Sample records for sex pheromone variation

  1. Intraspecific Variation in Female Sex Pheromone of the Codling Moth Cydia pomonella

    PubMed Central

    Duménil, Claire; Judd, Gary J. R.; Bosch, Dolors; Baldessari, Mario; Gemeno, César; Groot, Astrid T.

    2014-01-01

    The codling moth, Cydia pomonella L. (Lepidoptera, Tortricidae), is a major pest of apple, pear and walnut orchards worldwide. This pest is often controlled using the biologically friendly control method known as pheromone-based mating disruption. Mating disruption likely exerts selection on the sexual communication system of codling moth, as male and female moths will persist in their attempt to meet and mate. Surprisingly little is known on the intraspecific variation of sexual communication in this species. We started an investigation to determine the level of individual variation in the female sex pheromone composition of this moth and whether variation among different populations might be correlated with use of mating disruption against those populations. By extracting pheromone glands of individual females from a laboratory population in Canada and from populations from apple orchards in Spain and Italy, we found significant between- and within-population variation. Comparing females that had been exposed to mating disruption, or not, revealed a significant difference in sex pheromone composition for two of the minor components. Overall, the intraspecific variation observed shows the potential for a shift in female sexual signal when selection pressure is high, as is the case with continuous use of mating disruption. PMID:26462935

  2. Intraspecific Variation in Female Sex Pheromone of the Codling Moth Cydia pomonella.

    PubMed

    Duménil, Claire; Judd, Gary J R; Bosch, Dolors; Baldessari, Mario; Gemeno, César; Groot, Astrid T

    2014-09-26

    The codling moth, Cydia pomonella L. (Lepidoptera, Tortricidae), is a major pest of apple, pear and walnut orchards worldwide. This pest is often controlled using the biologically friendly control method known as pheromone-based mating disruption. Mating disruption likely exerts selection on the sexual communication system of codling moth, as male and female moths will persist in their attempt to meet and mate. Surprisingly little is known on the intraspecific variation of sexual communication in this species. We started an investigation to determine the level of individual variation in the female sex pheromone composition of this moth and whether variation among different populations might be correlated with use of mating disruption against those populations. By extracting pheromone glands of individual females from a laboratory population in Canada and from populations from apple orchards in Spain and Italy, we found significant between- and within-population variation. Comparing females that had been exposed to mating disruption, or not, revealed a significant difference in sex pheromone composition for two of the minor components. Overall, the intraspecific variation observed shows the potential for a shift in female sexual signal when selection pressure is high, as is the case with continuous use of mating disruption.

  3. Identification of the pheromone biosynthesis genes from the sex pheromone gland transcriptome of the diamondback moth, Plutella xylostella.

    PubMed

    Chen, Da-Song; Dai, Jian-Qing; Han, Shi-Chou

    2017-11-24

    The diamondback moth was estimated to increase costs to the global agricultural economy as the global area increase of Brassica vegetable crops and oilseed rape. Sex pheromones traps are outstanding tools available in Integrated Pest Management for many years and provides an effective approach for DBM population monitoring and control. The ratio of two major sex pheromone compounds shows geographical variations. However, the limitation of our information in the DBM pheromone biosynthesis dampens our understanding of the ratio diversity of pheromone compounds. Here, we constructed a transcriptomic library from the DBM pheromone gland and identified genes putatively involved in the fatty acid biosynthesis, pheromones functional group transfer, and β-oxidation enzymes. In addition, odorant binding protein, chemosensory protein and pheromone binding protein genes encoded in the pheromone gland transcriptome, suggest that female DBM moths may receive odors or pheromone compounds via their pheromone gland and ovipositor system. Tissue expression profiles further revealed that two ALR, three DES and one FAR5 genes were pheromone gland tissue biased, while some chemoreception genes expressed extensively in PG, pupa, antenna and legs tissues. Finally, the candidate genes from large-scale transcriptome information may be useful for characterizing a presumed biosynthetic pathway of the DBM sex pheromone.

  4. Variation in sex pheromone emission does not reflect immunocompetence but affects attractiveness of male burying beetles—a combination of laboratory and field experiments

    NASA Astrophysics Data System (ADS)

    Chemnitz, Johanna; Bagrii, Nadiia; Ayasse, Manfred; Steiger, Sandra

    2017-08-01

    Life history theory predicts a trade-off between male sexual trait expression and immunocompetence. Using burying beetles, Nicrophorus vespilloides, as a model, we investigated the relationship between male immune function, sex pheromone emission, and attractiveness under field conditions. In the first experiment, we tested whether there is a positive correlation between immune capacity, sex pheromone characteristics (quantity, relative composition, and time invested in pheromone emission), and male attractiveness. As a measurement of immune capacity, we used an individual's encapsulation ability against a novel antigen. In the second experiment, we specifically examined whether a trade-off between chemical trait expression and immune function existed. To this end, we challenged the immune system and measured the subsequent investment in sex pheromone emission and the attractiveness of the male under field conditions. We found that a male's immunocompetence was neither related to the emission of the male's sex pheromone nor to its attractiveness in the field. Furthermore, none of the immune-challenge treatments affected the subsequent investment in pheromone emission or number of females attracted. However, we showed that the same males that emitted a high quantity of their sex pheromone in the laboratory were able to attract more females in the field. Our data suggest that the chemical signal is not a reliable predictor of a male's immunocompetence but rather is a general important fitness-related trait, with a higher emission of the sex pheromone measured in the laboratory directly affecting the attractiveness of a male under field conditions.

  5. Variation in sex pheromone emission does not reflect immunocompetence but affects attractiveness of male burying beetles-a combination of laboratory and field experiments.

    PubMed

    Chemnitz, Johanna; Bagrii, Nadiia; Ayasse, Manfred; Steiger, Sandra

    2017-08-01

    Life history theory predicts a trade-off between male sexual trait expression and immunocompetence. Using burying beetles, Nicrophorus vespilloides, as a model, we investigated the relationship between male immune function, sex pheromone emission, and attractiveness under field conditions. In the first experiment, we tested whether there is a positive correlation between immune capacity, sex pheromone characteristics (quantity, relative composition, and time invested in pheromone emission), and male attractiveness. As a measurement of immune capacity, we used an individual's encapsulation ability against a novel antigen. In the second experiment, we specifically examined whether a trade-off between chemical trait expression and immune function existed. To this end, we challenged the immune system and measured the subsequent investment in sex pheromone emission and the attractiveness of the male under field conditions. We found that a male's immunocompetence was neither related to the emission of the male's sex pheromone nor to its attractiveness in the field. Furthermore, none of the immune-challenge treatments affected the subsequent investment in pheromone emission or number of females attracted. However, we showed that the same males that emitted a high quantity of their sex pheromone in the laboratory were able to attract more females in the field. Our data suggest that the chemical signal is not a reliable predictor of a male's immunocompetence but rather is a general important fitness-related trait, with a higher emission of the sex pheromone measured in the laboratory directly affecting the attractiveness of a male under field conditions.

  6. Heritable variation of sex pheromone composition and the potential for evolution of resistance to pheromone-based control of the Indian meal moth, Plodia interpunctella.

    PubMed

    Svensson, Glenn P; Ryne, Camilla; Löfstedt, Christer

    2002-07-01

    The short-term evolutionary effect of pheromone-based mating disruption on the mating ability of the Indian meal moth, Plodia interpunctella, was investigated. Three independent selection lines were established, and the mating ability of moths in plastic tents treated with high doses of pheromone and in control tents was compared for two consecutive generations. In addition, the heritability of the sex pheromone blend, measured as the ratio of two major pheromone components (Z,E)-9,12-tetradecadienyl acetate and (Z,E)-9,12-tetradecadienol, was estimated. Based on a mother-daughter regression analysis including 21 families, the heritability of the pheromone blend was 0.65 +/- 0.14, indicating a potential for evolutionary change of the character. However, no increase in mating ability of females in pheromone-treated tents or alteration of the pheromone blend was observed in any selection line when compared with control lines, indicating no or weak selection on the pheromone blend as well as other traits influencing mating ability of this species under the created mating disruption conditions. Factors contributing to the lack of selection effects are discussed.

  7. Identification and Differential Expression of a Candidate Sex Pheromone Receptor in Natural Populations of Spodoptera litura

    PubMed Central

    Lin, Xinda; Zhang, Qinhui; Wu, Zhongnan; Du, Yongjun

    2015-01-01

    Olfaction is primarily mediated by highly specific olfactory receptors (ORs), a subfamily of which are the pheromone receptors that play a key role in sexual communication and can contribute to reproductive isolation. Here we cloned and identified an olfactory receptor, SlituOR3 (Genbank NO. JN835270), from Spodoptera litura, to be the candidate pheromone receptor. It exhibited male-biased expression in the antennae, where they were localized at the base of sensilla trichoidea. Conserved orthologues of these receptors were found amongst known pheromone receptors within the Lepidoptera, and SlituOR3 were placed amongst a clade of candidate pheromone receptors in a phylogeny tree of insect ORs. SlituOR3 is required for the EAG responses to both Z9E11-14:OAc and Z9E12-14:OAc SlituOR3 showed differential expression in S. litura populations attracted to traps baited with a series of sex pheromone blends composed of different ratios of (9Z,11E)-tetradecadienyl acetate (Z9E11-14:OAc) and (9Z,12E)-tetradecadienyl acetate (Z9E12-14:OAc). The changes in the expression level of SlitOR3 and antennal responses after SlitOR3 silencing suggested that SlitOR3 is required for the sex pheromone signaling. We infer that variation in transcription levels of olfactory receptors may modulate sex pheromone perception in male moths and could affect both of pest control and monitoring efficiency by pheromone application after long time mass trapping with one particular ratio of blend in the field. PMID:26126192

  8. Drosophila Cuticular Hydrocarbons Revisited: Mating Status Alters Cuticular Profiles

    PubMed Central

    Cobb, Matthew; Ferveur, Jean-François

    2010-01-01

    Most living organisms use pheromones for inter-individual communication. In Drosophila melanogaster flies, several pheromones perceived either by contact/at a short distance (cuticular hydrocarbons, CHs), or at a longer distance (cis-vaccenyl acetate, cVA), affect courtship and mating behaviours. However, it has not previously been possible to precisely identify all potential pheromonal compounds and simultaneously monitor their variation on a time scale. To overcome this limitation, we combined Solid Phase Micro-Extraction with gas-chromatography coupled with mass-spectrometry. This allowed us (i) to identify 59 cuticular compounds, including 17 new CHs; (ii) to precisely quantify the amount of each compound that could be detected by another fly, and (iii) to measure the variation of these substances as a function of aging and mating. Sex-specific variation appeared with age, while mating affected cuticular compounds in both sexes with three possible patterns: variation was (i) reciprocal in the two sexes, suggesting a passive mechanical transfer during mating, (ii) parallel in both sexes, such as for cVA which strikingly appeared during mating, or (iii) unilateral, presumably as a result of sexual interaction. We provide a complete reassessment of all Drosophila CHs and suggest that the chemical conversation between male and female flies is far more complex than is generally accepted. We conclude that focusing on individual compounds will not provide a satisfactory understanding of the evolution and function of chemical communication in Drosophila. PMID:20231905

  9. Phenotypic plasticity in sex pheromone production in Bicyclus anynana butterflies.

    PubMed

    Dion, Emilie; Monteiro, Antónia; Yew, Joanne Y

    2016-12-14

    Phenotypic plasticity refers to the environmental control of phenotypes. Cues experienced during development (developmental plasticity) or during adulthood (acclimatization) can both affect adult phenotypes. Phenotypic plasticity has been described in many traits but examples of developmental plasticity in physiological traits, in particular, remain scarce. We examined developmental plasticity and acclimatization in pheromone production in the butterfly Bicyclus anynana in response to rearing temperature. B. anynana lives in the African tropics where warm rearing temperatures of the wet season produce active males that court and females that choose, whereas cooler temperatures of the dry season lead to choosy less active males and courting females. We hypothesized that if male pheromone production is costly, it should be reduced in the dry season form. After describing the ultrastructure of pheromone producing cells, we showed that dry season males produced significantly less sex pheromones than wet season males, partly due to acclimatization and partly due to developmental plasticity. Variation in levels of one of the compounds is associated with differential regulation of a pheromone biosynthetic enzyme gene. This plasticity might be an adaptation to minimize pheromone production costs during the stressful dry season.

  10. Sex Pheromone Receptor Specificity in the European Corn Borer Moth, Ostrinia nubilalis

    PubMed Central

    Wanner, Kevin W.; Nichols, Andrew S.; Allen, Jean E.; Bunger, Peggy L.; Garczynski, Stephen F.; Linn, Charles E.; Robertson, Hugh M.; Luetje, Charles W.

    2010-01-01

    Background The European corn borer (ECB), Ostrinia nubilalis (Hubner), exists as two separate sex pheromone races. ECB(Z) females produce a 97∶3 blend of Z11- and E11-tetradecenyl acetate whereas ECB(E) females produce an opposite 1∶99 ratio of the Z and E isomers. Males of each race respond specifically to their conspecific female's blend. A closely related species, the Asian corn borer (ACB), O. furnacalis, uses a 3∶2 blend of Z12- and E12-tetradecenyl acetate, and is believed to have evolved from an ECB-like ancestor. To further knowledge of the molecular mechanisms of pheromone detection and its evolution among closely related species we identified and characterized sex pheromone receptors from ECB(Z). Methodology Homology-dependent (degenerate PCR primers designed to conserved amino acid motifs) and homology-independent (pyrophosphate sequencing of antennal cDNA) approaches were used to identify candidate sex pheromone transcripts. Expression in male and female antennae was assayed by quantitative real-time PCR. Two-electrode voltage clamp electrophysiology was used to functionally characterize candidate receptors expressed in Xenopus oocytes. Conclusion We characterized five sex pheromone receptors, OnOrs1 and 3–6. Their transcripts were 14–100 times more abundant in male compared to female antennae. OnOr6 was highly selective for Z11-tetradecenyl acetate (EC50 = 0.86±0.27 µM) and was at least three orders of magnitude less responsive to E11-tetradecenyl acetate. Surprisingly, OnOr1, 3 and 5 responded to all four pheromones tested (Z11- and E11-tetradecenyl acetate, and Z12- and E12-tetradecenyl acetate) and to Z9-tetradecenyl acetate, a behavioral antagonist. OnOr1 was selective for E12-tetradecenyl acetate based on an efficacy that was at least 5-fold greater compared to the other four components. This combination of specifically- and broadly-responsive pheromone receptors corresponds to published results of sensory neuron activity in vivo. Receptors broadly-responsive to a class of pheromone components may provide a mechanism for variation in the male moth response that enables population level shifts in pheromone blend use. PMID:20084285

  11. Phenotypic plasticity in sex pheromone production in Bicyclus anynana butterflies

    PubMed Central

    Dion, Emilie; Monteiro, Antónia; Yew, Joanne Y.

    2016-01-01

    Phenotypic plasticity refers to the environmental control of phenotypes. Cues experienced during development (developmental plasticity) or during adulthood (acclimatization) can both affect adult phenotypes. Phenotypic plasticity has been described in many traits but examples of developmental plasticity in physiological traits, in particular, remain scarce. We examined developmental plasticity and acclimatization in pheromone production in the butterfly Bicyclus anynana in response to rearing temperature. B. anynana lives in the African tropics where warm rearing temperatures of the wet season produce active males that court and females that choose, whereas cooler temperatures of the dry season lead to choosy less active males and courting females. We hypothesized that if male pheromone production is costly, it should be reduced in the dry season form. After describing the ultrastructure of pheromone producing cells, we showed that dry season males produced significantly less sex pheromones than wet season males, partly due to acclimatization and partly due to developmental plasticity. Variation in levels of one of the compounds is associated with differential regulation of a pheromone biosynthetic enzyme gene. This plasticity might be an adaptation to minimize pheromone production costs during the stressful dry season. PMID:27966579

  12. Glycerol-3-phosphate O-acyltransferase is required for PBAN-induced sex pheromone biosynthesis in Bombyx mori

    PubMed Central

    Du, Mengfang; Liu, Xiaoguang; Liu, Xiaoming; Yin, Xinming; Han, Shuangyin; Song, Qisheng; An, Shiheng

    2015-01-01

    Female moths employ their own pheromone blends as a communicational medium in mating behavior. The biosynthesis and release of sex pheromone in female moths are regulated by pheromone biosynthesis activating neuropeptide (PBAN) and the corresponding action of PBAN has been well elucidated in Bombyx mori. However, very little is known about the molecular mechanism regarding the biosynthesis of sex pheromone precursor. In this study, quantitative proteomics was utilized to comprehensively elucidate the expression dynamics of pheromone glands (PGs) during development. Proteomic analysis revealed a serial of differentially expressed sex pheromone biosynthesis-associated proteins at the different time points of B. mori development. Most interestingly B. mori glycerol-3-phosphate O-acyltransferase (BmGPAT) was found to be expressed during the key periods of sex pheromone biosynthesis. RNAi knockdown of BmGPAT confirmed the important function of this protein in the biosynthesis of sex pheromone precursor, triacylglcerol (TAG), and subsequently PBAN-induced production of sex pheromone, bombykol. Behavioral analysis showed that RNAi knockdown of GPAT significantly impaired the ability of females to attract males. Our findings indicate that GPAT acts to regulate the biosynthesis of sex pheromone precursor, TAG, thus influencing PBAN-induced sex pheromone production and subsequent mating behavior. PMID:25630665

  13. Sex and Aggregation-Sex Pheromones of Cerambycid Beetles: Basic Science and Practical Applications.

    PubMed

    Hanks, Lawrence M; Millar, Jocelyn G

    2016-07-01

    Research since 2004 has shown that the use of volatile attractants and pheromones is widespread in the large beetle family Cerambycidae, with pheromones now identified from more than 100 species, and likely pheromones for many more. The pheromones identified to date from species in the subfamilies Cerambycinae, Spondylidinae, and Lamiinae are all male-produced aggregation-sex pheromones that attract both sexes, whereas all known examples for species in the subfamilies Prioninae and Lepturinae are female-produced sex pheromones that attract only males. Here, we summarize the chemistry of the known pheromones, and the optimal methods for their collection, analysis, and synthesis. Attraction of cerambycids to host plant volatiles, interactions between their pheromones and host plant volatiles, and the implications of pheromone chemistry for invasion biology are discussed. We also describe optimized traps, lures, and operational parameters for practical applications of the pheromones in detection, sampling, and management of cerambycids.

  14. Geographic Variation in Sexual Attraction of Spodoptera frugiperda Corn- and Rice-Strain Males to Pheromone Lures

    PubMed Central

    Unbehend, Melanie; Hänniger, Sabine; Vásquez, Gissella M.; Juárez, María Laura; Reisig, Dominic; McNeil, Jeremy N.; Meagher, Robert L.; Jenkins, David A.; Heckel, David G.; Groot, Astrid T.

    2014-01-01

    The corn- and rice-strains of Spodoptera frugiperda exhibit several genetic and behavioral differences and appear to be undergoing ecological speciation in sympatry. Previous studies reported conflicting results when investigating male attraction to pheromone lures in different regions, but this could have been due to inter-strain and/or geographic differences. Therefore, we investigated whether corn- and rice-strain males differed in their response to different synthetic pheromone blends in different regions in North America, the Caribbean and South America. All trapped males were strain-typed by two strain-specific mitochondrial DNA markers. In the first experiment, we found a nearly similar response of corn- and rice-strain males to two different 4-component blends, resembling the corn- and rice-strain female blend we previously described from females in Florida. This response showed some geographic variation in fields in Canada, North Carolina, Florida, Puerto Rico, and South America (Peru, Argentina). In dose-response experiments with the critical secondary sex pheromone component (Z)-7-dodecenyl acetate (Z7-12:OAc), we found some strain-specific differences in male attraction. While the response to Z7-12:OAc varied geographically in the corn-strain, rice-strain males showed almost no variation. We also found that the minor compound (Z)-11-hexadecenyl acetate (Z11-16:OAc) did not increase attraction of both strains in Florida and of corn-strain males in Peru. In a fourth experiment, where we added the stereo-isomer of the critical sex pheromone component, (E)-7-dodecenyl acetate, to the major pheromone component (Z)-9-tetradecenyl acetate (Z9-14:OAc), we found that this compound was attractive to males in North Carolina, but not to males in Peru. Overall, our results suggest that both strains show rather geographic than strain-specific differences in their response to pheromone lures, and that regional sexual communication differences might cause geographic differentiation between populations. PMID:24586634

  15. Gene Identification of Pheromone Gland Genes Involved in Type II Sex Pheromone Biosynthesis and Transportation in Female Tea Pest Ectropis grisescens

    PubMed Central

    Li, Zhao-Qun; Ma, Long; Yin, Qian; Cai, Xiao-Ming; Luo, Zong-Xiu; Bian, Lei; Xin, Zhao-Jun; He, Peng; Chen, Zong-Mao

    2018-01-01

    Moths can biosynthesize sex pheromones in the female sex pheromone glands (PGs) and can distinguish species-specific sex pheromones using their antennae. However, the biosynthesis and transportation mechanism for Type II sex pheromone components has rarely been documented in moths. In this study, we constructed a massive PG transcriptome database (14.72 Gb) from a moth species, Ectropis grisescens, which uses type II sex pheromones and is a major tea pest in China. We further identified putative sex pheromone biosynthesis and transportation-related unigenes: 111 cytochrome P450 monooxygenases (CYPs), 25 odorant-binding proteins (OBPs), and 20 chemosensory proteins (CSPs). Tissue expression and phylogenetic tree analyses showed that one CYP (EgriCYP341-fragment3), one OBP (EgriOBP4), and one CSP (EgriCSP10) gene displayed an enriched expression in the PGs, and that EgriOBP2, 3, and 25 are clustered in the moth pheromone-binding protein clade. We considered these our candidate genes. Our results yielded large-scale PG sequence information for further functional studies. PMID:29317471

  16. A plant factory for moth pheromone production

    PubMed Central

    Ding, Bao-Jian; Hofvander, Per; Wang, Hong-Lei; Durrett, Timothy P.; Stymne, Sten; Löfstedt, Christer

    2014-01-01

    Moths depend on pheromone communication for mate finding and synthetic pheromones are used for monitoring or disruption of pheromone communication in pest insects. Here we produce moth sex pheromone, using Nicotiana benthamiana as a plant factory, by transient expression of up to four genes coding for consecutive biosynthetic steps. We specifically produce multicomponent sex pheromones for two species. The fatty alcohol fractions from the genetically modified plants are acetylated to mimic the respective sex pheromones of the small ermine moths Yponomeuta evonymella and Y. padella. These mixtures are very efficient and specific for trapping of male moths, matching the activity of conventionally produced pheromones. Our long-term vision is to design tailor-made production of any moth pheromone component in genetically modified plants. Such semisynthetic preparation of sex pheromones is a novel and cost-effective way of producing moderate to large quantities of pheromones with high purity and a minimum of hazardous waste. PMID:24569486

  17. Sex pheromone and trail pheromone of the sand termite Psammotermes hybostoma.

    PubMed

    Sillam-Dussès, David; Hanus, Robert; Abd El-Latif, Ashraf Oukasha; Jiroš, Pavel; Krasulová, Jana; Kalinová, Blanka; Valterová, Irena; Sobotník, Jan

    2011-02-01

    Within the complex network of chemical signals used by termites, trail pheromones and sex pheromones are among the best known. Numerous recent papers map the chemical identity and glandular origin of these pheromones in nearly all major isopteran taxa. In this study, we aimed to describe the sex pheromone and the trail pheromone of a poorly known sand termite, Psammotermes hybostoma. We identified (3Z,6Z,8E)-dodeca-3,6,8-trien-1-ol (dodecatrienol) as the sex pheromone released by tergal and sternal glands of female imagos and, at the same time, as the trail pheromone secreted from the sternal gland of workers. We conclude that chemical communication in Psammotermes does not differ from that of most other Rhinotermitidae, such as Reticulitermes, despite the presence of a diterpene as a major component of the trail pheromone of Prorhinotermes to which Psammotermes is presumed to be phylogenetically close. Our findings underline once again the conservative nature of chemical communication in termites, with dodecatrienol being a frequent component of pheromonal signals in trail following and sex attraction and, at the same time, a tight evolutionary relationship between the trail following of working castes and the sex attraction of imagos.

  18. Identification of receptors of main sex-pheromone components of three Lepidopteran species.

    PubMed

    Mitsuno, Hidefumi; Sakurai, Takeshi; Murai, Masatoshi; Yasuda, Tetsuya; Kugimiya, Soichi; Ozawa, Rika; Toyohara, Haruhiko; Takabayashi, Junji; Miyoshi, Hideto; Nishioka, Takaaki

    2008-09-01

    Male moths discriminate conspecific female-emitted sex pheromones. Although the chemical components of sex pheromones have been identified in more than 500 moth species, only three components in Bombyx mori and Heliothis virescens have had their receptors identified. Here we report the identification of receptors for the main sex-pheromone components in three moth species, Plutella xylostella, Mythimna separata and Diaphania indica. We cloned putative sex-pheromone receptor genes PxOR1, MsOR1 and DiOR1 from P. xylostella, M. separata and D. indica, respectively. Each of the three genes was exclusively expressed with an Or83b orthologous gene in male olfactory receptor neurons (ORNs) that are surrounded by supporting cells expressing pheromone-binding-protein (PBP) genes. By two-electrode voltage-clamp recording, we tested the ligand specificity of Xenopus oocytes co-expressing PxOR1, MsOR1 or DiOR1 with an OR83b family protein. Among the seven sex-pheromone components of the three moth species, the oocytes dose-dependently responded only to the main sex-pheromone component of the corresponding moth species. In our study, PBPs were not essential for ligand specificity of the receptors. On the phylogenetic tree of insect olfactory receptors, the six sex-pheromone receptors identified in the present and previous studies are grouped in the same subfamily but have no relation with the taxonomy of moths. It is most likely that sex-pheromone receptors have randomly evolved from ancestral sex-pheromone receptors before the speciation of moths and that their ligand specificity was modified by mutations of local amino acid sequences after speciation.

  19. Regulatory Role of PBAN in Sex Pheromone Biosynthesis of Heliothine Moths

    PubMed Central

    Jurenka, Russell; Rafaeli, Ada

    2011-01-01

    Both males and females of heliothine moths utilize sex-pheromones during the mating process. Females produce and release a sex pheromone for the long–range attraction of males for mating. Production of sex pheromone in females is controlled by the peptide hormone (pheromone biosynthesis activating neuropeptide, PBAN). This review will highlight what is known about the role PBAN plays in controlling pheromone production in female moths. Male moths produce compounds associated with a hairpencil structure associated with the aedaegus that are used as short-range aphrodisiacs during the mating process. We will discuss the role that PBAN plays in regulating male production of hairpencil pheromones. PMID:22654810

  20. A reference gene set for sex pheromone biosynthesis and degradation genes from the diamondback moth, Plutella xylostella, based on genome and transcriptome digital gene expression analyses.

    PubMed

    He, Peng; Zhang, Yun-Fei; Hong, Duan-Yang; Wang, Jun; Wang, Xing-Liang; Zuo, Ling-Hua; Tang, Xian-Fu; Xu, Wei-Ming; He, Ming

    2017-03-01

    Female moths synthesize species-specific sex pheromone components and release them to attract male moths, which depend on precise sex pheromone chemosensory system to locate females. Two types of genes involved in the sex pheromone biosynthesis and degradation pathways play essential roles in this important moth behavior. To understand the function of genes in the sex pheromone pathway, this study investigated the genome-wide and digital gene expression of sex pheromone biosynthesis and degradation genes in various adult tissues in the diamondback moth (DBM), Plutella xylostella, which is a notorious vegetable pest worldwide. A massive transcriptome data (at least 39.04 Gb) was generated by sequencing 6 adult tissues including male antennae, female antennae, heads, legs, abdomen and female pheromone glands from DBM by using Illumina 4000 next-generation sequencing and mapping to a published DBM genome. Bioinformatics analysis yielded a total of 89,332 unigenes among which 87 transcripts were putatively related to seven gene families in the sex pheromone biosynthesis pathway. Among these, seven [two desaturases (DES), three fatty acyl-CoA reductases (FAR) one acetyltransferase (ACT) and one alcohol dehydrogenase (AD)] were mainly expressed in the pheromone glands with likely function in the three essential sex pheromone biosynthesis steps: desaturation, reduction, and esterification. We also identified 210 odorant-degradation related genes (including sex pheromone-degradation related genes) from seven major enzyme groups. Among these genes, 100 genes are new identified and two aldehyde oxidases (AOXs), one aldehyde dehydrogenase (ALDH), five carboxyl/cholinesterases (CCEs), five UDP-glycosyltransferases (UGTs), eight cytochrome P450 (CYP) and three glutathione S-transferases (GSTs) displayed more robust expression in the antennae, and thus are proposed to participate in the degradation of sex pheromone components and plant volatiles. To date, this is the most comprehensive gene data set of sex pheromone biosynthesis and degradation enzyme related genes in DBM created by genome- and transcriptome-wide identification, characterization and expression profiling. Our findings provide a basis to better understand the function of genes with tissue enriched expression. The results also provide information on the genes involved in sex pheromone biosynthesis and degradation, and may be useful to identify potential gene targets for pest control strategies by disrupting the insect-insect communication using pheromone-based behavioral antagonists.

  1. Cloning and functional characterization of a fatty acid transport protein (FATP) from the pheromone gland of a lichen moth, Eilema japonica, which secretes an alkenyl sex pheromone.

    PubMed

    Qian, Shuguang; Fujii, Takeshi; Ito, Katsuhiko; Nakano, Ryo; Ishikawa, Yukio

    2011-01-01

    Sex pheromones of moths are largely classified into two types based on the presence (Type I) or absence (Type II) of a terminal functional group. While Type-I sex pheromones are synthesized from common fatty acids in the pheromone gland (PG), Type-II sex pheromones are derived from hydrocarbons produced presumably in the oenocytes and transported to the PG via the hemolymph. Recently, a fatty acid transport protein (BmFATP) was identified from the PG of the silkworm Bombyx mori, which produces a Type-I sex pheromone (bombykol). BmFATP was shown to facilitate the uptake of extracellular fatty acids into PG cells for the synthesis of bombykol. To elucidate the presence and function of FATP in the PG of moths that produce Type-II sex pheromones, we explored fatp homologues expressed in the PG of a lichen moth, Eilema japonica, which secretes an alkenyl sex pheromone (Type II). A fatp homologue cloned from E. japonica (Ejfatp) was predominantly expressed in the PG, and its expression is upregulated shortly after eclosion. Functional expression of EjFATP in Escherichia coli enhanced the uptake of long chain fatty acids (C₁₈ and C₂₀), but not pheromone precursor hydrocarbons. To the best of our knowledge, this is the first report of the cloning and functional characterization of a FATP in the PG of a moth producing a Type-II sex pheromone. Although EjFATP is not likely to be involved in the uptake of pheromone precursors in E. japonica, the expression pattern of Ejfatp suggests a role for EjFATP in the PG not directly linked to pheromone biosynthesis. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Effects of Two Conventional Insecticides on Male-Specific Sex Pheromone Discrimination and Mate Choice in Trichogramma chilonis (Hymenoptera: Trichogrammatidae).

    PubMed

    Wang, Desen; Lü, Lihua; He, Yurong

    2017-04-01

    Trichogramma chilonis Ishii is an important natural enemy of many lepidopterous pests on vegetables and field crops. The effects of two conventional insecticides on male-specific sex pheromone discrimination and mate choice in T. chilonis was evaluated in the laboratory. Beta-cypermethrin LC20 exposure induced decreases in male conspecific sex pheromone discrimination and mating rate in T. chilonis, and these decreases were not due to the lower locomotor activity of the surviving T. chilonis males. Spinosad LC20 exposure caused a significant decrease in male locomotor activity of T. chilonis, but did not affect male-specific sex pheromone discrimination (conspecific sex pheromone discrimination or virgin sex pheromone discrimination) or mating rate. However, there was no significant difference in specific sex pheromone discrimination, mate choice, and locomotor activity between control males and males exposed to the low concentration (LC1) of insecticide (beta-cypermethrin or spinosad). In conclusion, beta-cypermethrin LC20 exposure was harmful to male-specific sex pheromone discrimination and mate choice in T. chilonis. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Sex Pheromone Evolution Is Associated with Differential Regulation of the Same Desaturase Gene in Two Genera of Leafroller Moths

    PubMed Central

    Albre, Jérôme; Liénard, Marjorie A.; Sirey, Tamara M.; Schmidt, Silvia; Tooman, Leah K.; Carraher, Colm; Greenwood, David R.; Löfstedt, Christer; Newcomb, Richard D.

    2012-01-01

    Chemical signals are prevalent in sexual communication systems. Mate recognition has been extensively studied within the Lepidoptera, where the production and recognition of species-specific sex pheromone signals are typically the defining character. While the specific blend of compounds that makes up the sex pheromones of many species has been characterized, the molecular mechanisms underpinning the evolution of pheromone-based mate recognition systems remain largely unknown. We have focused on two sets of sibling species within the leafroller moth genera Ctenopseustis and Planotortrix that have rapidly evolved the use of distinct sex pheromone blends. The compounds within these blends differ almost exclusively in the relative position of double bonds that are introduced by desaturase enzymes. Of the six desaturase orthologs isolated from all four species, functional analyses in yeast and gene expression in pheromone glands implicate three in pheromone biosynthesis, two Δ9-desaturases, and a Δ10-desaturase, while the remaining three desaturases include a Δ6-desaturase, a terminal desaturase, and a non-functional desaturase. Comparative quantitative real-time PCR reveals that the Δ10-desaturase is differentially expressed in the pheromone glands of the two sets of sibling species, consistent with differences in the pheromone blend in both species pairs. In the pheromone glands of species that utilize (Z)-8-tetradecenyl acetate as sex pheromone component (Ctenopseustis obliquana and Planotortrix octo), the expression levels of the Δ10-desaturase are significantly higher than in the pheromone glands of their respective sibling species (C. herana and P. excessana). Our results demonstrate that interspecific sex pheromone differences are associated with differential regulation of the same desaturase gene in two genera of moths. We suggest that differential gene regulation among members of a multigene family may be an important mechanism of molecular innovation in sex pheromone evolution and speciation. PMID:22291612

  4. Chemosensory Gene Families in Ectropis grisescens and Candidates for Detection of Type-II Sex Pheromones.

    PubMed

    Li, Zhao-Qun; Luo, Zong-Xiu; Cai, Xiao-Ming; Bian, Lei; Xin, Zhao-Jun; Liu, Yan; Chu, Bo; Chen, Zong-Mao

    2017-01-01

    Tea grey geometrid ( Ectropis grisescens ), a devastating chewing pest in tea plantations throughout China, produces Type-II pheromone components. Little is known about the genes encoding proteins involved in the perception of Type-II sex pheromone components. To investigate the olfaction genes involved in E . grisescens sex pheromones and plant volatiles perception, we sequenced female and male antennae transcriptomes of E . grisescens . After assembly and annotation, we identified 153 candidate chemoreception genes in E. grisescens , including 40 odorant-binding proteins (OBPs), 30 chemosensory proteins (CSPs), 59 odorant receptors (ORs), and 24 ionotropic receptors (IRs). The results of phylogenetic, qPCR, and mRNA abundance analyses suggested that three candidate pheromone-binding proteins (EgriOBP2, 3, and 25), two candidate general odorant-binding proteins (EgriOBP1 and 29), six pheromone receptors (EgriOR24, 25, 28, 31, 37, and 44), and EgriCSP8 may be involved in the detection of Type-II sex pheromone components. Functional investigation by heterologous expression in Xenopus oocytes revealed that EgriOR31 was robustly tuned to the E . grisescens sex pheromone component (Z,Z,Z)-3,6,9-octadecatriene and weakly to the other sex pheromone component (Z,Z)-3,9-6,7-epoxyoctadecadiene. Our results represent a systematic functional analysis of the molecular mechanism of olfaction perception in E . grisescens with an emphasis on gene encoding proteins involved in perception of Type-II sex pheromones, and provide information that will be relevant to other Lepidoptera species.

  5. Sex pheromone recognition and characterization of three pheromone-binding proteins in the legume pod borer, Maruca vitrata Fabricius (Lepidoptera: Crambidae)

    PubMed Central

    Mao, Aping; Zhou, Jing; Bin Mao; Zheng, Ya; Wang, Yufeng; Li, Daiqin; Wang, Pan; Liu, Kaiyu; Wang, Xiaoping; Ai, Hui

    2016-01-01

    Pheromone-binding proteins (PBPs) are essential for the filtering, binding and transporting of sex pheromones across sensillum lymph to membrane-associated pheromone receptors of moths. In this study, three novel PBP genes were expressed in Escherichia coli to examine their involvement in the sex pheromone perception of Maruca vitrata. Fluorescence binding experiments indicated that MvitPBP1-3 had strong binding affinities with four sex pheromones. Moreover, molecular docking results demonstrated that six amino acid residues of three MvitPBPs were involved in the binding of the sex pheromones. These results suggested that MvitPBP1-3 might play critical roles in the perception of female sex pheromones. Additionally, the binding capacity of MvitPBP3 with the host-plant floral volatiles was high and was similar to that of MvitGOBP2. Furthermore, sequence alignment and docking analysis showed that both MvitGOBP2 and MvitPBP3 possessed an identical key binding site (arginine, R130/R140) and a similar protein pocket structure around the binding cavity. Therefore, we hypothesized that MvitPBP3 and MvitGOBP2 might have synergistic roles in binding different volatile ligands. In combination, the use of synthetic sex pheromones and floral volatiles from host-plant may be used in the exploration for more efficient monitoring and integrated management strategies for the legume pod borer in the field. PMID:27698435

  6. Chemosensory Gene Families in Ectropis grisescens and Candidates for Detection of Type-II Sex Pheromones

    PubMed Central

    Li, Zhao-Qun; Luo, Zong-Xiu; Cai, Xiao-Ming; Bian, Lei; Xin, Zhao-Jun; Liu, Yan; Chu, Bo; Chen, Zong-Mao

    2017-01-01

    Tea grey geometrid (Ectropis grisescens), a devastating chewing pest in tea plantations throughout China, produces Type-II pheromone components. Little is known about the genes encoding proteins involved in the perception of Type-II sex pheromone components. To investigate the olfaction genes involved in E. grisescens sex pheromones and plant volatiles perception, we sequenced female and male antennae transcriptomes of E. grisescens. After assembly and annotation, we identified 153 candidate chemoreception genes in E. grisescens, including 40 odorant-binding proteins (OBPs), 30 chemosensory proteins (CSPs), 59 odorant receptors (ORs), and 24 ionotropic receptors (IRs). The results of phylogenetic, qPCR, and mRNA abundance analyses suggested that three candidate pheromone-binding proteins (EgriOBP2, 3, and 25), two candidate general odorant-binding proteins (EgriOBP1 and 29), six pheromone receptors (EgriOR24, 25, 28, 31, 37, and 44), and EgriCSP8 may be involved in the detection of Type-II sex pheromone components. Functional investigation by heterologous expression in Xenopus oocytes revealed that EgriOR31 was robustly tuned to the E. grisescens sex pheromone component (Z,Z,Z)-3,6,9-octadecatriene and weakly to the other sex pheromone component (Z,Z)-3,9-6,7-epoxyoctadecadiene. Our results represent a systematic functional analysis of the molecular mechanism of olfaction perception in E. grisescens with an emphasis on gene encoding proteins involved in perception of Type-II sex pheromones, and provide information that will be relevant to other Lepidoptera species. PMID:29209233

  7. Chemical communication in termites: syn-4,6-dimethylundecan-1-ol as trail-following pheromone, syn-4,6-dimethylundecanal and (5E)-2,6,10-trimethylundeca-5,9-dienal as the respective male and female sex pheromones in Hodotermopsis sjoestedti (Isoptera, Archotermopsidae).

    PubMed

    Lacey, Michael J; Sémon, Etienne; Krasulová, Jana; Sillam-Dussès, David; Robert, Alain; Cornette, Richard; Hoskovec, Michal; Záček, Petr; Valterová, Irena; Bordereau, Christian

    2011-12-01

    The trail-following pheromone and sex pheromones were investigated in the Indomalayan termite Hodotermopsis sjoestedti belonging to the new family Archotermopsidae. Gas chromatography coupled to mass spectrometry (GC-MS) after solid phase microextraction (SPME) of the sternal gland secretion of pseudergates and trail-following bioassays demonstrated that the trail-following pheromone of H. sjoestedti was syn-4,6-dimethylundecan-1-ol, a new chemical structure for termite pheromones. GC-MS after SPME of the sternal gland secretion of alates also allowed the identification of sex-specific compounds. In female alates, the major sex-specific compound was identified as (5E)-2,6,10-trimethylundeca-5,9-dienal, a compound previously identified as the female sex pheromone of the termite Zootermopsis nevadensis. In male alates, the major sex-specific compound was identified as syn-4,6-dimethylundecanal, a homolog of syn-4,6-dimethyldodecanal, which has previously been confirmed as the male sex pheromone of Z. nevadensis. The presence of sex-specific compounds in alates of H. sjoestedti strongly suggests for this termite the presence of sex-specific pairing pheromones which were only known until now in Z. nevadensis. Our results showed therefore a close chemical relationship between the pheromones of the taxa Hodotermopsis and Zootermopsis and, in contrast, a clear difference with the taxa Stolotermes and Porotermes, which is in total agreement with the recent creation of the families Archotermopsidae and Stolotermitidae as a substitute for the former family Termopsidae. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Putative pathway of sex pheromone biosynthesis and degradation by expression patterns of genes identified from female pheromone gland and adult antenna of Sesamia inferens (Walker).

    PubMed

    Zhang, Ya-Nan; Xia, Yi-Han; Zhu, Jia-Yao; Li, Sheng-Yun; Dong, Shuang-Lin

    2014-05-01

    The general pathway of biosynthesis and degradation for Type-I sex pheromones in moths is well established, but some genes involved in this pathway remain to be characterized. The purple stem borer, Sesamia inferens, employs a pheromone blend containing components with three different terminal functional groups (Z11-16:OAc, Z11-16:OH, and Z11-16:Ald) of Type-I sex pheromones. Thus, it provides a good model to study the diversity of genes involved in pheromone biosynthesis and degradation pathways. By analyzing previously obtained transcriptomic data of the sex pheromone glands and antennae, we identified 73 novel genes that are possibly related to pheromone biosynthesis (46 genes) or degradation (27 genes). Gene expression patterns and phylogenetic analysis revealed that one desaturase (SinfDes4), one fatty acid reductase (SinfFAR2), and one fatty acid xtransport protein (SinfFATP1) genes were predominantly expressed in pheromone glands, and clustered with genes involved in pheromone synthesis in other moth species. Ten genes including five carboxylesterases (SinfCXE10, 13, 14, 18, and 20), three aldehyde oxidases (SinfAOX1, 2 and 3), and two alcohol dehydrogenases (SinfAD1 and 3) were expressed specifically or predominantly in antennae, and could be candidate genes involved in pheromone degradation. SinfAD1 and 3 are the first reported alcohol dehydrogenase genes with antennae-biased expression. Based on these results we propose a pathway involving these potential enzyme-encoding gene candidates in sex pheromone biosynthesis and degradation in S. inferens. This study provides robust background information for further elucidation of the genetic basis of sex pheromone biosynthesis and degradation, and ultimately provides potential targets to disrupt sexual communication in S. inferens for control purposes.

  9. A Single Sex Pheromone Receptor Determines Chemical Response Specificity of Sexual Behavior in the Silkmoth Bombyx mori

    PubMed Central

    Sakurai, Takeshi; Mitsuno, Hidefumi; Haupt, Stephan Shuichi; Uchino, Keiro; Yokohari, Fumio; Nishioka, Takaaki; Kobayashi, Isao; Sezutsu, Hideki; Tamura, Toshiki; Kanzaki, Ryohei

    2011-01-01

    In insects and other animals, intraspecific communication between individuals of the opposite sex is mediated in part by chemical signals called sex pheromones. In most moth species, male moths rely heavily on species-specific sex pheromones emitted by female moths to identify and orient towards an appropriate mating partner among a large number of sympatric insect species. The silkmoth, Bombyx mori, utilizes the simplest possible pheromone system, in which a single pheromone component, (E, Z)-10,12-hexadecadienol (bombykol), is sufficient to elicit full sexual behavior. We have previously shown that the sex pheromone receptor BmOR1 mediates specific detection of bombykol in the antennae of male silkmoths. However, it is unclear whether the sex pheromone receptor is the minimally sufficient determination factor that triggers initiation of orientation behavior towards a potential mate. Using transgenic silkmoths expressing the sex pheromone receptor PxOR1 of the diamondback moth Plutella xylostella in BmOR1-expressing neurons, we show that the selectivity of the sex pheromone receptor determines the chemical response specificity of sexual behavior in the silkmoth. Bombykol receptor neurons expressing PxOR1 responded to its specific ligand, (Z)-11-hexadecenal (Z11-16:Ald), in a dose-dependent manner. Male moths expressing PxOR1 exhibited typical pheromone orientation behavior and copulation attempts in response to Z11-16:Ald and to females of P. xylostella. Transformation of the bombykol receptor neurons had no effect on their projections in the antennal lobe. These results indicate that activation of bombykol receptor neurons alone is sufficient to trigger full sexual behavior. Thus, a single gene defines behavioral selectivity in sex pheromone communication in the silkmoth. Our findings show that a single molecular determinant can not only function as a modulator of behavior but also as an all-or-nothing initiator of a complex species-specific behavioral sequence. PMID:21738481

  10. A single sex pheromone receptor determines chemical response specificity of sexual behavior in the silkmoth Bombyx mori.

    PubMed

    Sakurai, Takeshi; Mitsuno, Hidefumi; Haupt, Stephan Shuichi; Uchino, Keiro; Yokohari, Fumio; Nishioka, Takaaki; Kobayashi, Isao; Sezutsu, Hideki; Tamura, Toshiki; Kanzaki, Ryohei

    2011-06-01

    In insects and other animals, intraspecific communication between individuals of the opposite sex is mediated in part by chemical signals called sex pheromones. In most moth species, male moths rely heavily on species-specific sex pheromones emitted by female moths to identify and orient towards an appropriate mating partner among a large number of sympatric insect species. The silkmoth, Bombyx mori, utilizes the simplest possible pheromone system, in which a single pheromone component, (E, Z)-10,12-hexadecadienol (bombykol), is sufficient to elicit full sexual behavior. We have previously shown that the sex pheromone receptor BmOR1 mediates specific detection of bombykol in the antennae of male silkmoths. However, it is unclear whether the sex pheromone receptor is the minimally sufficient determination factor that triggers initiation of orientation behavior towards a potential mate. Using transgenic silkmoths expressing the sex pheromone receptor PxOR1 of the diamondback moth Plutella xylostella in BmOR1-expressing neurons, we show that the selectivity of the sex pheromone receptor determines the chemical response specificity of sexual behavior in the silkmoth. Bombykol receptor neurons expressing PxOR1 responded to its specific ligand, (Z)-11-hexadecenal (Z11-16:Ald), in a dose-dependent manner. Male moths expressing PxOR1 exhibited typical pheromone orientation behavior and copulation attempts in response to Z11-16:Ald and to females of P. xylostella. Transformation of the bombykol receptor neurons had no effect on their projections in the antennal lobe. These results indicate that activation of bombykol receptor neurons alone is sufficient to trigger full sexual behavior. Thus, a single gene defines behavioral selectivity in sex pheromone communication in the silkmoth. Our findings show that a single molecular determinant can not only function as a modulator of behavior but also as an all-or-nothing initiator of a complex species-specific behavioral sequence.

  11. Short-chain alkanes synergise responses of moth pests to their sex pheromones.

    PubMed

    Gurba, Alexandre; Guerin, Patrick M

    2016-05-01

    The use of sex pheromones for mating disruption of moth pests of crops is increasing worldwide. Efforts are under way to augment the efficiency and reliability of this control method by adding molecules derived from host plants to the sex attractants in dispensers. We show how attraction of the European grapevine moth, Lobesia botrana Den. & Schiff., and the codling moth, Cydia pomonella L., males to underdosed levels of their sex pheromones is increased by adding heptane or octane over a range of release rates. Pheromone-alkane mixtures enhance male recruitment by up to 30%, reaching levels induced by calling females, and shorten the flight time to the sex attractant by a factor of 2. The findings show the promise of using short-chain alkanes as pheromone synergists for mating disruption of insect pests of food crops. Alkane-pheromone combinations are expected to increase the competitiveness of dispensers with females, and to reduce the amount of pheromone needed for the control of these pests. © 2015 Society of Chemical Industry.

  12. Pheromone Autodetection: Evidence and Implications

    PubMed Central

    Holdcraft, Robert; Rodriguez-Saona, Cesar; Stelinski, Lukasz L.

    2016-01-01

    Olfactory communication research with insects utilizing sex pheromones has focused on the effects of pheromones on signal receivers. Early pheromone detection studies using the silkworm moth, Bombyx mori L., and Saturniids led to the assumption that emitters, especially females, are unable to detect their own pheromone. Pheromone anosmia, i.e., the inability of females to detect their conspecific sex pheromone, was often assumed, and initially little attention was paid to female behaviors that may result from autodetection, i.e., the ability of females to detect their sex pheromone. Detection of conspecific pheromone plumes from nearby females may provide information to improve chances of mating success and progeny survival. Since the first documented example in 1972, numerous occurrences of autodetection have been observed and verified in field and laboratory studies. We summarize here a significant portion of research relating to autodetection. Electrophysiological and behavioral investigations, as well as expression patterns of proteins involved in pheromone autodetection are included. We discuss problems inherent in defining a boundary between sex and aggregation pheromones considering the occurrence of autodetection, and summarize hypothesized selection pressures favoring autodetection. Importance of including autodetection studies in future work is emphasized by complications arising from a lack of knowledge combined with expanding the use of pheromones in agriculture. PMID:27120623

  13. A Background of a Volatile Plant Compound Alters Neural and Behavioral Responses to the Sex Pheromone Blend in a Moth.

    PubMed

    Dupuy, Fabienne; Rouyar, Angéla; Deisig, Nina; Bourgeois, Thomas; Limousin, Denis; Wycke, Marie-Anne; Anton, Sylvia; Renou, Michel

    2017-01-01

    Recognition of intra-specific olfactory signals within a complex environment of plant-related volatiles is crucial for reproduction in male moths. Sex pheromone information is detected by specific olfactory receptor neurons (Phe-ORNs), highly abundant on the male antenna. The information is then transmitted to the pheromone processing macroglomerular complex (MGC) within the primary olfactory center, the antennal lobe, where it is processed by local interneurons and projection neurons. Ultimately a behavioral response, orientation toward the pheromone source, is elicited. Volatile plant compounds (VPCs) are detected by other functional types of olfactory receptor neurons (ORNs) projecting in another area of the antennal lobe. However, Phe-ORNs also respond to some VPCs. Female-produced sex pheromones are emitted within a rich environment of VPCs, some of which have been shown to interfere with the detection and processing of sex pheromone information. As interference between the different odor sources might depend on the spatial and temporal features of the two types of stimuli, we investigated here behavioral and neuronal responses to a brief sex pheromone blend pulse in a VPC background as compared to a control background in the male noctuid moth Agrotis ipsilon . We observed male orientation behavior in a wind tunnel and recorded responses of Phe-ORNs and MGC neurons to a brief sex pheromone pulse within a background of individual VPCs. We also recorded the global input signal to the MGC using in vivo calcium imaging with the same stimulation protocol. We found that VPCs eliciting a response in Phe-ORNs and MGC neurons masked responses to the pheromone and decreased the contrast between background odor and the sex pheromone at both levels, whereas α-pinene did not interfere with first order processing. The calcium signal produced in response to a VPC background was tonic, lasting longer than the VPC stimulus duration, and masked entirely the pheromone response. One percent heptanal and linalool, in addition to the masking effect, caused a clear delay in responses of MGC neurons to the sex pheromone. Upwind flight toward the pheromone in a wind tunnel was also delayed but otherwise not altered by different doses of heptanal.

  14. Identification and Expression Profiles of Sex Pheromone Biosynthesis and Transport Related Genes in Spodoptera litura

    PubMed Central

    Zhang, Ya-Nan; Zhu, Xiu-Yun; Fang, Li-Ping; He, Peng; Wang, Zhi-Qiang; Chen, Geng; Sun, Liang; Ye, Zhan-Feng; Deng, Dao-Gui; Li, Jin-Bu

    2015-01-01

    Although the general pathway of sex pheromone synthesis in moth species has been established, the molecular mechanisms remain poorly understood. The common cutworm Spodoptera litura is an important agricultural pest worldwide and causes huge economic losses annually. The female sex pheromone of S. litura comprises Z9,E11-14:OAc, Z9,E12-14:OAc, Z9-14:OAc, and E11-14:OAc. By sequencing and analyzing the transcriptomic data of the sex pheromone glands, we identified 94 candidate genes related to pheromone biosynthesis (55 genes) or chemoreception (39 genes). Gene expression patterns and phylogenetic analysis revealed that two desaturase genes (SlitDes5 and SlitDes11) and one fatty acyl reductase gene (SlitFAR3) showed pheromone gland (PG) biased or specific expression, and clustered with genes known to be involved in pheromone synthesis in other moth species. Furthermore, 4 chemoreception related genes (SlitOBP6, SlitOBP11, SlitCSP3, and SlitCSP14) also showed higher expression in the PG, and could be additional candidate genes involved in sex pheromone transport. This study provides the first solid background information that should facilitate further elucidation of sex pheromone biosynthesis and transport, and indicates potential targets to disrupt sexual communication in S. litura for a novel pest management strategy. PMID:26445454

  15. 2,3-Hexanediols as Sex Attractants and a Female-produced Sex Pheromone for Cerambycid Beetles in the Prionine Genus Tragosoma

    PubMed Central

    Barbour, James D.; McElfresh, J. Steven; Moreira, Jardel A.; Swift, Ian; Wright, Ian M.; Žunič, Alenka; Mitchell, Robert F.; Graham, Elizabeth E.; Alten, Ronald L.; Millar, Jocelyn G.; Hanks, Lawrence M.

    2013-01-01

    Recent work suggests that closely related cerambycid species often share pheromone components, or even produce pheromone blends of identical composition. However, little is known of the pheromones of species in the subfamily Prioninae. During field bioassays in California, males of three species in the prionine genus Tragosoma were attracted to 2,3-hexanediols, common components of male-produced aggregation pheromones of beetles in the subfamily Cerambycinae. We report here that the female-produced sex pheromone of Tragosoma depsarium “sp. nov. Laplante” is (2R,3R)-2,3-hex-anediol, and provide evidence from field bioassays and electro-antennography that the female-produced pheromone of both Tragosoma pilosicorne Casey and T depsarium “harrisi” LeConte may be (2S,3R)-2,3-hexanediol. Sexual dimorphism in the sculpting of the prothorax suggests that the pheromone glands are located in the prothorax of females. This is the second sex attractant pheromone structure identified from the subfamily Prioninae, and our results provide further evidence of pheromonal parsimony within the Cerambycidae, in this case extending across both subfamily and gender lines. PMID:22923142

  16. The joy of sex pheromones

    PubMed Central

    Gomez-Diaz, Carolina; Benton, Richard

    2013-01-01

    Sex pheromones provide an important means of communication to unite individuals for successful reproduction. Although sex pheromones are highly diverse across animals, these signals fulfil common fundamental roles in enabling identification of a mating partner of the opposite sex, the appropriate species and of optimal fecundity. In this review, we synthesize both classic and recent investigations on sex pheromones in a range of species, spanning nematode worms, insects and mammals. These studies reveal comparable strategies in how these chemical signals are produced, detected and processed in the brain to regulate sexual behaviours. Elucidation of sex pheromone communication mechanisms both defines outstanding models to understand the molecular and neuronal basis of chemosensory behaviours, and reveals how similar evolutionary selection pressures yield convergent solutions in distinct animal nervous systems. EMBO reports advance online publication 13 September 2013; doi:10.1038/embor.2013.140 PMID:24030282

  17. With or without pheromone habituation: possible differences between insect orders?

    PubMed

    Suckling, David Maxwell; Stringer, Lloyd D; Jiménez-Pérez, Alfredo; Walter, Gimme H; Sullivan, Nicola; El-Sayed, Ashraf M

    2018-06-01

    Habituation to sex pheromones is one of the key mechanisms in mating disruption, an insect control tactic. Male moths often show reduced sexual response after pre-exposure to female sex pheromone. Mating disruption is relatively rare in insect orders other than Lepidoptera. As a positive control we confirmed habituation in a moth (Epiphyas postvittana) using 24 h pre-exposure to sex pheromone to reduce subsequent activation behaviour. We then tested the impact of pre-exposure to sex or trail pheromone on subsequent behavioural response with insects from three other orders. Similar pre-exposure for 24 h to either sex pheromone [Pseudococcus calceolariae (Homoptera) and apple leaf curling midge Dasineura mali (Diptera), or trail pheromone of Argentine ants (Linepithema humile (Hymenoptera)], followed by behavioural assay in clean air provided no evidence of habituation after pre-exposure in these latter cases. The moths alone were affected by pre-exposure to pheromone. For pests without habituation, sustained attraction to a point source may make lure and kill more economical. Improved knowledge of behavioural processes should lead to better success in pest management and mechanisms should be investigated further to inform studies and practical efforts generally enhancing effectiveness of pheromone-based management. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  18. Chiral discrimination of the Japanese beetle sex pheromone and a behavioral antagonist by a pheromone-degrading enzyme.

    PubMed

    Ishida, Yuko; Leal, Walter S

    2008-07-01

    The sophistication of the insect olfactory system is elegantly demonstrated by the reception of sex pheromone by the Japanese beetle. In this insect, two olfactory receptor neurons housed in antennal sensilla placodea are highly sensitive. One neuron specifically detects the sex pheromone produced by conspecific females (R,Z)-5-(-)-(1-decenyl)oxacyclopentan-2-one [(R)-japonilure]. The other neuron is tuned to (S)-japonilure, a sex pheromone from a closely related species and a behavioral antagonist for the Japanese beetle. These chemical signals are enzymatically terminated by antennal esterases that open the lactone rings to form physiologically inactive hydroxyacids. We have isolated a pheromone-degrading enzyme, PjapPDE, from >100,000 antennae of the Japanese beetle. PjapPDE was demonstrated to be expressed only in the antennal tissues housing the pheromone-detecting sensilla placodea. Baculovirus expression generated recombinant PjapPDE with likely the same posttranslational modifications as the native enzyme. Kinetic studies with pure native and recombinant PjapPDE showed a clear substrate preference, with an estimated half-life in vivo for the sex pheromone and a behavioral antagonist of approximately 30 and approximately 90 ms, respectively.

  19. Single mutation to a sex pheromone receptor provides adaptive specificity between closely related moth species

    PubMed Central

    Leary, Greg P.; Allen, Jean E.; Bunger, Peggy L.; Luginbill, Jena B.; Linn, Charles E.; Macallister, Irene E.; Kavanaugh, Michael P.; Wanner, Kevin W.

    2012-01-01

    Sex pheromone communication, acting as a prezygotic barrier to mating, is believed to have contributed to the speciation of moths and butterflies in the order Lepidoptera. Five decades after the discovery of the first moth sex pheromone, little is known about the molecular mechanisms that underlie the evolution of pheromone communication between closely related species. Although Asian and European corn borers (ACB and ECB) can be interbred in the laboratory, they are behaviorally isolated from mating naturally by their responses to subtly different sex pheromone isomers, (E)-12- and (Z)-12-tetradecenyl acetate and (E)-11- and (Z)-11-tetradecenyl acetate (ACB: E12, Z12; ECB; E11, Z11). Male moth olfactory systems respond specifically to the pheromone blend produced by their conspecific females. In vitro, ECB(Z) odorant receptor 3 (OR3), a sex pheromone receptor expressed in male antennae, responds strongly to E11 but also generally to the Z11, E12, and Z12 pheromones. In contrast, we show that ACB OR3, a gene that has been subjected to positive selection (ω = 2.9), responds preferentially to the ACB E12 and Z12 pheromones. In Ostrinia species the amino acid residue corresponding to position 148 in transmembrane domain 3 of OR3 is alanine (A), except for ACB OR3 that has a threonine (T) in this position. Mutation of this residue from A to T alters the pheromone recognition pattern by selectively reducing the E11 response ∼14-fold. These results suggest that discrete mutations that narrow the specificity of more broadly responsive sex pheromone receptors may provide a mechanism that contributes to speciation. PMID:22891317

  20. Sex pheromones of the southern armyworm moth: isolation, identification, and synthesis.

    PubMed

    Jacobson, M; Redfern, R E; Jones, W A; Aldridge, M H

    1970-10-30

    Two sex pheromones have been isolated from the female southern armyworm moth, Prodenia eridania (Cramer), and identified as cis-9-tetradecen-1-ol acetate, identical with the sex pheromone of the fall armyworm moth, Spodoptera frugiperda (J. E. Smith), and cis-9,trans-12-tetradecadien-1-ol acetate.

  1. Synthetic pheromones disrupt male Dioryctria spp. moths in a loblolly pine seed orchard

    Treesearch

    Gary L. DeBarr; James L. Hanula; Christine G. Niwa; John C Nord

    2000-01-01

    Synthetic sex pheromones released in a loblolly pine, Pinus taeda L. (Pinaceae), seed orchard interfered with the ability of male coneworm moths, Dioryctria Zeller spp. (Lepidoptera: Pyralidae), to locate traps baited with sex pheromones or live females. Pherocon 1 C® traps baited with synthetic pheromones or live conspecific...

  2. Structural differences in the drone olfactory system of two phylogenetically distant Apis species, A. florea and A. mellifera

    NASA Astrophysics Data System (ADS)

    Brockmann, Axel; Brückner, Dorothea

    2001-01-01

    Male insects that are attracted by sex pheromones to find their female mates over long distances have specialized olfactory subsystems. Morphologically, these subsystems are characterized by a large number of receptor neurons sensitive to components of the female's pheromones and hypertrophied glomerular subunits ('macroglomeruli' or 'macroglomerular complexes') in the antennal lobes, in which the axons of the receptor neurons converge. The olfactory subsystems are adapted for an increased sensitivity to perceive minute amounts of pheromones. In Apis mellifera, drones have 18,600 olfactory poreplate sensilla per antenna, each equipped with receptor neurons sensitive to the queen's sex pheromone, and four voluminous macroglomeruli (MG1-MG4) in the antennal lobes. In contrast, we show that drones of the phylogenetically distant species, Apis florea, have only 1,200 poreplate sensilla per antenna and only two macroglomeruli in their antennal lobes. These macroglomeruli are homologous in anatomical position to the two most prominent macroglomeruli in A. mellifera, the MG1 and MG2, but they are much smaller in size. The morphological and anatomical differences described here suggest major modifications in the sex-pheromone processing subsystem of both species: (1) less pheromone sensitivity in A. florea and (2) a more complex sex-pheromone processing and thus a more complex sex-pheromone communication in A. mellifera.

  3. A male-specific odorant receptor conserved through the evolution of sex pheromones in Ostrinia moth species

    PubMed Central

    Miura, Nami; Nakagawa, Tatsuro; Tatsuki, Sadahiro; Touhara, Kazushige; Ishikawa, Yukio

    2009-01-01

    In many moths, mate-finding communication is mediated by the female sex pheromones. Since differentiation of sex pheromones is often associated with speciation, it is intriguing to know how the changes in female sex pheromone have been tracked by the pheromone recognition system of the males. A male-specific odorant receptor was found to have been conserved through the evolution of sex pheromone communication systems in the genus Ostrinia (Lepidoptera: Crambidae). In an effort to characterize pheromone receptors of O. scapulalis, which uses a mixture of (E)-11- and (Z)-11-tetradecenyl acetates as a sex pheromone, we cloned a gene (OscaOR1) encoding a male-specific odorant receptor. In addition, we cloned a gene of the Or83b family (OscaOR2). Functional assays using Xenopus oocytes co-expressing OscaOR1 and OscaOR2 have shown that OscaOR1 is, unexpectedly, a receptor of (E)-11-tetradecenol (E11-14:OH), a single pheromone component of a congener O. latipennis. Subsequent studies on O. latipennis showed that this species indeed has a gene orthologous to OscaOR1 (OlatOR1), a functional assay of which confirmed it to be a gene encoding the receptor of E11-14:OH. Furthermore, investigations of six other Ostrinia species have revealed that all of them have a gene orthologous to OscaOR1, although none of these species, except O. ovalipennis, a species most closely related to O. latipennis, uses E11-14:OH as the pheromone component. The present findings suggest that the male-specific receptor of E11-14:OH was acquired before the divergence of the genus Ostrinia, and functionally retained through the evolution of this genus. PMID:19421342

  4. Sex Pheromone of the Almond Moth and the Indian Meal Moth: cis-9, trans-12-Tetradecadienyl Acetate.

    PubMed

    Kuwahara, Y; Kitamura, C; Takashi, S; Hara, H; Ishii, S; Fukami, H

    1971-02-26

    Female moths of different species but belonging to the same subfamily produce an identical compound as their sex pheromone. The sex pheromone of the almond moth, Cadra cautella (Walker), and the Indian meal moth, Plodia interpunctella (Hübner), has been isolated and identified as cis-9, trans-12-tetradecadienyl acetate.

  5. Pheromone Binding Protein EhipPBP1 Is Highly Enriched in the Male Antennae of the Seabuckthorn Carpenterworm and Is Binding to Sex Pheromone Components

    PubMed Central

    Hu, Ping; Gao, Chenglong; Zong, Shixiang; Luo, Youqing; Tao, Jing

    2018-01-01

    The seabuckthorn carpenterworm moth Eogystia hippophaecolus is a major threat to seabuckthorn plantations, causing considerable ecological and economic losses in China. Transcriptomic analysis of E. hippophaecolus previously identified 137 olfactory proteins, including three pheromone-binding proteins (PBPs). We investigated the function of E. hippophaecolus PBP1 by studying its mRNA and protein expression profiles and its binding ability with different compounds. The highest levels of expression were in the antennae, particularly in males, with much lower levels of expression in the legs and external genitals. Recombinant PBP1 showed strong binding to sex-pheromone components, suggesting that antennal EhipPBP1 is involved in binding sex-pheromone components during pheromone communication. PMID:29755369

  6. The effects of mating status and time since mating on female sex pheromone levels in the rice leaf bug, Trigonotylus caelestialium

    NASA Astrophysics Data System (ADS)

    Yamane, Takashi; Yasuda, Tetsuya

    2014-02-01

    Although mating status affects future mating opportunities, the biochemical changes that occur in response to mating are not well understood. This study investigated the effects of mating status on the quantities of sex pheromone components found in whole-body extracts and volatile emissions of females of the rice leaf bug, Trigonotylus caelestialium. When sampled at one of four time points within a 4-day postmating period, females that had copulated with a male had greater whole-body quantities of sex pheromone components than those of virgin females sampled at the same times. The quantities of sex pheromone components emitted by virgin females over a 24-h period were initially high but then steadily decreased, whereas 24-h emissions were persistently low among mated females when measured at three time points within the 4 days after mating. As a result, soon after mating, the mated females emitted less sex pheromones than virgin females, but there were no significant differences between mated and virgin females at the end of the experiment. Thus, postmating reduction in the rate of emission of sex pheromones could explain previously observed changes in female attractiveness to male T. caelestialium.

  7. European corn borer sex pheromone : Inhibition and elicitation of behavioral response by analogs.

    PubMed

    Schwarz, M; Klun, J A; Uebel, E C

    1990-05-01

    The male sexual behavior-stimulating and inhibiting properties of a series of analogs of the European corn borer sex pheromone were determined in a flight tunnel. The structural requirements for inhibition of pheromonal response were far less restrictive than those for elicitation of that response. Analogs that by themselves elicited upwind flight response from males at a low dose were generally less inhibitory to male response than many of the analogs that had no pheromonal activity. These findings suggest that many pheromone analogs bind to pheromone receptors without provoking behavioral response and possibly undergo slower degradation on the antenna than pheromonally active compounds. The disparity of response to analogs by two pheromonal types of the European corn borer indicates that the pheromone receptor and pheromone catabolic systems are biochemically very different in the two types.

  8. Moth Sex Pheromone Receptors and Deceitful Parapheromones

    PubMed Central

    Xu, Pingxi; Garczynski, Stephen F.; Atungulu, Elizabeth; Syed, Zainulabeuddin; Choo, Young-Moo; Vidal, Diogo M.; Zitelli, Caio H. L.; Leal, Walter S.

    2012-01-01

    The insect's olfactory system is so selective that male moths, for example, can discriminate female-produced sex pheromones from compounds with minimal structural modifications. Yet, there is an exception for this “lock-and-key” tight selectivity. Formate analogs can be used as replacement for less chemically stable, long-chain aldehyde pheromones, because male moths respond physiologically and behaviorally to these parapheromones. However, it remained hitherto unknown how formate analogs interact with aldehyde-sensitive odorant receptors (ORs). Neuronal responses to semiochemicals were investigated with single sensillum recordings. Odorant receptors (ORs) were cloned using degenerate primers, and tested with the Xenopus oocyte expression system. Quality, relative quantity, and purity of samples were evaluated by gas chromatography and gas chromatography-mass spectrometry. We identified olfactory receptor neurons (ORNs) housed in trichoid sensilla on the antennae of male navel orangeworm that responded equally to the main constituent of the sex pheromone, (11Z,13Z)-hexadecadienal (Z11Z13-16Ald), and its formate analog, (9Z,11Z)-tetradecen-1-yl formate (Z9Z11-14OFor). We cloned an odorant receptor co-receptor (Orco) and aldehyde-sensitive ORs from the navel orangeworm, one of which (AtraOR1) was expressed specifically in male antennae. AtraOR1•AtraOrco-expressing oocytes responded mainly to Z11Z13-16Ald, with moderate sensitivity to another component of the sex pheromone, (11Z,13Z)-hexadecadien-1-ol. Surprisingly, this receptor was more sensitive to the related formate than to the natural sex pheromone. A pheromone receptor from Heliothis virescens, HR13 ( = HvirOR13) showed a similar profile, with stronger responses elicited by a formate analog than to the natural sex pheromone, (11Z)-hexadecenal thus suggesting this might be a common feature of moth pheromone receptors. PMID:22911835

  9. Sex-pairing pheromone in the Asian termite pest species Odontotermes formosanus.

    PubMed

    Wen, Ping; Ji, Bao-Zhong; Liu, Shu-Wen; Liu, Cong; Sillam-Dussès, David

    2012-05-01

    The sex-pairing pheromone of the black winged subterranean termite, Odontotermes formosanus (Shiraki) (Isoptera, Termitidae), was investigated using headspace-SPME, GC-MS, GC-EAD, and attraction bioassays. Females secrete the pheromone from their sternal gland to attract males. The sex-pairing pheromone is composed of (Z,Z)-dodeca-3,6-dien-1-ol and (Z)-dodec-3-en-1-ol, estimated at 9 to 16.64 ng and 0.2 to 0.54 ng, respectively. Both short- and long-distance sex attraction bioassays were employed to show that these compounds act in synergy at long distance, but only (Z,Z)-dodeca-3,6-dien-1-ol is active at short distance. The pheromone may be useful in efforts to control this pest, which is considered one of the most harmful termite species in Southeast Asia.

  10. Sex-Linked Pheromone Receptor Genes of the European Corn Borer, Ostrinia nubilalis, Are in Tandem Arrays

    PubMed Central

    Yasukochi, Yuji; Miura, Nami; Nakano, Ryo; Sahara, Ken; Ishikawa, Yukio

    2011-01-01

    Background Tuning of the olfactory system of male moths to conspecific female sex pheromones is crucial for correct species recognition; however, little is known about the genetic changes that drive speciation in this system. Moths of the genus Ostrinia are good models to elucidate this question, since significant differences in pheromone blends are observed within and among species. Odorant receptors (ORs) play a critical role in recognition of female sex pheromones; eight types of OR genes expressed in male antennae were previously reported in Ostrinia moths. Methodology/Principal Findings We screened an O. nubilalis bacterial artificial chromosome (BAC) library by PCR, and constructed three contigs from isolated clones containing the reported OR genes. Fluorescence in situ hybridization (FISH) analysis using these clones as probes demonstrated that the largest contig, which contained eight OR genes, was located on the Z chromosome; two others harboring two and one OR genes were found on two autosomes. Sequence determination of BAC clones revealed the Z-linked OR genes were closely related and tandemly arrayed; moreover, four of them shared 181-bp direct repeats spanning exon 7 and intron 7. Conclusions/Significance This is the first report of tandemly arrayed sex pheromone receptor genes in Lepidoptera. The localization of an OR gene cluster on the Z chromosome agrees with previous findings for a Z-linked locus responsible for O. nubilalis male behavioral response to sex pheromone. The 181-bp direct repeats might enhance gene duplications by unequal crossovers. An autosomal locus responsible for male response to sex pheromone in Heliothis virescens and H. subflexa was recently reported to contain at least four OR genes. Taken together, these findings support the hypothesis that generation of additional copies of OR genes can increase the potential for male moths to acquire altered specificity for pheromone components, and accordingly, facilitate differentiation of sex pheromones. PMID:21526121

  11. Male sex pheromone components in Heliconius butterflies released by the androconia affect female choice

    PubMed Central

    Morrison, Colin R.; Salazar, Camilo; Pardo-Diaz, Carolina; Merrill, Richard M.; McMillan, W. Owen; Schulz, Stefan

    2017-01-01

    Sex-specific pheromones are known to play an important role in butterfly courtship, and may influence both individual reproductive success and reproductive isolation between species. Extensive ecological, behavioural and genetic studies of Heliconius butterflies have made a substantial contribution to our understanding of speciation. Male pheromones, although long suspected to play an important role, have received relatively little attention in this genus. Here, we combine morphological, chemical and behavioural analyses of male pheromones in the Neotropical butterfly Heliconius melpomene. First, we identify putative androconia that are specialized brush-like scales that lie within the shiny grey region of the male hindwing. We then describe putative male sex pheromone compounds, which are largely confined to the androconial region of the hindwing of mature males, but are absent in immature males and females. Finally, behavioural choice experiments reveal that females of H. melpomene, H. erato and H. timareta strongly discriminate against conspecific males which have their androconial region experimentally blocked. As well as demonstrating the importance of chemical signalling for female mate choice in Heliconius butterflies, the results describe structures involved in release of the pheromone and a list of potential male sex pheromone compounds. PMID:29134139

  12. Assessment of commercially available pheromone lures for monitoring diamondback moth (Lepidoptera: Plutellidae) in canola.

    PubMed

    Evenden, M L; Gries, R

    2010-06-01

    Sex pheromone monitoring lures from five different commercial sources were compared for their attractiveness to male diamondback moth, Plutella xylostella L. (Lepidoptera: Plutellidae) in canola, Brassica napus L., fields in western Canada. Lures that had the highest pheromone release rate, as determined by aeration analyses in the laboratory, were the least attractive in field tests. Lures from all the commercial sources tested released more (Z)-11-hexadecenal than (Z)-11-hexadecenyl acetate and the most attractive lures released a significantly higher aldehyde to acetate ratio than less attractive lures. Traps baited with sex pheromone lures from APTIV Inc. (Portland, OR) and ConTech Enterprises Inc. (Delta, BC, Canada) consistently captured more male diamondback moths than traps baited with lures from the other sources tested. In two different lure longevity field trapping experiments, older lures were more attractive to male diamondback moths than fresh lures. Pheromone release from aged lures was constant at very low release rates. The most attractive commercially available sex pheromone lures tested attracted fewer diamondback moth males than calling virgin female moths suggesting that research on the development of a more attractive synthetic sex pheromone lure is warranted.

  13. Effects of sex pheromones and sexual maturation on locomotor activity in female sea lamprey (Petromyzon marinus)

    USGS Publications Warehouse

    Walaszczyk, Erin J.; Johnson, Nicholas S.; Steibel, Juan Pedro; Li, Weiming

    2013-01-01

    Synchronization of male and female locomotor rhythmicity can play a vital role in ensuring reproductive success. Several physiological and environmental factors alter these locomotor rhythms. As sea lamprey, Petromyzon marinus, progress through their life cycle, their locomotor activity rhythm changes multiple times. The goal of this study was to elucidate the activity patterns of adult female sea lamprey during the sexual maturation process and discern the interactions of these patterns with exposure to male pheromones. During these stages, preovulated and ovulated adult females are exposed to sex pheromone compounds, which are released by spermiated males and attract ovulated females to the nest for spawning. The locomotor behavior of adult females was monitored in a natural stream with a passive integrated tag responder system as they matured, and they were exposed to a sex pheromone treatment (spermiated male washings) or a control (prespermiated male washings). Results showed that, dependent on the hour of day, male sex pheromone compounds reduce total activity (p < 0.05) and cause increases in activity during several daytime hours in preovulated and ovulated females. These results are one of the first examples of how sex pheromones modulate a locomotor rhythm in a vertebrate, and they suggest that the interaction between maturity stage and sex pheromone exposure contributes to the differential locomotor rhythms found in adult female sea lamprey. This phenomenon may contribute to the reproductive synchrony of mature adults, thus increasing reproductive success in this species.

  14. Mating and male pheromone kill Caenorhabditis males through distinct mechanisms.

    PubMed

    Shi, Cheng; Runnels, Alexi M; Murphy, Coleen T

    2017-03-14

    Differences in longevity between sexes is a mysterious yet general phenomenon across great evolutionary distances. To test the roles of responses to environmental cues and sexual behaviors in longevity regulation, we examined Caenorhabditis male lifespan under solitary, grouped, and mated conditions. We find that neurons and the germline are required for male pheromone-dependent male death. Hermaphrodites with a masculinized nervous system secrete male pheromone and are susceptible to male pheromone killing. Male pheromone-mediated killing is unique to androdioecious Caenorhabditis , and may reduce the number of males in hermaphroditic populations; neither males nor females of gonochoristic species are susceptible to male pheromone killing. By contrast, mating-induced death, which is characterized by germline-dependent shrinking, glycogen loss, and ectopic vitellogenin expression, utilizes distinct molecular pathways and is shared between the sexes and across species. The study of sex- and species-specific regulation of aging reveals deeply conserved mechanisms of longevity and population structure regulation.

  15. Antennal transcriptome analysis of the piercing moth Oraesia emarginata (Lepidoptera: Noctuidae)

    PubMed Central

    Feng, Bo; Guo, Qianshuang; Zheng, Kaidi; Qin, Yuanxia; Du, Yongjun

    2017-01-01

    The piercing fruit moth Oraesia emarginata is an economically significant pest; however, our understanding of its olfactory mechanisms in infestation is limited. The present study conducted antennal transcriptome analysis of olfactory genes using real-time quantitative reverse transcription PCR analysis (RT-qPCR). We identified a total of 104 candidate chemosensory genes from several gene families, including 35 olfactory receptors (ORs), 41 odorant-binding proteins, 20 chemosensory proteins, 6 ionotropic receptors, and 2 sensory neuron membrane proteins. Seven candidate pheromone receptors (PRs) and 3 candidate pheromone-binding proteins (PBPs) for sex pheromone recognition were found. OemaOR29 and OemaPBP1 had the highest fragments per kb per million fragments (FPKM) values in all ORs and OBPs, respectively. Eighteen olfactory genes were upregulated in females, including 5 candidate PRs, and 20 olfactory genes were upregulated in males, including 2 candidate PRs (OemaOR29 and 4) and 2 PBPs (OemaPBP1 and 3). These genes may have roles in mediating sex-specific behaviors. Most candidate olfactory genes of sex pheromone recognition (except OemaOR29 and OemaPBP3) in O. emarginata were not clustered with those of studied noctuid species (type I pheromone). In addition, OemaOR29 was belonged to cluster PRIII, which comprise proteins that recognize type II pheromones instead of type I pheromones. The structure and function of olfactory genes that encode sex pheromones in O. emarginata might thus differ from those of other studied noctuids. The findings of the present study may help explain the molecular mechanism underlying olfaction and the evolution of olfactory genes encoding sex pheromones in O. emarginata. PMID:28614384

  16. Identification of the sex pheromone of Lutzomyia longipalpis (Lutz & Neiva, 1912) (Diptera: Psychodidae) from Asunción, Paraguay.

    PubMed

    Brazil, Reginaldo P; Caballero, Norath Natalia; Hamilton, James Gordon C

    2009-11-02

    The sand fly Lutzomyia longipalpis is the main vector of Leishmania (L.) infantum (Nicolle), the causative agent of American visceral leishmaniasis (AVL) in the New World. Male Lu. longipalpis have secretory glands which produce sex pheromones in either abdominal tergites 4 or 3 and 4. These glands are sites of sex pheromone production and each pheromone type may represent true sibling species. In Latin America, apart from Lu. pseudolongipalpis Arrivillaga and Feliciangeli from Venezuela, populations of Lu. longipalpis s.l. can be identified by their male-produced sex pheromones: (S)-9-methylgermacrene-B, 3-methyl-alpha-himachalene and the two cembrenes, 1 and 2.In this study, we present the results of a coupled gas chromatography - mass spectrometry analysis of the pheromones of males Lu. longipalpis captured in an endemic area of visceral leishmaniasis in Asunción, Paraguay. Our results show that Lu. longipalpis from this site produce (S)-9-methylgermacrene-B which has also been found in Lu. longipalpis from different areas of Brazil, Colombia and Central America.

  17. Identification of the sex pheromone of Lutzomyia longipalpis (Lutz & Neiva, 1912) (Diptera: Psychodidae) from Asunción, Paraguay

    PubMed Central

    Brazil, Reginaldo P; Caballero, Norath Natalia; Hamilton, James Gordon C

    2009-01-01

    The sand fly Lutzomyia longipalpis is the main vector of Leishmania (L.) infantum (Nicolle), the causative agent of American visceral leishmaniasis (AVL) in the New World. Male Lu. longipalpis have secretory glands which produce sex pheromones in either abdominal tergites 4 or 3 and 4. These glands are sites of sex pheromone production and each pheromone type may represent true sibling species. In Latin America, apart from Lu. pseudolongipalpis Arrivillaga and Feliciangeli from Venezuela, populations of Lu. longipalpis s.l. can be identified by their male-produced sex pheromones: (S)-9-methylgermacrene-B, 3-methyl-α-himachalene and the two cembrenes, 1 and 2. In this study, we present the results of a coupled gas chromatography - mass spectrometry analysis of the pheromones of males Lu. longipalpis captured in an endemic area of visceral leishmaniasis in Asunción, Paraguay. Our results show that Lu. longipalpis from this site produce (S)-9-methylgermacrene-B which has also been found in Lu. longipalpis from different areas of Brazil, Colombia and Central America. PMID:19883505

  18. A sea lamprey (Petromyzon marinus) sex pheromone mixture increases trap catch relative to a single synthesized component in specific environments

    USGS Publications Warehouse

    Johnson, Nicholas S.; Tix, John A.; Hlina, Benjamin L.; Wagner, C. Michael; Siefkes, Michael J.; Wang, Huiyong; Li, Weiming

    2015-01-01

    Spermiating male sea lamprey (Petromyzon marinus) release a sex pheromone, of which a component, 7α, 12α, 24-trihydoxy-3-one-5α-cholan-24-sulfate (3kPZS), has been identified and shown to induce long distance preference responses in ovulated females. However, other pheromone components exist, and when 3kPZS alone was used to control invasive sea lamprey populations in the Laurentian Great Lakes, trap catch increase was significant, but gains were generally marginal. We hypothesized that free-ranging sea lamprey populations discriminate between a partial and complete pheromone while migrating to spawning grounds and searching for mates at spawning grounds. As a means to test our hypothesis, and to test two possible uses of sex pheromones for sea lamprey control, we asked whether the full sex pheromone mixture released by males (spermiating male washings; SMW) is more effective than 3kPZS in capturing animals in traditional traps (1) en route to spawning grounds and (2) at spawning grounds. At locations where traps target sea lampreys en route to spawning grounds, SMW-baited traps captured significantly more sea lampreys than paired 3kPZS-baited traps (~10 % increase). At spawning grounds, no difference in trap catch was observed between 3kPZS and SMW-baited traps. The lack of an observed difference at spawning grounds may be attributed to increased pheromone competition and possible involvement of other sensory modalities to locate mates. Because fishes often rely on multiple and sometimes redundant sensory modalities for critical life history events, the addition of sex pheromones to traditionally used traps is not likely to work in all circumstances. In the case of the sea lamprey, sex pheromone application may increase catch when applied to specifically designed traps deployed in streams with low adult density and limited spawning habitat.

  19. The Male Sex Pheromone of the Butterfly Bicyclus anynana: Towards an Evolutionary Analysis

    PubMed Central

    Nieberding, Caroline M.; de Vos, Helene; Schneider, Maria V.; Lassance, Jean-Marc; Estramil, Natalia; Andersson, Jimmy; Bång, Joakim; Hedenström, Erik; Löfstedt, Christer; Brakefield, Paul M.

    2008-01-01

    Background Female sex pheromones attracting mating partners over long distances are a major determinant of reproductive isolation and speciation in Lepidoptera. Males can also produce sex pheromones but their study, particularly in butterflies, has received little attention. A detailed comparison of sex pheromones in male butterflies with those of female moths would reveal patterns of conservation versus novelty in the associated behaviours, biosynthetic pathways, compounds, scent-releasing structures and receiving systems. Here we assess whether the African butterfly Bicyclus anynana, for which genetic, genomic, phylogenetic, ecological and ethological tools are available, represents a relevant model to contribute to such comparative studies. Methodology/Principal Findings Using a multidisciplinary approach, we determined the chemical composition of the male sex pheromone (MSP) in the African butterfly B. anynana, and demonstrated its behavioural activity. First, we identified three compounds forming the presumptive MSP, namely (Z)-9-tetradecenol (Z9-14:OH), hexadecanal (16:Ald ) and 6,10,14-trimethylpentadecan-2-ol (6,10,14-trime-15-2-ol), and produced by the male secondary sexual structures, the androconia. Second, we described the male courtship sequence and found that males with artificially reduced amounts of MSP have a reduced mating success in semi-field conditions. Finally, we could restore the mating success of these males by perfuming them with the synthetic MSP. Conclusions/Significance This study provides one of the first integrative analyses of a MSP in butterflies. The toolkit it has developed will enable the investigation of the type of information about male quality that is conveyed by the MSP in intraspecific communication. Interestingly, the chemical structure of B. anynana MSP is similar to some sex pheromones of female moths making a direct comparison of pheromone biosynthesis between male butterflies and female moths relevant to future research. Such a comparison will in turn contribute to understanding the evolution of sex pheromone production and reception in butterflies. PMID:18648495

  20. An Insecticide Further Enhances Experience-Dependent Increased Behavioural Responses to Sex Pheromone in a Pest Insect

    PubMed Central

    Abrieux, Antoine; Mhamdi, Amel; Rabhi, Kaouther K.; Egon, Julie; Debernard, Stéphane; Duportets, Line; Tricoire-Leignel, Hélène; Anton, Sylvia; Gadenne, Christophe

    2016-01-01

    Neonicotinoid insecticides are widely used to protect plants against pest insects, and insecticide residues remaining in the environment affect both target and non-target organisms. Whereas low doses of neonicotinoids have been shown to disturb the behaviour of pollinating insects, recent studies have revealed that a low dose of the neonicotinoid clothianidin can improve behavioural and neuronal sex pheromone responses in a pest insect, the male moth Agrotis ipsilon, and thus potentially improve reproduction. As male moth behaviour depends also on its physiological state and previous experience with sensory signals, we wondered if insecticide effects would be dependent on plasticity of olfactory-guided behaviour. We investigated, using wind tunnel experiments, whether a brief pre-exposure to the sex pheromone could enhance the behavioural response to this important signal in the moth A. ipsilon at different ages (sexually immature and mature males) and after different delays (2 h and 24 h), and if the insecticide clothianidin would interfere with age effects or the potential pre-exposure-effects. Brief pre-exposure to the pheromone induced an age-independent significant increase of sex pheromone responses 24 h later, whereas sex pheromone responses did not increase significantly 2 h after exposure. However, response delays were significantly shorter compared to naïve males already two hours after exposure. Oral treatment with clothianidin increased sex pheromone responses in sexually mature males, confirming previous results, but did not influence responses in young immature males. Males treated with clothianidin after pre-exposure at day 4 responded significantly more to the sex pheromone at day 5 than males treated with clothianidin only and than males pre-exposed only, revealing an additive effect of experience and the insecticide. Plasticity of sensory systems has thus to be taken into account when investigating the effects of sublethal doses of insecticides on behaviour. PMID:27902778

  1. Geometric isomers of sex pheromone components do not affect attractancy of Conopomorpha cramerella in cocoa plantations

    USDA-ARS?s Scientific Manuscript database

    Sex pheromone of cocoa pod borer (CPB), Conopomorpha cramerella, has previously been identified as a blend of (E,Z,Z)- and (E,E,Z)-4,6,10-hexadecatrienyl acetates and the corresponding alcohols. These pheromone components have been synthesized with modification of the existing method and relative at...

  2. (R)-Desmolactone Is a Sex Pheromone or Sex Attractant for the Endangered Valley Elderberry Longhorn Beetle Desmocerus californicus dimorphus and Several Congeners (Cerambycidae: Lepturinae)

    PubMed Central

    Ray, Ann M.; Arnold, Richard A.; Swift, Ian; Schapker, Philip A.; McCann, Sean; Marshall, Christopher J.; McElfresh, J. Steven; Millar, Jocelyn G.

    2014-01-01

    We report here that (4R,9Z)-hexadec-9-en-4-olide [(R)-desmolactone] is a sex attractant or sex pheromone for multiple species and subspecies in the cerambycid genus Desmocerus. This compound was previously identified as a female-produced sex attractant pheromone of Desmocerus californicus californicus. Headspace volatiles from female Desmocerus aureipennis aureipennis contained (R)-desmolactone, and the antennae of adult males of two species responded strongly to synthetic (R)-desmolactone in coupled gas chromatography-electroantennogram analyses. In field bioassays in California, Oregon, and British Columbia, traps baited with synthetic (R)-desmolactone captured males of several Desmocerus species and subspecies. Only male beetles were captured, indicating that this compound acts as a sex-specific attractant, rather than as a signal for aggregation. In targeted field bioassays, males of the US federally threatened subspecies Desmocerus californicus dimorphus responded to the synthetic attractant in a dose dependent manner. Our results represent the first example of a “generic” sex pheromone used by multiple species in the subfamily Lepturinae, and demonstrate that pheromone-baited traps may be a sensitive and efficient method of monitoring the threatened species Desmocerus californicus dimorphus, commonly known as the valley elderberry longhorn beetle. PMID:25521293

  3. Concordant preferences for opposite-sex signals? Human pheromones and facial characteristics.

    PubMed Central

    Cornwell, R. Elisabeth; Boothroyd, Lynda; Burt, D. Michael; Feinberg, David R.; Jones, Ben C.; Little, Anthony C.; Pitman, Robert; Whiten, Susie; Perrett, David I.

    2004-01-01

    We have investigated whether preferences for masculine and feminine characteristics are correlated across two modalities, olfaction and vision. In study 1, subjects rated the pleasantness of putative male (4,16-androstadien-3-one; 5alpha-androst-16-en-3-one) and female (1,3,5 (10),16-estratetraen-3-ol) pheromones, and chose the most attractive face shape from a masculine-feminine continuum for a long- and a short-term relationship. Study 2 replicated study 1 and further explored the effects of relationship context on pheromone ratings. For long-term relationships, women's preferences for masculine face shapes correlated with ratings of 4,16-androstadien-3-one and men's preferences for feminine face shapes correlated with ratings of 1,3,5(10),16-estratetraen-3-ol. These studies link sex-specific preferences for putative human sex pheromones and sexually dimorphic facial characteristics. Our findings suggest that putative sex pheromones and sexually dimorphic facial characteristics convey common information about the quality of potential mates. PMID:15156922

  4. Expression of a desaturase gene, desat1, in neural and nonneural tissues separately affects perception and emission of sex pheromones in Drosophila

    PubMed Central

    Bousquet, François; Nojima, Tetsuya; Houot, Benjamin; Chauvel, Isabelle; Chaudy, Sylvie; Dupas, Stéphane; Yamamoto, Daisuke; Ferveur, Jean-François

    2012-01-01

    Animals often use sex pheromones for mate choice and reproduction. As for other signals, the genetic control of the emission and perception of sex pheromones must be tightly coadapted, and yet we still have no worked-out example of how these two aspects interact. Most models suggest that emission and perception rely on separate genetic control. We have identified a Drosophila melanogaster gene, desat1, that is involved in both the emission and the perception of sex pheromones. To explore the mechanism whereby these two aspects of communication interact, we investigated the relationship between the molecular structure, tissue-specific expression, and pheromonal phenotypes of desat1. We characterized the five desat1 transcripts—all of which yielded the same desaturase protein—and constructed transgenes with the different desat1 putative regulatory regions. Each region was used to target reporter transgenes with either (i) the fluorescent GFP marker to reveal desat1 tissue expression, or (ii) the desat1 RNAi sequence to determine the effects of genetic down-regulation on pheromonal phenotypes. We found that desat1 is expressed in a variety of neural and nonneural tissues, most of which are involved in reproductive functions. Our results suggest that distinct desat1 putative regulatory regions independently drive the expression in nonneural and in neural cells, such that the emission and perception of sex pheromones are precisely coordinated in this species. PMID:22114190

  5. Identification of Sex Pheromones and Sex Pheromone Mimics for Two North American Click Beetle Species (Coleoptera: Elateridae) in the Genus Cardiophorus Esch.

    PubMed

    Serrano, Jacqueline M; Collignon, R Maxwell; Zou, Yunfan; Millar, Jocelyn G

    2018-04-01

    To date, all known or suspected pheromones of click beetles (Coleoptera: Elateridae) have been identified solely from species native to Europe and Asia; reports of identifications from North American species dating from the 1970s have since proven to be incorrect. While conducting bioassays of pheromones of a longhorned beetle (Coleoptera: Cerambycidae), we serendipitously discovered that males of Cardiophorus tenebrosus L. and Cardiophorus edwardsi Horn were specifically attracted to the cerambycid pheromone fuscumol acetate, (E)-6,10-dimethylundeca-5,9-dien-2-yl acetate, suggesting that this compound might also be a sex pheromone for the two Cardiophorus species. Further field bioassays and electrophysiological assays with the enantiomers of fuscumol acetate determined that males were specifically attracted by the (R)-enantiomer. However, subsequent analyses of extracts of volatiles from female C. tenebrosus and C. edwardsi showed that the females actually produced a different compound, which was identified as (3R,6E)-3,7,11-trimethyl-6,10-dodecadienoic acid methyl ester (methyl (3R,6E)-2,3-dihydrofarnesoate). In field trials, both the racemate and the (R)-enantiomer of the pheromone attracted similar numbers of male beetles, suggesting that the (S)-enantiomer was not interfering with responses to the insect-produced (R)-enantiomer. This report constitutes the first conclusive identification of sex pheromones for any North American click beetle species. Possible reasons for the strong and specific attraction of males to fuscumol acetate, which is markedly different in structure to the actual pheromone, are discussed.

  6. Theoretical analysis of the electronic properties of the sex pheromone and its analogue derivatives in the female processionary moth Thaumetopoea pytiocampa.

    PubMed

    Chamorro, Ester R; Sequeira, Alfredo F; Zalazar, M Fernanda; Peruchena, Nélida M

    2008-09-15

    In the present work, the distribution of the electronic charge density of the natural sex pheromone, the (Z)-13-hexadecen-11-ynyl acetate, in the female processionary moth, Thaumetopoea pytiocampa, and its nine analogue derivatives was studied within the framework of the Density Functional Theory and the Atoms in Molecules (AIM) Theory at B3LYP/6-31G *//B3LYP/6-31++G * * level. Additionally, molecular electrostatic potential (MEP) maps of the previously mentioned compounds were computed and compared. Furthermore, the substitution of hydrogen atoms from the methyl group in the acetate group by electron withdrawing substituents (i.e., halogen atoms) as well as the replacement effect of hydrogen by electron donor substituents (+I effect) as methyl group, were explored. The key feature of the topological distribution of the charge density in analogue compounds, such as the variations of the topological properties encountered in the region formed by neighbouring atoms from the substitution site were presented and discussed. Using topological parameters, such as electronic charge density, Laplacian, kinetic energy density, and potential energy density evaluated at bond critical points (BCP), we provide here a detailed analysis of the nature of the chemical bonding of these molecules. In addition, the atomic properties (population, charge, energy, volume, and dipole moment) were determined on selected atoms. These properties were analyzed at the substitution site (with respect to the natural sex pheromone) and related to the biological activity and to the possible binding site with the pheromone binding protein, (PBP). Moreover, the Laplacian function of the electronic density was used to locate electrophilic regions susceptible to be attacked (by deficient electron atoms or donor hydrogen). Our results indicate that the change in the atomic properties, such as electronic population and atomic volume, are sensitive indicators of the loss of the biological activity in the analogues studied here. The crucial interaction between the acetate group of the natural sex pheromone and the PBP is most likely to be a hydrogen bonding and the substitution of hydrogen atoms by electronegative atoms in the pheromone molecule reduces the hydrogen acceptor capacity. This situation is mirrored by the diminish of the electronic population on carbon and oxygen atoms at the carbonylic group in the halo-acetate group. Additionally, the modified acetate group (with electronegative atoms) shows new charge concentration critical points or regions of concentration of charge density in which an electrophilic attack can also occur. Finally, the use of the topological analysis based in the charge density distribution and its Laplacian function, in conjunction with MEP maps provides valuable information about the steric volume and electronic requirement of the sex pheromone for binding to the PBP.

  7. Mating and male pheromone kill Caenorhabditis males through distinct mechanisms

    PubMed Central

    Shi, Cheng; Runnels, Alexi M; Murphy, Coleen T

    2017-01-01

    Differences in longevity between sexes is a mysterious yet general phenomenon across great evolutionary distances. To test the roles of responses to environmental cues and sexual behaviors in longevity regulation, we examined Caenorhabditis male lifespan under solitary, grouped, and mated conditions. We find that neurons and the germline are required for male pheromone-dependent male death. Hermaphrodites with a masculinized nervous system secrete male pheromone and are susceptible to male pheromone killing. Male pheromone-mediated killing is unique to androdioecious Caenorhabditis, and may reduce the number of males in hermaphroditic populations; neither males nor females of gonochoristic species are susceptible to male pheromone killing. By contrast, mating-induced death, which is characterized by germline-dependent shrinking, glycogen loss, and ectopic vitellogenin expression, utilizes distinct molecular pathways and is shared between the sexes and across species. The study of sex- and species-specific regulation of aging reveals deeply conserved mechanisms of longevity and population structure regulation. DOI: http://dx.doi.org/10.7554/eLife.23493.001 PMID:28290982

  8. Non-Host Plant Volatiles Disrupt Sex Pheromone Communication in a Specialist Herbivore.

    PubMed

    Wang, Fumin; Deng, Jianyu; Schal, Coby; Lou, Yonggen; Zhou, Guoxin; Ye, Bingbing; Yin, Xiaohui; Xu, Zhihong; Shen, Lize

    2016-09-02

    The ecological effects of plant volatiles on herbivores are manifold. Little is known, however, about the impacts of non-host plant volatiles on intersexual pheromonal communication in specialist herbivores. We tested the effects of several prominent constitutive terpenoids released by conifers and Eucalyptus trees on electrophysiological and behavioral responses of an oligophagous species, Plutella xylostella, which feeds on Brassicaceae. The non-host plant volatile terpenoids adversely affected the calling behavior (pheromone emission) of adult females, and the orientation responses of adult males to sex pheromone were also significantly inhibited by these terpenoids in a wind tunnel and in the field. We suggest that disruption of both pheromone emission and orientation to sex pheromone may explain, at least in part, an observed reduction in herbivore attack in polyculture compared with monoculture plantings. We also propose that mating disruption of both male and female moths with non-host plant volatiles may be a promising alternative pest management strategy.

  9. Non-Host Plant Volatiles Disrupt Sex Pheromone Communication in a Specialist Herbivore

    PubMed Central

    Wang, Fumin; Deng, Jianyu; Schal, Coby; Lou, Yonggen; Zhou, Guoxin; Ye, Bingbing; Yin, Xiaohui; Xu, Zhihong; Shen, Lize

    2016-01-01

    The ecological effects of plant volatiles on herbivores are manifold. Little is known, however, about the impacts of non-host plant volatiles on intersexual pheromonal communication in specialist herbivores. We tested the effects of several prominent constitutive terpenoids released by conifers and Eucalyptus trees on electrophysiological and behavioral responses of an oligophagous species, Plutella xylostella, which feeds on Brassicaceae. The non-host plant volatile terpenoids adversely affected the calling behavior (pheromone emission) of adult females, and the orientation responses of adult males to sex pheromone were also significantly inhibited by these terpenoids in a wind tunnel and in the field. We suggest that disruption of both pheromone emission and orientation to sex pheromone may explain, at least in part, an observed reduction in herbivore attack in polyculture compared with monoculture plantings. We also propose that mating disruption of both male and female moths with non-host plant volatiles may be a promising alternative pest management strategy. PMID:27585907

  10. Attraction of spathius agrili yang (Hymenoptera: eulophidae) to male-produced "aggregation-sex pheromone:" differences between the sexes and mating status

    USDA-ARS?s Scientific Manuscript database

    Male and female Spathius agrili Yang were tested for attraction to the synthetic male pheromone. Lures consisting of a 3-component pheromone blend were placed in the center of a white filter paper target used to activate upwind flight in the wind tunnel. When virgin males and females were tested for...

  11. Functional characterization of sex pheromone receptors in the purple stem borer, Sesamia inferens (Walker).

    PubMed

    Zhang, Y-N; Zhang, J; Yan, S-W; Chang, H-T; Liu, Y; Wang, G-R; Dong, S-L

    2014-10-01

    The sex pheromone communication system in moths is highly species-specific and extremely sensitive, and pheromone receptors (PRs) are thought to be the most important factors in males. In the present study, three full-length cDNAs encoding PRs were characterized from Sesamia inferens antennae. These three PRs were all male-specific in expression, but their relative expression levels were very different; SinfOR29 was 17- to 23-fold higher than the other two PRs. Phylogenetic and motif pattern analyses showed that these three PRs were allocated to different PR subfamilies with different motif patterns. Functional analysis using the heterologous expression system of Xenopus oocytes demonstrated that SinfOR29 specifically and sensitively responded to the major pheromone component, Z11-16:OAc [concentration for 50% of maximal effect (EC50 ) = 3.431 × 10(-7) M], while SinfOR21 responded robustly to a minor pheromone component Z11-16:OH (EC50  = 1.087 × 10(-6) M). SinfOR27, however, displayed no response to any of the three pheromone components, but, interestingly, it was sensitive to a non-sex pheromone component Z9,E12-14:OAc (EC50  = 1.522 × 10(-6) M). Our results provide insight into the molecular mechanisms of specificity and sensitivity of the sex pheromone communication system in moths. © 2014 The Royal Entomological Society.

  12. Factors influencing capture of invasive sea lamprey in traps baited with a synthesized sex pheromone component

    USGS Publications Warehouse

    Johnson, Nicholas; Siefkes, Michael J.; Wagner, C. Michael; Bravener, Gale; Steeves, Todd; Twohey, Michael; Li, Weiming

    2015-01-01

    The sea lamprey, Petromyzon marinus, is emerging as a model organism for understanding how pheromones can be used for manipulating vertebrate behavior in an integrated pest management program. In a previous study, a synthetic sex pheromone component 7α,12α, 24-trihydroxy-5α-cholan-3-one 24-sulfate (3kPZS) was applied to sea lamprey traps in eight streams at a final in-stream concentration of 10−12 M. Application of 3kPZS increased sea lamprey catch, but where and when 3kPZS had the greatest impact was not determined. Here, by applying 3kPZS to additional streams, we determined that overall increases in yearly exploitation rate (proportion of sea lampreys that were marked, released, and subsequently recaptured) were highest (20–40 %) in wide streams (~40 m) with low adult sea lamprey abundance (<1000). Wide streams with low adult abundance may be representative of low-attraction systems for adult sea lamprey and, in the absence of other attractants (larval odor, sex pheromone), sea lamprey may have been more responsive to a partial sex pheromone blend emitted from traps. Furthermore, we found that the largest and most consistent responses to 3kPZS were during nights early in the trapping season, when water temperatures were increasing. This may have occurred because, during periods of increasing water temperatures, sea lamprey become more active and males at large may not have begun to release sex pheromone. In general, our results are consistent with those for pheromones of invertebrates, which are most effective when pest density is low and when pheromone competition is low.

  13. Rapid Evolution of Sex Pheromone-Producing Enzyme Expression in Drosophila

    PubMed Central

    Williams, Thomas M.; Carroll, Sean B.

    2009-01-01

    A wide range of organisms use sex pheromones to communicate with each other and to identify appropriate mating partners. While the evolution of chemical communication has been suggested to cause sexual isolation and speciation, the mechanisms that govern evolutionary transitions in sex pheromone production are poorly understood. Here, we decipher the molecular mechanisms underlying the rapid evolution in the expression of a gene involved in sex pheromone production in Drosophilid flies. Long-chain cuticular hydrocarbons (e.g., dienes) are produced female-specifically, notably via the activity of the desaturase DESAT-F, and are potent pheromones for male courtship behavior in Drosophila melanogaster. We show that across the genus Drosophila, the expression of this enzyme is correlated with long-chain diene production and has undergone an extraordinary number of evolutionary transitions, including six independent gene inactivations, three losses of expression without gene loss, and two transitions in sex-specificity. Furthermore, we show that evolutionary transitions from monomorphism to dimorphism (and its reversion) in desatF expression involved the gain (and the inactivation) of a binding-site for the sex-determination transcription factor, DOUBLESEX. In addition, we documented a surprising example of the gain of particular cis-regulatory motifs of the desatF locus via a set of small deletions. Together, our results suggest that frequent changes in the expression of pheromone-producing enzymes underlie evolutionary transitions in chemical communication, and reflect changing regimes of sexual selection, which may have contributed to speciation among Drosophila. PMID:19652700

  14. Different roles suggested by sex-biased expression and pheromone binding affinity among three pheromone binding proteins in the pink rice borer, Sesamia inferens (Walker) (Lepidoptera: Noctuidae).

    PubMed

    Jin, Jun-Yan; Li, Zhao-Qun; Zhang, Ya-Nan; Liu, Nai-Yong; Dong, Shuang-Lin

    2014-07-01

    Pheromone binding proteins (PBPs) are thought to bind and transport hydrophobic sex pheromone molecules across the aqueous sensillar lymph to specific pheromone receptors on the dendritic membrane of olfactory neurons. A maximum of 3 PBP genes have been consistently identified in noctuid species, and each of them shares high identity with its counterparts in other species within the family. The functionality differences of the 3 proteins are poorly understood. In the present study, 3 PBP cDNAs (SinfPBP1, 2, 3) were identified from the pink rice borer, Sesamia inferens, for the first time. The quantitative real-time PCR indicated that the 3 PBPs displayed similar temporal but very different sex related expression profiles. Expression of SinfPBP1 and SinfPBP2 were highly and moderately male biased, respectively, while SinfPBP3 was slightly female biased, as SinfPBPs were expressed at very different levels (PBP1>PBP2≫PBP3) in male antennae, but at similar levels in female antennae. Furthermore, the 3 SinfPBPs displayed different ligand binding profiles in fluorescence competitive binding assays. SinfPBP1 exhibited high and similar binding affinities to all 3 sex pheromone components (Ki=0.72-1.60 μM), while SinfPBP2 showed selective binding to the alcohol and aldehyde components (Ki=0.78-1.71 μM), and SinfPBP3 showed no obvious binding to the 3 sex pheromone components. The results suggest that SinfPBP1 plays a major role in the reception of female sex pheromones in S. inferens, while SinfPBP3 plays a least role (if any) and SinfPBP2 functions as a recognizer of alcohol and aldehyde components. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. High individual variation in pheromone production by tree-killing bark beetles (Coleoptera: Curculionidae: Scolytinae)

    Treesearch

    Deepa S. Pureswaran; Brian T. Sullivan; Matthew P. Ayres

    2008-01-01

    Aggregation via pheromone signaling is essential for tree-killing bark beetles to overcome tree defenses and reproduce within hosts. Pheromone production is a trait that is linked to fitness, so high individual variation is paradoxica1. One explanation is that the technique of measuring static pheromone pools overestimates true variation among individuals. An...

  16. Ant Trail Pheromone Biosynthesis Is Triggered by a Neuropeptide Hormone

    PubMed Central

    Choi, Man-Yeon; Vander Meer, Robert K.

    2012-01-01

    Our understanding of insect chemical communication including pheromone identification, synthesis, and their role in behavior has advanced tremendously over the last half-century. However, endocrine regulation of pheromone biosynthesis has progressed slowly due to the complexity of direct and/or indirect hormonal activation of the biosynthetic cascades resulting in insect pheromones. Over 20 years ago, a neurohormone, pheromone biosynthesis activating neuropeptide (PBAN) was identified that stimulated sex pheromone biosynthesis in a lepidopteran moth. Since then, the physiological role, target site, and signal transduction of PBAN has become well understood for sex pheromone biosynthesis in moths. Despite that PBAN-like peptides (∼200) have been identified from various insect Orders, their role in pheromone regulation had not expanded to the other insect groups except for Lepidoptera. Here, we report that trail pheromone biosynthesis in the Dufour's gland (DG) of the fire ant, Solenopsis invicta, is regulated by PBAN. RNAi knock down of PBAN gene (in subesophageal ganglia) or PBAN receptor gene (in DG) expression inhibited trail pheromone biosynthesis. Reduced trail pheromone was documented analytically and through a behavioral bioassay. Extension of PBAN's role in pheromone biosynthesis to a new target insect, mode of action, and behavioral function will renew research efforts on the involvement of PBAN in pheromone biosynthesis in Insecta. PMID:23226278

  17. Contact sex pheromone components of the cowpea weevil, Callosobruchus maculatus.

    PubMed

    Nojima, Satoshi; Shimomura, Kenji; Honda, Hiroshi; Yamamoto, Izuru; Ohsawa, Kanju

    2007-05-01

    The cowpea weevil, Callosobruchus maculatus, is a major pest of stored pulses. Females of this species produce a contact sex pheromone that elicits copulation behavior in males. Pheromone was extracted from filter-paper shelters taken from cages that housed females. Crude ether extract stimulated copulation in male C. maculatus. Initial fractionation showed behavioral activity in acidic and neutral fractions. Furthermore, bioassay-guided fractionation and gas chromatography-mass spectroscopy (GC-MS) analysis of active fractions revealed that the active components of the acidic fraction were 2,6-dimethyloctane-1,8-dioic acid and nonanedioic acid. These components along with the hydrocarbon fraction, a mixture of C(27)-C(35) straight chain and methyl branched hydrocarbons, had a synergistic effect on the behavior of males. Glass dummies treated with an authentic pheromone blend induced copulation behavior in males. The potential roles of the contact sex pheromone of C. maculatus are discussed.

  18. Pheromone binding proteins enhance the sensitivity of olfactory receptors to sex pheromones in Chilo suppressalis

    PubMed Central

    Chang, Hetan; Liu, Yang; Yang, Ting; Pelosi, Paolo; Dong, Shuanglin; Wang, Guirong

    2015-01-01

    Sexual communication in moths offers a simplified scenario to model and investigate insect sensory perception. Both PBPs (pheromone-binding proteins) and PRs (pheromone receptors) are involved in the detection of sex pheromones, but the interplay between them still remains largely unknown. In this study, we have measured the binding affinities of the four recombinant PBPs of Chilo suppressalis (CsupPBPs) to pheromone components and analogs and characterized the six PRs using the Xenopus oocytes expression system. Interestingly, when the responses of PRs were recorded in the presence of PBPs, we measured in several combinations a dramatic increase in signals as well as in sensitivity of such combined systems. Furthermore, the discrimination ability of appropriate combinations of PRs and PBPs was improved compared with the performance of PBPs or PRs alone. Besides further supporting a role of PBPs in the pheromone detection and discrimination, our data shows for the first time that appropriate combinations of PRs and PBPs improved the discrimination ability of PBPs or PRs alone. The variety of responses measured with different pairing of PBPs and PRs indicates the complexity of the olfaction system, which, even for the relatively simple task of detecting sex pheromones, utilises a highly sophisticated combinatorial approach. PMID:26310773

  19. Effect of Larvae Treated with Mixed Biopesticide Bacillus thuringiensis - Abamectin on Sex Pheromone Communication System in Cotton Bollworm, Helicoverpa armigera

    PubMed Central

    Shen, Li-Ze; Chen, Peng-Zhou; Xu, Zhi-Hong; Deng, Jian-Yu; Harris, Marvin-K; Wanna, Ruchuon; Wang, Fu-Min; Zhou, Guo-Xin; Yao, Zhang-Liang

    2013-01-01

    Third instar larvae of the cotton bollworm (Helicoverpa armigera) were reared with artificial diet containing a Bacillus thuringiensis - abamectin (BtA) biopesticide mixture that resulted in 20% mortality (LD20). The adult male survivors from larvae treated with BtA exhibited a higher percentage of “orientation” than control males but lower percentages of “approaching” and “landing” in wind tunnel bioassays. Adult female survivors from larvae treated with BtA produced higher sex pheromone titers and displayed a lower calling percentage than control females. The ratio of Z-11-hexadecenal (Z11–16:Ald) and Z-9-hexadecenal (Z9–16:Ald) in BtA-treated females changed and coefficients of variation (CV) of Z11–16:Ald and Z9–16:Ald were expanded compared to control females. The peak circadian calling time of BtA-treated females occurred later than that of control females. In mating choice experiment, both control males and BtA-treated males preferred to mate with control females and a portion of the Bt-A treated males did not mate whereas all control males did. Our Data support that treatment of larvae with BtA had an effect on the sex pheromone communication system in surviving H.armigera moths that may contribute to assortative mating. PMID:23874751

  20. Identification and functional characterization of a sex pheromone receptor in the silkmoth Bombyx mori

    PubMed Central

    Sakurai, Takeshi; Nakagawa, Takao; Mitsuno, Hidefumi; Mori, Hajime; Endo, Yasuhisa; Tanoue, Shintarou; Yasukochi, Yuji; Touhara, Kazushige; Nishioka, Takaaki

    2004-01-01

    Sex pheromones released by female moths are detected with high specificity and sensitivity in the olfactory sensilla of antennae of conspecific males. Bombykol in the silkmoth Bombyx mori was the first sex pheromone to be identified. Here we identify a male-specific G protein-coupled olfactory receptor gene, B. mori olfactory receptor 1 (BmOR-1), that appears to encode a bombykol receptor. The BmOR-1 gene is located on the Z sex chromosome, has an eight-exon/seven-intron structure, and exhibits male-specific expression in the pheromone receptor neurons of male moth antenna during late pupal and adult stages. Bombykol stimulation of Xenopus laevis oocytes expressing BmOR-1 and BmGαq elicited robust dose-dependent inward currents on two-electrode voltage clamp recordings, demonstrating that the binding of bombykol to BmOR-1 leads to the activation of a BmGαq-mediated signaling cascade. Antennae of female moths infected with BmOR-1-recombinant baculovirus showed electrophysiological responses to bombykol but not to bombykal. These results provide evidence that BmOR-1 is a G protein-coupled sex pheromone receptor that recognizes bombykol. PMID:15545611

  1. Allelic exchange of pheromones and their receptors reprograms sexual identity in Cryptococcus neoformans.

    PubMed

    Stanton, Brynne C; Giles, Steven S; Staudt, Mark W; Kruzel, Emilia K; Hull, Christina M

    2010-02-26

    Cell type specification is a fundamental process that all cells must carry out to ensure appropriate behaviors in response to environmental stimuli. In fungi, cell identity is critical for defining "sexes" known as mating types and is controlled by components of mating type (MAT) loci. MAT-encoded genes function to define sexes via two distinct paradigms: 1) by controlling transcription of components common to both sexes, or 2) by expressing specially encoded factors (pheromones and their receptors) that differ between mating types. The human fungal pathogen Cryptococcus neoformans has two mating types (a and alpha) that are specified by an extremely unusual MAT locus. The complex architecture of this locus makes it impossible to predict which paradigm governs mating type. To identify the mechanism by which the C. neoformans sexes are determined, we created strains in which the pheromone and pheromone receptor from one mating type (a) replaced the pheromone and pheromone receptor of the other (alpha). We discovered that these "alpha(a)" cells effectively adopt a new mating type (that of a cells); they sense and respond to alpha factor, they elicit a mating response from alpha cells, and they fuse with alpha cells. In addition, alpha(a) cells lose the alpha cell type-specific response to pheromone and do not form germ tubes, instead remaining spherical like a cells. Finally, we discovered that exogenous expression of the diploid/dikaryon-specific transcription factor Sxi2a could then promote complete sexual development in crosses between alpha and alpha(a) strains. These data reveal that cell identity in C. neoformans is controlled fully by three kinds of MAT-encoded proteins: pheromones, pheromone receptors, and homeodomain proteins. Our findings establish the mechanisms for maintenance of distinct cell types and subsequent developmental behaviors in this unusual human fungal pathogen.

  2. Unusual pheromone chemistry in the navel orangeworm: novel sex attractants and a behavioral antagonist

    NASA Astrophysics Data System (ADS)

    Leal, W. S.; Parra-Pedrazzoli, A. L.; Kaissling, K.-E.; Morgan, T. I.; Zalom, F. G.; Pesak, D. J.; Dundulis, E. A.; Burks, C. S.; Higbee, B. S.

    2005-03-01

    Using molecular- and sensory physiology-based approaches, three novel natural products, a simple ester, and a behavioral antagonist have been identified from the pheromone gland of the navel orangeworm, Amyelois transitella Walker (Lepidoptera: Pyralidae). In addition to the previously identified (Z,Z)-11,13-hexadecadienal, the pheromone blend is composed of (Z,Z,Z,Z,Z)-3,6,9,12,15-tricosapentaene, (Z,Z,Z,Z,Z)-3,6,9,12,15-pentacosapentaene, ethyl palmitate, ethyl-(Z,Z)-11,13-hexadecadienoate, and (Z,Z)-11,13-hexadecadien-1-yl acetate. The C23 and C25 pentaenes are not only novel sex pheromones, but also new natural products. In field tests, catches of A. transitella males in traps baited with the full mixture of pheromones were as high as those in traps with virgin females, whereas control and traps baited only with the previously known constituent did not capture any moths at all. The navel orangeworm sex pheromone is also an attractant for the meal moth, Pyralis farinalis L. (Pyralidae), but (Z,Z)-11,13-hexadecadien-1-yl acetate is a behavioral antagonist. The new pheromone blend may be highly effective in mating disruption and monitoring programs.

  3. Synthesis of syn-4,6-dimethyldodecanal, the male sex pheromone and trail-following pheromone of two species of the termite Zootermopsis.

    PubMed

    Ghostin, J; Bordereau, C; Braekman, J C

    2011-03-01

    Recently, we reported that syn-4,6-dimethyldodecanal is the male sex pheromone and the trail-following pheromone of the Termopsidae Zootermopsis nevadensis and Zootermopsis angusticollis. In this article, we describe the syntheses of the mixture of the four stereoisomers of 4,6-dimethyldodecanal using a synthetic pathway where the key step is a Wittig reaction between methyl 4-methyl-5-oxo-pentanoate and 1-methylheptyl-triphenylphosphonium iodide, and of (±)-syn-4,6-dimethyldodecanal starting from 3,5-dimethyl-2-cyclohexen-1-one. Direct GC-MS comparison of these synthetic samples with the natural pheromone allowed its unambiguous identification.

  4. How to make a sexy snake: estrogen activation of female sex pheromone in male red-sided garter snakes.

    PubMed

    Parker, M Rockwell; Mason, Robert T

    2012-03-01

    Vertebrates indicate their genetic sex to conspecifics using secondary sexual signals, and signal expression is often activated by sex hormones. Among vertebrate signaling modalities, the least is known about how hormones influence chemical signaling. Our study species, the red-sided garter snake (Thamnophis sirtalis parietalis), is a model vertebrate for studying hormonal control of chemical signals because males completely rely on the female sex pheromone to identify potential mates among thousands of individuals. How sex hormones can influence the expression of this crucial sexual signal is largely unknown. We created two groups of experimental males for the first experiment: Sham (blank implants) and E2 (17β-estradiol implants). E2 males were vigorously courted by wild males in outdoor bioassays, and in a Y-maze E2 pheromone trails were chosen by wild males over those of small females and were indistinguishable from large female trails. Biochemically, the E2 pheromone blend was similar to that of large females, and it differed significantly from Shams. For the second experiment, we implanted males with 17β-estradiol in 2007 but removed the implants the following year (2008; Removal). That same year, we implanted a new group of males with estrogen implants (Implant). Removal males were courted by wild males in 2008 (implant intact) but not in 2009 (removed). Total pheromone quantity and quality increased following estrogen treatment, and estrogen removal re-established male-typical pheromone blends. Thus, we have shown that estrogen activates the production of female pheromone in adult red-sided garter snakes. This is the first known study to quantify both behavioral and biochemical responses in chemical signaling following sex steroid treatment of reptiles in the activation/organization context. We propose that the homogametic sex (ZZ, male) may possess the same targets for activation of sexual signal production, and the absence of the activator (17β-estradiol in this case) underlies expression of the male phenotype.

  5. High individual variation in pheromone production by tree-killing bark beetles (Coleoptera: Curculionidae: Scolytinae)

    NASA Astrophysics Data System (ADS)

    Pureswaran, Deepa S.; Sullivan, Brian T.; Ayres, Matthew P.

    2008-01-01

    Aggregation via pheromone signalling is essential for tree-killing bark beetles to overcome tree defenses and reproduce within hosts. Pheromone production is a trait that is linked to fitness, so high individual variation is paradoxical. One explanation is that the technique of measuring static pheromone pools overestimates true variation among individuals. An alternative hypothesis is that aggregation behaviour dilutes the contribution of individuals to the trait under selection and reduces the efficacy of natural selection on pheromone production by individuals. We compared pheromone measurements from traditional hindgut extractions of female southern pine beetles with those obtained by aerating individuals till they died. Aerations showed greater total pheromone production than hindgut extractions, but coefficients of variation (CV) remained high (60-182%) regardless of collection technique. This leaves the puzzle of high variation unresolved. A novel but simple explanation emerges from considering bark beetle aggregation behaviour. The phenotype visible to natural selection is the collective pheromone plume from hundreds of colonisers. The influence of a single beetle on this plume is enhanced by high variation among individuals but constrained by large group sizes. We estimated the average contribution of an individual to the pheromone plume across a range of aggregation sizes and showed that large aggregation sizes typical in mass attacks limit the potential of natural selection because each individual has so little effect on the overall plume. Genetic variation in pheromone production could accumulate via mutation and recombination, despite strong effects of the pheromone plume on the fitness of individuals within the aggregation. Thus, aggregation behaviour, by limiting the efficacy of natural selection, can allow the persistence of extreme phenotypes in nature.

  6. [Sex pheromone secondary components of Indian meal moth Plodia interpunctella in China. HU wenlil 2, DU].

    PubMed

    Hu, Wenli; Du, Jiawei

    2005-09-01

    Indian meal moth Plodia interpunctella Hübner (Lepidoptera: Pyralidae) is considered as an important insect pest infesting stored grains and other products in China. The major sex pheromone component of P. interpunctella, Z9, E12-14: OAc (TDA), has already been identified. Though the efficiency of male capture by using the bait with this component alone is quite good, the pheromone system is far from fully understood. The identification with capillary chromatographic analysis and GC-MS methods showed that there were four main components, i. e., Z9, E12-14: OAc(A), Z9, E12-14: OH (B), Z9, E12-14: Ald(C), and Z9-14: OAc(D), in the sex pheromone gland of female P. interpunctella, and the ratio of these four components was A: B: C:D= 100:22: 12:9. Wind tunnel experimental results suggested that the response of male P. interpunctella to a blend (A: B: C: D = 8:2:1:0.8) was not significantly different from that to female sex pheromone gland extracts.

  7. Sex Hormones Function as Sex Attractant Pheromones in House Mice and Brown Rats.

    PubMed

    Takács, Stephen; Gries, Regine; Gries, Gerhard

    2017-07-18

    Sex hormones of mammals control the expression of sexual characteristics and bodily functions. The male hormone testosterone and the female hormones progesterone and estradiol are known to occur in urine markings of mice. Here, we show that all three hormones are also present in urine of brown rats, and that they are effective sexual communication signals (pheromones) that elicit attraction behavior of prospective mates in both brown rats and house mice. When added as lures to trap boxes in field experiments, synthetic testosterone, for example, increased captures of adult female mice 15-fold, and a blend of progesterone and estradiol increased captures of male mice eightfold and male rats 13-fold. Remarkably, these hormones increased captures even though the food- and pheromone-based baits to which they were added had previously been shown to be superior to current commercial rodent attractants. We predict that these sex hormones will function as sex attractant pheromones in diverse taxa. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Periodicity of sex pheromone biosynthesis, release and degradation in the lightbrown apple moth, Epiphyas postvittana (Walker).

    PubMed

    Foster, S P

    2000-03-01

    Pheromone titer in moths is a product of three processes occurring in or at the surface of the pheromone gland: biosynthesis, release, and intraglandular degradation, of pheromone. Changes in titers of sex pheromone, the fatty acyl pheromone analog (FAPA), and tetradecanoate, a pheromone biosynthetic intermediate, were studied in detail in the lightbrown apple moth, Epiphyas postvittana (Walker). Although changes in the pheromone titers in a day were relatively small, with the peak titer being 2-3 times greater than that at the trough, pheromone titer did show a distinct diel periodicity. Titer of the FAPA showed a similar, but less variable, diel pattern, but tetradecanoate titer showed little or no diel pattern. The pattern of pheromone titer suggested that females biosynthesize pheromone at two different rates during the photoperiod: a high rate during the latter half of the photophase and most of the scotophase, which is associated with a high pheromone titer, and a low rate throughout the first half of the photophase, which is associated with a low titer. Consistent with data on commencement of copulation, pheromone was released from the second hour of the scotophase through to the eighth hour. Pheromone release rate during this period appeared to be similar to the rate of pheromone biosynthesis. In contrast to the other two processes, pheromone degradation did not appear to have a diel pattern. Females decapitated at different times of the photoperiod showed a similar decline in pheromone titer, consistent with the reaction kinetics being first order in pheromone titer.

  9. Control and monitoring of codling moth (Lepidoptera: Tortricidae) in walnut orchards treated with novel high-load, low-density “meso” dispensers of sex pheromone and pear ester

    USDA-ARS?s Scientific Manuscript database

    Novel low-density per ha “meso” dispensers loaded with both pear ester, ethyl (E,Z)-2,4-decadienoate, kairomone and codlemone, (E,E)-8,10-dodecadien-1-ol, the sex pheromone of codling moth, Cydia pomonella (L)., were evaluated versus meso dispensers loaded with pheromone-alone for their mating disru...

  10. Reinvestigation of Cactoblastis Captorum (LEPIDOPTERA: PYRALIDAE) sex pheromone for improved attractiveness and greater specificity

    USDA-ARS?s Scientific Manuscript database

    Cactoblastis cactorum (Berg.) is recognized as an invasive species in the Caribbean, United States, and Mexico with potential to adversely impact native cactus population. Prior work using hexane extracts of sex glands showed that the sex pheromone of this species has 54% of (Z, E) -9.12 tetradecadi...

  11. Plant odorants interfere with detection of sex pheromone signals by male Heliothis virescens

    PubMed Central

    Pregitzer, Pablo; Schubert, Marco; Breer, Heinz; Hansson, Bill S.; Sachse, Silke; Krieger, Jürgen

    2012-01-01

    In many insects, mate finding relies on female-released sex pheromones, which have to be deciphered by the male olfactory system within an odorous background of plant volatiles present in the environment of a calling female. With respect to pheromone-mediated mate localization, plant odorants may be neutral, favorable, or disturbing. Here we examined the impact of plant odorants on detection and coding of the major sex pheromone component, (Z)-11-hexadecenal (Z11-16:Ald) in the noctuid moth Heliothis virescens. By in vivo imaging the activity in the male antennal lobe (AL), we monitored the interference at the level of olfactory sensory neurons (OSN) to illuminate mixture interactions. The results show that stimulating the male antenna with Z11-16:Ald and distinct plant-related odorants simultaneously suppressed pheromone-evoked activity in the region of the macroglomerular complex (MGC), where Z11-16:Ald-specific OSNs terminate. Based on our previous findings that antennal detection of Z11-16:Ald involves an interplay of the pheromone binding protein (PBP) HvirPBP2 and the pheromone receptor (PR) HR13, we asked if the plant odorants may interfere with any of the elements involved in pheromone detection. Using a competitive fluorescence binding assay, we found that the plant odorants neither bind to HvirPBP2 nor affect the binding of Z11-16:Ald to the protein. However, imaging experiments analyzing a cell line that expressed the receptor HR13 revealed that plant odorants significantly inhibited the Z11-16:Ald-evoked calcium responses. Together the results indicate that plant odorants can interfere with the signaling process of the major sex pheromone component at the receptor level. Consequently, it can be assumed that plant odorants in the environment may reduce the firing activity of pheromone-specific OSNs in H. virescens and thus affect mate localization. PMID:23060749

  12. Modeling the suppression of sea lamprey populations by use of the male sex pheromone

    USGS Publications Warehouse

    Klassen, Waldemar; Adams, Jean V.; Twohey, Michael B.

    2005-01-01

    The suppression of sea lamprey populations, Petromyzon marinus (Linnaeus), was modeled using four different applications of the male sex pheromone: (1) pheromone-baited traps that remove females from the spawning population, (2) pheromone-baited decoys that exhaust females before they are able to spawn, (3) pheromone-enhanced sterile males that increase the proportion of non-fertile matings, and (4) camouflaging of the pheromone emitted by calling males to make it difficult for females to find a mate. The models indicated that thousands of traps or hundreds of thousands of decoys would be required to suppress a population of 100,000 animals. The potential efficacy of pheromone camouflages is largely unknown, and additional research is required to estimate how much pheromone is needed to camouflage the pheromone plumes of calling males. Pheromone-enhanced sterile males appear to be a promising application in the Great Lakes. Using this technique for three generations each of ca. 7 years duration could reduce sea lamprey populations by 90% for Lakes Huron and Ontario and by 98% for Lake Michigan, based on current trapping operations that capture 20 to 30% of the population each year.

  13. A novel mechanism regulating a sexual signal: the testosterone-based inhibition of female sex pheromone expression in garter snakes.

    PubMed

    Parker, M Rockwell; Mason, Robert T

    2014-08-01

    Vertebrates communicate their sex to conspecifics through the use of sexually dimorphic signals, such as ornaments, behaviors and scents. Furthermore, the physiological connection between hormones and secondary sexual signal expression is key to understanding their dimorphism, seasonality and evolution. The red-sided garter snake (Thamnophis sirtalis parietalis) is the only reptile for which a described pheromone currently exists, and because garter snakes rely completely on the sexual attractiveness pheromone for species identification and mate choice, they constitute a unique model species for exploring the relationship between pheromones and the endocrine system. We recently demonstrated that estrogen can activate female pheromone production in male garter snakes. The purpose of this study was to determine the mechanism(s) acting to prevent female pheromone production in males. We found that castrated males (GX) are courted by wild males in the field and produce appreciable amounts of female sex pheromone. Furthermore, pheromone production is inhibited in castrates given testosterone implants (GX+T), suggesting that pheromone production is actively inhibited by the presence of testosterone. Lastly, testosterone supplementation alone (T) increased the production of several saturated methyl ketones in the pheromone but not the unsaturated ketones; this may indicate that saturated ketones are testosterone-activated components of the garter snake's skin lipid milieu. Collectively, our research has shown that pheromone expression in snakes results from two processes: activation by the feminizing steroid estradiol and inhibition by testosterone. We suggest that basal birds and garter snakes share common pathways of activation that modulate crucial intraspecific signals that originate from skin. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. (2E,6Z,9Z)-2,6,9-Pentadecatrienal as a Male-Produced Aggregation-Sex Pheromone of the Cerambycid Beetle Elaphidion mucronatum.

    PubMed

    Millar, Jocelyn G; Mitchell, Robert F; Meier, Linnea R; Johnson, Todd D; Mongold-Diers, Judith A; Hanks, Lawrence M

    2017-12-01

    An increasing body of evidence suggests that the volatile pheromones of cerambycid beetles are much more diverse in structure than previously hypothesized. Here, we describe the identification, synthesis, and field testing of (2E,6Z,9Z)-2,6,9-pentadecatrienal as a male-produced aggregation-sex pheromone of the cerambycid Elaphidion mucronatum (Say) (subfamily Cerambycinae, tribe Elaphidiini). This novel structure is unlike any previously described cerambycid pheromone, and in field bioassays attracted only this species. Males produced about 9 μg of pheromone per 24 h period, and, in field trials, lures loaded with 10, 25, and 100 mg of synthetic pheromone attracted beetles of both sexes, whereas lures loaded with 1 mg of pheromone or less were not significantly attractive. Other typical cerambycine pheromones such as 3-hydroxy-2-hexanone, syn-2,3-hexanediol, and anti-2,3-hexanediol were not attractive to E. mucronatum, and when combined with (2E,6Z,9Z)-2,6,9-pentadecatrienal, the former two compounds appeared to inhibit attraction. Unexpectedly, adults of the cerambycine Xylotrechus colonus (F.) were attracted in significant numbers to a blend of 3-hydroxyhexan-2-one and (2E,6Z,9Z)-2,6,9-pentadecatrienal, even though there is no evidence that this species produces the latter compound. From timed pheromone trap catches, adults of E. mucronatum were determined to be active from dusk until shortly after midnight.

  15. Attraction of Chrysoperla carnea complex and Chrysopa spp. lacewings (Neuroptera: Chrysopidae) to aphid sex pheromone components and a synthetic blend of floral compounds in Hungary.

    PubMed

    Koczor, Sándor; Szentkirályi, Ferenc; Birkett, Michael A; Pickett, John A; Voigt, Erzsébet; Tóth, Miklós

    2010-12-01

    The deployment of synthetic attractants for the manipulation of lacewing populations as aphid predators is currently used in integrated pest management. This study investigates a synthetic bait comprising floral compounds previously found to attract the Chrysoperla carnea complex, and, for the first time, the aphid sex pheromone components (1R,4aS,7S,7aR)-nepetalactol and (4aS,7S,7aR)-nepetalactone, in field experiments in Hungary, for their ability to manipulate lacewing populations. The synthetic floral bait attracted both sexes of the Chrysoperla carnea complex, and Chrysopa formosa Brauer showed minimal attraction. The aphid sex pheromone compounds alone attracted males of C. formosa and C. pallens (Rambur). When the two baits were combined, Chrysopa catches were similar to those with aphid sex pheromone baits alone, but carnea complex catches decreased significantly (by 85-88%). As the floral bait alone attracted both sexes of the carnea complex, it showed potential to manipulate the location of larval density via altering the site of oviposition. Aphid sex pheromone compounds alone attracted predatory males of Chrysopa spp. and can potentially be used to enhance biological control of aphids. For the carnea complex, however, a combination of both baits is not advantageous because of the decrease in adults attracted. Assumptions of intraguild avoidance underlying this phenomenon are discussed. Copyright © 2010 Society of Chemical Industry.

  16. Isolation, identification and field tests of the sex pheromone of the carambola fruit borer, Eucosma notanthes.

    PubMed

    Hung, C C; Hwang, J S; Hung, M D; Yen, Y P; Hou, R F

    2001-09-01

    Two components, (Z)-8-dodecenyl acetate (Z8-12:Ac) and (Z)-8-dodecenol (Z8-12:OH), were isolated from sex pheromone glands of the carambola fruit borer, Eucosma notanthes, and were identified by GC, and GC-MS, chemical derivatization, and comparison of retention times. The ratio of the alcohol to acetate in the sex pheromone extracts was 2.7. However, synthetic mixtures (1 mg) in ratios ranging from 0.5 to 1.5 were more effective than other blends in trapping male moths in field tests.

  17. Female sex pheromone and male behavioral responses of the bombycid moth Trilocha varians: comparison with those of the domesticated silkmoth Bombyx mori

    NASA Astrophysics Data System (ADS)

    Daimon, Takaaki; Fujii, Takeshi; Yago, Masaya; Hsu, Yu-Feng; Nakajima, Yumiko; Fujii, Tsuguru; Katsuma, Susumu; Ishikawa, Yukio; Shimada, Toru

    2012-03-01

    Analysis of female sex pheromone components and subsequent field trap experiments demonstrated that the bombycid moth Trilocha varians uses a mixture of ( E, Z)-10,12-hexadecadienal (bombykal) and ( E,Z)-10,12-hexadecadienyl acetate (bombykyl acetate) as a sex pheromone. Both of these components are derivatives of ( E,Z)-10,12-hexadecadienol (bombykol), the sex pheromone of the domesticated silkmoth Bombyx mori. This finding prompted us to compare the antennal and behavioral responses of T. varians and B. mori to bombykol, bombykal, and bombykyl acetate in detail. The antennae of T. varians males responded to bombykal and bombykyl acetate but not to bombykol, and males were attracted only when lures contained both bombykal and bombykyl acetate. In contrast, the antennae of B. mori males responded to all the three components. Behavioral analysis showed that B. mori males responded to neither bombykal nor bombykyl acetate. Meanwhile, the wing fluttering response of B. mori males to bombykol was strongly inhibited by bombykal and bombykyl acetate, thereby indicating that bombykal and bombykyl acetate act as behavioral antagonists for B. mori males. T. varians would serve as a reference species for B. mori in future investigations into the molecular mechanisms underlying the evolution of sex pheromone communication systems in bombycid moths.

  18. Behavioural evidence of male volatile pheromones in the sex-role reversed wolf spiders Allocosa brasiliensis and Allocosa alticeps

    NASA Astrophysics Data System (ADS)

    Aisenberg, Anita; Baruffaldi, Luciana; González, Macarena

    2010-01-01

    The use of chemical signals in a sexual context is widespread in the animal kingdom. Most studies in spiders report the use of female pheromones that attract potential sexual partners. Allocosa brasiliensis and Allocosa alticeps are two burrowing wolf spiders that show sex-role reversal. Females locate male burrows and initiate courtship before males perform any detectable visual or vibratory signal. So, females of these species would be detecting chemical or mechanical cues left by males. Our objective was to explore the potential for male pheromones to play a role in mate detection in A. brasiliensis and A. alticeps. We designed two experiments. In Experiment 1, we tested the occurrence of male contact pheromones by evaluating female courtship when exposed to empty burrows constructed by males or females (control). In Experiment 2, we tested the existence of male volatile pheromones by evaluating female behaviour when exposed to artificial burrows connected to tubes containing males, females or empty tubes (control). Our results suggest the occurrence of male volatile pheromones that trigger female courtship in both Allocosa species. The sex-role reversal postulated for these wolf spiders could be driving the consequent reversal in typical pheromone-emitter and detector roles expected for spiders.

  19. Host plant volatiles serve to increase the response of male European grape berry moths, Eupoecilia ambiguella, to their sex pheromone.

    PubMed

    Schmidt-Büsser, Daniela; von Arx, Martin; Guerin, Patrick M

    2009-09-01

    The European grape berry moth is an important pest in vineyards. Males respond to the female-produced sex pheromone released from a piezo nebulizer in a dose-dependent manner in a wind tunnel: <50% arrive at the source at 5-50 pg/min (underdosed), 80% arrive at 100 pg/min to 10 ng/min (optimal) and <20% arrive at 100 ng/min (overdosed). Males responding to overdosed pheromone show in flight arrestment at 80 cm from the source. Host plant chemostimuli for Eupoecilia ambiguella increase the responses of males to underdosed and overdosed pheromone. (Z)-3-hexen-1-ol, (+)-terpinen-4-ol, (E)-beta-caryophyllene and methyl salicylate released with the underdosed pheromone cause a significant increase in male E. ambiguella flying to the source. Time-event analysis indicates a positive correlation between faster activation and probability of source contact by the responding males. The four host plant compounds added to the overdosed pheromone permitted males to take off faster and with a higher probability of flying to the source. This suggests that perception of host plant products with the sex pheromone facilitates male E. ambiguella to locate females on host plants, lending credence to the hypothesis that plant products can signal rendezvous sites suitable for mating.

  20. Sex Attractant Pheromones of Virgin Queens of Sympatric Slave-Making Ant Species in the Genus Polyergus, and their Possible Roles in Reproductive Isolation.

    PubMed

    Greenberg, Les; Johnson, Christine A; Trager, James C; McElfresh, J Steven; Rodstein, Joshua; Millar, Jocelyn G

    2018-06-01

    Species of the ant genus Polyergus are social parasites that steal brood from colonies of their hosts in the closely related genus Formica. Upon emergence as adults in a mixed population, host Formica workers carry out all the normal worker functions within the Polyergus colony, including foraging, feeding, grooming, and rearing brood of the parasitic Polyergus ants. Some unmated Polyergus gynes (queens) run in the raiding columns of their colonies and attract males by releasing a pheromone from their mandibular glands. There are two Polyergus species groups in North America: an eastern P. lucidus group and a western P. breviceps group. One species of each of these groups, P. lucidus Mayr and P. mexicanus Emery, are sympatric in Missouri. In this study, we characterized the sex pheromones of virgin queens of two species of the P. lucidus group (P. lucidus sensu stricto and P. sanwaldi) and one species of the P. breviceps group (P. mexicanus), and compared these with the previously identified sex pheromone of P. topoffi of the P. breviceps group. We then used sex pheromone blends reconstructed from synthesized components of the two groups to test their efficacy at reproductively isolating these species. We found that methyl 6-methylsalicylate is conserved as the major component of the pheromone blends for both Polyergus species groups; however, methyl (R)-3-ethyl-4-methylpentanoate is the species-specific minor component produced by P. lucidus group queens, and (R)-3-ethyl-4-methylpentan-1-ol is the crucial minor component for P. breviceps group queens. The optimal ratio of the major and minor components for P. lucidus group queens was about 100:1 salicylate to ester. In concurrent field trials in Missouri, males of P. lucidus sensu stricto and P. mexicanus (a member of the P. breviceps group) were attracted almost exclusively to their particular blends of sex pheromone components. To our knowledge, this is the first example of a possible sex-pheromone-based reproductive isolating mechanism in ants.

  1. Binding Specificity of Two PBPs in the Yellow Peach Moth Conogethes punctiferalis (Guenée)

    PubMed Central

    Ge, Xing; Ahmed, Tofael; Zhang, Tiantao; Wang, Zhenying; He, Kanglai; Bai, Shuxiong

    2018-01-01

    Pheromone binding proteins (PBPs) play an important role in olfaction of insects by transporting sex pheromones across the sensillum lymph to odorant receptors. To obtain a better understanding of the molecular basis between PBPs and semiochemicals, we have cloned, expressed, and purified two PBPs (CpunPBP2 and CpunPBP5) from the antennae of Conogethes punctiferalis. Fluorescence competitive binding assays were used to investigate binding affinities of CpunPBP2 and CpunPBP5 to sex pheromone and volatiles. Results indicate both CpunPBP2 and CpunPBP5 bind sex pheromones E10-16:Ald, Z10-16:Ald and hexadecanal with higher affinities. In addition, CpunPBP2 and CpunPBP5 also could bind some odorants, such as 1-tetradecanol, trans-caryopyllene, farnesene, and β-farnesene. Homology modeling to predict 3D structure and molecular docking to predict key binding sites were used, to better understand interactions of CpunPBP2 and CpunPBP5 with sex pheromones E10-16:Ald and Z10-16:Ald. According to the results, Phe9, Phe33, Ser53, and Phe115 were key binding sites predicted for CpunPBP2, as were Ser9, Phe12, Val115, and Arg120 for CpunPBP5. Binding affinities of four mutants of CpunPBP2 and four mutants of CpunPBP5 with the two sex pheromones were investigated by fluorescence competitive binding assays. Results indicate that single nucleotides mutation may affect interactions between PBPs and sex pheromones. Expression levels of CpunPBP2 and CpunPBP5 in different tissues were evaluated using qPCR. Results show that CpunPBP2 and CpunPBP5 were largely amplified in the antennae, with low expression levels in other tissues. CpunPBP2 was expressed mainly in male antennae, whereas CpunPBP5 was expressed mainly in female antennae. These results provide new insights into understanding the recognition between PBPs and ligands. PMID:29666585

  2. Re-evaluation of the PBAN receptor molecule: characterization of PBANR variants expressed in the pheromone glands of moths

    USDA-ARS?s Scientific Manuscript database

    Sex pheromone production in most moths is initiated following pheromone biosynthesis activating neuropeptide receptor (PBANR) activation. PBANR was initially cloned from pheromone glands (PGs) of Helicoverpa zea and Bombyx mori. The B. mori PBANR is characterized by a relatively long C-terminus that...

  3. A new class of mealybug pheromones: a hemiterpene ester in the sex pheromone of Crisicoccus matsumotoi

    NASA Astrophysics Data System (ADS)

    Tabata, Jun; Narai, Yutaka; Sawamura, Nobuo; Hiradate, Syuntaro; Sugie, Hajime

    2012-07-01

    Mealybugs, which include several agricultural pests, are small sap feeders covered with a powdery wax. They exhibit clear sexual dimorphism; males are winged but fragile and short lived, whereas females are windless and less mobile. Thus, sex pheromones emitted by females facilitate copulation and reproduction by serving as a key navigation tool for males. Although the structures of the hitherto known mealybug pheromones vary among species, they have a common structural motif; they are carboxylic esters of monoterpene alcohols with irregular non-head-to-tail linkages. However, in the present study, we isolated from the Matsumoto mealybug, Crisicoccus matsumotoi (Siraiwa), a pheromone with a completely different structure. Using gas chromatography-mass spectrometry and nuclear magnetic resonance spectroscopy, we identified the pheromone as 3-methyl-3-butenyl 5-methylhexanoate. Its attractiveness to males was confirmed in a series of field trapping experiments involving comparison between the isolated natural product and a synthetic sample. This is the first report of a hemiterpene mealybug pheromone. In addition, the acid moiety (5-methylhexanoate) appears to be rare in insect pheromones.

  4. RNA interference of pheromone biosynthesis-activating neuropeptide receptor suppresses mating behavior by inhibiting sex pheromone production in Plutella xylostella (L.).

    PubMed

    Lee, Dae-Weon; Shrestha, Sony; Kim, A Young; Park, Seok Joo; Yang, Chang Yeol; Kim, Yonggyun; Koh, Young Ho

    2011-04-01

    Sex pheromone production is regulated by pheromone biosynthesis-activating neuropeptide (PBAN) in many lepidopteran species. We cloned a PBAN receptor (Plx-PBANr) gene from the female pheromone gland of the diamondback moth, Plutella xylostella (L.). Plx-PBANr encodes 338 amino acids and has conserved structural motifs implicating in promoting G protein coupling and tyrosine-based sorting signaling along with seven transmembrane domains, indicating a typical G protein-coupled receptor. The expression of Plx-PBANr was found only in the pheromone gland of female adults among examined tissues and developmental stages. Heterologous expression in human uterus cervical cancer cells revealed that Plx-PBANr induced significant calcium elevation when challenged with Plx-PBAN. Female P. xylostella injected with double-stranded RNA specific to Plx-PBANr showed suppression of the receptor gene expression and exhibited significant reduction in pheromone biosynthesis, which resulted in loss of male attractiveness. Taken together, the identified PBAN receptor is functional in PBAN signaling via calcium secondary messenger, which leads to activation of pheromone biosynthesis and male attraction. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Listening in Pheromone Plumes: Disruption of Olfactory-Guided Mate Attraction in a Moth by a Bat-Like Ultrasound

    PubMed Central

    Svenssona, Glenn P.; Löfstedt, Christer; Skals, Niels

    2007-01-01

    Nocturnal moths often use sex pheromones to find mates and ultrasonic hearing to evade echolocating bat predators. Male moths, when confronted with both pheromones and sound, thus have to trade off reproduction and predator avoidance depending on the relative strengths of the perceived conflicting stimuli. The ultrasonic hearing of Plodia interpunctella was investigated. A threshold curve for evasive reaction to ultrasound of tethered moths was established, and the frequency of best hearing was found to be between 40 and 70 kHz. Flight tunnel experiments were performed where males orienting in a sex pheromone plume were stimulated with 50 kHz pulses of different intensities. Pheromone-stimulated males showed increased defensive response with increased intensity of the sound stimulus, and the acoustic cue had long-lasting effects on their pheromone-mediated flight, revealing a cost associated with vital evasive behaviours. PMID:20331396

  6. Chemosterilization of male sea lampreys (Petromyzon marinus) does not affect sex pheromone release

    USGS Publications Warehouse

    Siefkes, Michael J.; Bergstedt, Roger A.; Twohey, Michael B.; Li, Weiming

    2003-01-01

    Release of males sterilized by injection with bisazir is an important experimental technique in management of sea lamprey (Petromyzon marinus), an invasive, nuisance species in the Laurentian Great Lakes. Sea lampreys are semelparous and sterilization can theoretically eliminate a male's reproductive capacity and, if the ability to obtain mates is not affected, waste the sex products of females spawning with him. It has been demonstrated that spermiating males release a sex pheromone that attracts ovulating females. We demonstrated that sterilized, spermiating males also released the pheromone and attracted ovulating females. In a two-choice maze, ovulating females increased searching behavior and spent more time in the side of the maze containing chemical stimuli from sterilized, spermiating males. This attraction response was also observed in spawning stream experiments. Also, electro-olfactograms showed that female olfactory organs were equally sensitive to chemical stimuli from sterilized and nonsterilized, spermiating males. Finally, fast atom bombardment mass spectrometry showed that extracts from water conditioned with sterilized and nonsterilized, spermiating males contained the same pheromonal molecule at similar levels. We concluded that injection of bisazir did not affect the efficacy of sex pheromone in sterilized males.

  7. Enhanced attraction of Plutella xylostella (Lepidoptera: Plutellidae) to pheromone-baited traps with the addition of green leaf volatiles.

    PubMed

    Li, Pengyan; Zhu, Junwei; Qin, Yuchuan

    2012-08-01

    Diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), is one of the most serious pests of Brassicaceae crops worldwide. Electrophysiological and behavioral responses of P. xylostella to green leaf volatiles (GLVs) alone or together with its female sex pheromone were investigated in laboratory and field. GLVs 1-hexanol and (Z)-3-hexen-1-ol elicited strong electroantennographic responses from unmated male and female P. xylostella, whereas (Z)-3-hexenyl acetate only produced a relatively weak response. The behavioral responses of unmated moths to GLVs were further tested in Y-tube olfactometer experiments. (E)-2-Hexenal, (Z)-3-hexen-1-ol, and (Z)-3-hexenyl acetate induced attraction of males, reaching up to 50%, significantly higher than the response to the unbaited control arm. In field experiments conducted in 2008 and 2009, significantly more moths were captured in traps baited with synthetic sex pheromone with either (Z)-3-hexenyl acetate alone or a blend of (Z)-3-hexenyl acetate, (Z)-3-hexen-1-ol, and (E)-2-hexenal compared with sex pheromone alone and other blend mixtures. These results demonstrated that GLVs could be used to enhance the attraction of P. xylostella males to sex pheromone-baited traps.

  8. Changes of sex pheromone communication systems associated with tebufenozide and abamectin resistance in diamondback moth, Plutella xylostella (L.).

    PubMed

    Xu, Zhen; Cao, Guang-Chun; Dong, Shuang-Lin

    2010-05-01

    Many insect pests have evolved resistance to insecticides. Along with this evolution, the sex pheromone communication system of insects also may change, and subsequently reproductive isolation may occur between resistant and susceptible populations. In this study of the diamondback moth, we found that resistant females (especially Abamectin resistant females) produced less sex pheromone and displayed a lower level of calling behavior. Resistant males showed higher EAG responsiveness to the sex pheromone mixture of females, and responded to a broader range of ratios between the two major components compared to the responses of susceptible moths. In addition, wind tunnel experiments indicated that changes associated with insecticide resistance in the Abamectin resistant strain (Aba-R) significantly reduced female attractiveness to susceptible males. Furthermore, mating choice experiments confirmed that non-random mating occurred between the two different strains. Aba-R females with an abnormal pheromone production and blend ratio exhibited significantly lower mating percentages with males from either their own strain or other strains, which corroborates the results obtained by the wind tunnel experiments. The implications of this non-random mating for insect speciation and insecticide resistance management are discussed.

  9. A honey bee odorant receptor for the queen substance 9-oxo-2-decenoic acid

    PubMed Central

    Wanner, Kevin W.; Nichols, Andrew S.; Walden, Kimberly K. O.; Brockmann, Axel; Luetje, Charles W.; Robertson, Hugh M.

    2007-01-01

    By using a functional genomics approach, we have identified a honey bee [Apis mellifera (Am)] odorant receptor (Or) for the queen substance 9-oxo-2-decenoic acid (9-ODA). Honey bees live in large eusocial colonies in which a single queen is responsible for reproduction, several thousand sterile female worker bees complete a myriad of tasks to maintain the colony, and several hundred male drones exist only to mate. The “queen substance” [also termed the queen retinue pheromone (QRP)] is an eight-component pheromone that maintains the queen's dominance in the colony. The main component, 9-ODA, acts as a releaser pheromone by attracting workers to the queen and as a primer pheromone by physiologically inhibiting worker ovary development; it also acts as a sex pheromone, attracting drones during mating flights. However, the extent to which social and sexual chemical messages are shared remains unresolved. By using a custom chemosensory-specific microarray and qPCR, we identified four candidate sex pheromone Ors (AmOr10, -11, -18, and -170) from the honey bee genome based on their biased expression in drone antennae. We assayed the pheromone responsiveness of these receptors by using Xenopus oocytes and electrophysiology. AmOr11 responded specifically to 9-ODA (EC50 = 280 ± 31 nM) and not to any of the other seven QRP components, other social pheromones, or floral odors. We did not observe any responses of the other three Ors to any of the eight QRP pheromone components, suggesting 9-ODA is the only QRP component that also acts as a long-distance sex pheromone. PMID:17761794

  10. Interference of plant volatiles on pheromone receptor neurons of male Grapholita molesta (Lepidoptera: Tortricidae).

    PubMed

    Ammagarahalli, Byrappa; Gemeno, César

    2015-10-01

    In moths, sex pheromone components are detected by pheromone-specific olfactory receptor neurons (ph-ORNs) housed in sensilla trichodea in the male antennae. In Grapholita molesta, ph-ORNs are highly sensitive and specific to the individual sex pheromone components, and thus help in the detection and discrimination of the unique conspecific pheromone blend. Plant odors interspersed with a sub-optimal pheromone dose are reported to increase male moth attraction. To determine if the behavioral synergism of pheromone and plant odors starts at the ph-ORN level, single sensillum recordings were performed on Z8-12:Ac and E8-12:Ac ph-ORNs (Z-ORNs and E-ORNs, respectively) stimulated with pheromone-plant volatile mixtures. First, biologically meaningful plant-volatile doses were determined by recording the response of plant-specific ORNs housed in sensilla auricillica and trichodea to several plant odorants. This exploration provided a first glance at plant ORNs in this species. Then, using these plant volatile doses, we found that the spontaneous activity of ph-ORNs was not affected by the stimulation with plant volatiles, but that a binary mixture of sex pheromone and plant odorants resulted in a small (about 15%), dose-independent, but statistically significant, reduction in the spike frequency of Z-ORNs with respect to stimulation with Z8-12:Ac alone. The response of E-ORNs to a combination of E8-12:Ac and plant volatiles was not different from E8-12:Ac alone. We argue that the small inhibition of Z-ORNs caused by physiologically realistic plant volatile doses is probably not fully responsible for the observed behavioral synergism of pheromone and plant odors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Fatty acid and sex pheromone changes and the role of glandular lipids in the Z-strain of the European corn borer, Ostrinia nubilalis (Hübner).

    PubMed

    Foster, S P

    2004-06-01

    Lipids in the sex pheromone gland of females of the Z-strain of Ostrinia nubilalis were analyzed for fatty acyl pheromone analogs (FAPAs) and other potential biosynthetic intermediates. More than 80% of the FAPAs were found in the triacylglycerols (TGs), with smaller amounts found in the phosphatidyl cholines, ethanolamines, and serines. Analysis of the TGs by lipase revealed that the two FAPAs were distributed fairly evenly among all three stereospecific positions. Comparison of changes in titers of key glandular fatty acids with those of pheromone components, with respect to photoperiodic time and age of females, showed that both FAPA and pheromone titers exhibited a cyclical pattern with peaks in the scotophase and valleys in the photophase. However, whereas pheromone titer tended to peak in the first half of the scotophase, FAPA titer peaked at the end of the scotophase. Significantly, the titer of the FAPA of the minor component, (E)-11-tetradecenyl acetate (3% of pheromone), was always much greater than the titer of the FAPA of the major component, (Z)-11-tetradecenyl acetate (97%), of the pheromone. Titer of myristate, an intermediate in pheromone biosynthesis, was also higher during the scotophase than the photophase. However, myristate titer showed a pronounced dip in the middle of the scotophase. These data suggest two roles for glandular lipids in sex pheromone biosynthesis in O. nubilalis. Firstly, they remove excess FAPA of the minor component so the fatty acid reductase system is not presented with a high ratio of this isomer (which would otherwise result from the reductase's own selectivity), which could cause changes in the final pheromone ratio. Secondly, hydrolysis of the large amounts of stored saturated fatty acids from the TGs may provide substrate for pheromone biosynthesis. Copyright 2004 Wiley-Liss, Inc.

  12. A novel bio-engineering approach to generate an eminent surface-functionalized template for selective detection of female sex pheromone of Helicoverpa armigera.

    PubMed

    Moitra, Parikshit; Bhagat, Deepa; Pratap, Rudra; Bhattacharya, Santanu

    2016-11-28

    Plant pests exert serious effects on food production due to which the global crop yields are reduced by ~20-40 percent per year. Hence to meet the world's food needs, loses of food due to crop pests must be reduced. Herein the silicon dioxide based MEMS devices are covalently functionalized for robust and efficient optical sensing of the female sex pheromones of the pests like Helicoverpa armigera for the first time in literature. The functionalized devices are also capable of selectively measuring the concentration of this pheromone at femtogram level which is much below the concentration of pheromone at the time of pest infestation in an agricultural field. Experiments are also performed in a confined region in the presence of male and female pests and tomato plants which directly mimics the real environmental conditions. Again the reversible use and absolutely trouble free transportation of these pheromone nanosensors heightens their potentials for commercial use. Overall, a novel and unique approach for the selective and reversible sensing of female sex pheromones of certain hazardous pests is reported herein which may be efficiently and economically carried forward from the research laboratory to the agricultural field.

  13. A novel bio-engineering approach to generate an eminent surface-functionalized template for selective detection of female sex pheromone of Helicoverpa armigera

    NASA Astrophysics Data System (ADS)

    Moitra, Parikshit; Bhagat, Deepa; Pratap, Rudra; Bhattacharya, Santanu

    2016-11-01

    Plant pests exert serious effects on food production due to which the global crop yields are reduced by ~20-40 percent per year. Hence to meet the world’s food needs, loses of food due to crop pests must be reduced. Herein the silicon dioxide based MEMS devices are covalently functionalized for robust and efficient optical sensing of the female sex pheromones of the pests like Helicoverpa armigera for the first time in literature. The functionalized devices are also capable of selectively measuring the concentration of this pheromone at femtogram level which is much below the concentration of pheromone at the time of pest infestation in an agricultural field. Experiments are also performed in a confined region in the presence of male and female pests and tomato plants which directly mimics the real environmental conditions. Again the reversible use and absolutely trouble free transportation of these pheromone nanosensors heightens their potentials for commercial use. Overall, a novel and unique approach for the selective and reversible sensing of female sex pheromones of certain hazardous pests is reported herein which may be efficiently and economically carried forward from the research laboratory to the agricultural field.

  14. (R)-3-hydroxyhexan-2-one is a major pheromone component of Anelaphus inflaticollis (Coleoptera: Cerambycidae).

    PubMed

    Ray, A M; Swift, I P; Moreira, J A; Millar, J G; Hanks, L M

    2009-10-01

    We report the identification and field bioassays of a major component of the male-produced aggregation pheromone of Anelaphus inflaticollis Chemsak, an uncommon desert cerambycine beetle. Male A. inflaticollis produced a sex-specific blend of components that included (R)-3-hydroxyhexan-2-one, (S)-2-hydroxyhexan-3-one, 2,3-hexanedione, and (2R,3R)- and (2R,3S)-2,3-hexanediols. Field trials with baited bucket traps determined that the reconstructed synthetic pheromone blend and (R)-3-hydroxyhexan-2-one alone attracted adult A. inflaticollis of both sexes, with significantly more beetles being attracted to the blend. We conclude that (R)-3-hydroxyhexan-2-one is a major pheromone component of A. inflaticollis, and our results suggest that one or more of the minor components may further increase attraction of conspecifics. Scanning electron microscopy showed that male A. inflaticollis have pores on the prothorax that are consistent in structure with sex-specific pheromone gland pores in related species. Males also displayed stereotyped calling behavior similar to that observed in other cerambycine species. This study represents the first report of volatile pheromones for a cerambycine species in the tribe Elaphidiini.

  15. Effect of Male House Mouse Pheromone Components on Behavioral Responses of Mice in Laboratory and Field Experiments.

    PubMed

    Musso, Antonia E; Gries, Regine; Zhai, Huimin; Takács, Stephen; Gries, Gerhard

    2017-03-01

    Urine of male house mice, Mus musculus, is known to have primer pheromone effects on the reproductive physiology of female mice. Urine-mediated releaser pheromone effects that trigger certain behavioral responses are much less understood, and no field studies have investigated whether urine deposits by male or female mice, or synthetic mouse pheromone, increase trap captures of mice. In field experiments, we baited traps with bedding soiled with urine and feces of caged female or male mice, and recorded captures of mice in these and in control traps containing clean bedding. Traps baited with female bedding preferentially captured adult males, whereas traps baited with male bedding preferentially captured juvenile and adult females, indicating the presence of male- and female-specific sex pheromones in soiled bedding. Analyses of headspace volatiles emanating from soiled bedding by gas chromatography/mass spectrometry revealed that 3,4-dehydro-exo-brevicomin (DEB) was seven times more prevalent in male bedding and that 2-sec-butyl-4,5-dihydrothiazole (DHT) was male-specific. In a follow-up field experiment, traps baited with DEB and DHT captured 4 times more female mice than corresponding control traps, thus indicating that DEB and DHT are sex attractant pheromone components of house mouse males. Our study provides impetus to identify the sex attractant pheromone of female mice, and to develop synthetic mouse pheromone as a lure to enhance the efficacy of trapping programs for mouse control.

  16. Identification of cuticular lipids eliciting interspecific courtship in the German cockroach, Blattella germanica

    NASA Astrophysics Data System (ADS)

    Eliyahu, Dorit; Nojima, Satoshi; Capracotta, Sonja S.; Comins, Daniel L.; Schal, Coby

    2008-05-01

    The cuticular surface of sexually mature females of the German cockroach contains a sex pheromone that, upon contact with the male’s antennae, elicits a characteristic species-specific courtship behavior. This female-specific pheromone is a blend of several long-chain methyl ketones, alcohols and aldehydes, all derived from prominent cuticular hydrocarbons found in all life stages of this cockroach. We found that contact with the antennae of 5 out of 20 assayed cockroach species elicited courtship behavior in German cockroach males. The heterospecific courtship-eliciting compounds were isolated by behaviorally guided fractionation of the active crude extracts and compared to the native sex pheromone components. We identified two active compounds from the cuticular extract of the Oriental cockroach, Blatta orientalis—11-methylheptacosan-2-one and 27-oxo-11-methylheptacosan-2-one; the former compound was confirmed by synthesis and proved to independently stimulate courtship in German cockroach males. These compounds share common features with, but are distinct from, any of the known contact sex pheromone components. This suggests that sex pheromone reception in the male German cockroach is unusually promiscuous, accepting a wide range of compounds that share certain features with its native pheromone, thus resulting in a broad spectrum of behavioral response to other species. We propose that several characteristics of their mating system—chiefly, absence of closely related species in the anthropogenic environment, resulting in relaxation of selection on sexual communication, and a highly male-biased operational sex ratio—have driven males to respond with extremely low thresholds to a wide spectrum of related compounds.

  17. Evidence for sex pheromones and inbreeding avoidance in select North America yellowjacket species (Hymenoptera: Vespidae)

    USDA-ARS?s Scientific Manuscript database

    Little is known about the roles of sex pheromones in mate-finding behavior of social wasps (Vespidae). Working with the aerial yellowjacket, Dolichovespula arenaria (Fabricius), baldfaced hornet, D. maculata (L.), western yellowjacket, Vespula pensylvanica (Saussure), southern yellowjacket, V. squam...

  18. Phenyl propionate and sex pheromone for monitoring navel orangeworm in the presence of mating disruption

    USDA-ARS?s Scientific Manuscript database

    The recent availability of sex pheromone lures for the navel orangeworm, Amyelois transitella (Walker) (Lepidoptera: Pyralidae), improves options for monitoring this key pest in conventionally-managed almonds. These lures are, however, minimally effective in the presence of mating disruption. Experi...

  19. Managing Codling Moth Clearly and Precisely with Semiochemicals

    USDA-ARS?s Scientific Manuscript database

    Site-specific management practices for codling moth were implemented in ‘Comice’ pear orchards treated with aerosol puffers releasing sex pheromone in southern Oregon during 2008 and 2009. The density of monitoring traps baited with sex pheromone and pear ester was increased and insecticide sprays w...

  20. Larval Diet Affects Male Pheromone Blend in a Laboratory Strain of the Medfly, Ceratitis capitata (Diptera: Tephritidae).

    PubMed

    Merli, Daniele; Mannucci, Barbara; Bassetti, Federico; Corana, Federica; Falchetto, Marco; Malacrida, Anna R; Gasperi, Giuliano; Scolari, Francesca

    2018-04-01

    The Mediterranean fruit fly (medfly) Ceratitis capitata is a polyphagous pest of fruits and crops with a worldwide distribution. Its ability to use different larval hosts may have multiple effects, including impacts on adult reproductive biology. The male sex pheromone, which plays a key role in attracting both other males to lekking arenas and females for mating, is a mixture of chemical compounds including esters, acids, alkanes and terpenes known to differ between laboratory strains and wild-type populations. The relationship between larval diet and adult pheromone composition remains unexplored. Here, we investigated the effect of larval diet, including laboratory media and fresh fruits, on the composition of the male pheromone mixture. Using Headspace Solid Phase Microextraction we collected the pheromone emitted by males reared as larvae on different substrates and found both qualitative and quantitative differences. A number of alkanes appeared to be typical of the pheromone of males reared on wheat bran-based larval medium, and these may be cuticular hydrocarbons involved in chemical communication. We also detected differences in pheromone composition related to adult male age, suggesting that variations in hormonal levels and/or adult diet could also play a role in determining the chemical profile emitted. Our findings highlight the plasticity of dietary responses of C. capitata, which may be important in determining the interactions of this pest with the environment and with conspecifics. These results also have applied relevance to increase the mating competitiveness of mass-reared C. capitata used in Sterile Insect Technique programs.

  1. Individual variation of (S)-4-methyl-3-heptanone in heads of braconid wasp, Leiophron uniformis, and Pogonomyrmex ants indicates costs of semiochemical production

    USDA-ARS?s Scientific Manuscript database

    (S)-4-methyl-3-heptanone is known as an alarm pheromone released from the mandibular glands in heads of red harvester ants (Pogonomyrmex spp.). Using GC-MS, we found that both sexes of the braconid wasp Leiophron uniformis, which is a parasitoid of plant bug pests of agricultural crops, contain 2-6 ...

  2. Sex Pheromone Investigation of Anastrepha serpentina (Diptera: Tephritidae)

    USDA-ARS?s Scientific Manuscript database

    Attraction of virgin females to odor of calling males was demonstrated. This sex pheromone mediated attraction occurred during the latter half of a 13-h photophase but not during the first half of the day. Two major components of emissions of calling males, 2,5-dimethylpyrazine (DMP) and 2,5-dihyd...

  3. Free flight odor tracking in Drosophila: Effect of wing chemosensors, sex and pheromonal gene regulation

    PubMed Central

    Houot, Benjamin; Gigot, Vincent; Robichon, Alain; Ferveur, Jean-François

    2017-01-01

    The evolution of powered flight in insects had major consequences for global biodiversity and involved the acquisition of adaptive processes allowing individuals to disperse to new ecological niches. Flies use both vision and olfactory input from their antennae to guide their flight; chemosensors on fly wings have been described, but their function remains mysterious. We studied Drosophila flight in a wind tunnel. By genetically manipulating wing chemosensors, we show that these structures play an essential role in flight performance with a sex-specific effect. Pheromonal systems are also involved in Drosophila flight guidance: transgenic expression of the pheromone production and detection gene, desat1, produced low, rapid flight that was absent in control flies. Our study suggests that the sex-specific modulation of free-flight odor tracking depends on gene expression in various fly tissues including wings and pheromonal-related tissues. PMID:28067325

  4. Pheromones and exocrine glands in Isoptera.

    PubMed

    Costa-Leonardo, Ana Maria; Haifig, Ives

    2010-01-01

    Termites are eusocial insects that have a peculiar and intriguing system of communication using pheromones. The termite pheromones are composed of a blend of chemical substances and they coordinate different social interactions or activities, including foraging, building, mating, defense, and nestmate recognition. Some of these sociochemicals are volatile, spreading in the air, and others are contact pheromones, which are transmitted by trophallaxis and grooming. Among the termite semiochemicals, the most known are alarm, trail, sex pheromones, and hydrocarbons responsible for the recognition of nestmates. The sources of the pheromones are exocrine glands located all over the termite body. The principal exocrine structures considered pheromone-producing glands in Isoptera are the frontal, mandibular, salivary or labial, sternal, and tergal glands. The frontal gland is the source of alarm pheromone and defensive chemicals, but the mandibular secretions have been little studied and their function is not well established in Isoptera. The secretion of salivary glands involves numerous chemical compounds, some of them without pheromonal function. The worker saliva contains a phagostimulating pheromone and probably a building pheromone, while the salivary reservoir of some soldiers contains defensive chemicals. The sternal gland is the only source of trail-following pheromone, whereas sex pheromones are secreted by two glandular sources, the sternal and tergal glands. To date, the termite semiochemicals have indicated that few molecules are involved in their chemical communication, that is, the same compound may be secreted by different glands, different castes and species, and for different functions, depending on the concentration. In addition to the pheromonal parsimony, recent studies also indicate the occurrence of a synergic effect among the compounds involved in the chemical communication of Isoptera. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. Controlled release of insect sex pheromones from paraffin wax and emulsions.

    PubMed

    Atterholt, C A; Delwiche, M J; Rice, R E; Krochta, J M

    1999-02-22

    Paraffin wax and aqueous paraffin emulsions can be used as controlled release carriers for insect sex pheromones for mating disruption of orchard pests. Paraffin can be applied at ambient temperature as an aqueous emulsion, adheres to tree bark or foliage, releases pheromone for an extended period of time, and will slowly erode from bark and biodegrade in soil. Pheromone emulsions can be applied with simple spray equipment. Pheromone release-rates from paraffin were measured in laboratory flow-cell experiments. Pheromone was trapped from an air stream with an adsorbent, eluted periodically, and quantified by gas chromatography. Pheromone release from paraffin was partition-controlled, providing a constant (zero-order) release rate. A typical paraffin emulsion consisted of 30% paraffin, 4% pheromone, 4% soy oil, 1% vitamin E, 2% emulsifier, and the balance water. Soy oil and vitamin E acted as volatility suppressants. A constant release of oriental fruit moth pheromone from paraffin emulsions was observed in the laboratory for more than 100 days at 27 degreesC, with release-rates ranging from 0.4 to 2 mg/day, depending on the concentration and surface area of the dried emulsion. The use of paraffin emulsions is a viable method for direct application of insect pheromones for mating disruption. Sprayable formulations can be designed to release insect pheromones to the environment at a rate necessary for insect control by mating disruption. At temperatures below 38 degreesC, zero-order release was observed. At 38 degreesC and higher, pheromone oxidation occurred. A partition-controlled release mechanism was supported by a zero-order pheromone release-rate, low air/wax partition coefficients, and pheromone solubility in paraffin.

  6. A sex-inducing pheromone triggers cell cycle arrest and mate attraction in the diatom Seminavis robusta

    PubMed Central

    Moeys, Sara; Frenkel, Johannes; Lembke, Christine; Gillard, Jeroen T. F.; Devos, Valerie; Van den Berge, Koen; Bouillon, Barbara; Huysman, Marie J. J.; De Decker, Sam; Scharf, Julia; Bones, Atle; Brembu, Tore; Winge, Per; Sabbe, Koen; Vuylsteke, Marnik; Clement, Lieven; De Veylder, Lieven; Pohnert, Georg; Vyverman, Wim

    2016-01-01

    Although sexual reproduction is believed to play a major role in the high diversification rates and species richness of diatoms, a mechanistic understanding of diatom life cycle control is virtually lacking. Diatom sexual signalling is controlled by a complex, yet largely unknown, pheromone system. Here, a sex-inducing pheromone (SIP+) of the benthic pennate diatom Seminavis robusta was identified by comparative metabolomics, subsequently purified, and physicochemically characterized. Transcriptome analysis revealed that SIP+ triggers the switch from mitosis-to-meiosis in the opposing mating type, coupled with the transcriptional induction of proline biosynthesis genes, and the release of the proline-derived attraction pheromone. The induction of cell cycle arrest by a pheromone, chemically distinct from the one used to attract the opposite mating type, highlights the existence of a sophisticated mechanism to increase chances of mate finding, while keeping the metabolic losses associated with the release of an attraction pheromone to a minimum. PMID:26786712

  7. Cerambycid Beetle Species with Similar Pheromones are Segregated by Phenology and Minor Pheromone Components.

    PubMed

    Mitchell, Robert F; Reagel, Peter F; Wong, Joseph C H; Meier, Linnea R; Silva, Weliton Dias; Mongold-Diers, Judith; Millar, Jocelyn G; Hanks, Lawrence M

    2015-05-01

    Recent research has shown that volatile sex and aggregation-sex pheromones of many species of cerambycid beetles are highly conserved, with sympatric and synchronic species that are closely related (i.e., congeners), and even more distantly related (different subfamilies), using the same or similar pheromones. Here, we investigated mechanisms by which cross attraction is averted among seven cerambycid species that are native to eastern North America and active as adults in spring: Anelaphus pumilus (Newman), Cyrtophorus verrucosus (Olivier), Euderces pini (Olivier), Neoclytus caprea (Say), and the congeners Phymatodes aereus (Newman), P. amoenus (Say), and P. varius (F.). Males of these species produce (R)-3-hydroxyhexan-2-one as their dominant or sole pheromone component. Our field bioassays support the hypothesis that cross attraction between species is averted or at least minimized by differences among species in seasonal phenology and circadian flight periods of adults, and/or by minor pheromone components that act as synergists for conspecifics and antagonists for heterospecifics.

  8. A novel bio-engineering approach to generate an eminent surface-functionalized template for selective detection of female sex pheromone of Helicoverpa armigera

    PubMed Central

    Moitra, Parikshit; Bhagat, Deepa; Pratap, Rudra; Bhattacharya, Santanu

    2016-01-01

    Plant pests exert serious effects on food production due to which the global crop yields are reduced by ~20–40 percent per year. Hence to meet the world’s food needs, loses of food due to crop pests must be reduced. Herein the silicon dioxide based MEMS devices are covalently functionalized for robust and efficient optical sensing of the female sex pheromones of the pests like Helicoverpa armigera for the first time in literature. The functionalized devices are also capable of selectively measuring the concentration of this pheromone at femtogram level which is much below the concentration of pheromone at the time of pest infestation in an agricultural field. Experiments are also performed in a confined region in the presence of male and female pests and tomato plants which directly mimics the real environmental conditions. Again the reversible use and absolutely trouble free transportation of these pheromone nanosensors heightens their potentials for commercial use. Overall, a novel and unique approach for the selective and reversible sensing of female sex pheromones of certain hazardous pests is reported herein which may be efficiently and economically carried forward from the research laboratory to the agricultural field. PMID:27892521

  9. Genetic architecture of natural variation in cuticular hydrocarbon composition in Drosophila melanogaster.

    PubMed

    Dembeck, Lauren M; Böröczky, Katalin; Huang, Wen; Schal, Coby; Anholt, Robert R H; Mackay, Trudy F C

    2015-11-14

    Insect cuticular hydrocarbons (CHCs) prevent desiccation and serve as chemical signals that mediate social interactions. Drosophila melanogaster CHCs have been studied extensively, but the genetic basis for individual variation in CHC composition is largely unknown. We quantified variation in CHC profiles in the D. melanogaster Genetic Reference Panel (DGRP) and identified novel CHCs. We used principal component (PC) analysis to extract PCs that explain the majority of CHC variation and identified polymorphisms in or near 305 and 173 genes in females and males, respectively, associated with variation in these PCs. In addition, 17 DGRP lines contain the functional Desat2 allele characteristic of African and Caribbean D. melanogaster females (more 5,9-C27:2 and less 7,11-C27:2, female sex pheromone isomers). Disruption of expression of 24 candidate genes affected CHC composition in at least one sex. These genes are associated with fatty acid metabolism and represent mechanistic targets for individual variation in CHC composition.

  10. Sex-pairing pheromones and reproductive isolation in three sympatric Cornitermes species (Isoptera, Termitidae, Syntermitinae).

    PubMed

    Bordereau, Christian; Cancello, Eliana M; Sillam-Dussès, David; Sémon, Etienne

    2011-04-01

    The species-specificity of pairing has been studied in three sympatric Neotropical termites: Cornitermes bequaerti, Cornitermes cumulans and Cornitermes silvestrii (Termitidae, Syntermitinae). Bioassays showed that sex attraction was highly species-specific between C. bequaerti and C. cumulans but not between C. cumulans and C. silvestrii. The sex-pairing pheromone of the three species is secreted by the tergal glands of female alates. It consists of a common compound (3Z,6Z,8E)-dodeca-3,6,8-trien-1-ol. In C. bequaerti, this polyunsaturated alcohol is the only compound of the sex-pairing pheromone, whereas it is associated with the oxygenated sesquiterpene (E)-nerolidol in C. cumulans, and with (E)-nerolidol and (Z)-dodec-3-en-1-ol in C. silvestrii. (3Z,6Z,8E)-Dodeca-3,6,8-trien-1-ol is responsible for sexual attraction, whereas (E)-nerolidol, which is inactive in eliciting attraction of male alates, is responsible for the species-specificity of the attraction. This is the first time that a multicomponent sex-pairing pheromone has been identified in termites. The role of (Z)-dodec-3-en-1-ol present on the surface of the tergal glands of the female alates of C. silvestrii could not be definitively determined, but it is suggested that this compound could be involved in the species-specificity of sex attraction with other sympatric species of Cornitermes. Our study shows that the reproductive isolation in termites is due to a succession of factors, as the chronology of dispersal flights, the species-specificity of sex-pairing pheromones and the species-specific recognition. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Combined Sprays of Sex Pheromone and Insecticides to Attract and Kill Codling Moth

    USDA-ARS?s Scientific Manuscript database

    Field trials were conducted to evaluate the potential of an "attract-and-kill" approach for control of codling moth by adding half-rates of microencapsulated (MEC) lambda-cyhalothrin or acetamiprid to a sex pheromone formulation in Turkey and the USA in 2006. Two apple orchards were divided into six...

  12. Morganella morganii bacteria produces phenol as the sex pheromone of the New Zealand grass grub from tyrosine in the colleterial gland

    NASA Astrophysics Data System (ADS)

    Marshall, D. G.; Jackson, T. A.; Unelius, C. R.; Wee, S. L.; Young, S. D.; Townsend, R. J.; Suckling, D. M.

    2016-08-01

    Costelytra zealandica (Coleoptera: Scarabeidae) is a univoltine endemic species that has colonised and become a major pest of introduced clover and ryegrass pastures that form about half of the land area of New Zealand. Female beetles were previously shown to use phenol as their sex pheromone produced by symbiotic bacteria in the accessory or colleterial gland. In this study, production of phenol was confirmed from the female beetles, while bacteria were isolated from the gland and tested for attractiveness towards grass grub males in traps in the field. The phenol-producing bacterial taxon was identified by partial sequencing of the 16SrRNA gene, as Morganella morganii. We then tested the hypothesis that the phenol sex pheromone is biosynthesized from the amino acid tyrosine by the bacteria. This was shown to be correct, by addition of isotopically labelled tyrosine (13C) to the bacterial broth, followed by detection of the labelled phenol by SPME-GCMS. Elucidation of this pathway provides specific evidence how the phenol is produced as an insect sex pheromone by a mutualistic bacteria.

  13. Moths behaving like butterflies. Evolutionary loss of long range attractant pheromones in castniid moths: a Paysandisia archon model.

    PubMed

    Sarto i Monteys, Víctor; Acín, Patricia; Rosell, Glòria; Quero, Carmen; Jiménez, Miquel A; Guerrero, Angel

    2012-01-01

    In the course of evolution butterflies and moths developed two different reproductive behaviors. Whereas butterflies rely on visual stimuli for mate location, moths use the 'female calling plus male seduction' system, in which females release long-range sex pheromones to attract conspecific males. There are few exceptions from this pattern but in all cases known female moths possess sex pheromone glands which apparently have been lost in female butterflies. In the day-flying moth family Castniidae ("butterfly-moths"), which includes some important crop pests, no pheromones have been found so far. Using a multidisciplinary approach we described the steps involved in the courtship of P. archon, showing that visual cues are the only ones used for mate location; showed that the morphology and fine structure of the antennae of this moth are strikingly similar to those of butterflies, with male sensilla apparently not suited to detect female-released long range pheromones; showed that its females lack pheromone-producing glands, and identified three compounds as putative male sex pheromone (MSP) components of P. archon, released from the proximal halves of male forewings and hindwings. This study provides evidence for the first time in Lepidoptera that females of a moth do not produce any pheromone to attract males, and that mate location is achieved only visually by patrolling males, which may release a pheromone at short distance, putatively a mixture of Z,E-farnesal, E,E-farnesal, and (E,Z)-2,13-octadecadienol. The outlined behavior, long thought to be unique to butterflies, is likely to be widespread in Castniidae implying a novel, unparalleled butterfly-like reproductive behavior in moths. This will also have practical implications in applied entomology since it signifies that the monitoring/control of castniid pests should not be based on the use of female-produced pheromones, as it is usually done in many moths.

  14. Synthetic Sex Pheromone Attracts the Leishmaniasis Vector Lutzomyia longipalpis (Diptera: Psychodidae) to Traps in the Field

    PubMed Central

    Bray, D. P.; Bandi, K. K.; Brazil, R. P.; Oliveira, A. G.; Hamilton, J.G.C.

    2011-01-01

    Improving vector control remains a key goal in reducing the world’s burden of infectious diseases. More cost-effective approaches to vector control are urgently needed, particularly as vaccines are unavailable and treatment is prohibitively expensive. The causative agent of AVL, Leishmania chagasi, Cunha and Chagas (Kinetoplastida: Trypanosomatidae) is transmitted between animal and human hosts by blood-feeding female sand flies, attracted to mating aggregations formed on or above host animals by male-produced sex pheromones. Our results demonstrate the potential of using synthetic pheromones to control populations of Lutzomyia longipalpis Lutz and Neiva (Diptera: Psychodidae), the sand fly vector of one of the world’s most important neglected diseases, American visceral leishmaniasis (AVL). We showed that a synthetic pheromone, (±)-9-methylgermacrene-B, produced from a low-cost plant intermediate, attracted females in the laboratory. Then by formulating dispensers that released this pheromone at a rate similar to that released by aggregating males, we were able to attract flies of both sexes to traps in the field. These dispensers worked equally well when deployed with mechanical light traps and inexpensive sticky traps. If deployed effectively, pheromone-based traps could be used to decrease AVL transmission rates through specific targeting and reduction of L. longipalpis populations. This is the first study to show attraction of a human disease-transmitting insect to a synthetic pheromone in the field, demonstrating the general applicability of this novel approach for developing new tools for use in vector control. PMID:19496409

  15. Synthetic sex pheromone attracts the leishmaniasis vector Lutzomyia longipalpis (Diptera: Psychodidae) to traps in the field.

    PubMed

    Bray, D P; Bandi, K K; Brazil, R P; Oliveira, A G; Hamilton, J G C

    2009-05-01

    Improving vector control remains a key goal in reducing the world's burden of infectious diseases. More cost-effective approaches to vector control are urgently needed, particularly because vaccines are unavailable and treatment is prohibitively expensive. The causative agent of American visceral leishmaniasis (AVL), Leishmania chagasi, Cunha and Chagas (Kinetoplastida: Trypanosomatidae), is transmitted between animal and human hosts by blood-feeding female sand flies attracted to mating aggregations formed on or above host animals by male-produced sex pheromones. Our results show the potential of using synthetic pheromones to control populations of Lutzomyia longipalpis Lutz and Neiva (Diptera: Psychodidae), the sand fly vector of one of the world's most important neglected diseases, AVL. We showed that a synthetic pheromone, (+/-)-9-methylgermacrene-B, produced from a low-cost plant intermediate, attracted females in the laboratory. By formulating dispensers that released this pheromone at a rate similar to that released by aggregating males, we were able to attract flies of both sexes to traps in the field. These dispensers worked equally well when deployed with mechanical light traps and inexpensive sticky traps. If deployed effectively, pheromone-based traps could be used to decrease AVL transmission rates through specific targeting and reduction of L. longipalpis populations. This is the first study to show attraction of a human disease-transmitting insect to a synthetic pheromone in the field, showing the general applicability of this novel approach for developing new tools for use in vector control.

  16. A temporal comparison of sex-aggregation pheromone gland content and dynamics of release in three members of the Lutzomyia longipalpis (Diptera: Psychodidae) species complex.

    PubMed

    González, Mikel A; Bandi, Krishna K; Bell, Melissa J; Brazil, Reginaldo P; Dilger, Erin; Guerrero, Angel; Courtenay, Orin; Hamilton, James G C

    2017-12-01

    Lutzomyia longipalpis is the South American vector of Leishmania infantum, the etiologic agent of visceral leishmaniasis (VL). Male L. longipalpis produce a sex-aggregation pheromone that is critical in mating, yet very little is known about its accumulation over time or factors involved in release. This laboratory study aimed to compare accumulation of pheromone over time and determine factors that might influence release in three members of the L. longipalpis species complex. We investigated male sex-aggregation pheromone gland content at different ages and the release rate of pheromone in the presence or absence of females under different light conditions by gas chromatography-mass spectrometry (GC-MS). Pheromone gland content was determined by extraction of whole males and pheromone release rate was determined by collection of headspace volatiles. Pheromone gland content appeared age-related and pheromone began to accumulate between 6 to 12 h post eclosion and gradually increased until males were 7-9 days old. The greatest amount was detected in 9-day old Campo Grande males ((S)-9-methylgermacrene-B; X ± SE: 203.5 ± 57.4 ng/male) followed by Sobral 2S males (diterpene; 199.9 ± 34.3) and Jacobina males ((1S,3S,7R)-3-methyl-α-himachalene; 128.8 ± 30.3) at 7 days old. Pheromone release was not continuous over time. During a 4-hour period, the greatest quantities of pheromone were released during the first hour, when wing beating activity was most intense. It was then substantially diminished for the remainder of the time. During a 24 h period, 4-5 day old male sand flies released approximately 63 ± 11% of the pheromone content of their glands, depending on the chemotype. The presence of females significantly increased pheromone release rate. The light regime under which the sand flies were held had little influence on pheromone release except on Sobral 2S chemotype. Accumulation of pheromone appears to occur at different rates in the different chemotypes examined and results in differing amounts being present in glands over time. Release of accumulated pheromone is not passive, but depends on biotic (presence of females) and abiotic (light) circumstances. There are marked differences in content and release between the members of the complex suggesting important behavioural, biosynthetic and ecological differences between them.

  17. A temporal comparison of sex-aggregation pheromone gland content and dynamics of release in three members of the Lutzomyia longipalpis (Diptera: Psychodidae) species complex

    PubMed Central

    González, Mikel A.; Bandi, Krishna K.; Bell, Melissa J.; Brazil, Reginaldo P.; Dilger, Erin; Guerrero, Angel; Courtenay, Orin

    2017-01-01

    Background Lutzomyia longipalpis is the South American vector of Leishmania infantum, the etiologic agent of visceral leishmaniasis (VL). Male L. longipalpis produce a sex-aggregation pheromone that is critical in mating, yet very little is known about its accumulation over time or factors involved in release. This laboratory study aimed to compare accumulation of pheromone over time and determine factors that might influence release in three members of the L. longipalpis species complex. Methodology/Principal findings We investigated male sex-aggregation pheromone gland content at different ages and the release rate of pheromone in the presence or absence of females under different light conditions by gas chromatography-mass spectrometry (GC-MS). Pheromone gland content was determined by extraction of whole males and pheromone release rate was determined by collection of headspace volatiles. Pheromone gland content appeared age-related and pheromone began to accumulate between 6 to 12 h post eclosion and gradually increased until males were 7–9 days old. The greatest amount was detected in 9-day old Campo Grande males ((S)-9-methylgermacrene-B; X ± SE: 203.5 ± 57.4 ng/male) followed by Sobral 2S males (diterpene; 199.9 ± 34.3) and Jacobina males ((1S,3S,7R)-3-methyl-α-himachalene; 128.8 ± 30.3) at 7 days old. Pheromone release was not continuous over time. During a 4-hour period, the greatest quantities of pheromone were released during the first hour, when wing beating activity was most intense. It was then substantially diminished for the remainder of the time. During a 24 h period, 4–5 day old male sand flies released approximately 63 ± 11% of the pheromone content of their glands, depending on the chemotype. The presence of females significantly increased pheromone release rate. The light regime under which the sand flies were held had little influence on pheromone release except on Sobral 2S chemotype. Conclusions/Significance Accumulation of pheromone appears to occur at different rates in the different chemotypes examined and results in differing amounts being present in glands over time. Release of accumulated pheromone is not passive, but depends on biotic (presence of females) and abiotic (light) circumstances. There are marked differences in content and release between the members of the complex suggesting important behavioural, biosynthetic and ecological differences between them. PMID:29194438

  18. Synthetic Sex Pheromone in a Long-Lasting Lure Attracts the Visceral Leishmaniasis Vector, Lutzomyia longipalpis, for up to 12 Weeks in Brazil

    PubMed Central

    Bray, Daniel P.; Carter, Vicky; Alves, Graziella B.; Brazil, Reginaldo P.; Bandi, Krishna K.; Hamilton, James G. C.

    2014-01-01

    Current control methodologies have not prevented the spread of visceral leishmaniasis (VL) across Brazil. Here, we describe the development of a new tool for controlling the sand fly vector of the disease: a long-lasting lure, which releases a synthetic male sex pheromone, attractive to both sexes of Lutzomyia longipalpis. This device could be used to improve the effectiveness of residual insecticide spraying as a means of sand fly control, attracting L. longipalpis to insecticide-treated animal houses, where they could be killed in potentially large numbers over a number of weeks. Different lure designs releasing the synthetic pheromone (±)-9-methylgermacrene-B (CAS 183158-38-5) were field-tested in Araçatuba, São Paulo (SP). Experiments compared numbers of sand flies caught overnight in experimental chicken sheds with pheromone lures, to numbers caught in control sheds without pheromone. Prototype lures, designed to last one night, were first used to confirm the attractiveness of the pheromone in SP, and shown to attract significantly more flies to test sheds than controls. Longer-lasting lures were tested when new, and at fortnightly intervals. Lures loaded with 1 mg of pheromone did not attract sand flies for more than two weeks. However, lures loaded with 10 mg of pheromone, with a releasing surface of 15 cm2 or 7.5 cm2, attracted female L. longipalpis for up to ten weeks, and males for up to twelve weeks. Approximately five times more sand flies were caught with 7.5 cm2 10 mg lures when first used than occurred naturally in non-experimental chicken resting sites. These results demonstrate that these lures are suitably long-lasting and attractive for use in sand fly control programmes in SP. To our knowledge, this is the first sex pheromone-based technology targeting an insect vector of a neglected human disease. Further studies should explore the general applicability of this approach for combating other insect-borne diseases. PMID:24651528

  19. Synthetic sex pheromone in a long-lasting lure attracts the visceral leishmaniasis vector, Lutzomyia longipalpis, for up to 12 weeks in Brazil.

    PubMed

    Bray, Daniel P; Carter, Vicky; Alves, Graziella B; Brazil, Reginaldo P; Bandi, Krishna K; Hamilton, James G C

    2014-03-01

    Current control methodologies have not prevented the spread of visceral leishmaniasis (VL) across Brazil. Here, we describe the development of a new tool for controlling the sand fly vector of the disease: a long-lasting lure, which releases a synthetic male sex pheromone, attractive to both sexes of Lutzomyia longipalpis. This device could be used to improve the effectiveness of residual insecticide spraying as a means of sand fly control, attracting L. longipalpis to insecticide-treated animal houses, where they could be killed in potentially large numbers over a number of weeks. Different lure designs releasing the synthetic pheromone (±)-9-methylgermacrene-B (CAS 183158-38-5) were field-tested in Araçatuba, São Paulo (SP). Experiments compared numbers of sand flies caught overnight in experimental chicken sheds with pheromone lures, to numbers caught in control sheds without pheromone. Prototype lures, designed to last one night, were first used to confirm the attractiveness of the pheromone in SP, and shown to attract significantly more flies to test sheds than controls. Longer-lasting lures were tested when new, and at fortnightly intervals. Lures loaded with 1 mg of pheromone did not attract sand flies for more than two weeks. However, lures loaded with 10 mg of pheromone, with a releasing surface of 15 cm2 or 7.5 cm2, attracted female L. longipalpis for up to ten weeks, and males for up to twelve weeks. Approximately five times more sand flies were caught with 7.5 cm2 10 mg lures when first used than occurred naturally in non-experimental chicken resting sites. These results demonstrate that these lures are suitably long-lasting and attractive for use in sand fly control programmes in SP. To our knowledge, this is the first sex pheromone-based technology targeting an insect vector of a neglected human disease. Further studies should explore the general applicability of this approach for combating other insect-borne diseases.

  20. Tales of conjugation and sex pheromones

    PubMed Central

    2011-01-01

    This review covers highlights of the author's experience becoming and working as a plasmid biologist. The account chronicles a progression from studies of ColE1 DNA in Escherichia coli to Gram-positive bacteria with an emphasis on conjugation in enterococci. It deals with gene amplification, conjugative transposons and sex pheromones in the context of bacterial antibiotic resistance. PMID:22016844

  1. 2-Methyl-(Z)-7-Octadecene - the sex pheromone of allopatric Lymantria serva and Lymantria lucescens: two potential invasive species in the Orient

    Treesearch

    Paul W. Schaefer; Gerhard Gries; Regine Gries; Yasutomo Higashiura; Yi-Bin Fan

    2003-01-01

    Our objective was to identify the sex pheromones of two allopatric Lymantria species (Lepidoptera: Lymantriidae): (1) L. serva (Fabricius) in Taiwan whose larvae attack and occasionally defoliate Ficus spp. and (2) L. lucescens (Fabricius) in Honshu, Japan, whose larvae feed on Quercus...

  2. (Z)-9-Pentacosene - contact sex pheromone of the locust borer, Megacyllene robiniae

    Treesearch

    Matthew D. Ginzel; Jocelyn G. Miller; Lawrence M. Hanks

    2003-01-01

    Male locust borers, Megacyllene robiniae (Forster), responded to females only after contacting them with their antennae, indicating that mate recognition was mediated by a contact sex pheromone. GC-MS analyses of whole-body extracts of males and females determined that the profiles of compounds in the extracts were qualitatively similar, but differed...

  3. Combined approaches using sex pheromone and pear ester for behavioral disruption of codling moth (Lepidoptera: Tortricidae)

    USDA-ARS?s Scientific Manuscript database

    Studies utilized the attractive properties of pear ester, ethyl (E,Z)-2,4-decadienoate, and codlemone, (E,E)-8,10-dodecadien-1-ol, the sex pheromone of codling moth, Cydia pomonella (L)., for behavioural disruption. Standard dispensers loaded with codlemone alone or in combination with pear ester (c...

  4. Monitoring codling moth (Lepidoptera: Tortricidae) in orchards treated with pear ester and sex pheromone combo dispensers

    USDA-ARS?s Scientific Manuscript database

    Lures for monitoring codling moth, Cydia pomonella (L.), were tested in apple and walnut blocks treated with Cidetrak CM-DA Combo dispensers loaded with pear ester, ethyl (E, Z)-2,4-decadienoate (PE), and sex pheromone (E,E)-8,10-dodecadien-1-ol (codlemone). Total and female moth catches with combin...

  5. Sex pheromone and period gene characterization of Lutzomyia longipalpis sensu lato (Lutz & Neiva) (Diptera: Psychodidae) from Posadas, Argentina.

    PubMed

    Salomón, Oscar D; Araki, Alejandra S; Hamilton, James Gc; Acardi, Soraya A; Peixoto, Alexandre A

    2010-11-01

    Lutzomyia longipalpis s.l. is the primary vector of Leishmania (L.) infantum in the New World. In this study, male Lutzomyia longipalpis specimens from Posadas, Argentina were characterized for two polymorphic markers: the male sex pheromone and the period (per) gene. The male sex pheromone was identified as (S)-9-methylgermacrene-B, the same compound produced by Lu. longipalpis from Paraguay and many populations from Brazil. The analysis of per gene sequences revealed that the population from Argentina is significantly differentiated from previously studied Brazilian populations. Marker studies could contribute to the understanding of the distribution and spread of urban American visceral leishmaniasis, thus aiding in the design of regional surveillance and control strategies.

  6. Pheromone production, male abundance, body size, and the evolution of elaborate antennae in moths

    PubMed Central

    Symonds, Matthew RE; Johnson, Tamara L; Elgar, Mark A

    2012-01-01

    The males of some species of moths possess elaborate feathery antennae. It is widely assumed that these striking morphological features have evolved through selection for males with greater sensitivity to the female sex pheromone, which is typically released in minute quantities. Accordingly, females of species in which males have elaborate (i.e., pectinate, bipectinate, or quadripectinate) antennae should produce the smallest quantities of pheromone. Alternatively, antennal morphology may be associated with the chemical properties of the pheromone components, with elaborate antennae being associated with pheromones that diffuse more quickly (i.e., have lower molecular weights). Finally, antennal morphology may reflect population structure, with low population abundance selecting for higher sensitivity and hence more elaborate antennae. We conducted a phylogenetic comparative analysis to test these explanations using pheromone chemical data and trapping data for 152 moth species. Elaborate antennae are associated with larger body size (longer forewing length), which suggests a biological cost that smaller moth species cannot bear. Body size is also positively correlated with pheromone titre and negatively correlated with population abundance (estimated by male abundance). Removing the effects of body size revealed no association between the shape of antennae and either pheromone titre, male abundance, or mean molecular weight of the pheromone components. However, among species with elaborate antennae, longer antennae were typically associated with lower male abundances and pheromone compounds with lower molecular weight, suggesting that male distribution and a more rapidly diffusing female sex pheromone may influence the size but not the general shape of male antennae. PMID:22408739

  7. Tissue distribution and lipophorin transport of hydrocarbons and sex pheromones in the house fly, Musca domestica

    PubMed Central

    Schal, Coby; Sevala, Veeresh; de L.Capurro, Margareth; Snyder, Theodore E.; Blomquist, Gary J.; Bagnères, Anne–Geneviève

    2001-01-01

    We investigated the relationship between epicuticular and internal hydrocarbons in the adult house fly, Musca domestica and the distribution of hydrocarbons, including the female sex pheromone component, (Z)-9-tricosene, in tissues. Internal hydrocarbons increased dramatically in relation to sexual maturation and were found in the hemolymph, ovaries, digestive tract, and fat body. (Z)-9-Tricosene comprised a relatively large fraction of the hydrocarbons in the female carcass and hemolymph, and less so in other tissues, while other hydrocarbons were represented in greater amounts in the ovaries than in other tissues. It therefore appears that certain hydrocarbons were selectively provisioned to certain tissues such as the ovaries, from which pheromone was relatively excluded. Both KBr gradient ultracentrifugation and specific immunoprecipitation indicated that > 90% of hemolymph hydrocarbons were associated with a high-density lipophorin (density = 1.09 g ml−1), composed of two apoproteins under denaturing conditions, apolipophorin I (∼240 kD) and apolipophorin II (∼85 kD). Our results support a predicted model (Chino, 1985) that lipophorin is involved in the transport of sex pheromone in M. domestica. In addition to delivering hydrocarbons and sex pheromones to the cuticular surface, we suggest that lipophorin may play an important role in an active mechanism that selectively deposits certain subsets of hydrocarbons at specific tissues. PMID:15455072

  8. Antenna-predominant and male-biased CSP19 of Sesamia inferens is able to bind the female sex pheromones and host plant volatiles.

    PubMed

    Zhang, Ya-Nan; Ye, Zhan-Feng; Yang, Ke; Dong, Shuang-Lin

    2014-02-25

    Insect chemosensory proteins (CSPs) are proposed to capture and transport hydrophobic chemicals across the sensillum lymph to olfactory receptors (ORs), but this has not been clarified in moths. In this study, we built on our previously reported segment sequence work and cloned the full length CSP19 gene (SinfCSP19) from the antennae of Sesamia inferens by using rapid amplification of cDNA ends. Quantitative real time-PCR (qPCR) assays indicated that the gene was expressed in a unique profile, i.e. predominant in antennae and significantly higher in male than in female. To explore the function, recombinant SinfCSP19 was expressed in Escherichia coli cells and purified by Ni-ion affinity chromatography. Binding affinities of the recombinant SinfCSP19 with 39 plant volatiles, 3 sex pheromone components and 10 pheromone analogs were measured using fluorescent competitive binding assays. The results showed that 6 plant volatiles displayed high binding affinities to SinfCSP19 (Ki = 2.12-8.75 μM), and more interesting, the 3 sex pheromone components and analogs showed even higher binding to SinfCSP19 (Ki = 0.49-1.78 μM). Those results suggest that SinfCSP19 plays a role in reception of female sex pheromones of S. inferens and host plant volatiles. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Drones of the dwarf honey bee Apis florea are attracted to (2E)-9-oxodecenoic acid and (2E)-10-hydroxydecenoic acid.

    PubMed

    Nagaraja, Narayanappa; Brockmann, Axel

    2009-06-01

    The queen mandibular gland component (2E)-9-oxodecenoic acid (9-ODA) has been suggested to function as the major sex pheromone component in all honey bee species. In contrast to this hypothesis, chemical analyses showed that in the Asian dwarf honey bee species, Apis florea, a different decenoic acid, (2E)-10-hydroxydecenoic acid (10-HDA), is the major component in the mandibular gland secretion. We show here that A. florea drones are attracted to 9-ODA as well as to 10-HDA. However, 10-HDA attracted higher numbers of drones at lower dosages than 9-ODA, and also was more attractive when directly compared to 9-ODA in a dual attraction experiment. We conclude that 10-HDA has to be viewed as the major sex pheromone in A. florea. The result that both pheromone components are capable of attracting drones when presented alone was unexpected with regard to existing sex pheromone attraction experiments in honey bees.

  10. Uptake of plant-derived specific alkaloids allows males of a butterfly to copulate.

    PubMed

    Honda, Keiichi; Matsumoto, Junya; Sasaki, Ken; Tsuruta, Yoshiaki; Honda, Yasuyuki

    2018-04-03

    Certain butterflies utilize plant-acquired alkaloids for their own chemical defense and/or for producing male sex pheromone; a trait known as pharmacophagy. Males of the danaine butterfly, Parantica sita, have been reported to ingest pyrrolizidine alkaloids (PAs) as adults to produce two PA-derived sex pheromone components, viz. danaidone (major) and 7R-hydroxydanaidal. We found, however, that not all PAs that can be precursors for the pheromone serve for mating success of males. Here we show that although the sex pheromone is regarded as a requisite for successful mating, uptake of specific PA(s) (lycopsamine-type PAs) is also imperative for the males to achieve copulation. The increase in the levels of two biogenic amines, octopamine and/or serotonin, in the brain and thoracic ganglia of males fed with specific PA(s) suggested that these alkaloids most likely enhance male mating activity. The results can present new evidence for the evolutionary provenance of pharmacophagous acquisition of PAs in PA-adapted insects.

  11. Sex-specific triacylglycerides are widely conserved in Drosophila and mediate mating behavior

    PubMed Central

    Chin, Jacqueline SR; Ellis, Shane R; Pham, Huong T; Blanksby, Stephen J; Mori, Kenji; Koh, Qi Ling; Etges, William J; Yew, Joanne Y

    2014-01-01

    Pheromones play an important role in the behavior, ecology, and evolution of many organisms. The structure of many insect pheromones typically consists of a hydrocarbon backbone, occasionally modified with various functional oxygen groups. Here we show that sex-specific triacylclyerides (TAGs) are broadly conserved across the subgenus Drosophila in 11 species and represent a novel class of pheromones that has been largely overlooked. In desert-adapted drosophilids, 13 different TAGs are secreted exclusively by males from the ejaculatory bulb, transferred to females during mating, and function synergistically to inhibit courtship from other males. Sex-specific TAGs are comprised of at least one short branched tiglic acid and a long linear fatty acyl component, an unusual structural motif that has not been reported before in other natural products. The diversification of chemical cues used by desert-adapted Drosophila as pheromones may be related to their specialized diet of fermenting cacti. DOI: http://dx.doi.org/10.7554/eLife.01751.001 PMID:24618898

  12. Pigment-Dispersing Factor Modulates Pheromone Production in Clock Cells that Influence Mating in Drosophila

    PubMed Central

    Krupp, Joshua J.; Billeter, Jean-Christophe; Wong, Amy; Choi, Charles; Nitabach, Michael N.; Levine, Joel D.

    2014-01-01

    Summary Social cues contribute to the circadian entrainment of physiological and behavioral rhythms. These cues supplement the influence of daily and seasonal cycles in light and temperature. In Drosophila, the social environment modulates circadian mechanisms that regulate sex pheromone production and mating behavior. Here we demonstrate that a neuroendocrine pathway, defined by the neuropeptide Pigment-Dispersing Factor (PDF), couples the central nervous system (CNS) to the physiological output of peripheral clock cells that produce pheromones, the oenocytes. PDF signaling from the CNS modulates the phase of the oenocyte clock. Despite its requirement for sustaining free-running locomoter activity rhythms, PDF is not necessary to sustain molecular rhythms in the oenocytes. Interestingly, disruption of the PDF signaling pathway reduces male sex pheromones and results in sex-specific differences in mating behavior. Our findings highlight the role of neuropeptide signaling and the circadian system in synchronizing the physiological and behavioral processes which govern social interactions. PMID:23849197

  13. Investigating a novel pathway by which pheromone-based mating disruption may protect crops

    USDA-ARS?s Scientific Manuscript database

    Pheromone-based mating disruption has been a successful, relatively new technology that growers use to reduce key insect populations. Mating disruption systems function by sending out false plumes of the insect sex pheromones – this interferes with the insect’s ability to find a mate, preempting egg...

  14. Gqalpha-linked PLCbeta and PLCgamma are essential components of the pheromone biosynthesis activating neuropeptide (PBAN) signal transduction cascade

    USDA-ARS?s Scientific Manuscript database

    Sex pheromone production for most moths is regulated by pheromone biosynthesis activating neuropeptide (PBAN). In Bombyx mori, PBAN binding triggers the opening of store-operated Ca2+ channels, suggesting the involvement of a receptor-activated phospholipase C (PLC). In this study, we found that P...

  15. Pheromonal Communication in the European House Dust Mite, Dermatophagoides pteronyssinus

    PubMed Central

    Steidle, Johannes L.M.; Barcari, Elena; Hradecky, Marc; Trefz, Simone; Tolasch, Till; Gantert, Cornelia; Schulz, Stefan

    2014-01-01

    Despite the sanitary importance of the European house dust mite Dermatophagoides pteronyssinus (Trouessart, 1897), the pheromonal communication in this species has not been sufficiently studied. Headspace analysis using solid phase micro extraction (SPME) revealed that nerol, neryl formate, pentadecane, (6Z,9Z)-6,9-heptadecadiene, and (Z)-8-heptadecene are released by both sexes whereas neryl propionate was released by males only. Tritonymphs did not produce any detectable volatiles. In olfactometer experiments, pentadecane and neryl propionate were attractive to both sexes as well as to tritonymphs. (Z)-8-heptadecene was only attractive to male mites. Therefore it is discussed that pentadecane and neryl propionate are aggregation pheromones and (Z)-8-heptadecene is a sexual pheromone of the European house dust mite D. pteronyssinus. To study the potential use of pheromones in dust mite control, long-range olfactometer experiments were conducted showing that mites can be attracted to neryl propionate over distances of at least 50 cm. This indicates that mite pheromones might be useable to monitor the presence or absence of mites in the context of control strategies. PMID:26462831

  16. Orientation of boll weevil,Anthonomus grandis boh. (Coleoptera: Curculionidae), to pheromone and volatile host compound in the laboratory.

    PubMed

    Dickens, J C

    1986-01-01

    Behavioral responses of male and female boll weevils to the aggregation pheromone, grandlure, and the major volatile of cotton, β-bisabolol, were investigated using a new dual-choice olfactometer. Dosage-response experiments revealed both males and females to be attracted by the aggregation pheromone at the 1.0 μg dosage. However, only males were attracted to β-bisabolol (1.0 μg). Both sexes were repelled by the highest dosage ofβ-bisabolol tested (10 μg). In preference experiment, males chose grandlure over β-bisabolol, while both sexes chose the combination of grandlure + β-bisabolol over β-bisabolol alone. There was some evidence for synergism between pheromone and plant odor for the females. The results correlate well with previous electrophysiological and behavioral experiments.

  17. Sex Determination in Ceratopteris richardii Is Accompanied by Transcriptome Changes That Drive Epigenetic Reprogramming of the Young Gametophyte.

    PubMed

    Atallah, Nadia M; Vitek, Olga; Gaiti, Federico; Tanurdzic, Milos; Banks, Jo Ann

    2018-05-02

    The fern Ceratopteris richardii is an important model for studies of sex determination and gamete differentiation in homosporous plants. Here we use RNA-seq to de novo assemble a transcriptome and identify genes differentially expressed in young gametophytes as their sex is determined by the presence or absence of the male-inducing pheromone called antheridiogen. Of the 1,163 consensus differentially expressed genes identified, the vast majority (1,030) are up-regulated in gametophytes treated with antheridiogen. GO term enrichment analyses of these DEGs reveals that a large number of genes involved in epigenetic reprogramming of the gametophyte genome are up-regulated by the pheromone. Additional hormone response and development genes are also up-regulated by the pheromone. This C. richardii gametophyte transcriptome and gene expression dataset will prove useful for studies focusing on sex determination and differentiation in plants. Copyright © 2018, G3: Genes, Genomes, Genetics.

  18. Sex pheromone of the saturniid moth, Hemileuca burnsi, from the western Mojave Desert of California.

    PubMed

    McElfresh, J Steven; Millar, Jocelyn G

    2008-09-01

    The sex pheromone blend of Hemileuca burnsi (Lepidoptera: Saturniidae) from the western Mojave Desert was determined to be a combination of (10E,12Z)-hexadecadien-1-yl acetate (E10,Z12-16:Ac), (10E,12Z)-hexadecadien-1-ol (E10,Z12-16:OH), (10E,12E)-hexadecadien-1-yl acetate (E10,E12-16:Ac), and hexadecyl acetate (16:Ac). (10E,12Z)-Hexadecadienal (E10,Z12-16:Ald) was tentatively identified in pheromone gland extracts based on electroantennographic responses and, when added to the above blend, it enhanced trap captures at low doses. The mean ratio of the compounds in extracts of pheromone glands was 100:23:232:14:0.4 (E10,Z12-16:Ac: E10,E12-16:Ac: 16:Ac: E10,Z12-16:OH: E10,Z12-16:Ald). Field trials indicated that although E10,Z12-16:Ac and E10,Z12-16:OH were essential for attraction, the two-component blend was not attractive by itself. Addition of the three other compounds was necessary for maximum attraction, rendering this the most complicated pheromone blend described for a Hemileuca species to date. Similarities between the sex pheromone of H. burnsi and that of the allopatric Hemileuca electra electra and differences between the blends of H. burnsi and that of the sympatric H. electra mojavensis support a case for reproductive character displacement in the pheromone communication channel of H. electra.

  19. Sex pheromone in the moth Heliothis virescens is produced as a mixture of two pools: de novo and via precursor storage in glycerolipids.

    PubMed

    Foster, Stephen P; Anderson, Karin G; Casas, Jérôme

    2017-08-01

    Most species of moths use a female-produced volatile sex pheromone, typically produced via de novo fatty acid synthesis in a specialized gland, for communication among mates. While de novo biosynthesis of pheromone (DNP) is rapid, suggesting transient precursor acids, substantial amounts of pheromone precursor (and other) acids are stored, predominantly in triacylglycerols in the pheromone gland. Whether these stored acids are converted to pheromone later or not has been the subject of some debate. Using a tracer/tracee approach, in which we fed female Heliothis virescens U- 13 C-glucose, we were able to distinguish two pools of pheromone, in which precursors were temporally separated (after and before feeding on labeled glucose): DNP synthesized from a mixed tracer/tracee acetyl CoA pool after feeding, and pheromone made from precursor acids primarily synthesized before feeding, which we call recycled precursor fat pheromone (RPP). DNP titer varied from high (during scotophase) to low (photophase) and with presence/absence of pheromone biosynthesis activating neuropeptide (PBAN), in accord with native pheromone titer previously observed. By contrast, RPP was constant throughout the photoperiod and did not change with PBAN presence/absence. The amount of RPP (6.3-10.3 ng/female) was typically much lower than that of DNP, especially during the scotophase (peak DNP, 105 ng/female). We propose an integral role for stored fats in pheromone biosynthesis, in which they are hydrolyzed and re-esterified throughout the photoperiod, with a small proportion of liberated precursor acyl CoAs being converted to pheromone. During the sexually active period, release of PBAN results in increased flux of glucose (from trehalose) and hydrolyzed acids entering the mitochondria, producing acetyl CoA precursor for de novo fat and pheromone biosynthesis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Evaluation of pheromone release from commercial mating disruption dispensers.

    PubMed

    Tomaszewska, Elizabeth; Hebert, Vincent R; Brunner, Jay F; Jones, Vincent P; Doerr, Mike; Hilton, Richard

    2005-04-06

    Pome fruit growers and crop consultants have expressed concerns about the seasonal release performance of commercial codling moth mating disruption dispenser products. Because of these concerns, we developed a laboratory flow-through volatile collection system (VCS) for measuring the volatile release of the codling moth sex pheromone, codlemone, from commercially available hand-applied dispensers. Under controlled air-flow and temperature conditions, the released vapor was trapped onto a polyurethane foam adsorbent followed by solvent extraction, solvent reduction, and GC/MS determination. Method recovery and breakthrough validations were performed to demonstrate system reliability before determining codlemone release from commercial dispensers field-aged over 140 days. The volatile collection was carried out in a consistent manner among five dispenser types most commonly used by growers, so that direct comparison of performance could be made. The comparison showed differences in the amount of pheromone released and in the patterns of release throughout the season between dispenser types. The variation in release performance demonstrates the need for routine evaluation of commercially marketed mating disruption dispensers. We believe that the simple and cost-effective volatile collection system can assist pheromone dispenser manufacturers in determining seasonal dispenser performance before new products are introduced into the commercial market and in rapidly verifying dispenser release when field-aged dispenser efficacy is in question.

  1. Factors Influencing Male Plutella xylostella (Lepidoptera: Plutellidae) Capture Rates in Sex Pheromone-Baited Traps on Canola in Western Canada.

    PubMed

    Miluch, C E; Dosdall, L M; Evenden, M L

    2014-12-01

    Optimization of male moth trapping rates in sex pheromone-baited traps plays a key role in managing Plutella xylostella (L.). We investigated various ways to increase the attractiveness of pheromone-baited traps to P. xylostella in canola agroecosystems in AB, Canada. Factors tested included pheromone blend and dose, addition of a green leaf volatile to the pheromone at different times during the season, lure type, trap color, and height. The industry standard dose of 100 μg of pheromone (four-component blend) per lure (ConTech Enterprises Inc., Delta, British Columbia [BC], Canada) captured the most moths in the two lure types tested. Traps baited with pheromone released from gray rubber septa captured more males than those baited with red rubber septa. Traps baited with lures in which Z11-16: Ac is the main component attracted significantly more moths than those in which Z11-16: Ald is the main component. The addition of the green leaf volatile, (Z)-3-hexenyl acetate, to pheromone at a range of doses, did not increase moth capture at any point during the canola growing season. Unpainted white traps captured significantly more male moths than pheromone-baited traps that were painted yellow. Trap height had no significant effect on moth capture. Recommendations for monitoring P. xylostella in canola agroecosystems of western Canada include using a pheromone blend with Z11-16: Ac as the main component released from gray rubber septa at a dose of 100 μg. © 2014 Entomological Society of America.

  2. Identification and Characterization of Pheromone Receptors and Interplay between Receptors and Pheromone Binding Proteins in the Diamondback Moth, Plutella xyllostella

    PubMed Central

    Sun, Mengjing; Liu, Yang; Walker, William B.; Liu, Chengcheng; Lin, Kejian; Gu, Shaohua; Zhang, Yongjun; Zhou, Jingjiang; Wang, Guirong

    2013-01-01

    Moths depend on olfactory cues such as sex pheromones to find and recognize mating partners. Pheromone receptors (PRs) and Pheromone binding proteins (PBPs) are thought to be associated with olfactory signal transduction of pheromonal compounds in peripheral olfactory reception. Here six candidate pheromone receptor genes in the diamondback moth, Plutella xyllostella were identified and cloned. All of the six candidate PR genes display male-biased expression, which is a typical characteristic of pheromone receptors. In the Xenopus-based functional study and in situ hybridization, PxylOR4 is defined as another pheromone receptor in addition to the previously characterized PxylOR1. In the study of interaction between PRs and PBPs, PxylPBPs could increase the sensitivity of the complex expressing oocyte cells to the ligand pheromone component while decreasing the sensitivity to pheromone analogs. We deduce that activating pheromone receptors in olfactory receptor neurons requires some role of PBPs to pheromone/PBP complex. If the chemical signal is not the pheromone component, but instead, a pheromone analog with a similar structure, the complex would have a decreased ability to activate downstream pheromone receptors. PMID:23626773

  3. Identification of functionally important residues in the silkmoth pheromone biosynthesis-activating neuropeptide receptor, an insect ortholog of the vertebrate Neuromedin U Receptor

    USDA-ARS?s Scientific Manuscript database

    The biosynthesis of sex pheromone components in many lepidopteran insects is regulated by interactions between pheromone biosynthesis-activating neuropeptide (PBAN) and the PBAN receptor (PBANR), a class-A G-protein-coupled receptor (GPCR). To identify functionally important amino acid residues in t...

  4. Low doses of a neonicotinoid insecticide modify pheromone response thresholds of central but not peripheral olfactory neurons in a pest insect

    PubMed Central

    Rabhi, Kaouther K.; Deisig, Nina; Demondion, Elodie; Le Corre, Julie; Robert, Guillaume; Tricoire-Leignel, Hélène; Lucas, Philippe; Gadenne, Christophe; Anton, Sylvia

    2016-01-01

    Insect pest management relies mainly on neurotoxic insecticides, including neonicotinoids, leaving residues in the environment. There is now evidence that low doses of insecticides can have positive effects on pest insects by enhancing various life traits. Because pest insects often rely on sex pheromones for reproduction, and olfactory synaptic transmission is cholinergic, neonicotinoid residues could modify chemical communication. We recently showed that treatments with different sublethal doses of clothianidin could either enhance or decrease behavioural sex pheromone responses in the male moth, Agrotis ipsilon. We investigated now effects of the behaviourally active clothianidin doses on the sensitivity of the peripheral and central olfactory system. We show with extracellular recordings that both tested clothianidin doses do not influence pheromone responses in olfactory receptor neurons. Similarly, in vivo optical imaging does not reveal any changes in glomerular response intensities to the sex pheromone after clothianidin treatments. The sensitivity of intracellularly recorded antennal lobe output neurons, however, is upregulated by a lethal dose 20 times and downregulated by a dose 10 times lower than the lethal dose 0. This correlates with the changes of behavioural responses after clothianidin treatment and suggests the antennal lobe as neural substrate involved in clothianidin-induced behavioural changes. PMID:26842577

  5. Application of a Sex Pheromone, Pheromone Analogs, and Verticillium lecanii for Management of Heterodera glycines

    PubMed Central

    Meyer, S. L. F.; Huettel, R. N.

    1996-01-01

    A mutant strain of the fungus Verticillium lecanii and selected bioregulators of Heterodera glycines were evaluated for their potential to reduce population densities of the nematode on soybean under greenhouse conditions. The bioregulators tested were the H. glycines sex pheromone vanillic acid and the pheromone analogs syringic acid, isovanillic acid, ferulic acid, 4-hydroxy-3-methoxybenzonitrile, and methyl vanillate. A V. lecanii-vanillic acid combination and a V. lecanii-syringic acid combination were also applied as treatments. Syringic acid, 4-hydroxy-3-methoxybenzonitrile, V. lecanii, V. lecanii-vanillic acid, and V. lecanii-syringic acid significantly reduced nematode population densities in the greenhouse tests. Results with vanillic acid, isovanillic acid, and ferulic acid treatments were variable. Methyl vanillate did not significantly reduce cyst nematode population densities in the greenhouse tests. PMID:19277343

  6. The response to selection for broad male response to female sex pheromone and its implications for divergence in close-range mating behavior in the European corn borer moth, Ostrinia nubilalis.

    PubMed

    Droney, David C; Musto, Callie J; Mancuso, Katie; Roelofs, Wendell L; Linn, Charles E

    2012-12-01

    Coordinated sexual communication systems, seen in many species of moths, are hypothesized to be under strong stabilizing natural selection. Stabilized communication systems should be resistant to change, but there are examples of species/populations that show great diversification. A possible solution is that it is directional sexual selection on variation in male response that drives evolution. We tested a component of this model by asking whether 'rare' males (ca. 5 % of all males in a population) of the European corn borer moth (ECB), Ostrinia nubilalis, that respond to the sex pheromones of both ECB and a different Ostrinia species (O. furnacalis, the Asian corn borer, ACB), might play an important role in diversification. We specifically tested, via artificial selection, whether this broad male response has an evolvable genetic component. We increased the frequency of broad male response from 5 to 70 % in 19 generations, showing that broad-responding males could be important for the evolution of novel communication systems in ECB. We did not find a broader range of mating acceptance of broad males by females of the base population, however, suggesting that broad response would be unlikely to increase in frequency without the involvement of other factors. However, we found that ECB selection-line females accepted a broader range of courting males, including those of ACB, than did females of the base population. Thus, a genetic correlation exists between broad, long-range response to female sex pheromone and the breadth of female acceptance of males at close range. These results are discussed in the context of evolution of novel communication systems in Ostrinia.

  7. Sexual Communication in the Drosophila Genus.

    PubMed

    Bontonou, Gwénaëlle; Wicker-Thomas, Claude

    2014-06-18

    In insects, sexual behavior depends on chemical and non-chemical cues that might play an important role in sexual isolation. In this review, we present current knowledge about sexual behavior in the Drosophila genus. We describe courtship and signals involved in sexual communication, with a special focus on sex pheromones. We examine the role of cuticular hydrocarbons as sex pheromones, their implication in sexual isolation, and their evolution. Finally, we discuss the roles of male cuticular non-hydrocarbon pheromones that act after mating: cis-vaccenyl acetate, developing on its controversial role in courtship behavior and long-chain acetyldienylacetates and triacylglycerides, which act as anti-aphrodisiacs in mated females.

  8. 'Does my Diet Affect my Perfume?' Identification and Quantification of Cuticular Compounds in Five Drosophila melanogaster Strains Maintained over 300 Generations on Different Diets.

    PubMed

    Pavković-Lučić, Sofija; Todosijević, Marina; Savić, Tatjana; Vajs, Vlatka; Trajković, Jelena; Anđelković, Boban; Lučić, Luka; Krstić, Gordana; Makarov, Slobodan; Tomić, Vladimir; Miličić, Dragana; Vujisić, Ljubodrag

    2016-02-01

    Cuticular hydrocarbons (CHCs) in Drosophila melanogaster represent the basis of chemical communication being involved in many important biological functions. The aim of this study was to characterize chemical composition and variation of cuticular profiles in five D. melanogaster strains. These strains were reared for approximately 300 generations on five diets: standard cornmeal medium and substrates prepared with apple, banana, tomato, and carrot. Differences in quantity and/or quality in CHCs were assumed as a result of activation of different metabolic pathways involved in food digestion and adaptations to the particular diet type. In total, independently of sex and strain, 66 chemical compounds were identified. In females of all strains, 60 compounds were identified, while, in males, 47 compounds were extracted. Certain new chemical compounds for D. melanogaster were found. MANOVA confirmed that CHC amounts significantly depend on sex and substrates, as well as on their interactions. Discriminant analysis revealed that flies belonging to 'apple' and 'carrot' strains exhibited the most noticeable differences in CHC repertoires. A non-hydrocarbon pheromone, cis-vaccenyl acetate (cVA) also contributed to the variation in the pheromone bouquet among the strains. Variability detected in CHCs and cVA may be used in the explanation of differences in mating behaviour previously determined in analyzed fly strains. Copyright © 2016 Verlag Helvetica Chimica Acta AG, Zürich.

  9. Characterization of Spodoptera litura (Lepidoptera: Noctuidae) Takeout Genes and Their Differential Responses to Insecticides and Sex Pheromone

    PubMed Central

    Zhang, Ling; Jiang, Yanyun

    2017-01-01

    Abstract Spodoptera litura (S. litura) is one of the most serious agricultural insect pests worldwide. Takeout (TO) is involved in a variety of physiological and biochemical pathways and performs various biological functions. We characterized 18 S. litura TO genes and investigated their differential responses to insecticides and sex pheromones. All predicted TO proteins have two Cysteines that are unique to the N-terminal of the TO family proteins and contain four highly conserved Prolines, two Glycines, and one Tyrosine. The expression levels of seven TO genes in the male antennae were higher than those in the female antennae, although the expression levels of 10 TO genes in the female were higher than those in the male. We investigated the effects of the sex pheromone and three insecticides, that is, chlorpyrifos (Ch), emamectin benzoate (EB), and fipronil (Fi), on the expression levels of the TO genes in the antennae. The results showed that the insecticides and sex pheromone affect the expression levels of the TO genes. One day after the treatment, the expression levels of SlTO15 and SlTO4 were significantly induced by the Ch/EB treatment. Two days after the S. litura moths were treated with Fi, the expression of SlTO4 was significantly induced (28.35-fold). The expression of SlTO10 changed significantly after the Ch and EB treatment, although the expression of SlTO12 and SlTO15 was inhibited by the three insecticides after two days of treatment. Our results lay a foundation for studying the role of TO genes in the interaction between insecticides and sex pheromone. PMID:28973484

  10. A multifunctional desaturase involved in the biosynthesis of the processionary moth sex pheromone

    PubMed Central

    Serra, Montserrat; Piña, Benjamin; Abad, José Luis; Camps, Francisco; Fabriàs, Gemma

    2007-01-01

    The sex pheromone of the female processionary moth, Thaumetopoea pityocampa, is a unique C16 enyne acetate that is biosynthesized from palmitic acid. Three consecutive desaturation reactions transform this saturated precursor into the triunsaturated fatty acyl intermediate: formation of (Z)-11-hexadecenoic acid, acetylenation to 11-hexadecynoic acid, and final Δ13 desaturation to (Z)-13-hexadecen-11-ynoic acid. By using degenerate primers common to all reported insect desaturases, a single cDNA sequence was isolated from total RNA of T. pityocampa female pheromone glands. The full-length transcript of this putative desaturase was expressed in elo1Δ/ole1Δ yeast mutants (both elongase 1 and Δ9 desaturase-deficient) for functional assays. The construct fully rescued the Δole1 yeast phenotype, confirming its desaturase activity. Analysis of the unsaturated products from transformed yeast extracts demonstrated that the cloned enzyme showed Δ11 desaturase, Δ11 acetylenase, and Δ13 desaturase activities. Therefore, this single desaturase may account for the three desaturation steps involved in the sex pheromone biosynthetic pathway of the processionary moth. PMID:17921252

  11. Courtship Pheromone Use in a Model Urodele, the Mexican Axolotl (Ambystoma mexicanum)

    PubMed Central

    Maex, Margo; Van Bocxlaer, Ines; Mortier, Anneleen; Proost, Paul; Bossuyt, Franky

    2016-01-01

    Sex pheromones have been shown to constitute a crucial aspect of salamander reproduction. Until now, courtship pheromones of Salamandridae and Plethodontidae have been intensively studied, but information on chemical communication in other urodelan families is essentially lacking. The axolotl (Ambystoma mexicanum, Ambystomatidae) has a courtship display that suggests a key role for chemical communication in the orchestration of its sexual behavior, but no sex pheromones have yet been characterized from this species. Here we combined whole transcriptome analyses of the male cloaca with proteomic analyses of water in which axolotls were allowed to court to show that male axolotls secrete multiple ca. 20 kDa glycosylated sodefrin precursor-like factor (SPF) proteins during courtship. In combination with phylogenetic analyses, our data show that the male cloaca essentially secretes a courtship-specific clade of SPF proteins that is orthologous to salamandrid courtship pheromones. In addition, we identified an SPF protein for which no orthologs have been described from other salamanders so far. Overall, our study advocates a central role for SPF proteins during the courtship display of axolotls and adds knowledge on pheromone use in a previously unexplored deep evolutionary branch of salamander evolution. PMID:26842386

  12. Courtship Pheromone Use in a Model Urodele, the Mexican Axolotl (Ambystoma mexicanum).

    PubMed

    Maex, Margo; Van Bocxlaer, Ines; Mortier, Anneleen; Proost, Paul; Bossuyt, Franky

    2016-02-04

    Sex pheromones have been shown to constitute a crucial aspect of salamander reproduction. Until now, courtship pheromones of Salamandridae and Plethodontidae have been intensively studied, but information on chemical communication in other urodelan families is essentially lacking. The axolotl (Ambystoma mexicanum, Ambystomatidae) has a courtship display that suggests a key role for chemical communication in the orchestration of its sexual behavior, but no sex pheromones have yet been characterized from this species. Here we combined whole transcriptome analyses of the male cloaca with proteomic analyses of water in which axolotls were allowed to court to show that male axolotls secrete multiple ca. 20 kDa glycosylated sodefrin precursor-like factor (SPF) proteins during courtship. In combination with phylogenetic analyses, our data show that the male cloaca essentially secretes a courtship-specific clade of SPF proteins that is orthologous to salamandrid courtship pheromones. In addition, we identified an SPF protein for which no orthologs have been described from other salamanders so far. Overall, our study advocates a central role for SPF proteins during the courtship display of axolotls and adds knowledge on pheromone use in a previously unexplored deep evolutionary branch of salamander evolution.

  13. Variation in and responses to brood pheromone of the honey bee (Apis mellifera L.).

    PubMed

    Metz, Bradley N; Pankiw, Tanya; Tichy, Shane E; Aronstein, Katherine A; Crewe, Robin M

    2010-04-01

    The 10 fatty acid ester components of brood pheromone were extracted from larvae of different populations of USA and South African honey bees and subjected to gas chromatography-mass spectrometry quantitative analysis. Extractable amounts of brood pheromone were not significantly different by larval population; however, differences in the proportions of components enabled us to classify larval population of 77% of samples correctly by discriminant analysis. Honeybee releaser and primer pheromone responses to USA, Africanized and-European pheromone blends were tested. Texas-Africanized and Georgia-European colonies responded with a significantly greater ratio of returning pollen foragers when treated with a blend from the same population than from a different population. There was a significant interaction of pheromone blend by adult population source among Georgia-European bees for modulation of sucrose response threshold, a primer response. Brood pheromone blend variation interacted with population for pollen foraging response of colonies, suggesting a self recognition cue for this pheromone releaser behavior. An interaction of pheromone blend and population for priming sucrose response thresholds among workers within the first week of adult life suggested a more complex interplay of genotype, ontogeny, and pheromone blend.

  14. Molecular elements of pheromone detection in the female moth, Heliothis virescens.

    PubMed

    Zielonka, Monika; Breer, Heinz; Krieger, Jürgen

    2018-06-01

    Pheromones play pivotal roles in the reproductive behavior of moths, most prominently for the mate finding of male moths. Accordingly, the molecular basis for the detection of female-released pheromones by male moths has been studied in great detail. In contrast, little is known about how females can detect pheromone components released by themselves or by conspecifics. In this study, we assessed the antenna of female Heliothis virescens for elements of pheromone detection. In accordance with previous findings that female antennae respond to the sex pheromone component (Z)-9-tetradecenal, we identified olfactory sensory neurons that express its cognate receptor, the receptor type HR6. All HR6 cells coexpressed the "sensory neuron membrane protein 1" (SNMP1) and were associated with supporting cells expressing the pheromone-binding proteins PBP1 and PBP2. These features are reminiscent to male antennae and point to congruent mechanisms for pheromone detection in the two sexes. Further analysis of the SNMP1-expressing cells revealed a higher number in females compared to males. Moreover, in females, the SNMP1 neurons were arranged in clusters, which project their dendrites into a common sensillum, whereas in males there were only solitary SNMP1-neurons and only 1 per sensillum. Not all SNMP1 positive cells in female antennae expressed HR6 but instead the putative pheromone receptors HR11 and HR18, respectively. Neurons expressing 1 of the 3 receptor types were assigned to different sensilla. Together the data indicate that on the antenna of females, sensory neurons in a subset of sensilla trichodea are equipped with molecular elements, which render them responsive to pheromones. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  15. Characterization of Odorant Receptors from a Non-ditrysian Moth, Eriocrania semipurpurella Sheds Light on the Origin of Sex Pheromone Receptors in Lepidoptera

    PubMed Central

    Yuvaraj, Jothi Kumar; Corcoran, Jacob A.; Andersson, Martin N.; Newcomb, Richard D.; Anderbrant, Olle; Löfstedt, Christer

    2017-01-01

    Abstract Pheromone receptors (PRs) are essential in moths to detect sex pheromones for mate finding. However, it remains unknown from which ancestral proteins these specialized receptors arose. The oldest lineages of moths, so-called non-ditrysian moths, use short-chain pheromone components, secondary alcohols, or ketones, so called Type 0 pheromones that are similar to many common plant volatiles. It is, therefore, possible that receptors for these ancestral pheromones evolved from receptors detecting plant volatiles. Hence, we identified the odorant receptors (ORs) from a non-ditrysian moth, Eriocrania semipurpurella (Eriocraniidae, Lepidoptera), and performed functional characterization of ORs using HEK293 cells. We report the first receptors that respond to Type 0 pheromone compounds; EsemOR3 displayed highest sensitivity toward (2S, 6Z)-6-nonen-2-ol, whereas EsemOR5 was most sensitive to the behavioral antagonist (Z)-6-nonen-2-one. These receptors also respond to plant volatiles of similar chemical structures, but with lower sensitivity. Phylogenetically, EsemOR3 and EsemOR5 group with a plant volatile-responding receptor from the tortricid moth Epiphyas postvittana (EposOR3), which together reside outside the previously defined lepidopteran PR clade that contains the PRs from more derived lepidopteran families. In addition, one receptor (EsemOR1) that falls at the base of the lepidopteran PR clade, responded specifically to β-caryophyllene and not to any other additional plant or pheromone compounds. Our results suggest that PRs for Type 0 pheromones have evolved from ORs that detect structurally-related plant volatiles. They are unrelated to PRs detecting pheromones in more derived Lepidoptera, which, in turn, also independently may have evolved a novel function from ORs detecting plant volatiles. PMID:29126322

  16. Fungal Sex: The Basidiomycota.

    PubMed

    Coelho, Marco A; Bakkeren, Guus; Sun, Sheng; Hood, Michael E; Giraud, Tatiana

    2017-06-01

    Fungi of the Basidiomycota, representing major pathogen lineages and mushroom-forming species, exhibit diverse means to achieve sexual reproduction, with particularly varied mechanisms to determine compatibilities of haploid mating partners. For species that require mating between distinct genotypes, discrimination is usually based on both the reciprocal exchange of diffusible mating pheromones, rather than sexes, and the interactions of homeodomain protein signals after cell fusion. Both compatibility factors must be heterozygous in the product of mating, and genetic linkage relationships of the mating pheromone/receptor and homeodomain genes largely determine the complex patterns of mating-type variation. Independent segregation of the two compatibility factors can create four haploid mating genotypes from meiosis, referred to as tetrapolarity. This condition is thought to be ancestral to the basidiomycetes. Alternatively, cosegregation by linkage of the two mating factors, or in some cases the absence of the pheromone-based discrimination, yields only two mating types from meiosis, referred to as bipolarity. Several species are now known to have large and highly rearranged chromosomal regions linked to mating-type genes. At the population level, polymorphism of the mating-type genes is an exceptional aspect of some basidiomycete fungi, where selection under outcrossing for rare, intercompatible allelic variants is thought to be responsible for numbers of mating types that may reach several thousand. Advances in genome sequencing and assembly are yielding new insights by comparative approaches among and within basidiomycete species, with the promise to resolve the evolutionary origins and dynamics of mating compatibility genetics in this major eukaryotic lineage.

  17. Sex stimulant and attractant in the Indian meal moth and in the almond moth.

    PubMed

    Brady, U E; Tumlinson, J H; Brownlee, R G; Silverstein, R M

    1971-02-26

    cis-9, trans-12-Tetradecadien-1-yl acetate was isolated from the female Indian meal moth, Plodia interpunctella (Hübner), and the female almond moth, Cadra cautella (Walker). It is the major if not the sole component of the sex stimulatory and attractant pheromone of female Plodia. It is present in the pheromone of the female Cadra along with at least one synergist.

  18. Female Sex Pheromone in Trails of the Minute Pirate Bug, Orius minutus (L).

    PubMed

    Maeda, Taro; Fujiwara-Tsujii, Nao; Yasui, Hiroe; Matsuyama, Shigeru

    2016-05-01

    Orius minutus (L.) (Heteroptera: Anthocoridae) is a natural enemy of agricultural pests such as thrips, aphids, and various newly hatched insect juveniles. In this study, we conducted 1) behavioral assays for evidence of contact sex pheromone activity in trails of O. minutus, and 2) chemical analysis to identify the essential chemical components of the trails. Males showed arrestment to trails of mature virgin females but not to trails from either conspecific nymphs or immature females. Females also showed arrestment to trails from conspecific males, although the response was weaker than that exhibited by males. The activity of female trails lasted for at least 46 h after deposition. Males showed a response irrespective of mating experience. Following confirmation that a contact sex pheromone was present in the trails of female O. minutus, we used a bioassay-driven approach to isolate the active chemicals. After fractionation on silica gel, the n-hexane fraction was found to be biologically active to males. A major compound in the active fraction was (Z)-9-nonacosene; this compound was found only in trail extracts of mature virgin females. Synthetic (Z)-9-nonacosene arrested O. minutus males, indicating that it is the major active component of the contact sex pheromone in the trails of female O. minutus.

  19. Behavioral and electroantennographic responses of the tea mosquito, Helopeltis theivora, to female sex pheromones.

    PubMed

    Sachin, James P; Selvasundaram, R; Babu, A; Muraleedharan, N

    2008-12-01

    Responses of the tea mosquito, Helopeltis theivora (Waterhouse) (Hemiptera: Miridae), a major pest of tea, to female sex pheromone compounds were measured using wind tunnel and electroantennogram (EAG) bioassays. In the wind tunnel, male tea mosquitoes were found to be most attracted to a dichloromethane extract of the female thorax. Gas chromatography-mass spectrometry (GC-MS) analysis of female thoracic extracts and dynamic head space samples of virgin females showed the presence of five compounds: (Z)-3 hexenyl acetate, (Z)-3 hexenyl butanoate, (E)-2 hexenyl pentanoate, 2,4 dimethyl pentanal, and (E)-2-hexenol. Male tea mosquitoes were attracted to blends of (Z)-3 hexenyl acetate and (E)-2-hexenol in the wind tunnel with a 1:5 ratio eliciting the greatest response. EAG recordings of male antenna confirmed the ability of this blend to evoke antennal responses in male insects. Similarly active EAG responses were recorded toward female thoracic extract and a blend of (Z)-3 hexenyl acetate and (E)-2-hexenol. Behavioral responses of adult males are mediated by a blend of volatile female sex pheromone compounds, (Z)-3 hexenyl acetate and (E)-2-hexenol, at a ratio of 1:5. This female sex pheromone blend may be useful for tea mosquito control and management programs.

  20. Mammalian Pheromones

    PubMed Central

    Liberles, Stephen D.

    2015-01-01

    Mammalian pheromones control a myriad of innate social behaviors and acutely regulate hormone levels. Responses to pheromones are highly robust, reproducible, and stereotyped and likely involve developmentally predetermined neural circuits. Here, I review several facets of pheromone transduction in mammals, including (a) chemosensory receptors and signaling components of the main olfactory epithelium and vomeronasal organ involved in pheromone detection; (b) pheromone-activated neural circuits subject to sex-specific and state-dependent modulation; and (c) the striking chemical diversity of mammalian pheromones, which range from small, volatile molecules and sulfated steroids to large families of proteins. Finally, I review (d ) molecular mechanisms underlying various behavioral and endocrine responses, including modulation of puberty and estrous; control of reproduction, aggression, suckling, and parental behaviors; individual recognition; and distinguishing of own species from predators, competitors, and prey. Deconstruction of pheromone transduction mechanisms provides a critical foundation for understanding how odor response pathways generate instinctive behaviors. PMID:23988175

  1. The scent of inbreeding: a male sex pheromone betrays inbred males

    PubMed Central

    van Bergen, Erik; Brakefield, Paul M.; Heuskin, Stéphanie; Zwaan, Bas J.; Nieberding, Caroline M.

    2013-01-01

    Inbreeding depression results from mating among genetically related individuals and impairs reproductive success. The decrease in male mating success is usually attributed to an impact on multiple fitness-related traits that reduce the general condition of inbred males. Here, we find that the production of the male sex pheromone is reduced significantly by inbreeding in the butterfly Bicyclus anynana. Other traits indicative of the general condition, including flight performance, are also negatively affected in male butterflies by inbreeding. Yet, we unambiguously show that only the production of male pheromones affects mating success. Thus, this pheromone signal informs females about the inbreeding status of their mating partners. We also identify the specific chemical component (hexadecanal) probably responsible for the decrease in male mating success. Our results advocate giving increased attention to olfactory communication as a major causal factor of mate-choice decisions and sexual selection. PMID:23466986

  2. Attraction of Cerambycid Beetles to Their Aggregation-Sex Pheromones Is Influenced by Volatiles From Host Plants of Their Larvae.

    PubMed

    Wong, J C H; Zou, Y; Millar, J G; Hanks, L M

    2017-06-01

    Here, we describe a field experiment that tested for attraction of cerambycid beetles to odors from angiosperm hosts, and whether plant volatiles also serve to enhance attraction of beetles to their aggregation-sex pheromones. Traps were baited with a blend of synthesized chemicals that are common pheromone components of species in the subfamilies Cerambycinae and Lamiinae. The source of plant volatiles was chipped wood from trees of three angiosperm species, as well as from one nonhost, gymnosperm species. Bioassays were conducted in wooded areas of east-central Illinois. Traps were baited with the pheromone blend alone, the blend + wood chips from one tree species, wood chips alone, or a solvent control lure. Seven species of cerambycids were significantly attracted to the pheromone blend, with or without wood chips. In two cases, wood chips from angiosperms appeared to enhance attraction to pheromones, whereas they inhibited attraction in another three cases. Pine chips did not strongly influence attraction of any species. Overall, our results suggest that host plant volatiles from wood chips may improve trap catch with synthesized pheromones for some cerambycid species, but the effect is not general, necessitating case-by-case testing to determine how individual target species are affected. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Pheromone biosynthetic pathways in the moths Heliothis subflexa and Heliothis virescens.

    PubMed

    Choi, Man-Yeon; Groot, Astrid; Jurenka, Russell A

    2005-06-01

    Sex pheromones of many moth species have relatively simple structures consisting of a hydrocarbon chain with a functional group and one to several double bonds. These sex pheromones are derived from fatty acids through specific biosynthetic pathways. We investigated the incorporation of deuterium-labeled tetradecanoic, hexadecanoic, and octadecanoic acid precursors into pheromone components of Heliothis subflexa and Heliothis virescens. The two species utilize (Z)11-hexadecenal as the major pheromone component, which is produced by Delta11 desaturation of hexadecanoic acid. H. subflexa also produced (Z)11-hexadecanol and (Z)-11-hexadecenyl acetate via Delta11 desaturation. In H. subflexa, octadecanoic acid was used to biosynthesize the minor pheromone components (Z)9-hexadecenal, (Z)9-hexadecenol, and (Z)9-hexadecenyl acetate. These minor components are produced by Delta11 desaturation of octadecanoic acid followed by one round of chain-shortening. In contrast, H. virescens used hexadecanoic acid as a substrate to form (Z)11-hexadecenal and (Z)11-hexadecenol and hexadecenal. H. virescens also produced (Z)9-tetradecenal by Delta11 desaturation of the hexadecanoic acid followed by one round of chain-shortening and reduction. Tetradecanoic acid was not utilized as a precursor to form Z9-14:Ald in H. virescens. This labeling pattern indicates that the Delta11 desaturase is the only active desaturase present in the pheromone gland cells of both species.

  4. The sex specific metabolic footprint of Oithona davisae

    NASA Astrophysics Data System (ADS)

    Heuschele, Jan; Nemming, Louise; Tolstrup, Lea; Kiørboe, Thomas; Nylund, Göran M.; Selander, Erik

    2016-11-01

    In pelagic copepods, the group representing the highest animal abundances on earth, males and females have distinct morphological and behavioural differences. In several species female pheromones are known to facilitate the mate finding process, and copepod exudates induce changes in physiology and behaviour in several phytoplankton species. Here we tested whether the sexual dimorphism in morphology and behaviour is mirrored in the exudate composition of males and females. We find differences in the exudate composition, with females seemingly producing more compounds. While we were able to remove the sex pheromones from the water by filtration through reverse phase solid phase extraction columns, we were not able to recover the active pheromone from the solid phase.

  5. Optimum timing of insecticide applications against diamondback moth Plutella xylostella in cole crops using threshold catches in sex pheromone traps.

    PubMed

    Reddy, G V; Guerrero, A

    2001-01-01

    Field trials were conducted in cabbage (Brassica oleracea var capitata), cauliflower (B oleracea var botrytis) and knol khol (B oleracea gongylodes) crops at two different locations in Karnataka State (India) to optimize the timing of insecticide applications to control the diamondback moth, Plutella xylostella, using sex pheromone traps. Our results indicate that applications of cartap hydrochloride as insecticide during a 12-24 h period after the pheromone traps had caught on average 8, 12 and 16 males per trap per night in cabbage, cauliflower and knol khol, respectively, were significantly more effective than regular insecticide sprays at 7, 9, 12 or 15 days after transplantation. This was demonstrated by estimation of the mean number of eggs and larvae per plant, the percentage of holes produced, as well as the marketable yield of the three crops at each location. A good correlation between the immature stages, infestation level, the estimated crop yield and the number of moths caught in pheromone traps was also found, indicating the usefulness of pheromone-based monitoring traps to predict population densities of the pest.

  6. Identification of the sex pheromone of the invasive scale Acutaspis albopicta (Hemiptera: Diaspididae), arriving in California on shipments of avocados from Mexico.

    PubMed

    Millar, Jocelyn G; Chinta, Satya P; McElfresh, J Steven; Robinson, Lindsay J; Morse, Joseph G

    2012-04-01

    As a result of relaxation of importation restrictions ordered by the Animal and Plant Health Inspection Service of the U.S. Department of Agriculture, shipments of fresh avocados from Mexico began entering California year-round in 2007, despite the fact that these shipments were heavily infested with a number of exotic and potentially invasive armored scale species that are not thought to be present in California. Here, we report the identification of the sex pheromone of one of these species, Acutaspis albopicta (Cockerell), from a quarantine colony of these insects initiated from specimens collected from commercial shipments of Mexican avocados. The compound was identified as [(1S,3S)-2,2-dimethyl-3-(prop-1-en-2-yl)cyclobutyl)]methyl (R)-2-methylbutanoate, and was similar in structure to the pheromones of several other scale and mealybug species. In laboratory bioassays, the pheromone was highly attractive to male scales in microgram doses. The pheromone will provide a very sensitive and selective tool for detection of the scale to try and prevent its permanent establishment in California.

  7. Simultaneously hermaphroditic shrimp use lipophilic cuticular hydrocarbons as contact sex pheromones.

    PubMed

    Zhang, Dong; Terschak, John A; Harley, Maggy A; Lin, Junda; Hardege, Jörg D

    2011-04-20

    Successful mating is essentially a consequence of making the right choices at the correct time. Animals use specific strategies to gain information about a potential mate, which is then applied to decision-making processes. Amongst the many informative signals, odor cues such as sex pheromones play important ecological roles in coordinating mating behavior, enabling mate and kin recognition, qualifying mate choice, and preventing gene exchange among individuals from different populations and species. Despite overwhelming behavioral evidence, the chemical identity of most cues used in aquatic organisms remains unknown and their impact and omnipresence have not been fully recognized. In many crustaceans, including lobsters and shrimps, reproduction happens through a cascade of events ranging from initial attraction to formation of a mating pair eventually leading to mating. We examined the hypothesis that contact pheromones on the female body surface of the hermaphroditic shrimp Lysmata boggessi are of lipophilic nature, and resemble insect cuticular hydrocarbon contact cues. Via chemical analyses and behavioural assays, we show that newly molted euhermaphrodite-phase shrimp contain a bouquet of odor compounds. Of these, (Z)-9-octadecenamide is the key odor with hexadecanamide and methyl linoleate enhancing the bioactivity of the pheromone blend. Our results show that in aquatic systems lipophilic, cuticular hydrocarbon contact sex pheromones exist; this raises questions on how hydrocarbon contact signals evolved and how widespread these are in the marine environment.

  8. Comparative Toxicity of Selected Aviation Fuels as Measured by Insect Bioassay

    DTIC Science & Technology

    1982-07-01

    structure in termites , ants, and bees can be used to contrast the toxicity of a compound. A comparative study of toxicity can also be made using a...and also serve as sex pheromones , kairomones, and defensive compounds. Cuticular hydrocarbons vary significantly in structure and amount by species...in flour beetles. Flour beetles contain hydrocarbons which function as sex pheromones and also contain a significant amount of 1-pentadecene which

  9. [Affecting factors on capture efficacy of sex pheromone traps for Cydia pomonella L].

    PubMed

    Zhai, Xiao-Wei; Liu, Wan-Xue; Zhang, Gui-Fen; Wan, Fang-Hao; Xu, Hong-Fu; Pu, Chong-Jian

    2010-03-01

    Codling moth Cydia pomonella L. (Lepidoptera, Olethreutidae) is the most serious pest of orchards, and one of the most important quarantine pests in China. This paper studied the effects of the color, shape, placement location, lure color, and lure number of sex pheromone traps on the capture efficacy for C. pomonella L. male moth. It was found that the capture efficacy of white and green traps was two times higher than that of blue trap (P < 0.05), and water bottle and triangle traps had no significant difference in their trapping effect. The traps hung in the middle of crown gave two times higher catches than those hung in the upper portion of crown (P < 0.05). Lure color and number had no significant effect on the capture efficacy. The present results could be used in better monitoring C. pomonella by using its sex pheromones.

  10. Selection on male sex pheromone composition contributes to butterfly reproductive isolation

    PubMed Central

    Bacquet, P. M. B.; Brattström, O.; Wang, H.-L.; Allen, C. E.; Löfstedt, C.; Brakefield, P. M.; Nieberding, C. M.

    2015-01-01

    Selection can facilitate diversification by inducing character displacement in mate choice traits that reduce the probability of maladaptive mating between lineages. Although reproductive character displacement (RCD) has been demonstrated in two-taxa case studies, the frequency of this process in nature is still debated. Moreover, studies have focused primarily on visual and acoustic traits, despite the fact that chemical communication is probably the most common means of species recognition. Here, we showed in a large, mostly sympatric, butterfly genus, a strong pattern of recurrent RCD for predicted male sex pheromone composition, but not for visual mate choice traits. Our results suggest that RCD is not anecdotal, and that selection for divergence in male sex pheromone composition contributed to reproductive isolation within the Bicyclus genus. We propose that selection may target olfactory mate choice traits as a more common sensory modality to ensure reproductive isolation among diverging lineages than previously envisaged. PMID:25740889

  11. Transcriptome exploration of the sex pheromone gland of Lutzomyia longipalpis (Diptera: Psychodidae: Phlebotominae).

    PubMed

    González-Caballero, Natalia; Valenzuela, Jesus G; Ribeiro, José M C; Cuervo, Patricia; Brazil, Reginaldo P

    2013-03-07

    Molecules involved in pheromone biosynthesis may represent alternative targets for insect population control. This may be particularly useful in managing the reproduction of Lutzomyia longipalpis, the main vector of the protozoan parasite Leishmania infantum in Latin America. Besides the chemical identity of the major components of the L. longipalpis sex pheromone, there is no information regarding the molecular biology behind its production. To understand this process, obtaining information on which genes are expressed in the pheromone gland is essential. In this study we used a transcriptomic approach to explore the pheromone gland and adjacent abdominal tergites in order to obtain substantial general sequence information. We used a laboratory-reared L. longipalpis (one spot, 9-Methyl GermacreneB) population, captured in Lapinha Cave, state of Minas Gerais, Brazil for this analysis. From a total of 3,547 cDNA clones, 2,502 high quality sequences from the pheromone gland and adjacent tissues were obtained and assembled into 1,387 contigs. Through blast searches of public databases, a group of transcripts encoding proteins potentially involved in the production of terpenoid precursors were identified in the 4th abdominal tergite, the segment containing the pheromone gland. Among them, protein-coding transcripts for four enzymes of the mevalonate pathway such as 3-hydroxyl-3-methyl glutaryl CoA reductase, phosphomevalonate kinase, diphosphomevalonate descarboxylase, and isopentenyl pyrophosphate isomerase were identified. Moreover, transcripts coding for farnesyl diphosphate synthase and NADP+ dependent farnesol dehydrogenase were also found in the same tergite. Additionally, genes potentially involved in pheromone transportation were identified from the three abdominal tergites analyzed. This study constitutes the first transcriptomic analysis exploring the repertoire of genes expressed in the tissue containing the L. longipalpis pheromone gland as well as the flanking tissues. Using a comparative approach, a set of molecules potentially present in the mevalonate pathway emerge as interesting subjects for further study regarding their association to pheromone biosynthesis. The sequences presented here may be used as a reference set for future research on pheromone production or other characteristics of pheromone communication in this insect. Moreover, some matches for transcripts of unknown function may provide fertile ground of an in-depth study of pheromone-gland specific molecules.

  12. An anti-steroidogenic inhibitory primer pheromone in male sea lamprey (Petromyzon marinus)

    USGS Publications Warehouse

    Chung-Davidson, Yu-Wen; Wang, Huiyong; Bryan, Mara B.; Wu, Hong; Johnson, Nicholas S.; Li, Weiming

    2013-01-01

    Reproductive functions can be modulated by both stimulatory and inhibitory primer pheromones released by conspecifics. Many stimulatory primer pheromones have been documented, but relatively few inhibitory primer pheromones have been reported in vertebrates. The sea lamprey male sex pheromone system presents an advantageous model to explore the stimulatory and inhibitory primer pheromone functions in vertebrates since several pheromone components have been identified. We hypothesized that a candidate sex pheromone component, 7α, 12α-dihydroxy-5α-cholan-3-one-24-oic acid (3 keto-allocholic acid or 3kACA), exerts priming effects through the hypothalamic-pituitary-gonadal (HPG) axis. To test this hypothesis, we measured the peptide concentrations and gene expressions of lamprey gonadotropin releasing hormones (lGnRH) and the HPG output in immature male sea lamprey exposed to waterborne 3kACA. Exposure to waterborne 3kACA altered neuronal activation markers such as jun and jun N-terminal kinase (JNK), and lGnRH mRNA levels in the brain. Waterborne 3kACA also increased lGnRH-III, but not lGnRH-I or -II, in the forebrain. In the plasma, 3kACA exposure decreased all three lGnRH peptide concentrations after 1 h exposure. After 2 h exposure, 3kACA increased lGnRHI and -III, but decreased lGnRH-II peptide concentrations in the plasma. Plasma lGnRH peptide concentrations showed differential phasic patterns. Group housing condition appeared to increase the averaged plasma lGnRH levels in male sea lamprey compared to isolated males. Interestingly, 15α-hydroxyprogesterone (15α-P) concentrations decreased after prolonged 3kACA exposure (at least 24 h). To our knowledge, this is the only known synthetic vertebrate pheromone component that inhibits steroidogenesis in males.

  13. Sublethal Effects of Neonicotinoid Insecticide on Calling Behavior and Pheromone Production of Tortricid Moths.

    PubMed

    Navarro-Roldán, Miguel A; Gemeno, César

    2017-09-01

    In moths, sexual behavior combines female sex pheromone production and calling behavior. The normal functioning of these periodic events requires an intact nervous system. Neurotoxic insecticide residues in the agroecosystem could impact the normal functioning of pheromone communication through alteration of the nervous system. In this study we assess whether sublethal concentrations of the neonicotinoid insecticide thiacloprid, that competitively modulates nicotinic acetylcholine receptors at the dendrite, affect pheromone production and calling behavior in adults of three economically important tortricid moth pests; Cydia pomonella (L.), Grapholita molesta (Busck), and Lobesia botrana (Denis & Schiffermüller). Thiacloprid significantly reduced the amount of calling in C. pomonella females at LC 0.001 (a lethal concentration that kills only 1 in 10 5 individuals), and altered its calling period at LC 1 , and in both cases the effect was dose-dependent. In the other two species the effect was similar but started at higher LCs, and the effect was relatively small in L. botrana. Pheromone production was altered only in C. pomonella, with a reduction of the major compound, codlemone, and one minor component, starting at LC 10 . Since sex pheromones and neonicotinoids are used together in the management of these three species, our results could have implications regarding the interaction between these two pest control methods.

  14. Small Cages with Insect Couples Provide a Simple Method for a Preliminary Assessment of Mating Disruption

    PubMed Central

    Briand, Françoise; Guerin, Patrick M.; Charmillot, Pierre-Joseph; Kehrli, Patrik

    2012-01-01

    Mating disruption by sex pheromones is a sustainable, effective and widely used pest management scheme. A drawback of this technique is its challenging assessment of effectiveness in the field (e.g., spatial scale, pest density). The aim of this work was to facilitate the evaluation of field-deployed pheromone dispensers. We tested the suitability of small insect field cages for a pre-evaluation of the impact of sex pheromones on mating using the grape moths Eupoecilia ambiguella and Lobesia botrana, two major pests in vineyards. Cages consisted of a cubic metal frame of 35 cm sides, which was covered with a mosquito net of 1500 μm mesh size. Cages were installed in the centre of pheromone-treated and untreated vineyards. In several trials, 1 to 20 couples of grape moths per cage were released for one to three nights. The proportion of mated females was between 15 to 70% lower in pheromone-treated compared to untreated vineyards. Overall, the exposure of eight couples for one night was adequate for comparing different control schemes. Small cages may therefore provide a fast and cheap method to compare the effectiveness of pheromone dispensers under standardised semi-field conditions and may help predict the value of setting-up large-scale field trials. PMID:22645483

  15. Sex-specific mating pheromones in the nematode Panagrellus redivivus

    USDA-ARS?s Scientific Manuscript database

    Despite advances in medicine and crop genetics, nematodes remain significant human pathogens and agricultural pests. This warrants investigation of alternative strategies for pest control, such as interference with pheromone-mediated reproduction. Because only two nematode species have had their phe...

  16. Pheromonal Cues Deposited by Mated Females Convey Social Information about Egg-Laying Sites in Drosophila Melanogaster.

    PubMed

    Duménil, Claire; Woud, David; Pinto, Francesco; Alkema, Jeroen T; Jansen, Ilse; Van Der Geest, Anne M; Roessingh, Sanne; Billeter, Jean-Christophe

    2016-03-01

    Individuals can make choices based on information learned from others, a phenomenon called social learning. How observers differentiate between which individual they should or should not learn from is, however, poorly understood. Here, we showed that Drosophila melanogaster females can influence the choice of egg-laying site of other females through pheromonal marking. Mated females mark territories of high quality food by ejecting surplus male sperm containing the aggregation pheromone cis-11-vaccenyl acetate (cVA) and, in addition, deposit several sex- and species-specific cuticular hydrocarbon (CHC) pheromones. These pheromonal cues affect the choices of other females, which respond by preferentially laying eggs on the marked food. This system benefits both senders and responders, as communal egg laying increases offspring survival. Virgin females, however, do not elicit a change in the egg-laying decision of mated females, even when food has been supplemented with ejected sperm from mated females, thus indicating the necessity for additional cues. Genetic ablation of either a female's CHC pheromones or those of their mate results in loss of ability of mated females to attract other females. We conclude that mated females use a pheromonal marking system, comprising cVA acquired from male ejaculate with sex- and species-specific CHCs produced by both mates, to indicate egg-laying sites. This system ensures information reliability because mated, but not virgin, females have both the ability to generate the pheromone blend that attracts other flies to those sites and a direct interest in egg-laying site quality.

  17. Binding affinity of five PBPs to Ostrinia sex pheromones

    USDA-ARS?s Scientific Manuscript database

    Pheromone binding proteins (PBPs) of Lepidoptera function in chemical communication, mate attraction and recognition, and may be involved in reinforcement of sexual isolation between recently diverged species. Directional selection was previously predicted between PBP3 orthologs of the corn borer si...

  18. Synthetic sex pheromone attracts the leishmaniasis vector Lutzomyia longipalpis to experimental chicken sheds treated with insecticide

    PubMed Central

    2010-01-01

    Background Current strategies for controlling American visceral leishmaniasis (AVL) have been unable to prevent the spread of the disease across Brazil. With no effective vaccine and culling of infected dogs an unpopular and unsuccessful alternative, new tools are urgently needed to manage populations of the sand fly vector, Lutzomyia longipalpis Lutz and Neiva (Diptera: Psychodidae). Here, we test two potential strategies for improving L. longipalpis control using the synthetic sand fly pheromone (±)-9-methylgermacrene-B: the first in conjunction with spraying of animal houses with insecticide, the second using coloured sticky traps. Results Addition of synthetic pheromone resulted in greater numbers of male and female sand flies being caught and killed at experimental chicken sheds sprayed with insecticide, compared to pheromone-less controls. Furthermore, a ten-fold increase in the amount of sex pheromone released from test sheds increased the number of females attracted and subsequently killed. Treating sheds with insecticide alone resulted in a significant decrease in numbers of males attracted to sheds (compared to pre-spraying levels), and a near significant decrease in numbers of females. However, this effect was reversed through addition of synthetic pheromone at the time of insecticide spraying, leading to an increase in number of flies attracted post-treatment. In field trials of commercially available different coloured sticky traps, yellow traps caught more males than blue traps when placed in chicken sheds. In addition, yellow traps fitted with 10 pheromone lures caught significantly more males than pheromone-less controls. However, while female sand flies showed a preference for both blue and yellow pheromone traps sticky traps over white traps in the laboratory, neither colour caught significant numbers of females in chicken sheds, either with or without pheromone. Conclusions We conclude that synthetic pheromone could currently be most effectively deployed for sand fly control through combination with existing insecticide spraying regimes. Development of a standalone pheromone trap remains a possibility, but such devices may require an additional attractive host odour component to be fully effective. PMID:20222954

  19. Monitoring and Detecting the Cigarette Beetle (Coleoptera: Anobiidae) Using Ultraviolet (LED) Direct and Reflected Lights and/or Pheromone Traps in a Laboratory and a Storehouse.

    PubMed

    Miyatake, Takahisa; Yokoi, Tomoyuki; Fuchikawa, Taro; Korehisa, Nobuyoshi; Kamura, Toru; Nanba, Kana; Ryouji, Shinsuke; Kamioka, Nagisa; Hironaka, Mantaro; Osada, Midori; Hariyama, Takahiko; Sasaki, Rikiya; Shinoda, Kazutaka

    2016-12-01

    The cigarette beetle, Lasioderma serricorne (F.), is an important stored-product pest worldwide because it damages dry foods. Detection and removal of the female L. serricorne will help to facilitate the control of the insect by removal of the egg-laying populations. In this manuscript, we examined the responses by L. serricorne to direct and reflected light in transparent cube (50 m3) set in a chamber (200 m3) and a stored facility with both direct and reflected UV-LED lights. The study also examined the responses by the beetles to light in the presence or absence of pheromone in traps that are placed at different heights. Reflected light attracted more beetles than the direct light in the experimental chamber, but the direct light traps attracted more beetles than the reflected light traps in the storehouse. Pheromone traps attracted only males; UV-LED traps attracted both sexes. The UV-LED traps with a pheromone, i.e., combined trap, attracted more males than UV-LED light traps without a pheromone, whereas the attraction of UV-LED traps with and without the pheromone was similar in females. The results suggest that UV-LED light trap combined with a sex pheromone is the best solution for monitoring and controlling L. serricorne. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Rapid modulation of gene expression profiles in the telencephalon of male goldfish following exposure to waterborne sex pheromones.

    PubMed

    Lado, Wudu E; Zhang, Dapeng; Mennigen, Jan A; Zamora, Jacob M; Popesku, Jason T; Trudeau, Vance L

    2013-10-01

    Sex pheromones rapidly affect endocrine physiology and behaviour, but little is known about their effects on gene expression in the neural tissues that mediate olfactory processing. In this study, we exposed male goldfish for 6h to waterborne 17,20βP (4.3 nM) and PGF2α (3 nM), the main pre-ovulatory and post-ovulatory pheromones, respectively. Both treatments elevated milt volume (P=0.001). Microarray analysis of male telencephalon following PGF2α treatment identified 71 unique transcripts that were differentially expressed (q<5%; 67 up, 4 down). Functional annotation of these regulated genes indicates that PGF2α pheromone exposure affects diverse biological processes including nervous system functions, energy metabolism, cholesterol/lipoprotein transport, translational regulation, transcription and chromatin remodelling, protein processing, cytoskeletal organization, and signalling. By using real-time RT-PCR, we further validated three candidate genes, ependymin-II, calmodulin-A and aldolase C, which exhibited 3-5-fold increase in expression following PGF2α exposure. Expression levels of some other genes that are thought to be important for reproduction were also determined using real-time RT-PCR. Expression of sGnRH was increased by PGF2α, but not 17,20βP, whereas cGnRH expression was increased by 17,20βP but not PGF2α. In contrast, both pheromones increase the expression of glutamate (GluR2a, NR2A) and γ-aminobutyric acid (GABAA γ2) receptor subunit mRNAs. Milt release and rapid modulation of neuronal transcription are part of the response of males to female sex pheromones. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. The Use of Double Translocation Heterozygotes To Control Populations of the German Cockroach and the Use of Genetic Mechanisms and Behavioral Characteristics To Control Natural Populations of the German Cockroach.

    DTIC Science & Technology

    1986-05-30

    insecticide resistance, pheromones 3 A 817 R4A(1 (,CctinL’e on reverse if nece’ssary and idenity by block number) !’,--arch supported by this Contract .as...reproductive state. The results left 1 !7e doubt that females play a leading role in regulating population behavior. Subsequent research on pheromones showed...aggregation pheromone and a less well known dispersal pheromone revealed differences in response with age/sex class Ta the aggregation experiments

  2. Presence of Putative Male-Produced Sex Pheromone in Lutzomyia cruciata (Diptera: Psychodidae), Vector of Leishmania mexicana.

    PubMed

    Serrano, A K; Rojas, J C; Cruz-López, L C; Malo, Edi A; Mikery, O F; Castillo, A

    2016-11-01

    Lutzomyia cruciata (Coquillet) is a vector of cutaneous leishmaniasis in Mexico and Central America. However, several aspects of its ecology and behavior are unknown, including whether a male pheromone partially mediates the sexual behavior of this sand fly. In this study, we evaluated the behavioral response of females to male abdominal extracts in a Y-tube olfactometer. The volatile compounds from male abdominal extracts were identified by gas chromatography-mass spectrometry and compared with those of female abdominal extracts. Finally, the disseminating structures of the putative sex pheromone were examined by scanning electron microscopy in the male abdomen. Females were more attracted to male abdominal extract than to the hexane control, suggesting the presence of male-produced sex pheromone. The male abdominal extracts were characterized by the presence of 12 sesquiterpene compounds. The major component, an unknown sesquiterpene with an abundance of 60%, had a mass spectrum with molecular ion of m/z 262. In contrast, the abdominal female extracts contained saturated fatty acids. Finally, we detected the presence of small "papules" with a mammiform morphology distributed on the abdominal surface of tergites IV-VII of male Lu. cruciata These structures are not present in females. We conclude that Lu. cruciata males likely produce a pheromone involved in attracting or courting females. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. A novel dihydromidazoline trans-Pro mimetic analog is a selective PK/PBAN agonist

    USDA-ARS?s Scientific Manuscript database

    The pyrokinin/pheromone biosynthesis activating neuropeptide (PK/PBAN) family plays a significant role in the regulation of sex pheromone biosynthetic, melanization, pupariation and hindgut contractile processes in a variety of insects. Studies with restricted conformation analogs indicate that a tr...

  4. Moth pheromone receptors and deceitful parapheromones

    USDA-ARS?s Scientific Manuscript database

    The insect’s olfactory system is so selective that male moths, for example, can discriminate female-produced sex pheromones from compounds with minimal structural modifications. Yet, there is an exception for this “lock-and-key” tight selectivity. Formate analogs can be used as replacement for less ...

  5. Love Is Blind: Indiscriminate Female Mating Responses to Male Courtship Pheromones in Newts (Salamandridae)

    PubMed Central

    Matthijs, Severine; Du Four, Dimitri; Janssenswillen, Sunita; Willaert, Bert; Bossuyt, Franky

    2013-01-01

    Internal fertilization without copulation or prolonged physical contact is a rare reproductive mode among vertebrates. In many newts (Salamandridae), the male deposits a spermatophore on the substrate in the water, which the female subsequently takes up with her cloaca. Because such an insemination requires intense coordination of both sexes, male newts have evolved a courtship display, essentially consisting of sending pheromones under water by tail-fanning towards their potential partner. Behavioral experiments until now mostly focused on an attractant function, i.e. showing that olfactory cues are able to bring both sexes together. However, since males start their display only after an initial contact phase, courtship pheromones are expected to have an alternative function. Here we developed a series of intraspecific and interspecific two-female experiments with alpine newt (Ichthyosaura alpestris) and palmate newt (Lissotriton helveticus) females, comparing behavior in male courtship water and control water. We show that male olfactory cues emitted during tail-fanning are pheromones that can induce all typical features of natural female mating behavior. Interestingly, females exposed to male pheromones of their own species show indiscriminate mating responses to conspecific and heterospecific females, indicating that visual cues are subordinate to olfactory cues during courtship. PMID:23457580

  6. Pheromone evolution and sexual behavior in Drosophila are shaped by male sensory exploitation of other males.

    PubMed

    Ng, Soon Hwee; Shankar, Shruti; Shikichi, Yasumasa; Akasaka, Kazuaki; Mori, Kenji; Yew, Joanne Y

    2014-02-25

    Animals exhibit a spectacular array of traits to attract mates. Understanding the evolutionary origins of sexual features and preferences is a fundamental problem in evolutionary biology, and the mechanisms remain highly controversial. In some species, females choose mates based on direct benefits conferred by the male to the female and her offspring. Thus, female preferences are thought to originate and coevolve with male traits. In contrast, sensory exploitation occurs when expression of a male trait takes advantage of preexisting sensory biases in females. Here, we document in Drosophila a previously unidentified example of sensory exploitation of males by other males through the use of the sex pheromone CH503. We use mass spectrometry, high-performance liquid chromatography, and behavioral analysis to demonstrate that an antiaphrodisiac produced by males of the melanogaster subgroup also is effective in distant Drosophila relatives that do not express the pheromone. We further show that species that produce the pheromone have become less sensitive to the compound, illustrating that sensory adaptation occurs after sensory exploitation. Our findings provide a mechanism for the origin of a sex pheromone and show that sensory exploitation changes male sexual behavior over evolutionary time.

  7. Pheromone-Regulated Expression of Sex Pheromone Plasmid pAD1-Encoded Aggregation Substance Depends on at Least Six Upstream Genes and a cis-Acting, Orientation-Dependent Factor

    PubMed Central

    Muscholl-Silberhorn, Albrecht B.

    2000-01-01

    Conjugative transfer of Enterococcus faecalis-specific sex pheromone plasmids relies on an adhesin, called aggregation substance, to confer a tight cell-to-cell contact between the mating partners. To analyze the dependence of pAD1-encoded aggregation substance, Asa1, on pheromone induction, a variety of upstream fragments were fused to an α-amylase reporter gene, amyL, by use of a novel promoter probe vector, pAMY-em1. For pheromone-regulated α-amylase activity, a total of at least six genes, traB, traC, traA, traE1, orfY, and orf1, are required: TraB efficiently represses asa1 (by a mechanism unrelated to its presumptive function in pheromone shutdown, since a complete shutdown is observed exclusively in the presence of traC); only traC can relieve traB-mediated repression in a pheromone-dependent manner. In addition to traB, traA is required but not sufficient for negative control. Mutational inactivation of traE1, orfY, or orf1, respectively, results in a total loss of α-amylase activity for constructs normally mediating constitutive expression. Inversion of a fragment covering traA, P0, and traE1 without disrupting any gene or control element switches off amyL or asa1 expression, indicating the involvement of a cis-acting, orientation-dependent factor (as had been shown for plasmid pCF10). Unexpectedly, pAD1 represses all pAMY-em1 derivatives in trans, while its own pheromone-dependent functions are unaffected. The discrepancy between the new data and those of former studies defining TraE1 as a trans-acting positive regulator is discussed. PMID:10850999

  8. Transcriptome exploration of the sex pheromone gland of Lutzomyia longipalpis (Diptera: Psychodidae: Phlebotominae)

    PubMed Central

    2013-01-01

    Background Molecules involved in pheromone biosynthesis may represent alternative targets for insect population control. This may be particularly useful in managing the reproduction of Lutzomyia longipalpis, the main vector of the protozoan parasite Leishmania infantum in Latin America. Besides the chemical identity of the major components of the L. longipalpis sex pheromone, there is no information regarding the molecular biology behind its production. To understand this process, obtaining information on which genes are expressed in the pheromone gland is essential. Methods In this study we used a transcriptomic approach to explore the pheromone gland and adjacent abdominal tergites in order to obtain substantial general sequence information. We used a laboratory-reared L. longipalpis (one spot, 9-Methyl GermacreneB) population, captured in Lapinha Cave, state of Minas Gerais, Brazil for this analysis. Results From a total of 3,547 cDNA clones, 2,502 high quality sequences from the pheromone gland and adjacent tissues were obtained and assembled into 1,387 contigs. Through blast searches of public databases, a group of transcripts encoding proteins potentially involved in the production of terpenoid precursors were identified in the 4th abdominal tergite, the segment containing the pheromone gland. Among them, protein-coding transcripts for four enzymes of the mevalonate pathway such as 3-hydroxyl-3-methyl glutaryl CoA reductase, phosphomevalonate kinase, diphosphomevalonate descarboxylase, and isopentenyl pyrophosphate isomerase were identified. Moreover, transcripts coding for farnesyl diphosphate synthase and NADP+ dependent farnesol dehydrogenase were also found in the same tergite. Additionally, genes potentially involved in pheromone transportation were identified from the three abdominal tergites analyzed. Conclusion This study constitutes the first transcriptomic analysis exploring the repertoire of genes expressed in the tissue containing the L. longipalpis pheromone gland as well as the flanking tissues. Using a comparative approach, a set of molecules potentially present in the mevalonate pathway emerge as interesting subjects for further study regarding their association to pheromone biosynthesis. The sequences presented here may be used as a reference set for future research on pheromone production or other characteristics of pheromone communication in this insect. Moreover, some matches for transcripts of unknown function may provide fertile ground of an in-depth study of pheromone-gland specific molecules. PMID:23497448

  9. Olfaction in the boll weevil,Anthonomus grandis Boh. (Coleoptera: Curculionidae): Electroantennogram studies.

    PubMed

    Dickens, J C

    1984-12-01

    Electroantennogram (EAG) techniques were utilized to measure the antennal olfactory responsiveness of adult boll weevils,Anthonomus grandis Boh. (Coleoptera: Curculionidae), to 38 odorants, including both insect and host plant (Gossypium hirsutum L.) volatiles. EAGs of both sexes were indicative of at least two receptor populations: one receptor population primarily responsive to pheromone components and related compounds, the other receptor population primarily responsive to plant odors. Similar responses to male aggregation pheromone components (i.e., compounds I, II, and III + IV) were obtained from both sexes, but females were slightly more sensitive to I. Both sexes were highly responsive to components of the "green leaf volatile complex," especially the six-carbon saturated and monounsaturated primary alcohols. Heptanal was the most active aldehyde tested. More acceptors responded to oxygenated monoterpenes than to monoterpene hydrocarbons. β-Bisabolol, the major volatile of cotton, was the most active sesquiterpene. In general, males, which are responsible for host selection and pheromone production, were more sensitive to plant odors than were females. In fact, males were as sensitive to β-bisabolol and heptanal as to aggregation pheromone components. Electrophysiological data are discussed with regard to the role of insect and host plant volatiles in host selection and aggregation behavior of the boll weevil.

  10. Pheromones in White Pine Cone Beetle, Conophthorus coniperdu (Schwarz) (Coleoptera: Scolytidae)

    Treesearch

    Goran Birgersson; Gary L. DeBarr; Peter de Groot; Mark J. Dalusky; Harold D. Pierce; John H. Borden; Holger Meyer; Wittko Francke; Karl E. Espelie; C. Wayne Berisford

    1995-01-01

    Female white pine cone beetles, Conophrhorus coniperda, attacking second-year cones of eastern white pine, Pinus strobus L., produced a sex-specific pheromone that attracted conspecific males in laboratory bioassays and to field traps. Beetle response was enhanced by host monoterpenes. The female-produced compound was identified in...

  11. Male sexual behavior and pheromone emission is enhanced by exposure to guava fruit volatiles in Anastrepha fraterculus

    USDA-ARS?s Scientific Manuscript database

    Host plant chemicals can influence sex pheromone communication of tephritid fruit flies, and affect strategies optimizing mating and reproduction. Previous studies suggest that females of the South American fruit fly, Anastrepha fraterculus, prefer to mate with laboratory males previously exposed to...

  12. Tarsi of male heliothine moths contain aldehydes and butyrate esters as potential pheromone components

    USDA-ARS?s Scientific Manuscript database

    The Noctuidae is one of the most specious moth families and contains the genera Helicoverpa and Heliothis. Their major sex pheromone component is (Z)-11-hexadecenal except for Helicoverpa assulta and Helicoverpa gelotopoeon both of which utilize (Z)-9-hexadecenal. The minor components of heliothine ...

  13. Quantitative analysis of sex-pheromone coding in the antennal lobe of the moth Agrotis ipsilon: a tool to study network plasticity.

    PubMed

    Jarriault, David; Gadenne, Christophe; Rospars, Jean-Pierre; Anton, Sylvia

    2009-04-01

    To find a mating partner, moths rely on pheromone communication. Released in very low amounts, female sex pheromones are used by males to identify and localize females. Depending on the physiological state (i.e. age, reproductive state), the olfactory system of the males of the noctuid moth Agrotis ipsilon is 'switched on or off'. To understand the neural basis of this behavioural plasticity, we performed a detailed characterization of the qualitative, quantitative and temporal aspects of pheromone coding in the primary centre of integration of pheromonal information, the macroglomerular complex (MGC) of the antennal lobe. MGC neurons were intracellularly recorded and stained in sexually mature virgin males. When stimulating antennae of males with the three main components of the female pheromone blend, most of the neurons showed a biphasic excitatory-inhibitory response. Although they showed different preferences, 80% of the neurons responded at least to the main pheromone component (Z-7-dodecenyl acetate). Six stained neurons responding to this component had their dendrites in the largest MGC glomerulus. Changes in the stimulus intensity and duration affected the excitatory phase but not the inhibitory phase properties. The stimulus intensity was shown to be encoded in the firing frequency, the number of spikes and the latency of the excitatory phase, whereas the stimulus duration only changed its duration. We conclude that the inhibitory input provided by local interneurons following the excitatory phase might not contribute directly to the encoding of stimulus characteristics. The data presented will serve as a basis for comparison with those of immature and mated males.

  14. A host beetle pheromone regulates development and behavior in the nematode Pristionchus pacificus.

    PubMed

    Cinkornpumin, Jessica K; Wisidagama, Dona R; Rapoport, Veronika; Go, James L; Dieterich, Christoph; Wang, Xiaoyue; Sommer, Ralf J; Hong, Ray L

    2014-10-15

    Nematodes and insects are the two most speciose animal phyla and nematode-insect associations encompass widespread biological interactions. To dissect the chemical signals and the genes mediating this association, we investigated the effect of an oriental beetle sex pheromone on the development and behavior of the nematode Pristionchus pacificus. We found that while the beetle pheromone is attractive to P. pacificus adults, the pheromone arrests embryo development, paralyzes J2 larva, and inhibits exit of dauer larvae. To uncover the mechanism that regulates insect pheromone sensitivity, a newly identified mutant, Ppa-obi-1, is used to reveal the molecular links between altered attraction towards the beetle pheromone, as well as hypersensitivity to its paralyzing effects. Ppa-obi-1 encodes lipid-binding domains and reaches its highest expression in various cell types, including the amphid neuron sheath and excretory cells. Our data suggest that the beetle host pheromone may be a species-specific volatile synomone that co-evolved with necromeny.

  15. Communication disruption of guava moth (Coscinoptycha improbana) using a pheromone analog based on chain length.

    PubMed

    Suckling, D M; Dymock, J J; Park, K C; Wakelin, R H; Jamieson, L E

    2013-09-01

    The guava moth, Coscinoptycha improbana, an Australian species that infests fruit crops in commercial and home orchards, was first detected in New Zealand in 1997. A four-component pheromone blend was identified but is not yet commercially available. Using single sensillum recordings from male antennae, we established that the same olfactory receptor neurons responded to two guava moth sex pheromone components, (Z)-11-octadecen-8-one and (Z)-12-nonadecen-9-one, and to a chain length analog, (Z)-13-eicosen-10-one, the sex pheromone of the related peach fruit moth, Carposina sasakii. We then field tested whether this non-specificity of the olfactory neurons might enable disruption of sexual communication by the commercially available analog, using male catch to synthetic lures in traps in single-tree, nine-tree and 2-ha plots. A disruptive pheromone analog, based on chain length, is reported for the first time. Trap catches for guava moth were disrupted by three polyethylene tubing dispensers releasing the analog in single-tree plots (86% disruption of control catches) and in a plots of nine trees (99% disruption). Where peach fruit moth pheromone dispensers were deployed at a density of 1000/ha in two 2-ha areas, pheromone traps for guava moth were completely disrupted for an extended period (up to 470 days in peri-urban gardens in Mangonui and 422 days in macadamia nut orchards in Kerikeri). In contrast, traps in untreated areas over 100 m away caught 302.8 ± 128.1 moths/trap in Mangonui and 327.5 ± 78.5 moths/ trap in Kerikeri. The longer chain length in the pheromone analog has greater longevity than the natural pheromone due to its lower volatility. Chain length analogs may warrant further investigation for mating disruption in Lepidoptera, and screening using single-sensillum recording is recommended.

  16. Evolutionary ecology of pheromone signaling in Dendroctonus frontalis

    Treesearch

    Deepa S. Pureswaran; Brian T. Sullivan; Matthew P. Ayres

    2007-01-01

    Although studies of pheromone production in the southern pine beetle (Dendroctonus frontalis) extend back to the dawn of chemical ecology, it is only recently that instrumentation has become sufficiently sensitive to measure pheromone production of individual beetles. Now, recent studies have revealed surprisingly high variation among individuals in...

  17. Sex pheromone source location by garter snakes: : A mechanism for detection of direction in nonvolatile trails.

    PubMed

    Ford, N B; Low, J R

    1984-08-01

    Male plains garter snakes,Thamnophis radix, tested in a 240-cm-long arena can detect directional information from a female pheromone trail only when the female is allowed to push against pegs while laying the trail. The female's normal locomotor activity apparently deposits pheromone on the anterolateral surfaces of vertical structures in her environment. The male sensorily assays the sides of these objects and from this information determines the female's direction of travel.

  18. Key biosynthetic gene subfamily recruited for pheromone production prior to the extensive radiation of Lepidoptera

    PubMed Central

    2008-01-01

    Background Moths have evolved highly successful mating systems, relying on species-specific mixtures of sex pheromone components for long-distance mate communication. Acyl-CoA desaturases are key enzymes in the biosynthesis of these compounds and to a large extent they account for the great diversity of pheromone structures in Lepidoptera. A novel desaturase gene subfamily that displays Δ11 catalytic activities has been highlighted to account for most of the unique pheromone signatures of the taxonomically advanced ditrysian species. To assess the mechanisms driving pheromone evolution, information is needed about the signalling machinery of primitive moths. The currant shoot borer, Lampronia capitella, is the sole reported primitive non-ditrysian moth known to use unsaturated fatty-acid derivatives as sex-pheromone. By combining biochemical and molecular approaches we elucidated the biosynthesis paths of its main pheromone component, the (Z,Z)-9,11-tetradecadien-1-ol and bring new insights into the time point of the recruitment of the key Δ11-desaturase gene subfamily in moth pheromone biosynthesis. Results The reconstructed evolutionary tree of desaturases evidenced two ditrysian-specific lineages (the Δ11 and Δ9 (18C>16C)) to have orthologs in the primitive moth L. capitella despite being absent in Diptera and other insect genomes. Four acyl-CoA desaturase cDNAs were isolated from the pheromone gland, three of which are related to Δ9-desaturases whereas the fourth cDNA clusters with Δ11-desaturases. We demonstrated that this transcript (Lca-KPVQ) exclusively accounts for both steps of desaturation involved in pheromone biosynthesis. This enzyme possesses a Z11-desaturase activity that allows transforming the palmitate precursor (C16:0) into (Z)-11-hexadecenoic acid and the (Z)-9-tetradecenoic acid into the conjugated intermediate (Z,Z)-9,11-tetradecadienoic acid. Conclusion The involvement of a single Z11-desaturase in pheromone biosynthesis of a non-ditrysian moth species, supports that the duplication event leading to the origin of the Lepidoptera-specific Δ11-desaturase gene subfamily took place before radiation of ditrysian moths and their divergence from other heteroneuran lineages. Our findings uncover that this novel class of enzymes affords complex combinations of unique unsaturated fatty acyl-moieties of variable chain-lengths, regio- and stereo-specificities since early in moth history and contributes a notable innovation in the early evolution of moth-pheromones. PMID:18831750

  19. Utilization of pheromones in the population management of moth pests.

    PubMed Central

    Cardé, R T

    1976-01-01

    Pheromones are substances emitted by one individual of a species and eliciting a specific response in a second individual of the same species. In moths (Lepidoptera) generally females lure males for mating by emission of a sex attractant pheromone comprised of either one or more components. Since 1966 the identification of the pheromone blends of many moth pests has allowed investigations into the use of these messengers for population manipulation. Pheromone-baited traps may be used both to detect pest presence and to estimate population density, so that conventional control tactics can be employed only as required and timed precisely for maximum effectiveness. Attractant traps also can be utilized for direct population suppression when the traps are deployed at a density effective in reducing mating success sufficiently to achieve control. A third use pattern of pheromones and related compounds is disruption of pheromone communication via atmospheric permeation with synthetic disruptants. The behavioral modifications involved in disruption of communication may include habituation of the normal response sequence (alteration of the pheromone response threshold) and "confusion" (inability of the organism to perceive and orient to the naturally emitted lure). Disruption of communication employing the natural pheromone components as the disruptant has been most successful, although nonattractant behavioral modifiers structurally similar to the pheromone components also may prove useful. Possible future resistance to direct pheromone manipulation may be expected to involve the evolution of behavioral and sensory changes that minimize the informational overlap between the natural pheromone system and the pheromone control technique. PMID:789060

  20. Carbonyl reduction in the biosynthesis of a male sex pheromone secreted by the grape borer Xylotrechus pyrrhoderus.

    PubMed

    Iwabuchi, Kikuo; Arakawa, Maki; Kiyota, Ryutaro; Hoshino, Keita; Ando, Tetsu

    2014-10-01

    Males of the cerambycid beetle Xylotrechus pyrrhoderus release a mixture of (S)-2-hydroxy-3-octanone [(S)-1] and (2S,3S)-2,3-octanediol [(2S,3S)-2] as a sex pheromone that attracts conspecific females. The chemical structures of these pheromone components include a common motif and are assumed to be biosynthetically related. Here, we show that deuterated (S)-1, applied on the cuticle of a pronotal pheromone gland, was converted into (2S,3S)-2, that included deuterium atoms, but a reverse conversion did not take place. These results reveal a carbonyl reductase to be active in the pheromone gland, and that the ketol is a biosynthetic precursor of the diol. Males did not produce (R)-1; however, deuterated (R)-1 was converted into (2R,3R)-2, indicating an attack of the enzyme from the opposite side of the hydroxyl group at the 2-position. Furthermore, to understand the substrate specificity of the enzyme, racemates of 2-hydroxy-3-hexanone and 2-hydroxy-3-decanone were synthesized and applied to the gland. Their conversion into the corresponding diols suggests that the enzyme reduces the carbonyl group at the 3-position, regardless of the chain length.

  1. Fitness cost of pheromone production in signaling female moths.

    PubMed

    Harari, Ally R; Zahavi, Tirtza; Thiéry, Denis

    2011-06-01

    A secondary sexual character may act as an honest signal of the quality of the individual if the trait bears a cost and if its expression is phenotypically condition dependent. The cost of increasing the trait should be tolerable for individuals in good condition but not for those in a poor condition. The trait thus provides an honest signal of quality that enables the receiver to choose higher quality mates. Evidence for sex pheromones, which play a major role in shaping sexual evolution, inflicting a signaling cost is scarce. Here, we demonstrate that the amount of the major component of the pheromone in glands of Lobesia botrana (Lepidoptera) females at signaling time was significantly greater in large than in small females, that male moths preferred larger females as mates when responding to volatile signals, and small virgin females, but not large ones, exposed to conspecific pheromone, produced, when mated, significantly fewer eggs than nonexposed females. The latter indicates a condition-dependent cost of signaling. These results are in accordance with the predictions of condition-dependent honest signals. We therefore suggest that female signaling for males using sex pheromones bears a cost and thus calling may serve as honest advertisement for female quality. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.

  2. Do perfume additives termed human pheromones warrant being termed pheromones?

    PubMed

    Winman, Anders

    2004-09-30

    Two studies of the effects of perfume additives, termed human pheromones by the authors, have conveyed the message that these substances can promote an increase in human sociosexual behaviour [Physiol. Behav. 75 (2003) R1; Arch. Sex. Behav. 27 (1998) R2]. The present paper presents an extended analysis of this data. It is shown that in neither study is there a statistically significant increase in any of the sociosexual behaviours for the experimental groups. In the control groups of both studies, there are, however, moderate but statistically significant decreases in the corresponding behaviour. Most notably, there is no support in data for the claim that the substances increase the attractiveness of the wearers of the substances to the other sex. It is concluded that more research using matched homogenous groups of participants is needed. Copyright 2004 Elsevier Inc.

  3. [Blockade of the pheromonal effects in rat by central deafferentation of the accessory olfactory system].

    PubMed

    Sánchez-Criado, J E

    1979-06-01

    Female rats reared without sex odours from male rats have a five day stral cycle. With exposure to male odour the estral cycle is shortened from five to four days. This pheromonal effect is blocked on deafferenting the vomeronasal system by electrolytically damaging both accessory olfactory bulbs.

  4. Evidence that (+)-endo-Brevicomin is a male-produced component of the Southern Pine Beetle aggregation pheromone

    Treesearch

    Brian T. Sullivan; William P. Shepherd; Deepa S. Pureswarana; Takuya Tashiro; Kenji Mori

    2007-01-01

    Previous research indicated that the aggregation pheromone of the southern pine beetle, Dendroctonus frontalis, is produced only by females, the sex that initiates attacks. We provide evidence indicating that secondarily arriving males augment mass aggregation by releasing the attractive synergist (+)-endo-brevicomin. Healthy pines artificially...

  5. Identification of specific sites in the third intracellular loop and carboxyl terminus of the Bombyx mori PBAN receptor crucial for ligand-induced internalization

    USDA-ARS?s Scientific Manuscript database

    Sex pheromone production in most moths is mediated by the pheromone biosynthesis activating neuropeptide receptor (PBANR). Similar to other rhodopsin-like G protein-coupled receptors, the silkmoth Bombyx mori PBANR (BmPBANR) undergoes agonist-induced internalization. Despite interest in developing...

  6. Evidence for the presence of a female produced sex pheromone in the banana weevil, Cosmopolites sordidus Germar (Coleoptera: Curculionidae)

    USDA-ARS?s Scientific Manuscript database

    Behavior-modifying chemicals such as pheromones and kairomones have great potential in pest management. Studies reported here investigated chemical cues involved in mating and aggregation behavior of banana weevil, Cosmopolites sordidus, a major insect pest of banana in every country where bananas a...

  7. Identification of volatile sex pheromone components released by the southern armyworm,Spodoptera eridania (Cramer).

    PubMed

    Teal, P E; Mitchell, E R; Tumlinson, J H; Heath, R R; Sugie, H

    1985-06-01

    Analysis of sex pheromone gland extracts and volatile pheromone components collected from the calling female southern armyworm,Spodoptera eridania (Cramer), by high-resolution capillary gas chromatography and mass spectroscopy indicated that a number of 14-carbon mono- and diunsaturated acetates and a monounsaturated 16-carbon acetate were produced. Gland extracts also indicated the presence of (Z)-9-tetradecen-1-ol. However, this compound was not found in collections of volatiles. Field trapping studies indicated that the volatile blend composed of (Z)-9-tetradecen-1-ol acetate (60%), (Z)-9-(E)-12-tetradecadien-1-ol acetate (17%), (Z)-9-(Z)-12-tetradecadien-1-ol acetate (15%), (Z)-9-(E)-11-tetradecadien-1-ol acetate (5%), and (Z)-11-hexadecen-1-ol acetate (3 %) was an effective trap bait for males of this species. The addition of (Z)-9-tetradecen-1-ol to the acetate blends tested resulted in the capture of beet armyworm,S. exigua (Hubner), males which provides further evidence that the alcohol is a pheromone component of this species.

  8. Two single-point mutations shift the ligand selectivity of a pheromone receptor between two closely related moth species

    PubMed Central

    Yang, Ke; Huang, Ling-Qiao; Ning, Chao

    2017-01-01

    Male moths possess highly sensitive and selective olfactory systems that detect sex pheromones produced by their females. Pheromone receptors (PRs) play a key role in this process. The PR HassOr14b is found to be tuned to (Z)−9-hexadecenal, the major sex-pheromone component, in Helicoverpa assulta. HassOr14b is co-localized with HassOr6 or HassOr16 in two olfactory sensory neurons within the same sensilla. As HarmOr14b, the ortholog of HassOr14b in the closely related species Helicoverpa armigera, is tuned to another chemical (Z)−9-tetradecenal, we study the amino acid residues that determine their ligand selectivity. Two amino acids located in the intracellular domains F232I and T355I together determine the functional difference between the two orthologs. We conclude that species-specific changes in the tuning specificity of the PRs in the two Helicoverpa moth species could be achieved with just a few amino acid substitutions, which provides new insights into the evolution of closely related moth species. PMID:29063835

  9. Flight Tunnel Response of Male European Corn Borer Moths to Cross-Specific Mixtures of European and Asian Corn Borer Sex Pheromones: Evidence Supporting a Critical Stage in Evolution of a New Communication System.

    PubMed

    Martin, Nathan; Moore, Kevin; Musto, Callie J; Linn, Charles E

    2016-01-01

    Previous flight tunnel studies showed that 3-5 % of male European corn borer (ECB) moths, Ostrinia nubilalis, could fly upwind and make contact with sources releasing the sex pheromone of the closely related Asian corn borer (ACB), Ostrina furnacalis, [2:1 (Z)-12-tetradecenyl acetate (Z12-14:OAc) : (E)-12-teradecenyl acetate (E12-14:OAc)] and that 2-4 % of ACB males could similarly fly upwind to the sex pheromone blends of the ECB Z- [97:3 (Z)-tetradecenyl acetate (Z11-14:OAc) : (E)-tetradecenyl acetate (E11-14:Ac)] and E-strains (1:99 Z/E11-14:OAc) pheromones. The results supported the hypothesis that the evolution of the ACB pheromone system from an ECB-like ancestor included a stage in which males could be attracted to the unusual females emitting Z12- and E12-14:OAc while retaining their responsiveness to the ancestral pheromone blend of Z11- and E11-14:OAc. Here, we showed further that ECB E-strain males exhibited upwind oriented flight and source contacts to sources containing all combinations of ECB and ACB components. Maximal response levels were observed with the E-strain 99:1 E11/Z11-14:OAc blend, and high response levels also were observed with two other blends containing E11-14:OAc as the major component (E11:E12 and E11:Z12). Upwind flight and source contact also occurred at lower levels with the remaining blend combinations in which Z11-, E12-, or Z12-14:OAc was the major component. Our current results support the hypothesis concerning the evolution of ACB from an ECB-like ancester by showing that males were able to respond to females producing either the 12-14:Ac isomers, 11-14:Ac isomers, or even mixtures of all four components.

  10. Evolutionary relationships among pollinators and repeated pollinator sharing in sexually deceptive orchids.

    PubMed

    Phillips, R D; Brown, G R; Dixon, K W; Hayes, C; Linde, C C; Peakall, R

    2017-09-01

    The mechanism of pollinator attraction is predicted to strongly influence both plant diversification and the extent of pollinator sharing between species. Sexually deceptive orchids rely on mimicry of species-specific sex pheromones to attract their insect pollinators. Given that sex pheromones tend to be conserved among related species, we predicted that in sexually deceptive orchids, (i) pollinator sharing is rare, (ii) closely related orchids use closely related pollinators and (iii) there is strong bias in the wasp lineages exploited by orchids. We focused on species that are pollinated by sexual deception of thynnine wasps in the distantly related genera Caladenia and Drakaea, including new field observations for 45 species of Caladenia. Specialization was extreme with most orchids using a single pollinator species. Unexpectedly, seven cases of pollinator sharing were found, including two between Caladenia and Drakaea, which exhibit strikingly different floral morphology. Phylogenetic analysis of pollinators using four nuclear sequence loci demonstrated that although orchids within major clades primarily use closely related pollinator species, up to 17% of orchids within these clades are pollinated by a member of a phylogenetically distant wasp genus. Further, compared to the total diversity of thynnine wasps within the study region, orchids show a strong bias towards exploiting certain genera. Although these patterns may arise through conservatism in the chemical classes used in sex pheromones, apparent switches between wasp clades suggest unexpected flexibility in floral semiochemical production. Alternatively, wasp sex pheromones within lineages may exhibit greater chemical diversity than currently appreciated. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  11. Structure of Peptide Sex Pheromone Receptor PrgX and PrgX/Pheromone Complexes and Regulation of Conjugation in Enterococcus faecalis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi,K.; Brown, C.; Gu, Z.

    2005-01-01

    Many bacterial activities, including expression of virulence factors, horizontal genetic transfer, and production of antibiotics, are controlled by intercellular signaling using small molecules. To date, understanding of the molecular mechanisms of peptide-mediated cell-cell signaling has been limited by a dearth of published information about the molecular structures of the signaling components. Here, we present the molecular structure of PrgX, a DNA- and peptide-binding protein that regulates expression of the conjugative transfer genes of the Enterococcus faecalis plasmid pCF10 in response to an intercellular peptide pheromone signal. Comparison of the structures of PrgX and the PrgX/pheromone complex suggests that pheromone bindingmore » destabilizes PrgX tetramers, opening a 70-bp pCF10 DNA loop required for conjugation repression.« less

  12. Chemical Characterization of Young Virgin Queens and Mated Egg-Laying Queens in the Ant Cataglyphis cursor: Random Forest Classification Analysis for Multivariate Datasets.

    PubMed

    Monnin, Thibaud; Helft, Florence; Leroy, Chloé; d'Ettorre, Patrizia; Doums, Claudie

    2018-02-01

    Social insects are well known for their extremely rich chemical communication, yet their sex pheromones remain poorly studied. In the thermophilic and thelytokous ant, Cataglyphis cursor, we analyzed the cuticular hydrocarbon profiles and Dufour's gland contents of queens of different age and reproductive status (sexually immature gynes, sexually mature gynes, mated and egg-laying queens) and of workers. Random forest classification analyses showed that the four groups of individuals were well separated for both chemical sources, except mature gynes that clustered with queens for cuticular hydrocarbons and with immature gynes for Dufour's gland secretions. Analyses carried out with two groups of females only allowed identification of candidate chemicals for queen signal and for sexual attractant. In particular, gynes produced more undecane in the Dufour's gland. This chemical is both the sex pheromone and the alarm pheromone of the ant Formica lugubris. It may therefore act as sex pheromone in C. cursor, and/or be involved in the restoration of monogyny that occurs rapidly following colony fission. Indeed, new colonies often start with several gynes and all but one are rapidly culled by workers, and this process likely involves chemical signals between gynes and workers. These findings open novel opportunities for experimental studies of inclusive mate choice and queen choice in C. cursor.

  13. A male-produced aggregation pheromone of Monochamus alternatus (Coleoptera: Cerambycidae), a major vector of pine wood nematode.

    PubMed

    Teale, Stephen A; Wickham, Jacob D; Zhang, Feiping; Su, Jun; Chen, Yi; Xiao, Wei; Hanks, Lawrence M; Millar, Jocelyn G

    2011-10-01

    The beetle Monochamus alternatus Hope (Coleoptera: Cerambycidae) is an efficient vector of pine wood nematode, the causal pathogen of pine wilt disease, that has resulted in devastating losses of pines in much of Asia. We assessed the response of adult M. alternatus to 2-(undecyloxy)-ethanol, the male-produced pheromone of the congeneric M. galloprovincialis Dejean, in field experiments in Fujian Province, People's Republic of China. Both sexes of M. alternatus were attracted to lures consisting of 2-(undecyloxy)-ethanol combined with the host plant volatiles alpha-pinene and ethanol. A follow-up experiment showed that 2-(undecyloxy)-ethanol was synergized by both ethanol and alpha-pinene. Coupled gas-chromatography mass-spectrometry analyses of volatiles sampled from field-collected beetles of both sexes revealed that 2-(undecyloxy)-ethanol was a sex-specific pheromone component produced only by males. The combination of 2- (undecyloxy) -ethanol with ethanol and/or alpha-pinene will provide a valuable and badly needed tool for quarantine detection, monitoring, and management of M. alternatus.

  14. A contact sex pheromone component of the emerald ash borer Agrilus planipennis Fairmaire (Coleoptera: Buprestidae)

    NASA Astrophysics Data System (ADS)

    Silk, Peter J.; Ryall, Krista; Barry Lyons, D.; Sweeney, Jon; Wu, Junping

    2009-05-01

    Analyses of the elytral hydrocarbons from male and female emerald ash borer, Agrilus planipennis Fairmaire, that were freshly emerged vs. sexually mature (>10 days old) revealed a female-specific compound, 9-methyl-pentacosane (9-Me-C25), only present in sexually mature females. This material was synthesized by the Wittig reaction of 2-decanone with ( n-hexadecyl)-triphenylphosphonium bromide followed by catalytic reduction to yield racemic 9-Me C25, which matched the natural compound by gas chromatography/mass spectrometry (retention time and EI mass spectrum). In field bioassays with freeze-killed sexually mature A. planipennis females, feral males spent significantly more time in contact and attempting copulation with unwashed females than with females that had been washed in n-hexane to remove the cuticular lipids. Hexane-washed females to which 9-Me-C25 had been reapplied elicited similar contact time and percentage of time attempting copulation as unwashed females, indicating that 9-methyl-pentacosane is a contact sex pheromone component of A. planipennis. This is the first contact sex pheromone identified in the Buprestidae.

  15. Determination by HPLC fluorescence analysis of the natural enantiomers of sex pheromones in the New World screwworm fly, Cochliomyia hominivorax.

    PubMed

    Akasaka, K; Carlson, D A; Ohtaka, T; Ohrui, H; Mori, K; Berkebile, D R

    2009-06-01

    Bioassays of six racemic synthesized candidate sex pheromone compounds against male New World screwworm Cochliomyia hominivorax (Coquerel) flies showed that the most potent bioactivity was found with 6-acetoxy-19-methylnonacosane and 7-acetoxy-15-methylnonacosane compared with four other isomeric acetoxy nonacosanes and a larger aliphatic ketone. As all these methyl-branched compounds have two asymmetric carbons and four possible enantiomers, characterization of the natural enantiomers was essential. All four enantiomers for the two most bioactive isomers of the natural sex pheromone were synthesized for bioassay. Hydrolysis and derivatization of these enantiomers with different fluorescent reagents was followed by column-switched high-performance liquid chromatography. The use of two linked, reversed-phase columns of different polarity held at sub-ambient temperatures allowed good separation of each enantiomer. This analysis applied to natural material was successful, as (6R,19R)-6-acetoxy-19-methylnonanocosane, and (7R,15R)- and (7R,15S)-7-acetoxy-15-methylnonanocosane were detected in extracts of recently colonized female flies.

  16. A study of the female produced sex pheromone of Tenebrio molitor (Coleoptera: Tenebrionidae)

    NASA Astrophysics Data System (ADS)

    Mangat, Jaswinder

    Mating behaviour in the yellow mealworm beetle, Tenebrio molitor , is mediated by several pheromones, including the female-produced 4-methylnonanol (4-MNol). Mating causes a decline in the titre of 4-MNol. The overall goal of this study was to determine the biochemical mechanism(s) responsible for this decline: i.e., whether the decline was due to an inhibition of pheromone biosynthesis and/or a stimulation of pheromone degradation; whether the decline was caused by the physical effect of mating or was due to the transfer of a factor from the male; and to conduct a preliminary investigation of the regulatory and signal transduction mechanisms involved in the regulation of 4-MNol production. In vitro radioassays for 4-MNol biosynthesis and degradation were developed and used to compare the levels of 4-MNol biosynthesis and degradation in virgin and mated females. Mating caused an inhibition of 4-MNol biosynthesis within 2 hours, but did not affect the rate of pheromone degradation. Decapitation of virgin females caused an inhibition of pheromone biosynthesis and did not prevent the inhibitory effect of mating. The inhibitory effect of mating was mimicked in females that were artificially inseminated with male reproductive tract homogenates (MRTH), but not in females similarly "inseminated" with water, saline, or air. Furthermore, 4-MNol biosynthesis could be inhibited in vitro by the addition of MRTH. These findings indicate that the male transferred one or more pheromonostatic factor(s) to the female during copulation that acted directly on the pheromone-producing tissue (the ovaries). In order to investigate the biochemical basis for the inhibition of pheromone biosynthesis after mating, the role of calcium was determined by modulating the level of calcium (using a calcium chelator, an ionophore, and calcium). However, due to the precipitation of calcium with the phosphate present in the buffer solution, we were unable to determine the role of calcium in the regulation of pheromone biosynthesis in mature mated and virgin beetles. Further work is required to elucidate the biochemical basis for the inhibition of pheromone biosynthesis. Understanding the regulation of sex pheromone biosynthesis in this model organism will enhance our understanding of the process in beetles in general, and may (in the long term) lead to new pest control strategies.

  17. Intra-annual variation in responses by flying southern pine beetles (Coleoptera: Curculionidae: Scolytinae) to pheromone component endo-brevicomin

    Treesearch

    Brian T. Sullivan; Cavell Brownie; JoAnne P. Barrett

    2016-01-01

    The southern pine beetle Dendroctonus frontalis Zimmermann (Coleoptera: Curculionidae: Scolytinae) is attracted to an aggregation pheromone that includes the multifunctional pheromone component endobrevicomin. The effect of endo-brevicomin on attractive lures varies from strong enhancement to reduction of beetle attraction depending upon release rate, lure component...

  18. Thigmotaxis Mediates Trail Odour Disruption.

    PubMed

    Stringer, Lloyd D; Corn, Joshua E; Sik Roh, Hyun; Jiménez-Pérez, Alfredo; Manning, Lee-Anne M; Harper, Aimee R; Suckling, David M

    2017-05-10

    Disruption of foraging using oversupply of ant trail pheromones is a novel pest management application under investigation. It presents an opportunity to investigate the interaction of sensory modalities by removal of one of the modes. Superficially similar to sex pheromone-based mating disruption in moths, ant trail pheromone disruption lacks an equivalent mechanistic understanding of how the ants respond to an oversupply of their trail pheromone. Since significant compromise of one sensory modality essential for trail following (chemotaxis) has been demonstrated, we hypothesised that other sensory modalities such as thigmotaxis could act to reduce the impact on olfactory disruption of foraging behaviour. To test this, we provided a physical stimulus of thread to aid trailing by Argentine ants otherwise under disruptive pheromone concentrations. Trail following success was higher using a physical cue. While trail integrity reduced under continuous over-supply of trail pheromone delivered directly on the thread, provision of a physical cue in the form of thread slightly improved trail following and mediated trail disruption from high concentrations upwind. Our results indicate that ants are able to use physical structures to reduce but not eliminate the effects of trail pheromone disruption.

  19. The neuropeptide tachykinin is essential for pheromone detection in a gustatory neural circuit

    PubMed Central

    Shankar, Shruti; Chua, Jia Yi; Tan, Kah Junn; Calvert, Meredith EK; Weng, Ruifen; Ng, Wan Chin; Mori, Kenji; Yew, Joanne Y

    2015-01-01

    Gustatory pheromones play an essential role in shaping the behavior of many organisms. However, little is known about the processing of taste pheromones in higher order brain centers. Here, we describe a male-specific gustatory circuit in Drosophila that underlies the detection of the anti-aphrodisiac pheromone (3R,11Z,19Z)-3-acetoxy-11,19-octacosadien-1-ol (CH503). Using behavioral analysis, genetic manipulation, and live calcium imaging, we show that Gr68a-expressing neurons on the forelegs of male flies exhibit a sexually dimorphic physiological response to the pheromone and relay information to the central brain via peptidergic neurons. The release of tachykinin from 8 to 10 cells within the subesophageal zone is required for the pheromone-triggered courtship suppression. Taken together, this work describes a neuropeptide-modulated central brain circuit that underlies the programmed behavioral response to a gustatory sex pheromone. These results will allow further examination of the molecular basis by which innate behaviors are modulated by gustatory cues and physiological state. DOI: http://dx.doi.org/10.7554/eLife.06914.001 PMID:26083710

  20. Inhibition of the Responses to Sex Pheromone of the Fall Armyworm, Spodoptera frugiperda

    PubMed Central

    Malo, Edi A.; Rojas, Julio C.; Gago, Rafael; Guerrero, Ángel

    2013-01-01

    Trifluoromethyl ketones reversibly inhibit pheromone-degrading esterases in insect olfactory tissues, affecting pheromone detection and behavior of moth males. In this work, (Z)-9-tetradecenyl trifluoromethyl ketone (Z9-14:TFMK), a closely-related analogue of the pheromone of the fall armyworm, Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae), was prepared and tested in electroantennogram and field tests as possible inhibitors of the pheromone action. The electroantennogram parameters, amplitude, and the repolarization time of the antennal responses of S. frugiperda males were affected by Z9-14:TFMK vapors. Exposure of male antennae to a stream of air passing through 100 ìg of the ketone produced a significant reduction of the amplitude and an increase of 2/3 repolarization time signals to the pheromone. The effect was reversible and dose-dependent. In the field, the analogue significantly decreased the number of males caught when mixed with the pheromone in 10:1 ratio. The results suggest that Z9-14:TFMK is a mating disruptant of S. frugiperda and may be a good candidate to consider in future strategies to control this pest. PMID:24766416

  1. Dynamics of putative sex pheromone components during heat periods in estrus-induced cows.

    PubMed

    Mozūraitis, R; Kutra, J; Borg-Karlson, A-K; Būda, V

    2017-09-01

    Determination of the optimal insemination time in dairy cows is vital for fertilization success and is a challenging task due to silent or weak signs of estrus shown by some cows. This can be overcome by combining several estrus detection methods, leading to higher detection rates. However, an efficient, noninvasive method for detecting estrus in cows is still needed. Chemical cues released by the cow during estrus have been proposed to have pheromonal properties and signal readiness to mate to the bull. Such cues could be used in an industrial setting to detect cows in estrus. However, no conclusive published data show temporal changes in putative sex pheromone levels during estrus. The goal of this study was to determine the temporal pattern of putative sex pheromone components during estrus and to assess the reproducibility of changes in pheromone concentration with respect to ovulation time. Two injections of the hormone PGF 2α were administered over a 2-wk interval to induce and synchronize the estrous cycles of 6 Holstein cows. The precise time of ovulation was determined by means of an ultrasound technique, and estrus was determined by visual observation. Using solid-phase microextraction gas chromatography-mass spectrometry techniques, we showed that acetic and propionic acids, which have been proposed to be putative sex pheromone components in cows, were present in the headspaces of all estrous and diestrous fecal samples, whereas 1-iodoundecane was not detected by solid-phase microextraction or by solvent extraction with diethyl ether. Low levels of acids were observed until 1 d before ovulation, at which point their concentrations increased, peaking around 0.5 d before ovulation. The application of labeled synthetic standards revealed that during the peak of release, 36 ± 8 ng (average ± SD) of acetic acid and 10 ± 3 ng of propionic acid were present in 0.5-g samples of estrous-phase fecal matter compared with 19 ± 5 and 2.3 ± 1 ng of acetic and propionic acids, respectively, in the control diestrous samples. After the peak, the amounts of the compounds decreased sharply to match those of the control samples and afterward returned to the baseline readings. This decrease in the amounts of putative pheromone components was registered about 12 h before ovulation, indicating that acetic and propionic acids could be used as biomarkers for the electronic detection of ovulation. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. Monitoring oriental fruit moth and codling moth (Lepidoptera: Tortricidae) with combinations of pheromones and kairomoness

    USDA-ARS?s Scientific Manuscript database

    Experiments were conducted in North and South America during 2012-2013 to evaluate the use of lure combinations of sex pheromones (PH), host plant volatiles (HPV), and food baits in traps to capture the oriental fruit moth, Grapholita molesta (Busck) and codling moth, Cydia pomonella (L.) in pome an...

  3. Use of mixture designs to investigate contribution of minor sex pheromone components to trap catch of the carpenterworm moth, Chilecomadia valdiviana

    USDA-ARS?s Scientific Manuscript database

    Five compounds previously identified from the female pheromone gland of the carpenterworm Chilecomadia valdiviana, a pest of tree and fruit crops in Chile, South America, were studied in field experiments. Previously, attraction of males by the major component was readily demonstrated while the role...

  4. Midgut tissue of male pine engraver , Ips pini, synthesizes monoterpenoid pheromone component ipsdienol de novo

    NASA Astrophysics Data System (ADS)

    Hall, Gregory M.; Tittiger, Claus; Andrews, Gracie L.; Mastick, Grant S.; Kuenzli, Marilyn; Luo, Xin; Seybold, Steven J.; Blomquist, Gary J.

    2002-02-01

    For over three decades the site and pathways of bark beetle aggregation pheromone production have remained elusive. Studies on pheromone production in Ips spp. bark beetles have recently shown de novo biosynthesis of pheromone components via the mevalonate pathway. The gene encoding a key regulated enzyme in this pathway, 3-hydroxy-3-methylglutaryl-CoA reductase ( HMG-R), showed high transcript levels in the anterior midgut of male pine engravers, Ips pini (Say) (Coleoptera:Scolytidae). HMG-R expression in the midgut was sex, juvenile hormone, and feeding dependent, providing strong evidence that this is the site of acyclic monoterpenoid (ipsdienol) pheromone production in male beetles. Additionally, isolated midgut tissue from fed or juvenile hormone III (JH III)-treated males converted radiolabeled acetate to ipsdienol, as assayed by radio-HPLC. These data support the de novo production of this frass-associated aggregation pheromone component by the mevalonate pathway. The induction of a metazoan HMG-R in this process does not support the postulated role of microorganisms in ipsdienol production.

  5. Diel periodicity of pheromone release by females of Planococcus citri and Planococcus ficus and the temporal flight activity of their conspecific males

    NASA Astrophysics Data System (ADS)

    Levi-Zada, Anat; Fefer, Daniela; David, Maayan; Eliyahu, Miriam; Franco, José Carlos; Protasov, Alex; Dunkelblum, Ezra; Mendel, Zvi

    2014-08-01

    The diel periodicity of sex pheromone release was monitored in two mealybug species, Planococcus citri and Planococcus ficus (Hemiptera; Pseudococcidae), using sequential SPME/GCMS analysis. A maximal release of 2 ng/h pheromone by 9-12-day-old P. citri females occurred 1-2 h before the beginning of photophase. The highest release of pheromone by P. ficus females was 1-2 ng/2 h of 10-20-day-old females, approximately 2 h after the beginning of photophase. Mating resulted in termination of the pheromone release in both mealybug species. The temporal flight activity of the males was monitored in rearing chambers using pheromone baited delta traps. Males of both P. citri and P. ficus displayed the same flight pattern and began flying at 06:00 hours when the light was turned on, reaching a peak during the first and second hour of the photophase. Our results suggest that other biparental mealybug species display also diel periodicities of maximal pheromone release and response. Direct evaluation of the diel periodicity of the pheromone release by the automatic sequential analysis is convenient and will be very helpful in optimizing the airborne collection and identification of other unknown mealybug pheromones and to study the calling behavior of females. Considering this behavior pattern may help to develop more effective pheromone-based management strategies against mealybugs.

  6. Sites of release of Putative Sex Pheromone and Sexual Behaviour in Female Carcinus maenas(Crustacea: Decapoda)

    NASA Astrophysics Data System (ADS)

    Bamber, S. D.; Naylor, E.

    1997-02-01

    Pre-moult female Carcinus maenasurine was confirmed as a source of putative sex pheromone. The sexual and temporal specificity of bioactivity in pre-moult female urine was demonstrated when urine samples taken from inter-moult and pre-moult male crabs, and inter-moult females, failed to generate a sexual response from receptive males. Detection sensitivity of male crabs to pre-moult female urine was established at a dilution factor of 1 μl of urine in 10 ml of seawater. Experimental blockage of the site of urine release (the antennal gland opercula) failed to diminish the chemical attractiveness of pre-moult female crabs to test males, implicating at least one further site of putative pheromone release. Observations of female sexual behaviour demonstrated an active role by pre-moult and post-moult female crabs when introduced to male crabs whose locomotor movement had been temporarily restricted.

  7. Exposure to female fertility pheromones influences men's drinking.

    PubMed

    Tan, Robin; Goldman, Mark S

    2015-06-01

    Research has shown that humans consciously use alcohol to encourage sexual activity. In the current study, we investigated whether decision making about alcohol use and sex can be cued outside of awareness by recently revealed sexual signaling mechanisms. Specifically, we examined if males exposed without their knowledge to pheromones emitted by fertile females would increase their alcohol consumption, presumably via neurobehavioral information pathways that link alcohol to sex and mating. We found that men who smelled a T-shirt worn by a fertile female drank significantly more (nonalcoholic) beer, and exhibited significantly greater approach behavior toward female cues, than those who smelled a T-shirt worn by a nonfertile female. These findings reveal previously unknown influences on human alcohol consumption, augment the research base for pheromone cuing of sexual behavior in humans, and raise the possibility that other, as yet unknown, pathways of behavioral influence may be operating hidden from view. (c) 2015 APA, all rights reserved).

  8. Exposure to Female Fertility Pheromones Influences Men’s Drinking

    PubMed Central

    Tan, Robin; Goldman, Mark S.

    2015-01-01

    Research shows that humans consciously use alcohol to encourage sexual activity. The current study investigated whether decision-making about alcohol use and sex can be cued outside of awareness by recently revealed sexual signaling mechanisms. Specifically, we examined if males exposed without their knowledge to pheromones emitted by fertile females would increase their alcohol consumption, presumably via neurobehavioral information pathways that link alcohol to sex and mating. We found that men who smelled a T-shirt worn by a fertile female drank significantly more (non-alcoholic) beer, and exhibited significantly greater approach behavior toward female cues, than those who smelled a T-shirt worn by a non-fertile female. These findings reveal previously unknown influences on human alcohol consumption, augment the research base for pheromone cuing of sexual behavior in humans, and raise the possibility that other, as yet unknown, pathways of behavioral influence may be operating hidden from view. PMID:26053321

  9. Mating behavior of a flower-visiting longhorn beetle Zorion guttigerum (Westwood) (Coleoptera: Cerambycidae: Cerambycinae)

    NASA Astrophysics Data System (ADS)

    Wang, Qiao; Chen, Li-Yuan

    2005-05-01

    Long-range sex pheromones have been demonstrated for several cerambycid beetle species. Our field study on the mating behavior of Zorion guttigerum, on the basis of its temporal and spatial distributions on mating and feeding sites (flowers), and longevity, however, suggests that such pheromones are not used by this species. Plant characteristics rather than long-range sex pheromones may play an important role in bringing both sexes together. Adult activities on flowers occur exclusively during the day with two peaks, one around midday and the other in the late afternoon. Overall operational sex ratio is male-biased (≈1 ♀:1.5 ♂) but it becomes very highly male-biased (≈1 ♀:9 ♂) when mating and feeding activities decrease to the minimum in mid-afternoon, suggesting that females leave flowers to oviposit during that period of time. For cerambycid species whose females oviposit alone, and in which mating and oviposition occur on different plants or different plant parts, the operational sex ratio appears to vary significantly over time on the mating sites. The number and duration of pair-bondings also vary over time for Z. guttigerum. Fewer and shorter pair-bondings in the morning may suggest a strong sexual selection process. After ≈2 h of selection, both sexes tend to engage in longer pair-bondings and mate more times before females leave the mating sites in mid-afternoon. Details of the mating behavior are described here.

  10. Mating behavior of a flower-visiting longhorn beetle Zorion guttigerum (Westwood) (Coleoptera: Cerambycidae: Cerambycinae).

    PubMed

    Wang, Qiao; Chen, Li-Yuan

    2005-05-01

    Long-range sex pheromones have been demonstrated for several cerambycid beetle species. Our field study on the mating behavior of Zorion guttigerum, on the basis of its temporal and spatial distributions on mating and feeding sites (flowers), and longevity, however, suggests that such pheromones are not used by this species. Plant characteristics rather than long-range sex pheromones may play an important role in bringing both sexes together. Adult activities on flowers occur exclusively during the day with two peaks, one around midday and the other in the late afternoon. Overall operational sex ratio is male-biased ( approximately 1 female symbol:1.5 male symbol) but it becomes very highly male-biased ( approximately 1 female symbol:9 male symbol) when mating and feeding activities decrease to the minimum in mid-afternoon, suggesting that females leave flowers to oviposit during that period of time. For cerambycid species whose females oviposit alone, and in which mating and oviposition occur on different plants or different plant parts, the operational sex ratio appears to vary significantly over time on the mating sites. The number and duration of pair-bondings also vary over time for Z. guttigerum. Fewer and shorter pair-bondings in the morning may suggest a strong sexual selection process. After approximately 2 h of selection, both sexes tend to engage in longer pair-bondings and mate more times before females leave the mating sites in mid-afternoon. Details of the mating behavior are described here.

  11. General odorant-binding proteins and sex pheromone guide larvae of Plutella xylostella to better food.

    PubMed

    Zhu, Jiao; Ban, Liping; Song, Li-Mei; Liu, Yang; Pelosi, Paolo; Wang, Guirong

    2016-05-01

    Olfaction of Lepidopteran larvae has received little attention, compared to the damage to crops done by insects at this stage. We report that larvae of the diamondback moth Plutella xylostella are attracted to their natural sex pheromone and to their major component (Z)-11-hexadecenal, but only in a food context. For such task they use two general odorant-binding proteins (GOBPs), abundantly expressed in the three major sensilla basiconica of the larval antenna, as shown by whole-mount immunostaining and immunocytochemistry experiments. None of the three genes encoding pheromone-binding proteins (PBPs) are expressed at this stage. Both recombinant GOBPs bind (Z)-11-hexadecenal and the corresponding alcohol, but not the acetate. Binding experiments performed with five mutants of GOBP2, where aromatic residues in the binding pocket were replaced with leucine showed that only one or two amino acid substitutions can completely abolish binding to the pheromone shifting the affinity to plant-derived compounds. We hypothesise that detection of their species-specific pheromone may direct larvae to the sites of foraging chosen by their mother when laying eggs, to find better food, as well as to reduce competition with individuals of the same or other species sharing the same host plant. We also provide evidence that GOBP2 is a narrowly tuned binding protein, whose affinity can be easily switched from linear pheromones to branched plants terpenoids, representing a tool better suited for the simple olfactory system of larvae, as compared to the more sophisticated organ of adults. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Sex pheromone receptor proteins. Visualization using a radiolabeled photoaffinity analog

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogt, R.G.; Prestwich, G.D.; Riddiford, L.M.

    1988-03-15

    A tritium-labeled photoaffinity analog of a moth pheromone was used to covalently modify pheromone-selective binding proteins in the antennal sensillum lymph and sensory dendritic membranes of the male silk moth, Antheraea polyphemus. This analog, (E,Z)-6,11-(/sup 3/H)hexadecadienyl diazoacetate, allowed visualization of a 15-kilodalton soluble protein and a 69-kilodalton membrane protein in fluorescence autoradiograms of electrophoretically separated antennal proteins. Covalent modification of these proteins was specifically reduced when incubation and UV irradiation were conducted in the presence of excess unlabeled pheromone, (E,Z)-6,11-hexadecadienyl acetate. These experiments constitute the first direct evidence for a membrane protein of a chemosensory neuron interacting in a specificmore » fashion with a biologically relevant odorant.« less

  13. Sex pheromone of orange wheat blossom midge, Sitodiplosis mosellana

    NASA Astrophysics Data System (ADS)

    Gries, Regine; Gries, G.; Khaskin, Grigori; King, Skip; Olfert, Owen; Kaminski, Lori-Ann; Lamb, Robert; Bennett, Robb

    Pheromone extract of the female orange wheat blossom midge, Sitodiplosis mosellana (Géhin) (SM) (Diptera: Cecidomyiidae), was analyzed by coupled gas chromatographic-electroantennographic detection (GC-EAD) and GC-mass spectrometry (MS), employing fused silica columns coated with DB-5, DB-210, DB-23 or SP-1000. These analyses revealed a single, EAD-active candidate pheromone which was identified as 2,7-nonanediyl dibutyrate. In experiments in wheat fields in Saskatchewan, traps baited with (2S,7S)-2,7-nonanediyl dibutyrate attracted significant numbers of male SM. The presence of other stereoisomers did not adversely affect trap captures. Facile synthesis of stereoisomeric 2,7-nonanediyl dibutyrate will facilitate the development of pheromone-based monitoring or even control of SM populations.

  14. The Synthesis of a Cockroach Pheromone: An Experiment for the Second-Year Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Feist, Patty L.

    2008-01-01

    This experiment describes the synthesis of gentisyl quinone isovalerate, or blattellaquinone, a sex pheromone of the German cockroach that was isolated and identified in 2005. The synthesis is appropriate for the second semester of a second-year organic chemistry laboratory course. It can be completed in two, three-hour laboratory periods and uses…

  15. How much is a pheromone worth?

    PubMed Central

    Bento, Jose Mauricio S.; Parra, Jose Roberto P.; de Miranda, Silvia H. G.; Adami, Andrea C. O.; Vilela, Evaldo F.; Leal, Walter S.

    2016-01-01

    Pheromone-baited traps have been widely used in integrated pest management programs, but their economic value for growers has never been reported.  We analyzed the economic benefits of long-term use of traps baited with the citrus fruit borer Gymnandrosoma aurantianum sex pheromone in Central-Southern Brazil. Our analysis show that from 2001 to 2013 citrus growers avoided accumulated pest losses of 132.7 million to 1.32 billion USD in gross revenues, considering potential crop losses in the range of 5 to 50%. The area analyzed, 56,600 to 79,100 hectares of citrus (20.4 to 29.4 million trees), corresponds to 9.7 to 13.5% of the total area planted with citrus in the state of São Paulo. The data show a benefit-to-cost ratio of US$ 2,655 to US$ 26,548 per dollar spent on research with estimated yield loss prevented in the range of 5-50%, respectively. This study demonstrates that, in addition to the priceless benefits for the environment, sex pheromones are invaluable tools for growers as their use for monitoring populations allows rational and reduced use of insecticides, a win-win situation. PMID:27583133

  16. Molecular identification of a pancreatic lipase-like gene involved in sex pheromone biosynthesis of Bombyx mori.

    PubMed

    Zhang, Song-Dou; Li, Xun; Bin, Zhu; Du, Meng-Fang; Yin, Xin-Ming; An, Shi-Heng

    2014-08-01

    Cytoplasmic lipid droplet (LD) lipolysis is regulated by pheromone biosynthesis activating neuropeptide (PBAN) in Bombyx mori. To elucidate the molecular mechanism of cytoplasm LD lipolysis, the pancreatic lipase-like gene in B. mori pheromone glands (PGs), designated as B. mori pancreatic lipase-like gene (BmPLLG), was identified in this study. Spatial expression analysis revealed that BmPLLG is a ubiquitous gene present in all studied tissues, such as PGs, brain, epidermis, egg, midgut, flight muscle and fat body. Temporal expression analysis showed that the BmPLLG transcript begins to express 96 h before eclosion (-96 h), continues to increase, peaks in newly emerged females and steadily decreases after eclosion. Translational expression analysis of BmPLLG using a prepared antiserum demonstrated that BmPLLG was expressed in an age-dependent pattern at different development stages in B. mori. This finding was similar to the transcript expression pattern. Further RNA interference-mediated knockdown of BmPLLG significantly inhibited bombykol production. Overall, these results demonstrated that BmPLLG is involved in PBAN-induced sex pheromone biosynthesis and release. © 2013 Institute of Zoology, Chinese Academy of Sciences.

  17. Sex Pheromones of C. elegans Males Prime the Female Reproductive System and Ameliorate the Effects of Heat Stress

    PubMed Central

    Aprison, Erin Z.; Ruvinsky, Ilya

    2015-01-01

    Pheromones are secreted molecules that mediate animal communications. These olfactory signals can have substantial effects on physiology and likely play important roles in organismal survival in natural habitats. Here we show that a blend of two ascaroside pheromones produced by C. elegans males primes the female reproductive system in part by improving sperm guidance toward oocytes. Worms have different physiological responses to different ratios of the same two molecules, revealing an efficient mechanism for increasing coding potential of a limited repertoire of molecular signals. The endogenous function of the male sex pheromones has an important side benefit. It substantially ameliorates the detrimental effects of prolonged heat stress on hermaphrodite reproduction because it increases the effectiveness with which surviving gametes are used following stress. Hermaphroditic species are expected to lose female-specific traits in the course of evolution. Our results suggest that some of these traits could have serendipitous utility due to their ability to counter the effects of stress. We propose that this is a general mechanism by which some mating-related functions could be retained in hermaphroditic species, despite their expected decay. PMID:26645097

  18. Amino Acid Change in an Orchid Desaturase Enables Mimicry of the Pollinator’s Sex Pheromone

    DOE PAGES

    Sedeek, Khalid E. M.; Whittle, Edward; Guthörl, Daniela; ...

    2016-05-19

    Here, we show that mimicry illustrates the power of selection to produce phenotypic convergence in biology. A striking example is the imitation of female insects by plants that are pollinated by sexual deception of males of the same insect species. This involves mimicry of visual, tactile, and chemical signals of females, especially their sex pheromones. The Mediterranean orchid Ophrys exaltata employs chemical mimicry of cuticular hydrocarbons, particularly the 7-alkenes, in an insect sex pheromone to attract and elicit mating behavior in its pollinators, males of the cellophane bee Colletes cunicularius. A difference in alkene double-bond positions is responsible for reproductivemore » isolation between O. exaltata and closely related species, such as O. sphegodes. We show that these 7-alkenes are likely determined by the action of the stearoyl-acyl-carrier-protein desaturase (SAD) homolog SAD5. After gene duplication, changes in subcellular localization relative to the ancestral housekeeping desaturase may have allowed proto-SAD5’s reaction products to undergo further biosynthesis to both 7- and 9-alkenes. Such ancestral coproduction of two alkene classes may have led to pollinator-mediated deleterious pleiotropy. Despite possible evolutionary intermediates with reduced activity, amino acid changes at the bottom of the substrate-binding cavity have conferred enzyme specificity for 7-alkene biosynthesis by preventing the binding of longer-chained fatty acid (FA) precursors by the enzyme. In conclusion, this change in desaturase function enabled the orchid to perfect its chemical mimicry of pollinator sex pheromones by escape from deleterious pleiotropy, supporting a role of pleiotropy in determining the possible trajectories of adaptive evolution.« less

  19. Amino Acid Change in an Orchid Desaturase Enables Mimicry of the Pollinator's Sex Pheromone.

    PubMed

    Sedeek, Khalid E M; Whittle, Edward; Guthörl, Daniela; Grossniklaus, Ueli; Shanklin, John; Schlüter, Philipp M

    2016-06-06

    Mimicry illustrates the power of selection to produce phenotypic convergence in biology [1]. A striking example is the imitation of female insects by plants that are pollinated by sexual deception of males of the same insect species [2-4]. This involves mimicry of visual, tactile, and chemical signals of females [2-7], especially their sex pheromones [8-11]. The Mediterranean orchid Ophrys exaltata employs chemical mimicry of cuticular hydrocarbons, particularly the 7-alkenes, in an insect sex pheromone to attract and elicit mating behavior in its pollinators, males of the cellophane bee Colletes cunicularius [11-13]. A difference in alkene double-bond positions is responsible for reproductive isolation between O. exaltata and closely related species, such as O. sphegodes [13-16]. We show that these 7-alkenes are likely determined by the action of the stearoyl-acyl-carrier-protein desaturase (SAD) homolog SAD5. After gene duplication, changes in subcellular localization relative to the ancestral housekeeping desaturase may have allowed proto-SAD5's reaction products to undergo further biosynthesis to both 7- and 9-alkenes. Such ancestral coproduction of two alkene classes may have led to pollinator-mediated deleterious pleiotropy. Despite possible evolutionary intermediates with reduced activity, amino acid changes at the bottom of the substrate-binding cavity have conferred enzyme specificity for 7-alkene biosynthesis by preventing the binding of longer-chained fatty acid (FA) precursors by the enzyme. This change in desaturase function enabled the orchid to perfect its chemical mimicry of pollinator sex pheromones by escape from deleterious pleiotropy, supporting a role of pleiotropy in determining the possible trajectories of adaptive evolution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Amino Acid Change in an Orchid Desaturase Enables Mimicry of the Pollinator’s Sex Pheromone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sedeek, Khalid E. M.; Whittle, Edward; Guthörl, Daniela

    Here, we show that mimicry illustrates the power of selection to produce phenotypic convergence in biology. A striking example is the imitation of female insects by plants that are pollinated by sexual deception of males of the same insect species. This involves mimicry of visual, tactile, and chemical signals of females, especially their sex pheromones. The Mediterranean orchid Ophrys exaltata employs chemical mimicry of cuticular hydrocarbons, particularly the 7-alkenes, in an insect sex pheromone to attract and elicit mating behavior in its pollinators, males of the cellophane bee Colletes cunicularius. A difference in alkene double-bond positions is responsible for reproductivemore » isolation between O. exaltata and closely related species, such as O. sphegodes. We show that these 7-alkenes are likely determined by the action of the stearoyl-acyl-carrier-protein desaturase (SAD) homolog SAD5. After gene duplication, changes in subcellular localization relative to the ancestral housekeeping desaturase may have allowed proto-SAD5’s reaction products to undergo further biosynthesis to both 7- and 9-alkenes. Such ancestral coproduction of two alkene classes may have led to pollinator-mediated deleterious pleiotropy. Despite possible evolutionary intermediates with reduced activity, amino acid changes at the bottom of the substrate-binding cavity have conferred enzyme specificity for 7-alkene biosynthesis by preventing the binding of longer-chained fatty acid (FA) precursors by the enzyme. In conclusion, this change in desaturase function enabled the orchid to perfect its chemical mimicry of pollinator sex pheromones by escape from deleterious pleiotropy, supporting a role of pleiotropy in determining the possible trajectories of adaptive evolution.« less

  1. Sex-pairing pheromone of Ancistrotermes dimorphus (Isoptera: Macrotermitinae).

    PubMed

    Wen, Ping; Mo, Jianchu; Lu, Chunwen; Tan, Ken; Šobotník, Jan; Sillam-Dussès, David

    2015-12-01

    Ancistrotermes dimorphus is a common Macrotermitinae representative, facultative inquiline by its life-style, occurring in South-East China. Sex pheromone is used for couple formation and maintenance, and it is produced by and released from the female sternal gland and is highly attractive to males. Based on our combined behavioral, chemical and electrophysiological analyses, we identified (3Z,6Z)-dodeca-3,6-dien-1-ol as the female sex pheromone of A. dimorphus as it evoked the tandem behavior at short distance, and the active quantities ranged from 0.01ng to 10ng. Interestingly, GC-MS analyses of SPME extracts showed another compound specific to the female sternal gland, (3Z)-dodec-3-en-1-ol, which showed a clear GC-EAD response. However, this compound has no behavioral function in natural concentrations (0.1ng), while higher amounts (1ng) inhibit the attraction achieved by (3Z,6Z)-dodeca-3,6-dien-1-ol. The function of (3Z)-dodec-3-en-1-ol is not fully understood, but might be linked to recognition from sympatric species using the same major compound, enhancing the long-distance attraction, or informing about presence of other colonies using the compound as a trail-following pheromone. The sternal gland secretion of Ancistrotermes females contains additional candidate compounds, namely (3E,6Z)-dodeca-3,6-dien-1-ol and (6Z)-dodec-6-en-1-ol, which are not perceived by males' antennae in biologically relevant amounts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Behavior of the Chinchs of Shield Bug under the Effect of Pheromones,

    DTIC Science & Technology

    1977-06-14

    ADV O CAT EDOR IMPLIEDA RE THOSE OF THE SOURCE AND DO NOT NECESSARIL Y REFLECT THE POSITION TRANSLATION DIVIS ION OR OPINION OF THE FOREIGN TECHNOLOGY...sex o~ ph eromones which secrete the males. The ii ~crat i on / ox cr et ion of ~loor/s(’x of pheromone and the attraction of f~ - r r i l c~; ar...mi r i . Al l cases of the h-1~ yedapproa ch occurred into I half of la y ( f r o m 10 to 14 hr.). The irawino ; action/effect of pheromon e of sales

  3. Comparative study of sex pheromone composition and biosynthesis in Helicoverpa armigera, H. assulta and their hybrid.

    PubMed

    Wang, Hong-Lei; Zhao, Cheng-Hua; Wang, Chen-Zhu

    2005-06-01

    Two Helicoverpa species, H. armigera and H. assulta use (Z)-11-hexadecenal and (Z)-9-hexadecenal as their sex attractant pheromone components but in opposite ratios. Since both female and male interspecific hybrids produced by female H. assulta and male H. armigera have been obtained in our laboratory, we can make a comparative study of sex pheromone composition and biosynthesis in the two species and their hybrid. With GC and GC-MS analyses using single gland extracts, the ratio of (Z)-9-hexadecenal to (Z)-11-hexadecenal was determined as 2.1:100 in H. armigera, and 1739:100 in H. assulta. The hybrid has a ratio of 4.0: 100, which is closer to that of H. armigera, but significantly different from H. armigera. We investigated pheromone biosynthesis with labeling experiments, using various fatty acid precursors in H. armigera, H. assulta and the hybrid. In H. armigera, (Z)-11-hexadecenal is produced by delta11 desaturation of palmitic acid, followed by reduction and terminal oxidation; (Z)-9-hexadecenal results from delta11 desaturation of stearic acid, followed by one cycle of chain shortening, reduction and terminal oxidation. delta11 desaturase is the unique desaturase for the production of the two pheromone components. In our Chinese strain of H. assulta, palmitic acid is used as the substrate to form both the major pheromone component, (Z)-9-hexadecenal and the minor one, (Z)-11-hexadecenal. Our data suggest that delta9 desaturase is the major desaturase, and delta11 desaturase is responsible for the minor component in H. assulta, which is consistent with previous work. However, the weak chain shortening acting on (Z)-9 and (Z)-11-octadecenoic acid, which is present in the pheromone glands, does occur in this species to produce (Z)-7 and (Z)-9-hexadecenoic acid. In the hybrid, the major pheromone component, (Z)-11-hexadecenal is produced by delta11 desaturation of palmitic acid, followed by reduction and terminal oxidation. The direct fatty acid precursor of the minor component, (Z)-9-hexadecenoic acid is mainly produced by delta9 desaturation of palmitic acid, but also by delta11 desaturation of stearic acid and one cycle of chain shortening. The greater relative amounts of (Z)-9-hexadecenal in the hybrid are due to the fact that both palmitic and stearic acids are used as substrates, whereas only stearic acid is used as substrate in H. armigera. The evolutionary relationships between the desaturases in several Helicoverpa species are also discussed in this paper.

  4. Pheromone modulates plant odor responses in the antennal lobe of a moth.

    PubMed

    Chaffiol, Antoine; Dupuy, Fabienne; Barrozo, Romina B; Kropf, Jan; Renou, Michel; Rospars, Jean-Pierre; Anton, Sylvia

    2014-06-01

    In nature, male moths are exposed to a complex plant odorant environment when they fly upwind to a sex pheromone source in their search for mates. Plant odors have been shown to affect responses to pheromone at various levels but how does pheromone affects plant odor perception? We recorded responses from neurons within the non-pheromonal "ordinary glome ruli" of the primary olfactory center, the antennal lobe (AL), to single and pulsed stimulations with the plant odorant heptanal, the pheromone, and their mixture in the male moth Agrotis ipsilon. We identified 3 physiological types of neurons according to their activity patterns combining excitatory and inhibitory phases. Both local and projection neurons were identified in each physiological type. Neurons with excitatory responses to heptanal responded also frequently to the pheromone and showed additive responses to the mixture. Moreover, the neuron's ability of resolving successive pulses generally improved with the mixture. Only some neurons with combined excitatory/inhibitory, or purely inhibitory responses to heptanal, also responded to the pheromone. Although individual mixture responses were not significantly different from heptanal responses in these neurons, pulse resolution was improved with the mixture as compared with heptanal alone. These results demonstrate that the pheromone and the general odorant subsystems interact more intensely in the moth AL than previously thought. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Activity of male pheromone of Melanesian rhinoceros beetle Scapanes australis.

    PubMed

    Rochat, Didier; Morin, Jean-Paul; Kakul, Titus; Beaudoin-Ollivier, Laurence; Prior, Robert; Renou, Michel; Malosse, Isabelle; Stathers, Tanya; Embupa, Sebastian; Laup, Samson

    2002-03-01

    Laboratory and field investigations were carried out to investigate the nature and role of the male pheromone emitted by the Dynast beetle Scapanes australis and to develop a mass trapping technique against this major coconut pest in Papua New Guinea. We report the biological data obtained from natural and synthetic pheromone, previously described as an 84:12:4 (w/w) mixture of 2-butanol (1), 3-hydoxy-2-butanone (2), and 2,3-butanediol (3). EAG recordings from natural and synthetic pheromone and a pitfall olfactometer were poorly informative. In contrast, extensive field trapping trials with various synthetic pheromone mixtures and doses showed that 1 and 2 (formulated in polyethylene sachets in 90:5 v/v ratio) were necessary and sufficient for optimum long-range attraction. Beetles were captured in traps baited with racemic 1 plus 2, with or without a stereoisomer mixture of 3 (2.5- to 2500-mg/day doses). Plant pieces, either sugarcane or coconut, enhanced captures by the synthetic pheromone, which was active alone. Traps with the pheromone caught both sexes in a 3:2 female-male ratio. A pheromone-based mass trapping led to the capture of 2173 beetles in 14 traps surrounding 40 ha of a cocoa-coconut plantation. The captures followed a log-linear decrease during the 125-week trapping program. The role of the male pheromone and its potential for crop protection are discussed.

  6. Cloning and functional characterization of three new pheromone receptors from the diamondback moth, Plutella xylostella.

    PubMed

    Liu, Yipeng; Liu, Yang; Jiang, Xingchuan; Wang, Guirong

    The highly specialized olfactory receptor neurons (ORNs) on the antennae of male moths can recognize blends of several pheromone components. In previous studies, a total of six candidate pheromone receptor (PR) genes were cloned and functionally characterized in the diamondback moth, Plutella xylostella. In the present work, we report on three novel candidate pheromone receptor genes: PxylOR8, PxylOR41, and PxylOR45 in the same species. Gene expression analysis revealed that PxylOR8 is specifically expressed in female adult antennae, while PxylOR41 and PxylOR45 are expressed in antennae in both sexes, but with a male bias. In situ hybridization revealed that PxylOR8, PxylOR41 and PxylOR45 are localized in long trichoid sensilla. Functional analyses on the three pheromone receptor genes were then performed using the heterologous expression system of Xenopus oocytes. PxylOR41 was tuned to two minor pheromone components Z9-14:Ac, Z9-14:OH, and their analog Z9-14:Ald. PxylOR8 and PxylOR45 did not respond to any tested pheromone components and analogs. These results may contribute to clarifying how pheromone detection works in P. xylostella. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Sex-specific trail pheromone mediates complex mate finding behavior in Anoplophora glabripennis.

    PubMed

    Hoover, Kelli; Keena, Melody; Nehme, Maya; Wang, Shifa; Meng, Peter; Zhang, Aijun

    2014-02-01

    Anoplophora glabripennis (Motsch.) is a polyphagous member of the Cerambycidae, and is considered, worldwide, to be one of the most serious quarantine pests of deciduous trees. We isolated four chemicals from the trail of A. glabripennis virgin and mated females that were not present in trails of mature males. These compounds were identified as 2-methyldocosane and (Z)-9-tricosene (major components), as well as (Z)-9-pentacosene and (Z)-7-pentacosene (minor components); every trail wash sample contained all four chemical components, although the amounts and ratios changed with age of the female. Males responded to the full pheromone blend, regardless of mating status, but virgin females chose the control over the pheromone, suggesting that they may use it as a spacing pheromone to avoid intraspecific competition and maximize resources. Virgin, but not mated, males also chose the major pheromone components in the absence of the minor components, over the control. Taken together, these results indicate that all four chemicals are components of the trail pheromone. The timing of production of the ratios of the pheromone blend components that produced positive responses from males coincided with the timing of sexual maturation of the female.

  8. Beyond 9-ODA: sex pheromone communication in the European honey bee Apis mellifera L.

    PubMed

    Brockmann, Axel; Dietz, Daniel; Spaethe, Johannes; Tautz, Jürgen

    2006-03-01

    The major component of the mandibular gland secretion of queen honeybees (Apis mellifera L.), 9-ODA ((2E)-9-oxodecenoic acid), has been known for more than 40 yr to function as a long-range sex pheromone, attracting drones at congregation areas and drone flyways. Tests of other mandibular gland components failed to demonstrate attraction. It remained unclear whether these components served any function in mating behavior. We performed dual-choice experiments, using a rotating drone carousel, to test the attractiveness of 9-ODA compared to mixtures of 9-ODA with three other most abundant components in virgin queen mandibular gland secretions: (2E)-9-hydroxydecenoic acid (9-HDA), (2E)-10-hydroxydecenoic acid (10-HDA), and p-hydroxybenzoate (HOB). We found no differences in the number of drones attracted to 9-ODA or the respective mixtures over a distance. However, adding 9-HDA and 10-HDA, or 9-HDA, 10-HDA, and HOB to 9-ODA increased the number of drones making contact with the baited dummy. On the basis of these results, we suggest that at least 9-HDA and 10-HDA are additional components of the sex pheromone blend of A. mellifera.

  9. Binding Properties of General Odorant Binding Proteins from the Oriental Fruit Moth, Grapholita molesta (Busck) (Lepidoptera: Tortricidae)

    PubMed Central

    Li, Guangwei; Chen, Xiulin; Li, Boliao; Zhang, Guohui; Li, Yiping; Wu, Junxiang

    2016-01-01

    Background The oriental fruit moth Grapholita molesta is a host-switching pest species. The adults highly depend on olfactory cues in locating optimal host plants and oviposition sites. Odorant binding proteins (OBPs) are thought to be responsible for recognizing and transporting hydrophobic odorants across the aqueous sensillum lymph to stimulate the odorant receptors (ORs) within the antennal sensilla and activate the olfactory signal transduction pathway. Exploring the physiological function of these OBPs could facilitate understanding insect chemical communications. Methodology/Principal Finding Two antennae-specific general OBPs (GOBPs) of G. molesta were expressed and purified in vitro. The binding affinities of G. molesta GOBP1 and 2 (GmolGOBP1 and 2) for sex pheromone components and host plant volatiles were measured by fluorescence ligand-binding assays. The distribution of GmolGOBP1 and 2 in the antennal sensillum were defined by whole mount fluorescence immunohistochemistry (WM-FIHC) experiments. The binding sites of GmolGOBP2 were predicted using homology modeling, molecular docking and site-directed mutagenesis. Both GmolGOBP1 and 2 are housing in sensilla basiconica and with no differences in male and female antennae. Recombinant GmolGOBP1 (rGmolGOBP1) exhibited broad binding properties towards host plant volatiles and sex pheromone components; rGmolGOBP2 could not effectively bind host plant volatiles but showed specific binding affinity with a minor sex pheromone component dodecanol. We chose GmolGOBP2 and dodecanol for further homology modeling, molecular docking, and site-directed mutagenesis. Binding affinities of mutants demonstrated that Thr9 was the key binding site and confirmed dodecanol bonding to protein involves a hydrogen bond. Combined with the pH effect on binding affinities of rGmolGOBP2, ligand binding and release of GmolGOBP2 were related to a pH-dependent conformational transition. Conclusion Two rGmolGOBPs exhibit different binding characteristics for tested ligands. rGmolGOBP1 has dual functions in recognition of host plant volatiles and sex pheromone components, while rGmolGOBP2 is mainly involved in minor sex pheromone component dodecanol perception. This study also provides empirical evidence for the predicted functions of key amino acids in recombinant protein ligand-binding characteristics. PMID:27152703

  10. Field evaluation of effect of temperature on release of Disparlure from a pheromone-baited trapping system used to monitor gypsy moth (Lepidoptera: Lymantriidae)

    Treesearch

    Patrick C. Tobin; Aijun Zhang; Ksenia Onufrieva; Donna Leonard

    2011-01-01

    Traps baited with disparlure, the synthetic form of the gypsy moth, Lymantria dispar (L.) (Lepidoptera: Lymantriidae), sex pheromone are used to detect newly founded populations and estimate population density across the United States. The lures used in trapping devices are exposed to field conditions with varying climates, which can affect the rate...

  11. Sex pheromone chemistry and field trapping studies of the elm spanworm Ennomos subsignaria (Hübner) (Lepidoptera:Geometridae)

    NASA Astrophysics Data System (ADS)

    Ryall, Krista; Silk, Peter J.; Wu, Junping; Mayo, Peter; Lemay, Matthew A.; Magee, David

    2010-08-01

    The elm spanworm, Ennomos subsignaria (Hübner), occurs throughout Canada and the eastern United States and can be a destructive forest pest on a wide range of deciduous trees. Gas chromatography/mass spectrometry (GC/MS) and coupled gas chromatographic-electroantennographic detection (GC/EAD) analysis of pheromone gland extracts, in combination with chemical synthesis and field trapping studies have identified (2 S, 3 R)-2-(( Z)-oct-2'-enyl)-3-nonyl oxirane (hereafter Z6-9 S, 10 R-epoxy-19:H) as the female-produced sex pheromone. Significantly more male moths were captured between 1-100 μg loadings of this compound on red rubber septa in sticky traps compared to blank (unbaited) traps; catches then declined at higher dosages (500-1000 μg). The other isomeric enantiomer, (2 R, 3 S)-2-[( Z)-oct-2'-enyl]-3-nonyl oxirane ( Z6-9 R, 10 S-epoxy-19:H), at a 10-μg dosage did not elicit trap capture. The likely precursor to the active epoxide, ( Z, Z)-6, 9-nonadecadiene (( Z, Z)-6, 9-19:H), identified in virgin female sex pheromone glands, did not elicit trap capture either, and inhibited trap capture when combined with the active epoxide. Racemic 2-((Z)-oct-2'-enyl)-3-nonyl oxirane showed no significant difference in trap capture compared with Z6-9 S, 10 R-epoxy-19:H, indicating that the opposite enantiomer was not antagonistic. The addition of the EAD-active diene epoxide enantiomers (2 S, 3 R)-2-[( Z, Z)-octa-2', 5'-dienyl]-3-nonyl oxirane or (2 R, 3 S)-2-[( Z, Z)-octa-2', 5'-dienyl]-3-nonyl oxirane in admixture with Z6-9 S, 10 R-epoxy-19:H (at 10% of the latter) did not enhance or decrease trap capture compared to Z6-9 S, 10 R-epoxy-19:H oxirane alone, so they are not likely pheromone components. This pheromone, impregnated in rubber septa at less than 100-μg dosage, can now be used as a trap bait to develop detection and monitoring strategies for this insect.

  12. Elucidation of the sex-pheromone biosynthesis producing 5,7-dodecadienes in Dendrolimus punctatus (Lepidoptera: Lasiocampidae) reveals Delta 11- and Delta 9-desaturases with unusual catalytic properties.

    PubMed

    Liénard, Marjorie A; Lassance, Jean-Marc; Wang, Hong-Lei; Zhao, Cheng-Hua; Piskur, Jure; Johansson, Tomas; Löfstedt, Christer

    2010-06-01

    Sex pheromones produced by female moths of the Lasiocampidae family include conjugated 5,7-dodecadiene components with various oxygenated terminal groups. Here we describe the molecular cloning, heterologous expression and functional characterization of desaturases associated with the biosynthesis of these unusual chemicals. By homology-based PCR screening we characterized five cDNAs from the female moth pheromone gland that were related to other moth desaturases, and investigated their role in the production of the (Z)-5-dodecenol and (Z5,E7)-dodecadienol, major pheromone constituents of the pine caterpillar moth, Dendrolimus punctatus. Functional expression of two desaturase cDNAs belonging to the Delta 11-subfamily, Dpu-Delta 11(1)-APSQ and Dpu-Delta 11(2)-LPAE, showed that they catalysed the formation of unsaturated fatty acyls (UFAs) that can be chain-shortened by beta-oxidation and subsequently reduced to the alcohol components. A first (Z)-11-desaturation step is performed by Dpu-Delta 11(2)-LPAE on stearic acid that leads to (Z)-11-octadecenoic acyl, which is subsequently chain shortened to the (Z)-5-dodecenoic acyl precursor. The Dpu-Delta 11(1)-APSQ desaturase had the unusual property of producing Delta 8 mono-UFA of various chain lengths, but not when transformed yeast were grown in presence of (Z)-9-hexadecenoic acyl, in which case the biosynthetic intermediate (Z9,E11)-hexadecadienoic UFA was produced. In addition to a typical Z9 activity, a third transcript, Dpu-Delta 9-KPSE produced E9 mono-UFAs of various chain lengths. When provided with the (Z)-7-tetradecenoic acyl, it formed the (Z7,E9)-tetradecadienoic UFA, another biosynthetic intermediate that can be chain-shortened to (Z5,E7)-dodecadienoic acyl. Both Dpu-Delta 11(1)-APSQ and Dpu-Delta 9-KPSE thus exhibited desaturase activities consistent with the biosynthesis of the dienoic precursor. The combined action of three desaturases in generating a dienoic sex-pheromone component emphasizes the diversity and complexity of chemical reactions that can be catalysed by pheromone biosynthetic fatty-acyl-CoA desaturases in moths. (c) 2010 Elsevier Ltd. All rights reserved.

  13. Feasibility of Mating Disruption for Agricultural Pest Eradication in an Urban Environment: Light Brown Apple Moth (Lepidoptera: Tortricidae) in Perth.

    PubMed

    Soopaya, Rajendra; Woods, Bill; Lacey, Ian; Virdi, Amandip; Mafra-Neto, Agenor; Suckling, David Maxwell

    2015-08-01

    Eradication technologies are needed for urban and suburban situations, but may require different technologies from pest management in agriculture. We investigated mating disruption of a model moth species recently targeted for eradication in Californian cities, by applying dollops of SPLAT releasing a two-component sex pheromone of the light brown apple moth in 2-ha plots in low-density residential Perth, Australia. The pheromone technology was applied manually at ∼1.5 m height to street and garden trees, scrubs, and walls at 500 dollops per hectare of 0.8 g containing ∼80 mg active two-component pheromone. Catches of male moths were similar among all plots before treatment, but in treated areas (six replicates) pheromone trap catches were substantially reduced for up to 29 wk posttreatment, compared with untreated control plot catches (three replicates). The treatment with pheromone reduced catch to virgin females by 86% (P < 0.001) and reduced the occurrence of mating by 93%, compared with three equivalent untreated control plot catches (P < 0.001). Eradication programs are following an upward trend with globalization and the spread of invasive arthropods, which are often first detected in urban areas. Eradication requires a major increase in the communication distance between individuals, but this can be achieved using sex pheromone-based mating disruption technology, which is very benign and suitable for sensitive environments. The need for new socially acceptable tools for eradication in urban environments is likely to increase because of increasing need for eradications. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Field optimization of the sex pheromone of Stenoma catenifer (Lepidoptera: Elachistidae): evaluation of lure types, trap height, male flight distances, and number of traps needed per avocado orchard for detection.

    PubMed

    Hoddle, M S; Millar, J G; Hoddle, C D; Zou, Y; McElfresh, J S; Lesch, S M

    2011-04-01

    The sex pheromone of Stenoma catenifer was evaluated in commercial avocado orchards in Guatemala to determine operational parameters, such as optimal lure type, trap height, trap density and estimates of the distances that male moths fly. Of four pheromone dispensers tested, gray and white rubber septa were of equal efficacy, whereas 1-ml low-density polyethylene vials and 2×3-cm polyethylene ziplock bags were least efficacious. The height at which wing traps were hung did not significantly affect the number of adult male S. catenifer captured. For monitoring S. catenifer, these data suggest that the pheromone should be dispensed from gray rubber septa in wing traps hung inside the tree canopy at 1.75 m, a height convenient for trap placement and monitoring. Mark-recapture studies of male S. catenifer indicated that, on average, males flew 67 m in one night. However, it is likely that this is an underestimate of the distance that male moths are capable of flying in a single night. Probabilistic modeling of S. catenifer capture data from different numbers of pheromone traps deployed in seven commercial avocado orchards of varying sizes and infestation levels suggested that 10-13 randomly deployed traps per orchard for a 7-day period are needed to detect at least one male S. catenifer with 90% confidence. These data provide sufficient information to develop effective protocols for using the S. catenifer pheromone to detect and monitor this pest in countries with endemic populations that are exporting fresh avocados, and for quarantine detection and incursion monitoring in countries receiving avocado imports from high risk areas.

  15. Green Light Synergistally Enhances Male Sweetpotato Weevil Response to Sex Pheromone

    PubMed Central

    McQuate, Grant T.

    2014-01-01

    Sweetpotato, commercially grown in over 100 countries, is one of the ten most important staple crops in the world. Sweetpotato weevil is a major pest of sweetpotato in most areas of cultivation, the feeding of which induces production in the sweetpotato root of extremely bitter tasting and toxic sesquiterpenes which can render the sweetpotato unfit for consumption. A significant step towards improved management of this weevil species was the identification of a female-produced sex pheromone [(Z)-3-dodecenyl (E)-2-butenoate] to which males are highly attracted. Reported here are results of research that documents a nearly 5-fold increase in male sweetpotato weevil catch in traps baited with this pheromone and a green light provided by a solar-powered, light-emitting diode (LED). The combination of olfactory and night-visible visual cues significantly enhanced trap effectiveness for this nighttime-active insect species. These results provide promise for improved sweetpotato weevil detection and suppression in mass trapping programs. PMID:24675727

  16. Pheromone gland development and pheromone production in lutzomyia longipalpis (Diptera: Psychodidae: Phlebotominae).

    PubMed

    Spiegel, Carolina N; Batista-Pereira, Luciane G; Bretas, Jorge A C; Eiras, Alvaro E; Hooper, Antony M; Peixoto, Alexandre A; Soares, Maurilio J

    2011-05-01

    The sand fly Lutzomyia longipalpis (Lutz & Neiva) (Diptera: Psychodidae: Phlebotominae) is the main vector of American visceral leishmaniasis. Adult males produce a terpenoid sex pheromone that in some cases also acts as male aggregation pheromone. We have analyzed the correlation between male pheromone production levels and pheromone gland cell morphogenesis after adult emergence from pupae. The abdominal tergites of L. longipalpis males were dissected and fixed in glutaraldehyde for transmission electron microscopy, or the pheromone was extracted in analytical grade hexane. Pheromone chemical analysis was carried out at 3- to 6-h intervals during the first 24 h after emergence and continued daily until the seventh day. All extracts were analyzed by gas chromatography. For the morphological analysis, we used insects collected at 0-6, 9-12, 12-14, and 96 h after emergence. Ultrastructural data from 0- to 6-h-old adult males revealed smaller pheromone gland cells with small microvilli at the end apparatus. Lipid droplets and peroxisomes were absent or very rare, but a large number of mitochondria could be seen. Lipid droplets started to appear in the gland cells cytoplasm approximately 9 h after adult emergence, and their number and size increased with age, together with the presence of several peroxisomes, suggesting a role for these organelles in pheromone biosynthesis. At 12-15 h after emergence, the lipid droplets were mainly distributed near the microvilli but were smaller than those in mature older males (4 d old). Pheromone biosynthesis started around 12 h after emergence and increased continuously during the first 3 d, stabilizing thereafter, coinciding with the period when males are more able to attract females.

  17. Differential Effects of Sex Pheromone Compounds on Adult Female Sea Lamprey (Petromyzon marinus) Locomotor Patterns.

    PubMed

    Walaszczyk, Erin J; Goheen, Benjamin B; Steibel, Juan Pedro; Li, Weiming

    2016-06-01

    Synchronization of male and female locomotor activity plays a critical role in ensuring reproductive success, especially in semelparous species. The goal of this study was to elucidate the effects of individual chemical signals, or pheromones, on the locomotor activity in the sea lamprey (Petromyzon marinus). In their native habitat, adult preovulated females (POF) and ovulated females (OF) are exposed to sex pheromone compounds that are released from spermiated males and attract females to nests during their migration and spawning periods. In this study, locomotor activity of individual POF and OF was measured hourly in controlled laboratory conditions using an automated video-tracking system. Differences in the activity between a baseline day (no treatment exposure) and a treatment day (sex pheromone compound or control exposure) were examined for daytime and nighttime periods. Results showed that different pheromone compound treatments affected both POF and OF sea lamprey (p < 0.05) but in different ways. Spermiated male washings (SMW) and one of its main components, 7α,12α,24-trihydroxy-5α-cholan-3-one 24 sulfate (3kPZS), decreased activity of POF during the nighttime. SMW also reduced activity in POF during the daytime. In contrast, SMW increased activity of OF during the daytime, and an additional compound found in SMW, petromyzonol sulfate (PZS), decreased the activity during the nighttime. In addition, we examined factors that allowed us to infer the overall locomotor patterns. SMW increased the maximum hourly activity during the daytime, decreased the maximum hourly activity during the nighttime, and reduced the percentage of nocturnal activity in OF. Our findings suggest that adult females have evolved to respond to different male compounds in regards to their locomotor activity before and after final maturation. This is a rare example of how species-wide chemosensory stimuli can affect not only the amounts of activity but also the overall locomotor pattern in a vertebrate species. © 2016 The Author(s).

  18. Sex Pheromone Dosages and Release Point Densities for Mating Disruption of Ostrinia furnacalis (Lepidoptera: Crambidae) in NE China Corn Fields.

    PubMed

    Chen, Ri-Zhao; Jow, Chung-Kuang; Klein, Michael G; Jia, Yu-di; Zhang, Da-Yu; Li, Lan-Bing

    2017-08-01

    Mating disruption of Ostrinia furnacalis (Guenée) (Lepidoptera: Crambidae) with its sex pheromone has not been commonly used in NE China due to a lack of information about optimal sex pheromone dosages and the density of release points required in the field. During 2014-2016, first, the two active pheromone ingredients were evaluated in the laboratory alone at ca. 2.5-5.0 mg, or in combination at 0.2-6.0 mg, to disrupt male O. furnacalis mating behaviors. Then, mating disruption areas, with radii of <8.0 m, were determined with those same dosages in corn, an orchard, and soybean fields by comparing male captures in sentinel traps in the control plots with those in corresponding disruption treatments. Finally, 6.0 (F30) and 0.2 mg (Fs) dosages were used in fields at 20-640 and 200-6,400 release points/ha. We found that ≧6.0 mg of the binary pheromone mixture, or ca. 5.0 mg of either of the two single components, completely disrupted mating behaviors, and F30 of the binary mixture provided a 200-m2 disruption area, with at least 50% capture reductions. At a density of 60-640 and 600-6,400 points/ha in a corn field, F30 and Fs dosages provided >90% mating disruption, leaf protection, and ear protection. The dispenser densities and inverse male catches in traps tended to follow a noncompetitive mechanism of mating disruption. Since 85% disruption of mating with 200-400 0.02 mg release points/ha was obtained, that level is recommended as the choice in future NE China O. furnacalis IPM programs. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Metathesis-mediated synthesis of (R)-10-methyl-2-tridecanone, the southern corn rootworm pheromone.

    PubMed

    Shikichi, Yasumasa; Mori, Kenji

    2012-01-01

    (R)-10-Methyl-2-tridecanone, the female sex pheromone of the southern corn rootworm (Diabrotica undecimpunctata howardi Barber), was synthesized in 9 steps from methyl (S)-3-hydroxy-2-methylpropanoate in a 15.7% overall yield. Olefin cross metathesis between (R)-6-methyl-1-nonene and 5-hexen-2-one employing Grubbs' first-generation catalyst was the key step of the synthesis.

  20. 1-Tridecene—male-produced sex pheromone of the tenebrionid beetle Parastizopus transgariepinus

    NASA Astrophysics Data System (ADS)

    Geiselhardt, Sven; Ockenfels, Peter; Peschke, Klaus

    2008-03-01

    Males of the genus Parastizopus (Coleoptera: Tenebrionidae) exhibit a special pheromone-emitting behaviour. They do a headstand, expose the aedeagus and remain in this posture for a few seconds. The pheromone emitted by P. transgariepinus was collected by solid-phase micro-extraction (100 μm polydimethylsiloxane fibre) and identified as 1-tridecene by gas chromatography/mass spectrometry. Presumably, this compound originates from the aedeagal gland, a special feature in Parastizopus, as 1-tridecene is the main compound in the gland reservoirs (23.6 ± 3.8%), accompanied by various less volatile fatty acid esters (25.2 ± 2.0%) and hydrocarbons (51.2 ± 5.7%). 1-Tridecene is also part of the pygidial defensive secretion of both sexes, together with other 1-alkenes, monoterpene hydrocarbons and 1,4-benzoquinones, but as none of these other compounds was detected during calling, the pygidial gland could be ruled out as pheromone source. Extracts of the aedeagal gland reservoirs and the pygidial defensive secretion contained comparable amounts of 1-tridecene, 1.24 ± 0.41 and 1.88 ± 0.54 μg/male, respectively. Chemo-orientation experiments using a servosphere showed that 1 μg of 1-tridecene was attractive to females but not to males.

  1. Male Sexual Behavior and Pheromone Emission Is Enhanced by Exposure to Guava Fruit Volatiles in Anastrepha fraterculus

    PubMed Central

    Bachmann, Guillermo E.; Segura, Diego F.; Devescovi, Francisco; Juárez, M. Laura; Ruiz, M. Josefina; Vera, M. Teresa; Cladera, Jorge L.; Fernández, Patricia C.

    2015-01-01

    Background Plant chemicals can affect reproductive strategies of tephritid fruit flies by influencing sex pheromone communication and increasing male mating competitiveness. Objective and Methodology We explored whether exposure of Anastrepha fraterculus males to guava fruit volatiles and to a synthetic blend of volatile compounds released by this fruit affects the sexual performance of wild and laboratory flies. By means of bioassays and pheromone collection we investigated the mechanism underlying this phenomenon. Results Guava volatile exposure enhanced male mating success and positively affected male calling behavior and pheromone release in laboratory and wild males. Changes in male behavior appear to be particularly important during the initial phase of the sexual activity period, when most of the mating pairs are formed. Exposure of laboratory males to a subset of guava fruit volatiles enhanced mating success, showing that the response to the fruit might be mimicked artificially. Conclusions Volatiles of guava seem to influence male mating success through an enhancement of chemical and physical signals related to the communication between sexes. This finding has important implications for the management of this pest species through the Sterile Insect Technique. We discuss the possibility of using artificial blends to improve the sexual competitiveness of sterile males. PMID:25923584

  2. Unexpected Effects of Low Doses of a Neonicotinoid Insecticide on Behavioral Responses to Sex Pheromone in a Pest Insect

    PubMed Central

    Rabhi, Kaouther K.; Esancy, Kali; Voisin, Anouk; Crespin, Lucille; Le Corre, Julie; Tricoire-Leignel, Hélène; Anton, Sylvia; Gadenne, Christophe

    2014-01-01

    In moths, which include many agricultural pest species, males are attracted by female-emitted sex pheromones. Although integrated pest management strategies are increasingly developed, most insect pest treatments rely on widespread use of neurotoxic chemicals, including neonicotinoid insecticides. Residual accumulation of low concentrations of these insecticides in the environment is known to be harmful to beneficial insects such as honey bees. This environmental stress probably acts as an “info-disruptor” by modifying the chemical communication system, and therefore decreases chances of reproduction in target insects that largely rely on olfactory communication. However, low doses of pollutants could on the contrary induce adaptive processes in the olfactory pathway, thus enhancing reproduction. Here we tested the effects of acute oral treatments with different low doses of the neonicotinoid clothianidin on the behavioral responses to sex pheromone in the moth Agrotis ipsilon using wind tunnel experiments. We show that low doses of clothianidin induce a biphasic effect on pheromone-guided behavior. Surprisingly, we found a hormetic-like effect, improving orientation behavior at the LD20 dose corresponding to 10 ng clothianidin. On the contrary, a negative effect, disturbing orientation behavior, was elicited by a treatment with a dose below the LD0 dose corresponding to 0.25 ng clothianidin. No clothianidin effect was observed on behavioral responses to plant odor. Our results indicate that risk assessment has to include unexpected effects of residues on the life history traits of pest insects, which could then lead to their adaptation to environmental stress. PMID:25517118

  3. Two fatty acyl reductases involved in moth pheromone biosynthesis

    PubMed Central

    Antony, Binu; Ding, Bao-Jian; Moto, Ken’Ichi; Aldosari, Saleh A.; Aldawood, Abdulrahman S.

    2016-01-01

    Fatty acyl reductases (FARs) constitute an evolutionarily conserved gene family found in all kingdoms of life. Members of the FAR gene family play diverse roles, including seed oil synthesis, insect pheromone biosynthesis, and mammalian wax biosynthesis. In insects, FAR genes dedicated to sex pheromone biosynthesis (pheromone-gland-specific fatty acyl reductase, pgFAR) form a unique clade that exhibits substantial modifications in gene structure and possesses unique specificity and selectivity for fatty acyl substrates. Highly selective and semi-selective ‘single pgFARs’ produce single and multicomponent pheromone signals in bombycid, pyralid, yponomeutid and noctuid moths. An intriguing question is how a ‘single reductase’ can direct the synthesis of several fatty alcohols of various chain lengths and isomeric forms. Here, we report two active pgFARs in the pheromone gland of Spodoptera, namely a semi-selective, C14:acyl-specific pgFAR and a highly selective, C16:acyl-specific pgFAR, and demonstrate that these pgFARs play a pivotal role in the formation of species-specific signals, a finding that is strongly supported by functional gene expression data. The study envisages a new area of research for disclosing evolutionary changes associated with C14- and C16-specific FARs in moth pheromone biosynthesis. PMID:27427355

  4. The Dynamics of Pheromone Gland Synthesis and Release: a Paradigm Shift for Understanding Sex Pheromone Quantity in Female Moths.

    PubMed

    Foster, Stephen P; Anderson, Karin G; Casas, Jérôme

    2018-05-10

    Moths are exemplars of chemical communication, especially with regard to specificity and the minute amounts they use. Yet, little is known about how females manage synthesis and storage of pheromone to maintain release rates attractive to conspecific males and why such small amounts are used. We developed, for the first time, a quantitative model, based on an extensive empirical data set, describing the dynamical relationship among synthesis, storage (titer) and release of pheromone over time in a moth (Heliothis virescens). The model is compartmental, with one major state variable (titer), one time-varying (synthesis), and two constant (catabolism and release) rates. The model was a good fit, suggesting it accounted for the major processes. Overall, we found the relatively small amounts of pheromone stored and released were largely a function of high catabolism rather than a low rate of synthesis. A paradigm shift may be necessary to understand the low amounts released by female moths, away from the small quantities synthesized to the (relatively) large amounts catabolized. Future research on pheromone quantity should focus on structural and physicochemical processes that limit storage and release rate quantities. To our knowledge, this is the first time that pheromone gland function has been modeled for any animal.

  5. Sex Attraction in Pear Psylla

    USDA-ARS?s Scientific Manuscript database

    Pear psylla, Cacopsylla pyricola (Förster) (Hemiptera: Psyllidae), a major economic pest of pears, have been shown to use a female-produced sex attractant pheromone. We compared the chemical profiles obtained from solvent extracts of diapausing and post-diapause winterform males and females, with g...

  6. Methyl 2-(methylthio)benzoate: A sex attractant for the June beetles, Phyllophaga tristis and P. apicata

    USDA-ARS?s Scientific Manuscript database

    Male antennae of Phyllophaga tristis (Fabricius) (Coleoptera: Scarabaeidae: Melolonthinae) were tested using a coupled gas chromatograph-electroantennogram detector (GC-EAD) system for electrophysiological responses to five sex pheromones identified from other Phyllophaga species including L-valine ...

  7. Sex and seasonal differences in mRNA expression of estrogen receptor α (ESR1) in red-sided garter snakes (Thamnophis sirtalis parietalis).

    PubMed

    Ashton, Sydney E; Vernasco, Ben J; Moore, Ignacio T; Parker, M Rockwell

    2018-05-25

    Estrogens are important regulators of reproductive physiology including sexual signal expression and vitellogenesis. For the regulation to occur, the hormone must bind and activate receptors in target tissues, and expression of the receptors can vary by sex and/or season. By simultaneously comparing circulating hormone levels with receptor expression, a more complete understanding of hormone action can be gained. Our study species, the red-sided garter snake (Thamnophis sirtalis parietalis), provides an excellent opportunity to study the interaction between sex steroid hormones and receptor expression in addition to sexual dimorphism and seasonality. During the spring mating season, male garter snakes rely exclusively on the female's skin-based, estrogen-dependent sex pheromone to direct courtship. Males can be stimulated to produce this sexual attractiveness pheromone by treatment with estradiol (E 2 ), which also induces male vitellogenesis. Estrogen receptors (ESRs) are required to transduce the effects of estrogens, thus we used quantitative RT-PCR to analyze expression of ESR alpha (ERα; gene ESR1) mRNA in the skin and liver of wild caught male and female garter snakes across simulated spring and fall conditions in the laboratory. While ESR1 was present in the skin of both sexes, there were no sex or seasonal differences in expression levels. Liver expression of ESR1, however, was sexually dimorphic, with females showing greatest expression in fall when circulating E 2 concentrations were lowest. There were no statistically significant correlations between E 2 and ESR1 expression. Our data suggest that the skin of both sexes is sensitive to estrogen signaling and thus the production of sex pheromone is dependent on bioavailable levels of E 2 . Female expression of ESR1 in the liver may increase in the fall to prime energy storage mechanisms required for vitellogenesis the following year. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. An insect with a delta-12 desaturase, the jewel wasp Nasonia vitripennis, benefits from nutritional supply with linoleic acid

    NASA Astrophysics Data System (ADS)

    Brandstetter, Birgit; Ruther, Joachim

    2016-06-01

    The availability of linoleic acid (LA; C18:2∆9,12) is pivotal for animals. While vertebrates depend on a nutritional supply, some invertebrates, including the parasitic wasp Nasonia vitripennis, are able to synthesize LA from oleic acid (OA; C18:1∆9). This raises the question as to whether these animals nevertheless benefit from the additional uptake of LA with the diet. LA plays an important role in the sexual communication of N. vitripennis because males use it as a precursor for the synthesis of an abdominal sex pheromone attracting virgin females. We reared hosts of N. vitripennis that were fed diets enriched in the availability of stearic acid (SA: C18:0), OA or LA. N. vitripennis males developing on the different host types clearly differed in both the fatty acid composition of their body fat and sex pheromone titres. Males from LA-enriched hosts had an almost fourfold higher proportion of LA and produced significantly more sex pheromone than males from SA (2.2-fold) and OA (1.4-fold) enriched hosts, respectively. Our study demonstrates that animals being able to synthesize important nutrients de novo may still benefit from an additional supply with their diet.

  9. Optimization of pheromone lure and trap design for monitoring the fire coneworm, Dioryctria abietivorella

    Treesearch

    W. B. Strong; J. G. Millar; G. G. Grant; J. A. Moreira; J. M. Chong; C. Rodolph

    2008-01-01

    The major components of the sex pheromone of Dioryctria abietivorella (Groté) (Lepidoptera: Pyralidae) were recently identified as (9Z,11E)-tetradecadien-1-yl acetate (9Z,11E-14:Ac) and a polyunsaturated, long-chain hydrocarbon (3Z,6Z,9Z,12Z,15Z)-pentacosapentaene (C25 pentaene). The optimal ratio of these components and the role of potential minor components were not...

  10. The Pheromone of the Cave Cricket, Hadenoecus cumberlandicus, Causes Cricket Aggregation but Does Not Attract the Co-Distributed Predatory Spider, Meta ovalis

    PubMed Central

    Yoder, Jay A.; Christensen, Brady S.; Croxall, Travis J.; Tank, Justin L.; Hobbs, Horton H.

    2010-01-01

    Food input by the cave cricket, Hadenoecus cumberlandicus Hubble & Norton (Orthoptera: Rhaphidophoridae), is vital to the cave community, making this cricket a true keystone species. Bioassays conducted on cave walls and in the laboratory show that clustering in H. cumberlandicus is guided by a pheromone, presumably excreta. This aggregation pheromone was demonstrated by using filter paper discs that had previous adult H. cumberlandicus exposure, resulting in > 70% response by either nymphs or adults, prompting attraction (thus, active component is a volatile), followed by reduced mobility (arrestment) on treated surfaces. Adults were similarly responsive to pheromone from nymphs, agreeing with mixed stage composition of clusters in the cave. Effects of [0.001M – 0.1M] uric acid (insect excreta's principle component) on H. cumberlandicus behavior were inconsistent. This pheromone is not a host cue (kairomone) and is not used as a repellent (allomone) as noted through lack of responses to natural H. cumberlandicus pheromone and uric acid concentrations by a co-occurring predatory cave orb weaver spider, Meta ovalis Gertsch (Araneae: Tetragnathidae). This pheromone is not serving as a sex pheromone because nymphs were affected by it and because this population of H. cumberlandicus is parthenogenic. The conclusion of this study is that the biological value of the aggregation pheromone is to concentrate H. cumberlandicus in sheltered sites in the cave conducive for minimizing water stress. Rather than signaling H. cumberlandicus presence and quality, the reduced mobility expressed as a result of contacting this pheromone conceivably may act as a defense tactic (antipredator behavior) against M. ovalis, which shares this favored habitat site. PMID:20572786

  11. The Best Timing of Mate Search in Armadillidium vulgare (Isopoda, Oniscidea)

    PubMed Central

    Beauché, Fanny; Richard, Freddie-Jeanne

    2013-01-01

    Mate choice is mediated by many components with the criteria varying across the animal kingdom. Chemical cues used for mate attractiveness can also reflect mate quality. Regarding the gregarious species Armadillidium vulgare (isopod crustacean), we tested whether individuals can discriminate conspecifics at two different levels (between sex and physiological status) based on olfactory perception. Tested conspecifics were individuals of the same or opposite sex, with the females at different moult stages. We found that the attractiveness of individuals was mediated by short-distance chemical cues and tested individuals were able to discriminate and prefer individuals of the opposite sex. Moreover, male preference to female increased during their moulting status as they matured. Males were particularly more attracted by females with appearing white calcium plates, which corresponds to the beginning of their higher receptivity period. These differences in attractiveness due to sex and physiological status are likely to shape the composition of aggregates and facilitate mate finding and optimize the reproductive success for both males and females. Thus aggregation pheromones could be linked to sex pheromones in terrestrial isopods. PMID:23469225

  12. Natural variation in Pristionchus pacificus dauer formation reveals cross-preference rather than self-preference of nematode dauer pheromones

    PubMed Central

    Mayer, Melanie G.; Sommer, Ralf J.

    2011-01-01

    Many free-living nematodes, including the laboratory model organisms Caenorhabditis elegans and Pristionchus pacificus, have a choice between direct and indirect development, representing an important case of phenotypic plasticity. Under harsh environmental conditions, these nematodes form dauer larvae, which arrest development, show high resistance to environmental stress and constitute a dispersal stage. Pristionchus pacificus occurs in a strong association with scarab beetles in the wild and remains in the dauer stage on the living beetle. Here, we explored the circumstances under which P. pacificus enters and exits the dauer stage by using a natural variation approach. The analysis of survival, recovery and fitness after dauer exit of eight P. pacificus strains revealed that dauer larvae can survive for up to 1 year under experimental conditions. In a second experiment, we isolated dauer pheromones from 16 P. pacificus strains, and tested for natural variation in pheromone production and sensitivity in cross-reactivity assays. Surprisingly, 13 of the 16 strains produce a pheromone that induces the highest dauer formation in individuals of other genotypes. These results argue against a simple adaptation model for natural variation in dauer formation and suggest that strains may have evolved to induce dauer formation precociously in other strains in order to reduce the fitness of these strains. We therefore discuss intraspecific competition among genotypes as a previously unconsidered aspect of dauer formation. PMID:21307052

  13. The cell aggregating propensity of probiotic actinobacterial isolates: isolation and characterization of the aggregation inducing peptide pheromone.

    PubMed

    Muthu Selvam, Ramu; Vinothini, Gopal; Palliyarai Thaiyammal, Sethuramalingam; Latha, Selvanathan; Chinnathambi, Arunachalam; Dhanasekaran, Dharumadurai; Padmanabhan, Parasuraman; Ali Alharbi, Sulaiman; Archunan, Govindaraju

    2016-01-01

    The auto-aggregating ability of a probiotic is a prerequisite for colonization and protection of the gastrointestinal tract, whereas co-aggregation provides a close interaction with pathogenic bacteria. Peptide pheromone mediated signaling has been studied in several systems. However, it has not yet been explored in prokaryotes, especially actinobacteria. Hence, in the present study, the diffusible aggregation promoting factor was purified from the culture supernatant of a potent actinobacterial probiont and characterized using 20 different actinobacterial cultures isolated from the gut region of chicken and goat. The results showed that the pheromone-like compound induces the aggregation propensity of treated isolates. The factor was found to be a heat stable, acidic pH resistant, low molecular weight peptide which enhances the biofilm forming ability of other actinobacterial isolates. The aggregation promoting factor represents a bacterial sex factor (pheromone) and its characterization confirms its usage in the probiotic formulation.

  14. A new C12 alcohol identified as a sex pheromone and a trail-following pheromone in termites: the diene (Z,Z)-dodeca-3,6-dien-1-ol.

    PubMed

    Robert, Alain; Peppuy, Alexis; Sémon, Etienne; Boyer, François D; Lacey, Michael J; Bordereau, Christian

    2004-01-01

    The diunsaturated C12 alcohol (Z,Z)-dodeca-3,6-dien-1-ol (dodecadienol) has been characterized by GC-MS and FTIR as a novel releaser pheromone in termites. This alcohol identified in Ancistrotermes pakistanicus (Termitidae, Macrotermitinae) possesses a double pheromonal function which again illustrates the chemical parsimony of termites compared with other social insects. In workers, dodecadienol elicits trail-following at a very low concentration (activity threshold at 0.1 pg/cm of trail); in male alates it induces trail-following at a low concentration (1-10 pg/cm) and sexual attraction at a higher concentration (about 1 ng). Traces of the monounsaturated C12 alcohol (Z)-dodec-3-en-1-ol (dodecenol), known as a trail pheromone of several Macrotermitinae, were also found in the sternal gland extracts of A. pakistanicus, although only dodecadienol was present at the surface of the sternal gland. Workers of A. pakistanicus are not sensitive to dodecenol, but they are as sensitive to dodecatrienol as to dodecadienol. However, in the study area (Vietnam), A. pakistanicus is living in sympatry only with those Macrotermitinae using dodecenol as a trail pheromone, the foraging populations therefore being well isolated through their respective trail pheromones. The presence of three types of unsaturated C12 alcohols as releaser pheromones in the only Macrotermitinae subfamily is discussed, and a possible biosynthetic pathway from linoleic acid is proposed for dodecadienol.

  15. Olfactory Proteins Mediating Chemical Communication in the Navel Orangeworm Moth, Amyelois transitella

    PubMed Central

    Leal, Walter S.; Ishida, Yuko; Pelletier, Julien; Xu, Wei; Rayo, Josep; Xu, Xianzhong; Ames, James B.

    2009-01-01

    Background The navel orangeworm, Amyelois transitella Walker (Lepidoptera: Pyralidae), is the most serious insect pest of almonds and pistachios in California for which environmentally friendly alternative methods of control — like pheromone-based approaches — are highly desirable. Some constituents of the sex pheromone are unstable and could be replaced with parapheromones, which may be designed on the basis of molecular interaction of pheromones and pheromone-detecting olfactory proteins. Methodology By analyzing extracts from olfactory and non-olfactory tissues, we identified putative olfactory proteins, obtained their N-terminal amino acid sequences by Edman degradation, and used degenerate primers to clone the corresponding cDNAs by SMART RACE. Additionally, we used degenerate primers based on conserved sequences of known proteins to fish out other candidate olfactory genes. We expressed the gene encoding a newly identified pheromone-binding protein, which was analyzed by circular dichroism, fluorescence, and nuclear magnetic resonance, and used in a binding assay to assess affinity to pheromone components. Conclusion We have cloned nine cDNAs encoding olfactory proteins from the navel orangeworm, including two pheromone-binding proteins, two general odorant-binding proteins, one chemosensory protein, one glutathione S-transferase, one antennal binding protein X, one sensory neuron membrane protein, and one odorant receptor. Of these, AtraPBP1 is highly enriched in male antennae. Fluorescence, CD and NMR studies suggest a dramatic pH-dependent conformational change, with high affinity to pheromone constituents at neutral pH and no binding at low pH. PMID:19789654

  16. Sex pheromone component ratios and mating isolation among three Lygus plant bug species of North America

    NASA Astrophysics Data System (ADS)

    Byers, John A.; Fefer, Daniela; Levi-Zada, Anat

    2013-12-01

    The plant bugs Lygus hesperus, Lygus lineolaris, and Lygus elisus (Hemiptera: Miridae) are major pests of many agricultural crops in North America. Previous studies suggested that females release a sex pheromone attractive to males. Other studies showed that males and females contain microgram amounts of ( E)-4-oxo-2-hexenal, hexyl butyrate, and ( E)-2-hexenyl butyrate that are emitted as a defense against predators. Using gas chromatography-mass spectrometry, we found that female L. lineolaris and L. elisus have a 4:10 ratio of hexyl butyrate to ( E)-2-hexenyl butyrate that is reversed from the 10:1 ratio in female L. hesperus (males of the three species have ~10:1 ratio). These reversed ratios among females of the species suggest a behavioral role. Because both sexes have nearly equal amounts of the major volatiles, females should release more to attract males. This expectation was supported because L. hesperus females released more hexyl butyrate (mean of 86 ng/h) during the night (1800-0700 hours) than did males (<1 ng/h). We used slow-rotating pairs of traps to test the attraction of species to blends of the volatiles with a subtractive method to detect synergism. Each species' major butyrate ester was released at 3 μg/h, the minor butyrate according to its ratio, and ( E)-4-oxo-2-hexenal at 2 μg/h. The resulting catches of only Lygus males suggest that ( E)-4-oxo-2-hexenal is an essential sex pheromone component for all three species, ( E)-2-hexenyl butyrate is essential for L. elisus and L. lineolaris, and hexyl butyrate is essential for L. hesperus. However, all three components are recognized by each species since ratios of the butyrate esters are critical for conspecific attraction and heterospecific avoidance by males and thus play a role in reproductive isolation among the three species. Because L. hesperus males and females are known to emit these major volatiles for repelling ant predators, our study links defensive allomones in Lygus bugs with an additional use as sex pheromones.

  17. A pheromone analogue affects the evaporation rate of (+)-disparlure in Lymantria dispar.

    PubMed

    Sollai, Giorgia; Murgia, Sergio; Secci, Francesco; Frongia, Angelo; Cerboneschi, Anna; Masala, Carla; Liscia, Anna; Crnjar, Roberto; Solari, Paolo

    2014-04-01

    The gypsy moth Lymantria dispar L. is a widespread pest that causes economic damage to cork oak forests. Females produce the sex pheromone (+)-(7R,8S)-epoxy-2-methyloctadecane, known as (+)-disparlure [(+)D], for long-distance attraction of conspecific males. A (+)D analogue, 2-decyl-1-oxaspiro[2.2]pentane (OXP-01), neither stimulating nor attractive by itself, causes short-time inhibition of male response in a 1:1 blend with (+)D. The authors investigated whether and how the biological activity of the natural pheromone is affected by OXP-01 on a long-time basis (up to 16 days), also by looking at possible physicochemical reciprocal interactions. Blending of (+)D with OXP-01 decreased, under low evaporation rate, the pheromone effectiveness, as assessed by electroantennogram recordings. In male trappings, within the first 24 h, OXP-01 decreased and later enhanced the blend attractiveness, but only under high evaporation rate. Gas chromatography-mass spectroscopy indicates that quantitative retrieval of (+)D from blend cartridges is higher than for pure pheromone, and nuclear magnetic resonance measurements show that OXP-01 produces, possibly by Van der Waals interactions, a bimolecular entity with pheromone causing retention and lengthening of its attractiveness over time. The biological and physicochemical interactions between (+)D and OXP-01 may provide valuable information for the optimisation of pheromone-based control strategies for gypsy moths. © 2013 Society of Chemical Industry.

  18. Sexual response of male Drosophila to honey bee queen mandibular pheromone: implications for genetic studies of social insects.

    PubMed

    Croft, Justin R; Liu, Tom; Camiletti, Alison L; Simon, Anne F; Thompson, Graham J

    2017-02-01

    Honey bees secrete a queen mandibular pheromone that renders workers reproductively altruistic and drones sexually attentive. This sex-specific function of QMP may have evolved from a sexually dimorphic signaling mechanism derived from pre-social ancestors. If so, there is potential for pre-social insects to respond to QMP, and in a manner that is comparable to its normal effect on workers and drones. Remarkably, QMP applied to female Drosophila does induce worker-like qualities [Camiletti et al. (Entomol Exp Appl 147:262, 2013)], and we here extend this comparison to examine the effects of bee pheromone on male fruit flies. We find that male Drosophila melanogaster consistently orient towards a source of queen pheromone in a T-maze, suggesting a recruitment response comparable to the pheromone's normal effect on drones. Moreover, exposure to QMP renders male flies more sexually attentive; they display intensified pre-copulatory behavior towards conspecific females. We can inhibit this sexual effect through a loss-of-olfactory-function mutation, which suggests that the pheromone-responsive behavioral mechanism is olfactory-driven. These pheromone-induced changes to male Drosophila behavior suggest that aspects of sexual signaling are conserved between these two distantly related taxa. Our results highlight a role for Drosophila as a genetically tractable pre-social model for studies of social insect biology.

  19. Aggregation pheromones for monitoring the coconut rhinoceros beetle (Oryctes rhinoceros) in Jerukwangi Village, Jepara, Indonesia

    NASA Astrophysics Data System (ADS)

    Indriyanti, D. R.; Lutfiana, J. E.; Widiyaningrum, P.; Susilowati, E.; Slamet, M.

    2018-03-01

    Oryctes rhinoceros (Coleoptera: Scarabaeidae) is the most serious pest of coconut plantations in Indonesia. Jerukwangi Village is O. rhinoceros attacked one of the coconuts producing villages with more than 75% of the coconut plant population O. rhinoceros. The study aimed to monitor the population and analyze the sex ratio of O. rhinoceros that were attracted to aggregation pheromones in the field. Aggregation pheromones is a chemical compound containing Ethyl 4-methyl octanoate. The pheromone compounds were placed in traps (buckets), hung 2 meters above the ground. The traps were observed, and the beetles trapped were counted every week. In 12 weeks of monitoring, the traps captured 101 insects consist of 90.1% O. rhinoceros and 9.9% other insect species (Rhynchophorus ferrugineus and Xylotrupes gideon). This result indicates the high population of O. rhinoceros in the field. Aggregation pheromone is useful for attracting females. Rhinoceros by 61% and the males by 39%. The advantage of research is it can be used in integrated pest management (IPM) packages for monitoring of beetle population, and removal of beetles.

  20. Sex versus sweet: opposite effects of opioid drugs on the reward of sucrose and sexual pheromones.

    PubMed

    Agustín-Pavón, Carmen; Martínez-Ricós, Joana; Martínez-García, Fernando; Lanuza, Enrique

    2008-04-01

    Endogenous opioids mediate some reward processes involving both natural (food, sweet taste) and artificial (morphine, heroin) rewards. In contrast, sexual behavior (which is also reinforcing) is generally inhibited by opioids. To establish the role of endogenous opioids for a newly described natural reinforcer, namely male sexual pheromones for female mice, we checked the effects of systemic injections of the general opioid antagonist naloxone (1-10 mg/kg) and the agonist fentanyl (0.1- 0.5 mg/kg) in a number of behavioral tests. Naloxone affected neither the innate preference for male-soiled bedding (vs. female-soiled bedding) in 2-choice tests nor the induction of place conditioning using male pheromones as rewarding stimuli, although it effectively blocked the preference for consuming a sucrose solution. In contrast, fentanyl inhibited the preference for male chemosignals without altering sucrose preference. These results suggest that, in macrosmatic animals such as rodents, opioidergic inhibition of sexual behavior might be due, at least partially, to an impaired processing of pheromonal cues and that the hedonic value of sweet-tasting solutions and sexual pheromones are under different opioid modulation.

  1. Geographic variation in sexual attraction of Spodoptera frugiperda corn- and rice-strain males to pheromone lures

    USDA-ARS?s Scientific Manuscript database

    The corn- and rice-strains of Spodoptera frugiperda exhibit several genetic and behavioral differences and appear to be undergoing ecological speciation in sympatry. Previous studies reported conflicting results when investigating male attraction to pheromone lures in different regions, but this cou...

  2. Identification of the sex pheromone of the tree infesting Cossid Moth Coryphodema tristis (Lepidoptera: Cossidae).

    PubMed

    Bouwer, Marc Clement; Slippers, Bernard; Degefu, Dawit; Wingfield, Michael John; Lawson, Simon; Rohwer, Egmont Richard

    2015-01-01

    The cossid moth (Coryphodema tristis) has a broad range of native tree hosts in South Africa. The moth recently moved into non-native Eucalyptus plantations in South Africa, on which it now causes significant damage. Here we investigate the chemicals involved in pheromone communication between the sexes of this moth in order to better understand its ecology, and with a view to potentially develop management tools for it. In particular, we characterize female gland extracts and headspace samples through coupled gas chromatography electro-antennographic detection (GC-EAD) and two dimensional gas chromatography mass spectrometry (GCxGC-MS). Tentative identities of the potential pheromone compounds were confirmed by comparing both retention time and mass spectra with authentic standards. Two electrophysiologically active pheromone compounds, tetradecyl acetate (14:OAc) and Z9-tetradecenyl acetate (Z9-14:OAc) were identified from pheromone gland extracts, and an additional compound (Z9-14:OH) from headspace samples. We further determined dose response curves for the identified compounds and six other structurally similar compounds that are common to the order Cossidae. Male antennae showed superior sensitivity toward Z9-14:OAc, Z7-tetradecenyl acetate (Z7-14:OAc), E9-tetradecenyl acetate (E9-14:OAc), Z9-tetradecenol (Z9-14:OH) and Z9-tetradecenal (Z9-14:Ald) when compared to female antennae. While we could show electrophysiological responses to single pheromone compounds, behavioral attraction of males was dependent on the synergistic effect of at least two of these compounds. Signal specificity is shown to be gained through pheromone blends. A field trial showed that a significant number of males were caught only in traps baited with a combination of Z9-14:OAc (circa 95% of the ratio) and Z9-14:OH. Addition of 14:OAc to this mixture also improved the number of males caught, although not significantly. This study represents a major step towards developing a useful attractant to be used in management tools for C. tristis and contributes to the understanding of chemical communication and biology of this group of insects.

  3. Identification of the Sex Pheromone of the Tree Infesting Cossid Moth Coryphodema tristis (Lepidoptera: Cossidae)

    PubMed Central

    Bouwer, Marc Clement; Slippers, Bernard; Degefu, Dawit; Wingfield, Michael John; Lawson, Simon; Rohwer, Egmont Richard

    2015-01-01

    The cossid moth (Coryphodema tristis) has a broad range of native tree hosts in South Africa. The moth recently moved into non-native Eucalyptus plantations in South Africa, on which it now causes significant damage. Here we investigate the chemicals involved in pheromone communication between the sexes of this moth in order to better understand its ecology, and with a view to potentially develop management tools for it. In particular, we characterize female gland extracts and headspace samples through coupled gas chromatography electro-antennographic detection (GC-EAD) and two dimensional gas chromatography mass spectrometry (GCxGC-MS). Tentative identities of the potential pheromone compounds were confirmed by comparing both retention time and mass spectra with authentic standards. Two electrophysiologically active pheromone compounds, tetradecyl acetate (14:OAc) and Z9-tetradecenyl acetate (Z9-14:OAc) were identified from pheromone gland extracts, and an additional compound (Z9-14:OH) from headspace samples. We further determined dose response curves for the identified compounds and six other structurally similar compounds that are common to the order Cossidae. Male antennae showed superior sensitivity toward Z9-14:OAc, Z7-tetradecenyl acetate (Z7-14:OAc), E9-tetradecenyl acetate (E9-14:OAc), Z9-tetradecenol (Z9-14:OH) and Z9-tetradecenal (Z9-14:Ald) when compared to female antennae. While we could show electrophysiological responses to single pheromone compounds, behavioral attraction of males was dependent on the synergistic effect of at least two of these compounds. Signal specificity is shown to be gained through pheromone blends. A field trial showed that a significant number of males were caught only in traps baited with a combination of Z9-14:OAc (circa 95% of the ratio) and Z9-14:OH. Addition of 14:OAc to this mixture also improved the number of males caught, although not significantly. This study represents a major step towards developing a useful attractant to be used in management tools for C. tristis and contributes to the understanding of chemical communication and biology of this group of insects. PMID:25826254

  4. Olfactory responses of Plutella xylostella natural enemies to host pheromone, larval frass, and green leaf cabbage volatiles.

    PubMed

    Reddy, G V P; Holopainen, J K; Guerrero, A

    2002-01-01

    The parasitoids Trichogramma chilonis (Hymenoptera: Trichogrammatidae) and Cotesia plutellae (Hymenoptera: Braconidae), and the predator Chrysoperla carnea (Neuroptera: Chrysopidae), are potential biological control agents for the diamondback moth, Plutella xylostella (Lepidoptera: Yponomeutidae). We present studies on the interactions between these bioagents and various host-associated volatiles using a Y olfactometer. T chilonis was attracted to a synthetic pheromone blend (Z11-16:Ald, Z11-16:Ac, and Z11-16:OH in a 1:1:0.01 ratio), to Z11-16:Ac alone, and to a 1:1 blend of Z11-16:Ac and Z11-16:Ald. C. plutellae responded to the blend and to Z11-16:Ac and Z11-16:Ald. Male and female C. carnea responded to the blend and to a 1:1 blend of the major components of the pheromone, although no response was elicited by single compounds. Among the four host larval frass volatiles tested (dipropyl disulfide, dimethyl disulfide, allyl isothiocyanate, and dimethyl trisulfide), only allyl isothiocyanate elicited significant responses in the parasitoids and predator, but C. plutellae and both sexes of C. carnea did respond to all four volatiles. Among the green leaf volatiles of cabbage (Brassica oleracea subsp. capitata), only Z3-6:Ac elicited significant responses from T. chilonis, C. plutellae, and C. carnea, but C. plutellae also responded to E2-6:Ald and Z3-6:OH. When these volatiles were blended with the pheromone, the responses were similar to those elicited by the pheromone alone, except for C. carnea males, which had an increased response. The effect of temperature on the response of the biological agents to a mixture of the pheromone blend and Z3-6:Ac was also studied. T. chilonis was attracted at temperatures of 25-35 degrees C, while C. plutellae and C. carnea responded optimally at 30-35 degrees C and 20-25 degrees C, respectively. These results indicate that the sex pheromone and larval frass volatiles from the diamondback moth, as well as volatile compounds from cabbage, may be used by these natural enemies to locate their diamondback moth host.

  5. Close-range attraction in Lygocoris pabulinus (L.).

    PubMed

    Drijfhout, F P; Groot, A T

    2001-06-01

    Males of the green capsid bug, Lygocoris pabulinus, exhibit a specific courtship behavior, i.e., a vibration of the abdomen. When both live and dead females were offered to males, this vibration behavior was elicited in most of the males tested. When females were dissected into separate body parts, heads, wings, and legs elicited equal responses, while thorax plus abdomen elicited a much lower response. When separate body parts were extracted, the leg extracts elicited significantly stronger responses than any other extract. This suggests that female L. pabulinus legs are either the source of a close-range sex pheromone or that pheromone is accumulated on the legs due to grooming behavior. The leg extracts contained several hydrocarbons such as n-alkenes, n-alkanes, and some methylalkanes. Female extracts contained more (Z)-9-pentacosene and male extracts contained more (Z)-9-heptacosene. Substrates on which females had walked elicited similar responses as female legs, indicating that the pheromone is deposited on the substrate. This enlarges the functional range of low-volatility compounds, which are thought to function only when sexes are in close vicinity or in contact.

  6. Insektenpheromone

    NASA Astrophysics Data System (ADS)

    Bestmann, H. J.; Vostrowsky, O.

    1982-10-01

    Pheromones — semiochemicals used by insects for intraspecific chemical communication — can be isolated and with special analytical techniques their chemical structure elucidated. With stereoselective synthesis methods, presented by the preparation of sex attractants and aggregating pheromones of moths and beetles, respectively, a synthetic access to compounds is given which can be used for behavior manipulation of insects. Aside the importance of these compounds for investigations of the sensoric process the possibility of their application in an integrated and biological pest control is discussed.

  7. The survival advantage of olfaction in a competitive environment.

    PubMed

    Asahina, Kenta; Pavlenkovich, Viktoryia; Vosshall, Leslie B

    2008-08-05

    Olfaction is generally assumed to be critical for survival because this sense allows animals to detect food and pheromonal cues. Although the ability to sense sex pheromones [1, 2, 3] is likely to be important for insects, the contribution of general odor detection to survival is unknown. We investigated the extent to which the olfactory system confers a survival advantage on Drosophila larvae foraging for food under conditions of limited resources and competition from other larvae.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The bibliography contains citations concerning control and research regarding gypsy moths or lymantria dispar. Both natural and synthetic controls are discussed, including parasites, viral diseases, fungal diseases, bird predation, bacterial diseases, pheromone trapping, insecticides, and physical and chemical localized protection. Laboratory and field studies on sex pheromones, environmental effects on life cycles, effects of feeding behavior, plant-insect interactions, and other research relating to the control of this forest pest are considered. (Contains 250 citations and includes a subject term index and title list.)

  9. Disruption of Phthorimaea operculella (Lepidoptera: Gelechiidae) oviposition by the application of host plant volatiles.

    PubMed

    Anfora, Gianfranco; Vitagliano, Silvia; Larsson, Mattias C; Witzgall, Peter; Tasin, Marco; Germinara, Giacinto S; De Cristofaro, Antonio

    2014-04-01

    Phthorimaea operculella is a key pest of potato. The authors characterised the P. operculella olfactory system, selected the most bioactive host plant volatiles and evaluated their potential application in pest management. The electrophysiological responses of olfactory receptor neurons (ORNs) housed in long sensilla trichodea of P. operculella to plant volatiles and the two main sex pheromone components were evaluated by the single-cell recording (SCR) technique. The four most SCR-active volatiles were tested in a laboratory oviposition bioassay and under storage warehouse conditions. The sensitivity of sensilla trichodea to short-chained aldehydes and alcohols and the existence of ORNs tuned to pheromones in females were characterised. Male recordings revealed at least two types of ORN, each of which typically responded to one of the two pheromone components. Hexanal, octanal, nonanal and 1-octen-3-ol significantly disrupted the egg-laying behaviour in a dose-dependent manner. Octanal reduced the P. operculella infestation rate when used under storage conditions. This work provides new information on the perception of plant volatiles and sex pheromones by P. operculella. Laboratory and warehouse experiments show that the use of hexanal, octanal, nonanal and 1-octen-3-ol as host recognition disruptants and/or oviposition deterrents for P. operculella control appears to be a promising strategy. © 2013 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  10. Likely Aggregation-Sex Pheromones of the Invasive Beetle Callidiellum villosulum, and the Related Asian Species Allotraeus asiaticus, Semanotus bifasciatus, and Xylotrechus buqueti (Coleoptera: Cerambycidae).

    PubMed

    Wickham, Jacob D; Lu, Wen; Zhang, Long-Wa; Chen, Yi; Zou, Yunfan; Hanks, Lawrence M; Millar, Jocelyn G

    2016-10-01

    During field trials of the two known cerambycid beetle pheromone components 3-hydroxyhexan-2-one and 1-(1H-pyrrol-2-yl)-1,2-propanedione (henceforth "pyrrole") in Guangxi and Anhui provinces in China, four species in the subfamily Cerambycinae were attracted to lures containing one of the two components, or the blend of the two. Thus, the invasive species Callidiellum villosulum (Fairmaire) (tribe Callidiini) and a second species, Xylotrechus buqueti (Castelnau & Gory) (tribe Clytini), were specifically attracted to the blend of 3-hydroxyhexan-2-one and the pyrrole. In contrast, Allotreus asiaticus (Schwarzer) (tribe Phoracanthini) and Semanotus bifasciatus Motschulsky (tribe Callidiini) were specifically attracted to the pyrrole as a single component. In most cases, both males and females were attracted, indicating that the compounds are likely to be aggregation-sex pheromones. The results indicate that the two compounds are conserved as pheromone components among species within at least three tribes within the subfamily Cerambycinae. For practical purposes, the attractants could find immediate use in surveillance programs aimed at detecting incursions of these species into new areas of the world, including the United States. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Pheromonally mediated sexual isolation among denning populations of red-sided garter snakes, Thamnophis sirtalis parietalis.

    PubMed

    Lemaster, Michael P; Mason, Robert T

    2003-04-01

    Utilizing behavioral experiments and chemical analyses, we examined whether pheromonally mediated sexual isolation exists between denning populations of red-sided garter snakes (Thamtnophis sirtalis parietalis) in Manitoba, Canada. Simultaneous choice tests conducted during the breeding season revealed that adult males from a hibernaculum in central Manitoba displayed a strong courtship preference for females from their own population over females from a hibernaculum in western Manitoba, whereas males from the western Manitoba hibernaculum showed no such preference. In addition. trailing experiments testing the response of males from the two hibernacula to familiar and unfamiliar female trails showed similar results, demonstrating that the observed male preference is mediated through chemical cues. Subsequent chemical analysis of the female sexual attractiveness pheromone. a homologous series of long-chain saturated and (omega-9 cis-unsaturated methyl ketones responsible for eliciting male courtship behavior and trailing behavior in garter snakes, showed significant variation in the composition of the pheromone between the two populations. Specifically, the two populations varied in the relative concentrations of individual unsaturated methyl ketones expressed by females. These results suggest that sexual isolation exists to a degree among denning populations of red-sided garter snakes due to variation in the expression of the female sexual attractiveness pheromone.

  12. A cost of alarm pheromone production in cotton aphids, Aphis gossypii

    NASA Astrophysics Data System (ADS)

    Byers, John A.

    2005-02-01

    The sesquiterpene, (E)-β-farnesene, is used by many aphid species as an alarm pheromone to warn related individuals of predation. Disturbed cotton aphids, Aphis gossypii Glover, released (E)-β-farnesene into the air as detected by solid phase microextraction and gas chromatography mass spectrometry (GC MS). Solvent extracts of cotton aphids of various life stages and weights also were analyzed by GC MS for sums of ions 69 and 93, which discriminated (E)-β-farnesene from coeluting compounds. Aphids of all life stages and sizes reared on cotton plants in both an environmental chamber and glasshouse contained (E)-β-farnesene in amounts ranging from 0.1 to 1.5 ng per individual. The quantities of (E)-β-farnesene in aphids increased in relation to increasing body weight, and variation in individual weights explained about 82% of the variation in alarm pheromone. However, the concentrations (ng/mg fresh weight) declined exponentially with increasing body weight. These findings indicate that aphid nymphs try to compensate for their smaller size by producing relatively more pheromone per weight than adults but still cannot approach an evolutionary optimal load, as assumed in adults with the greatest total amounts. This suggests that young aphids need to balance costs of growth and maturation with costs of producing the alarm pheromone.

  13. Suppression of leopard moth (Lepidoptera: Cossidae) populations in olive trees in Egypt through mating disruption.

    PubMed

    Hegazi, E M; Khafagi, W E; Konstantopoulou, M A; Schlyter, F; Raptopoulos, D; Shweil, S; Abd El-Rahman, S; Atwa, A; Ali, S E; Tawfik, H

    2010-10-01

    The leopard moth, Zeuzera pyrina (L.) (Lepidoptera: Cossidae), is a damaging pest for many fruit trees (e.g., apple [Malus spp.], pear [Pyrus spp.] peach [Prunus spp.], and olive [Olea]). Recently, it caused serious yield losses in newly established olive orchards in Egypt, including the death of young trees. Chemical and biological control have shown limited efficiency against this pest. Field tests were conducted in 2005 and 2006 to evaluate mating disruption (MD) for the control of the leopard moth, on heavily infested, densely planted olive plots (336 trees per ha). The binary blend of the pheromone components (E,Z)-2,13-octadecenyl acetate and (E,Z)-3,13-octadecenyl acetate (95:5) was dispensed from polyethylene vials. Efficacy was measured considering reduction of catches in pheromone traps, reduction of active galleries of leopard moth per tree and fruit yield in the pheromone-treated plots (MD) compared with control plots (CO). Male captures in MD plots were reduced by 89.3% in 2005 and 82.9% in 2006, during a trapping period of 14 and 13 wk, respectively. Application of MD over two consecutive years progressively reduced the number of active galleries per tree in the third year where no sex pheromone was applied. In all years, larval galleries outnumbered moth captures. Fruit yield from trees where sex pheromone had been applied in 2005 and 2006 increased significantly in 2006 (98.8 +/- 2.9 kg per tree) and 2007 (23 +/- 1.3 kg per tree) compared with control ones (61.0 +/- 3.9 and 10.0 +/- 0.6 kg per tree, respectively). Mating disruption shows promising for suppressing leopard moth infestation in olives.

  14. The Rare North American Cerambycid Beetle Dryobius sexnotatus Shares a Novel Pyrrole Pheromone Component with Species in Asia and South America.

    PubMed

    Diesel, Natalie M; Zou, Yunfan; Johnson, Todd D; Diesel, Donald A; Millar, Jocelyn G; Mongold-Diers, Judith A; Hanks, Lawrence M

    2017-08-01

    The compound 1-(1H-pyrrol-2-yl)-1,2-propanedione ("pyrrole") is an important pheromone component of several Asian and South American species of longhorned beetles in the subfamily Cerambycinae. Here, we report the first confirmed identification of this compound as a pheromone component of a cerambycine species native to North America, the rare beetle Dryobius sexnotatus Linsley. Headspace volatiles from males contained (R)-3-hydroxyhexan-2-one and pyrrole (ratio 1:0.13), neither of which were detected in samples from a female. A field bioassay confirmed that adults of both sexes were attracted only to the binary blend of racemic 3-hydroxyhexan-2-one plus pyrrole, and not by either compound alone. Adults of another cerambycine, Xylotrechus colonus (F.), were attracted by 3-hydroxyhexan-2-one, consistent with this compound being the primary component of the pheromone of this species; attraction was not influenced by the presence of pyrrole. This study attests to the effectiveness of pheromone-baited traps in capturing rarely encountered species of cerambycids. It also provides further evidence that pyrrole represents another conserved pheromone motif within the Cerambycinae, now having been found in representatives of five cerambycid tribes from three continents.

  15. Predicted taxonomic patterns in pheromone production by longhorned beetles

    NASA Astrophysics Data System (ADS)

    Ray, Ann M.; Lacey, Emerson S.; Hanks, Lawrence M.

    2006-11-01

    Males of five species of three tribes in the longhorned beetle subfamily Cerambycinae produce volatile pheromones that share a structural motif (hydroxyl or carbonyl groups at carbons two and three in straight-chains of six, eight, or ten carbons). Pheromone gland pores are present on the prothoraces of males, but are absent in females, suggesting that male-specific gland pores could provide a convenient morphological indication that a species uses volatile pheromones. In this article, we assess the taxonomic distribution of gland pores within the Cerambycinae by examining males and females of 65 species in 24 tribes using scanning electron microscopy. Gland pores were present in males and absent in females of 49 species, but absent in both sexes of the remaining 16 species. Pores were confined to indentations in the cuticle. Among the species that had male-specific gland pores were four species already known to produce volatile compounds consistent with the structural motif. These findings support the initial assumption that gland pores are associated with the production of pheromones by males. There were apparently no taxonomic patterns in the presence of gland pores. These findings suggest that volatile pheromones play an important role in reproduction for many species of the Cerambycinae, and that the trait is evolutionarily labile.

  16. Chemical environment manipulation for pest insects control

    NASA Astrophysics Data System (ADS)

    Greenblatt, J. A.; Lewis, W. J.

    1983-01-01

    The chemical environment of pest species may be considered a habitat susceptible to management Management may be by means of manipulation of the environment of the pest for population suppression or for enhancement of natural enemies Examples of each are reviewed here Chemical stimuli influencing the behavior of phytophagous insects include host plant originated stimuli and pheromones The latter, especially sex pheromones, have proved most successful as tools for manipulation of pest population dynamics Factors influencing search behavior of natural enemies include habitat characteristics such as crop, associated plants and plant assemblages, host plant characteristics, influence of associated organisms, and characteristics of the searching entomophage Recent studies have shown potential for simultaneous management of a pest species and enhancement of natural enemies using pest pheromones

  17. Natural variation in Pristionchus pacificus dauer formation reveals cross-preference rather than self-preference of nematode dauer pheromones.

    PubMed

    Mayer, Melanie G; Sommer, Ralf J

    2011-09-22

    Many free-living nematodes, including the laboratory model organisms Caenorhabditis elegans and Pristionchus pacificus, have a choice between direct and indirect development, representing an important case of phenotypic plasticity. Under harsh environmental conditions, these nematodes form dauer larvae, which arrest development, show high resistance to environmental stress and constitute a dispersal stage. Pristionchus pacificus occurs in a strong association with scarab beetles in the wild and remains in the dauer stage on the living beetle. Here, we explored the circumstances under which P. pacificus enters and exits the dauer stage by using a natural variation approach. The analysis of survival, recovery and fitness after dauer exit of eight P. pacificus strains revealed that dauer larvae can survive for up to 1 year under experimental conditions. In a second experiment, we isolated dauer pheromones from 16 P. pacificus strains, and tested for natural variation in pheromone production and sensitivity in cross-reactivity assays. Surprisingly, 13 of the 16 strains produce a pheromone that induces the highest dauer formation in individuals of other genotypes. These results argue against a simple adaptation model for natural variation in dauer formation and suggest that strains may have evolved to induce dauer formation precociously in other strains in order to reduce the fitness of these strains. We therefore discuss intraspecific competition among genotypes as a previously unconsidered aspect of dauer formation. This journal is © 2011 The Royal Society

  18. Disposable Polydimethylsiloxane (PDMS)-Coated Fused Silica Optical Fibers for Sampling Pheromones of Moths.

    PubMed

    Lievers, Rik; Groot, Astrid T

    2016-01-01

    In the past decades, the sex pheromone composition in female moths has been analyzed by different methods, ranging from volatile collections to gland extractions, which all have some disadvantage: volatile collections can generally only be conducted on (small) groups of females to detect the minor pheromone compounds, whereas gland extractions are destructive. Direct-contact SPME overcomes some of these disadvantages, but is expensive, the SPME fiber coating can be damaged due to repeated usage, and samples need to be analyzed relatively quickly after sampling. In this study, we assessed the suitability of cheap and disposable fused silica optical fibers coated with 100 μm polydimethylsiloxane (PDMS) by sampling the pheromone of two noctuid moths, Heliothis virescens and Heliothis subflexa. By rubbing the disposable PDMS fibers over the pheromone glands of females that had called for at least 15 minutes and subsequently extracting the PDMS fibers in hexane, we collected all known pheromone compounds, and we found a strong positive correlation for most pheromone compounds between the disposable PDMS fiber rubs and the corresponding gland extracts of the same females. When comparing this method to volatile collections and the corresponding gland extracts, we generally found comparable percentages between the three techniques, with some differences that likely stem from the chemical properties of the individual pheromone compounds. Hexane extraction of cheap, disposable, PDMS coated fused silica optical fibers allows for sampling large quantities of individual females in a short time, eliminates the need for immediate sample analysis, and enables to use the same sample for multiple chemical analyses.

  19. Disposable Polydimethylsiloxane (PDMS)-Coated Fused Silica Optical Fibers for Sampling Pheromones of Moths

    PubMed Central

    Lievers, Rik; Groot, Astrid T.

    2016-01-01

    In the past decades, the sex pheromone composition in female moths has been analyzed by different methods, ranging from volatile collections to gland extractions, which all have some disadvantage: volatile collections can generally only be conducted on (small) groups of females to detect the minor pheromone compounds, whereas gland extractions are destructive. Direct-contact SPME overcomes some of these disadvantages, but is expensive, the SPME fiber coating can be damaged due to repeated usage, and samples need to be analyzed relatively quickly after sampling. In this study, we assessed the suitability of cheap and disposable fused silica optical fibers coated with 100 μm polydimethylsiloxane (PDMS) by sampling the pheromone of two noctuid moths, Heliothis virescens and Heliothis subflexa. By rubbing the disposable PDMS fibers over the pheromone glands of females that had called for at least 15 minutes and subsequently extracting the PDMS fibers in hexane, we collected all known pheromone compounds, and we found a strong positive correlation for most pheromone compounds between the disposable PDMS fiber rubs and the corresponding gland extracts of the same females. When comparing this method to volatile collections and the corresponding gland extracts, we generally found comparable percentages between the three techniques, with some differences that likely stem from the chemical properties of the individual pheromone compounds. Hexane extraction of cheap, disposable, PDMS coated fused silica optical fibers allows for sampling large quantities of individual females in a short time, eliminates the need for immediate sample analysis, and enables to use the same sample for multiple chemical analyses. PMID:27533064

  20. Evolution of multicomponent pheromone signals in small ermine moths involves a single fatty-acyl reductase gene

    PubMed Central

    Liénard, Marjorie A.; Hagström, Åsa K.; Lassance, Jean-Marc; Löfstedt, Christer

    2010-01-01

    Fatty-acyl CoA reductases (FAR) convert fatty acids into fatty alcohols in pro- and eukaryotic organisms. In the Lepidoptera, members of the FAR gene family serve in the biosynthesis of sex pheromones involved in mate communication. We used a group of closely related species, the small ermine moths (Lepidoptera: Yponomeutidae) as a model to investigate the role of FARs in the biosynthesis of complex pheromone blends. Homology-based molecular cloning in three Yponomeuta species led to the identification of multiple putative FAR transcripts homologous to FAR genes from the Bombyx mori genome. The expression of one transcript was restricted to the female pheromone-gland tissue, suggesting a role in pheromone biosynthesis, and the encoded protein belonged to a recently identified Lepidoptera-specific pgFAR gene subfamily. The Yponomeuta evonymellus pgFAR mRNA was up-regulated in sexually mature females and exhibited a 24-h cyclic fluctuation pattern peaking in the pheromone production period. Heterologous expression confirmed that the Yponomeuta pgFAR orthologs in all three species investigated [Y. evonymellus (L.), Yponomeuta padellus (L.), and Yponomeuta rorellus (Hübner)] encode a functional FAR with a broad substrate range that efficiently promoted accumulation of primary alcohols in recombinant yeast supplied with a series of biologically relevant C14- or C16-acyl precursors. Taken together, our data evidence that a single alcohol-producing pgFAR played a critical function in the production of the multicomponent pheromones of yponomeutids and support the hypothesis of moth pheromone-biosynthetic FARs belonging to a FAR gene subfamily unique to Lepidoptera. PMID:20534481

  1. Geographic variation in prey preference in bark beetle predators

    Treesearch

    John D. Reeve; Brian L. Strom; Lynne K. Rieske; Bruce D. Ayers; Arnaud Costa

    2009-01-01

    1. Bark beetles and their predators are useful systems for addressing questions concerning diet breadth and prey preference in arthropod natural enemies. These predators use bark beetle pheromones to locate their prey, and the response todifferent pheromones is a measure of prey preference. 2. Trapping experiments were conducted to examine geographic...

  2. Attraction of the larval predator Elater ferrugineus to the sex pheromone of its prey, Osmoderma eremita, and its implication for conservation biology.

    PubMed

    Svensson, Glenn P; Larsson, Mattias C; Hedin, Jonas

    2004-02-01

    Elater ferrugineus is a threatened click beetle inhabiting old hollow trees. Its larvae consume larvae of other saproxylic insects including the threatened scarab beetle Osmoderma eremita. Recently, (R)-(+)-gamma-decalactone was identified as a male-produced sex pheromone of O. eremita. Here we present evidence that E. ferrugineus adults use this odor as a kairomone for location of their prey. In field trapping experiments, significantly more trapping events of E. ferrugineus beetles were observed in Lindgren funnel traps baited with (R)-(+)-gamma-decalactone than in control traps (20 vs. 1, respectively). Analyses of headspace collections from E. ferrugineus beetles indicate that the predator itself does not produce the substance. Both sexes were attracted to the prey pheromone. suggesting that E. ferrugineus males use the odor as an indirect cue for location of mates or of the tree hollows, which make up their habitat. When compared to pitfall traps, the Lindgren system was significantly more effective in trapping E. ferragineus, and no difference could be established for O. eremita, showing the high potential to use odor-based systems to catch both species. We suggest that (R)-(+)-gamma-decalactone could be used as a master signal in monitoring programs for these vulnerable beetle species. which are both regarded as indicators of the associated insect fauna of the threatened habitat of old hollow trees.

  3. Biosynthesis of unusual moth pheromone components involves two different pathways in the navel orangeworm, Amyelois transitella.

    PubMed

    Wang, Hong-Lei; Zhao, Cheng-Hua; Millar, Jocelyn G; Cardé, Ring T; Löfstedt, Christer

    2010-05-01

    The sex pheromone of the navel orangeworm, Amyelois transitella (Walker) (Lepidoptera: Pyralidae), consists of two different types of components, one type including (11Z,13Z)-11,13-hexadecadienal (11Z,13Z-16:Ald) with a terminal functional group containing oxygen, similar to the majority of moth pheromones reported, and another type including the unusual long-chain pentaenes, (3Z,6Z,9Z,12Z,15Z)-3,6,9,12,15-tricosapentaene (3Z,6Z,9Z,12Z,15Z-23:H) and (3Z,6Z,9Z,12Z,15Z)- 3,6,9,12,15-pentacosapentaene (3Z,6Z,9Z,12Z,15Z-25:H). After decapitation of females, the titer of 11Z,13Z-16:Ald in the pheromone gland decreased significantly, whereas the titer of the pentaenes remained unchanged. Injection of a pheromone biosynthesis activating peptide (PBAN) into the abdomens of decapitated females restored the titer of 11Z,13Z-16:Ald and even increased it above that in intact females, whereas the titer of the pentaenes in the pheromone gland was not affected by PBAN injection. In addition to common fatty acids, two likely precursors of 11Z,13Z-16:Ald, i.e., (Z)-11-hexadecenoic and (11Z,13Z)-11,13-hexadecadienoic acid, as well as traces of (Z)-6-hexadecenoic acid, were found in gland extracts. In addition, pheromone gland lipids contained (5Z,8Z,11Z,14Z,17Z)-5,8,11,14,17-icosapentaenoic acid, which also was found in extracts of the rest of the abdomen. Deuterium-labeled fatty acids, (16,16,16-D(3))-hexadecanoic acid and (Z)-[13,13,14,14,15,15,16,16,16-D(9)]-11-hexadecenoic acid, were incorporated into 11Z,13Z-16:Ald after topical application to the sex pheromone gland coupled with abdominal injection of PBAN. Deuterium label was incorporated into the C(23) and C(25) pentaenes after injection of (9Z,12Z,15Z)- [17,17,18,18,18-D(5)]-9,12,15-octadecatrienoic acid into 1-2 d old female pupae. These labeling results, in conjunction with the composition of fatty acid intermediates found in pheromone gland extracts, support different pathways leading to the two pheromone components. 11Z,13Z-16:Ald is probably produced in the pheromone gland by Delta11 desaturation of palmitic acid to 11Z-16:Acid followed by a second desaturation to form 11Z,13Z-16:Acid and subsequent reduction and oxidation. The production of 3Z,6Z,9Z,12Z,15Z-23:H and 3Z,6Z,9Z,12Z,15Z-25:H may take place outside the pheromone gland, and appears to start from linolenic acid, which is elongated and desaturated to form (5Z,8Z,11Z,14Z,17Z)-5,8,11,14,17-icosapentaenoic acid, followed by two or three further elongation steps and finally reductive decarboxylation.

  4. Biosynthesis of Unusual Moth Pheromone Components Involves Two Different Pathways in the Navel Orangeworm, Amyelois transitella

    PubMed Central

    Wang, Hong-Lei; Zhao, Cheng-Hua; Millar, Jocelyn G.; Cardé, Ring T.

    2010-01-01

    The sex pheromone of the navel orangeworm, Amyelois transitella (Walker) (Lepidoptera: Pyralidae), consists of two different types of components, one type including (11Z,13Z)-11,13-hexadecadienal (11Z,13Z-16:Ald) with a terminal functional group containing oxygen, similar to the majority of moth pheromones reported, and another type including the unusual long-chain pentaenes, (3Z,6Z,9Z,12Z,15Z)-3,6,9,12,15-tricosapentaene (3Z,6Z,9Z,12Z,15Z-23:H) and (3Z,6Z,9Z,12Z,15Z)- 3,6,9,12,15-pentacosapentaene (3Z,6Z,9Z,12Z,15Z-25:H). After decapitation of females, the titer of 11Z,13Z-16:Ald in the pheromone gland decreased significantly, whereas the titer of the pentaenes remained unchanged. Injection of a pheromone biosynthesis activating peptide (PBAN) into the abdomens of decapitated females restored the titer of 11Z,13Z-16:Ald and even increased it above that in intact females, whereas the titer of the pentaenes in the pheromone gland was not affected by PBAN injection. In addition to common fatty acids, two likely precursors of 11Z,13Z-16:Ald, i.e., (Z)-11-hexadecenoic and (11Z,13Z)-11,13-hexadecadienoic acid, as well as traces of (Z)-6-hexadecenoic acid, were found in gland extracts. In addition, pheromone gland lipids contained (5Z,8Z,11Z,14Z,17Z)-5,8,11,14,17-icosapentaenoic acid, which also was found in extracts of the rest of the abdomen. Deuterium-labeled fatty acids, (16,16,16-D3)-hexadecanoic acid and (Z)-[13,13,14,14,15,15,16,16,16-D9]-11-hexadecenoic acid, were incorporated into 11Z,13Z-16:Ald after topical application to the sex pheromone gland coupled with abdominal injection of PBAN. Deuterium label was incorporated into the C23 and C25 pentaenes after injection of (9Z,12Z,15Z)- [17,17,18,18,18-D5]-9,12,15-octadecatrienoic acid into 1–2 d old female pupae. These labeling results, in conjunction with the composition of fatty acid intermediates found in pheromone gland extracts, support different pathways leading to the two pheromone components. 11Z,13Z-16:Ald is probably produced in the pheromone gland by Δ11 desaturation of palmitic acid to 11Z-16:Acid followed by a second desaturation to form 11Z,13Z-16:Acid and subsequent reduction and oxidation. The production of 3Z,6Z,9Z,12Z,15Z-23:H and 3Z,6Z,9Z,12Z,15Z-25:H may take place outside the pheromone gland, and appears to start from linolenic acid, which is elongated and desaturated to form (5Z,8Z,11Z,14Z,17Z)-5,8,11,14,17-icosapentaenoic acid, followed by two or three further elongation steps and finally reductive decarboxylation. PMID:20393784

  5. Natural variation in dauer pheromone production and sensing supports intraspecific competition in nematodes.

    PubMed

    Bose, Neelanjan; Meyer, Jan M; Yim, Joshua J; Mayer, Melanie G; Markov, Gabriel V; Ogawa, Akira; Schroeder, Frank C; Sommer, Ralf J

    2014-07-07

    Dauer formation, a major nematode survival strategy, represents a model for small-molecule regulation of metazoan development [1-10]. Free-living nematodes excrete dauer-inducing pheromones that have been assumed to target conspecifics of the same genotype [9, 11]. However, recent studies in Pristionchus pacificus revealed that the dauer pheromone of some strains affects conspecifics of other genotypes more strongly than individuals of the same genotype [12]. To elucidate the mechanistic basis for this intriguing cross-preference, we compared six P. pacificus wild isolates to determine the chemical composition of their dauer-inducing metabolomes and responses to individual pheromone components. We found that these isolates produce dauer pheromone blends of different composition and respond differently to individual pheromone components. Strikingly, there is no correlation between production of and dauer response to a specific compound in individual strains. Specifically, pheromone components that are abundantly produced by one genotype induce dauer formation in other genotypes, but not necessarily in the abundant producer. Furthermore, some genotypes respond to pheromone components they do not produce themselves. These results support a model of intraspecific competition in nematode dauer formation. Indeed, we observed intraspecific competition among sympatric strains in a novel experimental assay, suggesting a new role of small molecules in nematode ecology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Aggression and courtship in Drosophila: pheromonal communication and sex recognition.

    PubMed

    Fernández, María Paz; Kravitz, Edward A

    2013-11-01

    Upon encountering a conspecific in the wild, males have to rapidly detect, integrate and process the most relevant signals to evoke an appropriate behavioral response. Courtship and aggression are the most important social behaviors in nature for procreation and survival: for males, making the right choice between the two depends on the ability to identify the sex of the other individual. In flies as in most species, males court females and attack other males. Although many sensory modalities are involved in sex recognition, chemosensory communication mediated by specific molecules that serve as pheromones plays a key role in helping males distinguish between courtship and aggression targets. The chemosensory signals used by flies include volatile and non-volatile compounds, detected by the olfactory and gustatory systems. Recently, several putative olfactory and gustatory receptors have been identified that play key roles in sex recognition, allowing investigators to begin to map the neuronal circuits that convey this sensory information to higher processing centers in the brain. Here, we describe how Drosophila melanogaster males use taste and smell to make correct behavioral choices.

  7. Aggression and Courtship in Drosophila: Pheromonal Communication and Sex Recognition

    PubMed Central

    Fernández, María Paz; Kravitz, Edward A.

    2013-01-01

    Upon encountering a conspecific in the wild, males have to rapidly detect, integrate and process the most relevant signals to evoke an appropriate behavioral response. Courtship and aggression are the most important social behaviors in nature for procreation and survival: for males, making the right choice between the two depends on the ability to identify the sex of the other individual. In flies as in most species, males court females and attack other males. Although many sensory modalities are involved in sex recognition, chemosensory communication mediated by specific molecules that serve as pheromones plays a key role in helping males distinguish between courtship and aggression targets. The chemosensory signals used by flies include volatile and non-volatile compounds, detected by the olfactory and gustatory systems. Recently, several putative olfactory and gustatory receptors have been identified that play key roles in sex recognition, allowing investigators to begin to map the neuronal circuits that convey this sensory information to higher processing centers in the brain. Here, we describe how Drosophila melanogaster males use taste and smell to make correct behavioral choices. PMID:24043358

  8. Old maids have more appeal: effects of age and pheromone source on mate attraction in an orb-web spider.

    PubMed

    Cory, Anna-Lena; Schneider, Jutta M

    2016-01-01

    Background. In many insects and spider species, females attract males with volatile sex pheromones, but we know surprisingly little about the costs and benefits of female pheromone emission. Here, we test the hypothesis that mate attraction by females is dynamic and strategic in the sense that investment in mate attraction is matched to the needs of the female. We use the orb-web spider Argiope bruennichi in which females risk the production of unfertilised egg clutches if they do not receive a copulation within a certain time-frame. Methods. We designed field experiments to compare mate attraction by recently matured (young) females with females close to oviposition (old). In addition, we experimentally separated the potential sources of pheromone transmission, namely the female body and the web silk. Results. In accordance with the hypothesis of strategic pheromone production, the probability of mate attraction and the number of males attracted differed between age classes. While the bodies and webs of young females were hardly found by males, the majority of old females attracted up to two males within two hours. Old females not only increased pheromone emission from their bodies but also from their webs. Capture webs alone spun by old females were significantly more efficient in attracting males than webs of younger females. Discussion. Our results suggest that females modulate their investment in signalling according to the risk of remaining unmated and that they thereby economize on the costs associated with pheromone production and emission.

  9. Mating type gene homologues and putative sex pheromone-sensing pathway in arbuscular mycorrhizal fungi, a presumably asexual plant root symbiont.

    PubMed

    Halary, Sébastien; Daubois, Laurence; Terrat, Yves; Ellenberger, Sabrina; Wöstemeyer, Johannes; Hijri, Mohamed

    2013-01-01

    The fungal kingdom displays a fascinating diversity of sex-determination systems. Recent advances in genomics provide insights into the molecular mechanisms of sex, mating type determination, and evolution of sexual reproduction in many fungal species in both ancient and modern phylogenetic lineages. All major fungal groups have evolved sexual differentiation and recombination pathways. However, sexuality is unknown in arbuscular mycorrhizal fungi (AMF) of the phylum Glomeromycota, an ecologically vital group of obligate plant root symbionts. AMF are commonly considered an ancient asexual lineage dating back to the Ordovician, approximately 460 M years ago. In this study, we used genomic and transcriptomic surveys of several AMF species to demonstrate the presence of conserved putative sex pheromone-sensing mitogen-activated protein (MAP) kinases, comparable to those described in Ascomycota and Basidiomycota. We also find genes for high mobility group (HMG) transcription factors, homologous to SexM and SexP genes in the Mucorales. The SexM genes show a remarkable sequence diversity among multiple copies in the genome, while only a single SexP sequence was detected in some isolates of Rhizophagus irregularis. In the Mucorales and Microsporidia, the sexM gene is flanked by genes for a triosephosphate transporter (TPT) and a RNA helicase, but we find no evidence for synteny in the vicinity of the Sex locus in AMF. Nonetheless, our results, together with previous observations on meiotic machinery, suggest that AMF could undergo a complete sexual reproduction cycle.

  10. Chirality determines pheromone activity for flour beetles

    NASA Astrophysics Data System (ADS)

    Levinson, H. Z.; Mori, K.

    1983-04-01

    Olfactory perception and orientation behaviour of female and male flour beetles ( Tribolium castaneum, T. confusum) to single stereoisomers of their aggregation pheromone revealed maximal receptor potentials and optimal attraction in response to 4R,8R-(-)-dimethyldecanal, whereas its optical antipode 4S,8S-(+)-dimethyldecanal was found to be inactive in this respect. Female flour beetles of both species were ≈ 103 times less attracted to 4R,8S-(+)- and 4S,8R-(-)-dimethyldecanal than to 4R,8R-(-)-dimethyldecanal, while male flour beetles failed to respond to the R,S-(+)- and S,R-(-)-stereoisomers. Pheromone extracts of prothoracic femora from unmated male flour beetles elicited higher receptor potentials in the antennae of females than in those of males. The results suggest that the aggregation pheromone emitted by male T. castaneum as well as male T. confusum has the stereochemical structure of 4R,8R-(-)-dimethyl-decanal, which acts as sex attractant for the females and as aggregant for the males of both species.

  11. Sulfated steroids as natural ligands of mouse pheromone-sensing neurons.

    PubMed

    Nodari, Francesco; Hsu, Fong-Fu; Fu, Xiaoyan; Holekamp, Terrence F; Kao, Lung-Fa; Turk, John; Holy, Timothy E

    2008-06-18

    Among mice, pheromones and other social odor cues convey information about sex, social status, and identity; however, the molecular nature of these cues is essentially unknown. To identify these cues, we screened chromatographic fractions of female mouse urine for their ability to cause reproducible firing rate increases in the pheromone-detecting vomeronasal sensory neurons (VSNs) using multielectrode array (MEA) recording. Active compounds were found to be remarkably homogenous in their basic properties, with most being of low molecular weight, moderate hydrophobicity, low volatility, and possessing a negative electric charge. Purification and structural analysis of active compounds revealed multiple sulfated steroids, of which two were identified as sulfated glucocorticoids, including corticosterone 21-sulfate. Sulfatase-treated urine extracts lost >80% of their activity, indicating that sulfated compounds are the predominant VSN ligands in female mouse urine. As measured by MEA recording, a collection of 31 synthetic sulfated steroids triggered responses 30-fold more frequently than did a similarly sized stimulus set containing the majority of all previously reported VSN ligands. Collectively, VSNs detected all major classes of sulfated steroids, but individual neurons were sensitive to small variations in chemical structure. VSNs from both males and females detected sulfated steroids, but knock-outs for the sensory transduction channel TRPC2 did not detect these compounds. Urine concentrations of the two sulfated glucocorticoids increased many fold in stressed animals, indicating that information about physiological status is encoded by the urine concentration of particular sulfated steroids. These results provide an unprecedented characterization of the signals available for chemical communication among mice.

  12. Sulfated steroids as natural ligands of mouse pheromone-sensing neurons

    PubMed Central

    Nodari, Francesco; Hsu, Fong-Fu; Fu, Xiaoyan; Holekamp, Terrence F.; Kao, Lung-Fa; Turk, John; Holy, Timothy E.

    2009-01-01

    Among mice, pheromones and other social odor cues convey information about sex, social status, and identity; however, the molecular nature of these cues is largely unknown. To identify these cues, we screened chromatographic fractions of female mouse urine for their ability to cause reproducible firing rate increases in the pheromone-detecting vomeronasal sensory neurons (VSNs) using multielectrode array (MEA) recording. Active compounds were found to be remarkably homogenous in their basic properties, with most being of low molecular weight, moderate hydrophobicity, low volatility, and possessing a negative electric charge. Purification and structural analysis of active compounds revealed multiple sulfated steroids, of which two were identified as sulfated glucocorticoids, including corticosterone 21-sulfate. Sulfatase-treated urine extracts lost more than 80% of their activity, indicating that sulfated compounds are the predominant VSN ligands in female mouse urine. As measured by MEA recording, a collection of 31 synthetic sulfated steroids triggered responses 30-fold more frequently than did a similarly-sized stimulus set containing the majority of all previously-reported VSN ligands. Collectively, VSNs detected all major classes of sulfated steroids, but individual neurons were sensitive to small variations in chemical structure. VSNs from both males and females detected sulfated steroids, but knockouts for the sensory transduction channel TRPC2 did not detect these compounds. Urine concentrations of the two sulfated glucocorticoids increased many-fold in stressed animals, indicating that information about physiological status is encoded by the urine concentration of particular sulfated steroids. These results provide an unprecedented characterization of the signals available for chemical communication among mice. PMID:18562612

  13. Intra- and inter-specific variation in alarm pheromone produced by Solenopsis fire ants.

    PubMed

    Hu, L; Balusu, R R; Zhang, W-Q; Ajayi, O S; Lu, Y-Y; Zeng, R-S; Fadamiro, H Y; Chen, L

    2017-12-10

    Some fire ants of the genus Solenopsis have become invasive species in the southern United States displacing native species by competition. Although the displacement pattern seems clear, the mechanisms underlying competitive advantage remain unclear. The ability of ant workers to produce relatively larger amount of alarm pheromone may correspond to relative greater fitness among sympatric fire ant species. Here we report on quantitative intra-specific (i.e. inter-caste) and inter-specific differences of alarm pheromone component, 2-ethyl-3,6-dimethylpyrazine (2E36DMP), for several fire ant species. The alarm pheromone component was extracted by soaking ants in hexane for 48 h and subsequently quantified by gas chromatography-mass spectrometry at single ion monitoring mode. Solenopsis invicta workers had more 2E36DMP than male or female alates by relative weight; individual workers, however, contained significantly less pyrazine. We thus believe that alarm pheromones may serve additional roles in alates. Workers of Solenopsis richteri, S. invicta, and hybrid (S. richteri × S. invicta) had significantly more 2E36DMP than a native fire ant species, Solenopsis geminata. The hybrid fire ant had significantly less 2E36DMP than the two parent species, S. richteri and S. invicta. It seems likely that higher alarm pheromone content may have favored invasion success of exotic fire ants over native species. We discuss the potential role of inter-specific variation in pyrazine content for the relationship between the observed shifts in the spatial distributions of the three exotic fire ant species in southern United States and the displacement of native fire ant species.

  14. Sex-specific mating pheromones in the nematode Panagrellus redivivus.

    PubMed

    Choe, Andrea; Chuman, Tatsuji; von Reuss, Stephan H; Dossey, Aaron T; Yim, Joshua J; Ajredini, Ramadan; Kolawa, Adam A; Kaplan, Fatma; Alborn, Hans T; Teal, Peter E A; Schroeder, Frank C; Sternberg, Paul W; Edison, Arthur S

    2012-12-18

    Nematodes use an extensive chemical language based on glycosides of the dideoxysugar ascarylose for developmental regulation (dauer formation), male sex attraction, aggregation, and dispersal. However, no examples of a female- or hermaphrodite-specific sex attractant have been identified to date. In this study, we investigated the pheromone system of the gonochoristic sour paste nematode Panagrellus redivivus, which produces sex-specific attractants of the opposite sex. Activity-guided fractionation of the P. redivivus exometabolome revealed that males are strongly attracted to ascr#1 (also known as daumone), an ascaroside previously identified from Caenorhabditis elegans hermaphrodites. Female P. redivivus are repelled by high concentrations of ascr#1 but are specifically attracted to a previously unknown ascaroside that we named dhas#18, a dihydroxy derivative of the known ascr#18 and an ascaroside that features extensive functionalization of the lipid-derived side chain. Targeted profiling of the P. redivivus exometabolome revealed several additional ascarosides that did not induce strong chemotaxis. We show that P. redivivus females, but not males, produce the male-attracting ascr#1, whereas males, but not females, produce the female-attracting dhas#18. These results show that ascaroside biosynthesis in P. redivivus is highly sex-specific. Furthermore, the extensive side chain functionalization in dhas#18, which is reminiscent of polyketide-derived natural products, indicates unanticipated biosynthetic capabilities in nematodes.

  15. Costs of female odour in males of the parasitic wasp Lariophagus distinguendus (Hymenoptera: Pteromalidae)

    NASA Astrophysics Data System (ADS)

    Ruther, Joachim; Steiner, Sven

    2008-06-01

    The display of female traits by males is widespread in the animal kingdom. In several species, this phenomenon has been shown to function adaptively as a male mating strategy to deceive sexual rivals (female mimicry). Freshly emerged males of the parasitic wasp Lariophagus distinguendus (Hymenoptera: Pteromalidae) are perceived by other males as if they were females because of a very similar composition of cuticular hydrocarbons which function as a sex pheromone in this species inducing courtship behaviour in males. Within 32 h, however, males deactivate the pheromone and are no longer courted by other males. In this paper, behavioural experiments were performed to test hypotheses on potential costs and benefits associated with the female odour in young males. We did not find any benefits, but demonstrated that young males were significantly more often outrivaled in male-male contests when competing with two older males for a female. Also, young males were significantly more often mounted in homosexual courtship events during these contests. Thus, display of female traits by males is not necessarily beneficial, and in fact, can be disadvantageous. We suggest that these costs have favoured the evolution of the pheromone deactivation mechanism in L. distinguendus males. The function of cuticular hydrocarbons as a female courtship pheromone in L. distinguendus might have evolved secondarily from a primary function relevant for both genders, and the deactivation of the signal in males might have caused a shift of specificity of the chemical signal from the species level to the sex level.

  16. Identification and biosynthesis of novel male specific esters in the wings of the tropical butterfly, Bicyclus martius sanaos.

    PubMed

    Wang, Hong-Lei; Brattström, Oskar; Brakefield, Paul M; Francke, Wittko; Löfstedt, Christer

    2014-06-01

    Representatives of the highly speciose tropical butterfly genus Bicyclus (Lepidoptera: Nymphalidae) are characterized by morphological differences in the male androconia, a set of scales and hair pencils located on the surface of the wings. These androconia are assumed to be associated with the release of courtship pheromones. In the present study, we report the identification and biosynthetic pathways of several novel esters from the wings of male B. martius sanaos. We found that the volatile compounds in this male butterfly were similar to female-produced moth sex pheromones. Components associated with the male wing androconial areas were identified as ethyl, isobutyl and 2-phenylethyl hexadecanoates and (11Z)-11-hexadecenoates, among which the latter are novel natural products. By topical application of deuterium-labelled fatty acid and amino acid precursors, we found these pheromone candidates to be produced in patches located on the forewings of the males. Deuterium labels from hexadecanoic acid were incorporated into (11Z)-11-hexadecenoic acid, providing experimental evidence of a Δ11-desaturase being active in butterflies. This unusual desaturase was found previously to be involved in the biosynthesis of female-produced sex pheromones of moths. In the male butterflies, both hexadecanoic acid and (11Z)-11-hexadecenoic acid were then enzymatically esterified to form the ethyl, isobutyl and 2-phenylethyl esters, incorporating ethanol, isobutanol, and 2-phenylethanol, derived from the corresponding amino acids L-alanine, L-valine, and L-phenylalanine.

  17. Expression and evolution of delta9 and delta11 desaturase genes in the moth Spodoptera littoralis.

    PubMed

    Rodríguez, Sergio; Hao, Guixia; Liu, Weitian; Piña, Benjamín; Rooney, Alejandro P; Camps, Francisco; Roelofs, Wendell L; Fabriàs, Gemma

    2004-12-01

    Desaturation of fatty acids is a key reaction in the biosynthesis of moth sex pheromones. The main component of Spodoptera littoralis sex pheromone blend is produced by the action of Delta11 and Delta9 desaturases. In this article, we report on the cloning of four desaturase-like genes in this species: one from the fat body (Sls-FL1) and three (Sls-FL2, Sls-FL3 and Sls-FL4) from the pheromone gland. By means of a computational/phylogenetic method, as well as functional assays, the desaturase gene products have been characterized. The fat body gene expressed a Delta9 desaturase that produced (Z)-9-hexadecenoic and (Z)-9-octadecenoic acids in a (1:4.5) ratio, whereas the pheromone gland Sls-FL2 expressed a Delta9 desaturase that produced (Z)-9-hexadecenoic and (Z)-9-octadecenoic acids in a (1.5:1) ratio. Although both Delta9 desaturases produced (Z)-9-tetradecenoic acid from myristic acid, transformed yeast grown in the presence of a mixture of myristic and (E)-11-tetradecenoic acids produced (Z,E)-9,11-tetradecadienoic acid, but not (Z)-9-tetradecenoic acid. The Sls-FL3 gene expressed a protein that produced a mixture of (E)-11-tetradecenoic, (Z)-11-tetradecenoic, (Z)-11-hexadecenoic and (Z)-11-octadecenoic acids in a 5:4:60:31 ratio. Despite having all the characteristics of a desaturase gene, no function could be found for Sls-FL4.

  18. Sexual selection on receptor organ traits: younger females attract males with longer antennae

    NASA Astrophysics Data System (ADS)

    Johnson, Tamara L.; Symonds, Matthew R. E.; Elgar, Mark A.

    2017-06-01

    Sexual selection theory predicts that female choice may favour the evolution of elaborate male signals. Darwin also suggested that sexual selection can favour elaborate receiver structures in order to better detect sexual signals, an idea that has been largely ignored. We evaluated this unorthodox perspective by documenting the antennal lengths of male Uraba lugens Walker (Lepidoptera: Nolidae) moths that were attracted to experimentally manipulated emissions of female sex pheromone. Either one or two females were placed in field traps for the duration of their adult lives in order to create differences in the quantity of pheromone emissions from the traps. The mean antennal length of males attracted to field traps baited with a single female was longer than that of males attracted to traps baited with two females, a pattern consistent with Darwin's prediction assuming the latter emits higher pheromone concentrations. Furthermore, younger females attracted males with longer antennae, which may reflect age-specific changes in pheromone emission. These field experiments provide the first direct evidence of an unappreciated role for sexual selection in the evolution of sexual dimorphism in moth antennae and raise the intriguing possibility that females select males with longer antennae through strategic emission of pheromones.

  19. Use of Mixture Designs to Investigate Contribution of Minor Sex Pheromone Components to Trap Catch of the Carpenterworm Moth, Chilecomadia valdiviana.

    PubMed

    Lapointe, Stephen L; Barros-Parada, Wilson; Fuentes-Contreras, Eduardo; Herrera, Heidy; Kinsho, Takeshi; Miyake, Yuki; Niedz, Randall P; Bergmann, Jan

    2017-12-01

    Field experiments were carried out to study responses of male moths of the carpenterworm, Chilecomadia valdiviana (Lepidoptera: Cossidae), a pest of tree and fruit crops in Chile, to five compounds previously identified from the pheromone glands of females. Previously, attraction of males to the major component, (7Z,10Z)-7,10-hexadecadienal, was clearly demonstrated while the role of the minor components was uncertain due to the use of an experimental design that left large portions of the design space unexplored. We used mixture designs to study the potential contributions to trap catch of the four minor pheromone components produced by C. valdiviana. After systematically exploring the design space described by the five pheromone components, we concluded that the major pheromone component alone is responsible for attraction of male moths in this species. The need for appropriate experimental designs to address the problem of assessing responses to mixtures of semiochemicals in chemical ecology is described. We present an analysis of mixture designs and response surface modeling and an explanation of why this approach is superior to commonly used, but statistically inappropriate, designs.

  20. Pheromones enhance somatosensory processing in newt brains through a vasotocin-dependent mechanism.

    PubMed

    Thompson, R R; Dickinson, P S; Rose, J D; Dakin, K A; Civiello, G M; Segerdahl, A; Bartlett, R

    2008-07-22

    We tested whether the sex pheromones that stimulate courtship clasping in male roughskin newts do so, at least in part, by amplifying the somatosensory signals that directly trigger the motor pattern associated with clasping and, if so, whether that amplification is dependent on endogenous vasotocin (VT). Female olfactory stimuli increased the number of action potentials recorded in the medulla of males in response to tactile stimulation of the cloaca, which triggers the clasp motor reflex, as well as to tactile stimulation of the snout and hindlimb. That enhancement was blocked by exposing the medulla to a V1a receptor antagonist before pheromone exposure. However, the antagonist did not affect medullary responses to tactile stimuli in the absence of pheromone exposure, suggesting that pheromones amplify somatosensory signals by inducing endogenous VT release. The ability of VT to couple sensory systems together in response to social stimulation could allow this peptide to induce variable behavioural outcomes, depending on the immediate context of the social interaction and thus on the nature of the associated stimuli that are amplified. If widespread in vertebrates, this mechanism could account for some of the behavioural variability associated with this and related peptides both within and across species.

  1. Increased pheromone signaling by small male sea lamprey has distinct effects on female mate search and courtship

    USGS Publications Warehouse

    Buchinger, Tyler J.; Bussy, Ugo; Buchinger, Ethan G.; Fissette, Skye D.; Li, Weiming; Johnson, Nicholas

    2017-01-01

    Male body size affects access to mates in many animals. Attributes of sexual signals often correlate with body size due to physiological constraints on signal production. Larger males generally produce larger signals, but costs of being large or compensation by small males can result in smaller males producing signals of equal or greater magnitude. Female choice following multiple male traits with different relationships to size might further complicate the effect of male body size on access to mates. We report the relationship between male body size and pheromone signaling, and the effects on female mate search and courtship in the sea lamprey (Petromyzon marinus). We predicted that pheromone production in the liver and the liver mass to body mass ratio would remain constant across sizes, resulting in similar mass-adjusted pheromone release rates across sizes but a positive relationship between absolute pheromone release and body mass. Our results confirmed positive relationships between body mass and liver mass, and liver mass and the magnitude of the pheromone signal. Surprisingly, decreasing body mass was correlated with higher pheromone concentrations in the liver, liver mass to body mass ratios, and mass-adjusted pheromone release rates. In a natural stream, females more often entered nests treated with small versus large male odors. However, close-proximity courtship behaviors were similar in nests treated with small or large male odors. We conclude that small males exhibit increased release of the main pheromone component, but female discrimination of male pheromones follows several axes of variation with different relationships to size.

  2. Blend chemistry and field attraction of commercial sex pheromone lures to grape berry moth (Lepidoptera: Tortricidae), and a nontarget tortricid in vineyards.

    PubMed

    Jordan, T A; Zhang, A; Pfeiffer, D G

    2013-06-01

    Anecdotal reports by scientists and growers suggested commercial sex pheromone lures were ineffective with monitoring field populations of grape berry moth, Paralobesia viteana (Clemens), in vineyards. This study addressed the need to evaluate commercial sex pheromone lures for chemical purity and efficacy of attracting grape berry moth and a nontarget tortricid, the sumac moth, Episumus argutanus (Clemens). The percentage of chemical components from a set of eight lures from each manufacturer was found using gas chromatography-mass spectrometry and confirmed by chemical standards. No lures adhered to the 9:1 blend of (Z)-9-dodecenyl acetate (Z9-12:Ac) to (Z)-11-tetradecenyl acetate (Z11-14:Ac), though Suterra (9.1:1), ISCA (5.7:1), and Trécé (5.4:1) lures were closest. The Trécé lures contained ≍98 μg Z9-12:Ac, which is 3-51 times more than the other lures. The Suterra and ISCA lures were loaded with ≍29 and 33 μg Z9-12:Ac, and the Alpha Scents lures only contained ≍2 μg Z9-12:Ac. An antagonistic impurity, (E)-9-tetradecenyl acetate (E9-12:Ac), was found in all manufacturer lures at concentrations from 3.2 to 4.8%. Field attraction studies were done in summer 2010, and again in 2011, to evaluate commercial lures for their potential to attract P. viteana and E. argutanus in the presence of lures from other manufacturers. Separate experiments were established in two vineyards in Augusta County, VA, one with open and the other with wooded surroundings. In field experiments, Suterra lures detected P. viteana most often, Trécé lures detected more E. argutanus, and ISCA lures detected P. viteana in the open vineyard the least, while Alpha Scents lures were least attractive to E. argutanus in both environments. Fewer P. viteana were captured in the wooded versus open vineyard, which may limit the potential for sex pheromone monitoring of P. viteana in wooded vineyards.

  3. Fatty acyl pheromone analogue-containing lipids and their roles in sex pheromone biosynthesis in the lightbrown apple moth, Epipyhas postvittana (Walker).

    PubMed

    Foster, S P

    2001-04-01

    The pheromone gland of the moth Epiphyas postvittana was analysed for lipids containing the fatty acyl pheromone analogue (FAPA) of the component, (E)-11-tetradecenyl acetate. The FAPA was found predominantly in the triglycerides (TGs), and to a lesser extent in the choline phosphatides. The FAPA was found to be exclusively on the sn-1 or sn-3 position (probably the latter) of the TGs. When pheromone gland lipid extracts were eluted through silica solid phase extraction, a significant proportion of the FAPA was not recovered. Changes in titre of this non-recoverable FAPA paralleled changes in pheromone titre in females. In contrast, changes in recoverable FAPA (mostly in the TGs) titre showed a gradual increase with time after eclosion. The properties of this non-recoverable FAPA were consistent with it being the CoA ester of the FAPA. Thus, it appears that the FAPA-CoA ester is the immediate lipid precursor of the pheromone, and that the FAPA-containing TGs are formed by reaction of the FAPA-CoA with 1,2-DGs, as a consequence of the rate-limiting reduction of the FAPA-CoA. Finally, injection of PBAN into females decapitated for 3 days resulted in a decrease in recoverable FAPA and an increase in non-recoverable FAPA, suggesting that PBAN influences the lipolysis of TGs. Overall these data suggest that there are two routes for biosynthesis of the pheromone component E11-14:OAc in E. postvittana: a de novo route, directly via the CoA esters of the various fatty acid intermediates, and a less direct route via the lipolysis of FAPA-containing TGs.

  4. Fire ant alarm pheromone and venom alkaloids act in concert to attract parasitic phorid flies, Pseudacteon spp.

    PubMed

    Sharma, Kavita R; Fadamiro, Henry Y

    2013-11-01

    Pseudacteon tricuspis, Pseudacteon obtusus and Pseudacteon curvatus are three species of parasitic phorid flies (Diptera: Phoridae), which have been introduced as classical biological control agents of imported, Solenopsis fire ants (Hymenoptera: Formicidae) in the southern USA. Previous studies demonstrated the behavioral response of P. tricuspis to the venom alkaloids and alarm pheromone of the fire ant, S. invicta. In the present study, we compared the responses of P. tricuspis, P. obtusus and P. curvatus to Solenopsis invicta alarm pheromone, venom alkaloids, or a mixture of both chemicals in four-choice olfactometer bioassays. The main hypothesis tested was that the fire ant alarm pheromone and venom alkaloids act in concert to attract Pseudacteon phorid flies. Both sexes of all three Pseudacteon species were attracted to low doses of the fire ant alarm pheromone or venom alkaloids (i.e. 1 ant worker equivalent) alone. However, the flies were significantly more attracted to a mixture of both chemicals (i.e., 1:1 mixture of alarm pheromone+alkaloids) than to either chemical. The results suggest an additive rather than a synergistic effect of combining both chemicals. Comparing the fly species, P. tricuspis showed relatively greater attraction to cis alkaloids, whereas the alkaloid mixture (cis+trans) was preferred by P. obtusus and P. curvatus. In general, no key sexual differences were recorded, although females of P. tricuspis and P. obtusus showed slightly higher response than conspecific males to lower doses of the alarm pheromone. The ecological significance of these findings is discussed, and a host location model is proposed for parasitic phorid flies involving the use of fire ant alarm pheromone and venom alkaloids as long range and short range attractants, respectively. Published by Elsevier Ltd.

  5. Aggregation pheromone of the cereal leaf beetle: field evaluation and emission from males in the laboratory.

    PubMed

    Rao, Sujaya; Cossé, Allard A; Zilkowski, Bruce W; Bartelt, Robert J

    2003-09-01

    The previously identified, male-specific compound of the cereal leaf beetle (CLB, Chrysomelidae; Oulema melanopus), (E)-8-hydroxy-6-methyl-6-octen-3-one, was studied further with respect to field activity and emission rate from male beetles. In a 5-week field experiment in Oregon, the compound was shown to function as an aggregation pheromone in attracting male and female CLBs migrating from overwintering sites in spring. Traps baited with the synthetic compound (500 microg per rubber septum) caught 3.3 times more CLBs than control traps. Lower doses of the pheromone (50 and 150 microg) were less attractive than the 500 microg dose. One relatively abundant, volatile compound from the host plant (oats), (Z)-3-hexenyl acetate, that elicited responses from beetle antennae was not attractive, either by itself or as a synergist of the pheromone. Both sexes were captured about equally for all treatments. We also measured daily pheromone emission by male beetles in the laboratory. Individual males feeding on oat seedlings under greenhouse conditions emitted as much as 6 microg per day, which is about 500 times higher than had been previously observed under incubator conditions. The pheromone emission rate was at least five times higher during the day than at night, and in one male, emission spanned a period of 28 d. The release rate of synthetic pheromone from the 500 microg septa was very similar to the maximum from single males; thus, future experiments should evaluate even higher doses. The field results indicate that the pheromone has potential as a monitoring tool for early detection of CLBs as they move from their overwintering sites into newly planted cereal crops in spring.

  6. Enterococcus faecalis Sex Pheromone cCF10 Enhances Conjugative Plasmid Transfer In Vivo.

    PubMed

    Hirt, Helmut; Greenwood-Quaintance, Kerryl E; Karau, Melissa J; Till, Lisa M; Kashyap, Purna C; Patel, Robin; Dunny, Gary M

    2018-02-13

    Cell-cell communication mediated by peptide pheromones (cCF10 [CF]) is essential for high-frequency plasmid transfer in vitro in Enterococcus faecalis To examine the role of pheromone signaling in vivo , we established either a CF-producing (CF+) recipient or a recipient producing a biologically inactive variant of CF (CF- recipient) in a germfree mouse model 3 days before donor inoculation and determined transfer frequencies of the pheromone-inducible plasmid pCF10. Plasmid transfer was detected in the upper and middle sections of the intestinal tract 5 h after donor inoculation and was highly efficient in the absence of antibiotic selection. The transconjugant/donor ratio reached a maximum level approaching 1 on day 4 in the upper intestinal tract. Plasmid transfer was significantly lower with the CF- recipient. While rescue of the CF- mating defect by coculture with CF+ recipients is easily accomplished in vitro , no extracellular complementation occurred in vivo This suggests that most pheromone signaling in the gut occurs between recipient and donor cells in very close proximity. Plasmid-bearing cells (donors plus transconjugants) steadily increased in the population from 0.1% after donor inoculation to about 10% at the conclusion of the experiments. This suggests a selective advantage of pCF10 carriage distinct from antibiotic resistance or bacteriocin production. Our results demonstrate that pheromone signaling is required for efficient pCF10 transfer in vivo In the absence of CF+ recipients, a low level of transfer to CF- recipients occurred in the gut. This may result from low-level host-mediated induction of the donors in the gastrointestinal (GI) tract, similar to that previously observed in serum. IMPORTANCE Horizontal gene transfer is a major factor in the biology of Enterococcus faecalis , an important nosocomial pathogen. Previous studies showing efficient conjugative plasmid transfer in the gastrointestinal (GI) tracts of experimental animals did not examine how the enterococcal sex pheromone response impacts the efficiency of transfer. Our study demonstrates for the first time pheromone-enhanced, high-frequency plasmid transfer of E. faecalis plasmid pCF10 in a mouse model in the absence of antibiotic or bacteriocin selection. Pheromone production by recipients dramatically increased plasmid transfer in germfree mice colonized initially with recipients, followed by donors. The presence of a coresident community of common gut microbes did not significantly reduce in vivo plasmid transfer between enterococcal donors and recipients. In mice colonized with enterococcal recipients, we detected plasmid transfer in the intestinal tract within 5 h of addition of donors, before transconjugants could be cultured from feces. Surprisingly, pCF10 carriage provided a competitive fitness advantage unrelated to antibiotic resistance or bacteriocin production. Copyright © 2018 Hirt et al.

  7. Coordinated gene expression for pheromone biosynthesis in the pine engraver beetle, Ips pini (Coleoptera: Scolytidae)

    NASA Astrophysics Data System (ADS)

    Keeling, Christopher I.; Blomquist, Gary J.; Tittiger, Claus

    In several pine bark beetle species, phloem feeding induces aggregation pheromone production to coordinate a mass attack on the host tree. Male pine engraver beetles, Ips pini (Say) (Coleoptera: Scolytidae), produce the monoterpenoid pheromone component ipsdienol de novo via the mevalonate pathway in the anterior midgut upon feeding. To understand how pheromone production is regulated in this tissue, we used quantitative real-time PCR to examine feeding-induced changes in gene expression of seven mevalonate pathway genes: acetoacetyl-coenzyme A thiolase, 3-hydroxy-3-methylglutaryl coenzyme A synthase, 3-hydroxy-3-methylglutaryl coenzyme A reductase, mevalonate 5-diphosphate decarboxylase, isopentenyl-diphosphate isomerase, geranyl-diphosphate synthase (GPPS), and farnesyl-diphosphate synthase (FPPS). In males, expression of all these genes significantly increased upon feeding. In females, the expression of the early mevalonate pathway genes (up to and including the isomerase) increased significantly, but the expression of the later genes (GPPS and FPPS) was unaffected or decreased upon feeding. Thus, feeding coordinately regulates expression of the mevalonate pathway genes necessary for pheromone biosynthesis in male, but not female, midguts. Furthermore, basal mRNA levels were 5- to 41-fold more abundant in male midguts compared to female midguts. This is the first report of coordinated regulation of mevalonate pathway genes in an invertebrate model consistent with their sex-specific role in de novo pheromone biosynthesis.

  8. Female Moth Calling and Flight Behavior Are Altered Hours Following Pheromone Autodetection: Possible Implications for Practical Management with Mating Disruption.

    PubMed

    Stelinski, Lukasz; Holdcraft, Robert; Rodriguez-Saona, Cesar

    2014-06-19

    Female moths are known to detect their own sex pheromone-a phenomenon called "autodetection". Autodetection has various effects on female moth behavior, including altering natural circadian rhythm of calling behavior, inducing flight, and in some cases causing aggregations of conspecifics. A proposed hypothesis for the possible evolutionary benefits of autodetection is its possible role as a spacing mechanism to reduce female-female competition. Here, we explore autodetection in two species of tortricids (Grapholita molesta (Busck) and Choristoneura rosaceana (Harris)). We find that females of both species not only "autodetect," but that learning (change in behavior following experience) occurs, which affects behavior for at least 24 hours after pheromone pre-exposure. Specifically, female calling in both species is advanced at least 24 hours, but not 5 days, following pheromone pre-exposure. Also, the propensity of female moths to initiate flight and the duration of flights, as quantified by a laboratory flight mill, were advanced in pre-exposed females as compared with controls. Pheromone pre-exposure did not affect the proportion of mated moths when they were confined with males in small enclosures over 24 hours in laboratory assays. We discuss the possible implications of these results with respect to management of these known pest species with the use of pheromone-based mating disruption.

  9. A rearrangement of the Z chromosome topology influences the sex-linked gene display in the European corn borer, Ostrinia nubilalis

    USDA-ARS?s Scientific Manuscript database

    The sex determination system of Lepidoptera is comprised of heterogametic females (ZW) and homogametic males (ZZ), where voltinism (Volt) and the male pheromone response traits (Resp) are controlled by genes housed on the Z-chromosome. Volt and Resp determine traits that lead to ecotype differentia...

  10. Peripheral Coding of Sex Pheromone Blends with Reverse Ratios in Two Helicoverpa Species

    PubMed Central

    Huang, Ling-Qiao; Yan, Fu-Shun; Wang, Chen-Zhu

    2013-01-01

    The relative proportions of components in a pheromone blend play a major role in sexual recognition in moths. Two sympatric species, Helicoverpa armigera and Helicoverpa assulta, use (Z)-11-hexadecenal (Z11–16: Ald) and (Z)-9-hexadecenal (Z9–16: Ald) as essential sex pheromone components but in very different ratios, 97∶3 and 7∶93 respectively. Using wind tunnel tests, single sensillum recording and in vivo calcium imaging, we comparatively studied behavioral responses and physiological activities at the level of antennal sensilla and antennal lobe (AL) in males of the two species to blends of the two pheromone components in different ratios (100∶0, 97∶3, 50∶50, 7∶93, 0∶100). Z11–16: Ald and Z9–16: Ald were recognized by two populations of olfactory sensory neurons (OSNs) in different trichoid sensilla on antennae of both species. The ratios of OSNs responding to Z11–16:Ald and Z9–16:Ald OSNs were 100∶28.9 and 21.9∶100 in H. armigera and H. assulta, respectively. The Z11–16:Ald OSNs in H. armigera exhibited higher sensitivity and efficacy than those in H. assulta, while the Z9–16:Ald OSNs in H. armigera had the same sensitivity but lower efficacy than those in H. assulta. At the dosage of 10 µg, Z11–16: Ald and Z9–16: Ald evoked calcium activity in 8.5% and 3.0% of the AL surface in H. armigera, while 5.4% and 8.6% of AL in H. assulta, respectively. The calcium activities in the AL reflected the peripheral input signals of the binary pheromone mixtures and correlated with the behavioral output. These results demonstrate that the binary pheromone blends were precisely coded by the firing frequency of individual OSNs tuned to Z11–16: Ald or Z9–16: Ald, as well as their population sizes. Such information was then accurately reported to ALs of H. armigera and H. assulta, eventually producing different behaviors. PMID:23894593

  11. Semiochemistry of Pentatomoidea

    USDA-ARS?s Scientific Manuscript database

    We review in this chapter the semiochemicals identified from species in the true bug superfamily Pentatomoidea, which includes among others the families Pentatomidae, Acanthosomatidae, Plataspididae, Scutelleridae, Cydnidae, and Tessaratomidae. The review includes sex and alarm pheromones, allomones...

  12. Selection by mating competitiveness improves the performance of Anastrepha ludens males of the genetic sexing strain Tapachula-7.

    PubMed

    Quintero-Fong, L; Toledo, J; Ruiz, L; Rendón, P; Orozco-Dávila, D; Cruz, L; Liedo, P

    2016-10-01

    The sexual performance of Anastrepha ludens males of the Tapachula-7 genetic sexing strain, produced via selection based on mating success, was compared with that of males produced without selection in competition with wild males. Mating competition, development time, survival, mass-rearing quality parameters and pheromone production were compared. The results showed that selection based on mating competitiveness significantly improved the sexual performance of offspring. Development time, survival of larvae, pupae and adults, and weights of larvae and pupae increased with each selection cycle. Differences in the relative quantity of the pheromone compounds (Z)-3-nonenol and anastrephin were observed when comparing the parental males with the F4 and wild males. The implications of this colony management method on the sterile insect technique are discussed.

  13. Interspecific Sex in Grass Smuts and the Genetic Diversity of Their Pheromone-Receptor System

    PubMed Central

    Kellner, Ronny; Vollmeister, Evelyn; Feldbrügge, Michael; Begerow, Dominik

    2011-01-01

    The grass smuts comprise a speciose group of biotrophic plant parasites, so-called Ustilaginaceae, which are specifically adapted to hosts of sweet grasses, the Poaceae family. Mating takes a central role in their life cycle, as it initiates parasitism by a morphological and physiological transition from saprobic yeast cells to pathogenic filaments. As in other fungi, sexual identity is determined by specific genomic regions encoding allelic variants of a pheromone-receptor (PR) system and heterodimerising transcription factors. Both operate in a biphasic mating process that starts with PR–triggered recognition, directed growth of conjugation hyphae, and plasmogamy of compatible mating partners. So far, studies on the PR system of grass smuts revealed diverse interspecific compatibility and mating type determination. However, many questions concerning the specificity and evolutionary origin of the PR system remain unanswered. Combining comparative genetics and biological approaches, we report on the specificity of the PR system and its genetic diversity in 10 species spanning about 100 million years of mating type evolution. We show that three highly syntenic PR alleles are prevalent among members of the Ustilaginaceae, favouring a triallelic determination as the plesiomorphic characteristic of this group. Furthermore, the analysis of PR loci revealed increased genetic diversity of single PR locus genes compared to genes of flanking regions. Performing interspecies sex tests, we detected a high potential for hybridisation that is directly linked to pheromone signalling as known from intraspecies sex. Although the PR system seems to be optimised for intraspecific compatibility, the observed functional plasticity of the PR system increases the potential for interspecific sex, which might allow the hybrid-based genesis of newly combined host specificities. PMID:22242007

  14. A new male sex-pheromone and novel cuticular cues for chemical communication in Drosophila

    PubMed Central

    Dreisewerd, Klaus; Luftmann, Heinrich; Müthing, Johannes; Pohlentz, Gottfried; Kravitz, Edward A.

    2009-01-01

    Summary Background In many insect species, cuticular hydrocarbons serve as pheromones that can mediate complex social behaviors. In Drosophila melanogaster, several hydrocarbons including the male sex pheromone 11-cis-vaccenyl acetate (cVA) and female-specific 7,11-dienes influence courtship behavior and can function as cues for short-term memory associated with the mating experience. Behavioral and physiological studies suggest that other unidentified chemical communication cues are likely to exist. To more fully characterize the hydrocarbon profile of the D. melanogaster cuticle, we applied direct ultraviolet laser desorption/ionization orthogonal time-of-flight mass spectrometry (UV-LDI-o-TOF MS) and analyzed the surface of intact fruit flies at a spatial resolution of approximately 200 μm. Results We report the chemical and spatial characterization of 28 species of cuticular hydrocarbons, including a new major class of oxygen-containing compounds. Using UV-LDI MS, pheromones previously shown to be expressed exclusively by one sex, e.g. cVA, 7,11-heptacosadiene, and 7,11-nonacosadiene, appear to be found on both male and female flies. In males, cVA co-localizes at the tip of the ejaculatory bulb with a second acetylated hydrocarbon named CH503. We describe the chemical structure of CH503 as 3-O-acetyl-1,3-dihydroxy-octacosa-11,19-diene and show one behavioral role for this compound as a long-lived inhibitor of male courtship. Like cVA, CH503 is transferred from males to females during mating. Unlike cVA, CH503 remains on the surface of females for at least 10 days. Conclusions Oxygenated hydrocarbons comprise one major previously undescribed class of compounds on the Drosophila cuticular surface. In addition to cVA, a newly-discovered long chain acetate, CH503, serves as a mediator of courtship-related chemical communication. PMID:19615904

  15. The neurobiological basis of orientation in insects: insights from the silkmoth mating dance.

    PubMed

    Namiki, Shigehiro; Kanzaki, Ryohei

    2016-06-01

    Counterturning is a common movement pattern during orientation behavior in insects. Once male moths sense sex pheromones and then lose the input, they demonstrate zigzag movements, alternating between left and right turns, to increase the probability to contact with the pheromone plume. We summarize the anatomy and function of the neural circuit involved in pheromone orientation in the silkmoth. A neural circuit, the lateral accessory lobe (LAL), serves a role as the circuit module for zigzag movements and controls this operation using a flip-flop neural switch. Circuit design of the LAL is well conserved across species. We hypothesize that this zigzag module is utilized in a wide range of insect behavior. We introduce two examples of the potential use: orientation flight and the waggle dance in bees. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. The developmental transcriptome of the bamboo snout beetle Cyrtotrachelus buqueti and insights into candidate pheromone-binding proteins

    PubMed Central

    Yang, Wei; Yang, Chunping; Lu, Lin; Chen, Zhangming

    2017-01-01

    Cyrtotrachelus buqueti is an extremely harmful bamboo borer, and the larvae of this pest attack clumping bamboo shoots. Pheromone-binding proteins (PBPs) play an important role in identifying insect sex pheromones, but the C. buqueti genome is not readily available for PBP analysis. Developmental transcriptomes of eggs, larvae from the first instar to the prepupal stage, pupae, and adults (females and males) from emergence to mating were built by RNA sequencing (RNA-Seq) in the present study to establish a sequence background of C. buqueti to help understand PBPs. Approximately 164.8 million clean reads were obtained and annotated into 108,854 transcripts. These were assembled into 24,338, 21,597, 24,798, 21,886, 24,642, and 83,115 unigenes for eggs, larvae, pupae, females, males, and the combined datasets, respectively. Unigenes were annotated against NCBI non-redundant protein sequences, NCBI non-redundant nucleotide sequences, Gene Ontology (GO), Protein family, Clusters of Orthologous Groups of Proteins/ Clusters of Eukaryotic Orthologous Groups (KOG), Swiss-Prot, and KEGG Orthology databases. A total of 17,213 unigenes were annotated into 55 sub-categories belonging to three main GO categories; 10,672 unigenes were classified into 26 functional categories by KOG classification, and 8,063 unigenes were classified into five functional KEGG categories. RSEM software for RNA sequencing showed that 4,816, 3,176, 3,661, 2,898, 4,316, 8,019, 7,273, 5,922, 5,844, and 4,570 genes were differentially expressed between larvae and males, larvae and eggs, larvae and pupae, larvae and females, males and females, males and eggs, males and pupae, females and eggs, females and pupae, and eggs and pupae, respectively. Of these, three were confirmed to be significantly differentially expressed between larvae, females, and males. Furthermore, PBP Cbuq7577_g1 was highly expressed in the antenna of males. A comprehensive sequence resource of a desirable quality was constructed from developmental transcriptomes of C. buqueti eggs, larvae, pupae, and adults. This work enriches the genomic data of C. buqueti, and facilitates our understanding of its metamorphosis, development, and response to environmental change. The identified candidate PBP Cbuq7577_g1 might play a crucial role in identifying sex pheromones, and could be used as a targeted gene to control C. buqueti numbers by disrupting sex pheromone communication. PMID:28662071

  17. A Biologically Active Analog of the Sex Pheromone of the Emerald Ash Borer, Agrilus planipennis.

    PubMed

    Silk, P J; Ryall, K; Mayo, P; MaGee, D I; Leclair, G; Fidgen, J; Lavallee, R; Price, J; McConaghy, J

    2015-03-01

    The emerald ash borer, Agrilus planipennis (Coleoptera: Buprestidae) (EAB), is an invasive species causing unprecedented levels of mortality to ash trees in its introduced range. The female-produced sex pheromone of EAB has been shown to contain the macrocyclic lactone (3Z)-dodecen-12-olide. This compound and its geometrical isomer, (3E)-dodecen-12-olide, have been demonstrated previously to be EAG active and, in combination with a host-derived green leaf volatile, (3Z)-hexenol, to be attractive to male EAB in green prism traps deployed in the ash tree canopy. In the current study, we show that the saturated analog, dodecan-12-olide, is similarly active, eliciting an antennal response and significant attraction of EAB in both olfactometer and trapping bioassays in green traps with (3Z)-hexenol. Conformational modeling of the three lactones reveals that their energies and shapes are very similar, suggesting they might share a common receptor in EAB antennae. These findings provide new insight into the pheromone ecology of this species, highlighting the apparent plasticity in response of adults to the pheromone and its analog. Both of the unsaturated isomers are costly to synthesize, involving multistep, low-yielding processes. The saturated analog can be made cheaply, in high yield, and on large scale via Mitsunobu esterification of a saturated ω-hydroxy acid or more simply by Baeyer-Villiger oxidation of commercially available cyclododecanone. The analog can thus provide an inexpensive option as a lure for detection surveys as well as for possible mitigation purposes, such as mating disruption.

  18. Male behaviors reveal multiple pherotypes within vine mealybug Planococcus ficus (Signoret) (Hemiptera; Pseudococcidae) populations

    NASA Astrophysics Data System (ADS)

    Kol-Maimon, Hofit; Levi-Zada, Anat; Franco, José Carlos; Dunkelblum, Ezra; Protasov, Alex; Eliyaho, Miriam; Mendel, Zvi

    2010-12-01

    The vine mealybug (VM) females collected in Israel produce two sex pheromone compounds: lavandulyl senecioate (LS) and ( S)-lavandulyl isovalerate (LI). The males display ambiguous behavior to LI: repulsion in the vineyard and attraction of laboratory-reared males. We addressed the question of individual male behavior, i.e., do males respond to both LS and LI, or might they display a distinct response to each of the two pheromone compounds. We compared male pherotype frequencies between wild-caught and laboratory-reared populations. Then, we examined the relationship between pherotype composition and male capture rates in pheromone traps. Finally, we addressed the heredity of the pherotypes. The Israeli VM populations contain nine different male pherotypes, as defined according to the male behavior to pheromone compounds. The studied Portuguese populations included five of the nine pherotypes; none of the Portuguese males were attracted to LI. It seems that the high frequency of males that were attracted to LI is related to dense VM populations. It is hypothesized that selection for the male pherotypes, I males, those that respond to LI, occur under high-density rearing conditions. This may result from shorter development times of males and females that produce more I male pherotypes. The lower relative frequency of trapping of males in LI-baited traps than expected from the percentage determined in a Petri dish arena suggests that males that respond solely to LS (S males) are better fliers. The results also suggest that the pherotype trait is inherited by both sexes of the VM.

  19. Saproxylic community, guild and species responses to varying pheromone components of a pine bark beetle.

    PubMed

    Etxebeste, Iñaki; Lencina, José L; Pajares, Juan

    2013-10-01

    Some bark beetle species (Coleoptera: Scolytinae) produce aggregation pheromones that allow coordinated attack on their conifer hosts. As a new saproxylic habitat is founded, an assemblage of associated beetles kairomonally respond to bark beetle infochemicals. Ips sexdentatus is one of the major damaging insects of Pinus spp. in Southern Europe. Its response to varying ipsenol (Ie) percentages in relation to ipsdienol (Id) was studied in northwestern Spain, along with the entire saproxylic beetle assemblage captured at multiple-funnel traps. Response profile modeling was undertaken for I. sexdentatus sexes and sex-ratios, associated species and for selected trophic groups using a reference Gaussian model. In addition, the effects on the saproxylic assemblages were analyzed. I. sexdentatus response curve peaked at 22.7% Ie content, while remaining taxa that could be modeled, peaked above ca. 40% Ie. Predator guilds showed a linear relationship with Ie proportion, while competitors showed a delayed response peak. Consequently, species assemblages differed markedly between varying pheromone component mixtures. Given that the evaluated pheromonal proportions mimicked that of logs being colonized by I. sexdentatus, results suggested that the registered differential responses at different levels might provide I. sexdentatus with a temporal window that maximizes conspecific attraction while reducing interference with competitor and predatory guilds. Described responses might help improve the monitoring of the population status of target bark beetles and their associates, but also point toward the by-catch of many natural enemies, as well as rare saproxylic beetle species, interfering with the aims of sustainable forest management.

  20. Mating Disruption of Planococcus ficus (Hemiptera: Pseudococcidae) in Vineyards Using Reservoir Pheromone Dispensers

    PubMed Central

    Cocco, Arturo; Lentini, Andrea; Serra, Giuseppe

    2014-01-01

    Abstract Mating disruption field experiments to control the vine mealybug, Planococcus ficus (Signoret) (Hemiptera: Pseudococcidae), were carried out in 2008 and 2009 in two commercial vineyards in Sardinia (Italy). The effectiveness of mating disruption was evaluated by testing reservoir dispensers loaded with 100 mg (62.5 g/ha) and 150 mg (93.8 g/ha) of the sex pheromone in 2008 and 2009, respectively. The number of males captured in pheromone traps, the P. ficus population density and age structure, the parasitism rate, the percentage of ovipositing females, and the crop damage were compared between disrupted and untreated plots. In both field trials, the number of males captured in mating disruption plots was significantly reduced by 86% and 95%, respectively. Mating disruption at the initial dose of 62.5 g/ha of active ingredient gave inconclusive results, whereas the dose of 93.8 g/ha significantly lowered the mealybug density and modified the age structure, which showed a lower percentage of ovipositing females and a higher proportion of preovipositing females. Mating disruption did not affect negatively the parasitism rate, which was higher in the disrupted than in the control plots (>1.5-fold). Crop damage at harvest was very low in both field trials and did not differ between treatments. Mating disruption was effective in wide plots protected with dispensers loaded with 150 mg of the sex pheromone, showing its potential to be included in the overall integrated control programs in Mediterranean wine-growing regions. PMID:25347835

  1. Hourly and seasonable variation in catch of winter moths and bruce spanworm in pheromone-baited traps

    Treesearch

    Joseph Elkinton; Natalie Leva; George Boettner; Roy Hunkins; Marinko. Sremac

    2011-01-01

    Elkinton et al. recently completed a survey of northeastern North America for the newly invasive winter moth, Operophtera brumata L. The survey used traps baited with the winter moth pheromone, which, as far as it is known, consists of a single compound that is also used by Bruce spanworm, the North American congener of winter moth, O....

  2. Response profile of pheromone receptor neurons in male Grapholita molesta (Lepidoptera: Tortricidae).

    PubMed

    Ammagarahalli, Byrappa; Gemeno, César

    2014-12-01

    The response profile of olfactory receptor neurons (ORNs) of male Grapholita molesta (Busck) to the three female sex pheromone components [(Z)-8-dodecenyl acetate (Z8-12:Ac), (E)-8-dodecenyl acetate (E8-12:Ac), and (Z)-8-dodecenyl alcohol (Z8-12:OH)] was tested with single sensillum electrophysiology. Sensilla trichodea housed normally one, but sometimes two or three ORNs with distinct action potential amplitudes. One third of the sensilla contacted contained ORNs that were unresponsive to any of the pheromone components tested. The remaining sensilla contained one ORN that responded either to the major pheromone component, Z8-12:Ac ("Z-cells", 63.7% of sensilla), or to its isomer E8-12:Ac ("E-cells", 7.4% of sensilla). 31% of Z- and E-sensilla had 1 or 2 additional cells, but these did not respond to pheromone. None of the 176 sensilla contacted hosted ORNs that responded to Z8-12:OH. The proportion of Z- and E-cells on the antennae (100:11.6, respectively) is similar to the proportion of these compounds in the blend (100:6, respectively). The response of Z-cells was very specific, whereas E-cells also responded to the Z isomer, albeit with lower sensitivity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Novel, male-produced aggregation pheromone of the cerambycid beetle Rosalia alpina, a priority species of European conservation concern

    PubMed Central

    Zou, Yunfan; Hoskovec, Michal; Vrezec, Al; Stritih, Nataša; Millar, Jocelyn G.

    2017-01-01

    Several recent studies have demonstrated the great potential for exploiting semiochemicals in ecology and conservation studies. The cerambycid beetle Rosalia alpina represents one of the flagship species of saproxylic insect biodiversity in Europe. In recent years its populations appear to have declined substantially, and its range has shrunk considerably as a result of forest management and urbanization. Here, we collected volatile chemicals released by males and females of R. alpina. Analyses of the resulting extracts revealed the presence of a single male-specific compound, identified as a novel alkylated pyrone structure. In field bioassays in Slovenia, traps baited with the synthesized pyrone captured both sexes of R. alpina, indicating that the pyrone functions as an aggregation pheromone. Our results represent the first example of a new structural class of pheromones within the Cerambycidae, and demonstrate that pheromone-baited traps can provide a useful tool for sampling R. alpina. This tool could be particularly useful in the ongoing development of conservation strategies for the iconic but endangered Alpine longicorn. PMID:28827817

  4. Pheromone induction of agglutination in Saccharomyces cerevisiae a cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terrance, K.; Lipke, P.N.

    1987-10-01

    a-Agglutinin, the cell surface sexual agglutinin of yeast a cells, was assayed by its ability to bind its complementary agglutinin, ..cap alpha..-agglutinin. The specific binding of /sup 125/I-..cap alpha..-agglutinin to a cells treated with the sex pheromone ..cap alpha..-factor was 2 to 2.5 times that of binding to a cells not treated with ..cap alpha..-factor. Competition with unlabeled ..cap alpha..-agglutinin revealed that the increased binding was due to increased cell surface expression of a-agglutinin, with no apparent change in the binding constant. The increase in site number was similar to the increase in cellular agglutinability. Increased expression of a-agglutinin followedmore » the same kinetics as the increase in cellular agglutinability, with a 10-min lag followed by a 15- to 20-min response time. Induction kinetics were similar in cells in phases G1 and G2 of the cell cycle. Maximal expression levels were similar in cells treated with excess pheromone and in cells exposed to pheromone after destruction of constitutively expressed a-agglutinin.« less

  5. Receptor chirality and behavioral specificity of the boll weevil,Anthonomus grandis Boh. (Coleoptera: Curculionidae), for its pheromone, (+)-grandisol.

    PubMed

    Dickens, J C; Mori, K

    1989-02-01

    Electrophysiological recordings from antennal olfactory receptors and field behavioral experiments showed both male and female boll weevils,Anthonomus grandis Boh. (Coleoptera: Curculionidae), to respond specifically to (+)-grandisol, an enantiomer of compound I of the boll weevil aggregation pheromone. Single-cell recordings revealed antennal olfactory neurons in both male and female weevils keyed to (+)-grandisol. Electroantennograms in response to serial dilutions of the grandisol enaniiomers showed a threshold 100 to 1000 times lower for (+)-grandisol relative to its antipode. In field behavioral experiments, both sexes were significantly more attracted to (+)-grandisol in combination with the three other pheromone components than the combination with (-)-grandisol. When (-)-grandisol was placed with the (+)-enantiomer at equal dosages, a slight although statistically insignificant inhibition occurred. Subsequent field tests showed that the low level of attraction exhibited by (-)-grandisol in combination with the other three pheromone components could be attributed to the other three components alone. These results are in contrast with an earlier study, which found (-)-grandisol to be as attractive as the (+)-enantiomer.

  6. Olfaction in a viscous environment: the "color" of sexual smells in Temora longicornis

    NASA Astrophysics Data System (ADS)

    Hinow, Peter; Strickler, J. Rudi; Yen, Jeannette

    2017-06-01

    We investigate chemical aspects of mating in the marine copepod Temora longicornis (Copepoda, Calanoidea). Our emphasis is the female pheromone signaling in form of well-defined trails for males to follow, observed in Doall et al. (Phil Trans R Soc Lond B 353:681-689, 1998). The viscous environment and the properties of the odorants play important roles as the spread of the pheromone trail limits the time during which it is useful for tracing. A key observation from our earlier work is the ability of a searching male to detect the direction of the female and to correct its swimming direction if necessary. We propose a simple mathematical model for the spread of a pheromone from a moving source and carry out numerical simulations of two possible detection mechanisms. We find that a searching agent that is capable to detect a ratio outperforms a searcher that depends on the gradient of a single compound. This suggests that copepod sex pheromones consist of blends of chemical compounds, and that a ratio detection mechanism similar to that in airborne insects is at work.

  7. Trail communication regulated by two trail pheromone components in the fungus-growing termite Odontotermes formosanus (Shiraki).

    PubMed

    Wen, Ping; Ji, Bao-Zhong; Sillam-Dussès, David

    2014-01-01

    The eusocial termites are well accomplished in chemical communication, but how they achieve the communication using trace amount of no more than two pheromone components is mostly unknown. In this study, the foraging process and trail pheromones of the fungus-growing termite Odontotermes formosanus (Shiraki) were systematically studied and monitored in real-time using a combination of techniques, including video analysis, solid-phase microextraction, gas chromatography coupled with either mass spectrometry or an electroantennographic detector, and bioassays. The trail pheromone components in foraging workers were (3Z)-dodec-3-en-1-ol and (3Z,6Z)-dodeca-3,6-dien-1-ol secreted by their sternal glands. Interestingly, ratio of the two components changed according to the behaviors that the termites were displaying. This situation only occurs in termites whereas ratios of pheromone components are fixed and species-specific for other insect cuticular glands. Moreover, in bioassays, the active thresholds of the two components ranged from 1 fg/cm to 10 pg/cm according to the behavioral contexts or the pheromonal exposure of tested workers. The two components did not act in synergy. (3Z)-Dodec-3-en-1-ol induced orientation behavior of termites that explore their environment, whereas (3Z,6Z)-dodeca-3,6-dien-1-ol had both an orientation effect and a recruitment effect when food was discovered. The trail pheromone of O. formosanus was regulated both quantitatively by the increasing number of workers involved in the early phases of foraging process, and qualitatively by the change in ratio of the two pheromone components on sternal glandular cuticle in the food-collecting workers. In bioassays, the responses of workers to the pheromone were also affected by the variation in pheromone concentration and component ratio in the microenvironment. Thus, this termite could exchange more information with nestmates using the traces of the two trail pheromone components that can be easily regulated within a limited microenvironment formed by the tunnels or chambers.

  8. Current knowledge of the species complex Anastrepha fraterculus (Diptera, Tephritidae) in Brazil

    PubMed Central

    Vaníčková, Lucie; Hernández-Ortiz, Vicente; Bravo, Iara Sordi Joachim; Dias, Vanessa; Roriz, Alzira Kelly Passos; Laumann, Raul Alberto; Mendonça, Adriana de Lima; Paranhos, Beatriz Aguiar Jordão; do Nascimento, Ruth Rufino

    2015-01-01

    Abstract The study of the species complex Anastrepha fraterculus (Af complex) in Brazil is especially important in a taxonomical, evolutionary and pest management context, because there are evidences that some of them may occur in sympatry. In this review, we analyzed the main results supporting evidences that three cryptic species occur in Brazil. The taxonomical and phylogenetic relationships based on eggshell morphology, adult morphometrics, as well as cytotaxonomy and genetic differentiations are discussed. We also review available information on sexual behavior including acoustic communication of males during courtship and sexual incompatibility; and chemical signals involved in the communication between sexes, with a special focus on sex pheromones. We examined the role of long- and short-range pheromones (male-produced volatiles and cuticular hydrocarbons, respectively), their implications in sexual isolation, and their possible use for chemotaxonomic differentiation of the putative species of the Af complex. PMID:26798261

  9. Advances in Attract-and-Kill for Agricultural Pests: Beyond Pheromones.

    PubMed

    Gregg, Peter C; Del Socorro, Alice P; Landolt, Peter J

    2018-01-07

    Attract-and-kill has considerable potential as a tactic in integrated management of pests of agricultural crops, but the use of sex pheromones as attractants is limited by male multiple mating and immigration of mated females into treated areas. Attractants for both sexes, and particularly females, would minimize these difficulties. Volatile compounds derived from plants or fermentation of plant products can attract females and have been used in traps for monitoring and control, and in sprayable attract-and-kill formulations or bait stations. Recent advances in fundamental understanding of insect responses to plant volatiles should contribute to the development of products that can help manage a wide range of pests with few impacts on nontarget organisms, but theory must be tempered with pragmatism in the selection of volatiles and toxicants and in defining their roles in formulations. Market requirements and regulatory factors must be considered in parallel with scientific constraints if successful products are to be developed.

  10. Trapping Phyllophaga spp. (Coleoptera: Scarabaeidae: Melolonthinae) in the United States and Canada using sex attractants.

    PubMed Central

    Robbins, Paul S.; Alm, Steven R.; Armstrong, Charles. D.; Averill, Anne L.; Baker, Thomas C.; Bauernfiend, Robert J.; Baxendale, Frederick P.; Braman, S. Kris; Brandenburg, Rick L.; Cash, Daniel B.; Couch, Gary J.; Cowles, Richard S.; Crocker, Robert L.; DeLamar, Zandra D.; Dittl, Timothy G.; Fitzpatrick, Sheila M.; Flanders, Kathy L.; Forgatsch, Tom; Gibb, Timothy J.; Gill, Bruce D.; Gilrein, Daniel O.; Gorsuch, Clyde S.; Hammond, Abner M.; Hastings, Patricia D.; Held, David W.; Heller, Paul R.; Hiskes, Rose T.; Holliman, James L.; Hudson, William G.; Klein, Michael G.; Krischik, Vera L.; Lee, David J.; Linn, Charles E.; Luce, Nancy J.; MacKenzie, Kenna E.; Mannion, Catherine M.; Polavarapu, Sridhar; Potter, Daniel A.; Roelofs, Wendell L.; Royals, Brian M.; Salsbury, Glenn A.; Schiff, Nathan M.; Shetlar, David J.; Skinner, Margaret; Sparks, Beverly L.; Sutschek, Jessica A.; Sutschek, Timothy P.; Swier, Stanley R.; Sylvia, Martha M.; Vickers, Neil J.; Vittum, Patricia J.; Weidman, Richard; Weber, Donald C.; Williamson, R. Chris; Villani, Michael G

    2006-01-01

    The sex pheromone of the scarab beetle, Phyllophaga anxia, is a blend of the methyl esters of two amino acids, L-valine and L-isoleucine. A field trapping study was conducted, deploying different blends of the two compounds at 59 locations in the United States and Canada. More than 57,000 males of 61 Phyllophaga species (Coleoptera: Scarabaeidae: Melolonthinae) were captured and identified. Three major findings included: (1) widespread use of the two compounds [of the 147 Phyllophaga (sensu stricto) species found in the United States and Canada, males of nearly 40% were captured]; (2) in most species intraspecific male response to the pheromone blends was stable between years and over geography; and (3) an unusual pheromone polymorphism was described from P. anxia. Populations at some locations were captured with L-valine methyl ester alone, whereas populations at other locations were captured with L-isoleucine methyl ester alone. At additional locations, the L-valine methyl ester-responding populations and the L-isoleucine methyl ester-responding populations were both present, producing a bimodal capture curve. In southeastern Massachusetts and in Rhode Island, in the United States, P. anxia males were captured with blends of L-valine methyl ester and L-isoleucine methyl ester. PMID:19537965

  11. Chemical communication in isoptera.

    PubMed

    Costa-Leonardo, Ana M; Casarin, Fabiana E; Lima, Juliana T

    2009-01-01

    The semiochemicals produced by termites have been little studied compared to those of ants and bees. Among the limiting factors are the cryptic habits of termites, together with the difficulty in maintaining many species in the laboratory. The semiochemicals of Isoptera include trail, sex and alarm pheromones and a complex mixture of substances responsible for the recognition of nestmates. Although little is known about the semiochemicals of termites, available data indicate a strategy of pheromonal parsimony in the chemistry communication of these insects, i.e., the same compound is sometimes secreted by different glands, different species and for different functions.

  12. Trapping Phyllophaga spp. (Coleoptera: Scarabaeidae: Melolonthinae) in the United States and Canada using sex attractants

    Treesearch

    Paul S. Robbins; Steven R. Alm; Charles D. Armstrong; Anne L. Averill; Thomas C. Baker; Robert J. Bauernfiend; Frederick P. Baxendale; S. Kris Braman; Rick L. Brandenburg; Daniel B. Cash; Gary J. Couch; Richard S. Cowles; Robert L. Crocker; Zandra D. DeLamar; Timothy G. Dittl; Sheila M. Fitzpatrick; Kathy L. Flanders; Tom Forgatsch; Timothy J. Gibb; Bruce D. Gill; Daniel O. Gilrein; Clyde S. Gorsuch; Abner M. Hammond; Patricia D. Hastings; David W. Held; Paul R. Heller; Rose T. Hiskes; James L. Holliman; William G. Hudson; Michael G. Klein; Vera L. Krischik; David J. Lee; Charles E. Linn; Nancy J. Luce; Kenna E. MacKenzie; Catherine M. Mannion; Sridhar Polavarapu; Daniel A. Potter; Wendell L. Roelofs; Brian M. Rovals; Glenn A. Salsbury; Nathan M. Schiff; David J. Shetlar; Margaret Skinner; Beverly L. Sparks; Jessica A. Sutschek; Timothy P. Sutschek; Stanley R. Swier; Martha M. Sylvia; Niel J. Vickers; Patricia J. Vittum; Richard Weidman; Donald C. Weber; R. Chris Williamson; Michael G. Villani

    2006-01-01

    The sex pheromone of the scarab beetle, Phyllophaga anxia, is a blend of the methyl esters of two amino acids, L-valine and L-isoleucine. A field trapping study was conducted, deploying different blends of the two compounds at 59 locations in the United States and Canada. More than 57,000 males of 61 Phyllophaga species (Coleoptera...

  13. Breaking the cipher: ant eavesdropping on the variational trail pheromone of its termite prey

    PubMed Central

    Wen, Xiao-Lan

    2017-01-01

    Predators may eavesdrop on their prey using innate signals of varying nature. In regards to social prey, most of the prey signals are derived from social communication and may therefore be highly complex. The most efficient predators select signals that provide the highest benefits. Here, we showed the use of eusocial prey signals by the termite-raiding ant Odontoponera transversa. O. transversa selected the trail pheromone of termites as kairomone in several species of fungus-growing termites (Termitidae: Macrotermitinae: Odontotermes yunnanensis, Macrotermes yunnanensis, Ancistrotermes dimorphus). The most commonly predated termite, O. yunnanensis, was able to regulate the trail pheromone component ratios during its foraging activity. The ratio of the two trail pheromone compounds was correlated with the number of termites in the foraging party. (3Z)-Dodec-3-en-1-ol (DOE) was the dominant trail pheromone component in the initial foraging stages when fewer termites were present. Once a trail was established, (3Z,6Z)-dodeca-3,6-dien-1-ol (DDE) became the major recruitment component in the trail pheromone and enabled mass recruitment of nest-mates to the food source. Although the ants could perceive both components, they revealed stronger behavioural responses to the recruitment component, DDE, than to the common major component, DOE. In other words, the ants use the trail pheromone information as an indication of suitable prey abundance, and regulate their behavioural responses based on the changing trail pheromone component. The eavesdropping behaviour in ants therefore leads to an arms race between predator and prey where the species specific production of trail pheromones in termites is targeted by predatory ant species. PMID:28446695

  14. Breaking the cipher: ant eavesdropping on the variational trail pheromone of its termite prey.

    PubMed

    Wen, Xiao-Lan; Wen, Ping; Dahlsjö, Cecilia A L; Sillam-Dussès, David; Šobotník, Jan

    2017-04-26

    Predators may eavesdrop on their prey using innate signals of varying nature. In regards to social prey, most of the prey signals are derived from social communication and may therefore be highly complex. The most efficient predators select signals that provide the highest benefits. Here, we showed the use of eusocial prey signals by the termite-raiding ant Odontoponera transversa O. transversa selected the trail pheromone of termites as kairomone in several species of fungus-growing termites (Termitidae: Macrotermitinae: Odontotermes yunnanensis , Macrotermes yunnanensis , Ancistrotermes dimorphus ). The most commonly predated termite, O. yunnanensis, was able to regulate the trail pheromone component ratios during its foraging activity. The ratio of the two trail pheromone compounds was correlated with the number of termites in the foraging party. (3 Z )-Dodec-3-en-1-ol (DOE) was the dominant trail pheromone component in the initial foraging stages when fewer termites were present. Once a trail was established, (3 Z,6Z )-dodeca-3,6-dien-1-ol (DDE) became the major recruitment component in the trail pheromone and enabled mass recruitment of nest-mates to the food source. Although the ants could perceive both components, they revealed stronger behavioural responses to the recruitment component, DDE, than to the common major component, DOE. In other words, the ants use the trail pheromone information as an indication of suitable prey abundance, and regulate their behavioural responses based on the changing trail pheromone component. The eavesdropping behaviour in ants therefore leads to an arms race between predator and prey where the species specific production of trail pheromones in termites is targeted by predatory ant species. © 2017 The Author(s).

  15. Synthesis and field screening of chiral monounsaturated epoxides as lepidopteran sex attractants and sex pheromone components.

    PubMed

    Millar, J G; Giblin, M; Barton, D; Underhill, E W

    1991-05-01

    Enantiomerically enriched forms of (Z)-6-cis-9,10-epoxymonoenes and (Z)-9-cis-6,7-epoxymonoenes of chain lengths C17-20 were synthesized by Sharpless asymmetric epoxidation of allylic alcohol intermediates, followed by tosylation or halogenation and chain extension. The resulting monounsaturated epoxides were field tested as sex attractants for lepidopteran species.Euchlaena madusaria Walker males were attracted to blends of the enantiomers of (Z)-6- cis- 9,10-epoxynonadecene 6Z-cis-9,10-epoxy-19:H; IUPAC name [2α,3α(Z)]-2-pentyl-3-(2-dodecenyI)oxirane in combination with 6Z,9Z-19: H. The response was antagonized by 9Z-cis-6,7-epoxy-19: H. 6Z,9Z-19: H was tentatively identified in pheromone gland extracts.Xanthotype sospeta Drury male moths were attracted to lures containing 6Z-9S,10R-epoxy-19: H; the response was antagonized by the opposite enantiomer.Pal-this angulalis Hübner males were attracted to 9Z-6S,7R-epoxy-19:H; the opposite enantiomer was antagonistic. 6Z,9Z-19:H and 9Z-cis-6,7-epoxy-19:H and 9Z-cis-6,7-epoxy-19:H were tentatively identified in pheromone gland extracts fromAnacamptodes humaria Guenée females. In field trails, 9Z-6R,7S-epoxy-19:H proved to be the attractive enantiomer, and the response was potentiated by 6Z,9Z-19:H. Mechanisms by which unique chemical communication channels are maintained by each species are discussed.

  16. Establishment of Tools for Neurogenetic Analysis of Sexual Behavior in the Silkmoth, Bombyx mori

    PubMed Central

    Kiya, Taketoshi; Morishita, Koudai; Uchino, Keiro; Iwami, Masafumi; Sezutsu, Hideki

    2014-01-01

    Background Silkmoth, Bombyx mori, is an ideal model insect for investigating the neural mechanisms underlying sex pheromone-induced innate behavior. Although transgenic techniques and the GAL4/UAS system are well established in the silkmoth, genetic tools useful for investigating brain function at the neural circuit level have been lacking. Results In the present study, we established silkmoth strains in which we could visualize neural projections (UAS-mCD8GFP) and cell nucleus positions (UAS-GFP.nls), and manipulate neural excitability by thermal stimulation (UAS-dTrpA1). In these strains, neural projections and nucleus position were reliably labeled with green fluorescent protein in a GAL4-dependent manner. Further, the behavior of silkworm larvae and adults could be controlled by GAL4-dependent misexpression of dTrpA1. Ubiquitous dTrpA1 misexpression led both silkmoth larvae and adults to exhibit seizure-like phenotypes in a heat stimulation-dependent manner. Furthermore, dTrpA1 misexpression in the sex pheromone receptor neurons of male silkmoths allowed us to control male sexual behavior by changing the temperature. Thermally stimulated male silkmoths exhibited full sexual behavior, including wing-flapping, orientation, and attempted copulation, and precisely approached a thermal source in a manner similar to male silkmoths stimulated with the sex pheromone. Conclusion These findings indicate that a thermogenetic approach using dTrpA1 is feasible in Lepidopteran insects and thermogenetic analysis of innate behavior is applicable in the silkmoth. These tools are essential for elucidating the relationships between neural circuits and function using neurogenetic methods. PMID:25396742

  17. Establishment of tools for neurogenetic analysis of sexual behavior in the silkmoth, Bombyx mori.

    PubMed

    Kiya, Taketoshi; Morishita, Koudai; Uchino, Keiro; Iwami, Masafumi; Sezutsu, Hideki

    2014-01-01

    Silkmoth, Bombyx mori, is an ideal model insect for investigating the neural mechanisms underlying sex pheromone-induced innate behavior. Although transgenic techniques and the GAL4/UAS system are well established in the silkmoth, genetic tools useful for investigating brain function at the neural circuit level have been lacking. In the present study, we established silkmoth strains in which we could visualize neural projections (UAS-mCD8GFP) and cell nucleus positions (UAS-GFP.nls), and manipulate neural excitability by thermal stimulation (UAS-dTrpA1). In these strains, neural projections and nucleus position were reliably labeled with green fluorescent protein in a GAL4-dependent manner. Further, the behavior of silkworm larvae and adults could be controlled by GAL4-dependent misexpression of dTrpA1. Ubiquitous dTrpA1 misexpression led both silkmoth larvae and adults to exhibit seizure-like phenotypes in a heat stimulation-dependent manner. Furthermore, dTrpA1 misexpression in the sex pheromone receptor neurons of male silkmoths allowed us to control male sexual behavior by changing the temperature. Thermally stimulated male silkmoths exhibited full sexual behavior, including wing-flapping, orientation, and attempted copulation, and precisely approached a thermal source in a manner similar to male silkmoths stimulated with the sex pheromone. These findings indicate that a thermogenetic approach using dTrpA1 is feasible in Lepidopteran insects and thermogenetic analysis of innate behavior is applicable in the silkmoth. These tools are essential for elucidating the relationships between neural circuits and function using neurogenetic methods.

  18. Relationships of Reproductive Traits With the Phylogeny of the African Noctuid Stem Borers

    PubMed Central

    Calatayud, Paul-André; Dupas, Stéphane; Frérot, Brigitte; Genestier, Gilles; Ahuya, Peter; Capdevielle-Dulac, Claire; Le Ru, Bruno

    2016-01-01

    The display of the reproductive behavior in most noctuid Lepidoptera follows a diel periodicity and is limited to a precise period of either the day or the night. These behavioral traits and the sex pheromone chemistry can be species specific and thus might be linked to the phylogeny. The objective of this study was to test the relationship of these reproductive traits with phylogeny. The study was undertaken using eight closely related species of noctuid stem borers, which are easy to rear under artificial conditions, namely, Busseola fusca, B. nairobica, B. sp. nr. segeta, Manga melanodonta, M. sp. nr. nubifera, Pirateolea piscator, Sesamia calamistis, and S. nonagrioides. For each species, the adult emergence period, the mating time, and the oviposition period were estimated, referred as biological traits. The components of the sex pheromones emitted by the females of each species were also analyzed by gas chromatography–mass spectrometry. Among the biological traits measured, only those linked to the oviposition pattern (timing and egg loads per night) were significantly correlated with the phylogeny of these species. For the sex pheromone components, among the 13 components identified in all species, only four, namely, Z9-tetradecenyl acetate (Z9-TDA), Z11-TDA, E11-TDA, and Z11-hexadecenyl acetate (Z11-HDA), showed the highest significant correlations with the phylogeny. These results suggest that among the different reproductive traits evaluated, only few are phylogenetically constrained. Their involvement in the reinforcement of ecological speciation in noctuid stem borers is discussed. PMID:27867304

  19. 40 CFR 180.1069 - (Z)-11-Hexadecenal; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... exemption from the requirement of a tolerance is established for residues of the biological insecticide (pheromone) (Z)-11-hexadecenal when used as a sex attractant on artichoke plants to control the artichoke...

  20. 40 CFR 180.1069 - (Z)-11-Hexadecenal; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... exemption from the requirement of a tolerance is established for residues of the biological insecticide (pheromone) (Z)-11-hexadecenal when used as a sex attractant on artichoke plants to control the artichoke...

  1. 40 CFR 180.1069 - (Z)-11-Hexadecenal; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... exemption from the requirement of a tolerance is established for residues of the biological insecticide (pheromone) (Z)-11-hexadecenal when used as a sex attractant on artichoke plants to control the artichoke...

  2. 40 CFR 180.1069 - (Z)-11-Hexadecenal; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... exemption from the requirement of a tolerance is established for residues of the biological insecticide (pheromone) (Z)-11-hexadecenal when used as a sex attractant on artichoke plants to control the artichoke...

  3. 40 CFR 180.1069 - (Z)-11-Hexadecenal; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... exemption from the requirement of a tolerance is established for residues of the biological insecticide (pheromone) (Z)-11-hexadecenal when used as a sex attractant on artichoke plants to control the artichoke...

  4. Structure of the mouse sex peptide pheromone ESP1 reveals a molecular basis for specific binding to the class C G-protein-coupled vomeronasal receptor.

    PubMed

    Yoshinaga, Sosuke; Sato, Toru; Hirakane, Makoto; Esaki, Kaori; Hamaguchi, Takashi; Haga-Yamanaka, Sachiko; Tsunoda, Mai; Kimoto, Hiroko; Shimada, Ichio; Touhara, Kazushige; Terasawa, Hiroaki

    2013-05-31

    Exocrine gland-secreting peptide 1 (ESP1) is a sex pheromone that is released in male mouse tear fluids and enhances female sexual receptive behavior. ESP1 is selectively recognized by a specific class C G-protein-coupled receptor (GPCR), V2Rp5, among the hundreds of receptors expressed in vomeronasal sensory neurons (VSNs). The specific sensing mechanism of the mammalian peptide pheromone by the class C GPCR remains to be elucidated. Here we identified the minimal functional region needed to retain VSN-stimulating activity in ESP1 and determined its three-dimensional structure, which adopts a helical fold stabilized by an intramolecular disulfide bridge with extensive charged patches. We then identified the amino acids involved in the activation of VSNs by a structure-based mutational analysis, revealing that the highly charged surface is crucial for the ESP1 activity. We also demonstrated that ESP1 specifically bound to an extracellular region of V2Rp5 by an in vitro pulldown assay. Based on homology modeling of V2Rp5 using the structure of the metabotropic glutamate receptor, we constructed a docking model of the ESP1-V2Rp5 complex in which the binding interface exhibited good electrostatic complementarity. These experimental results, supported by the molecular docking simulations, reveal that charge-charge interactions determine the specificity of ESP1 binding to V2Rp5 in the large extracellular region characteristic of class C GPCRs. The present study provides insights into the structural basis for the narrowly tuned sensing of mammalian peptide pheromones by class C GPCRs.

  5. Odorant binding protein 69a connects social interaction to modulation of social responsiveness in Drosophila.

    PubMed

    Bentzur, Assa; Shmueli, Anat; Omesi, Liora; Ryvkin, Julia; Knapp, Jon-Michael; Parnas, Moshe; Davis, Fred P; Shohat-Ophir, Galit

    2018-04-01

    Living in a social environment requires the ability to respond to specific social stimuli and to incorporate information obtained from prior interactions into future ones. One of the mechanisms that facilitates social interaction is pheromone-based communication. In Drosophila melanogaster, the male-specific pheromone cis-vaccenyl acetate (cVA) elicits different responses in male and female flies, and functions to modulate behavior in a context and experience-dependent manner. Although it is the most studied pheromone in flies, the mechanisms that determine the complexity of the response, its intensity and final output with respect to social context, sex and prior interaction, are still not well understood. Here we explored the functional link between social interaction and pheromone-based communication and discovered an odorant binding protein that links social interaction to sex specific changes in cVA related responses. Odorant binding protein 69a (Obp69a) is expressed in auxiliary cells and secreted into the olfactory sensilla. Its expression is inversely regulated in male and female flies by social interactions: cVA exposure reduces its levels in male flies and increases its levels in female flies. Increasing or decreasing Obp69a levels by genetic means establishes a functional link between Obp69a levels and the extent of male aggression and female receptivity. We show that activation of cVA-sensing neurons is sufficeint to regulate Obp69a levels in the absence of cVA, and requires active neurotransmission between the sensory neuron to the second order olfactory neuron. The cross-talk between sensory neurons and non-neuronal auxiliary cells at the olfactory sensilla, represents an additional component in the machinery that promotes behavioral plasticity to the same sensory stimuli in male and female flies.

  6. Semiochemical-mediated flight responses of sap beetle vectors of oak wilt, Ceratocystis fagacearum.

    PubMed

    Kyhl, John F; Bartelt, Robert J; Cossé, Allard; Juzwik, Jennifer; Seybold, Steven J

    2002-08-01

    The sap beetle, Colopterus truncatus (Coleoptera: Nitidulidae), is one of the primary vectors of the oak wilt pathogen, Ceratocystis fagacearum, in the north-central United States. Field behavioral assays utilizing various release rates and blends of three methyl-branched hydrocarbon aggregation pheromone components showed that flight responses of this beetle were similar in Illinois and Minnesota populations. In both locations, both sexes of the beetle responded synergistically to a combination of the three-component pheromone and fermenting whole-wheat bread dough. Further, Colopterus truncatus preferred a high release rate over a low release rate of the three-component blend. In both locations, the response of C. truncatus to a simplified version of the pheromone consisting of (2E,4E,6E)-3,5-dimethyl-2,4,6-octatriene (1) and (2E,4E,6E,8E)-3,5,7-trimethyl-2,4,6,8-decatetraene (3) was not significantly different from the response to the three-component blend. An experiment in Illinois with all possible combinations of the components demonstrated that the decatetraene (3) was the crucial component in the blend; of all treatments, the maximal response was elicited by 3 + dough. Chipped bark, phloem, and xylem from northern pin oak, Quercus ellipsoidalis, was not attractive to C. truncatus in Minnesota. During a weekly survey over two seasons in Minnesota, C. truncatus flew in response to the three-component pheromone between early April and early July, with the maximum responses coming on May 4, 2000 and April 20, 2001. During both years, more than 98% of the beetles were trapped between April 14 and June 1. During the same survey, Glischrochilus spp. (Nitiduildae) flew during longer periods of the summer, particularly in 2001. The sex ratio of C. truncatus responding during all experiments was female-biased (1.8:1, female-male), which is characteristic of other male-produced coleopteran aggregation pheromones. Other sap beetles that play a minor role in the pathobiology of C. fagacearum also responded in experiments conducted in Minnesota. Carpophilus brachypterus Say was cross-attracted to the two- and three-component blends of the C. truncatus pheromone and dough, whereas two Glischrochilus spp. were attracted to all treatments that contained dough.

  7. Sound-Triggered Production of Antiaggregation Pheromone Limits Overcrowding of Dendroctonus valens Attacking Pine Trees.

    PubMed

    Liu, Zhudong; Xin, Yucui; Xu, Bingbing; Raffa, Kenneth F; Sun, Jianghua

    2017-01-01

    For insects that aggregate on host plants, both attraction and antiaggregation among conspecifics can be important mechanisms for overcoming host resistance and avoiding overcrowding, respectively. These mechanisms can involve multiple sensory modalities, such as sound and pheromones. We explored how acoustic and chemical signals are integrated by the bark beetle Dendroctonus valens to limit aggregation in China. In its native North American range, this insect conducts nonlethal attacks on weakened trees at very low densities, but in its introduced zone in China, it uses mixtures of host tree compounds and the pheromone component frontalin to mass attack healthy trees. We found that exo-brevicomin was produced by both female and male D. valens, and that this pheromone functioned as an antiaggregating signal. Moreover, beetles feeding in pairs or in masses were more likely than were beetles feeding alone to produce exo-brevicomin, suggesting a potential role of sound by neighboring beetles in stimulating exo-brevicomin production. Sound playback showed that an agreement sound was produced by both sexes when exposed to the aggregation pheromone frontalin and attracts males, and an aggressive sound was produced only by males behaving territorially. These signals triggered the release of exo-brevicomin by both females and males, indicating an interplay of chemical and sonic communication. This study demonstrates that the bark beetle D. valens uses sounds to regulate the production of an antiaggregation pheromone, which may provide new approaches to pest management of this invasive species. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Sex pheromone of the baldcypress leafroller (Lepidoptera: Tortricidae)

    Treesearch

    Brian T. Sullivan; Jeremy D. Allison; Richard A. Goyer; William P. Shepherd

    2015-01-01

    The baldcypress leafroller, Archips goyerana Kruse (Lepidoptera: Tortricidae), is a specialist on Taxodium distichum (L.) Richard and has caused serious defoliation in swamps of southeastern Louisiana, accelerating decline of baldcypress forests concurrently suffering from nutrient depletion, prolonged flooding, and saltwater...

  9. Sex pheromone in the dog.

    PubMed

    Goodwin, M; Gooding, K M; Regnier, F

    1979-02-09

    Methyl p-hydroxybenzoate has been identified in the vaginal secretions of female dogs in estrus. When small amounts of this compound were applied to the vulvas of anestrous or spayed females, males placed with these females became sexually aroused and attempted to mount them.

  10. Sexual differentiation of pheromone processing: Links to male-typical mating behavior and partner preference

    PubMed Central

    Baum, Michael J.

    2009-01-01

    Phoenix et al. (Phoenix et al., 1959) were the first to propose an essential role of fetal testosterone exposure in the sexual differentiation of the capacity of mammals to display male-typical mating behavior. In one experiment control male and female guinea pigs as well as females given fetal testosterone actually showed equivalent levels of mounting behavior when gonadectomized and given ovarian steroids prior to adult tests with a stimulus female. This finding is discussed in the context of a recent, high-profile paper by Kimchi and co-workers (Kimchi et al., 2007) arguing that female rodents possess the circuits that control the expression of male-typical mating behavior and that their function is normally suppressed in this sex by pheromonal inputs that are processed via the vomeronasal organ (VNO)—accessory olfactory nervous system. In another Phoenix et al. experiment, significantly more mounting behavior was observed in male guinea pigs and in females given fetal testosterone than in control females following adult gonadectomy and treatment with testosterone. Literature is reviewed that attempts to link sex differences in the anatomy and function of the accessory versus the main olfactory projections to the amygdala and hypothalamus to parallel sex differences in courtship behaviors, including sex partner preference, as well as the capacity to display mounting behavior. PMID:19446074

  11. Development of a genetic sexing strain in Bactrocera carambolae (Diptera: Tephritidae) by introgression of sex sorting components from B. dorsalis, Salaya1 strain.

    PubMed

    Isasawin, Siriwan; Aketarawong, Nidchaya; Lertsiri, Sittiwat; Thanaphum, Sujinda

    2014-01-01

    The carambola fruit fly, Bactrocera carambolae Drew & Hancock is a high profile key pest that is widely distributed in the southwestern ASEAN region. In addition, it has trans-continentally invaded Suriname, where it has been expanding east and southward since 1975. This fruit fly belongs to Bactrocera dorsalis species complex. The development and application of a genetic sexing strain (Salaya1) of B. dorsalis sensu stricto (s.s.) (Hendel) for the sterile insect technique (SIT) has improved the fruit fly control. However, matings between B. dorsalis s.s. and B. carambolae are incompatible, which hinder the application of the Salaya1 strain to control the carambola fruit fly. To solve this problem, we introduced genetic sexing components from the Salaya1 strain into the B. carambolae genome by interspecific hybridization. Morphological characteristics, mating competitiveness, male pheromone profiles, and genetic relationships revealed consistencies that helped to distinguish Salaya1 and B. carambolae strains. A Y-autosome translocation linking the dominant wild-type allele of white pupae gene and a free autosome carrying a recessive white pupae homologue from the Salaya1 strain were introgressed into the gene pool of B. carambolae. A panel of Y-pseudo-linked microsatellite loci of the Salaya1 strain served as markers for the introgression experiments. This resulted in a newly derived genetic sexing strain called Salaya5, with morphological characteristics corresponding to B. carambolae. The rectal gland pheromone profile of Salaya5 males also contained a distinctive component of B. carambolae. Microsatellite DNA analyses confirmed the close genetic relationships between the Salaya5 strain and wild B. carambolae populations. Further experiments showed that the sterile males of Salaya5 can compete with wild males for mating with wild females in field cage conditions. Introgression of sex sorting components from the Salaya1 strain to a closely related B. carambolae strain generated a new genetic sexing strain, Salaya5. Morphology-based taxonomic characteristics, distinctive pheromone components, microsatellite DNA markers, genetic relationships, and mating competitiveness provided parental baseline data and validation tools for the new strain. The Salaya5 strain shows a close similarity with those features in the wild B. carambolae strain. In addition, mating competitiveness tests suggested that Salaya5 has a potential to be used in B. carambolae SIT programs based on male-only releases.

  12. Pheromone Production by an Invasive Bark Beetle Varies with Monoterpene Composition of its Naïve Host.

    PubMed

    Taft, Spencer; Najar, Ahmed; Erbilgin, Nadir

    2015-06-01

    The secondary chemistry of host plants can have cascading impacts on the establishment of new insect herbivore populations, their long-term population dynamics, and their invasion potential in novel habitats. Mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae) has recently expanded its range into forests of jack pine, Pinus banksiana Lamb., in western Canada. We investigated whether variations in jack pine monoterpenes affect beetle pheromone production, as the primary components of the beetle's aggregation pheromone, (-)-trans-verbenol and anti-aggregation pheromone (-)-verbenone, are biosynthesized from the host monoterpene α-pinene. Jack pine bolts were collected from five Canadian provinces east of the beetle's current range, live D. ponderosae were introduced into them, and their monoterpene compositions were characterized. Production of (-)-trans-verbenol and (-)-verbenone emitted by beetles was measured to determine whether pheromone production varies with monoterpene composition of jack pines. Depending on particular ratios of major monoterpenes in host phloem, jack pine could be classified into three monoterpenoid groups characterized by high amounts of (+)-α-pinene, 3-carene, or a more moderate blend of monoterpenes, and beetle pheromone production varied among these groups. Specifically, beetles reared in trees characterized by high (+)-α-pinene produced the most (-)-trans-verbenol and (-)-verbenone, while beetles in trees characterized by high 3-carene produced the least. Our results indicate that pheromone production by D. ponderosae will remain a significant aspect and important predictor of its survival and persistence in the boreal forest.

  13. Aggregation pheromone of coconut rhinoceros beetle,Oryctes rhinoceros (L.) (coleoptera: Scarabaeidae).

    PubMed

    Hallett, R H; Perez, A L; Gries, G; Gries, R; Pierce, H D; Yue, J; Oehlschlager, A C; Gonzalez, L M; Borden, J H

    1995-10-01

    Male coconut rhinoceros beetles,Oryctes rhinoceros (L.), produce three sex-specific compounds, ethyl 4-methyloctanoate, ethyl 4-methylheptanoate, and 4-methyloctanoic acid, the first of which is an aggregation pheromone. Synthesis of these compounds involving conjugate addition of organocuprates to ethyl acrylate is reported. In field trapping experiments, (4S)-ethyl 4-methyloctanoate and the racemic mixture were equally attractive and 10 times more effective in attracting beetles than ethyl chrysanthemumate, a previously recommended attractant. Ethyl 4-methylheptanoate was as attractive as ethyl chrysanthemumate and more attractive than 4-methyloctanoic acid, but further studies are required before it can be classed as an aggregation pheromone. Compared to ethyl 4-methyloctanoate alone, combinations of the three male-produced compounds did not increase attraction, whereas addition of freshly rotting oil palm fruit bunches to pheromone-baited traps significantly enhanced attraction. With increasing dose, captures ofO. rhinoceros increased, but doses of 6, 9, and 18 mg/day were competitive with 30 mg/day lures. Newly designed vane traps were more effective in capturing beetles than were barrier or pitfall traps. Results of this study indicate that there is potential for using ethyl 4-methyloctanoate in operational programs to controlO. rhinoceros in oil palm plantations.

  14. Pheromonal communication in nereids and the likely intervention by petroleum derived pollutants.

    PubMed

    Müller, Carsten T; Priesnitz, Frank M; Beckmann, Manfred

    2005-01-01

    Nereis succinea and Platynereis dumerilii (Annelida, Polychaeta) are broadcast spawners and reproduce semelparously. The final events in reproduction, swarming and spawning are co-ordinated by sex pheromones.A water-soluble fraction of crude oil, the volatile fraction (C9-C16) of EKO FISK crude oil was found to induce release of gametes in male nereids at levels <0.3 ppm.Using vacuum distillation, column chromatography, preparative GC and GC-MS analysis we showed that C(5)-alkylated benzenes were most potent in inducing sperm release, of those n-butyl-4-methylbenzene and 1,4-diethyl-2-methylbenzene were found to induce release of gametes at concentrations ≥4 nM. This threshold is lower than those reported for natural pheromones (nereithione: 60 nM, uric acid: 600 nM) but higher than background levels of aromatic compounds of 0.05 nM and below.Other oil fractions showed additional effects, blocking pheromone reception or narcotising and intoxicating animals. Part of these effects could be assigned to naphthalenes at levels down to approx. 320 nM. In the original mixtures, their action was modified or compensated by the presence of gamete release inducing alkylated benzenes. Other highly paralysing substances remained elusive.

  15. Trail Communication Regulated by Two Trail Pheromone Components in the Fungus-Growing Termite Odontotermes formosanus (Shiraki)

    PubMed Central

    Wen, Ping; Ji, Bao-Zhong; Sillam-Dussès, David

    2014-01-01

    The eusocial termites are well accomplished in chemical communication, but how they achieve the communication using trace amount of no more than two pheromone components is mostly unknown. In this study, the foraging process and trail pheromones of the fungus-growing termite Odontotermes formosanus (Shiraki) were systematically studied and monitored in real-time using a combination of techniques, including video analysis, solid-phase microextraction, gas chromatography coupled with either mass spectrometry or an electroantennographic detector, and bioassays. The trail pheromone components in foraging workers were (3Z)-dodec-3-en-1-ol and (3Z,6Z)-dodeca-3,6-dien-1-ol secreted by their sternal glands. Interestingly, ratio of the two components changed according to the behaviors that the termites were displaying. This situation only occurs in termites whereas ratios of pheromone components are fixed and species-specific for other insect cuticular glands. Moreover, in bioassays, the active thresholds of the two components ranged from 1 fg/cm to 10 pg/cm according to the behavioral contexts or the pheromonal exposure of tested workers. The two components did not act in synergy. (3Z)-Dodec-3-en-1-ol induced orientation behavior of termites that explore their environment, whereas (3Z,6Z)-dodeca-3,6-dien-1-ol had both an orientation effect and a recruitment effect when food was discovered. The trail pheromone of O. formosanus was regulated both quantitatively by the increasing number of workers involved in the early phases of foraging process, and qualitatively by the change in ratio of the two pheromone components on sternal glandular cuticle in the food-collecting workers. In bioassays, the responses of workers to the pheromone were also affected by the variation in pheromone concentration and component ratio in the microenvironment. Thus, this termite could exchange more information with nestmates using the traces of the two trail pheromone components that can be easily regulated within a limited microenvironment formed by the tunnels or chambers. PMID:24670407

  16. Chemical ecology: studies from East Africa.

    PubMed

    Meinwald, J; Prestwich, G D; Nakanishi, K; Kubo, I

    1978-03-17

    The International Centre of Insect Physiology and Ecology (ICIPE), in Nairobi, provides a laboratory at which a multinational group of scientists pursues interdisciplinary research. In collaboration with their colleagues in biology, ICIPE chemists have characterized the sex pheromones of the tick which serves as a vector of East Coast fever and have identified a termite queen-cell-building pheromone. The structure of many anthropod defensive chemicals have been determined; most interesting of these are the trinervitenes, structurally novel diterpenoids from nasute termites. Several highly active insect antifeedants were discovered using a simple bioassay to screen selected East African plants. These antifeedants may provide leads for the development of new insect-control techniques.

  17. All or nothing: Area-wide approach frustrates peachtree borers in Georgia

    USDA-ARS?s Scientific Manuscript database

    Mating disruption research has been done in the southeast against borers attacking peach since the sex pheromones of the peachtree borer, Synanthedon exitiosa (Lepidoptera: Sesiidae) and lesser peachtree borer, S. pictipes (Lepidoptera: Sesiidae) were identified. However, replicated trials over thr...

  18. Aggregation Behavior and a Putative Aggregation Pheromone in Sugar Beet Root Maggot Flies (Diptera: Ulidiidae)

    PubMed Central

    Emmert, Susan Y.; Tindall, Kelly; Ding, Hongjian; Boetel, Mark A.; Rajabaskar, D.; Eigenbrode, Sanford D.

    2017-01-01

    Male-biased aggregations of sugar beet root maggot, Tetanops myopaeformis (Röder) (Diptera: Ulidiidae), flies were observed on utility poles near sugar beet (Beta vulgaris L. [Chenopodiaceae]) fields in southern Idaho; this contrasts with the approximately equal sex ratio typically observed within fields. Peak observation of mating pairs coincided with peak diurnal abundance of flies. Volatiles released by individual male and female flies were sampled from 08:00 to 24:00 hours in the laboratory using solid-phase microextraction and analyzed using gas chromatography/mass spectrometry (GC/MS). Eleven compounds were uniquely detected from males. Three of these compounds (2-undecanol, 2-decanol, and sec-nonyl acetate) were detected in greater quantities during 12:00–24:00 hours than during 08:00–12:00 hours. The remaining eight compounds uniquely detected from males did not exhibit temporal trends in release. Both sexes produced 2-nonanol, but males produced substantially higher (ca. 80-fold) concentrations of this compound than females, again peaking after 12:00 hours. The temporal synchrony among male aggregation behavior, peak mating rates, and release of certain volatile compounds by males suggest that T. myopaeformis flies exhibit lekking behavior and produce an associated pheromone. Field assays using synthetic blends of the putative aggregation pheromone showed evidence of attraction in both females and males. PMID:28423428

  19. Molecular Characterization and Differential Expression of Olfactory Genes in the Antennae of the Black Cutworm Moth Agrotis ipsilon

    PubMed Central

    Gu, Shao-Hua; Sun, Liang; Yang, Ruo-Nan; Wu, Kong-Ming; Guo, Yu-Yuan; Li, Xian-Chun; Zhou, Jing-Jiang; Zhang, Yong-Jun

    2014-01-01

    Insects use their sensitive and selective olfactory system to detect outside chemical odorants, such as female sex pheromones and host plant volatiles. Several groups of olfactory proteins participate in the odorant detection process, including odorant binding proteins (OBPs), chemosensory proteins (CSPs), odorant receptors (ORs), ionotropic receptors (IRs) and sensory neuron membrane proteins (SNMPs). The identification and functional characterization of these olfactory proteins will enhance our knowledge of the molecular basis of insect chemoreception. In this study, we report the identification and differential expression profiles of these olfactory genes in the black cutworm moth Agrotis ipsilon. In total, 33 OBPs, 12 CSPs, 42 ORs, 24 IRs, 2 SNMPs and 1 gustatory receptor (GR) were annotated from the A. ipsilon antennal transcriptomes, and further RT-PCR and RT-qPCR revealed that 22 OBPs, 3 CSPs, 35 ORs, 14 IRs and the 2 SNMPs are uniquely or primarily expressed in the male and female antennae. Furthermore, one OBP (AipsOBP6) and one CSP (AipsCSP2) were exclusively expressed in the female sex pheromone gland. These antennae-enriched OBPs, CSPs, ORs, IRs and SNMPs were suggested to be responsible for pheromone and general odorant detection and thus could be meaningful target genes for us to study their biological functions in vivo and in vitro. PMID:25083706

  20. Insect Cuticular Hydrocarbons as Dynamic Traits in Sexual Communication

    PubMed Central

    Ingleby, Fiona C.

    2015-01-01

    Recent research has demonstrated extensive within-species variation in pheromone expression in insect species, contrary to the view that pheromones are largely invariant within species. In fact, many studies on insect cuticular hydrocarbons (CHCs) show that pheromones can be highly dynamic traits that can express significant short-term plasticity across both abiotic and social environments. It is likely that this variability in CHC expression contributes to their important role in sexual signaling and mate choice. In this review, I discuss CHC plasticity and how this might influence sexual communication. I also highlight two important avenues for future research: examining plasticity in how individuals respond to CHC signals, and testing how sexual communication varies across abiotic and social environments. PMID:26463413

  1. Regulation of onset of female mating and sex pheromone production by juvenile hormone in Drosophila melanogaster

    PubMed Central

    Bilen, Julide; Atallah, Jade; Azanchi, Reza; Levine, Joel D.; Riddiford, Lynn M.

    2013-01-01

    Juvenile hormone (JH) coordinates timing of female reproductive maturation in most insects. In Drosophila melanogaster, JH plays roles in both mating and egg maturation. However, very little is known about the molecular pathways associated with mating. Our behavioral analysis of females genetically lacking the corpora allata, the glands that produce JH, showed that they were courted less by males and mated later than control females. Application of the JH mimic, methoprene, to the allatectomized females just after eclosion rescued both the male courtship and the mating delay. Our studies of the null mutants of the JH receptors, Methoprene tolerant (Met) and germ cell-expressed (gce), showed that lack of Met in Met27 females delayed the onset of mating, whereas lack of Gce had little effect. The Met27 females were shown to be more attractive but less behaviorally receptive to copulation attempts. The behavioral but not the attractiveness phenotype was rescued by the Met genomic transgene. Analysis of the female cuticular hydrocarbon profiles showed that corpora allata ablation caused a delay in production of the major female-specific sex pheromones (the 7,11-C27 and -C29 dienes) and a change in the cuticular hydrocarbon blend. In the Met27 null mutant, by 48 h, the major C27 diene was greatly increased relative to wild type. In contrast, the gce2.5k null mutant females were courted similarly to control females despite changes in certain cuticular hydrocarbons. Our findings indicate that JH acts primarily via Met to modulate the timing of onset of female sex pheromone production and mating. PMID:24145432

  2. Enterococcus faecalis Gene Transfer under Natural Conditions in Municipal Sewage Water Treatment Plants†

    PubMed Central

    Marcinek, Herbert; Wirth, Reinhard; Muscholl-Silberhorn, Albrecht; Gauer, Matthias

    1998-01-01

    The ability of Enterococcus faecalis to transfer various genetic elements under natural conditions was tested in two municipal sewage water treatment plants. Experiments in activated sludge basins of the plants were performed in a microcosm which allowed us to work under sterile conditions; experiments in anoxic sludge digestors were performed in dialysis bags. We used the following naturally occurring genetic elements: pAD1 and pIP1017 (two so-called sex pheromone plasmids with restricted host ranges, which are transferred at high rates under laboratory conditions); pIP501 (a resistance plasmid possessing a broad host range for gram-positive bacteria, which is transferred at low rates under laboratory conditions); and Tn916 (a conjugative transposon which is transferred under laboratory conditions at low rates to gram-positive bacteria and at very low rates to gram-negative bacteria). The transfer rate between different strains of E. faecalis under natural conditions was, compared to that under laboratory conditions, at least 105-fold lower for the sex pheromone plasmids, at least 100-fold lower for pIP501, and at least 10-fold lower for Tn916. In no case was transfer from E. faecalis to another bacterial species detected. By determining the dependence of transfer rates for pIP1017 on bacterial concentration and extrapolating to actual concentrations in the sewage water treatment plant, we calculated that the maximum number of transfer events for the sex pheromone plasmids between different strains of E. faecalis in the municipal sewage water treatment plant of the city of Regensburg ranged from 105 to 108 events per 4 h, indicating that gene transfer should take place under natural conditions. PMID:9464401

  3. (3Z,6Z,9Z,12Z,15Z)-Pentacosapentaene and (Z) -11-Hexadecenyl Acetate: sex attractant blend for Dioryctria amatella (Lepidoptera: Pyralidae).

    Treesearch

    Daniel Miller; Jocelyn Millar; Alex Mangini; Christopher Crowe; Gary Grant

    2010-01-01

    In 2006-2008, we tested (3Z,6Z,9Z,12Z,15Z)-pentacosapentaene (pentaene) with the pheromone components (Z)-11-hexadecenyl acetate (Z11-16:Ac) and (Z)-9-tetradecenyl acetate (Z9-14:Ac), as sex attractants for four sympatric species of coneworms, Dioryctria Zeller (Lepidoptera: Pyralidae) in slash (Pinus elliottii Engelm.) and...

  4. Selection on worker honeybee responses to queen pheromone (Apis mellifera L.)

    NASA Astrophysics Data System (ADS)

    Pankiw, T.; Winston, Mark L.; Fondrk, M. Kim; Slessor, Keith N.

    Disruptive selection for responsiveness to queen mandibular gland pheromone (QMP) in the retinue bioassay resulted in the production of high and low QMP responding strains of honeybees (Apis mellifera L.). Strains differed significantly in their retinue response to QMP after one generation of selection. By the third generation the high strain was on average at least nine times more responsive than the low strain. The strains showed seasonal phenotypic plasticity such that both strains were more responsive to the pheromone in the spring than in the fall. Directional selection for low seasonal variation indicated that phenotypic plasticity was an additional genetic component to retinue response to QMP. Selection for high and low retinue responsiveness to QMP was not an artifact of the synthetic blend because both strains were equally responsive or non-responsive to whole mandibular gland extracts compared with QMP. The use of these strains clearly pointed to an extra-mandibular source of retinue pheromones (Pankiw et al. 1995; Slessor et al. 1998; Keeling et al. 1999).

  5. Hormonal-Pheromonal Interrelationships in Ticks and Parasitic Mites.

    DTIC Science & Technology

    1986-12-01

    variabilis (Say). J. Parasitol. 1981 Oliver, J.H., Jr. Sex chromosomes, parthenogenesis , and polyploidy in ticks. In Atchley,. W.R. and D.S. Woodruff...reproduces oisexually, although there is a tendency for parthenogenesis in some individual females. The genetics of parthenogenesis is not understood

  6. New directions for mating disruption in Wisconsin

    USDA-ARS?s Scientific Manuscript database

    Mating Disruption (MD) is an alternative to insecticide for control of three major pests -Sparganthois fruitworm, Cranberry fruitworm and Blackheaded fireworm. MD functions by sending out false plumes of the insect's sex pheromones – this interferes with the insect’s ability to find a mate, preempti...

  7. Monitoring Indianmeal moth in the presence of mating disruption

    USDA-ARS?s Scientific Manuscript database

    Mating disruption with female sex pheromone offers a least-toxic, worker-friendly alternative to fumigation and fogging for control of the Indianmeal moth, an important postharvest pest. Commercial formulations are available for control of this pest with mating disruption, but loss of information fr...

  8. Male-specific sesquiterpenes from Phyllotreta flea beetles

    USDA-ARS?s Scientific Manuscript database

    Flea beetles in several genera are known to possess male-specific sesquiterpenes, at least some of which serve as aggregation pheromones that attract both sexes. In continuing research on the chemical ecology of Phyllotreta flea beetles, six new male-specific sesquiterpenes were identified, one fro...

  9. Sex pheromone monitoring as a versatile tool for determining presence and abundance of Cydia pomonella (Lep.: Tortricidae) in German apple orchards.

    PubMed

    Hummel, H E; Czyrt, T; Schmid, S; Leithold, G; Vilcinskas, A

    2012-01-01

    Cydia pomonella (Lep.: Tortricidae), the codling moth, is an apple, pear, quince and walnut pest with considerable impact on horticultural production systems in many parts of the world. In commercial apple production, it is responsible for a yearly damage level of 40 billion dollars. In response to the need of tight codling moth control there are several options for intervention by pest managers in commercially operated orchards. Spray and count methods have been used for decades with success, but at considerable external costs for the integrity of ecological cycles. Also, problems with pesticide residues and with resistant strains are an issue of concern. For environmental reasons, toxicological means are discounted here. Instead, flight curves based on sex pheromone trapping and monitoring are preferred means towards determining the optimal timing of interventions by biotechnical and biological control methods. Finally, ecological reasons are discussed for vastly different population levels of C. pomonella developing in closely neighboring field sections which operated under different environmental management.

  10. Improved synthesis of (3E,6Z,9Z)-1,3,6,9-nonadecatetraene, attraction inhibitor of bruce spanworm, Operophtera bruceata, to pheromone traps for monitoring winter moth, Operophtera brumata.

    PubMed

    Khrimian, Ashot; Lance, David R; Mastro, Victor C; Elkinton, Joseph S

    2010-02-10

    The winter moth, Operophtera brumata (Lepidoptera: Geometridae), is an early-season defoliator that attacks a wide variety of hardwoods and, in some cases, conifers. The insect is native to Europe but has become established in at least three areas of North America including southeastern New England. The female-produced sex attractant pheromone of the winter moth was identified as (3Z,6Z,9Z)-1,3,6,9-nonadecatetraene (1), which also attracts a native congener, the Bruce spanworm, Operophtera bruceata . Dissection, or (for certainty) DNA molecular testing, is required to differentiate between males of the two species. Thus, a trapping method that is selective for winter moth would be desirable. A geometric isomer of the pheromone, (3E,6Z,9Z)-1,3,6,9-nonadecatetraene (2), can reportedly inhibit attraction of Bruce spanworm to traps without affecting winter moth catch, but use of the pheromone and inhibitor together has not been optimized, nor has the synthesis of the inhibitor. This paper presents two new syntheses of the inhibitor (3E,6Z,9Z)-1,3,6,9-nonadecatetraene based on the intermediate (3Z,6Z)-3,6-hexadecadien-1-ol (4), which has also been utilized in the synthesis of the pheromone. The syntheses combine traditional acetylenic chemistry and Wittig olefination reactions. In one approach, 2 was synthesized in 80% purity (20% being pheromone 1), and in the second, tetraene 2 of 96% purity (and free of 1) was produced in 25% overall yield from dienol 4. The last method benefitted from a refined TEMPO-mediated PhI(OAc)(2) oxidation of 4 and a two-carbon homologation of the corresponding aldehyde 7.

  11. Highly polygenic variation in environmental perception determines dauer larvae formation in growing populations of Caenorhabditis elegans.

    PubMed

    Green, James W M; Stastna, Jana J; Orbidans, Helen E; Harvey, Simon C

    2014-01-01

    Determining how complex traits are genetically controlled is a requirement if we are to predict how they evolve and how they might respond to selection. This requires understanding how distinct, and often more simple, life history traits interact and change in response to environmental conditions. In order to begin addressing such issues, we have been analyzing the formation of the developmentally arrested dauer larvae of Caenorhabditis elegans under different conditions. We find that 18 of 22 previously identified quantitative trait loci (QTLs) affecting dauer larvae formation in growing populations, assayed by determining the number of dauer larvae present at food patch exhaustion, can be recovered under various environmental conditions. We also show that food patch size affects both the ability to detect QTLs and estimates of effect size, and demonstrate that an allele of nath-10 affects dauer larvae formation in growing populations. To investigate the component traits that affect dauer larvae formation in growing populations we map, using the same introgression lines, QTLs that affect dauer larvae formation in response to defined amounts of pheromone. This identifies 36 QTLs, again demonstrating the highly polygenic nature of the genetic variation underlying dauer larvae formation. These data indicate that QTLs affecting the number of dauer larvae at food exhaustion in growing populations of C. elegans are highly reproducible, and that nearly all can be explained by variation affecting dauer larvae formation in response to defined amounts of pheromone. This suggests that most variation in dauer larvae formation in growing populations is a consequence of variation in the perception of the food and pheromone environment (i.e. chemosensory variation) and in the integration of these cues.

  12. Sustained production of the labile pheromone component, (Z,Z)-6,9-heneicosadien-11-one, from a stable precursor for monitoring the whitemarked tussock moth.

    PubMed

    Grant, Gary G; Liu, Wei; Slessor, Keith N; Abou-Zaid, Mamdouh M

    2006-08-01

    The principal sex pheromone component of the whitemarked tussock moth (WMTM), Orgyia leucostigma, was recently identified as (Z,Z)-6,9-heneicosadien-11-one (Z6Z9-11-one-21Hy). However, it is thermally unstable and quickly degrades under field conditions so that baited traps are effective for only one night. We have developed a solution to this problem that combines two techniques: (1) the use of a stable pheromone precursor, (Z,Z)-6,9-heneicosadien-11-one ethylene ketal, which is hydrolyzed to the dienone by an acidic aqueous solution (2% p-toluenesulfonic acid in 35% aqueous sorbitol), and (2) use of a small, off-the-shelf, autonomous pump (the Med-e-Cell Infu-disktrade mark) to deliver the precursor continuously to a suitable substrate where it is converted rapidly into the attractive dienone pheromone component. The pump and hydrolysis substrate fit inside sticky traps and because generation and release of pheromone is continuous, the instability of the pheromone is not an issue. In electroantennogram bioassays, dose-dependent responses were obtained with 1 to 1000 ng of hydrolyzed ketal on filter paper, but no response was obtained to 1000 ng of the ketal itself. In wind tunnel bioassays, males were attracted to lures emitting the dienone pheromone component generated from 0.1 to 100 ng of the hydrolyzed ketal. Field tests in 2004 and 2005 showed that sticky traps fitted with the pump delivering the ketal (0.1-1 microg/microL in heptane) at 10 microL/hr to a cotton pad soaked with the hydrolyzing solution were attractive to male WMTM. No moths were caught in controls or traps baited with (Z)-6-heneicosen-11-one. An average of 0.51 moths per trap night was caught over an 18-night period in 2005. The results represent a first step toward developing a sensitive and practical monitoring tool for the WMTM by using a ketal precursor of its unstable dienone pheromone component.

  13. Molecular characterization of pheromone biosynthesis activating neuropeptide from the diamondback moth, Plutella xylostella (L.).

    PubMed

    Lee, Dae-Weon; Boo, Kyung Saeng

    2005-12-01

    Pheromone biosynthesis activating neuropeptide (PBAN) produced in the subesophageal ganglion stimulates pheromone production in the pheromone gland. A cDNA isolated from female adult heads of the diamondback moth (Plutella xylostella (L.)) encodes 193 amino acids including PBAN, designated as Plx-PBAN, and four other neuropeptides (NPs): diapause hormone (DH) homologue, alpha-NP, beta-NP and gamma-NP. All of the peptides are amidated in their C-termini and shared a conserved motif, FXPR(or K)L structure, as reported from other PBAN cDNAs. Plx-PBAN consists of 30 amino acids, the shortest PBAN so far reported. Plx-PBAN exhibited below 50% homology, compared with other known PBANs. The Plx-DH homologue is structurally different from DH of Bombyx mori. The length of Plx-beta-NP (16 amino acids) was the shortest and showed relatively low similarity, whereas gamma-NP (10 amino acids in length) was the longest among examined gamma-NPs. When female adults were injected with synthetic Plx-PBAN, pheromone production showed a maximal increase 1h post-injection. RT-PCR screening revealed that Plx-PBAN cDNA was expressed in all examined body parts, with the highest expression level in the head of female adults. Analysis of RT-PCR products indicated the Plx-PBAN sequence was identical in all examined body parts of both sexes. Phylogenetic analysis revealed that the Plx-PBAN gene is distantly related to other PBANs, demonstrated by the relatively low similarity.

  14. Tissue localization and partial characterization of pheromone biosynthesis activating neuropeptide in Achaea janata.

    PubMed

    Ajitha, V S; Muraleedharan, D

    2005-03-01

    Female sex pheromone production in certain moth species have been shown to be regulated by a cephalic endocrine peptidic factor: pheromone biosynthesis activating neuropeptide (PBAN), having 33 amino acid residues. Antisera against synthetic Heliothis zea-PBAN were developed. Using these polyclonals, immunoreactivity was mapped in the nervous system of Achaea janata. Three distinct groups of immunopositive secretory neurons were identified in the suboesophageal ganglion; and immunoreactivity was observed in the corpora cardiaca, thoracic and in the abdominal ganglia. From about 6000 brain sub-oesophageal ganglion complexes, the neuropeptide was isolated; and purified sequentially by Sep-pak and reversed phase high performance liquid chromatographic methods. Identity of purified PBAN fraction was confirmed with polyclonal antibody by immunoblotting. Molecular mass of the isolated peptide was determined by matrix-assisted laser desorption/ionization mass spectrometry, and was found to be 3900 Da, same as that of known H. zea-PBAN. Radiochemical bioassay confirmed the pheromonotropic effect of the isolated neuropeptide in this insect.

  15. Sex pheromone biosynthetic pathways are conserved between moths and the butterfly Bicyclus anynana

    PubMed Central

    Liénard, Marjorie A; Wang, Hong-Lei; Lassance, Jean-Marc; Löfstedt, Christer

    2014-01-01

    Although phylogenetically nested within the moths, butterflies have diverged extensively in a number of life history traits. Whereas moths rely greatly on chemical signals, visual advertisement is the hallmark of mate finding in butterflies. In the context of courtship, however, male chemical signals are widespread in both groups although they likely have multiple evolutionary origins. Here, we report that in males of the butterfly Bicyclus anynana, courtship scents are produced de novo via biosynthetic pathways shared with females of many moth species. We show that two of the pheromone components that play a major role in mate choice, namely the (Z)-9-tetradecenol and hexadecanal, are produced through the activity of a fatty acyl Δ11-desaturase and two specialized alcohol-forming fatty acyl reductases. Our study provides the first evidence of conservation and sharing of ancestral genetic modules for the production of FA-derived pheromones over a long evolutionary timeframe thereby reconciling mate communication in moths and butterflies. PMID:24862548

  16. Sex pheromone of the mirid bug, Adelphocoris suturalis

    USDA-ARS?s Scientific Manuscript database

    Mirid bugs (Hemiptera: Miridae) are phytophagous insect pests that damage many types of economically significant field crops. In recent years, a great deal of attention has been paid to the species, Adelphocoris suturalis, because of it outbreaks in Bt cotton. Our previous work showed that virgin A....

  17. Monitoring and Managing Codling Moth Clearly and Precisely

    USDA-ARS?s Scientific Manuscript database

    Studies were conducted in two ‘Comice’ pear orchards treated with sex pheromone in southern Oregon to implement the use of site-specific management practices for codling moth. The density of monitoring traps was increased and insecticide sprays were applied based on moth catch thresholds. Only porti...

  18. Monitoring codling moth (Lepidoptera: Tortricidae) in sex phermone-treated orchards with (E)-4,8-dimethyl-1,3,7-nonatriene or pear ester in combination with codlemone and acetic acid

    USDA-ARS?s Scientific Manuscript database

    Traps baited with ethyl (E,Z)-2,4-decadienoate (pear ester) or (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT) in two- or three-way combinations with the sex pheromone (E,E)-8,10-dodecadien-1-ol (codlemone) and acetic acid (AA) were evaluated for codling moth, Cydia pomonella (L.). All studies were conduct...

  19. Evaluating the binding efficiency of pheromone binding protein with its natural ligand using molecular docking and fluorescence analysis

    NASA Astrophysics Data System (ADS)

    Ilayaraja, Renganathan; Rajkumar, Ramalingam; Rajesh, Durairaj; Muralidharan, Arumugam Ramachandran; Padmanabhan, Parasuraman; Archunan, Govindaraju

    2014-06-01

    Chemosignals play a crucial role in social and sexual communication among inter- and intra-species. Chemical cues are bound with protein that is present in the pheromones irrespective of sex are commonly called as pheromone binding protein (PBP). In rats, the pheromone compounds are bound with low molecular lipocalin protein α2u-globulin (α2u). We reported farnesol is a natural endogenous ligand (compound) present in rat preputial gland as a bound volatile compound. In the present study, an attempt has been made through computational method to evaluating the binding efficiency of α2u with the natural ligand (farnesol) and standard fluorescent molecule (2-naphthol). The docking analysis revealed that the binding energy of farnesol and 2-naphthol was almost equal and likely to share some binding pocket of protein. Further, to extrapolate the results generated through computational approach, the α2u protein was purified and subjected to fluorescence titration and binding assay. The results showed that the farnesol is replaced by 2-naphthol with high hydrophobicity of TYR120 in binding sites of α2u providing an acceptable dissociation constant indicating the binding efficiency of α2u. The obtained results are in corroboration with the data made through computational approach.

  20. Aging modulates cuticular hydrocarbons and sexual attractiveness in Drosophila melanogaster

    PubMed Central

    Kuo, Tsung-Han; Yew, Joanne Y.; Fedina, Tatyana Y.; Dreisewerd, Klaus; Dierick, Herman A.; Pletcher, Scott D.

    2012-01-01

    SUMMARY Attractiveness is a major component of sexual selection that is dependent on sexual characteristics, such as pheromone production, which often reflect an individual’s fitness and reproductive potential. Aging is a process that results in a steady decline in survival and reproductive output, yet little is known about its effect on specific aspects of attractiveness. In this report we asked how aging impacts pheromone production and sexual attractiveness in Drosophila melanogaster. Evidence suggests that key pheromones in Drosophila are produced as cuticular hydrocarbons (CHC), whose functions in attracting mates and influencing behavior have been widely studied. We employed gas chromatography/mass spectrometry and laser desorption/ionization mass spectrometry to show that the composition of D. melanogaster CHC is significantly affected by aging in both sexes and that these changes are robust to different genetic backgrounds. Aging affected the relative levels of many individual CHC, and it shifted overall hydrocarbon profiles to favor compounds with longer chain lengths. We also show that the observed aging-related changes in CHC profiles are responsible for a significant reduction in sexual attractiveness. These studies illuminate causal links among pheromones, aging and attractiveness and suggest that CHC production may be an honest indicator of animal health and fertility. PMID:22323204

  1. A weevil sex pheromone serves as an attractant for its entomopathogenic nematode predators

    USDA-ARS?s Scientific Manuscript database

    Diaprepes abbreviatus is an invasive pest of citrus in the United States originating from the Caribbean. Entomopathogenic nematodes (EPNs) are used as biological control agents in the citrus agroecosystems against D. abbreviatus. EPNs respond to herbivore-induced volatiles from citrus roots to assis...

  2. Evidence For A Sex Pheromone in Bark Beetle Parasitoid Roptrocerus xylophagorum

    Treesearch

    Brian T. Sullivan

    2002-01-01

    Male Roptrocerus xylophagorum (Ratzeburg) (Hymenoptera: Pteromalidae) exhibited courtship and mating behaviors including wing fanning, antennation, mounting, and copulation attempts when exposed to glass bulb decoys coated with a whole-body extract of females in hexane, acetone, or methanol. Activity of extract-treated decoys declined gradually over...

  3. Ecology of the Asian citrus pysllid

    USDA-ARS?s Scientific Manuscript database

    Host selection by psyllids in general appears to involve taste rather than olfaction. Adults are often less discriminating than nymphs. A priori, there is good reason to doubt that Asian citrus psyllid (ACP) uses a long-distance sex pheromone or that ACP orients to host plant volatiles over large (m...

  4. Development of a genetic sexing strain in Bactrocera carambolae (Diptera: Tephritidae) by introgression of sex sorting components from B. dorsalis, Salaya1 strain

    PubMed Central

    2014-01-01

    Background The carambola fruit fly, Bactrocera carambolae Drew & Hancock is a high profile key pest that is widely distributed in the southwestern ASEAN region. In addition, it has trans-continentally invaded Suriname, where it has been expanding east and southward since 1975. This fruit fly belongs to Bactrocera dorsalis species complex. The development and application of a genetic sexing strain (Salaya1) of B. dorsalis sensu stricto (s.s.) (Hendel) for the sterile insect technique (SIT) has improved the fruit fly control. However, matings between B. dorsalis s.s. and B. carambolae are incompatible, which hinder the application of the Salaya1 strain to control the carambola fruit fly. To solve this problem, we introduced genetic sexing components from the Salaya1 strain into the B. carambolae genome by interspecific hybridization. Results Morphological characteristics, mating competitiveness, male pheromone profiles, and genetic relationships revealed consistencies that helped to distinguish Salaya1 and B. carambolae strains. A Y-autosome translocation linking the dominant wild-type allele of white pupae gene and a free autosome carrying a recessive white pupae homologue from the Salaya1 strain were introgressed into the gene pool of B. carambolae. A panel of Y-pseudo-linked microsatellite loci of the Salaya1 strain served as markers for the introgression experiments. This resulted in a newly derived genetic sexing strain called Salaya5, with morphological characteristics corresponding to B. carambolae. The rectal gland pheromone profile of Salaya5 males also contained a distinctive component of B. carambolae. Microsatellite DNA analyses confirmed the close genetic relationships between the Salaya5 strain and wild B. carambolae populations. Further experiments showed that the sterile males of Salaya5 can compete with wild males for mating with wild females in field cage conditions. Conclusions Introgression of sex sorting components from the Salaya1 strain to a closely related B. carambolae strain generated a new genetic sexing strain, Salaya5. Morphology-based taxonomic characteristics, distinctive pheromone components, microsatellite DNA markers, genetic relationships, and mating competitiveness provided parental baseline data and validation tools for the new strain. The Salaya5 strain shows a close similarity with those features in the wild B. carambolae strain. In addition, mating competitiveness tests suggested that Salaya5 has a potential to be used in B. carambolae SIT programs based on male-only releases. PMID:25471905

  5. Sex pheromones and their impact on pest management.

    PubMed

    Witzgall, Peter; Kirsch, Philipp; Cork, Alan

    2010-01-01

    The idea of using species-specific behavior-modifying chemicals for the management of noxious insects in agriculture, horticulture, forestry, stored products, and for insect vectors of diseases has been a driving ambition through five decades of pheromone research. Hundreds of pheromones and other semiochemicals have been discovered that are used to monitor the presence and abundance of insects and to protect plants and animals against insects. The estimated annual production of lures for monitoring and mass trapping is on the order of tens of millions, covering at least 10 million hectares. Insect populations are controlled by air permeation and attract-and-kill techniques on at least 1 million hectares. Here, we review the most important and widespread practical applications. Pheromones are increasingly efficient at low population densities, they do not adversely affect natural enemies, and they can, therefore, bring about a long-term reduction in insect populations that cannot be accomplished with conventional insecticides. A changing climate with higher growing season temperatures and altered rainfall patterns makes control of native and invasive insects an increasingly urgent challenge. Intensified insecticide use will not provide a solution, but pheromones and other semiochemicals instead can be implemented for sustainable area-wide management and will thus improve food security for a growing population. Given the scale of the challenges we face to mitigate the impacts of climate change, the time is right to intensify goal-oriented interdisciplinary research on semiochemicals, involving chemists, entomologists, and plant protection experts, in order to provide the urgently needed, and cost-effective technical solutions for sustainable insect management worldwide.

  6. Optimizing the Point-Source Emission Rates and Geometries of Pheromone Mating Disruption Mega-Dispensers.

    PubMed

    Baker, T C; Myrick, A J; Park, K C

    2016-09-01

    High-emission-rate "mega-dispensers" have come into increasing use for sex pheromone mating disruption of moth pests over the past two decades. These commercially available dispensers successfully suppress mating and reduce crop damage when they are deployed at very low to moderate densities, ranging from 1 to 5/ha to 100-1000/ha, depending on the dispenser types and their corresponding pheromone emission rates. Whereas traditionally the emission rates for successful commercial mating disruption formulations have been measured in terms of amounts (usually milligram) emitted by the disruptant application per acre or hectare per day, we suggest that emission rates should be measured on a per-dispenser per-minute basis. In addition we suggest, because of our knowledge concerning upwind flight of male moths being dependent on contact with pheromone plume strands, that more attention needs to be paid to optimizing the flux within plume strands that shear off of any mating disruption dispenser's surface. By measuring the emission rates on a per-minute basis and measuring the plume strand concentrations emanating from the dispensers, it may help improve the ability of the dispensers to initiate upwind flight from males and initiate their habituation to the pheromone farther downwind than can otherwise be achieved. In addition, by optimizing plume strand flux by paying attention to the geometries and compactness of mating disruption mega-dispensers may help reduce the cost of mega-dispenser disruption formulations by improving their behavioral efficacy while maintaining field longevity and using lower loading rates per dispenser.

  7. Aerial Application of Pheromones for Mating Disruption of an Invasive Moth as a Potential Eradication Tool

    PubMed Central

    Brockerhoff, Eckehard G.; Suckling, David M.; Kimberley, Mark; Richardson, Brian; Coker, Graham; Gous, Stefan; Kerr, Jessica L.; Cowan, David M.; Lance, David R.; Strand, Tara; Zhang, Aijun

    2012-01-01

    Biological invasions can cause major ecological and economic impacts. During the early stages of invasions, eradication is desirable but tactics are lacking that are both effective and have minimal non-target effects. Mating disruption, which may meet these criteria, was initially chosen to respond to the incursion of light brown apple moth, Epiphyas postvittana (LBAM; Lepidoptera: Tortricidae), in California. The large size and limited accessibility of the infested area favored aerial application. Moth sex pheromone formulations for potential use in California or elsewhere were tested in a pine forest in New Zealand where LBAM is abundant. Formulations were applied by helicopter at a target rate of 40 g pheromone per ha. Trap catch before and after application was used to assess the efficacy and longevity of formulations, in comparison with plots treated with ground-applied pheromone dispensers and untreated control plots. Traps placed at different heights showed LBAM was abundant in the upper canopy of tall trees, which complicates control attempts. A wax formulation and polyethylene dispensers were most effective and provided trap shut-down near ground level for 10 weeks. Only the wax formulation was effective in the upper canopy. As the pheromone blend contained a behavioral antagonist for LBAM, ‘false trail following’ could be ruled out as a mechanism explaining trap shutdown. Therefore, ‘sensory impairment’ and ‘masking of females’ are the main modes of operation. Mating disruption enhances Allee effects which contribute to negative growth of small populations and, therefore, it is highly suitable for area-wide control and eradication of biological invaders. PMID:22937092

  8. Improved monitoring of oriental fruit moth (Lepidoptera: Tortricidae) with terpinyl acetate plus acetic acid membrane lures

    USDA-ARS?s Scientific Manuscript database

    Male and female moth catches of Grapholita molesta (Busck) in traps were evaluated in stone and pome fruit orchards untreated or treated with sex pheromones for mating disruption in Uruguay, Argentina, Chile, USA, and Italy from 2015 - 2017. Trials evaluated various blends loaded into either membran...

  9. Sensory aspects of trail-following behaviors in the Asian longhorned beetle, Anoplophora glabripennis

    Treesearch

    Fern Graves; Thomas C. Baker; Aijun Zhang; Melody Keena; Kelli Hoover

    2016-01-01

    Anoplophora glabripennis has a complex suite of mate-finding behaviors, the functions of which are not entirely understood. These behaviors are elicited by a number of factors, including visual and chemical cues. Chemical cues include a maleproduced volatile semiochemical acting as a long-range sex pheromone, a femaleproduced cuticular hydrocarbon...

  10. A synthetic sex pheromone for the large aspen tortrix in Alaska.

    Treesearch

    Richard A. Werner; J. Weatherston

    1980-01-01

    Cis-11-tetradecenal was found to be the specific attractant for adult male large aspen tortrix, Choristoneura conflictana (Walker), populations in quaking aspen, Populus tremuloides Michx., forests of interior Alaska. The attractant was dispersed from polyethylene caps in Pherocon® -2 traps placed 1.5 m above ground.

  11. Combined use of herbivore-induced plant volatiles and sex pheromones for mate location in braconid parasitoids

    USDA-ARS?s Scientific Manuscript database

    Herbivore-induced plant volatiles (HIPVs) are important cues for female parasitic wasps to find hosts. Here, we investigated the possibility that HIPVs may also serve parasitoids as cues to locate mates. To test this, the odor preferences of four braconid wasps – the gregarious parasitoid Cotesia gl...

  12. CRISPR/Cas9 editing of the codling moth (Lepidoptera: Tortricidae) CpomOR1 gene affects egg production and viability

    USDA-ARS?s Scientific Manuscript database

    The codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), is a major pest of pome fruit worldwide. The inclusion of semiochemicals, including the main sex pheromone (codlemone), in codling moth IPM programs has drastically reduced the amount of chemical insecticides needed to control this ...

  13. Monitoring Oriental Fruit Moth (Lepidoptera: Tortricidae) and Peach Twig Borer (Lepidoptera: Gelechiidae) with Clear Delta-shaped Traps

    USDA-ARS?s Scientific Manuscript database

    Field studies evaluated the relative performance of a clear versus several colored delta traps baited with sex pheromone or a food bait for two key moth pests of stone fruits: oriental fruit moth, Graphollita molesta (Busck); and peach twig borer, Anarsia lineatella Zeller. Preliminary studies found...

  14. Trapping female Pandemis limitata (Lepidoptera: Tortricidae) moths with mixtures of acetic acid, benzenoid apple leaf volatiles, and sex pheromones

    USDA-ARS?s Scientific Manuscript database

    Pandemis limitata (Robinson) is one of several leaf-feeding caterpillar pests of commercial tree-fruit crops in British Columbia. Recent discovery that European Pandemis spp. are attracted to lures containing acetic acid (AA) and caterpillar-induced benzenoid apple leaf volatiles, 2-phenylethanol a...

  15. Pheromones: isolation of male sex attractants from a female primate.

    PubMed

    Michael, R P; Keverne, E B; Bonsall, R W

    1971-05-28

    Fractionation of vaginal secretions from rhesus monkeys by partitioning and chromatographic procedures, combined with behavioral studies, demonstrates that short-chain aliphatic acids are responsible for stimulating the sexual behavior of males. Injection of estradiol into ovariectomized females increases the concentration of volatile acids in secretions which will then sexually stimulate these male primates.

  16. Dual role of preputial gland secretion and its major components in sex recognition of mice.

    PubMed

    Zhang, Jian-Xu; Liu, Ying-Juan; Zhang, Jin-Hua; Sun, Lixing

    2008-10-20

    This study was aimed at validating the sexual attractiveness of hexadecanol and hexadecyl acetate, two putative pheromone compounds, from preputial gland secretion of mice. These two compounds have been reported to be among the major components of preputial gland secretion in both sexes but higher in quantity in males than females. In this study, we show that castration suppressed the production of the two compounds, further suggesting their association with maleness. Adding preputial gland secretion and the synthetic analogs of the two compounds to castrated male urine at their physiological levels in intact males increased the attractiveness of castrated male urine to female mice, showing that the two compounds were indeed male pheromones. Furthermore, their sexual attractiveness disappeared upon removing the vomeronasal organs (VNOs) from female recipients. Replenishing castrated male urine with preputial gland secretion and the two compounds at their physiological levels in females increased the attractiveness of castrated male urine to males. Such a reversal of sexual attractiveness for hexadecanol and hexadecyl acetate suggests that they had opposing dual effects in sexual attractiveness in a dosage-dependent manner.

  17. NMR structure of navel orangeworm moth pheromone-binding protein (AtraPBP1): implications for pH-sensitive pheromone detection.

    PubMed

    Xu, Xianzhong; Xu, Wei; Rayo, Josep; Ishida, Yuko; Leal, Walter S; Ames, James B

    2010-02-23

    The navel orangeworm, Amyelois transitella (Walker), is an agricultural insect pest that can be controlled by disrupting male-female communication with sex pheromones, a technique known as mating disruption. Insect pheromone-binding proteins (PBPs) provide fast transport of hydrophobic pheromones through the aqueous sensillar lymph and promote sensitive delivery of pheromones to receptors. Here we present the three-dimensional structure of a PBP from A. transitella (AtraPBP1) in solution at pH 4.5 determined by nuclear magnetic resonance (NMR) spectroscopy. Pulsed-field gradient NMR diffusion experiments, multiangle light scattering, and (15)N NMR relaxation analysis indicate that AtraPBP1 forms a stable monomer in solution at pH 4.5 in contrast to forming mostly dimers at pH 7. The NMR structure of AtraPBP1 at pH 4.5 contains seven alpha-helices (alpha1, L8-L23; alpha2, D27-F36; alpha3, R46-V62; alpha4, A73-M78; alpha5, D84-S100; alpha6, R107-L125; alpha7, M131-E141) that adopt an overall main-chain fold similar to that of PBPs found in Antheraea polyphemus and Bombyx mori. The AtraPBP1 structure is stabilized by three disulfide bonds formed by C19/C54, C50/C108, and C97/C117 and salt bridges formed by H69/E60, H70/E57, H80/E132, H95/E141, and H123/D40. All five His residues are cationic at pH 4.5, whereas H80 and H95 become neutral at pH 7.0. The C-terminal helix (alpha7) contains hydrophobic residues (M131, V133, V134, V135, V138, L139, and A140) that contact conserved residues (W37, L59, A73, F76, A77, I94, V111, and V115) suggested to interact with bound pheromone. Our NMR studies reveal that acid-induced formation of the C-terminal helix at pH 4.5 is triggered by a histidine protonation switch that promotes rapid release of bound pheromone under acidic conditions.

  18. The Metathoracic Scent Gland of the Leaf-Footed Bug, Leptoglossus zonatus

    PubMed Central

    Gonzaga-Segura, J.; Valdez-Carrasco, J.; Castrejón-Gómez, V. R.

    2013-01-01

    The metathoracic scent gland of 25-day-old adults of both sexes of the leaf-footed bug, Leptoglossus zonatus (Dallas) (Heteroptera: Coreidae), are described based on optical microscopy analysis. No sexual dimorphism was observed in the glandular composition of this species. The gland is located in the anteroventral corner of the metathoracic pleura between the middle and posterior coxal pits. The opening to the outside of the gland is very wide and permanently open as it lacks a protective membrane. In the internal part, there is a pair of metathoracic glands that consist of piles of intertwined and occasionally bifurcated cellular tubes or columns. These glands discharge their pheromonal contents into the reservoir through a narrow cuticular tube. The reservoir connects with the vestibule via two opposite and assembled cuticular folds that can separate muscularly in order to allow the flow of liquid away from the insect. The external part consists of an ostiole from which the pheromone is emitted. The ostiole is surrounded by a peritreme, a structure that aids optimum pheromone dispersion. The described gland is of the omphalien type. PMID:24773315

  19. Brain response to putative pheromones in lesbian women

    PubMed Central

    Berglund, Hans; Lindström, Per; Savic, Ivanka

    2006-01-01

    The progesterone derivative 4,16-androstadien-3-one (AND) and the estrogen-like steroid estra-1,3,5(10),16-tetraen-3-ol (EST) are candidate compounds for human pheromones. In previous positron emission tomography studies, we found that smelling AND and EST activated regions primarily incorporating the sexually dimorphic nuclei of the anterior hypothalamus, that this activation was differentiated with respect to sex and compound, and that homosexual men processed AND congruently with heterosexual women rather than heterosexual men. These observations indicate involvement of the anterior hypothalamus in physiological processes related to sexual orientation in humans. We expand the information on this issue in the present study by performing identical positron emission tomography experiments on 12 lesbian women. In contrast to heterosexual women, lesbian women processed AND stimuli by the olfactory networks and not the anterior hypothalamus. Furthermore, when smelling EST, they partly shared activation of the anterior hypothalamus with heterosexual men. These data support our previous results about differentiated processing of pheromone-like stimuli in humans and further strengthen the notion of a coupling between hypothalamic neuronal circuits and sexual preferences. PMID:16705035

  20. The effect of queen pheromone status on Varroa mite removal from honey bee colonies with different grooming ability.

    PubMed

    Bahreini, Rassol; Currie, Robert W

    2015-07-01

    The objective of this study was to assess the effects of honey bees (Apis mellifera L.) with different grooming ability and queen pheromone status on mortality rates of Varroa mites (Varroa destructor Anderson and Trueman), mite damage, and mortality rates of honey bees. Twenty-four small queenless colonies containing either stock selected for high rates of mite removal (n = 12) or unselected stock (n = 12) were maintained under constant darkness at 5 °C. Colonies were randomly assigned to be treated with one of three queen pheromone status treatments: (1) caged, mated queen, (2) a synthetic queen mandibular pheromone lure (QMP), or (3) queenless with no queen substitute. The results showed overall mite mortality rate was greater in stock selected for grooming than in unselected stock. There was a short term transitory increase in bee mortality rates in selected stock when compared to unselected stock. The presence of queen pheromone from either caged, mated queens or QMP enhanced mite removal from clusters of bees relative to queenless colonies over short periods of time and increased the variation in mite mortality over time relative to colonies without queen pheromone, but did not affect the proportion of damaged mites. The effects of source of bees on mite damage varied with time but damage to mites was not reliably related to mite mortality. In conclusion, this study showed differential mite removal of different stocks was possible under low temperature. Queen status should be considered when designing experiments using bioassays for grooming response.

  1. Separating the attractant from the toxicant improves attract-and-kill of codling moth (Lepidoptera: Tortricidae).

    PubMed

    Huang, Juan; Gut, Larry J; Miller, James R

    2013-10-01

    The behavior of codling moth, Cydia pomonella (L.), responding to three attract-and-kill devices was compared in flight tunnel experiments measuring attraction and duration of target contact. Placing a 7.6 by 12.6 cm card immediately upwind of a rubber septum releasing pheromone, dramatically increased the duration on the target to > 60 s. In this setting, nearly all the males flew upwind, landed on the card first, and spent the majority of time searching the card. In contrast, male codling moths spent < 15 s at the source if given the lure only. In a forced contact bioassay, knockdown rate or mortality of male codling moths increased in direct proportion to duration of contact on a lambda-cyhalothrin-loaded filter paper. When this insecticide-treated paper was placed immediately upwind of the lure in the flight tunnel, > 90% of males contacting the paper were knocked down 2 h after voluntary exposure. These findings suggest that past attempts to combine insecticide directly with sex pheromones into a small paste, gel, or other forms of dollops are ill-advised because moths are likely over-exposed to pheromone and vacate the target before obtaining a lethal dose of insecticide. It is better to minimize direct contact with the concentrated pheromone while enticing males to extensively search insecticide-treated surface nearby the lure.

  2. Loss of Drosophila pheromone reverses its role in sexual communication in Drosophila suzukii

    PubMed Central

    Dekker, Teun; Revadi, Santosh; Mansourian, Suzan; Ramasamy, Sukanya; Lebreton, Sebastien; Becher, Paul G.; Angeli, Sergio; Rota-Stabelli, Omar; Anfora, Gianfranco

    2015-01-01

    The Drosophila pheromone cis-11-octadecenyl acetate (cVA) is used as pheromone throughout the melanogaster group and fulfils a primary role in sexual and social behaviours. Here, we found that Drosophila suzukii, an invasive pest that oviposits in undamaged ripe fruit, does not produce cVA. In fact, its production site, the ejaculatory bulb, is atrophied. Despite loss of cVA production, its receptor, Or67d, and cognate sensillum, T1, which are essential in cVA-mediated behaviours, were fully functional. However, T1 expression was dramatically reduced in D. suzukii, and the corresponding antennal lobe glomerulus, DA1, minute. Behavioural responses to cVA depend on the input balance of Or67d neurons (driving cVA-mediated behaviours) and Or65a neurons (inhibiting cVA-mediated behaviours). Accordingly, the shifted input balance in D. suzukii has reversed cVA's role in sexual behaviour: perfuming D. suzukii males with Drosophila melanogaster equivalents of cVA strongly reduced mating rates. cVA has thus evolved from a generic sex pheromone to a heterospecific signal that disrupts mating in D. suzukii, a saltational shift, mediated through offsetting the input balance that is highly conserved in congeneric species. This study underlines that dramatic changes in a species' sensory preference can result from rather ‘simple’ numerical shifts in underlying neural circuits. PMID:25716789

  3. Characteristic odor of Osmoderma eremita identified as a male-released pheromone.

    PubMed

    Larsson, Mattias C; Hedin, Jonas; Svensson, Glenn P; Tolasch, Till; Francke, Wittko

    2003-03-01

    Osmoderma eremita (Scopoli) is an endangered scarab beetle living in hollow trees. It has mainly been known for its characteristic odor, typically described as a fruity, peachlike or plumlike aroma. The odor emanating from a single beetle can sometimes be perceived from a distance of several meters. In this paper, we show that the characteristic odor from O. eremita is caused by the compound (R)-(+)-gamma-decalactone, released in large quantities mainly or exclusively by male beetles. Antennae from male and female beetles responded in a similar way to (R)-(+)-gamma-decalactone in electroantennographic recordings. Field trapping experiments showed that (R)-(+)-gamma-decalactone is a pheromone attracting female beetles. Lactones similar to (R)-(+)-gamma-decalactone are frequently used as female-released sex pheromones by phytophagous scarabs. This is, however, the first evidence of a lactone used as a male-produced pheromone in scarab beetles. We propose that the strong signal from males is a sexually selected trait used to compete for females and matings. The signal could work within trees but also act as a guide to tree hollows, which are an essential resource for O. eremita. Males may, thus, attract females dispersing from their natal tree by advertising a suitable habitat. This signal could also be exploited by other males searching for tree hollows or for females, which would explain the catch of several males in our traps.

  4. Novel sex cells and evidence for sex pheromones in diatoms.

    PubMed

    Sato, Shinya; Beakes, Gordon; Idei, Masahiko; Nagumo, Tamotsu; Mann, David G

    2011-01-01

    Diatoms belong to the stramenopiles, one of the largest groups of eukaryotes, which are primarily characterized by a presence of an anterior flagellum with tubular mastigonemes and usually a second, smooth flagellum. Based on cell wall morphology, diatoms have historically been divided into centrics and pennates, of which only the former have flagella and only on the sperm. Molecular phylogenies show the pennates to have evolved from among the centrics. However, the timing of flagellum loss--whether before the evolution of the pennate lineage or after--is unknown, because sexual reproduction has been so little studied in the 'araphid' basal pennate lineages, to which Pseudostaurosira belongs. Sexual reproduction of an araphid pennate, Pseudostaurosira trainorii, was studied with light microscopy (including time lapse observations and immunofluorescence staining observed under confocal scanning laser microscopy) and SEM. We show that the species produces motile male gametes. Motility is mostly associated with the extrusion and retrieval of microtubule-based 'threads', which are structures hitherto unknown in stramenopiles, their number varying from one to three per cell. We also report experimental evidence for sex pheromones that reciprocally stimulate sexualization of compatible clones and orientate motility of the male gametes after an initial 'random walk'. The threads superficially resemble flagella, in that both are produced by male gametes and contain microtubules. However, one striking difference is that threads cannot beat or undulate and have no motility of their own, and they do not bear mastigonemes. Threads are sticky and catch and draw objects, including eggs. The motility conferred by the threads is probably crucial for sexual reproduction of P. trainorii, because this diatom is non-motile in its vegetative stage but obligately outbreeding. Our pheromone experiments are the first studies in which gametogenesis has been induced in diatoms by cell-free exudates, opening new possibilities for molecular 'dissection' of sexualization.

  5. The Orphan Gene dauerless Regulates Dauer Development and Intraspecific Competition in Nematodes by Copy Number Variation

    PubMed Central

    Mayer, Melanie G.; Rödelsperger, Christian; Witte, Hanh; Riebesell, Metta; Sommer, Ralf J.

    2015-01-01

    Many nematodes form dauer larvae when exposed to unfavorable conditions, representing an example of phenotypic plasticity and a major survival and dispersal strategy. In Caenorhabditis elegans, the regulation of dauer induction is a model for pheromone, insulin, and steroid-hormone signaling. Recent studies in Pristionchus pacificus revealed substantial natural variation in various aspects of dauer development, i.e. pheromone production and sensing and dauer longevity and fitness. One intriguing example is a strain from Ohio, having extremely long-lived dauers associated with very high fitness and often forming the most dauers in response to other strains´ pheromones, including the reference strain from California. While such examples have been suggested to represent intraspecific competition among strains, the molecular mechanisms underlying these dauer-associated patterns are currently unknown. We generated recombinant-inbred-lines between the Californian and Ohioan strains and used quantitative-trait-loci analysis to investigate the molecular mechanism determining natural variation in dauer development. Surprisingly, we discovered that the orphan gene dauerless controls dauer formation by copy number variation. The Ohioan strain has one dauerless copy causing high dauer formation, whereas the Californian strain has two copies, resulting in strongly reduced dauer formation. Transgenic animals expressing multiple copies do not form dauers. dauerless is exclusively expressed in CAN neurons, and both CAN ablation and dauerless mutations increase dauer formation. Strikingly, dauerless underwent several duplications and acts in parallel or downstream of steroid-hormone signaling but upstream of the nuclear-hormone-receptor daf-12. We identified the novel or fast-evolving gene dauerless as inhibitor of dauer development. Our findings reveal the importance of gene duplications and copy number variations for orphan gene function and suggest daf-12 as major target for dauer regulation. We discuss the consequences of the novel vs. fast-evolving nature of orphans for the evolution of developmental networks and their role in natural variation and intraspecific competition. PMID:26087034

  6. The Orphan Gene dauerless Regulates Dauer Development and Intraspecific Competition in Nematodes by Copy Number Variation.

    PubMed

    Mayer, Melanie G; Rödelsperger, Christian; Witte, Hanh; Riebesell, Metta; Sommer, Ralf J

    2015-06-01

    Many nematodes form dauer larvae when exposed to unfavorable conditions, representing an example of phenotypic plasticity and a major survival and dispersal strategy. In Caenorhabditis elegans, the regulation of dauer induction is a model for pheromone, insulin, and steroid-hormone signaling. Recent studies in Pristionchus pacificus revealed substantial natural variation in various aspects of dauer development, i.e. pheromone production and sensing and dauer longevity and fitness. One intriguing example is a strain from Ohio, having extremely long-lived dauers associated with very high fitness and often forming the most dauers in response to other strains' pheromones, including the reference strain from California. While such examples have been suggested to represent intraspecific competition among strains, the molecular mechanisms underlying these dauer-associated patterns are currently unknown. We generated recombinant-inbred-lines between the Californian and Ohioan strains and used quantitative-trait-loci analysis to investigate the molecular mechanism determining natural variation in dauer development. Surprisingly, we discovered that the orphan gene dauerless controls dauer formation by copy number variation. The Ohioan strain has one dauerless copy causing high dauer formation, whereas the Californian strain has two copies, resulting in strongly reduced dauer formation. Transgenic animals expressing multiple copies do not form dauers. dauerless is exclusively expressed in CAN neurons, and both CAN ablation and dauerless mutations increase dauer formation. Strikingly, dauerless underwent several duplications and acts in parallel or downstream of steroid-hormone signaling but upstream of the nuclear-hormone-receptor daf-12. We identified the novel or fast-evolving gene dauerless as inhibitor of dauer development. Our findings reveal the importance of gene duplications and copy number variations for orphan gene function and suggest daf-12 as major target for dauer regulation. We discuss the consequences of the novel vs. fast-evolving nature of orphans for the evolution of developmental networks and their role in natural variation and intraspecific competition.

  7. Determination of the Relative and Absolute Configurations of the Female-produced Sex Pheromone of the Cerambycid Beetle Prionus californicus

    PubMed Central

    Rodstein, Joshua; Barbour, James D.; McElfresh, J. Steven; Wright, Ian M.; Barbour, Karen S.; Ray, Ann M.; Hanks, Lawrence M.

    2010-01-01

    We previously identified the basic structure of the female-produced sex attractant pheromone of the cerambycid beetle, Prionus californicus Motschulsky (Cerambycidae: Prioninae), as 3,5-dimethyldodecanoic acid. A synthesized mixture of the four stereoisomers of 3,5-dimethyldodecanoic acid was highly attractive to male beetles. Here, we describe stereoselective syntheses of three of the four possible stereoisomers, and the results of laboratory and field bioassays showing that male beetles are attracted specifically to (3R,5S)-3,5-dimethyldodecanoic acid, but not to its enantiomer, (3S,5R)-3,5-dimethyldodecanoic acid, indicating that the (3R,5S)-enantiomer is the active pheromone component. The diastereomeric (3R,5R)- and (3S,5S)-enantiomers were excluded from consideration because their gas chromatographic retention times were different from that of the insect-produced compound. The mixture of the four stereoisomers of 3,5-dimethyldodecanoic acid was as attractive to male P. californicus as the (3R,5S)-enantiomer, indicating that none of the other three stereoisomers inhibited responses to the active enantiomer. Beetles responded to as little as 10 ng and 10 μg of synthetic 3,5-dimethyldodecanoic acid in laboratory and field studies, respectively. Field studies indicated that capture rate did not increase with dosages of 3,5-dimethyldodecanoic acid greater than 100 μg. In field bioassays, males of a congeneric species, P. lecontei Lameere, were captured in southern California but not in Idaho. PMID:21127949

  8. A simple, cost-effective emitter for controlled release of fish pheromones: development, testing, and application to management of the invasive sea lamprey

    USGS Publications Warehouse

    Wagner, Michael C.; Hanson, James E.; Meckley, Trevor D.; Johnson, Nicholas; Bals, Jason D.

    2018-01-01

    Semiochemicals that elicit species-specific attraction or repulsion have proven useful in the management of terrestrial pests and hold considerable promise for control of nuisance aquatic species, particularly invasive fishes. Because aquatic ecosystems are typically large and open, use of a semiochemical to control a spatially dispersed invader will require the development of a cost-effective emitter that is easy to produce, environmentally benign, inexpensive, and controls the release of the semiochemical without altering its structure. We examined the release properties of five polymers, and chose polyethylene glycol (PEG) as the best alternative. In a series of laboratory and field experiments, we examined the response of the invasive sea lamprey to PEG, and to a partial sex pheromone emitted from PEG that has proven effective as a trap bait to capture migrating sea lamprey prior to spawning. Our findings confirm that the sea lamprey does not behaviorally respond to PEG, and that the attractant response to the pheromone component was conserved when emitted from PEG. Further, we deployed the pheromone-PEG emitters as trap bait during typical control operations in three Great Lakes tributaries, observing similar improvements in trap performance when compared to a previous study using mechanically pumped liquid pheromone. Finally, the polymer emitters tended to dissolve unevenly in high flow conditions. We demonstrate that housing the emitter stabilizes the dissolution rate at high water velocity. We conclude the performance characteristics of PEG emitters to achieve controlled-release of a semiochemical are sufficient to recommend its use in conservation and management activities related to native and invasive aquatic organisms.

  9. A direct main olfactory bulb projection to the ‘vomeronasal’ amygdala in female mice selectively responds to volatile pheromones from males

    PubMed Central

    Kang, Ningdong; Baum, Michael J.; Cherry, James A.

    2009-01-01

    The main olfactory system, like the accessory olfactory system, responds to pheromones involved in social communication. Whereas pheromones detected by the accessory system are transmitted to the hypothalamus via the medial (‘vomeronasal’) amygdala, the pathway by which pheromones are detected and transmitted by the main system is not well understood. We examined in female mice whether a direct projection from mitral/tufted (M/T) cells in the main olfactory bulb (MOB) to the medial amygdala exists, and whether medial amygdala-projecting M/T cells are activated by volatile urinary odors from conspecifics or a predator (cat). Simultaneous anterograde tracing using Phaseolus vulgaris leucoagglutinin and Fluoro-Ruby placed in the MOB and accessory olfactory bulb (AOB), respectively, revealed that axons of MOB M/T cells projected to superficial laminae of layer Ia in anterior and posterodorsal subdivisions of the medial amygdala, whereas projection neurons from the AOB sent axons to non-overlapping, deeper layer Ia laminae of the same subdivisions. Placement of the retrograde tracer cholera toxin B into the medial amygdala labeled M/T cells that were concentrated in the ventral MOB. Urinary volatiles from male mice, but not from female conspecifics or cat, induced Fos in medial amygdala-projecting MOB M/T cells of female subjects, suggesting that information about male odors is transmitted directly from the MOB to the ‘vomeronasal’ amygdala. The presence of a direct MOB-to-medial amygdala pathway in mice and other mammals could enable volatile, opposite-sex pheromones to gain privileged access to diencephalic structures that control mate recognition and reproduction. PMID:19187265

  10. Electrophysiological and behavioral responses of oriental fruit moth to the monoterpenoid citral alone and in combination with sex pheromone.

    PubMed

    Faraone, N; D'Errico, G; Caleca, V; Cristofaro, A De; Trimble, R M

    2013-04-01

    The monoterpenoid citral synergized the electroantennogram (EAG) response of male Grapholita molesta (Busck) antennae to its main pheromone compound Z8-12:OAc. The response to a 10-μg pheromone stimulus increased by 32, 45, 54, 71 and 94% with the addition of 0.1, 1, 10, 100 and 1,000 μg of citral, respectively. There was no detectable response to 0.1, 1, or 10 μg of citral; the response to 100 and 1,000 μg of citral was 31 and 79% of the response to 10 μg of Z8-12:OAc. In a flight tunnel, citral affected the mate-seeking behavior of males. There was a 66% reduction in the number of males orientating by flight to a virgin calling female when citral was emitted at 1,000 ng/min ≍1 cm downwind from a female. Pheromone and citral induced sensory adaptation in male antennae, but citral did not synergize the effect of pheromone. The exposure of antennae to 1 ng Z8-12:OAc/m(3) air, 1 ng citral/m3 air, 1 ng Z8-12:OAc + 1 ng citral/m3 air, or to 1 ng Z8-12:OAc + 100 ng citral/m3 air for 15 min resulted in a similar reduction in EAG response of 47-63%. The exposure of males to these same treatments for 15 min had no effect on their ability to orientate to a virgin calling female in a flight tunnel. The potential for using citral to control G. molesta by mating disruption is discussed.

  11. Pheromones of three ambrosia beetles in the Euwallacea fornicatus species complex: ratios and preferences

    PubMed Central

    Cossé, Allard A.; Jones, Tappey H.; Carrillo, Daniel; Cleary, Kaitlin; Canlas, Isaiah; Stouthamer, Richard

    2017-01-01

    Three cryptic species in the Euwallacea fornicatus species complex were reared in laboratory colonies and investigated for the presence of pheromones. Collections of volatiles from combinations of diet, fungus, beetles, and galleries from polyphagous shot hole borer (Euwallacea sp. #1) revealed the presence of 2-heneicosanone and 2-tricosanone only in the presence of beetles, regardless of sex. Subsequent examination of volatiles from the other two species, tea shot hole borer (Euwallacea sp. #2) and Kuroshio shot hole borer (Euwallacea sp. #5), revealed these two ketones were present in all three species but in different ratios. In dual choice olfactometer behavioral bioassays, mature mated females were strongly attracted to a synthetic binary blend of ketones matching their own natural ratios. However, females in each species were repelled by ketone blends in ratios corresponding to the other two species. Males of each species responded similarly to females when presented with ratios matching their own or the other two species. The presence of these compounds in the three beetle species, in ratios unique to each species, and their strong species-specific attraction and repellency, suggests they are pheromones. The ecological function of these pheromones is discussed. In addition to the pheromones, the previously known attractant (1S,4R)-p-menth-2-en-1-ol (also known as quercivorol) was discovered in the presence of the fungal symbionts, but not in association with the beetles. Quercivorol was tested in a dual-choice olfactometer and was strongly attractive to all three species. This evidence suggests quercivorol functions as a kairomone for members of the E. fornicatus species complex, likely produced by the symbiotic fungi. PMID:29085754

  12. A simple, cost-effective emitter for controlled release of fish pheromones: Development, testing, and application to management of the invasive sea lamprey

    PubMed Central

    Meckley, Trevor D.; Johnson, Nicholas S.; Bals, Jason D.

    2018-01-01

    Semiochemicals that elicit species-specific attraction or repulsion have proven useful in the management of terrestrial pests and hold considerable promise for control of nuisance aquatic species, particularly invasive fishes. Because aquatic ecosystems are typically large and open, use of a semiochemical to control a spatially dispersed invader will require the development of a cost-effective emitter that is easy to produce, environmentally benign, inexpensive, and controls the release of the semiochemical without altering its structure. We examined the release properties of five polymers, and chose polyethylene glycol (PEG) as the best alternative. In a series of laboratory and field experiments, we examined the response of the invasive sea lamprey to PEG, and to a partial sex pheromone emitted from PEG that has proven effective as a trap bait to capture migrating sea lamprey prior to spawning. Our findings confirm that the sea lamprey does not behaviorally respond to PEG, and that the attractant response to the pheromone component was conserved when emitted from PEG. Further, we deployed the pheromone-PEG emitters as trap bait during typical control operations in three Great Lakes tributaries, observing similar improvements in trap performance when compared to a previous study using mechanically pumped liquid pheromone. Finally, the polymer emitters tended to dissolve unevenly in high flow conditions. We demonstrate that housing the emitter stabilizes the dissolution rate at high water velocity. We conclude the performance characteristics of PEG emitters to achieve controlled-release of a semiochemical are sufficient to recommend its use in conservation and management activities related to native and invasive aquatic organisms. PMID:29897927

  13. A simple, cost-effective emitter for controlled release of fish pheromones: Development, testing, and application to management of the invasive sea lamprey.

    PubMed

    Wagner, C Michael; Hanson, James E; Meckley, Trevor D; Johnson, Nicholas S; Bals, Jason D

    2018-01-01

    Semiochemicals that elicit species-specific attraction or repulsion have proven useful in the management of terrestrial pests and hold considerable promise for control of nuisance aquatic species, particularly invasive fishes. Because aquatic ecosystems are typically large and open, use of a semiochemical to control a spatially dispersed invader will require the development of a cost-effective emitter that is easy to produce, environmentally benign, inexpensive, and controls the release of the semiochemical without altering its structure. We examined the release properties of five polymers, and chose polyethylene glycol (PEG) as the best alternative. In a series of laboratory and field experiments, we examined the response of the invasive sea lamprey to PEG, and to a partial sex pheromone emitted from PEG that has proven effective as a trap bait to capture migrating sea lamprey prior to spawning. Our findings confirm that the sea lamprey does not behaviorally respond to PEG, and that the attractant response to the pheromone component was conserved when emitted from PEG. Further, we deployed the pheromone-PEG emitters as trap bait during typical control operations in three Great Lakes tributaries, observing similar improvements in trap performance when compared to a previous study using mechanically pumped liquid pheromone. Finally, the polymer emitters tended to dissolve unevenly in high flow conditions. We demonstrate that housing the emitter stabilizes the dissolution rate at high water velocity. We conclude the performance characteristics of PEG emitters to achieve controlled-release of a semiochemical are sufficient to recommend its use in conservation and management activities related to native and invasive aquatic organisms.

  14. Comparing mating disruption of codling moth with standard and meso dispensers loaded with pear ester and codlemone

    USDA-ARS?s Scientific Manuscript database

    Studies were conducted with hand-applied combo dispensers loaded with the sex pheromone (E,E)-8,10-dodecadien-1-ol (codlemone), and the pear volatile, (E,Z)-2,4-decadienoate (pear ester) for control of codling moth, Cydia pomonella (L.) in apple, Malus domestica Bordkhausen during 2012. Two types of...

  15. Sex-specific trail pheromone mediates complex mate finding behavior in Anoplophora glabripennis

    Treesearch

    Kelli Hoover; Melody Keena; Maya Nehme; Shifa Wang; Peter Meng; Aijun Zhang

    2014-01-01

    Anoplophora glabripennis (Motsch.) is a polyphagous member of the Cerambycidae, and is considered, worldwide, to be one of the most serious quarantine pests of deciduous trees. We isolated four chemicals from the trail of A. glabripennis virgin and mated females that were not present in trails of mature males. These compounds were...

  16. Olfactometer responses of plum curculio Conotrachelus nenuphar (Herbst) (Coleoptera: Curculionidae) to host plant volatiles, synthetic grandisoic acid, and live conspecifics

    USDA-ARS?s Scientific Manuscript database

    The plum curculio Conotrachelus nenuphar (Herbst) (Coleoptera: Curculionidae) is a major pest of pome and stone fruit, but will also attack other fruits. Males produce the aggregation pheromone grandisoic acid; emitting only the (+)- enantiomer which is attractive to both sexes of the univoltine an...

  17. Evaluating dispensers loaded with codlemone and pear ester for disruption of codling moth (Lepidoptera: Tortricidae)

    USDA-ARS?s Scientific Manuscript database

    Polyvinyl chloride polymer (pvc) dispensers loaded with ethyl (E,Z)-2,4-decadienoate (pear ester) plus the sex pheromone, (E,E)-8,10-dodecadien-1-ol (codlemone) of codling moth, Cydia pomonella (L.), were compared with similar dispensers and a commercial dispenser (Isomate®-C Plus) loaded with codle...

  18. E-Myrcenol: A New Pheromone for the Pine Engraver, Ips Pini (Say) (Coleoptera: Scolytidae)

    Treesearch

    D.R. Miller; G. Gries; J.H. Borden

    1990-01-01

    E-Myrcenol reduced catches of the pine engraver, Ips pini (Say), to ipsdienol-baited, multiple-funnel traps in a dose-dependent fashion. The sex ratio was unaffected by E-myrcenol treatments. Lures containing E-myrcenol in ethanol solution failed to protect freshly cut logs of lodgepole pine from attack by

  19. Functional role of STIM1 and Orai1 in silkmoth (Bombyx mori) sex pheromone production

    USDA-ARS?s Scientific Manuscript database

    Store-operated Ca2+ influx has recently been shown to require the activation of two proteins, stromal interaction molecule 1(STIM1) and Orai1. In mammals the putative channel ion selectivity filter is thought to comprise conserved charged residues in the first and third transmembrane domains of Ora...

  20. Bibliography on Fouling, Biodeterioration and their Control.

    DTIC Science & Technology

    1981-06-01

    Related Compounds as Anti-Borer, Anti-Fungal, and Anti- Termitic Agents" Intl. Biodet. Bull. Vol. 15, No. 1, pp 19-27 (1979) R-6 82. Burnett, R. F. "Modern...Controlled Release of a Crustacean Sex Pheromone . Amer. Zool. Vol. 14, No. 4, p 1266 (1974) 117. Chromy, L. and K. Uhacz, "Antifouling Paints Based on

  1. Interaction of cellular and network mechanisms for efficient pheromone coding in moths.

    PubMed

    Belmabrouk, Hana; Nowotny, Thomas; Rospars, Jean-Pierre; Martinez, Dominique

    2011-12-06

    Sensory systems, both in the living and in machines, have to be optimized with respect to their environmental conditions. The pheromone subsystem of the olfactory system of moths is a particularly well-defined example in which rapid variations of odor content in turbulent plumes require fast, concentration-invariant neural representations. It is not clear how cellular and network mechanisms in the moth antennal lobe contribute to coding efficiency. Using computational modeling, we show that intrinsic potassium currents (I(A) and I(SK)) in projection neurons may combine with extrinsic inhibition from local interneurons to implement a dual latency code for both pheromone identity and intensity. The mean latency reflects stimulus intensity, whereas latency differences carry concentration-invariant information about stimulus identity. In accordance with physiological results, the projection neurons exhibit a multiphasic response of inhibition-excitation-inhibition. Together with synaptic inhibition, intrinsic currents I(A) and I(SK) account for the first and second inhibitory phases and contribute to a rapid encoding of pheromone information. The first inhibition plays the role of a reset to limit variability in the time to first spike. The second inhibition prevents responses of excessive duration to allow tracking of intermittent stimuli.

  2. Female sex pheromone secreted by Carmenta mimosa (Lepidoptera: Sesiidae), a biological control agent for an invasive weed in Vietnam.

    PubMed

    Vang, Le Van; Khanh, Chau Nguyen Quoc; Shibasaki, Hiroshi; Ando, Tetsu

    2012-01-01

    Larvae of the clearwing moth, Carmenta mimosa (Lepidoptera: Sesiidae), bore into the trunk of Mimosa pigra L., which is one of the most invasive weeds in Vietnam. GC-EAD and GC-MS analyses of a pheromone gland extract revealed that the female moths produced (3Z,13Z)-3,13-octadecadienyl acetate. A lure baited with the synthetic acetate alone successfully attracted C. mimosa males in a field test. While the addition of a small amount of the corresponding alcohol did not strongly diminish the number of captured males, a trace of the aldehyde derivative or the (3E,13Z)-isomer markedly inhibited the attractiveness of the acetate. The diurnal males were mainly attracted from 6:00 am to 12:00 am.

  3. Evidence for volatile male-produced pheromone in banana weevilCosmopolites sordidus.

    PubMed

    Budenberg, W J; Ndiege, I O; Karago, F W

    1993-09-01

    Females of the banana weevil,Cosmopolites sordidus, were attracted to and made longer visits to live conspecific males, trapped volatiles from males, and dissected male hindguts in a still-air olfactometer. Male weevils were attracted to volatiles trapped from males and made longer visits to live males and volatiles from males. Live females, collected volatiles from females and female hindguts, elicited small or no behavioral responses from either sex. Electroantennogram (EAG) responses from both male and female antennae were elicited by collected volatiles from males and by dichloromethane extracts of male hindguts and bodies but not by surface washes of males. No significant EAG responses were given to equivalent material from females. It is therefore suggested that male banana weevils release an aggregation pheromone via their hindgut.

  4. Olfactory sensitivity of Pacific Lampreys to lamprey bile acids

    USGS Publications Warehouse

    Robinson, T. Craig; Sorensen, Peter W.; Bayer, Jennifer M.; Seelye, James G.

    2009-01-01

    Pacific lampreys Lampetra tridentata are in decline throughout much of their historical range in the Columbia River basin. In support of restoration efforts, we tested whether larval and adult lamprey bile acids serve as migratory and spawning pheromones in adult Pacific lampreys, as they do in sea lampreys Petromyzon marinus. The olfactory sensitivity of adult Pacific lampreys to lamprey bile acids was measured by electro-olfactogram recording from the time of their capture in the spring until their spawning in June of the following year. As controls, we tested L-arginine and a non-lamprey bile acid, taurolithocholic acid 3-sulfate (TLS). Migrating adult Pacific lampreys were highly sensitive to petromyzonol sulfate (a component of the sea lamprey migratory pheromone) and 3-keto petromyzonol sulfate (a component of the sea lamprey sex pheromone) when first captured. This sensitivity persisted throughout their long migratory and overwinter holding period before declining to nearly unmeasurable levels by the time of spawning. The absolute magnitudes of adult Pacific lamprey responses to lamprey bile acids were smaller than those of the sea lamprey, and unlike the sea lamprey, the Pacific lamprey did not appear to detect TLS. No sexual dimorphism was noted in olfactory sensitivity. Thus, Pacific lampreys are broadly similar to sea lampreys in showing sensitivity to the major lamprey bile acids but apparently differ in having a longer period of sensitivity to those acids. The potential utility of bile acid-like pheromones in the restoration of Pacific lampreys warrants their further investigation in this species.

  5. A juvenile mouse pheromone inhibits sexual behaviour through the vomeronasal system.

    PubMed

    Ferrero, David M; Moeller, Lisa M; Osakada, Takuya; Horio, Nao; Li, Qian; Roy, Dheeraj S; Cichy, Annika; Spehr, Marc; Touhara, Kazushige; Liberles, Stephen D

    2013-10-17

    Animals display a repertoire of different social behaviours. Appropriate behavioural responses depend on sensory input received during social interactions. In mice, social behaviour is driven by pheromones, chemical signals that encode information related to age, sex and physiological state. However, although mice show different social behaviours towards adults, juveniles and neonates, sensory cues that enable specific recognition of juvenile mice are unknown. Here we describe a juvenile pheromone produced by young mice before puberty, termed exocrine-gland secreting peptide 22 (ESP22). ESP22 is secreted from the lacrimal gland and released into tears of 2- to 3-week-old mice. Upon detection, ESP22 activates high-affinity sensory neurons in the vomeronasal organ, and downstream limbic neurons in the medial amygdala. Recombinant ESP22, painted on mice, exerts a powerful inhibitory effect on adult male mating behaviour, which is abolished in knockout mice lacking TRPC2, a key signalling component of the vomeronasal organ. Furthermore, knockout of TRPC2 or loss of ESP22 production results in increased sexual behaviour of adult males towards juveniles, and sexual responses towards ESP22-deficient juveniles are suppressed by ESP22 painting. Thus, we describe a pheromone of sexually immature mice that controls an innate social behaviour, a response pathway through the accessory olfactory system and a new role for vomeronasal organ signalling in inhibiting sexual behaviour towards young. These findings provide a molecular framework for understanding how a sensory system can regulate behaviour.

  6. Pheromone dispensers, including organic polymer fibers, described in the crop protection literature: comparison of their innovation potential.

    PubMed

    Hummel, Hans E; Langner, S S; Eisinger, M-T

    2013-01-01

    Pheromone dispensers, although known in a variety of different designs, are one of the few remaining technical bottlenecks along the way to a sustainable pheromone based strategy in integrated pest management (IPM). Mating disruption with synthetic pheromones is a viable pest management approach. Suitable pheromone dispensers for these mating disruption schemes, however, are lagging behind the general availability of pheromones. Specifically, there is a need for matching the properties of the synthetic pheromones, the release rates suitable for certain insect species, and the environmental requirements of specific crop management. The "ideal" dispenser should release pheromones at a constant but pre-adjustable rate, should be mechanically applicable, completely biodegradable and thus save the costs for recovering spent dispensers. These should be made from renewable, cheap organic material, be economically inexpensive, and be toxicologically and eco-toxicologically inert to provide satisfactory solutions for the needs of practicing growers. In favourable cases, they will be economically competitive with conventional pesticide treatments and by far superior in terms of environmental and eco-toxicological suitability. In the course of the last 40 years, mating disruption, a non-toxicological approach, provided proof for its potential in dozens of pest insects of various orders and families. Applications for IPM in many countries of the industrialized and developing world have been reported. While some dispensers have reached wide circulation, only few of the key performing parameters fit the above requirements ideally and must be approximated with some sacrifice in performance. A fair comparison of the innovation potential of currently available pheromone dispensers is attempted. The authors advance here the use of innovative electrospun organic fibers with dimensions in the "meso" (high nano- to low micrometer) region. Due to their unique multitude of adjustable parameters, they hold considerable promise for future pest control against a variety of pest insects. In combination with well known synthetic sex pheromones, they can be used for communication disruption studies. One example, the pheromone of the European grape vine moth Lobesia botrana (Lepidoptera: Tortricidae), in combination with Ecoflex fibers, has been thoroughly tested in vineyards of Freiburg, Southwest Germany, with promising results. Seven weeks of communication disruption have been achieved, long enough to cover any one of several flights of this multivoltine grape pest. Disruption effects of around 95% have been achieved which are statistically indistinguishable from positive controls tested simultaneously with Isonet LE fibers, while an untreated negative control is significantly different. Ecoflex is a cheap organic co-polyester and completely biodegradable within half a year. Thus, an extra recovery step as with some other dispensers is unnecessary. This co-polyester is also of proven non-toxicity. The extension of the seven week disruption period towards half a year (the entire duration of all 3 Lobesia flights combined) is desirable and is under additional investigation in the near future. The discovery of suitable mesofibers is protected by European and US patents. The pheromone literature appearing between 1959 and today contains more than 25,000 references. This wealth of information is immediately applicable to pest management. It has major impacts on chemical ecology and IPM. In this paper, an attempt is made to compare the systems described in the literature and to derive some predictions about their prospective innovation potential. Special emphasis is given to the new development of organic biodegradable microfibers. To this end, a new electronic searching algorithm is introduced for reviewing the entries to be found in 4 specific databases. Its prominent features will be described. Surprisingly we found no previous entries in the literature linking pheromones with biodegradable organic polymer fibers whose diameters are in the dimension range of low micrometers and in the upper nanometer scale. In conclusion, the microfiber-pheromone combination must be considered as a novel approach whose virtues should be further explored for IPM in the near future.

  7. Monitoring oriental fruit moth (Lepidoptera: Tortricidae) with sticky traps baited with terpinyl acetate and sex pheromone

    USDA-ARS?s Scientific Manuscript database

    Studies in Argentina and Chile during 2010-11 evaluated a new trap (Ajar) for monitoring the oriental fruit moth, Grapholita molesta (Busck). The Ajar trap was delta-shaped with a jar filled with a terpinyl acetate plus brown sugar bait attached to the bottom center of the trap. The screened lid of ...

  8. Monitoring oriental fruit moth (Lepidoptera:Tortricidae) with the ajar bait trap in pome and stone fruit orchards under mating disruption

    USDA-ARS?s Scientific Manuscript database

    Studies in Oregon, California, Pennsylvania, and Italy evaluated the relative performance of the Ajar trap for Grapholita molesta (Busck), in pome and stone fruit orchards treated with sex pheromone dispensers for mating disruption. The Ajar is a delta-shaped trap with a screened jar filled with a t...

  9. Male Fishia yosemitae (Grote)(Lepidoptera: Noctuidae) captured in traps baited with (Z)-7-dodecenyl acetate and (Z)-9-tetradecenyl acetate

    USDA-ARS?s Scientific Manuscript database

    Traps baited with sex pheromone lures for the noctuid moths Chrysodeixis eriosoma (Doubleday) and Feltia jaculifera (Guenee) captured males of another noctuid moth Fishia yosemitae (Grote). These lures included both (Z)-7-dodecenyl acetate (Z7-12Ac) and (Z)-9-tetradecenyl acetate (Z9-14AC). When the...

  10. Mating disruption by aerial application of sex pheromone against the invasive light brown apple moth and implications for the management of biological invasions

    USDA-ARS?s Scientific Manuscript database

    Biological invasions resulting from international trade can have major ecological and economic impacts. Eradication can be a viable strategy during the early stage of an invasion but there is a need for the development of suitable tactics that are both effective and have minimal non-target effects. ...

  11. Factors Affecting Capture of the White Pine Cone Beetle, Conophthorus coniperda (Schwarz) (Col., Scolytidae) in Phermone Traps

    Treesearch

    Peter de Groot; Gary L. DeBarr

    1998-01-01

    The white pine cone beetle, Conophthorus coniperda, is a serious pest of seed orchards. The sex pheromone (+)-trans-pityol, (2R,5S)-2-(l-hydroxy-1-methylethyl)-S-methyltetrahydrofuran, shows considerable promise to manage the cone beetle populations in seed orchards. Our work confirms that pityol is an effective attractant to...

  12. CaMKII-MEDIATED PHOSPHORYLATION OF THE BOMBYX MORI LIPID STORAGE DROPLET PROTEIN-1 (BmLsd1), AN INSECT PAT FAMILY PROTEIN, IS ESSENTIAL FOR SILKMOTH SEX PHEROMONE BIOSYNTHESIS

    USDA-ARS?s Scientific Manuscript database

    The structurally-related members of the PAT family of proteins, which are so name based on similarity amongst perilipin, adipophilin/adipocyte differentiation-related protein (ADRP), and tail-interacting protein of 47 kilodaltons (TIP47), are cytoplasmic lipid droplet (LD)-associated proteins charac...

  13. Knockdown of a metathoracic scent gland desaturase enhances the production of (E)-4-oxo-2-hexenal and suppresses female sexual attraction in the plant bug, Adelphocoris suturalis

    USDA-ARS?s Scientific Manuscript database

    Insect sex pheromones (SPs) are central to mate-finding behavior, and play an essential role in the survival and reproduction of organisms. Understanding the roles, biosynthetic pathways, and evolution of insect chemical communication systems has been an exciting challenge for biologists. Compared w...

  14. Addition of pear ester enhances disruption of mating by female codling moth (Lepidoptera: Tortricidae) in walnut orchards treated with meso dispensers

    USDA-ARS?s Scientific Manuscript database

    The success of applying low rates (50 ha-1) of dispensers to achieve disruption of adult communication of codling moth, Cydia pomonella (L)., in walnuts, Juglans regia (L.),was evaluated with several methods. These included cumulative catches of male moths in traps baited with either sex pheromone (...

  15. Persistent effects of aerial applications of disparlure on gypsy moth: trap catch and mating success

    Treesearch

    Kevin W. Thorpe; Ksenia S. Tcheslavskaia; Patrick C. Tobin; Laura M. Blackburn; Donna S. Leonard; E. Anderson Roberts

    2007-01-01

    In forest plots treated aerially with a plastic laminated flake formulation (Disrupt® II) of the gypsy moth sex pheromone disparlure to disrupt gypsy moth, Lymantria dispar (L.) (Lepidoptera: Lymantriidae), mating was monitored the year of treatment and 1-2 years after treatment to determine the effects of the treatment on suppression of...

  16. Structural characterization of sulfated steroids that activate mouse pheromone-sensing neurons.

    PubMed

    Hsu, Fong-Fu; Nodari, Francesco; Kao, Lung-Fa; Fu, Xiaoyan; Holekamp, Terrence F; Turk, John; Holy, Timothy E

    2008-12-30

    In many species, social behavior is organized via chemical signaling. While many of these signals have been identified for insects, the chemical identity of these social cues (often called pheromones) for mammals is largely unknown. We recently isolated these chemical cues that caused firing in the pheromone-sensing neurons of the vomeronasal organ from female mouse urine [Nodari, F., et al. (2008) J. Neurosci. 28, 6407-6418]. Here, we report their structural characterization. Mass spectrometric approaches, including tandem quadrupole, multiple-stage linear ion trap, high-resolution mass spectrometry, and H-D exchange followed by ESI mass spectrometry, along with (1)H and (13)C nuclear magnetic resonance spectroscopy, including two-dimensional correlation spectroscopy, total correlation spectroscopy, heteronuclear multiple-quantum coherence, and NOE, were used to identify two sulfated steroids, 4-pregnene-11beta,20,21-triol-3-one 21-sulfate (I) (the configuration at C20 was not deduced) and 4-pregnene-11beta,21-diol-3,20-dione 21-sulfate (II), whose presence is sex-specific. The identification of this novel class of mammalian social signaling compounds suggests that steroid hormones, upon conjugation, assume a new biological role, conveying information about the organism's identity and physiological state.

  17. Pheromone responsiveness threshold depends on temporal integration by antennal lobe projection neurons

    PubMed Central

    Tabuchi, Masashi; Sakurai, Takeshi; Mitsuno, Hidefumi; Namiki, Shigehiro; Minegishi, Ryo; Shiotsuki, Takahiro; Uchino, Keiro; Sezutsu, Hideki; Tamura, Toshiki; Haupt, Stephan Shuichi; Nakatani, Kei; Kanzaki, Ryohei

    2013-01-01

    The olfactory system of male moths has an extreme sensitivity with the capability to detect and recognize conspecific pheromones dispersed and greatly diluted in the air. Just 170 molecules of the silkmoth (Bombyx mori) sex pheromone bombykol are sufficient to induce sexual behavior in the male. However, it is still unclear how the sensitivity of olfactory receptor neurons (ORNs) is relayed through the brain to generate high behavioral responsiveness. Here, we show that ORN activity that is subthreshold in terms of behavior can be amplified to suprathreshold levels by temporal integration in antennal lobe projection neurons (PNs) if occurring within a specific time window. To control ORN inputs with high temporal resolution, channelrhodopsin-2 was genetically introduced into bombykol-responsive ORNs. Temporal integration in PNs was only observed for weak inputs, but not for strong inputs. Pharmacological dissection revealed that GABAergic mechanisms inhibit temporal integration of strong inputs, showing that GABA signaling regulates PN responses in a stimulus-dependent fashion. Our results show that boosting of the PNs’ responses by temporal integration of olfactory information occurs specifically near the behavioral threshold, effectively defining the lower bound for behavioral responsiveness. PMID:24006366

  18. Identification of Esters as Novel Aggregation Pheromone Components Produced by the Male Powder-Post Beetle, Lyctus africanus Lesne (Coleoptera: Lyctinae).

    PubMed

    Kartika, Titik; Shimizu, Nobuhiro; Yoshimura, Tsuyoshi

    2015-01-01

    Lyctus africanus is a cosmopolitan powder-post beetle that is considered one of the major pests threatening timber and timber products. Because infestations of this beetle are inconspicuous, damage is difficult to detect and identification is often delayed. We identified the chemical compounds involved in the aggregation behavior of L. africanus using preparations of crude hexanic extracts from male and female beetles (ME and FE, respectively). Both male and female beetles showed significant preferences for ME, which was found to contain three esters. FE was ignored by both the sexes. Further bioassay confirmed the role of esters in the aggregation behavior of L. africanus. Three esters were identified as 2-propyl dodecanoate, 3-pentyl dodecanoate, and 3-pentyl tetradecanoate. Further behavioral bioassays revealed 3-pentyl dodecanoate to play the main role in the aggregation behavior of female L. africanus beetles. However, significantly more beetles aggregated on a paper disk treated with a blend of the three esters than on a paper disk treated with a single ester. This is the first report on pheromone identification in L. africanus; in addition, the study for the first time presents 3-pentyl dodecanoate as an insect pheromone.

  19. Chemical ecology and management of Lobesia botrana (Lepidoptera: Tortricidae).

    PubMed

    Ioriatti, C; Anfora, G; Tasin, M; De Cristofaro, A; Witzgall, P; Lucchi, A

    2011-08-01

    The moth Lobesia botrana (Denis & Schiffermüller) (Lepidoptera: Tortricidae) feeds on grapes (Vitis vinifera L.), reducing yield and increasing susceptibility to fungal infections. L. botrana is among the most economically important insects in Europe and has recently been found in vineyards in Chile, Argentina, and California. Here, we review L. botrana biology and behavior in relation to its larval host (the grapevine) and its natural enemies. We also discuss current and future control strategies in light of our knowledge of chemical ecology, with an emphasis on the use of the sex pheromone-based strategies as an environmentally safe management approach. Pheromone-mediated mating disruption is the most promising technique available on grapes and is currently implemented on approximately 140,000 ha in Europe. Experience from several growing areas confirms the importance of collaboration between research, extension, growers, and pheromone-supply companies for the successful implementation of the mating disruption technique. In the vineyards where mating disruption has been successfully applied as an areawide strategy, the reduction in insecticide use has improved the quality of life for growers, consumers, as well as the public living near wine-growing areas and has thereby reduced the conflict between agricultural and urban communities.

  20. Contribution of pheromones processed by the main olfactory system to mate recognition in female mammals

    PubMed Central

    Baum, Michael J.

    2012-01-01

    Until recently it was widely believed that the ability of female mammals (with the likely exception of women) to identify and seek out a male breeding partner relied on the detection of non-volatile male pheromones by the female's vomeronasal organ (VNO) and their subsequent processing by a neural circuit that includes the accessory olfactory bulb (AOB), vomeronasal amygdala, and hypothalamus. Emperical data are reviewed in this paper that demonstrate the detection of volatile pheromones by the main olfactory epithelium (MOE) of female mice which, in turn, leads to the activation of a population of glomeruli and abutting mitral cells in the main olfactory bulb (MOB). Anatomical results along with functional neuroanatomical data demonstrate that some of these MOB mitral cells project to the vomeronasal amygdala. These particular MOB mitral cells were selectively activated (i.e., expressed Fos protein) by exposure to male as opposed to female urinary volatiles. A similar selectivity to opposite sex urinary volatiles was also seen in mitral cells of the AOB of female mice. Behavioral data from female mouse, ferret, and human are reviewed that implicate the main olfactory system, in some cases interacting with the accessory olfactory system, in mate recognition. PMID:22679420

  1. Instrumental analysis of terminal-conjugated dienes for reexamination of the sex pheromone secreted by a nettle moth, Parasa lepida lepida.

    PubMed

    Islam, M D Azharul; Yamakawa, Rei; Do, Nguyen Duc; Numakura, Naoko; Suzuki, Toshiro; Ando, Tetsu

    2009-05-01

    Conjugated dienyl compounds make one of the main groups of lepidopteran sex pheromones, and GC has been frequently used to determine the configurations of the double bonds. However, the separation of two geometric isomers of a terminal-conjugated diene, such as 7,9-decadien-1-ol secreted by a nettle moth Parasa lepida lepida (Limacodidae), is assumed to be difficult. In order to clarify the chromatographic separation of the terminal dienes, 7,9-decadienyl and 9,11-dodecadienyl compounds (alcohols, acetates, and aldehydes) were analyzed by GC and HPLC. On a capillary GC column, the (E)-isomers flowed out slightly faster than the corresponding (Z)-isomers, but their peaks almost overlapped. On the other hand, HPLC equipped with an ODS column completely separated the two geometric isomers examined and the (Z)-isomers eluted from the column faster than the (E)-isomers without dependence on a functional group. In addition to undergoing direct HPLC analysis without derivatization, the dienyl alcohols were converted into 3,5-dinitrobenzoates and analyzed by LC-ESI-MS operated under the same reversed-phase condition. The two separated geometric isomers were sensitively monitored by negative ions at m/z 211, M, M+1, M+17, and M+31, which were characteristically derived from the benzoates. Based on these results, a pheromone extract of P. l. lepida was examined, and it was confirmed that the female moths exclusively produced the (Z)-isomer of the 7,9-diene. Furthermore, a GC-EAD analysis and a field evaluation with both geometrical isomers indicated that the mating communication of P. l. lepida is predominantly mediated with the (Z)-isomer.

  2. Acarine attractants: Chemoreception, bioassay, chemistry and control

    PubMed Central

    Carr, Ann L.; Roe, Michael

    2016-01-01

    The Acari are of significant economic importance in crop production and human and animal health. Acaricides are essential for the control of these pests, but at the same time, the number of available pesticides is limited, especially for applications in animal production. The Acari consist of two major groups, the mites that demonstrate a wide variety of life strategies, i.e., herbivory, predation and ectoparasitism, and ticks which have evolved obligatory hematophagy. The major sites of chemoreception in the acarines are the chelicerae, palps and tarsi on the forelegs. A unifying name, the “foretarsal sensory organ” (FSO), is proposed for the first time in this review for the sensory site on the forelegs of all acarines. The FSO has multiple sensory functions including olfaction, gustation, and heat detection. Preliminary transcriptomic data in ticks suggest that chemoreception in the FSO is achieved by a different mechanism from insects. There are a variety of laboratory and field bioassay methods that have been developed for the identification and characterization of attractants but minimal techniques for electrophysiology studies. Over the past three to four decades, significant progress has been made in the chemistry and analysis of function for acarine attractants in mites and ticks. In mites, attractants include aggregation, immature female, female sex and alarm pheromones; in ticks, the attraction–aggregation–attachment, assembly and sex pheromones; in mites and ticks host kairomones and plant allomones; and in mites, fungal allomones. There are still large gaps in our knowledge of chemical communication in the acarines compared to insects, especially relative to acarine pheromones, and more so for mites than ticks. However, the use of lure-and-kill and lure-enhanced biocontrol strategies has been investigated for tick and mite control, respectively, with significant environmental advantages which warrant further study. PMID:27265828

  3. Identification and field evaluation of attractants for the cranberry weevil, Anthonomus musculus Say.

    PubMed

    Szendrei, Zsofia; Averill, Anne; Alborn, Hans; Rodriguez-Saona, Cesar

    2011-04-01

    Studies were conducted to develop an attractant for the cranberry weevil, Anthonomus musculus, a pest of blueberry and cranberry flower buds and flowers in the northeastern United States. In previous studies, we showed that cinnamyl alcohol, the most abundant blueberry floral volatile, and the green leaf volatiles (Z)-3-hexenyl acetate and hexyl acetate, emitted from both flowers and flower buds, elicit strong antennal responses from A. musculus. Here, we found that cinnamyl alcohol did not increase capture of A. musculus adults on yellow sticky traps compared with unbaited controls; however, weevils were highly attracted to traps baited with the Anthonomus eugenii Cano aggregation pheromone, indicating that these congeners share common pheromone components. To identify the A. musculus aggregation pheromone, headspace volatiles were collected from adults feeding on blueberry or cranberry flower buds and analyzed by gas chromatography-mass spectrometry. Three male-specific compounds were identified: (Z)-2-(3,3-dimethyl-cyclohexylidene) ethanol (Z grandlure II); (Z)-(3,3-dimethylcyclohexylidene) acetaldehyde (grandlure III); and (E)-(3,3- dimethylcyclohexylidene) acetaldehyde (grandlure IV). A fourth component, (E)-3,7-dimethyl-2,6-octadien-1-ol (geraniol), was emitted in similar quantities by males and females. The emission rates of these volatiles were about 2.8, 1.8, 1.3, and 0.9 ng/adult/d, respectively. Field experiments in highbush blueberry (New Jersey) and cranberry (Massachusetts) examined the attraction of A. musculus to traps baited with the male-produced compounds and geraniol presented alone and combined with (Z)-3-hexenyl acetate and hexyl acetate, and to traps baited with the pheromones of A. eugenii and A. grandis. In both states and crops, traps baited with the A. musculus male-produced compounds attracted the highest number of adults. Addition of the green leaf volatiles did not affect A. musculus attraction to its pheromone but skewed the sex ratio of the captured adults towards females. Although the role of plant volatiles in host-plant location by A. musculus is still unclear, our studies provide the first identification of the primary A. musculus aggregation pheromone components that can be used to monitor this pest in blueberry and cranberry pest management programs.

  4. Ratiometric Decoding of Pheromones for a Biomimetic Infochemical Communication System.

    PubMed

    Wei, Guangfen; Thomas, Sanju; Cole, Marina; Rácz, Zoltán; Gardner, Julian W

    2017-10-30

    Biosynthetic infochemical communication is an emerging scientific field employing molecular compounds for information transmission, labelling, and biochemical interfacing; having potential application in diverse areas ranging from pest management to group coordination of swarming robots. Our communication system comprises a chemoemitter module that encodes information by producing volatile pheromone components and a chemoreceiver module that decodes the transmitted ratiometric information via polymer-coated piezoelectric Surface Acoustic Wave Resonator (SAWR) sensors. The inspiration for such a system is based on the pheromone-based communication between insects. Ten features are extracted from the SAWR sensor response and analysed using multi-variate classification techniques, i.e., Linear Discriminant Analysis (LDA), Probabilistic Neural Network (PNN), and Multilayer Perception Neural Network (MLPNN) methods, and an optimal feature subset is identified. A combination of steady state and transient features of the sensor signals showed superior performances with LDA and MLPNN. Although MLPNN gave excellent results reaching 100% recognition rate at 400 s, over all time stations PNN gave the best performance based on an expanded data-set with adjacent neighbours. In this case, 100% of the pheromone mixtures were successfully identified just 200 s after they were first injected into the wind tunnel. We believe that this approach can be used for future chemical communication employing simple mixtures of airborne molecules.

  5. Ratiometric Decoding of Pheromones for a Biomimetic Infochemical Communication System

    PubMed Central

    Wei, Guangfen; Thomas, Sanju; Cole, Marina; Rácz, Zoltán

    2017-01-01

    Biosynthetic infochemical communication is an emerging scientific field employing molecular compounds for information transmission, labelling, and biochemical interfacing; having potential application in diverse areas ranging from pest management to group coordination of swarming robots. Our communication system comprises a chemoemitter module that encodes information by producing volatile pheromone components and a chemoreceiver module that decodes the transmitted ratiometric information via polymer-coated piezoelectric Surface Acoustic Wave Resonator (SAWR) sensors. The inspiration for such a system is based on the pheromone-based communication between insects. Ten features are extracted from the SAWR sensor response and analysed using multi-variate classification techniques, i.e., Linear Discriminant Analysis (LDA), Probabilistic Neural Network (PNN), and Multilayer Perception Neural Network (MLPNN) methods, and an optimal feature subset is identified. A combination of steady state and transient features of the sensor signals showed superior performances with LDA and MLPNN. Although MLPNN gave excellent results reaching 100% recognition rate at 400 s, over all time stations PNN gave the best performance based on an expanded data-set with adjacent neighbours. In this case, 100% of the pheromone mixtures were successfully identified just 200 s after they were first injected into the wind tunnel. We believe that this approach can be used for future chemical communication employing simple mixtures of airborne molecules. PMID:29084158

  6. Evidence for divergence in cuticular hydrocarbon sex pheromone between California and Mississippi (United States of America) populations of bark beetle parasitoid Roptrocerus xylophagorum (Hymenoptera: Pteromalidae).

    Treesearch

    Brian Sullivan; Nadir Erbilgin

    2014-01-01

    Roptrocerus xylophagorum (Ratzeburg) (Hymenoptera: Pteromalidae) is a common Holarctic parasitoid of the larvae and pupae of bark beetles (Coleoptera: Curculionidae: Scotytinae). In no-choice laboratory bioassays, we found that male wasps derived either from northern California or southwestern Mississippi, United States of America more frequently displayed sexual...

  7. Sex Pheromone of Conophthorus ponderosae (Coleoptera: Scolytidae) in a Coastal Stand of Western White Pine (Pinaceae)

    Treesearch

    Daniel R. Miller; Harold D. Pierce; Peter de Groot; Nicole Jeans-Williams; Robb Bennett; John H. Borden

    2000-01-01

    An isolated stand of western white pine, Pinus monticola Dougl. ex D. Don, on Texada Island (49°40'N, 124°10'W), British Columbia, is extremely valuable as a seed-production area for progeny resistant to white pine blister rust, Cronartium ribicola J.C. Fisch. (Cronartiaceae). During the past 5 years, cone beetles, ...

  8. Hormone signaling linked to silkmoth sex pheromone biosynthesis involves Ca2+/calmodulin-dependent protein kinase II-mediated phosphorylation of the insect PAT family protein Bombyx mori lipid storage droplet protein-1(BmLsd)

    USDA-ARS?s Scientific Manuscript database

    The structurally-related members of the PAT family of proteins, which are so name based on similarity amongst perilipin, adipophilin/adipocyte differentiation-related protein (ADRP), and tail-interacting protein of 47 kilodaltons (TIP47), are cytoplasmic lipid droplet (LD)-associated proteins charac...

  9. Discovery of a modified tetrapolar sexual cycle in Cryptococcus amylolentus and the evolution of MAT in the Cryptococcus species complex.

    PubMed

    Findley, Keisha; Sun, Sheng; Fraser, James A; Hsueh, Yen-Ping; Averette, Anna Floyd; Li, Wenjun; Dietrich, Fred S; Heitman, Joseph

    2012-01-01

    Sexual reproduction in fungi is governed by a specialized genomic region called the mating-type locus (MAT). The human fungal pathogenic and basidiomycetous yeast Cryptococcus neoformans has evolved a bipolar mating system (a, α) in which the MAT locus is unusually large (>100 kb) and encodes >20 genes including homeodomain (HD) and pheromone/receptor (P/R) genes. To understand how this unique bipolar mating system evolved, we investigated MAT in the closely related species Tsuchiyaea wingfieldii and Cryptococcus amylolentus and discovered two physically unlinked loci encoding the HD and P/R genes. Interestingly, the HD (B) locus sex-specific region is restricted (∼2 kb) and encodes two linked and divergently oriented homeodomain genes in contrast to the solo HD genes (SXI1α, SXI2a) of C. neoformans and Cryptococcus gattii. The P/R (A) locus contains the pheromone and pheromone receptor genes but has expanded considerably compared to other outgroup species (Cryptococcus heveanensis) and is linked to many of the genes also found in the MAT locus of the pathogenic Cryptococcus species. Our discovery of a heterothallic sexual cycle for C. amylolentus allowed us to establish the biological roles of the sex-determining regions. Matings between two strains of opposite mating-types (A1B1×A2B2) produced dikaryotic hyphae with fused clamp connections, basidia, and basidiospores. Genotyping progeny using markers linked and unlinked to MAT revealed that meiosis and uniparental mitochondrial inheritance occur during the sexual cycle of C. amylolentus. The sexual cycle is tetrapolar and produces fertile progeny of four mating-types (A1B1, A1B2, A2B1, and A2B2), but a high proportion of progeny are infertile, and fertility is biased towards one parental mating-type (A1B1). Our studies reveal insights into the plasticity and transitions in both mechanisms of sex determination (bipolar versus tetrapolar) and sexual reproduction (outcrossing versus inbreeding) with implications for similar evolutionary transitions and processes in fungi, plants, and animals.

  10. A centrifugal pathway to the mouse accessory olfactory bulb from the medial amygdala conveys gender-specific volatile pheromonal signals

    PubMed Central

    Martel, Kristine L.; Baum, Michael J.

    2009-01-01

    We previously found that female mice exhibited Fos responses in the accessory olfactory bulb (AOB) after exposure to volatile opposite-, but not same-sex, urinary odours. This effect was eliminated by lesioning the main olfactory epithelium, raising the possibility that the AOB receives information about gender via centrifugal inputs originating in the main olfactory system instead of from the vomeronasal organ. We asked which main olfactory forebrain targets send axonal projections to the AOB, and whether these input neurons express Fos in response to opposite-sex urinary volatiles. Female mice received bilateral injections of the retrograde tracer, cholera toxin B (CTB), into the AOB, and were exposed to either same- or opposite-sex volatile urinary odours one week later. We found CTB- labeled cell bodies in several forebrain sites including the bed nucleus of the accessory olfactory tract, the rostral portion of the medial amygdala (MeA), and the posteromedial cortical nucleus of the amygdala. A significant increase in the percentage of CTB/Fos co-labeled cells was seen only in the MeA of female subjects exposed to male but not to female urinary volatiles. In Experiment 2, CTB-injected females were later exposed to volatile odours from male mouse urine, food, or cat urine. Again, a significant increase in the percentage of CTB/Fos co-labeled cells was seen in the MeA of females exposed to male mouse urinary volatiles but not to food or predator odours. Main olfactory - MeA -AOB signaling may motivate approach behaviour to opposite-sex pheromonal signals that ensure successful reproduction. PMID:19077123

  11. Biosynthetic Pathway for Sex Pheromone Components Produced in a Plusiinae Moth, Plusia festucae

    PubMed Central

    Watanabe, Hayaki; Matsui, Aya; Inomata, Sin-ichi; Yamamoto, Masanobu; Ando, Tetsu

    2011-01-01

    While many Plusiinae species commonly secrete (Z)-7-dodecenyl acetate (Z7-12:OAc) as a key pheromone component, female moths of the rice looper (Plusia festucae) exceptionally utilize (Z)-5-dodecenyl acetate (Z5-12:OAc) to communicate with their partners. GC–MS analysis of methyl esters derived from fatty acids included in the pheromone gland of P. festucae showed a series of esters monounsaturated at the ω7-position, i.e., (Z)-5-dodecenoate, (Z)-7-tetradecenoate, (Z)-9-hexadecenoate (Z9-16:Me), and (Z)-11-octadecenoate (Z11-18:Me). By topical application of D3-labled palmitic acid (16:Acid) and stearic acid (18:Acid) to the pheromone glands, similar amounts of D3-Z5-12:OAc were detected. The glands treated with D13-labeled monoenoic acids (Z9-16:Acid and Z11-18:Acid), which were custom-made by utilizing an acetylene coupling reaction with D13-1-bromohexane, also produced similar amounts of D13-Z5-12:OAc. These results suggested that Z5-12:OAc was biosynthesized by ω7-desaturase with low substrate specificity, which could introduce a double bond at the 9-position of a 16:Acid derivative and the 11-position of an 18:Acid derivative. Additional experiments with the glands pretreated with an inhibitor of chain elongation supported this speculation. Furthermore, a comparative study with another Plusiinae species (Chrysodeixis eriosoma) secreting Z7-12:OAc indicated that the β-oxidation systems of P. festucae and C. eriosoma were different. PMID:22649385

  12. Components of male aggregation pheromone of strawberry blossom weevil, Anthonomus rubi herbst. (Coleoptera:Curculionidae).

    PubMed

    Innocenzi, P J; Hall, D R; Cross, J V

    2001-06-01

    The strawberry blossom weevil, Anthonomus rubi, is a major pest of strawberries in the United Kingdom and continental Europe. As part of a project to develop noninsecticidal control methods, the pheromone system of this species was investigated. Comparison of volatiles produced by field-collected, overwintering individuals of each sex led to identification of three male-specific compounds--(Z)-2-(3,3-dimethylcyclohexylidene)ethanol, (cis)-1-methyl-2-(1-methylethenyl)cyclobutaneethanol, and 2-(1-methylethenyl)-5-methyl-4-hexen-1-ol (lavandulol)--in amounts of 6.1, 1.2, and 0.82 microg/day/ male. The first two compounds are components of the aggregation pheromone of the boll weevil, Anthonomus grandis, grandlure II and grandlure I, respectively. Grandlure I was the (1R,2S)-(+) enantiomer and lavandulol was a single enantiomer, although the absolute configuration was not determined. Trace amounts of the other two grandlure components (Z)-(3,3-dimethylcyclohexylidene)acetaldehyde (grandlure III) and (E)-(3,3-dimethylcyclohexylidene)acetaldehyde (grandlure IV) were also detected. (E,E)-1-(1-Methylethyl)-4-methylene-8-methyl-2,7-cyclo-decadiene (germacrene-D), a known volatile from strawberry plants, Fragaria ananassa, was collected in increased amounts in the presence of pheromone-producing weevils. Male weevils only produced pheromone on F. ananassa and not on scented mayweed, Matracaria recutita, or cow parsley, Anthriscus sylvestris, although these are known food sources. In field trials using various combinations of synthetic grandlures I, II, III, and IV and lavandulol, significantly more weevils were caught in traps baited with blends containing grandlure I and II and lavandulol than in those baited with blends without lavandulol or unbaited controls. Addition of grandlure III and IV had no significant effect on attractiveness. Horizontal sticky traps were found to be more effective than vertical sticky traps or standard boll weevil traps. In mid-season females predominated in the catches, but later more males than females were trapped.

  13. Characterisation of the chemical profiles of Brazilian and Andean morphotypes belonging to the Anastrepha fraterculus complex (Diptera, Tephritidae)

    PubMed Central

    Vaníčková, Lucie; Břízová, Radka; Pompeiano, Antonio; Ferreira, Luana Lima; de Aquino, Nathaly Costa; Tavares, Raphael de Farias; Rodriguez, Laura D.; Mendonça, Adriana de Lima; Canal, Nelson Augusto; do Nascimento, Ruth Rufino

    2015-01-01

    Abstract Fruit fly sexual behaviour is directly influenced by chemical and non-chemical cues that play important roles in reproductive isolation. The chemical profiles of pheromones and cuticular hydrocarbons (CHs) of eight fruit fly populations of the Andean, Brazilian-1 and Brazilian-3 morphotypes of the Anastrepha fraterculus cryptic species complex originating from Colombia (four populations) and Brazil (four populations) were analysed using two-dimensional gas chromatography with mass spectrometric detection. The resulting chemical diversity data were studied using principal component analyses. Andean morphotypes could be discriminated from the Brazilian-1 and Brazilian-3 morphotypes by means of male-borne pheromones and/or male and female CH profiles. The Brazilian-1 and Brazilian-3 morphotypes were found to be monophyletic. The use of chemical profiles as species- and sex-specific signatures for cryptic species separations is discussed. PMID:26798260

  14. Social Control of Hypothalamus-Mediated Male Aggression.

    PubMed

    Yang, Taehong; Yang, Cindy F; Chizari, M Delara; Maheswaranathan, Niru; Burke, Kenneth J; Borius, Maxim; Inoue, Sayaka; Chiang, Michael C; Bender, Kevin J; Ganguli, Surya; Shah, Nirao M

    2017-08-16

    How environmental and physiological signals interact to influence neural circuits underlying developmentally programmed social interactions such as male territorial aggression is poorly understood. We have tested the influence of sensory cues, social context, and sex hormones on progesterone receptor (PR)-expressing neurons in the ventromedial hypothalamus (VMH) that are critical for male territorial aggression. We find that these neurons can drive aggressive displays in solitary males independent of pheromonal input, gonadal hormones, opponents, or social context. By contrast, these neurons cannot elicit aggression in socially housed males that intrude in another male's territory unless their pheromone-sensing is disabled. This modulation of aggression cannot be accounted for by linear integration of environmental and physiological signals. Together, our studies suggest that fundamentally non-linear computations enable social context to exert a dominant influence on developmentally hard-wired hypothalamus-mediated male territorial aggression. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Synthesis and olfactory activity of unnatural, sulfated 5β-bile acid derivatives in the sea lamprey (Petromyzon marinus)

    PubMed Central

    Burns, Aaron C.; Sorensen, Peter W.

    2011-01-01

    A variety of unnatural bile acid derivatives (9a–9f) were synthesized and used to examine the specificity with which the sea lamprey (Petromyzon marinus) olfactory system detects these compounds. These compounds are analogs of petromyzonol sulfate (PS, 1), a component of the sea lamprey migratory pheromone. Both the stereochemical configuration at C5 (i.e., 5α vs. 5β) and the extent and sites of oxygenation (hydroxylation or ketonization) of the bile acid derived steroid skeleton were evaluated by screening the compounds for olfactory activity using electro-olfactogram recording. 5β-Petromyzonol sulfate (9a) elicited a considerable olfactory response at sub-nanomolar concentration. In addition, less oxygenated systems (i.e., 9b–9e) elicited olfactory responses, albeit with less potency. The sea lamprey sex pheromone mimic 9f (5β-3-ketopetromyzonol sulfate) was also examined and found to produce a much lower olfactory response. Mixture studies conducted with 9a and PS (1) suggest that stimulation is occurring via similar modes of activation, demonstrating a relative lack of specificity for recognition of the allo-configuration (i.e., 5α) in sea lamprey olfaction. This attribute could facilitate design of pheromone analogs to control this invasive species. PMID:21145335

  16. Methyltestosterone-induced changes in electro-olfactogram responses and courtship behaviors of cyprinids.

    PubMed

    Belanger, Rachelle M; Pachkowski, Melanie D; Stacey, Norm E

    2010-01-01

    In the tinfoil barb (Barbonymus schwanenfeldii; family Cyprinidae), we previously found that increased olfactory sensitivity to a female prostaglandin pheromone could induce sexual behavior display in juvenile fish treated with androgens. Here, we determined if this phenomenon is widespread among cyprinid fishes by adding 17alpha-methyltestosterone (MT) to aquaria containing juveniles of 4 cyprinid species (tinfoil barbs; redtail sharkminnows, Epalzeorhynchos bicolor; goldfish, Carassius auratus; zebrafish, Danio rerio) and then using electro-olfactogram (EOG) recordings and behavioral assays to determine if androgen treatment enhances pheromone detection and male sex behaviors. In all 4 cyprinids, MT treatment increased the magnitudes and sensitivities of EOG response to prostaglandins and, consistent with our initial study on tinfoil barbs, did not affect EOG responses to the free and conjugated steroid to which each species is most sensitive. In zebrafish, EOG responses to prostaglandins were similar in MT-treated juveniles and adult males, whereas responses of control (ethanol exposed) fish were similar to those of adult females. Finally, as previously observed in tinfoil barbs, MT treatment of juvenile redtail sharkminnows increased courtship behaviors (nuzzling and quivering) with a stimulus fish. We conclude that androgen-induced increase in olfactory responsiveness to pheromonal prostaglandins is common among the family Cyprinidae. This phenomenon will help us unravel the development of sexually dimorphic olfactory-mediated behavior.

  17. 1-Octen-3-ol is repellent to Ips pini (Coleoptera: Curculionidae: Scolytinae) in the midwestern United States

    Treesearch

    Therese M. Poland; Tina M. Pureswaran Deepa S. Ciaramitaro; John H. Borden

    2009-01-01

    In field experiments at three sites in Michigan and Ohio we tested the activity of 1-octen-3-ol in combination with ipsdienol, the aggregation pheromone of the pine engraver, Ips pini (Say). When 1-octen-3-ol was added to funnel traps baited with ipsdienol, significantly fewer beetles of either sex were captured than in traps baited with ipsdienol...

  18. How parasitoid females produce sexy sons: a causal link between oviposition preference, dietary lipids and mate choice in Nasonia

    PubMed Central

    Blaul, Birgit; Ruther, Joachim

    2011-01-01

    Sexual selection theory predicts that phenotypic traits used to choose a mate should reflect honestly the quality of the sender and thus, are often costly. Physiological costs arise if a signal depends on limited nutritional resources. Hence, the nutritional condition of an organism should determine both its quality as a potential mate and its ability to advertise this quality to the choosing sex. In insects, the quality of the offspring's nutrition is often determined by the ovipositing female. A causal connection, however, between the oviposition decisions of the mother and the mating chances of her offspring has never been shown. Here, we demonstrate that females of the parasitic wasp Nasonia vitripennis prefer those hosts for oviposition that have been experimentally enriched in linoleic acid (LA). We show by 13C-labelling that LA from the host diet is a precursor of the male sex pheromone. Consequently, males from LA-rich hosts produce and release higher amounts of the pheromone and attract more virgin females than males from LA-poor hosts. Finally, males from LA-rich hosts possess three times as many spermatozoa as those from LA-poor hosts. Hence, females making the right oviposition decisions may increase both the fertility and the sexual attractiveness of their sons. PMID:21429922

  19. How parasitoid females produce sexy sons: a causal link between oviposition preference, dietary lipids and mate choice in Nasonia.

    PubMed

    Blaul, Birgit; Ruther, Joachim

    2011-11-07

    Sexual selection theory predicts that phenotypic traits used to choose a mate should reflect honestly the quality of the sender and thus, are often costly. Physiological costs arise if a signal depends on limited nutritional resources. Hence, the nutritional condition of an organism should determine both its quality as a potential mate and its ability to advertise this quality to the choosing sex. In insects, the quality of the offspring's nutrition is often determined by the ovipositing female. A causal connection, however, between the oviposition decisions of the mother and the mating chances of her offspring has never been shown. Here, we demonstrate that females of the parasitic wasp Nasonia vitripennis prefer those hosts for oviposition that have been experimentally enriched in linoleic acid (LA). We show by (13)C-labelling that LA from the host diet is a precursor of the male sex pheromone. Consequently, males from LA-rich hosts produce and release higher amounts of the pheromone and attract more virgin females than males from LA-poor hosts. Finally, males from LA-rich hosts possess three times as many spermatozoa as those from LA-poor hosts. Hence, females making the right oviposition decisions may increase both the fertility and the sexual attractiveness of their sons.

  20. Pheromone discrimination by a pH-tuned polymorphism of the Bombyx mori pheromone-binding protein.

    PubMed

    Damberger, Fred F; Michel, Erich; Ishida, Yuko; Leal, Walter S; Wüthrich, Kurt

    2013-11-12

    The Bombyx mori pheromone-binding protein (BmorPBP) is known to adopt two different conformations. These are BmorPBP(A), where a regular helix formed by the C-terminal dodecapeptide segment, α7, occupies the ligand-binding cavity, and BmorPBP(B), where the binding site is free to accept ligands. NMR spectra of delipidated BmorPBP solutions at the physiological pH of the bulk sensillum lymph near pH 6.5 show only BmorPBP(A), and in mixtures, the two species are in slow exchange on the chemical shift frequency scale. This equilibrium has been monitored at variable pH and ligand concentrations, demonstrating that it is an intrinsic property of BmorPBP that is strongly affected by pH variation and ligand binding. This polymorphism tunes BmorPBP for optimal selective pheromone transport: Competition between α7 and lipophilic ligands for its binding cavity enables selective uptake of bombykol at the pore endings in the sensillum wall, whereas compounds with lower binding affinity can only be bound in the bulk sensillum lymph. After transport across the bulk sensillum lymph into the lower pH area near the dendritic membrane surface, bombykol is ejected near the receptor, whereas compounds with lower binding affinity are ejected before reaching the olfactory receptor, rendering them susceptible to degradation by enzymes present in the sensillum lymph.

Top