Science.gov

Sample records for seyfert galaxies spitzer

  1. Spitzer/IRS Observations of Seyfert 1.8 and 1.9 Galaxies: Probing the Dusty Torus at Intermediate Viewing Angles

    NASA Astrophysics Data System (ADS)

    Kraemer, Steven; Crenshaw, Michael; Dietrich, Matthias; Elitzur, Moshe; Gull, Theodore; Teplitz, Harry; Turner, Jane

    2004-09-01

    According to the unified model for AGN, Seyfert 1.8 and 1.9 galaxies are viewed at inclinations between those of Seyfert 1s (face-on) and Seyfert 2s (edge-on) with respect to the source of obscuration, typically envisioned as a dusty torus. This view is supported by the weak broad emission-line components of the Balmer lines, with ratios that are consistent with significant (E(B-V} ~ 1 mag) reddening of the broad-line region. Mid-IR spectra are the only means with which to probe the circumnuclear gas in these intermediate Seyferts and constrain the physical structure of the torus, such as its size, scale height, and clumpiness. Seyfert 1.8s and 1.9s also tend to possess relatively weak high ionization narrow lines (e.g. [Fe~VII] 6087 A) compared to Seyfert 1s, suggesting that the dusty circumnuclear gas may also obscure the inner narrow line region. We request Spitzer IRS spectra of 12 Seyfert 1.8s and 1.9s in order to 1) determine the temperature of the dust, and hence its radial distance from the central engine, to test for a torus origin, 2) determine the scale height and clumpiness of the torus atmosphere via the silicate 10 feature and comparisons with clumpy torus models, and 3) penetrate the obscuring gas via mid-IR emission lines, such as [Ne~V] 14.3 microns and [O~IV] 25.9 microns, to reveal the hidden high-ionization inner narrow line region. We have selected targets with host galaxies that are close to face-on, to minimize contamination of the mid-IR spectra by dust in their galactic planes. Among the more than 60 Seyferts in the Spitzer/IRS reserved target catalog, there are only a handful of true Seyfert 1.8s and 1.9s, and all of these have inclined (b/a < 0.5 ) host galaxies.

  2. CONTRIBUTION OF THE ACCRETION DISK, HOT CORONA, AND OBSCURING TORUS TO THE LUMINOSITY OF SEYFERT GALAXIES: INTEGRAL AND SPITZER OBSERVATIONS

    SciTech Connect

    Sazonov, S.; Churazov, E.; Krivonos, R.; Revnivtsev, M.; Sunyaev, R.; Vikhlinin, A.; Hickox, R. C.; Gorjian, V.; Werner, M. W.; Fabian, A. C.; Forman, W. R.

    2012-10-01

    We estimate the relative contributions of the supermassive black hole (SMBH) accretion disk, corona, and obscuring torus to the bolometric luminosity of Seyfert galaxies, using Spitzer mid-infrared (MIR) observations of a complete sample of 68 nearby active galactic nuclei (AGNs) from the INTEGRAL all-sky hard X-ray (HX) survey. This is the first HX-selected (above 15 keV) sample of AGNs with complementary high angular resolution, high signal-to-noise, MIR data. Correcting for the host galaxy contribution, we find a correlation between HX and MIR luminosities: L{sub 15{mu}m}{proportional_to}L{sup 0.74{+-}0.06}{sub HX}. Assuming that the observed MIR emission is radiation from an accretion disk reprocessed in a surrounding dusty torus that subtends a solid angle decreasing with increasing luminosity (as inferred from the declining fraction of obscured AGNs), the intrinsic disk luminosity, L{sub Disk}, is approximately proportional to the luminosity of the corona in the 2-300 keV energy band, L{sub Corona}, with the L{sub Disk}/L{sub Corona} ratio varying by a factor of 2.1 around a mean value of 1.6. This ratio is a factor of {approx}2 smaller than for typical quasars producing the cosmic X-ray background. Therefore, over three orders of magnitude in luminosity, HX radiation carries a large, and roughly comparable, fraction of the bolometric output of AGNs. We estimate the cumulative bolometric luminosity density of local AGNs at {approx}(1-3) Multiplication-Sign 10{sup 40} erg s{sup -1} Mpc{sup -3}. Finally, the Compton temperature ranges between kT{sub c} Almost-Equal-To 2 and Almost-Equal-To 6 keV for nearby AGNs, compared to kT{sub c} Almost-Equal-To 2 keV for typical quasars, confirming that radiative heating of interstellar gas can play an important role in regulating SMBH growth.

  3. Microvariability in Seyfert galaxies

    USGS Publications Warehouse

    Carini, M.T.; Noble, J.C.; Miller, H.R.

    2003-01-01

    We present the results of a search for microvariability in a sample of eight Seyfert galaxies. Microvariability (i.e., variations occurring on timescales of tens of minutes to hours) has been conclusively demonstrated to exist in the class of active galactic nuclei (AGNs) known as blazars. Its existence in other classes of AGNs is far less certain. We present the results of a study of eight Seyfert 1 galaxies, which were intensively monitored in order to determine whether such variations exist in these objects. Only one object, Ark 120, displayed any evidence of microvariations. The implications of these results with respect to current models of the mechanisms responsible for the observed emission in Seyfert galaxies are discussed. We compare our results with those obtained from other studies of microvariability in different classes of AGNs.

  4. Hα Imaging of Nearby Seyfert Host Galaxies

    NASA Astrophysics Data System (ADS)

    Theios, Rachel L.; Malkan, Matthew A.; Ross, Nathaniel R.

    2016-05-01

    We used narrowband (Δλ = 70 Å) interference filters with the CCD imaging camera on the Nickel 1.0 m telescope at Lick Observatory to observe 31 nearby (z < 0.03) Seyfert galaxies in the 12 μm active galaxy sample. We obtained pure emission-line images of each galaxy, which reach down to a flux limit of 7.3 × 10-15 erg cm-2 s-1 arcsec-2, and corrected these images for [N ii] emission and extinction. We separated the Hα emission line of the “nucleus” (central 100-1000 pc) from that of the host galaxy. The extended Hα emission is expected to be powered by newly formed hot stars, and indeed correlates well with other indicators of current star formation rates (SFRs) in these galaxies: extended 7.7 μm polycyclic aromatic hydrocarbon, total far-infrared, and radio luminosity. Relative to what would be expected from recent star formation, there is a 0.8 dex excess of radio emission in our Seyfert galaxies. The Hα luminosity we measured in the centers of our galaxies is dominated by the active galactic nucleus (AGN), and is linearly correlated with the hard X-ray luminosity. There is, however, an upward offset of 1 dex in this correlation for the Seyfert 1s, because their nuclear Hα emission includes a strong additional contribution from the broad-line region. We found a correlation between SFR and AGN luminosity. In spite of selection effects, we concluded that the absence of bright Seyfert nuclei in galaxies with low SFRs is real, albeit only weakly significant. Finally, we used our measured spatial distributions of Hα emission to determine what these Seyfert galaxies would look like when observed through fixed apertures (e.g., a spectroscopic fiber) at high redshifts. We found that although all of these Seyfert galaxies would be detectable emission-line galaxies at any redshift, most of them would appear to be dominated by (>67%) their H ii region emission. Only the most luminous AGNs (log(L Hα /erg s-1) > 41.5) would still be identified as such at z

  5. Hα Imaging of Nearby Seyfert Host Galaxies

    NASA Astrophysics Data System (ADS)

    Theios, Rachel L.; Malkan, Matthew A.; Ross, Nathaniel R.

    2016-05-01

    We used narrowband (Δλ = 70 Å) interference filters with the CCD imaging camera on the Nickel 1.0 m telescope at Lick Observatory to observe 31 nearby (z < 0.03) Seyfert galaxies in the 12 μm active galaxy sample. We obtained pure emission-line images of each galaxy, which reach down to a flux limit of 7.3 × 10‑15 erg cm‑2 s‑1 arcsec‑2, and corrected these images for [N ii] emission and extinction. We separated the Hα emission line of the “nucleus” (central 100–1000 pc) from that of the host galaxy. The extended Hα emission is expected to be powered by newly formed hot stars, and indeed correlates well with other indicators of current star formation rates (SFRs) in these galaxies: extended 7.7 μm polycyclic aromatic hydrocarbon, total far-infrared, and radio luminosity. Relative to what would be expected from recent star formation, there is a 0.8 dex excess of radio emission in our Seyfert galaxies. The Hα luminosity we measured in the centers of our galaxies is dominated by the active galactic nucleus (AGN), and is linearly correlated with the hard X-ray luminosity. There is, however, an upward offset of 1 dex in this correlation for the Seyfert 1s, because their nuclear Hα emission includes a strong additional contribution from the broad-line region. We found a correlation between SFR and AGN luminosity. In spite of selection effects, we concluded that the absence of bright Seyfert nuclei in galaxies with low SFRs is real, albeit only weakly significant. Finally, we used our measured spatial distributions of Hα emission to determine what these Seyfert galaxies would look like when observed through fixed apertures (e.g., a spectroscopic fiber) at high redshifts. We found that although all of these Seyfert galaxies would be detectable emission-line galaxies at any redshift, most of them would appear to be dominated by (>67%) their H ii region emission. Only the most luminous AGNs (log(L Hα /erg s‑1) > 41.5) would still be identified as

  6. THE DIFFERENCE IN NARROW Fe K{alpha} LINE EMISSION BETWEEN SEYFERT 1 AND SEYFERT 2 GALAXIES

    SciTech Connect

    Liu Teng; Wang Junxian E-mail: jxw@ustc.edu.c

    2010-12-20

    We compile a sample of 89 Seyfert galaxies with both [O IV] 25.89 {mu}m line luminosities observed by Spitzer IRS and X-ray spectra observed by XMM-Newton EPIC. Using [O IV] emission as a proxy for active galactic nucleus (AGN) intrinsic luminosity, we find that although type 2 AGNs have higher line equivalent widths, the narrow Fe K{alpha} lines in Compton-thin and Compton-thick Seyfert 2 galaxies are 2.9{sup +0.8}{sub -0.6} and 5.6{sup +1.9}{sub -1.4} times weaker in terms of luminosity than Seyfert 1 galaxies, respectively. This indicates that different correction factors need to be applied for various types of AGNs before the narrow Fe K{alpha} line luminosity could serve as an intrinsic AGN luminosity indicator. We also find that Seyfert 1 galaxies in our sample have on average marginally larger line widths and higher line centroid energies, suggesting contamination from highly ionized Fe line or broader line emission from much smaller radius, but this effect is too weak to explain the large difference in narrow Fe K{alpha} line luminosity between type 1 and type 2 AGNs. This is the first observational evidence showing that the narrow Fe K{alpha} line emission in AGNs is anisotropic. The observed difference is consistent with theoretical calculations assuming a smoothly distributed obscuring torus and could provide independent constraints on the clumpiness of the torus.

  7. Narrow-Line Seyfert 1 Galaxies

    NASA Technical Reports Server (NTRS)

    Leighly, Karen M.

    2000-01-01

    The primary work during this year has been the analysis and interpretation of our HST spectra from two extreme Narrow-line Seyfert 1 galaxies (NLS1s) Infrared Astronomy Satellite (IRAS) 13224-3809 and 1H 0707-495. This work has been presented as an invited talk at the workshop entitled "Observational and theoretical progress in the Study of Narrow-line Seyfert 1 Galaxies" held in Bad Honnef, Germany December 8-11, as a contributed talk at the January 2000 AAS meeting in Atlanta, Georgia, and as a contributed talk at the workshop "Probing the Physics of Active Galactic Nuclei by Multiwavelength Monitoring" held at Goddard Space Flight Center June 20-22, 2000.

  8. Deficiency of "Thin" Stellar Bars in Seyfert Host Galaxies.

    PubMed

    Shlosman; Peletier; Knapen

    2000-06-01

    Using all available major samples of Seyfert galaxies and their corresponding closely matched control samples of nonactive galaxies, we find that the bar ellipticities (or axial ratios) in Seyfert galaxies are systematically different from those in nonactive galaxies. Overall, there is a deficiency of bars with large ellipticities (i.e., "thin" or "strong" bars) in Seyfert galaxies compared to nonactive galaxies. Accompanied with a large dispersion due to small number statistics, this effect is strictly speaking at the 2 sigma level. To obtain this result, the active galaxy samples of near-infrared surface photometry were matched to those of normal galaxies in type, host galaxy ellipticity, absolute magnitude, and, to some extent, redshift. We discuss possible theoretical explanations of this phenomenon within the framework of galactic evolution, and, in particular, of radial gas redistribution in barred galaxies. Our conclusions provide further evidence that Seyfert hosts differ systematically from their nonactive counterparts on scales of a few kiloparsecs.

  9. The nuclear and integrated FIR emission of Seyfert galaxies

    NASA Astrophysics Data System (ADS)

    García-González, J.

    2015-09-01

    We present far-infrared (70-500micron) observations obtained with Herschel/PACS and SPIRE of 33 Seyfert galaxies from the Revised Shapley-Ames (RSA) catalogue. We selected these galaxies because they are nearby (median distance of 33Mpc) and have estimates of the nuclear and integrated star formation rates (SFR) from mid-infrared sub-arcsecond resolution and Spitzer/IRS spectroscopy, respectively. We measure the far-infrared nuclear (1kpc), 2kpc, and integrated spectral energy distributions (SEDs) from the Herschel images and estimate the unresolved nuclear emission at 70micron where Herschel provides the best angular resolution (median 0.9kpc). The goal is to select galaxies in our sample whose 70micron is mostly due to dust heated by the AGN. We will compare the 70micron emission together with existing nuclear 1-10micron SEDs and 8-13micron spectroscopy with clumpy torus model predictions. To estimate the AGN-produced 70micron emission we use a number of criteria. These include: (1) elevated nuclear 70/160 micron colours with respect to the typical colours of star forming galaxies, (2) 70micron excess emission with respect to the fit of the far-infrared SEDs with a grey body, (3) dust temperature higher than typical values of star forming galaxies, and (4) comparison of nuclear SFR obtained from 70 microns and mid-IR indicators.

  10. High resolution CO images of Seyfert Galaxies

    NASA Technical Reports Server (NTRS)

    Meixner, M.; Puchalsky, R.; Blitz, L.; Wright, M.

    1990-01-01

    The CO (J = 1-0) emission of three Seyfert galaxies, NGC 3227, NGC 7469, and NGC 5033 was imaged. The CO emission in NGC 3227 and NGC 7469 appears as compact structures centered on the active nuclei, containing substantial fractions of the single-dish flux. In NGC 3227, 10 percent of the CO flux detected by the interferometer is contained within the ionized narrow-line region. The unresolved molecular gas concentrations in the nucleus of NGC 3227 imply a CO mass of 65 million solar masses concentrated within a diameter less than 50 pc. The CO emission in NGC 5033 is not detected at this resolution, implying a CO structure size of 20 to 60 arcsec. Continuum emission at 2.7 mm is not detected in any of the three galaxies. In the center of NGC 7469, the H2 mass is comparable to the dynamical mass. Kinematic studies of the detected gas reveal a rotational motion of the gas in NGC 3227 and NGC 7469, allowing identification of the gas in NGC 7469 with a nuclear starburst. These data are consistent with the idea that interactions between galaxies cause gas to concentrate in their nuclei thereby feeding starburst and Seyfert activity.

  11. SPITZER OBSERVATIONS OF COLD DUST GALAXIES

    SciTech Connect

    Willmer, C. N. A.; Rieke, G. H.; Hinz, J. L.; Engelbracht, C. W.; Le Floc'h, Emeric; Marcillac, Delphine; Gordon, K. D.

    2009-07-15

    We combine new Spitzer Space Telescope observations in the mid-infrared and far-infrared (FIR) with SCUBA 850 {mu}m observations to improve the measurement of dust temperatures, masses, and luminosities for 11 galaxies of the SCUBA Local Universe Galaxy Survey. By fitting dust models we measure typical dust masses of 10{sup 7.9} M {sub sun} and dust luminosities of {approx}10{sup 10} L {sub sun}, for galaxies with modest star formation rates. The data presented in this paper combined with previous observations show that cold dust is present in all types of spiral galaxies and is a major contributor to their total luminosity. Because of the lower dust temperature of the SCUBA sources measured in this paper, they have flatter FIR {nu}F{sub {nu}}(160 {mu}m)/{nu}F{sub {nu}}(850 {mu}m) slopes than the larger Spitzer Infrared Nearby Galaxies Survey (SINGS), the sample that provides the best measurements of the dust properties of galaxies in the nearby universe. The new data presented here added to SINGS extend the parameter space that is well covered by local galaxies, providing a comprehensive set of templates that can be used to interpret the observations of nearby and distant galaxies.

  12. Hot coronae in nearby Seyfert galaxies

    NASA Astrophysics Data System (ADS)

    Tortosa, Alessia

    2016-08-01

    The primary X-ray emission in AGN is believed to be produced by Comptonization of optical/UV disk photons scattered up to the X-ray band by a hot corona located above the accretion disk. The emitted spectrum is, at the first order, a power-law with a high-energy cutoff, where the photon index and the cutoff energy are directly related to the temperature and to the optical depth of the plasma of hot electrons responsible for the inverse Compton scattering.To investigate the physical properties of the corona and provide constraints on its parameters, we have studied the broad band spectra of a sample of local Seyfert galaxies observed with NuSTAR (in coordination with XMM-Newton, Suzaku or Swift). We will discuss the general properties of the sample, and show a few particularly interesting cases.

  13. The submillimeter spectral break in Seyfert galaxies

    NASA Technical Reports Server (NTRS)

    Engargiola, G.; Harper, D. A.; Elvis, Martin; Willner, S. P.

    1988-01-01

    Observations have been made of four Seyfert 1 galaxies at 155 microns and three at 370 microns. Two of the galaxies were detected at 155 microns, but none was detected at 370 microns. The 155 microns data and the strong upper limits at 370 microns show that the infrared continua decrease sharply beyond 100-155 microns. These observations depict a clear spectral difference between radio-loud and radio-quiet active galactic nuclei. The limits on the 100-370 microns spectral slope are consistent either with synchrotron self-absorption of a nonthermal source or with thermal dust emission similar to that arising from the disks of normal galaxies. The 155 microns flux from NGC 4151 is spatially extended through a radius of at least 48 arcsec, arguing for substantial dust emission at wavelengths greater than 80 microns and an even shorter cutoff wavelength for nonthermal emission from the active nucleus. The spectral breaks implied by our data suggest that the nuclear nonthermal sources must be smaller than about 10 light hours.

  14. Was 49: Mirror for a hidden Seyfert 1 galaxy

    NASA Technical Reports Server (NTRS)

    Halpern, Jules; Moran, E.; Kay, L.; Antonucci, R.

    1993-01-01

    Was 49 is an interacting pair of Seyfert galaxies at z = 0.063, one of which contains a hidden Seyfert 1 nucleus as evidenced by the highly polarized broad wings on its Balmer lines. The disk of the main galaxy, Was 49a, appears to be globally photoionized by a powerful continuum source, undoubtedly the hidden Seyfert 1 companion, Was 49b. The intrinsic luminosity of Was 49b is at least 100 times larger than the observed (scattered) luminosity. A single SWP spectrum of the pair, which can be spatially resolved in the large aperture was obtained. A narrow Ly-alpha line was detected from Was 49b, the hidden Seyfert 1, at a flux level consistent with that of an unreddened Seyfert 2 galaxy. The lack of detection of a continuum is consistent with a power-law of v(sup -1) or steeper extrapolated from the optical, again consistent with the spectrum of other Seyfert 2 and hidden Seyfert 1 galaxies.

  15. BeppoSAX Average Spectra of Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Malizia, A.; Bassani, L.; Stephen, J. B.; Di Cocco, G.; Fiore, F.; Dean, A. J.

    2003-05-01

    We have studied the average 3-200 keV spectra of Seyfert galaxies of type 1 and 2, using data obtained with BeppoSAX. The average Seyfert 1 spectrum is well fitted by a power-law continuum with photon spectral index Γ~1.9, a Compton reflection component R~0.6-1 (depending on the inclination angle between the line of sight and the reflecting material), and a high-energy cutoff at around 200 keV; there is also an iron line at 6.4 keV characterized by an equivalent width of 120 eV. Seyfert 2 galaxies, on the other hand, show stronger neutral absorption [NH=(3-4)×1022 atoms cm-2], as expected, but are also characterized by an X-ray power law that is substantially harder (Γ~1.75) and with a cutoff at lower energies (Ec~130 keV); the iron line parameters are instead substantially similar to those measured in type 1 objects. There are only two possible solutions to this problem: to assume more reflection in Seyfert 2 galaxies than observed in Seyfert 1 galaxies or more complex absorption than estimated in the first instance. The first possibility is ruled out by the Seyfert 2 to Seyfert 1 ratio, while the second provides an average Seyfert 2 intrinsic spectrum very similar to that of the Seyfert 1. The extra absorber is likely an artifact due to summing spectra with different amounts of absorption, although we cannot exclude its presence in at least some individual sources. Our result argues strongly for a very similar central engine in both types of galaxies, as expected under the unified theory.

  16. Soft X-ray properties of a spectroscopically selected sample of interacting and isolated Seyfert galaxies

    NASA Astrophysics Data System (ADS)

    Pfefferkorn, F.; Boller, Th.; Rafanelli, P.

    2001-03-01

    We present a catalogue of ROSAT detected sources in the sample of spectroscopically selected Seyfert 1 and Seyfert 2 galaxies of Rafanelli et al. (\\cite{Rafanelli95}). The catalogue contains 102 Seyfert 1 and 36 Seyfert 2 galaxies. The identification is based on X-ray contour maps overlaid on optical images taken from the Digitized Sky Survey. We have derived the basic spectral and timing properties of the X-ray detected Seyfert galaxies. For Seyfert 1 galaxies a strong correlation between photon index and X-ray luminosity is detected. We confirm the presence of generally steeper X-ray continua in narrow-line Seyfert 1 galaxies (NLS1s) compared to broad-line Seyfert 1 galaxies. Seyfert 2 galaxies show photon indices similar to those of NLS1s. Whereas a tendency for an increasing X-ray luminosity with increasing interaction strength is found for Seyfert 1 galaxies, such a correlation is not found for Seyfert 2 galaxies. For Seyfert 1 galaxies we found also a strong correlation for increasing far-infrared luminosity with increasing interaction strength. Both NLS1s and Seyfert 2 galaxies show the highest values of far-infrared luminosity compared to Seyfert 1 galaxies, suggesting that NLS1s and Seyfert 2 galaxies host strong (circumnuclear) star formation. For variable Seyfert galaxies we present the X-ray light curves obtained from the ROSAT All-Sky Survey and from ROSAT PSPC and HRI pointed observations. Besides the expected strong short- and long-term X-ray variability in Seyfert 1 galaxies, we find indications for X-ray flux variations in Seyfert 2 galaxies. All overlays can be retrieved via CDS anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5)} or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/368/797

  17. Deficiency of ''Thin'' Stellar Bars in Seyfert Host Galaxies

    NASA Technical Reports Server (NTRS)

    Shlosman, Isaac; Peletier, Reynier F.; Knapen, Johan

    1999-01-01

    Using all available major samples of Seyfert galaxies and their corresponding control samples of closely matched non-active galaxies, we find that the bar ellipticities (or axial ratios) in Seyfert galaxies are systematically different from those in non-active galaxies. Overall, there is a deficiency of bars with large ellipticities (i.e., 'fat' or 'weak' bars) in Seyferts, compared to non-active galaxies. Accompanied with a large dispersion due to small number statistics, this effect is strictly speaking at the 2 sigma level. To obtain this result, the active galaxy samples of near-infrared surface photometry were matched to those of normal galaxies in type, host galaxy ellipticity, absolute magnitude, and, to some extent, in redshift. We discuss possible theoretical explanations of this phenomenon within the framework of galactic evolution, and, in particular, of radial gas redistribution in barred galaxies. Our conclusions provide further evidence that Seyfert hosts differ systematically from their non-active counterparts on scales of a few kpc.

  18. The Non-Stellar Infrared Continuum of Seyfert Galaxies

    NASA Technical Reports Server (NTRS)

    Alonso-Herrero, Almudena; Quillen, Alice C.; Simpson, Chris; Efstathiou, Andreas; Ward, Martin J.

    2000-01-01

    JHKL'M (1 - 5 micrometers) imaging of a sample of Seyfert 2 galaxies is presented. We have performed an accurate estimate of the near-infrared non-stellar nuclear fluxes. We confirm that the near-infrared nuclear continuum between 1 and 2.2microns of some Seyfert 2s is dominated by stellar emission, whereas the continuum emission at longer wavelengths (lambda = 3 - 5 micrometers) is almost entirely non-stellar in origin. The non-stellar spectral energy distributions (SED) in the infrared (up to 15 micrometers) of Seyfert galaxies show a variety of shapes, and they are well reproduced with the tapered disk models of Efstathiou & Rowan-Robinson (1995). We have used two models, one including an optically thin cone component found to fit the SED of NGC 1068, and a coneless model. Although our modelling of the SEDs does not allow us to favor either model to account for all the observed SEDs, we find that the viewing angle towards the central source is well constrained by both models. The galaxies in our sample have fitted values of the viewing angle in the range Theta(sub V) = 0 deg - 64 deg, for the assumed model parameters. We have also investigated non-stellar color-color diagrams (L' - M vs. H - M and L' - M vs. H - L'). The colors of the Seyfert galaxies with viewing angles Theta(sub v) less than 30 deg are better reproduced with the cone model. These diagrams provide a good means to separate Seyfert 2s with moderate obscuration (A(sub V) approx. less than 20 mag from hard X-ray observations) from those with high obscuration. The ground-based 4.8 microns and ISO 9.6 microns luminosities are well correlated with the hard X-ray luminosities of Seyfert ls and 2s. These continuum emissions appear as a good indicator of the AGN luminosity, at least in the cases of hard X-ray Compton-thin Seyfert galaxies (N(sub H) less than or = 10(exp 24)/sq cm). We finally stress the finding that some Compton thick galaxies show bright non-stellar emission at 5 microns This suggests

  19. PSPC soft x-ray observations of Seyfert 2 galaxies

    NASA Technical Reports Server (NTRS)

    Turner, T. J.; Urry, C. M.; Mushotzky, R. F.

    1993-01-01

    We present the results from ROSAT PSPC soft x-ray (0.1-2.0 keV) observations of six Seyfert 2 galaxies, chosen from the brightest Seyfert 2s detected with the Einstein Imaging Proportional Counter. All of the targets were detected with the ROSAT PSPC. Spatial analysis shows that the source density within a few arcmin of each Seyfert 2 galaxy is a factor of approximately eight higher than in the rest of the inner field of view of the PSPC images. In NGC1365 it appears that the serendipitous sources may be x-ray binary systems in the host galaxy. The proximity of the serendipitous sources, typically within a few arcmin of the target Seyfert 2, means that previous x-ray observations of the Seyfert 2 galaxies have been significantly contaminated, and that source confusion is important on a spatial scale of approximately 1 arcmin. Some spectra, most notably Mrk3 and NGC1365, indicate the presence of a high equivalent width soft x-ray line blend consistent with unresolved iron L and oxygen K emission.

  20. Visible and Near-Infrared Spectroscopy of Seyfert 1 and Narrow-Line Seyfert 1 Galaxies

    NASA Astrophysics Data System (ADS)

    Rodríguez-Ardila, Alberto; Pastoriza, Miriani G.; Donzelli, Carlos J.

    2000-01-01

    This paper studies the continuum and emission-line properties of a sample composed of 16 normal Seyfert 1 and seven narrow-line Seyfert 1 (NLS1) galaxies using optical and near-IR CCD spectroscopy. The continuum emission of the galaxies can be described in terms of a combination of stellar population, a nonstellar continuum of power-law form, and Fe II emission. A significative difference in the optical spectral index between NLS1's and normal Seyfert 1's is observed; the latter is steeper. Most NLS1's show Fe II/Hβ ratios larger than those observed in the other Seyfert 1's. In the IRAS band, both groups of galaxies have very similar properties. We have searched for the presence of optically thin gas in the broad-line region (BLR) of the galaxies by comparing the broad O I λ8446 and Hα emission-line profiles. Our analysis show that in the NLS1's, both profiles are similar in shape and width. This result contradicts the hypothesis of thin gas emission in the high-velocity part of the BLR to explain the ``narrowness'' of broad optical permitted lines in these objects. Evidence of narrow O I λ8446 emission is found in six galaxies of our sample, implying that this line is not restricted to a pure BLR phenomenon. In the narrow-line region, we find similar luminosities in the permitted and high-ionization lines of NLS1's and normal Seyfert 1's. However, low-ionization lines such as [O I] λ6300, [O II] λ3727, and [S II] λλ6717, 6731 are intrinsically less luminous in NLS1's. Physical properties derived from density- and temperature-sensitive line ratios suggest that the [O II] and [S II] emitting zones are overlapping in normal Seyfert 1's and separated in NLS1's. Based on observations made at CASLEO. Complejo Astronómico El Leoncito (CASLEO) is operated under agreement between the Consejo Nacional de Investigaciones Científicas y técnicas de la República Argentina and the National Universities of La Plata, Córdoba and San Juán.

  1. Reddening indicators for quasars and Seyfert 1 galaxies

    NASA Technical Reports Server (NTRS)

    Grandi, S. A.

    1983-01-01

    It is pointed out that a determination of the reddening caused by intervening dust is a prerequisite to understanding the astrophysics of the broad line emission in quasars and their close cousins Seyfert 1 galaxies. Previous discussions of the reddening question have tended to be incomplete. The present investigation represents an attempt to asses critically the various techniques used to measure the reddening to quasars. It is found that if certain arguments presented are correct, there are no useful reddening indicators for the broad lines of quasars and Seyfert 1 galaxies. It seems safest to assume that reddening due to dust associated with quasars is negligible. However, small amounts of reddening toward quasars are certainly possible, and large amounts of reddening, while unlikely, cannot be ruled out.

  2. Reflection in obscured Seyfert galaxies and the CXB

    NASA Astrophysics Data System (ADS)

    Walter, Roland

    We present a study of the average hard X-ray spectra of Seyfert galaxies obtained accumulating one billion seconds of Swift/BAT data and reaching a sensitivity of 20 micro-Cras in the hard X-rays. As already suggested by INTEGRAL data, this analysis confirms that midly obsured Seyfert 2 galaxies feature much more reflection than unabsorbed sources. The ratio of the average spectra of obscured and unobscured sources, derived with high accuracy, is characteristic of a reflection hump with a broad excess peaking at 40 keV. This large reflection cannot be explained easily by the unified model and points towards the clumpy torus model. It also provides a natural explanation for the peak of the cosmic X-ray background without requiring a large population of Compton thick sources.

  3. THE RELATIONSHIP BETWEEN BLACK HOLE GROWTH AND STAR FORMATION IN SEYFERT GALAXIES

    SciTech Connect

    Diamond-Stanic, Aleksandar M.; Rieke, George H.

    2012-02-20

    We present estimates of black hole accretion rates (BHARs) and nuclear, extended, and total star formation rates for a complete sample of Seyfert galaxies. Using data from the Spitzer Space Telescope, we measure the active galactic nucleus (AGN) luminosity using the [O IV] {lambda}25.89 {mu}m emission line and the star-forming luminosity using the 11.3 {mu}m aromatic feature and extended 24 {mu}m continuum emission. We find that black hole growth is strongly correlated with nuclear (r < 1 kpc) star formation, but only weakly correlated with extended (r > 1 kpc) star formation in the host galaxy. In particular, the nuclear star formation rate (SFR) traced by the 11.3 {mu}m aromatic feature follows a relationship with the BHAR of the form SFR{proportional_to} M-dot{sub BH}{sup 0.8}, with an observed scatter of 0.5 dex. This SFR-BHAR relationship persists when additional star formation in physically matched r = 1 kpc apertures is included, taking the form SFR{proportional_to} M-dot{sub BH}{sup 0.6}. However, the relationship becomes almost indiscernible when total SFRs are considered. This suggests a physical connection between the gas on sub-kiloparsec and sub-parsec scales in local Seyfert galaxies that is not related to external processes in the host galaxy. It also suggests that the observed scaling between star formation and black hole growth for samples of AGNs will depend on whether the star formation is dominated by a nuclear or an extended component. We estimate the integrated black hole and bulge growth that occurs in these galaxies and find that an AGN duty cycle of 5%-10% would maintain the ratio between black hole and bulge masses seen in the local universe.

  4. A millimeter-wave survey of CO emission in Seyfert galaxies

    NASA Technical Reports Server (NTRS)

    Heckman, T. M.; Blitz, L.; Wilson, A. S.; Armus, L.; Miley, G. K.

    1989-01-01

    Emission in the 115 GHz 1-0 line of CO has been detected in 18 Seyfert galaxies in a sample of 43. The CO properties of 29 Seyferts in the Revised Shapley Ames Catalog (RSA) are compared with the CO properties of normal galaxies of the same Hubble type. These RSA type 2 Seyferts have an average ratio of CO-to-blue luminosity that is about twice as large as that of the normal galaxies, but the RSA type 1 Seyferts have normal CO luminosities. The RSA type 2 Seyfert galaxies have an unusually large average ratio of CO luminosity-to-H I mass compared to normal disk galaxies. The RSA type 2 Seyferts have an average far-IR luminosity that is about four times larger than a non-Seyfert comparison sample, while the RSA type 1 Seyferts are not significantly more luminous than the non-Seyferts. The result imply that the two classes of Seyferts are intrinsically different from one another and that one class cannot evolve into another in less than a few million years.

  5. Constraining the Active Galactic Nucleus Contribution in a Multiwavelength Study of Seyfert Galaxies

    NASA Technical Reports Server (NTRS)

    Melendez, M.; Kraemer, S.B.; Schmitt, H.R.; Crenshaw, D.M.; Deo, R.P.; Mushotzky, R.F.; Bruhweiler, F.C.

    2008-01-01

    We have studied the relationship between the high- and low-ionization [O IV] (lambda)25.89 microns, [Ne III] (lambda)15.56 microns, and [Ne II] (lambda)12.81 microns emission lines with the aim of constraining the active galactic nuclei (AGNs) and star formation contributions for a sample of 103 Seyfert galaxies.We use the [O IV] and [Ne II] emission as tracers for the AGN power and star formation to investigate the ionization state of the emission-line gas.We find that Seyfert 2 galaxies have, on average, lower [O IV]/[Ne II] ratios than Seyfert 1 galaxies. This result suggests two possible scenarios: (1) Seyfert 2 galaxies have intrinsically weaker AGNs, or (2) Seyfert 2 galaxies have relatively higher star formation rates than Seyfert 1 galaxies. We estimate the fraction of [Ne II] directly associated with the AGNs and find that Seyfert 2 galaxies have a larger contribution from star formation, by a factor of approx.1.5 on average, than what is found in Seyfert 1 galaxies. Using the stellar component of [Ne II] as a tracer of the current star formation, we found similar star formation rates in Seyfert 1 and Seyfert 2 galaxies.We examined the mid- and far-infrared continua and found that [Ne II] is well correlated with the continuum luminosity at 60 microns and that both [Ne III] and [O IV] are better correlated with the 25 micron luminosities than with the continuum at longer wavelengths, suggesting that the mid-infrared continuum luminosity is dominated by the AGN, while the far-infrared luminosity is dominated by star formation. Overall, these results test the unified model of AGNs and suggest that the differences between Seyfert galaxies cannot be solely due to viewing angle dependence.

  6. Extended ionizing radiation cone from the nucleus of the Seyfert 2 galaxy NGC 1068

    SciTech Connect

    Pogge, R.W.

    1988-05-01

    Recent observations of the Seyfert 2 galaxy NGC 1068 using CCD images are reported. Emission-line images and a simple ionization map are presented which reveal a cone-shaped region of high-ionization gas emanating from the nucleus into the surrounding regions. The implications of these results for the hidden Seyfert 1 model of NGC 1068 and other Seyfert 2 galaxies are discussed. 14 references.

  7. X-ray evidence of an obscured nucleus in the type 2 Seyfert galaxy Mkn3

    NASA Astrophysics Data System (ADS)

    Awaki, H.; Koyama, K.; Kunieda, H.; Tawara, Y.

    1990-08-01

    Seyfert galaxies are classified as type 1 or 2 according to the presence or absence of broad emission lines in the optical spectrum. The high velocities indicated by the broad lines in Seyfert 1 galaxies are taken to be good evidence of a compact, massive object, as are the strong and variable hard X-ray sources that are also generally observed in these objects. In contrast, Seyfert 2 galaxies possess neither of these characteristics, so the theory that they too have an accreting massive blackhole is less compelling. Since the discovery by spectropolarimetry of a 'hidden' Seyfert 1 nucleus in the prototypical Seyfert 2, NGC1068, the long-standing hope that the two classes may be unified has been revived. Here from observations by the Ginga satellite that another Seyfert 2, Mkn3, has the X-ray spectral signature of a hidden type 1 nucleus.

  8. Detection of Ni 2 lambda 7378 in six Seyfert galaxies

    SciTech Connect

    Halpern, J.P.; Oke, J.B.

    1985-01-01

    A line due to Ni 2 7378 in the Seyfert galaxies NGC 1068, 2110, 3227, 4151, 5506, and Arp 102 B was detected. The average Ni abundance is about 2 times solar, which is 5 times less than in the filaments of the Crab Nebula. This argues for nucleosynthetic processing in the latter. The Ni 2 line is spatially revolved in NGC 1068, and shows at least a factor of 4 enhancement in the Ni abundance away from the nucleus. The off-nuclear abundance of Ni in NGC 1068 approaches that of the Crab, which strongly suggests that type supernovae enriched the off-nuclear gas clouds.

  9. Extreme ultraviolet spectroscopy of the Seyfert 1 galaxy Markarian 478

    SciTech Connect

    Liedahl, D.A.; Paerels, F.; Hur, M.Y.; Kahn, S.M.; Fruscione, A.; Bowyer, S.

    1995-06-26

    The Seyfert 1 galaxy Mrk 478, observed during the EUVE all-sky survey, is the brightest EUV source among its class. The SW spectrum of this object shows evidence of discrete emission, although this interpretation is tentative, since the source spectrum must be extracted against a bright background. If the EUV flux is, in fact, composed partly of line emission, the authors attribute the discrete structure to emission from a collision-driven plasma at temperatures {approx_gt} 10{sup 6} K. In this context, they discuss some of the constraints imposed on the emission-line region by this observation.

  10. The circumnuclear environment of the Seyfert 1 galaxy NGC 3516

    SciTech Connect

    Pogge, R.W.; McDonald Observatory, Austin, TX )

    1989-07-01

    Results of an emission-line imaging and spectrophotometric study of the ionized gas in the circumnuclear regions of the Seyfert 1 galaxy NGC 3516 are reported. The morphology and ionization of the gas are consistent with excitation by the power law continuum from the active nucleus. The optical emission-line gas is well aligned with the extended 6 cm radio-continuum emission. The ionization, structure, and published kinematical data are strongly suggestive of an outflow origin for the circumnuclear gas, although important details are missing to firmly establish outflow as the origin of all of the ionized gas. 31 refs.

  11. The Warm Absorber of the Seyfert Galaxy NGC 5548

    NASA Astrophysics Data System (ADS)

    Andrade, M.; Krongold, Y.; Elvis, M.; Nicastro, F.; Binette, L.; Brickhouse, N.

    2008-04-01

    We present a spectral analysis of the X-ray Chandraof the Seyfert 1 Galaxy NGC 5548. The warm absorber present in this object was modeled with the code PHASE. We detected two different outflow velocity systems in this source. One of the absorbing systems has outflow velocity of -1091+/-63 km s(-1) and the other of -568+/-49 km s(-1) . Each system required two absorption components with different ionization level to fit the observed features. Each velocity system may consist of a multi-phase medium.

  12. Reflection in obscured Seyfert galaxies and the CXB

    NASA Astrophysics Data System (ADS)

    Walter, Roland; Esposito, Valentino

    2015-08-01

    We present a study of the average hard X-ray spectra of Seyfert galaxies of different types obtained accumulating one billion seconds of Swift/BAT data and reaching a sensitivity of 20 micro-Crab in the hard X-rays. The resulting spectra are representative of the average emission of these objects (in the local Universe) and can be used as a template for the synthesis of the Cosmic X-ray Background.The ratio of the average spectra obtained for Compton-thin obscured and unobscured sources, derived with high accuracy, is characteristic of a reflection hump and confirms that midly obsured and Compton thin Seyfert 2 galaxies feature much more reflection than unabsorbed sources.This large reflection cannot be explained easily by the unified model and points towards the clumpy torus model. It also provides a natural explanation for the peak, intensity and spectral shape of the Cosmic X-ray Background without requiring a large population of Compton thick sources.

  13. INDECENT EXPOSURE IN SEYFERT 2 GALAXIES: A CLOSE LOOK

    SciTech Connect

    Tran, Hien D.; Lyke, J. E.; Mader, Jeff A.

    2011-01-10

    NGC 3147, NGC 4698, and 1ES 1927+654 are active galaxies that are classified as Seyfert 2s, based on the line ratios of strong narrow emission lines in their optical spectra. However, they exhibit rapid X-ray spectral variability and/or little indication of obscuration in X-ray spectral fitting, contrary to expectation from the active galactic nucleus (AGN) unification model. Using optical spectropolarimetry with LRIS and near-infrared spectroscopy with NIRSPEC at the W. M. Keck Observatory, we conducted a deep search for hidden polarized broad H{alpha} and direct broad Pa{beta} or Br{gamma} emission lines in these objects. We found no evidence for any broad emission lines from the active nuclei of these galaxies, suggesting that they are unobscured, completely 'naked' AGNs that intrinsically lack broad-line regions.

  14. Observational effects of interaction in the Seyfert galaxy NGC 7469

    NASA Technical Reports Server (NTRS)

    Pronik, I. I.; Metik, L.

    1990-01-01

    Some pecularities of the circummucleus of the Seyfert galaxy NGC 7469 were revealed, plausibly caused by interaction with the satellite IC 5283 and a starlike detail, situated on the edge of the west spiral branch 14 seconds from the nucleus. Shock excited H II regions were noted in the part of NGC 7469 turned toward the satellite IC 5283. The galaxy's central radio structure (lambda approx. 6 cm) stretches in the direction toward the satellite IC 5283 and the starlike detail. The spectum and color index of the starlike detail suggest that it is a cluster of early type stars (M sub V = -19 sup m) and dust clouds (A sub V = 3 sup m), in NGC 7469.

  15. New Constraints on the Unified Model of Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Maiolino, R.; Ruiz, M.; Rieke, G. H.; Keller, L. D.

    1995-06-01

    We present new 10 microns (N-band) photometry for 70 Seyfert galaxies, 43 of them previously unobserved. These observations, together with those collected from the literature, complete the 10 microns photometry for the CfA Sy galaxies and cover 80% of the Sy found in the RSA and 70% of the Sy in the IRAS 12 microns sample. From this data set, we find that Sy not showing any evidence for broad lines are systematically weaker in 10 microns nuclear emission than Sy nuclei having broad lines. This result may indicate the existence of a group of very low-luminosity Sy2 galaxies that do not have Sy1 counterparts in equal numbers, contrary to the strict unified theory. Alternately, the result can be reconciled with unified theories if a specific type of geometry is assumed for the circumnuclear obscuring material. By comparing the 10 microns ground-based observations with the IRAS 12 microns fluxes, we also study the properties of the extended mid-IR emission, i.e., the star forming activity of the host galaxy of the Sy nucleus. We find Sy2 to lie preferentially in galaxies experiencing enhanced star-forming activity, while Sy1 lie in normal or quiescent galaxies. This result appears to be inconsistent with the strict unified model, since the host galaxy properties should be independent of the orientation of a circumnuclear torus and therefore should be independent of nuclear type. Our finding could be explained by adding to the unified model a link between star-forming activity and the amount of obscuring material collected in the circumnuclear region.

  16. INVESTIGATING THE CORE MORPHOLOGY-SEYFERT CLASS RELATIONSHIP WITH HUBBLE SPACE TELESCOPE ARCHIVAL IMAGES OF LOCAL SEYFERT GALAXIES

    SciTech Connect

    Rutkowski, M. J.; Hegel, P. R.; Kim, Hwihyun; Windhorst, R. A.; Tamura, Kazuyuki

    2013-07-01

    The unified model of active galactic nuclei (AGNs) has provided a successful explanation for the observed diversity of AGNs in the local universe. However, recent analysis of multi-wavelength spectral and image data suggests that the unified model is only a partial theory of AGNs, and may need to be augmented to remain consistent with all observations. Recent studies using high spatial resolution ground- and space-based observations of local AGNs show that Seyfert class and the ''core'' (r {approx}< 1 kpc) host-galaxy morphology are correlated. Currently, this relationship has only been established qualitatively, by visual inspection of the core morphologies of low-redshift (z < 0.035) Seyfert host galaxies. We re-establish this empirical relationship in Hubble Space Telescope optical imaging by visual inspection of a catalog of 85 local (D < 63 Mpc) Seyfert galaxies. We also attempt to re-establish the core morphology-Seyfert class relationship using an automated, non-parametric technique that combines both existing classification parameter methods (the adapted CAS and G-M {sub 20}) and a new method which implements the Source Extractor software for feature detection in unsharp-mask images. This new method is designed explicitly to detect dust features in the images. We use our automated approach to classify the morphology of the AGN cores and determine that Sy2 galaxies visually appear, on average, to have more dust features than Sy1. With the exception of this ''dustiness'' however, we do not measure a strong correlation between the dust morphology and the Seyfert class of the host galaxy using quantitative techniques. We discuss the implications of these results in the context of the unified model.

  17. Is the cluster environment quenching the Seyfert activity in elliptical and spiral galaxies?

    NASA Astrophysics Data System (ADS)

    de Souza, R. S.; Dantas, M. L. L.; Krone-Martins, A.; Cameron, E.; Coelho, P.; Hattab, M. W.; de Val-Borro, M.; Hilbe, J. M.; Elliott, J.; Hagen, A.; COIN Collaboration

    2016-09-01

    We developed a hierarchical Bayesian model (HBM) to investigate how the presence of Seyfert activity relates to their environment, herein represented by the galaxy cluster mass, M200, and the normalized cluster centric distance, r/r200. We achieved this by constructing an unbiased sample of galaxies from the Sloan Digital Sky Survey, with morphological classifications provided by the Galaxy Zoo Project. A propensity score matching approach is introduced to control the effects of confounding variables: stellar mass, galaxy colour, and star formation rate. The connection between Seyfert-activity and environmental properties in the de-biased sample is modelled within an HBM framework using the so-called logistic regression technique, suitable for the analysis of binary data (e.g. whether or not a galaxy hosts an AGN). Unlike standard ordinary least square fitting methods, our methodology naturally allows modelling the probability of Seyfert-AGN activity in galaxies on their natural scale, i.e. as a binary variable. Furthermore, we demonstrate how an HBM can incorporate information of each particular galaxy morphological type in an unified framework. In elliptical galaxies our analysis indicates a strong correlation of Seyfert-AGN activity with r/r200, and a weaker correlation with the mass of the host cluster. In spiral galaxies these trends do not appear, suggesting that the link between Seyfert activity and the properties of spiral galaxies are independent of the environment.

  18. Ultraviolet and optical spectra of high-ionization Seyfert galaxies with narrow lines

    NASA Technical Reports Server (NTRS)

    Crenshaw, D. Michael; Peterson, Bradley M.; Korista, Kirk T.; Wagner, R. Mark; Aufdenberg, Jason P.

    1991-01-01

    Ultraviolet and optical spectra are presented for three unusual Seyfert galaxies (Mrk 1239, Mrk 42, and Mrk 493) that resemble Seyfert 1 galaxies in that they have strong high-ionization lines and strong nonstellar continua, but resemble Seyfert 2 galaxies in that the widths of their permitted lines are as narrow as the widths of their forbidden lines. The He II lambda 1640 and He II lambda 4686 lines are used to determine an upper limit to the reddening experienced by the emission lines. Published optical data show that these particular high-ionization narrow-line (HINL) Seyferts have low lambda 5007 H beta ratios and strong Fe II emission, which suggest the presence of high-density regions. The low Lalpha/H-beta ratios in these objects indicate that high-density clouds are indeed present, and, like the broad-line region clouds in Seyfert 1 galaxies, these clouds have large optical depths with partially ionized zones. Overall, the line ratios and continuum fluxes of these particular HINL Seyferts are indistinguishable from those of broad-lined Seyfert 1 galaxies.

  19. Line asymmetry in the Seyfert Galaxy NGC 3783

    NASA Technical Reports Server (NTRS)

    Ramirez, J. M.; Bautista, Manuel; Kallman, Timothy

    2005-01-01

    We have reanalyzed the 900 ks Chandra X-ray spectrum of NGC 3783, finding evidence on the asymmetry of the spectral absorption lines. The lines are fitted with a parametric expression that results from an analytical treatment of radiatively driven winds. The line asymmetry distribution derived from the spectrum is consistent with a non-spherical outflow with a finite optical depth. Within this scenario, our model explains the observed correlations between the line velocity shifts and the ionization parameter and between the line velocity shift and the line asymmetry. The present results may provide a framework for detailed testing of models for the dynamic and physical properties of warm absorber in Seyfert galaxies.

  20. Reverberation mapping of the Seyfert 1 galaxy NGC 7469

    SciTech Connect

    Peterson, B. M.; Grier, C. J.; Pogge, R. W.; De Rosa, G.; Denney, K. D.; Martini, Paul; Zu, Y.; Kochanek, C. S.; Shappee, B.; Araya Salvo, C.; Beatty, T. G.; Bird, J. C.; Horne, Keith; Bentz, M. C.; Sergeev, S. G.; Borman, G. A.; Minezaki, T.; Siverd, R. J.; Bord, D. J.; and others

    2014-11-10

    A large reverberation-mapping study of the Seyfert 1 galaxy NGC 7469 has yielded emission-line lags for Hβ λ4861 and He II λ4686 and a central black hole mass measurement M {sub BH} ≈ 1 × 10{sup 7} M {sub ☉}, consistent with previous measurements. A very low level of variability during the monitoring campaign precluded meeting our original goal of recovering velocity-delay maps from the data, but with the new Hβ measurement, NGC 7469 is no longer an outlier in the relationship between the size of the Hβ-emitting broad-line region and the luminosity of the active galactic nucleus. It was necessary to detrend the continuum and Hβ and He II λ4686 line light curves and those from archival UV data for different time-series analysis methods to yield consistent results.

  1. Kiloparsec-scale radio emission in Seyfert and LINER galaxies

    NASA Astrophysics Data System (ADS)

    Singh, Veeresh; Ishwara-Chandra, C. H.; Wadadekar, Yogesh; Beelen, Alexandre; Kharb, Preeti

    2015-01-01

    Seyfert and LINER galaxies are known to exhibit compact radio emission on ˜10-100 pc scales, but larger Kiloparsec-Scale Radio structures (KSRs) often remain undetected in sub-arcsec high-resolution observations. We investigate the prevalence and nature of KSRs in Seyfert and LINER galaxies using the 1.4 GHz VLA FIRST and NVSS observations. Our sample consists of 2651 sources detected in FIRST and of these 1737 sources also have NVSS counterparts. Considering the ratio of total to peak flux density (θ = (Sint/Speak)1/2) as a parameter to infer the presence of extended radio emission we show that ≥30 per cent of FIRST-detected sources possess extended radio structures on scales larger than 1.0 kpc. The use of low-resolution NVSS observations help us to recover faint extended KSRs that are resolved out in FIRST observations and results in ≥42.5 per cent KSR sources in FIRST-NVSS sub-sample. This fraction is only a lower limit owing to the combination of projection, resolution and sensitivity effects. Our study demonstrates that KSRs may be more common than previously thought and are found across all redshifts, luminosities and radio loudness. The extranuclear radio luminosity of KSR sources is found to be positively correlated with the core radio luminosity as well as the [O III] λ5007 Å line luminosity and this can be interpreted as KSRs being powered by AGN rather than star formation. The distributions of the FIR-to-radio ratios and mid-IR colours of KSR sources are also consistent with their AGN origin. However, contribution from star formation cannot be ruled out particularly in sources with low radio luminosities.

  2. Spitzer Space Telescope's View of Galaxy Messier 101

    NASA Technical Reports Server (NTRS)

    2009-01-01

    [figure removed for brevity, see original site] Click on the image for larger version

    The galaxy Messier 101 is a swirling spiral of stars, gas, and dust. Messier 101 is nearly twice as wide as our Milky Way galaxy. Spitzer's view, taken in infrared light, reveals the galaxy's delicate dust lanes as yellow-green filaments. Such dense dust clouds are where new stars can form. In this image, dust warmed by the light of hot, young stars glows red. The rest of the galaxy's hundreds of billions of stars are less prominent and form a blue haze. Astronomers can use infrared light to examine the dust clouds where stars are born.

  3. Observational model of the ionized gas in Seyfert and radio-galaxy nuclei*

    PubMed Central

    Osterbrock, Donald E.

    1978-01-01

    Equivalent widths of the total emission-line Hβ in Seyfert 1, Seyfert 2, and intermediate-type Seyfert galaxies, expressed in terms of the featureless continuum, all have approximately the same frequency distribution. This suggests that the energy-input mechanism to both the narrow-line, low-density gas and the broad-line, high-density gas is photoionization by the featureless continuum. The reason for the weakness of the narrow emission lines in extreme Seyfert 1 galaxies is then the absorption of most of the ionizing photons in the dense gas near the central source. The statistics of line widths can be fitted by a model in which the dense gas has typical rotational velocity 5000 km/sec and typical turbulent velocity 2000 km/sec. A model is proposed in which the dense gas forms a rotating, turbulent disk with dimension ≈0.1 pc and height/diameter ≈2/5. Seyfert 2 galaxies are objects with little dense gas, and intermediate-type Seyfert galaxies are objects in which the dense gas is optically thin to ionizing radiation at least along the poles. Most radio galaxies have strong narrow emission lines, suggesting that escape of radio plasma can only occur where some ionizing photons can also escape from the dense gas. Other predictions, implications, and tests of this model are discussed. Images PMID:16592488

  4. A Robust Test of the Unified Model for Seyfert Galaxies with Implications for the Starburst Phenomenon

    NASA Technical Reports Server (NTRS)

    Weaver, Kimberly A.

    1997-01-01

    My research involves detailed analysis of X-ray emission from Active Galactic Nuclei (AGN). For over a decade, the paradigm for AGN has rested soundly on the unified model hypothesis, which posits that the only difference between broad-line objects (e.g., Type 1 Seyfert galaxies) and narrow-line objects (e.g., Type 2 Seyferts) is that in the former case our line of sight evades toroidal obscuration surrounding the nucleus, while in the latter, our line of sight is blocked by the optically thick torus. It is well established that some Seyfert 2s contain Seyfert I nuclei (i.e., a hidden broad line region), but whether or not all Seyfert 2s contain obscured Seyfert 1 nuclei or whether some Seyfert 2s are intrinsically Seyfert 2s is not known. Optical, IR, and UV surveys are not appropriate to examine this hypothesis because such emissions are either anisotropic or subject to the effects of obscuration, and thus depend strongly on viewing angle. Hard X-rays, on the other hand, can penetrate gas with column densities as high as 10( exp 24.5) cm(-2) and thus provide reliable, direct probes of the cores of heavily obscured AGN. Combining NASA archival data from the Advanced Satellite of Cosmology and Astrophysics (ASCA), the Rossi X-ray Timing Explorer (RXTE), and Rosat, I am accumulating X-ray data between 0.1 and 60 keV to produce a catalog of the broad-band X-ray spectral properties of Seyfert galaxies. These data will be used to perform concrete tests of the unified model, and (compared with similar data on Starbursts) to examine a possible evolutionary connection between Seyfert and Starburst galaxies.

  5. REVERBERATION MAPPING RESULTS FOR FIVE SEYFERT 1 GALAXIES

    SciTech Connect

    Grier, C. J.; Peterson, B. M.; Pogge, R. W.; Martini, Paul; Zu, Y.; Kochanek, C. S.; Shappee, B.; Stanek, K. Z.; Salvo, C. Araya; Beatty, T. G.; Bird, J. C.; Denney, K. D.; Bentz, M. C.; Sergeev, S. G.; Borman, G. A.; Minezaki, T.; Siverd, R.; Bord, D. J.; Che, X.; and others

    2012-08-10

    We present the results from a detailed analysis of photometric and spectrophotometric data on five Seyfert 1 galaxies observed as a part of a recent reverberation mapping program. The data were collected at several observatories over a 140 day span beginning in 2010 August and ending in 2011 January. We obtained high sampling-rate light curves for Mrk 335, Mrk 1501, 3C 120, Mrk 6, and PG 2130+099, from which we have measured the time lag between variations in the 5100 A continuum and the H{beta} broad emission line. We then used these measurements to calculate the mass of the supermassive black hole at the center of each of these galaxies. Our new measurements substantially improve previous measurements of M{sub BH} and the size of the broad line-emitting region for four sources and add a measurement for one new object. Our new measurements are consistent with photoionization physics regulating the location of the broad line region in active galactic nuclei.

  6. X-ray Emission from Seyfert 2 Galaxies with Low-Mass Black Holes

    NASA Astrophysics Data System (ADS)

    Barth, Aaron

    2005-10-01

    We have recently identified the first sample of Seyfert 2 nuclei in host galaxies with stellar velocity dispersions smaller than 60 km/s, as a way to detect and study black holes with likely masses below 10^6 solar masses. These galaxies are Type 2 analogs of "dwarf" Seyfert 1 galaxies such as NGC 4395 and POX 52. We propose to obtain XMM exposures of four Seyfert 2 galaxies with stellar velocity dispersions in the range 25-47 km/s in order to (a) determine X-ray luminosities as part of an overall program to measure the SEDs of these sources; (b) determine the amount of X-ray absorption to establish whether these are obscured versions of NLS1 galaxies; (c) search for variability, which is expected for AGNs with very low black hole masses.

  7. Spitzer Observations of Massive, Red Galaxies at High Redshift

    NASA Astrophysics Data System (ADS)

    Papovich, C.; Moustakas, L. A.; Dickinson, M.; Le Floc'h, E.; Rieke, G. H.; Daddi, E.; Alexander, D. M.; Bauer, F.; Brandt, W. N.; Dahlen, T.; Egami, E.; Eisenhardt, P.; Elbaz, D.; Ferguson, H. C.; Giavalisco, M.; Lucas, R. A.; Mobasher, B.; Pérez-González, P. G.; Stutz, A.; Rieke, M. J.; Yan, H.

    2006-03-01

    We study massive galaxies at z~1-3.5 using HST optical imaging, ground-based near-IR imaging, and Spitzer observations at 3-24 μm. From Ks-selected galaxies in the ~=130 arcmin2 GOODS-S field, we identify 153 distant red galaxies (DRGs) with (J-Ks)Vega>=2.3. This sample is approximately complete in stellar mass for passively evolving galaxies above 1011 Msolar and z<=3. Roughly half of the DRGs are objects whose optical and near-IR rest-frame light is dominated by evolved stars combined with ongoing star formation (at zmed~2.5), and the others are galaxies whose light is dominated by heavily reddened (A1600>~4-6 mag) starbursts (at zmed~1.7). Very few DRGs (<~10%) have no indication of current star formation. DRGs at z~1.5-3 with stellar masses >=1011 Msolar have specific star formation rates (SFRs per unit mass) including the reradiated far-IR emission that range from 0.2 to 10 Gyr-1. Based on the X-ray luminosities and rest-frame near-IR colors, roughly one-quarter of the DRGs contain AGNs, implying that the growth of supermassive black holes coincides with the formation of massive galaxies. At 1.5<=z<=3, the DRGs with M>=1011 Msolar have an integrated specific SFR comparable to the global value of all galaxies. In contrast, galaxies at z~0.3-0.75 with M>=1011 Msolar have an integrated specific SFR less than the global value and more than an order of magnitude lower than that for massive DRGs. At z<~1, lower mass galaxies dominate the overall cosmic mass assembly. This suggests that the bulk of star formation in massive galaxies occurs at early cosmic epochs and is largely complete by z~1.5. Further mass assembly in these galaxies takes place with low specific SFRs. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under NASA contract 1407; on observations taken with the NASA/ESA Hubble Space Telescope, which is operated by the Association of

  8. FAR-INFRARED LINE SPECTRA OF SEYFERT GALAXIES FROM THE HERSCHEL-PACS SPECTROMETER

    SciTech Connect

    Spinoglio, Luigi; Pereira-Santaella, Miguel; Busquet, Gemma; Dasyra, Kalliopi M.; Calzoletti, Luca; Malkan, Matthew A.; Tommasin, Silvia

    2015-01-20

    We observed the far-IR fine-structure lines of 26 Seyfert galaxies with the Herschel-PACS spectrometer. These observations are complemented with Spitzer Infrared Spectrograph and Herschel SPIRE spectroscopy. We used the ionic lines to determine electron densities in the ionized gas and the [C I] lines, observed with SPIRE, to measure the neutral gas densities, while the [O I] lines measure the gas temperature, at densities below ∼10{sup 4} cm{sup –3}. Using the [O I]145 μm/63 μm and [S III]33/18 μm line ratios, we find an anti-correlation of the temperature with the gas density. Various fine-structure line ratios show density stratifications in these active galaxies. On average, electron densities increase with the ionization potential of the ions. The infrared lines arise partly in the narrow line region, photoionized by the active galactic nucleus (AGN), partly in H II regions photoionized by hot stars, and partly in photo-dissociated regions. We attempt to separate the contributions to the line emission produced in these different regions by comparing our observed emission line ratios to theoretical values. In particular, we tried to separate the contribution of AGNs and star formation by using a combination of Spitzer and Herschel lines, and we found that besides the well-known mid-IR line ratios, the line ratio of [O III]88 μm/[O IV]26 μm can reliably discriminate the two emission regions, while the far-IR line ratio of [C II]157 μm/[O I]63 μm is only able to mildly separate the two regimes. By comparing the observed [C II]157 μm/[N II]205 μm ratio with photoionization models, we also found that most of the [C II] emission in the galaxies we examined is due to photodissociation regions.

  9. Testing for X-ray Periodicities in Seyfert Galaxies

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.; Oliversen, Ronald J. (Technical Monitor)

    2002-01-01

    The Deep Survey instrument on the Extreme Ultraviolet Explorer obtained long, continuous light-curves of 10 Seyfert galaxies with durations of 5-33 days each. We present a uniform reduction of these data, which account for a total of 209 days of observation. Several of the light curves are uniquely suited to a search for periodicity or QPOs in the range of hours to days that might be expected from dynamical effects in the inner accretion disks around approximately 10(exp 8) solar mass black holes. Power spectra show features in three of the longest observations that could be transient periods: 0.9 days in RX J0437.4-4711, 2.1 days in Ton S180, and 5.8 days in 1H 0419-577. These period values seem to be unrelated to the length of the observations, which are similar in the three cases, but they do roughly scale as the luminosity of the objects, which would be expected in a dynamical scenario if the black hole masses also scale with luminosity. The significance of these periods will be evaluated in a future publication by using the method of Timmer & Konig (1995), which properly takes into account the red-noise properties of AGN light curves.

  10. Hydrogen line ratios in Seyfert galaxies and low redshift quasars

    NASA Technical Reports Server (NTRS)

    Kriss, G. R.

    1984-01-01

    New observations of the Lymal alpha radiation/hydrogen alpha radiation ratio in a set of X-ray selected active galactic nuclei and an archival study of International Ultraviolet Explorer (IUE) observations of Lymal alpha low redshift quasars and Seyfert galaxies have been used to form a large sample for studying the influence of soft X-rays on the enhancement of Balmer emission in the broad line region. In common models of broad line clouds, the Balmer lines are formed deep in the interior, largely by collisional excitation. Heating within the clouds is provided by soft X-ray radiation, while Lymal alpha is formed mainly by recombination after photoionization. The ratio Lymal alpha/Halpha is expected to depend weakly on the ratio of ionizing ultraviolet luminosity to X-ray luminosity (L sub UV/l sub x). If the Lymal alpha luminosity is used as a measure of L sub UV' a weak dependence of Lymal/H alpha on the X-ray luminosity is found similar to previous results.

  11. Local Luminous Infrared Galaxies. I. Spatially Resolved Observations with the Spitzer Infrared Spectrograph

    NASA Astrophysics Data System (ADS)

    Pereira-Santaella, Miguel; Alonso-Herrero, Almudena; Rieke, George H.; Colina, Luis; Díaz-Santos, Tanio; Smith, J.-D. T.; Pérez-González, Pablo G.; Engelbracht, Charles W.

    2010-06-01

    We present results from the Spitzer Infrared Spectrograph spectral mapping observations of 15 local luminous infrared galaxies (LIRGs). In this paper, we investigate the spatial variations of the mid-IR emission which includes fine structure lines, molecular hydrogen lines, polycyclic aromatic features (PAHs), continuum emission, and the 9.7 μm silicate feature. We also compare the nuclear and integrated spectra. We find that the star formation takes place in extended regions (several kpc) as probed by the PAH emission, as well as the [Ne II]12.81 μm and [Ne III]15.56 μm emissions. The behavior of the integrated PAH emission and 9.7 μm silicate feature is similar to that of local starburst galaxies. We also find that the minima of the [Ne III]15.56 μm/[Ne II]12.81 μm ratio tends to be located at the nuclei and its value is lower than that of H II regions in our LIRGs and nearby galaxies. It is likely that increased densities in the nuclei of LIRGs are responsible for the smaller nuclear [Ne III]15.56 μm/[Ne II]12.81 μm ratios. This includes the possibility that some of the most massive stars in the nuclei are still embedded in ultracompact H II regions. In a large fraction of our sample, the 11.3 μm PAH emission appears more extended than the dust 5.5 μm continuum emission. We find a dependency of the 11.3 μm PAH/7.7 μm PAH and [Ne II]12.81 μm/11.3 μm PAH ratios with the age of the stellar populations. Smaller and larger ratios, respectively, indicate recent star formation. The estimated warm (300 K Seyfert galaxies. Finally we find that the [Ne II]12.81 μm velocity fields for most of the LIRGs in our sample are compatible with a rotating disk at ~kpc scales, and they are in a good agreement with Hα velocity fields. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet

  12. Rapid x-ray variability from the Seyfert 1 galaxy NGC 4051

    SciTech Connect

    Marshall, F.E.; Holt, S.S.; Mushotzky, R.F.; Becker, R.H.

    1983-06-15

    Strong variable x-ray emission from the nearby low-luminosity Seyfert 1 galaxy NGC 4051 has been discovered during observations with the imaging proportional counter (IPC) of the Einstein Observatory. During one 2304 s observation, the x-ray flux more than doubled in an approximately linear fashion, and a 70% increase for 150 s was seen during another 968 s observation. We present evidence that the x-ray spectrum of NGC 4051 is unusually soft compared with Seyfert 1 galaxies or OSOs. The emission mechanism is probably not synchrotron or synchrotron self-Compton, but the emission can be plausibly explained by various black hole accretion models.

  13. Detection of the O I 11287 A line in the Seyfert 1 galaxy I ZW 1

    NASA Astrophysics Data System (ADS)

    Rudy, Richard J.; Rossano, George S.; Puetter, R. C.

    1989-07-01

    This paper reports a detection of the infrared 11287 A transition of neutral oxygen in the Seyfert 1 galaxy I Zw 1. The observed strength of the feature is 6.5 x 10 to the -14th erg/sq cm sec. When this value is compared to the flux of O I 8446A measured by Persson and McGregor (1985), the ratio of the photon fluxes is unity, to within the measurement uncertainties. This is a direct confirmation that the broad permitted O I lines observed in Seyfert 1 galaxies and quasars arise through fluorescent excitation by Lyman Beta.

  14. The Variability of Seyfert 1.8 and 1.9 Galaxies at 1.6 Microns.

    PubMed

    Quillen; Shaked; Alonso-Herrero; McDonald; Lee; Rieke; Rieke

    2000-03-20

    We present a study of Seyfert 1.5-2.0 galaxies observed at two epochs with the Hubble Space Telescope (HST) at 1.6 µm. We find that unresolved nuclear emission from nine of 14 nuclei varies at the level of 10%-40% on timescales of 0.7-14 months, depending upon the galaxy. A control sample of Seyfert galaxies lacking unresolved sources and galaxies lacking Seyfert nuclei show less than 3% instrumental variation in equivalent aperture measurements. This proves that the unresolved sources are nonstellar and associated with the central parsecs of active galactic nuclei. Unresolved sources in Seyfert 1.8 and 1.9 galaxies are not usually detected in HST optical surveys; however, high angular resolution infrared observations will provide a way to measure time delays in these galaxies. PMID:10702122

  15. Hard X-ray emission from a type 2 Seyfert galaxy (NGC 1068)

    NASA Technical Reports Server (NTRS)

    Elvis, Martin; Lawrence, A.

    1988-01-01

    Exosat observations of the type 2 Seyfert galaxy NGC 1068 have detected a source in the 2-10 KeV range with a flux density at 2 keV of 0.6 micron-Jy. It has a flat power-law spectrum similar to type 1 Seyferts. Combined with Low Energy Exosat filter data and Einstein IPC observations, these data show that spectral curvature is necessary, flattening the X-ray spectrum to high energies. The spectrum can be decomposed into two components: a steep low-energy part and a flat high-energy part. Any intrinsic absorption is small. There is no evidence for variability within or between any of the observations, which sample time scales from 30 minutes to 4 yr. These data support the 'obscuration' model of type 2 Seyfert galaxies in which the nucleus is seen only in flux scattered from above a 'wall' of material that completely blocks the direct view.

  16. Far-ultraviolet and optical spectrophotometry of X-ray selected Seyfert galaxies

    NASA Technical Reports Server (NTRS)

    Clarke, J. T.; Bowyer, S.; Grewing, M.

    1986-01-01

    Five X-ray selected Seyfert galaxies were examined via near-simultaneous far-ultraviolet and optical spectrophotometry in an effort to test models for excitation of emission lines by X-ray and ultraviolet continuum photoionization. The observed Ly-alpha/H-beta ratio in the present sample averages 22, with an increase found toward the high-velocity wings of the H lines in the spectrum of at least one of the Seyfert I nuclei. It is suggested that Seyfert galaxies with the most high-velocity gas exhibit the highest Ly-alpha/H-beta ratios at all velocities in the line profiles, and that sometimes this ratio may be highest for the highest velocity material in the broad-line clouds. Since broad-lined objects are least affected by Ly-alpha trapping effects, they have Ly-alpha/H-beta ratios much closer to those predicted by early photoionization calculations.

  17. THE SPITZER HIGH-REDSHIFT RADIO GALAXY SURVEY

    SciTech Connect

    De Breuck, Carlos; Galametz, Audrey; Vernet, Joel; Seymour, Nick; Stern, Daniel; Eisenhardt, P. R. M.; Willner, S. P.; Fazio, G. G.; Lacy, Mark; Rettura, Alessandro; Rocca-Volmerange, Brigitte

    2010-12-10

    We present results from a comprehensive imaging survey of 70 radio galaxies at redshifts 1 < z < 5.2 using all three cameras on board the Spitzer Space Telescope. The resulting spectral energy distributions unambiguously show a stellar population in 46 sources and hot dust emission associated with the active nucleus in 59. Using a new rest-frame S{sub 3{sub {mu}m}}/S{sub 1.6{sub {mu}m}} versus S{sub 5{sub {mu}m}}/S{sub 3{sub {mu}m}} criterion, we identify 42 sources where the rest-frame 1.6 {mu}m emission from the stellar population can be measured. For these radio galaxies, the median stellar mass is high, 2 x 10{sup 11} M{sub sun}, and remarkably constant within the range 1 < z < 3. At z>3, there is tentative evidence for a factor of two decrease in stellar mass. This suggests that radio galaxies have assembled the bulk of their stellar mass by z {approx} 3, but confirmation by more detailed decomposition of stellar and active galactic nucleus (AGN) emission is needed. The rest-frame 500 MHz radio luminosities are only marginally correlated with stellar mass but are strongly correlated with the rest-frame 5 {mu}m hot dust luminosity. This suggests that the radio galaxies have a large range of Eddington ratios. We also present new Very Large Array 4.86 and 8.46 GHz imaging of 14 radio galaxies and find that radio core dominance-an indicator of jet orientation-is strongly correlated with hot dust luminosity. While all of our targets were selected as narrow-lined, type 2 AGNs, this result can be understood in the context of orientation-dependent models if there is a continuous distribution of orientations from obscured type 2 to unobscured type 1 AGNs rather than a clear dichotomy. Finally, four radio galaxies have nearby (<6'') companions whose mid-IR colors are suggestive of their being AGNs. This may indicate an association between radio galaxy activity and major mergers.

  18. Extended far-infrared emission and star formation in Seyfert galaxies

    NASA Technical Reports Server (NTRS)

    Marston, A. P.

    1994-01-01

    An investigation into the extended distribution of far-infrared (FIR) emission associated with nearby Seyfert galaxies is made using a set of MEM reconstructions of IRAS Chopped Photometric Channel (CPC) data (Marston 1993). The data is compared to a set of HII/starburst galaxy images similarly processed in order to compare distributions and FIR color properties. It is shown that the central 1 kpc or so of Seyfert galaxies show extended FIR emission. FIR colors suggest that the bulk of this emission is not directly associated with an active nucleus. They further suggest that the origins of the majority of the emission is from heated dust associated with star formation surrounding the nucleus rather than dust heated by the active nucleus. Nearby Seyfert galaxies are shown to have a higher concentration of far-infrared emission from their centers than the HII/starburst galaxies and a number appear to reside in disk galaxies with relatively low ongoing star formation in their disks. An example of this is NGC 7582 which has a smooth disk but an active nucleus/starbust center.

  19. TESTING THE EVOLUTIONARY SEQUENCE BETWEEN HIDDEN BROAD-LINE REGION (HBLR) AND NON-HBLR SEYFERT 2 GALAXIES WITH THE 4000 A BREAK STRENGTHS

    SciTech Connect

    Yu, Po-Chieh; Hwang, Chorng-Yuan; Huang, Kui-Yun; Ohyama, Youichi E-mail: hwangcy@astro.ncu.edu.tw E-mail: ohyama@asiaa.sinica.edu.tw

    2013-05-01

    We compare the 4000 A break (D{sub n} (4000)) strength in the central kpc of hidden broad-line region (HBLR) and non-HBLR Seyfert 2 galaxies to investigate the origin of these galaxies. Our results show that the D{sub n} (4000) strengths in the nuclear regions of the non-HBLR Seyfert 2 galaxies are larger than those in the HBLR galaxies. We also show that the D{sub n} (4000) strength is not related to the morphology of host galaxies. These results imply that the non-HBLR Seyfert 2 galaxies have an older stellar population in nuclear regions than the HBLR galaxies. This suggests that an evolutionary connection might exist between non-HBLR and HBLR Seyfert 2 galaxies. We propose a potential evolutionary scenario and a modified unification model for Seyfert galaxies. In this scheme, Seyfert 1 and HBLR Seyfert 2 galaxies evolve into unabsorbed and absorbed non-HBLR Seyfert 2 galaxies. We also discuss the implications of our results in the hydrogen column density distribution of the non-HBLR Seyfert 2 galaxies.

  20. VizieR Online Data Catalog: Atlas of HST STIS spectra of Seyfert galaxies (Spinelli+, 2006)

    NASA Astrophysics Data System (ADS)

    Spinelli, P. F.; Storchi-Bergmann, T.; Brandt, C. H.; Calzetti, D.

    2008-05-01

    We present a compilation of spectra of 101 Seyfert galaxies obtained with the Hubble Space Telescope (HST) Space Telescope Imaging Spectrograph (STIS), covering the UV and/or optical spectral range. Information on all the available spectra have been collected in a Mastertable, which is a very useful tool for anyone interested in a quick glance at the existent STIS spectra for Seyfert galaxies in the HST archive, and it can be recovered electronically. Nuclear spectra of the galaxies have been extracted in windows of 0.2" for an optimized sampling (as this is the slit width in most cases) and combined in order to improve the signal-to-noise ratio and provide the widest possible wavelength coverage. These combined spectra are also available electronically, at http://www.if.ufrgs.br/~pat/atlas.htm . (3 data files).

  1. Hubble Space Telescope Observations of the CFA Seyfert 2 Galaxies: The Fueling of Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Martini, Paul; Pogge, Richard W.

    1999-12-01

    We present an investigation of possible fueling mechanisms operating in the inner kiloparsec of Seyfert galaxies. We analyze visible and near-infrared Hubble Space Telescope images of 24 Seyfert 2 galaxies from the CfA Redshift Survey sample. In particular, we are searching for the morphological signatures of dynamical processes responsible for transporting gas from kiloparsec scales into the nucleus. The circumnuclear regions are very rich in gas and dust, often taking the form of nuclear spiral dust lanes on scales of a few hundred parsecs. While these nuclear spirals are found in 20 of our 24 Seyfert galaxies, we find only five nuclear bars among the entire sample, strongly reinforcing the conclusions of other investigators that nuclear bars are not the primary means of transporting this material into the nucleus. An estimate of the gas density in the nuclear spirals, based on extinction measurements, suggests that the nuclear spiral dust lanes are probably shocks in nuclear gas disks that are not strongly self-gravitating. Since shocks can dissipate energy and angular momentum, these spiral dust lanes may be the channels by which gas from the host galaxy disks is being fed into the central engines.

  2. ESO 103-G35 - A new Seyfert galaxy and possible X-ray source

    NASA Technical Reports Server (NTRS)

    Phillips, M. M.; Feldman, F. R.; Marshall, F. E.; Wamsteker, W.

    1979-01-01

    By means of an objective prism plate, two emission-line galaxies have been identified within the 0.7-sq deg HEAO-A2 error box for the X-ray source H1834-653. Optical spectrophotometric observations are reported for both objects as well as the galaxy NGC 6684, which also lies near the position of H1834-653. These data show that one of the emission-line galaxies, ESO 103-G35, is a Seyfert galaxy with a high-excitation forbidden-line spectrum and weak broad emission wings at H-alpha. Further measurements of this galaxy reveal an infrared excess at wavelengths longer than 2.2 microns. The H-alpha luminosity of ESO 103-G35 is consistent with the X-ray luminosity estimated from the HEAO-A2 data, thus strengthening the likelihood of association of this galaxy with the X-ray emission.

  3. Relativistic Reflection in a sample of Seyfert 1 galaxies observed with Suzaku

    NASA Astrophysics Data System (ADS)

    Mantovani, G.; Nandra, K.; Ponti, G.

    2016-08-01

    Broad iron lines are expected, and observed, to be a widespread feature in bright AGN. However, a significant fraction of object misses a disk line component. We extracted from the sample of all Seyfert 1 galaxies the ones with no detection of a broad Fe Kα line, to investigate the physical cause of this absence. We analysed all archival Suzaku observations that, thanks to the broad energy band, allows us to investigate the connection between broad Fe Kα line and reflection continuum. Our analysis shows that relativistic FeKα line are ubiquitous features in the spectra of Seyfert galaxies, but are often difficult to detect without very high quality data. We also investigate the relation between the Fe Kα line and the reflection continuum. For most of the sample, the strength of the reflection component is consistent with that of the line.

  4. Erratum: BeppoSAX Observations of the Maser Seyfert 2 Galaxy ESO 103-G35

    NASA Astrophysics Data System (ADS)

    Wilkes, Belinda J.; Mathur, Smita; Fiore, Fabrizio; Antonelli, Angelo; Nicastro, Fabrizio

    2001-08-01

    In the paper ``BeppoSAX Observations of the Maser Seyfert 2 Galaxy ESO 103-G35'' by Belinda J. Wilkes, Smita Mathur, Fabrizio Fiore, Angelo Antonelli, and Fabrizio Nicastro (ApJ, 549, 248 [2001]), the size of the line-emitting region derived from the line width should read 0.01 pc and not 50 pc as currently listed in the abstract, § 3.4, and § 4.

  5. Connection between the rapidly varying and smooth components in the light curves of Seyfert galaxies

    SciTech Connect

    Gagen-Torn, V.A.

    1987-11-01

    It is shown that for some Seyfert galaxies whose light curves contain a fast (burst) component and a smooth component (components I and II) the amplitude of the flux variation of component I is proportional to the flux of component II. Since components I and II are also identical in their color characteristics, it is very probable that the variability is due to a single smoothly varying and fluctuating source.

  6. Discovery of Relativistic Outflows in the Seyfert Galaxies Ark 564 and Mrk 590

    NASA Astrophysics Data System (ADS)

    Gupta, Anjali; mathur, Smita

    2015-08-01

    Outflows are ubiquitous in AGNs, manifested by blueshifted absorption lines in the soft X-ray and UV bands and have outflow velocities of 100-1000 km s-1. The discovery of ultra-fast outflows (0.1 c) exhibited by blueshifted absorption lines in the hard X-ray band has added an intriguing aspect to the rich field of AGN outflows. The significance of these absorption line detections is often questioned and with only a few lines observed, accurate parametrization of the photoionized plasma becomes difficult. We recently discovered relativistic outflows in the soft X-ray band in two Seyfert galaxies; these detections are robust and alleviate earlier concerns about statistical significance of the lines in the hard X-ray band. I will discuss the our recent results on the discovery of high velocity outflows in the narrow line Seyfert 1 galaxies Ark 564 and Mrk 590. These absorbers are identified through multiple absorption lines at blueshift of 0.1c-0.17c detected in the Chandra HETG-MEG spectra. These high-velocity outflows have ionization parameter and column density typical of low-velocity outflows, but much higher velocity, probing a distinct region in the velocity versus ionization/column parameter space. The presence of such relativistic outflows in Seyfert galaxies poses a challenge to theoretical models of AGN winds. I will briefly discuss existing models and future prospects.

  7. A Kinematic Study of the Nuclear Stellar Populations in Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    García-Rissmann, Aurea; Cid Fernandes, Roberto; Asari, N. V.; Vega, Luis Rodolfo; Schmitt, Henrique; González Delgado, Rosa

    2005-05-01

    Recent studies in the optical and UV have detected circumnuclear starbursts in 40% of nearby Seyfert-2 galaxies; about half of the remaining 60% present a UV excess whose nature is not well known, mainly because of the limitations of the current stellar population analysis techniques in the optical and UV domains. A possible way to circumvent these difficulties is to use a determination of the mass-to-light (M/L) ratio, obtained with a combination of velocity dispersion measurements and photometric information. Dynamical information in AGN (particularly in type 2) is better determined from NIR spectroscopic data, where the stellar absorption features are less affected by the nuclear continuum dilution. In this work, we present preliminary results of a spectroscopic survey of more than 60 Seyfert nuclei (mainly Seyfert 2s), conducted at ESO/La Silla and at KPNO. For many of these objects we have complementary data, such as HST images, optical and (in some cases) UV spectroscopy. The long-slit spectroscopy for the purpose of this project was performed around the NIR Ca II triplet lines at 8498, 8542 and 8662Å. Here we describe the analysis steps taken so far, and present the first results concerning velocity dispersion measurements in nuclear regions. With these data we aim to investigate the ambiguous Seyfert 2 nuclei nature, thus contributing to a better understanding of the AGN-starburst connection.

  8. The Keck OSIRIS Nearby AGN Survey: Tracing Inflow within the Central 200 pc of Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Hicks, Erin K. S.; Müller-Sánchez, Francisco; Malkan, Matthew A.; Yu, Po-Chieh

    2016-08-01

    In an effort to identify the fundamental processes driving feeding and feedback in AGN we turn to local Seyfert galaxies and rely on a multi-wavelength approach. With the integral field unit OSIRIS and adaptive optics we characterize the nuclear stars and gas down to scales of 5-30 parsecs in a sample of 40 Seyfert galaxies with the Keck OSIRIS Nearby AGN (KONA) survey. The complex gas kinematics in these near-IR data are interpreted using an integrative approach through comparison with data available at a range of wavelengths. We present first results from the survey with a focus on work aimed at constraining the mechanism(s) driving inflow of material within the central 200 pc. Particularly useful in the identification of inflow mechanisms (e.g. nuclear spiral, external accretion) is spatial correlation of the molecular gas distribution and kinematics with dust features revealed in HST imaging (optical and near-IR). Also informative is comparison with X-ray emission to identify locations likely influenced by interactions with outflows. The stellar kinematics in the sample galaxies (traced by CO bandheads at 2.3 microns) indicate a stellar population within the central few 100 parsecs in circular rotation, and in the majority of the galaxies the molecular gas (traced by H2 emission at 2.1218 microns) is found to have a rotating component co-spatial with the stellar disk. A significant fraction of the galaxies also exhibit kinematic signatures of inflow superimposed on this disk rotation, with inflow driven by secular and non-secular processes identified. We explore statistical trends of the nuclear stellar and molecular gas properties, including primary fueling mechanism, with Seyfert type, AGN luminosity, and host environment with the goal of disentangling which properties are fundamental to the nature of the AGN.

  9. Deep Optical Imaging of a Compact Group of Galaxies: Seyfert's Sextet

    NASA Astrophysics Data System (ADS)

    Nishiura, Shingo; Murayama, Takashi; Shimada, Masashi; Sato, Yasunori; Nagao, Tohru; Molikawa, Kohji; Taniguchi, Yoshiaki; Sanders, D. B.

    2000-11-01

    To investigate the dynamical status of Seyfert's Sextet (SS), we have obtained a deep optical (VR+I) image of this group. Our image shows that a faint envelope, down to a surface brightness μoptical(AB)~=27 mag arcsec-2, surrounds the member galaxies. This envelope is irregular in shape. It is likely that this shape is attributed either to recent-past or to ongoing galaxy interactions in SS. If the member galaxies have experienced a number of mutual interactions over a long timescale, the shape of the envelope should be rounder. Therefore, the irregularly shaped morphology suggests that SS is in an early phase of dynamical interaction among the member galaxies. It is interesting to note that the soft X-ray image obtained with ROSAT (Pildis, Bregman, & Evrard) is significantly similar in morphology. We discuss the possible future evolution of SS briefly.

  10. Physical Conditions in the Inner Narrow-Line Region of the Seyfert 2 Galaxy Markarian 573

    NASA Astrophysics Data System (ADS)

    Kraemer, S. B.; Trippe, M. L.; Crenshaw, D. M.; Meléndez, M.; Schmitt, H. R.; Fischer, T. C.

    2009-06-01

    We have examined the physical conditions within a bright emission-line knot in the inner narrow-line region (NLR) of the Seyfert 2 galaxy Mrk 573 using optical spectra and photoionization models. The spectra were obtained with the Hubble Space Telescope/Space Telescope Imaging Spectrograph, through the 0farcs2 × 52farcs0 slit, at a position angle of -71fdg2, with the G430L and G750M gratings. Comparing the spatial emission-line profiles, we found [Fe X] λ 6734 barely resolved, [O III] λ5007 centrally peaked, but broader than [Fe X], and [O II] λ3727 the most extended. Spectra of the central knot were extracted from a region 1farcs1 in extent, corresponding to the full width at zero intensity in the cross-dispersion direction, of the knot. The spectra reveal that [Fe X] is broader in velocity width and blueshifted compared with lines from less ionized species. Our estimate of the bolometric luminosity indicates that the active galactic nucleus (AGN) is radiating at or above its Eddington luminosity, which is consistent with its identification as a hidden Narrow-Line Seyfert 1. We were able to successfully match the observed emission-line ratios with a three-component photoionization model. Two components, one to account for the [O III] emission and another in which the [Fe X] arises, are directly ionized by the AGN, while [O II] forms in a third component, which is ionized by a heavily absorbed continuum. Based on our assumed ionizing continuum and the model parameters, we determined that the two directly ionized components are ~55 pc from the AGN. We have found similar radial distances for the central knots in the Seyfert 2 galaxies Mrk 3 and NGC 1068, but much smaller radial distances for the inner NLR in the Seyfert 1 galaxies NGC 4151 and NGC 5548. Although in general agreement with the unified model, these results suggest that the obscuring material in Seyfert galaxies extends out to at least tens of parsecs from the AGN. Based on observations made with the

  11. A new intermediate Seyfert galaxy - X-ray, optical, and radio properties

    NASA Technical Reports Server (NTRS)

    Ghigo, F. D.; Wyckoff, S.; Wardle, J. F. C.; Cohen, N. L.

    1982-01-01

    It is shown that the X-ray source X0459 + 034 is a Seyfert galaxy of intermediate type, and optical spectroscopy and radio observations were performed to study the nature of the object. The object appears almost stellar and slightly diffuse on Palomar Sky Survey prints. The source is identified as a Type 1.5 Seyfert with broad and narrow line components of redshift 0.016 + or - 0.001, according to H-Beta line profile. In addition, the broad line component H-Beta equivalent width is larger than that of the narrow line component by a factor of three. Finally, it is shown that this is a weak radio source with a steep nonthermal spectrum and an angular extent of approximately 3 in., and the composite radio-to-X-ray spectrum suggests that in different spectral regions, different relativistic electron populations or emission mechanisms are contributing factors.

  12. The Role of Radiation Pressure in the Narrow Line Regions of Seyfert Host Galaxies

    NASA Astrophysics Data System (ADS)

    Davies, Rebecca L.; Dopita, Michael A.; Kewley, Lisa; Groves, Brent; Sutherland, Ralph; Hampton, Elise J.; Shastri, Prajval; Kharb, Preeti; Bhatt, Harish; Scharwächter, Julia; Jin, Chichuan; Banfield, Julie; Zaw, Ingyin; James, Bethan; Juneau, Stéphanie; Srivastava, Shweta

    2016-06-01

    We investigate the relative significance of radiation pressure and gas pressure in the extended narrow line regions (ENLRs) of four Seyfert galaxies from the integral field Siding Spring Southern Seyfert Spectroscopic Snapshot Survey (S7). We demonstrate that there exist two distinct types of starburst-active galactic nucleus (AGN) mixing curves on standard emission line diagnostic diagrams, which reflect the balance between gas pressure and radiation pressure in the ENLR. In two of the galaxies the ENLR is radiation pressure dominated throughout and the ionization parameter remains constant (log U ˜ 0). In the other two galaxies radiation pressure is initially important, but gas pressure becomes dominant as the ionization parameter in the ENLR decreases from log U ˜ 0 to ‑3.2 ≲ log U ≲ ‑3.4. Where radiation pressure is dominant, the AGN regulates the density of the interstellar medium on kiloparsec scales and may therefore have a direct impact on star formation activity and/or the incidence of outflows in the host galaxy to scales far beyond the zone of influence of the black hole. We find that both radiation pressure dominated and gas pressure dominated ENLRs are dynamically active with evidence for outflows, indicating that radiation pressure may be an important source of AGN feedback even when it is not dominant over the entire ENLR.

  13. Mid-infrared interferometry of Seyfert galaxies: Challenging the Standard Model

    NASA Astrophysics Data System (ADS)

    López-Gonzaga, N.; Jaffe, W.

    2016-06-01

    Aims: We aim to find torus models that explain the observed high-resolution mid-infrared (MIR) measurements of active galactic nuclei (AGN). Our goal is to determine the general properties of the circumnuclear dusty environments. Methods: We used the MIR interferometric data of a sample of AGNs provided by the instrument MIDI/VLTI and followed a statistical approach to compare the observed distribution of the interferometric measurements with the distributions computed from clumpy torus models. We mainly tested whether the diversity of Seyfert galaxies can be described using the Standard Model idea, where differences are solely due to a line-of-sight (LOS) effect. In addition to the LOS effects, we performed different realizations of the same model to include possible variations that are caused by the stochastic nature of the dusty models. Results: We find that our entire sample of AGNs, which contains both Seyfert types, cannot be explained merely by an inclination effect and by including random variations of the clouds. Instead, we find that each subset of Seyfert type can be explained by different models, where the filling factor at the inner radius seems to be the largest difference. For the type 1 objects we find that about two thirds of our objects could also be described using a dusty torus similar to the type 2 objects. For the remaining third, it was not possible to find a good description using models with high filling factors, while we found good fits with models with low filling factors. Conclusions: Within our model assumptions, we did not find one single set of model parameters that could simultaneously explain the MIR data of all 21 AGN with LOS effects and random variations alone. We conclude that at least two distinct cloud configurations are required to model the differences in Seyfert galaxies, with volume-filling factors differing by a factor of about 5-10. A continuous transition between the two types cannot be excluded.

  14. The Mass of the Central Black Hole in the Seyfert Galaxy NGC 3783

    NASA Technical Reports Server (NTRS)

    Onken, Christopher A.; Peterson, Bradley M.

    2004-01-01

    Improved analysis of ultraviolet and optical monitoring data on the Seyfert 1 galaxy NGC 3783 provides evidence for the existence of a supermassive, (8.7 +/- 1.1) x 10(exp 6) solar mass, black hole in this galaxy. By using recalibrated spectra from the International Ultraviolet Explorer satellite and ground-based optical data, as well as refined techniques of reverberation mapping analysis, we have reduced the statistical uncertainties in the response of the emission lines to variations in the ionizing continuum. The different time lags in the emission-line responses indicate a stratification in the ionization structure of the broad-line region and are consistent with the virial relationship suggested by the analysis of similar active galaxies.

  15. X-RAY PROPERTIES OF NARROW-LINE SEYFERT 1 GALAXIES WITH VERY SMALL BROADLINE WIDTHS

    SciTech Connect

    Ai, Y. L.; Zhou, H. Y.; Wang, T. G.; Zhang, S. H. E-mail: wmy@nao.cas.cn

    2011-01-20

    Narrow-line Seyfert 1 galaxies (NLS1s) with very small broadline widths (say, FWHM(H{beta}) {approx}<1200 km s{sup -1}) represent the extreme type of Seyfert 1 galaxies that have small black hole masses (M{sub BH}) and/or high Eddington ratios (L/L{sub Edd}). Here, we study the X-ray properties of a homogeneously and optically selected sample of 13 such objects, termed as very narrow line Seyfert 1 galaxies, using archival XMM-Newton data. It is found that the Fe K{alpha} emission line is at most weak in these objects. A soft X-ray excess is ubiquitous, with the thermal temperatures falling within a strict range of 0.1-0.2 keV. Our result highlights the puzzling independence of the thermal temperature by extending the relations to even smaller FWHM(H{beta}), i.e., smaller M{sub BH} ({approx}10{sup 6} M{sub sun}) and/or higher L/L{sub Edd}. The excess emission can be modeled by a range of viable models, though the disk reflection and Comptonization models generally give somewhat better fits over the smeared absorption and the p-free models. At the Eddington ratios around unity and above, the X-ray spectral slopes in the 2-10 keV band are systematically flatter than the predictions of the relationship with L/L{sub Edd} suggested previously. Short timescale (1-2 hr) X-ray variability is common, which, together with the variability amplitude computed for some of the objects, is supportive of the scenario that NLS1s are indeed active galactic nuclei with relatively small M{sub BH}.

  16. Discovery of a deep Seyfert-2 galaxy at z = 0.222 behind NGC 300

    NASA Astrophysics Data System (ADS)

    Combi, J. A.; García, F.; Rodríguez, M. J.; Gamen, R.; Cellone, S. A.

    2016-08-01

    We report on the unveiling of the nature of the unidentified X-ray source 3XMM J005450.3-373849 as a Seyfert-2 galaxy located behind the spiral galaxy NGC 300 using Hubble Space Telescope data, new spectroscopic Gemini observations and available XMM-Newton and Chandra data. We show that the X-ray source is positionally coincident with an extended optical source, composed of a marginally resolved nucleus/bulge, surrounded by an elliptical disc-like feature and two symmetrical outer rings. The optical spectrum is typical of a Seyfert-2 galaxy redshifted to z = 0.222 ± 0.001, which confirms that the source is not physically related to NGC 300. At this redshift the source would be located at 909 ± 4 Mpc (comoving distance in the standard model). The X-ray spectra of the source are well fitted by an absorbed power-law model. By tying NH between the six available spectra, we found a variable index Γ running from ˜2 in 2000-2001 to 1.4-1.6 in the 2005-2014 period. Alternatively, by tying Γ, we found variable absorption columns of NH ˜ 0.34 × 10-22 cm-2 in 2000-2001, and 0.54-0.75 × 10-22 cm-2 in the 2005-2014 period. Although we cannot distinguish between a spectral or absorption origin, from the derived unabsorbed X-ray fluxes, we are able to assure the presence of long-term X-ray variability. Furthermore, the unabsorbed X-ray luminosities of 0.8-2 × 1043 erg s-1 derived in the X-ray band are in agreement with a weakly obscured Seyfert-2 AGN at z ≈ 0.22.

  17. An X-Ray Reprocessing Model of Disk Thermal Emission in Type 1 Seyfert Galaxies

    NASA Technical Reports Server (NTRS)

    Chiang, James; White, Nicholas E. (Technical Monitor)

    2002-01-01

    Using a geometry consisting of a hot central Comptonizing plasma surrounded by a thin accretion disk, we model the optical through hard X-ray spectral energy distributions of the type 1 Seyfert. galaxies NGC 3516 and NGC 7469. As in the model proposed by Poutanen, Krolik, and Ryde for the X-ray binary Cygnus X-1 and later applied to Seyfert galaxies by Zdziarski, Lubifiski, and Smith, feedback between the radiation reprocessed by the disk and the thermal Comptonization emission from the hot central plasma plays a pivotal role in determining the X-ray spectrum, and as we show, the optical and ultraviolet spectra as well. Seemingly uncorrelated optical/UV and X-ray light curves, similar to those which have been observed from these objects can, in principle, be explained by variations in the size, shape, and temperature of the Comptonizing plasma. Furthermore, by positing a disk mass accretion rate which satisfies a condition for global energy balance between the thermal Comptonization luminosity and the power available from accretion, one can predict the spectral properties of the heretofore poorly measured hard X-ray continuum above approximately 50 keV in type 1 Seyfert galaxies. Conversely, forthcoming measurements of the hard X-ray continuum by more sensitive hard X-ray and soft gamma-ray telescopes, such as those aboard the International Gamma-Ray Astrophysics Laboratory (INTEGRAL) in conjunction with simultaneous optical, UV, and soft X-ray monitoring, will allow the mass accretion rates to be directly constrained for these sources in the context of this model.

  18. GAS OUTFLOWS IN SEYFERT GALAXIES: EFFECTS OF STAR FORMATION VERSUS AGN FEEDBACK

    SciTech Connect

    Melioli, C.; Pino, E. M. de Gouveia Dal E-mail: dalpino@iag.usp.br

    2015-10-20

    Large-scale, weakly collimated outflows are very common in galaxies with large infrared luminosities. In complex systems in particular, where intense star formation (SF) coexists with an active galactic nucleus (AGN), it is not clear yet from observations whether the SF, the AGN, or both are driving these outflows. Accreting supermassive black holes are expected to influence their host galaxies through kinetic and radiative feedback processes, but in a Seyfert galaxy, where the energy emitted in the nuclear region is comparable to that of the body of the galaxy, it is possible that stellar activity is also playing a key role in these processes. In order to achieve a better understanding of the mechanisms driving the gas evolution especially at the nuclear regions of these galaxies, we have performed high-resolution three-dimensional hydrodynamical simulations with radiative cooling considering the feedback from both SF regions, including supernova (Type I and II) explosions and an AGN jet emerging from the central region of the active spiral galaxy. We computed the gas mass lost by the system, separating the role of each of these injection energy sources on the galaxy evolution, and found that at scales within 1 kpc an outflow can be generally established considering intense nuclear SF only. The jet alone is unable to drive a massive gas outflow, although it can sporadically drag and accelerate clumps of the underlying outflow to very high velocities.

  19. Evidence of coronal flaring in narrow-line Seyfert 1 galaxies

    NASA Astrophysics Data System (ADS)

    Gallo, L. C.

    High-energy (E>2 keV) continuum flaring is detected in two narrow-line Seyfert 1 galaxies (I Zw 1 and NAB 0205+024), consistent with occurring in a hot corona distinct from the accretion disc. The flare in I Zw 1 is accompanied by an increase in the amount of gravitationally redshifted reflected emission coming from the accretion disc. This indicates that the high-energy continuum component is compact and located close to the black hole, and could possibly be the base of an aborted jet.

  20. The nature of the optical variations of Seyfert galaxy 3C 120

    SciTech Connect

    Webb, J.R. Austin State Univ., TX )

    1990-01-01

    Results are presented from 61 years of optical observations of the Seyfert galaxy 3C 120. A previously published model of the 3C 120 light curve, derived from power spectrum analysis, is found to be valid for historical as well as current data. It is concluded that the optical variations of 3C 120 can be separated into a linear component, a sinusoidal component, and rapid, high-amplitude flares. Possible sources of the regular variations observed in 3C 120 are also suggested in the context of accretion models and other theoretical models. 15 refs.

  1. The Far-Infrared Energy Distributions of Seyfert and Starburst Galaxies in the Local Universe: Infrared Space Observatory Photometry of the 12 Micron Active Galaxy Sample

    NASA Astrophysics Data System (ADS)

    Spinoglio, Luigi; Andreani, Paola; Malkan, Matthew A.

    2002-06-01

    New far-infrared photometry with ISOPHOT aboard the Infrared Space Observatory (ISO) is presented for 58 galaxies with homogeneous published data for another 32 galaxies, all belonging to the 12 μm galaxy sample-in total, 29 Seyfert 1 galaxies, 35 Seyfert 2 galaxies, and 12 starburst galaxies, or about half of the 12 μm active galaxy sample, plus 14 normal galaxies for comparison. ISO and Infrared Astronomical Satellite (IRAS) data are used to define color-color diagrams and spectral energy distributions (SEDs). Thermal dust emission at two temperatures (one cold at 15-30 K and one warm at 50-70 K) can fit the 60-200 μm SED, with a dust emissivity law proportional to the inverse square of the wavelength. Seyfert 1 galaxies and Seyfert 2 galaxies are indistinguishable longward of 100 μm, while, as already seen by IRAS, the former have flatter SEDs shortward of 60 μm. A mild anticorrelation is found between the [200-100] color and the ``60 μm excess.'' We infer that this is due to the fact that galaxies with a strong starburst component and thus a strong 60 μm flux have a steeper far-infrared turnover. In non-Seyfert galaxies, increasing the luminosity corresponds to increasing the star formation rate, which enhances the 25 and 60 μm emission. This shifts the peak emission from around 150 μm in the most quiescent spirals to shorter than 60 μm in the strongest starburst galaxies. To quantify these trends further, we identified with the IRAS colors three idealized infrared SEDs: pure quiescent disk emission, pure starburst emission, and pure Seyfert nucleus emission. Even between 100 and 200 μm, the quiescent disk emission remains much cooler than the starburst component. Seyfert galaxies have 100-200 μm SEDs ranging from pure disks to pure starbursts, with no apparent contribution from their active nuclei at those wavelengths. Based on observations with ISO, an ESA project with instruments funded by ESA Member States (especially the PI countries: France

  2. Multimolecule ALMA observations toward the Seyfert 1 galaxy NGC 1097

    NASA Astrophysics Data System (ADS)

    Martín, S.; Kohno, K.; Izumi, T.; Krips, M.; Meier, D. S.; Aladro, R.; Matsushita, S.; Takano, S.; Turner, J. L.; Espada, D.; Nakajima, T.; Terashima, Y.; Fathi, K.; Hsieh, P.-Y.; Imanishi, M.; Lundgren, A.; Nakai, N.; Schinnerer, E.; Sheth, K.; Wiklind, T.

    2015-01-01

    Context. The nearby Sy 1 galaxy NGC 1097 represents an ideal laboratory for exploring the molecular chemistry in the surroundings of an active galactic nucleus (AGN). Aims: Exploring the distribution of different molecular species allows us to understand the physical processes affecting the interstellar medium both in the AGN vicinity and in the outer star forming molecular ring. Methods: We carried out 3 mm ALMA observations that include seven different molecular species, namely HCN, HCO+, CCH, CS, HNCO, SiO, HC3N, and SO, as well as the 13C isotopologues of the first two. Spectra were extracted from selected positions and all species were imaged over the central 2 kpc (~30'') of the galaxy at a resolution of ~2.2'' × 1.5'' (150 pc × 100 pc). Results: HCO+ and CS appear to be slightly enhanced in the star forming ring. CCH shows the largest variations across NGC 1097 and is suggested to be a good tracer of both obscured and early stage star formation. HNCO, SiO, and HC3N are significantly enhanced in the inner circumnuclear disk surrounding the AGN. Conclusions: Differences in the molecular abundances are observed between the star forming ring and the inner circumnuclear disk. We conclude that the HCN/HCO+ and HCN/CS differences observed between AGN-dominated and starburst (SB) galaxies are not due to a HCN enhancement due to X-rays, but rather this enhancement is produced by shocked material at distances of 200 pc from the AGN. Additionally, we claim that lower HCN/CS is a combination of a small underabundance of CS in AGNs, together with excitation effects, where a high density gas component (~106 cm-3) may be more prominent in SB galaxies. However, the most promising are the differences found among the dense gas tracers that, at our modest spatial resolution, seem to outline the physical structure of the molecular disk around the AGN. In this picture, HNCO probes the well-shielded gas in the disk, surrounding the dense material moderately exposed to the X

  3. Evolutionary behaviour of AGN: Investigations on BL Lac objects and Seyfert II galaxies

    NASA Astrophysics Data System (ADS)

    Beckmann, V.

    2000-12-01

    The evolution and nature of AGN is still one of the enigmatic questions in astrophysics. While large and complete Quasar samples are available, special classes of AGN, like BL Lac objects and Seyfert II galaxies, are still rare objects. In this work I present two new AGN samples. The first one is the HRX-BL Lac survey, resulting in a sample of X-ray selected BL Lac objects. This sample results from 223 BL Lac candidates based on a correlation of X-ray sources with radio sources. The identification of this sample is 98% complete. 77 objects have been identified as BL Lac objects and form the HRX-BL Lac complete sample, the largest homogeneous sample of BL Lac objects existing today. For this sample, redshifts are now known for 62 objects (81 %). In total I present 101 BL Lac objects in the enlarged HRX-BL Lac survey, for which redshift information is available for 84 objects. During the HRX-BL Lac survey I found several objects of special interest. 1ES 1517+656 turned out to be the brightest known BL Lac object in the universe. 1ES 0927+500 could be the first BL Lac object with a line detected in the X-ray region. RX J1211+2242 is probably the the counterpart of the up to now unidentified gamma-ray source 3EG J1212+2304. Additionally I present seven candidates for ultra high frequency peaked BL Lac objects. RX J1054+3855 and RX J1153+3517 are rare high redshift X-ray bright QSO or accreting binary systems with huge magnetic fields. For the BL Lac objects I suggest an unified scenario in which giant elliptical galaxies, formed by merging events of spiral galaxies at z > 2, start as powerful, radio dominated BL Lacs. As the jet gets less powerful, the BL Lacs start to get more X-ray dominated, showing less total luminosities (for z < 1). This effect is seen in the different evolutionary behavior detected in high and low frequency cut off BL Lac objects (HBL and LBL, respectively). The model of negative evolution is supported by assumptions about the energetic effects

  4. Millimeter Detection of Spitzer-selected High Redshift Hyperluminus Starburst Galaxies

    NASA Astrophysics Data System (ADS)

    Lonsdale, Carol J.; Omont, A.; del Carmen Polletta, M.; Zylka, R.; Shupe, D.; Smith, H. E., Jr.; Berta, S.; Bavouzet, N.; Lagache, G.; Farrah, D.; Bertoldi, F.; Cox, P.; de Breuck, C.; Dole, H.; Lutz, D.; Tacconi, L.; Perez-Fournon, I.; Aussel, H.; McCracken, H.; Clements, D.; Rowan-Robinson, M.; Franceschini, A.; Frayer, D.; Surace, J.; Siana, B.

    2006-12-01

    We have used the Mambo instrument on the IRAM 30m telescope to observe at 1.2mm 63 Spitzer-selected z>1 hyperluminous infrared galaxy candidates (HLIRGs) with starburst-dominated mid-infrared (MIR) spectral energy distributions from the SWIRE Legacy survey. The primary selection criteria are a peak in the IRAC 5.8μm band due to the rest frame near-infrared spectrum of evolved stars, a bright detection at 24μm, and very faint optical counterparts. The detection rate with Mambo is very high at 45%, and both the detection rate and the average 1.2mm/24μm flux ratio are much higher than found for previous Spitzer MIR-selected samples, due to the fact that earlier samples favored systems with AGN-dominated MIR emission. Our sample, on the other hand, shows systematically lower 1.2mm/24μm ratios than a sample of Spitzer-detected submillimeter-selected galaxies (SMGs) in a similar redshift range. Thus Spitzer MIR selection complements submillimeter selection of high redshift starburst-dominated HLIRGs, finding a population with substantially different SED shapes. The large MIR/submillimeter flux ratios probably indicate exceptionally luminous 7.7μm PAH emission, based on Spitzer IRS spectra for a subset of these objects (Weedman et al. 2007).

  5. The nuclear and integrated far-infrared emission of nearby Seyfert galaxies

    NASA Astrophysics Data System (ADS)

    García-González, J.; Alonso-Herrero, A.; Hernán-Caballero, A.; Pereira-Santaella, M.; Ramos-Almeida, C.; Acosta-Pulido, J. A.; Díaz-Santos, T.; Esquej, P.; González-Martín, O.; Ichikawa, K.; López-Rodríguez, E.; Povic, M.; Roche, P. F.; Sánchez-Portal, M.

    2016-06-01

    We present far-infrared (FIR) 70-500 μm imaging observations obtained with Herschel/Photodetector Array Camera (PACS) and Spectral and Photometric Imaging REceiver (SPIRE) of 33 nearby (median distance of 30 Mpc) Seyfert galaxies from the Revised Shapley-Ames (RSA) catalogue. We obtain the FIR nuclear (r = 1 kpc and r = 2 kpc) and integrated spectral energy distributions (SEDs). We estimate the unresolved nuclear emission at 70 μm and we fit the nuclear and integrated FIR SEDs with a grey body model. We find that the integrated FIR emission of the RSA Seyferts in our sample is dominated by emission from the host galaxy, with dust properties similar to those of normal galaxies (non-AGN). We use four criteria to select galaxies whose nuclear 70 μm emission has a significant AGN contribution: (1) elevated 70/160 μm flux ratios, (2) spatially resolved, high dust temperature gradient, (3) 70 μm excess emission with respect to the fit of the FIR SEDs with a grey body, and (4) excess of nuclear SFR obtained from 70 μm over SFR from mid-infrared indicators. 16 galaxies (48 per cent of the initial sample) satisfy at least one of these conditions, whereas 10 satisfy half or more. After careful examination of these, we select six bona fide candidates (18 per cent of the initial sample) and estimate that ˜40-70 per cent of their nuclear (r = 1-2 kpc) 70 μm emission is contributed by dust heated by the AGN.

  6. The nuclear and extended mir-infrared emission of Seyfert galaxies

    NASA Astrophysics Data System (ADS)

    Garcia-Bernete, I.; Ramos Almeida, C.; Acosta-Pulido, J. A.; et al.

    2016-08-01

    We present subarcsecond resolution mid-infrared (MIR) images obtained with 8-10 m-class ground-based telescopes of a complete volume-limited (DL<40 pc) sample of 24 Seyfert galaxies selected from the Swift/BAT nine month Catalog. We use those MIR images to study the nuclear and circumnuclear emission of the galaxies. Using different methods to classify the MIR morphologies on scales of ~200 pc, we found that the majority of the galaxies (75-79%) are extended or possibly extended and 21-25 % are point-like. In general, we find that galaxies with larger inclinations show more extended morphologies than face-on galaxies, and we do not find significant differences between the morphologies of Sy1 and Sy2. This extended emission is weak and compact and it represents ~30% of the total MIR emission of the galaxies in the sample. We obtain nuclear and circumnuclear MIR fluxes to investigate their correlation with different AGN and star formation indicators. We find that the nuclear MIR emission (inner ~70 pc) is strongly correlated with the X-ray emission (the harder the X-rays the better the correlation) and with the [O IV]λ25.89 micron emission line. We find the same results, although with more scatter, for the circumnuclear MIR emission. This indicates that AGN photoionization is the dominant source of excitation of the nuclear and circumnuclear MIR emission.

  7. Simultaneous X-ray and optical observations of true type 2 Seyfert galaxies

    NASA Astrophysics Data System (ADS)

    Bianchi, Stefano; Panessa, Francesca; Barcons, Xavier; Carrera, Francisco J.; La Franca, Fabio; Matt, Giorgio; Onori, Francesca; Wolter, Anna; Corral, Amalia; Monaco, Lorenzo; Ruiz, Ángel; Brightman, Murray

    2012-11-01

    We present the results of a campaign of simultaneous X-ray and optical observations of 'true' type 2 Seyfert galaxies candidates, i.e. active galactic nuclei without a broad-line region (BLR). Out of the initial sample composed of eight sources, one object, IC 1631, was found to be a misclassified starburst galaxy, another, Q2130-431, does show broad optical lines, while other two, IRAS 01428-0404 and NGC 4698, are very likely absorbed by Compton-thick gas along the line of sight. Therefore, these four sources are not unabsorbed Seyfert 2s as previously suggested in the literature. On the other hand, we confirm that NGC 3147, NGC 3660 and Q2131-427 belong to the class of true type 2 Seyfert galaxies, since they do not show any evidence for a broad component of the optical lines nor for obscuration in their X-ray spectra. These three sources have low accretion rates (ṁ=L bol /L Edd ≲0.01), in agreement with theoretical models which predict that the BLR disappears below a critical value of Lbol/LEdd. The last source, Mrk 273x, would represent an exception even of these accretion-dependent versions of the Unification Models, due to its high X-ray luminosity and accretion rate, and no evidence for obscuration. However, its optical classification as a Seyfert 2 is only based on the absence of a broad component of Hβ, due to the lack of optical spectra encompassing the Hα band. Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and the USA (NASA); with the TNG and Nordic Optical Telescope (NOT) operated on the island of La Palma by the Centro Galileo Galilei and the Nordic Optical Telescope Science Association, respectively, in the Spanish Observatorio del Roque de los Muchachos; at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck-Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC); at the European

  8. A global look at X-ray time lags in Seyfert galaxies

    NASA Astrophysics Data System (ADS)

    Kara, E.; Alston, W. N.; Fabian, A. C.; Cackett, E. M.; Uttley, P.; Reynolds, C. S.; Zoghbi, A.

    2016-10-01

    X-ray reverberation, where light-travel time delays map out the compact geometry around the inner accretion flow in supermassive black holes, has been discovered in several of the brightest, most variable and well-known Seyfert galaxies. In this work, we expand the study of X-ray reverberation to all Seyfert galaxies in the XMM-Newton archive above a nominal rms variability and exposure level (a total of 43 sources). Approximately 50 per cent of sources exhibit iron K reverberation, in that the broad iron K emission line responds to rapid variability in the continuum. We also find that on long time-scales, the hard band emission lags behind the soft band emission in 85 per cent of sources. This `low-frequency hard lag' is likely associated with the coronal emission, and so this result suggests that most sources with X-ray variability show intrinsic variability from the nuclear region. We update the known iron K lag amplitude versus black hole mass relation, and find evidence that the height or extent of the coronal source (as inferred by the reverberation time delay) increases with mass accretion rate.

  9. Relativistic Fe Kα line study in Seyfert 1 galaxies observed with Suzaku

    NASA Astrophysics Data System (ADS)

    Mantovani, G.; Nandra, K.; Ponti, G.

    2016-06-01

    We present an analysis of a sample of Seyfert 1 galaxies observed with Suzaku. The aim of this work is to examine critically the evidence for a relativistic Fe Kα line in the X-ray spectra of these active galactic nuclei. The sample was compiled from those sources in which a relativistic component was missing in at least one XMM-Newton observation. We analysed the Suzaku spectra of these objects in order to have more constraints on the high-energy emission, including the Compton reflection hump. The results show that the relativistic Fe Kα line is detected (at >95 per cent confidence) in all sources observed with high-signal-to-noise ratio (e.g. where the counts in the 5-7 keV energy band are ≳4 × 104). This is in agreement with the idea that relativistic lines are a ubiquitous feature in the spectra of Seyfert galaxies, but are often difficult to detect without very high-quality data. We also investigate the relation between the Fe Kα line and the reflection continuum at high energies. For most of the sample, the strength of the reflection component is consistent with that of the line. There are exceptions in both senses, however i.e. where the reflection continuum is strong but with weak line emission, and vice versa. These observations present a challenge for standard reflection models.

  10. The complex nature of the Seyfert galaxy NGC 7592

    NASA Technical Reports Server (NTRS)

    Rafanelli, Piero; Marziani, Paolo

    1990-01-01

    Long slit spectra of NGC 7592 were taken on Sep. 26 to 30, 1989 at the 1.52 cm European Southern Observatory (ESO) telescope, equipped with a Boller and Chivens spectrograph and an RCA High Resolution charge coupled device (CCD) camera. The problem of the nature of Region C is addressed at first. C shows an heliocentric radial velocity very similar to that of Regions A and B. Moreover, the arm departing from C is most probably a tidal tail, because its extension is large and its orientation is peculiar. The high H alpha luminosity of C is typical of a starburst nucleus. These facts argue in favor of C being the nucleus of a third galactic component (southern component S) physically interacting with the SE component of NGC 7592. The directions of the velocity vectors in various regions of NGC 7592 are marked. It is noteworthy that the SE component rotates clockwise, if the radial velocity difference delta v sub r from its nucleus B is due to rotation. Under the same assumption for the delta v sub r = v sub r-v sub r, A, the NW component seems to rotate counterclockwise. Thus, the gas in the regions where the two galactic bodies are in contact moves in the same way, suggesting that a prograde encounter is occurring. It is known (e.g., Toomre and Toomre, 1972) that prograde encounters have the most disruptive effects on the interacting galaxies, leading to the formation of tidal tails. The interpretation of the wing of the NW component in terms of a tidal tail thus appears very likely. A similar situation holds for the interaction between SE and S too, where S rotates counterclockwise. The interpretation of the arm departing from C as a tidal tail is supported also in this case. The difference in radial velocity between A and B (delta v sub r approx. equal - 40 km s(exp-1)) and the morphology of NGC 7592 suggests that the NW component is beyond the SE one and is approaching it. The most heavily reddened regions (E(B - V) approx. equals 0.7, derived from the H alpha

  11. Optical polarization of the Seyfert galaxies IC 4329A and MRK 376

    NASA Technical Reports Server (NTRS)

    Martin, P. G.; Stockman, H. S.; Angel, J. R. P.; Maza, J.; Beaver, E. A.

    1982-01-01

    Measurements of the optical polarizations of the two highly polarized Seyfert 1 galaxies IC 4329A and Mrk 376 are presented. Continuum and line polarization of the two objects were observed with the Steward Observatory 2.25-m telescope using a two-channel photoelectric Pockels cell polarimeter, a single-channel scanner, and a digicon attached to a flint prism spectrograph. Results indicate that, for both galaxies, the emission line polarization and underlying continuum polarization are identical, rising toward short wavelengths, and therefore must be explained by a common mechanism. Such a mechanism is suggested to involve polarization produced by aligned grains in the galactic disk. A model for polarization in IC 4329A by this mechanism predicts a grain size three times smaller than Galactic polarizing grains, as well as a visual extinction of about 2 magnitudes, a gas to dust mass ratio close to 100 and a polarization to extinction ratio comparable to the Galactic ratio.

  12. Radio-loud narrow-line Seyfert 1 galaxies with high-velocity outflows

    NASA Astrophysics Data System (ADS)

    Komossa, S.; Xu, D.; Zensus, J. A.

    2016-02-01

    We have studied four radio-loud Narrow-line Seyfert 1 (NLS1) galaxies with extreme optical emission-line shifts, indicating radial outflow velocities of up 2450 km s-1. The shifts are accompanied by strong line broadening, up to 2270 km s-1 in [NeV]. A significant ionization stratification (higher line shift at higher ionization potential) of most ions implies that we see a large-scale wind rather than single, localized jet-cloud interactions. The observations are consistent with a scenario, where the signatures of outflows are maximized because of a pole-on view into the central engine of these radio-loud NLS1 galaxies.

  13. VizieR Online Data Catalog: Activity of the Seyfert galaxy neighbours (Koulouridis, 2013)

    NASA Astrophysics Data System (ADS)

    Koulouridis, E.; Plionis, M.; Chavushyan, V.; Dultzin, D.; Krongold, Y.; Georgantopoulos, I.; Leon-Tavares, J.

    2013-02-01

    Spectra and spectral classification of all Seyfert galaxy neighbours. Optical spectra were taken with the Boller & Chivens spectrograph mounted on the 2.1m telescope at the Observatorio Astronomico Nacional in San Pedro Martir (OAN-SPM). Observations were carried out during photometric conditions. All spectra were obtained with a 2.5" slit. The typical wavelength range was 4000-8000Å and the spectral resolution R=8Å. Spectrophotometric standard stars were observed every night. The data reduction was carried out with the IRAF package following a standard procedure. Spectra were bias-subtracted and corrected with dome flat-field frames. Arc-lamp (CuHeNeAr) exposures were used for wavelength calibration. We disentangled the spectral contribution of the host galaxy from the observed spectra by using the stellar population synthesis code STARLIGHT. (2 data files).

  14. Radiative transfer in dust and the spectral flux distribution of NGC 1068. [Seyfert galaxy

    NASA Technical Reports Server (NTRS)

    Jones, T. W.; Leung, C. M.; Gould, R. J.; Stein, W. A.

    1977-01-01

    The continuum spectral flux distribution of the Seyfert galaxy NGC 1068 is analyzed by detailed models of radiative transfer in an optically thick cloud of dust grains. For wavelengths short of 30 microns, models invoking a spherical dust cloud with visual optical depth near 10 in the nucleus of the galaxy can reproduce the observed spectrum in a way consistent with information derived from spectral lines. The far-infrared emission cannot be explained easily by dust in the nucleus, but it is hypothesized that this radiation is emitted by dust associated with the observed molecular clouds, and that these clouds lie outside the nucleus. This far-infrared emission, therefore, should be extended to the same degree as the molecular-cloud distribution. High angular resolution mapping will be necessary to confirm this hypothesis.

  15. Integral Observations of the Reflection Component of Seyfert Galaxies

    NASA Technical Reports Server (NTRS)

    Fabian, Andrew

    2005-01-01

    The data were analyzed by Dr. Fabian's student Adrian Turner and included in his thesis (completed Sept 2004). We did not detect MCG-6 using the then current software and the spectrum of the Circinus galaxy turned out to be even worse then the published BeppoSAX spectrum. We decided not to do any more work on it. We were contacted about the data in March by Thierry Courvoisier (the data were thea public) as he had a student, Simona Soidi, working on a compilation of spectra. Dr. Fabian sent them the chapter from Adrian's thesis and we provided some general comments on what they were doing on 6 objects. This has since been accepted for publication with Fabian as a co-author. A paper on the Integral AGN catalogue appeared on astro-ph a few days ago which contains an detection of MCG-6 with a very poor spectrum. We didn't detect it because the software back then required a source to be detected within something like 30 min exposure in order to work. Integral is NOT very sensitive.

  16. 3D spectroscopy of merger Seyfert galaxy Mrk 334: nuclear starburst, superwind and the circumnuclear cavern

    NASA Astrophysics Data System (ADS)

    Smirnova, Aleksandrina; Moiseev, Alexei

    2010-01-01

    We are presenting new results on kinematics and structure of the Mrk 334 Seyfert galaxy. Panoramic (3D) spectroscopy is performed at the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences using the integral-field Multi-Pupil Fiber Spectrograph (MPFS) and scanning Fabry-Pérot interferometer. The deep images have revealed that Mrk 334 is observed during the final stage of its merging with a massive companion. A possible mass ratio ranges from 1/5 to 1/3. The merger has triggered mass redistribution in the disc resulting in an intensification of nuclear activity and in a burst of star formation in the inner region of the galaxy. The circumnuclear starburst is so intense that its contribution to the gas ionization exceeds that contribution of the active galactic nuclei (AGN). We interpret the nuclear gas outflow with velocities of ~200kms-1 as a galactic superwind that accompanies the violent star formation. This suggestion is consistent with the asymmetric X-ray brightness distribution in Mrk 334. The trajectory of the fragments of the disrupted satellite in the vicinity of the main galaxy nucleus can be traced. In the galaxy disc, a cavern is found that is filled with a low-density ionized gas. We consider this region to be the place where the remnants of the companion have recently penetrated through the gaseous disc of the main galaxy.

  17. Radio Jets Clearing the Way Through a Galaxy: Watching Feedback in Action in the Seyfert Galaxy IC 5063

    NASA Astrophysics Data System (ADS)

    Morganti, R.; Oosterloo, T. A.; Oonk, J. B. R.; Frieswijk, W.; Tadhunter, C. N.

    2015-12-01

    High-resolution (0.5 arcsec) CO(2-1) observations performed with the Atacama Large Millimetre/submillimetre Array have been used to trace the kinematics of the molecular gas in the Seyfert 2 galaxy{IC 5063}. Although one of the most radio-loud Seyfert galaxy, IC 5063 is a relatively weak radio source (P1.4GHz=3 ×1023 W Hz-1). The data reveal that the kinematics of the gas is very complex. A fast outflow of molecular gas extends along the entire radio jet (˜ 1 kpc), with the highest outflow velocities about 0.5 kpc from the nucleus, at the location of the brighter hot-spot in the W lobe. All the observed characteristics can be described by a scenario of a radio plasma jet expanding into a clumpy medium, interacting directly with the clouds and inflating a cocoon that drives a lateral outflow into the interstellar medium. This suggests that most of the observed cold molecular outflow is due to fast cooling of the gas after the passage of a shock and that it is the end product of the cooling process.

  18. Simultaneous Ultraviolet Line and Continuum Variability Studies in Seyfert 1 Galaxies and Quasars

    NASA Astrophysics Data System (ADS)

    Honnappa, Vijayakumar; Prabhakar, Vedavvathi

    Simultaneous Ultraviolet Line and Continuum Variability Studies in Seyfert 1 Galaxies and Quasars Vijayakumar H. Doddamani*and P. Vedavathi Department of Physics, Bangalore University, Bangalore-560056, *Corresponding author:drvkdmani@gmail.com, Abstract The line and continuum flux variability is a hallmark phenomenon of Seyfert 1 galaxies and quasars. Large amplitude luminosity variability is observed in AGNs from x-rays through radio waves over a wide-ranging timescales from minutes to years. The combinations of high luminosity and short variability time scales suggests, that the power of AGN is produced by a phenomena more efficient in terms of energy release per unit mass than ordinary stellar processes. The basic structure of AGNs thus developed based on the variability studies consists of a central super massive black hole surrounded by an accretion disk or more generally optically thick plasma radiating brightly at UV and soft X-ray wavelengths. The variability studies have been important tools of understanding the physics of the central regions of AGNs, which in general cannot be resolved with the existing or planned ground and space telescopes. Therefore, we have undertaken a study of the simultaneous ultraviolet line and continuum flux variability studies in MRK501, ESOB113-IG45 (also called as Fairall 9), MRK1506, MRK1095 V*GQCOM, PG1211+143, MRK205, PG1226+023 (also known as 3C273), PG1351+640, MRK 1383, MRK876 and QSO2251-178 as these objects have been repeatedly observed by IUE satellite over several years.. It is observed that Fairall 9, MRK 1095 and 3C273 exhibit the large amplitude variability (» 30 times) over the observed timescale, which spans several years. The remaining nine objects exhibit small amplitude (» 5 times) variability over the long time scale of observations. The highest amplitude variability is observed in Lya with a least in the MgII line. The amplitude of variability decreases in the order of Lya, CIV and Mg II, lines. These

  19. The Narrow-Line Region of Narrow-Line Seyfert 1 Galaxies

    NASA Astrophysics Data System (ADS)

    Rodríguez-Ardila, A.; Binette, Luc; Pastoriza, Miriani G.; Donzelli, Carlos J.

    2000-08-01

    This work studies the optical emission-line properties and physical conditions of the narrow-line region (NLR) of seven narrow-line Seyfert 1 galaxies (NLS1's) for which high signal-to-noise ratio spectroscopic observations were available. The resolution is 340 km s-1 (at Hα) over the wavelength interval 3700-9500 Å, enabling us to separate the broad and narrow components of the permitted emission lines. Our results show that the flux carried out by the narrow component of Hβ is, on average, 50% of the total line flux. As a result, the [O III] λ5007/Hβ ratio emitted in the NLR varies from 1 to 5, instead of the universally adopted value of 10. This has strong implications for the required spectral energy distribution that ionizes the NLR gas. Photoionization models that consider a NLR composed of a combination of matter-bounded and ionization-bounded clouds are successful at explaining the low [O III] λ5007/Hβ ratio and the weakness of low-ionization lines of NLS1's. Variation of the relative proportion of these two type of clouds nicely reproduces the dispersion of narrow-line ratios found among the NLS1 sample. Assuming similar physical model parameters of both NLS1's and the normal Seyfert 1 galaxy NGC 5548, we show that the observed differences of emission-line ratios between these two groups of galaxies can be explained, to a first approximation, in terms of the shape of the input ionizing continuum. Narrow emission-line ratios of NLS1's are better reproduced by a steep power-law continuum in the EUV-soft X-ray region, with spectral index α~-2. Flatter spectral indices (α~-1.5) match the observed line ratios of NGC 5548 but are unable to provide a good match to the NLS1 ratios. This result is consistent with ROSAT observations of NLS1's, which show that these objects are characterized by steeper power-law indices than those of Seyfert 1 galaxies with strong broad optical lines. Based on observations made at CASLEO. Complejo Astronómico El Leoncito

  20. VizieR Online Data Catalog: Soft X-ray properties of Seyfert galaxies (Pfefferkorn+, 2001)

    NASA Astrophysics Data System (ADS)

    Pfefferkorn, F.; Boller, T.; Rafanelli, P.

    2001-04-01

    We have detected 91 out of 99 Seyfert 1 and 47 out of 98 Seyfert 2 galaxies of the Rafanelli sample in the ROSAT X-ray band in pointed and/or All-Sky Survey observations. Spectral information from the survey data could be obtained for 59 Seyfert 1 galaxies and only for one Seyfert 2 galaxy. The tables quote the name of the Seyfert galaxy in column 1 and the ROSAT name in column 2. Columns 3 and 4 contain the ROSAT position. We mostly give the centroid source position from the pointed observation with the higher exposure times. The columns 5 and 6 list the count rates, columns 7 and 8 the corresponding exposure times, columns 9 and 10 the fluxes and columns 11 and 12 the luminosities of the sources detected in ROSAT pointing and survey observations, respectively. The survey count rates were taken from the RASS II catalogue and the pointing count rates were computed from the light curves of the sources. The labels "(p)" and "(h)" in column 5 indicate that the source data are taken from a PSPC or HRI observation. In the columns 9 and 10 we apply the labels "(f)" and "(c)" to mark the data produced by spectral fit or by count rates. This specification applies also for columns 11 and 12. The Galactic column density is given in column 13 (Dickey & Lockman, 1990ARA&A..28..215D), while the column density obtained from the spectral fit is given in column 14. The other spectral fit parameters, namely the monochromatic flux at 1keV and the photon index are also given in columns 15 and 16, respectively. The value "-2.3" of the photon index was used, if no reliable spectral fit could be obtained. When spectral information was available from the survey as well as from the pointed data, we quote the results from the pointed observations. Columns 17 and 18 show the quality of the X-ray identifications both in the pointing and the survey observations, the identifications labeled either with 1 or 2, 1 and 2 indicating high and lower degree of reliability, respectively. In the last

  1. Study of Milli-Jansky Seyfert Galaxies with Strong Forbidden High-Ionization Lines Using the Very Large Array Survey Images

    NASA Astrophysics Data System (ADS)

    Lal, Dharam V.

    2015-12-01

    We study the radio properties at 1.4 GHz of Seyfert galaxies with strong forbidden high-ionization lines (FHILs), selected from the Sloan Digital Sky Survey - a large-sized sample containing nearly equal proportion of diverse range of Seyfert galaxies showing similar redshift distributions compiled by tet{GMW2009} using the Very Large Array survey images. The radio detection rate is low, 49%, which is lower than the detection rate of several other known Seyfert galaxy samples. These galaxies show low star formation rates and the radio emission is dominated by the active nucleus with ≤10% contribution from thermal emission, and possibly, none show evidence for relativistic beaming. The radio detection rate, distributions of radio power, and correlations between radio power and line luminosities or X-ray luminosity for narrow-line Seyfert 1 (NLS1), Seyfert 1 and Seyfert 2 galaxies are consistent with the predictions of the unified scheme hypothesis. Using correlation between radio and [O III] λ 5007 Å luminosities, we show that ˜8% sample sources are radio-intermediate and the remaining are radio-quiet. There is possibly an ionization stratification associated with clouds on scales of 0.1-1.0 kpc, which have large optical depths at 1.4 GHz, and it seems these clouds are responsible for free-free absorption of radio emission from the core; hence, leading to low radio detection rate for these FHIL-emitting Seyfert galaxies.

  2. EXTENDED NARROW-LINE EMISSION IN THE BRIGHT SEYFERT 1.5 GALAXY HE 2211-3903

    SciTech Connect

    Scharwaechter, J.; Dopita, M. A.; Zuther, J.; Fischer, S.; Eckart, A.; Komossa, S.

    2011-08-15

    Extended narrow-line regions (ENLRs) and extended emission-line regions have been the focus of integral field spectroscopy aiming at the inner kiloparsecs of nearby Seyfert galaxies as well as the larger environment of high-redshift QSOs. Based on observations with the Wide Field Spectrograph at the 2.3 m telescope of the Australian National University, we present spatially resolved emission-line diagnostics of the bright Seyfert 1.5 galaxy HE 2211-3903 which is drawn from a sample of the brightest Seyfert galaxies at z < 0.06 with luminosities around the classical Seyfert/QSO demarcation. In addition to the previously known spiral arms of HE 2211-3903, the emission-line maps reveal a large-scale ring with a radius of about 6 kpc which is connected to the active galactic nucleus (AGN) through a bar-like structure. The overall gas kinematics indicates a disk rotation pattern. The emission-line ratios show Seyfert-type, H II region-type, and composite classifications, while there is no strong evidence of LINER-type ratios. Shock ionization is likely to be negligible throughout the galaxy. The composite line ratios are explained via a mixing line between AGN and H II region photoionization. Composite line ratios are predominantly found in between the H II regions in the circum-nuclear region, the bar-like structure to the east of the nucleus, and the eastern half of the ring, suggesting AGN photoionization of the low-density interstellar medium in an ENLR on galaxy scales. The line ratios in the nucleus indicate N enrichment, which is discussed in terms of chemical enrichment by Wolf-Rayet and asymptotic giant branch stars during past and ongoing nuclear starburst activity.

  3. A JET MODEL FOR THE BROADBAND SPECTRUM OF THE SEYFERT 1 GALAXY NGC 4051

    SciTech Connect

    Maitra, Dipankar; Miller, Jon M.; King, Ashley; Markoff, Sera

    2011-07-10

    Recent radio very long baseline interferometry observations of the {approx} parsec-scale nuclear region of the narrow line Seyfert 1 galaxy NGC 4051 hint toward the presence of outflowing plasma. From available literature we have collected high-quality, high-resolution broadband spectral energy distribution (SED) data of the nuclear region of NGC 4051 spanning from radio through X-rays, to test whether the broadband SED can be explained within the framework of a relativistically outflowing jet model. We show that once the contribution from the host galaxy is taken into account, the broadband emission from the active galactic nucleus (AGN) of NGC 4051 can be well described by the jet model. Contributions from dust and ongoing star formation in the nuclear region tend to dominate the IR emission even at the highest resolutions. In the framework of the jet model, the correlated high variability of the extreme-ultraviolet and X-rays compared to other wavelengths suggests that the emission at these wavelengths is optically thin synchrotron originating in the particle acceleration site(s) in the jet very close (few r{sub g}= GM{sub BH}/c{sup 2}) to the central supermassive black hole of mass M{sub BH}. Our conclusions support the hypothesis that narrow line Seyfert 1 galaxies (which NGC 4051 is a member of) harbor a 'jetted' outflow with properties similar to what has already been seen in low-luminosity AGNs and stellar mass black holes in hard X-ray state.

  4. OPTICAL SPECTROSCOPY AND NEBULAR OXYGEN ABUNDANCES OF THE SPITZER/SINGS GALAXIES

    SciTech Connect

    Moustakas, John; Kennicutt, Robert C. Jr.; Tremonti, Christy A.; Dale, Daniel A.; Smith, John-David T.; Calzetti, Daniela

    2010-10-15

    We present intermediate-resolution optical spectrophotometry of 65 galaxies obtained in support of the Spitzer Infrared Nearby Galaxies Survey (SINGS). For each galaxy we obtain a nuclear, circumnuclear, and semi-integrated optical spectrum designed to coincide spatially with mid- and far-infrared spectroscopy from the Spitzer Space Telescope. We make the reduced, spectrophotometrically calibrated one-dimensional spectra, as well as measurements of the fluxes and equivalent widths of the strong nebular emission lines, publicly available. We use optical emission-line ratios measured on all three spatial scales to classify the sample into star-forming, active galactic nuclei (AGNs), and galaxies with a mixture of star formation and nuclear activity. We find that the relative fraction of the sample classified as star forming versus AGN is a strong function of the integrated light enclosed by the spectroscopic aperture. We supplement our observations with a large database of nebular emission-line measurements of individual H II regions in the SINGS galaxies culled from the literature. We use these ancillary data to conduct a detailed analysis of the radial abundance gradients and average H II-region abundances of a large fraction of the sample. We combine these results with our new integrated spectra to estimate the central and characteristic (globally averaged) gas-phase oxygen abundances of all 75 SINGS galaxies. We conclude with an in-depth discussion of the absolute uncertainty in the nebular oxygen abundance scale.

  5. THE SPITZER INTERACTING GALAXIES SURVEY: A MID-INFRARED ATLAS OF STAR FORMATION

    SciTech Connect

    Brassington, N. J.; Zezas, A.; Ashby, M. L. N.; Lanz, L.; Smith, Howard A.; Willner, S. P.; Klein, C.

    2015-05-15

    The Spitzer Interacting Galaxies Survey is a sample of 103 nearby galaxies in 48 systems, selected using association likelihoods and therefore free from disturbed morphology biases. All galaxies have been observed with Infrared Array Camera and MIPS 24 μm bands from the Spitzer Space Telescope. This catalog presents the global flux densities and colors of all systems and correlations between the interacting systems and their specific star formation rate (sSFR). This sample contains a wide variety of galaxy interactions with systems ranging in mass, mass ratios, and gas-content as well as interaction strength. This study seeks to identify the process of triggering star formation in galaxy interactions, therefore, we focus on the non-active galactic nucleus spiral galaxies only. From this subset of 70 spiral galaxies we have determined that this sample has enhanced sSFR compared to a sample of non-interacting field galaxies. Through optical data we have classified each system by “interaction strength”; the strongly interacting (Stage 4) galaxies have higher sSFR values than the weakly (Stage 2) and moderately (Stage 3) interacting systems. However, the Stage 2 and 3 systems have statistically identical sSFR properties, despite the lack of optical interaction signatures exhibited by the Stage 2 galaxies. We suggest that the similarity of sSFR in these stages could be a consequence of some of these Stage 2 systems actually being post-perigalactic and having had sufficient time for their tidal features to fade to undetectable levels. This interpretation is consistent with the correlation of sSFR with separation, which we have determined to have little variation up to 100 kpc.

  6. The Spitzer Interacting Galaxies Survey: A Mid-infrared Atlas of Star Formation

    NASA Astrophysics Data System (ADS)

    Brassington, N. J.; Zezas, A.; Ashby, M. L. N.; Lanz, L.; Smith, Howard. A.; Willner, S. P.; Klein, C.

    2015-05-01

    The Spitzer Interacting Galaxies Survey is a sample of 103 nearby galaxies in 48 systems, selected using association likelihoods and therefore free from disturbed morphology biases. All galaxies have been observed with Infrared Array Camera and MIPS 24 μm bands from the Spitzer Space Telescope. This catalog presents the global flux densities and colors of all systems and correlations between the interacting systems and their specific star formation rate (sSFR). This sample contains a wide variety of galaxy interactions with systems ranging in mass, mass ratios, and gas-content as well as interaction strength. This study seeks to identify the process of triggering star formation in galaxy interactions, therefore, we focus on the non-active galactic nucleus spiral galaxies only. From this subset of 70 spiral galaxies we have determined that this sample has enhanced sSFR compared to a sample of non-interacting field galaxies. Through optical data we have classified each system by “interaction strength” the strongly interacting (Stage 4) galaxies have higher sSFR values than the weakly (Stage 2) and moderately (Stage 3) interacting systems. However, the Stage 2 and 3 systems have statistically identical sSFR properties, despite the lack of optical interaction signatures exhibited by the Stage 2 galaxies. We suggest that the similarity of sSFR in these stages could be a consequence of some of these Stage 2 systems actually being post-perigalactic and having had sufficient time for their tidal features to fade to undetectable levels. This interpretation is consistent with the correlation of sSFR with separation, which we have determined to have little variation up to 100 kpc.

  7. The nuclear and extended mid-infrared emission of Seyfert galaxies

    NASA Astrophysics Data System (ADS)

    García-Bernete, I.; Ramos Almeida, C.; Acosta-Pulido, J. A.; Alonso-Herrero, A.; González-Martín, O.; Hernán-Caballero, A.; Pereira-Santaella, M.; Levenson, N. A.; Packham, C.; Perlman, E. S.; Ichikawa, K.; Esquej, P.; Díaz-Santos, T.

    2016-08-01

    We present subarcsecond resolution mid-infrared (MIR) images obtained with 8-10 m-class ground-based telescopes of a complete volume-limited (DL <40 Mpc) sample of 24 Seyfert galaxies selected from the Swift/BAT nine month catalog. We use those MIR images to study the nuclear and circumnuclear emission of the galaxies. Using different methods to classify the MIR morphologies on scales of ˜400 pc, we find that the majority of the galaxies (75-83%) are extended or possibly extended and 17-25% are point-like. This extended emission is compact and it has low surface brightness compared with the nuclear emission, and it represents, on average, ˜30% of the total MIR emission of the galaxies in the sample. We find that the galaxies whose circumnuclear MIR emission is dominated by star formation show more extended emission (650±700 pc) than AGN-dominated systems (300±100 pc). In general, the galaxies with point-like MIR morphologies are face-on or moderately inclined (b/a˜0.4-1.0), and we do not find significant differences between the morphologies of Sy1 and Sy2. We used the nuclear and circumnuclear fluxes to investigate their correlation with different AGN and SF activity indicators. We find that the nuclear MIR emission (the inner ˜70 pc) is strongly correlated with the X-ray emission (the harder the X-rays the better the correlation) and with the [O IV] λ25.89 μm emission line, indicating that it is AGN-dominated. We find the same results, although with more scatter, for the circumnuclear emission, which indicates that the AGN dominates the MIR emission in the inner ˜400 pc of the galaxies, with some contribution from star formation.

  8. An Expanded RXTE Survey of Long-Term X-ray Variability in Seyfert 1 Galaxies

    NASA Technical Reports Server (NTRS)

    Markowitz, A.; Edelson, R.

    2004-01-01

    The first seven years of RXTE monitoring of Seyfert 1 active galactic nuclei have been systematically analyzed to yield five homogenous samples of 2-12 keV light curves, probing hard X-ray variability on successively longer durations from approx. 1 day to approx. 3.5 years. 2-10 keV variability on time scales of approx. 1 day, as probed by ASCA, are included. All sources exhibit stronger X-ray variability towards longer time scales, with variability amplitudes saturating at the longest time scales, but the increase is greater for relatively higher luminosity sources. The well-documented anticorrelation between variability amplitude and luminosity is confirmed on all time scales. However, anticorrelations between variability amplitude and black hole mass estimate are evident on only the shortest time scales probed. The data are consistent with the models of power spectral density (PSD) movement described in Markowitz et al. (2003) and McHardy et al. (2004), whereby Seyfert 1 galaxies variability can be described by a single, universal PSD shape whose cutoff frequency scales with black hole mass. The best-fitting scaling relations between variability time scale, black hole mass and X-ray luminosity support an average accretion rate of 2% of the Eddington limit for the sample. Nearly all sources exhibit stronger variability in the relatively soft 2-4 keV band compared to the 7-12 keV band on all time scales. Color-flux diagrams support also Seyfert 1s' softening as they brighten. There are indications that relatively less luminous or less massive sources exhibit a greater degree of spectral variability for a given increase in overall flux.

  9. ROSAT PSPC and HRI observations of the composite starburst/Seyfert 2 galaxy NGC 1672

    NASA Technical Reports Server (NTRS)

    Brandt, W. N.; Halpern, Jules P.; Iwasawa, K.

    1995-01-01

    The nearby barred spiral galaxy NGC 1672 has been observed with the Position Sensitive Proportional Counter (PSPC) and High Resolution Imager (HRI) instruments on board the ROSAT X-ray satellite. NGC 1672 is thought to have an obscured Seyfert nucleus, and it has strong starburst activity as well. Three bright X-ray sources with luminosities 1-2 x 10(exp 40) erg/s are clearly identified with NGC 1672. The strongest lies at the nucleus, and the other two lie at the ends of NGC 1672's prominent bar, locations that are also bright in H alpha and near-infrared images. The nuclear source is resolved by the HRI on about the scale of the recently identified nuclear ring, and one of the sources at the ends of the bar is also probably resolved. The X-ray spectrum of the nuclear source is quite soft, having a Raymond-Smith plasma temperature of approximately equals 0.7 keV and little evidence for intrinsic absorption. The ROSAT band X-ray flux of the nuclear source appears to be dominated not by X-ray binary emission but rather by diffuse gas emission. The absorption and emission properties of the sources, as well as their spatial extents, lead us to models of superbubbles driven by supernovae. However, the large density and emission measure of the nuclear X-ray source stretch the limits that can be comfortably accommodated by these models. We do not detect direct emission from the putative Seyfert nucleus, although an alternative model for the nuclear source is thermal emission from gas that is photoionized by a hidden Seyfert nucleus. The spectra of the other two X-ray sources are harder than that of the nuclear source, and have similar difficulties with regard to superbubble models.

  10. Ionized gas kinematics within the inner kiloparsec of the Seyfert galaxy NGC 1365

    NASA Astrophysics Data System (ADS)

    Lena, Davide; Robinson, Andrew; Storchi-Bergmann, Thaisa; Couto, Guilherme S.; Schnorr-Müller, Allan; Riffel, Rogemar A.

    2016-07-01

    We observed the nuclear region of the galaxy NGC 1365 with the integral field unit of the Gemini Multi Object Spectrograph mounted on the GEMINI-South telescope. The field of view covers 13 × 6 arcsec2(1173 × 541 pc2) centred on the nucleus, at a spatial resolution of 52 pc. The spectral coverage extends from 5600 to 7000 Å, at a spectral resolution R = 1918. NGC 1365 hosts a Seyfert 1.8 nucleus, and exhibits a prominent bar extending out to 100 arcsec (9 kpc) from the nucleus. The field of view lies within the inner Lindblad resonance. Within this region, we found that the kinematics of the ionized gas (as traced by [O I], [N II], Hα, and [S II]) is consistent with rotation in the large-scale plane of the galaxy. While rotation dominates the kinematics, there is also evidence for a fan-shaped outflow, as found in other studies based on the [O III] emission lines. Although evidence for gas inflowing along nuclear spirals has been found in a few barred galaxies, we find no obvious signs of such features in the inner kiloparsec of NGC 1365. However, the emission lines exhibit a puzzling asymmetry that could originate from gas which is slower than the gas responsible for the bulk of the narrow-line emission. We speculate that it could be tracing gas which lost angular momentum, and is slowly migrating from the inner Lindblad resonance towards the nucleus of the galaxy.

  11. X-Ray Fluctuation Power Spectral Densities of Seyfert 1 Galaxies

    NASA Technical Reports Server (NTRS)

    Markowitz, A.; Edelson, R.; Vaughan, S.; Uttley, P.; George, I. M.; Griffiths, R. E.; Kaspi, S.; Lawrence, A.; McHandy, I.; Nandra, K.

    2003-01-01

    By combining complementary monitoring observations spanning long, medium and short time scales, we have constructed power spectral densities (PSDs) of six Seyfert 1 galaxies. These PSDs span approx. greater than 4 orders of magnitude in temporal frequency, sampling variations on time scales ranging from tens of minutes to over a year. In at least four cases, the PSD shows a "break," a significant departure from a power law, typically on time scales of order a few days. This is similar to the behavior of Galactic X-ray binaries (XRBs), lower mass compact systems with breaks on time scales of seconds. NGC 3783 shows tentative evidence for a doubly-broken power law, a feature that until now has only been seen in the (much better-defined) PSDs of low-state XRBs. It is also interesting that (when one previously-observed object is added to make a small sample of seven), an apparently significant correlation is seen between the break time scale T and the putative black hole mass M(sub BH), while none is seen between break time scale and luminosity. The data are consistent with the linear relation T = M(sub BH) /10(exp 6.5) solar mass; extrapolation over 6-7 orders of magnitude is in reasonable agreement with XRBs. All of this strengthens the case for a physical similarity between Seyfert 1s and XRBs.

  12. Is HE 0436-4717 Anemic? A deep look at a bare Seyfert 1 galaxy

    NASA Astrophysics Data System (ADS)

    Bonson, K.; Gallo, L. C.; Vasudevan, R.

    2015-06-01

    A multi-epoch, multi-instrument analysis of the Seyfert 1 galaxy HE 0436-4717 is conducted using optical to X-ray data from XMM-Newton and Swift (including the Burst Alert Telescope). Fitting of the UV-to-X-ray spectral energy distribution shows little evidence of extinction and the X-ray spectral analysis does not confirm previous reports of deep absorption edges from O VIII. HE 0436-4717 is a `bare' Seyfert with negligible line-of-sight absorption making it ideal to study the central X-ray emitting region. Three scenarios were considered to describe the X-ray data: partial covering absorption, blurred reflection, and soft Comptonization. All three interpretations describe the 0.5-10.0 keV spectra well. Extrapolating the models to 100 keV results in poorer fits for the partial covering model. When also considering the rapid variability during one of the XMM-Newton observations, the blurred reflection model appears to describe all the observations in the most self-consistent manner. If adopted, the blurred reflection model requires a very low iron abundance in HE 0436-4717. We consider the possibilities that this is an artefact of the fitting process, but it appears possible that it is intrinsic to the object.

  13. (Astrophysics of binary stars, Seyfert galaxies, quasars, and globular clusters. Final technical report

    SciTech Connect

    Press, W.H.

    1985-03-29

    Several problems were investigated. The time-steady accretion of gas irradiated by a self-consistently generated quasar-like continuum was studied. The observed x-ray sources near the core of the Orion molecular cloud were established to be sufficient to supply all the ionization that is needed to drive the molecular chemistry throughout that portion of the cloud in which the greatest density and diversity of molecular species is found. A new suggestion was put forth for a single pass, high gain, O/sup 5 +/ ion laboratory laser at 1035 A. The only evidence for binaries in globular clusters was found to come from binaries in extreme states, cataclysmic variables, and x-ray sources. The various evolutionary paths possible for highly compact binaries in globular clusters where they come under the simultaneous influence of gravitational radiation and gravitational encounters with field stars were analyzed. The secular evolution of a highly compact binary stellar system, composed of a collapsed object and a low-mass secondary star, in the core of a globular cluster was calculated. The dynamics of the narrow line regions of Seyfert galaxies were investigated. New calculations of the soft x-ray opacity of gas having cosmic elemental abunances were developed for a variety of ionization states. Results were presented of the analysis of 28 Einstein SSS observations of 15 high x-ray luminosity quasars and Seyfert type I nuclei. (GHT)

  14. Spectral evolution of active galactic nuclei Penrose Compton scattering processes and gamma ray emission from Seyfert galaxies

    NASA Technical Reports Server (NTRS)

    Leiter, Darryl; Boldt, Elihu

    1990-01-01

    In black hole spectral evolution models for active galactic nuclei (AGN), present epoch Seyfert galaxies evolve from an earlier precursor active galaxy (PAG) stage at redshift z is approximately 7 where they acted as the thermal sources responsible for the residual cosmic x ray background (RCXB). The Seyfert galaxies which emerge in this context emit Penrose Compton Scattering (PCS) gamma ray transients on the order of hours with a kinematic cutoff in the spectrum less than or equal to 3 MeV. The EGRET (Energetic Gamma-Ray Experimental Telescope/ OSSE (Oriented Scintillation Spectrometer Experiment/ COMPTEL (Compton Telescope)/ BATSE (Burst and Transient Source Experiment) instruments on the Gamma Ray Observatory (GRO) are appropriate instruments to carry out further tests of this model by studying: PCS gamma ray transient emission from individual galaxies and, the possibility that present epoch PCS gamma ray emitting Seyfert galaxies contribute observable temporal variability to the excess diffuse gamma ray background component less than or equal to 3 MeV.

  15. Infrared emission in Seyfert 2 galaxies - Reprocessed radiation from a dusty torus?

    NASA Technical Reports Server (NTRS)

    Storchi-Bergmann, Thaisa; Mulchaey, John S.; Wilson, Andrew S.

    1992-01-01

    New and existing data for a sample of nine Seyfert 2 galaxies with known 'ionization cones' are combined in order to test whether collimation results from shadowing of radiation from a small isotropic nuclear source by a thick dusty torus. The number of ionizing photons emitted by the compact nucleus is calculated from the emission-line ratios measured for gas within the cones. On the assumption that this compact nuclear source radiates isotropically, the optical-UV power incident on the torus, which is expected to be reradiated in the IR, is determined. It is found that the observed IRAS luminosities are consistent with the torus model in eight of the nine objects with sufficient data to perform the calculation. It is concluded that the data are generally consistent with collimation and reradiation by a dusty torus.

  16. An Internet Database of Ultraviolet Continuum Light Curves for Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Dunn, Jay P.; Jackson, Brian; Deo, Rajesh P.; Farrington, Chris; Das, Varendra; Crenshaw, D. Michael

    2006-04-01

    Using the Multimission Archive at STScI (MAST), we have extracted spectra and determined continuum light curves for 175 Seyfert galaxies that have been observed with the International Ultraviolet Explorer and the Faint Object Spectrograph on the Hubble Space Telescope. To obtain the light curves as a function of Julian Date, we used fixed bins in the object's rest frame and measured small regions (between 30 and 60 Å) of each spectrum's continuum flux in the range 1150 to 3200 Å. We provide access to the UV light curves and other basic information about the observations in tabular and graphical form via the Internet at http://www.chara.gsu.edu/PEGA/IUE.

  17. Testing different AGN tracers on a local sample of Seyfert galaxies

    NASA Astrophysics Data System (ADS)

    Pozzi, F.

    2016-08-01

    I will present our new study on a local sample of Seyfert galaxies selected at 12 micron. This sample, given its plenty of information, both photometric and spectroscopic, is a perfect sample to compare, from a statistical point of view, different AGN selection criteria, and AGN derived intrinsic properties. In detail, I will compare AGN activity derived from SED-fitting technique, X-ray luminosity and AGN activity traced by high excitation IR lines, like [NeV] and [OIV]. Moreover, for one particular obscured X-ray Compton-thick source, thanks also to the availability of ALMA data, I will derive a self-consistent overview of the physics behind the emission in different bands,by taking advantage of the photoionization code CLOUDY.

  18. Ultraviolet and optical spectrophotometry of the Seyfert 1.8 galaxy Markarian 609

    NASA Technical Reports Server (NTRS)

    Rudy, Richard J.; Cohen, Ross D.; Ake, T. B.

    1988-01-01

    Ultraviolet and optical observations of the Seyfert 1.8 galaxy Mrk 609 were collected simultaneously. The observations reveal strong line and continuum emission in the UV, an increase in the flux of H-beta and He I 5876, and a decrease in the H-alpha/H-beta value since the measurements by Osterbrock (1978, 1981), as well as an extended population of early-type stars, which is considered to be the source powering the larger part of the far-IR emission. Special attention is given to the origin of steep broad-line Balmer decrement measured by Osterbrock, since the strong UV continuum and the emission lines of Mrk 609 observed rule out reddening as the cause of the Balmer decrement. It is suggested that smaller-than-normal optical depths are likely to be the cause of the decrement.

  19. THE LINK BETWEEN THE HIDDEN BROAD LINE REGION AND THE ACCRETION RATE IN SEYFERT 2 GALAXIES

    SciTech Connect

    Marinucci, Andrea; Bianchi, Stefano; Matt, Giorgio; Nicastro, Fabrizio; Goulding, Andy D.

    2012-04-01

    In the past few years, more and more pieces of evidence have been presented for a revision of the widely accepted unified model of active galactic nuclei. A model based solely on orientation cannot explain all the observed phenomenology. In the following, we will present evidence that accretion rate is also a key parameter for the presence of hidden broad line regions (HBLRs) in Seyfert 2 galaxies. Our sample consists of 21 sources with polarized hidden broad lines and 18 sources without hidden broad lines. We use stellar velocity dispersions from several studies on the Ca II and Mg b triplets in Seyfert 2 galaxies to estimate the mass of the central black holes via the M{sub BH}-{sigma}{sub *} relation. The ratio between the bolometric luminosity, derived from the intrinsic (i.e., unabsorbed) X-ray luminosity, and the Eddington luminosity is a measure of the rate at which matter accretes onto the central supermassive black hole. A separation between Compton-thin HBLR and non-HBLR sources is clear, both in accretion rate (log L{sub bol}/L{sub Edd} = -1.9) and in luminosity (log L{sub bol} = 43.90). When properly luminosity-corrected Compton-thick sources are included, the separation between HBLR and non-HBLR is less sharp but no HBLR source falls below the Eddington ratio threshold. We speculate that non-HBLR Compton-thick sources with accretion rate higher than the threshold do possess a BLR, but something, probably related to their heavy absorption, is preventing us from observing it even in polarized light. Our results for Compton-thin sources support theoretical expectations. In a model presented by Nicastro, the presence of broad emission lines is intrinsically connected with disk instabilities occurring in proximity of a transition radius, which is a function of the accretion rate, becoming smaller than the innermost stable orbit for very low accretion rates and therefore luminosities.

  20. RXTE Observations of the Seyfert 2 Galaxy MrK 348

    NASA Technical Reports Server (NTRS)

    Smith, David A.; Georgantopoulos, Ioannis; Warwick, Robert S.

    2000-01-01

    We present RXTE monitoring observations of the Seyfert 2 galaxy Mrk 348 spanning a 6 month period. The time-averaged spectrum in the 3-20 keV band shows many features characteristic of a Compton-thin Seyfert 2 galaxy, namely a hard underlying power-law continuum (Gamma approximately equal 1.8) with heavy soft X-ray absorption (N(sub H) approximately 10(exp 23)/sq cm) plus measurable iron K.alpha emission (equivalent width approximately 100 eV) and, at high energy, evidence for a reflection component (R approximately < 1). During the first half of the monitoring period the X-ray continuum flux from Mrk 348 remained relatively steady. However this was followed by a significant brightening of the source (by roughly a factor of 4) with the fastest change corresponding to a doubling of its X-ray flux on a timescale of about 20 days. The flux increase was accompanied by a marked softening of X-ray spectrum most likely attributable to a factor approximately 3 decline in the intrinsic line-of-sight column density. In contrast the iron K.alpha line and the reflection components showed no evidence of variability. These observations suggest a scenario in which the central X-ray source is surrounded by a patchy distribution of absorbing material located within about a light-week of the nucleus of Mrk 348. The random movement of individual clouds within the absorbing screen, across our line of sight, produces substantial temporal variations in the measured column density on timescales of weeks to months and gives rise to the observed X-ray spectral variability. However, as viewed from the nucleus the global coverage and typical thickness of the cloud layer remains relatively constant.

  1. A Spitzer-Selected Galaxy Cluster at z=1.62

    NASA Astrophysics Data System (ADS)

    Papovich, Casey J.; Momcheva, I.; Willmer, C. N. A.; Finkelstein, K. D.; Finkelstein, S. L.; Brodwin, M.; Dunlop, J. S.; Farrah, D.; Khan, S.; Lotz, J.; McCarthy, P.; McLure, R. J.; Rieke, M.; Rudnick, G.; Sivanadam, S.; Tran, K.

    2010-01-01

    We report the discovery of a galaxy cluster at z=1.62, located in the XMM-LSS field. This cluster candidate was originally selected as an overdensity of sources with red Spitzer/IRAC colors, satisfying [3.6] - [4.5] > -0.1 AB mag, within the Spitzer Wide-Area Infrared Extragalactic (SWIRE) survey covering 9 square degrees in this field. Photometric redshifts derived from Subaru XMM Deep Survey (BViz-bands), UKIRT Infrared Deep Survey--Ultra-Deep Survey (UKIDSS-UDS, JK-bands), and from the Spitzer Public UDS survey (SpUDS, 3.6-8.0 micron) for the galaxies in and around this cluster show that this structure corresponds to a galaxy surface density of sources at z=1.6 that is >20-sigma times the mean surface density at this redshift. We obtained spectroscopic observations of galaxies in cluster using Magellan/IMACS, and measure redshifts for six galaxies in the range z=1.62-1.65, all within 1.4 arcmin of the cluster center, which corresponds to a radius of 0.5 h-1 Mpc. We measured spectroscopic redshifts for three additional sources with z=1.61-1.63 within 1.4-2.8 arcmin (0.5-1 h-1 Mpc). The cluster appears to be dominated by red galaxies, with (z - J) > 1.7 mag. The photometric redshift distributions for the brightest red galaxies are centrally peaked at z=1.62, coincident with the spectroscopically confirmed galaxies. The J versus z-J color magnitude diagram of the galaxies in this cluster shows a strong red-sequence, which includes the dominant population of red galaxies. The intercept of the red-sequence is consistent with a stellar population formed at z=3 with passive evolution, implying that most of the stellar mass in this cluster formed at that epoch. We will summarize our plans to continue the study of this cluster, and our continuing survey to identify and study other high-redshift clusters. Support for this work was provided by NASA through an award issued by JPL/Caltech.

  2. AN INFRARED CENSUS OF DUST IN NEARBY GALAXIES WITH SPITZER (DUSTINGS). I. OVERVIEW

    SciTech Connect

    Boyer, Martha L.; Sonneborn, George; McQuinn, Kristen B. W.; Gehrz, Robert D.; Skillman, Evan; Barmby, Pauline; Bonanos, Alceste Z.; Gordon, Karl D.; Meixner, Margaret; Groenewegen, M. A. T.; Lagadec, Eric; Lennon, Daniel; Marengo, Massimo; Sloan, G. C.; Van Loon, Jacco Th.; Zijlstra, Albert

    2015-01-01

    Nearby resolved dwarf galaxies provide excellent opportunities for studying the dust-producing late stages of stellar evolution over a wide range of metallicity (–2.7 ≲ [Fe/H] ≲ –1.0). Here, we describe DUSTiNGS (DUST in Nearby Galaxies with Spitzer): a 3.6 and 4.5 μm post-cryogen Spitzer Space Telescope imaging survey of 50 dwarf galaxies within 1.5 Mpc that is designed to identify dust-producing asymptotic giant branch (AGB) stars and massive stars. The survey includes 37 dwarf spheroidal, 8 dwarf irregular, and 5 transition-type galaxies. This near-complete sample allows for the building of statistics on these rare phases of stellar evolution over the full metallicity range. The photometry is >75% complete at the tip of the red giant branch for all targeted galaxies, with the exception of the crowded inner regions of IC 10, NGC 185, and NGC 147. This photometric depth ensures that the majority of the dust-producing stars, including the thermally pulsing AGB stars, are detected in each galaxy. The images map each galaxy to at least twice the half-light radius to ensure that the entire evolved star population is included and to facilitate the statistical subtraction of background and foreground contamination, which is severe at these wavelengths. In this overview, we describe the survey, the data products, and preliminary results. We show evidence for the presence of dust-producing AGB stars in eight of the targeted galaxies, with metallicities as low as [Fe/H] = –1.9, suggesting that dust production occurs even at low metallicity.

  3. Investigating the dusty torus of Seyfert galaxies using SOFIA/FORCAST photometry

    NASA Astrophysics Data System (ADS)

    Fuller, L.; Lopez-Rodriguez, E.; Packham, C.; Ramos-Almeida, C.; Alonso-Herrero, A.; Levenson, N. A.; Radomski, J.; Ichikawa, K.; García-Bernete, I.; González-Martín, O.; Díaz-Santos, T.; Martínez-Paredes, M.

    2016-11-01

    We present 31.5 μm imaging photometry of 11 nearby Seyfert galaxies observed from the Stratospheric Observatory For Infrared Astronomy (SOFIA) using the Faint Object infraRed CAmera for the SOFIA Telescope (FORCAST). We tentatively detect extended 31 μm emission for the first time in our sample. In combination with this new data set, subarcsecond resolution 1-18 μm imaging and 7.5-13 μm spectroscopic observations were used to compute the nuclear spectral energy distribution (SED) of each galaxy. We found that the turnover of the torus emission does not occur at wavelengths ≤31.5 μm, which we interpret as a lower-limit for the wavelength of peak emission. We used CLUMPY torus models to fit the nuclear infrared (IR) SED and infer trends in the physical parameters of the AGN torus for the galaxies in the sample. Including the 31.5 μm nuclear flux in the SED (1) reduces the number of clumpy torus models compatible with the data, and (2) modifies the model output for the outer radial extent of the torus for 10 of the 11 objects. Specifically, six (60 per cent) objects show a decrease in radial extent while four (40 per cent) show an increase. We find torus outer radii ranging from <1 to 8.4 pc.

  4. Upholding the unified model for AGN: VLT/FORS2 spectropolarimetry of Seyfert 2 galaxies

    NASA Astrophysics Data System (ADS)

    Ramos Almeida, Cristina; Martínez González, M.; Asensio Ramos, A.; Acosta Pulido, J.; Hönig, S.; Alonso-Herrero, A.; Tadhunter, C.; González-Martín, O.

    2016-08-01

    The origin of the unification model for AGN was the detection of broad hydrogen recombination lines in the optical polarized spectrum of the Seyfert 2 galaxy (Sy2) NGC 1068. Since then, a search for the hidden broad-line region (HBLR) of nearby Sy2s started, but polarized broad lines have only been detected in ~30-40% of the nearby Sy2s observed to date. Here we present new VLT/FORS2 optical spectropolarimetry of a sample of 15 Sy2s, including Compton-thin and Compton-thick sources. The sample includes six galaxies without previously published spectropolarimetry, some of them normally treated as non-hidden BLR (NHBLR) objects in the literature, and four Sy2s classified as NHBLR based on previous data. We report >4sigma detections of a HBLR in 11 of these galaxies (73% of the sample). Our results confirm that at least some NHBLRs were misclassified, bringing previous publications reporting differences between HBLR and NHBLR objects into question. We detect broad Ha and Hb components in polarized light for 9 targets, and just broad Ha for the other two. We do not find any correlation between the properties of the polarized spectra and the column densities measured from the X-rays or torus inclination, but a larger sample is required to confirm this.

  5. The host galaxy of the gamma-ray narrow-line Seyfert 1 galaxy 1H 0323+342

    SciTech Connect

    León Tavares, J.; Chavushyan, V.; Puerari, I.; Patiño-Alvarez, V.; Carramiñana, A.; Carrasco, L.; Guichard, J.; Olguín-Iglesias, A.; Valdes, J.; Kotilainen, J.; Añorve, C.; Antón, S.; Karhunen, K.; Sanghvi, J.

    2014-11-01

    We present optical and near-infrared (NIR) imaging data of the radio-loud, narrow-line Seyfert 1 galaxy 1H 0323+342, which shows intense and variable gamma-ray activity discovered by the Fermi satellite with the Large Area Telescope. Near-infrared and optical images are used to investigate the structural properties of the host galaxy of 1H 0323+342; this together with optical spectroscopy allows us to examine its black hole mass. Based on two-dimensional (2D) multiwavelength surface-brightness modeling, we find that statistically, the best model fit is a combination of a nuclear component and a Sérsic profile (n ∼ 2.8). However, the presence of a disk component (with a small bulge n ∼ 1.2) also remains a possibility and cannot be ruled out with the present data. Although at first glance a spiral-arm-like structure is revealed in our images, a 2D Fourier analysis of the imagery suggests that this structure corresponds to an asymmetric ring, likely associated with a recent violent dynamical interaction. We discuss our results in the context of relativistic jet production and galaxy evolution.

  6. Carnegie-Spitzer-IMACS Survey: The Rise of Galaxy Groups Since z=1

    NASA Astrophysics Data System (ADS)

    Williams, Rik J.; Kelson, D.; Dressler, A.; McCarthy, P.; Mulchaey, J.; Oemler, A., Jr.; Shectman, S.

    2012-01-01

    We present the first measurements of the evolution of the group stellar mass function (GSMF) since z=1 from the Carnegie-Spitzer-IMACS (CSI) Survey. CSI combines robust mass selection through Spitzer 3.6-micron photometry with low-resolution spectroscopy over a 15 deg2 area, allowing the detailed study of large group (and group/field galaxy) samples over the expected epoch of group formation. From the initial 36,000 CSI galaxy redshifts over 5 deg2, we select groups using a standard friends-of-friends algorithm in angular and redshift space, constructing the GSMF in 3 redshift bins. These mass functions agree well with GSMFs from SDSS at z=0, and with X-ray-selected cluster mass functions at higher masses and redshifts. At all masses the GSMF evolves strongly from z=0.5-1, but only weak evolution is seen in low-mass (log M* ˜ 12.0) groups since z=0.5, indicating that most of these were in place at that epoch. As the majority of low-redshift galaxies reside in groups, the group environment may therefore play an important role in the decline in star formation and evolution of galaxy structures since z=1.

  7. The Spitzer/Swift Gamma-Ray Burst Host Galaxy Legacy Survey

    NASA Astrophysics Data System (ADS)

    Perley, Daniel; Berger, Edo; Butler, Nathaniel; Cenko, S. Bradley; Chary, Ranga-Ram; Cucchiara, Antonino; Ellis, Richard; Fong, Wen-fai; Fruchter, Andrew; Fynbo, Johan; Gehrels, Neil; Graham, John; Greiner, Jochen; Hjorth, Jens; Hunt, Leslie; Jakobsson, Pall; Kruehler, Thomas; Laskar, Tanmoy; Le Floc'h, Emerich; Levan, Andrew; Levesque, Emily; Littlejohns, Owen; Malesani, Daniele; Michalowski, Michal; Milvang-Jensen, Bo; Prochaska, J. Xavier; Salvaterra, Ruben; Schulze, Steve; Schady, Patricia; Tanvir, Nial; de Ugarte Postigo, Antonio; Vergani, Susanna; Watson, Darach

    2016-08-01

    Long-duration gamma-ray bursts act as beacons to the sites of star-formation in the distant universe. GRBs reveal galaxies too faint and star-forming regions too dusty to characterize in detail using any other method, and provide a powerful independent constraint on the evolution of the cosmic star-formation rate density at high-redshift. However, a full understanding of the GRB phenomenon and its relation to cosmic star-formation requires connecting the observations obtained from GRBs to the properties of the galaxies hosting them. The large majority of GRBs originate at moderate to high redshift (z>1) and Spitzer has proven crucial for understanding the host population, given its unique ability to observe the rest-frame NIR and its unrivaled sensitivity and efficiency. We propose to complete a comprehensive public legacy survey of the Swift GRB host population to build on our earlier successes and push beyond the statistical limits of previous, smaller efforts. Our survey will enable a diverse range of GRB and galaxy science including: (1) to quantitatively and robustly map the connection between GRBs and cosmic star-formation to constrain the GRB progenitor and calibrate GRB rate-based measurements of the high-z cosmic star-formation rate; (2) to constrain the luminosity function of star-forming galaxies at the faint end and at high redshift; (3) to understand how the ISM properties seen in absorption in high-redshift galaxies unveiled by GRBs - metallicity, dust column, dust properties - connect to global properties of the host galaxies such as mass and age. Building on a decade of experience at both observatories, our observations will create an enduring joint Swift-Spitzer legacy sample - providing the definitive resource with which to examine all aspects of the GRB/galaxy connection for years to come and setting the stage for intensive JWST follow-up of the most interesting sources from our sample.

  8. UBVRI Light Curves of the Seyfert Galaxy NGC 7469 During 1990-1998: Microvariability

    NASA Astrophysics Data System (ADS)

    Merkulova, N. I.

    2000-02-01

    Observations of the nuclear region of the Seyfert galaxy NGC 7469 obtained at Crimean Astrophysical Observatory with the 1.25 m telescope are presented. During 64 nights on nine observational runs between 1990 September 24 and 1998 October 22 in each spectral band of the Johnson UBVRI system, about 1500 measurements have been performed simultaneously through the round aperture 20" in diameter using differential photometry techniques. The estimated accuracy of each measurement is about 0.01 mag. During the observing period 1990-1996 the mean luminosity of the nucleus was almost constant; only overlapping brightness fluctuations were observed. The mean luminosity level has been raised in 1996 October. The peak amplitude (maximum flux/minimum flux) Fmax/Fmin=2.09 on the light curves was observed in the U band, while the minimum amplitude Fmax/Fmin=1.32 was in the I band for the entire observation period. Using structure function (SF) analysis, the following conclusions have been made: (1) Long-term variability is caused by the same processes in the optical, because the slope b of the SF is approximately equal for all wave bands, except for the I band the slope is appreciably distinguished from the others. This would be an indication of the presence of an independent IR energy source in NGC 7469. (2) Considering the same time interval (from 6 minutes to 2 hr) for intranight variability on SFs at different wave bands, one can conclude that flicker noise causes variations observed on the light curve at the UV region (U and B bands), while at the near-IR region the light curve is formed by mixed shot noise and flicker noise-the greater the wavelength, the more the contribution of shot noise processes. (3) On intranight light curves of the NGC 7469 there exist rapid flares with durations ~25 minutes at U band, ~55 minutes at B, V bands, and ~2 hr at R, I bands-a typical timescale of intranight variability increasing with the increasing wavelength. In order to examine the

  9. A SAMPLE OF SEYFERT-2 GALAXIES WITH ULTRALUMINOUS GALAXY-WIDE NARROW-LINE REGIONS: QUASAR LIGHT ECHOES?

    SciTech Connect

    Schirmer, M.; Diaz, R.; Levenson, N. A.; Winge, C.; Holhjem, K.

    2013-01-20

    We report the discovery of Seyfert-2 galaxies in SDSS-DR8 with galaxy-wide, ultraluminous narrow-line regions (NLRs) at redshifts z = 0.2-0.6. With a space density of 4.4 Gpc{sup -3} at z {approx} 0.3, these 'green beans' (GBs) are amongst the rarest objects in the universe. We are witnessing an exceptional and/or short-lived phenomenon in the life cycle of active galactic nuclei (AGNs). The main focus of this paper is on a detailed analysis of the GB prototype galaxy J2240-0927 (z = 0.326). Its NLR extends over 26 Multiplication-Sign 44 kpc and is surrounded by an extended NLR. With a total [O III] {lambda}5008 luminosity of (5.7 {+-} 0.9) Multiplication-Sign 10{sup 43} erg s{sup -1}, this is one of the most luminous NLRs known around any type-2 galaxy. Using VLT/XSHOOTER, we show that the NLR is powered by an AGN, and we derive resolved extinction, density, and ionization maps. Gas kinematics is disturbed on a global scale, and high-velocity outflows are absent or faint. This NLR is unlike any other NLR or extended emission line region known. Spectroscopy with Gemini/GMOS reveals extended, high-luminosity [O III] emission also in other GBs. WISE 24 {mu}m luminosities are 5-50 times lower than predicted by the [O III] fluxes, suggesting that the NLRs reflect earlier, very active quasar states that have strongly subsided in less than a galaxy's light-crossing time. These light echoes, or ionization echoes, are about 100 times more luminous than any other such echo known to date. X-ray data are needed for photoionization modeling and to verify the light echoes.

  10. Morphological parameters of a Spitzer survey of stellar structure in galaxies

    SciTech Connect

    Holwerda, B. W.; Muñoz-Mateos, J.-C.; Sheth, K.; Kim, T.; Meidt, S.; Mizusawa, T.; Hinz, J. L.; Zaritsky, D.; Regan, M. W.; Gil de Paz, A.; Menéndez-Delmestre, K.; Seibert, M.; Ho, L. C.; Gadotti, D. A.; Erroz-Ferrer, S. E-mail: benne.holwerda@gmail.com [Instituto de Astrofísica de Canarias, Vía Láctea s and others

    2014-01-20

    The morphology of galaxies can be quantified to some degree using a set of scale-invariant parameters. Concentration (C), asymmetry (A), smoothness (S), the Gini index (G), the relative contribution of the brightest pixels to the second-order moment of the flux (M {sub 20}), ellipticity (E), and the Gini index of the second-order moment (G{sub M} ) have all been applied to morphologically classify galaxies at various wavelengths. Here, we present a catalog of these parameters for the Spitzer Survey of stellar structure in Galaxies, a volume-limited, near-infrared (NIR) imaging survey of nearby galaxies using the 3.6 and 4.5 μm channels of the Infrared Array Camera on board the Spitzer Space Telescope. Our goal is to provide a reference catalog of NIR quantified morphology for high-redshift studies and galaxy evolution models with enough detail to resolve stellar mass morphology. We explore where normal, non-interacting galaxies—those typically found on the Hubble tuning fork—lie in this parameter space and show that there is a tight relation between concentration (C {sub 82}) and M {sub 20} for normal galaxies. M {sub 20} can be used to classify galaxies into earlier and later types (i.e., to separate spirals from irregulars). Several criteria using these parameters exist to select systems with a disturbed morphology, i.e., those that appear to be undergoing a tidal interaction. We examine the applicability of these criteria to Spitzer NIR imaging. We find that four relations, based on the parameters A and S, G and M {sub 20}, G{sub M} , C, and M {sub 20}, respectively, select outliers in morphological parameter space, but each selects different subsets of galaxies. Two criteria (G{sub M} > 0.6, G > –0.115 × M {sub 20} + 0.384) seem most appropriate to identify possible mergers and the merger fraction in NIR surveys. We find no strong relation between lopsidedness and most of these morphological parameters, except for a weak dependence of lopsidedness on

  11. Radiation mechanisms and physical properties of the γ-ray narrow-line Seyfert 1 galaxies

    NASA Astrophysics Data System (ADS)

    Yang, Jianping; Zhou, Bing

    2015-12-01

    We investigate the physical properties and radiation mechanisms of 11 states of five narrow-line Seyfert 1 (NLS1) galaxies detected by the Large Area Telescope on board Fermi through modeling the quasi-simultaneous multi-band observations. We obtain the best-fitting model parameters and their uncertainties for each state with the χ2-minimization procedure and discuss their implications on the characteristics of jet. Similar to blazars, their spectral energy distributions (SEDs) have a two-humped structure and their non-thermal emission can be modelled with the single-zone synchrotron + inverse Compton (IC) model. For all states, the GeV γ-rays may be contributed by the external Compton (EC) emission components. The observations of Fermi are mostly located at the declining stage of the EC humps. Text < 0.5 eV in all cases (Text is the characteristic temperature of external soft photons), suggesting that their radiation zones may be usually located outside of the broad line region (BLR) and the soft photons of Compton scattering mainly come from the dust torus. Compared with the bright Fermi blazars studied by Ghisellini et al. (2014, Nature, 515, 376), the Pjet (the power of the jets) of NLS1 galaxies detected by Fermi is similar to that of the flat spectrum radio quasars (FSRQs) but a little larger than that of the BL Lac objects (BL Lacs). However, a comparison of Pr (the powers of radiations) with the FSRQs and BL Lac objects shows that NLS1 galaxies' Pr has values comparable to BL Lac objects but lower than FSRQs in spite of having similar Pjet values and the same energy carrier (the cold protons) as the FSRQs. Observations indicate that γ-NLS1 galaxies might have lower η (efficiency of gravitational energy release) values than GeV blazars.

  12. Highly ionized disc and transient outflows in the Seyfert galaxy IRAS 18325-5926

    NASA Astrophysics Data System (ADS)

    Iwasawa, K.; Fabian, A. C.; Kara, E.; Reynolds, C. S.; Miniutti, G.; Tombesi, F.

    2016-08-01

    We report on strong X-ray variability and the Fe K-band spectrum of the Seyfert galaxy IRAS 18325-5926 obtained from the 2001 XMM-Newton EPIC pn observation with a duration of ~120 ks. While the X-ray source is highly variable, the 8-10 keV band shows larger variability than that of the lower energies. Amplified 8-10 keV flux variations are associated with two prominent flares of the X-ray source during the observation. The Fe K emission is peaked at 6.6 keV with moderate broadening. It is likely to originate from a highly ionized disc with an ionization parameter of log ξ ≃ 3. The Fe K line flux responds to the main flare, which supports its disc origin. A short burst of the Fe line flux has no relation to the continuum brightness, for which we have no clear explanation. We also find transient, blueshifted Fe K absorption features that can be identified with high-velocity (~0.2c) outflows of highly ionized gas, as found in other active galaxies. The deepest absorption feature appears only briefly (~1 h) at the onset of the main flare and disappears when the flare declines. The rapid evolution of the absorption spectrum makes this source peculiar among the active galaxies with high-velocity outflows. Another detection of the absorption feature also precedes the other flare. The variability of the absorption feature partly accounts for the excess variability in the 8-10 keV band where the absorption feature appears. Although no reverberation measurement is available, the black hole mass of ~2 × 106M⊙ is inferred from the X-ray variability. When this mass is assumed, the black hole is accreting at around the Eddington limit, which may fit the highly ionized disc and strong outflows observed in this galaxy.

  13. 0714 - 2914 (M4-1) - Another Seyfert galaxy with aligned radio continuum and optical emission-line morphologies

    NASA Technical Reports Server (NTRS)

    Wilson, A. S.; Baldwin, J. A.

    1989-01-01

    Direct imaging and long-slit spectroscopic mapping of the emission-line gas in the Seyfert 2 galaxy 0714 - 2914 (M4-1, MCG - 5-18-2) are reported. The nuclear regions contain an extended (1 kpc size), high-excitation nebulosity that is well aligned with the jet-like nonthermal radio source. The profiles of Forbidden O III 5007A are asymmetric, with extended red wings to the north and west of the nucleus and extended blue wings to the south and east. This switch in the sense of asymmetry is accounted for in terms of a combination of normal rotational motions in the galaxy disk and high-velocity outflow or infall associated with the Seyfert activity.

  14. Infrared identification of IGR J09026-4812 as a Seyfert 1 galaxy

    NASA Astrophysics Data System (ADS)

    Zurita Heras, J. A.; Chaty, S.; Tomsick, J. A.

    2009-08-01

    Context: IGR J09026-4812 was discovered by INTEGRAL in 2006 as a new hard X-ray source. Thereafter, an observation with Chandra pinpointed a single X-ray source within the ISGRI error circle, showing a hard spectrum, and improving its high-energy localisation to a subarcsecond accuracy. Thus, the X-ray source was associated with the infrared counterpart 2MASS J09023731-4813339 whose JHKS photometry indicated a highly reddened source. The high-energy properties and the counterpart photometry suggested a high-mass X-ray binary with a main sequence companion star located 6.3-8.1 kpc away and with a 0.3-10 keV luminosity of 8-1^+13 × 1034 erg s-1. Aims: New optical and infrared observations were needed to confirm the counterpart and to reveal the nature of IGR J09026-4812. Methods: We performed optical and near infrared observations on the counterpart 2MASS J09023731-4813339 with the ESO/NTT telescope on March 2007. We carried out photometry and spectroscopy in near infrared wavelengths and photometry in optical wavelengths. Results: The accurate astrometry at both optical and near infrared wavelengths confirmed 2MASS J09023731-4813339 as the counterpart of IGR J09026-4812. However, the near infrared images show that the source is extended, thus excluding the possibility of a Galactic compact source. The source spectrum shows three main emission lines identified as the HeI λ1.0830~μm line, and the HI Pa β and Pa α lines, typical of galaxies with an active galactic nucleus. The broadness of these lines reached values as large as 4000 km s-1, suggesting a type 1 Seyfert galaxy. The redshift of the source is z = 0.0391 ± 0.0004. Thus, the near infrared photometry and spectroscopy allowed us to classify IGR J09026-4812 as a type 1 Seyfert galaxy. Based on observations made with ESO Telescopes at the La Silla Observatory under programme ID 078.D-0268(B).

  15. Reverberation measurements of the inner radius of the dust torus in 17 Seyfert galaxies

    SciTech Connect

    Koshida, Shintaro; Minezaki, Takeo; Yoshii, Yuzuru; Sakata, Yu; Sugawara, Shota; Kobayashi, Yukiyasu; Suganuma, Masahiro; Enya, Keigo; Tomita, Hiroyuki; Aoki, Tsutomu; Peterson, Bruce A. E-mail: minezaki@ioa.s.u-tokyo.ac.jp

    2014-06-20

    We present the results of a dust reverberation survey for 17 nearby Seyfert 1 galaxies, which provides the largest homogeneous data collection for the radius of the innermost dust torus. A delayed response of the K-band light curve after the V-band light curve was found for all targets, and 49 measurements of lag times between the flux variation of the dust emission in the K band and that of the optical continuum emission in the V band were obtained by the cross-correlation function analysis and also by an alternative method for estimating the maximum likelihood lag. The lag times strongly correlated with the optical luminosity in the luminosity range of M{sub V} = –16 to –22 mag, and the regression analysis was performed to obtain the correlation log Δt (days) = –2.11 – 0.2 M{sub V} assuming Δt∝L {sup 0.5}, which was theoretically expected. We discuss the possible origins of the intrinsic scatter of the dust lag-luminosity correlation, which was estimated to be approximately 0.13 dex, and we find that the difference of internal extinction and delayed response of changes in lag times to the flux variations could have partly contributed to intrinsic scatter. However, we could not detect any systematic change of the correlation with the subclass of the Seyfert type or the Eddington ratio. Finally, we compare the dust reverberation radius with the near-infrared interferometric radius of the dust torus and the reverberation radius of broad Balmer emission lines. The interferometric radius in the K band was found to be systematically larger than the dust reverberation radius in the same band by the about a factor of two, which could be interpreted by the difference between the flux-weighted radius and response-weighted radius of the innermost dust torus. The reverberation radius of the broad Balmer emission lines was found to be systematically smaller than the dust reverberation radius by about a factor of four to five, which strongly supports the unified

  16. A FANAROFF-RILEY TYPE I CANDIDATE IN NARROW-LINE SEYFERT 1 GALAXY Mrk 1239

    SciTech Connect

    Doi, Akihiro; Wajima, Kiyoaki; Hagiwara, Yoshiaki; Inoue, Makoto

    2015-01-10

    We report finding kiloparsec-scale radio emissions aligned with parsec-scale jet structures in the narrow-line Seyfert 1 (NLS1) galaxy Mrk 1239 using the Very Large Array and the Very Long Baseline Array. Thus, this radio-quiet NLS1 has a jet-producing central engine driven by essentially the same mechanism as that of other radio-loud active galactic nuclei (AGNs). Most of the radio luminosity is concentrated within 100 parsecs and overall radio morphology looks edge-darkened; the estimated jet kinetic power is comparable to Fanaroff-Riley Type I radio galaxies. The conversion from accretion to jet power appears to be highly inefficient in this highly accreting low-mass black hole system compared with that in a low-luminosity AGN with similar radio power driven by a sub-Eddington, high-mass black hole. Thus, Mrk 1239 is a crucial probe to the unexplored parameter spaces of central engines for a jet formation.

  17. A TWO-PHASE LOW-VELOCITY OUTFLOW IN THE SEYFERT 1 GALAXY Ark 564

    SciTech Connect

    Gupta, A.; Mathur, S.; Krongold, Y.; Nicastro, F.

    2013-05-10

    The Seyfert 1 galaxy Ark 564 was observed with Chandra high-energy transmission gratings for 250 ks. We present the high-resolution X-ray spectrum that shows several associated absorption lines. The photoionization model requires two warm absorbers (WAs) with two different ionization states (log U = 0.39 {+-} 0.03 and log U = -0.99 {+-} 0.13), both with moderate outflow velocities ({approx}100 km s{sup -1}) and relatively low line of sight column densities (log N{sub H} = 20.94 and 20.11 cm{sup -2}). The high-ionization phase produces absorption lines of O VII, O VIII, Ne IX, Ne X, Mg XI, Fe XVII, and Fe XVIII, while the low-ionization phase produces lines at lower energies (O VIand O VII). The pressure-temperature equilibrium curve for the Ark 564 absorber does not have the typical ''S'' shape, even if the metallicity is super-solar; as a result, the two WA phases do not appear to be in pressure balance. This suggests that the continuum incident on the absorbing gas is perhaps different from the observed continuum. We also estimated the mass outflow rate and the associated kinetic energy and find it to be at most 0.009% of the bolometric luminosity of Ark 564. Thus, it is highly unlikely that these outflows provide significant feedback required by the galaxy formation models.

  18. A Low-mass Black Hole in the Nearby Seyfert Galaxy UGC 06728

    NASA Astrophysics Data System (ADS)

    Bentz, Misty C.; Batiste, Merida; Seals, James; Garcia, Karen; Kuzio de Naray, Rachel; Peters, Wesley; Anderson, Matthew D.; Jones, Jeremy; Lester, Kathryn; Machuca, Camilo; Parks, J. Robert; Pope, Crystal L.; Revalski, Mitchell; Roberts, Caroline A.; Saylor, Dicy; Sevrinsky, R. Andrew; Turner, Clay

    2016-11-01

    We present the results of a recent reverberation mapping campaign for UGC 06728, a nearby low-luminosity Seyfert 1 in a late-type galaxy. Nightly monitoring in the spring of 2015 allowed us to determine an Hβ time delay of τ =1.4+/- 0.8 days. Combined with the width of the variable Hβ line profile, we determine a black hole mass of {M}{BH}=(7.1+/- 4.0)× {10}5 {M}ȯ . We also constrain the bulge stellar velocity dispersion from higher-resolution long-slit spectroscopy along the galaxy minor axis and find {σ }\\star =51.6+/- 4.9 km s‑1. The measurements presented here are in good agreement with both the {R}{BLR}{--}L relationship and the {M}{BH}{--}{σ }\\star relationship for active galactic nuclei. Combined with a previously published spin measurement, our mass determination for UGC 06728 makes it the lowest-mass black hole that has been fully characterized, and thus an important object to help anchor the low-mass end of black hole evolutionary models.

  19. Photometric activity of the Seyfert galaxy Markarian 6 from UBV observations in 1970-2001

    NASA Astrophysics Data System (ADS)

    Doroshenko, V. T.

    2003-07-01

    The light curve of Mrk 6 for 1970-2002 is presented and discussed. The amplitudes of variability were 1.6m, 1.1m, and 0.8m in UBV bands, respectively. The magnitudes of the underlying galaxy in the 27.5'' aperture were found to be Ug=15.82, Bg=15.42 and Vg=14.36. The mean color indices of the variable component are (U-B)var=-0.49 and (B-V)var=0.75 without correction for reddening. In the time intervals from 10 days to 1300 days the structure function can be presented as a power function, S F~tau b, where b=0.72+/-0.04. The time where the SF for Mrk 6 reaches the upper plateau is about 3300 days. The observed SF can be interpreted by the superposition of independent flares model with the maximal duration of flares ~ 800 days. If these flares are located in the radiation pressure dominated region of the accretion disk, the size of this region is about 70, 330 RS, assuming the viscous parameter alpha is 0.1, 0.01, respectively. It is concluded that the optical long-term variability of Seyfert galaxies can be explained by thermal instability in the accretion disk.

  20. Hot gas in the center of the Seyfert galaxy NGC 3079

    NASA Astrophysics Data System (ADS)

    Miyamoto, Yusuke; Nakai, Naomasa; Seta, Masumichi; Salak, Dragan; Nagai, Makoto; Ishii, Shun; Yamauchi, Aya

    2015-08-01

    The nearby (d = 19.7 Mpc) Seyfert galaxy NGC 3079 exhibits a prominent bubble emerging from the nucleus. In order to investigate the nuclear power source, we carried out ammonia observations toward the center of NGC 3079 with the Tsukuba 32-m telescope and the JVLA. The NH3 (J, K) = (1, 1) through (6,6) lines were detected in absorption at the center of NGC 3079 with the JVLA, although the profile of NH3(3,3) was in emission in contrast to the other transitions. All ammonia absorption lines have two distinct velocity components: one is at the systemic velocity (Vsys ~ 1116 km s-1) and the other is blueshifted (Vsys ~ 1020 km s-1), and both components are aligned along the nuclear jets. The blueshifted NH3(3,3) emission can be regarded as ammonia masers associated with shocks by strong winds probably from newly formed massive stars or supernova explosions in the nuclear megamaser disk. The derived rotational temperature, Trot = 120±12 K for the systemic component and Trot = 157±19 K for the blueshifted component, and fractional abundance of NH3 relative to molecular hydrogen H2 are higher than those in other galaxies reported. The high temperature environment at the center may be mainly attributed to heating by the nuclear jets.

  1. Discovery of a fast transient outflow in the Seyfert 1 galaxy NGC 985

    NASA Astrophysics Data System (ADS)

    Ebrero, J.; Kriss, J.; Kaastra, J.; Domcek, V.

    2016-06-01

    Obscuration events in active galaxies are key to understand the physical conditions and the dynamics of the gas in the vicinity of their central super-massive black hole. Using recent joint observations with XMM-Newton and the Hubble Space Telescope of the nearby Seyfert 1 galaxy NGC 985, we have monitored the pass-by of obscuring material across our line of sight, traveling at 6000 km/s. This kind of event has been recorded previously in only a handful of cases. The properties of this transient absorber suggest that it may originate very close to the broad line region, possibly in an accretion disk wind. Moreover, by analyzing past archival observations of NGC 985, we found evidence that this obscuration process is recurrent. The analysis of the RGS spectra of this source at different epochs reveals that some of the components of the persistent warm absorber vary in response to the changes in the ionizing flux caused by this transient obscurer. In this way, we are able to derive stringent upper limits on the location of the warm absorber.

  2. KEPLER OBSERVATIONS OF THE SEYFERT 1 GALAXY II ZW 229.015

    SciTech Connect

    Carini, M. T.; Ryle, Wesley T.

    2012-04-10

    The Seyfert 1 galaxy II ZW 229.015 has been observed with the Kepler spacecraft since quarter 4 of Kepler science operations. The results of the quarters 4-7 (1 year) Kepler observations are presented in this paper. We find the source to be highly variable on multiple timescales, with discrete variations occurring on timescales as short as tens of hours with amplitudes as small as 0.5%. Such small amplitude, rapid variability has never before been detected in active galactic nuclei. The presence of a strong galaxy component dilutes the variability determined from the photometric aperture used in the standard Kepler PDC analysis. Using the tools provided by the Kepler Guest Observer Office and simultaneous V-band photometry found in the literature, we determine an optimal customized aperture for photometry of this source with Kepler. The results of a PSRESP analysis reveal tentative evidence of a characteristic variability timescale in the power spectrum. Using this timescale, we estimate the mass of the central supermassive black hole and this estimate is consistent with the virial mass estimate from reverberation mapping studies.

  3. Narrow-Line Seyfert 1 Galaxies and their place in the Universe

    NASA Astrophysics Data System (ADS)

    Foschini, L.; Colpi, M.; Gallo, L.; Grupe, D.; Komossa, S.; Leighly, K.; Mathur, S.

    In 1978, Davidson and Kinman wrote about Markarian 359: "This unusual object merits further observations...". In 1985, Osterbrock and Pogge defined a new class of active galactic nuclei (AGN), named Narrow-Line Seyfert 1 (NLS1). Twenty-five years later, NLS1s still continue to intrigue and bewilder. NLS1s manifest extreme behaviour at all wavelengths. They exhibit the most extreme X-ray variability seen in radio-quiet AGN, the most intense optical FeII emission, and high rates of star formation. In general, their characteristics are consistent of AGNs with relatively low mass black holes accreting close to the Eddington rate. The 2009 Fermi Gamma-ray Space Telescope discovery of high-energy (E>100 MeV) gamma rays in a handful of NLS1s has established the existence of relativistic jets in these systems -- a fact previously hinted at by the flat radio spectrum and high brightness temperature seen in some objects. Since NLS1 are generally hosted by spirals, this poses some intriguing questions on the galaxy evolution and on how relativistic jets are generated. It is therefore time for the broad community to come together and discuss what we have discovered in the last quarter century and lay the foundation for future work. Workshop Topics: * Central engine: BH mass, accretion disk, BLR/NLR, jet * Host galaxy: morphology, star formation, merging history * NLS1 in the Universe: comparison with other types of AGN, surveys/statistics, formation/merging, cosmological evolution

  4. The new primary X-ray component confirmed in the Seyfert I galaxy IC 4329A

    NASA Astrophysics Data System (ADS)

    Miyake, Katsuma; Noda, Hirofumi; Yamada, Shin'ya; Makishima, Kazuo; Nakazawa, Kazuhiro

    2016-06-01

    The bright and highly variable Seyfert I active galactic nucleus IC 4329A was observed with Suzaku five times in 2007 August, with intervals of ˜5 days and a net exposure of 24-31 ks each. Another longer observation was carried out in 2012 August with a net exposure of 118 ks. In the six observations, a source was detected in 2-45 keV with an average 2-10 keV fluxes of (0.67-1.2) × 10-10 erg cm-2 s-1. Its intensity changed by a factor of 2 among the five observations in 2007, and 1.5 within the 2012 observation. A difference of spectrum among these observations revealed that the variability of IC 4329A was carried mainly by a power-law component with a photon index Γ ˜ 2.0. However, in addition to this primary component and its associated reflection, the broad-band Suzaku data required another, harder, and less-variable component with Γ ˜ 1.4. The presence of this new continuum was also confirmed by analyzing the same six data sets through the spectral decomposition technique developed by Noda et al. (2013a, ApJ, 771, 100). This Γ ˜ 1.4 continuum is considered to be a new primary component that has not been recognized in the spectra of IC 4329A so far, although it was recently identified in those of several other Seyfert I galaxies (Noda et al. 2013a, ApJ, 771, 100; Noda et al. 2014, ApJ, 794, 2).

  5. Spitzer Photometry of WISE-Selected Brown Dwarf and Hyper-Lumninous Infrared Galaxy Candidates

    NASA Technical Reports Server (NTRS)

    Griffith, Roger L.; Kirkpatrick, J. Davy; Eisenhardt, Peter R. M.; Gelino, Christopher R.; Cushing, Michael C.; Benford, Dominic; Blain, Andrew; Bridge, Carrie R.; Cohen, Martin; Cutri, Roc M.; Donoso, Emilio; Jarrett, Thomas H.; Lonsdale, Carol; Mace, Gregory; Mainzer, A.; Marsh, Ken; Padgett, Deborah; Petty, Sara; Ressler, Michael E.; Skrutskie, Michael F.; Stanford, Spencer A.; Stern, Daniel; Tsai, Chao-Wei; Wright, Edward L.; Wu, Jingwen

    2012-01-01

    We present Spitzer 3.6 and 4.5 micrometer photometry and positions for a sample of 1510 brown dwarf candidates identified by the Wide-field Infrared Survey Explorer (WISE) all-sky survey. Of these, 166 have been spectroscopically classified as objects with spectral types M(1), L(7), T(146), and Y(12). Sixteen other objects are non-(sub)stellar in nature. The remainder are most likely distant L and T dwarfs lacking spectroscopic verification, other Y dwarf candidates still awaiting follow-up, and assorted other objects whose Spitzer photometry reveals them to be background sources. We present a catalog of Spitzer photometry for all astrophysical sources identified in these fields and use this catalog to identify seven fainter (4.5 m to approximately 17.0 mag) brown dwarf candidates, which are possibly wide-field companions to the original WISE sources. To test this hypothesis, we use a sample of 919 Spitzer observations around WISE-selected high-redshift hyper-luminous infrared galaxy candidates. For this control sample, we find another six brown dwarf candidates, suggesting that the seven companion candidates are not physically associated. In fact, only one of these seven Spitzer brown dwarf candidates has a photometric distance estimate consistent with being a companion to the WISE brown dwarf candidate. Other than this, there is no evidence for any widely separated (greater than 20 AU) ultra-cool binaries. As an adjunct to this paper, we make available a source catalog of 7.33 x 10(exp 5) objects detected in all of these Spitzer follow-up fields for use by the astronomical community. The complete catalog includes the Spitzer 3.6 and 4.5 m photometry, along with positionally matched B and R photometry from USNO-B; J, H, and Ks photometry from Two Micron All-Sky Survey; and W1, W2, W3, and W4 photometry from the WISE all-sky catalog.

  6. Gamma-ray emitting narrow-line Seyfert 1 galaxies and their place in the AGN zoo

    NASA Astrophysics Data System (ADS)

    D'Ammando, Filippo; Orienti, Monica; Finke, Justin; Giroletti, Marcello; Larsson, Josefin

    2016-08-01

    Relativistic jets are usually produced by radio-loud AGN hosted in giant elliptical galaxies such as blazars and radio galaxies. The discovery by Fermi-LAT of variable gamma-ray emission from narrow-line Seyfert 1 (NLSy1) galaxies revealed the presence of a new class of AGN with relativistic jets. Considering that NLSy1 are usually hosted in spiral galaxies, this finding poses intriguing questions about the nature of these objects and the formation of relativistic jets. In this talk I discuss the radio-to-gamma-ray properties of the gamma-ray NLSy1 detected during the first 7 years of Fermi operation, the observations of their host galaxies, and the estimation of their black hole masses.

  7. Bar properties as seen in the Spitzer Survey of Stellar Structure in Galaxies

    NASA Astrophysics Data System (ADS)

    Sheth, Kartik

    2015-03-01

    Bars serve a crucial signpost in galaxy evolution because they form quickly once a disk is sufficiently massive and dynamically cold. Although the bar fraction in the local Universe is well-established since the mid-60s, a variety of studies have concluded varying bar fractions due to different definitions of bars, use of low quality data or different sample selection. The Spitzer Survey of Stellar Structure in Galaxies (S4G) offers us the ideal data set for resolving this outstanding issue once and for all. S4G consists of over 2000 nearby galaxies chosen based on optical brightness, distance, galactic latitude and size in a 40 Mpc volume. With a 4 minute integration time per pixel over >1.5 × D25 diameter for each galaxy, the data provide the deepest, homogenous, mid-infrared (3.6 and 4.5 microns) data on the nearby Universe. The data are so deep that we are tracing stellar surface densities << 1 solar mass per square parsec. With these data we can confidently constrain the bar fraction and thus shed important light on the evolutionary state of galaxies as a function of mass, environment and other galaxy host properties.

  8. X-RAY DIPS IN THE SEYFERT GALAXY FAIRALL 9: COMPTON-THICK 'COMETS' OR A FAILED RADIO GALAXY?

    SciTech Connect

    Lohfink, Anne M.; Reynolds, Christopher S.; Mushotzky, Richard F.; Wilms, Joern

    2012-04-20

    We investigate the spectral variability of the Seyfert galaxy Fairall 9 using almost 6 years of monitoring with the Rossi X-ray Timing Explorer with an approximate time resolution of 4 days. We discover the existence of pronounced and sharp dips in the X-ray flux, with a rapid decline of the 2-20 keV flux of a factor of two or more followed by a recovery to pre-dip fluxes after {approx}10 days. These dips skew the flux distribution away from the commonly observed lognormal distribution. Dips may result from the eclipse of the central X-ray source by broad-line region clouds, as has recently been found in NGC 1365 and Mrk 766. Unlike these other examples, however, the clouds in Fairall 9 would need to be Compton-thick, and the non-dip state is remarkably free of any absorption features. A particularly intriguing alternative is that the accretion disk is undergoing the same cycle of disruption/ejection as seen in the accretion disks of broad-line radio galaxies such as 3C120 but, for some reason, fails to create a relativistic jet. This suggests that a detailed comparison of Fairall 9 and 3C120 with future high-quality data may hold the key to understanding the formation of relativistic jets in active galactic nucleus.

  9. Radio jet emission from GeV-emitting narrow-line Seyfert 1 galaxies

    NASA Astrophysics Data System (ADS)

    Angelakis, E.; Fuhrmann, L.; Marchili, N.; Foschini, L.; Myserlis, I.; Karamanavis, V.; Komossa, S.; Blinov, D.; Krichbaum, T. P.; Sievers, A.; Ungerechts, H.; Zensus, J. A.

    2015-03-01

    Context. With the current study we aim at understanding the properties of radio emission and the assumed jet from four radio-loud and γ-ray-loud narrow-line Seyfert 1 galaxies that have been detected by Fermi. These are Seyfert 1 galaxies with emission lines at the low end of the FWHM distribution. Aims: The ultimate goal is twofold: first we investigate whether a relativistic jet is operating at the source producing the radio output, and second, we quantify the jet characteristics to understand possible similarities with and differences from the jets found in typical blazars. Methods: We relied on the most systematic monitoring of radio-loud and γ-ray-detected narrow-line Seyfert 1 galaxies in the cm and mm radio bands conducted with the Effelsberg 100 m and IRAM 30 m telescopes. It covers the longest time-baselines and the most radio frequencies to date. This dataset of multi-wavelength, long-term radio light-curves was analysed from several perspectives. We developed a novel algorithm to extract sensible variability parameters (mainly amplitudes and time scales) that were then used to compute variability brightness temperatures and the corresponding Doppler factors. The jet powers were computed from the light curves to estimate the energy output and compare it with that of typical blazars. The dynamics of radio spectral energy distributions were examined to understand the mechanism causing the variability. Results: The length of the available light curves for three of the four sources in the sample allowed a firm understanding of the general behaviour of the sources. They all display intensive variability that appears to be occurring at a pace rather faster than what is commonly seen in blazars. The flaring events become progressively more prominent as the frequency increases and show intensive spectral evolution that is indicative of shock evolution. The variability brightness temperatures and the associated Doppler factors are moderate, implying a mildly

  10. KILOPARSEC-SCALE JETS IN THREE RADIO-LOUD NARROW-LINE SEYFERT 1 GALAXIES

    SciTech Connect

    Richards, Joseph L.; Lister, Matthew L.

    2015-02-10

    We have discovered kiloparsec-scale extended radio emission in three narrow-line Seyfert 1 galaxies (NLS1s) in sub-arcsecond resolution 9 GHz images from the Karl G. Jansky Very Large Array. We find all sources show two-sided, mildly core-dominated jet structures with diffuse lobes dominated by termination hotspots. These span 20–70 kpc with morphologies reminiscent of FR II radio galaxies, while the extended radio luminosities are intermediate between FR I and FR II sources. In two cases the structure is linear, while a 45° bend is apparent in the third. Very Long Baseline Array images at 7.6 GHz reveal parsec-scale jet structures, in two cases with extended structure aligned with the inner regions of the kiloparsec-scale jets. Based on this alignment, the ratio of the radio core–luminosity to the optical luminosity, the jet/counter-jet intensity and extension length ratios, and moderate core brightness temperatures (≲10{sup 10} K), we conclude these jets are mildly relativistic (β≲0.3, δ∼1−1.5) and aligned at moderately small angles to the line of sight (10–15°). The derived kinematic ages of ∼10{sup 6}–10{sup 7} yr are much younger than radio galaxies but comparable to other NLS1s. Our results increase the number of radio-loud NLS1s with known kiloparsec-scale extensions from 7 to 10 and suggest that such extended emission may be common, at least among the brightest of these sources.

  11. Kiloparsec-scale Radio Structures in Narrow-line Seyfert 1 Galaxies

    NASA Astrophysics Data System (ADS)

    Doi, Akihiro; Nagira, Hiroshi; Kawakatu, Nozomu; Kino, Motoki; Nagai, Hiroshi; Asada, Keiichi

    2012-11-01

    We report the finding of kiloparsec (kpc)-scale radio structures in three radio-loud narrow-line Seyfert 1 (NLS1) galaxies from the Faint Images of the Radio Sky at Twenty-centimeters of the Very Large Array, which increases the number of known radio-loud NLS1s with kpc-scale structures to six, including two γ-ray-emitting NLS1s (PMN J0948+0022 and 1H 0323+342) detected by the Fermi Gamma-ray Space Telescope. The detection rate of extended radio emissions in NLS1s is lower than that in broad-line active galactic nuclei (AGNs) with a statistical significance. We found both core-dominated (blazar-like) and lobe-dominated (radio-galaxy-like) radio structures in these six NLS1s, which can be understood in the framework of the unified scheme of radio-loud AGNs that considers radio galaxies as non-beamed parent populations of blazars. Five of the six NLS1s have (1) extended radio luminosities suggesting jet kinetic powers of >~ 1044 erg s-1, which is sufficient to make jets escape from hosts' dense environments; (2) black holes of >~ 107 M ⊙, which can generate the necessary jet powers from near-Eddington mass accretion; and (3) two-sided radio structures at kpc scales, requiring expansion rates of ~0.01c-0.3c and kinematic ages of >~ 107 years. On the other hand, most typical NLS1s would be driven by black holes of <~ 107 M ⊙ in a limited lifetime of ~107 years. Hence, the kpc-scale radio structures may originate in a small window of opportunity during the final stage of the NLS1 phase just before growing into broad-line AGNs.

  12. UBVRI simultaneous observations of the nucleus of Seyfert galaxy NGC 5548 in 1993-1999

    NASA Astrophysics Data System (ADS)

    Merkulova, N. I.

    2002-05-01

    An ongoing program on photometric and spectral monitoring of some bright Seyfert galaxies has been carried out at the Crimean Astrophysical Observatory since 1989. Results of photometric observations of NGC 5548 obtained with the 1.25 m telescope are reported in this paper; it focuses on the analysis of intranight variations. During 44 observational nights in 1993-1999 in each spectral band of the Johnson UBVRI system, 672 measurements have been performed simultaneously through the round aperture (diameter 15\\arcsec) using differential photometry techniques. The estimated accuracy of each measurement is about 0.01 mag. The peak amplitude R_max = Fmax /Fmin = 2.99 for the whole light curve was observed in the U band, while the minimum amplitude Fmax /Fmin =1.37 occurred in the I band during the full observation period. UBVRI observations and good sampled data of international monitoring campaigns of NGC 5548, were used to calculate Structure Functions. A comparison is made of the characteristics of the long and short time scale variations of NGC 5548 with those of NGC 4151, NGC 7469 and NGC 1275. In order to examine the intranight variations of the nucleus of NGC 5548, standard deviations (SD) of the nightly averaged flux F, and a measure of intranight variability - SD/F were calculated for each night. Using this parameter, a probability characteristics is introduced, and duty cycles (the fraction of time when the galaxy is variable), characterizing the efficiency of the central energy source, were evaluated. It is concluded that intranight variability is really transient in character and manifests itself with different probabilities for different galaxies.

  13. KILOPARSEC-SCALE RADIO STRUCTURES IN NARROW-LINE SEYFERT 1 GALAXIES

    SciTech Connect

    Doi, Akihiro; Kino, Motoki; Nagira, Hiroshi; Kawakatu, Nozomu; Nagai, Hiroshi; Asada, Keiichi

    2012-11-20

    We report the finding of kiloparsec (kpc)-scale radio structures in three radio-loud narrow-line Seyfert 1 (NLS1) galaxies from the Faint Images of the Radio Sky at Twenty-centimeters of the Very Large Array, which increases the number of known radio-loud NLS1s with kpc-scale structures to six, including two {gamma}-ray-emitting NLS1s (PMN J0948+0022 and 1H 0323+342) detected by the Fermi Gamma-ray Space Telescope. The detection rate of extended radio emissions in NLS1s is lower than that in broad-line active galactic nuclei (AGNs) with a statistical significance. We found both core-dominated (blazar-like) and lobe-dominated (radio-galaxy-like) radio structures in these six NLS1s, which can be understood in the framework of the unified scheme of radio-loud AGNs that considers radio galaxies as non-beamed parent populations of blazars. Five of the six NLS1s have (1) extended radio luminosities suggesting jet kinetic powers of {approx}> 10{sup 44} erg s{sup -1}, which is sufficient to make jets escape from hosts' dense environments; (2) black holes of {approx}> 10{sup 7} M {sub Sun }, which can generate the necessary jet powers from near-Eddington mass accretion; and (3) two-sided radio structures at kpc scales, requiring expansion rates of {approx}0.01c-0.3c and kinematic ages of {approx}> 10{sup 7} years. On the other hand, most typical NLS1s would be driven by black holes of {approx}< 10{sup 7} M {sub Sun} in a limited lifetime of {approx}10{sup 7} years. Hence, the kpc-scale radio structures may originate in a small window of opportunity during the final stage of the NLS1 phase just before growing into broad-line AGNs.

  14. Gamma-ray activity of Seyfert galaxies and constraints on hot accretion flows

    NASA Astrophysics Data System (ADS)

    Wojaczyński, Rafał; Niedźwiecki, Andrzej; Xie, Fu-Guo; Szanecki, Michał

    2015-12-01

    Aims: We check how the Fermi/LAT data constrain the physics of hot accretion flows that are most likely present in low-luminosity AGNs. Methods: Using a precise model of emission from hot flows, we studied the flow γ-ray emission resulting from proton-proton interactions. We explored the dependence of the γ-ray luminosity on the accretion rate, the black hole spin, the magnetic field strength, the electron heating efficiency, and the particle distribution. Then, we compared the hadronic γ-ray luminosities predicted by the model for several nearby Seyfert 1 galaxies with the results of our analysis of 6.4 years of Fermi/LAT observations of these AGNs. Results: In agreement with previous studies, we find a significant γ-ray detection in NGC 6814. We were only able to derive upper limits for the remaining objects, although we report marginally significant (~3σ) signals at the positions of NGC 4151 and NGC 4258. The derived upper limits for the flux above 1 GeV allow us to constrain the proton acceleration efficiency in flows with heating of electrons dominated by Coulomb interactions, which case is favored by the X-ray spectral properties. In these flows, at most ~10% of the accretion power can be used for a relativistic acceleration of protons. Upper limits for the flux below 1 GeV can constrain the magnetic field strength and black hole spin value; we find these constraints for NGC 7213 and NGC 4151. We also note that the spectral component above ~4 GeV previously found in the Fermi/LAT data of Centaurus A may be due to hadronic emission from a flow within the above constraint. We rule out this origin of the γ-ray emission for NGC 6814. For models with a strong magnetohydrodynamic heating of electrons, the hadronic γ-ray fluxes are below the Fermi/LAT sensitivity even for the closest AGNs. In these models, nonthermal Compton radiation may dominate in the γ-ray range if electrons are efficiently accelerated and the acceleration index is hard; for the index

  15. The Detection of Circumnuclear X-Ray Emission from the Seyfert Galaxy NGC 3516

    NASA Technical Reports Server (NTRS)

    George, I. M.; Turner, T. J.; Netzer, H.; Kraemer, S. B.; Ruiz, J.; Chelouche, D.; Crenshaw, D. M.; Yaqoob, T.; Nandra, K.; Mushotzky, R. F.; White, Nicholas E. (Technical Monitor)

    2001-01-01

    We present the first high-resolution, X-ray image of the circumnuclear regions of the Seyfert 1 galaxy NGC 3516, using the Chandra X-ray Observatory (CXO). All three of the CXO observations reported were performed with one of the two grating assemblies in place, and here we restrict our analysis to undispersed photons (i.e. those detected in the zeroth-order). A previously-unknown X-ray source is detected approximately 6 arcsec (1.1h(sub 75)(exp -1) kpc) NNE of the nucleus (position angle approximately 29 degrees) which we designate CXOU 110648.1 + 723412. Its spectrum can be characterized as a power law with a photon index (Gamma) approximately 1.8 - 2.6, or as thermal emission with a temperature kT approximately 0.7 - 3 keV. Assuming a location within NGC 3516, isotropic emission implies a luminosity L approximately 2 - 8 x 10(exp 39)h(sub 75)(exp-2) erg s(exp -1) in the 0.4 - 2 keV band. If due to a single point source, the object is super-Eddington for a 1.4 solar mass neutron star. However, multiple sources or a small, extended source cannot be excluded using the current data. Large-scale extended S-ray emission is also detected out to approximately 10 arcsec (approximately 2h(sub 75)(exp -1) kpc) from the nucleus to the NE and SW, and is approximately aligned with the morphologies of the radio emission and extended narrow emission line region (ENLR). The mean luminosity of this emission is 1 - 5 x 10(exp 37)h(sub 75)(exp -2) erg s(exp -1) arcsec(exp -2), in the 0.4 - 2 keV band. Unfortunately the current data cannot usefully constrain its spectrum. These results are consistent with earlier suggestions of circumnuclear X-ray emissi in NGC 3516 based on ROSAT observations, and thus provide the first clear detection of extended X-ray emission in a Seyfert 1.0 galaxy. If the extended emission is due to scattering of the nuclear X-ray continuum, then the pressure in the X-ray emitting gas is at least two orders of magnitude too small to provide the confining

  16. Rest-Frame Mid-Infrared Detection of an Extremely Luminous Lyman Break Galaxy with the Spitzer Infrared Spectrograph (IRS)

    NASA Technical Reports Server (NTRS)

    Teplitz, H. I.; Charmandaris, V.; Armus, L.; Appleton, P. N.; Houck, J. R.; Soifer, B. T.; Weedman, D.; Brandl, B. R.; vanCleve, J.; Grillmair, C.; Uchid, K. I.

    2004-01-01

    We present the first rest-frame of approximately 4 microns detection of a Lyman break galaxy. The data were obtained using the 16 microns imaging capability of the Spitzer Infrared Spectrograph. The target object, J134026.44+634433.2, is an extremely luminous Lyman break galaxy at z=2.79, first identified in Sloan Digital Sky Survey (SDSS) spectra (as reported by Bentz et al.). The source is strongly detected with a flux of 0.94 +/- 0.02 mJy. Combining Spitzer and SDSS photometry with supporting ground-based J- and K-band data, we show that the spectral energy distribution is consistent with an actively star-forming galaxy. We also detect other objects in the Spitzer field of view, including a very red mid-infrared source. We find no evidence of a strong lens among the mid-infrared sources.

  17. Using Spitzer Data To Obtain Dust Distribution Arounfd The Active Galactic Nucleus NGC 4051

    NASA Astrophysics Data System (ADS)

    Pereira, Vincent; Burrell, A.; Chavez, O.; Fawcett, E.; Elias, R.; Lugo, T.; Morillo, E.; Purpura, M.; Sorokin, S.; Gorjian, V.; Adkins, J.; Borders, K.; Kelly, S.; Martin, C.; Mendez, B.; Paradis, J.; Pittman, P.; Sepulveda, B.

    2010-01-01

    We have used the Rees'model of Seyfert I galaxies to make detailed calculations of dust distribution as a function of the slope of the spectral intensity versus frequency curve in the infra-red. From these results and our observations of the active galactic nucleus NGC 4051 with the Spitzer Space Telescope Infrared Array Camera (IRAC) we obtain the dust distribution function for this nucleus. We feel that this research project with its underlying physical concepts serves as a good introduction to the physics of Seyfert galaxies for high school students.

  18. VIMOS-VLT and Spitzer observations of a radio galaxy at z= 2.5*

    NASA Astrophysics Data System (ADS)

    Villar-Martín, M.; Sánchez, S. F.; De Breuck, C.; Peletier, R.; Vernet, J.; Rettura, A.; Seymour, N.; Humphrey, A.; Stern, D.; di Serego Alighieri, S.; Fosbury, R.

    2006-02-01

    We present: (i) a kinematic and morphological study of the giant Lyα nebula associated with the radio galaxy MRC 2104-242 (z= 2.49) based on integral field spectroscopic Visible Multiobject Spectrograph (VIMOS) data from the Very Large Telescope (VLT), and (ii) a photometric study of the host (proto?) galaxy based on Spitzer Space Telescope data. The galaxy appears to be embedded in a giant (>~120 kpc) gas reservoir that surrounds it completely. The kinematic properties of the nebula suggest that it is a rotating structure, which would imply a lower limit to the dynamical mass of ~3 × 1011Msolar. An alternate scenario is that the gas is infalling. Such a process would be able to initiate and sustain significant central starburst activity, although it is likely to contribute with less than 10 per cent of the total stellar mass. The near- to mid-infrared spectral energy distribution of the radio galaxy suggests the existence of a reddened, E(B-V) = 0.4 +/- 0.1, evolved stellar population of age >~1.8 Gyr and mass (5 +/- 2) × 1011Msolar. The implied formation redshift is zf>~ 6. This stellar mass is similar to the stellar masses found for massive early-type galaxies at z~ 2 in deep, near-infrared surveys.

  19. Studying Galaxy Formation with the Hubble, Spitzer and James Webb Space Telescopes

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2009-01-01

    The deepest optical to infrared observations of the universe include the Hubble Deep Fields, the Great Observatories Origins Deep Survey and the recent Hubble Ultra-Deep Field. Galaxies are seen in these surveys at redshifts z greater than 6, less than 1 Gyr after the Big Bang, at the end of a period when light from the galaxies has reionized Hydrogen in the inter-galactic medium. These observations, combined with theoretical understanding, indicate that the first stars and galaxies formed at z greater than 10, beyond the reach of the Hubble and Spitzer Space Telescopes. To observe the first galaxies, NASA is planning the James Webb Space Telescope (JWST), a large (6.5m), cold (less than 50K), infrared-optimized observatory to be launched early in the next decade into orbit around the second Earth-Sun Lagrange point. JWST will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Tunable Filter Imager will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. In addition to JWST's ability to study the formation and evolution of galaxies, I will also briefly review its expected contributions to studies of the formation of stars and planetary systems, and discuss recent progress in constructing the observatory.

  20. Studying Galaxy Formation with the Hubble, Spitzer and James Webb Space Telescopes

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan F.; Barbier, L. M.; Barthelmy, S. D.; Cummings, J. R.; Fenimore, E. E.; Gehrels, N.; Hullinger, D. D.; Markwardt, C. B.; Palmer, D. M.; Parsons, A. M.; Sakamoto, T.

    2006-01-01

    The deepest optical to infrared observations of the universe include the Hubble Deep Fields, the Great Observatories Origins Deep Survey and the recent Hubble Ultra-Deep Field. Galaxies are seen in these surveys at redshifts 2-6, less than 1 Gyr after the Big Bang, at the end of a period when light from the galaxies has reionized Hydrogen in the inter-galactic medium. These observations, combined with theoretical understanding, indicate that the first stars and galaxies formed at z>10, beyond the reach of the Hubble and Spitzer Space Telescopes. To observe the first galaxies, NASA is planning the James Webb Space Telescope (JWST), a large (6.5m), cold (50K), infrared-optimized observatory to be launched early in the next decade into orbit around the second Earth- Sun Lagrange point. JWST will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Tunable Filter Imager will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 27 microns. In addition to JWST s ability to study the formation and evolution of galaxies, I will also briefly review its expected contributions to studies of the formation of stars and planetary systems.

  1. Studying Galaxy Formation with the Hubble, Spitzer and James Webb Space Telescopes

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2007-01-01

    The deepest optical to infrared observations of the universe include the Hubble Deep Fields, the Great Observatories Origins Deep Survey and the recent Hubble Ultra-Deep Field. Galaxies are seen in these surveys at redshifts z>6, less than 1 Gyr after the Big Bang, at the end of a period when light from the galaxies has reionized Hydrogen in the inter-galactic medium. These observations, combined with theoretical understanding, indicate that the first stars and galaxies formed at z>10, beyond the reach of the Hubble and Spitzer Space Telescopes. To observe the first galaxies, NASA is planning the James Webb Space Telescope (JWST), a large (6.5m), cold (<50K), infrared-optimized observatory to be launched early in the next decade into orbit around the second Earth- Sun Lagrange point. JWST will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Tunable Filter Imager will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. In addition to JWST's ability to study the formation and evolution of galaxies, I will also briefly review its expected contributions to studies of the formation of stars and planetary systems.

  2. Studying Galaxy Formation with the Hubble, Spitzer and James Webb Space Telescopes

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2007-01-01

    The deepest optical to infrared observations of the universe include the Hubble Deep Fields, the Great Observatories Origins Deep Survey and the recent Hubble Ultra-Deep Field. Galaxies are seen in these surveys at redshifts 2x3, less than 1 Gyr after the Big Bang, at the end of a period when light from the galaxies has reionized Hydrogen in the inter-galactic medium. These observations, combined with theoretical understanding, indicate that the first stars and galaxies formed at z>lO, beyond the reach of the Hubble and Spitzer Space Telescopes. To observe the first galaxies, NASA is planning the James Webb Space Telescope (JWST), a large (6.5m), cold (<50K), infrared-optimized observatory to be launched early in the next decade into orbit around the second Earth- Sun Lagrange point. JWST will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Tunable Filter Imager will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. In addition to JWST's ability to study the formation and evolution of galaxies, I will also briefly review its expected contributions to studies of the formation of stars and planetary systems.

  3. A CLASSICAL MORPHOLOGICAL ANALYSIS OF GALAXIES IN THE SPITZER SURVEY OF STELLAR STRUCTURE IN GALAXIES (S{sup 4}G)

    SciTech Connect

    Buta, Ronald J.; Sheth, Kartik; Muñoz-Mateos, Juan-Carlos; Kim, Taehyun; Knapen, Johan H.; Laurikainen, Eija; Salo, Heikki; Laine, Jarkko; Comerón, Sébastien; Elmegreen, Debra; Ho, Luis C.; Zaritsky, Dennis; Hinz, Joannah L.; Courtois, Helene; Gadotti, Dimitri A.; Paz, Armando Gil de; Menéndez-Delmestre, Karín; and others

    2015-04-15

    The Spitzer Survey of Stellar Structure in Galaxies (S{sup 4}G) is the largest available database of deep, homogeneous middle-infrared (mid-IR) images of galaxies of all types. The survey, which includes 2352 nearby galaxies, reveals galaxy morphology only minimally affected by interstellar extinction. This paper presents an atlas and classifications of S{sup 4}G galaxies in the Comprehensive de Vaucouleurs revised Hubble-Sandage (CVRHS) system. The CVRHS system follows the precepts of classical de Vaucouleurs morphology, modified to include recognition of other features such as inner, outer, and nuclear lenses, nuclear rings, bars, and disks, spheroidal galaxies, X patterns and box/peanut structures, OLR subclass outer rings and pseudorings, bar ansae and barlenses, parallel sequence late-types, thick disks, and embedded disks in 3D early-type systems. We show that our CVRHS classifications are internally consistent, and that nearly half of the S{sup 4}G sample consists of extreme late-type systems (mostly bulgeless, pure disk galaxies) in the range Scd-Im. The most common family classification for mid-IR types S0/a to Sc is SA while that for types Scd to Sm is SB. The bars in these two type domains are very different in mid-IR structure and morphology. This paper examines the bar, ring, and type classification fractions in the sample, and also includes several montages of images highlighting the various kinds of “stellar structures” seen in mid-IR galaxy morphology.

  4. On the origin of the Z-shaped narrow-line region in the Seyfert galaxy NGC 3516

    NASA Technical Reports Server (NTRS)

    Veilleux, Sylvain; Tully, R. B.; Bland-Hawthorn, Jonathan

    1993-01-01

    A kinematic study has been carried out of the line-emitting gas in the Seyfert galaxy NGC 3516. The existence of two curved filaments in the central 2.5 kpc of this galaxy, which give Z-shaped appearance to its NLR. A precessing twin-jet model in which the line-emitting material is entrained by a precessing radio jet and kept ionized by the nuclear ionization field can explain the kinematic data of the brightest emission rather well. If this model is valid, this would make NGC 3516 the least luminous known active galaxy with a precessing jet. An alternative scenario assumes that the curved inner filaments represent gas entrained by a radio jet which is deflected by ram pressure from the rotation interstellar medium of the galaxy.

  5. Broad-band properties of the CfA Seyfert Galaxies. II - Infrared to millimeter properties

    NASA Technical Reports Server (NTRS)

    Edelson, R. A.; Malkan, M. A.; Rieke, G. H.

    1987-01-01

    IR and mm observations of the 48 Seyfert 1 and 2 galaxies (SG1s and SG2s) of the CfA sample (Huchra and Berg, 1987) are reported. Data obtained (1) in the NIR using the 1.55-m reflector at Stewart Observatory and the 3-m IRTF during 1984-1986, (2) in the FIR with IRAS, and (3) at 1.3 mm using the 12-m NRAO telescope at KPNO in June 1984 are presented in extensive tables and graphs and characterized in detail. None of the objects was detected at 1.3 mm, and the IR spectra of the SG2s are found to be significantly steeper (indicating thermal emission) than those of SG1s and QSOs (nonthermal emission). Turnover in the IR emission below 100 microns (in half of the objects detected at three or more IRAS wavelengths) is shown to be consistent with an accretion disk in dust-free SG1s and with unusually warm (35-65 K) dust in SG2s. It is inferred that a 60-100-micron cool excess is masking turnover in the other SGs, so that a general association of SG nuclei with strong star formation can be confirmed.

  6. DETECTION OF HIGH VELOCITY OUTFLOWS IN THE SEYFERT 1 GALAXY Mrk 590

    SciTech Connect

    Gupta, A.; Mathur, S.; Krongold, Y.

    2015-01-01

    We report on the detection of ultra-fast outflows in the Seyfert 1 galaxy Mrk 590. These outflows are identified through highly blueshifted absorption lines of O VIII and Ne IX in the medium energy grating spectrum and Si XIV and Mg XII in the high energy grating spectrum on board the Chandra X-ray observatory. Our best-fit photoionization model requires two absorber components at outflow velocities of 0.176c and 0.0738c and a third tentative component at 0.0867c. The components at 0.0738c and 0.0867c have high ionization parameters and high column densities, similar to other ultra-fast outflows detected at low resolution by Tombesi et al. We also found suggestive evidence for super-solar silicon in these components. These outflows carry sufficient mass and energy to provide effective feedback proposed by theoretical models. The component at 0.176c, on the other hand, has a low ionization parameter and low column density, similar to those detected by Gupta et al. in Ark 564. These absorbers occupy a different locus on the velocity versus ionization parameter plane and have opened up a new parameter space of active galactic nucleus (AGN) outflows. The presence of ultra-fast outflows in moderate luminosity AGNs poses a challenge to models of AGN outflows.

  7. Is there a connection between broad absorption line quasars and narrow-line Seyfert 1 galaxies?

    SciTech Connect

    Grupe, Dirk; Nousek, John A.

    2015-02-01

    We consider whether broad absorption line quasars (BAL QSOs) and narrow-line Seyfert 1 galaxies (NLS1s) are similar, as suggested by Brandt and Gallagher and Boroson. For this purpose, we constructed a sample of 11 BAL QSOs from existing Chandra and Swift observations. We found that BAL QSOs and NLS1s both operate at high Eddington ratios L/L{sub Edd}, although BAL QSOs have slightly lower L/L{sub Edd}. BAL QSOs and NLS1s in general have high Fe ii/Hβ and low [O iii]/Hβ ratios following the classic “Boroson and Green” eigenvector 1 relation. We also found that the mass accretion rates M-dot of BAL QSOs and NLS1s are more similar than previously thought, although some BAL QSOs exhibit extreme mass accretion rates of more than 10 M{sub ⊙} yr{sup −1}. These extreme mass accretion rates may suggest that the black holes in BAL QSOs are relativistically spinning. Black hole masses in BAL QSOs are a factor of 100 larger than NLS1s. From their location on a M−σ plot, we find that BAL QSOs contain fully developed black holes. Applying a principal component analysis to our sample, we find eigenvector 1 to correspond to the Eddington ratio L/L{sub Edd}, and eigenvector 2 to black hole mass.

  8. SBS 0846+513: a new γ-ray-emitting narrow-line Seyfert 1 galaxy

    NASA Astrophysics Data System (ADS)

    D'Ammando, F.; Orienti, M.; Finke, J.; Raiteri, C. M.; Angelakis, E.; Fuhrmann, L.; Giroletti, M.; Hovatta, T.; Max-Moerbeck, W.; Perkins, J. S.; Readhead, A. C. S.; Richards, J. L.; Stawarz, Ł.; Donato, D.

    2012-10-01

    We report Fermi Large Area Telescope (LAT) observations of the radio-loud active galactic nucleus SBS 0846+513 (z = 0.5835), optically classified as a narrow-line Seyfert 1 galaxy, together with new and archival radio-to-X-ray data. The source was not active at γ-ray energies during the first two years of Fermi operation. A significant increase in activity was observed during 2010 October-2011 August. In particular, a strong γ-ray flare was observed in 2011 June reaching an isotropic γ-ray luminosity (0.1-300 GeV) of 1.0 × 1048 erg s-1, comparable to that of the brightest flat spectrum radio quasars, and showing spectral evolution in γ rays. An apparent superluminal velocity of (8.2 ± 1.5)c in the jet was inferred from 2011 to 2012 Very Long Baseline Array (VLBA) images, suggesting the presence of a highly relativistic jet. Both the power released by this object during the flaring activity and the apparent superluminal velocity are strong indications of the presence of a relativistic jet as powerful as those of blazars. In addition, variability and spectral properties in radio and γ-ray bands indicate blazar-like behaviour, suggesting that, except for some distinct optical characteristics, SBS 0846+513 could be considered as a young blazar at the low end of the blazar's black hole mass distribution.

  9. X-ray evidence for ultra-fast outflows in Seyfert galaxies

    NASA Astrophysics Data System (ADS)

    Tombesi, Francesco; Braito, Valentina; Reeves, James; Cappi, Massimo; Dadina, Mauro

    2012-07-01

    X-ray evidence for massive, highly ionized, ultra-fast outflows (UFOs) has been recently reported in a number of AGNs through the detection of blue-shifted Fe XXV/XXVI absorption lines. We present the results of a comprehensive spectral analysis of a large sample of 42 local Seyferts observed with XMM-Newton. Similar results are also obtained from a Suzaku analysis of 5 radio galaxies. We find that UFOs are common phenomena, being present in >40% of the sources. Their outflow velocity distribution is in the range ˜0.03--0.3c, with mean value of ˜0.14c. The ionization parameter is very high, in the range logξ˜3--6 erg~s^{-1}~cm, and the associated column densities are also large, in the range ˜10^{22}--10^{24} cm^{-2}. Their location is constrained at ˜0.0003--0.03pc (˜10^2--10^4 r_s) from the central black hole, consistent with what is expected for accretion disk winds/outflows. The mass outflow rates are in the interval ˜0.01--1M_{⊙}~yr^{-1}. The associated mechanical power is also high, in the range ˜10^{43}--10^{45} erg/s, which indicates that UFOs are capable to provide a significant contribution to the AGN cosmological feedback.

  10. Rapid Compton-thick/Compton-thin Transitions in the Seyfert 2 Galaxy NGC 1365

    NASA Technical Reports Server (NTRS)

    Risaliti, G.; Elvis, M.; Fabbiano, G.; Baldi, A.; Zezas, A.

    2006-01-01

    We present multiple Chandra and XMM-Newton observations of the type 1.8 Seyfert galaxy NGC 1365, which shows the most dramatic X-ray spectral changes observed so far in an active galactic nucleus: the source switched from reflection-dominated to transmission-dominated and back in just 6 weeks. During this time the soft thermal component, arising from a approx. 1 kpc region around the center, remained constant. The reflection component is constant at all timescales, and its high flux relative to the primary component implies the presence of thick gas covering a large fraction of the solid angle. The presence of this gas, and the fast variability timescale, suggest that the Compton-thick to Compton-thin change is due to variation in the line-of-sight absorber rather than to extreme intrinsic emission variability. We discuss a structure of the circumuclear absorber/reflector that can explain the observed X-ray spectral and temporal properties.

  11. NGC 4051 and the Nature of Narrow-Line Seyfert I Galaxies

    NASA Technical Reports Server (NTRS)

    Peterson, B. M.; McHardy, I. M.; Wilkes, B. J.

    2004-01-01

    We report on the results of a three-year program of coordinated X-ray and optical monitoring of the narrow-line Seyfert 1 galaxy NGC 4051. The principal results of this program are: (1) The H-beta emission line time lag and Doppler width yield a virial mass estimate of about 1.1 mission solar masses, at the extreme low end of AGN masses. A plausible adjustment for inclination effects increases this mass slightly to about 1.4 mission solar masses. (2) During the third year of this campaign, both the X-ray continuum and the He II 4686 line went into extremely low states, although the optical continuum and the H-beta broad line were both still present and variable. We suggest that the inner part of the accretion disk may have gone into an advection-dominated state, yielding little radiation from the hotter inner disk. (3) The He II 4686 line is almost five times as broad as H-beta, and it is strongly blueward asymmetric, as are the high-ionization UV lines recorded in archive spectra of NGC 4051. The data are consistent with the Balmer lines arising in a low-inclination disk-like configuration, and the high-ionization lines arising in an outflowing wind, of which we observe preferentially the near side.

  12. An XMM-Newton Study of the Bright Narrow-Line Seyfert 1 Galaxy Arakelian 564

    NASA Technical Reports Server (NTRS)

    Brandt, Niel

    2004-01-01

    We report on two XMM-Newton observations of the bright Narrow-Line Seyfert 1 galaxy Ark 564 taken one year apart (2000 June and 2001 June). The 0.6-10 keV continuum is well described by a soft blackbody component (kT - 140-150 eV) plus a steep power law (Gamma - 2.50-2.55). No significant spectral changes are observed between the two observations, although the X-ray flux in the second observation is - 40-50 per cent lower. In both observations we detect a significant absorption edge at a rest-frame energy of - 0.73 keV, corresponding to 0 VII. The presence of the absorption feature is confirmed by a simultaneous Chandra grating observation in 2000 June, although the best-fitting edge threshold is at a slightly lower energy in the Chandra data, possibly because of a different parameterization of the underlying X-ray continuum. We find tentative evidence for a broad iron emission line in the 2000 June observation. The results from an analysis of the power spectral density (PSD) function are also presented. The present XMM-Newton data support the idea that the PSD shows two breaks, although the location of the high-frequency break requires further constraints.

  13. SBS 0846+513: a New Gamma-ray Emitting Narrow-line Seyfert 1 Galaxy

    NASA Technical Reports Server (NTRS)

    D'Ammando, F.; Orienti, M.; Finke, J.; Raiteri, C. M.; Angelakis, E.; Fuhrmann, L.; Giroletti, M.; Hovatta, T.; Max-Moerbeck, W.; Perkins, J. S.; Readhead, A. C. S.; Richards, J. L.; Stawarz, L.; Donato, D.

    2012-01-01

    We report Fermi-LAT observations of the radio-loud AGN SBS 0846+513 (z=0.5835), optically classified as a Narrow-Line Seyfert 1 galaxy, together with new and archival radio-to-X-ray data. The source was not active at ?-ray energies during the first two years of Fermi operation. A significant increase in activity was observed during 2010 October-2011 August. In particular a strong gamma-ray flare was observed in 2011 June reaching an isotropic ?-ray luminosity (0.1-300 GeV) of 1.0×10(sup 48) erg s(sup -1), comparable to that of the brightest flat spectrum radio quasars, and showing spectral evolution in gamma rays. An apparent superluminal velocity of (8.2+/-1.5)c in the jet was inferred from 2011-2012 VLBA images, suggesting the presence of a highly relativistic jet. Both the power released by this object during the flaring activity and the apparent superluminal velocity are strong indications of the presence of a relativistic jet as powerful as those of blazars. In addition, variability and spectral properties in radio and gamma-ray bands indicate blazar-like behaviour, suggesting that, except for some distinct optical characteristics, SBS 0846+513 could be considered as a young blazar at the low end of the blazar's black hole mass distribution.

  14. THE GEOMETRY OF MASS OUTFLOWS AND FUELING FLOWS IN THE SEYFERT 2 GALAXY MRK 3

    SciTech Connect

    Crenshaw, D. M.; Fischer, T. C.; Kraemer, S. B.; Schmitt, H. R.; Jaffe, Y. L.; Deo, R. P.; Collins, N. R.

    2010-03-15

    We present a study of the resolved emission-line regions and an inner dust/gas disk in the Seyfert 2 galaxy Mrk 3, based on Hubble Space Telescope observations. We show that the extended narrow-line region (ENLR), spanning {approx}4 kpc, is defined by the intersection of the ionizing bicone of radiation from the active galactic nucleus (AGN) and the inner disk, which is not coplanar with the large-scale stellar disk. This intersection leads to different position and opening angles of the ENLR compared to the narrow-line region (NLR). A number of emission-line arcs in the ENLR appear to be continuations of dust lanes in the disk, supporting this geometry. The NLR, which consists of outflowing emission-line knots spanning the central {approx}650 pc, is in the shape of a backward S. This shape may arise from rotation of the gas, or it may trace the original fueling flow close to the nucleus that was ionized after the AGN turned on.

  15. Decoding the spectral variations in the bare Seyfert 1 galaxy Fairall 9

    NASA Astrophysics Data System (ADS)

    Lohfink, Anne; Reynolds, Christopher S.; Alston, William; Pinto, Ciro

    2016-04-01

    X-ray spectroscopy and variability are powerful tools to understand the fundamental physics and accretion processes occurring in active galactic nuclei. The analysis is often hampered by the wealth of processes occurring simultaneously, making them difficult to disentangle. Our talk focuses on the luminous Seyfert 1 galaxy Fairall 9, whose spectrum and timing behavior is much simpler, as it is not affected by absorption processes. We aim to present a comprehensive spectral and timing study, based on an observing campaign performed in 2014. It consisted of a long-term Swift monitoring, three pointed XMM observations and one NUSTAR observation, performed jointly with one of XMM pointings. The different flux states of the pointed XMM observations allow us to identify the continuum as the main variability driver and constrain the accretion disk parameters with unprecedented quality. We are also able to establish that the source geometry remained absolutely unchanged over several months, a behavior not seen in other AGN. We study the connection of the UV and X-ray emission from the long-term Swift monitoring and establish that the UV lags the X-rays by several days. These time lags are then compared, together with the UV rms spectrum, to what is expected for a standard thin accretion disk and put into context of the results from the analysis of the XMM and NuSTAR data. Taken together this will provide us with the most complete picture of this AGN yet.

  16. The Spectral Energy Distribution of the Seyfert Galaxy Ton S180

    NASA Technical Reports Server (NTRS)

    Turner, T. J.; Romano, P.; Kraemer, S. B.; George, I. M.; Yaqoob, T.; Crenshaw, D. M.; Storm, J.; Alloin, D.; Lazzaro, D.; DaSilva, L.; White, Nicholas E. (Technical Monitor)

    2001-01-01

    We present spectral results from a multi-satellite, broad-band campaign on the Narrow-line Seyfert 1 galaxy Ton S180 performed at the end of 1999. We discuss the spectral-energy distribution of the source, combining simultaneous Chandra, ASCA and EUVE data with contemporaneous FUSE, HST, and ground-based optical and infrared data. The resulting SED shows that most of the, energy is emitted in the 10 - 100 eV regime, which must be dominated by the primary energy source. No spectral turnover is evident in the UV regime. This, the strong soft X-ray emission, and the overall shape of the SED indicate that emission from the accretion disk peaks between 15 and 100 eV. High resolution FUSE spectra showing UV absorption due to OVI and the lack of detectable X-ray absorption in the Candra spectrum demonstrate the presence of a low column density of highly ionized gas along our line of sight.

  17. The INTEGRAL high energy cut-off distribution of Seyfert galaxies

    NASA Astrophysics Data System (ADS)

    Malizia, Angela; Ubertini, Pietro; Bird, Antony; Bazzano, Angela; Stephen, John; Molina, Manuela; Bassani, Loredana

    We present the primary continuum parameters, the photon index and the high energy cut-off, of Seyfert galaxies extracted from the INTEGRAL complete sample of AGN. We performed a broad band (0.3-100 keV) spectral analysis by fitting simultaneously the soft and hard X-ray spectra obtained by XMM and INTEGRAL/IBIS-Swift/BAT respectively in order to investigate the general properties of these parameters in particular their distribution and mean values. We present the mean photon index for the t type 1 and type 2 objects of the whole sample as well as their mean high energy cut-off. This is the first time that the cut-off energy is constrained in a such large number of AGN. Using the main parameters of the primary continuum, we are able to obtain the actual physical parameters of the Comptonizing region i.e. the plasma temperature kTe the optical depth tau. Finally, with the high S/N spectra starting to come from NuSTAR it will soon be possible to better constrain the cut-off values in many AGN, allowing the determination of more physical models and so to better understand the continuum emission and geometry of the region surrounding black holes.

  18. ROSAT Position Sensitive Proportional Counter spectra of six Seyfert 1 galaxies

    NASA Technical Reports Server (NTRS)

    Turner, T. J.; George, I. M.; Mushotzky, R. F.

    1993-01-01

    We present the results from ROSAT Position Sensitive Proportional Counter observations of six Seyfert 1 galaxies in the soft (0.1-2.0 keV) X-ray band. The sources (Mrk 335, ESO 198-G24, ESO 141-G55, Mrk 509, NGC 7469, and MCG-2-58-22) were chosen to have low absorbing column densities along the line of sight. As expected, it is found that all the sources possess significantly steeper spectra below about 1 keV than observed at higher X-ray energies. Assuming a simple absorbed power-law spectral model, the mean (photon) spectral index for the sample is Gamma = 2.38 +/- 0.25, compared to the canonical 1.7 typically observed in the 2-10 keV band. Furthermore, we find strong evidence for soft X-ray spectral features in half the sources. In NGC 7469 and ESO 198-G24, we find that the addition of a narrow emission line or an absorption edge to the underlying continuum is a significant improvement to the parameterization of the spectra. Mrk 335 also shows evidence for spectral complexity, but from these data it is not possible to unambiguously distinguish between an absorption edge and a steepening of the spectrum at low energies. We examine these results in the light of the accuracy of the PSPC spectral calibration.

  19. UV and X-ray variability of the narrow-line Seyfert 1 galaxy Ark 564

    NASA Astrophysics Data System (ADS)

    Ezhikode, Savithri H.; Dewangan, Gulab C.; Misra, Ranjeev; Tripathi, Shruti; Sajeeth Philip, Ninan; Kembhavi, Ajit K.

    2016-07-01

    We analyze eight XMM-Newton observations of the bright Narrow Line Seyfert 1 galaxy Arakelian 564 (Ark 564). These observations, separated by ∼ 6 days, allow us to look for correlations between the simultaneous ultraviolet (UV) emission (from the Optical Monitor) with not only the X-ray flux but also with different X-ray spectral parameters. The X-ray spectra from all the observations are found to be adequately fitted by a double Comptonization model where the soft excess and the hard X-ray power law are represented by thermal Comptonization in a low temperature plasma and hot corona, respectively. Apart from the fluxes of each component, the hard X-ray power law index is found to be variable. These results suggest that the variability is associated with changes in the geometry of the inner region. The UV emission is found to be variable and well correlated with the high energy index while the correlations with the fluxes of each component are found to be weaker. Using viscous timescale arguments we rule out the possibility that the UV variation is due to the fluctuating accretion rate in the outer disk. If the UV variation is driven by X-ray reprocessing, then our results indicate that the strength of the X-ray reprocessing depends more on the geometry of the X-ray producing inner region rather than on the X-ray luminosity alone.

  20. The peculiar radio-loud narrow line Seyfert 1 galaxy 1H 0323+342

    SciTech Connect

    Paliya, Vaidehi S.; Stalin, C. S.; Sahayanathan, S.; Parker, M. L.; Fabian, A. C.; Anjum, Ayesha; Pandey, S. B.

    2014-07-10

    We present a multiwavelength study of the radio-loud narrow-line Seyfert 1 galaxy (NLSy1) 1H 0323+342, detected by the Fermi Gamma-Ray Space Telescope. Multiband light curves show many orphan X-ray and optical flares having no corresponding γ-ray counterparts. Such anomalous variability behavior can be due to different locations of the emission region from the central source. During a large flare, a γ-ray flux doubling timescale as small as ∼3 hr is noticed. We built spectral energy distributions (SEDs) during different activity states and modeled them using a one-zone leptonic model. The shape of the optical/UV component of the SEDs is dominated by accretion disk emission in all the activity states. In the X-ray band, significant thermal emission from the hot corona is inferred during quiescent and first flaring states; however, during subsequent flares, the nonthermal jet component dominates. The γ-ray emission in all the states can be well explained by inverse-Compton scattering of accretion disk photons reprocessed by the broad-line region. The source showed violent intra-night optical variability, coinciding with one of the high γ-ray activity states. An analysis of the overall X-ray spectrum fitted with an absorbed power-law plus relativistic reflection component hints at the presence of an Fe Kα line and returns a high black hole spin value of a = 0.96 ± 0.14. We argue that 1H 0323+342 possesses dual characteristics, akin to both flat-spectrum radio quasars (FSRQs) and radio-quiet NLSy1 galaxies, though at a low jet power regime compared to powerful FSRQs.

  1. Reverberation Measurements of the Inner Radius of the Dust Torus in Nearby Seyfert 1 Galaxies

    NASA Astrophysics Data System (ADS)

    Suganuma, Masahiro; Yoshii, Yuzuru; Kobayashi, Yukiyasu; Minezaki, Takeo; Enya, Keigo; Tomita, Hiroyuki; Aoki, Tsutomu; Koshida, Shintaro; Peterson, Bruce A.

    2006-03-01

    The most intense monitoring observations yet made in the optical and near-infrared wave bands were carried out for Seyfert 1 galaxies NGC 5548, NGC 4051, NGC 3227, and NGC 7469 by the MAGNUM telescope, and clear time-delayed responses of the K-band flux variations to the V-band flux variations were found for all of these galaxies. Their H-K color temperatures of 1500-1800 K, estimated from their observed flux variation gradients, support a view that the bulk of the K flux should originate in the thermal radiation of hot dust surrounding the central engine and that the lag time should correspond to light-travel distance between them. Cross-correlation analysis measures their lag times to be 47-53 (NGC 5548), 11-18 (NGC 4051), about 20 (NGC 3227), and 65-87 (NGC 7469) days. The lag times are tightly correlated with the optical luminosities, as expected from dust reverberation (Δt~L0.5), while weakly with the central virial masses, which suggests that the inner radii of the dust tori around active nuclei have one-to-one correspondences with their central luminosities. In the lag time versus central luminosity diagram, the K-band lag times place an upper boundary on the similar lag times of broad emission lines in the literature, which not only supports the unified scheme of AGNs but also implies a physical transition from the BLR out to the dust torus that encircles the BLR. Correlated short-term V-band and X-ray flux variations in NGC 5548 are also found with a delay of 1 or 2 days, indicating the thermal reprocessing of X-ray emission by the central accretion flow.

  2. THE RADIO PROPERTIES OF RADIO-LOUD NARROW-LINE SEYFERT 1 GALAXIES ON PARSEC SCALES

    SciTech Connect

    Gu, Minfeng; Chen, Yongjun; Shen, Zhiqiang; Komossa, S.; Zensus, J. A.; Yuan, Weimin; Wajima, Kiyoaki; Zhou, Hongyan

    2015-11-15

    We present the detection of the compact radio structures of 14 radio-loud narrow-line Seyfert 1 (NLS1) galaxies from Very Long Baseline Array (VLBA) observations at 5 GHz performed in 2013. While 50% of the sources of our sample show a compact core only, the remaining 50% exhibit a core-jet structure. The measured brightness temperatures of the cores range from 10{sup 8.4} to 10{sup 11.4} K with a median value of 10{sup 10.1} K, indicating that the radio emission is from non-thermal jets, and that, likely, most sources are not strongly beamed, thus implying a low jet speed in these radio-loud NLS1 galaxies. In combination with archival data taken at multiple frequencies, we find that seven sources show flat or even inverted radio spectra, while steep spectra are revealed in the remaining seven objects. Although all of these sources are very radio-loud with R > 100, their jet properties are diverse in terms of their milliarcsecond (mas) scale (parsec scale) morphology and their overall radio spectral shape. The evidence for slow jet speeds (i.e., less relativistic jets), in combination with the low kinetic/radio power, may offer an explanation for the compact VLBA radio structure in most sources. The mildly relativistic jets in these high accretion rate systems are consistent with a scenario where jets are accelerated from the hot corona above the disk by the magnetic field and the radiation force of the accretion disk. Alternatively, a low jet bulk velocity can be explained by low spin in the Blandford–Znajek mechanism.

  3. Fermi monitoring of radio-loud narrow-line Seyfert 1 galaxies

    SciTech Connect

    Paliya, Vaidehi S.; Stalin, C. S.; Ravikumar, C. D.

    2015-02-01

    We present detailed analysis of the γ-ray flux variability and spectral properties of the five radio-loud narrow line Seyfert 1 (RL-NLSy1) galaxies, detected by the Large Area Telescope on board the Fermi Gamma-Ray Space Telescope, namely 1H 0323+342, SBS 0846+513, PMN J0948+0022, PKS 1502+036, and PKS 2004−447. The first three sources show significant flux variations, including the rapid variability of a few hours by 1H 0323+342. The average γ-ray spectrum of 1H 0323+342 and PMN J0948+0022 shows deviation from a simple power-law (PL) behavior, whereas the PL model gives a better fit for the other three sources. The spectra of 1H 0323+342, SBS 0846+513, and PMN J0948+0022, which are in low, flaring, and moderately active states, respectively, show significant curvature. Such curvature in the γ-ray spectrum of 1H 0323+342 and PMN J0948+0022 could be due to the emission region located inside the broad line region (BLR) where the primary mechanism of the γ-ray emission is inverse-Compton (IC) scattering of BLR photons occurring in the Klein–Nishina regime. The γ-ray emission of SBS 0846+513 is explained by IC scattering of dusty torus photons, which puts the emission region outside the BLR and thus under the Thomson regime. Therefore, the observed curvature of SBS 0846+513 could be intrinsic to the particle energy distribution. The presence of curvature in the γ-ray spectrum and flux variability amplitudes of some of the RL-NLSy1 galaxies suggests that these sources could be akin to low/moderate jet power flat spectrum radio quasars.

  4. The Peculiar Radio-loud Narrow Line Seyfert 1 Galaxy 1H 0323+342

    NASA Astrophysics Data System (ADS)

    Paliya, Vaidehi S.; Sahayanathan, S.; Parker, M. L.; Fabian, A. C.; Stalin, C. S.; Anjum, Ayesha; Pandey, S. B.

    2014-07-01

    We present a multiwavelength study of the radio-loud narrow-line Seyfert 1 galaxy (NLSy1) 1H 0323+342, detected by the Fermi Gamma-Ray Space Telescope. Multiband light curves show many orphan X-ray and optical flares having no corresponding γ-ray counterparts. Such anomalous variability behavior can be due to different locations of the emission region from the central source. During a large flare, a γ-ray flux doubling timescale as small as ~3 hr is noticed. We built spectral energy distributions (SEDs) during different activity states and modeled them using a one-zone leptonic model. The shape of the optical/UV component of the SEDs is dominated by accretion disk emission in all the activity states. In the X-ray band, significant thermal emission from the hot corona is inferred during quiescent and first flaring states; however, during subsequent flares, the nonthermal jet component dominates. The γ-ray emission in all the states can be well explained by inverse-Compton scattering of accretion disk photons reprocessed by the broad-line region. The source showed violent intra-night optical variability, coinciding with one of the high γ-ray activity states. An analysis of the overall X-ray spectrum fitted with an absorbed power-law plus relativistic reflection component hints at the presence of an Fe Kα line and returns a high black hole spin value of a = 0.96 ± 0.14. We argue that 1H 0323+342 possesses dual characteristics, akin to both flat-spectrum radio quasars (FSRQs) and radio-quiet NLSy1 galaxies, though at a low jet power regime compared to powerful FSRQs.

  5. Galaxies

    SciTech Connect

    Not Available

    1981-01-01

    Normal galaxies, radio galaxies, and Seyfert galaxies are considered. The large magellanic cloud and the great galaxy in Andromedia are highlighted. Quasars and BL lacertae objects are also discussed and a review of the spectral observations of all of these galaxies and celestial objects is presented.

  6. The UV to hard X-ray continuum of a Seyfert galaxy scrutinized by XMM and NuSTAR

    NASA Astrophysics Data System (ADS)

    Petrucci, Pierre-Olivier

    2013-10-01

    We propose to perform a unique XMM-NuSTAR monitoring with 5 repeated observations of 20 ks spaced by a few days of the Seyfert galaxy NGC 4593. This is the best Seyfert candidate to obtain high sensitivity measurements on a day time scale over the entire high energy spectrum. This is an absolute prerequisite 1) to correctly disentangle the different spectral components present in this energy band, and 2) to reveal their complex interdependences and variability behavior. This study will allow us i) to constrain the physical parameters of the Comptonizing corona; ii) to investigate the nature of the soft X-ray excess; iii) to put firm conclusions on the distance, nature and geometry of the reflecting material(s).

  7. X-Ray Observations of PKS 0558-504: A Test of Models for Narrow-Line Seyfert 1 Galaxies

    NASA Technical Reports Server (NTRS)

    Leighly, Karen

    1999-01-01

    ROSAT observations of narrow-line Seyfert 1 galaxies find a very steep soft spectrum and rapid variability. It has been suggested that these properties result from an extreme value of a yet unknown physical parameter; a high accretion rate, low black hole mass or face-on orientation have been suggested. During a Ginga observation of bright NLS1 PKS 0558-504, a flare was observed with rise time so rapid for this luminous object that the emission must be beamed. If reconfirmed, this behavior would support, the face-oil orientation model. PKS 0558-504 is one of the few NLS1s known to be bright enough above 10 keV that good spectral constraints on the reflection component, common in broad-line Seyfert 1s, is possible. A 60ks RXTE observation was performed; however, we failed to detect any large amplitude flares.

  8. Star Formation and Extinction in Redshift z~2 Galaxies: Inferences from Spitzer MIPS Observations

    NASA Astrophysics Data System (ADS)

    Reddy, Naveen A.; Steidel, Charles C.; Fadda, Dario; Yan, Lin; Pettini, Max; Shapley, Alice E.; Erb, Dawn K.; Adelberger, Kurt L.

    2006-06-01

    We use very deep Spitzer MIPS 24 μm observations to examine the bolometric luminosities (Lbol) and UV extinction properties of more than 200 spectroscopically identified, optically selected (UnGR) z~2 galaxies, supplemented with near-IR-selected (``BzK'' and ``DRG'') and submillimeter galaxies at similar redshifts, in the GOODS-N field. Focusing on redshifts 1.5galaxies with Hα measurements, that L5-8.5μm provides a reliable estimate of LIR for most star-forming galaxies at z~2. We show that the range of LIR in the optical/near-IR-selected samples considered extends from ~=1010 to >1012 Lsolar, with a mean ~=2×1011 Lsolar. Using 24 μm observations as an independent probe of dust extinction, we find that, as in the local universe, the obscuration LIR/L1600 is strongly dependent on Lbol and ranges in value from <1 to ~1000 within the sample considered. However, the obscuration is generally ~10 times smaller at a given Lbol at z~2 than at z~0. We show that the values of LIR and obscuration inferred from the UV spectral slope β generally agree well with the values inferred from L5-8.5μm for Lbol<1012 Lsolar. Using the specific SFRs of galaxies as a proxy for cold gas fraction, we find a wide range in the evolutionary state of galaxies at z~2, from galaxies that have just begun to form stars to those that have already accumulated most of their stellar mass and are about to become, or already are, passively evolving. Based, in part, on data obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA and was made possible by the generous

  9. Spitzer mid-infrared point sources in the fields of nearby galaxies

    NASA Astrophysics Data System (ADS)

    Williams, S. J.; Bonanos, A. Z.

    2016-03-01

    Aims: To complement the study of transient phenomena and to assist subsequent observations in the mid-infrared, we extract point source photometry from archival mosaics of nearby galaxies with high star formation rates within 4 Mpc. Methods: Point spread function photometry was performed on sources detected in both Spitzer IRAC 3.6 μm and 4.5 μm bands at greater than 3σ above background. These data were then supplemented by aperture photometry in the IRAC 5.8 μm and 8.0 μm bands conducted at the positions of the shorter wavelength sources. For sources with no detected object in the longer wavelengths, we estimated magnitude limits based on the local sky background. Results: We present Spitzer IRAC mid-infrared point source catalogs for mosaics covering the fields of the nearby (≲4 Mpc) galaxies NGC 55, NGC 253, NGC 2366, NGC 4214, and NGC 5253. We detect a total of 20159 sources in these five fields. The individual galaxy point source breakdown is the following: NGC 55, 8746 sources; NGC 253, 9001 sources; NGC 2366, 505 sources; NGC 4214, 1185 sources; NGC 5253, 722 sources. The completeness limits of the full catalog vary with bandpass and were found to be m3.6 = 18.0, m4.5 = 17.5, m5.8 = 17.0, and m8.0 = 16.5 mag. For all galaxies, this corresponds to detection of point sources brighter than M3.6 = -10. These catalogs can be used as a reference for stellar population investigations, individual stellar object studies, and in planning future mid-infrared observations with the James Webb Space Telescope. Based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA.Full Tables 2-6 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/587/A121

  10. The fast molecular outflow in the Seyfert galaxy IC 5063 as seen by ALMA

    NASA Astrophysics Data System (ADS)

    Morganti, Raffaella; Oosterloo, Tom; Oonk, J. B. Raymond; Frieswijk, Wilfred; Tadhunter, Clive

    2015-08-01

    We use high-resolution (0.5 arcsec) CO(2-1) observations performed with the Atacama Large Millimetre/submillimetre Array to trace the kinematics of the molecular gas in the Seyfert 2 galaxy IC 5063. The data reveal that the kinematics of the gas is very complex. A fast outflow of molecular gas extends along the entire radio jet (~1 kpc), with the highest outflow velocities about 0.5 kpc from the nucleus, at the location of the brighter hot spot in the western lobe. The ALMA data show that a massive, fast outflow with velocities up to 650kms-1 of cold molecular gas is present, in addition to the outflow detected earlier in warm H2, H i and ionized gas. All phases of the gas outflow show similar kinematics. IC 5063 appears to be one of the best examples of the multi-phase nature of AGN-driven outflows. Both the central AGN and the radio jet could energetically drive the outflow, however, the characteristics of the outflowing gas point to the radio jet being the main driver. This is an important result because IC 5063, although one of the most powerful Seyfert galaxies, is a relatively weak radio source (P1.4 GHz = 3 × 1023 W Hz-1). All the observed characteristics can be described by a scenario of a radio plasma jet expanding into a clumpy medium, interacting directly with the clouds and inflating a cocoon that drives a lateral outflow into the interstellar medium. This model is consistent with results obtained by recent simulations. A stronger, direct interaction between the jet and a gas cloud is present at the location of the brighter western lobe. This interaction may also be responsible for the asymmetry in the radio brightness of the two lobes. Even assuming the most conservative values for the conversion factor CO-to-H2, we find that the mass of the outflowing gas is between 1.9 and 4.8 × 107 M⊙, of which between 0.5 and 1.3 × 107 M⊙ is associated with the fast outflow at the location of the western lobe. These amounts are much larger than those of the

  11. A Galex/Spitzer/Wise View Of The White Dwarf Population In The Galaxy

    NASA Astrophysics Data System (ADS)

    Kilic, Mukremin

    We propose to use a unique dataset made available by NASA's Galaxy Evolution Explorer (GALEX), Spitzer Space Telescope, and the Wide-Field Infrared Survey Explorer (WISE) to characterize the local white dwarf population in the Galaxy. We have recently identified 40,000 white dwarfs in the Sloan Digital Sky Survey through high proper motion and optical spectroscopy observations. About 32,000 of these have GALEX ultraviolet observations and 6,000 have Spitzer or WISE infrared observations. Spitzer imaging observations of around 3,000 white dwarfs are available in nearly 8,000 Astronomical Observation Requests. The majority of these data were taken as part of non-white dwarf related projects and they have never been analyzed for our targets. We will use these data and combine ultraviolet, optical, and mid-infrared photometry as well as state of the art model atmospheres to study the Galactic population of white dwarfs. By exploiting the full range of the electromagnetic spectrum available from these missions, we will constrain the physical parameters of 40,000 white dwarfs in the solar neighborhood, create precise white dwarf luminosity functions and constrain the ages and the star formation histories of the Galactic disk and halo. Any deviation from the predicted spectral energy distributions would indicate the presence of companions or circumstellar debris disks. This will be the largest survey of its kind and it will provide the best constraints on the white dwarf luminosity function, and the frequency of stellar and substellar companions, and debris disks around white dwarfs and their progenitor main-sequence stars. These are all exciting results that can realistically be completed within the timescale of this proposal. The 2011 version of the NASA Strategic plan states ``In conjunction with ground and airborne telescopes, our strategy is to design and launch space telescopes that exploit the full range of the electromagnetic spectrum to view the broad diversity

  12. FINDING {eta} CAR ANALOGS IN NEARBY GALAXIES USING SPITZER. I. CANDIDATE SELECTION

    SciTech Connect

    Khan, Rubab; Stanek, K. Z.; Kochanek, C. S. E-mail: kstanek@astronomy.ohio-state.edu

    2013-04-10

    The late-stage evolution of the most massive stars such as {eta} Carinae is controlled by the effects of mass loss, which may be dominated by poorly understood eruptive mass ejections. Understanding this population is challenging because no true analogs of {eta} Car have been clearly identified in the Milky Way or other galaxies. We utilize Spitzer IRAC images of seven nearby ({approx}< 4 Mpc) galaxies to search for such analogs. We find 34 candidates with a flat or rising mid-IR spectral energy distributions toward longer mid-infrared wavelengths that emit >10{sup 5} L{sub Sun} in the IRAC bands (3.6 to 8.0 {mu}m) and are not known to be background sources. Based on our estimates for the expected number of background sources, we expect that follow-up observations will show that most of these candidates are not dust enshrouded massive stars, with an expectation of only 6 {+-} 6 surviving candidates. Since we would detect true analogs of {eta} Car for roughly 200 years post-eruption, this implies that the rate of eruptions like {eta} Car is less than the core-collapse supernova rate. It is possible, however, that every M > 40 M{sub Sun} star undergoes such eruptions given our initial results. In Paper II we will characterize the candidates through further analysis and follow-up observations, and there is no barrier to increasing the galaxy sample by an order of magnitude. The primary limitation of the present search is that Spitzer's resolution limits us to the shorter wavelength IRAC bands. With the James Webb Space Telescope, such surveys can be carried out at the far more optimal wavelengths of 10-30 {mu}m, allowing identification of {eta} Car analogs for millennia rather than centuries post-eruption.

  13. SPITZER OBSERVATIONS OF PASSIVE AND STAR-FORMING EARLY-TYPE GALAXIES: AN INFRARED COLOR-COLOR SEQUENCE

    SciTech Connect

    Temi, Pasquale

    2009-12-20

    We describe the infrared properties of a large sample of early-type galaxies, comparing data from the Spitzer archive with Ks-band emission from the Two Micron All Sky Survey. While most representations of this data result in correlations with large scatter, we find a remarkably tight relation among colors formed by ratios of luminosities in Spitzer-Multiband Imaging Photometer bands (24, 70, and 160 mum) and the Ks band. Remarkably, this correlation among E and S0 galaxies follows that of nearby normal galaxies of all morphological types. In particular, the tight infrared color-color correlation for S0 galaxies alone follows that of the entire Hubble sequence of normal galaxies, roughly in order of galaxy type from ellipticals to spirals to irregulars. The specific star formation rate (SFR) of S0 galaxies estimated from the 24 mum luminosity increases with decreasing K-band luminosity (or stellar mass) from essentially zero, as with most massive ellipticals, to rates typical of irregular galaxies. Moreover, the luminosities of the many infrared-luminous S0 galaxies can significantly exceed those of the most luminous (presumably post-merger) E galaxies. SFRs in the most infrared-luminous S0 galaxies approach 1-10 solar masses per year. Consistently, with this picture we find that while most early-type galaxies populate an infrared red sequence, about 24% of the objects (mostly S0s) are in an infrared blue cloud together with late-type galaxies. For those early-type galaxies also observed at radio frequencies, we find that the far-infrared luminosities correlate with the mass of neutral and molecular hydrogen, but the scatter is large. This scatter suggests that the star formation may be intermittent or that similar S0 galaxies with cold gaseous disks of nearly equal mass can have varying radial column density distributions that alter the local and global SFRs.

  14. Local Luminous Infrared Galaxies. II. Active Galactic Nucleus Activity from Spitzer/Infrared Spectrograph Spectra

    NASA Astrophysics Data System (ADS)

    Alonso-Herrero, Almudena; Pereira-Santaella, Miguel; Rieke, George H.; Rigopoulou, Dimitra

    2012-01-01

    We quantify the active galactic nucleus (AGN) contribution to the mid-infrared (mid-IR) and the total infrared (IR, 8-1000 μm) emission in a complete volume-limited sample of 53 local luminous infrared galaxies (LIRGs, L IR = 1011-1012 L ⊙). We decompose the Spitzer Infrared Spectrograph low-resolution 5-38 μm spectra of the LIRGs into AGN and starburst components using clumpy torus models and star-forming galaxy templates, respectively. We find that 50% (25/50) of local LIRGs have an AGN component detected with this method. There is good agreement between these AGN detections through mid-IR spectral decomposition and other AGN indicators, such as the optical spectral class, mid-IR spectral features, and X-ray properties. Taking all the AGN indicators together, the AGN detection rate in the individual nuclei of LIRGs is ~62%. The derived AGN bolometric luminosities are in the range L bol(AGN) = (0.4-50) × 1043 erg s-1. The AGN bolometric contribution to the IR luminosities of the galaxies is generally small, with 70% of LIRGs having L bol[AGN]/L IR <= 0.05. Only ~= 8% of local LIRGs have a significant AGN bolometric contribution L bol[AGN]/L IR > 0.25. From the comparison of our results with literature results of ultraluminous infrared galaxies (L IR = 1012-1013 L ⊙), we confirm that in the local universe the AGN bolometric contribution to the IR luminosity increases with the IR luminosity of the galaxy/system. If we add up the AGN bolometric luminosities we find that AGNs only account for 5%^{+8%}_{-3%} of the total IR luminosity produced by local LIRGs (with and without AGN detections). This proves that the bulk of the IR luminosity of local LIRGs is due to star formation activity. Taking the newly determined IR luminosity density of LIRGs in the local universe, we then estimate an AGN IR luminosity density of ΩAGN IR = 3 × 105 L ⊙ Mpc-3 in LIRGs. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet

  15. High-resolution study of luminous infrared galaxies. I - The composite nature of the Seyfert 1 galaxy IRAS 20044-6114 (NGC 6860)

    NASA Technical Reports Server (NTRS)

    Lipari, Sebastian; Tsvetanov, Zlatan; Macchetto, F.

    1993-01-01

    The physical conditions in the ionized gas, the stellar population, and the kinematics of the Seyfert 1 galaxy IRAS 20044-6114 (NGC 6860) are studied by high spatial resolution optical imaging and optical and near-IR spectroscopy of this luminous IR source. The broadband images show a compact nucleus, two weak spiral arms, a bar, a bulge, an inner ring, and a possible outer ring. The I-alpha image reveals bright emission-line regions associated with the Seyfert nucleus and an inner ring of intense star formation. The forbidden O III 5007-A image shows that the high-excitation gas is elongated perpendicularly to the direction of the bar, and reveals a bright compact object at about 40 arcsec NE of the nucleus which is undetectable in the broadband images. This object is interpreted as a dwarf young H II galaxy. The optical, near-IR, and FIR results show clear evidence that the nuclear and circumnuclear regions have composite and complex structure: a variable Seyfert 1 nucleus embedded in an intense and dusty star formation. environment.

  16. Does the inner broad-line region dim down when the power turns up?. [Seyfert 1 galaxy NGC 5548

    NASA Technical Reports Server (NTRS)

    Sparke, Linda S.

    1993-01-01

    The temporal correlations of continuum and broad emission-line fluxes from the Seyfert galaxy NGC 5548 as measured during the 1989 monitoring campaign show two related peculiarities: first, some of the crosscorrelations of line and continuum flux appear steeper on the negative time lag side than the continuum autocorrelation itself; then, the autocorrelation of the line flux is sometimes more sharply peaked than the continuum autocorrelation function. These are here interpreted as evidence that conditions in the inner part of the broad-line region are such that some emission lines decrease in intensity as the continuum strengthens.

  17. Infrared spectroscopy of Seyfert 2 galaxies: A look through the obscuring Torus?

    NASA Technical Reports Server (NTRS)

    Goodrich, Robert W.; Veilleux, Sylvain; Hill, Gary J.

    1994-01-01

    We present both high-resolution (R = 1260) and low-resolution (R = 345 and 425) J-band spectra of a sample of 15 Seyfert 2 galaxies. Our goal is to look for broad Pa beta lines, indicating broad-line regions which are hidden by dust from our view at optical wavelengths. Of the 15 objects studied here, three have broad Pa beta lines: MCG-05.23.16, Mrk 463E, and NGC 2992. Mrk 176 and NGC 5728 may also have weak broad lines. In NGC 5506, previously reported to have broad Pa beta and hydrogen alpha lines, we find that the Pa beta line profile is continuous and has the same shape as the nearby line (Fe II) lambda 1.2567, which should not have a broad component. We interpret these observations as gas from the narrow-line region (NLR) with no broad component. In NGC 5506, however, the NLR profiles become broader with increasing wavelength, indicating that highly reddened wings are becoming more readily visible at the longer wavelengths. We confirm the correlation of (O I) lambda 6300/hydrogen alpha and (Fe II) lambda 1.644/Br gamma (the latter transformed to (Fe II) lambda 1.2567/Pa beta to compare with our data) found by previous authors when comparing active galactic nuclei (AGNs), supernova remnants, starbursts, and H II regions. The correlation confirms that in all of these objects both (O I) lambda 6300 and the (Fe II) lines come from partially ionized regions in which hydrogen is mostly neutral. Comparison of the infrared optical depths with column depths determined from X-ray data show a general tendency for the objects with detected broad Pa beta to have lower X-ray columns.

  18. The warm molecular gas and dust of Seyfert galaxies: two different phases of accretion?

    NASA Astrophysics Data System (ADS)

    Mezcua, M.; Prieto, M. A.; Fernández-Ontiveros, J. A.; Tristram, K.; Neumayer, N.; Kotilainen, J. K.

    2015-10-01

    The distribution of warm molecular gas (1000-3000 K), traced by the near-IR H2 2.12 μm line, has been imaged with a resolution <0.5 arcsec in the central 1 kpc of seven nearby Seyfert galaxies. We find that this gas is highly concentrated towards the central 100 pc and that its morphology is often symmetrical. Lanes of warm H2 gas are observed only in three cases (NGC 1068, NGC 1386 and Circinus) for which the morphology is much wider and extended than the dust filaments. We conclude that there is no one-to-one correlation between dust and warm gas. This indicates that, if the dust filaments and lanes of warm gas are radial streaming motions of fuelling material, they must represent two different phases of accretion: the dust filaments represent a colder phase than the gas close to the nucleus (within ˜100 pc). We predict that the morphology of the nuclear dust at these scales should resemble that of the cold molecular gas (e.g. CO at 10-40 K), as we show for CenA and NGC 1566 by Atacama Large Millimeter/submillimeter Array (ALMA) observations, whereas the inner H2 gas traces a much warmer phase of material identified with warmer (40-500 K) molecular gas such as CO(6-5) or HCN (as shown by ALMA for NGC 1068 and NGC 1097). We also find that X-ray heating is the most likely dominant excitation mechanism of the H2 gas for most sources.

  19. The Relativistic Iron Line Profile in the Seyfert 1 Galaxy IC4329a

    NASA Technical Reports Server (NTRS)

    Done, C.; Madejski, G. M.; Zycki, P. T.

    2000-01-01

    We present simultaneous ASCA and RXTE data on the bright Seyfert 1 galaxy IC4329a. The iron line is significantly broadened, but not to the extent expected from an accretion disk which extends down to the last stable orbit around a black hole. We marginally detect a narrow line component, presumably from the molecular torus, but, even including this gives a line profile from the accretion disk which is significantly narrower that that seen in MCG-6-30-15, and is much more like that seen from the low/hard state galactic black hole candidates. This is consistent with the inner disk being truncated before the last stable orbit, forming a hot flow at small radii as in the ADAF models. However. we cannot rule out the presence of an inner disk which does not contribute to the reflected spectrum. either because of extreme ionisation suppressing the characteristic atomic features of the reflected spectrum or because the X-ray source is intrinsically anisotropic, so it does not illuminate the inner disk. The source was monitored by RXTE every 2 days for 2 months, and these snapshot spectra show that there is intrinsic spectral variability. The data are good enough to disentangle the power law from the reflected continuum and we see that the power law softens as the source brightens. The lack of a corresponding increase in the observed reflected spectrum implies that either the changes in disk inner radial extent/ionization structure are small, or that the variability is actually driven by changes in the seed photons which are decoupled from the hard X-ray mechanism.

  20. SPECTRAL OPTICAL MONITORING OF THE NARROW-LINE SEYFERT 1 GALAXY Ark 564

    SciTech Connect

    Shapovalova, A. I.; Burenkov, A. N.; Popovic, L. C.; Kovacevic, J.; Chavushyan, V. H.; Valdes, J. R.; Torrealba, J.; Carrasco, L.; Ilic, D.; Kovacevic, A.; Kollatschny, W.; Bochkarev, N. G.; Leon-Tavares, J.; Mercado, A.; Benitez, E.; Dultzin, D.; De la Fuente, E.

    2012-09-15

    We present the results of a long-term (1999-2010) spectral optical monitoring campaign of the active galactic nucleus (AGN) Ark 564, which shows a strong Fe II line emission in the optical. This AGN is a narrow-line Seyfert 1 (NLS1) galaxy, a group of AGNs with specific spectral characteristics. We analyze the light curves of the permitted H{alpha}, H{beta}, optical Fe II line fluxes, and the continuum flux in order to search for a time lag between them. Additionally, in order to estimate the contribution of iron lines from different multiplets, we fit the H{beta} and Fe II lines with a sum of Gaussian components. We find that during the monitoring period the spectral variation (F{sub max}/F{sub min}) of Ark 564 is between 1.5 for H{alpha} and 1.8 for the Fe II lines. The correlation between the Fe II and H{beta} flux variations is of higher significance than that of H{alpha} and H{beta} (whose correlation is almost absent). The permitted-line profiles are Lorentzian-like and do not change shape during the monitoring period. We investigate, in detail, the optical Fe II emission and find different degrees of correlation between the Fe II emission arising from different spectral multiplets and the continuum flux. The relatively weak and different degrees of correlations between permitted lines and continuum fluxes indicate a rather complex source of ionization of the broad-line emission region.

  1. Measuring key X-ray parameters from simulated spectra of Seyfert galaxies

    NASA Astrophysics Data System (ADS)

    Bonson, K.; Gallo, L. C.

    2016-05-01

    Supermassive black hole (SMBH) accretion is an important topic of astrophysical research for a variety of fields. However, literature shows that precisely modelling the X-ray reflection component of an accretion disk around a SMBH is challenging. We test how reliably we can measure key active galactic nuclei (AGN) X-ray reflection parameters by simulating the spectra of average Seyfert 1 galaxies and then fitting those spectra using common modelling techniques. The AGN spectra were created from 0.01-300.0 keV using XMM-Newton pn responses and with (3.75±0.10)×106 counts in the 2-10 keV band. The model RELXILL was used to create all spectra with a reflection fraction (ratio of reflected flux over primary flux from 0.1-100 keV) of R = 1. The values of six key parameters were generated randomly within given ranges to simulate the spectra: photon index (Γ), inner emissivity index (q1), black hole spin (a), disk inclination angle (θ), ionization (ξ), and iron abundance in solar units (A_Fe). Once the simulated spectra were created, they were autonomously fit with RELXILL from 2.5-10.0 keV. All six key parameters were allowed to vary throughout the modelling process, with a gradual thawing of model parameters to mimic manual fitting procedure. We find that we can successfully measure key AGN spectral components in this scenario, but some conditions apply: Γ, θ, and A_Fe are well constrained, however they are also consistently overestimated. Only black hole spin (a) measurements that are in extrema, a > 0.9, can be considered reliable. Lastly, ξ and q1 cannot be measured and these parameters - along with intermediate spin values - should be verified using other techniques.

  2. A massive dense gas cloud close to the nucleus of the Seyfert galaxy NGC 1068

    NASA Astrophysics Data System (ADS)

    Furuya, Ray S.; Taniguchi, Yoshiaki

    2016-10-01

    Using the ALMA archival data of both 12CO (6-5) line and 689-GHz continuum emission towards the archetypical Seyfert galaxy, NGC 1068, we identified a distinct continuum peak separated by 15 pc from the nuclear radio component S1 in projection. The continuum flux gives a gas mass of ˜2 × 105 M⊙ and bolometric luminosity of ˜108 L⊙, leading to a star formation rate of ˜0.1 M⊙ yr-1. Subsequent analysis on the line data suggest that the gas cloud has a size of ˜10 pc, yielding to a mean H2 number density of ˜105 cm-3. We therefore refer to the gas as a "massive dense gas cloud": the gas density is high enough to form a "protostar cluster" with a stellar mass of ˜104 M⊙. We found that the gas stands at a unique position between galactic and extraglactic clouds in the diagrams of start formation rate (SFR) vs. gas mass proposed by Lada et al. (2012, ApJ, 745, 190) and surface density of gas vs. SFR density by Krumholz and McKee (2005, ApJ, 630, 250). All the gaseous and star-formation properties may be understood in terms of the turbulence-regulated star formation scenario. Since there are two stellar populations with ages of 300 Myr and 30 Myr in the 100 pc scale circumnulear region, we discuss that NGC 1068 has experienced at least three episodic star-formation events with the likelihood that the inner star-forming region is the younger. Together with several lines of evidence that the dynamics of the nuclear region is decoupled from that of the entire galactic disk, we discuss that the gas inflow towards the nuclear region of NGC 1068 may be driven by a past minor merger.

  3. X-Ray Spectral and Temporal Analysis of Narrow Line Seyfert 1 Galaxy Was 61

    NASA Astrophysics Data System (ADS)

    Dou, Liming; Wang, Ting-Gui; Ai, Yanli; Yuan, Weimin; Zhou, Hongyan; Dong, Xiao-Bo

    2016-03-01

    We present an analysis of spectrum and variability of the bright reddened narrow line Seyfert 1 galaxy Was 61 using 90 ks archival XMM-Newton data. The X-ray spectrum in 0.2-10 keV can be characterized by an absorbed power-law plus soft excess and an Fe Kα emission line. The power-law spectral index remains constant during the flux variation. The absorbing material is mildly ionized, with a column density of 3.2 × 1021 cm-2, and does not appear to vary during the period of the X-ray observation. If the same material causes the optical reddening (E(B-V) ≃ 0.6 mag), it must be located outside the narrow line region with a dust-to-gas ratio similar to the average Galactic value. We detect significant variations of the Fe Kα line during the observational period. A broad Fe Kα line at ≃ 6.7 {{keV}} with a width of ˜0.6 keV is detected in the low flux segment of the first 40 ks exposure, and is absent in the spectra of other segments; a narrow Fe Kα emission line ˜6.4 keV with a width of ˜0.1 keV is observed in the subsequent 20 ks segment, which has a count rate 35% higher and is in the next day. We believe this is due to the change in geometry and kinematics of the X-ray emitting corona. The temperature and flux of soft X-ray excess appear to correlate with the flux of the hard power-law component. Comptonization of disc photons by a warm and optically thick inner disk is preferred to interpret the soft excess, rather than the ionized reflection.

  4. Ultraviolet and X-ray Variability of the Seyfert 1.5 Galaxy Markarian 817

    NASA Astrophysics Data System (ADS)

    Winter, Lisa M.; Danforth, Charles; Vasudevan, Ranjan; Brandt, W. N.; Scott, Jennifer; Froning, Cynthia; Keeney, Brian; Shull, J. Michael; Penton, Steve; Mushotzky, Richard; Schneider, Donald P.; Arav, Nahum

    2011-02-01

    We present an investigation of the ultraviolet and X-ray spectra of the Seyfert 1.5 galaxy Markarian 817. The ultraviolet analysis includes two recent observations taken with the Cosmic Origins Spectrograph (COS) in 2009 August and December, as well as archival spectra from the International Ultraviolet Explorer and the Hubble Space Telescope. Twelve Lyα absorption features are detected in the 1997 Goddard High Resolution Spectrograph (GHRS) and 2009 COS spectra—of these, four are associated with high-velocity clouds in the interstellar medium, four are at low significance, and the remaining four are intrinsic features, which vary between the GHRS and COS observations. The strongest intrinsic absorber in the 1997 spectrum has a systemic velocity of ~-4250 km s-1. The corresponding feature in the COS data is five times weaker than the GHRS absorber. The three additional weak (equivalent width from 13 to 54 mÅ) intrinsic Lyα absorbers are at systemic velocities of -4100 km s-1, -3550 km s-1, and -2600 km s-1. However, intrinsic absorption troughs from highly ionized C IV and N V are not detected in the COS observations. No ionized absorption signatures are detected in the ~14 ks XMM-Newton EPIC spectra. The factor of five change in the intrinsic Lyα absorber is most likely due to bulk motions in the absorber, since there is no drastic change in the UV luminosity of the source from the GHRS to the COS observations. In a study of the variability of Mrk 817, we find that the X-ray luminosity varies by a factor of ~40 over 20 years, while the UV continuum/emission lines vary by at most a factor of ~2.3 over 30 years. The variability of the X-ray luminosity is strongly correlated with the X-ray power-law index, but no correlation is found with the simultaneous optical/UV photometry.

  5. The Far-Infrared Emission Line and Continuum Spectrum of the Seyfert Galaxy NGC 1068

    NASA Technical Reports Server (NTRS)

    Spinoglio, Luigi; Smith, Howard A.; Gonzalez-Alfonso, Eduardo; Fisher, Jacqueline

    2005-01-01

    We report on the analysis of the first complete far-infrared spectrum (43-197 microns) of the Seyfert 2 galaxy NGC 1068 as observed with the Long Wavelength Spectrometer (LWS) onboard the Infrared Space Observatory (ISO). In addition to the 7 expected ionic fine structure emission lines, the OH rotational lines at 79, 119 and 163 microns were all detected in emission, which is unique among galaxies with full LWS spectra, where the 119 micron line, where detected, is always in absorption. The observed line intensities were modelled together with IS0 Short Wavelength Spectrometer (SWS) and optical and ultraviolet line intensities from the literature, considering two independent emission components: the AGN component and the starburst component in the circumnuclear ring of approximately 3kpc in size. Using the UV to mid-IR emission line spectrum to constrain the nuclear ionizing continuum, we have confirmed previous results: a canonical power-law ionizing spectrum is a poorer fit than one with a deep absorption trough, while the presence of a big blue bump is ruled out. Based on the instantaneous starburst age of 5 Myr constrained by the Br gamma equivalent width in the starburst ring, and starburst synthesis models of the mid- and far-infrared fine-structure line emission, a low ionization parameter (U=10(exp -3.5)) and low densities (n=100 cm (exp -3)) are derived. Combining the AGN and starburst components, we succeed in modeling the overall UV to far-IR atomic spectrum of SGC 1068, reproducing the line fluxes to within a factor 2.0 on average with a standard deviation of 1.4. The OH 119 micron emission indicates that the line is collisionally excited, and arises in a warm and dense region. The OH emission has been modeled using spherically symmetric, non-local, non-LTE radiative transfer models. The models indicate that the bulk of the emission arises from the nuclear region, although some extended contribution from the starburst is not ruled out. The OH abundance

  6. The Far-Infrared Emission Line and Continuum Spectrum of the Seyfert Galaxy NGC 1068

    NASA Astrophysics Data System (ADS)

    Spinoglio, Luigi; Malkan, Matthew A.; Smith, Howard A.; González-Alfonso, Eduardo; Fischer, Jacqueline

    2005-04-01

    We report on the analysis of the first complete far-infrared spectrum (43-197 μm) of the Seyfert 2 galaxy NGC 1068 as observed with the Long Wavelength Spectrometer (LWS) on board the Infrared Space Observatory (ISO). In addition to the seven expected ionic fine-structure emission lines, the OH rotational lines at 79, 119, and 163 μm were all detected in emission, which is unique among galaxies with full LWS spectra, where the 119 μm line, when detected, is always in absorption. The observed line intensities were modeled together with ISOShort Wavelength Spectrometer (SWS) and optical and ultraviolet line intensities from the literature, considering two independent emission components: the active galactic nucleus (AGN) component and the starburst component in the circumnuclear ring of ~3 kpc in size. Using the UV to mid-IR emission line spectrum to constrain the nuclear ionizing continuum, we have confirmed previous results: a canonical power-law ionizing spectrum is a poorer fit than one with a deep absorption trough, while the presence of a `` big blue bump'' is ruled out. Based on the instantaneous starburst age of 5 Myr constrained by the Brγ equivalent width in the starburst ring, and starburst synthesis models of the mid- and far-infrared fine-structure line emission, a low-ionization parameter (U=10-3.5) and low densities (n=100 cm-3) are derived. Combining the AGN and starburst components, we succeeded in modeling the overall UV to far-IR atomic spectrum of NGC 1068, reproducing the line fluxes to within a factor of 2.0 on average with a standard deviation of 1.3, and the overall continuum as the sum of the contribution of the thermal dust emission in the ionized and neutral components. The OH 119 μm emission indicates that the line is collisionally excited and arises in a warm and dense region. The OH emission has been modeled using spherically symmetric, nonlocal, non-LTE radiative transfer models. The models indicate that the bulk of the emission

  7. The Nature of Faint Spitzer-selected Dust-obscured Galaxies

    NASA Astrophysics Data System (ADS)

    Pope, Alexandra; Bussmann, R. Shane; Dey, Arjun; Meger, Nicole; Alexander, David M.; Brodwin, Mark; Chary, Ranga-Ram; Dickinson, Mark E.; Frayer, David T.; Greve, Thomas R.; Huynh, Minh; Lin, Lihwai; Morrison, Glenn; Scott, Douglas; Yan, Chi-Hung

    2008-12-01

    We use deep far-IR, submillimeter, radio, and X-ray imaging and mid-IR spectroscopy to explore the nature of a sample of Spitzer-selected dust-obscured galaxies (DOGs) in GOODS-N. A sample of 79 galaxies satisfy the criteria R - [ 24] > 14 (Vega) down to S24 > 100 μJy (median flux density S24 = 180 μJy). Twelve of these galaxies have IRS spectra available, which we use to measure redshifts and classify these objects as being dominated by star formation or active galactic nucleus (AGN) activity in the mid-IR. The IRS spectra and Spitzer photometric redshifts confirm that the DOGs lie in a tight redshift distribution around z ~ 2. Based on mid-IR colors, 80% of DOGs are likely dominated by star formation; the stacked X-ray emission from this subsample of DOGs is also consistent with star formation. Since only a small number of DOGs are individually detected at far-IR and submillimeter wavelengths, we use a stacking analysis to determine the average flux from these objects and plot a composite IR (8-1000 μm) spectral energy distribution (SED). The average luminosity of these star-forming DOGs is LIR ~ 1 × 1012 L⊙. We compare the average star-forming DOG to the average bright (S850 > 5 mJy) submillimeter galaxy (SMG); the S24 > 100 μJy DOGs are 3 times more numerous but 8 times less luminous in the IR. The far-IR SED shape of DOGs is similar to that of SMGs (average dust temperature of around 30 K), but DOGs have a higher mid-IR-to-far-IR flux ratio. The average star formation-dominated DOG has a star formation rate of 200 M⊙ yr -1, which, given their space density, amounts to a contribution of 0.01 M⊙ yr-1 Mpc-3 (or 5%-10%) to the star formation rate density at z ~ 2.

  8. A Sample of Seyfert-2 Galaxies with Ultraluminous Galaxy-wide Narrow-line Regions: Quasar Light Echoes?

    NASA Astrophysics Data System (ADS)

    Schirmer, M.; Diaz, R.; Holhjem, K.; Levenson, N. A.; Winge, C.

    2013-01-01

    We report the discovery of Seyfert-2 galaxies in SDSS-DR8 with galaxy-wide, ultraluminous narrow-line regions (NLRs) at redshifts z = 0.2-0.6. With a space density of 4.4 Gpc-3 at z ~ 0.3, these "green beans" (GBs) are amongst the rarest objects in the universe. We are witnessing an exceptional and/or short-lived phenomenon in the life cycle of active galactic nuclei (AGNs). The main focus of this paper is on a detailed analysis of the GB prototype galaxy J2240-0927 (z = 0.326). Its NLR extends over 26 × 44 kpc and is surrounded by an extended NLR. With a total [O III] λ5008 luminosity of (5.7 ± 0.9) × 1043 erg s-1, this is one of the most luminous NLRs known around any type-2 galaxy. Using VLT/XSHOOTER, we show that the NLR is powered by an AGN, and we derive resolved extinction, density, and ionization maps. Gas kinematics is disturbed on a global scale, and high-velocity outflows are absent or faint. This NLR is unlike any other NLR or extended emission line region known. Spectroscopy with Gemini/GMOS reveals extended, high-luminosity [O III] emission also in other GBs. WISE 24 μm luminosities are 5-50 times lower than predicted by the [O III] fluxes, suggesting that the NLRs reflect earlier, very active quasar states that have strongly subsided in less than a galaxy's light-crossing time. These light echoes, or ionization echoes, are about 100 times more luminous than any other such echo known to date. X-ray data are needed for photoionization modeling and to verify the light echoes. Based on observations made with ESO Telescopes at the La Silla and Paranal Observatories, Chile. Based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. Based on observations

  9. A Sample of IRAS Infrared-selected Seyfert 1.5 Galaxies: Infrared Color α(60, 25)-dominated Eigenvector 1

    NASA Astrophysics Data System (ADS)

    Wang, J.; Wei, J. Y.; He, X. T.

    2006-02-01

    The well-documented E1 relationships are first extended to infrared color α(60, 25) and flux ratio [O III]/Hβn by comparing emission-line properties to continuum properties in infrared wavelengths. Both direct correlations and a principal component analysis are used in a sample of 50 IRAS IR-selected Seyfert 1.5 galaxies. In addition, to confirm the correlations of E1 in Boroson & Green, our eigenvector 1 turns out to be dominated by the mid-infrared color α(60, 25) and most strongly affected by RFe, [O III]/Hβn, and EW(Hβb). Our analysis indicates that the objects with large E1 tend to coexist with relatively young nuclear stellar populations, which implies that E1 is related to the nuclear star formation history. The IR-dominated eigenvector 1 can therefore be inferred to be interpreted as the ``age'' of an AGN. In confirmation of the work of Xu and coworkers, it is clear that the extreme Seyfert galaxies with both large RFe and large [O III]/Hβn are rare in our universe.

  10. Black hole mass estimate for a sample of radio-loud narrow-line Seyfert 1 galaxies

    NASA Astrophysics Data System (ADS)

    Calderone, G.; Ghisellini, G.; Colpi, M.; Dotti, M.

    2013-05-01

    We discuss the relationship between a standard Shakura & Sunyaev accretion disc model and the big blue bump (BBB) observed in Type 1 active galactic nuclei. Given the similarity between the BBB and the predicted disc spectrum, we propose a new method to estimate black hole masses which relies on the modelling of both optical and UV data with a Shakura & Sunyaev disc spectrum. We apply this method to a sample of 23 radio-loud narrow-line Seyfert 1 (RL-NLS1) galaxies, using data from Wide-field Infrared Survey Explorer, SDSS and GALEX. Our black hole mass estimates are at least a factor of ˜6 above previous results based on single epoch virial methods, while the Eddington ratios are correspondingly lower. Hence, the black hole masses of RL-NLS1 galaxies are typically above 108 M⊙, in agreement with the typical black hole mass of blazars.

  11. The extended disc and halo of the Andromeda galaxy observed with Spitzer-IRAC

    NASA Astrophysics Data System (ADS)

    Rafiei Ravandi, Masoud; Barmby, Pauline; Ashby, Matthew L. N.; Laine, Seppo; Davidge, T. J.; Zhang, Jenna; Bianchi, Luciana; Babul, Arif; Chapman, S. C.

    2016-06-01

    We present the first results from an extended survey of the Andromeda galaxy (M31) using 41.1 h of observations by Spitzer-IRAC at 3.6 and 4.5 µm. This survey extends previous observations to the outer disc and halo, covering total lengths of 4.4° and 6.6° along the minor and major axes, respectively. We have produced surface brightness profiles by combining the integrated light from background-corrected maps with stellar counts from a new catalogue of point sources. Using auxiliary catalogues, we have carried out a statistical analysis in colour-magnitude space to discriminate M31 objects from foreground Milky Way stars and background galaxies. The catalogue includes 426 529 sources, of which 66 per cent have been assigned probability values to identify M31 objects with magnitude depths of [3.6] = 19.0 ± 0.2, [4.5] = 18.7 ± 0.2. We discuss applications of our data for constraining the stellar mass and characterizing point sources in the outer radii.

  12. Spitzer Survey of the Large Magellanic Cloud: Surveying the Agents of a Galaxy's Evolution (SAGE)

    NASA Astrophysics Data System (ADS)

    Meixner, Margaret; Babler, Brian; Bernard, Jean-Philippe; Blum, Robert; Boulanger, Francois; Churchwell, Edward; Cohen, Martin; Engelbracht, Charles; Frogel, Jay; Fukui, Yasuo; Gallagher, Jay; Gordon, Karl; Gorjian, Varoujan; Harris, Jason; Hora, Joseph; Indebetouw, Remy; Jansen, Stephen; Kawamura, Akiko; Kelly, Douglas; Kemper, Ciska; Latter, William; Leitherer, Claus; Madden, Suzanne; Meade, Marilyn; Misselt, Karl; Mizuno, Norikazu; Mizuno, Akira; Mould, Jeremy; Nota, Antonella; Oey, Sally; Olsen, Knut; Onishi, Toshikazu; Paladini, Roberta; Panagia, Nino; Perez-Gonzalez, Pablo; Reach, William; Shibai, Hiroshi; Shuji, Sato; Smith, Linda; Staveley-Smith, Lister; Tielens, Xander; Ueta, Toshiya; van Dyk, Schuyler; Volk, Kevin; Werner, Michael; Whitney, Barbara; Zaritsky, Dennis

    2005-06-01

    The recycling of matter between the interstellar medium (ISM) and stars drives the evolution of a galaxy's visible matter. To understand this recycling, we propose to study the physical processes of the ISM, the formation of new stars and the injection of mass by evolved stars and their relationships on the galaxy-wide scale of the Large Magellanic Cloud (LMC). Due to its proximity, favorable viewing angle, multi-wavelength information, and measured tidal interactions with the Milky Way (MW) and Small Magellanic Cloud (SMC), the LMC is uniquely suited for surveying the agents of a galaxy's evolution (SAGE), the ISM and stars. Our uniform and unbiased survey of the LMC (7x7 degrees) in all IRAC and MIPS bands will have much better wavelength coverage, up to ~1000 times better point source sensitivity and ~11 times better angular resolution than previous IR surveys. Full and uniform coverage of the LMC is necessary to study the galaxy as a system, to develop a template for more distant galaxies and to create an archival data set (rights waived) that promises a lasting legacy to match current LMC surveys at other wavelengths. SAGE will reveal over 6 million sources including ~150,000 evolved stars, ~50,000 young stellar objects and the diffuse ISM with column densities >1.2e21 H/cm2. In contrast to the MW and SMC, the diffuse IR emission in the LMC can be unambiguously associated with individual gas/dust clouds, thereby permitting unique studies of dust processes in the ISM. SAGE's complete census of newly formed stars with masses >1-3 Msun will reveal whether tidally-triggered star formation events in the LMC are sustained or short-lived. SAGE's complete census of evolved stars with mass loss rates >1e-8 Msun/yr will quantitatively measure the rate at which evolved stars inject mass into the ISM. SAGE will be the crucial link between Spitzer's survey of individual IR sources in the MW (GLIMPSE) and its surveys of galaxies (e.g., SINGS) and a stepping stone to the

  13. SPITZER IMAGING OF STRONGLY LENSED HERSCHEL-SELECTED DUSTY STAR-FORMING GALAXIES

    SciTech Connect

    Ma, Brian; Cooray, Asantha; Calanog, J. A.; Nayyeri, H.; Timmons, N.; Casey, C.; Baes, M.; Chapman, S.; Dannerbauer, H.; De Zotti, G.; Dunne, L.; Michałowski, M. J.; Oteo, I.; Farrah, D.; Fu, Hai; Gonzalez-Nuevo, J.; Riechers, D. A.; Scott, D.; and others

    2015-11-20

    We present the rest-frame optical spectral energy distribution (SED) and stellar masses of six Herschel-selected gravitationally lensed dusty, star-forming galaxies (DSFGs) at 1 < z < 3. These galaxies were first identified with Herschel/SPIRE imaging data from the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS) and the Herschel Multi-tiered Extragalactic Survey (HerMES). The targets were observed with Spitzer/IRAC at 3.6 and 4.5 μm. Due to the spatial resolution of the IRAC observations at the level of 2″, the lensing features of a background DSFG in the near-infrared are blended with the flux from the foreground lensing galaxy in the IRAC imaging data. We make use of higher resolution Hubble/WFC3 or Keck/NIRC2 Adaptive Optics imaging data to fit light profiles of the foreground lensing galaxy (or galaxies) as a way to model the foreground components, in order to successfully disentangle the foreground lens and background source flux densities in the IRAC images. The flux density measurements at 3.6 and 4.5 μm, once combined with Hubble/WFC3 and Keck/NIRC2 data, provide important constraints on the rest-frame optical SED of the Herschel-selected lensed DSFGs. We model the combined UV- to millimeter-wavelength SEDs to establish the stellar mass, dust mass, star formation rate, visual extinction, and other parameters for each of these Herschel-selected DSFGs. These systems have inferred stellar masses in the range 8 × 10{sup 10}–4 × 10{sup 11} M{sub ⊙} and star formation rates of around 100 M{sub ⊙} yr{sup −1}. This puts these lensed submillimeter systems well above the SFR-M* relation observed for normal star-forming galaxies at similar redshifts. The high values of SFR inferred for these systems are consistent with a major merger-driven scenario for star formation.

  14. Studying the Iron Line Complex in the Bright Seyfert Galaxy NGC 5506

    NASA Technical Reports Server (NTRS)

    Nicastro, Fabrizio; Atkins, Patricia M. (Technical Monitor)

    2002-01-01

    This grant was to support the reduction and analysis of our approved XMM observation of the nearby Seyfert 2 galaxy NGC 5506. The observation has been carried out simultaneously with a BeppoSAX observation of the same source. The proposal was aimed to study in detail the Compton reflection component and the complex Iron K line of this source, combining the still unique capability of BeppoSAX in hard X-rays (to strongly constrain the reflection component, and then the intrinsic nuclear continuum), and the sensitivity of XMM at the energy of the Iron Line complex. NGC 5506 is one of the brightest AGN in hard X-rays and has been intensively studied in the past. GINGA detected the complex iron line as well as the reflection component. Both ASCA (spectroscopically) and Rossi-XTE (through variability analysis) suggested that the FeK line is complex, possibly made up of several distinct components. The centroid of the FeK complex in a subsequent BeppoSAX observation was bluer than the 6.4 keV energy of the relatively low-ionization iron Kalpha transition. NGC 5506 has been observed simultaneously by NewtonXMM and BeppoSAX on February 2-3 2001. we have reduced and analyzed both the NewtonXMM and the BeppoSAX data, and have written and published a paper on our results (appeared in Volume 377 (page 31) of A&A-Letters). Our main results can be summarized as follows: (a) we confirm that the FeK line is complex, and for the first time disentangle its components: we find that at least two components made up the FeK complex, one neutral and narrow, at 6.4 keV (rest energy), and another one either broader and highly ionized, at about 6.7 keV (rest frame), or, in turn, made up of two narrow and unresolved components from the He-like and the H-like ions of Fe; (b) the two possible solution for the high-ionization Fe-K component, are statistically indistinguishable. However, physically, a blend of two narrow lines from photoionized matter seems to be preferable to emission of a

  15. Multi-wavelength study of the Seyfert 1 galaxy NGC 3783 with XMM-Newton

    NASA Astrophysics Data System (ADS)

    Blustin, A. J.; Branduardi-Raymont, G.; Behar, E.; Kaastra, J. S.; Kahn, S. M.; Page, M. J.; Sako, M.; Steenbrugge, K. C.

    2002-09-01

    We present the analysis of multi-wavelength XMM-Newton data from the Seyfert galaxy NGC 3783, including UV imaging, X-ray and UV lightcurves, the 0.2-10 keV X-ray continuum, the iron Kalpha emission line, and high-resolution spectroscopy and modelling of the soft X-ray warm absorber. The 0.2-10 keV spectral continuum can be well reproduced by a power-law at higher energies; we detect a prominent Fe Kalpha emission line, with both broad and narrow components, and a weaker emission line at 6.9 keV which is probably a combination of Fe Kbeta and Fe Xxvi. We interpret the significant deficit of counts in the soft X-ray region as being due to absorption by ionised gas in the line of sight. This is demonstrated by the large number of narrow absorption lines in the RGS spectrum from iron, oxygen, nitrogen, carbon, neon, argon, magnesium, silicon and sulphur. The wide range of iron states present in the spectrum enables us to deduce the ionisation structure of the absorbing medium. We find that our spectrum contains evidence of absorption by at least two phases of gas: a hotter phase containing plasma with a log ionisation parameter xi (where xi is in erg cm s-1) of 2.4 and greater, and a cooler phase with log xi centred around 0.3. The gas in both phases is outflowing at speeds of around 800 km s-1. The main spectral signature of the cold phase is the Unresolved Transition Array (UTA) of M-shell iron, which is the deepest yet observed; its depth requires either that the abundance of iron, in the cold phase, is several times that of oxygen, with respect to solar abundances, or that the absorption lines associated with this phase are highly saturated. The cold phase is associated with ionisation states that would also absorb in the UV.

  16. FIREWORKS NEAR A BLACK HOLE IN THE CORE OF SEYFERT GALAXY NGC 4151

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Space Telescope Imaging Spectrograph (STIS) simultaneously records, in unprecedented detail, the velocities of hundreds of gas knots streaming at hundreds of thousands of miles per hour from the nucleus of NGC 4151, thought to house a supermassive black hole. This is the first time the velocity structure in the heart of this object, or similar objects, has been mapped so vividly this close to its central black hole. The twin cones of gas emission are powered by the energy released from the supermassive black hole believed to reside at the heart of this Seyfert galaxy. The STIS data clearly show that the gas knots illuminated by one of these cones is rapidly moving towards us, while the gas knots illuminated by the other cone are rapidly receding. The images have been rotated to show the same orientation of NGC 4151. The figures show: WFPC2 (upper left) -- A Hubble Wide Field Planetary Camera 2 image of the oxygen emission (5007 Angstroms) from the gas at the heart of NGC 4151. Though the twin cone structure can be seen, the image does not provide any information about the motion of the oxygen gas. STIS OPTICAL (upper right) -- In this STIS spectral image of the oxygen gas, the velocities of the knots are determined by comparing the knots of gas in the stationary WFPC2 image to the horizontal location of the knots in the STIS image. STIS OPTICAL (lower right) -- In this false color image the two emission lines of oxygen gas (the weaker one at 4959 Angstroms and the stronger one at 5007 Angstroms) are clearly visible. The horizontal line passing through the image is from the light generated by the powerful black hole at the center of NGC 4151. STIS ULTRAVIOLET (lower left) -- This STIS spectral image shows the velocity distribution of the carbon emission from the gas in the core of NGC 4151. It requires more energy to make the carbon gas glow (CIV at 1549 Angstroms) than it does to ionize the oxygen gas seen in the other images. This means we expect that the

  17. Kinematical evidence for secular evolution in Spitzer Survey of Stellar Structure in Galaxies (S4G) spirals

    NASA Astrophysics Data System (ADS)

    Erroz-Ferrer, Santiago; Knapen, Johan H.; Font, Joan; Beckman, John E.

    2015-03-01

    We present a study of the kinematics of a sample of isolated spiral galaxies in the Spitzer Survey of Stellar Structure in Galaxies (S4G). We use Hα Fabry-Perot data from the GHαFaS instrument at the William Herschel Telescope (WHT) in La Palma, complemented with images at 3.6 microns, in the R band and in the Hα filter. The resulting data cubes and velocity field maps allow a complete study of the kinematics of a galaxy, including in-depth investigations of the rotation curve, velocity moment maps, velocity residual maps, gradient maps and position-velocity (PV) diagrams. We find clear evidence of the secular evolution processes going on in these galaxies, such as asymmetries in the velocity field in the bar zone, and non-circular motions, probably in response to the potential of the structural components of the galaxies, or to past or present interactions.

  18. JET PROPERTIES OF GeV-SELECTED RADIO-LOUD NARROW-LINE SEYFERT 1 GALAXIES AND POSSIBLE CONNECTION TO THEIR DISK AND CORONA

    SciTech Connect

    Sun, Xiao-Na; Lin, Da-Bin; Liang, En-Wei; Zhang, Jin; Xue, Zi-Wei; Zhang, Shuang-Nan

    2015-01-01

    The observed spectral energy distributions of five GeV-selected narrow-line Seyfert 1 (NLS1) galaxies are fitted with a model including the radiation ingredients from the relativistic jet, the accretion disk, and the corona. We compare the properties of these GeV NLS1 galaxies with flat spectrum radio quasars (FSRQs), BL Lacertae objects (BL Lacs), and radio-quiet (RQ) Seyfert galaxies, and explore possible hints for jet-disk/corona connection. Our results show that the radiation physics and the jet properties of the GeV NLS1 galaxies resemble that of FSRQs. The luminosity variations of PMN J0948+0022 and 1H 0323+342 at the GeV band is tightly correlated with the beaming factor (δ), similar to that observed in FSRQ 3C 279. The accretion disk luminosities and the jet powers of the GeV NLS1 galaxies cover both the ranges of FSRQs and BL Lacs. With the detection of bright corona emission in 1H 0323+342, we show that the ratio of the corona luminosity (L {sub corona}) to the accretion disk luminosity (L {sub d}) is marginally within the high end of this ratio distribution for an RQ Seyfert galaxy sample, and the variation of jet luminosity may connect with L {sub corona}. However, it is still unclear whether a system with a high L {sub corona}/L {sub d} ratio prefers to power a jet.

  19. OUTFLOWS FROM ACTIVE GALACTIC NUCLEI: KINEMATICS OF THE NARROW-LINE AND CORONAL-LINE REGIONS IN SEYFERT GALAXIES

    SciTech Connect

    Mueller-Sanchez, F.; Prieto, M. A.; Vives-Arias, H.; Davies, R. I.; Tacconi, L. J.; Genzel, R.; Malkan, M.

    2011-10-01

    As part of an extensive study of the physical properties of active galactic nuclei (AGNs) we report high spatial resolution near-IR integral-field spectroscopy of the narrow-line region (NLR) and coronal-line region (CLR) of seven Seyfert galaxies. These measurements elucidate for the first time the two-dimensional spatial distribution and kinematics of the recombination line Br{gamma} and high-ionization lines [Si VI], [Al IX], and [Ca VIII] on scales <300 pc from the AGN. The observations reveal kinematic signatures of rotation and outflow in the NLR and CLR. The spatially resolved kinematics can be modeled as a combination of an outflow bicone and a rotating disk coincident with the molecular gas. High-excitation emission is seen in both components, suggesting it is leaking out of a clumpy torus. While NGC 1068 (Seyfert 2) is viewed nearly edge-on, intermediate-type Seyferts are viewed at intermediate angles, consistent with unified schemes. A correlation between the outflow velocity and the molecular gas mass in r < 30 pc indicates that the accumulation of gas around the AGN increases the collimation and velocity of the outflow. The outflow rate is 2-3 orders of magnitude greater than the accretion rate, implying that the outflow is mass loaded by the surrounding interstellar medium (ISM). In half of the observed AGNs, the kinetic power of the outflow is of the order of the power required by two-stage feedback models to be thermally coupled to the ISM and to match the M{sub BH}-{sigma}* relation. In these objects, the radio jet is clearly interacting with the ISM, indicative of a link between jet power and outflow power.

  20. The Penrose photoproduction scenario for NGC 4151: A black hole gamma-ray emission mechanism for active galactic nuclei and Seyfert galaxies. [Compton scattering and pair production

    NASA Technical Reports Server (NTRS)

    Leiter, D.

    1979-01-01

    A consistent theoretical interpretation is given for the suggestion that a steepening of the spectrum between X-ray and gamma ray energies may be a general, gamma-ray characteristic of Seyfert galaxies, if the diffuse gamma ray spectrum is considered to be a superposition of unresolved contributions, from one or more classes of extragalactic objects. In the case of NGC 4151, the dominant process is shown to be Penrose Compton scattering in the ergosphere of a Kerr black hole, assumed to exist in the Seyfert's active galactic nucleus.

  1. A spectroscopic analysis of a sample of narrow-line Seyfert 1 galaxies selected from the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Cracco, V.; Ciroi, S.; Berton, M.; Di Mille, F.; Foschini, L.; La Mura, G.; Rafanelli, P.

    2016-10-01

    We revisited the spectroscopic characteristics of narrow-line Seyfert 1 galaxies (NLS1s) by analysing a homogeneous sample of 296 NLS1s at redshift between 0.028 and 0.345, extracted from the Sloan Digital Sky Survey (SDSS-DR7) public archive. We confirm that NLS1s are mostly characterized by Balmer lines with Lorentzian profiles, lower black hole masses and higher Eddington ratios than classic broad-line Seyfert 1 (BLS1s), but they also appear to be active galactic nuclei (AGNs) contiguous with BLS1s and sharing with them common properties. Strong Fe II emission does not seem to be a distinctive property of NLS1s, as low values of Fe II/Hβ are equally observed in these AGNs. Our data indicate that Fe II and Ca II kinematics are consistent with the one of Hβ. On the contrary, O I λ8446 seems to be systematically narrower and it is likely emitted by gas of the broad-line region more distant from the ionizing source and showing different physical properties. Finally, almost all NLS1s of our sample show radial motions of the narrow-line region highly ionized gas. The mechanism responsible for this effect is not yet clear, but there are hints that very fast outflows require high continuum luminosities (>1044 erg s-1) or high Eddington ratios (log (Lbol/LEdd) > -0.1).

  2. An XMM-Newton Observation of the Seyfert Galaxy 1H0419-577 in an Extreme Low State

    NASA Technical Reports Server (NTRS)

    Pounds, K. A.; Reeves, J. N.; Page, K. L.; O'Brien, P. T.

    2003-01-01

    Previous observations of the luminous Seyfert galaxy 1H 0419-577 have found its X-ray spectrum to range from that of a typical Seyfert 1 with 2-10 keV power law index Gamma approx. 1.9 to a much flatter power law of Gamma approx. 1.5 or less. We report here a new XMM-Newton observation which allows the low state spectrum to be studied in much greater detail than hitherto. We find a very hard spectrum (Gamma approx. 1.0) which exhibits broad features that can be modelled with the addition of an extreme relativistic Fe K emission line or with partial covering of the underlying continuum by a substantial column density of near-neutral gas. Both the EPIC and RGS data show evidence for strong line emission of OVII and OVIII requiring an extended region of low density photoionised gas in 1H 0419- 577. Comparison with an earlier XMM-Newton observation when 1H 0419-577 was X-ray bright indicates the dominant spectral variability occurs via a steep power law component.

  3. An XMM-Newton Observation of the Seyfert 1 Galaxy 1H 0419-577 in an Extreme Low State

    NASA Technical Reports Server (NTRS)

    Pounds, K. A.; Reeves, J. N.; Page, K. L.; OBrien, P. T.

    2004-01-01

    Previous observations of the luminous Seyfert 1 galaxy 1H 0419-577 have found its X-ray spectrum to range from that of a typical Seyfert 1 with 2-10 keV power law index Gamma approx. 1.9 to a much flatter power law of Gamma approx. 1.5 or less. We report here a new XMM-Newton observation which allows the low state spectrum to be studied in much greater detail than hitherto. We find a very hard spectrum (Gamma approx. 1.0), which exhibits broad features that can be modelled myth the addition of an extreme relativistic Fe K emission line or with partial covering of the underlying continuum by a substantial column density of near-neutral gas. Both the EPIC and RGS data show evidence for strong line emission of OVII and OVIII requiring an extended region of low density photoionised gas in 1H 0419-577. Comparison with an earlier XMM-Newton observation when 1H 0419-577 was 'X-ray bright' indicates the dominant spectral variability occurs via a steep power law component.

  4. Rapid X-ray variability in the Seyfert galaxy NGC 6814. Ph.D. Thesis - Maryland Univ.

    NASA Technical Reports Server (NTRS)

    Tennant, A. F.; Mushotzky, R. F.; Boldt, E. A.; Swank, J. H.

    1981-01-01

    The HEAO-1 A-2 high time resolution X-ray observations of the X-ray emitting Seyfert I Galaxy NGC 6814 are reported. In sharp distinction with a sample of over 30 active galactic nuclei this object showed strong X-ray variability on timescales less than 3 hours. The mean flux on a timescale of 90 minutes varied by a factor of approximately 2.5 corresponding to Delta L sub x being approximately 1 x 10 to the 43rd power ergs/sec. An autocorrelation analysis shows a characteristic time for variability of 100 (+60 or -25) seconds. There is no indication of spectral variability with an upper limit on a change in the power law spectral index of the absolute value of Delta gamma .37, for a factor two change in intensity. The constraints of such rapid variability on a wide variety of X-ray source mechanisms are considered.

  5. THE TWO-PHASE, TWO-VELOCITY IONIZED ABSORBER IN THE SEYFERT 1 GALAXY NGC 5548

    SciTech Connect

    Andrade-Velazquez, Mercedes; Krongold, Yair; Binette, Luc; Jimenez-Bailon, Elena; Elvis, Martin; Nicastro, Fabrizio; Brickhouse, Nancy; Mathur, Smita

    2010-03-10

    We present an analysis of X-ray high-quality grating spectra of the Seyfert 1 galaxy NGC 5548 using archival Chandra-High Energy Transmission Grating Spectrometer and Low Energy Transmission Grating Spectrometer observations for a total exposure time of 800 ks. The continuum emission (between 0.2 keV and 8 keV) is well represented by a power law (GAMMA = 1.6) plus a blackbody component (kT = 0.1 keV). We find that the well-known X-ray warm absorber (WA) in this source consists of two different outflow velocity systems. One absorbing system has a velocity of -1110 +- 150 km s{sup -1} and the other of -490 +- 150 km s{sup -1}. Recognizing the presence of these kinematically distinct components allows each system to be fitted independently, each with two absorption components with different ionization levels. The high-velocity system consists of two components, one with a temperature of 2.7 +- 0.6 x 10{sup 6} K, log U = 1.23, and another with a temperature of 5.8 +- 1.0 x 10{sup 5} K, log U = 0.67. The high-velocity, high-ionization component produces absorption by charge states Fe XXI-XXIV, while the high-velocity, low-ionization component produces absorption by Ne IX-X, Fe XVII-XX, and O VII-VIII. The low-velocity system also required two absorbing components, one with a temperature of 5.8 +- 0.8 x 10{sup 5} K, log U = 0.67, producing absorption by Ne IX-X, Fe XVII-XX, and O VII-VIII, and the other with a lower temperature of 3.5 +- 0.35 x 10{sup 4} K and a lower ionization of log U = -0.49, producing absorption by O VI-VII and the Fe VII-XII M-shell Unresolved Transitions Array. Once these components are considered, the data do not require any further absorbers. In particular, a model consisting of a continuous radial range of ionization structures (as suggested by a previous analysis) is not required. The two absorbing components in each velocity system are in pressure equilibrium with each other. This suggests that each velocity system consists of a multi

  6. Spectra of High-Ionization Seyfert 1 Galaxies: Implications for the Narrow-Line Region

    NASA Technical Reports Server (NTRS)

    Moore, David; Cohen, Ross D.; Marcy, Geoffrey W.

    1996-01-01

    We present line profiles and profile parameters for the Narrow-Line Regions (NLRs) of six Seyfert 1 galaxies with high-ionization lines: MCG 8-11-11, Mrk 79, Mrk 704, Mrk 841, NGC 4151, and NGC 5548. The sample was chosen primarily with the goal of obtaining high-quality [Fe VII] lambda6087 and, when possible, [Fe X] lambda6374 profiles to determine if these lines are more likely formed in a physically distinct 'coronal line region' or are formed throughout the NLR along with lines of lower critical density (n(sub cr)) and/or Ionization Potential (IP). We discuss correlations of velocity shift and width with n(sub cr) and IP. In some objects, lines of high IP and/or n(sub cr) are systematically broader than those of low IP/n(sub cr). Of particular interest, however, are objects that show no correlations of line width with either IP or n(sub cr). In these objects, lines of high and low IP/n(sub cr), are remarkably similar, which is difficult to reconcile with the classical picture of the NLR, in which lines of high and low IP/n(sub cr) are formed in physically distinct regions. We argue for similar spatial extents for the flux in lines with similar profiles. Here, as well as in a modeling-oriented companion paper, we develop further an idea suggested by Moore & Cohen that objects that do and do not show line width correlations with IP/n(sub cr) can both be explained in terms of a single NLR model with only a small difference in the cloud column density distinguishing the two types of object. Overall, our objects do not show correlations between the Full Width at Half-Maximum (FWHM) and IP and/or n(sub cr). The width must be defined by a parameter that is sensitive to extended profile wings in order for the correlations to result. We present models in which FWHM correlations with IP and/or n(sub cr) result only after simulating the lower spectral resolution used in previous observational studies. The models that simulate the higher spectral resolution of our

  7. Spectroscopic Observations of Steep Spectrum Narrow-Line Seyfert 1 Galaxies

    NASA Technical Reports Server (NTRS)

    Leighly, Karen

    1999-01-01

    ROSAT observations of narrow-line Seyfert 1s found consistently steep spectra and rapid variability, but ASCA observations show more diversity, very different to classical Seyfert 1s. However, in 3 NLS1s, ASCA finds common characteristics of these exciting new class of AGN (active galactic nuclei): a very strong high temperature soft excess, weak hard tail, a possible blue shifted ionized oxygen edge, and rapid large amplitude variability characterized by flares and quiescent periods. It is necessary to observe many more such objects in order to understand the physical processes underlying the different phenomenology in ASCA. ASCA observations of two NLS1s discovered by ROSAT's all sky survey were proposed and an observation of one of these objects, RX J0439-45, was awarded. The results of spectral and variability analysis are included in Leighly 1999ab, and preliminary results are found in Leighly 1998ab.

  8. Optical, near, infrared and ultraviolet monitoring of the Seyfert 1 galaxy Markarian 335

    NASA Technical Reports Server (NTRS)

    Shrader, Chris R.; Sun, W.-H.; Turner, T. J.; Hintzen, P. M.

    1990-01-01

    Preliminary results of a multifrequency monitoring campaign for the bright, Seyfert 1 galactic nuclei Mkn335 are presented. Nearly uniform sampling at 3 day intervals is achieved quasi simultaneously at each wavelength band. Wavelength dependent variability is seen at the 20 to 30 percent level. Interpretation of variability in terms of geometrically thin, optically thick accretion disk models is discussed. The inferred blackhole masses and accretion rates are discussed. Possible correlation between continuum and emission line variations is discussed.

  9. Physical conditions in the x-ray emission-line gas in the Seyfert 2 galaxy NGC 1068

    NASA Astrophysics Data System (ADS)

    Sharma, Neetika

    Active Galactic Nuclei (AGN) reside in the centers of many (10%) galaxies. The nuclear spectra exhibit a broad (from radio to gamma-rays) non-stellar continuum which exceeds the luminosity of the host. AGN are thought to be powered by accretion of matter onto a supermassive black hole (BH~10 6--109 times the mass of the Sun). Since this activity takes place in a relatively small region (<< 3 light years), the central engine of even the closest AGN cannot be imaged directly with current technology. Nevertheless, spectroscopic observations can help us constrain the conditions of the gas very close to the BH. The scientific goal of my thesis is to examine the physical conditions in the circumnuclear regions of the Seyfert 2 galaxy NGC 1068. The soft X-ray spectrum comprises a multitude of emission lines including those of C, N, O, Ne, Mg, that arise in gas that is spatially extended over ~1000 light years. Radiative recombination continuum widths indicate the gas is photoionized and I model it finding a two-zone solution with unusual abundances attributed to the star formation history of the galaxy. Also of interest are the Fe K complex of em.

  10. The Brightest Galaxies at Cosmic Dawn: Securing the Largest Samples of z=9-11 galaxies for JWST by leveraging the HST archive with Spitzer/IRAC.

    NASA Astrophysics Data System (ADS)

    Bouwens, Rychard; Trenti, Michele; Calvi, Valentina; Bernard, Stephanie; Labbe, Ivo; Oesch, Pascal; Coe, Dan; Holwerda, Benne; Bradley, Larry; Mason, Charlotte; Schmidt, Kasper; Illingworth, Garth

    2015-10-01

    Hubble's WFC3 has been a game changer for studying early galaxy formation in the first 700 Myr after the Big Bang. Reliable samples of sources up to z~10, which can be discovered only from space, are now constraining the evolution of the galaxy luminosity function into the epoch of reionization. Despite these efforts, the size of the highest redshift galaxy samples (z >9 and especially z > 10) is still very small, particularly at high luminosities (L > L*). To deliver transformational results, much larger numbers of bright z > 9 galaxies are needed both to map out the bright end of the luminosity/mass function and for spectroscopic follow-up (with JWST and otherwise). One especially efficient way of expanding current samples is (1) to leverage the huge amounts of pure-parallel data available with HST to identify large numbers of candidate z ~ 9 - 11 galaxies and (2) to follow up each candidate with shallow Spitzer/IRAC observations to distinguish the bona- fide z ~ 9 - 11 galaxies from z ~ 2 old, dusty galaxies. For this program we are requesting shallow Spitzer/IRAC follow-up of 20 candidate z ~ 9 - 11 galaxies we have identified from 130 WFC3/IR pointings obtained from more than 4 separate HST programs with no existing IRAC coverage. Based on our previous CANDELS/GOODS searches, we expect to confirm 5 to 10 sources as L > L* galaxies at z >= 9. Our results will be used to constrain the bright end of the LF at z >= 9, to provide targets for Keck spectroscopy to constrain the ionization state of the z > 8 universe, and to furnish JWST with bright targets for spectroscopic follow-up studies.

  11. Multi-wavelength observations of the narrow-line Seyfert 1 galaxy RX J2314.9+2243

    NASA Astrophysics Data System (ADS)

    Komossa, S.; Myserlis, I.; Fuhrmann, L.; Xu, D.; Grupe, D.; Fan, Z.; Yao, S.; Angelakis, E.; Karamanavis, V.; Zensus, J. A.; Yuan, W.

    2016-02-01

    Narrow-line Seyfert 1 (NLS1) galaxies are a sub-class of active galactic nuclei (AGN) with relatively low-mass black holes, accreting near the Eddington rate. A small fraction of them is radio-loud and harbors relativistic jets. As a class, these provide us with new insights into the cause(s) of radio-loudness, the blazar phenomenon at low black hole masses, and the operation of radio-mode feedback. The NLS1 galaxy RXJ2314.9+2243 is remarkable for its multi-wavelength properties. We present new radio observations taken at Effelsberg, and a summary of the recent results from our multi-wavelength study. RXJ2314.9+2243 is radio-loud, luminous in the infrared, has a flat X-ray spectrum and peculiar UV spectrum, and hosts an exceptionally broad and blueshifted [OIII]λ5007 emission line, indicating the presence of a strong outflow. RXJ2314.9+2243 likely represents an extreme case of AGN induced feedback in the local universe.

  12. The extreme behavior of the radio-loud narrow-line Seyfert 1 galaxy J0849+5108

    SciTech Connect

    Maune, Jeremy D.; Eggen, Joseph R.; Miller, H. Richard; Marshall, Kevin; Readhead, Anthony C. S.; Hovatta, Talvikki; King, Oliver

    2014-10-10

    Simultaneous radio, optical (both photometry and polarimetry), X-ray, and γ-ray observations of the radio-loud narrow-line Seyfert 1 (RL-NLSy1) galaxy J0849+5108 are presented. A massive three-magnitude optical flare across five nights in 2013 April is detected, along with associated flux increases in the γ-ray, infrared, and radio regimes; no comparable event was detected in the X-rays, though this may be due to poor coverage. A spectral energy distribution (SED) for the object using quasi-simultaneous data centered on the optical flare is compared to the previously published SEDs for the object by D'Ammando et al. The flare event coincided with a high degree of optical polarization. High amplitude optical microvariability is clearly detected, and is found to be of comparable amplitude when the object is observed in both faint and bright states. The object is also seen to undergo rapid shifts in polarization in both degree and electric vector position angle within a single night. J0849+5108 appears to show even more extreme variability than that previously reported for the similar object J0948+0022. These observations appear to support the growing claim that some RL-NLSy1 galaxies constitute a sub-class of blazar-like active galactic nuclei.

  13. Distribution of Molecules in the Circumnuclear Disk and Surrounding Starburst Ring in the Seyfert Galaxy NGC 1068 Observed with ALMA

    NASA Astrophysics Data System (ADS)

    Takano, S.; Nakajima, T.; Kohno, K.; Harada, N.; Herbst, E.; Tamura, Y.; Izumi, T.; Taniguchi, A.; Tosaki, T.

    2015-12-01

    We report distributions of several molecular transitions including shock and dust related species (13CO and C18O J = 1-0, 13CN N = 1-0, CS J = 2-1, SO JN = 32-21, HNCO JKa,Kc = 50,5-40,4, HC3N J = 11-10, 12-11, CH3OH JK = 2K-1K, and CH3CN JK = 6K-5K) in the nearby Seyfert 2 galaxy NGC 1068 observed with ALMA. The central ˜1' (˜4.3 kpc) of this galaxy was observed in the 100 GHz region with an angular resolution of ˜4" x 2" (290 pc x 140 pc) to study the effects of an active galactic nucleus and its surrounding starburst ring on molecular abundances. We report a classification of molecular distributions into three main categories. Organic molecules such as CH3CN are found to be concentrated in the circumnuclear disk. In the starburst ring, the intensity of methanol at each clumpy region is not consistent with that of 13CO.

  14. A Cutoff in the X-Ray Fluctuation Power Density Spectrum of the Seyfert 1 Galaxy NGC 3516

    NASA Technical Reports Server (NTRS)

    Edelson, Rick; Nandra, Kirpal

    1999-01-01

    During 1997 March-July, RXTE observed the bright, strongly variable Seyfert 1 galaxy NGC 3516 once every approx. 12.8 hr for 4.5 months and nearly continuously (with interruptions due to SAA passage but not Earth occultation) for a 4.2 day period in the middle. These were followed by ongoing monitoring once every approx. 4.3 days. These data are used to construct the first well-determined X-ray fluctuation power density spectrum (PDS) of an active galaxy to span more than 4 decades of usable temporal frequency. The PDS shows no signs of any strict or quasi-periodicity, but does show a progressive flattening of the power-low slope from -1.74 at short time scales to -0.73 at longer time scales. This is the clearest observation to date of the long-predicted cutoff in the PDS. The characteristic variability time scale corresponding to this cutoff temporal frequency is approx. 1 month. Although it is unclear how this time scale may be interpreted in terms of a physical size or process, there are several promising candidate models. The PDS appears similar to those seen for Galactic black hole candidates such as Cyg X-1, suggesting that these two classes of objects with very different luminosities and putative black hole masses (differing by more than a factor of 10(exp 5)) may have similar X-ray generation processes and structures.

  15. Unification of X-ray Winds in Seyfert Galaxies: From Ultra-fast Outflows to Warm Absorbers

    NASA Astrophysics Data System (ADS)

    Tombesi, Francesco; Cappi, M.; Reeves, J.; Nemmen, R.; Braito, V.; Gaspari, M.; Reynolds, C. S.

    2013-04-01

    The existence of ionized X-ray absorbing layers of gas along the line of sight to the nuclei of Seyfert galaxies is a well established observational fact. This material is systematically outflowing and shows a large range in parameters. However, its actual nature and dynamics are still not clear. In order to gain insights into these important issues we performed a literature search for papers reporting the parameters of the soft X-ray warm absorbers (WAs) in 35 type 1 Seyferts and compared their properties to those of the ultra-fast outflows (UFOs) detected in the same sample. The fraction of sources with WAs is >60%, consistent with previous studies. The fraction of sources with UFOs is >34%, >67% of which also show WAs. The large dynamic range obtained when considering all the absorbers together allows us, for the first time, to investigate general relations among them. In particular, we find significant correlations indicating that the closer the absorber is to the central black hole, the higher the ionization, column, outflow velocity and consequently the mechanical power. The absorbers continuously populate the whole parameter space, with the WAs and the UFOs lying always at the two ends of the distribution. This strongly suggest that these absorbers, often considered of different types, could actually represent parts of a single large-scale stratified outflow observed at different locations from the black hole. The observed parameters and correlations are consistent with both radiation pressure through Compton scattering and MHD processes contributing to the outflow acceleration, the latter playing a major role. Most of the absorbers, especially the UFOs, have a sufficiently high mechanical power to significantly contribute to the AGN feedback.

  16. High-frequency excess in the radio continuum spectrum of the type-1 Seyfert galaxy NGC 985

    NASA Astrophysics Data System (ADS)

    Doi, Akihiro; Inoue, Yoshiyuki

    2016-08-01

    The Seyfert galaxy NGC 985 is known to show a high-frequency excess in its radio continuum spectrum at a milli-Jansky level on the basis of previous observations at 1.4-15 GHz; a steep spectrum at low frequencies (a spectral index, α = -1.10 ± 0.03) changes at ˜10 GHz into an inverted spectrum at higher frequencies (α = +0.86 ± 0.09). We conduct new observations at 15-43 GHz using the Very Large Array and at 100 GHz using the Nobeyama Millimeter Array. As a result, the high-frequency excess has been confirmed as continuing at even higher radio frequencies, up to 43 GHz. The non-detection at 100 GHz was not so strong a constraint, and therefore the spectral behavior above 43 GHz remains unclear. The astrometric position of the high-frequency excess component coincides with the optical position of the Seyfert nucleus and the low-frequency radio position to an accuracy of 0{^''.}1, corresponding to ˜80 pc; the radio source size is constrained to be <0{^''.}02, corresponding to <16 pc. We discuss the physical origin of the observed high-frequency excess component. Dust emission at the Rayleigh-Jeans regime, free-free emission from X-ray radiating high-temperature plasma, free-free emission from the ensemble of broad-line region clouds, or thermal synchrotron from hot accretion flow cannot be responsible for the observed radio flux. Compact jets under synchrotron self-absorption may be unlikely in terms of observed time scales. Alternatively, we cannot rule out the hypotheses of synchrotron jets free-free absorbed by a circumnuclear photo-ionized region, and self-absorbed nonthermal synchrotron from disk corona, as the origin of the high-frequency excess component.

  17. RX J1301.9+2747: A HIGHLY VARIABLE SEYFERT GALAXY WITH EXTREMELY SOFT X-RAY EMISSION

    SciTech Connect

    Sun Luming; Shu Xinwen; Wang Tinggui E-mail: xwshu@mail.ustc.edu.cn

    2013-05-10

    In this paper we present a temporal and spectral analysis of X-ray data from XMM-Newton and Chandra observations of the ultrasoft and variable Seyfert galaxy RX J1301.9+2747. In both observations the source clearly displays two distinct states in the X-ray band: a long quiescent state and a short flare (or eruptive) state which differs in count rates by a factor of 5-7. The transition from the quiescent to the flare state occurs in 1-2 ks. We have observed that the quiescent state spectrum is unprecedentedly steep with a photon index {Gamma} {approx} 7.1, and the spectrum of the flare state is flatter with {Gamma} {approx} 4.4. X-rays above 2 keV were not significantly detected in either state. In the quiescent state, the spectrum appears to be dominated by a blackbody component of temperature about {approx}30-40 eV, which is comparable to the expected maximum effective temperature from the inner accretion disk. The quiescent state, however, requires an additional steep power law, presumably arising from Comptonization by transient heated electrons. The optical spectrum from the Sloan Digital Sky Survey shows Seyfert-like narrow lines for RX J1301.9+2747, while Hubble Space Telescope imaging reveals a central point source for the object. In order to precisely determine the hard X-ray component, future longer X-ray observations are required. This will help constrain the accretion disk model for RX J1301.9+2747, and shed new light on the characteristics of the corona and accretion flows around black holes.

  18. PROBING THE PHYSICS OF NARROW LINE REGIONS IN ACTIVE GALAXIES. II. THE SIDING SPRING SOUTHERN SEYFERT SPECTROSCOPIC SNAPSHOT SURVEY (S7)

    SciTech Connect

    Dopita, Michael A.; Davies, Rebecca; Kewley, Lisa; Hampton, Elise; Sutherland, Ralph; Shastri, Prajval; Kharb, Preeti; Jose, Jessy; Bhatt, Harish; Ramya, S.; Scharwächter, Julia; Jin, Chichuan; Banfield, Julie; Zaw, Ingyin; Juneau, Stéphanie; Srivastava, Shweta

    2015-03-15

    Here we describe the Siding Spring Southern Seyfert Spectroscopic Snapshot Survey (S7) and present results on 64 galaxies drawn from the first data release. The S7 uses the Wide Field Spectrograph mounted on the ANU 2.3 m telescope located at the Siding Spring Observatory to deliver an integral field of 38 × 25 arcsec at a spectral resolution of R = 7000 in the red (530–710 nm), and R = 3000 in the blue (340–560 nm). From these data cubes we have extracted the narrow-line region spectra from a 4 arcsec aperture centered on the nucleus. We also determine the Hβ and [O iii] λ5007 fluxes in the narrow lines, the nuclear reddening, the reddening-corrected relative intensities of the observed emission lines, and the Hβ and [O iii] λ5007 luminosities determined from spectra for which the stellar continuum has been removed. We present a set of images of the galaxies in [O iii] λ5007, [N ii] λ6584, and Hα, which serve to delineate the spatial extent of the extended narrow-line region and also to reveal the structure and morphology of the surrounding H ii regions. Finally, we provide a preliminary discussion of those Seyfert 1 and Seyfert 2 galaxies that display coronal emission lines in order to explore the origin of these lines.

  19. Upholding the unified model for active galactic nuclei: VLT/FORS2 spectropolarimetry of Seyfert 2 galaxies

    NASA Astrophysics Data System (ADS)

    Ramos Almeida, C.; Martínez González, M. J.; Asensio Ramos, A.; Acosta-Pulido, J. A.; Hönig, S. F.; Alonso-Herrero, A.; Tadhunter, C. N.; González-Martín, O.

    2016-09-01

    The origin of the unification model for active galactic nuclei (AGN) was the detection of broad hydrogen recombination lines in the optical polarized spectrum of the Seyfert 2 galaxy (Sy2) NGC 1068. Since then, a search for the hidden broad-line region (HBLR) of nearby Sy2s started, but polarized broad lines have only been detected in ˜30-40 per cent of the nearby Sy2s observed to date. Here we present new VLT/FORS2 optical spectropolarimetry of a sample of 15 Sy2s, including Compton-thin and Compton-thick sources. The sample includes six galaxies without previously published spectropolarimetry, some of them normally treated as non-hidden BLR (NHBLR) objects in the literature, four classified as NHBLR, and five as HBLR based on previous data. We report ≥4σ detections of a HBLR in 11 of these galaxies (73 per cent of the sample) and a tentative detection in NGC 5793, which is Compton-thick according to the analysis of X-ray data performed here. Our results confirm that at least some NHBLRs are misclassified, bringing previous publications reporting differences between HBLR and NHBLR objects into question. We detect broad Hα and Hβ components in polarized light for 10 targets, and just broad Hα for NGC 5793 and NGC 6300, with line widths ranging between 2100 and 9600 km s-1. High bolometric luminosities and low column densities are associated with higher polarization degrees, but not necessarily with the detection of the scattered broad components.

  20. FUSE Observations of Galactic and Intrinsic Absorption in the Spectrum of the Seyfert 1 Galaxy 2MASX J21362313-6224008

    NASA Technical Reports Server (NTRS)

    Bonamente, Massimiliano; Dixon, W. Van Dyke

    2004-01-01

    We present the far-ultraviolet spectrum of the Seyfert 1 galaxy 2MASX J21362313-6224008 obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE). The spectrum features absorption from Galactic O VI at two velocities and redshifted H I Ly beta and gamma, C II, CIII, and O VI. The redshifted absorption features represent a single kinematic component blueshifted by approx. 310 km/s relative to the active galactic nucleus. We use photoionization models to derive constraints on the physical parameters of the absorbing gas. An alternative interpretation for the absorption lines is also proposed, wherein the absorbing gas is associated with an intervening galaxy cluster.

  1. FUSE Detection of Galactic and Intrinsic Absorption in the Spectrum of the Seyfert 1 Galaxy 2MASX J21362313-6224008

    NASA Technical Reports Server (NTRS)

    Bonamente, Massimiliano; VanDykeDixon, W.

    2003-01-01

    We present the far-ultraviolet spectrum of the Seyfert 1 galaxy 2MASX 521362313-6224008 obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE). The spectrum features absorption from Galactic O VI at two velocities and redshifted H I Lyman beta and gamma, C II, C III, and O VI. The redshifted absorption features represent a single kinematic component blueshifted by approx. 310 km/s relative to the AGN. We use photoionization models to derive the physical parameters of the absorbing gas. An alternative interpretation for the absorption lines is also proposed, whereby the absorbing gas is associated with an intervening galaxy cluster.

  2. Color-Magnitude Relationship of Type I Seyfert Galaxies with Redshifts from 0.1

    NASA Astrophysics Data System (ADS)

    Rutherford, Thomas; Gorjian, V.; Granucci, N.; Paulsen, T.; Blackwell, J.; Boyd, M.; Cox, W.; Fratt, E.; Goetsch, B.; Hatlehol, T.; Hiester, L.; Juoni, H.; McGee, C.; Meyer, B.; Michel, S.; Miner, M.; Nanney, P.; Pankratz, E.; Paulsen, L.; Ramsay, D.; Spahr, A.; Westgate, B.

    2014-01-01

    Data from the Sloan Digital Sky Survey (SDSS) and the Galaxy Evolution Explorer (GALEX) satellite were used to construct color-magnitude diagrams of Type I Seyfert galaxies with redshift values of 0.1

  3. Unification of X-ray Winds in Seyfert Galaxies: From Ultra-fast Outflows to Warm Absorbers

    NASA Technical Reports Server (NTRS)

    Tombesi, F.; Cappi, M.; Reeves, J. N.; Nemmen, R. S.; Braito, V.; Gaspari, M.; Reynolds, C. S.

    2013-01-01

    The existence of ionized X-ray absorbing layers of gas along the line of sight to the nuclei of Seyfert galaxies is a well established observational fact. This material is systematically outflowing and shows a large range in parameters. However, its actual nature and dynamics are still not clear. In order to gain insights into these important issues we performed a literature search for papers reporting the parameters of the soft X-ray warm absorbers (WAs) in 35 type 1 Seyferts and compared their properties to those of the ultra-fast outflows (UFOs) detected in the same sample. The fraction of sources with WAs is >60 per cent, consistent with previous studies. The fraction of sources with UFOs is >34 per cent, >67 per cent of which also show WAs. The large dynamic range obtained when considering all the absorbers together, spanning several orders of magnitude in ionization, column, velocity and distance allows us, for the first time, to investigate general relations among them. In particular, we find significant correlations indicating that the closer the absorber is to the central black hole, the higher the ionization, column, outflow velocity and consequently the mechanical power. In all the cases, the absorbers continuously populate the whole parameter space, with the WAs and the UFOs lying always at the two ends of the distribution. These evidence strongly suggest that these absorbers, often considered of different types, could actually represent parts of a single large-scale stratified outflow observed at different locations from the black hole. The UFOs are likely launched from the inner accretion disc and the WAs at larger distances, such as the outer disc and/or torus. We argue that the observed parameters and correlations are, to date, consistent with both radiation pressure through Compton scattering and magnetohydrodynamic processes contributing to the outflow acceleration, the latter playing a major role. Most of the absorbers, especially the UFOs, show

  4. Unification of X-ray winds in Seyfert galaxies: from ultra-fast outflows to warm absorbers

    NASA Astrophysics Data System (ADS)

    Tombesi, F.; Cappi, M.; Reeves, J. N.; Nemmen, R. S.; Braito, V.; Gaspari, M.; Reynolds, C. S.

    2013-04-01

    The existence of ionized X-ray absorbing layers of gas along the line of sight to the nuclei of Seyfert galaxies is a well established observational fact. This material is systematically outflowing and shows a large range in parameters. However, its actual nature and dynamics are still not clear. In order to gain insights into these important issues we performed a literature search for papers reporting the parameters of the soft X-ray warm absorbers (WAs) in 35 type 1 Seyferts and compared their properties to those of the ultra-fast outflows (UFOs) detected in the same sample. The fraction of sources with WAs is >60 per cent, consistent with previous studies. The fraction of sources with UFOs is >34 per cent, >67 per cent of which also show WAs. The large dynamic range obtained when considering all the absorbers together, spanning several orders of magnitude in ionization, column, velocity and distance allows us, for the first time, to investigate general relations among them. In particular, we find significant correlations indicating that the closer the absorber is to the central black hole, the higher the ionization, column, outflow velocity and consequently the mechanical power. In all the cases, the absorbers continuously populate the whole parameter space, with the WAs and the UFOs lying always at the two ends of the distribution. These evidence strongly suggest that these absorbers, often considered of different types, could actually represent parts of a single large-scale stratified outflow observed at different locations from the black hole. The UFOs are likely launched from the inner accretion disc and the WAs at larger distances, such as the outer disc and/or torus. We argue that the observed parameters and correlations are, to date, consistent with both radiation pressure through Compton scattering and magnetohydrodynamic processes contributing to the outflow acceleration, the latter playing a major role. Most of the absorbers, especially the UFOs, show

  5. VizieR Online Data Catalog: FeK lines in Seyfert 1 galaxies (Patrick+, 2012)

    NASA Astrophysics Data System (ADS)

    Patrick, A. R.; Reeves, J. N.; Porquet, D.; Markowitz, A. G.; Braito, V.; Lobban, A. P.

    2013-04-01

    The objects included within this sample are listed in Table 1 and are all the Seyfert 1-1.9 AGN with exposures >50ks and greater than 30000 0.6-10.0keV counts which have been observed with Suzaku with data publicly available in the Suzaku data archive (http://heasarc.gsfc.nasa.gov/) as of 2011 September. We also include data from some type 1 radio-loud (BLRGs - non-blazar) AGN, provided they fit the above exposure and count criteria. High-energy X-ray data from Swift-BAT from the 58-month BAT catalogue are also used in addition to that obtained from the HXD detector on-board Suzaku (but allowing the relative cross-normalization to vary), therefore the total energy range covered is 0.6-100.0keV. (4 data files).

  6. GRAND DESIGN AND FLOCCULENT SPIRALS IN THE SPITZER SURVEY OF STELLAR STRUCTURE IN GALAXIES (S{sup 4}G)

    SciTech Connect

    Elmegreen, Debra Meloy; Yau, Andrew; Elmegreen, Bruce G.; Athanassoula, E.; Bosma, Albert; Helou, George; Sheth, Kartik; Ho, Luis C.; Madore, Barry F.; Menendez-Delmestre, KarIn; Gadotti, Dimitri A.; Knapen, Johan H.; Laurikainen, Eija; Salo, Heikki; Meidt, Sharon E.; Regan, Michael W.; Zaritsky, Dennis; Aravena, Manuel

    2011-08-10

    Spiral arm properties of 46 galaxies in the Spitzer Survey of Stellar Structure in Galaxies (S{sup 4}G) were measured at 3.6 {mu}m, where extinction is small and the old stars dominate. The sample includes flocculent, multiple arm, and grand design types with a wide range of Hubble and bar types. We find that most optically flocculent galaxies are also flocculent in the mid-IR because of star formation uncorrelated with stellar density waves, whereas multiple arm and grand design galaxies have underlying stellar waves. Arm-interarm contrasts increase from flocculent to multiple arm to grand design galaxies and with later Hubble types. Structure can be traced further out in the disk than in previous surveys. Some spirals peak at mid-radius while others continuously rise or fall, depending on Hubble and bar type. We find evidence for regular and symmetric modulations of the arm strength in NGC 4321. Bars tend to be long, high amplitude, and flat-profiled in early-type spirals, with arm contrasts that decrease with radius beyond the end of the bar, and they tend to be short, low amplitude, and exponential-profiled in late Hubble types, with arm contrasts that are constant or increase with radius. Longer bars tend to have larger amplitudes and stronger arms.

  7. The Carnegie-Spitzer-IMACS Redshift Survey of Galaxy Evolution since z = 1.5. I. Description and Methodology

    NASA Astrophysics Data System (ADS)

    Kelson, Daniel D.; Williams, Rik J.; Dressler, Alan; McCarthy, Patrick J.; Shectman, Stephen A.; Mulchaey, John S.; Villanueva, Edward V.; Crane, Jeffrey D.; Quadri, Ryan F.

    2014-03-01

    We describe the Carnegie-Spitzer-IMACS (CSI) Survey, a wide-field, near-IR selected spectrophotometric redshift survey with the Inamori Magellan Areal Camera and Spectrograph (IMACS) on Magellan-Baade. By defining a flux-limited sample of galaxies in Spitzer Infrared Array Camera 3.6 μm imaging of SWIRE fields, the CSI Survey efficiently traces the stellar mass of average galaxies to z ~ 1.5. This first paper provides an overview of the survey selection, observations, processing of the photometry and spectrophotometry. We also describe the processing of the data: new methods of fitting synthetic templates of spectral energy distributions are used to derive redshifts, stellar masses, emission line luminosities, and coarse information on recent star formation. Our unique methodology for analyzing low-dispersion spectra taken with multilayer prisms in IMACS, combined with panchromatic photometry from the ultraviolet to the IR, has yielded high-quality redshifts for 43,347 galaxies in our first 5.3 deg2 of the SWIRE XMM-LSS field. We use three different approaches to estimate our redshift errors and find robust agreement. Over the full range of 3.6 μm fluxes of our selection, we find typical redshift uncertainties of σ z /(1 + z) <~ 0.015. In comparisons with previously published spectroscopic redshifts we find scatters of σ z /(1 + z) = 0.011 for galaxies at 0.7 <= z <= 0.9, and σ z /(1 + z) = 0.014 for galaxies at 0.9 <= z <= 1.2. For galaxies brighter and fainter than i = 23 mag, we find σ z /(1 + z) = 0.008 and σ z /(1 + z) = 0.022, respectively. Notably, our low-dispersion spectroscopy and analysis yields comparable redshift uncertainties and success rates for both red and blue galaxies, largely eliminating color-based systematics that can seriously bias observed dependencies of galaxy evolution on environment. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  8. The Carnegie-Spitzer-IMACS redshift survey of galaxy evolution since z = 1.5. I. Description and methodology

    SciTech Connect

    Kelson, Daniel D.; Williams, Rik J.; Dressler, Alan; McCarthy, Patrick J.; Shectman, Stephen A.; Mulchaey, John S.; Villanueva, Edward V.; Crane, Jeffrey D.; Quadri, Ryan F.

    2014-03-10

    We describe the Carnegie-Spitzer-IMACS (CSI) Survey, a wide-field, near-IR selected spectrophotometric redshift survey with the Inamori Magellan Areal Camera and Spectrograph (IMACS) on Magellan-Baade. By defining a flux-limited sample of galaxies in Spitzer Infrared Array Camera 3.6 μm imaging of SWIRE fields, the CSI Survey efficiently traces the stellar mass of average galaxies to z ∼ 1.5. This first paper provides an overview of the survey selection, observations, processing of the photometry and spectrophotometry. We also describe the processing of the data: new methods of fitting synthetic templates of spectral energy distributions are used to derive redshifts, stellar masses, emission line luminosities, and coarse information on recent star formation. Our unique methodology for analyzing low-dispersion spectra taken with multilayer prisms in IMACS, combined with panchromatic photometry from the ultraviolet to the IR, has yielded high-quality redshifts for 43,347 galaxies in our first 5.3 deg{sup 2} of the SWIRE XMM-LSS field. We use three different approaches to estimate our redshift errors and find robust agreement. Over the full range of 3.6 μm fluxes of our selection, we find typical redshift uncertainties of σ {sub z}/(1 + z) ≲ 0.015. In comparisons with previously published spectroscopic redshifts we find scatters of σ {sub z}/(1 + z) = 0.011 for galaxies at 0.7 ≤ z ≤ 0.9, and σ {sub z}/(1 + z) = 0.014 for galaxies at 0.9 ≤ z ≤ 1.2. For galaxies brighter and fainter than i = 23 mag, we find σ {sub z}/(1 + z) = 0.008 and σ {sub z}/(1 + z) = 0.022, respectively. Notably, our low-dispersion spectroscopy and analysis yields comparable redshift uncertainties and success rates for both red and blue galaxies, largely eliminating color-based systematics that can seriously bias observed dependencies of galaxy evolution on environment.

  9. CANDIDATE CLUSTERS OF GALAXIES AT z > 1.3 IDENTIFIED IN THE SPITZER SOUTH POLE TELESCOPE DEEP FIELD SURVEY

    SciTech Connect

    Rettura, A.; Stern, D.; Martinez-Manso, J.; Gettings, D.; Gonzalez, A. H.; Mei, S.; Ashby, M. L. N.; Brodwin, M.; Stanford, S. A.; Bartlett, J. G.

    2014-12-20

    We present 279 galaxy cluster candidates at z > 1.3 selected from the 94 deg{sup 2} Spitzer South Pole Telescope Deep Field (SSDF) survey. We use a simple algorithm to select candidate high-redshift clusters of galaxies based on Spitzer/IRAC mid-infrared data combined with shallow all-sky optical data. We identify distant cluster candidates adopting an overdensity threshold that results in a high purity (80%) cluster sample based on tests in the Spitzer Deep, Wide-Field Survey of the Boötes field. Our simple algorithm detects all three 1.4 < z ≤ 1.75 X-ray detected clusters in the Boötes field. The uniqueness of the SSDF survey resides not just in its area, one of the largest contiguous extragalactic fields observed with Spitzer, but also in its deep, multi-wavelength coverage by the South Pole Telescope (SPT), Herschel/SPIRE, and XMM-Newton. This rich data set will allow direct or stacked measurements of Sunyaev-Zel'dovich effect decrements or X-ray masses for many of the SSDF clusters presented here, and enable a systematic study of the most distant clusters on an unprecedented scale. We measure the angular correlation function of our sample and find that these candidates show strong clustering. Employing the COSMOS/UltraVista photometric catalog in order to infer the redshift distribution of our cluster selection, we find that these clusters have a comoving number density n{sub c}=(0.7{sub −0.6}{sup +6.3})×10{sup −7} h{sup 3} Mpc{sup −3} and a spatial clustering correlation scale length r {sub 0} = (32 ± 7) h {sup –1} Mpc. Assuming our sample is comprised of dark matter halos above a characteristic minimum mass, M {sub min}, we derive that at z = 1.5 these clusters reside in halos larger than M{sub min}=1.5{sub −0.7}{sup +0.9}×10{sup 14} h{sup −1} M{sub ⊙}. We find that the mean mass of our cluster sample is equal to M{sub mean}=1.9{sub −0.8}{sup +1.0}×10{sup 14} h{sup −1} M{sub ⊙}; thus, our sample contains the progenitors of

  10. Probing the physics of Seyfert galaxies using their emission-line regions

    SciTech Connect

    Shastri, P. Kharb, P.; Jose, J.; Ramya, S.; Bhatt, H. C.; Gupta, M.; Dopita, M.; Kewley, L.; Davies, R.; Sutherland, R.; Hampton, E.; Scharwächter, J.; Banfield, J.; Srivastava, S.; Jin, J.; Basurah, H.; Fischer, S.; Panda, S.; Sundar, M. N.; Radhakrishnan, V.

    2015-12-31

    Active galaxies have powerhouses of radiation in their nuclear regions that are driven by accreting super-massive black holes. The accretion system also generates outflows of ionized gas and synchrotron-emitting bipolar jets of plasma, which could have a significant impact on the host galaxy. We have initiated an investigation into the physics of nearby active galaxies by studying the morphology, kinematics, excitation abundance structure, and radio structure of about 120 nearby targets. We present a few early results from this investigation.

  11. The impact of Spitzer infrared data on stellar mass estimates - and a revised galaxy stellar mass function at 0 < z < 5

    NASA Astrophysics Data System (ADS)

    Elsner, F.; Feulner, G.; Hopp, U.

    2008-01-01

    Aims:We estimate stellar masses of galaxies in the high redshift universe with the intention of determining the influence of newly available Spitzer/IRAC infrared data on the analysis. Based on the results, we probe the mass assembly history of the universe. Methods: We use the GOODS-MUSIC catalog, which provides multiband photometry from the U-filter to the 8 μm Spitzer band for almost 15 000 galaxies with either spectroscopic (for ≈7% of the sample) or photometric redshifts, and apply a standard model fitting technique to estimate stellar masses. We than repeat our calculations with fixed photometric redshifts excluding Spitzer photometry and directly compare the outcomes to look for systematic deviations. Finally we use our results to compute stellar mass functions and mass densities up to redshift z = 5. Results: We find that stellar masses tend to be overestimated on average if further constraining Spitzer data are not included into the analysis. Whilst this trend is small up to intermediate redshifts z ⪉ 2.5 and falls within the typical error in mass, the deviation increases strongly for higher redshifts and reaches a maximum of a factor of three at redshift z ≈ 3.5. Thus, up to intermediate redshifts, results for stellar mass density are in good agreement with values taken from literature calculated without additional Spitzer photometry. At higher redshifts, however, we find a systematic trend towards lower mass densities if Spitzer/IRAC data are included.

  12. MID-INFRARED PROPERTIES OF OH MEGAMASER HOST GALAXIES. I. SPITZER IRS LOW- AND HIGH-RESOLUTION SPECTROSCOPY

    SciTech Connect

    Willett, Kyle W.; Darling, Jeremy; Spoon, Henrik W. W.; Charmandaris, Vassilis; Armus, Lee

    2011-03-15

    We present mid-infrared spectra and photometry from the Infrared Spectrograph on the Spitzer Space Telescope for 51 OH megamasers (OHMs), along with 15 galaxies confirmed to have no megamaser emission above L {sub OH} = 10{sup 2.3} L {sub sun}. The majority of galaxies display moderate-to-deep 9.7 {mu}m amorphous silicate absorption, with OHM galaxies showing stronger average absorption and steeper 20-30 {mu}m continuum emission than non-masing galaxies. Emission from multiple polycyclic aromatic hydrocarbons (PAHs), especially at 6.2, 7.7, and 11.3 {mu}m, is detected in almost all systems. Fine-structure atomic emission (including [Ne II], [Ne III], [S III], and [S IV]) and multiple H{sub 2} rotational transitions are observed in more than 90% of the sample. A subset of galaxies show emission from rarer atomic lines, such as [Ne V], [O IV], and [Fe II]. Fifty percent of the OHMs show absorption from water ice and hydrogenated amorphous carbon grains, while absorption features from CO{sub 2}, HCN, C{sub 2}H{sub 2}, and crystalline silicates are also seen in several OHMs. Column densities of OH derived from 34.6 {mu}m OH absorption are similar to those derived from 1667 MHz OH absorption in non-masing galaxies, indicating that the abundance of masing molecules is similar for both samples. This data paper presents full mid-infrared spectra for each galaxy, along with measurements of line fluxes and equivalent widths, absorption feature depths, and spectral indices.

  13. Unveiling the Structure of Barred Galaxies at 3.6 μm with the Spitzer Survey of Stellar Structure in Galaxies (S4G). I. Disk Breaks

    NASA Astrophysics Data System (ADS)

    Kim, Taehyun; Gadotti, Dimitri A.; Sheth, Kartik; Athanassoula, E.; Bosma, Albert; Lee, Myung Gyoon; Madore, Barry F.; Elmegreen, Bruce; Knapen, Johan H.; Zaritsky, Dennis; Ho, Luis C.; Comerón, Sébastien; Holwerda, Benne; Hinz, Joannah L.; Muñoz-Mateos, Juan-Carlos; Cisternas, Mauricio; Erroz-Ferrer, Santiago; Buta, Ron; Laurikainen, Eija; Salo, Heikki; Laine, Jarkko; Menéndez-Delmestre, Karín; Regan, Michael W.; de Swardt, Bonita; Gil de Paz, Armando; Seibert, Mark; Mizusawa, Trisha

    2014-02-01

    We have performed two-dimensional multicomponent decomposition of 144 local barred spiral galaxies using 3.6 μm images from the Spitzer Survey of Stellar Structure in Galaxies. Our model fit includes up to four components (bulge, disk, bar, and a point source) and, most importantly, takes into account disk breaks. We find that ignoring the disk break and using a single disk scale length in the model fit for Type II (down-bending) disk galaxies can lead to differences of 40% in the disk scale length, 10% in bulge-to-total luminosity ratio (B/T), and 25% in bar-to-total luminosity ratios. We find that for galaxies with B/T >= 0.1, the break radius to bar radius, r br/R bar, varies between 1 and 3, but as a function of B/T the ratio remains roughly constant. This suggests that in bulge-dominated galaxies the disk break is likely related to the outer Lindblad resonance of the bar and thus moves outward as the bar grows. For galaxies with small bulges, B/T < 0.1, r br/R bar spans a wide range from 1 to 6. This suggests that the mechanism that produces the break in these galaxies may be different from that in galaxies with more massive bulges. Consistent with previous studies, we conclude that disk breaks in galaxies with small bulges may originate from bar resonances that may be also coupled with the spiral arms, or be related to star formation thresholds.

  14. Warm Absorbers in X-rays (WAX), a comprehensive high resolution grating spectral study of a sample of Seyfert galaxies

    NASA Astrophysics Data System (ADS)

    Laha, S.; Guainazzi, M.; Dewangan, G.; Chakravorty, S.; Kembhavi, A.

    2014-07-01

    We present results from a homogeneous analysis of the broadband 0.3-10 keV CCD resolution as well as of soft X-ray high-resolution grating spectra of a hard X-ray flux-limited sample of 26 Seyfert galaxies observed with XMM-Newton. We could put a strict lower limit on the detection fraction of 50%. We find a gap in the distribution of the ionisation parameter in the range 0.5

  15. Zooming in on the peculiar radio-loud narrow-line Seyfert 1 galaxy, J1100+4421

    NASA Astrophysics Data System (ADS)

    Gabányu, K. É.; Frey, S.; Paragi, Z.; Tar, I.; An, T.; Tanaka, M.; Morokuma, T.

    2016-08-01

    Narrow-line Seyfert 1 galaxies (NLS1) are interesting subsamples of active galactic nuclei, which are typically thought to contain a relatively smaller supermassive black holes (10^6-10^8 solar masses) and show quite high accretion rate. Only 7% of them are detected in radio. The radio structure of the objects in the extremely radio-loud NLS1 subsample indicates the presence of relativistically beamed jets. Some radio-loud NLS1s were detected even at high energies with the Fermi Large Array Telescope. Therefore these sources are often suggested to be the low-luminosity and younger counterparts of blazars. SDSS J110006.07+442144.3 was identified as an NLS1 at z=0.84 after its dramatic optical brightening discovered by Tanaka et al. (2014) Our dual-frequency (1.6 and 5 GHz) European VLBI Network observations taken one year after this event show a compact structre with brightness temperature of 6 x 10^9 K and a flat spectral index indicating the presence of a compact synchrotron self-absorbed core. Compared with low resolution VLA-FIRST data, the large-scale structure seen there is resolved out in the EVN observation. However the recovered flux density in our L-band EVN observation is significantly higher than the FIRST flux density, which is indicative of brightening in the radio regime. All these results fit into the picture where radio-loud NLS1s are described as faint blazars.

  16. THE BLACK HOLE SPIN AND SOFT X-RAY EXCESS OF THE LUMINOUS SEYFERT GALAXY FAIRALL 9

    SciTech Connect

    Lohfink, Anne M.; Reynolds, Christopher S.; Mushotzky, Richard F.; Miller, Jon M.; Brenneman, Laura W.; Nowak, Michael A.; Fabian, Andrew C.

    2012-10-10

    We present an analysis of all XMM-Newton and Suzaku X-ray spectra of the nearby luminous Seyfert galaxy Fairall 9. Confirming previous analyses, we find robust evidence for a broad iron line associated with X-ray reflection from the innermost accretion disk. By fitting a spectral model that includes a relativistically ionized reflection component, we examine the constraints on the inclination of the inner accretion disk and the black hole spin, and the complications introduced by the presence of a photoionized emission line system. Employing multi-epoch fitting, we attempt to obtain robust and concordant measures of the accretion disk parameters. We also clearly see a soft X-ray excess in Fairall 9. During certain epochs, the soft excess can be described with the same disk reflection component that produces the iron line. However, there are epochs where an additional soft component is required. This can be attributed to either an additional highly ionized, strongly blurred disk reflection component or a new X-ray continuum component.

  17. X-ray Variability of the Magnetic Cataclysmic Variable V1432 Aql and the Seyfert Galaxy NGC 6814

    NASA Technical Reports Server (NTRS)

    Mukai, K.; Hellier, C.; Madejski, G.; Patterson, J.; Skillman, D. R.

    2003-01-01

    V1432 Aquilae (=RX J1940.2-1025) is the X-ray bright, eclipsing magnetic cataclysmic variable approximately 37 (sup) away from the Seyfert galaxy, NGC 6814. Due to a 0.3% difference between the orbital (12116.3 s) and the spin (12150 s) periods: the accretion geometry changes over the approximately 50 day beat period. Here we report the results of an RXTE campaign to observe the eclipse 25 times, as well as of archival observations with ASCA and BeppoSAX. Having confirmed that the eclipse is indeed caused by the secondary, we use the eclipse timings and profiles to map the accretion geometry as a function of the beat phase. We find that the accretion region is compact, and that it moves relative to the center of white dwarf on the beat period. The amplitude of this movement suggest a low-mass white dwarf, in contrast to the high mass previously estimated from its X-ray spectrum. The size of the X-ray emission region appears to be larger than in other eclipsing magnetic CVs. We also report on the RXTE data as well as the long-term behavior of NGC 6814, indicating flux variability by a factor of at least 10 on time scales of years.

  18. Monitoring the Violent Activity from the Inner Accretion Disk of the Seyfert 1.9 Galaxy NGC 2992 with RXTE

    NASA Technical Reports Server (NTRS)

    Mruphy, Kendrah D.; Yaqoob, Tahir; Terashima, Yuichi

    2007-01-01

    We present the results of a one year monitoring campaign of the Seyfert 1.9 galaxy NGC 2992 with RXTE. Historically, the source has been shown to vary dramatically in 2-10 keV flux over timescales of years and was thought to be slowly transitioning between periods of quiescence and active accretion. Our results show that in one year the source continuum flux covered almost the entire historical range, making it unlikely that the low-luminosity states correspond to the accretion mechanism switching off. During flaring episodes we found that a highly redshifted Fe K line appears, implying that the violent activity is occurring in the inner accretion disk, within 100 gravitational radii of the central black hole. We also found that the Compton y parameter for the X-ray continuum remained approximately constant during the large amplitude variability. These observations make NGC 2992 well-suited for future multi-waveband monitoring, as a test-bed for constraining accretion models.

  19. A radio detection survey of narrow-line Seyfert 1 galaxies using very long baseline interferometry at 22 GHz

    NASA Astrophysics Data System (ADS)

    Doi, Akihiro; Oyama, Tomoaki; Kono, Yusuke; Yamauchi, Aya; Suzuki, Syunsaku; Matsumoto, Naoko; Tazaki, Fumie

    2016-10-01

    We conducted a high-sensitivity radio detection survey for 40 narrow-line Seyfert 1 (NLS1) galaxies using a very long baseline interferometry (VLBI) technique at 22 GHz through phase-referencing long-time integration and using a newly developing recorder with a data rate of 8 Gbps, which is a candidate of the next generation VLBI data recording systems of the Japanese VLBI Network. The baseline sensitivity was typically a few mJy. The observations resulted in a detection rate of 12/40 for our radio-selected NLS1 sample: 11 out of the 12 detected NLS1s showed inverted radio spectra between 1.4 and 22 GHz on the basis of the Very Large Array flux densities and the VLBI detections. These high fractions suggest that a compact radio core with a high brightness temperature is frequently associated with NLS1 nuclei. On the other hand, at least half of the sample indicated apparently steep spectra even with the limited VLBI sensitivity. Both the inverted and the steep spectrum radio sources are included in the NLS1 population.

  20. Resolving the Large Scale Spectral Variability of the Luminous Seyfert 1 Galaxy 1H 0419-577

    NASA Technical Reports Server (NTRS)

    Pounds, K. A.; Reeves, J. N.; Page, K. L.; OBrien, P. T.

    2004-01-01

    An XMM-Newton observation of the luminous Seyfert 1 galaxy 1H 0419-577 in September 2002, when the source was in an extreme low-flux state, found a very hard X-ray spectrum at 1-10 keV with a strong soft excess below approximately 1 keV. Comparison with an earlier XMM-Newton observation when 1H 0419-577 was X-ray bright indicated the dominant spectral variability was due to a steep power law or cool Comptonized thermal emission. Four further XMM-Newton observations, with 1H 0419-577 in intermediate flux states, now support that conclusion, while we also find the variable emission component in intermediate state difference spectra to be strongly modified by absorption in low ionisation matter. The variable soft excess is seen to be an artefact of absorption of the underlying continuum while the core soft emission is attributed to recombination in an extended region of more highly ionised gas. This new analysis underlines the importance of fully accounting for absorption in characterizing AGN X-ray spectra.

  1. Exceptional behaviour of X-ray emitting corona in a Seyfert 1 galaxy 1H 0419 - 577

    NASA Astrophysics Data System (ADS)

    Pal, Main; Dewangan, Gulab Chand

    2016-07-01

    We report on six XMM-Newton observations of a Seyfert 1 galaxy 1H 0419-577 during spectacular behaviour of the corona about on 2-3 months time scale. The source reflects similar trend in each energy band from Optical/UV to X-rays during 2002-2003. The Optical/UV emission varies from trough to peak by 4.2-22.1% and peak to trough by 6.6-10.3%. At the same time, the 2 - 10keV powerlaw emission is strongly correlated with soft X-ray excess with similar fractional variability amplitude ˜ 40% suggesting variation in coronal geometry. We also found that the height of X-ray source remains almost similar about 2rg (gravitaional radius) for each observation. This indicates clearly that source size is changing dramatically. Further, the powerlaw emission and Optical/UV emission seem correlated to each other. The observed variation in Optical/UV emission further support the variable size of corona. During incraesing trend of Optical/UV to X-rays, the X-ray source expands horizontally and while decreasing the X-ray source seems to shrink. This is supported by the observed more variation in Optical emission compared to UV emission while decreasing in flux from peak to trough.

  2. The Complex Gas Kinematics in the Nucleus of the Seyfert 2 Galaxy NGC 1386: Rotation, Outflows, and Inflows

    NASA Astrophysics Data System (ADS)

    Lena, D.; Robinson, A.; Storchi-Bergman, T.; Schnorr-Müller, A.; Seelig, T.; Riffel, R. A.; Nagar, N. M.; Couto, G. S.; Shadler, L.

    2015-06-01

    We present optical integral field spectroscopy of the circum-nuclear gas of the Seyfert 2 galaxy NGC 1386. The data cover the central 7″ × 9″ (530 × 680 pc) at a spatial resolution of 0.″ 9 (68 pc), and the spectral range 5700-7000 Å at a resolution of 66 km s-1. The line emission is dominated by a bright central component, with two lobes extending ≈3″ north and south of the nucleus. We identify three main kinematic components. The first has low velocity dispersion (\\bar{σ } ≈ 90 km s-1), extends over the whole field of view, and has a velocity field consistent with gas rotating in the galaxy disk. We interpret the lobes as resulting from photoionization of disk gas in regions where the active galactic nucleus radiation cones intercept the disk. The second has higher velocity dispersion (\\bar{σ } ≈ 200 km s-1) and is observed in the inner 150 pc around the continuum peak. This component is double peaked, with redshifted and blueshifted components separated by ≈500 km s-1. Together with previous Hubble Space Telescope imaging, these features suggest the presence of a bipolar outflow for which we estimate a mass outflow rate of \\dot{M} ≳ 0.1 {{M}⊙ } yr-1. The third component is revealed by velocity residuals associated with enhanced velocity dispersion and suggests that outflow and/or rotation is occurring approximately in the equatorial plane of the torus. A second system of velocity residuals may indicate the presence of streaming motions along dusty spirals in the disk.

  3. Reverberation Mapping of the Gamma-Ray Loud Narrow-line Seyfert 1 Galaxy 1H 0323+342

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Du, Pu; Hu, Chen; Bai, Jin-Ming; Wang, Chuan-Jun; Yi, Wei-Min; Wang, Jian-Guo; Zhang, Ju-Jia; Xin, Yu-Xin; Lun, Bao-Li; Chang, Liang; Fan, Yu-Feng

    2016-06-01

    Recently, 1H 0323+342 has attracted a lot of attention as one of several narrow-line Seyfert 1 galaxies detected in the γ-ray band. To understand their central energy engines and jet phenomena, the black hole mass is important. We made use of the Lijiang 2.4 m Telescope to monitor 1H 0323+342 for more than two months. This galaxy is one of the candidates for a monitoring project of super-Eddington accreting massive black holes. The reverberation mapping shows that Hβ emission has a delayed response of {14.8}-2.7+3.9 days with respect to the SDSS g‧ light curve in the rest frame. The optical Fe ii variations were detected after subtracting host contaminations, and a reverberation with a delay of {15.2}-4.1+7.4 days was found in the rest frame. By assuming the viral factor f BLR = 6.17 for the broad-line region (BLR) velocity characterized by FWHM because of the face-on orientation, we find that the black hole mass derived from Hβ is {M}\\bullet ={3.4}-0.6+0.9× {10}7{M}ȯ , and the accretion rate is \\dot{{M}}={1.11}-0.47+0.69, where \\dot{{M}}={\\dot{M}}\\bullet {c}2/{L}{{Edd}}, {\\dot{M}}\\bullet is the mass accretion rate, L Edd is the Eddington luminosity, and c is the speed of light. This black hole is one order less massive than that given by the Magorrian relation from the bulge mass. We test the relation between accretion rates and radio-loudnesses in all mapped radio-loud active galactic nuclei, and find that 1H 0323+342 falls within this group.

  4. Night-to-night variation in the optical emission lines in the nuclear spectrum of the Seyfert galaxy NGC 3227

    NASA Astrophysics Data System (ADS)

    Pronik, I.; Metik, L.

    2004-06-01

    Fifty-three spectrograms in the optical region (3700-7300 Å)with a spectral resolution of about 8 Å have been obtained for the Seyfert nucleus of the galaxy NGC 3227 with the 6 m telescope on 12-15 January 1977 while the nucleus was in the historically important epoch of its extreme maximum brightness. The width of the slit was 1?, and the length of the box during the spectral measurements was 1.5?. The data obtained by us and those compiled from literature showed that profiles of the Balmer lines Ha, Hß and H? are different, demonstrating that the gas emitting these lines is highly self-absorbed. The profiles of the Balmer lines contain various components that kept their positions (radial velocities) over 10 years. The components can reflect long-lived flows or jets in the broad-line region (BLR). A blue bump at a radial velocity of -5000 km s-1 in the H? profile was revealed. Variations in the intensities of the revealed components and broad wings of the emission lines Hß and H? profiles were detected over 3 days. The same variations were observed by us earlier in the emission line profiles of the NGC 7469 nucleus spectrum. We suppose that the revealed night-to-night variability of the emission line spectra of the galaxies NGC 3227 and NGC 7469 is a result of short-time flares in the BLR. The dimension of the flare region is less than 0.2 of the whole BLR dimension. The density of the flare region is two to three orders of magnitude higher than that of the overall BLR. One of the possible explanations for the observed event can be proposed in the framework of a model of short-lived shocks in long-lived flows or jets.

  5. Reverberation Mapping of the Gamma-Ray Loud Narrow-line Seyfert 1 Galaxy 1H 0323+342

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Du, Pu; Hu, Chen; Bai, Jin-Ming; Wang, Chuan-Jun; Yi, Wei-Min; Wang, Jian-Guo; Zhang, Ju-Jia; Xin, Yu-Xin; Lun, Bao-Li; Chang, Liang; Fan, Yu-Feng

    2016-06-01

    Recently, 1H 0323+342 has attracted a lot of attention as one of several narrow-line Seyfert 1 galaxies detected in the γ-ray band. To understand their central energy engines and jet phenomena, the black hole mass is important. We made use of the Lijiang 2.4 m Telescope to monitor 1H 0323+342 for more than two months. This galaxy is one of the candidates for a monitoring project of super-Eddington accreting massive black holes. The reverberation mapping shows that Hβ emission has a delayed response of {14.8}-2.7+3.9 days with respect to the SDSS g‧ light curve in the rest frame. The optical Fe ii variations were detected after subtracting host contaminations, and a reverberation with a delay of {15.2}-4.1+7.4 days was found in the rest frame. By assuming the viral factor f BLR = 6.17 for the broad-line region (BLR) velocity characterized by FWHM because of the face-on orientation, we find that the black hole mass derived from Hβ is {M}\\bullet ={3.4}-0.6+0.9× {10}7{M}⊙ , and the accretion rate is \\dot{{M}}={1.11}-0.47+0.69, where \\dot{{M}}={\\dot{M}}\\bullet {c}2/{L}{{Edd}}, {\\dot{M}}\\bullet is the mass accretion rate, L Edd is the Eddington luminosity, and c is the speed of light. This black hole is one order less massive than that given by the Magorrian relation from the bulge mass. We test the relation between accretion rates and radio-loudnesses in all mapped radio-loud active galactic nuclei, and find that 1H 0323+342 falls within this group.

  6. Nuclei of Seyfert galaxies and QSOs - Central engine & conditions of star formation

    NASA Astrophysics Data System (ADS)

    Supermassive black holes (SMBHs) are ubiquitous in the Universe. It is widely accepted that most or all massive galaxies harbors a central SMBH. Apparent correlations between the black hole mass and host galaxy structural/dynamical properties, such as the M/σ relation, give rise to the notion of an intimate link between the growth of SMBHs and their host galaxies. Active galactic nuclei (AGN) represent a phase (phases) in the life of a galaxy, during which the SMBH growth is directly observable. The question is, whether such episodes provide a window onto the relevant aspects of the regulation of the growth of the bulges and the SMBHs. The focus of this workshop is on understanding the conditions of star formation in AGN and the interplay between star formation, the active nuclei, and the host galaxies - especially of intermediate redshift (z<0.1) systems - in order to bridge the gap between local, well-studied AGN and their hosts and marginally resolved high redshift AGN and their hosts.

  7. Soft X-ray spectral observations of quasars and high X-ray luminosity Seyfert galaxies

    NASA Technical Reports Server (NTRS)

    Petre, R.; Mushotzky, R. F.; Krolik, J. H.; Holt, S. S.

    1983-01-01

    Results of the analysis of 28 Einstein SSS observations of 15 high X-ray luminosity (L(x) 10 to the 435 power erg/s) quasars and Seyfert type 1 nuclei are presented. The 0.75-4.5 keV spectra are in general well fit by a simple model consisting of a power law plus absorption by cold gas. The averager spectral index alpha is 0.66 + or - .36, consistent with alpha for the spectrum of these objects above 2 keV. In all but one case, no evidence was found for intrinsic absorption, with an upper limit of 2 x 10 to the 21st power/sq cm. Neither was evidence found for partial covering of the active nucleus by dense, cold matter (N(H) 10 to the 22nd power/sq cm; the average upper limit on the partial covering fraction is 0.5. There is no obvious correlation between spectral index and 0175-4.5 keV X-ray luminosity (which ranges from 3 x 10 to the 43rd to 47th powers erg/s or with other source properties. The lack of intrinsic X-ray absorption allows us to place constraints on the density and temperature of the broad-line emission region, and narrow line emission region, and the intergalactic medium.

  8. High-Resolution X-Ray Spectroscopy of the Seyfert 2 Galaxy Circinus with Chandra

    NASA Technical Reports Server (NTRS)

    Sambruna, Rita M.; Netzer, Hagai; Kaspi, Shai; Brandt, W. N.; Chartas, G.; Garmire, G. P.; Nousek, John A.; Weaver, K. A.

    2000-01-01

    Results from a 60 ks Chandra High Energy Transmission Grating Spectrometer (HETGS) observation of the nearby Seyfert 2 Circinus are presented. The spectrum shows a wealth of emission lines at both soft and hard X-rays, including lines of Ne, Mg, Si, S, Ar, Ca, and Fe, and a prominent Fe K(alpha) line at 6.4 keV. We identify several of the He-like components and measure several of the Lyman lines of the N-like ions. The lines' profiles are unresolved at the limited signal-to-noise ratio of the data. Our analysis of the zeroth-order image in a companion paper constrains the size of the emission region to be 20-60 pc, suggesting that emission within this volume is almost entirely due to the reprocessing of the obscured central source. Here we show that a model containing two distinct components can reproduce almost all the observed properties of this gas. The ionized component can explain the observed intensities of the ionized species, assuming twice-solar composition and an N is proportional r(exp -1.5) density distribution. The neutral component is highly concentrated, well within the 0.8" point source, and is responsible for almost all of the observed K(alpha) (6.4 keV) emission. Circinus seems to be different than Mkn 3 in terms of its gas distribution.

  9. Structure of the Circumnuclear Region of Seyfert 2 Galaxies Revealed by RXTE Hard X-Ray Observations of NGC 4945

    NASA Technical Reports Server (NTRS)

    Madejski, G.; Zycki, P.; Done, C.; Valinia, A.; Blanco, P.; Rothschild, R.; Turek, B.

    2000-01-01

    NGC 4945 is one of the brightest Se.yfert galaxies on the sky at 100 keV, but is completely absorbed below 10 keV, implying an optical depth of the absorber to electron scattering of a few; its absorption column is probably the largest which still allows a direct view of the nucleus at hard X-ray energies. Our observations of it with the Rossi X-ray Timing Explorer (RXTE) satellite confirm the large absorption, which for a simple phenomenological fit using an absorber with Solar abundances implies a column of 4.5(sup 0.4, sub -0.4) x 10(exp 24) /sq cm. Using a a more realistic scenario (requiring Monte Carlo modeling of the scattering), we infer the optical depth to Thomson scattering of approximately 2.4. If such a scattering medium were to subtend a large solid angle from the nucleus, it should smear out any intrinsic hard X-ray variability on time scales shorter than the light travel time through it. The rapid (with a time scale of approximately a day) hard X-ray variability of NGC 4945 we observed with the RXTE implies that the bulk of the extreme absorption in this object does not originate in a parsec-size, geometrically thick molecular torus. Limits on the amount of scattered flux require that the optically thick material on parsec scales must be rather geometrically thin, subtending a half-angle < 10 deg. This is only marginally consistent with the recent determinations of the obscuring column in hard X-rays, where only a quarter of Seyfert 2s have columns which are optically thick, and presents a problem in accounting for the Cosmic X-ray Background primarily with AGN possessing the geometry as that inferred by us. The small solid angle of the obscuring material, together with the black hole mass (of approximately 1.4 x 10(exp 6) solar mass) from megamaser measurements. allows a robust determination of the source luminosity, which in turn implies that the source radiates at approximately 10% of the Eddington limit.

  10. A Comprehensive Study of 2000 Narrow Line Seyfert 1 Galaxies from the Sloan Digital Sky Survey. I. The Sample

    NASA Astrophysics Data System (ADS)

    Zhou, Hongyan; Wang, Tinggui; Yuan, Weimin; Lu, Honglin; Dong, Xiaobo; Wang, Junxian; Lu, Youjun

    2006-09-01

    This is the first paper in a series dedicated to the study of the emission-line and continuum properties of narrow line Seyfert 1 galaxies (NLS1s). We carried out a systematic search for NLS1s from objects assigned as ``QSOs'' or ``galaxies'' in the spectroscopic sample of the Sloan Digital Sky Survey Data Release 3 (SDSS DR3) by a careful modeling of their emission lines and continua. The result is a uniform sample comprising ~2000 NLS1s. This sample dramatically increases the number of known NLS1s by a factor of ~10 over previous compilations. This paper presents the parameters of the prominent emission lines and continua, which were measured accurately with typical uncertainties <10%. Taking advantage of such an unprecedented large and uniform sample with accurately measured spectral parameters, we carried out various statistical analyses, some of which were only possible for the first time. The main results found are as follows. (1) Within the overall Seyfert 1 population, the incidence of NLS1s is strongly dependent on the optical, X-ray, and radio luminosities as well as the radio loudness. The fraction of NLS1s peaks around SDSS g-band absolute magnitude Mg~-22 mag in the optical and ~1043.2 ergs s-1 in the soft X-ray band, and decreases quickly as the radio loudness increases. (2) On average the relative Fe II emission, R4570=Fe II λλ4434-4684/Hβ, in NLS1s is about twice that in normal active galactic nuclei (AGNs) and is anticorrelated with the broad component width of the Balmer emission lines. (3) The well-known anticorrelation between the width of broad low-ionization lines and the soft X-ray spectral slope for broad line AGNs extends down to FWHM~1000 km s-1 in NLS1s, but the trend appears to reverse at still smaller line widths. (4) The equivalent width of Hβ and Fe II emission lines are strongly correlated with the Hβ and continuum luminosities. (5) We do not find any difference between NLS1s and normal AGNs in regard to the narrow line region

  11. THE BULGELESS SEYFERT/LINER GALAXY NGC 3367: DISK, BAR, LOPSIDEDNESS, AND ENVIRONMENT

    SciTech Connect

    Hernandez-Toledo, H. M.; Cano-Diaz, M.; Valenzuela, O.; Garcia-Barreto, J. A; Moreno-Diaz, E.; Puerari, I.; Bravo-Alfaro, H.

    2011-12-15

    NGC 3367 is a nearby isolated active galaxy that shows a radio jet, a strong bar, and evidence of lopsidedness. We present a quantitative analysis of the stellar and gaseous structure of the galaxy disk and search for evidence of recent interaction. Our study is based on new UBVRI H{alpha} and JHK images and on archive H{alpha} Fabry-Perot and H I Very Large Array data. From a coupled one-dimensional/two-dimensional GALFIT bulge/bar/disk decomposition a (B/D {approx} 0.07-0.1) exponential pseudobulge is inferred in all the observed bands. A near-infrared (NIR) estimate of the bar strength Q{sup max}{sub T}(R) = 0.44 places NGC 3367 bar among the strongest ones. The asymmetry properties were studied using (1) the optical and NIR concentration-asymmetry-clumpiness indices, (2) the stellar (NIR) and gaseous (H{alpha}, H I) A{sub 1} Fourier mode amplitudes, and (3) the H I-integrated profile and H I mean intensity distribution. While the average stellar component shows asymmetry values close to the average found in the local universe for isolated galaxies, the young stellar component and gas values are largely decoupled showing significantly larger A{sub 1} mode amplitudes suggesting that the gas has been recently perturbed and placing NGC 3367 in a global starburst phase. NGC 3367 is devoid of H I gas in the central regions where a significant amount of molecular CO gas exists instead. Our search for (1) faint stellar structures in the outer regions (up to {mu}{sub R} {approx} 26 mag arcsec{sup -2}), (2) (H{alpha}) star-forming satellite galaxies, and (3) regions with different colors (stellar populations) along the disk all failed. Such an absence is interpreted by using results from recent numerical simulations to constrain either a possible tidal event with an LMC like galaxy to some dynamical times in the past or a very low mass but perhaps gas rich recent encounter. We conclude that a cold flow accretion mode (gas and small/dark galaxies) may be responsible for

  12. Distributions of molecules in the circumnuclear disk and surrounding starburst ring in the Seyfert galaxy NGC 1068 observed with ALMA

    NASA Astrophysics Data System (ADS)

    Takano, Shuro; Nakajima, Taku; Kohno, Kotaro; Harada, Nanase; Herbst, Eric; Tamura, Yoichi; Izumi, Takuma; Taniguchi, Akio; Tosaki, Tomoka

    2014-07-01

    Sensitive observations with the Atacama Large Millimeter/submillimeter Array (ALMA) allow astronomers to observe the detailed distributions of molecules with relatively weak intensity in nearby galaxies. In particular, we report distributions of several molecular transitions including shock and dust related species (13CO J = 1-0, C18O J = 1-0, 13CN N = 1-0, CS J = 2-1, SO JN = 32-21, HNCO JKa,Kc = 50,5-40,4, HC3N J = 11-10, 12-11, CH3OH JK = 2K-1K, and CH3CN JK = 6K-5K) in the nearby Seyfert 2 galaxy NGC 1068 observed with the ALMA early science program. The central ˜ 1'(˜ 4.3 kpc) of this galaxy was observed in the 100-GHz region covering ˜ 96-100 GHz and ˜ 108-111 GHz with an angular resolution of ˜ 4'' × 2'' (290 pc × 140 pc) to study the effects of an active galactic nucleus and its surrounding starburst ring on molecular abundances. Here, we present images and report a classification of molecular distributions into three main categories: (1) molecules concentrated in the circumnuclear disk (CND) (SO JN = 32-21, HC3N J = 11-10, 12-11, and CH3CN JK = 6K-5K), (2) molecules distributed both in the CND and the starburst ring (CS J = 2-1 and CH3OH JK = 2K-1K), and (3) molecules distributed mainly in the starburst ring (13CO J = 1-0 and C18O J = 1-0). Since most of the molecules such as HC3N observed in the CND are easily dissociated by UV photons and X-rays, our results indicate that these molecules must be effectively shielded. In the starburst ring, the relative intensity of methanol at each clumpy region is not consistent with those of 13CO, C18O, or CS. This difference is probably caused by the unique formation and destruction mechanisms of CH3OH.

  13. Catalogue of the morphological features in the Spitzer Survey of Stellar Structure in Galaxies (S4G)

    NASA Astrophysics Data System (ADS)

    Herrera-Endoqui, M.; Díaz-García, S.; Laurikainen, E.; Salo, H.

    2015-10-01

    Context. A catalogue of the features for the complete Spitzer Survey of Stellar Structure in Galaxies (S4G), including 2352 nearby galaxies, is presented. The measurements are made using 3.6 μm images, largely tracing the old stellar population; at this wavelength the effects of dust are also minimal. The measured features are the sizes, ellipticities, and orientations of bars, rings, ringlenses, and lenses. Measured in a similar manner are also barlenses (lens-like structures embedded in the bars), which are not lenses in the usual sense, being rather the more face-on counterparts of the boxy/peanut structures in the edge-on view. In addition, pitch angles of spiral arm segments are measured for those galaxies where they can be reliably traced. More than one pitch angle may appear for a single galaxy. All measurements are made in a human-supervised manner so that attention is paid to each galaxy. Aims: We create a catalogue of morphological features in the complete S4G. Methods: We used isophotal analysis, unsharp masking, and fitting ellipses to measured structures. Results: We find that the sizes of the inner rings and lenses normalized to barlength correlate with the galaxy mass: the normalized sizes increase toward the less massive galaxies; it has been suggested that this is related to the larger dark matter content in the bar region in these systems. Bars in the low mass galaxies are also less concentrated, likely to be connected to the mass cut-off in the appearance of the nuclear rings and lenses. We also show observational evidence that barlenses indeed form part of the bar, and that a large fraction of the inner lenses in the non-barred galaxies could be former barlenses in which the thin outer bar component has dissolved. Full Tables 2 and 3 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/582/A86

  14. THICK DISKS OF EDGE-ON GALAXIES SEEN THROUGH THE SPITZER SURVEY OF STELLAR STRUCTURE IN GALAXIES (S{sup 4}G): LAIR OF MISSING BARYONS?

    SciTech Connect

    Comeron, Sebastien; Elmegreen, Bruce G.; Knapen, Johan H.; Salo, Heikki; Laine, Jarkko; Laurikainen, Eija; Athanassoula, E.; Bosma, Albert; Hinz, Joannah L.; De Paz, Armando Gil; Menendez-Delmestre, KarIn; Seibert, Mark; Ho, Luis C.; Elmegreen, Debra M.; Gadotti, Dimitri A.

    2011-11-01

    Most, if not all, disk galaxies have a thin (classical) disk and a thick disk. In most models thick disks are thought to be a necessary consequence of the disk formation and/or evolution of the galaxy. We present the results of a study of the thick disk properties in a sample of carefully selected edge-on galaxies with types ranging from T = 3 to T = 8. We fitted one-dimensional luminosity profiles with physically motivated functions-the solutions of two stellar and one gaseous isothermal coupled disks in equilibrium-which are likely to yield more accurate results than other functions used in previous studies. The images used for the fits come from the Spitzer Survey of Stellar Structure in Galaxies (S{sup 4}G). We found that thick disks are on average more massive than previously reported, mostly due to the selected fitting function. Typically, the thin and thick disks have similar masses. We also found that thick disks do not flare significantly within the observed range in galactocentric radii and that the ratio of thick-to-thin disk scale heights is higher for galaxies of earlier types. Our results tend to favor an in situ origin for most of the stars in the thick disk. In addition, the thick disk may contain a significant amount of stars coming from satellites accreted after the initial buildup of the galaxy and an extra fraction of stars coming from the secular heating of the thin disk by its own overdensities. Assigning thick disk light to the thin disk component may lead to an underestimate of the overall stellar mass in galaxies because of different mass-to-light ratios in the two disk components. On the basis of our new results, we estimate that disk stellar masses are between 10% and 50% higher than previously thought and we suggest that thick disks are a reservoir of 'local missing baryons'.

  15. BREAKS IN THIN AND THICK DISKS OF EDGE-ON GALAXIES IMAGED IN THE SPITZER SURVEY OF STELLAR STRUCTURE IN GALAXIES (S{sup 4}G)

    SciTech Connect

    Comeron, Sebastien; Salo, Heikki; Laurikainen, Eija; Laine, Jarkko; Elmegreen, Bruce G.; Athanassoula, E.; Bosma, Albert; Knapen, Johan H.; Gadotti, Dimitri A.; Sheth, Kartik; Munoz-Mateos, Juan Carlos; Kim, Taehyun; Hinz, Joannah L.; Regan, Michael W.; Gil de Paz, Armando; Menendez-Delmestre, Karin; Seibert, Mark; Ho, Luis C.; Mizusawa, Trisha; Holwerda, Benne

    2012-11-10

    Breaks in the radial luminosity profiles of galaxies have until now been mostly studied averaged over disks. Here, we study separately breaks in thin and thick disks in 70 edge-on galaxies using imaging from the Spitzer Survey of Stellar Structure in Galaxies. We built luminosity profiles of the thin and thick disks parallel to midplanes and we found that thin disks often truncate (77%). Thick disks truncate less often (31%), but when they do, their break radius is comparable with that in the thin disk. This suggests either two different truncation mechanisms-one of dynamical origin affecting both disks simultaneously and another one only affecting the thin disk-or a single mechanism that creates a truncation in one disk or in both depending on some galaxy property. Thin disks apparently antitruncate in around 40% of galaxies. However, in many cases, these antitruncations are an artifact caused by the superposition of a thin disk and a thick disk, with the latter having a longer scale length. We estimate the real thin disk antitruncation fraction to be less than 15%. We found that the ratio of the thick and thin stellar disk mass is roughly constant (0.2 < M{sub T} /M{sub t} < 0.7) for circular velocities v{sub c} > 120 km s{sup -1}, but becomes much larger at smaller velocities. We hypothesize that this is due to a combination of a high efficiency of supernova feedback and a slower dynamical evolution in lower-mass galaxies causing stellar thin disks to be younger and less massive than in higher-mass galaxies.

  16. The Swift Burst Alert Telescope Detected Seyfert 1 Galaxies: X-Ray Broadband Properties and Warm Absorbers

    NASA Astrophysics Data System (ADS)

    Winter, Lisa M.; Veilleux, Sylvain; McKernan, Barry; Kallman, T. R.

    2012-02-01

    We present results from an analysis of the broadband, 0.3-195 keV, X-ray spectra of 48 Seyfert 1-1.5 sources detected in the very hard X-rays with the Swift Burst Alert Telescope (BAT). This sample is selected in an all-sky survey conducted in the 14-195 keV band. Therefore, our sources are largely unbiased toward both obscuration and host galaxy properties. Our detailed and uniform model fits to Suzaku/BAT and XMM-Newton/BAT spectra include the neutral absorption, direct power-law, reflected emission, soft excess, warm absorption, and narrow Fe I Kα emission properties for the entire sample. We significantly detect O VII and O VIII edges in 52% of our sample. The strength of these detections is strongly correlated with the neutral column density measured in the spectrum. Among the strongest detections, X-ray grating and UV observations, where available, indicate outflowing material. The ionized column densities of sources with O VII and O VIII detections are clustered in a narrow range with N warm ~ 1021 cm-2, while sources without strong detections have column densities of ionized gas an order of magnitude lower. Therefore, we note that sources without strong detections likely have warm ionized outflows present but at low column densities that are not easily probed with current X-ray observations. Sources with strong complex absorption have a strong soft excess, which may or may not be due to difficulties in modeling the complex spectra of these sources. Still, the detection of a flat Γ ~ 1 and a strong soft excess may allow us to infer the presence of strong absorption in low signal-to-noise active galactic nucleus spectra. Additionally, we include a useful correction from the Swift BAT luminosity to bolometric luminosity, based on a comparison of our spectral fitting results with published spectral energy distribution fits from 33 of our sources.

  17. The Swift Burst Alert Telescope Detected Seyfert 1 Galaxies: X-Ray Broadband Properties and Warm Absorbers

    NASA Technical Reports Server (NTRS)

    Winter, Lisa M.; Veilleux, Sylvain; McKernan, Barry; Kallman, T.

    2012-01-01

    We present results from an analysis of the broadband, 0.3-195 keV, X-ray spectra of 48 Seyfert 1-1.5 sources detected in the very hard X-rays with the Swift Burst Alert Telescope (BAT). This sample is selected in an all-sky survey conducted in the 14-195 keV band. Therefore, our sources are largely unbiased toward both obscuration and host galaxy properties. Our detailed and uniform model fits to Suzaku/BAT and XMM-Newton/BAT spectra include the neutral absorption, direct power-law, reflected emission, soft excess, warm absorption, and narrow Fe I K[alpha] emission properties for the entire sample. We significantly detect O VII and O VIII edges in 52% of our sample. The strength of these detections is strongly correlated with the neutral column density measured in the spectrum. Among the strongest detections, X-ray grating and UV observations, where available, indicate outflowing material. The ionized column densities of sources with O VII and O VIII detections are clustered in a narrow range with Nwarm [approx] 1021 cm-2, while sources without strong detections have column densities of ionized gas an order of magnitude lower. Therefore, we note that sources without strong detections likely have warm ionized outflows present but at low column densities that are not easily probed with current X-ray observations. Sources with strong complex absorption have a strong soft excess, which may or may not be due to difficulties in modeling the complex spectra of these sources. Still, the detection of a flat [Gamma] [approx] 1 and a strong soft excess may allow us to infer the presence of strong absorption in low signal-to-noise active galactic nucleus spectra. Additionally, we include a useful correction from the Swift BAT luminosity to bolometric luminosity, based on a comparison of our spectral fitting results with published spectral energy distribution fits from 33 of our sources.

  18. ROSAT and ASCA Observations of the Seyfert Galaxy 1H0419-577, Identified with LB 1727

    NASA Technical Reports Server (NTRS)

    Turner, T. J.; George, I. M.; Nandra, K.; Grupe, D.; Remillard, R.; Leighly, K.; Marshall, H. L.

    1998-01-01

    We discuss the properties of the Seyfert 1.5 galaxy LB 1727 based upon the analysis of two ASCA observations, a two-month Rosat monitoring campaign, and optical data. The target is identified with the HEAO-A1 source 1H0419-577, so it has been observed by ASCA and ROSAT in order to obtain better X-ray variability and spectra data. Only modest (20%) variability is observed within or between ASCA and BeppoSAX observations in the approximately 2 - 10 keV band. However, the soft X-ray flux increased by a factor of 3 over a period of 2 months, while it was monitored daily by the ROSAT HRI instrument. The hard X-ray continuum can be parameterized as a power-law of slope Gamma approximately 1.5 - 1.6 across 9.7 - 11 keV in the rest-frame. We also report the first detection of an iron K(alpha) line in this source, consistent with emission from neutral material. The X-ray spectrum steepens sharply below 0.7 keV yielding a power-law of slope Gamma approximately 3.2. There is no evidence for absorption by neutral material, instrinsic to the nucleus. If the nucleus is unattenuated, then the break energy between the soft-excess and hard component is 0.7+/-0.08 keV. An ionized absorber may produce some tum-up in the spectrum at low energies, but a steepening of the underlying continuum is also required to explain the simultaneous ASCA and HRI data. We cannot rule out the possibility that a significant column of ionized material exists in the line-of-sight, if that is true, then the continuum break-energy can only be constrained to lie within the approximately 0.1 - -0.7 keV band.

  19. Relativistic Iron K Emission and Absorption in the Seyfert 1.9 Galaxy MCG-05-23-16

    NASA Technical Reports Server (NTRS)

    Braito, V.; Reeves, J. N.; Dewangan, G. C.; George, I.; Griffiths, R.; Markowitz, A.; Nandra, K.; Porquet, D.; Ptak, A.; Turner, T. J.; Yaqoob, T.; Weaver, K.

    2007-01-01

    We present the results of the simultaneous deep XMM-Newton and Chandra observations of the bright Seyfert 1.9 galaxy MCG-5-23-16, which is thought to have one of the best known examples of a relativistically broadened iron Kalpha line. We detected a narrow sporadic absorption line at 7.7 keV which appears to be variable on a time-scale of 20 ksec. If associated with FeXXVI this absorption is indicative of a possible variable high ionization, high velocity outflow. The time averaged spectral analysis shows that the iron K-shell complex is best modeled with an unresolved narrow emission component (FWHM less than 5000 kilometers per second, EW approx. 60 eV) plus a broad component. This latter component has FWHM approx. 44000 kilometers per second, an EW approx. 50 eV and its profile is well described with an emission line originating from the accretion disk viewed with an inclination angle approx. 40 deg. and with the emission arising from within a few tens of gravitational radii of the central black hole. The time-resolved spectral analysis of the XMM-Newton EPIC-pn spectrum shows that both the narrow and broad components of the Fe K emission line appear to be constant within the errors. The analysis of the XMM-Newton/RGS spectrum reveals that the soft X-ray emission of MCG-5-23-16 is likely dominated by several emission lines superimposed on an unabsorbed scattered power-law continuum. The lack of strong Fe L shell emission together with the detection of a strong forbidden line in the O VII triplet supports a scenario where the soft X ray emission lines are produced in a plasma photoionized by the nuclear emission.

  20. Far Ultraviolet Spectroscopic Explorer Observations of the Seyfert 1.5 Galaxy NGC 5548 in a Low State

    NASA Technical Reports Server (NTRS)

    Brotherton, M. S.; Green, R. F.; Kriss, G. A.; Oegerle, W.; Kaiser, M. E.; Zheng, W.; Hutchings, J. B.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    We present far-ultraviolet spectra of the Seyfert 1.5 galaxy NGC 5548 obtained in 2000 June with the Far Ultraviolet Spectroscopic Explorer (FUSE). Our data span the observed wavelength range 915-1185 A at a resolution of approximately 20 km s(exp -1). The spectrum shows a weak continuum and emission from O VI (lambda)(lambda)1032, 1038, C III (lambda)977, and He II (lambda)1085. The FUSE data were obtained when the AGN (Active Galactic Nuclei) was in a low state, which has revealed strong, narrow O VI emission lines. We also resolve intrinsic, associated absorption lines of O VI and the Lyman series. Several distinct kinematic components are present, spanning a velocity range of approximately 0 to -1300 km s(exp -1) relative to systemic, with kinematic structure similar to that seen in previous observations of longer wavelength ultraviolet (UV) lines. We explore the relationships between the far-UV (ultraviolet) absorbers and those seen previously in the UV and X-rays. We find that the high-velocity UV absorption component is consistent with being low-ionization, contrary to some previous claims, and is consistent with its non-detection in high-resolution X-ray spectra. The intermediate velocity absorbers, at -300 to -400 km s(exp -1), show H I and O VI column densities consistent with having contributions from both a high-ionization X-ray absorber and a low-ionization UV absorber. No single far-UV absorbing component can be solely identified with the X-ray absorber.

  1. The host galaxy of a narrow-line Seyfert 1 galaxy, RE J1034+396, with X-ray quasi-periodic oscillations

    NASA Astrophysics Data System (ADS)

    Bian, Wei-Hao; Huang, Kai

    2010-01-01

    Using simple stellar population synthesis, we model the bulge stellar contribution in the optical spectrum of a narrow-line Seyfert 1 galaxy, RE J1034+396. We find that its bulge stellar velocity dispersion is 67.7 +/- 8 kms-1. The supermassive black hole (SMBH) mass is about (1-4) × 106 Msolar if it follows the well-known MBH-σ* relation found in quiescent galaxies. We also derive the SMBH mass from the Hβ second moment, which is consistent with that from its bulge stellar velocity dispersion. The SMBH mass of (1-4) × 106 Msolar implies that the X-ray quasi-periodic oscillation (QPO) of RE J1034+396 can be scaled to a high-frequency QPO at 27-108 Hz found in Galactic black hole binaries with a 10-Msolar black hole. With the mass distribution in different age stellar populations, we find that the mean specific star formation rate (SSFR) over the past 0.1 Gyr is 0.0163 +/- 0.0011 Gyr-1, the stellar mass in the logarithm is 10.155 +/- 0.06 in units of solar mass and the current star formation rate is 0.23 +/- 0.016 Msolaryr-1. For RE J1034+396, there is no relation between the Eddington ratio and the SSFR as suggested by Chen et al., despite a larger scatter in their relation. We also suggest that about 7.0 per cent of the total Hα luminosity and 50 per cent of the total [OII] luminosity come from the star formation process.

  2. Peek-a-boo: Mapping Dust in Galaxies with Spitzer IRAC Imaging of Back-lit Galaxy Pairs

    NASA Astrophysics Data System (ADS)

    Kulkarni, Varsha; Higdon, Sarah; Higdon, James

    2010-06-01

    Interstellar dust affects the chemistry and energy budget of galaxies, and can profoundly affect studies of the distant universe. However, very little is known about the nature of interstellar dust in normal galaxies beyond the Milky Way and the Magellanic Clouds. A direct way to probe dust in galaxies is by using partially overlapping (backlit) pairs of galaxies. While this technique has been applied to a few galaxy pairs, it has been used primarily with optical data in B and I bands (and occasionally K band), which are all subject to substantial amounts of dust extinction. Here we propose to observe 15 backlit pairs/polar ring galaxies in IRAC 3.6 and 4.5 micron bands which are much less affected by dust. Our goals are: (1) to obtain essentially un-extinguished reference images for comparison with the existing optical images and thus to determine dust extinction more accurately across different parts of the foreground galaxies; (2) to determine the opacity of some nearby spiral disks and examine whether dust grain sizes decrease in outer parts of disks; (3) to probe large-scale dust structure in some elliptical galaxies; (4) to examine whether dust exhibits fractal structure; and (5) to map star formation rate across the galaxies using the 3.6/4.5 micron flux ratio. The very local nature of our sample allows a detailed look at dust properties at different positions within the galaxies, and examine what galaxy properties drive the variation in dust properties. Our study will provide new implications for observations of the distant universe that are necessarily affected by the presence of dust in foreground galaxies.

  3. A new sample of X-ray selected narrow emission-line galaxies. II. Looking for True Seyfert 2

    NASA Astrophysics Data System (ADS)

    Pons, E.; Watson, M. G.

    2016-10-01

    A sample of X-ray and optically selected narrow emission-line galaxies (769 sources) from the 3XMM catalogue cross-correlated with SDSS (DR9) catalogue has been studied. Narrow-emission line active galactic nuclei (AGN; type-2) have been selected on the basis of their emission line ratios and/or X-ray luminosity. We have looked for X-ray unobscured type-2 AGN. As X-ray spectra were not available for our whole sample, we have checked the reliability of using the X-ray hardness ratio (HR) as a probe of the level of obscuration and we found a very good agreement with full spectral fitting results, with only 2% of the sources with apparently unobscured HR turning out to have an obscured spectrum. Despite the fact that type-2 AGN are supposed to be absorbed based on the Unified Model, about 60% of them show no sign or very low level of X-ray obscuration. After subtraction of contaminants to the sample, that is Narrow-Line Seyfert 1 and Compton-thick AGN, the fraction of unobscured Sy2 drops to 47%. For these sources, we were able to rule out dust reddening and variability for most of them as an explanation of the absence of optical broad emission-lines. The main explanations remaining are the dilution of weak/very broad emission-lines by the host galaxy and the intrinsic absence of the broad-line region (BLR) due to low accretion rates (i.e. True Sy2). However, the number of True Sy2 strongly depends on the method used to verify the intrinsic lack of broad lines. Indeed using the optical continuum luminosity to predict the BLR properties gives a much larger fraction of True Sy2 (about 90% of the unobscured Sy2 sample) than the use of the X-ray 2 keV luminosity (about 20%). Nevertheless the number of AGN we securely detected as True Sy2 is at least three times larger that the previously confirmed number of True Sy2.

  4. The mass of the central black hole in the nearby Seyfert galaxy NGC 5273

    SciTech Connect

    Bentz, Misty C.; Horenstein, Daniel; Bazhaw, Craig; Manne-Nicholas, Emily R.; Ou-Yang, Benjamin J.; Anderson, Matthew; Jones, Jeremy; Norris, Ryan P.; Parks, J. Robert; Saylor, Dicy; Teems, Katherine G.; Turner, Clay

    2014-11-20

    We present the results of a reverberation-mapping program targeting NGC 5273, a nearby early-type galaxy with a broad-lined active galactic nucleus (AGN). Over the course of the monitoring program, NGC 5273 showed strong variability that allowed us to measure time delays in the responses of the broad optical recombination lines to changes in the continuum flux. A weighted average of these measurements results in a black hole mass determination of M {sub BH} = (4.7 ± 1.6) × 10{sup 6} M {sub ☉}. An estimate of the size of the black hole sphere of influence in NGC 5273 puts it just at the limit of the resolution achievable with current ground-based large aperture telescopes. NGC 5273 is therefore an important future target for a black hole mass determination from stellar dynamical modeling, especially because it is the only nearby early-type galaxy hosting an AGN with a reverberation-based mass, allowing the best comparison for the masses determined from these two techniques.

  5. The X-ray Reflectors in the Nucleus of the Seyfert Galaxy NGC 1068

    NASA Technical Reports Server (NTRS)

    Colbert, Edward J. M.; Weaver, Kimberly A.; Krolik, Julian H.; Mulchaey, John S.; Mushotzky, Richard F.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    Based on observations of the Seyfert nucleus in NGC 1068 with ASCA, RXTE and BeppoSAX, we report the discovery of a flare (increase in flux by a factor of approximately 1.6) in the 6.7 keV Fe K line component between observations obtained four months apart, with no significant change in the other (6.21, 6.4, and 6.97 keV) Fe Kalpha line components. During this time, the continuum flux decreased by approximately 20%. The RXTE spectrum requires an Fe K absorption edge near 8.6 keV (Fe XXIII- XXV). The spectral data indicate that the 2-10 keV continuum emission is dominated (approximately 2/3 of the luminosity) by reflection from a previously unidentified region of warm, ionized gas located approximately or less than 0.2 pc from the AGN. The remaining approximately 1/3 of the observed X-ray emission is reflected from optically thick, neutral gas. The coronal gas in the inner Narrow-Line Region (NLR) and/or the cold gas at the inner surface of the obscuring 'torus' are possible cold reflectors. The inferred properties of the warm reflector are: size (diameter) approximately or less than 0.2 pc, gas density n approximately or greater than 10(exp 5.5)/cu cm, ionization parameter xi is approximately 10(exp 3.5) erg cm s(exp -1), and covering fraction 0.003 (L(sub 0)/ 10(exp 43.5) erg s(exp -1)(exp -1) less than (omega/4pi) less than 0.024 (L(sub 0)/ 10(exp 43.5) erg s(exp -1) (exp -1) where L(sub 0) is the intrinsic 2-10 keV X-ray luminosity of the AGN. We suggest that the warm reflector gas is the source of the (variable) 6.7 keV Fe line emission, and the 6.97 keV Fe line emission. The 6.7 keV line flare is assumed to be due to an increase in the emissivity of the warm reflector gas from a decrease (by 20-30%) in L(sub 0). The properties of the warm reflector are most consistent with an intrinsically X-ray weak AGN with L(sub 0) approximately equals 10(exp 43.0) erg s(exp -1). The optical and UV emission that scatters from the warm reflector into our line of sight is

  6. Measuring the Fraction of Bars and Offset Bars Using the Spitzer Survey of Stellar Structure in Galaxies

    NASA Astrophysics Data System (ADS)

    Ross, Alexa

    2012-01-01

    Using the Spitzer Survey of Stellar Structure in Galaxies at 3.6 and 4.5μm, I have measured a preliminary bar fraction and offset bar fraction in the local universe by visually identifying bar structure within a sample of 2,140 local galaxies. A sample this large has not been used since 1963, when Gerard de Vaucouleurs found the bar fraction to be roughly fbar ˜ 0.6 in the Third Reference Catalog of Bright Galaxies. Since then, there has been much debate over the true value of the bar fraction. The purpose of finding a bar fraction using S4G is to provide a final say in this debate. I have found that the bar fraction in the local universe is fbar = 0.69 when including both definite bars (SB) and candidate bars (SAB). I have also measured a preliminary value for the fraction of offset bars using the same sample. Offset bars are a very rare phenomenon. Of the sample used, 91 galaxies are found to be definite offset bars while an additional 39 are found to be candidate offset bars. When including both definite offset bars and candidate offset bars, the offset bar fraction in the local universe becomes fob = 0.12. I also measure the fraction of offset bars as a function of Hubble type and stellar mass. We find that 54% of offset bars are found in disks having a stellar mass of M ≤ 108 M⊙. Late-type disks possess significantly more offset bars than early-type with 60% of offset bars being found in disks having a Hubble type t ≥ 6.

  7. Exploring the Powerful Ionised Wind in the Seyfert Galaxy PG1211+143

    NASA Astrophysics Data System (ADS)

    Pounds, Ken

    2013-10-01

    Highly-ionised high-speed winds in AGN (UFOs) were first detected with XMM-Newton a decade ago, and are now established as a key factor in the study of SMBH accretion, and in the growth and metal enrichment of their host galaxies. However, information on the ionisation and dynamical structure, and the ultimate fate of UFOs remains very limited. We request a 600ks extended XMM-Newton study of the prototype UFO PG1211+143 in AO-13, to obtain high quality EPIC and RGS spectra, to map the flow structure and variability, while seeking evidence for the anticipated interaction with the ISM and possible conversion of the energetic wind to a momentum-driven flow.

  8. The X-ray Power Density Spectrum of the Seyfert 2 Galaxy NGC 4945: Analysis and Application of the Method of Light Curve Simulations

    SciTech Connect

    Mueller, Martin; /SLAC

    2010-12-16

    The study of the power density spectrum (PDS) of fluctuations in the X-ray flux from active galactic nuclei (AGN) complements spectral studies in giving us a view into the processes operating in accreting compact objects. An important line of investigation is the comparison of the PDS from AGN with those from galactic black hole binaries; a related area of focus is the scaling relation between time scales for the variability and the black hole mass. The PDS of AGN is traditionally modeled using segments of power laws joined together at so-called break frequencies; associations of the break time scales, i.e., the inverses of the break frequencies, with time scales of physical processes thought to operate in these sources are then sought. I analyze the Method of Light Curve Simulations that is commonly used to characterize the PDS in AGN with a view to making the method as sensitive as possible to the shape of the PDS. I identify several weaknesses in the current implementation of the method and propose alternatives that can substitute for some of the key steps in the method. I focus on the complications introduced by uneven sampling in the light curve, the development of a fit statistic that is better matched to the distributions of power in the PDS, and the statistical evaluation of the fit between the observed data and the model for the PDS. Using archival data on one AGN, NGC 3516, I validate my changes against previously reported results. I also report new results on the PDS in NGC 4945, a Seyfert 2 galaxy with a well-determined black hole mass. This source provides an opportunity to investigate whether the PDS of Seyfert 1 and Seyfert 2 galaxies differ. It is also an attractive object for placement on the black hole mass-break time scale relation. Unfortunately, with the available data on NGC 4945, significant uncertainties on the break frequency in its PDS remain.

  9. Fermi/LAT Observations of Swift/BAT Seyfert Galaxies: On the Contribution of Radio-Quiet Active Galactic Nuclei to the Extragalactic gamma-Ray Background

    NASA Technical Reports Server (NTRS)

    Teng, Stacy H.; Mushotzky, Richard F.; Sambruna, Rita M.; Davis, David S.; Reynolds, Christopher S.

    2011-01-01

    We present the analysis of 2.1 years of Fermi Large Area Telescope (LAT) data on 491 Seyfert galaxies detected by the Swift Burst Alert Telescope (BAT) survey. Only the two nearest objects, NGC 1068 and NGC 4945, which were identified in the Fermi first year catalog, are detected. Using Swift/BAT and radio 20 cm fluxes, we define a new radio-loudness parameter R(sub X,BAT) where radio-loud objects have logR(sub X,BAT) > -4.7. Based on this parameter, only radio-loud sources are detected by Fermi/LAT. An upper limit to the flux of the undetected sources is derived to be approx.2x10(exp -11) photons/sq cm/s, approximately seven times lower than the observed flux of NGC 1068. Assuming a median redshift of 0.031, this implies an upper limit to the gamma-ray (1-100 GeV) luminosity of < approx.3x10(exp 41) erg/s. In addition, we identified 120 new Fermi/LAT sources near the Swift/BAT Seyfert galaxies with significant Fermi/LAT detections. A majority of these objects do not have Swift/BAT counterparts, but their possible optical counterparts include blazars, flat-spectrum radio quasars, and quasars.

  10. FERMI/LAT OBSERVATIONS OF SWIFT/BAT SEYFERT GALAXIES: ON THE CONTRIBUTION OF RADIO-QUIET ACTIVE GALACTIC NUCLEI TO THE EXTRAGALACTIC {gamma}-RAY BACKGROUND

    SciTech Connect

    Teng, Stacy H.; Mushotzky, Richard F.; Reynolds, Christopher S.; Sambruna, Rita M.; Davis, David S.

    2011-12-01

    We present the analysis of 2.1 years of Fermi Large Area Telescope (LAT) data on 491 Seyfert galaxies detected by the Swift Burst Alert Telescope (BAT) survey. Only the two nearest objects, NGC 1068 and NGC 4945, which were identified in the Fermi first year catalog, are detected. Using Swift/BAT and radio 20 cm fluxes, we define a new radio-loudness parameter R{sub X,BAT} where radio-loud objects have log R{sub X,BAT} > -4.7. Based on this parameter, only radio-loud sources are detected by Fermi/LAT. An upper limit to the flux of the undetected sources is derived to be {approx}2 Multiplication-Sign 10{sup -11} photons cm{sup -2} s{sup -1}, approximately seven times lower than the observed flux of NGC 1068. Assuming a median redshift of 0.031, this implies an upper limit to the {gamma}-ray (1-100 GeV) luminosity of {approx}< 3 Multiplication-Sign 10{sup 41} erg s{sup -1}. In addition, we identified 120 new Fermi/LAT sources near the Swift/BAT Seyfert galaxies with significant Fermi/LAT detections. A majority of these objects do not have Swift/BAT counterparts, but their possible optical counterparts include blazars, flat-spectrum radio quasars, and quasars.

  11. Dust in the nuclei of the Seyfert galaxies Markarian 231 and NGC 4151

    SciTech Connect

    Jones, B.; Worrall, D.M.; Rodriguez-Espinosa, J.M.; Stein, W.A.

    1984-09-01

    Observations carried out with a 8-13 micron grating-spectrometer of Mrk 231 and NGC 4151 are reported. The Mrk 231 data can be fitted to various thermal dust emission models or a single power law, with dust extinction. In all the model fits, except for that of graphite and silicon carbide grain emission, a component of silicate absorption of optical depth of not more than 0.7 is required. Confirming published work, the absorption being at the redshift of the low-redshift absorption-line system is ruled out. The high values of silicate optical depth absorption do not give ratios to the galaxy's visual extinction which are comparable to those of galactic H II regions. Weak evidence for a 10-micron absorption feature in NGC 4151 is also reported. This is somewhat contrary to expectation, since the visual extinction of NGC 4151 is lower than that of Mrk 231, and since there is evidence to support a nonthermal rather than thermal dust origin for the infrared continuum emission. 46 references.

  12. X-ray observations of the Compton-thick Seyfert 2 galaxy, NGC 5643

    NASA Astrophysics Data System (ADS)

    Matt, G.; Bianchi, S.; Marinucci, A.; Guainazzi, M.; Iwawasa, K.; Jimenez Bailon, E.

    2013-08-01

    We present results from a ~55 ks long XMM-Newton observation of the obscured AGN, NGC 5643, performed in July 2009. A previous, shorter (about 10 ks) XMM-Newton observation in February 2003 had left two major issues open, the nature of the hard X-ray emission (Compton-thin vs. Compton-thick) and of the soft X-ray excess (photoionized vs. collisionally ionized matter). The new observation shows that the source is Compton-thick and that the dominant contribution to the soft X-ray emission is by photoionized matter (even if it is still unclear whether collisionally ionized matter may contribute as well). We also studied three bright X-ray sources that are in the field of NGC 5643. The ULX NGC 5643 X-1 was confirmed to be very luminous, even if more than a factor 2 fainter than in 2003. We then provided the first high-quality spectrum of the cluster of galaxies Abell 3602. The last source, CXOJ143244.5-442020, is likely an unobscured AGN, possibly belonging to Abell 3602.

  13. The Complex Physics of Dusty Star-forming Galaxies at High Redshifts as Revealed by Herschel and Spitzer

    NASA Astrophysics Data System (ADS)

    Lo Faro, B.; Franceschini, A.; Vaccari, M.; Silva, L.; Rodighiero, G.; Berta, S.; Bock, J.; Burgarella, D.; Buat, V.; Cava, A.; Clements, D. L.; Cooray, A.; Farrah, D.; Feltre, A.; González Solares, E. A.; Hurley, P.; Lutz, D.; Magdis, G.; Magnelli, B.; Marchetti, L.; Oliver, S. J.; Page, M. J.; Popesso, P.; Pozzi, F.; Rigopoulou, D.; Rowan-Robinson, M.; Roseboom, I. G.; Scott, Douglas; Smith, A. J.; Symeonidis, M.; Wang, L.; Wuyts, S.

    2013-01-01

    We combine far-infrared photometry from Herschel (PEP/HerMES) with deep mid-infrared spectroscopy from Spitzer to investigate the nature and the mass assembly history of a sample of 31 luminous and ultraluminous infrared galaxies ((U)LIRGs) at z ~ 1 and 2 selected in GOODS-S with 24 μm fluxes between 0.2 and 0.5 mJy. We model the data with a self-consistent physical model (GRASIL) which includes a state-of-the-art treatment of dust extinction and reprocessing. We find that all of our galaxies appear to require massive populations of old (>1 Gyr) stars and, at the same time, to host a moderate ongoing activity of star formation (SFR <= 100 M ⊙ yr-1). The bulk of the stars appear to have been formed a few Gyr before the observation in essentially all cases. Only five galaxies of the sample require a recent starburst superimposed on a quiescent star formation history. We also find discrepancies between our results and those based on optical-only spectral energy distribution (SED) fitting for the same objects; by fitting their observed SEDs with our physical model we find higher extinctions (by ΔA V ~ 0.81 and 1.14) and higher stellar masses (by Δlog(M sstarf) ~ 0.16 and 0.36 dex) for z ~ 1 and z ~ 2 (U)LIRGs, respectively. The stellar mass difference is larger for the most dust-obscured objects. We also find lower SFRs than those computed from L IR using the Kennicutt relation due to the significant contribution to the dust heating by intermediate-age stellar populations through "cirrus" emission (~73% and ~66% of the total L IR for z ~ 1 and z ~ 2 (U)LIRGs, respectively). Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  14. THE COMPLEX PHYSICS OF DUSTY STAR-FORMING GALAXIES AT HIGH REDSHIFTS AS REVEALED BY HERSCHEL AND SPITZER

    SciTech Connect

    Lo Faro, B.; Franceschini, A.; Vaccari, M.; Rodighiero, G.; Feltre, A.; Marchetti, L.; Silva, L.; Berta, S.; Lutz, D.; Magnelli, B.; Bock, J.; Burgarella, D.; Buat, V.; Cava, A.; Clements, D. L.; Cooray, A.; Farrah, D.; Hurley, P.; Solares, E. A. Gonzalez; Magdis, G.; and others

    2013-01-10

    We combine far-infrared photometry from Herschel (PEP/HerMES) with deep mid-infrared spectroscopy from Spitzer to investigate the nature and the mass assembly history of a sample of 31 luminous and ultraluminous infrared galaxies ((U)LIRGs) at z {approx} 1 and 2 selected in GOODS-S with 24 {mu}m fluxes between 0.2 and 0.5 mJy. We model the data with a self-consistent physical model (GRASIL) which includes a state-of-the-art treatment of dust extinction and reprocessing. We find that all of our galaxies appear to require massive populations of old (>1 Gyr) stars and, at the same time, to host a moderate ongoing activity of star formation (SFR {<=} 100 M {sub Sun} yr{sup -1}). The bulk of the stars appear to have been formed a few Gyr before the observation in essentially all cases. Only five galaxies of the sample require a recent starburst superimposed on a quiescent star formation history. We also find discrepancies between our results and those based on optical-only spectral energy distribution (SED) fitting for the same objects; by fitting their observed SEDs with our physical model we find higher extinctions (by {Delta}A {sub V} {approx} 0.81 and 1.14) and higher stellar masses (by {Delta}log(M {sub *}) {approx} 0.16 and 0.36 dex) for z {approx} 1 and z {approx} 2 (U)LIRGs, respectively. The stellar mass difference is larger for the most dust-obscured objects. We also find lower SFRs than those computed from L {sub IR} using the Kennicutt relation due to the significant contribution to the dust heating by intermediate-age stellar populations through 'cirrus' emission ({approx}73% and {approx}66% of the total L {sub IR} for z {approx} 1 and z {approx} 2 (U)LIRGs, respectively).

  15. X-RAY HIGH-RESOLUTION SPECTROSCOPY REVEALS FEEDBACK IN A SEYFERT GALAXY FROM AN ULTRA-FAST WIND WITH COMPLEX IONIZATION AND VELOCITY STRUCTURE

    SciTech Connect

    Longinotti, A. L.; Krongold, Y.; Guainazzi, M.; Santos-Lleo, M.; Rodriguez-Pascual, P.; Giroletti, M.; Panessa, F.; Costantini, E.

    2015-11-10

    Winds outflowing from active galactic nuclei (AGNs) may carry significant amounts of mass and energy out to their host galaxies. In this paper we report the detection of a sub-relativistic outflow observed in the narrow line Seyfert 1 galaxy IRAS 17020+4544 as a series of absorption lines corresponding to at least five absorption components with an unprecedented wide range of associated column densities and ionization levels and velocities in the range of 23,000–33,000 km s{sup −1}, detected at X-ray high spectral resolution (E/ΔE ∼ 1000) with the ESA's observatory XMM-Newton. The charge states of the material constituting the wind clearly indicate a range of low to moderate ionization states in the outflowing gas and column densities that are significantly lower than observed in highly ionized ultra-fast outflows. We estimate that at least one of the outflow components may carry sufficient energy to substantially suppress star formation and heat the gas in the host galaxy. IRAS 17020+4544 therefore provides an interesting example of feedback by a moderately luminous AGN that is hosted in a spiral galaxy, a case barely envisaged in most evolution models, which often predict that feedback processes take place in massive elliptical galaxies hosting luminous quasars in a post-merger phase.

  16. THE SWIFT BURST ALERT TELESCOPE DETECTED SEYFERT 1 GALAXIES: X-RAY BROADBAND PROPERTIES AND WARM ABSORBERS

    SciTech Connect

    Winter, Lisa M.; Veilleux, Sylvain; McKernan, Barry; Kallman, T. R.

    2012-02-01

    We present results from an analysis of the broadband, 0.3-195 keV, X-ray spectra of 48 Seyfert 1-1.5 sources detected in the very hard X-rays with the Swift Burst Alert Telescope (BAT). This sample is selected in an all-sky survey conducted in the 14-195 keV band. Therefore, our sources are largely unbiased toward both obscuration and host galaxy properties. Our detailed and uniform model fits to Suzaku/BAT and XMM-Newton/BAT spectra include the neutral absorption, direct power-law, reflected emission, soft excess, warm absorption, and narrow Fe I K{alpha} emission properties for the entire sample. We significantly detect O VII and O VIII edges in 52% of our sample. The strength of these detections is strongly correlated with the neutral column density measured in the spectrum. Among the strongest detections, X-ray grating and UV observations, where available, indicate outflowing material. The ionized column densities of sources with O VII and O VIII detections are clustered in a narrow range with N{sub warm} {approx} 10{sup 21} cm{sup -2}, while sources without strong detections have column densities of ionized gas an order of magnitude lower. Therefore, we note that sources without strong detections likely have warm ionized outflows present but at low column densities that are not easily probed with current X-ray observations. Sources with strong complex absorption have a strong soft excess, which may or may not be due to difficulties in modeling the complex spectra of these sources. Still, the detection of a flat {Gamma} {approx} 1 and a strong soft excess may allow us to infer the presence of strong absorption in low signal-to-noise active galactic nucleus spectra. Additionally, we include a useful correction from the Swift BAT luminosity to bolometric luminosity, based on a comparison of our spectral fitting results with published spectral energy distribution fits from 33 of our sources.

  17. FE K EMISSION AND ABSORPTION FEATURES IN THE XMM-EPIC SPECTRUM OF THE SEYFERT GALAXY IC 4329A

    NASA Technical Reports Server (NTRS)

    Markowitz, A.; Reeves, J. N.; Braito, V.

    2001-01-01

    We present a re-analysis of the XMM-Newton long-look of the X-ray bright Seyfert galaxy IC 4329a. The Fe K bandpass is dominated by two peaks, consistent with emission from neutral or near-neutral Fe Ka and KP. A relativistic diskline model whereby both peaks are the result of one doubly-peaked diskline profile is found to be a poor description of the data. Models using two relativistic disklines are found to describe the emission profile well. A low-inclination, moderately-relativistic dual-diskline model is possible if the contribution from narrow components, due to distant material, is small or absent. A high-inclination, moderately relativistic profile for each peak is possible if there are roughly equal contributions from both the broad and narrow components. Upper limits on Fe XXV and Fe XXVI emission and absorption at the systemic velocity of IC 4329a are obtained. We also present the results of RXTE monitoring of this source obtained so far; the combined XMM-Newton and RXTE data sets allow us to explore the time-resolved spectral behavior of this source on time scales ranging from hours to 2 years. We find no strong evidence for variability of the Fe Ka emission line on any time scale probed, likely due to the minimal level of continuum variability. We detect a narrow absorption line, at a energy of 7.68 keV in the rest frame of the source; its significance has been confirmed using Monte Carlo simulations. This feature is most likely due to absorption from Fe XXVI blueshifted to approximately 0.1c relative to the systemic velocity, making IC 4329a the lowest-redshift AGN known with a high-velocity, highly-ionized outflow component. As is often the case with similar outflows seen in high-luminosity quasars, the estimated mass outflow rate is larger than the inflow accretion rate, signaling that the outflow represents a substantial portion of the total energy budget of the AGN. The outflow could arise from a radiatively-driven disk wind, or it may be in the

  18. SUBMILLIMETER LINE SPECTRUM OF THE SEYFERT GALAXY NGC 1068 FROM THE HERSCHEL-SPIRE FOURIER TRANSFORM SPECTROMETER

    SciTech Connect

    Spinoglio, Luigi; Pereira-Santaella, Miguel; Busquet, Gemma; Schirm, Maximilien R. P.; Wilson, Christine D.; Parkin, Tara J.; Glenn, Jason; Kamenetzky, Julia; Rangwala, Naseem; Maloney, Philip R.; Bendo, George J.; Madden, Suzanne C.; Boselli, Alessandro; Cooray, Asantha; Page, Mathew J.

    2012-10-20

    The first complete submillimeter spectrum (190-670 {mu}m) of the Seyfert 2 galaxy NGC 1068 has been observed with the SPIRE Fourier transform spectrometer on board the Herschel Space Observatory. The sequence of CO lines (J {sub up} = 4-13), lines from H{sub 2}O, the fundamental rotational transition of hydrogen fluoride, two o-H{sub 2}O{sup +} lines, and one line each from CH{sup +} and OH{sup +} have been detected, together with the two [C I] lines and the [N II] 205 {mu}m line. The observations in both single pointing mode with sparse image sampling and in mapping mode with full image sampling allow us to disentangle two molecular emission components, one due to the compact circumnuclear disk (CND) and one from the extended region encompassing the star-forming ring (SF-ring). Radiative transfer models show that the two CO components are characterized by densities of n(H{sub 2}) = 10{sup 4.5} and 10{sup 2.9} cm{sup -3} and temperatures of T {sub kin} = 100 K and 127 K, respectively. A comparison of the CO line intensities with the photodissociation region (PDR) and X-ray-dominated region (XDR) models, together with the other observational constraints, such as the observed CO surface brightness and the radiation field, indicates that the best explanation for the CO excitation of the CND is an XDR with a density of n(H{sub 2}) {approx} 10{sup 4} cm{sup -3} and an X-ray flux of 9 erg s{sup -1} cm{sup -2}, consistent with illumination by the active galactic nucleus, while the CO lines in the SF-ring are better modeled by a PDR. The detected water transitions, together with those observed with the Herschel PACS spectrometer, can be modeled by a large velocity gradient model with low temperature (T {sub kin} {approx} 40 K) and high density (n(H{sub 2}) in the range 10{sup 6.7}-10{sup 7.9} cm{sup -3}). The emission of H{sub 2}O{sup +} and OH{sup +} are in agreement with PDR models with cosmic-ray ionization. The diffuse ionized atomic component observed through the [N

  19. Submillimeter Line Spectrum of the Seyfert Galaxy NGC 1068 from the Herschel-SPIRE Fourier Transform Spectrometer

    NASA Astrophysics Data System (ADS)

    Spinoglio, Luigi; Pereira-Santaella, Miguel; Busquet, Gemma; Schirm, Maximilien R. P.; Wilson, Christine D.; Glenn, Jason; Kamenetzky, Julia; Rangwala, Naseem; Maloney, Philip R.; Parkin, Tara J.; Bendo, George J.; Madden, Suzanne C.; Wolfire, Mark G.; Boselli, Alessandro; Cooray, Asantha; Page, Mathew J.

    2012-10-01

    The first complete submillimeter spectrum (190-670 μm) of the Seyfert 2 galaxy NGC 1068 has been observed with the SPIRE Fourier transform spectrometer on board the Herschel Space Observatory. The sequence of CO lines (J up = 4-13), lines from H2O, the fundamental rotational transition of hydrogen fluoride, two o-H2O+ lines, and one line each from CH+ and OH+ have been detected, together with the two [C I] lines and the [N II] 205 μm line. The observations in both single pointing mode with sparse image sampling and in mapping mode with full image sampling allow us to disentangle two molecular emission components, one due to the compact circumnuclear disk (CND) and one from the extended region encompassing the star-forming ring (SF-ring). Radiative transfer models show that the two CO components are characterized by densities of n(H2) = 104.5 and 102.9 cm-3 and temperatures of T kin = 100 K and 127 K, respectively. A comparison of the CO line intensities with the photodissociation region (PDR) and X-ray-dominated region (XDR) models, together with the other observational constraints, such as the observed CO surface brightness and the radiation field, indicates that the best explanation for the CO excitation of the CND is an XDR with a density of n(H2) ~ 104 cm-3 and an X-ray flux of 9 erg s-1 cm-2, consistent with illumination by the active galactic nucleus, while the CO lines in the SF-ring are better modeled by a PDR. The detected water transitions, together with those observed with the Herschel PACS spectrometer, can be modeled by a large velocity gradient model with low temperature (T kin ~ 40 K) and high density (n(H2) in the range 106.7-107.9 cm-3). The emission of H2O+ and OH+ are in agreement with PDR models with cosmic-ray ionization. The diffuse ionized atomic component observed through the [N II] 205 μm line is consistent with previous photoionization models of the starburst. Herschel is an ESA space observatory with science instruments provided by

  20. The broad-line region and dust torus size of the Seyfert 1 galaxy PGC 50427

    NASA Astrophysics Data System (ADS)

    Pozo Nuñez, F.; Ramolla, M.; Westhues, C.; Haas, M.; Chini, R.; Steenbrugge, K.; Barr Domínguez, A.; Kaderhandt, L.; Hackstein, M.; Kollatschny, W.; Zetzl, M.; Hodapp, K. W.; Murphy, M.

    2015-04-01

    We present the results of three-year monitoring campaigns of the z = 0.024 type 1 active Galactic nucleus (AGN) PGC 50427. Using robotic telescopes of the Universitätssternwarte Bochum near Cerro Armazones in Chile, we monitored PGC 50427 in the optical and near-infrared (NIR). Through the use of photometric reverberation mapping with broad- and narrowband filters, we determine the size of the broad-line emitting region by measuring the time delay between the variability of the continuum and the Hα emission line. The Hα emission line responds to blue continuum variations with an average rest frame lag of 19.0 ± 1.23 days. Using single epoch spectroscopy obtained with the Southern African Large Telescope (SALT) we determined a broad-line Hα velocity width of 1020 km s-1 and in combination with the rest frame lag and adoption of a geometric scaling factor f = 5.5, we calculate a black hole mass of MBH ~ 17 × 106 M⊙. Using the flux variation gradient method, we separate the host galaxy contribution from that of the AGN to calculate the rest frame 5100 Å luminosity at the time of our monitoring campaign. We measured small luminosity variations in the AGN (~10%) accross the three years of the monitoring campaign. The rest frame lag and the host-subtracted luminosity permit us to derive the position of PGC 50427 in the BLR size - AGN luminosity diagram, which is remarkably close to the theoretically expected relation of R ∝ L0.5. The simultaneous optical and NIR (J and Ks) observations allow us to determine the size of the dust torus through the use of dust reverberation mapping method. We find that the hot dust emission (~1800 K) lags the optical variations with an average rest frame lag of 46.2 ± 2.60 days. The dust reverberation radius and the nuclear NIR luminosity permit us to derive the position of PGC 50427 on the known τ - MV diagram. The simultaneous observations for the broad-line region and dust thermal emission demonstrate that the innermost dust

  1. Bright galaxies at z=9-11 from pure-parallel HST observations: Building a unique sample for JWST with Spitzer/IRAC

    NASA Astrophysics Data System (ADS)

    Bernard, Stephanie; Trenti, Michele; Bouwens, Rychard

    2016-08-01

    The combination of observations taken by Hubble and Spitzer revealed the unexpected presence of sources as bright as our own Milky Way as early as 400 Myr after the Big Bang, potentially highlighting a new highly efficient regime for star formation in L>L* galaxies at very early times. Yet, the sample of high-quality z>8 galaxies that have both HST and Spitzer/IRAC imaging is still very small, particularly at high luminosities. We propose here to remedy this situation and efficiently follow-up with Spitzer/IRAC the most promising z>8 sources from our Hubble Brightest of Reionizing Galaxies (BoRG) survey, which covers a footprint on the sky similar to CANDELS, provides a deeper search than ground-based surveys like UltraVISTA, and is robust against cosmic variance because of its 180 independent lines of sight. The proposed new 3.6 micron observations will continue the Spitzer cycle 12 BORG911 program and target 15 additional fields, leveraging over 300 new HST orbits (350 sqarcmin) to identify a final sample of about 5 to 10 bright galaxies at z >= 8.5. For optimal time use (just over 22 hours), our goal is to readily discriminate between z>8 sources (undetected or marginally detected in IRAC) and z~2 interlopers (strongly detected in IRAC) with just 1-2 hours per pointing. The high-quality candidates that we will identify with IRAC will be ideal targets for further studies to investigate the reionization state of the inter-galactic medium through near-IR Keck/VLT spectroscopy. They will also be uniquely suited to measurement of the redshift and stellar population properties through JWST/NIRSPEC observations, with the potential to elucidate how the first generations of stars are assembled in the earliest stages of the epoch of reionization.

  2. SUZAKU MONITORING OF THE SEYFERT 1 GALAXY NGC 5548: WARM ABSORBER LOCATION AND ITS IMPLICATION FOR COSMIC FEEDBACK

    SciTech Connect

    Krongold, Y.; Andrade-Velazquez, M.; Binette, L.; Jimenez-Bailon, E.; Elvis, M.; Nicastro, F.; Brickhouse, N. S.; Liu, Y.; Wilkes, B.; Mathur, S.; Reeves, J. N.; Grupe, D.; McHardy, I. M.; Minezaki, T.; Yoshii, Y.

    2010-02-10

    We present a 2 month Suzaku X-ray monitoring of the Seyfert 1 galaxy NGC 5548. The campaign consists of seven observations (with exposure time of {approx}30 ks each), separated by {approx}1 week. This paper focus on the X-ray Imaging Spectrometer data of NGC 5548. We analyze the response in the opacity of the gas that forms the well-known ionized absorber in this source for ionizing flux variations. Despite variations by a factor of {approx}4 in the impinging continuum, the soft X-ray spectra of the source show little spectral variations, suggesting no response from the ionized absorber. A detailed time modeling of the spectra confirms the lack of opacity variations for an absorbing component with high ionization (U{sub X} {approx} -0.85), and high outflow velocity (v{sub out} {approx} 1040 km s{sup -1}), as the ionization parameter was found to be consistent with a constant value during the whole campaign. Instead, the models suggest that the ionization parameter of a low ionization (U{sub X} {approx} -2.8), low velocity (v{sub out} {approx} 590 km s{sup -1}) absorbing component might be changing linearly with the ionizing flux, as expected for gas in photoionization equilibrium. However, given the lack of spectral variations among observations, we consider the variations in this component as tentative. Using the lack of variations, we set an upper limit of n{sub e} < 2.0 x 10{sup 7} cm{sup -3} for the electron density of the gas forming the high ionization, high velocity component. This implies a large distance from the continuum source (R>0.033 pc; R>5000R{sub S} ). If the variations in the low ionization, low velocity component are real, they imply n{sub e} >9.8 x 10{sup 4} cm{sup -3} and R < 3 pc. We discuss our results in terms of two different scenarios: a large-scale outflow originating in the inner parts of the accretion disk, or a thermally driven wind originating much farther out. Given the large distance of the wind, the implied mass outflow rate is

  3. The Spitzer Mid-Infrared Survey of the Inner 2 x 1.5 Degrees of the Galaxy

    NASA Astrophysics Data System (ADS)

    Smith, H. A.; Stolovy, S.; Ramirez, S.; Law, C.; Gezari, D.; Arendt, R.; Cotera, A.; Karr, J.; Yusef-Zadeh, F.; Moseley, H.; Sellgren, K.; Smith, R.

    2006-08-01

    We present IRAC observations of the central 2 x 1.5 degrees (280 x 210 pc) of the Galaxy with 1-2" spatial resolution, corresponding to 0.04-0.08 pc. These data represent the highest spatial resolution and sensitivity large-scale map made to date of the GC at mid-infrared wavelengths. The IRAC data provide a census of the optically obscured stellar sources as well as a detailed map of the highly filamentary structure in the interstellar medium, much of which is dominated by PAH emission from small grains in star-forming regions. Dark clouds displaying a large variety of sizes and morphologies are imaged, many of which remain opaque at IRAC wavelengths. Different views of the GC, spanning radio through x-ray wavelengths, provide comparisons we can use to determine which objects are likely to be foreground. We discuss in particular the 10x10 arcminute area around the Sickle, the Pistol star and the Pistol nebula. The Sickle, the ionized edge of a molecular cloud, has previously been observed in thermal radio emission to have a curved appearance with a center of curvature near the Quintuplet star cluster. Our Spitzer observations at 2'' resolution reveal that the Sickle is comprised of a series of finger-like structures. We interpret these to be formed by photoevaporation of the dense molecular material by the intense UV radiation from the hot, massive stars in the Quintuplet cluster.

  4. MODELING DUST AND STARLIGHT IN GALAXIES OBSERVED BY SPITZER AND HERSCHEL: NGC 628 AND NGC 6946

    SciTech Connect

    Aniano, G.; Draine, B. T.; Calzetti, D.; Crocker, A.; Dale, D. A.; Engelbracht, C. W.; Gordon, K. D.; Hunt, L. K.; Kennicutt, R. C.; Galametz, M.; Krause, O.; Rix, H.-W.; Sandstrom, K.; Walter, F.; Leroy, A. K.; Roussel, H.; Sauvage, M.; Bolatto, A. D.; Donovan Meyer, J. E-mail: draine@astro.princeton.edu; and others

    2012-09-10

    We characterize the dust in NGC 628 and NGC 6946, two nearby spiral galaxies in the KINGFISH sample. With data from 3.6 {mu}m to 500 {mu}m, dust models are strongly constrained. Using the Draine and Li dust model (amorphous silicate and carbonaceous grains), for each pixel in each galaxy we estimate (1) dust mass surface density, (2) dust mass fraction contributed by polycyclic aromatic hydrocarbons, (3) distribution of starlight intensities heating the dust, (4) total infrared (IR) luminosity emitted by the dust, and (5) IR luminosity originating in regions with high starlight intensity. We obtain maps for the dust properties, which trace the spiral structure of the galaxies. The dust models successfully reproduce the observed global and resolved spectral energy distributions (SEDs). The overall dust/H mass ratio is estimated to be 0.0082 {+-} 0.0017 for NGC 628, and 0.0063 {+-} 0.0009 for NGC 6946, consistent with what is expected for galaxies of near-solar metallicity. Our derived dust masses are larger (by up to a factor of three) than estimates based on single-temperature modified blackbody fits. We show that the SED fits are significantly improved if the starlight intensity distribution includes a (single intensity) 'delta function' component. We find no evidence for significant masses of cold dust (T {approx}< 12 K). Discrepancies between PACS and MIPS photometry in both low and high surface brightness areas result in large uncertainties when the modeling is done at PACS resolutions, in which case SPIRE, MIPS70, and MIPS160 data cannot be used. We recommend against attempting to model dust at the angular resolution of PACS.

  5. Diffuse emission and pathological Seyfert spectra

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.

    1995-01-01

    In this annual ROSAT status report, the diffuse emission and spectra from Seyfert galaxies are examined. Three papers are presented and their contents include the soft x-ray properties and spectra of a binary millisecond pulsar, the PSPC and HRI observations of a Starburst/Seyfert 2 Galaxy, and an analysis of the possibility of x-ray luminous starbursts in the Einstein Medium Sensitivity Survey.

  6. The size of the narrow-line-emitting region in the Seyfert 1 galaxy NGC 5548 from emission-line variability

    SciTech Connect

    Peterson, B. M.; Denney, K. D.; De Rosa, G.; Grier, C. J.; Pogge, R. W.; Kochanek, C. S.; Bentz, M. C.; Vestergaard, M.; Kilerci-Eser, E.; Dalla Bontà, E.; Ciroi, S.

    2013-12-20

    The narrow [O III] λλ4959, 5007 emission-line fluxes in the spectrum of the well-studied Seyfert 1 galaxy NGC 5548 are shown to vary with time. From this we show that the narrow-line-emitting region has a radius of only 1-3 pc and is denser (n {sub e} ∼ 10{sup 5} cm{sup –3}) than previously supposed. The [O III] line width is consistent with virial motions at this radius given previous determinations of the black hole mass. Since the [O III] emission-line flux is usually assumed to be constant and is therefore used to calibrate spectroscopic monitoring data, the variability has ramifications for the long-term secular variations of continuum and emission-line fluxes, though it has no effect on shorter-term reverberation studies. We present corrected optical continuum and broad Hβ emission-line light curves for the period 1988-2008.

  7. Einstein Observatory SSS and MPC observations of the complex X-ray spectra of Seyfert galaxies. [Solid State Spectrometer and Monitor Proportional Counter

    NASA Technical Reports Server (NTRS)

    Turner, T. J.; Weaver, K. A.; Mushotzky, R. F.; Holt, S. S.; Madejski, G. M.

    1991-01-01

    The X-ray spectra of 25 Seyfert galaxies measured with the Solid State Spectrometer on the Einstein Observatory have been investigated. This new investigation utilizes simultaneous data from the Monitor Proportional Counter, and automatic correction for systematic effects in the Solid State Spectrometer which were previously handled subjectively. It is found that the best-fit single-power-law indices generally agree with those previously reported, but that soft excesses of some form are inferred for about 48 percent of the sources. One possible explanation of the soft excess emission is a blend of soft X-ray lines, centered around 0.8 keV. The implications of these results for accretion disk models are discussed.

  8. Simultaneous Ultraviolet and X-Ray Observations of the Seyfert Galaxy NGC 4151. II. Physical Conditions in the UV Absorbers

    NASA Astrophysics Data System (ADS)

    Kraemer, S. B.; Crenshaw, D. M.; Gabel, J. R.; Kriss, G. A.; Netzer, H.; Peterson, B. M.; George, I. M.; Gull, T. R.; Hutchings, J. B.; Mushotzky, R. F.; Turner, T. J.

    2006-12-01

    We present a detailed analysis, including photoionization modeling, of the intrinsic absorption in the Seyfert 1 galaxy NGC 4151 using ultraviolet (UV) spectra from the Hubble Space Telescope Space Telescope Imaging Spectrograph and the Far Ultraviolet Spectrographic Explorer obtained 2002 May as part of a set of contemporaneous observations that included Chandra High Energy Transmission Grating Spectrometer spectra. In our analysis of the Chandra spectra, we determined that the X-ray absorption was dominated by two components: a high-ionization absorber, revealed by the presence of H-like and He-like lines of Mg, Si, and S, and a lower ionization absorber, in which inner shell absorption lines from lower ionization species of these elements formed. We identified the latter as the source of the saturated UV lines of O VI, C IV, and N V associated with the absorption feature at a radial velocity of ~-500 km s-1, which we referred to as component D+E. In the present work, we have derived tighter constrains on the line-of-sight covering factors, densities, and radial distances of the absorbers. We confirm the presence of the three subcomponents of D+E described in our previous paper, with line-of-sight covering factors (Clos) ranging from ~0.5 to 0.9, and find evidence for a fourth component, D+Ed, characterized by low ionization and a Clos~0.2. The complexity of the UV absorption in NGC 4151 may be a consequence of the fact that we are viewing the black hole/accretion disk system at a relatively high inclination and, therefore, may be detecting the densest part of the flow. Our deconvolution of the underlying C IV emission indicates that D+E must lie outside the intermediate line region (ILR), hence at a radial distance of ~0.1 pc. We find that the equivalent widths (EWs) of the low-ionization lines associated with D+E varied over the period from 1999 July to 2002 May. Although over part of this time, the variations were correlated with changes in the UV continuum

  9. Formation of permitted lines in the spectrum of type 1 Seyfert galaxies and quasars. II - Fe II lines and the low excitation region

    NASA Astrophysics Data System (ADS)

    Collin-Souffrin, S.; Joly, M.; Dumont, S.; Heidmann, N.

    1980-03-01

    Following a previous study (Collin-Souffrin et al., 1979) we investigate the relative intensities of the visible and UV lines of the intense Fe II spectrum of type 1 Seyfert galaxies and quasars. A 9-level atom is used in the computation of the line intensities and relatively accurate collision strengths are computed as we devote particular attention to the collisional excitation mechanism. We confirm that the excitation mechanism is collisional: we show that, in addition to the drawbacks mentioned in Paper I, if the excitation was radiative, the line intensities would be too small compared to the observations. We find that relative intensities of the Fe II lines and of the Mg II 2798 line are well accounted for by an emission region with 1010 ≦ ne ≦ 1011 and 7500 ≦ Te ≦ 10,000 °K. The optical thickness in the UV lines of Fe II is large (˜105). We examine also other low excitation lines and show that Hα is likely to be emitted at least partly by the same Fe II region, while Lα, Si II, O I, should be emitted by a hotter region and Ca II by a colder one. The Fe II region is ionized by collisions from level 2 of hydrogen which is populated by the trapped Lα photons (τLα ˜109). We discuss the geometry of this Fe II region, and find typical dimensions of R ˜ 1016 cm, and H (thickness) ˜ 1014-1016 cm. Finally we examine the significance of this region and conclude that it is likely to be the outer part of an extended accretion disk completely shielded from the UV and X radiation of the central object. We discuss the reality of the photoionized models and, although we are not able to give a definite answer to this problem, we suggest that the collisional models could perhaps account for all the broad lines in quasars and Seyfert 1 galaxies.

  10. Structure of the Circumnuclear Region of Seyfert 2 Galaxies Revealed by Rossi X-Ray Timing Explorer Hard X-Ray Observations of NGC 4945.

    PubMed

    Madejski; Zycki; Done; Valinia; Blanco; Rothschild; Turek

    2000-06-01

    NGC 4945 is one of the brightest Seyfert galaxies on the sky at 100 keV, but is completely absorbed below 10 keV; its absorption column is probably the largest that still allows a direct view of the nucleus at hard X-ray energies. Our observations of it with the Rossi X-Ray Timing Explorer (RXTE) satellite confirm the large absorption, which for a simple phenomenological fit using an absorber with solar abundances implies a column of 4.5+0.4-0.4x1024 cm(-2). Using a more realistic scenario (requiring Monte Carlo modeling of the scattering), we infer the optical depth to Thomson scattering of approximately 2.4. If such a scattering medium were to subtend a large solid angle from the nucleus, it should smear out any intrinsic hard X-ray variability on timescales shorter than the light-travel time through it. The rapid (with a timescale of approximately 1 day) hard X-ray variability of NGC 4945 discovered by us with RXTE implies that the bulk of the extreme absorption in this object does not originate in a parsec-size, geometrically thick molecular torus. Instead, the optically thick material on parsec scales must be rather geometrically thin, subtending a half-angle less than 10 degrees, and it is likely to be the same disk of material that is responsible for the water maser emission observed in NGC 4945. Local number counts of Seyfert 1 and Seyfert 2 galaxies show a large population of heavily obscured active galactic nuclei (AGNs) which are proposed to make up the cosmic X-ray background (CXRB). However, for this to be the case, the absorption geometry in the context of axially symmetric unification schemes must have the obscuring material subtending a large scale height-contrary to our inferences about NGC 4945-implying that NGC 4945 is not a prototype of obscured AGNs postulated to make up the CXRB. The small solid angle of the absorber, together with the black hole mass (of approximately 1.4x106 M( middle dot in circle)) from megamaser measurements, allows a

  11. MID-INFRARED PROPERTIES OF NEARBY LUMINOUS INFRARED GALAXIES. I. SPITZER INFRARED SPECTROGRAPH SPECTRA FOR THE GOALS SAMPLE

    SciTech Connect

    Stierwalt, S.; Armus, L.; Surace, J. A.; Inami, H.; Petric, A. O.; Diaz-Santos, T.; Haan, S.; Howell, J.; Marshall, J.; Charmandaris, V.; Kim, D. C.; Mazzarella, J. M.; Chan, B.; Spoon, H. W. W.; Veilleux, S.; Evans, A.; Sanders, D. B.; Appleton, P.; Bothun, G.; Bridge, C. R.; and others

    2013-05-01

    The Great Observatories All-Sky LIRG Survey (GOALS) is a comprehensive, multiwavelength study of luminous infrared galaxies (LIRGs) in the local universe. Here we present low resolution Spitzer Infrared Spectrograph spectra covering 5-38 {mu}m and provide a basic analysis of the mid-IR spectral properties observed for nearby LIRGs. In a companion paper, we discuss detailed fits to the spectra and compare the LIRGs to other classes of galaxies. The GOALS sample of 244 nuclei in 180 luminous (10{sup 11} {<=} L {sub IR}/L {sub Sun} < 10{sup 12}) and 22 ultraluminous (L {sub IR}/L {sub Sun} {>=} 10{sup 12}) IR galaxies represents a complete subset of the IRAS Revised Bright Galaxy Sample and covers a range of merger stages, morphologies, and spectral types. The majority (>60%) of the GOALS LIRGs have high 6.2 {mu}m polycyclic aromatic hydrocarbon (PAH) equivalent widths (EQW{sub 6.2{mu}m} > 0.4 {mu}m) and low levels of silicate absorption (s {sub 9.7{mu}m} > -1.0). There is a general trend among the U/LIRGs for both silicate depth and mid-infrared (MIR) slope to increase with increasing L {sub IR}. U/LIRGs in the late to final stages of a merger also have, on average, steeper MIR slopes and higher levels of dust obscuration. Together, these trends suggest that as gas and dust is funneled toward the center of a coalescing merger, the nuclei become more compact and more obscured. As a result, the dust temperature increases also leading to a steeper MIR slope. The sources that depart from these correlations have very low PAH equivalent width (EQW{sub 6.2{mu}m} < 0.1 {mu}m) consistent with their emission being dominated by an active galactic nucleus (AGN) in the MIR. These extremely low PAH EQW sources separate into two distinct types: relatively unobscured sources with a very hot dust component (and thus very shallow MIR slopes) and heavily dust obscured nuclei with a steep temperature gradient. The most heavily dust obscured sources are also the most compact in their MIR

  12. A low-luminosity type-1 QSO sample . IV. Molecular gas contents and conditions of star formation in three nearby Seyfert galaxies

    NASA Astrophysics Data System (ADS)

    Moser, Lydia; Krips, Melanie; Busch, Gerold; Scharwächter, Julia; König, Sabine; Eckart, Andreas; Smajić, Semir; García-Marin, Macarena; Valencia-S., Mónica; Fischer, Sebastian; Dierkes, Jens

    2016-03-01

    We present a pilot study of ~3'' resolution observations of low CO transitions with the Submillimeter Array in three nearby Seyfert galaxies, which are part of the low-luminosity quasi-stellar object (LLQSOs) sample consisting of 99 nearby (z = 0.06) type-1 active galactic nuclei (AGN) taken from the Hamburg/ESO quasi-stellar object (QSO) survey. Two sources were observed in 12CO(2-1) and 13CO(2-1) and the third in 12CO(3-2) and HCO+(4-3). None of the sources is detected in continuum emission. More than 80% of the 12CO detected molecular gas is concentrated within a diameter (FWHM) < 1.8 kpc. 13CO is tentatively detected, while HCO+ emission could not be detected. All three objects show indications of a kinematically decoupled central unresolved molecular gas component. The molecular gas masses of the three galaxies are in the range Mmol = (0.7-8.7) × 109M⊙. We give lower limits for the dynamical masses of Mdyn> 1.5 × 109M⊙ and for the dust masses of Mdust> 1.6 × 106M⊙. The R21 = 12CO/13CO(2-1) line luminosity ratios show Galactic values of R21 ~ 5-7 in the outskirts and R21 ≳ 20 in the central region, similar to starbursts and (ultra)luminous infrared galaxies ((U)LIRGs; i.e. LIRGs and ULIRGs), implying higher temperatures and stronger turbulence. All three sources show indications of 12CO(2-1)/12CO(1-0) ratios of ~0.5, suggesting a cold or diffuse gas phase. Strikingly, the 12CO(3-2)/(1-0) ratio of ~1 also indicates a higher excited phase. Since these galaxies have high infrared luminosities of LIR ≥ 1011L⊙ and seem to contain a circumnuclear starburst with minimum surface densities of gas and star formation rate (SFR) around Σmol = 50-550 M⊙pc-2 and ΣSFR = 1.1-3.1 M⊙ kpc-2 yr-1, we conclude that the interstellar medium in the centers of these LIRG Seyferts is strongly affected by violent star formation and better described by the ULIRG mass conversion factor.

  13. Spitzer Survey of the Large Magellanic Cloud: Surveying the Agents of a Galaxy's Evolution (SAGE). I. Overview and Initial Results

    NASA Astrophysics Data System (ADS)

    Meixner, Margaret; Gordon, Karl D.; Indebetouw, Remy; Hora, Joseph L.; Whitney, Barbara; Blum, Robert; Reach, William; Bernard, Jean-Philippe; Meade, Marilyn; Babler, Brian; Engelbracht, Charles W.; For, Bi-Qing; Misselt, Karl; Vijh, Uma; Leitherer, Claus; Cohen, Martin; Churchwell, Ed B.; Boulanger, Francois; Frogel, Jay A.; Fukui, Yasuo; Gallagher, Jay; Gorjian, Varoujan; Harris, Jason; Kelly, Douglas; Kawamura, Akiko; Kim, SoYoung; Latter, William B.; Madden, Suzanne; Markwick-Kemper, Ciska; Mizuno, Akira; Mizuno, Norikazu; Mould, Jeremy; Nota, Antonella; Oey, M. S.; Olsen, Knut; Onishi, Toshikazu; Paladini, Roberta; Panagia, Nino; Perez-Gonzalez, Pablo; Shibai, Hiroshi; Sato, Shuji; Smith, Linda; Staveley-Smith, Lister; Tielens, A. G. G. M.; Ueta, Toshiya; van Dyk, Schuyler; Volk, Kevin; Werner, Michael; Zaritsky, Dennis

    2006-12-01

    We are performing a uniform and unbiased imaging survey of the Large Magellanic Cloud (LMC; ~7deg×7deg) using the IRAC (3.6, 4.5, 5.8, and 8 μm) and MIPS (24, 70, and 160 μm) instruments on board the Spitzer Space Telescope in the Surveying the Agents of a Galaxy's Evolution (SAGE) survey, these agents being the interstellar medium (ISM) and stars in the LMC. This paper provides an overview of the SAGE Legacy project, including observing strategy, data processing, and initial results. Three key science goals determined the coverage and depth of the survey. The detection of diffuse ISM with column densities >1.2×1021 H cm-2 permits detailed studies of dust processes in the ISM. SAGE's point-source sensitivity enables a complete census of newly formed stars with masses >3 Msolar that will determine the current star formation rate in the LMC. SAGE's detection of evolved stars with mass-loss rates >1×10-8 Msolar yr-1 will quantify the rate at which evolved stars inject mass into the ISM of the LMC. The observing strategy includes two epochs in 2005, separated by 3 months, that both mitigate instrumental artifacts and constrain source variability. The SAGE data are nonproprietary. The data processing includes IRAC and MIPS pipelines and a database for mining the point-source catalogs, which will be released to the community in support of Spitzer proposal cycles 4 and 5. We present initial results on the epoch 1 data for a region near N79 and N83. The MIPS 70 and 160 μm images of the diffuse dust emission of the N79/N83 region reveal a similar distribution to the gas emissions, especially the H I 21 cm emission. The measured point-source sensitivity for the epoch 1 data is consistent with expectations for the survey. The point-source counts are highest for the IRAC 3.6 μm band and decrease dramatically toward longer wavelengths, consistent with the fact that stars dominate the point-source catalogs and the dusty objects detected at the longer wavelengths are rare

  14. Principal component analysis and radiative transfer modelling of Spitzer Infrared Spectrograph spectra of ultraluminous infrared galaxies

    NASA Astrophysics Data System (ADS)

    Hurley, P. D.; Oliver, S.; Farrah, D.; Wang, L.; Efstathiou, A.

    2012-08-01

    The mid-infrared spectra of ultraluminous infrared galaxies (ULIRGs) contain a variety of spectral features that can be used as diagnostics to characterize the spectra. However, such diagnostics are biased by our prior prejudices on the origin of the features. Moreover, by using only part of the spectrum they do not utilize the full information content of the spectra. Blind statistical techniques such as principal component analysis (PCA) consider the whole spectrum, find correlated features and separate them out into distinct components. We further investigate the principal components (PCs) of ULIRGs derived in Wang et al. We quantitatively show that five PCs are optimal for describing the Infrared Spectrograph spectra. These five components (PC1-PC5) and the mean spectrum provide a template basis set that reproduces spectra of all z < 0.35 ULIRGs within the noise. For comparison, the spectra are also modelled with a combination of radiative transfer models of both starbursts and the dusty torus surrounding active galactic nuclei (AGN). The five PCs typically provide better fits than the models. We argue that the radiative transfer models require a colder dust component and have difficulty in modelling strong polycyclic aromatic hydrocarbon features. Aided by the models we also interpret the physical processes that the PCs represent. The third PC is shown to indicate the nature of the dominant power source, while PC1 is related to the inclination of the AGN torus. Finally, we use the five PCs to define a new classification scheme using 5D Gaussian mixture modelling and trained on widely used optical classifications. The five PCs, average spectra for the four classifications and the code to classify objects are made available at: .

  15. Variability and Spectral Studies of Luminous Seyfert 1 Galaxy Fairall 9. Search for the Reflection Component is a Quasar: RXTE and ASCA Observation of a Nearby Radio-Quiet Quasar MR 2251-178

    NASA Technical Reports Server (NTRS)

    Leighly, Karen M.

    1999-01-01

    Monitoring observations with interval of 3 days using RXTE (X Ray Timing Explorer) of the luminous Seyfert 1 galaxy Fairall 9 were performed for one year. The purpose of the observations were to study the variability of Fairall 9 and compare the results with those from the radio-loud object 3C 390.3. The data has been received and analysis is underway, using the new background model. An observation of the quasar MR 2251-178 was made in order to determine whether or not it has a reflection component. Older background models gave an unacceptable subtraction and analysis is underway using the new background model. The observation of NGC 6300 showed that the X-ray spectrum from this Seyfert 2 galaxy appears to be dominated by Compton reflection.

  16. Spitzer Spies Spectacular Sombrero

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Figure 1 [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1Figure 2 NASA's Spitzer Space Telescope set its infrared eyes on one of the most famous objects in the sky, Messier 104, also called the Sombrero galaxy. In this striking infrared picture, Spitzer sees an exciting new view of a galaxy that in visible light has been likened to a 'sombrero,' but here looks more like a 'bulls-eye.'

    Recent observations using Spitzer's infrared array camera uncovered the bright, smooth ring of dust circling the galaxy, seen in red. In visible light, because this galaxy is seen nearly edge-on, only the near rim of dust can be clearly seen in silhouette. Spitzer's full view shows the disk is warped, which is often the result of a gravitational encounter with another galaxy, and clumpy areas spotted in the far edges of the ring indicate young star-forming regions.

    Spitzer's infrared view of the starlight from this galaxy, seen in blue, can pierce through obscuring murky dust that dominates in visible light. As a result, the full extent of the bulge of stars and an otherwise hidden disk of stars within the dust ring are easily seen.

    The Sombrero galaxy is located some 28 million light years away. Viewed from Earth, it is just six degrees south of its equatorial plane. Spitzer detected infrared emission not only from the ring, but from the center of the galaxy too, where there is a huge black hole, believed to be a billion times more massive than our Sun.

    This picture is composed of four images taken at 3.6 (blue), 4.5 (green), 5.8 (orange), and 8.0 (red) microns. The contribution from starlight (measured at 3.6 microns) has been subtracted from the 5.8 and 8-micron images to enhance the visibility of the dust features.

    In figure 1, the new picture of Messier 104 combines a recent infrared observation from NASA's Spitzer Space Telescope with a well

  17. DISCOVERY OF DRAMATIC OPTICAL VARIABILITY IN SDSS J1100+4421: A PECULIAR RADIO-LOUD NARROW-LINE SEYFERT 1 GALAXY?

    SciTech Connect

    Tanaka, Masaomi; Morokuma, Tomoki; Doi, Mamoru; Kikuchi, Yuki; Itoh, Ryosuke; Akitaya, Hiroshi; Tanaka, Yasuyuki T.; Kawabata, Koji S.; Tominaga, Nozomu; Saito, Yoshihiko; Kawai, Nobuyuki; Stawarz, Łukasz; Gandhi, Poshak; Ali, Gamal; Essam, Ahmad; Hamed, Gamal; Aoki, Tsutomu; Contreras, Carlos; Hsiao, Eric Y.; Iwata, Ikuru; and others

    2014-10-01

    We present our discovery of dramatic variability in SDSS J1100+4421 by the high-cadence transient survey Kiso Supernova Survey. The source brightened in the optical by at least a factor of three within about half a day. Spectroscopic observations suggest that this object is likely a narrow-line Seyfert 1 galaxy (NLS1) at z = 0.840, however, with unusually strong narrow emission lines. The estimated black hole mass of ∼10{sup 7} M {sub ☉} implies bolometric nuclear luminosity close to the Eddington limit. SDSS J1100+4421 is also extremely radio-loud, with a radio loudness parameter of R ≅ 4 × 10{sup 2}-3 × 10{sup 3}, which implies the presence of relativistic jets. Rapid and large-amplitude optical variability of the target, reminiscent of that found in a few radio- and γ-ray-loud NLS1s, is therefore produced most likely in a blazar-like core. The 1.4 GHz radio image of the source shows an extended structure with a linear size of about 100 kpc. If SDSS J1100+4421 is a genuine NLS1, as suggested here, this radio structure would then be the largest ever discovered in this type of active galaxies.

  18. The Spectral Energy Distributions and Infrared Luminosities of z ≈ 2 Dust-obscured Galaxies from Herschel and Spitzer

    NASA Astrophysics Data System (ADS)

    Melbourne, J.; Soifer, B. T.; Desai, Vandana; Pope, Alexandra; Armus, Lee; Dey, Arjun; Bussmann, R. S.; Jannuzi, B. T.; Alberts, Stacey

    2012-05-01

    Dust-obscured galaxies (DOGs) are a subset of high-redshift (z ≈ 2) optically-faint ultra-luminous infrared galaxies (ULIRGs, e.g., L IR > 1012 L ⊙). We present new far-infrared photometry, at 250, 350, and 500 μm (observed-frame), from the Herschel Space Telescope for a large sample of 113 DOGs with spectroscopically measured redshifts. Approximately 60% of the sample are detected in the far-IR. The Herschel photometry allows the first robust determinations of the total infrared luminosities of a large sample of DOGs, confirming their high IR luminosities, which range from 1011.6 L ⊙ 1013 L ⊙. The rest-frame near-IR (1-3 μm) spectral energy distributions (SEDs) of the Herschel-detected DOGs are predictors of their SEDs at longer wavelengths. DOGs with "power-law" SEDs in the rest-frame near-IR show observed-frame 250/24 μm flux density ratios similar to the QSO-like local ULIRG, Mrk 231. DOGs with a stellar "bump" in their rest-frame near-IR show observed-frame 250/24 μm flux density ratios similar to local star-bursting ULIRGs like NGC 6240. None show 250/24 μm flux density ratios similar to extreme local ULIRG, Arp 220; though three show 350/24 μm flux density ratios similar to Arp 220. For the Herschel-detected DOGs, accurate estimates (within ~25%) of total IR luminosity can be predicted from their rest-frame mid-IR data alone (e.g., from Spitzer observed-frame 24 μm luminosities). Herschel-detected DOGs tend to have a high ratio of infrared luminosity to rest-frame 8 μm luminosity (the IR8 = L IR(8-1000 μm)/νL ν(8 μm) parameter of Elbaz et al.). Instead of lying on the z = 1-2 "infrared main sequence" of star-forming galaxies (like typical LIRGs and ULIRGs at those epochs) the DOGs, especially large fractions of the bump sources, tend to lie in the starburst sequence. While, Herschel-detected DOGs are similar to scaled up

  19. CENSUS OF SELF-OBSCURED MASSIVE STARS IN NEARBY GALAXIES WITH SPITZER: IMPLICATIONS FOR UNDERSTANDING THE PROGENITORS OF SN 2008S-LIKE TRANSIENTS

    SciTech Connect

    Khan, Rubab; Stanek, K. Z.; Kochanek, C. S.; Thompson, Todd A.; Beacom, J. F.; Prieto, J. L. E-mail: kstanek@astronomy.ohio-state.ed E-mail: thompson@astronomy.ohio-state.ed E-mail: beacom@mps.ohio-state.ed

    2010-06-01

    A new link in the causal mapping between massive stars and potentially fatal explosive transients opened with the 2008 discovery of the dust-obscured progenitors of the luminous outbursts in NGC 6946 and NGC 300. Here, we carry out a systematic mid-IR photometric search for massive, luminous, and self-obscured stars in four nearby galaxies: M33, NGC 300, M81, and NGC 6946. For detection, we use only the 3.6 {mu}m and 4.5 {mu}m IRAC bands, as these can still be used for multi-epoch Spitzer surveys of nearby galaxies ({approx}<10 Mpc). We combine familiar point-spread function and aperture photometry with an innovative application of image subtraction to catalog the self-obscured massive stars in these galaxies. In particular, we verify that stars analogous to the progenitors of the NGC 6946 (SN 2008S) and NGC 300 transients are truly rare in all four galaxies: their number may be as low as {approx}1 per galaxy at any given moment. This result empirically supports the idea that the dust-enshrouded phase is a very short lived phenomenon in the lives of many massive stars and that these objects constitute a natural extension of the asymptotic giant branch sequence. We also provide mid-IR catalogs of sources in NGC 300, M81, and NGC 6946.

  20. Compact steep-spectrum sources as the parent population of flat-spectrum radio-loud narrow-line Seyfert 1 galaxies

    NASA Astrophysics Data System (ADS)

    Berton, M.; Caccianiga, A.; Foschini, L.; Peterson, B. M.; Mathur, S.; Terreran, G.; Ciroi, S.; Congiu, E.; Cracco, V.; Frezzato, M.; La Mura, G.; Rafanelli, P.

    2016-06-01

    Narrow-line Seyfert 1 galaxies (NLS1s) are an interesting subclass of active galactic nuclei (AGN), which tipically does not exhibit any strong radio emission. Seven percent of them, though, are radio-loud and often show a flat radio-spectrum (F-NLS1s). This, along to the detection of γ-ray emission coming from them, is usually interpreted as a sign of a relativistic beamed jet oriented along the line of sight. An important aspect of these AGN that must be understood is the nature of their parent population, in other words how do they appear when observed under different angles. In the recent literature it has been proposed that a specific class of radio-galaxies, compact-steep sources (CSS) classified as high excitation radio galaxies (HERG), can represent the parent population of F-NLS1s. To test this hypothesis in a quantitative way,in this paper we analyzed the only two statistically complete samples of CSS/HERGs and F-NLS1s available in the literature. We derived the black hole mass and Eddington ratio distributions, and we built for the first time the radio luminosity function of F-NLS1s. Finally, we applied a relativistic beaming model to the luminosity function of CSS/HERGs, and compared the result with the observed function of F-NLS1s. We found that compact steep-spectrum sources are valid parent candidates and that F-NLS1s, when observed with a different inclination, might actually appear as CSS/HERGs.

  1. Simultaneous Ultraviolet and X-Ray Observations of Seyfert Galaxy NGC 4151. I. Physical Conditions in the X-Ray Absorbers

    NASA Astrophysics Data System (ADS)

    Kraemer, S. B.; George, I. M.; Crenshaw, D. M.; Gabel, J. R.; Turner, T. J.; Gull, T. R.; Hutchings, J. B.; Kriss, G. A.; Mushotzky, R. F.; Netzer, H.; Peterson, B. M.; Behar, Ehud

    2005-11-01

    We present a detailed analysis of the intrinsic X-ray absorption in the Seyfert 1 galaxy NGC 4151 using Chandra High Energy Transmission Grating Spectrometer data obtained in 2002 May as part of a program that included simultaneous ultraviolet (UV) spectra using the Hubble Space Telescope Space Telescope Imaging Spectrograph and the Far Ultraviolet Spectrographic Explorer. Previous studies, most recently using Advanced Satellite for Cosmology and Astrophysics (ASCA) spectra, revealed a large (>1022 cm-2) column of intervening gas, which has varied both in ionization state and total column density. NGC 4151 was in a relatively low flux state during the observations reported here (~25% of its historic maximum), although roughly 2.5 times as bright in the 2-10 keV band as during a Chandra observation in 2000. At both epochs, the soft X-ray band was dominated by emission lines, which show no discernible variation in flux between the two observations. The 2002 Chandra data show the presence of a very highly ionized absorber, in the form of H-like and He-like Mg, Si, and S lines, as well as lower ionization gas via the presence of inner-shell absorption lines from lower ionization species of these elements. The latter accounts for both the bulk of the soft X-ray absorption and the high covering factor UV absorption lines of O VI, C IV, and N V with outflow velocities ~500 km s-1. The presence of high-ionization gas, which is not easily detected at low resolution (e.g., with ASCA), appears common among Seyfert galaxies. Since this gas is too highly ionized to be radiatively accelerated in sources such as NGC 4151, which is radiating at a small fraction of its Eddington Luminosity, it may be key to understanding the dynamics of mass outflow. We find that the deeper broadband absorption detected in the 2000 Chandra data is the result of both (1) lower ionization of the intervening gas due to the lower ionizing flux and (2) a factor of ~3 higher column density of the lower

  2. Spitzer UltRa Faint SUrvey Program (SURFS UP). II. IRAC-detected Lyman-Break Galaxies at 6 ≲ z ≲ 10 behind Strong-lensing Clusters

    NASA Astrophysics Data System (ADS)

    Huang, Kuang-Han; Bradač, Maruša; Lemaux, Brian C.; Ryan, R. E., Jr.; Hoag, Austin; Castellano, Marco; Amorín, Ricardo; Fontana, Adriano; Brammer, Gabriel B.; Cain, Benjamin; Lubin, L. M.; Merlin, Emiliano; Schmidt, Kasper B.; Schrabback, Tim; Treu, Tommaso; Gonzalez, Anthony H.; von der Linden, Anja; Knight, Robert I.

    2016-01-01

    We study the stellar population properties of the IRAC-detected 6 ≲ z ≲ 10 galaxy candidates from the Spitzer UltRa Faint SUrvey Program. Using the Lyman Break selection technique, we find a total of 17 galaxy candidates at 6 ≲ z ≲ 10 from Hubble Space Telescope images (including the full-depth images from the Hubble Frontier Fields program for MACS 1149 and MACS 0717) that have detections at signal-to-noise ratios ≥ 3 in at least one of the IRAC 3.6 and 4.5 μm channels. According to the best mass models available for the surveyed galaxy clusters, these IRAC-detected galaxy candidates are magnified by factors of ˜1.2-5.5. Due to the magnification of the foreground galaxy clusters, the rest-frame UV absolute magnitudes M1600 are between -21.2 and -18.9 mag, while their intrinsic stellar masses are between 2 × 108M⊙ and 2.9 × 109M⊙. We identify two Lyα emitters in our sample from the Keck DEIMOS spectra, one at zLyα = 6.76 (in RXJ 1347) and one at zLyα = 6.32 (in MACS 0454). We find that 4 out of 17 z ≳ 6 galaxy candidates are favored by z ≲ 1 solutions when IRAC fluxes are included in photometric redshift fitting. We also show that IRAC [3.6]-[4.5] color, when combined with photometric redshift, can be used to identify galaxies which likely have strong nebular emission lines or obscured active galactic nucleus contributions within certain redshift windows.

  3. Spitzer Spies Spectacular Sombrero

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Figure 1 [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1Figure 2 NASA's Spitzer Space Telescope set its infrared eyes on one of the most famous objects in the sky, Messier 104, also called the Sombrero galaxy. In this striking infrared picture, Spitzer sees an exciting new view of a galaxy that in visible light has been likened to a 'sombrero,' but here looks more like a 'bulls-eye.'

    Recent observations using Spitzer's infrared array camera uncovered the bright, smooth ring of dust circling the galaxy, seen in red. In visible light, because this galaxy is seen nearly edge-on, only the near rim of dust can be clearly seen in silhouette. Spitzer's full view shows the disk is warped, which is often the result of a gravitational encounter with another galaxy, and clumpy areas spotted in the far edges of the ring indicate young star-forming regions.

    Spitzer's infrared view of the starlight from this galaxy, seen in blue, can pierce through obscuring murky dust that dominates in visible light. As a result, the full extent of the bulge of stars and an otherwise hidden disk of stars within the dust ring are easily seen.

    The Sombrero galaxy is located some 28 million light years away. Viewed from Earth, it is just six degrees south of its equatorial plane. Spitzer detected infrared emission not only from the ring, but from the center of the galaxy too, where there is a huge black hole, believed to be a billion times more massive than our Sun.

    This picture is composed of four images taken at 3.6 (blue), 4.5 (green), 5.8 (orange), and 8.0 (red) microns. The contribution from starlight (measured at 3.6 microns) has been subtracted from the 5.8 and 8-micron images to enhance the visibility of the dust features.

    In figure 1, the new picture of Messier 104 combines a recent infrared observation from NASA's Spitzer Space Telescope with a well

  4. Simultaneous NuSTAR and XMM-Newton 0.5-80 KeV Spectroscopy of the Narrow-Line Seyfert 1 Galaxy SWIFT J2127.4+5654

    NASA Technical Reports Server (NTRS)

    Marinucci, A.; Matt, G.; Kara, E.; Miniutti, G.; Elvis, M.; Arevalo, P.; Ballantyne, D. R.; Balokovic, M.; Bauer, F.; Brenneman, L.; Boggs, S. E.; Cappi, M.; Christensen, F. E.; Craig, W. W.; Fabian, A. C.; Fuerst, F.; Hailey, C. J.; Harrison, F. A.; Risaliti, G.; Reynolds, C. S.; Stern, D. K.; Walton, D. J.; Zhang, W.

    2014-01-01

    We present a broad-band spectral analysis of the joint XMM-Newton and Nuclear Spectroscopic Telescope Array observational campaign of the narrow-line Seyfert 1 SWIFT J2127.4+5654, consisting of 300 kiloseconds performed during three XMM-Newton orbits. We detect a relativistic broadened iron K-alpha line originating from the innermost regions of the accretion disc surrounding the central black hole, from which we infer an intermediate spin of a = 0.58 (sup +0.11) (sub -0.17). The intrinsic spectrum is steep (gamma = 2.08 plus or minus 0.01) as commonly found in narrow-line Seyfert 1 galaxies, while the cutoff energy (E (sub c) = 108 (sup +11) (sub -10) kiloelectronvolts) falls within the range observed in broad-line Seyfert 1 galaxies. We measure a low-frequency lag that increases steadily with energy, while at high frequencies, there is a clear lag following the shape of the broad Fe K emission line. Interestingly, the observed Fe K lag in SWIFT J2127.4+5654 is not as broad as in other sources that have maximally spinning black holes. The lag amplitude suggests a continuum-to-reprocessor distance of about 10-20 radius of gyration. These timing results independently support an intermediate black hole spin and a compact corona.

  5. RAPID INFRARED VARIABILITY OF THREE RADIO-LOUD NARROW-LINE SEYFERT 1 GALAXIES: A VIEW FROM THE WIDE-FIELD INFRARED SURVEY EXPLORER

    SciTech Connect

    Jiang Ning; Zhou Hongyan; Wang Tinggui; Dong Xiaobo; Jiang Peng; Ho, Luis C.; Yuan Weimin; Ji Tuo; Tian Qiguo

    2012-11-10

    Using newly released data from the Wide-field Infrared Survey Explorer, we report the discovery of rapid infrared variability in three radio-loud narrow-line Seyfert 1 galaxies (NLS1s) selected from the 23 sources in the sample of Yuan et al. J0849+5108 and J0948+0022 clearly show intraday variability, while J1505+0326 has a longer measurable timescale within 180 days. Their variability amplitudes, corrected for measurement errors, are {approx}0.1-0.2 mag. The detection of intraday variability restricts the size of the infrared-emitting region to {approx}10{sup -3} pc, significantly smaller than the scale of the torus but consistent with the base of a jet. The three variable sources are exceptionally radio-loud, have the highest radio brightness temperature among the whole sample, and all show detected {gamma}-ray emission in Fermi/LAT observations. Their spectral energy distributions resemble those of low-energy-peaked blazars, with a synchrotron peak around infrared wavelengths. This result strongly confirms the view that at least some radio-loud NLS1s are blazars with a relativistic jet close to our line of sight. The beamed synchrotron emission from the jet contributes significantly to and probably dominates the spectra in the infrared and even optical bands.

  6. MINUTE-SCALE RAPID VARIABILITY OF THE OPTICAL POLARIZATION IN THE NARROW-LINE SEYFERT 1 GALAXY PMN J0948+0022

    SciTech Connect

    Itoh, Ryosuke; Tanaka, Yasuyuki T.; Fukazawa, Yasushi; Kawaguchi, Kenji; Takaki, Katsutoshi; Ueno, Issei; Kawabata, Koji S.; Moritani, Yuki; Uemura, Makoto; Akitaya, Hiroshi; Yoshida, Michitoshi; Ohsugi, Takashi; Hanayama, Hidekazu; Miyaji, Takeshi; Kawai, Nobuyuki

    2013-09-20

    We report on optical photopolarimetric results of the radio-loud narrow-line Seyfert 1 (RL-NLSy1) galaxy PMN J0948+0022 on 2012 December to 2013 February triggered by flux enhancements in the near infrared and γ-ray bands. With the one-shot polarimetry of the Hiroshima One-shot Wide field Polarimeter installed on the Kanata Telescope, we detected very rapid variability in the polarized-flux (PF) light curve on MJD 56281 (2012 December 20). The rise and decay times were about 140 s and 180 s, respectively. The polarization degree (PD) reached 36% ± 3% at the peak of the short-duration pulse, while the polarization angle remained almost constant. In addition, temporal profiles of the total flux and PD showed highly variable but well correlated behavior and discrete correlation function analysis revealed that no significant time lag of more than 10 minutes was present. The high PD and minute-scale variability in PF provides clear evidence of synchrotron radiation from a very compact emission region of ∼10{sup 14} cm size with a highly ordered magnetic field. Such micro-variability of polarization is also observed in several blazar jets, but its complex relation between total flux and PD are explained by a multi-zone model in several blazars. The implied single emission region in PMN J0948+0022 might reflect a difference of jets between RL-NLSy1s and blazars.

  7. Inner jet kinematics and the viewing angle towards the γ-ray narrow-line Seyfert 1 galaxy 1H 0323+342

    NASA Astrophysics Data System (ADS)

    Fuhrmann, Lars; Karamanavis, Vassilis; Komossa, Stefanie; Angelakis, Emmanouil; Krichbaum, Thomas P.; Schulz, Robert; Kreikenbohm, Annika; Kadler, Matthias; Myserlis, Ioannis; Ros, Eduardo; Nestoras, Ioannis; Zensus, J. Anton

    2016-11-01

    Near-Eddington accretion rates onto low-mass black holes are thought to be a prime driver of the multi-wavelength properties of the narrow-line Seyfert 1 (NLS1) population of active galactic nuclei (AGNs). Orientation effects have repeatedly been considered as another important factor involved, but detailed studies have been hampered by the lack of measured viewing angles towards this type of AGN. Here we present multi-epoch, 15 GHz VLBA images (MOJAVE program) of the radio-loud and Fermi/LAT-detected NLS1 galaxy 1H 0323+342. These are combined with single-dish, multi-frequency radio monitoring of the source's variability, obtained with the Effelsberg 100-m and IRAM 30-m telescopes, in the course of the F-GAMMA program. The VLBA images reveal six components with apparent speeds of ∼ 1–7 c, and one quasi-stationary feature. Combining the obtained apparent jet speed (β app) and variability Doppler factor (D var) estimates together with other methods, we constrain the viewing angle θ towards 1H 0323+342 to θ ≤ 4°–13°. Using literature values of βapp and D var, we also deduce a viewing angle of ≤ 8°–9° towards another radio- and γ-ray-loud NLS1, namely SBS 0846+513.

  8. VARIABLE REDDENING AND BROAD ABSORPTION LINES IN THE NARROW-LINE SEYFERT 1 GALAXY WPVS 007: AN ORIGIN IN THE TORUS

    SciTech Connect

    Leighly, Karen M.; Cooper, Erin; Grupe, Dirk; Terndrup, Donald M.; Komossa, S.

    2015-08-10

    We report the discovery of an occultation event in the low-luminosity narrow-line Seyfert 1 galaxy WPVS 007 in 2015 February and March. In concert with longer timescale variability, these observations place strong constraints on the nature and location of the absorbing material. Swift monitoring has revealed a secular decrease since ∼2010 accompanied by flattening of the optical and UV photometry that suggests variable reddening. Analysis of four Hubble Space Telescope COS observations since 2010, including a Director’s Discretionary time observation during the occultation, shows that the broad-absorption-line velocity offset and the C iv emission-line width both decrease as the reddening increases. The occultation dynamical timescale, the BAL variability dynamical timescale, and the density of the BAL gas show that both the reddening material and the broad-absorption-line gas are consistent with an origin in the torus. These observations can be explained by a scenario in which the torus is clumpy with variable scale height, and the BAL gas is blown from the torus material like spray from the crest of a wave. As the obscuring material passes into our line of sight, we alternately see high-velocity broad absorption lines and a clear view to the central engine, or low-velocity broad absorption lines and strong reddening. WPVS 007 has a small black hole mass, and correspondingly short timescales, and so we may be observing behavior that is common in BALQSOs, but is not typically observable.

  9. VERY LONG BASELINE ARRAY IMAGING OF PARSEC-SCALE RADIO EMISSIONS IN NEARBY RADIO-QUIET NARROW-LINE SEYFERT 1 GALAXIES

    SciTech Connect

    Doi, Akihiro; Asada, Keiichi; Inoue, Makoto; Fujisawa, Kenta; Nagai, Hiroshi; Hagiwara, Yoshiaki; Wajima, Kiyoaki

    2013-03-01

    We conducted Very Long Baseline Array (VLBA) observations of seven nearby narrow-line Seyfert 1 (NLS1) galaxies at 1.7 GHz ({lambda}18 cm) with milliarcsecond resolution. This is the first systematic very long baseline interferometry study focusing on the central parsec-scale regions of radio-quiet NLS1s. Five of the seven were detected at a brightness temperature of {approx}> 5 Multiplication-Sign 10{sup 6} K and contain radio cores with high brightness temperatures of >6 Multiplication-Sign 10{sup 7} K, indicating a nonthermal process driven by jet-producing central engines as in radio-loud NLS1s and other active galactic nucleus classes. VLBA images of MRK 1239, MRK 705, and MRK 766 exhibit parsec-scale jets with clear linear structures. A large portion of the radio power comes from diffuse emission components that are distributed within the nuclear regions ({approx}< 300 pc), which is a common characteristic throughout the observed NLS1s. Jet kinetic powers limited by the Eddington limit may be insufficient to allow the jets to escape to kiloparsec scales for these radio-quiet NLS1s with low-mass black holes of {approx}< 10{sup 7} M {sub Sun }.

  10. The Seyfert 2 Galaxy NGC 2110: Hard X-Ray Emission Observed by NuStar and Variability of the Iron K-Alpha Line

    NASA Technical Reports Server (NTRS)

    Marinucci, A.; Matt, G.; Bianchi, S.; Lu, T. N.; Arevalo, P.; Balokovic, M.; Ballantyne, D.; Bauer, F. E.; Boggs, S. E.; Stern, D.; Zhang, William W.

    2014-01-01

    We present NuSTAR observations of the bright Seyfert 2 galaxy NGC 2110 obtained in 2012, when the source was at the highest flux level ever observed, and in 2013, when the source was at a more typical flux level. We include archival observations from other X-ray satellites, namely XMM-Newton, Suzaku, BeppoSAX, Chandra and Swift. Simultaneous NuSTAR and Swift broad band spectra (in the 3-80 keV range) indicate a cutoff energy E(sub c) greater than 210 keV, with no detectable contribution from Compton reflection. NGC 2110 is one of the very few sources where no evidence for distant Compton thick scattering is found and, by using temporal information collected over more than a decade, we investigate variations of the iron K(alpha) line on time scales of years. The Fe K alpha line is likely the sum of two components: one constant (originating from distant Compton-thick material) and the other one variable and linearly correlated with the source flux (possibly arising from Compton-thin material much closer to the black hole).

  11. Similarity of jet radiation between flat spectrum radio quasars and GeV narrow-line Seyfert 1 galaxies: a universal δ-L c correlation

    NASA Astrophysics Data System (ADS)

    Zhu, Yong-Kai; Zhang, Jin; Zhang, Hai-Ming; Liang, En-Wei; Yan, Da-Hai; Cui, Wei; Zhang, Shuang-Nan

    2016-11-01

    By modeling the broadband spectral energy distributions (SEDs) of a typical flat spectrum radio quasar (FSRQ, 3C 279) and two GeV narrow-line Seyfert 1 galaxies (NLS1s, PMN J0948+0022 and 1H 0323+342) in different flux stages with one-zone leptonic models, we find a universal correlation between their Doppler factors (δ) and peak luminosities (L c) of external Compton scattering bumps. Compiling a combined sample of FSRQs and GeV NLS1s, it is found that both FSRQs and GeV NLS1s in different stages and in different sources follow the same δ-L c correlation well. This indicates that the variations of observed luminosities may be essentially due to the Doppler boosting effect. The universal δ-L c relation between FSRQs and GeV NLS1s in different stages may be further evidence that the particle acceleration and radiation mechanisms for the two kinds of sources are similar. In addition, by replacing L c with the observed luminosity in the Fermi/LAT band (L LAT), this correlation holds and it may serve as an empirical indicator of δ. We estimate the δ values with L LAT for 484 FSRQs in the Fermi/LAT Catalog and they range from 3 to 41, with a median of 16, which are statistically consistent with the values derived by other methods.

  12. Accretion disc-corona and jet emission from the radio-loud narrow-line Seyfert 1 galaxy RX J1633.3+4719

    NASA Astrophysics Data System (ADS)

    Mallick, Labani; Dewangan, G. C.; Gandhi, P.; Misra, R.; Kembhavi, A. K.

    2016-08-01

    We perform X-ray/ultraviolet (UV) spectral and X-ray variability studies of the radio-loud narrow-line Seyfert 1 (NLS1) galaxy RX J1633.3+4719 using XMM-Newton and Suzaku observations from 2011 and 2012. The 0.3-10 keV spectra consist of an ultrasoft component described by an accretion disc blackbody (kT_in = 39.6^{+11.2}_{-5.5} eV) and a power law due to the thermal Comptonization (Γ = 1.96^{+0.24}_{-0.31}) of the disc emission. The disc temperature inferred from the soft excess is at least a factor of 2 lower than that found for the canonical soft excess emission from radio-quiet NLS1s. The UV spectrum is described by a power law with photon index 3.05^{+0.56}_{-0.33}. The observed UV emission is too strong to arise from the accretion disc or the host galaxy, but can be attributed to a jet. The X-ray emission from RX J1633.3+4719 is variable with fractional variability amplitude Fvar = 13.5 ± 1.0 per cent. In contrast to radio-quiet active galactic nuclei (AGN), X-ray emission from the source becomes harder with increasing flux. The fractional rms variability increases with energy and the rms spectrum is well described by a constant disc component and a variable power-law continuum with the normalization and photon index being anticorrelated. Such spectral variability cannot be caused by variations in the absorption and must be intrinsic to the hot corona. Our finding of possible evidence for emission from the inner accretion disc, jet and hot corona from RX J1633.3+4719 in the optical to X-ray bands makes this object an ideal target to probe the disc-jet connection in AGN.

  13. THE MASS PROFILE AND SHAPE OF BARS IN THE SPITZER SURVEY OF STELLAR STRUCTURE IN GALAXIES (S{sup 4}G): SEARCH FOR AN AGE INDICATOR FOR BARS

    SciTech Connect

    Kim, Taehyun; Lee, Myung Gyoon; Sheth, Kartik; Muñoz-Mateos, Juan-Carlos; Zaritsky, Dennis; Elmegreen, Bruce G.; Athanassoula, E.; Bosma, Albert; Holwerda, Benne; Ho, Luis C.; Comerón, Sébastien; Laurikainen, Eija; Salo, Heikki; Knapen, Johan H.; Erroz-Ferrer, Santiago; Hinz, Joannah L.; Buta, Ronald J.; Kim, Minjin; Madore, Barry F.; and others

    2015-01-20

    We have measured the radial light profiles and global shapes of bars using two-dimensional 3.6 μm image decompositions for 144 face-on barred galaxies from the Spitzer Survey of Stellar Structure in Galaxies. The bar surface brightness profile is correlated with the stellar mass and bulge-to-total (B/T) ratio of their host galaxies. Bars in massive and bulge-dominated galaxies (B/T > 0.2) show a flat profile, while bars in less massive, disk-dominated galaxies (B/T ∼ 0) show an exponential, disk-like profile with a wider spread in the radial profile than in the bulge-dominated galaxies. The global two-dimensional shapes of bars, however, are rectangular/boxy, independent of the bulge or disk properties. We speculate that because bars are formed out of disks, bars initially have an exponential (disk-like) profile that evolves over time, trapping more disk stars to boxy bar orbits. This leads bars to become stronger and have flatter profiles. The narrow spread of bar radial profiles in more massive disks suggests that these bars formed earlier (z > 1), while the disk-like profiles and a larger spread in the radial profile in less massive systems imply a later and more gradual evolution, consistent with the cosmological evolution of bars inferred from observational studies. Therefore, we expect that the flatness of the bar profile can be used as a dynamical age indicator of the bar to measure the time elapsed since the bar formation. We argue that cosmic gas accretion is required to explain our results on bar profile and the presence of gas within the bar region.

  14. XMM-Newton long-look observation of the narrow line Seyfert 1 galaxy PKS 0558-504. I. Spectral analysis

    NASA Astrophysics Data System (ADS)

    Papadakis, I. E.; Brinkmann, W.; Gliozzi, M.; Raeth, C.; Nicastro, F.; Conciatore, M. L.

    2010-02-01

    Context. PKS 0558-504 has been observed repeatedly by XMM-Newton as a calibration and performance verification (PV) target. In this work, we present results from the spectral analysis of a long XMM-Newton observation of the radio loud Narrow Line Seyfert 1 galaxy PKS 0558-504. Aims: To study the soft excess component in this object, the spectral variations it exhibits in both the hard and soft X-ray bands, and their correlation. Methods: We used mainly the PN data, and we fitted various spectral models to the time average spectra of the individual orbits as well as the spectra from data segments of shorter duration. We also used the RGS data to search for signs of a warm absorber in the source. Results: The source is highly variable, on all sampled time scales. We did not observe any absorption features in either the soft or hard band. We found weak evidence for the presence of an iron line at ~6.8 keV, which is indicative of emission from highly ionized iron. The 2-10 keV band spectrum of the source is well fitted by a simple power law model, whose slope steepens with increasing flux, similar to what is observed in other Seyferts as well. The soft excess is variable both in flux and shape, and it can be well described by a low-temperature Comptonisation model, whose slope flattens with increasing flux. Finally, the soft excess flux variations are moderately correlated with the hard band variations, and we found weak evidence that they are leading them by ~20 ks. Conclusions: Our results rule out a jet origin for the bulk of the X-ray emission in this object. We found no signals of a warm absorber. The observed hard band spectral variations suggest intrinsic continuum slope variations, caused by changes in the “heating/cooling” ratio of the hot corona. The low-temperature Comptonising medium, responsible for the soft excess emission, could be a hot layer in the inner disc of the source, which appears due to the fact that the source is accreting at a super

  15. Unveiling the structure of barred galaxies at 3.6 μm with the Spitzer survey of stellar structure in galaxies (S{sup 4}G). I. Disk breaks

    SciTech Connect

    Kim, Taehyun; Lee, Myung Gyoon; Gadotti, Dimitri A.; Muñoz-Mateos, Juan-Carlos; Sheth, Kartik; Madore, Barry F.; Ho, Luis C.; Elmegreen, Bruce; Knapen, Johan H.; Cisternas, Mauricio; Erroz-Ferrer, Santiago; Zaritsky, Dennis; Comerón, Sébastien; Laurikainen, Eija; Salo, Heikki; Holwerda, Benne; Hinz, Joannah L.; Buta, Ron; and others

    2014-02-20

    We have performed two-dimensional multicomponent decomposition of 144 local barred spiral galaxies using 3.6 μm images from the Spitzer Survey of Stellar Structure in Galaxies. Our model fit includes up to four components (bulge, disk, bar, and a point source) and, most importantly, takes into account disk breaks. We find that ignoring the disk break and using a single disk scale length in the model fit for Type II (down-bending) disk galaxies can lead to differences of 40% in the disk scale length, 10% in bulge-to-total luminosity ratio (B/T), and 25% in bar-to-total luminosity ratios. We find that for galaxies with B/T ≥ 0.1, the break radius to bar radius, r {sub br}/R {sub bar}, varies between 1 and 3, but as a function of B/T the ratio remains roughly constant. This suggests that in bulge-dominated galaxies the disk break is likely related to the outer Lindblad resonance of the bar and thus moves outward as the bar grows. For galaxies with small bulges, B/T < 0.1, r {sub br}/R {sub bar} spans a wide range from 1 to 6. This suggests that the mechanism that produces the break in these galaxies may be different from that in galaxies with more massive bulges. Consistent with previous studies, we conclude that disk breaks in galaxies with small bulges may originate from bar resonances that may be also coupled with the spiral arms, or be related to star formation thresholds.

  16. SPITZER SPECTROSCOPY OF INFRARED-LUMINOUS GALAXIES: DIAGNOSTICS OF ACTIVE GALACTIC NUCLEI AND STAR FORMATION AND CONTRIBUTION TO TOTAL INFRARED LUMINOSITY

    SciTech Connect

    Shipley, Heath V.; Papovich, Casey; Rieke, George H.; Jannuzi, Buell T.; Weiner, Benjamin; Dey, Arjun; Moustakas, John

    2013-05-20

    We use mid-infrared (MIR) spectroscopy from the Spitzer Infrared Spectrograph to study the nature of star-formation and supermassive black hole accretion for a sample of 65 IR-luminous galaxies at 0.02 < z < 0.6 with F(24 {mu}m) > 1.2 mJy. The MIR spectra cover wavelengths 5-38 {mu}m, spanning the polycyclic aromatic hydrocarbon (PAH) features and important atomic diagnostic lines. Our sample of galaxies corresponds to a range of total IR luminosity, L{sub IR} = L(8-1000 {mu}m) = 10{sup 10}-10{sup 12} L{sub Sun} (median L{sub IR} of 3.0 Multiplication-Sign 10{sup 11} L{sub Sun }). We divide our sample into a subsample of galaxies with Spitzer Infrared Array Camera 3.6-8.0 {mu}m colors indicative of warm dust heated by an active galactic nucleus (AGN; IRAGN) and those galaxies whose colors indicate star-formation processes (non-IRAGN). Compared to the non-IRAGN, the IRAGN show smaller PAH emission equivalent widths, which we attribute to an increase in mid-IR continuum from the AGN. We find that in both the IRAGN and star-forming samples, the luminosity in the PAH features correlates strongly with [Ne II] {lambda}12.8 {mu}m emission line, from which we conclude that the PAH luminosity directly traces the instantaneous star-formation rate (SFR) in both the IRAGN and star-forming galaxies. We compare the ratio of PAH luminosity to the total IR luminosity, and we show that for most IRAGN star-formation accounts for 10%-50% of the total IR luminosity. We also find no measurable difference between the PAH luminosity ratios of L{sub 11.3}/L{sub 7.7} and L{sub 6.2}/L{sub 7.7} for the IRAGN and non-IRAGN, suggesting that AGN do not significantly excite or destroy PAH molecules on galaxy-wide scales. Interestingly, a small subset of galaxies (8 of 65 galaxies) show a strong excess of [O IV] {lambda}25.9 {mu}m emission compared to their PAH emission, which indicates the presence of heavily-obscured AGN, including 3 galaxies that are not otherwise selected as IRAGN. The low

  17. Local Luminous Infrared Galaxies. III. Co-evolution of Black Hole Growth and Star Formation Activity?

    NASA Astrophysics Data System (ADS)

    Alonso-Herrero, Almudena; Pereira-Santaella, Miguel; Rieke, George H.; Diamond-Stanic, Aleksandar M.; Wang, Yiping; Hernán-Caballero, Antonio; Rigopoulou, Dimitra

    2013-03-01

    Local luminous infrared (IR) galaxies (LIRGs) have both high star formation rates (SFR) and a high AGN (Seyfert and AGN/starburst composite) incidence. Therefore, they are ideal candidates to explore the co-evolution of black hole (BH) growth and star formation (SF) activity, not necessarily associated with major mergers. Here, we use Spitzer/IRS spectroscopy of a complete volume-limited sample of local LIRGs (distances of <78 Mpc). We estimate typical BH masses of 3 × 107 M ⊙ using [Ne III] 15.56 μm and optical [O III] λ5007 gas velocity dispersions and literature stellar velocity dispersions. We find that in a large fraction of local LIRGs, the current SFR is taking place not only in the inner nuclear ~1.5 kpc region, as estimated from the nuclear 11.3 μm PAH luminosities, but also in the host galaxy. We next use the ratios between the SFRs and BH accretion rates (BHAR) to study whether the SF activity and BH growth are contemporaneous in local LIRGs. On average, local LIRGs have SFR to BHAR ratios higher than those of optically selected Seyferts of similar active galactic nucleus (AGN) luminosities. However, the majority of the IR-bright galaxies in the revised-Shapley-Ames Seyfert sample behave like local LIRGs. Moreover, the AGN incidence tends to be higher in local LIRGs with the lowest SFRs. All of this suggests that in local LIRGs there is a distinct IR-bright star-forming phase taking place prior to the bulk of the current BH growth (i.e., AGN phase). The latter is reflected first as a composite and then as a Seyfert, and later as a non-LIRG optically identified Seyfert nucleus with moderate SF in its host galaxy. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under NASA contract 1407.

  18. Student Exploration of Star Formation Rate in Three High-Redshift Galaxy Clusters: an NOAO/Spitzer Education and Public Outreach Project.

    NASA Astrophysics Data System (ADS)

    Loughran, Thomas; Mundy, C.; Colllingwood, C.

    2007-12-01

    Two students at Saint Joseph's High School (South Bend, IN) joined their teacher in a year-long, NOAO-Spitzer-sponsored research project exploring star formation rate (SFR) in three high red shift (z =.54 - .64) galaxy clusters (cl1037, cl1227, cl 1232). SFRs for each of 127 members of the three clusters, total cluster SFRs, morphology distribution and SFR-morphology relations were determined. Results were presented at a regional Intel Science and Engineering Fair, earning a First in Division--Intel Excellence in Computer Science award, and were published in the 2007 edition of the RBSE Journal. The students also produced a milestone map for the project, enabling other students (presenting) from subsequent years to climb into the research more efficiently. Associated public outreach activities were conducted, introducing some 2000 members of the public to multiwavelength astronomy and the Spitzer Space Telescope. In addition, the project received local newspaper coverage in the South Bend Tribune, with a subscription of 146,476. This poster highlights these research, educational, and public outreach facets of the project.

  19. THE UNUSUAL VERTICAL MASS DISTRIBUTION OF NGC 4013 SEEN THROUGH THE SPITZER SURVEY OF STELLAR STRUCTURE IN GALAXIES (S{sup 4}G)

    SciTech Connect

    Comeron, Sebastien; Elmegreen, Bruce G.; Knapen, Johan H.; Sheth, Kartik; Munoz-Mateos, Juan-Carlos; Kim, Taehyun; Mizusawa, Trisha; Regan, Michael W.; Gil de Paz, Armando; Menendez-Delmestre, KarIn; Seibert, Mark; Ho, Luis C.; Laurikainen, Eija; Salo, Heikki; Laine, Jarkko; Athanassoula, E.; Bosma, Albert; Gadotti, Dimitri A.

    2011-09-10

    NGC 4013 is a nearby Sb edge-on galaxy known for its 'prodigious' H I warp and its 'giant' tidal stream. Previous work on this unusual object shows that it cannot be fitted satisfactorily by a canonical thin+thick disk structure. We have produced a new decomposition of NGC 4013, considering three stellar flattened components (thin+thick disk plus an extra and more extended component) and one gaseous disk. All four components are considered to be gravitationally coupled and isothermal. To do so, we have used the 3.6 {mu}m images from the Spitzer Survey of Stellar Structure in Galaxies. We find evidence for NGC 4013 indeed having a thin and a thick disk and an extra flattened component. This smooth and extended component (scale height z{sub EC} {approx} 3 kpc) could be interpreted as a thick disk or as a squashed ellipsoidal halo and contains {approx}20% of the total mass of all three stellar components. We argue it is unlikely to be related to the ongoing merger or due to the off-plane stars from a warp in the other two disk components. Instead, we favor a scenario in which the thick disk and the extended component were formed in a two-stage process, in which an initially thick disk has been dynamically heated by a merger soon enough in the galaxy history to have a new thick disk formed within it.

  20. The gamma-ray emitting radio-loud narrow-line Seyfert 1 galaxy PKS 2004-447. I. The X-ray View

    NASA Astrophysics Data System (ADS)

    Kreikenbohm, A.; Schulz, R.; Kadler, M.; Wilms, J.; Markowitz, A.; Chang, C. S.; Carpenter, B.; Elsässer, D.; Gehrels, N.; Mannheim, K.; Müller, C.; Ojha, R.; Ros, E.; Trüstedt, J.

    2016-01-01

    As part of the TANAMI multiwavelength progam, we discuss new X-ray observations of the γ-ray and radio-loud narrow line Seyfert 1 galaxy (γ-NLS1) PKS 2004-447. The active galaxy is a member of a small sample of radio-loud NLS1s detected in γ-rays by the Fermi Large Area Telescope. It stands out for being the radio-loudest and the only southern-hemisphere source in this sample. We present results from our X-ray monitoring program comprised of Swift snapshot observations from 2012 through 2014 and two new X-ray observations with XMM-Newton in 2012. Supplemented by archival data from 2004 and 2011, our data set allows for a careful analysis of the X-ray spectrum and variability of this peculiar source. The (0.5-10) keV spectrum is described well by a power law (Γ ~ 1.6), which can be interpreted as non-thermal emission from a relativistic jet. The source exhibits moderate flux variability on timescales of both months and years. Correlated brightness variations in the (0.5-2) keV and (2-10) keV bands are explained by a single variable spectral component, such as the one from the jet. A possible soft excess seen in the data from 2004 cannot be confirmed by the new XMM-Newton observations taken during low-flux states. Any contribution to the total flux in 2004 is less than 20% of the power-law component. The (0.5-10) keV luminosities of PKS 2004-447 are in the range of (0.5-2.7) × 1044 erg s-1. A comparison of the X-ray properties among the known γ-NLS1 galaxies shows that in four out of five cases the X-ray spectrum is dominated by a flat power law without intrinsic absorption. These objects are moderately variable in their brightness, while spectral variability is observed in at least two sources. The major difference across the X-ray spectra of γ-NLS1s is the luminosity, which spans a range of almost two orders of magnitude from 1044 erg s-1 to 1046 erg s-1 in the (0.5-10) keV band.

  1. The First GeV Outburst of the Radio-loud Narrow-line Seyfert 1 Galaxy PKS 1502+036

    NASA Astrophysics Data System (ADS)

    Paliya, Vaidehi S.; Stalin, C. S.

    2016-03-01

    The γ-ray-loud narrow-line Seyfert 1 (γ-NLSy1) galaxy PKS 1502+036 (z = 0.409) exhibited its first γ-ray outburst on 2015 December 20. In the energy range of 0.1-300 GeV, the highest flux measured by the Fermi-Large Area Telescope is (3.90 ± 1.52) × 10-6 {ph} {{cm}}-2 {{{s}}}-1, which is the highest γ-ray flux ever detected from this object. The associated spectral shape is soft (Γ0.1-300 GeV = 2.57 ± 0.17) and this corresponds to an isotropic γ-ray luminosity of (1.2 ± 0.6) × 1048 erg s-1. We generate the broadband spectral energy distribution (SED) during the GeV flare and reproduce it using a one-zone leptonic emission model. The optical-UV spectrum can be explained by a combination of synchrotron and accretion disk emission, whereas the X-ray-to-γ-ray SED can be satisfactorily reproduced by inverse-Compton scattering of thermal photons that originated from the torus. The derived SED parameters hint that the increase in the bulk Lorentz factor is a major cause of the flare and the location of the emission region is estimated as being outside the broad-line region but still inside the torus. A comparison of the GeV-flaring SED of PKS 1502+036 with that of two other γ-NLSy1 galaxies, namely, 1H 0323+342 (z = 0.061) and PMN J0948+0022 (z = 0.585), and also with flat spectrum radio quasar (FSRQ) 3C 279 (z = 0.536), has led to the conclusion that the GeV-flaring SEDs of γ-NLSy1 galaxies resemble FSRQs and a major fraction of their bolometric luminosities are emitted at γ-ray energies.

  2. PROBING THE INTERSTELLAR MEDIUM OF z {approx} 1 ULTRALUMINOUS INFRARED GALAXIES THROUGH INTERFEROMETRIC OBSERVATIONS OF CO AND SPITZER MID-INFRARED SPECTROSCOPY

    SciTech Connect

    Pope, Alexandra; Kirkpatrick, Allison; Wagg, Jeff; Frayer, David; Armus, Lee; Chary, Ranga-Ram; Desai, Vandana; Daddi, Emanuele; Elbaz, David; Gabor, Jared

    2013-08-01

    We explore the relationship between gas, dust, and star formation in a sample of 12 ultraluminous infrared galaxies (ULIRGs) at high-redshift compared to a similar sample of local galaxies. We present new CO observations and/or Spitzer mid-IR spectroscopy for six 70 {mu}m selected galaxies at z {approx} 1 in order to quantify the properties of the molecular gas reservoir, the contribution of an active galactic nucleus (AGN) to the mid-IR luminosity, and the star formation efficiency (SFE = L{sub IR}/L{sup '}{sub CO}). The mid-IR spectra show strong polycyclic aromatic hydrocarbon (PAH) emission, and our spectral decomposition suggests that the AGN makes a minimal contribution (<25%) to the mid-IR luminosity. The 70 {mu}m selected ULIRGs, which we find to be spectroscopic close pairs, are observed to have high SFE, similar to local ULIRGs and high-redshift submillimeter galaxies, consistent with enhanced IR luminosity due to an ongoing major merger. Combined with existing observations of local and high-redshift ULIRGs, we further compare the PAH, IR, and CO luminosities. We show that the ratio L{sub PAH,6.2}/L{sub IR} decreases with increasing IR luminosity for both local and high-redshift galaxies, but the trend for high-redshift galaxies is shifted to higher IR luminosities; the average L{sub PAH,6.2}/L{sub IR} ratio at a given L{sub IR} is {approx}3 times higher at high-redshift. When we normalize by the molecular gas, we find this trend to be uniform for galaxies at all redshifts and that the molecular gas is correlated with the PAH dust emission. The similar trends seen in the [C II] to molecular gas ratios in other studies suggests that PAH emission, like [C II], continues to be a good tracer of photodissociation regions even at high-redshift. Together the CO, PAH, and far-IR fine structure lines should be useful for constraining the interstellar medium conditions in high-redshift galaxies.

  3. The MAGNUM survey: outflows and star formation in ten local Seyfert galaxies with the integral field eye of MUSE

    NASA Astrophysics Data System (ADS)

    Venturi, G.; Marconi, A.; Cresci, G.; Risaliti, G.; Carniani, S.; Mannucci, F.

    2016-08-01

    In this talk I will present the first results from the MAGNUM survey (Measuring Active Galactic Nuclei Under MUSE Microscope), which takes advantage of the unprecedented combination of the large field of view and spectral coverage of MUSE so as to carry out a detail study of the interaction of AGN outflows with the host galaxies and of the relation between AGN activity and star formation. The data comprise ten nearby galaxies so far, such as NGC 1365, NGC 1068 and Circinus. The analysis of MUSE data in many different emission lines has allowed to disentangle the various motions of the gas in the central regions of the galaxies (rotation, outflows and inflows), furthermore resolving the structure of the AGN-ionised cone. Other information of the separate phases of the gas (having different temperature, density and ionisation state) has been obtained thanks to the comparison with high resolution X-ray Chandra images. Moreover, possible evidence for star formation triggered by AGN outflows has been observed.

  4. The awakening of the γ-ray narrow-Line Seyfert 1 galaxy PKS 1502+036

    NASA Astrophysics Data System (ADS)

    D'Ammando, F.; Orienti, M.; Finke, J.; Hovatta, T.; Giroletti, M.; Max-Moerbeck, W.; Pearson, T. J.; Readhead, A. C. S.; Reeves, R. A.; Richards, J. L.

    2016-09-01

    After a long low-activity period, a γ-ray flare from the narrow-line Seyfert 1 PKS 1502+036 (z = 0.4089) was detected by the Large Area Telescope (LAT) on board Fermi in 2015. On 2015 December 20 the source reached a daily peak flux, in the 0.1-300 GeV band, of (93 ± 19)× 10-8 ph cm-2 s-1, attaining a flux of (237 ± 71)× 10-8 ph cm-2 s-1 on 3-hr time-scales, which corresponds to an isotropic luminosity of (7.3 ± 2.1)× 1047 erg s-1. The γ-ray flare was not accompanied by significant spectral changes. We report on multi-wavelength radio-to-γ-ray observations of PKS 1502+036 during 2008 August-2016 March by Fermi-LAT, Swift, XMM-Newton, Catalina Real-Time Transient Survey, and the Owens Valley Radio Observatory (OVRO). An increase in activity was observed on 2015 December 22 by Swift in optical, UV, and X-rays. The OVRO 15 GHz light curve reached the highest flux density observed from this source on 2016 January 12, indicating a delay of about three weeks between the γ-ray and 15 GHz emission peaks. This suggests that the γ-ray emitting region is located beyond the broad line region. We compared the spectral energy distribution (SED) of an average activity state with that of the flaring state. The two SED, with the high-energy bump modelled as an external Compton component with seed photons from a dust torus, could be fitted by changing the electron distribution parameters as well as the magnetic field. The fit of the disc emission during the average state constrains the black hole mass to values lower than 108 M⊙. The SED, high-energy emission mechanisms, and γ-ray properties of the source resemble those of a flat spectrum radio quasar.

  5. Fluorescent excitation of Fe 2, Mn 2, Ti 2, N 1 lines by V 4, N 5, O 6: Emission lines in the spectra of symbiotic stars and Seyfert galaxies

    NASA Technical Reports Server (NTRS)

    Gilra, D. P.

    1984-01-01

    Analysis of the published IUE and ground based high resolution spectra of symbiotic stars, particularly RR Tel, shows that the dominant excitation mechanism of Fe II, Mn II, Ti II, and N I lines is the selective fluorescent excitation of some levels by the strong C IV, N V, and O VI emission lines. The same mechanism should work for the excitation of Fe II lines in the spectra of Seyfert galaxies and Q60's whose emission spectra are quite similar to those of symbiotic stars. The similarities and differences between the fluroescent excitation mechanism reported herein and the Bowen's mechanism is analyzed.

  6. On the reality of broad iron L lines from the narrow line Seyfert 1 galaxies 1H0707–495 and IRAS 13224–3809

    NASA Astrophysics Data System (ADS)

    Karbhari Pawar, Pramod; Dewangan, Gulab Chand; Khushalrao Patil, Madhav; Misra, Ranjeev; Keshav Jogadand, Sharada

    2016-11-01

    We performed time resolved spectroscopy of 1H0707–495 and IRAS 13224–3809 using long XMM-Newton observations. These are strongly variable narrow line Seyfert 1 galaxies and show broad features around 1 keV that have been interpreted as relativistically broad Fe Lα lines. Such features are not clearly observed in other active galactic nuclei despite sometimes having high iron abundance required by the best fitted blurred reflection models. Given the importance of these lines, we explore whether the rapid variability of spectral parameters may introduce broad bumps/dips artificially in the time averaged spectrum, which may then be mistaken as broadened lines. We tested this hypothesis by performing time resolved spectroscopy using long (>100 ks) XMM-Newton observations and by dividing them into segments with typical exposures of a few ks. We extracted spectra from each such segment and modeled them using a two component phenomenological model consisting of a power law to represent the hard component and a black body to represent the soft emission. As expected, both the sources showed variations in the spectral parameters. Using these variation trends, we simulated model spectra for each segment and then co-added to get a combined simulated spectrum. In the simulated spectra, we found no broad features below 1 keV and in particular no deviation near 0.9 keV as seen in the real averaged spectra. This implies that the broad Fe Lα line that is seen in the spectra of these sources is not an artifact of the variation of spectral components and, hence, provides evidence that the line is indeed genuine.

  7. Short-term radio variability and parsec-scale structure in A gamma-ray narrow-line Seyfert 1 galaxy 1H 0323+342

    SciTech Connect

    Wajima, Kiyoaki; Fujisawa, Kenta; Hayashida, Masaaki; Isobe, Naoki; Ishida, Takafumi; Yonekura, Yoshinori

    2014-02-01

    We made simultaneous single-dish and very long baseline interferometer (VLBI) observations of a narrow-line Seyfert 1 galaxy 1H 323+342, showing gamma-ray activity revealed by Fermi/Large Area Telescope observations. We found significant variation of the total flux density at 8 GHz on the timescale of one month by the single-dish monitoring. The total flux density varied by 5.5% in 32 days, which is comparable to the gamma-ray variability timescale, corresponding to the variability brightness temperature of 7.0 × 10{sup 11} K. The source consists of central and southeastern components on the parsec (pc) scale. Only the flux of the central component decreased in the same way as the total flux density, indicating that the short-term radio variability, and probably the gamma-ray-emitting region, is associated with this component. From the VLBI observations, we obtained brightness temperatures of greater than (5.2 ± 0.3) × 10{sup 10} K and derived an equipartition Doppler factor of greater than 1.7, a variability Doppler factor of 2.2, and an 8 GHz radio power of 10{sup 24.6} W Hz{sup –1}. Combining them, we conclude that acceleration of radio jets and creation of high-energy particles are ongoing in the central engine and that the apparent very radio-loud feature of the source is due to the Doppler boosting effect, resulting in the intrinsic radio loudness being an order of magnitude smaller than the observed values. We also conclude that the pc-scale jet represents recurrent activity from the spectral fitting and the estimated kinematic age of pc- and kpc-scale extended components with different position angles.

  8. Simultaneous UV and X-ray Spectroscopy of the Seyfert 1 Galaxy NGC 5548. I: Physical Conditions in the UV Absorbers

    NASA Technical Reports Server (NTRS)

    Crenshaw, D. M.; Kraemer, S. B.; Gabel, J. R.; Kaastra, J. S.; Steenbrugge, K. C.; Brinkman, A. C.; Dunn, J. P.; George, I. M.; Liedahl, D. A.; Paerels, F. B. S.

    2003-01-01

    We present new UV spectra of the nucleus of the Seyfert 1 galaxy NGC 5548, which we obtained with the Space Telescope Imaging Spectrograph at high spectral resolution, in conjunction with simultaneous Chandra X-ray Observatory spectra. Taking advantage of the low UV continuum and broad emission-line fluxes, we have determined that the deepest UV absorption component covers at least a portion of the inner, high-ionization narrow-line region (NLR). We find nonunity covering factors in the cores of several kinematic components, which increase the column density measurements of N V and C IV by factors of 1.2 to 1.9 over the full-covering case; however, the revised columns have only a minor effect on the parameters derived from our photoionization models. For the first time, we have simultaneous N V and C IV columns for component 1 (at -1040 km/s), and find that this component cannot be an X-ray warm absorber, contrary to our previous claim based on nonsimultaneous observations. We find that models of the absorbers based on solar abundances severely overpredict the O VI columns previously obtained with the Far Ultraviolet Spectrograph, and present arguments that this is not likely due to variability. However, models that include either enhanced nitrogen (twice solar) or dust, with strong depletion of carbon in either case, are successful in matching all of the observed ionic columns. These models result in substantially lower ionization parameters and total column densities compared to dust-free solar-abundance models, and produce little O VII or O VIII, indicating that none of the UV absorbers are X-ray warm absorbers.

  9. Radio-to-Gamma-Ray Monitoring of the Narrow-line Seyfert 1 Galaxy PMN J0948+0022 from 2008 to 2011

    NASA Technical Reports Server (NTRS)

    Foschini, L.; Angelakis, E.; Fuhrmann, L.; Ghisellini, G.; Hovatta, T.; Lahteenmaki, A.; Lister, M. L.; Braito, V.; Gallo, L.; Hamilton, T. S.; Kino, M.; Komossa S.; Pushkarev, A. B.; Thompson, D. J.; Tibolla, O.; Tramacere, A.; Carrasco, L.; Carraminana, A.; Falcone, A.; Giroletti, M.; Grupe, D.; Kovalev, Y. Y.; Krichbaum, T. P.; Max-Moerbeck, W.; Nestoras, I.; Pearson, T.J.; Porras, A.; Readhead, A.C.S.; Recillas, E.; Richards, J.L.; Riquelme, D.; Sievers, A.; Tammi, J.; Ungerechts, H.

    2012-01-01

    We present more than three years of observations at different frequencies, from radio to high-energy ?-rays, of the Narrow-Line Seyfert 1 (NLS1) Galaxy PMN J0948+0022 (z = 0.585). This source is the first NLS1 detected at energies above 100 MeV and therefore can be considered the prototype of this emerging new class of ?-ray emitting active galactic nuclei (AGN). The observations performed from 2008 August 1 to 2011 December 31 confirmed that PMN J0948+0022 generates a powerful relativistic jet, which is able to develop an isotropic luminosity at gamma-rays of the order of 1048 erg per second, at the level of powerful quasars. The evolution of the radiation emission of this source in 2009 and 2010 followed the canonical expectations of relativistic jets with correlated multiwavelength variability (gamma-rays followed by radio emission after a few months), but it was difficult to retrieve a similar pattern in the light curves of 2011. The comparison of gamma-ray spectra before and including 2011 data suggested that there was a softening of the highenergy spectral slope. We selected five specific epochs to be studied by modelling the broad-band spectrum, which are characterised by an outburst at gamma-rays or very low/high flux at other wavelengths. The observed variability can largely be explained by changes in the injected power, the bulk Lorentz factor of the jet, or the electron spectrum. The characteristic time scale of doubling/halving flux ranges from a few days to a few months, depending on the frequency and the sampling rate. The shortest doubling time scale at gamma-rays is 2.3 +/- 0.5 days. These small values underline the need of highly sampled multiwavelength campaigns to better understand the physics of these sources.

  10. CORONAL PROPERTIES OF THE SEYFERT 1.9 GALAXY MCG-05-23-016 DETERMINED FROM HARD X-RAY SPECTROSCOPY WITH NuSTAR

    SciTech Connect

    Baloković, M.; Harrison, F. A.; Esmerian, C. J.; Fürst, F.; Walton, D. J.; Matt, G.; Marinucci, A.; Zoghbi, A.; Reynolds, C. S.; Ballantyne, D. R.; Boggs, S. E.; Craig, W. W.; Christensen, F. E.; Fabian, A. C.; Parker, M. L.; Hailey, C. J.; Stern, D.; Zhang, W. W.

    2015-02-10

    Measurements of the high-energy cut-off in the coronal continuum of active galactic nuclei have long been elusive for all but a small number of the brightest examples. We present a direct measurement of the cut-off energy in the nuclear continuum of the nearby Seyfert 1.9 galaxy MCG-05-23-016 with unprecedented precision. The high sensitivity of NuSTAR up to 79 keV allows us to clearly disentangle the spectral curvature of the primary continuum from that of its reflection component. Using a simple phenomenological model for the hard X-ray spectrum, we constrain the cut-off energy to 116{sub −5}{sup +6} keV with 90% confidence. Testing for more complex models and nuisance parameters that could potentially influence the measurement, we find that the cut-off is detected robustly. We further use simple Comptonized plasma models to provide independent constraints for both the kinetic temperature of the electrons in the corona and its optical depth. At the 90% confidence level, we find kT{sub e} = 29 ± 2 keV and τ {sub e} = 1.23 ± 0.08 assuming a slab (disk-like) geometry, and kT{sub e} = 25 ± 2 keV and τ {sub e} = 3.5 ± 0.2 assuming a spherical geometry. Both geometries are found to fit the data equally well and their two principal physical parameters are correlated in both cases. With the optical depth in the τ {sub e} ≳ 1 regime, the data are pushing the currently available theoretical models of the Comptonized plasma to the limits of their validity. Since the spectral features and variability arising from the inner accretion disk have been observed previously in MCG-05-23-016, the inferred high optical depth implies that a spherical or disk-like corona cannot be homogeneous.

  11. THE OPTICAL SPECTRA OF SPITZER 24 mum GALAXIES IN THE COSMIC EVOLUTION SURVEY FIELD. II. FAINT INFRARED SOURCES IN THE zCOSMOS-BRIGHT 10k CATALOG

    SciTech Connect

    Caputi, K. I.; Lilly, S. J.; Maier, C.; Carollo, C. M.; Aussel, H.; Floc'h, E. Le; Frayer, D.; Contini, T.; Kneib, J.-P.; Le Fevre, O.; Mainieri, V.; Renzini, A.; Scodeggio, M.; Scoville, N.; Zamorani, G.; Bardelli, S.; Bolzonella, M.; Coppa, G.; Bongiorno, A.

    2009-12-20

    We have used the zCOSMOS-bright 10k sample to identify 3244 Spitzer/MIPS 24 mum-selected galaxies with 0.06 mJy < S{sub 24{sub m}}u{sub m} approx< 0.50 mJy and I{sub AB} < 22.5, over 1.5 deg{sup 2} of the COSMOS field, and studied different spectral properties, depending on redshift. At 0.2 < z < 0.3, we found that different reddening laws of common use in the literature explain the dust extinction properties of approx80% of our infrared (IR) sources, within the error bars. For up to 16% of objects, instead, the Halpha lambda6563/Hbeta lambda4861 ratios are too high for their IR/UV attenuations, which is probably a consequence of inhomogeneous dust distributions. In only a few of our galaxies at 0.2 < z < 0.3, the IR emission could be mainly produced by dust heated by old rather than young stars. Besides, the line ratios of approx22% of our galaxies suggest that they might be star-formation/nuclear-activity composite systems. At 0.5 < z < 0.7, we estimated galaxy metallicities for 301 galaxies: at least 12% of them are securely below the upper-branch mass-metallicity trend, which is consistent with the local relation. Finally, we performed a combined analysis of the H{sub d}elta equivalent width versus D{sub n} (4000) diagram for 1722 faint and bright 24 mum galaxies at 0.6 < z < 1.0, spanning two decades in mid-IR luminosity. We found that, while secondary bursts of star formation are necessary to explain the position of the most luminous IR galaxies in that diagram, quiescent, exponentially declining star formation histories can well reproduce the spectral properties of approx40% of the less luminous sources. Our results suggest a transition in the possible modes of star formation at total IR luminosities L{sub TIR} approx (3 +- 2) x 10{sup 11} L{sub sun}.

  12. AN INFRARED CENSUS OF DUST IN NEARBY GALAXIES WITH SPITZER (DUSTiNGS). II. DISCOVERY OF METAL-POOR DUSTY AGB STARS

    SciTech Connect

    Boyer, Martha L.; Sonneborn, George; McQuinn, Kristen B. W.; Gehrz, Robert D.; Skillman, Evan; Barmby, Pauline; Bonanos, Alceste Z.; Gordon, Karl D.; Meixner, Margaret; Groenewegen, M. A. T.; Lagadec, Eric; Lennon, Daniel; Marengo, Massimo; McDonald, Iain; Zijlstra, Albert; Sloan, G. C.; Van Loon, Jacco Th.

    2015-02-10

    The DUSTiNGS survey (DUST in Nearby Galaxies with Spitzer) is a 3.6 and 4.5 μm imaging survey of 50 nearby dwarf galaxies designed to identify dust-producing asymptotic giant branch (AGB) stars and massive stars. Using two epochs, spaced approximately six months apart, we identify a total of 526 dusty variable AGB stars (sometimes called ''extreme'' or x-AGB stars; [3.6]-[4.5] > 0.1 mag). Of these, 111 are in galaxies with [Fe/H] < –1.5 and 12 are in galaxies with [Fe/H] < –2.0, making them the most metal-poor dust-producing AGB stars known. We compare these identifications to those in the literature and find that most are newly discovered large-amplitude variables, with the exception of ≈30 stars in NGC 185 and NGC 147, 1 star in IC 1613, and 1 star in Phoenix. The chemical abundances of the x-AGB variables are unknown, but the low metallicities suggest that they are more likely to be carbon-rich than oxygen-rich and comparisons with existing optical and near-IR photometry confirm that 70 of the x-AGB variables are confirmed or likely carbon stars. We see an increase in the pulsation amplitude with increased dust production, supporting previous studies suggesting that dust production and pulsation are linked. We find no strong evidence linking dust production with metallicity, indicating that dust can form in very metal-poor environments.

  13. STRONG UV AND X-RAY VARIABILITY OF THE NARROW LINE SEYFERT 1 GALAXY WPVS 007-ON THE NATURE OF THE X-RAY LOW STATE

    SciTech Connect

    Grupe, Dirk; Barlow, Brad N.; Komossa, S.; Scharwaechter, Julia; Dietrich, Matthias; Leighly, Karen M.; Lucy, Adrian E-mail: julia.scharwaechter@obspm.fr

    2013-10-01

    We report on multi-wavelength observations of the X-ray transient Narrow Line Seyfert 1 (NLS1) galaxy WPVS 007. The galaxy was monitored with Swift between 2005 October and 2013 July, after it had previously undergone a dramatic drop in its X-ray flux. For the first time, we are able to repeatedly detect this NLS1 in X-rays again. This increased number of detections in the last couple of years may suggest that the strong absorber that has been found in this active galactic nucleus (AGN) is starting to become leaky and may eventually disappear. The X-ray spectra obtained for WPVS 007 are all consistent with a partial covering absorber model. A spectrum based on the data during the extreme low X-ray flux states shows that the absorption column density is of the order of 4 Multiplication-Sign 10{sup 23} cm{sup -2} with a covering fraction of 95%. WPVS 007 also displays one of the strongest UV variabilities seen in NLS1s. The UV continuum variability anti-correlates with the optical/UV slope {alpha}{sub UV}, which suggests that the variability may be primarily due to reddening. The UV variability timescales are consistent with moving dust ''clouds'' located beyond the dust sublimation radius of R{sub sub} Almost-Equal-To 20 lt-days. We present for the first time near-infrared JHK data of WPVS 007, which reveal a rich emission-line spectrum. Recent optical spectroscopy does not indicate significant variability in the broad permitted and Fe II emission lines, implying that the ionizing continuum seen by those gas clouds has not significantly changed over the last decades. All X-ray and UV observations are consistent with a scenario in which an evolving broad absorption line (BAL) flow obscures the continuum emission. As such, WPVS 007 is an important target for our understanding of BAL flows in low-mass AGNs.

  14. The gamma-ray emitting radio-loud narrow-line Seyfert 1 galaxy PKS 2004-447. II. The radio view

    NASA Astrophysics Data System (ADS)

    Schulz, R.; Kreikenbohm, A.; Kadler, M.; Ojha, R.; Ros, E.; Stevens, J.; Edwards, P. G.; Carpenter, B.; Elsässer, D.; Gehrels, N.; Großberger, C.; Hase, H.; Horiuchi, S.; Lovell, J. E. J.; Mannheim, K.; Markowitz, A.; Müller, C.; Phillips, C.; Plötz, C.; Quick, J.; Trüstedt, J.; Tzioumis, A. K.; Wilms, J.

    2016-04-01

    Context. Γ-ray-detected radio-loud narrow-line Seyfert 1 (γ-NLS1) galaxies constitute a small but interesting sample of the γ-ray-loud AGN. The radio-loudest γ-NLS1 known, PKS 2004-447, is located in the southern hemisphere and is monitored in the radio regime by the multiwavelength monitoring programme TANAMI. Aims: We aim for the first detailed study of the radio morphology and long-term radio spectral evolution of PKS 2004-447, which are essential for understanding the diversity of the radio properties of γ-NLS1s. Methods: The TANAMI VLBI monitoring program uses the Australian Long Baseline Array (LBA) and telescopes in Antarctica, Chile, New Zealand, and South Africa to monitor the jets of radio-loud active galaxies in the southern hemisphere. Lower resolution radio flux density measurements at multiple radio frequencies over four years of observations were obtained with the Australia Telescope Compact Array (ATCA). Results: The TANAMI VLBI image at 8.4 GHz shows an extended one-sided jet with a dominant compact VLBI core. Its brightness temperature is consistent with equipartition, but it is an order of magnitude below other γ-NLS1s with the sample value varying over two orders of magnitude. We find a compact morphology with a projected large-scale size < 11 kpc and a persistent steep radio spectrum with moderate flux-density variability. Conclusions: PKS 2004-447 appears to be a unique member of the γ-NLS1 sample. It exhibits blazar-like features, such as a flat featureless X-ray spectrum and a core-dominated, one-sided parsec-scale jet with indications for relativistic beaming. However, the data also reveal properties atypical for blazars, such as a radio spectrum and large-scale size consistent with compact-steep-spectrum (CSS) objects, which are usually associated with young radio sources. These characteristics are unique among all γ-NLS1s and extremely rare among γ-ray-loud AGN. The VLBI images shown in Figs. 3 and 4 (as FITS files) and the ATCA

  15. Nearby early-type galaxies with ionized gas. VI. The Spitzer-IRS view. Basic data set analysis and empirical spectral classification

    NASA Astrophysics Data System (ADS)

    Panuzzo, P.; Rampazzo, R.; Bressan, A.; Vega, O.; Annibali, F.; Buson, L. M.; Clemens, M. S.; Zeilinger, W. W.

    2011-04-01

    Context. A large fraction of early-type galaxies (ETGs) shows emission lines in their optical spectra, mostly with LINER characteristics. Despite the number of studies, the nature of the ionization mechanisms is still debated. Many ETGs also show several signs of rejuvenation episodes. Aims: We aim to investigate the ionization mechanisms and the physical processes of a sample of ETGs using mid-infrared spectra. Methods: We present here low resolution Spitzer-IRS spectra of 40 ETGs, 18 of which from our proposed Cycle 3 observations, selected from a sample of 65 ETGs showing emission lines in their optical spectra. We homogeneously extract the mid-infrared (MIR) spectra, and after the proper subtraction of a "passive" ETG template, we derive the intensity of the ionic and molecular lines and of the polycyclic aromatic hydrocarbon (PAH) emission features. We use MIR diagnostic diagrams to investigate the powering mechanisms of the ionized gas. Results: The mid-infrared spectra of early-type galaxies show a variety of spectral characteristics. We empirically sub-divide the sample into five classes of spectra with common characteristics. Class-0, accounting for 20% of the sample, are purely passive ETGs with neither emission lines nor PAH features. Class-1 show emission lines but no PAH features, and account for 17.5% of the sample. Class-2, in which 50% of the ETGs are found, as well as having emission lines, show PAH features with unusual ratios, e.g. 7.7 μm/11.3 μm ≤ 2.3. Class-3 objects (7.5% of the sample) have emission lines and PAH features with ratios typical of star-forming galaxies. Class-4, containing only 5% of the ETGs, is dominated by a hot dust continuum. The diagnostic diagram [Ne iii]15.55 μm/[Ne ii]12.8 μm vs. [S iii]33.48 μm/[Si ii]34.82 μm, is used to investigate the different mechanisms ionizing the gas. According to the above diagram most of our ETGs contain gas ionized via either AGN-like or shock phenomena, or both. Conclusions: Most of

  16. THE EVOLUTION OF DUSTY STAR FORMATION IN GALAXY CLUSTERS TO z = 1: SPITZER INFRARED OBSERVATIONS OF THE FIRST RED-SEQUENCE CLUSTER SURVEY

    SciTech Connect

    Webb, T. M. A.; O'Donnell, D.; Coppin, Kristen; Faloon, Ashley; Geach, James E.; Noble, Allison; Yee, H. K. C.; Gilbank, David; Ellingson, Erica; Gladders, Mike; Muzzin, Adam; Wilson, Gillian; Yan, Renbin

    2013-10-01

    We present the results of an infrared (IR) study of high-redshift galaxy clusters with the MIPS camera on board the Spitzer Space Telescope. We have assembled a sample of 42 clusters from the Red-Sequence Cluster Survey-1 over the redshift range 0.3 < z < 1.0 and spanning an approximate range in mass of 10{sup 14-15} M {sub ☉}. We statistically measure the number of IR-luminous galaxies in clusters above a fixed inferred IR luminosity of 2 × 10{sup 11} M {sub ☉}, assuming a star forming galaxy template, per unit cluster mass and find it increases to higher redshift. Fitting a simple power-law we measure evolution of (1 + z){sup 5.1±1.9} over the range 0.3 < z < 1.0. These results are tied to the adoption of a single star forming galaxy template; the presence of active galactic nuclei, and an evolution in their relative contribution to the mid-IR galaxy emission, will alter the overall number counts per cluster and their rate of evolution. Under the star formation assumption we infer the approximate total star formation rate per unit cluster mass (ΣSFR/M {sub cluster}). The evolution is similar, with ΣSFR/M {sub cluster} ∼ (1 + z){sup 5.4±1.9}. We show that this can be accounted for by the evolution of the IR-bright field population over the same redshift range; that is, the evolution can be attributed entirely to the change in the in-falling field galaxy population. We show that the ΣSFR/M {sub cluster} (binned over all redshift) decreases with increasing cluster mass with a slope (ΣSFR/M{sub cluster}∼M{sub cluster}{sup -1.5±0.4}) consistent with the dependence of the stellar-to-total mass per unit cluster mass seen locally. The inferred star formation seen here could produce ∼5%-10% of the total stellar mass in massive clusters at z = 0, but we cannot constrain the descendant population, nor how rapidly the star-formation must shut-down once the galaxies have entered the cluster environment. Finally, we show a clear decrease in the number of IR

  17. UM 625 REVISITED: MULTIWAVELENGTH STUDY OF A SEYFERT 1 GALAXY WITH A LOW-MASS BLACK HOLE

    SciTech Connect

    Jiang Ning; Dong Xiaobo; Yang Huan; Wang Junxian; Ho, Luis C. E-mail: xbdong@ustc.edu.cn

    2013-06-10

    UM 625, previously identified as a narrow-line active galactic nucleus (AGN), actually exhibits broad H{alpha} and H{beta} lines whose width and luminosity indicate a low black hole (BH) mass of 1.6 Multiplication-Sign 10{sup 6} M{sub Sun }. We present a detailed multiwavelength study of the nuclear and host galaxy properties of UM 625. Analysis of Chandra and XMM-Newton observations suggests that this system contains a heavily absorbed and intrinsically X-ray weak ({alpha}{sub ox} = -1.72) nucleus. Although not strong enough to qualify as radio loud, UM 625 does belong to a minority of low-mass AGNs detected in the radio. The broadband spectral energy distribution constrains the bolometric luminosity to L{sub bol} Almost-Equal-To (0.5-3) Multiplication-Sign 10{sup 43} erg s{sup -1} and L{sub bol}/L{sub Edd} Almost-Equal-To 0.02-0.15. A comprehensive analysis of Sloan Digital Sky Survey and Hubble Space Telescope images shows that UM 625 is a nearly face-on S0 galaxy with a prominent, relatively blue pseudobulge (Sersic index n = 1.60) that accounts for {approx}60% of the total light in the R band. The extended disk is featureless, but the central {approx}150-400 pc contains a conspicuous semi-ring of bright, blue star-forming knots, whose integrated ultraviolet luminosity suggests a star formation rate of {approx}0.3 M{sub Sun} yr{sup -1}. The mass of the central BH roughly agrees with the value predicted from its bulge velocity dispersion but is significantly lower than that expected from its bulge luminosity.

  18. Resolving the Large Scale Spectral Variability of the Luminous Seyfert 1 Galaxy 1H 0419-577: Evidence for a New Emission Component and Absorption by Cold Dense Matter

    NASA Technical Reports Server (NTRS)

    Pounds, K. A.; Reeves, J. N.; Page, K. L.; OBrien, P. T.

    2004-01-01

    An XMM-Newton observation of the luminous Seyfert 1 galaxy 1H 0419-577 in September 2002, when the source was in an extreme low-flux state, found a very hard X-ray spectrum at 1-10 keV with a strong soft excess below -1 keV. Comparison with an earlier XMM-Newton observation when 1H 0419-577 was X-ray bright indicated the dominant spectral variability was due to a steep power law or cool Comptonised thermal emission. Four further XMM-Newton observations, with 1H 0419-577 in intermediate flux states, now support that conclusion, while we also find the variable emission component in intermediate state difference spectra to be strongly modified by absorption in low ionisation matter. The variable soft excess then appears to be an artefact of absorption of the underlying continuum while the core soft emission can be attributed to re- combination in an extended region of more highly ionised gas. We note the wider implications of finding substantial cold dense matter overlying (or embedded in) the X-ray continuum source in a luminous Seyfert 1 galaxy.

  19. GALAXY CLUSTERS AROUND RADIO-LOUD ACTIVE GALACTIC NUCLEI AT 1.3 < z < 3.2 AS SEEN BY SPITZER

    SciTech Connect

    Wylezalek, Dominika; Stern, Daniel; Eisenhardt, Peter R. M.; Galametz, Audrey; Vernet, Joeel; De Breuck, Carlos; Seymour, Nick; Brodwin, Mark; Gonzalez, Anthony H.; Hatch, Nina; Jarvis, Matt; Rettura, Alessandro; Stanford, Spencer A.; Stevens, Jason A.

    2013-05-20

    We report the first results from the Clusters Around Radio-Loud AGN program, a Cycle 7 and 8 Spitzer Space Telescope snapshot program to investigate the environments of a large sample of obscured and unobscured luminous radio-loud active galactic nuclei (AGNs) at 1.2 < z < 3.2. These data, obtained for 387 fields, reach 3.6 and 4.5 {mu}m depths of [3.6]{sub AB} = 22.6 and [4.5]{sub AB} = 22.9 at the 95% completeness level, which is two to three times fainter than L* in this redshift range. By using the color cut [3.6] - [4.5] > -0.1 (AB), which efficiently selects high-redshift (z > 1.3) galaxies of all types, we identify galaxy cluster member candidates in the fields of the radio-loud AGN. The local density of these Infrared Array Camera (IRAC)-selected sources is compared to the density of similarly selected sources in blank fields. We find that 92% of the radio-loud AGN reside in environments richer than average. The majority (55%) of the radio-loud AGN fields are found to be overdense at a {>=}2{sigma} level; 10% are overdense at a {>=}5{sigma} level. A clear rise in surface density of IRAC-selected sources toward the position of the radio-loud AGN strongly supports an association of the majority of the IRAC-selected sources with the radio-loud AGN. Our results provide solid statistical evidence that radio-loud AGN are likely beacons for finding high-redshift galaxy (proto-)clusters. We investigate how environment depends on AGN type (unobscured radio-loud quasars versus obscured radio galaxies), radio luminosity and redshift, finding no correlation with either AGN type or radio luminosity. We find a decrease in density with redshift, consistent with galaxy evolution for this uniform, flux-limited survey. These results are consistent with expectations from the orientation-driven AGN unification model, at least for the high radio luminosity regimes considered in this sample.

  20. SACS: Spitzer Archival Cluster Survey

    NASA Astrophysics Data System (ADS)

    Stern, Daniel

    Emerging from the cosmic web, galaxy clusters are the most massive gravitationally bound structures in the universe. Thought to have begun their assembly at z > 2, clusters provide insights into the growth of large-scale structure as well as the physics that drives galaxy evolution. Understanding how and when the most massive galaxies assemble their stellar mass, stop forming stars, and acquire their observed morphologies in these environments remain outstanding questions. The redshift range 1.3 < z < 2 is a key epoch in this respect: elliptical galaxies start to become the dominant population in cluster cores, and star formation in spiral galaxies is being quenched. Until recently, however, this redshift range was essentially unreachable with available instrumentation, with clusters at these redshifts exceedingly challenging to identify from either ground-based optical/nearinfrared imaging or from X-ray surveys. Mid-infrared (MIR) imaging with the IRAC camera on board of the Spitzer Space Telescope has changed the landscape. High-redshift clusters are easily identified in the MIR due to a combination of the unique colors of distant galaxies and a negative k-correction in the 3-5 μm range which makes such galaxies bright. Even 90-sec observations with Spitzer/IRAC, a depth which essentially all extragalactic observations in the archive achieve, is sufficient to robustly detect overdensities of L* galaxies out to z~2. Here we request funding to embark on a ambitious scientific program, the “SACS: Spitzer Archival Cluster Survey”, a comprehensive search for the most distant galaxy clusters in all Spitzer/IRAC extragalactic pointings available in the archive. With the SACS we aim to discover ~2000 of 1.3 < z < 2.5 clusters, thus provide the ultimate catalog for high-redshift MIR selected clusters: a lasting legacy for Spitzer. The study we propose will increase by more than a factor of 10 the number of high-redshift clusters discovered by all previous surveys

  1. Radio-to-γ-ray monitoring of the narrow-line Seyfert 1 galaxy PMN J0948 + 0022 from 2008 to 2011

    NASA Astrophysics Data System (ADS)

    Foschini, L.; Angelakis, E.; Fuhrmann, L.; Ghisellini, G.; Hovatta, T.; Lahteenmaki, A.; Lister, M. L.; Braito, V.; Gallo, L.; Hamilton, T. S.; Kino, M.; Komossa, S.; Pushkarev, A. B.; Thompson, D. J.; Tibolla, O.; Tramacere, A.; Carramiñana, A.; Carrasco, L.; Falcone, A.; Giroletti, M.; Grupe, D.; Kovalev, Y. Y.; Krichbaum, T. P.; Max-Moerbeck, W.; Nestoras, I.; Pearson, T. J.; Porras, A.; Readhead, A. C. S.; Recillas, E.; Richards, J. L.; Riquelme, D.; Sievers, A.; Tammi, J.; Tornikoski, M.; Ungerechts, H.; Zensus, J. A.; Celotti, A.; Bonnoli, G.; Doi, A.; Maraschi, L.; Tagliaferri, G.; Tavecchio, F.

    2012-12-01

    We present more than three years of observations at different frequencies, from radio to high-energy γ-rays, of the Narrow-Line Seyfert 1 (NLS1) Galaxy PMN J0948 + 0022 (z = 0.585). This source is the first NLS1 detected at energies above 100 MeV and therefore can be considered the prototype of this emerging new class of γ-ray emitting active galactic nuclei (AGN). The observations performed from 2008 August 1 to 2011 December 31 confirmed that PMN J0948 + 0022 generates a powerful relativistic jet, which is able to develop an isotropic luminosity at γ-rays of the order of 1048 erg s-1, at the level ofpowerful quasars. The evolution of the radiation emission of this source in 2009 and 2010 followed the canonical expectations of relativistic jets with correlated multiwavelength variability (γ-rays followed by radio emission after a few months), but it was difficult to retrieve a similar pattern in the light curves of 2011. The comparison of γ-ray spectra before and including 2011 data suggested that there was a softening of the high-energy spectral slope. We selected five specific epochs to be studied by modelling the broad-band spectrum, which are characterised by an outburst at γ-rays or very low/high flux at other wavelengths. The observed variability can largely be explained by changes in the injected power, the bulk Lorentz factor of the jet, or the electron spectrum. The characteristic time scale of doubling/halving flux ranges from a few days to a few months, depending on the frequency and the sampling rate. The shortest doubling time scale at γ-rays is 2.3 ± 0.5 days. These small values underline the need of highly sampled multiwavelength campaigns to better understand the physics of these sources. Appendix A is available in electronic form at http://www.aanda.orgData displayed in Figs. A.1-A.3 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc

  2. Simultaneous XMM-Newton and HST-COS observation of 1H 0419-577. II. Broadband spectral modeling of a variable Seyfert galaxy

    NASA Astrophysics Data System (ADS)

    Di Gesu, L.; Costantini, E.; Piconcelli, E.; Ebrero, J.; Mehdipour, M.; Kaastra, J. S.

    2014-03-01

    In this paper, we present the longest exposed (97 ks) XMM-Newton EPIC-pn spectrum ever obtained for the Seyfert 1.5 galaxy1H 0419-577. With the aim of explaining the broadband emission of this source, we took advantage of the simultaneous coverage in the optical/UV that was provided in the present case by the XMM-Newton Optical Monitor and by a HST-COS observation. Archival FUSE flux measurements in the far-ultraviolet were also used for the present analysis. We successfully modeled the X-ray spectrum and the optical/UV fluxes data points using a Comptonization model. We found that a blackbody temperature of T ~ 56 eV accounts for the optical/UV emission originating in the accretion disk. This temperature serves as an input for the Comptonized components that model the X-ray continuum. Both a warm (Twc ~ 0.7 keV, τwc ~ 7) and a hot corona (Thc ~ 160 keV, τhc ~ 0.5) intervene to upscatter the disk photons to X-ray wavelengths. With the addition of a partially covering (Cv ~ 50%) cold absorber with a variable opacity ( NH~ [1019-1022] cm-2), this model can also explain the historical spectral variability of this source, with the present dataset presenting the lowest one ( NH~1019 cm-2). We discuss a scenario where the variable absorber becomes less opaque in the highest flux states because it gets ionized in response to the variations of the X-ray continuum. The lower limit for the absorber density derived in this scenario is typical for the broad line region clouds. We infer that1H 0419-577may be viewed from an intermediate inclination angle i ≥ 54°, and, on this basis, we speculate that the X-ray obscuration may be associated with the innermost dust-free region of the obscuring torus. Finally, we critically compare this scenario with all the different models (e.g., disk reflection) that have been used in the past to explain the variability of this source.

  3. Near-infrared continuum and 3.3 micrometer(s) polycyclic aromatic hydrocarbon imaging of the starburst ring in the type 1 Seyfert galaxy NGC 7469

    NASA Technical Reports Server (NTRS)

    Mazzarella, J. M.; Voit, G. M.; Soifer, B. T.; Matthews, K.; Graham, J. R.; Armus, L.; Shupe, D.

    1994-01-01

    High resolution near-infrared images of the type 1 Seyfert galaxy NGC 7469 have been obtained to probe its dusty nuclear environment. Direct J, H, and K images are relatively featureless, but residual images created by subtracting a smooth model based on best-fitting elliptical isophotes reveal a tight inner spiral whose high surface-brightness portions correspond to a previously detected 3 sec (1 kpc) diameter ring of radio continuum emission. The inner infrared spiral arms extended approximately equal to 4 sec NW and SE from the nucleus, and the NW arm joins up with large-scale spiral structure visible in the R band. The residual images also show a bar-like structure aligned with the brightest infrared/radio hotspots at PA approximately equal to 50 deg. Three infrared hotspots are detected which align remarkably well with 6 cm radio continuum sources. The near-infrared ring and the hotspots are visible in the residual images, and in a high-resolution direct K-band image restored to an effective resolution of 0.65 sec (FWHM) using the Richardson-Lucy algorithm. The infrared hotspots have luminosities of nuL(sub nu) (2.2 micrometer(s)) approximately equal to 10(exp 8) solar luminosity (M(sub k) approximately equal to -16 mag), suggesting they are either giant H II regions or individual supernovae. The two brightest regions may be associated with enhanced star formation triggered by orbit crowding of gas where spiral arms emerge from an inner bar. Narrowband (delta lambda/lambda approximately 1.5%) imaging in the 3.28 micrometer(s) dust emission feature and surrounding continuum confirms the 3 sec diameter 3.28 micrometer(s) emission region detected previously using multiaperture photometry. The extended polycyclic aromatic hydrocarbon (PAH) emission is slightly elongated and aligned with published 1O III1 line emission and 12.5 micrometer(s) continuum emission, apparently tracing the starburst. The presence of approximately equal to 25% of the total 3.28 micrometer

  4. THE RISE OF AN IONIZED WIND IN THE NARROW-LINE SEYFERT 1 GALAXY Mrk 335 OBSERVED BY XMM-NEWTON AND HST

    SciTech Connect

    Longinotti, A. L.; Krongold, Y.; Kriss, G. A.; Ely, J.; Gallo, L.; Grupe, D.; Komossa, S.; Mathur, S.; Pradhan, A.

    2013-04-01

    We present the discovery of an outflowing ionized wind in the Seyfert 1 galaxy Mrk 335. Despite having been extensively observed by most of the largest X-ray observatories in the last decade, this bright source was not known to host warm absorber gas until recent XMM-Newton observations in combination with a long-term Swift monitoring program have shown extreme flux and spectral variability. High-resolution spectra obtained by the XMM-Newton Reflection Grating Spectrometer (RGS) detector reveal that the wind consists of three distinct ionization components, all outflowing at a velocity of {approx}5000 km s{sup -1}. This wind is clearly revealed when the source is observed at an intermediate flux state (2-5 Multiplication-Sign 10{sup -12} erg cm{sup -2} s{sup -1}). The analysis of multi-epoch RGS spectra allowed us to compare the absorber properties at three very different flux states of the source. No correlation between the warm absorber variability and the X-ray flux has been determined. The two higher ionization components of the gas (log {xi} {approx} 2.3 and 3.3) may be consistent with photoionization equilibrium, but we can exclude this for the only ionization component that is consistently present in all flux states (log {xi} {approx} 1.8). We have included archival, non-simultaneous UV data from Hubble Space Telescope (FOS, STIS, COS) with the aim of searching for any signature of absorption in this source that so far was known for being absorption-free in the UV band. In the Cosmic Origins Spectrograph (COS) spectra obtained a few months after the X-ray observations, we found broad absorption in C IV lines intrinsic to the active galactic nucleus and blueshifted by a velocity roughly comparable to the X-ray outflow. The global behavior of the gas in both bands can be explained by variation of the covering factor and/or column density, possibly due to transverse motion of absorbing clouds moving out of the line of sight at broad line region scale.

  5. Infrared Emission from the Smallest Active Galaxies

    NASA Astrophysics Data System (ADS)

    Barth, Aaron; Greene, Jenny; Ho, Luis

    2006-05-01

    Virtually all of our current knowledge of black hole demographics, both in nearby inactive galaxies and in AGNs, comes from observations of black holes with masses between a few million and a few billion solar masses in host galaxies with stellar velocity dispersions between about 70 and 400 km/sec. Searching for smaller black holes in low-mass galaxies can yield important clues to the origin and early evolution of supermassive black holes, and AGN surveys are the best available way to identify such objects. Using the Sloan Digital Sky Survey, we have identified 19 Seyfert 1 galaxies with black hole mass below 10^6 solar masses (Greene & Ho 2004), and 20 Seyfert 2 galaxies having stellar velocity dispersions smaller than 70 km/sec as determined by new Keck observations. These AGN samples offer a unique opportunity to study the very early growth stages of black holes and their host galaxies. Spitzer observations of mid-infrared emission will be the best available calorimeter of the energetics of these tiny AGNs. Our primary goal is to determine the infrared contribution to the bolometric luminosities, which will be a key to understanding the black hole accretion rates. From the infrared spectral shapes we will constrain the dust temperatures and search for silicate features in emission or absorption that may indicate the presence of an obscuring torus, and which will help to determine whether the Type 1 and Type 2 objects differ primarily as a result of our viewing angle, as in classic AGN unified models. PAH features and narrow emission lines will be used to diagnose the relative contributions of AGN and star formation to the infrared luminosity. To accomplish these goals, we request IRS staring-mode spectroscopy in the SL2, SL1, LL2, and LL1 settings for our Sloan-selected sample of 19 Seyfert 1s and 20 Seyfert 2s, as well as NGC 4395 and POX 52, which are the prototypical nearby examples of Seyfert nuclei in dwarf host galaxies.

  6. Mid-Infrared Silicate Dust Features in Seyfert 1 Spectra

    NASA Astrophysics Data System (ADS)

    Thompson, Grant D.; Levenson, N. A.; Sirocky, M. M.; Uddin, S.

    2007-12-01

    Silicate dust emission dominates the mid-infrared spectra of galaxies, and the dust produces two spectral features, at 10 and 18 μm. These features' strengths (in emission or absorption) and peak wavelengths reveal the geometry of the dust distribution, and they are sensitive to the dust composition. We examine mid-infrared spectra of 32 Seyfert 1 active galactic nuclei (AGN), observed with the Infrared Spectrograph aboard the Spitzer Space Telescope. In the spectra, we typically find the shorter-wavelength feature in emission, at an average peak wavelength of 10.0 μm, although it is known historically as the "9.7 μm" feature. In addition, peak wavelength increases with feature strength. The 10 and 18 μm feature strengths together are sensitive to the dust geometry surrounding the central heating engine. Numerical calculations of radiative transfer distinguish between clumpy and smooth distributions, and we find that the surroundings of these AGN (the obscuring "tori" of unified AGN schemes) are clumpy. Polycyclic aromatic hydrocarbon (PAH) features are associated with star formation, and we find strong PAH emission (luminosity ≥ 1042 erg/s) in only four sources, three of which show independent evidence for starbursts. We will explore the effects of luminosity on dust geometry and chemistry in a comparison sample of quasars. We acknowledge work supported by the NSF under grant number 0237291.

  7. THE SPITZER SURVEY OF STELLAR STRUCTURE IN GALAXIES (S{sup 4}G): MULTI-COMPONENT DECOMPOSITION STRATEGIES AND DATA RELEASE

    SciTech Connect

    Salo, Heikki; Laurikainen, Eija; Laine, Jarkko; Comerón, Sebastien; Gadotti, Dimitri A.; Kim, Taehyun; Buta, Ron; Sheth, Kartik; Muñoz-Mateos, Juan Carlos; Ho, Luis; Knapen, Johan; Cisternas, Mauricio; Athanassoula, E.; Bosma, Albert; Laine, Seppo; Regan, Michael; De Paz, Armando Gil; Menendez-Delmestre, Karin; and others

    2015-07-20

    The Spitzer Survey of Stellar Structure in Galaxies (S{sup 4}G) is a deep 3.6 and 4.5 μm imaging survey of 2352 nearby (<40 Mpc) galaxies. We describe the S{sup 4}G data analysis pipeline 4, which is dedicated to two-dimensional structural surface brightness decompositions of 3.6 μm images, using GALFIT3.0. Besides automatic 1-component Sérsic fits, and 2-component Sérsic bulge + exponential disk fits, we present human-supervised multi-component decompositions, which include, when judged appropriate, a central point source, bulge, disk, and bar components. Comparison of the fitted parameters indicates that multi-component models are needed to obtain reliable estimates for the bulge Sérsic index and bulge-to-total light ratio (B/T), confirming earlier results. Here, we describe the preparations of input data done for decompositions, give examples of our decomposition strategy, and describe the data products released via IRSA and via our web page (www.oulu.fi/astronomy/S4G-PIPELINE4/MAIN). These products include all the input data and decomposition files in electronic form, making it easy to extend the decompositions to suit specific science purposes. We also provide our IDL-based visualization tools (GALFIDL) developed for displaying/running GALFIT-decompositions, as well as our mask editing procedure (MASK-EDIT) used in data preparation. A detailed analysis of the bulge, disk, and bar parameters derived from multi-component decompositions will be published separately.

  8. The NASA Spitzer Space Telescope.

    PubMed

    Gehrz, R D; Roellig, T L; Werner, M W; Fazio, G G; Houck, J R; Low, F J; Rieke, G H; Soifer, B T; Levine, D A; Romana, E A

    2007-01-01

    The National Aeronautics and Space Administration's Spitzer Space Telescope (formerly the Space Infrared Telescope Facility) is the fourth and final facility in the Great Observatories Program, joining Hubble Space Telescope (1990), the Compton Gamma-Ray Observatory (1991-2000), and the Chandra X-Ray Observatory (1999). Spitzer, with a sensitivity that is almost three orders of magnitude greater than that of any previous ground-based and space-based infrared observatory, is expected to revolutionize our understanding of the creation of the universe, the formation and evolution of primitive galaxies, the origin of stars and planets, and the chemical evolution of the universe. This review presents a brief overview of the scientific objectives and history of infrared astronomy. We discuss Spitzer's expected role in infrared astronomy for the new millennium. We describe pertinent details of the design, construction, launch, in-orbit checkout, and operations of the observatory and summarize some science highlights from the first two and a half years of Spitzer operations. More information about Spitzer can be found at http://spitzer.caltech.edu/.

  9. The NASA Spitzer Space Telescope.

    PubMed

    Gehrz, R D; Roellig, T L; Werner, M W; Fazio, G G; Houck, J R; Low, F J; Rieke, G H; Soifer, B T; Levine, D A; Romana, E A

    2007-01-01

    The National Aeronautics and Space Administration's Spitzer Space Telescope (formerly the Space Infrared Telescope Facility) is the fourth and final facility in the Great Observatories Program, joining Hubble Space Telescope (1990), the Compton Gamma-Ray Observatory (1991-2000), and the Chandra X-Ray Observatory (1999). Spitzer, with a sensitivity that is almost three orders of magnitude greater than that of any previous ground-based and space-based infrared observatory, is expected to revolutionize our understanding of the creation of the universe, the formation and evolution of primitive galaxies, the origin of stars and planets, and the chemical evolution of the universe. This review presents a brief overview of the scientific objectives and history of infrared astronomy. We discuss Spitzer's expected role in infrared astronomy for the new millennium. We describe pertinent details of the design, construction, launch, in-orbit checkout, and operations of the observatory and summarize some science highlights from the first two and a half years of Spitzer operations. More information about Spitzer can be found at http://spitzer.caltech.edu/. PMID:17503900

  10. ON THE ORIGIN OF LOPSIDEDNESS IN GALAXIES AS DETERMINED FROM THE SPITZER SURVEY OF STELLAR STRUCTURE IN GALAXIES (S{sup 4}G)

    SciTech Connect

    Zaritsky, Dennis; Hinz, Joannah L.; Salo, Heikki; Laurikainen, Eija; Comeron, Sebastien; Laine, Jarkko; Elmegreen, Debra; Athanassoula, E.; Bosma, Albert; Erroz-Ferrer, Santiago; Knapen, Johan H.; Elmegreen, Bruce; Gadotti, Dimitri A.; Kim, Taehyun; De Paz, Armando Gil; Ho, Luis C.; Madore, Barry F.; Holwerda, Benne W.; Laine, Seppo; Meidt, Sharon; and others

    2013-08-01

    We study the m = 1 distortions (lopsidedness) in the stellar components of 167 nearby galaxies that span a wide range of morphologies and luminosities. We confirm the previous findings of (1) a high incidence of lopsidedness in the stellar distributions, (2) increasing lopsidedness as a function of radius out to at least 3.5 exponential scale lengths, and (3) greater lopsidedness, over these radii, for galaxies of later type and lower surface brightness. Additionally, the magnitude of the lopsidedness (1) correlates with the character of the spiral arms (stronger arm patterns occur in galaxies with less lopsidedness), (2) is not correlated with the presence or absence of a bar, or the strength of the bar when one is present, (3) is inversely correlated to the stellar mass fraction, f{sub *}, within one radial scale length, and (4) correlates directly with f{sub *} measured within the radial range over which we measure lopsidedness. We interpret these findings to mean that lopsidedness is a generic feature of galaxies and does not, generally, depend on a rare event, such as a direct accretion of a satellite galaxy onto the disk of the parent galaxy. While lopsidedness may be caused by several phenomena, moderate lopsidedness ((A{sub 1}){sub i} + (A{sub 1}){sub o})/2 < 0.3) is likely to reflect halo asymmetries to which the disk responds or a gravitationally self-generated mode. We hypothesize that the magnitude of the stellar response depends both on how centrally concentrated the stars are with respect to the dark matter and whether there are enough stars in the region of the lopsidedness that self-gravity is dynamically important.

  11. The Mid-infrared High-ionization Lines from Active Galactic Nuclei and Star-forming Galaxies

    NASA Astrophysics Data System (ADS)

    Pereira-Santaella, Miguel; Diamond-Stanic, Aleksandar M.; Alonso-Herrero, Almudena; Rieke, George H.

    2010-12-01

    We used Spitzer/Infrared Spectrograph spectroscopic data on 426 galaxies including quasars, Seyferts, LINERs, and H II galaxies to investigate the relationship among the mid-IR emission lines. There is a tight linear correlation between the [Ne V]14.3 μm and 24.3 μm (97.1 eV) and the [O IV]25.9 μm (54.9 eV) high-ionization emission lines. The correlation also holds for these high-ionization emission lines and the [Ne III]15.56 μm (41 eV) emission line, although only for active galaxies. We used these correlations to calculate the [Ne III] excess due to star formation in Seyfert galaxies. We also estimated the [O IV] luminosity due to star formation in active galaxies and determined that it dominates the [O IV] emission only if the contribution of the active nucleus to the total luminosity is below 5%. We find that the active galactic nucleus dominates the [O IV] emission in most Seyfert galaxies, whereas star formation adequately explains the observed [O IV] emission in optically classified H II galaxies. Finally, we computed photoionization models to determine the physical conditions of the narrow-line region where these high-ionization lines originate. The estimated ionization parameter range is -2.8 < log U < -2.5 and the total hydrogen column density range is 20 < log n H (cm-2) < 21. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under NASA contract 1407.

  12. LOCAL LUMINOUS INFRARED GALAXIES. III. CO-EVOLUTION OF BLACK HOLE GROWTH AND STAR FORMATION ACTIVITY?

    SciTech Connect

    Alonso-Herrero, Almudena; Hernan-Caballero, Antonio; Pereira-Santaella, Miguel; Rieke, George H.; Diamond-Stanic, Aleksandar M.; Wang Yiping; Rigopoulou, Dimitra

    2013-03-10

    Local luminous infrared (IR) galaxies (LIRGs) have both high star formation rates (SFR) and a high AGN (Seyfert and AGN/starburst composite) incidence. Therefore, they are ideal candidates to explore the co-evolution of black hole (BH) growth and star formation (SF) activity, not necessarily associated with major mergers. Here, we use Spitzer/IRS spectroscopy of a complete volume-limited sample of local LIRGs (distances of <78 Mpc). We estimate typical BH masses of 3 Multiplication-Sign 10{sup 7} M{sub Sun} using [Ne III] 15.56 {mu}m and optical [O III] {lambda}5007 gas velocity dispersions and literature stellar velocity dispersions. We find that in a large fraction of local LIRGs, the current SFR is taking place not only in the inner nuclear {approx}1.5 kpc region, as estimated from the nuclear 11.3 {mu}m PAH luminosities, but also in the host galaxy. We next use the ratios between the SFRs and BH accretion rates (BHAR) to study whether the SF activity and BH growth are contemporaneous in local LIRGs. On average, local LIRGs have SFR to BHAR ratios higher than those of optically selected Seyferts of similar active galactic nucleus (AGN) luminosities. However, the majority of the IR-bright galaxies in the revised-Shapley-Ames Seyfert sample behave like local LIRGs. Moreover, the AGN incidence tends to be higher in local LIRGs with the lowest SFRs. All of this suggests that in local LIRGs there is a distinct IR-bright star-forming phase taking place prior to the bulk of the current BH growth (i.e., AGN phase). The latter is reflected first as a composite and then as a Seyfert, and later as a non-LIRG optically identified Seyfert nucleus with moderate SF in its host galaxy.

  13. Crashing galaxies, cosmic fireworks

    SciTech Connect

    Keel, W.C.

    1989-01-01

    The study of binary systems is reviewed. The history of the study of interacting galaxies, the behavior of gas in binary systems, studies to identify the processes that occur when galaxies interact, and the relationship of Seyfert galaxies and quasars to binary systems are discussed. The development of an atlas of peculiar galaxies (Arp, 1966) and methods for modeling galaxy interactions are examined.

  14. Precision Fe K-Alpha and Fe K-Beta Line Spectroscopy of the Seyfert 1.9 Galaxy NGC 2992 with Suzaku

    NASA Technical Reports Server (NTRS)

    Yaqoob, Tahir; Murphy, Kendrah D.; Griffiths, Richard E.; Haba, Yoshito; Inoue, Hajime; Itoh, Takeshi; Kelley, Richard; Kokubun, Motohide; Markowitz, Alex; Mushotzky, Richard; Okajima, Takashi; Ptak, Andrew; Reeves, James; Selemitos, Peter J.; Takahashi, Tadayuki; Terashima, Yuichi

    2006-01-01

    We present detailed time-averaged X-ray spectroscopy in the 0.5-10 keV band of the Seyfert 1.9 galaxy NGC 2992 with the Suzaku X-ray Imaging Spectrometers (XIS). The source had a factor approximately 3 higher 2-10 keV flux (approximately 1.2 x l0(exp -11) erg per square cm per s) than the historical minimum and a factor approximately 7 less than the historical maximum. The XIS spectrum of NGC 2992 can be described by several components. There is a primary continuum, modeled as a power-law with a photon index of Gamma = 1.57(sup +0.06) (sup -0.03) that is obscured by a Compton-thin absorber with a column density of 8.01(sup +0.6) (sup -0.5)x l0 (exp 21) per square cm. . There is another, weaker, unabsorbed power-law component (modeled with the same slope as the primary), that is likely to be due to the primary continuum being electron-scattered into our line-of-sight by a region extended on a scale of hundreds of parsecs. We measure the Thomson depth of the scattering zone to be Tau = 0.072 +/- 0.021. An optically-thin thermal continuum emission component, which probably originates in the same extended region, is included in the model and yields a temperature and luminosity of KT = 0.656(sup +0.088) (sup -0.0.61) keV and approximately 1.2 +/- 0.4 x l0 (exp 40) erg per s respectively. We detect an Fe K emission complex which we model with broad and narrow lines and we show that the intensities of the two components are decoupled at a confidence level > 3 sigma. The broad Fe K alpha line has an equivalent width of 118(sup +32) (sup -61) eV and could originate in an accretion disk (with inclination angle greater than approximately 30 deg) around the putative central black hole. The narrow Fe K alpha line has an equivalent width of 1632(sup +47) (sup -26) eV and is unresolved (FWHM < 4630 km per s) and likely originates in distant matter. The absolute flux in the narrow line implies that the column density out of the line-of-sight could be much higher than measured in

  15. The Spectral Energy Distribution of Dust Emission in the Edge-on Spiral Galaxy NGC 4631 as Seen with Spitzer and the James Clerk Maxwell Telescope

    NASA Astrophysics Data System (ADS)

    Bendo, George J.; Dale, Daniel A.; Draine, Bruce T.; Engelbracht, Charles W.; Kennicutt, Robert C., Jr.; Calzetti, Daniela; Gordon, Karl D.; Helou, George; Hollenbach, David; Li, Aigen; Murphy, Eric J.; Prescott, Moire K. M.; Smith, John-David T.

    2006-11-01

    We explore variations in dust emission within the edge-on Sd spiral galaxy NGC 4631 using 3.6-160 μm Spitzer Space Telescope data and 450-850 μm JCMT data with the goals of understanding the relation between PAHs and dust emission, studying the variations in the colors of the dust emission, and searching for possible excess submillimeter emission compared to what is expected from dust models extrapolated from far-infrared wavelengths. The 8 μm PAH emission correlates best with 24 μm hot dust emission on 1.7 kpc scales, but the relation breaks down on 650 pc scales, possibly because of differences in the mean free paths between photons that excite the PAHs and photons that heat the dust and possibly because the PAHs are destroyed by the hard radiation fields within some star formation regions. The ratio of 8 μm PAH emission to 160 μm cool dust emission appears to vary as a function of radius. The 70 μm/160 μm and 160 μm/450 μm flux density ratios are remarkably constant even though the surface brightnesses vary by factors of 25, which suggests that the emission is from dust heated by a nearly uniform radiation field. Globally, we find an excess of 850-1230 μm emission relative to what would be predicted by dust models. The 850 μm excess is highest in regions with low 160 μm surface brightnesses, although the magnitude depends on the model fit to the data. We rule out variable emissivity functions or ~4 K dust as the possible origins of this 850 μm emission, but we do discuss the other possible mechanisms that could produce the emission.

  16. FINDING η CAR ANALOGS IN NEARBY GALAXIES USING Spitzer. II. IDENTIFICATION OF AN EMERGING CLASS OF EXTRAGALACTIC SELF-OBSCURED STARS

    SciTech Connect

    Khan, Rubab; Kochanek, C. S.; Stanek, K. Z.; Gerke, Jill

    2015-02-01

    Understanding the late-stage evolution of the most massive stars such as η Carinae is challenging because no true analogs of η Car have been clearly identified in the Milky Way or other galaxies. In Khan et al., we utilized Spitzer IRAC images of 7 nearby (≲ 4 Mpc) galaxies to search for such analogs, and found 34 candidates with flat or red mid-IR spectral energy distributions. Here, in Paper II, we present our characterization of these candidates using multi-wavelength data from the optical through the far-IR. Our search detected no true analogs of η Car, which implies an eruption rate that is a fraction 0.01 ≲ F ≲ 0.19 of the core-collapse supernova (ccSN) rate. This is roughly consistent with each M {sub ZAMS} ≳ 70 M {sub ☉} star undergoing one or two outbursts in its lifetime. However, we do identify a significant population of 18 lower luminosity (log (L/L {sub ☉}) ≅ 5.5-6.0) dusty stars. Stars enter this phase at a rate that is a fraction 0.09 ≲ F ≲ 0.55 of the ccSN rate, and this is consistent with all 25 < M {sub ZAMS} < 60 M {sub ☉} stars undergoing an obscured phase at most lasting a few thousand years once or twice. These phases constitute a negligible fraction of post-main-sequence lifetimes of massive stars, which implies that these events are likely to be associated with special periods in the evolution of the stars. The mass of the obscuring material is of order ∼M {sub ☉}, and we simply do not find enough heavily obscured stars for theses phases to represent more than a modest fraction (∼10% not ∼50%) of the total mass lost by these stars. In the long term, the sources that we identified will be prime candidates for detailed physical analysis with the James Webb Space Telescope.

  17. THE SPECTRAL ENERGY DISTRIBUTIONS AND INFRARED LUMINOSITIES OF z Almost-Equal-To 2 DUST-OBSCURED GALAXIES FROM Herschel AND Spitzer

    SciTech Connect

    Melbourne, J.; Soifer, B. T.; Desai, Vandana; Armus, Lee; Pope, Alexandra; Alberts, Stacey; Dey, Arjun; Jannuzi, B. T.; Bussmann, R. S. E-mail: bts@submm.caltech.edu E-mail: lee@ipac.caltech.edu E-mail: pope@astro.umass.edu E-mail: jannuzi@noao.edu

    2012-05-15

    Dust-obscured galaxies (DOGs) are a subset of high-redshift (z Almost-Equal-To 2) optically-faint ultra-luminous infrared galaxies (ULIRGs, e.g., L{sub IR} > 10{sup 12} L{sub Sun} ). We present new far-infrared photometry, at 250, 350, and 500 {mu}m (observed-frame), from the Herschel Space Telescope for a large sample of 113 DOGs with spectroscopically measured redshifts. Approximately 60% of the sample are detected in the far-IR. The Herschel photometry allows the first robust determinations of the total infrared luminosities of a large sample of DOGs, confirming their high IR luminosities, which range from 10{sup 11.6} L{sub Sun} 10{sup 13} L{sub Sun }. The rest-frame near-IR (1-3 {mu}m) spectral energy distributions (SEDs) of the Herschel-detected DOGs are predictors of their SEDs at longer wavelengths. DOGs with 'power-law' SEDs in the rest-frame near-IR show observed-frame 250/24 {mu}m flux density ratios similar to the QSO-like local ULIRG, Mrk 231. DOGs with a stellar 'bump' in their rest-frame near-IR show observed-frame 250/24 {mu}m flux density ratios similar to local star-bursting ULIRGs like NGC 6240. None show 250/24 {mu}m flux density ratios similar to extreme local ULIRG, Arp 220; though three show 350/24 {mu}m flux density ratios similar to Arp 220. For the Herschel-detected DOGs, accurate estimates (within {approx}25%) of total IR luminosity can be predicted from their rest-frame mid-IR data alone (e.g., from Spitzer observed-frame 24 {mu}m luminosities). Herschel-detected DOGs tend to have a high ratio of infrared luminosity to rest-frame 8 {mu}m luminosity (the IR8 = L{sub IR}(8-1000 {mu}m)/{nu}L{sub {nu}}(8 {mu}m) parameter of Elbaz et al.). Instead of lying on the z = 1-2 'infrared main sequence' of star-forming galaxies (like typical LIRGs and ULIRGs at those epochs) the DOGs, especially large fractions of

  18. Spitzer Mid-Infrared Spectroscopy of Infrared Luminous Galaxies at z ~ 2. III. Far-IR to Radio Properties and Optical Spectral Diagnostics

    NASA Astrophysics Data System (ADS)

    Sajina, Anna; Yan, Lin; Lutz, Dieter; Steffen, Aaron; Helou, George; Huynh, Minh; Frayer, David; Choi, Philip; Tacconi, Linda; Dasyra, Kalliopi

    2008-08-01

    We present the FIR, millimeter, and radio photometry and optical and NIR spectroscopy of a sample of 48 z ~ 1-3 Spitzer-selected ULIRGs with IRS MIR spectra. Our goals are to compute their bolometric emission and to determine both the presence and relative strength of their AGN and starburst components. We find that strong-PAH sources tend to have higher MIPS 160 μm and MAMBO 1.2 mm fluxes than weak-PAH sources. The depth of the 9.7 μm silicate feature does not affect MAMBO detectability. We fit the far-IR SEDs of our sample and find an average langleLIRrangle ~ 7 × 1012 L⊙ for our z > 1.5 sources. Our spectral decomposition suggests that strong-PAH sources typically have ~20%-30% AGN fractions of LIR. The weak-PAH sources by contrast tend to have gtrsim70% AGN fractions, with a few sources having comparable contributions of AGN and starbursts. The optical line diagnostics support the presence of AGNs in the bulk of the weak-PAH sources. With one exception, our sources are narrow-line sources, show no obvious correspondence between the available optical extinction and the silicate feature depth, and, in two cases, show some evidence for outflows. Radio AGNs are present in both strong- and weak-PAH sources. This is supported by our sample's FIR-to-radio ratios (q) being consistently below the average value of 2.34 for local star-forming galaxies. We use survival analysis to include the lower limits given by the radio-undetected sources, arriving at langleqrangle = 2.07 +/- 0.01 for our z > 1.5 sample. In total, radio and, where available, optical line diagnostics support the presence of AGNs in 57% of the z > 1.5 sources, independent of IR-based diagnostics. For higher z sources, the AGN luminosities alone are estimated to be >1012 L⊙, which, supported by the available [O III] luminosities, implies that the bulk of our sources host obscured quasars.

  19. Multiwavelength Search and Studies of Active Galaxies

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.

    2016-06-01

    Since 1950s, Byurakan Astrophysical Observatory (BAO) has always been one of the centres for surveys and studies of active galaxies. Here I review our search and studies of active galaxies during last 30 years using various wavelength ranges, as well as some recent related works. These projects since late 1980s were focused on multiwavelength search and studies of AGN and Starbursts (SB). 1103 blue stellar objects (BSOs) on the basis of their UV-excess were selected using Markarian Survey (First Byurakan Survey, FBS) plates and Markarian's criteria used for the galaxies. Among many blue stars, QSOs and Seyfert galaxies were found by follow-up observations. 1577 IRAS point sources were optically identified using FBS low-dispersion spectra and many AGN, SB and high-luminosity IR galaxies (LIRG/ULIRG) were discovered. 32 extremely high IR/opt flux ratio galaxies were studies with Spitzer. 2791 ROSAT FSC sources were optically identified using Hamburg Quasar Survey (HQS) low-dispersion spectra and many AGN were discovered by follow-up observations. Fine analysis of emission line spectra was carried out using spectral line decomposition software to establish true profiles and calculate physical parameters for the emitting regions, as well as to study the spectral variability of these objects. X-ray and radio selection criteria were used to find new AGN and variable objects for further studies. Multiwavelength approach allowed revealing many new AGN and SB and obtaining a number of interesting relations using their observational characteristics and physical properties.

  20. High-precision Photometric Redshifts from Spitzer/IRAC: Extreme [3.6] - [4.5] Colors Identify Galaxies in the Redshift Range z ˜ 6.6 - 6.9

    NASA Astrophysics Data System (ADS)

    Smit, Renske; Bouwens, Rychard J.; Franx, Marijn; Oesch, Pascal A.; Ashby, Matthew L. N.; Willner, S. P.; Labbé, Ivo; Holwerda, Benne; Fazio, Giovanni G.; Huang, J.-S.

    2015-03-01

    One of the most challenging aspects of studying galaxies in the z≳ 7 universe is the infrequent confirmation of their redshifts through spectroscopy, a phenomenon thought to occur from the increasing opacity of the intergalactic medium to Lyα photons at z\\gt 6.5. The resulting redshift uncertainties inhibit the efficient search for [C ii] in z˜ 7 galaxies with sub-millimeter instruments such as ALMA, given their limited scan speed for faint lines. One means by which to improve the precision of the inferred redshifts is to exploit the potential impact of strong nebular emission lines on the colors of z ˜ 4 - 8 galaxies as observed by Spitzer/IRAC. At z˜ 6.8, galaxies exhibit IRAC colors as blue as [3.6]-[4.5]˜ -1, likely due to the contribution of [O iii]+Hβ to the 3.6 μm flux combined with the absence of line contamination in the 4.5 μm band. In this paper we explore the use of extremely blue [3.6]-[4.5] colors to identify galaxies in the narrow redshift window z ˜ 6.6 - 6.9. When combined with an I-dropout criterion, we demonstrate that we can plausibly select a relatively clean sample of z˜ 6.8 galaxies. Through a systematic application of this selection technique to our catalogs from all five CANDELS fields, we identify 20 probable z ˜ 6.6 - 6.9 galaxies. We estimate that our criteria select the ˜50% strongest line emitters at z˜ 6.8 and from the IRAC colors we estimate a typical [O iii]+Hβ rest-frame equivalent width of 1085 Å for this sample. The small redshift uncertainties on our sample make it particularly well suited for follow-up studies with facilities such as ALMA.

  1. Spitzer Survey of the Large Magellanic Cloud, Surveying the Agents of a Galaxy's Evolution (sage). IV. Dust Properties in the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Bernard, Jean-Philippe; Reach, William T.; Paradis, Deborah; Meixner, Margaret; Paladini, Roberta; Kawamura, Akiko; Onishi, Toshikazu; Vijh, Uma; Gordon, Karl; Indebetouw, Remy; Hora, Joseph L.; Whitney, Barbara; Blum, Robert; Meade, Marilyn; Babler, Brian; Churchwell, Ed B.; Engelbracht, Charles W.; For, Bi-Qing; Misselt, Karl; Leitherer, Claus; Cohen, Martin; Boulanger, François; Frogel, Jay A.; Fukui, Yasuo; Gallagher, Jay; Gorjian, Varoujan; Harris, Jason; Kelly, Douglas; Latter, William B.; Madden, Suzanne; Markwick-Kemper, Ciska; Mizuno, Akira; Mizuno, Norikazu; Mould, Jeremy; Nota, Antonella; Oey, M. S.; Olsen, Knut; Panagia, Nino; Perez-Gonzalez, Pablo; Shibai, Hiroshi; Sato, Shuji; Smith, Linda; Staveley-Smith, Lister; Tielens, A. G. G. M.; Ueta, Toshiya; Van Dyk, Schuyler; Volk, Kevin; Werner, Michael; Zaritsky, Dennis

    2008-09-01

    The goal of this paper is to present the results of a preliminary analysis of the extended infrared (IR) emission by dust in the interstellar medium (ISM) of the Large Magellanic Cloud (LMC). We combine Spitzer Surveying the Agents of Galaxy Evolution (SAGE) and Infrared Astronomical Satellite (IRAS) data and correlate the infrared emission with gas tracers of H I, CO, and Hα. We present a global analysis of the infrared emission as well as detailed modeling of the spectral energy distribution (SED) of a few selected regions. Extended emission by dust associated with the neutral, molecular, and diffuse ionized phases of the ISM is detected at all IR bands from 3.6 μm to 160 μm. The relative abundance of the various dust species appears quite similar to that in the Milky Way (MW) in all the regions we have modeled. We construct maps of the temperature of large dust grains. The temperature map shows variations in the range 12.1-34.7 K, with a systematic gradient from the inner to outer regions, tracing the general distribution of massive stars and individual H II regions as well as showing warmer dust in the stellar bar. This map is used to derive the far-infrared (FIR) optical depth of large dust grains. We find two main departures in the LMC with respect to expectations based on the MW: (1) excess mid-infrared (MIR) emission near 70 μm, referred to as the 70 μm excess, and (2) departures from linear correlation between the FIR optical depth and the gas column density, which we refer to as FIR excess emission. The 70 μm excess increases gradually from the MW to the LMC to the Small Magellanic Cloud (SMC), suggesting evolution with decreasing metallicity. The excess is associated with the neutral and diffuse ionized gas, with the strongest excess region located in a loop structure next to 30 Dor. We show that the 70 μm excess can be explained by a modification of the size distribution of very small grains with respect to that in the MW, and a corresponding

  2. Analysis of optical imagery for Seyfert's Sextet and VV 172

    NASA Technical Reports Server (NTRS)

    Sulentic, J. W.; Lorre, J. J.

    1983-01-01

    Seyfert's Sextet and VV 172, 5-m photographs have been subjected to image processing to yield field-galaxy density analysis, redshift-scaled imagery, interaction morphology display and enhancement, color difference imagery,modeling of the VV 172 halo, and image texture analysis of the spiral galaxy components of Seyfert's Sextet. An effort is made to evaluate the evidence for physical association of the discordant redshift components of these groups. An especially noteworthy characteristic of the groups is their extended luminous halos. The halo of VV 172 cannot be explained by the overlapping envelopes of galaxies with normal luminosity profiles, and the high redshift spiral galaxy in the Sextet is found to have an asymmetric internal structure and associated filament which suggest gravitational perturbation by the other members of the group.

  3. The mass and spin of the extreme Narrow Line Seyfert 1 Galaxy 1H 0707-495 and its implications for the trigger for relativistic jets

    NASA Astrophysics Data System (ADS)

    Done, Chris; Jin, Chichuan

    2016-08-01

    Relativistic reflection models of the X-ray spectrum of the `complex' Narrow Line Seyfert 1 (NLS1) 1H 0707-495 require a high-spin, moderate-inclination, low-mass black hole. With these parameters fixed, the observed optical/UV emission directly determines the mass accretion rate through the outer disc and hence predicts the bolometric luminosity. This is 140-260 times the Eddington limit. Such a disc should power a strong wind, and winds are generically expected to be clumpy. Changing inclination angle with respect to a clumpy wind structure gives a possible explanation for the otherwise puzzling difference between `complex' NLS1 such as 1H 0707-495 and `simple' ones like PG 1244+026. Lines of sight which intercept the wind show deep absorption features at iron from the hot phase of the wind, together with stochastic dips and complex absorption when the clumps occult the X-ray source (complex NLS1), whereas both these features are absent for more face-on inclination (simple NLS1). This geometry is quite different from the clean view of a flat disc which is assumed for the spin measurements in relativistic reflection models, so it is possible that even 1H 0707-495 has low spin. If so, this re-opens the simplest and hence very attractive possibility that high black hole spin is a necessary and sufficient condition to trigger highly relativistic (bulk Lorentz factor ˜10-15) jets.

  4. Prevalence of galaxy-galaxy interactions in AGN hosts

    NASA Astrophysics Data System (ADS)

    Lim, Jeremy; Kuo, Cheng-Yu; Tang, Ya-Wen; Greene, Jenny; Ho, Paul T. P.

    2004-11-01

    Studies in optical starlight have failed to reach a consensus on the importance of either galaxy interactions, bars, or nuclear spirals in triggering luminous active galactic nuclei (AGNs). Here, we present the first systematic imaging study of Seyfert (disk) galaxies in the 21-cm line of neutral atomic hydrogen (HI) gas. HI is the most sensitive and enduring tracer of galaxy interactions, and can reveal tidal features not otherwise visible in optical starlight. Our sample comprises all twenty-eight galaxies in the Véron-Cetty & Véron (1998) catalog with nuclear magnitudes -19 ≥ MB > -23 (including Seyfert, LINER, and HII galaxies) at 0.015 ≤ z ≤ 0.017 in the northern hemisphere, and a matched control sample of twenty-seven inactive galaxies at z≈0.008. We have detected nearly all the galaxies observed, and find a much higher incidence of tidal interactions -- usually not seen in optical starlight -- among the Seyfert galaxies by comparison with the matched control sample. Those Seyferts with uncertain or no clear tidal features show disturbed HI morphologies and/or kinematics, as well as HI companion galaxies, more frequently than the control sample. Our study suggests that the undisturbed optical appearence of active galaxies may be deceptive, and imply that galaxy-galaxy interactions trigger a significant fraction luminous AGNs at low redshifts. The majority of the Seyfert galaxies in our sample appear to be at a relatively early stage of an encounter rather than late in a merger.

  5. Giant Broad Line Regions in Dwarf Seyferts

    NASA Astrophysics Data System (ADS)

    Devereux, Nick

    2015-12-01

    High angular resolution spectroscopy obtained with the Hubble Space Telescope (HST) has revealed a remarkable population of galaxies hosting dwarf Seyfert nuclei with an unusually large broad-line region (BLR). These objects are remarkable for two reasons. Firstly, the size of the BLR can, in some cases, rival those seen in the most luminous quasars. Secondly, the size of the BLR is not correlated with the central continuum luminosity, an observation that distinguishes them from their reverberating counterparts. Collectively, these early results suggest that non-reverberating dwarf Seyferts are a heterogeneous group, and not simply scaled versions of each other. Careful inspection reveals broad H Balmer emission lines with single peaks, double peaks, and a combination of the two, suggesting that the broad emission lines are produced in kinematically distinct regions centered on the black hole (BH). Because the gravitational field strength is already known for these objects, by virtue of knowing their BH mass, the relationship between velocity and radius may be established, given a kinematic model for the BLR gas. In this way, one can determine the inner and outer radii of the BLRs by modeling the shape of their broad emission line profiles. In the present contribution, high quality spectra obtained with the Space Telescope Imaging Spectrograph (STIS) are used to constrain the size of the BLR in the dwarf Seyfert nuclei of M81, NGC 3998, NGC 4203, NGC 3227, NGC 4051 and NGC 3516.

  6. Giant Broad Line Regions in Dwarf Seyferts

    NASA Astrophysics Data System (ADS)

    Devereux, Nicholas A.

    2016-01-01

    High angular resolution spectroscopy obtained with the Hubble Space Telescope has revealed a remarkable population of galaxies hosting dwarf Seyfert nuclei with an unusually large broad-line region (BLR). These objects are remarkable for two reasons. Firstly, the size of the BLR can, in some cases, rival those seen in the most luminous quasars. Secondly, the size of the BLR is not correlated with the central continuum luminosity, an observation that distinguishes them from their reverberating counterparts. Collectively, these early results suggest that non-reverberating dwarf Seyferts are a heterogeneous group and not simply scaled versions of each other. Careful inspection reveals broad H Balmer emission lines with single peaks, double peaks, and a combination of the two, suggesting that the broad emission lines are produced in kinematically distinct regions centered on the black hole (BH). Because the gravitational field strength is already known for these objects, by virtue of knowing their BH mass, the relationship between velocity and radius may be established, given a kinematic model for the BLR gas. In this way, one can determine the inner and outer radii of the BLRs by modeling the shape of their broad emission line profiles. In the present contribution, high quality spectra obtained with the Space Telescope Imaging Spectrograph are used to constrain the size of the BLR in the dwarf Seyfert nuclei of M81, NGC 3998, NGC 4203, NGC 3227, NGC 4051, and NGC 3516.

  7. Spitzer Digs Up Galactic Fossil

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site] Figure 1

    [figure removed for brevity, see original site] Figure 2

    This false-color image taken by NASA's Spitzer Space Telescope shows a globular cluster previously hidden in the dusty plane of our Milky Way galaxy. Globular clusters are compact bundles of old stars that date back to the birth of our galaxy, 13 or so billion years ago. Astronomers use these galactic 'fossils' as tools for studying the age and formation of the Milky Way.

    Most clusters orbit around the center of the galaxy well above its dust-enshrouded disc, or plane, while making brief, repeated passes through the plane that each last about a million years. Spitzer, with infrared eyes that can see into the dusty galactic plane, first spotted the newfound cluster during its current pass. A visible-light image (inset of Figure 1) shows only a dark patch of sky.

    The red streak behind the core of the cluster is a dust cloud, which may indicate the cluster's interaction with the Milky Way. Alternatively, this cloud may lie coincidentally along Spitzer's line of sight.

    Follow-up observations with the University of Wyoming Infrared Observatory helped set the distance of the new cluster at about 9,000 light-years from Earth - closer than most clusters - and set the mass at the equivalent of 300,000 Suns. The cluster's apparent size, as viewed from Earth, is comparable to a grain of rice held at arm's length. It is located in the constellation Aquila.

    Astronomers believe that this cluster may be one of the last in our galaxy to be uncovered.

    This image composite was taken on April 21, 2004, by Spitzer's infrared array camera. It is composed of images obtained at four wavelengths: 3.6 microns (blue), 4.5 microns (green), 5.8 microns (orange) and 8 microns (red).

    Galactic Fossil Found Behind Curtain of Dust In Figure 2, the image mosaic shows the same patch of sky in various wavelengths of light. While the

  8. z ≳ 7 Galaxies with Red Spitzer/IRAC [3.6]-[4.5] Colors in the Full CANDELS Data Set: The Brightest-Known Galaxies at z ~ 7-9 and a Probable Spectroscopic Confirmation at z = 7.48

    NASA Astrophysics Data System (ADS)

    Roberts-Borsani, G. W.; Bouwens, R. J.; Oesch, P. A.; Labbe, I.; Smit, R.; Illingworth, G. D.; van Dokkum, P.; Holden, B.; Gonzalez, V.; Stefanon, M.; Holwerda, B.; Wilkins, S.

    2016-06-01

    We identify four unusually bright (H {}160,{AB} < 25.5) galaxies from Hubble Space Telescope (HST) and Spitzer CANDELS data with probable redshifts z ˜ 7–9. These identifications include the brightest-known galaxies to date at z ≳ 7.5. As Y-band observations are not available over the full CANDELS program to perform a standard Lyman-break selection of z > 7 galaxies, we employ an alternate strategy using deep Spitzer/IRAC data. We identify z ˜ 7.1–9.1 galaxies by selecting z ≳ 6 galaxies from the HST CANDELS data that show quite red IRAC [3.6]‑[4.5] colors, indicating strong [O iii]+Hβ lines in the 4.5 μm band. This selection strategy was validated using a modest sample for which we have deep Y-band coverage, and subsequently used to select the brightest z ≥ 7 sources. Applying the IRAC criteria to all HST-selected optical dropout galaxies over the full ˜900 arcmin2 of the CANDELS survey revealed four unusually bright z ˜ 7.1, 7.6, 7.9, and 8.6 candidates. The median [3.6]‑[4.5] color of our selected z ˜ 7.1–9.1 sample is consistent with rest-frame [O iii]+Hβ EWs of ˜1500 Å in the [4.5] band. Keck/MOSFIRE spectroscopy has been independently reported for two of our selected sources, showing Lyα at redshifts of 7.7302 ± 0.0006 and {8.683}-0.004+0.001, respectively. We present similar Keck/MOSFIRE spectroscopy for a third selected galaxy with a probable 4.7σ Lyα line at z spec = 7.4770 ± 0.0008. All three have H160-band magnitudes of ˜25 mag and are ˜0.5 mag more luminous (M 1600 ˜ ‑22.0) than any previously discovered z ˜ 8 galaxy, with important implications for the UV luminosity function (LF). Our three brightest and highest redshift z > 7 galaxies all lie within the CANDELS-EGS field, providing a dramatic illustration of the potential impact of field-to-field variance.

  9. Observations and theory of X-rays and gamma-rays from radio-quiet Seyferts

    NASA Technical Reports Server (NTRS)

    Zdziuarski, A. A.

    1995-01-01

    Recent oriented scintillation spectrometer experiment (OSSE) observations of sift gamma-ray emission from radio-quiet Seyfert galaxies as well as their theoretical implications are reviewed. For some Seyferts, the OSSE data can be combined with X-ray data from Ginga and ROSAT. Seyfert 1s have intrinsic power-law spectra with approximately 0.9 extending without a break to at least approximately 200 keV. There is some evidence for a break at higher energies. On top of this intrinsic spectrum there is a Compton reflection component, which corresponds to cold matter covering a approximately 2 pi solid angle as seen by the power-law source. Compton reflection is responsible for a hardening of the spectrum in the approximately 5-30 keV range and a softening at approximately 30-200 keV. This spectrum is then abasorbed by a partially ionized external medium. The spectra of Seyfert 2s are marginally consistent with those of Seyfert 1s modified by strong absorption. However, there are indications that their intrinsic X-ray spectra are harder than those of Seyfert 1s. This is in fact the case for NGC 4151, a Seyfert 1.5. The Seyfert spectra integrated over redshift with cosmological evolution can explain the cosmic X-ray background spectrum from 1 to 100 keV.

  10. Mean Hα+[N ii]+[S ii] EW inferred for star-forming galaxies atz ˜ 5.1-5.4 using high-qualitySpitzer/IRAC photometry

    NASA Astrophysics Data System (ADS)

    Rasappu, N.; Smit, R.; Labbé, I.; Bouwens, R. J.; Stark, D. P.; Ellis, R. S.; Oesch, P. A.

    2016-10-01

    Recent Spitzer/InfraRed Array Camera (IRAC) photometric observations have revealed that rest-frame optical emission lines contribute significantly to the broad-band fluxes of high-redshift galaxies. Specifically, in the narrow redshift range z ˜ 5.1-5.4 the [3.6]-[4.5] colour is expected to be very red, due to contamination of the 4.5 μm band by the dominant Hα line, while the 3.6 μm filter is free of nebular emission lines. We take advantage of new reductions of deep Spitzer/IRAC imaging over the Great Observatories Origins Deep Survey-North+South fields (Labbé et al. 2015) to obtain a clean measurement of the mean Hα equivalent width (EW) from the [3.6]-[4.5] colour in the redshift range z = 5.1-5.4. The selected sources either have measured spectroscopic redshifts (13 sources) or lie very confidently in the redshift range z = 5.1-5.4 based on the photometric redshift likelihood intervals (11 sources). Our zphot = 5.1-5.4 sample and zspec = 5.10-5.40 spectroscopic sample have a mean [3.6]-[4.5] colour of 0.31 ± 0.05 and 0.35 ± 0.07 mag, implying a rest-frame EW (Hα+[N II]+[S II]) of 665 ± 53 and 707 ± 74 Å, respectively, for sources in these samples. These values are consistent albeit slightly higher than derived by Stark et al. at z ˜ 4, suggesting an evolution to higher values of the Hα+[N II]+[S II] EW at z > 2. Using the 3.6 μm band, which is free of emission line contamination, we perform robust spectral energy distribution fitting and find a median specific star formation rate of sSFR = 17_{-5}^{+2} Gyr-1, 7_{-2}^{+1}× higher than at z ˜ 2. We find no strong correlation (<2σ) between the Hα+[N II]+[S II] EW and the stellar mass of sources. Before the advent of JWST, improvements in these results will come through an expansion of current spectroscopic samples and deeper Spitzer/IRAC measurements.

  11. The Role of Environment in Fueling Seyfert AGN

    NASA Astrophysics Data System (ADS)

    Hicks, Erin Kathleen Strobel

    2015-08-01

    We consider the role of environment in fueling of Seyfert AGN through a combined analysis of Hubble Space Telescope images and integral field spectroscopy of the ISM in a sample of local AGN. Using visible and near-infrared Hubble Space Telescope images and color maps of over a 100 galaxies we determine the distribution of the cold ISM, as traced by dust. We also measure the two-dimensional distribution and kinematics of the molecular gas, traced by H2 1-0 S(1) emission at 2.12 μm, down to scales of tens of parsecs using OSIRIS at Keck and SINFONI on VLT for a subset of approximately 20 of these galaxies. Informed by these kinematic measurements of the ISM we classify the nuclear dust morphologies of the full sample of galaxies and interpret the significance of these morphologies in terms of inflow. Our relatively small precursor sample (Hicks et al. 2009, Davies et al. 2014) hinted at a connection between the host galaxy environment and the primary mechanism driving gas inward such that fueling of AGN in isolated galaxies occurs primarily via secular processes (e.g. nuclear spirals) and galaxies in groups of 10-15 members via accretion of external gas. Using our expanded sample that now has the ability to reveal statistically significant trends we explore the potential influence of the galaxy environment on the fueling of Seyfert AGN.

  12. The UBVRI light curve behaviour of the Seyfert galaxy NGC 4151 during the extraordinary maximum of the nuclear brightness in 1989-1997

    NASA Astrophysics Data System (ADS)

    Merkulova, N. I.

    Observations were carried out with the 1.25 m telescope of Crimean Astrophysical Observatory, equipped with a Double Image Chopping Photometer--Polarimeter by Prof. V.Piirola from Helsinki University. This device allows to obtain simultaneous observations in 5 filters of Johnson's UBVRI system. Photometric errors were less than 0,m01, time resolution was about 3--4 min. Round diaphragms with diameters 20 and 15 arcseconds were used. During this extraordinary maximum the nuclear brightness in the U band increases on ~2m.0, while in the I band -- only on ~ 0m.7. All colour indices decreased: (U-B) from ~-0m.3 to ~-0m.8, (B-V) from ~0m.9 to ~0m.4, (V-I) from ~1m.3 to ~0m.9. The flux ascending in the blue spectral region was twice more than in the red one. The galaxy nucleus seems to be more and more "bluer", but some brightness and colour variations were observed during each of the 9 observational seasons, include local mimimums, flares and intranight variability. Colour--magnitude dependences were analyzed as well as two--colour diagrams. There were no differences between data obtained in 20" and 15" apertures. This fact means that we can see only fluxes from the galactic nucleus during the epoch of brightness maximum.

  13. Gamma-radiation with E gamma 5 MeV detected from Seyfert galaxy 3C120 and region with 1" = 190 deg and b" = 20 deg

    NASA Technical Reports Server (NTRS)

    Damle, S. V.; Fradkin, M. I.; Iyudin, A. F.; Kirillov-Ugryumov, V. G.; Kotov, Y. D.; Kurnosova, L. V.; Smirnov, Y. V.; Yurov, V. N.

    1985-01-01

    The observation of the Galaxy anticenter region in gamma-rays with E gamma = 5 / 100 MeV was made by gamma-telescope Natalya-1 in a balloon flight. The flight was performed at the ceiling 5.1 + or - 0.1 g/sq cm, magnetic cutoff being 17 GV. The description of the instrument and the analysis of the experiment conditions are given. The tracks of electron-positron pairs generated by gamma-quanta in the convertors were detected by wire spark chambers. The recorded events were classified manually by an operator using a graphic display into three classes: pairs, single and bad events. The arrival angle of gamma-quanta and their energy for selected gamma-ray events (pairs and singles) were determined through multiple scattering of pair components in the convertors. On the basis of the data obtained the celestial maps were made in gamma-rays for E sub gamma 5 MeV and E gamma 20 MeV energy ranges.

  14. A Kinematic Approach to Assessing Environmental Effects: Star-forming Galaxies in a z ~ 0.9 SpARCS Cluster Using Spitzer 24 μm Observations

    NASA Astrophysics Data System (ADS)

    Noble, A. G.; Webb, T. M. A.; Muzzin, A.; Wilson, G.; Yee, H. K. C.; van der Burg, R. F. J.

    2013-05-01

    We present an infrared study of a z = 0.872 cluster, SpARCS J161314+564930, with the primary aim of distinguishing the dynamical histories of spectroscopically confirmed star-forming members to assess the role of cluster environment. We utilize deep MIPS imaging and a mass-limited sample of 85 spectroscopic members to identify 16 24 μm bright sources within the cluster, and measure their 24 μm star formation rates (SFRs) down to ~6 M ⊙ yr-1. Based on their line-of-sight velocities and stellar ages, MIPS cluster members appear to be an infalling population that was recently accreted from the field with minimal environmental dependency on their star formation. However, we identify a double-sequenced distribution of star-forming galaxies among the members, with one branch exhibiting declining specific SFRs with mass. The members along this sub-main sequence contain spectral features suggestive of passive galaxies. Using caustic diagrams, we kinematically identify these galaxies as a virialized and/or backsplash population. Moreover, we find a mix of dynamical histories at all projected radii, indicating that standard definitions of environment (i.e., radius and density) are contaminated with recently accreted interlopers, which could contribute to a lack of environmental trends for star-forming galaxies. A cleaner narrative of their dynamical past begins to unfold when using a proxy for accretion histories through profiles of constant (r/r 200) × (Δv/σ v ); galaxies accreted at earlier times possess lower values of (r/r 200) × (Δv/σ v ) with minimal contamination from the distinct infalling population. Therefore, adopting a time-averaged definition for density (as traced by accretion histories) rather than an instantaneous density yields a depressed specific SFR within the dynamical cluster core.

  15. SUBMILLIMETER ARRAY/PLATEAU DE BURE INTERFEROMETER MULTIPLE LINE OBSERVATIONS OF THE NEARBY SEYFERT 2 GALAXY NGC 1068: SHOCK-RELATED GAS KINEMATICS AND HEATING IN THE CENTRAL 100 pc?

    SciTech Connect

    Krips, M.; Neri, R.; Martin, S. E-mail: neri@iram.fr

    2011-07-20

    We present high angular resolution (0.''5-2.''0) observations of the millimeter continuum and the {sup 12}CO(J = 3-2), {sup 13}CO(J = 3-2), {sup 13}CO(J = 2-1), C{sup 18}O(J = 2-1), HCN(J = 3-2), HCO{sup +}(J = 4-3), and HCO{sup +}(J = 3-2) line emission in the circumnuclear disk (r {approx}< 100 pc) of the prototypical Seyfert 2 galaxy NGC 1068, carried out with the Submillimeter Array. We also include in our analysis new {sup 13}CO(J = 1-0) and improved {sup 12}CO(J = 2-1) observations of NGC 1068 at high angular resolution (1.''0-2.''0) and sensitivity, conducted with the Institute de Radioastronomie Millimetrique Plateau de Bure Interferometer. Based on the complex dynamics of the molecular gas emission indicating non-circular motions in the central {approx}100 pc, we propose a scenario in which part of the molecular gas in the circumnuclear disk of NGC 1068 is blown radially outward as a result of shocks. This shock scenario is further supported by quite warm (T{sub kin} {>=} 200 K) and dense (n(H{sub 2}) {approx_equal} 10{sup 4} cm{sup -3}) gas constrained from observed molecular line ratios. The HCN abundance in the circumnuclear disk is found to be [HCN]/[{sup 12}CO] {approx} 10{sup -3.5}. This is slightly higher than the abundances derived for Galactic and extragalactic star-forming/starbursting regions. This result lends further support to X-ray-enhanced HCN formation in the circumnuclear disk of NGC 1068 as suggested by earlier studies. The HCO{sup +} abundance ([HCO{sup +}]/[{sup 12}CO] {approx} 10{sup -5}) appears to be somewhat lower than that of Galactic and extragalactic star-forming/starbursting regions. When trying to fit the centimeter-to-millimeter continuum emission by different thermal and non-thermal processes, it appears that electron-scattered synchrotron emission yields the best results while thermal free-free emission seems to overpredict the millimeter continuum emission.

  16. Nuevas Galaxias Seyfert 1 Australes

    NASA Astrophysics Data System (ADS)

    Maza, J.; Ruiz, M. T.

    1987-05-01

    En 1984 se inició una extensión del "survey" de Tololo que de- sarrollara en 1975 Smith, con la cámara Curtis-Schmidt y el prisma UV delgado. Utilizando placas IIIaJ horneadas, sin filtro, expues tas 90 minutos sin ensanchamiento se han obtenido a la fecha más de 150 placas que cubren la zona entre -20° y -45° a latitudes galácticas mayores de 20°; se presenta un detalle de las franjas que comprende el survey Calan-Tololo, indicando el grado de completitud de las mismas. Se ha encontrado un gran número de galaxias con líneas de emisión entre las cuales las más frecuentes, más de 300, son galaxias irregulares con formación estelar violenta ("starburst galaxies"). Se ha encontrado un número de cuasares cercano a 100; casi todos ellos tienen la linea Lyman alfa en la zona entre 3300 y 5300 A, que corresponde a un rango de corrimientosal rojo 1.7< z <3.3 el cuasar con mayor corri- miento al rojo encontrado a la fecha en el survey tiene z = 3.1. La información detallada sobre cuasares y galaxias tipo "starburst" será presentada en otro lugar. Entre los objetos más interesantes encontrados en el survey Calán- Tololo destacan unas 50 nuevas galaxias Seyfert 1. Estas galaxias han sido encontradas por su fuerte exceso UV y su brillante núcleo, más que por sus intensas lineas de emisión. Hemos observado espectroscópicamente, en el Observatorio Interamericano de Cerro Tololo, 37 de ellas para las cuales se presentan cartas de identificación, coordenadas y los datos espectroscópicos obtenidos.

  17. The Seyfert-Starburst Connection in X-rays. 2; Results and Implications

    NASA Technical Reports Server (NTRS)

    Levenson, N. A.; Weaver, K. A.; Heckman, T. M.; White, Nicholas E. (Technical Monitor)

    2001-01-01

    We present the results of X-ray imaging and spectroscopic analysis of a sample of Seyfert 2 galaxies that contain starbursts, based on their optical and UV characteristics. These composite galaxies exhibit extended, soft, thermal X-ray emission, which we attribute to their starburst components. Comparing their X-ray and far-infrared properties with ordinary Seyfert and starburst galaxies, we identify the spectral characteristics of their various intrinsic emission sources. The observed far-infrared emission of the composite galaxies may be associated almost exclusively with star formation, rather than the active nucleus. The ratio of the hard X-ray luminosity to the far-infrared and [O III] (lambda)5007 luminosity distinguishes most of these composite galaxies from "pure" Seyfert 2 galaxies, while their total observed hard X-ray luminosity distinguishes them from "pure" starbursts. The hard nuclear X-ray source is generally heavily absorbed (N(sub H) greater than 10(exp 23)/sq cm) in the composite galaxies. Based on these results, we suggest that the interstellar medium of the nuclear starburst is a significant source of absorption. The majority of the sample are located in groups or are interacting with other galaxies, which may trigger the starburst or allow rapid mass infall to the central black hole or both. We conclude that starbursts are energetically important in a significant fraction of active galaxies and that starbursts and active galactic nuclei may be part of a common evolutionary sequence.

  18. Star Formation in the Central Regions of Galaxies

    NASA Astrophysics Data System (ADS)

    Tsai, Mengchun

    2015-08-01

    Seyfert galaxy with inner structure as an example. In this thesis, we present CO(3-2) interferometric observations of the central region of the Seyfert 2 galaxy NGC1068 using the Submillimeter Array, together with CO(1-0) data taken with the Owens Valley Radio Observatory Millimeter Array. Both the CO(3-2) and CO(1-0) emission lines are mainly distributed within ~5 arcsec of the nucleus and along the spiral arms, but the intensity distributions show differences; the CO(3-2) map peaks in the nucleus, while the CO(1-0) emission is mainly located along the spiral arms. The CO(3-2)/CO(1-0) ratio is about 3.1 in the nucleus, which is four times as large as the average line ratio in the spiral arms, suggesting that the molecular gas there must be affected by the radiation arising from the AGN. On the other hand, the line ratios in the spiral arms vary over a wide range from 0.24 to 2.34 with a average value around 0.75, which is similar to the line ratios of star-formation regions, indicating that the molecular gas is affected by star formation. Besides, we see a tight correlation between CO(3-2)/(1-0) ratios in the spiral arms and star formation rate surface densities derived from Spitzer 8 micron dust flux densities. We also compare the CO(3-2)/(1-0) ratio and the star formation rate at different positions within the spiral arms; both are found to decrease as the radius from the nucleus increases.

  19. Long-term infrared photometry of Seyferts

    NASA Astrophysics Data System (ADS)

    Glass, I. S.

    2004-05-01

    Long-term (up to 10 000 d) monitoring has been undertaken for 41 Seyferts in the near-infrared (1.25-3.45 μm). All but two showed variability, with amplitudes at K in the range <0.1 to >1.1 mag. The time-scale for detectable change is from about one week to a few years. Where contemporary observations of variability in X-rays, ultraviolet (UV) or visible light exist, it is found that the near-infrared varies in a similar way, though in some cases the shorter-wavelength infrared (IR) bands are diluted by underlying galaxy radiation. A simple cross-correlation study indicates that there is evidence for delays of up to several hundred d between the variations seen at the shortest wavelengths (U or J) and the longest (L) in many galaxies. In particular, the data for Fairall 9 now extend to twice the interval covered in earlier publications and the delay between its UV and IR outputs is seen to persist. An analysis of the fluxes shows that, for any given galaxy, the colours of the variable component of its nucleus are usually independent of the level of activity. The state of activity of the galaxy can be parameterized. Taken over the whole sample, the colours of the variable components fall within moderately narrow ranges. In particular, the H-K colour is appropriate to a blackbody of temperature 1600 K. The H-K excess for a heavily reddened nucleus can be determined and used to find EB-V, which can be compared to the values found from the visible region broad line ratios. Using flux-flux diagrams, the flux within the aperture from the underlying galaxies can often be determined without the need for model surface brightness profiles. In many galaxies it is apparent that there must be an additional constant contribution from warm dust.

  20. SPIRITS Discoveries of Recent Infrared Transients with Spitzer Early Release Data

    NASA Astrophysics Data System (ADS)

    Jencson, J. E.; Kasliwal, M. M.; Tinyanont, S.; Cao, Y.; Prince, T.; Perley, D.; Masci, F.; Helou, G.; Armus, L.; Surace, J.; van Dyk, S.; Cody, A.; Boyer, M.; Khan, R.; Bond, H.; Monson, A.; Bally, J.; Levesque, E.; Williams, R.; Whitelock, P. A.; Mohamed, S.; Gehrz, R.; Amodeo, S.; Shenoy, D.; Carlon, R.; Cass, A.; Corgan, D.; Dykhoff, D.; Faella, J.; Gburek, T.; Smith, N.; Cantiello, M.; Langer, N.; Ofek, E.; Johansson, J.; Parthasarathy, M.; Fox, O.; Phillips, M.; Hsiao, E.; Morrell, N.; Gonzalez, C.; Contreras, C.

    2015-08-01

    The Spitzer InfraRed Intensive Transients Survey (SPIRITS; ATel #6644) is a systematic search of 194 nearby galaxies for infrared transients with the IRAC camera on the warm Spitzer telescope to a depth of 20th mag (Vega) with varying cadences between a week to a year.

  1. Stellar Jewels Shine in New Spitzer Image

    NASA Technical Reports Server (NTRS)

    2004-01-01

    One of the most prolific birthing grounds in our Milky Way galaxy, a nebula called RCW 49, is exposed in superb detail for the first time in this new image from NASA's Spitzer Space Telescope. Located 13,700 light-years away in the southern constellation Centaurus, RCW 49 is a dark and dusty stellar nursery that houses more than 2,200 stars.

    Because many of the stars in RCW 49 are deeply embedded in plumes of dust, they cannot be seen at visible wavelengths. When viewed with Spitzer's infrared eyes, however, RCW 49 becomes transparent. Like cracking open a quartz rock to discover its jewels inside, the nebula's newborn stars have been dramatically exposed.

    This image taken by Spitzer's infrared array camera highlights the nebula's older stars (blue stars in center pocket), its gas filaments (green) and dusty tendrils (pink). Speckled throughout the murky clouds are more than 300 never-before-seen newborn stars.

    Astronomers are interested in further studying these newfound proto-stars because they offer a fresh look at star formation in our own galaxy.

    This image was taken on Dec. 23, 2003, and is composed of photographs obtained at four wavelengths: 3.6 microns (blue), 4.5 microns (green), 5.8 microns (orange) and 8 microns (red).

  2. Spitzer Telemetry Processing System

    NASA Technical Reports Server (NTRS)

    Stanboli, Alice; Martinez, Elmain M.; McAuley, James M.

    2013-01-01

    The Spitzer Telemetry Processing System (SirtfTlmProc) was designed to address objectives of JPL's Multi-mission Image Processing Lab (MIPL) in processing spacecraft telemetry and distributing the resulting data to the science community. To minimize costs and maximize operability, the software design focused on automated error recovery, performance, and information management. The system processes telemetry from the Spitzer spacecraft and delivers Level 0 products to the Spitzer Science Center. SirtfTlmProc is a unique system with automated error notification and recovery, with a real-time continuous service that can go quiescent after periods of inactivity. The software can process 2 GB of telemetry and deliver Level 0 science products to the end user in four hours. It provides analysis tools so the operator can manage the system and troubleshoot problems. It automates telemetry processing in order to reduce staffing costs.

  3. SEDS: The Spitzer Extended Deep Survey

    NASA Astrophysics Data System (ADS)

    Fazio, Giovanni G.; SEDS Team

    2009-05-01

    The Spitzer Extended Deep Survey (SEDS) will provide a unique opportunity to obtain the first complete census of the assembly of stellar mass and black holes as a function of cosmic time back to the era of reionization, yielding unique information on galaxy formation in the early Universe. The survey will also measure galaxy clustering over a wide redshift range, which will provide the critical link between galaxies and their dark matter halos and critical tests of models of early star formation. SEDS will achieve these goals by tracing the stellar mass growth in mass-selected samples of galaxies via their broadband spectral energy distributions. The baseline proposal is an unbiased survey with 12 hours/pointing at 3.6 and 4.5 microns over five well-studied fields of 0.90 square degree total. We expect to find (a) >10,000 galaxies at z = 4--6 (including 100 galaxies at z = 6), reaching galaxies down to 5 x 109 Msun at z = 6, necessary to robustly measure M* at that redshift, i.e., the galaxies that dominate the global stellar mass density, and (b) >100 massive galaxies at z = 7, which will firmly anchor the high mass end of the early galaxy populations and provide targets bright enough for future spectroscopic follow-up with 20--30 meter telescopes, JWST, and ALMA. The proposed five-field deep survey will enable several secondary science objectives. These include: (1) galaxy evolution in the redshift range z 1--4, (2) mid-infrared variability for AGN identification, and (3) measurement of the cosmic infrared background spatial fluctuations. SEDS is the most efficient and most highly optimized program that we can imagine to achieve core scientific goals of the warm mission and is a unique program that will leave an important legacy for years to come.

  4. THE SPITZER LOCAL VOLUME LEGACY: SURVEY DESCRIPTION AND INFRARED PHOTOMETRY

    SciTech Connect

    Dale, D. A.; Cohen, S. A.; Johnson, L. C.; Schuster, M. D.; Calzetti, D.; Engelbracht, C. W.; Kennicutt, R. C.; Block, M.; Marble, A. R.; Gil de Paz, A.; Lee, J. C.; Begum, A.; Dalcanton, J. J.; Funes, J. G.; Gordon, K. D.; Johnson, B. D.; Sakai, S.; Skillman, E. D.; Van Zee, L.; Walter, F.

    2009-09-20

    The survey description and the near-, mid-, and far-infrared flux properties are presented for the 258 galaxies in the Local Volume Legacy (LVL). LVL is a Spitzer Space Telescope legacy program that surveys the local universe out to 11 Mpc, built upon a foundation of ultraviolet, Halpha, and Hubble Space Telescope imaging from 11HUGS (11 Mpc Halpha and Ultraviolet Galaxy Survey) and ANGST (ACS Nearby Galaxy Survey Treasury). LVL covers an unbiased, representative, and statistically robust sample of nearby star-forming galaxies, exploiting the highest extragalactic spatial resolution achievable with Spitzer. As a result of its approximately volume-limited nature, LVL augments previous Spitzer observations of present-day galaxies with improved sampling of the low-luminosity galaxy population. The collection of LVL galaxies shows a large spread in mid-infrared colors, likely due to the conspicuous deficiency of 8 {mu}m polycyclic aromatic hydrocarbon emission from low-metallicity, low-luminosity galaxies. Conversely, the far-infrared emission tightly tracks the total infrared emission, with a dispersion in their flux ratio of only 0.1 dex. In terms of the relation between the infrared-to-ultraviolet ratio and the ultraviolet spectral slope, the LVL sample shows redder colors and/or lower infrared-to-ultraviolet ratios than starburst galaxies, suggesting that reprocessing by dust is less important in the lower mass systems that dominate the LVL sample. Comparisons with theoretical models suggest that the amplitude of deviations from the relation found for starburst galaxies correlates with the age of the stellar populations that dominate the ultraviolet/optical luminosities.

  5. Warm absorbers in X-rays (WAX), a comprehensive high-resolution grating spectral study of a sample of Seyfert Galaxies - II. Warm absorber dynamics and feedback to galaxies

    NASA Astrophysics Data System (ADS)

    Laha, Sibasish; Guainazzi, Matteo; Chakravorty, Susmita; Dewangan, Gulab C.; Kembhavi, Ajit K.

    2016-04-01

    This paper is a sequel to the extensive study of warm absorber (WA) in X-rays carried out using high-resolution grating spectral data from XMM-Newton satellite (WAX-I). Here we discuss the global dynamical properties as well as the energetics of the WA components detected in the WAX sample. The slope of WA density profile (n ∝ r-α) estimated from the linear regression slope of ionization parameter ξ and column density NH in the WAX sample is α = 1.236 ± 0.034. We find that the WA clouds possibly originate as a result of photoionized evaporation from the inner edge of the torus (torus wind). They can also originate in the cooling front of the shock generated by faster accretion disc outflows, the ultrafast outflows, impinging on to the interstellar medium or the torus. The acceleration mechanism for the WA is complex and neither radiatively driven wind nor MHD-driven wind scenario alone can describe the outflow acceleration. However, we find that radiative forces play a significant role in accelerating the WA through the soft X-ray absorption lines, and also with dust opacity. Given the large uncertainties in the distance and volume filling factor estimates of the WA, we conclude that the kinetic luminosity ĖK of WA may sometimes be large enough to yield significant feedback to the host galaxy. We find that the lowest ionization states carry the maximum mass outflow, and the sources with higher Fe M UTA absorption (15-17 Å) have more mass outflow rates.

  6. Star formation quenching in high-redshift large-scale structure: post-starburst galaxies in the Cl 1604 supercluster at z ∼ 0.9

    SciTech Connect

    Wu, Po-Feng; Gal, Roy R.; Lemaux, Brian C.; Kocevski, Dale D.; Lubin, Lori M.; Rumbaugh, Nicholas; Squires, Gordon K.

    2014-09-01

    The Cl 1604 supercluster at z ∼ 0.9 is one of the most extensively studied high-redshift large-scale structures, with more than 500 spectroscopically confirmed members. It consists of eight clusters and groups, with members numbering from a dozen to nearly a hundred, providing a broad range of environments for investigating the large-scale environmental effects on galaxy evolution. Here we examine the properties of 48 post-starburst galaxies in Cl 1604, comparing them to other galaxy populations in the same supercluster. Incorporating photometry from ground-based optical and near-infrared imaging, along with Spitzer mid-infrared observations, we derive stellar masses for all Cl 1604 members. The colors and stellar masses of the K+A galaxies support the idea that they are progenitors of red sequence galaxies. Their morphologies, residual star formation rates, and spatial distributions suggest that galaxy mergers may be the principal mechanism producing post-starburst galaxies. Interaction between galaxies and the dense intracluster medium (ICM) is also effective, but only in the cores of dynamically evolved clusters. The prevalence of post-starburst galaxies in clusters correlates with the dynamical state of the host cluster, as both galaxy mergers and the dense ICM produce post-starburst galaxies. We also investigate the incompleteness and contamination of K+A samples selected by means of Hδ and [O II] equivalent widths. K+A samples may be up to ∼50% incomplete due to the presence of LINERs/Seyferts, and up to ∼30% of K+A galaxies could have substantial star formation activity.

  7. Amazing Andromeda Galaxy

    NASA Technical Reports Server (NTRS)

    2006-01-01

    The many 'personalities' of our great galactic neighbor, the Andromeda galaxy, are exposed in this new composite image from NASA's Galaxy Evolution Explorer and the Spitzer Space Telescope.

    The wide, ultraviolet eyes of Galaxy Evolution Explorer reveal Andromeda's 'fiery' nature -- hotter regions brimming with young and old stars. In contrast, Spitzer's super-sensitive infrared eyes show Andromeda's relatively 'cool' side, which includes embryonic stars hidden in their dusty cocoons.

    Galaxy Evolution Explorer detected young, hot, high-mass stars, which are represented in blue, while populations of relatively older stars are shown as green dots. The bright yellow spot at the galaxy's center depicts a particularly dense population of old stars.

    Swaths of red in the galaxy's disk indicate areas where Spitzer found cool, dusty regions where stars are forming. These stars are still shrouded by the cosmic clouds of dust and gas that collapsed to form them.

    Together, Galaxy Evolution Explorer and Spitzer complete the picture of Andromeda's swirling spiral arms. Hints of pinkish purple depict regions where the galaxy's populations of hot, high-mass stars and cooler, dust-enshrouded stars co-exist.

    Located 2.5 million light-years away, the Andromeda is our largest nearby galactic neighbor. The galaxy's entire disk spans about 260,000 light-years, which means that a light beam would take 260,000 years to travel from one end of the galaxy to the other. By comparison, our Milky Way galaxy's disk is about 100,000 light-years across.

    This image is a false color composite comprised of data from Galaxy Evolution Explorer's far-ultraviolet detector (blue), near-ultraviolet detector (green), and Spitzer's multiband imaging photometer at 24 microns (red).

  8. SSGSS: THE SPITZER-SDSS-GALEX SPECTROSCOPIC SURVEY

    SciTech Connect

    O'Dowd, Matthew J.; Schiminovich, David; Johnson, Benjamin D.; Treyer, Marie A.; Martin, Christopher D.; Wyder, Ted K.; Charlot, Stephane; Heckman, Timothy M.; Martins, Lucimara P.; Seibert, Mark; Van der Hulst, J. M.

    2011-11-10

    The Spitzer-SDSS-GALEX Spectroscopic Survey (SSGSS) provides a new sample of 101 star-forming galaxies at z < 0.2 with unprecedented multi-wavelength coverage. New mid- to far-infrared spectroscopy from the Spitzer Space Telescope is added to a rich suite of previous imaging and spectroscopy, including ROSAT, Galaxy Evolution Explorer, Sloan Digital Sky Survey, Two Micron All Sky Survey, and Spitzer/SWIRE. Sample selection ensures an even coverage of the full range of normal galaxy properties, spanning two orders of magnitude in stellar mass, color, and dust attenuation. In this paper we present the SSGSS data set, describe the science drivers, and detail the sample selection, observations, data reduction, and quality assessment. Also in this paper, we compare the shape of the thermal continuum and the degree of silicate absorption of these typical, star-forming galaxies to those of starburst galaxies. We investigate the link between star formation rate, infrared luminosity, and total polycyclic aromatic hydrocarbon luminosity, with a view to calibrating the latter for spectral energy distribution models in photometric samples and at high redshift. Last, we take advantage of the 5-40 {mu}m spectroscopic and far-infrared photometric coverage of this sample to perform detailed fitting of the Draine et al. dust models, and investigate the link between dust mass and star formation history and active galactic nucleus properties.

  9. Masas de agujeros negros en Narrow Line Seyfert 1

    NASA Astrophysics Data System (ADS)

    Schmidt, E.; Ferreiro, D.; Oio, G.; Vega, L.; Donoso, L.

    We describe two of the ways to estimate black hole masses in AGN, and then we estimate the black hole masses of 13 Narrow Line Seyfert 1 galaxies with the two methods: virial masses, using the correlation found by Greene & Ho (2005, ApJ, 630, 122); and the correlation found by Tremaine et al. (2002, ApJ, 574, 740). For this work we analyzed the optical spectroscopy data we obtained from CASLEO (San Juan). We compare the results obtained through both methods. FULL TEXT IN SPANISH

  10. The Euclid/WFIRST Spitzer Legacy Survey

    NASA Astrophysics Data System (ADS)

    Capak, Peter; Arendt, R.; Arnouts, S.; Bartlett, J.; Bouwens, R.; Brinchman, J.; Brodwin, M.; Carollo, M.; Castander, F.; Charlot, S.; Chary, R.-R.; Cohen, J.; Cooray, A.; Conselice, C.; Coupon, J.; Cuby, J.-G.; Culliandre, J.; Davidzon, I.; Dole, H.; Dunlop, J.; Eisenhardt, P.; Ferrara, A.; Gardner, J.; Hasinger, G.; Hildebrandt, H.; Ho, S.; Ilbert, O.; Jouvel, S.; Kashlinsky, A.; LeFevre, O.; LeFloc'h, E.; Maraston, C.; Masters, D.; McCracken, H. J.; Mei, S.; Mellier, Y.; Mitchell-Wynn, K.; Moustakas, L.; Nayyeri, H.; Paltani, S.; Rhodes, J.; Salvato, M.; Sanders, D.; Scaramella, R.; Scarlata, C.; Scoville, N.; Silverman, J.; Speagle, J.; Stanford, S.; Stern, D.; Teplitz, H.; Toft, S.

    2016-08-01

    We propose 5286h of Spitzer Legacy Science Time to carry out a precursor survey for Euclid, WFIRST, and JWST. The primary goal is to enable definitive studies of reionization, z>7 galaxy formation, and the first massive black holes. The proposed data will also enhance the cosmological constraints provided by Euclid and WFIRST. The survey will cover 20 square degrees to 2h per pointing, split between the Chandra Deep Field South (CDFS) and the North Ecliptic Pole. These are some of the darkest and most observable fields on the sky and have existing multi-wavelength data that will enable immediate science. The survey parameters are designed to enable stellar mass measurement at 3Spitzer can probe this region of survey space at 3-5um, a wavelength range that uniquely enables stellar mass estimates at z>3 enabling a direct probe of galaxy growth during the epoch of re-ionization.

  11. SPIRITS16tn: Spitzer Discovery of a Possible Supernova in Messier 108 at 8.8 Mpc

    NASA Astrophysics Data System (ADS)

    Jencson, J. E.; Adams, S.; Kasliwal, M. M.; Tinyanont, S.; Cao, Y.; Prince, T.; Lau, R. M.; Perley, D.; Masci, F.; Helou, G.; Armus, L.; Surace, J.; Dyk, S. D. Van; Cody, A.; Boyer, M. L.; Khan, R.; Bond, H. E.; Monson, A.; Bally, J.; Levesque, E.; Williams, R.; Whitelock, P. A.; Mohamed, S.; Gehrz, R. D.; Amodeo, S.; Shenoy, D.; Carlon, R.; Cass, A.; Corgan, D.; Dykhoff, D.; Faella, J.; Gburek, T.; Smith, N.; Cantiello, M.; Langer, N.; Ofek, E.; Johansson, J.; Parthasarathy, M.; Fox, O.; Hsiao, E.; Phillips, M.; Morrell, N.; Gonzalez, C.; Contreras, C.

    2016-08-01

    We report the discovery of a possible, nearby supernova in Messier 108 (NGC 3556) designated as SPIRITS16tn. This luminous infrared transient was discovered during ongoing monitoring of nearby galaxies with the Spitzer InfraRed Intensive Transients Survey (SPIRITS; ATEL#6644, Kasliwal et al. 2016, ApJ submitted), using the Infrared Array Camera on the Spitzer Space Telescope.

  12. SEDS: The Spitzer Extended Deep Survey

    NASA Astrophysics Data System (ADS)

    Fazio, Giovanni; Willner, Steven; Arendt, Rick; Ashby, Matt; Barmby, Pauline; Bell, Eric; Bouwens, Rychard; Cattaneo, Andrea; Cox, Thomas J.; Croton, Darren; Dave, Romeel; Dunlop, James; Egami, Eiichi; Faber, Sandy; Finlator, Kristian; Guhathakurta, Puragra; Hernquist, Lars; Hora, Joseph; Huang, Jiasheng; Illingworth, Garth; Kashlinsky, Alexander; Koekemoer, Anton; Koo, David; Labbe, Ivo; Lai, Kamson; Li, Yuexing; Lin, Lihwai; Mather, John; Mo, Houjun; Moseley, Harvey; Nandra, Kirpal; Newman, Jeffrey; Noeske, Kai; Ouchi, Masami; Papovich, Casey; Rigopoulou, Dimitra; Rix, Hans-Walter; Robertson, Brant; Sarajedini, Vicki; Simard, Luc; Smith, Howard; Wechsler, Risa; Weiner, Ben; Wilson, Gillian; Wuyts, Stijn; Yamada, Toru; Yan, Haojing; van der Wel, Arjen

    2008-12-01

    The Spitzer Extended Deep Survey (SEDS) will provide a unique opportunity to obtain the first complete census of the assembly of stellar mass and black holes as a function of cosmic time back to the era of reionization, yielding unique information on galaxy formation in the early UniverseE The survey will also measure galaxy clustering over a wide redshift range, which will provide the critical link between galaxies and their dark matter halos and critical tests of models of early star formation. SEDS will achieve these goals by tracing the stellar mass growth in mass-selected samples of galaxies via their broadband spectral energy distributions. The baseline proposal is an unbiased survey with 12 hours/pointing at 3.6 and 4.5 microns over five well-studied fields of 0.90 square degree total. We expect to find (a) >10,000 galaxies at z D 4--6 (including ~1000 galaxies at z D 6), reaching galaxies down to ~5 x 10^9 Msun at z D 6, necessary to robustly measure M* at that redshift, i.e., the galaxies that dominate the global stellar mass density, and (b) >100 massive galaxies at z D 7, which will firmly anchor the high mass end of the early galaxy populations and provide targets bright enough for future spectroscopic follow-up with 20--30 meter telescopes, JWST, and ALMA. The proposed five-field deep survey will enable several secondary science objectives. These include: (1) galaxy evolution in the redshift range z ~ 1--4, (2) AGN variability, and (3) measurement of the cosmic infrared background spatial fluctuations. SEDS is the most efficient and most highly optimized program that we can imagine to achieve core scientific goals of the warm mission. The opportunity to probe the Universe so widely and at such a depth at mid-IR wavelengths will not come again in the foreseeable future. SEDS is a unique program that will leave an important legacy for years to come.

  13. Spitzer, Gaia and the Potential of the Milky Way

    NASA Astrophysics Data System (ADS)

    Johnston, Kathryn

    Recent work has demonstrated how Spitzer observations can be used to make distance estimates accurate to 2% for individual RR Lyraes stars. This unprecedented precision surpasses even the most optimistic astrometric measurements (e.g. from ESA's upcoming Gaia mission) for the vast majority of our Galaxy (beyond 2kpc from the Sun). When combined with Gaia's promised proper motions, Spitzer can effectively extend the horizon where we might hope to obtain useful six-dimensional phase-space co-ordinates by more than an order of magnitude in distance (and three orders of magnitude in volume) compared to Gaia's own "horizon". In the proposed work we will examine what we might learn about our Galaxy using such accurate co-ordinates over such a large volume. In particular, we will develop and test an algorithm that maximizes the information from small, accurate samples (i.e. which might be observed with Spitzer on a feasible timescale) by using debris from satellite disruption to measure the Galactic potential. Mock observational samples will be generated by observing the end point of simulations of satellite destruction and the success of our algorithm in recovering the potential in which the simulation was actually run will be assessed. Preliminary tests suggest that we should be able to look at the 3-dimensional structure of the Galaxy's dark matter halo, constraining its shape, orientation and depth as a function of radius. The opportunity to examine a dark matter halo in such great detail is truly unique. It is enabled by the combination of Spitzer and Gaia with our intimate perspective on our own Galaxy, and possible for no other galaxy in the Universe.

  14. Scheduling Spitzer: The SIRPASS Story

    NASA Technical Reports Server (NTRS)

    Mittman, David S.; Hawkins, Robert

    2013-01-01

    NASA's Spitzer Space Telescope was launched on August 25, 2003 from Florida's Cape Canaveral Air Force Base. Drifting in a unique Earth-trailing orbit around the Sun, Spitzer sees an optically invisible universe dominated by dust and stars. Since 1997, the Spitzer Integrated Resource Planning and Scheduling System (SIRPASS) has helped produce spacecraft activity plans for the Spitzer Space Telescope. SIRPASS is used by members of the Observatory Planning and Scheduling Team to plan, schedule and sequence the Telescope from data made available to them from the science and engineering community. Because of the volume of data that needs to be scheduled, SIRPASS offers a variety of automated assistants to aid in this task. This paper will describe the functional elements of the SIRPASS software system -- emphasizing the role that automation plays in the system -- and will highlight lessons learned for the software developer from a decade of Spitzer Space Telescope operations experience.

  15. The Spitzer Space Telescope Mission

    NASA Technical Reports Server (NTRS)

    Werner, M. W.

    2005-01-01

    The Spitzer Space Telescope, NASA's Great Observatory for infrared astronomy, was launched 2003 August 25 and is returning excellent scientific data from its Earth-trailing solar orbit. Spitzer combines the intrinsic sensitivity achievable with a cryogenic telescope in space with the great imaging and spectroscopic power of modern detector arrays to provide the user community with huge gains in capability for exploration of the cosmos in the infrared. The observatory systems are largely performing as expected, and the projected cryogenic lifetime is about five years. Spitzer is thus both a scientific and a technical precursor to the infrared astronomy missions of the future. This very brief paper refers interested readers to several sets of recent publications which describe both the scientific and the technical features of Spitzer in detail. Note that, until 2003 December, Spitzer was known as the Space Infrared Telescope Facility (SIRTF).

  16. Spitzer Finds Clarity in the Inner Milky Way

    NASA Technical Reports Server (NTRS)

    2008-01-01

    More than 800,000 frames from NASA's Spitzer Space Telescope were stitched together to create this infrared portrait of dust and stars radiating in the inner Milky Way.

    As inhabitants of a flat galactic disk, Earth and its solar system have an edge-on view of their host galaxy, like looking at a glass dish from its edge. From our perspective, most of the galaxy is condensed into a blurry narrow band of light that stretches completely around the sky, also known as the galactic plane.

    In this mosaic the galactic plane is broken up into five components: the far-left side of the plane (top image); the area just left of the galactic center (second to top); galactic center (middle); the area to the right of galactic center (second to bottom); and the far-right side of the plane (bottom). From Earth, the top two panels are visible to the northern hemisphere, and the bottom two images to the southern hemisphere. Together, these panels represent more than 50 percent of our entire Milky Way galaxy.

    The swaths of green represent organic molecules, called polycyclic aromatic hydrocarbons, which are illuminated by light from nearby star formation, while the thermal emission, or heat, from warm dust is rendered in red. Star-forming regions appear as swirls of red and yellow, where the warm dust overlaps with the glowing organic molecules. The blue specks sprinkled throughout the photograph are Milky Way stars. The bluish-white haze that hovers heavily in the middle panel is starlight from the older stellar population towards the center of the galaxy.

    This is a three-color composite that shows infrared observations from two Spitzer instruments. Blue represents 3.6-micron light and green shows light of 8 microns, both captured by Spitzer's infrared array camera. Red is 24-micron light detected by Spitzer's multiband imaging photometer.

    The Galactic Legacy Infrared Mid-Plane Survey Extraordinaire team (GLIMPSE) used the telescope's infrared array

  17. Galaxies Collide to Create Hot, Huge Galaxy

    NASA Technical Reports Server (NTRS)

    2009-01-01

    This image of a pair of colliding galaxies called NGC 6240 shows them in a rare, short-lived phase of their evolution just before they merge into a single, larger galaxy. The prolonged, violent collision has drastically altered the appearance of both galaxies and created huge amounts of heat turning NGC 6240 into an 'infrared luminous' active galaxy.

    A rich variety of active galaxies, with different shapes, luminosities and radiation profiles exist. These galaxies may be related astronomers have suspected that they may represent an evolutionary sequence. By catching different galaxies in different stages of merging, a story emerges as one type of active galaxy changes into another. NGC 6240 provides an important 'missing link' in this process.

    This image was created from combined data from the infrared array camera of NASA's Spitzer Space Telescope at 3.6 and 8.0 microns (red) and visible light from NASA's Hubble Space Telescope (green and blue).

  18. Spitzer Infrared Array Camera (IRAC) Pipeline: final modifications and lessons learned

    NASA Astrophysics Data System (ADS)

    Lowrance, Patrick J.; Carey, Sean J.; Surace, Jason A.; Ingalls, James G.; Glaccum, William; Krick, Jessica E.; Stauffer, John

    2016-07-01

    In more than ten years of operations, the Spitzer Space Telescope has conducted a wide range of investigations from observing nearby asteroids to probing atmospheric properties of exoplanets to measuring masses of the most distance galaxies. Observations using the Infrared Array Camera (IRAC) at 3.6 and 4.5um will continue through mid-2019 when the James Webb Space Telescope will succeed Spitzer. In anticipation of the eventual end of the mission, the basic calibrated data reduction pipeline designed to produce flux-calibrated images has been finalized and used to reprocess all the data taken during the Spitzer warm mission. We discuss all final modifications made to the pipeline.

  19. Completing the Legacy of Spitzer/IRAC over COSMOS

    NASA Astrophysics Data System (ADS)

    Labbe, Ivo; Caputi, Karina; McLeod, Derek; Cowley, Will; Dayal, Pratika; Behroozi, Peter; Ashby, Matt; Franx, Marijn; Dunlop, James; Le Fevre, Olivier; Fynbo, Johan; McCracken, Henry; Milvang-Jensen, Bo; Ilbert, Olivier; Tasca, Lidia; de Barros, Stephane; Oesch, Pascal; Bouwens, Rychard; Muzzin, Adam; Illingworth, Garth; Stefanon, Mauro; Schreiber, Corentin; Hutter, Anne; van Dokkum, Pieter

    2016-08-01

    We propose to complete the legacy of Spitzer/IRAC over COSMOS by extending the deep coverage to the full 1.8 sq degree field, producing a nearly homogenous and contiguous map unparalleled in terms of area and depth. Ongoing and scheduled improvements in the supporting optical-to-NIR data down to ultradeep limits have reconfirmed COSMOS as a unique field for probing the bright end of the z=6-11 universe and the formation of large-scale structures. However, currently only one-third of the field has received sufficiently deep IRAC coverage to match the new optical/near-IR limits. Here we request deep matching IRAC data over the full 1.8 sq degree field to detect almost one million galaxies. The proposed observations will allow us to 1) constrain the galaxy stellar mass function during the epoch of reionization at z=6-8 with ~10,000 galaxies at these redshifts, 2) securely identify the brightest galaxies at 9 < z < 11, 3) trace the growth of stellar mass at 1 < z < 8 and the co-evolution of galaxies and their dark matter halos, 4) identify (proto)clusters and large scale structures, and 5) reveal dust enshrouded starbursts and the first quiescent galaxies at 3 < z < 6. The Spitzer Legacy over COSMOS will enable a wide range of discoveries beyond these science goals owing to the unique array of multiwavelength data from the X-ray to the radio. COSMOS is a key target for ongoing and future studies with ALMA and for spectroscopy from the ground, and with the timely addition of the Spitzer Legacy it will prove to be a crucial treasury for efficient planning and early follow-up with JWST.

  20. THE MID-INFRARED TULLY-FISHER RELATION: SPITZER SURFACE PHOTOMETRY

    SciTech Connect

    Sorce, Jenny G.; Courtois, Helene M.; Tully, R. Brent

    2012-11-01

    The availability of photometric imaging of several thousand galaxies with the Spitzer Space Telescope enables a mid-infrared calibration of the correlation between luminosity and rotation in spiral galaxies. The most important advantage of the new calibration in the 3.6 {mu}m band, IRAC Channel 1, is photometric consistency across the entire sky. Additional advantages are minimal obscuration, observations of flux dominated by old stars, and sensitivity to low surface brightness levels due to favorable backgrounds. Roughly 3000 galaxies have been observed through Spitzer cycle 7 and images of these are available from the Spitzer archive. In cycle 8, a program called Cosmic Flows with Spitzer was initiated, which will increase the available sample of spiral galaxies with inclinations greater than 45 Degree-Sign from face-on that are suitable for distance measurements by 1274. This paper describes procedures, based on the photometry package Archangel, that are being employed to analyze both the archival and new data in a uniform way. We give results for 235 galaxies, our calibrator sample for the Tully-Fisher relation. Galaxy magnitudes are determined with uncertainties held below 0.05 mag for normal spiral systems. A subsequent paper will describe the calibration of the [3.6] luminosity-rotation relation.

  1. IUE Spectra and photoionization models of the Seyfert 2 glaxies NGC 7674 and I Zw 92

    NASA Technical Reports Server (NTRS)

    Kraemer, Steven B.; Wu, Chi-Chao; Crenshaw, D. Michael; Harrington, J. Patrick

    1994-01-01

    The physical conditions in the narrow-line regions of two Seyfert 2 galaxies, NGC 7674 and I Zw 92, are examined using IUE spectra, published optical spectra and multifrequency observations, and photoionization models. For each Seyfert galaxy, the emission-line fluxes were dereddened using the He II lambda(1640)/lambda(4686) ratio. Photoionization models were calculated using a power-law index determined from the He II lambda(4686)/H-beta ratio; the index is very similar to that obtained from a fit to the observed multifrequency continuum from the infrared to the X-rays. The models were calculated in a way that minimized the number of assumptions, and given the uncertainties in the reddening corrections, the calculated ratios match nearly all of the dereddened ratios successfully. a multicomponent model (three components with different densities and ionization parameters) was required to fit the spectrum of I Zw 92, whereas a single component was sufficient for NGC 7674. The CNO abundances are close to solar, although a reduced abundance of up to one-third solar for one or more of the heavy elements is possible. In contrast to a previous study of Mrk 3, dust inside the narrow-line region (NLR) louds was not required to fit the spectra of these two Seyfert galaxies, although the emission lines experience considerable reddening from external dust. Higher signal-to-noise spectra in the UV are essential for placing further restrictions on the reddening and physical conditions in the narrow-line regions of Seyfert galaxies.

  2. Spitzer mid-IR detection of optical transient in NGC 3344 and candidate progenitor

    NASA Astrophysics Data System (ADS)

    Prieto, J. L.

    2012-10-01

    We report on analysis of archival Spitzer data of the recent optical transient discovered and reported in the CBAT TOCP by M. Tsuboi at RA = 10:43:34.05 and DEC = +24:53:29.0 in the nearby galaxy NGC 3344 at 6.4 Mpc (from Virgo-corrected recession velocity via NED). The host galaxy has been observed with Spitzer IRAC (Apr. 2004 and Jul. 2012) and MIPS (Jan. 2008) instruments by different programs: 69 (PI: Fazio), 40204 (PI: Kennicutt), and 80025 (PI: van Zee).

  3. Galaxy interactions and strength of nuclear activity

    NASA Technical Reports Server (NTRS)

    Simkin, S. M.

    1990-01-01

    Analysis of data in the literature for differential velocities and projected separations of nearby Seyfert galaxies with possible companions shows a clear difference in projected separations between type 1's and type 2's. This kinematic difference between the two activity classes reinforces other independent evidence that their different nuclear characteristics are related to a non-nuclear physical distinction between the two classes. The differential velocities and projected separations of the galaxy pairs in this sample yield mean galaxy masses, sizes, and mass to light ratios which are consistent with those found by the statistical methods of Karachentsev. Although the galaxy sample discussed here is too small and too poorly defined to provide robust support for these conclusions, the results strongly suggest that nuclear activity in Seyfert galaxies is associated with gravitational perturbations from companion galaxies, and that there are physical distinctions between the host companions of Seyfert 1 and Seyfert 2 nuclei which may depend both on the environment and the structure of the host galaxy itself.

  4. Spitzer IR Colors and ISM Distributions of Virgo Cluster Spirals

    NASA Astrophysics Data System (ADS)

    Kenney, Jeffrey D.; Wong, I.; Kenney, Z.; Murphy, E.; Helou, G.; Howell, J.

    2012-01-01

    IRAC infrared images of 44 spiral and peculiar galaxies from the Spitzer Survey of the Virgo Cluster help reveal the interactions which transform galaxies in clusters. We explore how the location of galaxies in the IR 3.6-8μm color-magnitude diagram is related to the spatial distributions of ISM/star formation, as traced by PAH emission in the 8μm band. Based on their 8μm/PAH radial distributions, we divide the galaxies into 4 groups: normal, truncated, truncated/compact, and anemic. Normal galaxies have relatively normal PAH distributions. They are the "bluest" galaxies, with the largest 8/3.6μm ratios. They are relatively unaffected by the cluster environment, and have probably never passed through the cluster core. Truncated galaxies have a relatively normal 8μm/PAH surface brightness in the inner disk, but are abruptly truncated with little or no emission in the outer disk. They have intermediate ("green") colors, while those which are more severely truncated are "redder". Most truncated galaxies have undisturbed stellar disks and many show direct evidence of active ram pressure stripping. Truncated/compact galaxies have high 8μm/PAH surface brightness in the very inner disk (central 1 kpc) but are abruptly truncated close to center with little or no emission in the outer disk. They have intermediate global colors, similar to the other truncated galaxies. While they have the most extreme ISM truncation, they have vigorous circumnuclear star formation. Most of these have disturbed stellar disks, and they are probably produced by a combination of gravitational interaction plus ram pressure stripping. Anemic galaxies have a low 8μm/PAH surface brightness even in the inner disk. These are the "reddest" galaxies, with the smallest 8/3.6μm ratios. The origin of the anemics seems to a combination of starvation, gravitational interactions, and long-ago ram pressure stripping.

  5. Galaxies et trous noirs supermassifs

    NASA Astrophysics Data System (ADS)

    Collin-Zahn, Suzy

    2016-08-01

    A few percents of galaxies are classified as « active ». An active galaxy is a galaxy whose nucleus emits more energy than the whole galaxy in the form of electromagnetic radiation, relativistic particles, or mechanical energy. It is activated by a supermassive black hole fueled by matter falling on it, whose characteristics (Eddington luminosity, spin) are recalled. The class includes quasars and Seyfert galaxies. All massive "non active" galaxies contain a supermassive black hole, but there is not enough matter in its environment so as the nucleus becomes luminous. Different items are considered in the paper : how supermassive black holes are fueled, the accretion disc, the jets and the winds, the unified model of active galaxies, how are determined the masses of supermassive black holes, and what is the relation between the evolution of galaxies and supermassive black holes.

  6. New southern galaxies with active nuclei

    SciTech Connect

    Maia, M.A.G.; Da costa, L.N.; Willmer, C.; Pellegrini, P.S.; Rite, C.

    1987-03-01

    A list of AGN candidates, identified from optical spectra taken as part of an ongoing redshift survey of southern galaxies, is presented. The identification, coordinates, morphological type, measured heliocentric radial velocity, and proposed emission type are given for the galaxies showing evidence of nonstellar nuclear activity. Using standard diagnostics, several new Seyferts and low-ionization nuclear-emission regions (LINERs) are identified among the emission-line galaxies observed. 14 references.

  7. High-Resolution Imaging in 3-mm and 0.8-mm Bands and Abundances of Shock/Dust Related Molecules Toward the Seyfert Galaxy NGC 1068 Observed with ALMA

    NASA Astrophysics Data System (ADS)

    Nakajima, T.; Takano, S.; Kohno, K.; Harada, N.; Herbst, E.; Tamura, Y.; Izumi, T.; Taniguchi, A.; Tosaki, T.

    2015-12-01

    We present the results of high-angular-resolution in 3-mm and 0.8-mm band observations with ALMA in cycle-0 toward one of the nearest galaxies with an active galactic nucleus (AGN), NGC 1068. The physical properties of CO isotopic species, CS, CN, and shock and dust related molecules such as HNCO, CH3CN, SO, and CH3OH were estimated using rotation diagrams. We discuss the chemistry of each species, and compare the fractional abundances in the circumnuclear disk (CND) and starburst ring with those of Galactic sources in order to study the overall characteristics.

  8. TRACSSS-2: Tracing More Cold Stellar Streams with Spitzer

    NASA Astrophysics Data System (ADS)

    Grillmair, Carl; Kupper, Andreas; Sesar, Branimir; Pearson, Sarah; Rich, Jeffrey; Scowcroft, Vicky; Price-Whelan, Adrian; Johnston, Kathryn

    2016-08-01

    Stellar debris streams may be the most sensitive probes we have of the size and shape of the Milky Way's dark matter distribution. Using the remarkably precise infrared period-luminosity relation for RR Lyrae, Spitzer has already demonstrated the ability to measure distances to better than 2% over nearly the entire volume of the Galaxy. By measuring very accurate mean magnitudes for RR Lyrae in the Anticenter and Styx streams, we will immediately be able to put tighter constrains on the mass and shape of the Galactic halo. These measurements will become still more important in coming years, when they can be used to turn Gaia proper motion measurements into accurate transverse space velocities. These measurements are unlikely to be improved upon in the foreseeable future and may ultimately rank among Spitzer's most enduring legacies.

  9. Spitzer Meets K2: Spitzer Studies of Candidate Exoplanets Identified by K2

    NASA Astrophysics Data System (ADS)

    Werner, Michael W.; Spitzer/K2 Study Team

    2016-01-01

    We are in the midst of a ~450 hr program of Spitzer photometry of candidate transiting planets orbiting M dwarf stars, identified in the K2 fields. Whereas the Kepler prime mission eschewed M stars, they have become a major focus of the community-driven target selection for K2. M stars are the most common stars in the galaxy, and planets orbiting M stars can be very attractive candidates for transit and eclipse atmospheric studies, including studies aimed at exploring potentially habitable exoplanets. We will review and show the results of the observations planned and executed to date, which total 21 transits of 16 planets orbiting 13 stars. Our results greatly improve on the characterization of the exoplanets and their orbits over what is possible from the K2 data alone. In addition, the improved ephemerides we generate will facilitate studies of interesting K2 targets from JWST. __________________________________________This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech.

  10. The Spitzer-HETDEX Exploratory Large-area Survey

    NASA Astrophysics Data System (ADS)

    Papovich, C.; Shipley, H. V.; Mehrtens, N.; Lanham, C.; Lacy, M.; Ciardullo, R.; Finkelstein, S. L.; Bassett, R.; Behroozi, P.; Blanc, G. A.; de Jong, R. S.; DePoy, D. L.; Drory, N.; Gawiser, E.; Gebhardt, K.; Gronwall, C.; Hill, G. J.; Hopp, U.; Jogee, S.; Kawinwanichakij, L.; Marshall, J. L.; McLinden, E.; Mentuch Cooper, E.; Somerville, R. S.; Steinmetz, M.; Tran, K.-V.; Tuttle, S.; Viero, M.; Wechsler, R.; Zeimann, G.

    2016-06-01

    We present post-cryogenic Spitzer imaging at 3.6 and 4.5 μm with the Infrared Array Camera (IRAC) of the Spitzer/HETDEX Exploratory Large-Area (SHELA) survey. SHELA covers ≈24 deg2 of the Sloan Digital Sky Survey “Stripe 82” region, and falls within the footprints of the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX) and the Dark Energy Survey. The HETDEX blind R ˜ 800 spectroscopy will produce ˜200,000 redshifts from the Lyα emission for galaxies in the range 1.9 < z < 3.5, and an additional ˜200,000 redshifts from the [O ii] emission for galaxies at z < 0.5. When combined with deep ugriz images from the Dark Energy Camera, K-band images from NEWFIRM, and other ancillary data, the IRAC photometry from Spitzer will enable a broad range of scientific studies of the relationship between structure formation, galaxy stellar mass, halo mass, the presence of active galactic nuclei, and environment over a co-moving volume of ˜0.5 Gpc3 at 1.9 < z < 3.5. Here, we discuss the properties of the SHELA IRAC data set, including the data acquisition, reduction, validation, and source catalogs. Our tests show that the images and catalogs are 80% (50%) complete to limiting magnitudes of 22.0 (22.6) AB mag in the detection image, which is constructed from the weighted sum of the IRAC 3.6 and 4.5 μm images. The catalogs reach limiting sensitivities of 1.1 μJy at both 3.6 and 4.5 μm (1σ, for R = 2″ circular apertures). As a demonstration of the science, we present IRAC number counts, examples of highly temporally variable sources, and galaxy surface density profiles of rich galaxy clusters. In the spirit of the Spitzer Exploratory programs, we provide all of the images and catalogs as part of the publication.

  11. The Spitzer-HETDEX Exploratory Large-area Survey

    NASA Astrophysics Data System (ADS)

    Papovich, C.; Shipley, H. V.; Mehrtens, N.; Lanham, C.; Lacy, M.; Ciardullo, R.; Finkelstein, S. L.; Bassett, R.; Behroozi, P.; Blanc, G. A.; de Jong, R. S.; DePoy, D. L.; Drory, N.; Gawiser, E.; Gebhardt, K.; Gronwall, C.; Hill, G. J.; Hopp, U.; Jogee, S.; Kawinwanichakij, L.; Marshall, J. L.; McLinden, E.; Mentuch Cooper, E.; Somerville, R. S.; Steinmetz, M.; Tran, K.-V.; Tuttle, S.; Viero, M.; Wechsler, R.; Zeimann, G.

    2016-06-01

    We present post-cryogenic Spitzer imaging at 3.6 and 4.5 μm with the Infrared Array Camera (IRAC) of the Spitzer/HETDEX Exploratory Large-Area (SHELA) survey. SHELA covers ≈24 deg2 of the Sloan Digital Sky Survey “Stripe 82” region, and falls within the footprints of the Hobby–Eberly Telescope Dark Energy Experiment (HETDEX) and the Dark Energy Survey. The HETDEX blind R ˜ 800 spectroscopy will produce ˜200,000 redshifts from the Lyα emission for galaxies in the range 1.9 < z < 3.5, and an additional ˜200,000 redshifts from the [O ii] emission for galaxies at z < 0.5. When combined with deep ugriz images from the Dark Energy Camera, K-band images from NEWFIRM, and other ancillary data, the IRAC photometry from Spitzer will enable a broad range of scientific studies of the relationship between structure formation, galaxy stellar mass, halo mass, the presence of active galactic nuclei, and environment over a co-moving volume of ˜0.5 Gpc3 at 1.9 < z < 3.5. Here, we discuss the properties of the SHELA IRAC data set, including the data acquisition, reduction, validation, and source catalogs. Our tests show that the images and catalogs are 80% (50%) complete to limiting magnitudes of 22.0 (22.6) AB mag in the detection image, which is constructed from the weighted sum of the IRAC 3.6 and 4.5 μm images. The catalogs reach limiting sensitivities of 1.1 μJy at both 3.6 and 4.5 μm (1σ, for R = 2″ circular apertures). As a demonstration of the science, we present IRAC number counts, examples of highly temporally variable sources, and galaxy surface density profiles of rich galaxy clusters. In the spirit of the Spitzer Exploratory programs, we provide all of the images and catalogs as part of the publication.

  12. Spitzer Reveals Stellar 'Family Tree'

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] High resolution poster version

    Generations of stars can be seen in this new infrared portrait from NASA's Spitzer Space Telescope. In this wispy star-forming region, called W5, the oldest stars can be seen as blue dots in the centers of the two hollow cavities (other blue dots are background and foreground stars not associated with the region). Younger stars line the rims of the cavities, and some can be seen as pink dots at the tips of the elephant-trunk-like pillars. The white knotty areas are where the youngest stars are forming. Red shows heated dust that pervades the region's cavities, while green highlights dense clouds.

    W5 spans an area of sky equivalent to four full moons and is about 6,500 light-years away in the constellation Cassiopeia. The Spitzer picture was taken over a period of 24 hours.

    Like other massive star-forming regions, such as Orion and Carina, W5 contains large cavities that were carved out by radiation and winds from the region's most massive stars. According to the theory of triggered star-formation, the carving out of these cavities pushes gas together, causing it to ignite into successive generations of new stars.

    This image contains some of the best evidence yet for the triggered star-formation theory. Scientists analyzing the photo have been able to show that the ages of the stars become progressively and systematically younger with distance from the center of the cavities.

    This is a three-color composite showing infrared observations from two Spitzer instruments. Blue represents 3.6-micron light and green shows light of 8 microns, both captured by Spitzer's infrared array camera. Red is 24-micron light detected by Spitzer's multiband imaging photometer.

  13. Galaxies and gamma-ray astronomy

    NASA Technical Reports Server (NTRS)

    Bignami, G. F.; Fichtel, C. E.; Hartman, R. C.; Thompson, D. J.

    1979-01-01

    The nature of the high-energy spectra of several types of active galaxies and their contribution to the measured diffuse gamma-ray emission between 1 and 150 MeV are considered, using X-ray spectra of active galaxies and SAS 2 data regarding the intensity upper limits to the gamma-ray emission above 35 MeV. It is found that a substantial increase in slope of the photon energy spectrum must occur in the low energy gamma-ray region for Seyfert galaxies, BL Lac objects, and emission line galaxies; the power-law spectra observed in the X-ray range must steepen substantially between 50 keV and 50 MeV. In addition, a cosmological integration shows that Seyfert galaxies, BL Lac objects, and quasars may account for most of the 1-150 MeV diffuse background, even without significant evolution.

  14. A KINEMATIC APPROACH TO ASSESSING ENVIRONMENTAL EFFECTS: STAR-FORMING GALAXIES IN A z {approx} 0.9 SpARCS CLUSTER USING SPITZER 24 {mu}m OBSERVATIONS

    SciTech Connect

    Noble, A. G.; Webb, T. M. A.; Muzzin, A.; Van der Burg, R. F. J.; Wilson, G.; Yee, H. K. C.

    2013-05-10

    We present an infrared study of a z = 0.872 cluster, SpARCS J161314+564930, with the primary aim of distinguishing the dynamical histories of spectroscopically confirmed star-forming members to assess the role of cluster environment. We utilize deep MIPS imaging and a mass-limited sample of 85 spectroscopic members to identify 16 24 {mu}m bright sources within the cluster, and measure their 24 {mu}m star formation rates (SFRs) down to {approx}6 M{sub Sun} yr{sup -1}. Based on their line-of-sight velocities and stellar ages, MIPS cluster members appear to be an infalling population that was recently accreted from the field with minimal environmental dependency on their star formation. However, we identify a double-sequenced distribution of star-forming galaxies among the members, with one branch exhibiting declining specific SFRs with mass. The members along this sub-main sequence contain spectral features suggestive of passive galaxies. Using caustic diagrams, we kinematically identify these galaxies as a virialized and/or backsplash population. Moreover, we find a mix of dynamical histories at all projected radii, indicating that standard definitions of environment (i.e., radius and density) are contaminated with recently accreted interlopers, which could contribute to a lack of environmental trends for star-forming galaxies. A cleaner narrative of their dynamical past begins to unfold when using a proxy for accretion histories through profiles of constant (r/r{sub 200}) Multiplication-Sign ({Delta}v/{sigma}{sub v}); galaxies accreted at earlier times possess lower values of (r/r{sub 200}) Multiplication-Sign ({Delta}v/{sigma}{sub v}) with minimal contamination from the distinct infalling population. Therefore, adopting a time-averaged definition for density (as traced by accretion histories) rather than an instantaneous density yields a depressed specific SFR within the dynamical cluster core.

  15. Teacher-Student Education and Public Outreach Using Spitzer Data

    NASA Astrophysics Data System (ADS)

    Keeton, Adam; Mehta, S.; Butler, M.; Spuck, T.; Heller, M.; Sixel, W.; Cook, C.; Hutchinson, P.; Butler, M.; Abajian, M.; Gorjian, V.

    2012-01-01

    As part of the NASA-IPAC Teacher Archival Research Program (NITARP) astronomers, teachers, and students collaborated in using archival data from the Spitzer Space Telescope to identify galaxy clusters around Active Galactic Nuclei (AGN) at a high redshift of z≈1. The team analyzed 168 fields around AGN to determine if an over density of sources existed. The team, including members from across the US, initially explored the idea at the 2011 Winter AAS Meeting. The initial meeting followed up with regular conference calls, and a 4-day face to face meeting at the Spitzer Science Center in Pasadena, CA. Throughout the process teachers and students gained a great deal of knowledge and experiences conducting authentic science research, and scientists gained a deeper understanding of education issues. The poster will present the processes used to engage students in this real-world experience, and the many benefits to all. In addition our team will present inquiry based activities using archival data from the Spitzer Space Telescope, APT photometry software, and an Excel spreadsheet template, to enrich their understanding of the structure of the universe. NITARP is a NASA funded program.

  16. Nuclear obscuration in LINERs. Clues from Spitzer/IRS spectra on the Compton thickness and the existence of the dusty torus

    NASA Astrophysics Data System (ADS)

    González-Martín, O.; Masegosa, J.; Márquez, I.; Rodríguez-Espinosa, J. M.; Acosta-Pulido, J. A.; Ramos Almeida, C.; Dultzin, D.; Hernández-García, L.; Ruschel-Dutra, D.; Alonso-Herrero, A.

    2015-06-01

    Context. Most of the optically classified low-ionisation, narrow emission-line regions (LINERs) nuclei host an active galactic nucleus (AGN). However, how they fit into the unified model (UM) of AGN is still an open question. Aims: The aims of this work are to study at mid-infrared (mid-IR) (1) the Compton-thick nature of LINERs (i.e. hydrogen column densities of NH> 1.5 × 1024 cm-2) and (2) the disappearance of the dusty torus in LINERs predicted from theoretical arguments. Methods: We have compiled all the available low spectral-resolution, mid-IR spectra of LINERs from the InfraRed Spectrograph (IRS) onboard Spitzer. The sample contains 40 LINERs. We have complemented the LINER sample with Spitzer/IRS spectra of PG QSOs, Type-1 Seyferts (S1s), Type-2 Seyferts (S2s), and StarBurst (SB) nuclei. We studied the AGN compared to the starburst content in our sample using different indicators: the equivalent width of the polycyclic aromatic hydrocarbon at 6.2 μm, the strength of the silicate feature at 9.7 μm, and the steepness of the mid-IR spectra. We classified the spectra as SB-dominated and AGN-dominated, according to these diagnostics and compared the average mid-IR spectra of the various classes. Moreover, we studied the correlation between the 12 μm luminosity, νLν(12 μm), and the 2-10 keV energy band X-ray luminosity, LX(2-10 keV). Results: In 25 out of the 40 LINERs (i.e. 62.5%), the mid-IR spectra are not SB-dominated, similar to the comparison S2 sample (67.7%). The average spectra of both SB-dominated LINERs and S2s are very similar to the average spectrum of the SB class. The average spectrum of AGN-dominated LINERs is different from the average spectra of the other optical classes, showing a rather flat spectrum at 6-28 μm. We find that the average spectrum of AGN-dominated LINERs with X-ray luminosities LX(2-10 keV) > 1041 erg/s is similar to the average mid-IR spectrum of AGN-dominated S2s. However, faint LINERs (i.e. LX(2-10 keV) < 1041 erg

  17. Tracing black hole accretion with SED decomposition and IR lines: from local galaxies to the high-z Universe

    NASA Astrophysics Data System (ADS)

    Gruppioni, C.; Berta, S.; Spinoglio, L.; Pereira-Santaella, M.; Pozzi, F.; Andreani, P.; Bonato, M.; De Zotti, G.; Malkan, M.; Negrello, M.; Vallini, L.; Vignali, C.

    2016-06-01

    We present new estimates of AGN accretion and star formation (SF) luminosity in galaxies obtained for the local 12 μm sample of Seyfert galaxies (12MGS), by performing a detailed broad-band spectral energy distribution (SED) decomposition including the emission of stars, dust heated by SF and a possible AGN dusty torus. Thanks to the availability of data from the X-rays to the sub-millimetre, we constrain and test the contribution of the stellar, AGN and SF components to the SEDs. The availability of Spitzer-InfraRed Spectrograph (IRS) low-resolution mid-infrared (mid-IR) spectra is crucial to constrain the dusty torus component at its peak wavelengths. The results of SED fitting are also tested against the available information in other bands: the reconstructed AGN bolometric luminosity is compared to those derived from X-rays and from the high excitation IR lines tracing AGN activity like [Ne V] and [O IV]. The IR luminosity due to SF and the intrinsic AGN bolometric luminosity are shown to be strongly related to the IR line luminosity. Variations of these relations with different AGN fractions are investigated, showing that the relation dispersions are mainly due to different AGN relative contribution within the galaxy. Extrapolating these local relations between line and SF or AGN luminosities to higher redshifts, by means of recent Herschel galaxy evolution results, we then obtain mid- and far-IR line luminosity functions useful to estimate how many star-forming galaxies and AGN we expect to detect in the different lines at different redshifts and luminosities with future IR facilities (e.g. JWST, SPICA).

  18. SPITZER OBSERVATIONS OF YOUNG RED QUASARS

    SciTech Connect

    Urrutia, Tanya; Lacy, Mark; Spoon, Henrik; Glikman, Eilat; Petric, Andreea; Schulz, Bernhard E-mail: mlacy@nrao.edu E-mail: eilat.glikman@yale.edu E-mail: bschulz@ipac.caltech.edu

    2012-10-01

    We present mid-infrared spectra and photometry of 13 redshift 0.4 < z < 1 dust reddened quasars obtained with Spitzer IRS and MIPS. We compare properties derived from their infrared spectral energy distributions (intrinsic active galactic nucleus (AGN) luminosity and far-infrared luminosity from star formation) to the host luminosities and morphologies from Hubble Space Telescope imaging, and black hole masses estimated from optical and/or near-infrared spectroscopy. Our results are broadly consistent with models in which most dust reddened quasars are an intermediate phase between a merger-driven starburst triggering a completely obscured AGN, and a normal, unreddened quasar. We find that many of our objects have high accretion rates, close to the Eddington limit. These objects tend to fall below the black hole mass-bulge luminosity relation as defined by local galaxies, whereas most of our low accretion rate objects are slightly above the local relation, as typical for normal quasars at these redshifts. Our observations are therefore most readily interpreted in a scenario in which galaxy stellar mass growth occurs first by about a factor of three in each merger/starburst event, followed sometime later by black hole growth by a similar amount. We do not, however, see any direct evidence for quasar feedback affecting star formation in our objects, for example, in the form of a relationship between accretion rate and star formation. Five of our objects, however, do show evidence for outflows in the [O III]5007 A emission line profile, suggesting that the quasar activity is driving thermal winds in at least some members of our sample.

  19. Ripples in disk galaxies

    NASA Astrophysics Data System (ADS)

    Schweizer, Francois; Seitzer, Patrick

    1988-05-01

    The authors present evidence that ripples ("shells") occur not only in ellipticals, as hitherto believed, but also in disk galaxies of Hubble types S0, S0/Sa, and Sa, and probably even in the Sbc galaxy NGC 3310. This evidence includes the discovery of ripples in the northern disk galaxies NGC 3032, 3619, 4382, 5548 (a Seyfert), and 5739, and in the "diskless S0" NGC 7600. It is argued that these ripples cannot usually have resulted form transient spiral waves or other forced vibrations in the existing disks, but instead consist of extraneous sheet-like matter. The frequent presence of major disk-shaped companions suggests that ripple material may be acquired not only through wholesale mergers, but also through mass transfer from neighbor galaxies.

  20. Identification of Spitzer-IRS staring mode targets in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Ruffle, Paul M. E.; Woods, Paul M.; Kemper, Francisca

    2012-08-01

    The SAGE-LMC, SAGE-SMC and HERITAGE surveys have mapped the Magellanic Clouds in the infrared using the Spitzer and Herschel Space Telescopes. Over 8.5 million point sources were detected and catalogued in the LMC alone. Staring mode observations using the InfraRed Spectrograph (IRS) on board Spitzer have been obtained for 1,000 positions in the LMC and ~250 in the SMC. From the infrared spectroscopy we have identified the nature of the sources for which spectroscopy is available. These IRS staring mode targets represent an important contribution to the SED of these dwarf galaxies. Here we report on our latest results.

  1. Espectroscopía infrarroja de la galaxia Seyfert NGC6300

    NASA Astrophysics Data System (ADS)

    Gaspar, G.; D‘Ambra, A.; Díaz, R. J.; Gunthardt, G.; Gómez, P.

    2015-08-01

    Here we present a spectroscopic study in the near infrared band of the active galaxy NGC 6300, with spectra obtained with the spectrograph Flamingos 2 of the telescope Gemini South. The spectra were taken in the range 1 to 2.4 mm, with a mean spatial resolution of 0.6'', in this work we present preliminary results for a single band, . This global study is based in the analysis of the relative contributions in the emission of the Seyfert nuclei and the circunnuclear star formation to discuss later the role of the AGN in the scenarios of dynamical evolution of galaxies. We present the detection of a broad component in the Pa emission line, an unexpected feature in this galaxy so far classified as a 2 type.

  2. SPIRITS: SPitzer InfraRed Intensive Transients Survey

    NASA Astrophysics Data System (ADS)

    Kasliwal, Mansi; Lau, Ryan; Cao, Yi; Masci, Frank; Helou, George; Williams, Robert; Bally, John; Bond, Howard; Whitelock, Patricia; Cody, Ann Marie; Gehrz, Robert; Jencson, Jacob; Tinyanont, Samaporn; Smith, Nathan; Surace, Jason; Armus, Lee; Cantiello, Matteo; Langer, Norbert; Levesque, Emily; Mohamed, Shazrene; Ofek, Eran; Parthasarathy, Mudumba; van Dyk, Schuyler; Boyer, Martha; Phillips, Mark; Hsiao, Eric; Morrell, Nidia; Perley, Dan; Gonzalez, Consuelo; Contreras, Carlos; Jones, Olivia; Ressler, Michael; Adams, Scott; Moore, Anna; Cook, David; Fox, Ori; Johansson, Joel; Khan, Rubab; Monson, Andy

    2016-08-01

    Spitzer is pioneering a systematic exploration of the dynamic infrared sky. Our SPitzer InfraRed Intensive Transients Survey (SPIRITS) has already discovered 147 explosive transients and 1948 eruptive variables. Of these 147 infrared transients, 35 are so red that they are devoid of optical counterparts and we call them SPRITEs (eSPecially Red Intermediate-luminosity Transient Events). The nature of SPRITEs is unknown and progress on deciphering the explosion physics depends on mid-IR spectroscopy. Multiple physical origins have been proposed including stellar merger, birth of a massive binary, electron capture supernova and stellar black-hole formation. Hence, we propose a modest continuation of SPIRITS, focusing on discovering and monitoring SPRITEs, in preparation for follow-up with the James Webb Space Telescope (JWST). As the SPRITEs evolve and cool, the bulk of the emission shifts to longer wavelengths. MIRI aboard JWST will be the only available platform in the near future capable of characterizing SPRITEs out to 28um. Specifically, the low resolution spectrometer would determine dust mass, grain chemistry, ice abundance and energetics to disentangle the proposed origins. The re-focused SPIRITS program consists of continued Spitzer monitoring of only those 104 luminous galaxies that are known SPRITE hosts or are most likely to host new SPRITEa. Scaling from the SPIRITS discovery rate, we estimate finding 22 new SPRITEs and 6 new supernovae over the next two years. The SPIRITS team remains committed to extensive ground-based follow-up. The Spitzer observations proposed here are essential for determining the final fates of active SPRITEs as well as bridging the time lag between the current SPIRITS survey and JWST launch.

  3. SPITZER IMAGING OF HERSCHEL-ATLAS GRAVITATIONALLY LENSED SUBMILLIMETER SOURCES

    SciTech Connect

    Hopwood, R.; Negrello, M.; Wardlow, J.; Cooray, A.; Khostovan, A. A.; Kim, S.; Barton, E.; Da Cunha, E.; Cooke, J.; Burgarella, D.; Aretxaga, I.; Auld, R.; Baes, M.; Bertoldi, F.; Bonfield, D. G.; Blundell, R.; Buttiglione, S.; Cava, A.; Dannerbauer, H.

    2011-02-10

    We present physical properties of two submillimeter selected gravitationally lensed sources, identified in the Herschel Astrophysical Terahertz Large Area Survey. These submillimeter galaxies (SMGs) have flux densities >100 mJy at 500 {mu}m, but are not visible in existing optical imaging. We fit light profiles to each component of the lensing systems in Spitzer IRAC 3.6 and 4.5 {mu}m data and successfully disentangle the foreground lens from the background source in each case, providing important constraints on the spectral energy distributions (SEDs) of the background SMG at rest-frame optical-near-infrared wavelengths. The SED fits show that these two SMGs have high dust obscuration with A{sub V} {approx} 4-5 and star formation rates of {approx}100 M{sub sun} yr{sup -1}. They have low gas fractions and low dynamical masses compared with 850 {mu}m selected galaxies.

  4. SPITZER, GAIA, AND THE POTENTIAL OF THE MILKY WAY

    SciTech Connect

    Price-Whelan, Adrian M.; Johnston, Kathryn V.

    2013-11-20

    Near-future data from ESA's Gaia mission will provide precise, full phase-space information for hundreds of millions of stars out to heliocentric distances of ∼10 kpc. This ''horizon'' for full phase-space measurements is imposed by the Gaia parallax errors degrading to worse than 10%, and could be significantly extended by an accurate distance indicator. Recent work has demonstrated how Spitzer observations of RR Lyrae stars can be used to make distance estimates accurate to 2%, effectively extending the Gaia, precise-data horizon by a factor of 10 in distance and a factor of 1000 in volume. This Letter presents one approach to exploit data of such accuracy to measure the Galactic potential using small samples of stars associated with debris from satellite destruction. The method is tested with synthetic observations of 100 stars from the end point of a simulation of satellite destruction: the shape, orientation, and depth of the potential used in the simulation are recovered to within a few percent. The success of this simple test with such a small sample in a single debris stream suggests that constraints from multiple streams could be combined to examine the Galaxy's dark matter halo in even more detail—a truly unique opportunity that is enabled by the combination of Spitzer and Gaia with our intimate perspective on our own Galaxy.

  5. Spitzer, Gaia, and the Potential of the Milky Way

    NASA Astrophysics Data System (ADS)

    Price-Whelan, Adrian M.; Johnston, Kathryn V.

    2013-11-01

    Near-future data from ESA's Gaia mission will provide precise, full phase-space information for hundreds of millions of stars out to heliocentric distances of ~10 kpc. This "horizon" for full phase-space measurements is imposed by the Gaia parallax errors degrading to worse than 10%, and could be significantly extended by an accurate distance indicator. Recent work has demonstrated how Spitzer observations of RR Lyrae stars can be used to make distance estimates accurate to 2%, effectively extending the Gaia, precise-data horizon by a factor of 10 in distance and a factor of 1000 in volume. This Letter presents one approach to exploit data of such accuracy to measure the Galactic potential using small samples of stars associated with debris from satellite destruction. The method is tested with synthetic observations of 100 stars from the end point of a simulation of satellite destruction: the shape, orientation, and depth of the potential used in the simulation are recovered to within a few percent. The success of this simple test with such a small sample in a single debris stream suggests that constraints from multiple streams could be combined to examine the Galaxy's dark matter halo in even more detail—a truly unique opportunity that is enabled by the combination of Spitzer and Gaia with our intimate perspective on our own Galaxy.

  6. Spitzer, Gaia, and the Potential of the Milky Way

    NASA Astrophysics Data System (ADS)

    Price-Whelan, Adrian M.; Johnston, K. V.; Hogg, D. W.; Madore, B. F.; Majewski, S. R.

    2014-01-01

    Near-future data from ESA's Gaia mission will provide precise, full phase-space information for hundreds of millions of stars out to heliocentric distances of ~10 kpc. This "horizon" for full phase-space measurements is imposed by the Gaia parallax errors degrading to worse than 10%, and could be significantly extended by an accurate distance indicator. Recent work has demonstrated how Spitzer observations of RR Lyrae stars can be used to make distance estimates accurate to 2%, effectively extending the Gaia, precise-data horizon by a factor of ten in distance and a factor of 1000 in volume. This Letter presents one approach to exploit data of such accuracy to measure the Galactic potential using small samples of stars associated with debris from satellite destruction. The method is tested with synthetic observations of 100 stars from the end point of a simulation of satellite destruction: the shape, orientation, and depth of the potential used in the simulation are recovered to within a few percent. The success of this simple test with such a small sample in a single debris stream suggests that constraints from multiple streams could be combined to examine the Galaxy's dark matter halo in even more detail --- a truly unique opportunity that is enabled by the combination of Spitzer and Gaia with our intimate perspective on the Galaxy.

  7. Spitzer Reveals Stellar 'Family Tree'

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] High resolution poster version

    Generations of stars can be seen in this new infrared portrait from NASA's Spitzer Space Telescope. In this wispy star-forming region, called W5, the oldest stars can be seen as blue dots in the centers of the two hollow cavities (other blue dots are background and foreground stars not associated with the region). Younger stars line the rims of the cavities, and some can be seen as dots at the tips of the elephant-trunk-like pillars. The white knotty areas are where the youngest stars are forming.

    W5 spans an area of sky equivalent to four full moons and is about 6,500 light-years away in the constellation Cassiopeia. The Spitzer picture was taken over a period of 24 hours.

    Like other massive star-forming regions, such as Orion and Carina, W5 contains large cavities that were carved out by radiation and winds from the region's most massive stars. According to the theory of triggered star-formation, the carving out of these cavities pushes gas together, causing it to ignite into successive generations of new stars.

    This image contains some of the best evidence yet for the triggered star-formation theory. Scientists analyzing the photo have been able to show that the ages of the stars become progressively and systematically younger with distance from the center of the cavities.

    This picture was taken with Spitzer's infrared array camera. It is a four-color composite, in which light with a wavelength of 3.6 microns is blue; 4.5-micron light is green; 5.8-micron light is orange; and 8-micron light is red.

  8. Enhancing the Legacy of Spitzer and Herschel with the MOSFIRE Deep Evolution Field Survey

    NASA Astrophysics Data System (ADS)

    Reddy, Naveen

    The next frontier for comprehensive galaxy surveys is the epoch at z~1.5-3.5, the peak of star formation and black hole activity. Despite the new windows that Spitzer and Herschel have opened up into the stellar and dust emission of distant galaxies and AGN during this key epoch, these studies have been limited by the lack of spectroscopic redshifts and the unknown physical conditions (e.g., metallicities, ionization) within the targeted galaxies. To realize the full potential of Spitzer and Herschel, we require a large spectroscopic survey that will: (a) efficiently assemble spectroscopic redshifts for large samples of galaxies at z=1.4-3.8; (b) yield the physical conditions, including the ionization and metallicities of these galaxies; and (c) easily obtain spectroscopic redshifts even for very dusty/confused galaxies. To this end, our team has been allocated a large program of 47 Keck nights with the multi-object near-IR spectrograph MOSFIRE to carry out the MOSFIRE Deep Evolution Field Survey (MOSDEF) in three of the Hubble CANDELS fields. MOSDEF will obtain rest-optical spectra of ~1500 galaxies at redshifts z=1.4-3.8, targeting many of the optical nebular emission lines and continuum features (e.g., [OII], [OIII], H-beta, H-alpha, [NII], [SII], 4000 Angstrom break, Ca H and K, and Mbg) that until now have been inaccessible for large samples of distant galaxies, but which are routinely used to measure the SFRs, dust attenuation, metal and gas content, and ionization and dynamical properties in nearby galaxies. MOSDEF spectroscopy provides a critical supporting role for the analysis of Spitzer and Herschel observations of distant galaxies. With this transformative dataset, we will perform the following analyses. First, we will use Spitzer and Herschel imaging, aided with spectroscopic redshifts from MOSDEF, to construct individual and mean dust SEDs for galaxies at redshifts 1.4

  9. Spitzer - Hot & Colorful Student Activities

    NASA Astrophysics Data System (ADS)

    McDonald, D.; Rebull, L. M.; DeWolf, C.; Guastella, P.; Johnson, C. H.; Schaefers, J.; Spuck, T.; McDonald, J. G., III; DeWolf, T.; Brock, S.; Boerma, J.; Bemis, G.; Paulsen, K.; Yueh, N.; Peter, A.; Wassmer, W.; Haber, R.; Scaramucci, A.; Butchart, J.; Holcomb, A.; Karns, B.; Kennedy, S.; Siegel, R.; Weiser, S.

    2009-01-01

    In this poster, we present the results of several activities developed for the general science student to explore infrared light. The first activity involved measuring infrared radiation using an updated version of Newton's experiment of splitting white light and finding IR radiation. The second used Leslie's cube to allow students to observe different radiators, while the third used a modern infrared thermometer to measure and identify IR sources in an enclosed box. The last activity involved students making false-color images from narrow-band filter images from data sets from Spitzer Space Telescope, STScI Digitized Sky Survey and other sources. Using computer programs like Adobe Photoshop and free software such as ds9, Spot and Leopard, poster-like images were created by the students. This research is funded by the Spitzer Science Center (SSC) and the National Optical Astronomy Observatory (NOAO). Please see our companion poster, Johnson et al., on the science aspect of this program, and another poster on the educational aspects, Guastella et al.

  10. Spitzer Space Telescope proposal process

    NASA Astrophysics Data System (ADS)

    Laine, S.; Silbermann, N. A.; Rebull, L. M.; Storrie-Lombardi, L. J.

    2006-06-01

    This paper discusses the Spitzer Space Telescope General Observer proposal process. Proposals, consisting of the scientific justification, basic contact information for the observer, and observation requests, are submitted electronically using a client-server Java package called Spot. The Spitzer Science Center (SSC) uses a one-phase proposal submission process, meaning that fully-planned observations are submitted for most proposals at the time of submission, not months after acceptance. Ample documentation and tools are available to the observers on SSC web pages to support the preparation of proposals, including an email-based Helpdesk. Upon submission proposals are immediately ingested into a database which can be queried at the SSC for program information, statistics, etc. at any time. Large proposals are checked for technical feasibility and all proposals are checked against duplicates of already approved observations. Output from these tasks is made available to the Time Allocation Committee (TAC) members. At the review meeting, web-based software is used to record reviewer comments and keep track of the voted scores. After the meeting, another Java-based web tool, Griffin, is used to track the approved programs as they go through technical reviews, duplication checks and minor modifications before the observations are released for scheduling. In addition to detailing the proposal process, lessons learned from the first two General Observer proposal calls are discussed.

  11. The IRAC Lensing Survey: Achieving JWST depth with Spitzer

    NASA Astrophysics Data System (ADS)

    Egami, Eiichi; Ellis, Richard; Fazio, Giovanni; Huang, Jiasheng; Jiang, Linghua; Kneib, Jean-Paul; Pello, Roser; Richard, Johan; Rieke, George; Schaerer, Daniel; Smith, Graham; Stark, Daniel; Werner, Mike

    2008-12-01

    Massive clusters of galaxies are now recognized as very effective 'cosmic telescopes'. Because of the gravitational lensing effect, they can amplify significantly the background sources - by factors of a few tens - thereby bringing into view faint sources that would otherwise be unobservable. Note that in the background-limited case, which is applicable to IRAC observations, a factor of 20-30 gravitational amplification translates into increasing the integration time by a factor of 400-900. Because of this tremendous gain in sensitivity, IRAC imaging of lensing clusters will allow us to achieve JWST depth (~10 nJy) with Spitzer. Despite this great possibility, however, the full potential of the lensing cluster technique has not yet been realized due to the small number of clusters that have well-constrained accurate mass models. Here, we propose to conduct an IRAC imaging survey of 47 massive lensing clusters (5 hours/band, 2 bands) for which we have constructed accurate mass models through many years of intensive imaging/spectroscopic campaigns with HST, Keck, and VLT telescopes. This is the first time when such a large, statistical sample of clusters will be systematically employed to probe high-redshift Universe, and this proposed IRAC survey is a key component of our comprehensive program, which includes HST/WFC3 and Herschel observations starting next year. Scientifically, we will use the obtained IRAC data to (1) characterize z>6 galaxies (expecting ~50 z~7-8 galaxy detections), (2) support future Herschel and ALMA surveys, and (3) search for z>6 supernovae. The resultant data set will be a great legacy of Spitzer, allowing us to start tackling JWST sciences well before its launch.

  12. IUE observations of Fe 2 galaxies

    NASA Technical Reports Server (NTRS)

    Penston, M. V.; Snijders, M. A. J.; Boksenberg, A.; Haskell, J. D. J.; Fosbury, R. A. E.

    1981-01-01

    Repeated observations of the Seyfert 1 galaxies I Zw 1 and II Zw 136, which have very strong Fe II emission lines in the optical region, were made at low resolution with the IUE Satellite. The ultraviolet spectra are very similar: both are variable and show broad emission features of Fe II (especially the UV multiplets 1, 33, 60, 62, and 63) as well as the emission lines usually strong in Seyferts and quasars. The data strongly support the hypothesis that the optical Fe II emission lines are primarily due to collisional excitation and that resonance fluorescence makes only a minor contribution to the excitation of these lines.

  13. AGN and Starbursts in Dusty Galaxy Mergers: Insights from the Great Observatories All-sky LIRG Survey

    NASA Astrophysics Data System (ADS)

    Mazzarella, Joseph M.

    2014-07-01

    The Great Observatories All-sky LIRG Survey (GOALS) is combining imaging and spectroscopic data from the Herschel, Spitzer, Hubble, GALEX, Chandra, and XMM-Newton space telescopes augmented with extensive ground-based observations in a multiwavelength study of approximately 180 Luminous Infrared Galaxies (LIRGs) and 20 Ultraluminous Infrared Galaxies (ULIRGs) that comprise a statistically complete subset of the 60μm-selected IRAS Revised Bright Galaxy Sample. The objects span the full range of galaxy environments (giant isolated spirals, wide and close pairs, minor and major mergers, merger remnants) and nuclear activity types (Seyfert 1, Seyfert 2, LINER, starburst/HII), with proportions that depend strongly on the total infrared luminosity. I will review the science motivations and present highlights of recent results selected from over 25 peer-reviewed journal articles published recently by the GOALS Team. Statistical investigations include detection of high-ionization Fe K emission indicative of deeply embedded AGN, comparison of UV and far-IR properties, investigations of the fraction of extended emission as a function of wavelength derived from mid-IR spectroscopy, mid-IR spectral diagnostics and spectral energy distributions revealing the relative contributions of AGN and starbursts to powering the bolometric luminosity, and quantitative structure analyses that delineate the evolution of stellar bars and nuclear stellar cusps during the merger process. Multiwavelength dissections of individual systems have unveiled large populations of young star clusters and heavily obscured AGN in early-stage (II Zw 96), intermediate-stage (Mrk 266, Mrk 273), and late-stage (NGC 2623, IC 883) mergers. A recently published study that matches numerical simulations to the observed morphology and gas kinematics in mergers has placed four systems on a timeline spanning 175-260 million years after their first passages, and modeling of additional (U)LIRGs is underway. A very

  14. The Potential Of JWST Mid-infrared Instrument (MIRI) Followup Of The Spitzer Sage Survey Of The Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Meixner, Margaret; MIRI Science Team; SAGE Team

    2009-01-01

    The recycling of matter between the interstellar medium (ISM) and stars are key evolutionary drivers of a galaxy's baryonic matter. The Spitzer and JWST/MIRI wavelengths provide a sensitive probe of circumstellar and interstellar dust and hence, allow us to study the physical processes of the ISM, the formation of new stars and the injection of mass by evolved stars and their relationships on the galaxy-wide scale. We have performed a uniform and unbiased imaging survey of the Large Magellanic Cloud (LMC, 7x7 degrees), using the IRAC (3.6, 4.5, 5.8 and 8 microns) and MIPS (24, 70, and 160 microns) instruments on board the Spitzer Space Telescope (Spitzer) in order to survey the agents of a galaxy's evolution (SAGE): the ISM, young stellar objects (YSOs) and dusty evolved stars (Meixner et al. 2006). Initial results from SAGE have revealed >1000 new YSOs (Whitney et al. 2008), a detailed map of the dust and ISM mass (Bernard et al. 2008) and estimates of the dusty mass-loss return (Srinivsan et al., submitted) of the 30,000 dusty evolved stars (Blum et al. 2006). Here we describe how the powerful capabilities of the JWST MIRI can be used to followup these new discoverie