6,9-octadecatriene (Z3Z6Z9-18:Hy) and (Z,Z)-3,9-6,7-epoxyoctadecadiene (Z3Z9-6,7-epo-18:Hy), were identified from pheromone gland extracts, and their electrophysiological and behavioral activity evaluated. Under laboratory conditions, Z3Z9-6,7-epo-18:Hy elicited a stronger electrophysiological response than Z3Z6Z9-18:Hy. In the field, traps baited with Z3Z9-6,7-epo-18:Hy alone showed better results than traps baited with Z3Z6Z9-18:Hy, and the binary mixture of Z3Z9-6,7-epo-18:Hy and Z3Z6Z9-18:Hy in a ratio of 4:1 (approximate ratio of females emitting pheromone) caught more males than the single components or any other blends. This study showed that Z3Z6Z9-18:Hy and Z3Z9-6,7-epo-18:Hy are the sex pheromone components of E. grisescens and that they prove useful in developing alternative management tools for the pest. PMID:27040982

  11. Do perfume additives termed human pheromones warrant being termed pheromones?

    PubMed

    Winman, Anders

    2004-09-30

    Two studies of the effects of perfume additives, termed human pheromones by the authors, have conveyed the message that these substances can promote an increase in human sociosexual behaviour [Physiol. Behav. 75 (2003) R1; Arch. Sex. Behav. 27 (1998) R2]. The present paper presents an extended analysis of this data. It is shown that in neither study is there a statistically significant increase in any of the sociosexual behaviours for the experimental groups. In the control groups of both studies, there are, however, moderate but statistically significant decreases in the corresponding behaviour. Most notably, there is no support in data for the claim that the substances increase the attractiveness of the wearers of the substances to the other sex. It is concluded that more research using matched homogenous groups of participants is needed.

  12. New pheromone components of the grapevine moth Lobesia botrana.

    PubMed

    Witzgall, Peter; Tasin, Marco; Buser, Hans-Ruedi; Wegner-Kiss, Gertrud; Mancebón, Vicente S Marco; Ioriatti, Claudio; Bäckman, Anna-Carin; Bengtsson, Marie; Lehmann, Lutz; Francke, Wittko

    2005-12-01

    Analysis of extracts of sex pheromone glands of grapevine moth females Lobesia botrana showed three previously unidentified compounds, (E)-7-dodecenyl acetate and the (E,E)- and (Z,E)-isomers of 7,9,11-dodecatrienyl acetate. This is the first account of a triply unsaturated pheromone component in a tortricid moth. The monoenic acetate (E)-7-dodecenyl acetate and the trienic acetate (7Z,9E,11)-dodecatrienyl acetate significantly enhanced responses of males to the main pheromone compound, (7E,9Z)-7,9-dodecadienyl acetate, in the wind tunnel. The identification of sex pheromone synergists in L. botrana may be of practical importance for the development of integrated pest management systems. PMID:16365714

  13. Stereochemical studies on pheromonal communications

    PubMed Central

    MORI, Kenji

    2014-01-01

    Pheromonal communications are heavily dependent on the stereochemistry of pheromones. Their enantioselective syntheses could establish the absolute configuration of the naturally occurring pheromones, and clarified the unique relationships between absolute configuration and bioactivity. For example, neither the (R)- nor (S)-enantiomer of sulcatol, the aggregation pheromone of an ambrosia beetle, is behaviorally active, while their mixture is bioactive. Recent results as summarized in the present review further illustrate the unique and diverse relationships between stereochemistry and bioactivity of pheromones. PMID:25504227

  14. Response of Tuta absoluta (Lepidoptera: Gelechiidae) to different pheromone emission levels in greenhouse tomato crops.

    PubMed

    Vacas, Sandra; López, Jesús; Primo, Jaime; Navarro-Llopis, Vicente

    2013-10-01

    The response of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) to different emission rates of its pheromone, (3E, 8Z, 11Z)-tetradecatrienyl acetate, was measured in two greenhouse trials with traps baited with mesoporous dispensers. For this purpose, weekly moth trap catches were correlated with increasing pheromone emission levels by multiple regression analysis. Pheromone release profiles of the dispensers were obtained by residual pheromone extraction and gas chromatography quantification. In the first trial carried out in summer 2010, effect of pheromone emission was significant as catches increased linearly with pheromone release rates up to the highest studied level of 46.8 μg/d. A new trial was carried out in spring 2011 to measure the effect of the emission factor when pheromone release rates were higher. Results demonstrated that trap catches and pheromone emission fitted to a quadratic model, with maximum catches obtained with a release level of 150.3 μg/d of (3E, 8Z, 11Z)-tetradecatrienyl acetate. This emission value should provide enhanced attraction of T. absoluta and improve mass trapping, attract-and-kill, or monitoring techniques under greenhouse conditions in the Mediterranean area. PMID:24331616

  15. Response of Tuta absoluta (Lepidoptera: Gelechiidae) to different pheromone emission levels in greenhouse tomato crops.

    PubMed

    Vacas, Sandra; López, Jesús; Primo, Jaime; Navarro-Llopis, Vicente

    2013-10-01

    The response of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) to different emission rates of its pheromone, (3E, 8Z, 11Z)-tetradecatrienyl acetate, was measured in two greenhouse trials with traps baited with mesoporous dispensers. For this purpose, weekly moth trap catches were correlated with increasing pheromone emission levels by multiple regression analysis. Pheromone release profiles of the dispensers were obtained by residual pheromone extraction and gas chromatography quantification. In the first trial carried out in summer 2010, effect of pheromone emission was significant as catches increased linearly with pheromone release rates up to the highest studied level of 46.8 μg/d. A new trial was carried out in spring 2011 to measure the effect of the emission factor when pheromone release rates were higher. Results demonstrated that trap catches and pheromone emission fitted to a quadratic model, with maximum catches obtained with a release level of 150.3 μg/d of (3E, 8Z, 11Z)-tetradecatrienyl acetate. This emission value should provide enhanced attraction of T. absoluta and improve mass trapping, attract-and-kill, or monitoring techniques under greenhouse conditions in the Mediterranean area.

  16. Improving detection tools for emerald ash borer (Coleoptera: Buprestidae): comparison of multifunnel traps, prism traps, and lure types at varying population densities.

    PubMed

    Crook, Damon J; Francese, Joseph A; Rietz, Michael L; Lance, David R; Hull-Sanders, Helen M; Mastro, Victor C; Silk, Peter J; Ryall, Krista L

    2014-08-01

    The emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), is a serious invasive pest of North American ash (Fraxinus spp.) that has caused devastating mortality since it was first identified in North America in 2002. In 2012, we conducted field trapping assays that tested the efficacy of purple prism and fluon-coated green multifunnel (Lindgren funnel) traps. Traps were baited with combinations of several lures that were previously shown to be attractive to A. planipennis: manuka oil--a sesquiterpene-rich oil, (3Z)-hexenol--a green leaf volatile, or (3Z)-dodecen-12-olide [= (3Z)-lactone], a sex pheromone. Eighty-nine blocks (trap lines) were tested throughout nine states along the outer edges of the currently known A. planipennis infestation in North America. Trap catch was highest on fluon-coated green multifunnel traps, and trap detections at sites with low A. planipennis population density ranged from 72 to 76% for all trap and lure types tested. (3Z)-hexenol and (3Z)-lactone baited traps functioned as well as (3Z)-hexenol and manuka oil-baited traps. Independent of the lure used, detection rates on green fluon-coated multifunnel traps were comparable with glued purple prism traps in areas with low A. planipennis population densities. PMID:25195441

  17. Improving detection tools for emerald ash borer (Coleoptera: Buprestidae): comparison of multifunnel traps, prism traps, and lure types at varying population densities.

    PubMed

    Crook, Damon J; Francese, Joseph A; Rietz, Michael L; Lance, David R; Hull-Sanders, Helen M; Mastro, Victor C; Silk, Peter J; Ryall, Krista L

    2014-08-01

    The emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), is a serious invasive pest of North American ash (Fraxinus spp.) that has caused devastating mortality since it was first identified in North America in 2002. In 2012, we conducted field trapping assays that tested the efficacy of purple prism and fluon-coated green multifunnel (Lindgren funnel) traps. Traps were baited with combinations of several lures that were previously shown to be attractive to A. planipennis: manuka oil--a sesquiterpene-rich oil, (3Z)-hexenol--a green leaf volatile, or (3Z)-dodecen-12-olide [= (3Z)-lactone], a sex pheromone. Eighty-nine blocks (trap lines) were tested throughout nine states along the outer edges of the currently known A. planipennis infestation in North America. Trap catch was highest on fluon-coated green multifunnel traps, and trap detections at sites with low A. planipennis population density ranged from 72 to 76% for all trap and lure types tested. (3Z)-hexenol and (3Z)-lactone baited traps functioned as well as (3Z)-hexenol and manuka oil-baited traps. Independent of the lure used, detection rates on green fluon-coated multifunnel traps were comparable with glued purple prism traps in areas with low A. planipennis population densities.

  18. Differential combinatorial coding of pheromones in two olfactory subsystems of the honey bee brain.

    PubMed

    Carcaud, Julie; Giurfa, Martin; Sandoz, Jean-Christophe

    2015-03-11

    Neural coding of pheromones has been intensively studied in insects with a particular focus on sex pheromones. These studies favored the view that pheromone compounds are processed within specific antennal lobe glomeruli following a specialized labeled-line system. However, pheromones play crucial roles in an insect's life beyond sexual attraction, and some species use many different pheromones making such a labeled-line organization unrealistic. A combinatorial coding scheme, in which each component activates a set of broadly tuned units, appears more adapted in this case. However, this idea has not been tested thoroughly. We focused here on the honey bee Apis mellifera, a social insect that relies on a wide range of pheromones to ensure colony cohesion. Interestingly, the honey bee olfactory system harbors two central parallel pathways, whose functions remain largely unknown. Using optophysiological recordings of projection neurons, we compared the responses of these two pathways to 27 known honey bee pheromonal compounds emitted by the brood, the workers, and the queen. We show that while queen mandibular pheromone is processed by l-ALT (lateral antennal lobe tract) neurons and brood pheromone is mainly processed by m-ALT (median antennal lobe tract) neurons, worker pheromones induce redundant activity in both pathways. Moreover, all tested pheromonal compounds induce combinatorial activity from several AL glomeruli. These findings support the combinatorial coding scheme and suggest that higher-order brain centers reading out these combinatorial activity patterns may eventually classify olfactory signals according to their biological meaning. PMID:25762663

  19. Identification of the Aggregation Pheromone of the Date Palm Root Borer Oryctes agamemnon.

    PubMed

    Saïd, Imen; Hasni, Narjes; Abdallah, Zeineb; Couzi, Philippe; Ouhichi, Monêem; Renou, Michel; Rochat, Didier

    2015-05-01

    Laboratory and field investigations aimed to characterize the chemical communication system of the date palm pest Oryctes agamemnon. Live males or extracts of male effluvia attracted conspecifics in an olfactometer, whereas female effluvia attracted only males. Volatile emissions from adults feeding on sugarcane were sampled and analysed by gas chromatography (GC) and GC/mass spectrometry (GC/MS). Males emitted a blend of 1) ethyl 4-methyloctanoate, 2) 4-methyloctanoic acid, 3) 4-methyloctanyl acetate, and 4) 4-methyloctanol in variable ratio. Single sensillum recordings demonstrated that compounds 1, 2, and 3 are detected by specific olfactory receptor neurons. Olfactometric experiments showed that compounds 1 and 3 attract both sexes of O. agamemnon, but females are more attracted by compound 1 and males by compound 3. Compound 2 was more attractive for females, especially virgin ones. Field experiments confirmed that compound 1 and compound 2 attracted O. agamemnon of both sexes and showed synergy with palm odors. No clear activity of compound 3 was observed. A mix of compounds 1 and 2 with date palm core odor was significantly the most attractive, and captured more females than males. The male aggregation pheromone of O. agamemnon appears therefore to be based on a mixture in contrast to previously identified Oryctes pheromones. Our results provide the basis for developing mass trapping to control this pest. PMID:25900246

  20. Trap placement and attractant choice affect capture and create sex and parity biases in collections of the biting midge, Culicoides sonorensis.

    PubMed

    McDermott, E G; Mayo, C E; Gerry, A C; Mullens, B A

    2016-09-01

    Culicoides sonorensis Wirth & Jones (Diptera: Ceratopogonidae) is the primary North American vector of bluetongue virus (BTV), which can cause high morbidity and mortality in ruminant livestock or wildlife. Worldwide, most Culicoides surveillance relies on light (usually UV) traps typically placed near animals or larval development sites. However, the trapping method can cause sex, species and parity biases in collections. We collected C. sonorensis from three dairies in California using suction traps baited with CO2 , UV light or CO2  + UV placed near animals, wastewater ponds, or in fields. Higher numbers of parous females were collected using CO2  + UV traps, although this difference was only significant on one dairy. UV traps were poor at collecting nulliparous females, but the addition of UV to a trap increased the abundance of males in a collection. Traps set in open fields collected significantly higher numbers of males and females than in either of the other two locations. In some cases, there was a significant interaction between the trap type and site. We discuss the limitations of traditional trapping methodologies for C. sonorensis and make suggestions for vector surveillance. PMID:27257164

  1. Mating disruption of Planococcus ficus (Hemiptera: Pseudococcidae) in vineyards using reservoir pheromone dispensers.

    PubMed

    Cocco, Arturo; Lentini, Andrea; Serra, Giuseppe

    2014-10-15

    Mating disruption field experiments to control the vine mealybug, Planococcus ficus (Signoret) (Hemiptera: Pseudococcidae), were carried out in 2008 and 2009 in two commercial vineyards in Sardinia (Italy). The effectiveness of mating disruption was evaluated by testing reservoir dispensers loaded with 100 mg (62.5 g/ha) and 150 mg (93.8 g/ha) of the sex pheromone in 2008 and 2009, respectively. The number of males captured in pheromone traps, the P. ficus population density and age structure, the parasitism rate, the percentage of ovipositing females, and the crop damage were compared between disrupted and untreated plots. In both field trials, the number of males captured in mating disruption plots was significantly reduced by 86% and 95%, respectively. Mating disruption at the initial dose of 62.5 g/ha of active ingredient gave inconclusive results, whereas the dose of 93.8 g/ha significantly lowered the mealybug density and modified the age structure, which showed a lower percentage of ovipositing females and a higher proportion of preovipositing females. Mating disruption did not affect negatively the parasitism rate, which was higher in the disrupted than in the control plots (>1.5-fold). Crop damage at harvest was very low in both field trials and did not differ between treatments. Mating disruption was effective in wide plots protected with dispensers loaded with 150 mg of the sex pheromone, showing its potential to be included in the overall integrated control programs in Mediterranean wine-growing regions.

  2. Unexpected plant odor responses in a moth pheromone system

    PubMed Central

    Rouyar, Angéla; Deisig, Nina; Dupuy, Fabienne; Limousin, Denis; Wycke, Marie-Anne; Renou, Michel; Anton, Sylvia

    2015-01-01

    Male moths rely on olfactory cues to find females for reproduction. Males also use volatile plant compounds (VPCs) to find food sources and might use host-plant odor cues to identify the habitat of calling females. Both the sex pheromone released by conspecific females and VPCs trigger well-described oriented flight behavior toward the odor source. Whereas detection and central processing of pheromones and VPCs have been thought for a long time to be highly separated from each other, recent studies have shown that interactions of both types of odors occur already early at the periphery of the olfactory pathway. Here we show that detection and early processing of VPCs and pheromone can overlap between the two sub-systems. Using complementary approaches, i.e., single-sensillum recording of olfactory receptor neurons, in vivo calcium imaging in the antennal lobe, intracellular recordings of neurons in the macroglomerular complex (MGC) and flight tracking in a wind tunnel, we show that some plant odorants alone, such as heptanal, activate the pheromone-specific pathway in male Agrotis ipsilon at peripheral and central levels. To our knowledge, this is the first report of a plant odorant with no chemical similarity to the molecular structure of the pheromone, acting as a partial agonist of a moth sex pheromone. PMID:26029117

  3. Pheromonal influences on sociosexual behavior in postmenopausal women.

    PubMed

    Friebely, Joan; Rako, Susan

    2004-11-01

    To determine whether a putative human sex-attractant pheromone increases specific sociosexual behaviors of postmenopausal women, we tested a chemically synthesized formula derived from research with underarm secretions from heterosexually active, fertile women that was recently tested on young women. Participants (n = 44, mean age = 57 years) were postmenopausal women who volunteered for a double-blind placebo-controlled study designed, to test an odorless pheromone, added to your preferred fragrance, to learn if it might increase the romance in your life. During the experimental 6-week period, a significantly greater proportion of participants using the pheromone formula (40.9%) than placebo (13.6%) recorded an increase over their own weekly average baseline frequency of petting, kissing, and affection (p = .02). More pheromone (68.2%) than placebo (40.9%) users experienced an increase in at least one of the four intimate sociosexual behaviors (p = .04). Sexual motivation frequency, as expressed in masturbation, was not increased in pheromone users. These results suggest that the pheromone formulation worn with perfume for a period of 6 weeks has sex-attractant effects for postmenopausal women.

  4. Application of a putative alarm cue hastens the arrival of invasive sea lamprey (Petromyzon marinus) at a trapping location

    USGS Publications Warehouse

    Hume, John B.; Meckley, Trevor D.; Johnson, Nicholas; Luhring, Thomas M; Siefkes, Michael J; Wagner, C. Michael

    2015-01-01

    The sea lamprey Petromyzon marinus is an invasive pest in the Laurentian Great Lakes basin, threatening the persistence of important commercial and recreational fisheries. There is substantial interest in developing effective trapping practices via the application of behavior-modifying semiochemicals (odors). Here we report on the effectiveness of utilizing repellent and attractant odors in a push–pull configuration, commonly employed to tackle invertebrate pests, to improve trapping efficacy at permanent barriers to sea lamprey migration. When a half-stream channel was activated by a naturally derived repellent odor (a putative alarm cue), we found that sea lamprey located a trap entrance significantly faster than when no odor was present as a result of their redistribution within the stream. The presence of a partial sex pheromone, acting as an attractant within the trap, was not found to further decrease the time to when sea lamprey located a trap entrance relative to when the alarm cue alone was applied. Neither the application of alarm cue singly nor alarm cue and partial sex pheromone in combination was found to improve the numbers of sea lamprey captured in the trap versus when no odor was present — likely because nominal capture rate during control trials was unusually high during the study period. Behavioural guidance using these odors has the potential to both improve control of invasive non-native sea lamprey in the Great Lakes as well as improving the efficiency of fish passage devices used in the restoration of threatened lamprey species elsewhere.

  5. The Synthesis of Lepidoptera Pheromones

    NASA Astrophysics Data System (ADS)

    Matveeva, Elena D.; Kurts, A. L.; Bundel', Yurii G.

    1986-07-01

    The review surveys the data in numerous publications of the synthesis of the pheromones of scale-winged insects (Lepidoptera). Attention is concentrated on problems of the sterospecific synthesis of pheromones. The bibliography includes 217 references.

  6. Pheromonal influences on sociosexual behavior in young women.

    PubMed

    McCoy, Norma L; Pitino, Lisa

    2002-03-01

    A double-blind, placebo-controlled study of a synthesized putative female pheromone was conducted with regularly menstruating, university women (N=36, mean age=27.8). The pheromone formula was derived from earlier work investigating the underarm secretions of fertile, sexually active, heterosexual women. A vial of either synthesized pheromone or placebo was selected blindly and added to a subject's perfume. Subjects recorded seven sociosexual behaviors and reported them weekly across three menstrual cycles. Beginning with Day 8 of each cycle, the first cycle contained a 2-week baseline period followed by an experimental period of as many as 3 weeks each from the next two cycles for a maximum of 6 weeks. The 19 pheromone and 17 placebo subjects did not differ significantly in age, weight, body mass index, dating status or ethnicity nor in reported accuracy, back-filling data, perception of a positive effect or perfume use. Placebo subjects were significantly taller than pheromone subjects. Except for male approaches, subjects did not differ significantly at baseline in average weekly sociosexual behaviors. A significantly greater proportion of pheromone users compared with placebo users increased over baseline in frequency of sexual intercourse, sleeping next to a partner, formal dates and petting/affection/kissing but not in frequency of male approaches, informal dates or masturbation. Three or more sociosexual behaviors increased over baseline for 74% of pheromone users compared with 23% of placebo users. We conclude that this synthesized pheromone formula acted as a sex attractant pheromone and increased the sexual attractiveness of women to men.

  7. Trapping sweetpotato weevil, Cylas formicarius elegantulus (Coleoptera: Brentidae), with high doses of sex pheromone: Catch enhancement and weathering rate in Hawaii

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sweetpotato, Ipomoea batatas (L.) Lamarck, one of the top ten staple crops produced worldwide, has increased in production in Hawaii in recent years. The sweetpotato weevil, Cylas formicarius elegantulus (Summers)(Coleoptera: Brentidae), is a major economic and quarantine pest of sweetpotato in Hawa...

  8. Early-Summer Pheromone Biology of Galerucella calmariensis and Relationship to Dispersal and Colonization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Galerucella calmariensis (Coleoptera: Chrysomelidae) has become an effective biological control agent for purple loosestrife (Lythrum salicaria). A male-produced aggregation pheromone was recently identified in this mostly univoltine beetle, and attractiveness to both sexes was demonstrated in the ...

  9. New traps, baits, and lures for tree fruit IPM

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies conducted at the USDA, ARS Laboratory in Wapato, WA to develop new monitoring tools for key pests of tree fruits in the western United States are reviewed. The combination of pear ester, sex pheromone, and acetic acid was shown to be highly effective in orchards treated with sex pheromones f...

  10. Two fatty acyl reductases involved in moth pheromone biosynthesis

    PubMed Central

    Antony, Binu; Ding, Bao-Jian; Moto, Ken’Ichi; Aldosari, Saleh A.; Aldawood, Abdulrahman S.

    2016-01-01

    Fatty acyl reductases (FARs) constitute an evolutionarily conserved gene family found in all kingdoms of life. Members of the FAR gene family play diverse roles, including seed oil synthesis, insect pheromone biosynthesis, and mammalian wax biosynthesis. In insects, FAR genes dedicated to sex pheromone biosynthesis (pheromone-gland-specific fatty acyl reductase, pgFAR) form a unique clade that exhibits substantial modifications in gene structure and possesses unique specificity and selectivity for fatty acyl substrates. Highly selective and semi-selective ‘single pgFARs’ produce single and multicomponent pheromone signals in bombycid, pyralid, yponomeutid and noctuid moths. An intriguing question is how a ‘single reductase’ can direct the synthesis of several fatty alcohols of various chain lengths and isomeric forms. Here, we report two active pgFARs in the pheromone gland of Spodoptera, namely a semi-selective, C14:acyl-specific pgFAR and a highly selective, C16:acyl-specific pgFAR, and demonstrate that these pgFARs play a pivotal role in the formation of species-specific signals, a finding that is strongly supported by functional gene expression data. The study envisages a new area of research for disclosing evolutionary changes associated with C14- and C16-specific FARs in moth pheromone biosynthesis. PMID:27427355

  11. Two fatty acyl reductases involved in moth pheromone biosynthesis.

    PubMed

    Antony, Binu; Ding, Bao-Jian; Moto, Ken'Ichi; Aldosari, Saleh A; Aldawood, Abdulrahman S

    2016-01-01

    Fatty acyl reductases (FARs) constitute an evolutionarily conserved gene family found in all kingdoms of life. Members of the FAR gene family play diverse roles, including seed oil synthesis, insect pheromone biosynthesis, and mammalian wax biosynthesis. In insects, FAR genes dedicated to sex pheromone biosynthesis (pheromone-gland-specific fatty acyl reductase, pgFAR) form a unique clade that exhibits substantial modifications in gene structure and possesses unique specificity and selectivity for fatty acyl substrates. Highly selective and semi-selective 'single pgFARs' produce single and multicomponent pheromone signals in bombycid, pyralid, yponomeutid and noctuid moths. An intriguing question is how a 'single reductase' can direct the synthesis of several fatty alcohols of various chain lengths and isomeric forms. Here, we report two active pgFARs in the pheromone gland of Spodoptera, namely a semi-selective, C14:acyl-specific pgFAR and a highly selective, C16:acyl-specific pgFAR, and demonstrate that these pgFARs play a pivotal role in the formation of species-specific signals, a finding that is strongly supported by functional gene expression data. The study envisages a new area of research for disclosing evolutionary changes associated with C14- and C16-specific FARs in moth pheromone biosynthesis. PMID:27427355

  12. Chemical protection of pheromones containing an internal conjugated diene system from isomerization and oxidation.

    PubMed

    Ideses, R; Shani, A

    1988-08-01

    Conjugated diene systems are common in natural products, including pheromones. The systems are sensitive to heat, light, and oxygen, among other things. They can be protected by antioxidants and UV absorbers, which slow downcis-trans isomerization and oxidation. Three sex pheromones (one as an analog) containingZ,E, E,Z, andE,E units were studied: (Z,E)-9,11-C14OAc, (E,Z)-7,9-C12OAc, and (E,E)-10,12-C16OAc. The UV absorber 2-hydroxy-4-methoxybenzophenone and the antioxidants BHT and BHA were found to be effective in solution. The protective effect of the UV absorber against photoisomerization on paper carriers was not as good as that in solution. Preliminary studies on the utilization of formulations containing these compounds and (Z,E)-9,11-C14OAc in the mass trapping of Egyptian cotton leafworm male in cotton fields showed the new combinations to be as good as a previously used formulation with UOP 688, a compound which is unpleasant to handle.

  13. Ready for a fight? The physiological effects of detecting an opponent's pheromone cues prior to a contest.

    PubMed

    Garcia, Mark J; Williams, John; Sinderman, Benjamin; Earley, Ryan L

    2015-10-01

    Reception of pheromone cues can elicit significant physiological (e.g. steroid hormone levels) changes in the recipient. These pheromone-induced physiological changes have been well documented for male-female interactions, but scarcely in same-sex interactions (male-male and female-female). We sought to address this dearth in the current literature and examine whether mangrove rivulus fish (Kryptolebias marmoratus) could detect and, ultimately, mount a physiological response to the pheromone signature of a potential, same-sex competitor. We examined steroid hormone levels in mangrove rivulus exposed to one of three treatments: 1) isolation, 2) exposure to pheromones of a size-matched partner, and 3) pheromone exposure to a size-matched opponent followed by a physical encounter with the opponent. We found that exposure to a competitor's pheromone cues elicited a significant increase in testosterone levels. Increases in testosterone were similar across genetically distinct lineages derived from geographically distinct populations. Further, testosterone levels were similar between individuals only exposed to pheromone cues and individuals exposed to both pheromone cues and a subsequent physical encounter. Our findings led us to generate a number of testable predictions regarding how mangrove rivulus utilize pheromone signals in social interactions, the molecular mechanisms linking social stimuli and hormonal responses, and the possible adaptive benefits of hormonal responsiveness to receiving a potential competitor's pheromone cues.

  14. Position around a tree: consequences for pheromone detection.

    PubMed

    Miller, Ginger L; Loudon, Catherine; Freed, Sarah

    2007-03-01

    The air flow pattern expected around a cylindrical object such as a tree in slow wind, is predicted from fluid mechanics to have areas of faster flow (upwind) and slower recirculating flow with eddies (downwind). An organism located on the surface of a tree would experience different flow depending on its circumferential position. If that organism was searching for a chemical signal, such as a pheromone plume, it might maximize its probability of chemodetection by placing itself in areas of greatest flow speed (the upwind surface of the cylinder, i.e., in front of the separation points). We tested whether wood cockroaches in the genus Parcoblatta exhibit such upwind positioning; they live in forests, and males actively fly from tree to tree, while searching for females releasing sex pheromone. In contrast to an expectation of upwind preference, male cockroaches were evenly distributed around trees relative to upwind (measured with a novel "feather boa" flow visualization technique), even though the wind direction was relatively steady. We investigated whether sex pheromone could be detected at any location around a cylindrical surface in a laboratory flow chamber by using Bombyx mori wing fanning as a bioassay. Although upwind moths arrayed on the surface detected pheromone more rapidly, pheromone detection occurred at least a third of the time at any position, which could explain the even distribution of Parcoblatta males around trees.

  15. Concentric zones for pheromone components in the mushroom body calyx of the moth brain.

    PubMed

    Namiki, Shigehiro; Takaguchi, Mitsuko; Seki, Yoichi; Kazawa, Tomoki; Fukushima, Ryota; Iwatsuki, Chika; Kanzaki, Ryohei

    2013-04-01

    The spatial distribution of input and output neurons in the mushroom body (MB) calyx was investigated in the silkmoth Bombyx mori. In Lepidoptera, the brain has a specialized system for processing sex pheromones. How individual pheromone components are represented in the MB has not yet been elucidated. Toward this end, we first compared the distribution of the presynaptic boutons of antennal lobe projection neurons (PNs), which transfer odor information from the antennal lobe to the MB calyx. The axons of PNs that innervate pheromonal glomeruli were confined to a relatively small area within the calyx. In contrast, the axons of PNs that innervate nonpheromonal glomeruli were more widely distributed. PN axons for the minor pheromone component covered a larger area than those for the major pheromone component and partially overlapped with those innervating nonpheromonal glomeruli, suggesting the integration of the minor pheromone component with plant odors. Overall, we found that PN axons innervating pheromonal and nonpheromonal glomeruli were organized into concentric zones. We then analyzed the dendritic fields of Kenyon cells (KCs), which receive inputs from PNs. Despite the strong regional localization of axons of different PN classes, the dendrites of KCs were less well classified. Finally, we estimated the connectivity between PNs and KCs and suggest that the dendritic field may be organized to receive different amounts of pheromonal and nonpheromonal inputs. PNs for multiple pheromone components and plant odors enter the calyx in a concentric fashion, and they are read out by the elaborate dendritic field of KCs.

  16. Pheromonal and Behavioral Cues Trigger Male-to-Female Aggression in Drosophila

    PubMed Central

    Yew, Joanne Y.; Billeter, Jean-Christophe; Dreisewerd, Klaus; Levine, Joel D.; Kravitz, Edward A.

    2010-01-01

    Appropriate displays of aggression rely on the ability to recognize potential competitors. As in most species, Drosophila males fight with other males and do not attack females. In insects, sex recognition is strongly dependent on chemosensory communication, mediated by cuticular hydrocarbons acting as pheromones. While the roles of chemical and other sensory cues in stimulating male to female courtship have been well characterized in Drosophila, the signals that elicit aggression remain unclear. Here we show that when female pheromones or behavior are masculinized, males recognize females as competitors and switch from courtship to aggression. To masculinize female pheromones, a transgene carrying dsRNA for the sex determination factor transformer (traIR) was targeted to the pheromone producing cells, the oenocytes. Shortly after copulation males attacked these females, indicating that pheromonal cues can override other sensory cues. Surprisingly, masculinization of female behavior by targeting traIR to the nervous system in an otherwise normal female also was sufficient to trigger male aggression. Simultaneous masculinization of both pheromones and behavior induced a complete switch in the normal male response to a female. Control males now fought rather than copulated with these females. In a reciprocal experiment, feminization of the oenocytes and nervous system in males by expression of transformer (traF) elicited high levels of courtship and little or no aggression from control males. Finally, when confronted with flies devoid of pheromones, control males attacked male but not female opponents, suggesting that aggression is not a default behavior in the absence of pheromonal cues. Thus, our results show that masculinization of either pheromones or behavior in females is sufficient to trigger male-to-female aggression. Moreover, by manipulating both the pheromonal profile and the fighting patterns displayed by the opponent, male behavioral responses towards

  17. Behavioral explanations underlying the lack of trap effectiveness for small-scale management of Japanese beetles (Coleoptera: Scarabaeidae).

    PubMed

    Switzer, Paul V; Enstrom, Patrick C; Schoenick, Carissa A

    2009-06-01

    Traps containing a combination floral and synthetic pheromone lure are used to monitor and manage Japanese beetles, Popillia japonica Newman (Coleoptera: Scarabaeidae). One key factor limiting trap effectiveness for beetle control is the "trap spillover" phenomenon, in which the trap attracts beetles without capturing them, resulting in increased damage to surrounding host plants. We investigated the mechanisms underlying trap spillover by conducting two studies in a soybean field in east central Illinois. In the first study, we set up trap stations for 1 d and compared the sex, size, and egg load (for females) of beetles caught in the traps with those on the plants immediately surrounding the trap, downwind of the trap, at lure-only (no trap) stations, and at control areas. Females caught in traps tended to be smaller than those on plants surrounding the traps, and females attracted to the traps had fewer eggs than those downwind or at control sites. We did not find any difference in male characteristics. In the second study, we observed the behavior of beetles initially approaching traps. Upon initial approach, the majority of individuals landed on plants before making contact with the trap, and those beetles that spent an extended time on the leaves tended to be females. Arriving males would occasionally pair with these females on the plants. Overall, traps did not capture a random subset of the beetles present in the field. We hypothesize that trap spillover is a result of arriving females not being as attracted to the precise location of the trap as they are to the general location itself, and of arriving males seeking mates and finding them among these spillover females.

  18. Chirality determines pheromone activity for flour beetles

    NASA Astrophysics Data System (ADS)

    Levinson, H. Z.; Mori, K.

    1983-04-01

    Olfactory perception and orientation behaviour of female and male flour beetles ( Tribolium castaneum, T. confusum) to single stereoisomers of their aggregation pheromone revealed maximal receptor potentials and optimal attraction in response to 4R,8R-(-)-dimethyldecanal, whereas its optical antipode 4S,8S-(+)-dimethyldecanal was found to be inactive in this respect. Female flour beetles of both species were ≈ 103 times less attracted to 4R,8S-(+)- and 4S,8R-(-)-dimethyldecanal than to 4R,8R-(-)-dimethyldecanal, while male flour beetles failed to respond to the R,S-(+)- and S,R-(-)-stereoisomers. Pheromone extracts of prothoracic femora from unmated male flour beetles elicited higher receptor potentials in the antennae of females than in those of males. The results suggest that the aggregation pheromone emitted by male T. castaneum as well as male T. confusum has the stereochemical structure of 4R,8R-(-)-dimethyl-decanal, which acts as sex attractant for the females and as aggregant for the males of both species.

  19. A practical method for obtaining useful quantities of pheromones from sea lamprey and other fishes for identification and control

    USGS Publications Warehouse

    Fine, J.M.; Sisler, S.P.; Vrieze, L.A.; Swink, W.D.; Sorensen, P.W.

    2006-01-01

    Pheromonally-mediated trapping is currently being developed for use in sea lamprey control in the Laurentian Great Lakes. To identify and test lamprey pheromones a practical procedure was needed to isolate relatively large quantities of pheromone from lamprey holding water. The present study developed such a technique. It employs Amberlite XAD7HP, an adsorbent resin which we found can extract over 80% of the sea lamprey migratory pheromone from larval holding water at low cost and with relative ease. This technique allowed its to collect tens of milligrams of all three components of the sea lamprey migratory pheromone, eventually permitting both identification and successful field testing. This technique might also be used to collect pheromones released by other species of fish.

  20. Do pheromones reveal male immunocompetence?

    PubMed Central

    Rantala, Markus J; Jokinen, Ilmari; Kortet, Raine; Vainikka, Anssi; Suhonen, Jukka

    2002-01-01

    Pheromones function not only as mate attractors, but they may also relay important information to prospective mates. It has been shown that vertebrates can distinguish, via olfactory mechanisms, major histocompatibility complex types in their prospective mates. However, whether pheromones can transmit information about immunocompetence is unknown. Here, we show that female mealworm beetles (Tenebrio molitor) prefer pheromones from males with better immunocompetence, indicated by a faster encapsulation rate against a novel antigen, and higher levels of phenoloxidase in haemolymph. Thus, the present study indicates that pheromones could transmit information about males' parasite resistance ability and may work as a reliable sexual ornament for female choice. PMID:12204128

  1. The evolution of pheromonal communication.

    PubMed

    Swaney, William T; Keverne, Eric B

    2009-06-25

    Small-brained rodents have been the principle focus for pheromonal research and have provided comprehensive insights into the chemosensory mechanisms that underpin pheromonal communication and the hugely important roles that pheromones play in behavioural regulation. However, pheromonal communication does not start or end with the mouse and the rat, and work in amphibians reveals much about the likely evolutionary origins of the chemosensory systems that mediate pheromonal effects. The dual olfactory organs (the main olfactory epithelium and the vomeronasal organ), their receptors and their separate projection pathways appear to have ancient evolutionary origins, appearing in the aquatic ancestors of all tetrapods during the Devonian period and so pre-dating the transition to land. While the vomeronasal organ has long been considered an exclusively pheromonal organ, accumulating evidence indicates that it is not the sole channel for the transduction of pheromonal information and that both olfactory systems have been co-opted for the detection of different pheromone signals over the course of evolution. This has also led to great diversity in the vomeronasal and olfactory receptor families, with enormous levels of gene diversity and inactivation of genes in different species. Finally, the evolution of trichromacy as well as huge increases in social complexity have minimised the role of pheromones in the lives of primates, leading to the total inactivation of the vomeronasal system in catarrhine primates while the brain increased in size and behaviour became emancipated from hormonal regulation.

  2. Male-produced pheromone of the green lacewing, Chrysopa nigricornis.

    PubMed

    Zhang, Qing-He; Schneidmiller, Rodney G; Hoover, Doreen R; Young, Kevin; Welshons, Dewayne O; Margaryan, Armenak; Aldrich, Jeffrey R; Chauhan, Kamlesh R

    2006-10-01

    Gas chromatographic-electroantennographic detection (GC-EAD) analysis showed that male antennae of the green lacewing, Chrysopa nigricornis Burmeister, the most common lacewing species in the U.S. Pacific Northwest, consistently responded to two compounds in thoracic extracts of conspecific males: 1-tridecene and (1R,2S,5R,8R)-iridodial. These compounds were not detected in extracts of the abdominal cuticle, and no other antennally active compounds were found in the abdominal samples. In field-trapping experiments, traps baited with iridodial significantly attracted large numbers of C. nigricornis males (both western and eastern forms) during summer and early fall, plus a few individuals of conspecific females only in early fall. Iridodial also attracted males of the goldeneyed lacewing, C. oculata Say, and, to a lesser extent, C. coloradensis Banks males. Methyl salicylate (MS), reported as an attractant for both sexes of C. nigricornis and C. oculata, was inactive by itself at the concentration tested in our study, but in a few instances slightly enhanced the responses of Chrysopa spp. to iridodial. However, MS alone and its binary blend with iridodial seemed to attract the hoverfly, Metasyrphus americanus (Weidemann). 2-Phenylethanol, a reported attractant for another lacewing, Chrysoperla plorabunda (Fitch) [=carnea (Say)], did not capture any lacewings. Our assays indicated that the lacewing pheromone, iridodial, loaded onto either rubber septa or as a binary blend with MS in polyethylene bags could last at least 5 wk in the field during the summer season. Based on this study, a new attractant system for green lacewings is being developed for both domestic and international markets.

  3. Boll weevils (Coleoptera: Curculionidae) continue to release pheromone following host removal

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pheromone traps are a key component of management and eradication programs directed against the boll weevil, Anthonomus grandis (Boheman), but trap data remain difficult to interpret because of the day-to-day variability in captures. Our prior observations suggested a substantial proportion of boll...

  4. Responses to Pheromones in a Complex Odor World: Sensory Processing and Behavior

    PubMed Central

    Deisig, Nina; Dupuy, Fabienne; Anton, Sylvia; Renou, Michel

    2014-01-01

    Insects communicating with pheromones, be it sex- or aggregation pheromones, are confronted with an olfactory environment rich in a diversity of volatile organic compounds of which plants are the main releaser. Certain of these volatiles can represent behaviorally relevant information, such as indications about host- or non-host plants; others will provide essentially a rich odor background out of which the behaviorally relevant information needs to be extracted. In an attempt to disentangle mechanisms of pheromone communication in a rich olfactory environment, which might underlie interactions between intraspecific signals and a background, we will summarize recent literature on pheromone/plant volatile interactions. Starting from molecular mechanisms, describing the peripheral detection and central nervous integration of pheromone-plant volatile mixtures, we will end with behavioral output in response to such mixtures and its plasticity. PMID:26462691

  5. Responses to Pheromones in a Complex Odor World: Sensory Processing and Behavior.

    PubMed

    Deisig, Nina; Dupuy, Fabienne; Anton, Sylvia; Renou, Michel

    2014-01-01

    Insects communicating with pheromones, be it sex- or aggregation pheromones, are confronted with an olfactory environment rich in a diversity of volatile organic compounds of which plants are the main releaser. Certain of these volatiles can represent behaviorally relevant information, such as indications about host- or non-host plants; others will provide essentially a rich odor background out of which the behaviorally relevant information needs to be extracted. In an attempt to disentangle mechanisms of pheromone communication in a rich olfactory environment, which might underlie interactions between intraspecific signals and a background, we will summarize recent literature on pheromone/plant volatile interactions. Starting from molecular mechanisms, describing the peripheral detection and central nervous integration of pheromone-plant volatile mixtures, we will end with behavioral output in response to such mixtures and its plasticity. PMID:26462691

  6. A bidirectional circuit switch reroutes pheromone signals in male and female brains.

    PubMed

    Kohl, Johannes; Ostrovsky, Aaron D; Frechter, Shahar; Jefferis, Gregory S X E

    2013-12-19

    The Drosophila sex pheromone cVA elicits different behaviors in males and females. First- and second-order olfactory neurons show identical pheromone responses, suggesting that sex genes differentially wire circuits deeper in the brain. Using in vivo whole-cell electrophysiology, we now show that two clusters of third-order olfactory neurons have dimorphic pheromone responses. One cluster responds in females; the other responds in males. These clusters are present in both sexes and share a common input pathway, but sex-specific wiring reroutes pheromone information. Regulating dendritic position, the fruitless transcription factor both connects the male-responsive cluster and disconnects the female-responsive cluster from pheromone input. Selective masculinization of third-order neurons transforms their morphology and pheromone responses, demonstrating that circuits can be functionally rewired by the cell-autonomous action of a switch gene. This bidirectional switch, analogous to an electrical changeover switch, provides a simple circuit logic to activate different behaviors in males and females.

  7. Predicted taxonomic patterns in pheromone production by longhorned beetles

    NASA Astrophysics Data System (ADS)

    Ray, Ann M.; Lacey, Emerson S.; Hanks, Lawrence M.

    2006-11-01

    Males of five species of three tribes in the longhorned beetle subfamily Cerambycinae produce volatile pheromones that share a structural motif (hydroxyl or carbonyl groups at carbons two and three in straight-chains of six, eight, or ten carbons). Pheromone gland pores are present on the prothoraces of males, but are absent in females, suggesting that male-specific gland pores could provide a convenient morphological indication that a species uses volatile pheromones. In this article, we assess the taxonomic distribution of gland pores within the Cerambycinae by examining males and females of 65 species in 24 tribes using scanning electron microscopy. Gland pores were present in males and absent in females of 49 species, but absent in both sexes of the remaining 16 species. Pores were confined to indentations in the cuticle. Among the species that had male-specific gland pores were four species already known to produce volatile compounds consistent with the structural motif. These findings support the initial assumption that gland pores are associated with the production of pheromones by males. There were apparently no taxonomic patterns in the presence of gland pores. These findings suggest that volatile pheromones play an important role in reproduction for many species of the Cerambycinae, and that the trait is evolutionarily labile.

  8. Experiments with a two-component sex attractant of the silver Y moth (Autographa gamma L.), and some evidence for the presence of both components in natural female sex pheromone.

    PubMed

    Tóth, M; Szőcs, G; Majoros, B; Bellas, T E; Novák, L

    1983-09-01

    (Z)-7-Dodecen-1-yl acetate and (Z)-7-dodecen-1-ol were synthesized and tested on males of the silver Y moth (Autographa gamma L.) for sex attractant activity. The key step of the synthesis was the isomerization of acetylenic alcohol (III) with potassium 3-amino-propylamide. In EAG tests with a series of dodecen-1-yl acetates and alcohols, the highest activity was elicited by these two compounds. In field tests using three different kinds of dispensers, highest catches were achieved with a mixture of (Z)-7-dodecen-1 -yl acetate and (Z)-7-dodecen-1 -ol which contained 1-5% of the alcohol. Some evidence was also found for the presence of both compounds in extracts of the abdominal tip of females. The quantities of these components in the extract was 1.0 ng/female for the acetate, and 1.1 ng/female for the alcohol. PMID:24407861

  9. Optimizing Generic Cerambycid Pheromone Lures for Australian Biosecurity and Biodiversity Monitoring.

    PubMed

    Hayes, R A; Griffiths, M W; Nahrung, H F; Arnold, P A; Hanks, L M; Millar, J G

    2016-08-01

    The cerambycid beetles comprise a diverse family that includes many economically important pests of living and dead trees. Pheromone lures have been developed for cerambycids in many parts of the world, but to date, have not been tested in Australia. In this study, we tested the efficacy of several pheromones, identified from North American and European species, as attractants for cerambycids at three sites in southeast Queensland, Australia. Over two field seasons, we trapped 863 individuals from 47 cerambycid species. In the first season, racemic 3-hydroxyhexan-2-one was the most attractive compound among the eight pheromones tested. Subsequently, we aimed to optimize trapping success by combining this compound with other components. However, neither the addition of other pheromone components nor host plant volatiles improved the efficacy of 3-hydroxyhexan-2-one alone. We also tested a generic pheromone blend developed for North American cerambycids, and found that only the combination of this blend with host plant volatiles improved trapping success. The Australian cerambycid fauna is not well known, and effective lures for use in trapping beetles would greatly assist in the study of this important group. Effective semiochemical lures would also have implications for biosecurity through improved monitoring for invasive species. PMID:27247298

  10. Behavioral Responses of Plum Curculio (Coleoptera: Curculionidae) to Different Enantiomer Concentrations and Blends of the Synthetic Aggregation Pheromone Grandisoic Acid.

    PubMed

    Hock, Virginia; Chouinard, Gérald; Lucas, Éric; Cormier, Daniel; Leskey, Tracy C; Wright, Starker E; Zhang, Aijun; Pichette, André

    2015-04-01

    The plum curculio, Conotrachelus nenuphar (Herbst) (Coleoptera: Curculionidae), is an important pest of fruit in North America. Males produce an aggregation pheromone (grandisoic acid) that attracts both sexes of the northern univoltine and the southern multivoltine strains. Grandisoic acid ((1R,2S)-1-methyl-2-(1-methylethenyl)-cyclobutaneacetic acid) is a chiral molecule containing one chiral center. A synthetic racemic mixture will contain two optical isomers that are mirror images of each other with equal amounts of (+)- and (-)-enantiomeric isomers. Male plum curculio only produce the (+) enantiomer. Some enantiomers can have antagonistic effects on the attraction of weevils to pheromones. An understanding of the effect of both enantiomers on the behaviour of plum curculio is needed to develop more efficient trap baits. Behavioural bioassays were conducted in a dual-choice still-air vertical olfactometer using a quantity of 1.5 ml of both (+) and (-) synthetic enantiomers and the racemic mixture of grandisoic acid with live female responders to determine which concentration and enantiomeric purity is the most attractive and if there is an antagonistic effect of the unnatural (-) enantiomer. Results indicated that plum curculio were attracted to low concentrations of the (+) enantiomer at 72% enantiomeric excess, but that strains were attracted to different concentrations of the (+) enantiomer (2×10(-7) mg/ml for univoltine, 2×10(-9) mg/ml for multivoltine).

  11. Behavioral Responses of Plum Curculio (Coleoptera: Curculionidae) to Different Enantiomer Concentrations and Blends of the Synthetic Aggregation Pheromone Grandisoic Acid.

    PubMed

    Hock, Virginia; Chouinard, Gérald; Lucas, Éric; Cormier, Daniel; Leskey, Tracy C; Wright, Starker E; Zhang, Aijun; Pichette, André

    2015-04-01

    The plum curculio, Conotrachelus nenuphar (Herbst) (Coleoptera: Curculionidae), is an important pest of fruit in North America. Males produce an aggregation pheromone (grandisoic acid) that attracts both sexes of the northern univoltine and the southern multivoltine strains. Grandisoic acid ((1R,2S)-1-methyl-2-(1-methylethenyl)-cyclobutaneacetic acid) is a chiral molecule containing one chiral center. A synthetic racemic mixture will contain two optical isomers that are mirror images of each other with equal amounts of (+)- and (-)-enantiomeric isomers. Male plum curculio only produce the (+) enantiomer. Some enantiomers can have antagonistic effects on the attraction of weevils to pheromones. An understanding of the effect of both enantiomers on the behaviour of plum curculio is needed to develop more efficient trap baits. Behavioural bioassays were conducted in a dual-choice still-air vertical olfactometer using a quantity of 1.5 ml of both (+) and (-) synthetic enantiomers and the racemic mixture of grandisoic acid with live female responders to determine which concentration and enantiomeric purity is the most attractive and if there is an antagonistic effect of the unnatural (-) enantiomer. Results indicated that plum curculio were attracted to low concentrations of the (+) enantiomer at 72% enantiomeric excess, but that strains were attracted to different concentrations of the (+) enantiomer (2×10(-7) mg/ml for univoltine, 2×10(-9) mg/ml for multivoltine). PMID:26470165

  12. A new pheromone race of Acrobasis nuxvorella (Lepidoptera: Pyralidae).

    PubMed

    Harris, Marvin K; Fu, A A Agustin; Nunez, Humberto; Aranda-Herrera, Enrique; Moreira, Jardel A; McElfresh, J Steven; Millar, Jocelyn G

    2008-06-01

    The sex pheromone of the monophagous Acrobasis nuxvorella Neunzig (Lepidoptera: Pyralidae) was reported as (9E,11Z)-hexadecadienal (9E,11Z-16:Ald) (Biorg. Med. Chem. 4: 331-339, 1996), and it has since been an effective integrated pest management (IPM) tool for monitoring this pest in the United States, but not in Mexico. Field and laboratory studies were conducted to confirm that the species in Mexico was indeed A. nuxvorella and to investigate the pheromone chemistry of the Mexican populations of this species. Initial field trials testing compounds structurally related to the known pheromone component, and blends thereof, indicated that a 100 microg:100 microg blend of (9E,11Z)-hexadecadien-1-yl acetate (9E,11Z-16:Ac):9E,11Z-16:Ald in rubber septa was effective in attracting male moths in Mexico. Coupled gas chromatography-electroantennogram analyses confirmed the presence of these compounds in extracts of pheromone glands of females, and antennae of male moths also responded to the alcohol analog (9E,11Z)-hexadecadien-1-ol (9E,11Z-16:OH). Subsequent field trials of various blends of these three compounds in Mexico showed that 1) both the acetate and aldehyde components were required for optimal attraction of male moths of the Mexican populations, and 2) addition of the alcohol suppressed attraction of males in a dose-dependent manner. Tests with the 1:1 9E,11Z-16:Ac:9E,11Z-16:Ald blend at various sites in the United States showed that this blend attracted some moths, but that moths attracted to 9E,11Z-16:Ald alone were predominant in the population. Furthermore, in preliminary studies the latter seemed not to respond to the blend. These findings indicate that there are two pheromone types of the pecan nut casebearer, and they have major implications for the direct use of these pheromones in pecan IPM. PMID:18613577

  13. Exposure to Female Fertility Pheromones Influences Men’s Drinking

    PubMed Central

    Tan, Robin; Goldman, Mark S.

    2015-01-01

    Research shows that humans consciously use alcohol to encourage sexual activity. The current study investigated whether decision-making about alcohol use and sex can be cued outside of awareness by recently revealed sexual signaling mechanisms. Specifically, we examined if males exposed without their knowledge to pheromones emitted by fertile females would increase their alcohol consumption, presumably via neurobehavioral information pathways that link alcohol to sex and mating. We found that men who smelled a T-shirt worn by a fertile female drank significantly more (non-alcoholic) beer, and exhibited significantly greater approach behavior toward female cues, than those who smelled a T-shirt worn by a non-fertile female. These findings reveal previously unknown influences on human alcohol consumption, augment the research base for pheromone cuing of sexual behavior in humans, and raise the possibility that other, as yet unknown, pathways of behavioral influence may be operating hidden from view. PMID:26053321

  14. Field and Laboratory Responses of Male Leaf Roller Moths, Choristoneura rosaceana and Pandemis pyrusana, to Pheromone Concentrations in an Attracticide Paste Formulation

    PubMed Central

    Curkovic, Tomislav; Brunner, Jay F.; Landolt, Peter J.

    2009-01-01

    Male leafroller moths, Choristoneura rosaceana (Harris) (Lepidoptera: Tortricidae) and Pandemis pyrusana (Kearfott), were evaluated for responses to a paste formulation loaded with a range of concentrations of the two species' pheromone blends and evaluated in a laboratory wind tunnel and in the field. Response criteria were flight, flight towards the pheromone source, and contact with the pheromone source for the wind tunnel assays, and capture of moths in traps for the field tests. In the wind tunnel and field, responses of males of both species to the paste generally increased as the pheromone concentration in the paste was increased. There was little response by either species to paste with less than 0.16% pheromone. The relationship between pheromone concentration and response for P. pyrusana was linear and for C. rosaceana was sinusoidal over the range of pheromone concentrations tested. These patterns were seen both in the wind tunnel and in the field. Initial release rates from the paste of (Z)-11-tetradecenyl acetate, the main component of the pheromone blends of both species was 3.6–3.8 ng/h. Inhibitory thresholds for responses were not reached for either species, using pheromone concentrations as high as 16%, in either the wind tunnel or the field. For both species, response of males to rubber septa with one mg pheromone loads was similar to the response to the paste with pheromone at concentrations greater than 3–4%. For C. rosaceana, rates of contact with the paste in the wind tunnel were statistically similar to rates of contact in response to conspecific females, with paste pheromone concentrations above 1.6%. Response rates for males of P. pyrusana were significantly lower to the paste than to conspecific females at all paste pheromone concentrations tested. Overall, the optimum pheromone concentration in the paste for moth attraction to contact was 3.2 % for C. rosaceana and 8% for P. pyrusana. PMID:19619030

  15. Field and laboratory responses of male leaf roller moths, Choristoneura rosaceana and Pandemis pyrusana, to pheromone concentrations in an attracticide paste formulation.

    PubMed

    Curkovic, Tomislav; Brunner, Jay F; Landolt, Peter J

    2009-01-01

    Male leafroller moths, Choristoneura rosaceana (Harris) (Lepidoptera: Tortricidae) and Pandemis pyrusana (Kearfott), were evaluated for responses to a paste formulation loaded with a range of concentrations of the two species' pheromone blends and evaluated in a laboratory wind tunnel and in the field. Response criteria were flight, flight towards the pheromone source, and contact with the pheromone source for the wind tunnel assays, and capture of moths in traps for the field tests. In the wind tunnel and field, responses of males of both species to the paste generally increased as the pheromone concentration in the paste was increased. There was little response by either species to paste with less than 0.16% pheromone. The relationship between pheromone concentration and response for P. pyrusana was linear and for C. rosaceana was sinusoidal over the range of pheromone concentrations tested. These patterns were seen both in the wind tunnel and in the field. Initial release rates from the paste of (Z)-11-tetradecenyl acetate, the main component of the pheromone blends of both species was 3.6-3.8 ng/h. Inhibitory thresholds for responses were not reached for either species, using pheromone concentrations as high as 16%, in either the wind tunnel or the field. For both species, response of males to rubber septa with one mg pheromone loads was similar to the response to the paste with pheromone at concentrations greater than 3-4%. For C. rosaceana, rates of contact with the paste in the wind tunnel were statistically similar to rates of contact in response to conspecific females, with paste pheromone concentrations above 1.6%. Response rates for males of P. pyrusana were significantly lower to the paste than to conspecific females at all paste pheromone concentrations tested. Overall, the optimum pheromone concentration in the paste for moth attraction to contact was 3.2 % for C. rosaceana and 8% for P. pyrusana.

  16. Chiral methyl-branched pheromones.

    PubMed

    Ando, Tetsu; Yamakawa, Rei

    2015-07-01

    Insect pheromones are some of the most interesting natural products because they are utilized for interspecific communication between various insects, such as beetles, moths, ants, and cockroaches. A large number of compounds of many kinds have been identified as pheromone components, reflecting the diversity of insect species. While this review deals only with chiral methyl-branched pheromones, the chemical structures of more than one hundred non-terpene compounds have been determined by applying excellent analytical techniques. Furthermore, their stereoselective syntheses have been achieved by employing trustworthy chiral sources and ingenious enantioselective reactions. The information has been reviewed here not only to make them available for new research but also to understand the characteristic chemical structures of the chiral pheromones. Since biosynthetic studies are still limited, it might be meaningful to examine whether the structures, particularly the positions and configurations of the branched methyl groups, are correlated with the taxonomy of the pheromone producers and also with the function of the pheromones in communication systems. PMID:25849023

  17. Pigment-Dispersing Factor Modulates Pheromone Production in Clock Cells that Influence Mating in Drosophila

    PubMed Central

    Krupp, Joshua J.; Billeter, Jean-Christophe; Wong, Amy; Choi, Charles; Nitabach, Michael N.; Levine, Joel D.

    2014-01-01

    Summary Social cues contribute to the circadian entrainment of physiological and behavioral rhythms. These cues supplement the influence of daily and seasonal cycles in light and temperature. In Drosophila, the social environment modulates circadian mechanisms that regulate sex pheromone production and mating behavior. Here we demonstrate that a neuroendocrine pathway, defined by the neuropeptide Pigment-Dispersing Factor (PDF), couples the central nervous system (CNS) to the physiological output of peripheral clock cells that produce pheromones, the oenocytes. PDF signaling from the CNS modulates the phase of the oenocyte clock. Despite its requirement for sustaining free-running locomoter activity rhythms, PDF is not necessary to sustain molecular rhythms in the oenocytes. Interestingly, disruption of the PDF signaling pathway reduces male sex pheromones and results in sex-specific differences in mating behavior. Our findings highlight the role of neuropeptide signaling and the circadian system in synchronizing the physiological and behavioral processes which govern social interactions. PMID:23849197

  18. Pigment-dispersing factor modulates pheromone production in clock cells that influence mating in drosophila.

    PubMed

    Krupp, Joshua J; Billeter, Jean-Christophe; Wong, Amy; Choi, Charles; Nitabach, Michael N; Levine, Joel D

    2013-07-10

    Social cues contribute to the circadian entrainment of physiological and behavioral rhythms. These cues supplement the influence of daily and seasonal cycles in light and temperature. In Drosophila, the social environment modulates circadian mechanisms that regulate sex pheromone production and mating behavior. Here we demonstrate that a neuroendocrine pathway, defined by the neuropeptide Pigment-Dispersing Factor (PDF), couples the CNS to the physiological output of peripheral clock cells that produce pheromones, the oenocytes. PDF signaling from the CNS modulates the phase of the oenocyte clock. Despite its requirement for sustaining free-running locomoter activity rhythms, PDF is not necessary to sustain molecular rhythms in the oenocytes. Interestingly, disruption of the PDF signaling pathway reduces male sex pheromones and results in sex-specific differences in mating behavior. Our findings highlight the role of neuropeptide signaling and the circadian system in synchronizing the physiological and behavioral processes that govern social interactions.

  19. Study on the optimum pheromone release rate for attraction of Chilo suppressalis (Lepidoptera: Pyralidae).

    PubMed

    Vacas, Sandra; Alfaro, Cristina; Navarro-Llopis, Vicente; Zarzo, Manuel; Primo, Jaime

    2009-06-01

    Traditional chemical control against Chilo suppressalis Walker is currently being replaced in Spain by new methods based on pheromones. A key step to improve the efficacy of these methods is the determination of the optimum pheromone release rate, which is still uncertain for this pest. In this work, the pheromone release profile and the field performance of a new mesoporous dispenser was compared with a standard commercial dispenser. For this purpose, pheromone loads were extracted from field-aged dispensers and quantified by gas chromatography with flame ionization detector. In addition, a field trial was carried out with traps baited with one, two, or three mesoporous dispensers per trap, as well as with traps containing one standard dispenser. We found that the highest number of field catches did not correspond to the highest pheromone emission rate, which suggests a repellent effect of the insect if the emission is excessive. The results suggest that the attractant activity was maximized by emitting approximately 34 microg/d. The efficacy of the mesoporous dispenser and its possible improvements are discussed.

  20. Pheromone signaling during sexual reproduction in algae.

    PubMed

    Frenkel, Johannes; Vyverman, Wim; Pohnert, Georg

    2014-08-01

    Algae are found in all aquatic and many terrestrial habitats. They are dominant in phytoplankton and biofilms thereby contributing massively to global primary production. Since algae comprise photosynthetic representatives of the various protoctist groups their physiology and appearance is highly diverse. This diversity is also mirrored in their characteristic life cycles that exhibit various facets of ploidy and duration of the asexual phase as well as gamete morphology. Nevertheless, sexual reproduction in unicellular and colonial algae usually has as common motive that two specialized, sexually compatible haploid gametes establish physical contact and fuse. To guarantee mating success, processes during sexual reproduction are highly synchronized and regulated. This review focuses on sex pheromones of algae that play a key role in these processes. Especially, the diversity of sexual strategies as well as of the compounds involved are the focus of this contribution. Discoveries connected to algal pheromone chemistry shed light on the role of key evolutionary processes, including endosymbiotic events and lateral gene transfer, speciation and adaptation at all phylogenetic levels. But progress in this field might also in the future provide valid tools for the manipulation of aquaculture and environmental processes.

  1. Identification of Differentially Expressed Genes in the Pheromone Glands of Mated and Virgin Bombyx mori by Digital Gene Expression Profiling

    PubMed Central

    Zhu, Bin; Yin, Xinming; Du, Mengfang; Song, Qisheng; An, Shiheng

    2014-01-01

    Background Mating decreases female receptivity and terminates sex pheromone production in moths. Although significant progress has been made in elucidating the mating-regulated inactivation of pheromone biosynthesis-activating neuropeptide (PBAN) secretion, little is known about the mating induced gene expression profiles in pheromone glands (PGs). In this study, the associated genes involved in Bombyx mori mating were identified through digital gene expression (DGE) profiling and subsequent RNA interference (RNAi) to elucidate the molecular mechanisms underlying the mating-regulated gene expression in PGs. Results Eight DGE libraries were constructed from the PGs of mated and virgin females: 1 h mating (M1)/virgin (V1) PGs, 3 h mating (M3)/virgin (V3) PGs, 24 h mating (M24)/virgin (V24) PGs and 48 h mating (M48)/virgin (V48) PGs (M48 and V48). These libraries were used to investigate the gene expression profiles affected by mating. DGE profiling revealed a series of genes showing differential expression in each set of mated and virgin female samples, including immune-associated genes, sex pheromone synthesis-associated genes, juvenile hormone (JH) signal-associated genes, etc. Most interestingly, JH signal was found to be activated by mating. Application of the JH mimics, methoprene to the newly-emerged virgin females leaded to the significant reduction of sex pheromone production. RNAi-mediated knockdown of putative JH receptor gene, Methoprene tolerant 1 (Met1), in female pupa resulted in a significant decrease in sex pheromone production in mature females, suggesting the importance of JH in sex pheromone synthesis. Conclusion A series of differentially expressed genes in PGs in response to mating was identified. This study improves our understanding of the role of JH signaling on the mating-elicited termination of sex pheromone production. PMID:25330197

  2. The pheromone biosynthesis activating neuropeptide (PBAN) receptor of Heliothis virescens: Identification, functional expression, and structure-activity relationships of ligand analogs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pheromone biosynthesis activating neuropeptide (PBAN) promotes synthesis and release of sex pheromones in moths. We have identified and functionally expressed a PBAN receptor from Heliothis virescens (HevPBANR) and elucidated structure-activity relationships of PBAN analogs. Screening of a larval C...

  3. Identification of functionally important residues in the silkmoth pheromone biosynthesis-activating neuropeptide receptor, an insect ortholog of the vertebrate Neuromedin U Receptor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The biosynthesis of sex pheromone components in many lepidopteran insects is regulated by interactions between pheromone biosynthesis-activating neuropeptide (PBAN) and the PBAN receptor (PBANR), a class-A G-protein-coupled receptor (GPCR). To identify functionally important amino acid residues in t...

  4. Making scents of sex underwater.

    PubMed

    Bentley, M G; Watson, G J

    2000-11-01

    Sex and scents have long been associated. Musk, for example, is a sexual scent that has been used for many years in the perfume industry. In humans, the debate on the existence of sex pheromones continues, whereas in insects their role is well known. Through recent research, we are discovering that such chemicals are equally important in conveying sexual signals between aquatic animals.

  5. Changes in Odor Background Affect the Locomotory Response to Pheromone in Moths

    PubMed Central

    Party, Virginie; Hanot, Christophe; Büsser, Daniela Schmidt; Rochat, Didier; Renou, Michel

    2013-01-01

    Many animals rely on chemical cues to recognize and locate a resource, and they must extract the relevant information from a complex and changing odor environment. For example, in moths, finding a mate is mediated by a sex pheromone, which is detected in a rich environment of volatile plant compounds. Here, we investigated the effects of a volatile plant background on the walking response of male Spodoptera littoralis to the female pheromone. Males were stimulated by combining pheromone with one of three plant compounds, and their walking paths were recorded with a locomotion compensator and analyzed. We found that the addition of certain volatile plant compounds disturbed the orientation toward the sex pheromone. The effect on locomotion was correlated with the capacity of the plant compound to antagonize pheromone detection by olfactory receptor neurons, suggesting a masking effect of the background over the pheromone signal. Moths were more sensitive to changes in background compared to a constant background, suggesting that a background odor also acts as a distracting stimulus. Our experiments show that the effects of odorant background on insect responses to chemical signals are complex and cannot be explained by a single mechanism. PMID:23301000

  6. A two-component female-produced pheromone of the spider Pholcus beijingensis.

    PubMed

    Xiao, Yonghong; Zhang, Jianxu; Li, Shuqiang

    2009-07-01

    Chemical signaling plays an important role in spider sexual communication, yet the chemistry of spider sex pheromones remains poorly understood. Unlike insects and mammals, the identification of spider pheromones has seldom been attempted, and no multicomponent pheromones have been found. Empty webs of sexually receptive females of Pholcus beijingensis were more attractive to male conspecifics as compared to webs of sexually unreceptive females or to mature males. Coincidently, chemical analysis revealed that (E,E)-farnesyl acetate, diisobutyl phthalate, and hexadecyl acetate of the spider webs exhibited higher relative abundances in sexually receptive females than in sexually unreceptive females or males, indicative of possible pheromone components. Two-choice behavioral assays verified that the blend of (E,E)-farnesyl acetate and hexadecyl acetate (w/w: 2:1) attracted males at a dosage equivalent to the amounts of these compounds in one spider web, whereas neither compound alone aroused males. In addition, diisobutyl phthalate (a likely contaminant from contact with plastic) alone or in combination with either of the acetates did not evoke the males' attraction. The behavioral data suggest that (E,E)-farnesyl acetate and hexadecyl acetate comprise a two-component female-produced sex pheromone in P. beijingensis, the first multicomponent pheromone found in spiders.

  7. Diabrotica flight in time and space as monitored with a high capacity trap placed in Zea mays fields of Illinois, USA.

    PubMed

    Hummel, H E; Shaw, J T

    2006-01-01

    Monitoring of insects by trapping is one of the prime tools of field entomologists. The leaf beetle Diabrotica virgifera virgifera LeConte (Coleoptera:Chrysomelidae) is no exception. Since its numbers (and consequently its mass) in a field population can be enormous, tools must be adapted to hold this many insects for later counting, sexing, biomass determinations, and additional investigations to follow. Since counting the high numbers during the flight peak may not be feasible at all, weighing and extrapolating to numbers by the correlation factor 1g = 160 to 170 beetles of mixed female and male sex was the method of choice. Around the perimeter of a hybrid maize (Z. mays) field of 0.6 ha, 16 high capacity traps were established at elevations ranging from 0 to 2 m above ground level. Optimal trapping is possible between 0.5 to 2m which field entomologists intuitively knew from experience and tradition. Below and above that level, the number of beetles is not zero but significantly below the optimum. High capacity traps can be left in the field with one loading of lure for four to seven days. Lures were the D. v. virgifera beetle sex pheromone 8-methyl-decane-2-ol propanoate (0.1 mg, collecting mainly male beetles) and the plant kairomone 4-methoxy-trans-cinnamaldehyde (10 mg, collecting both male and female beetles). The specific kairomone action (being much weaker than the pheromone) can be increased by simultaneously offering a feeding arrestant powder (e.g. prepared from ground Cucurbita texana or C. okeechobeensis) which keeps the beetles attracted by the kairomone lure close to the trapping site. There they can be immobilized and knocked down by a tiny source of carbaryl or dichlorvos fixed inside or at the surface of a plastic pellet or sheet. The high capacity traps are commercially available and can be reused for several flight seasons.

  8. Pheromone-based mating disruption of Planococcus ficus (Hemiptera: Pseudococcidae) in California vineyards.

    PubMed

    Walton, Vaughn M; Daane, Kent M; Bentley, Walter J; Millar, Jocelyn G; Larsen, Thomas E; Malakar-Kuenen, Raksha

    2006-08-01

    Experiments were conducted to test a mating disruption program for the mealybug Planococcus ficus (Signoret) (Hemiptera: Pseudococcidae) in California vineyards. The sprayable, microencapsulated formulation of the racemic sex pheromone lavandulyl senecioate was applied with an air-blast sprayer, using three and four applications in 2003 and 2004, respectively. Mating disruption was combined with an application of buprofezin (2004) in June. Compared with a no-pheromone control, there were significantly lower season-long trap catches of adult males, season-long mealybug densities (2003 only), and crop damage in mating disruption plots. The amount of mealybug reduction and mechanisms that resulted in lower crop damage in mating disruption plots is discussed. In samples taken during the growing season (April to September), mealybug density was only 12.0 +/- 15.6 and 31.1 +/- 11.6% lower in the mating disruption plots than in control plots in 2003 and 2004, respectively. In the mating disruption treatment, mealybug egg production was significantly lower (2003 only), as were the proportion of ovisacs and crawlers produced. There was no treatment impact on percentage of parasitism. Mealybug density influenced treatment impact. In 2004, vines were categorized as having low, medium, or high mealybug densities during a preapplication survey. After treatment application, mealybug density was reduced by 86.3 +/- 6.3% on vines in the low mealybug density category, but it was unchanged on vines in the high density category. Another factor that reduced treatment impact was the relatively short effective lifetime of the sprayable formulation.

  9. Pheromonal secretions from glands on the 5th abdominal sternite of hydropsychid and rhyacophilid caddisflies (Trichoptera).

    PubMed

    Löfstedt, C; Hansson, B S; Petersson, E; Valeur, P; Richards, A

    1994-01-01

    Extracts of different body parts of adult Trichoptera were tested for electrophysiological activity. Extracts of the IVth and Vth abdominal sternites of femaleHydropsyche angustipennis, Rhyacophila nubila, andR. fasciata, containing a paired exocrine gland, elicited significant electroan-tennographic responses when tested on conspecific male antennae. The paired gland occurs also in males of all the species, and inH. angustipennis, extracts from males were more active than female extracts when tested on male antennae. Female and male extracts from all species were analyzed by gas chromatography with simultaneous flame ionization and electroantennographic detection (EAD). EAD-active peaks in female extracts, stimulating male antennae, were identified inH. angustipennis as nonan-2-one; and inR. nubila andR. fasciata as heptan-2-one, heptan-2-ol, nonan-2-one, and nonan-2-ol. EAD-active components from maleH. angustipennis stimulating male antennae were octan-2-one, nonan-2-one (major peak), (Z)-6-nonen-2-one, decan-2-one, and a methylbranched decan-2-one. Female extracts and synthetic mixtures of compounds identified from femaleH. angustipennis andR. fasciata were tested for attractivity in the field. High catches with control traps obscured the results, but a synthetic mixture of the four identified compounds was significantly attractive and not different from female extracts for attracting maleR. fasciata. InH. angustipennis, a synthetic six-component male blend, in which nonan-2-one was the major component, attracted significant numbers of male and femaleH. angustipennis. Extracts of maleR. nubila andR. fasciata contained acetophenone and hexanoic and octanoic acids but did not have any electrophysiological or behavioral activity on either male or female antennae of conspecifics. The occurrence of a female sex pheromone inRhyacophila and an aggregation pheromone inHydropsyche corresponds to earlier described differences in mating behaviors in the Rhyacophilidae and

  10. Trap Response of Abagrotis orbis (Grote) Cutworm Moths (Lepidoptera: Noctuidae) to a Sex Attractant Lure in Grape Vineyards

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Larvae of Abagrotis orbis (Grote) are climbing cutworms and can damage grapevines (Vitis sp.) in early spring when they consume the expanding buds. A sex attractant would likely be useful for monitoring this insect in commercial grape vineyards. (Z)-7-tetradecenyl acetate and (Z)-11-hexadecenyl acet...

  11. Sex-specific dysregulation of cysteine oxidation and the methionine and folate cycles in female cystathionine gamma-lyase null mice: a serendipitous model of the methylfolate trap.

    PubMed

    Jiang, Hua; Hurt, K Joseph; Breen, Kelsey; Stabler, Sally P; Allen, Robert H; Orlicky, David J; Maclean, Kenneth N

    2015-08-14

    In addition to its role in the endogenous synthesis of cysteine, cystathionine gamma-lyase (CGL) is a major physiological source of the vasorelaxant hydrogen sulfide. Cgl null mice are potentially useful for studying the influence of this compound upon vascular tone and endothelial function. Here, we confirm a previous report that female Cgl null mice exhibit an approximate 45-fold increase in plasma total homocysteine compared to wild type controls. This level of homocysteine is approximately 3.5-fold higher than that observed in male Cgl null mice and is essentially equivalent to that observed in mouse models of cystathionine beta synthase deficient homocystinuria. Cgl null mice of both sexes exhibited decreased expression of methylenetetrahydrofolate reductase and cysteinesulfinate decarboxylase compared to WT controls. Female Cgl null mice exhibited a sex-specific induction of betaine homocysteine S-methyltransferase and methionine adenosyltransferase 1, alpha and a 70% decrease in methionine synthase expression accompanied by significantly decreased plasma methionine. Decreased plasma cysteine levels in female Cgl null mice were associated with sex-specific dysregulation of cysteine dioxygenase expression. Comparative histological assessment between cystathionine beta-synthase and Cgl null mice indicated that the therapeutic potential of cystathionine against liver injury merits possible further investigation. Collectively, our data demonstrates the importance of considering sex when investigating mouse models of inborn errors of metabolism and indicate that while female Cgl null mice are of questionable utility for studying the physiological role of hydrogen sulfide, they could serve as a useful model for studying the consequences of methionine synthase deficiency and the methylfolate trap.

  12. Sex-specific dysregulation of cysteine oxidation and the methionine and folate cycles in female cystathionine gamma-lyase null mice: a serendipitous model of the methylfolate trap

    PubMed Central

    Jiang, Hua; Hurt, K. Joseph; Breen, Kelsey; Stabler, Sally P.; Allen, Robert H.; Orlicky, David J.; Maclean, Kenneth N.

    2015-01-01

    ABSTRACT In addition to its role in the endogenous synthesis of cysteine, cystathionine gamma-lyase (CGL) is a major physiological source of the vasorelaxant hydrogen sulfide. Cgl null mice are potentially useful for studying the influence of this compound upon vascular tone and endothelial function. Here, we confirm a previous report that female Cgl null mice exhibit an approximate 45-fold increase in plasma total homocysteine compared to wild type controls. This level of homocysteine is approximately 3.5-fold higher than that observed in male Cgl null mice and is essentially equivalent to that observed in mouse models of cystathionine beta synthase deficient homocystinuria. Cgl null mice of both sexes exhibited decreased expression of methylenetetrahydrofolate reductase and cysteinesulfinate decarboxylase compared to WT controls. Female Cgl null mice exhibited a sex-specific induction of betaine homocysteine S-methyltransferase and methionine adenosyltransferase 1, alpha and a 70% decrease in methionine synthase expression accompanied by significantly decreased plasma methionine. Decreased plasma cysteine levels in female Cgl null mice were associated with sex-specific dysregulation of cysteine dioxygenase expression. Comparative histological assessment between cystathionine beta-synthase and Cgl null mice indicated that the therapeutic potential of cystathionine against liver injury merits possible further investigation. Collectively, our data demonstrates the importance of considering sex when investigating mouse models of inborn errors of metabolism and indicate that while female Cgl null mice are of questionable utility for studying the physiological role of hydrogen sulfide, they could serve as a useful model for studying the consequences of methionine synthase deficiency and the methylfolate trap. PMID:26276101

  13. Attractiveness of harlequin bug, Murgantia histrionica, aggregation pheromone: field response to isomers, ratios, and dose.

    PubMed

    Weber, Donald C; Cabrera Walsh, Guillermo; DiMeglio, Anthony S; Athanas, Michael M; Leskey, Tracy C; Khrimian, Ashot

    2014-12-01

    A two-component pheromone, (3S,6S,7R,10S)- and (3S,6S,7R,10R)-10,11-epoxy-1-bisabolen-3-ol (murgantiol), present in emissions from adult male harlequin bugs, Murgantia histrionica, is most attractive in field bioassays to adults and nymphs in the naturally occurring ratio of ca. 1.4:1. Each of the two individual synthetic stereoisomers is highly attractive to male and female adults and nymphs, but is more attractive in combination and when deployed with a harlequin bug host plant. Blends of 8 stereoisomers also are highly attractive, suggesting that isomers not found in the natural pheromone are not repellent. Deployment of an inexpensive non-stereospecific synthetic pheromone holds promise for efficient trapping and/or use in trap-crops for this important pest in North America. PMID:25380993

  14. Neurogenic and Neuroendocrine Effects of Goldfish Pheromones

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Goldfish (Carassius auratus) use reproductive hormones as endocrine signals to synchronize sexual behavior with gamete maturation, and as exogenous signals (pheromones) to mediate spawning interactions between conspecifics. We examined the differential effects of two hormonal pheromones, prostagland...

  15. Genetic mapping of male pheromone response in the European corn borer identifies candidate genes regulating neurogenesis

    PubMed Central

    Dekker, Teun; Heckel, David G.

    2016-01-01

    The sexual pheromone communication system of moths is a model system for studies of the evolution of reproductive isolation. Females emit a blend of volatile components that males detect at a distance. Species differences in female pheromone composition and male response directly reinforce reproductive isolation in nature, because even slight variations in the species-specific pheromone blend are usually rejected by the male. The mechanisms by which a new pheromone signal–response system could evolve are enigmatic, because any deviation from the optimally attractive blend should be selected against. Here we investigate the genetic mechanisms enabling a switch in male response. We used a quantitative trait locus-mapping approach to identify the genetic basis of male response in the two pheromone races of the European corn borer, Ostrinia nubilalis. Male response to a 99:1 vs. a 3:97 ratio of the E and Z isomers of the female pheromone is governed by a single, sex-linked locus. We found that the chromosomal region most tightly linked to this locus contains genes involved in neurogenesis but, in accordance with an earlier study, does not contain the odorant receptors expressed in the male antenna that detect the pheromone. This finding implies that differences in the development of neuronal pathways conveying information from the antenna, not differences in pheromone detection by the odorant receptors, are primarily responsible for the behavioral response differences among the males in this system. Comparison with other moth species reveals a previously unexplored mechanism by which male pheromone response can change in evolution. PMID:27698145

  16. An anti-steroidogenic inhibitory primer pheromone in male sea lamprey (Petromyzon marinus)

    USGS Publications Warehouse

    Chung-Davidson, Yu-Wen; Wang, Huiyong; Bryan, Mara B.; Wu, Hong; Johnson, Nicholas S.; Li, Weiming

    2013-01-01

    Reproductive functions can be modulated by both stimulatory and inhibitory primer pheromones released by conspecifics. Many stimulatory primer pheromones have been documented, but relatively few inhibitory primer pheromones have been reported in vertebrates. The sea lamprey male sex pheromone system presents an advantageous model to explore the stimulatory and inhibitory primer pheromone functions in vertebrates since several pheromone components have been identified. We hypothesized that a candidate sex pheromone component, 7α, 12α-dihydroxy-5α-cholan-3-one-24-oic acid (3 keto-allocholic acid or 3kACA), exerts priming effects through the hypothalamic-pituitary-gonadal (HPG) axis. To test this hypothesis, we measured the peptide concentrations and gene expressions of lamprey gonadotropin releasing hormones (lGnRH) and the HPG output in immature male sea lamprey exposed to waterborne 3kACA. Exposure to waterborne 3kACA altered neuronal activation markers such as jun and jun N-terminal kinase (JNK), and lGnRH mRNA levels in the brain. Waterborne 3kACA also increased lGnRH-III, but not lGnRH-I or -II, in the forebrain. In the plasma, 3kACA exposure decreased all three lGnRH peptide concentrations after 1 h exposure. After 2 h exposure, 3kACA increased lGnRHI and -III, but decreased lGnRH-II peptide concentrations in the plasma. Plasma lGnRH peptide concentrations showed differential phasic patterns. Group housing condition appeared to increase the averaged plasma lGnRH levels in male sea lamprey compared to isolated males. Interestingly, 15α-hydroxyprogesterone (15α-P) concentrations decreased after prolonged 3kACA exposure (at least 24 h). To our knowledge, this is the only known synthetic vertebrate pheromone component that inhibits steroidogenesis in males.

  17. An anti-steroidogenic inhibitory primer pheromone in male sea lamprey (Petromyzon marinus).

    PubMed

    Chung-Davidson, Yu-Wen; Wang, Huiyong; Bryan, Mara B; Wu, Hong; Johnson, Nicholas S; Li, Weiming

    2013-08-01

    Reproductive functions can be modulated by both stimulatory and inhibitory primer pheromones released by conspecifics. Many stimulatory primer pheromones have been documented, but relatively few inhibitory primer pheromones have been reported in vertebrates. The sea lamprey male sex pheromone system presents an advantageous model to explore the stimulatory and inhibitory primer pheromone functions in vertebrates since several pheromone components have been identified. We hypothesized that a candidate sex pheromone component, 7α, 12α-dihydroxy-5α-cholan-3-one-24-oic acid (3 keto-allocholic acid or 3kACA), exerts priming effects through the hypothalamic-pituitary-gonadal (HPG) axis. To test this hypothesis, we measured the peptide concentrations and gene expressions of lamprey gonadotropin releasing hormones (lGnRH) and the HPG output in immature male sea lamprey exposed to waterborne 3kACA. Exposure to waterborne 3kACA altered neuronal activation markers such as jun and jun N-terminal kinase (JNK), and lGnRH mRNA levels in the brain. Waterborne 3kACA also increased lGnRH-III, but not lGnRH-I or -II, in the forebrain. In the plasma, 3kACA exposure decreased all three lGnRH peptide concentrations after 1h exposure. After 2h exposure, 3kACA increased lGnRH-I and -III, but decreased lGnRH-II peptide concentrations in the plasma. Plasma lGnRH peptide concentrations showed differential phasic patterns. Group housing condition appeared to increase the averaged plasma lGnRH levels in male sea lamprey compared to isolated males. Interestingly, 15α-hydroxyprogesterone (15α-P) concentrations decreased after prolonged 3kACA exposure (at least 24h). To our knowledge, this is the only known synthetic vertebrate pheromone component that inhibits steroidogenesis in males.

  18. Attraction of stink bug (Hemiptera: Pentatomidae) nymphs to Euschistus spp. aggregation pheromone in the field

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytophagous stink bugs (Hemiptera: Pentatomidae) are primary pests in most fruit, vegetable, grain, and row crops worldwide. Pheromones have been identified and synthesized for several species of economically important stink bug pests. When yellow pyramid traps are baited with lures containing thes...

  19. Monitoring two native Spodoptera species using an exotic pheromone lure developed for an exotic species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The pheromone lure for the exotic species Spodoptera exempta was successful at attracting two native species, S. latifascia and S. albula. Trapping was conducted in north-central Florida and in southern Texas. Large numbers of both native species were collected throughout the season....

  20. Moths Behaving like Butterflies. Evolutionary Loss of Long Range Attractant Pheromones in Castniid Moths: A Paysandisia archon Model

    PubMed Central

    Sarto i Monteys, Víctor; Acín, Patricia; Rosell, Glòria; Quero, Carmen; Jiménez, Miquel A.; Guerrero, Angel

    2012-01-01

    Background In the course of evolution butterflies and moths developed two different reproductive behaviors. Whereas butterflies rely on visual stimuli for mate location, moths use the ‘female calling plus male seduction’ system, in which females release long-range sex pheromones to attract conspecific males. There are few exceptions from this pattern but in all cases known female moths possess sex pheromone glands which apparently have been lost in female butterflies. In the day-flying moth family Castniidae (“butterfly-moths”), which includes some important crop pests, no pheromones have been found so far. Methodology/Principal Findings Using a multidisciplinary approach we described the steps involved in the courtship of P. archon, showing that visual cues are the only ones used for mate location; showed that the morphology and fine structure of the antennae of this moth are strikingly similar to those of butterflies, with male sensilla apparently not suited to detect female-released long range pheromones; showed that its females lack pheromone-producing glands, and identified three compounds as putative male sex pheromone (MSP) components of P. archon, released from the proximal halves of male forewings and hindwings. Conclusions/Significance This study provides evidence for the first time in Lepidoptera that females of a moth do not produce any pheromone to attract males, and that mate location is achieved only visually by patrolling males, which may release a pheromone at short distance, putatively a mixture of Z,E-farnesal, E,E-farnesal, and (E,Z)-2,13-octadecadienol. The outlined behavior, long thought to be unique to butterflies, is likely to be widespread in Castniidae implying a novel, unparalleled butterfly-like reproductive behavior in moths. This will also have practical implications in applied entomology since it signifies that the monitoring/control of castniid pests should not be based on the use of female-produced pheromones, as it is

  1. Single-Component Pheromone Consisting of Bombykal in a Diurnal Hawk Moth, Neogurelca himachala sangaica.

    PubMed

    Uehara, Takuya; Kitahara, Hiroshi; Naka, Hideshi; Matsuyama, Shigeru; Ando, Tetsu; Honda, Hiroshi

    2016-06-01

    Recent work has suggested that hawk moths share pheromone components but are sexually separated by qualitative and quantitative differences in their pheromone blends. During field assays on the sex pheromones of other species, a diurnal hawk moth, Neogurelca himachala sangaica (Lepidoptera: Sphingidae), was frequently captured, but the composition of the sex pheromone of this species was not known. Analysis of hexane extracts of the pheromone glands of calling female by gas chromatography (GC) using an electroantennographic detector (EAD) revealed two components that elicited EAD responses from male moth antennae. These components were identified by their mass spectra and retention indices on two GC columns as (10E,12Z)-10,12-hexadecadienal (E10,Z12-16:Ald) and a trace of its (10E,12E)-isomer (E10,E12-16:Ald) in 98:2 ratio. In field experiments, E10,Z12-16:Ald alone attracted male moths, and addition of E10,E12-16:Ald significantly reduced the attractiveness, even at the naturally-occurring ratio. Analysis of the data using a generalized linear mixed model showed that E10,Z12-16:Ald positively contributed to attractiveness, whereas E10,E12-16:Ald did so negatively, and it was concluded that the sex pheromone of N. himachala sangaica consists solely of E10,Z12-16:Ald, bombykal. The negative effect of E10,E12-16:Ald on attractiveness could promote the species-specificity of this single-component pheromone system. PMID:27300505

  2. Characterization of posticlure and the structure-related sex pheromone candidates prepared by epoxidation of (6Z,9Z,11E)-6,9,11-trienes and (3Z,6Z,9Z,11E)-3,6,9,11-tetraenes.

    PubMed

    Yamamoto, Masanobu; Maruyama, Ryoko; Murakami, Yoko; Sakamoto, Yuki; Yamakawa, Rei; Ando, Tetsu

    2013-09-01

    trans-11,12-Epoxy-(6Z,9Z)-6,9-henicosadiene (posticlure) has been identified from a pheromone gland of the lymantriid species, Orgyia postica. Since the diversity of Lepidoptera suggests that some species utilize the structure-related epoxy compound as a sex pheromone component, epoxydienes and epoxytrienes derived from (6Z,9Z,11E)-6,9,11-trienes and (3Z,6Z,9Z,11E)-3,6,9,11-tetraenes with a C19-C21 chain were systematically synthesized and the chemical data were accumulated in order to contribute to a new pheromone research. Peracid oxidation of each triene and each tetraene produced, respectively, a mixture of three epoxydienes (cis-6,7-epoxy-9,11-diene; cis-9,10-epoxy-6,11-diene; and trans-11,12-epoxy-6,9-diene) and four epoxytrienes (cis-3,4-epoxy-6,9,11-triene; cis-6,7-epoxy-3,9,11-triene; cis-9,10-epoxy-3,6,11-triene; and trans-11,12-epoxy-3,6,9-triene). While the 9,10-epoxy compounds were unstable and, interestingly, converted into 9-ketone derivatives after chromatography over SiO2, each positional isomer was isolated by HPLC equipped with an ODS column, and the chemical structure was determined by NMR analysis. On the GC-MS analysis with a DB-23 column, the positional isomers were also eluted separately and characteristic mass spectra were proposed. By comparing the spectral data of the epoxy compounds with a different carbon chain, diagnostic fragment ions reflecting the chemical structure were determined as follows: m/z 79, 109, 113, and M-114 for the 6,7-epoxydienes; m/z 69, 97, 111, 139, and M-111 for the 9,10-epoxydienes; m/z 57, 79, 109, 136, M-151, and M-111 for the 11,12-epoxydienes; m/z 79, 91, 105, and 119 for the 3,4-epoxytrienes; m/z 79, 124, M-124, M-96, and M-69 for the 6,7-epoxytrienes; m/z 79, 95, 109, 137, and M-108 for the 9,10-epoxytrienes; and m/z 79, 134, M-149, M-109, and M-95 for the 11,12-epoxytrienes.

  3. Characterization of posticlure and the structure-related sex pheromone candidates prepared by epoxidation of (6Z,9Z,11E)-6,9,11-trienes and (3Z,6Z,9Z,11E)-3,6,9,11-tetraenes.

    PubMed

    Yamamoto, Masanobu; Maruyama, Ryoko; Murakami, Yoko; Sakamoto, Yuki; Yamakawa, Rei; Ando, Tetsu

    2013-09-01

    trans-11,12-Epoxy-(6Z,9Z)-6,9-henicosadiene (posticlure) has been identified from a pheromone gland of the lymantriid species, Orgyia postica. Since the diversity of Lepidoptera suggests that some species utilize the structure-related epoxy compound as a sex pheromone component, epoxydienes and epoxytrienes derived from (6Z,9Z,11E)-6,9,11-trienes and (3Z,6Z,9Z,11E)-3,6,9,11-tetraenes with a C19-C21 chain were systematically synthesized and the chemical data were accumulated in order to contribute to a new pheromone research. Peracid oxidation of each triene and each tetraene produced, respectively, a mixture of three epoxydienes (cis-6,7-epoxy-9,11-diene; cis-9,10-epoxy-6,11-diene; and trans-11,12-epoxy-6,9-diene) and four epoxytrienes (cis-3,4-epoxy-6,9,11-triene; cis-6,7-epoxy-3,9,11-triene; cis-9,10-epoxy-3,6,11-triene; and trans-11,12-epoxy-3,6,9-triene). While the 9,10-epoxy compounds were unstable and, interestingly, converted into 9-ketone derivatives after chromatography over SiO2, each positional isomer was isolated by HPLC equipped with an ODS column, and the chemical structure was determined by NMR analysis. On the GC-MS analysis with a DB-23 column, the positional isomers were also eluted separately and characteristic mass spectra were proposed. By comparing the spectral data of the epoxy compounds with a different carbon chain, diagnostic fragment ions reflecting the chemical structure were determined as follows: m/z 79, 109, 113, and M-114 for the 6,7-epoxydienes; m/z 69, 97, 111, 139, and M-111 for the 9,10-epoxydienes; m/z 57, 79, 109, 136, M-151, and M-111 for the 11,12-epoxydienes; m/z 79, 91, 105, and 119 for the 3,4-epoxytrienes; m/z 79, 124, M-124, M-96, and M-69 for the 6,7-epoxytrienes; m/z 79, 95, 109, 137, and M-108 for the 9,10-epoxytrienes; and m/z 79, 134, M-149, M-109, and M-95 for the 11,12-epoxytrienes. PMID:23836084

  4. Quantitative genetics of signal evolution: a comparison of the pheromonal signal in two populations of the cabbage looper, Trichoplusia ni.

    PubMed

    Gemeno, C; Moore, A J; Preziosi, R F; Haynes, K F

    2001-03-01

    Pheromones are important in reproductive isolation among populations of moths, but the genetics associated with diversification of pheromonal signals is poorly understood. To gain insight into processes that may lead to diversification we examined the genetic architecture underlying the production of the sex pheromone of the cabbage looper moth, Trichoplusia ni. We compared genetic parameters of two populations; one with a wild-type pheromone phenotype (N) and one where a single-gene mutation affecting the pheromone blend produced by females had been established (M). Using a half-sib breeding design we estimated heritabilities, coefficients of additive genetic variation, and phenotypic, genetic, and environmental correlations of the pheromone components. In both populations, narrow sense heritabilities were generally moderate and genetic correlations were mostly positive. Comparisons between the two populations showed that, while the pattern of phenotypic correlations showed significant agreement between populations, the patterns of genetic (co)variation (i.e. the shapes of the within population matrix) were dissimilar between the two populations. The presence of additive genetic variation in both populations indicates that there is the potential for further evolution of individual pheromone components. However, because of the differences between the populations in the pattern of genetic variation and covariation, the populations will evolve along different evolutionary trajectories even under identical selection pressures. These results suggest that single gene mutations, once established, can be associated with further alterations in the genetic architecture and this has implications for the evolution of pheromone communication.

  5. Persistence of the Gypsy Moth Pheromone, Disparlure, in the Environment in Various Climates

    PubMed Central

    Onufrieva, Ksenia S.; Thorpe, Kevin W.; Hickman, Andrea D.; Leonard, Donna S.; Roberts, E. Anderson; Tobin, Patrick C.

    2013-01-01

    Mating disruption techniques are used in pest control for many species of insects, yet little is known regarding the environmental persistence of these pheromones following their application and if persistence is affected by climatic conditions. We first studied the persistent effect of ground applications of Luretape® GM in Lymantria dispar (L) mating disruption in VA, USA in 2006. The removal of Luretape® GM indicated that the strong persistent effect of disparlure in the environment reported by previous studies is produced by residual pheromone in the dispensers as opposed to environmental contamination. In 2010 and 2011, we evaluated the efficacy of two formulations, Disrupt® II and SPLAT GMTM, in VA and WI, USA, which presented different climatic conditions. In plots treated in WI and VA, male moth catches in pheromone-baited traps were reduced in the year of treatment and one year after the pheromone applications relative to untreated controls. However, similar first- and second-year effects of pheromone treatments in VA and WI suggest that the release rate over one and two years was the same across markedly different climates. Future applications that use liquid or biodegradable formulations of synthetic pheromones could reduce the amount of persistence in the environment. PMID:26466798

  6. Persistence of the Gypsy Moth Pheromone, Disparlure, in the Environment in Various Climates.

    PubMed

    Onufrieva, Ksenia S; Thorpe, Kevin W; Hickman, Andrea D; Leonard, Donna S; Roberts, E Anderson; Tobin, Patrick C

    2013-01-01

    Mating disruption techniques are used in pest control for many species of insects, yet little is known regarding the environmental persistence of these pheromones following their application and if persistence is affected by climatic conditions. We first studied the persistent effect of ground applications of Luretape® GM in Lymantria dispar (L) mating disruption in VA, USA in 2006. The removal of Luretape® GM indicated that the strong persistent effect of disparlure in the environment reported by previous studies is produced by residual pheromone in the dispensers as opposed to environmental contamination. In 2010 and 2011, we evaluated the efficacy of two formulations, Disrupt® II and SPLAT GM(TM), in VA and WI, USA, which presented different climatic conditions. In plots treated in WI and VA, male moth catches in pheromone-baited traps were reduced in the year of treatment and one year after the pheromone applications relative to untreated controls. However, similar first- and second-year effects of pheromone treatments in VA and WI suggest that the release rate over one and two years was the same across markedly different climates. Future applications that use liquid or biodegradable formulations of synthetic pheromones could reduce the amount of persistence in the environment. PMID:26466798

  7. Pheromone produced by the myxobacterium Stigmatella aurantiaca.

    PubMed Central

    Stephens, K; Hegeman, G D; White, D

    1982-01-01

    An extracellular, diffusible signaling molecule (pheromone) was produced by Stigmatella aurantiaca during fruiting body formation. The pheromone decreased the aggregation period in both the light and the dark and substituted for light in stimulating the maturation of aggregates into fruiting bodies. The cells were more sensitive to lower concentrations of pheromone in the light than in the dark, possibly explaining the stimulation of aggregation and fruiting body formation by light. The pheromone also interacted cooperatively with GMP to shorten the aggregation period. The pheromone behaved chemically as a low-molecular-weight lipid. Images PMID:6276369

  8. Antennal lobe organization and pheromone usage in bombycid moths

    PubMed Central

    Namiki, Shigehiro; Daimon, Takaaki; Iwatsuki, Chika; Shimada, Toru; Kanzaki, Ryohei

    2014-01-01

    We investigated the neuroanatomy of the macroglomerular complex (MGC), which is involved in sex pheromone processing, in five species in the subfamily Bombycinae, including Ernolatia moorei, Trilocha varians, Rondotia menciana, Bombyx mandarina and Bombyx mori. The glomerulus located at the dorsal-most part of the olfactory centre shows the largest volume in moth species examined to date. Such normal glomerular organization has been observed in E. moorei and T. varians, which use a two-component mixture and includes the compound bombykal as a mating signal. By contrast, the other three species, which use another component as a single attractant, exhibited a modified arrangement of the MGC. This correlation between pheromone usage and neural organization may be useful for understanding the process of speciation. PMID:24759369

  9. Role of Enhancer of zeste on the Production of Drosophila melanogaster Pheromonal Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Wicker-Thomas, C.; Jallon, J.-M.

    In a search for genes controlling the production of Drosophila melanogaster contact pheromones, the gene Enhancer of zeste [E(z)] was found to be one player. Flies mutant for either the amorphic or the antimorphic allele of E(z) showed a similar hydrocarbon phenotype as those with the overlapping Df lxd15deficiency: decreased amounts of total hydrocarbons and especially unsaturated ones in both sexes. The decrease in the level of D. melanogaster female sex pheromone 7,11-heptacosadiene was dramatic and was correlated with an increase in 7-heptacosene. Females mutant for a gain-of-function allele had increased amounts of total hydrocarbons with wild-type proportions of dienes. Thus the E(z) gene seems to affect hydrocarbon biosynthesis, especially its desaturation steps and even more so the female-specific desaturation step transforming 7-monoenic fatty acids to 7,11-dienic ones and leading to female pheromones.

  10. A host beetle pheromone regulates development and behavior in the nematode Pristionchus pacificus.

    PubMed

    Cinkornpumin, Jessica K; Wisidagama, Dona R; Rapoport, Veronika; Go, James L; Dieterich, Christoph; Wang, Xiaoyue; Sommer, Ralf J; Hong, Ray L

    2014-01-01

    Nematodes and insects are the two most speciose animal phyla and nematode-insect associations encompass widespread biological interactions. To dissect the chemical signals and the genes mediating this association, we investigated the effect of an oriental beetle sex pheromone on the development and behavior of the nematode Pristionchus pacificus. We found that while the beetle pheromone is attractive to P. pacificus adults, the pheromone arrests embryo development, paralyzes J2 larva, and inhibits exit of dauer larvae. To uncover the mechanism that regulates insect pheromone sensitivity, a newly identified mutant, Ppa-obi-1, is used to reveal the molecular links between altered attraction towards the beetle pheromone, as well as hypersensitivity to its paralyzing effects. Ppa-obi-1 encodes lipid-binding domains and reaches its highest expression in various cell types, including the amphid neuron sheath and excretory cells. Our data suggest that the beetle host pheromone may be a species-specific volatile synomone that co-evolved with necromeny. PMID:25317948

  11. A host beetle pheromone regulates development and behavior in the nematode Pristionchus pacificus

    PubMed Central

    Cinkornpumin, Jessica K; Wisidagama, Dona R; Rapoport, Veronika; Go, James L; Dieterich, Christoph; Wang, Xiaoyue; Sommer, Ralf J; Hong, Ray L

    2014-01-01

    Nematodes and insects are the two most speciose animal phyla and nematode–insect associations encompass widespread biological interactions. To dissect the chemical signals and the genes mediating this association, we investigated the effect of an oriental beetle sex pheromone on the development and behavior of the nematode Pristionchus pacificus. We found that while the beetle pheromone is attractive to P. pacificus adults, the pheromone arrests embryo development, paralyzes J2 larva, and inhibits exit of dauer larvae. To uncover the mechanism that regulates insect pheromone sensitivity, a newly identified mutant, Ppa-obi-1, is used to reveal the molecular links between altered attraction towards the beetle pheromone, as well as hypersensitivity to its paralyzing effects. Ppa-obi-1 encodes lipid-binding domains and reaches its highest expression in various cell types, including the amphid neuron sheath and excretory cells. Our data suggest that the beetle host pheromone may be a species-specific volatile synomone that co-evolved with necromeny. DOI: http://dx.doi.org/10.7554/eLife.03229.001 PMID:25317948

  12. The neuropeptide tachykinin is essential for pheromone detection in a gustatory neural circuit

    PubMed Central

    Shankar, Shruti; Chua, Jia Yi; Tan, Kah Junn; Calvert, Meredith EK; Weng, Ruifen; Ng, Wan Chin; Mori, Kenji; Yew, Joanne Y

    2015-01-01

    Gustatory pheromones play an essential role in shaping the behavior of many organisms. However, little is known about the processing of taste pheromones in higher order brain centers. Here, we describe a male-specific gustatory circuit in Drosophila that underlies the detection of the anti-aphrodisiac pheromone (3R,11Z,19Z)-3-acetoxy-11,19-octacosadien-1-ol (CH503). Using behavioral analysis, genetic manipulation, and live calcium imaging, we show that Gr68a-expressing neurons on the forelegs of male flies exhibit a sexually dimorphic physiological response to the pheromone and relay information to the central brain via peptidergic neurons. The release of tachykinin from 8 to 10 cells within the subesophageal zone is required for the pheromone-triggered courtship suppression. Taken together, this work describes a neuropeptide-modulated central brain circuit that underlies the programmed behavioral response to a gustatory sex pheromone. These results will allow further examination of the molecular basis by which innate behaviors are modulated by gustatory cues and physiological state. DOI: http://dx.doi.org/10.7554/eLife.06914.001 PMID:26083710

  13. Synthesis and biological activity of conformationally restricted gypsy moth pheromone mimics.

    PubMed

    Chen, Hao; Gong, Yongmei; Gries, Regine M; Plettner, Erika

    2010-04-15

    The design and synthesis of a series of conformationally constrained mimics of gypsy moth sex pheromone, (+)-disparlure (7R,8S)-2-methyl-7,8-epoxyoctadecane, are described. The core structure of the mimics is derived from 5-(2'-hydroxyethyl)cyclopent-2-en-1-ol. Substituent optimization of the analogs was accomplished through the synthesis of mini-libraries and pure individual compounds, followed by electrophysiological experiments with male gypsy moth antennae. The electroantennogram results show that the analogs elicited weak to no antennal responses themselves. There was a clear structure-activity pattern for odorant activity, with ethyl substituents being best. Further, when puffed simultaneously with the pheromone, some of the compounds gave a significant enhancement of the antennal depolarization, indicating an additive or synergistic effect. A pure pheromone stimulus following a mixed compound/pheromone stimulus was generally not affected, with two exceptions: one compound enhanced and another inhibited a subsequent stimulus. The compounds also prolonged the stimulation of the antenna, which manifested itself in widened electroantennogram peaks. We tested the hypothesis that this prolonged stimulation may be due to the stabilization of a particular conformer of the pheromone-binding protein (PBP). Compounds that caused PBP2 to adopt a similar conformation than in the presence of pheromone also caused peak widening. This was not the case with PBP1.

  14. Degradation of Pheromone and Plant Volatile Components by a Same Odorant-Degrading Enzyme in the Cotton Leafworm, Spodoptera littoralis

    PubMed Central

    Durand, Nicolas; Carot-Sans, Gerard; Bozzolan, Françoise; Rosell, Gloria; Siaussat, David; Debernard, Stéphane; Chertemps, Thomas; Maïbèche-Coisne, Martine

    2011-01-01

    Background Odorant-Degrading Enzymes (ODEs) are supposed to be involved in the signal inactivation step within the olfactory sensilla of insects by quickly removing odorant molecules from the vicinity of the olfactory receptors. Only three ODEs have been both identified at the molecular level and functionally characterized: two were specialized in the degradation of pheromone compounds and the last one was shown to degrade a plant odorant. Methodology Previous work has shown that the antennae of the cotton leafworm Spodoptera littoralis, a worldwide pest of agricultural crops, express numerous candidate ODEs. We focused on an esterase overexpressed in males antennae, namely SlCXE7. We studied its expression patterns and tested its catalytic properties towards three odorants, i.e. the two female sex pheromone components and a green leaf volatile emitted by host plants. Conclusion SlCXE7 expression was concomitant during development with male responsiveness to odorants and during adult scotophase with the period of male most active sexual behaviour. Furthermore, SlCXE7 transcription could be induced by male exposure to the main pheromone component, suggesting a role of Pheromone-Degrading Enzyme. Interestingly, recombinant SlCXE7 was able to efficiently hydrolyze the pheromone compounds but also the plant volatile, with a higher affinity for the pheromone than for the plant compound. In male antennae, SlCXE7 expression was associated with both long and short sensilla, tuned to sex pheromones or plant odours, respectively. Our results thus suggested that a same ODE could have a dual function depending of it sensillar localisation. Within the pheromone-sensitive sensilla, SlCXE7 may play a role in pheromone signal termination and in reduction of odorant background noise, whereas it could be involved in plant odorant inactivation within the short sensilla. PMID:22216190

  15. Tarsi of male heliothine moths contain aldehydes and butyrate esters as potential pheromone components

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Noctuidae is one of the most specious moth families and contains the genera Helicoverpa and Heliothis. Their major sex pheromone component is (Z)-11-hexadecenal except for Helicoverpa assulta and Helicoverpa gelotopoeon both of which utilize (Z)-9-hexadecenal. The minor components of heliothine ...

  16. Assessment of urinary pheromone discrimination, partner preference, and mating behaviors in female mice.

    PubMed

    Brock, Olivier; Bakker, Julie; Baum, Michael J

    2013-01-01

    Behavioral testing methods are described for determining whether female mice can discriminate between volatile urinary pheromones of conspecifics of the same vs. opposite sex and/or in different endocrine conditions, for determining sexual partner preference, for quantifying receptive (lordosis) behavior, and for monitoring the expression of male-typical mounting behavior in female mice.

  17. [Blockade of the pheromonal effects in rat by central deafferentation of the accessory olfactory system].

    PubMed

    Sánchez-Criado, J E

    1979-06-01

    Female rats reared without sex odours from male rats have a five day stral cycle. With exposure to male odour the estral cycle is shortened from five to four days. This pheromonal effect is blocked on deafferenting the vomeronasal system by electrolytically damaging both accessory olfactory bulbs.

  18. The Synthesis of a Cockroach Pheromone: An Experiment for the Second-Year Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Feist, Patty L.

    2008-01-01

    This experiment describes the synthesis of gentisyl quinone isovalerate, or blattellaquinone, a sex pheromone of the German cockroach that was isolated and identified in 2005. The synthesis is appropriate for the second semester of a second-year organic chemistry laboratory course. It can be completed in two, three-hour laboratory periods and uses…

  19. Courtship Pheromone Use in a Model Urodele, the Mexican Axolotl (Ambystoma mexicanum).

    PubMed

    Maex, Margo; Van Bocxlaer, Ines; Mortier, Anneleen; Proost, Paul; Bossuyt, Franky

    2016-01-01

    Sex pheromones have been shown to constitute a crucial aspect of salamander reproduction. Until now, courtship pheromones of Salamandridae and Plethodontidae have been intensively studied, but information on chemical communication in other urodelan families is essentially lacking. The axolotl (Ambystoma mexicanum, Ambystomatidae) has a courtship display that suggests a key role for chemical communication in the orchestration of its sexual behavior, but no sex pheromones have yet been characterized from this species. Here we combined whole transcriptome analyses of the male cloaca with proteomic analyses of water in which axolotls were allowed to court to show that male axolotls secrete multiple ca. 20 kDa glycosylated sodefrin precursor-like factor (SPF) proteins during courtship. In combination with phylogenetic analyses, our data show that the male cloaca essentially secretes a courtship-specific clade of SPF proteins that is orthologous to salamandrid courtship pheromones. In addition, we identified an SPF protein for which no orthologs have been described from other salamanders so far. Overall, our study advocates a central role for SPF proteins during the courtship display of axolotls and adds knowledge on pheromone use in a previously unexplored deep evolutionary branch of salamander evolution.

  20. Courtship Pheromone Use in a Model Urodele, the Mexican Axolotl (Ambystoma mexicanum)

    PubMed Central

    Maex, Margo; Van Bocxlaer, Ines; Mortier, Anneleen; Proost, Paul; Bossuyt, Franky

    2016-01-01

    Sex pheromones have been shown to constitute a crucial aspect of salamander reproduction. Until now, courtship pheromones of Salamandridae and Plethodontidae have been intensively studied, but information on chemical communication in other urodelan families is essentially lacking. The axolotl (Ambystoma mexicanum, Ambystomatidae) has a courtship display that suggests a key role for chemical communication in the orchestration of its sexual behavior, but no sex pheromones have yet been characterized from this species. Here we combined whole transcriptome analyses of the male cloaca with proteomic analyses of water in which axolotls were allowed to court to show that male axolotls secrete multiple ca. 20 kDa glycosylated sodefrin precursor-like factor (SPF) proteins during courtship. In combination with phylogenetic analyses, our data show that the male cloaca essentially secretes a courtship-specific clade of SPF proteins that is orthologous to salamandrid courtship pheromones. In addition, we identified an SPF protein for which no orthologs have been described from other salamanders so far. Overall, our study advocates a central role for SPF proteins during the courtship display of axolotls and adds knowledge on pheromone use in a previously unexplored deep evolutionary branch of salamander evolution. PMID:26842386

  1. Courtship Pheromone Use in a Model Urodele, the Mexican Axolotl (Ambystoma mexicanum).

    PubMed

    Maex, Margo; Van Bocxlaer, Ines; Mortier, Anneleen; Proost, Paul; Bossuyt, Franky

    2016-01-01

    Sex pheromones have been shown to constitute a crucial aspect of salamander reproduction. Until now, courtship pheromones of Salamandridae and Plethodontidae have been intensively studied, but information on chemical communication in other urodelan families is essentially lacking. The axolotl (Ambystoma mexicanum, Ambystomatidae) has a courtship display that suggests a key role for chemical communication in the orchestration of its sexual behavior, but no sex pheromones have yet been characterized from this species. Here we combined whole transcriptome analyses of the male cloaca with proteomic analyses of water in which axolotls were allowed to court to show that male axolotls secrete multiple ca. 20 kDa glycosylated sodefrin precursor-like factor (SPF) proteins during courtship. In combination with phylogenetic analyses, our data show that the male cloaca essentially secretes a courtship-specific clade of SPF proteins that is orthologous to salamandrid courtship pheromones. In addition, we identified an SPF protein for which no orthologs have been described from other salamanders so far. Overall, our study advocates a central role for SPF proteins during the courtship display of axolotls and adds knowledge on pheromone use in a previously unexplored deep evolutionary branch of salamander evolution. PMID:26842386

  2. Olfactory responses of banana weevil predators to volatiles from banana pseudostem tissue and synthetic pheromone.

    PubMed

    Tinzaara, W; Gold, C S; Dicke, M; van Huis, A

    2005-07-01

    As a response to attack by herbivores, plants can emit a variety of volatile substances that attract natural enemies of these insect pests. Predators of the banana weevil, Cosmopolites sordidus (Germar) (Coleoptera: Curculionidae) such as Dactylosternum abdominale (Coleoptera: Hydrophilidae) and Pheidole megacephala (Hymenoptera: Formicidae), are normally found in association with weevil-infested rotten pseudostems and harvested stumps. We investigated whether these predators are attracted to such environments in response to volatiles produced by the host plant, by the weevil, or by the weevil plant complex. We evaluated predator responses towards volatiles from banana pseudostem tissue (synomones) and the synthetic banana weevil aggregation pheromone Cosmolure+ in a two-choice olfactometer. The beetle D. abdominale was attracted to fermenting banana pseudostem tissue and Cosmolure+, whereas the ant P. megacephala was attracted only to fermented pseudostem tissue. Both predators were attracted to banana pseudostem tissue that had been damaged by weevil larvae irrespective of weevil presence. Adding pheromone did not enhance predator response to volatiles from pseudostem tissue fed on by weevils. The numbers of both predators recovered with pseudostem traps in the field from banana mats with a pheromone trap were similar to those in pseudostem traps at different distance ranges from the pheromone. Our study shows that the generalist predators D. abdominale and P. megacephala use volatiles from fermented banana pseudostem tissue as the major chemical cue when searching for prey. PMID:16222791

  3. A pear-derived kairomone with pheromonal potency that attracts male and female codling moth, Cydia pomonella (L.)

    NASA Astrophysics Data System (ADS)

    Light, Douglas M.; Knight, Alan L.; Henrick, Clive A.; Rajapaska, Dayananda; Lingren, Bill; Dickens, Joseph C.; Reynolds, Katherine M.; Buttery, Ronald G.; Merrill, Gloria; Roitman, James; Campbell, Bruce C.

    2001-08-01

    Ethyl (2 E, 4 Z)-2,4-decadienoate, a pear-derived volatile, is a species-specific, durable, and highly potent attractant to the codling moth (CM), Cydia pomonella (L.), a serious pest of walnuts, apples, and pears worldwide. This kairomone attracts both CM males and virgin and mated females. It is highly attractive to CM in both walnut and apple orchard contexts, but has shown limited effectiveness in a pear orchard context. Rubber septa lures loaded with ethyl (2 E, 4 Z)-2,4-decadienoate remained attractive for several months under field conditions. At the same low microgram load rates on septa, the combined gender capture of CM in kairomone-baited traps was similar to the capture rate of males in traps baited with codlemone, the major sex pheromone component. The particular attribute of attracting CM females renders this kairomone a novel tool for monitoring population flight and mating-ovipositional status, and potentially a major new weapon for directly controlling CM populations.

  4. Hormones and pheromones in regulation of insect behavior

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Both pheromones and hormones are well recognized regulators of insect biology. However, the interactions between hormones and pheromones in coordinating insect biology are less well understood. We have studied the interactions between juvenile hormone, its precursor methyl farnesoate, and pheromon...

  5. Synthesis and metabolism of pheromones and pheromone analogues

    SciTech Connect

    Ding, Y.S.

    1987-01-01

    (9, 10-/sup 3/H/sub 2/)Z9-14:Ac was synthesized at high specific activity (/sup 3/H, 58 Ci/mmole) by partial tritiation of the corresponding alkyne and was converted to the labeled Z9-14:OH and Z9-14:Al to study tissue specificity of acetate esterase (E), alcohol oxidase (OX), and aldehyde dehydrogenase (ALDH) in male and female Heliothis virescens. Soluble and membrane-associated enzyme activities were determined by radio-TLC assays. Compounds of the tritium-labeled Z11-16 series were synthesized and their in vitro fates examined as well. In order to achieve an alternative approach in which (1) pheromone receptor proteins would be stoichiometrically and irreversibly modified, or (2) pheromone-catabolizing enzymes are inactivated by tight-binding or irreversible inhibitors, we have designed analogues of pheromones of lepidopterous insect pests and assayed their biological activity in vitro and in vivo. Various fluorinated molecules such as acyl fluorides, fluoroolefins, 2-fluoro aldehydes, 2,2-difluoro aldehydes and trifluoromethyl ketones were synthesized. The synthesis of some other functional groups such as cyclopropanones, cyclopropanols, cyclopropyl carbinols, cyclopropyl aldehydes and Michael acceptors will also be discussed.

  6. Neural mechanisms of alarm pheromone signaling.

    PubMed

    Enjin, Anders; Suh, Greg Seong-Bae

    2013-03-01

    Alarm pheromones are important semiochemicals used by many animal species to alert conspecifics or other related species of impending danger. In this review, we describe recent developments in our understanding of the neural mechanisms underlying the ability of fruit flies, zebrafish and mice to mediate the detection of alarm pheromones. Specifically, alarm pheromones are detected in these species through specialized olfactory subsystems that are unique to the chemosensitive receptors, second messenger-signaling and physiology. Thus, the alarm pheromones appears to be detected by signaling mechanisms that are distinct from those seen in the canonical olfactory system.

  7. Sensillar expression and responses of olfactory receptors reveal different peripheral coding in two Helicoverpa species using the same pheromone components

    PubMed Central

    Chang, Hetan; Guo, Mengbo; Wang, Bing; Liu, Yang; Dong, Shuanglin; Wang, Guirong

    2016-01-01

    Male moths efficiently recognize conspecific sex pheromones thanks to their highly accurate and specific olfactory system. The Heliothis/Helicoverpa species are regarded as good models for studying the perception of sex pheromones. In this study, we performed a series of experiments to investigate the peripheral mechanisms of pheromone coding in two-closely related species, Helicoverpa armigera and H. assulta. The morphology and distribution patterns of sensilla trichoidea are similar between the two species when observed at the scanning electron microscope, but their performances are different. In H. armigera, three functional types of sensilla trichoidea (A, B and C) were found to respond to different pheromone components, while in H. assulta only two types of such sensilla (A and C) could be detected. The response profiles of all types of sensilla trichoidea in the two species well matched the specificities of the pheromone receptors (PRs) expressed in the same sensilla, as measured in voltage-clamp experiments. The expressions of PRs in neighboring olfactory sensory neurons (OSNs) within the same trichoid sensillum were further confirmed by in situ hybridization. Our results show how the same pheromone components can code for different messages at the periphery of two Helicoverpa species. PMID:26744070

  8. Evidence of contact pheromone use in mating behavior of the raspberry weevil (Coleoptera: Curculionidae).

    PubMed

    Mutis, Ana; Parra, Leonardo; Palma, Rubén; Pardo, Fernando; Perich, Fernando; Quiroz, Andrés

    2009-02-01

    Numerous studies of insect species have shown that a subset of female cuticular hydrocarbons is used as short-range or contact pheromones. Here, we studied the possible use of contact pheromones in the mating behavior of the weevil Aegorhinus superciliosus, a native species of Chile. Males mounted females only after antennal contact with the female's cuticle, and only 33% of the males attempted to mate with dead females washed with solvent. When a glass rod (dummy) was coated with female cuticular extracts, males exhibited behaviors similar to those observed with females. A preliminary gas chromatography-mass spectrometry (GC-MS) analysis of cuticular extracts indicated that males and females share a series of aliphatic hydrocarbons but that the relative abundance of some of these compounds differ between the sexes. These results suggest that cuticular lipids mediate mating behavior of the raspberry weevil and provide the first evidence of contact pheromones in curculionids.

  9. Pheromone disruption of Argentine ant trail integrity

    USGS Publications Warehouse

    Suckling, D.M.; Peck, R.W.; Manning, L.M.; Stringer, L.D.; Cappadonna, J.; El-Sayed, A. M.

    2008-01-01

    Disruption of Argentine ant trail following and reduced ability to forage (measured by bait location success) was achieved after presentation of an oversupply of trail pheromone, (Z)-9-hexadecenal. Experiments tested single pheromone point sources and dispersion of a formulation in small field plots. Ant walking behavior was recorded and digitized by using video tracking, before and after presentation of trail pheromone. Ants showed changes in three parameters within seconds of treatment: (1) Ants on trails normally showed a unimodal frequency distribution of walking track angles, but this pattern disappeared after presentation of the trail pheromone; (2) ants showed initial high trail integrity on a range of untreated substrates from painted walls to wooden or concrete floors, but this was significantly reduced following presentation of a point source of pheromone; (3) the number of ants in the pheromone-treated area increased over time, as recruitment apparently exceeded departures. To test trail disruption in small outdoor plots, the trail pheromone was formulated with carnuba wax-coated quartz laboratory sand (1 g quartz sand/0.2 g wax/1 mg pheromone). The pheromone formulation, with a half-life of 30 h, was applied by rotary spreader at four rates (0, 2.5, 7.5, and 25 mg pheromone/m2) to 1- and 4-m2 plots in Volcanoes National Park, Hawaii. Ant counts at bait cards in treated plots were significantly reduced compared to controls on the day of treatment, and there was a significant reduction in ant foraging for 2 days. These results show that trail pheromone disruption of Argentine ants is possible, but a much more durable formulation is needed before nest-level impacts can be expected. ?? 2008 Springer Science+Business Media, LLC.

  10. Pheromone disruption of Argentine ant trail integrity.

    PubMed

    Suckling, D M; Peck, R W; Manning, L M; Stringer, L D; Cappadonna, J; El-Sayed, A M

    2008-12-01

    Disruption of Argentine ant trail following and reduced ability to forage (measured by bait location success) was achieved after presentation of an oversupply of trail pheromone, (Z)-9-hexadecenal. Experiments tested single pheromone point sources and dispersion of a formulation in small field plots. Ant walking behavior was recorded and digitized by using video tracking, before and after presentation of trail pheromone. Ants showed changes in three parameters within seconds of treatment: (1) Ants on trails normally showed a unimodal frequency distribution of walking track angles, but this pattern disappeared after presentation of the trail pheromone; (2) ants showed initial high trail integrity on a range of untreated substrates from painted walls to wooden or concrete floors, but this was significantly reduced following presentation of a point source of pheromone; (3) the number of ants in the pheromone-treated area increased over time, as recruitment apparently exceeded departures. To test trail disruption in small outdoor plots, the trail pheromone was formulated with carnuba wax-coated quartz laboratory sand (1 g quartz sand/0.2 g wax/1 mg pheromone). The pheromone formulation, with a half-life of 30 h, was applied by rotary spreader at four rates (0, 2.5, 7.5, and 25 mg pheromone/m(2)) to 1- and 4-m(2) plots in Volcanoes National Park, Hawaii. Ant counts at bait cards in treated plots were significantly reduced compared to controls on the day of treatment, and there was a significant reduction in ant foraging for 2 days. These results show that trail pheromone disruption of Argentine ants is possible, but a much more durable formulation is needed before nest-level impacts can be expected. PMID:19034574

  11. Disposable Polydimethylsiloxane (PDMS)-Coated Fused Silica Optical Fibers for Sampling Pheromones of Moths

    PubMed Central

    Lievers, Rik; Groot, Astrid T.

    2016-01-01

    In the past decades, the sex pheromone composition in female moths has been analyzed by different methods, ranging from volatile collections to gland extractions, which all have some disadvantage: volatile collections can generally only be conducted on (small) groups of females to detect the minor pheromone compounds, whereas gland extractions are destructive. Direct-contact SPME overcomes some of these disadvantages, but is expensive, the SPME fiber coating can be damaged due to repeated usage, and samples need to be analyzed relatively quickly after sampling. In this study, we assessed the suitability of cheap and disposable fused silica optical fibers coated with 100 μm polydimethylsiloxane (PDMS) by sampling the pheromone of two noctuid moths, Heliothis virescens and Heliothis subflexa. By rubbing the disposable PDMS fibers over the pheromone glands of females that had called for at least 15 minutes and subsequently extracting the PDMS fibers in hexane, we collected all known pheromone compounds, and we found a strong positive correlation for most pheromone compounds between the disposable PDMS fiber rubs and the corresponding gland extracts of the same females. When comparing this method to volatile collections and the corresponding gland extracts, we generally found comparable percentages between the three techniques, with some differences that likely stem from the chemical properties of the individual pheromone compounds. Hexane extraction of cheap, disposable, PDMS coated fused silica optical fibers allows for sampling large quantities of individual females in a short time, eliminates the need for immediate sample analysis, and enables to use the same sample for multiple chemical analyses. PMID:27533064

  12. Disposable Polydimethylsiloxane (PDMS)-Coated Fused Silica Optical Fibers for Sampling Pheromones of Moths.

    PubMed

    Lievers, Rik; Groot, Astrid T

    2016-01-01

    In the past decades, the sex pheromone composition in female moths has been analyzed by different methods, ranging from volatile collections to gland extractions, which all have some disadvantage: volatile collections can generally only be conducted on (small) groups of females to detect the minor pheromone compounds, whereas gland extractions are destructive. Direct-contact SPME overcomes some of these disadvantages, but is expensive, the SPME fiber coating can be damaged due to repeated usage, and samples need to be analyzed relatively quickly after sampling. In this study, we assessed the suitability of cheap and disposable fused silica optical fibers coated with 100 μm polydimethylsiloxane (PDMS) by sampling the pheromone of two noctuid moths, Heliothis virescens and Heliothis subflexa. By rubbing the disposable PDMS fibers over the pheromone glands of females that had called for at least 15 minutes and subsequently extracting the PDMS fibers in hexane, we collected all known pheromone compounds, and we found a strong positive correlation for most pheromone compounds between the disposable PDMS fiber rubs and the corresponding gland extracts of the same females. When comparing this method to volatile collections and the corresponding gland extracts, we generally found comparable percentages between the three techniques, with some differences that likely stem from the chemical properties of the individual pheromone compounds. Hexane extraction of cheap, disposable, PDMS coated fused silica optical fibers allows for sampling large quantities of individual females in a short time, eliminates the need for immediate sample analysis, and enables to use the same sample for multiple chemical analyses. PMID:27533064

  13. Tarsi of Male Heliothine Moths Contain Aldehydes and Butyrate Esters as Potential Pheromone Components.

    PubMed

    Choi, Man-Yeon; Ahn, Seung-Joon; Park, Kye-Chung; Meer, Robert Vander; Cardé, Ring T; Jurenka, Russell

    2016-05-01

    The Noctuidae are one of the most speciose moth families and include the genera Helicoverpa and Heliothis. Females use (Z)-11-hexadecenal as the major component of their sex pheromones except for Helicoverpa assulta and Helicoverpa gelotopoeon, both of which utilize (Z)-9-hexadecenal. The minor compounds found in heliothine sex pheromone glands vary with species, but hexadecanal has been found in the pheromone gland of almost all heliothine females so far investigated. In this study, we found a large amount (0.5-1.5 μg) of hexadecanal and octadecanal on the legs of males of four heliothine species, Helicoverpa zea, Helicoverpa armigera, H. assulta, and Heliothis virescens. The hexadecanal was found on and released from the tarsi, and was in much lower levels or not detected on the remaining parts of the leg (tibia, femur, trochanter, and coxa). Lower amounts (0.05-0.5 μg) of hexadecanal were found on female tarsi. This is the first known sex pheromone compound to be identified from the legs of nocturnal moths. Large amounts of butyrate esters (about 16 μg) also were found on tarsi of males with lower amounts on female tarsi. Males deposited the butyrate esters while walking on a glass surface. Decapitation did not reduce the levels of hexadecanal on the tarsi of H. zea males, indicating that hexadecanal production is not under the same neuroendocrine regulation system as the production of female sex pheromone. Based on electroantennogram studies, female antennae had a relatively high response to hexadecanal compared to male antennae. We consider the possible role of aldehydes and butyrate esters as courtship signals in heliothine moths. PMID:27155602

  14. Effect of putative pheromones on the electrical activity of the human vomeronasal organ and olfactory epithelium.

    PubMed

    Monti-Bloch, L; Grosser, B I

    1991-10-01

    The summated receptor potential was recorded from the vomeronasal organ (VNO) and olfactory epithelium (OE) of 49 human subjects of both sexes (18 to 55 years old) using surface non-polarizable silver-silver chloride electrodes. 15-25 pg of human putative pheromones, clove oil and a diluent were administered to the VNO or the OE in 0.3-1 s pulses from a 0.05 mm dia cannula connected to a multichannel delivery system. Local stimulation of the VNO produces negative potentials of 1.8-11.6 mV showing adaptation. Responses are not obtained when the recording electrode is placed in the nasal respiratory mucosa. Pheromone ER-830 significantly stimulates the male VNO (P less than 0.01; n = 20), while ER-670 produces a significant effect on female subjects (P less than 0.001; n = 20). The other pheromones tested do not show significantly different effects in both male and female (P greater than 0.1). Similar quantities of odorant or diluent produce an insignificant effect on the VNO. Stimulation of the OE with clove oil produces depolarization of 12.3 +/- 3.9 mV, while pheromones do not show a significant effect. Our results show that the VNO is a functional organ in adult humans having receptor sites for human putative pheromones. PMID:1892788

  15. Midgut tissue of male pine engraver , Ips pini, synthesizes monoterpenoid pheromone component ipsdienol de novo

    NASA Astrophysics Data System (ADS)

    Hall, Gregory M.; Tittiger, Claus; Andrews, Gracie L.; Mastick, Grant S.; Kuenzli, Marilyn; Luo, Xin; Seybold, Steven J.; Blomquist, Gary J.

    2002-02-01

    For over three decades the site and pathways of bark beetle aggregation pheromone production have remained elusive. Studies on pheromone production in Ips spp. bark beetles have recently shown de novo biosynthesis of pheromone components via the mevalonate pathway. The gene encoding a key regulated enzyme in this pathway, 3-hydroxy-3-methylglutaryl-CoA reductase ( HMG-R), showed high transcript levels in the anterior midgut of male pine engravers, Ips pini (Say) (Coleoptera:Scolytidae). HMG-R expression in the midgut was sex, juvenile hormone, and feeding dependent, providing strong evidence that this is the site of acyclic monoterpenoid (ipsdienol) pheromone production in male beetles. Additionally, isolated midgut tissue from fed or juvenile hormone III (JH III)-treated males converted radiolabeled acetate to ipsdienol, as assayed by radio-HPLC. These data support the de novo production of this frass-associated aggregation pheromone component by the mevalonate pathway. The induction of a metazoan HMG-R in this process does not support the postulated role of microorganisms in ipsdienol production.

  16. Coordinated gene expression for pheromone biosynthesis in the pine engraver beetle, Ips pini (Coleoptera: Scolytidae)

    NASA Astrophysics Data System (ADS)

    Keeling, Christopher I.; Blomquist, Gary J.; Tittiger, Claus

    In several pine bark beetle species, phloem feeding induces aggregation pheromone production to coordinate a mass attack on the host tree. Male pine engraver beetles, Ips pini (Say) (Coleoptera: Scolytidae), produce the monoterpenoid pheromone component ipsdienol de novo via the mevalonate pathway in the anterior midgut upon feeding. To understand how pheromone production is regulated in this tissue, we used quantitative real-time PCR to examine feeding-induced changes in gene expression of seven mevalonate pathway genes: acetoacetyl-coenzyme A thiolase, 3-hydroxy-3-methylglutaryl coenzyme A synthase, 3-hydroxy-3-methylglutaryl coenzyme A reductase, mevalonate 5-diphosphate decarboxylase, isopentenyl-diphosphate isomerase, geranyl-diphosphate synthase (GPPS), and farnesyl-diphosphate synthase (FPPS). In males, expression of all these genes significantly increased upon feeding. In females, the expression of the early mevalonate pathway genes (up to and including the isomerase) increased significantly, but the expression of the later genes (GPPS and FPPS) was unaffected or decreased upon feeding. Thus, feeding coordinately regulates expression of the mevalonate pathway genes necessary for pheromone biosynthesis in male, but not female, midguts. Furthermore, basal mRNA levels were 5- to 41-fold more abundant in male midguts compared to female midguts. This is the first report of coordinated regulation of mevalonate pathway genes in an invertebrate model consistent with their sex-specific role in de novo pheromone biosynthesis.

  17. Adaptation of antennal neurons in moths is associated with cessation of pheromone-mediated upwind flight.

    PubMed Central

    Baker, T C; Hansson, B S; Löfstedt, C; Löfqvist, J

    1988-01-01

    A wind-borne plume of sex pheromone from a female moth or a synthetic source has a fine, filamentous structure that creates steep and rapid fluctuations in concentration for a male moth flying up the plume's axis. The firing rates from single antennal neurons on Agrotis segetum antennae decreased to nearly zero within seconds after the antennae were placed in a pheromone plume 70 cm downwind of a high-concentration source known from previous studies to cause in-flight arrestment of upwind progress. In a separate experiment, the fluctuating output from chilled neurons on Grapholita molesta antennae became attenuated in response to repetitive, experimentally delivered pheromone pulses. The attenuation was correlated with a previously reported higher percentage of in-flight arrestment exhibited by moths flying at cooler compared to warmer temperatures. These results indicate that two peripheral processes related to excessive concentration, complete adaptation of antennal neurons, or merely the attenuation of fluctuations in burst frequency, are important determinants of when upwind progress by a moth flying in a pheromone plume stops and changes to station keeping. Also, adaptation and attenuation may affect the sensation of blend quality by preferentially affecting cells sensitive to the most abundant components in airborne pheromone blends. PMID:3200859

  18. Circadian rhythms of sexual behavior and pheromone titers of two closely related moth species autographa gamma and Cornutiplusia circumflexa.

    PubMed

    Mazor, Michal; Dunkelblum, Ezra

    2005-09-01

    Two closely related plusiinae moths, Autographa gamma Linnaeus and Cornutiplusia circumflexa Linnaeus, are sympatric in Israel. Both species use identical sex pheromone components but in different ratios, and do not attempt to mate with each other. In addition to the effective reproductive separation by their sex pheromones, the sexual behavior of both species was compared to determine whether the lack of selection pressure might create additional barriers to cross-attraction and cross-mating. We found the gamma moth to be sexually active almost equally throughout the scotophase, whereas the sexual activity of C. circumflexa was limited to a short period at the end of the scotophase when most of the gamma moths had already mated. Higher levels of calling were observed with older females. There was a close relationship between pheromone titer and calling activity in both species. PMID:16132217

  19. Love is blind: indiscriminate female mating responses to male courtship pheromones in newts (Salamandridae).

    PubMed

    Treer, Dag; Van Bocxlaer, Ines; Matthijs, Severine; Du Four, Dimitri; Janssenswillen, Sunita; Willaert, Bert; Bossuyt, Franky

    2013-01-01

    Internal fertilization without copulation or prolonged physical contact is a rare reproductive mode among vertebrates. In many newts (Salamandridae), the male deposits a spermatophore on the substrate in the water, which the female subsequently takes up with her cloaca. Because such an insemination requires intense coordination of both sexes, male newts have evolved a courtship display, essentially consisting of sending pheromones under water by tail-fanning towards their potential partner. Behavioral experiments until now mostly focused on an attractant function, i.e. showing that olfactory cues are able to bring both sexes together. However, since males start their display only after an initial contact phase, courtship pheromones are expected to have an alternative function. Here we developed a series of intraspecific and interspecific two-female experiments with alpine newt (Ichthyosaura alpestris) and palmate newt (Lissotriton helveticus) females, comparing behavior in male courtship water and control water. We show that male olfactory cues emitted during tail-fanning are pheromones that can induce all typical features of natural female mating behavior. Interestingly, females exposed to male pheromones of their own species show indiscriminate mating responses to conspecific and heterospecific females, indicating that visual cues are subordinate to olfactory cues during courtship.

  20. Pheromone evolution and sexual behavior in Drosophila are shaped by male sensory exploitation of other males.

    PubMed

    Ng, Soon Hwee; Shankar, Shruti; Shikichi, Yasumasa; Akasaka, Kazuaki; Mori, Kenji; Yew, Joanne Y

    2014-02-25

    Animals exhibit a spectacular array of traits to attract mates. Understanding the evolutionary origins of sexual features and preferences is a fundamental problem in evolutionary biology, and the mechanisms remain highly controversial. In some species, females choose mates based on direct benefits conferred by the male to the female and her offspring. Thus, female preferences are thought to originate and coevolve with male traits. In contrast, sensory exploitation occurs when expression of a male trait takes advantage of preexisting sensory biases in females. Here, we document in Drosophila a previously unidentified example of sensory exploitation of males by other males through the use of the sex pheromone CH503. We use mass spectrometry, high-performance liquid chromatography, and behavioral analysis to demonstrate that an antiaphrodisiac produced by males of the melanogaster subgroup also is effective in distant Drosophila relatives that do not express the pheromone. We further show that species that produce the pheromone have become less sensitive to the compound, illustrating that sensory adaptation occurs after sensory exploitation. Our findings provide a mechanism for the origin of a sex pheromone and show that sensory exploitation changes male sexual behavior over evolutionary time.

  1. Pheromone component patterns of moth evolution revealed by computer analysis of the Pherolist.

    PubMed

    Byer, John A

    2006-03-01

    1. The Pherolist internet site listing moth sex pheromone components reported in the literature was downloaded and processed by a basic program into a database with 2931 combinations of 377 unique chemical names of sex pheromone attractants used by 1572 moth species in 619 genera and 49 families. Names of pheromone compounds were analysed for aliphatic chain length, unsaturation position, geometric configuration, functional group (aldehyde, alcohol, acetate, epoxide, methyl-branched and hydrocarbon) and number of instances such combinations are used by species and families. 2. The analyses revealed pheromone blends of species ranged from one to eight components (45% species with one component, 36% two, 12% three, 5% four, 1% five, < or = 0.5% for > or = six). The numbers of different components of various chain lengths and functional groups, the numbers of instances such compounds are used by species and the numbers of species using such compounds are presented. 3. The average number of pheromone components per species increased as the number of species in a family increased based on linear regression of components in the 10 largest families, with species numbers ranging from 19 to 461. Pooling the four largest families gave a mean of 1.96 components per species that was significantly greater than the mean of the next 14 smaller families (1.63). Because related species in a large family would need more communication channels, this suggests that these species on average evolved to produce and detect more components in their pheromone blends to achieve a unique communication channel than was needed by species in smaller families. 4. Speciation in moths would entail evolutionary changes in both pheromone biosynthetic and sensory systems that avoided competition for communication channels of existing species. Regression analysis indicated that the more species in a family the more unique pheromone components, but the increase diminishes progressively. This suggests

  2. Beyond sodefrin: evidence for a multi-component pheromone system in the model newt Cynops pyrrhogaster (Salamandridae).

    PubMed

    Van Bocxlaer, Ines; Maex, Margo; Treer, Dag; Janssenswillen, Sunita; Janssens, Rik; Vandebergh, Wim; Proost, Paul; Bossuyt, Franky

    2016-01-01

    Sodefrin, a decapeptide isolated from the male dorsal gland of the Japanese fire belly newt Cynops pyrrhogaster, was the first peptide pheromone identified from a vertebrate. The fire belly salamander and sodefrin have become a model for sex pheromone investigation in aquatically courting salamanders ever since. Subsequent studies in other salamanders identified SPF protein courtship pheromones of around 20 kDa belonging to the same gene-family. Although transcripts of these proteins could be PCR-amplified in Cynops, it is currently unknown whet