DOE Office of Scientific and Technical Information (OSTI.GOV)
Henderson, Bradley G; Suszcynsky, David M; Hamlin, Timothy E
Los Alamos National Laboratory (LANL) owns and operates an array of Very-Low Frequency (VLF) sensors that measure the Radio-Frequency (RF) waveforms emitted by Cloud-to-Ground (CG) and InCloud (IC) lightning. This array, the Los Alamos Sferic Array (LASA), has approximately 15 sensors concentrated in the Great Plains and Florida, which detect electric field changes in a bandwidth from 200 Hz to 500 kHz (Smith et al., 2002). Recently, LANL has begun development of a new dual-band RF sensor array that includes the Very-High Frequency (VHF) band as well as the VLF. Whereas VLF lightning emissions can be used to deduce physicalmore » parameters such as lightning type and peak current, VHF emissions can be used to perform precise 3d mapping of individual radiation sources, which can number in the thousands for a typical CG flash. These new dual-band sensors will be used to monitor lightning activity in hurricanes in an effort to better predict intensification cycles. Although the new LANL dual-band array is not yet operational, we have begun initial work utilizing both VLF and VHF lightning data to monitor hurricane evolution. In this paper, we present the temporal evolution of Rita's landfall using VLF and VHF lightning data, and also WSR-88D radar. At landfall, Rita's northern eyewall experienced strong updrafts and significant lightning activity that appear to mark a transition between oceanic hurricane dynamics and continental thunderstorm dynamics. In section 2, we give a brief overview of Hurricane Rita, including its development as a hurricane and its lightning history. In the following section, we present WSR-88D data of Rita's landfall, including reflectivity images and temporal variation. In section 4, we present both VHF and VLF lightning data, overplotted on radar reflectivity images. Finally, we discuss our observations, including a comparison to previous studies and a brief conclusion.« less
Characteristics of VLF/LF Sferics from Elve-producing Lightning Discharges
NASA Astrophysics Data System (ADS)
Blaes, P.; Zoghzoghy, F. G.; Marshall, R. A.
2013-12-01
Lightning return strokes radiate an electromagnetic pulse (EMP) which interacts with the D-region ionosphere; the largest EMPs produce new ionization, heating, and optical emissions known as elves. Elves are at least six times more common than sprites and other transient luminous events. Though the probability that a lightning return stroke will produce an elve is correlated with the return stroke peak current, many large peak current strokes do not produce visible elves. Apart from the lightning peak current, elve production may depend on the return stroke speed, lightning altitude, and ionospheric conditions. In this work we investigate the detailed structure of lightning that gives rise to elves by analyzing the characteristics of VLF/LF lightning sferics in conjunction with optical elve observations. Lightning sferics were observed using an array of six VLF/LF receivers (1 MHz sample-rate) in Oklahoma, and elves were observed using two high-speed photometers pointed over the Oklahoma region: one located at Langmuir Laboratory, NM and the other at McDonald Observatory, TX. Hundreds of elves with coincident LF sferics were observed during the summer months of 2013. We present data comparing the characteristics of elve-producing and non-elve producing lightning as measured by LF sferics. In addition, we compare these sferic and elve observations with FDTD simulations to determine key properties of elve-producing lightning.
Modeling Long-Distance ELF Radio Atmospherics Generated by Rocket-Triggered Lightning
NASA Astrophysics Data System (ADS)
Moore, R. C.; Kunduri, B.; Anand, S.; Dupree, N.; Mitchell, M.; Agrawal, D.
2010-12-01
This paper addresses the generation and propagation of radio atmospherics (sferics) radiated by lightning in order to assess the ability to infer the electrical properties of lightning from great distances. This ability may prove to greatly enhance the understanding of lightning processes that are associated with the production of transient luminous events (TLEs) as well as other ionospheric effects associated with lightning. The modeling of the sferic waveform is carried out using a modified version of the Long Wavelength Propagation Capability (LWPC) code developed by the Naval Ocean Systems Center over a period of many years. LWPC is an inherently narrowband propagation code that has been modified to predict the broadband response of the Earth-ionosphere waveguide to an impulsive lightning flash. Unlike other similar efforts, the modified code presented preserves the ability of LWPC to account for waveguide mode-coupling and to account for changes to the electrical properties of the ground and ionosphere along the propagation path. The effort described is conducted in advance of the deployment of a global extremely low frequency (ELF) magnetic field array, which is presently under construction. The global ELF array is centered on the International Center for Lightning Research and Testing (ICLRT) located at Camp Blanding, Florida. The ICLRT is well-known for conducting rocket-triggered lightning experiments over the last 15-20 years. This paper uses lightning current waveforms directly measured at the base of the lightning channel (observations performed at the ICLRT) as an input to the model to predict the sferic waveform to be observed by the array under various ionospheric conditions. An analysis of the predicted sferic waveforms is presented, and the components of the lightning current waveform that most effectively excite the Earth-ionosphere waveguide are identified.
Natural very-low-frequency sferics and headache
NASA Astrophysics Data System (ADS)
Vaitl, D.; Propson, N.; Stark, R.; Schienle, A.
Very-low-frequency (VLF) atmospherics or sferics are pulse-shaped alternating electric and magnetic fields which originate from atmospheric discharges (lightning). The objective of the study was threefold: (i) to analyse numerous parameters characterizing the sferics activity with regard to their suitability for field studies, (ii) to identify meteorological processes related to the sferics activity and (iii) to investigate the possible association of sferics with pain processes in patients suffering from migraine- and tension-type headaches. Over a period of 6 months (July through December) the sferics activity in the area of Giessen (Germany) was recorded. Three sferics parameters were chosen. The number of sferics impulses per day, the variability of the impulse rate during a day and the variability in comparison to the preceding day were correlated with weather processes (thunderstorm, temperature, vapour pressure, barometric pressure, humidity, wind velocity, warm sector). Significant correlations were obtained during the summer months (July, August) but not during the autumn months (October, November, December). During autumn, however, the sferics activity was correlated with the occurrence of migraine-type headaches (r=0.33, P<0.01) recorded by 37 women who had filled out a headache diary over a period of 6 months (July-December). While the thunderstorm activity was very intense during July and August, no relationship between sferics and migraine was found. In summer, tension-type headaches were associated with meteorological parameters such as temperature (r=0.42, P<0.01) and vapour pressure (r=0.28, P<0.05). Although the sferics activity can explain a small percentage of the variation in migraine occurrence, a direct influence was more likely exerted by visible or otherwise perceptible weather conditions (thunderstorms, humidity, vapour pressure, warm sector, etc.) than by the sferics activity itself.
The relationship of storm severity to directionally resolved radio emissions
NASA Technical Reports Server (NTRS)
Johnson, R. O.; Bushman, M. L.; Sherrill, W. M.
1980-01-01
Directionally resolved atmospheric radio frequency emission data were acquired from thunderstorms occurring in the central and southwestern United States. In addition, RF sferic tracking data were obtained from hurricanes and tropical depressions occurring in the Gulf of Mexico. The data were acquired using a crossed baseline phase interferometer operating at a frequency of 2.001 MHz. The received atmospherics were tested for phase linearity across the array, and azimuth/elevation angles of arrival were computed in real time. A histogram analysis of sferic burst count versus azimuth provided lines of bearing to centers of intense electrical activity. Analysis indicates a consistent capability of the phase linear direction finder to detect severe meteorological activity to distances of 2000 km from the receiving site. The technique evidences the ability to discriminate severe storms from nonsevere storms coexistent in large regional scale thunderstorm activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Witte, D.R.
1978-11-01
It is believed that sferics, a word that stands for atmospheric electromagnetic radiation, can be correlated to the genesis of tornadoes and severe weather. Sferics are generated by lightning and other atmospheric disturbances that are not yet entirely understood. The recording and analysis of the patterns in which sferic events occur, it is hoped, will lead to accurate real-time prediction of tornadoes and other severe weather. Collection of this data becomes cumbersome when correlation between at least two stations is necessary for triangulation; however, the advent of microprocessors has made the task of data collection and massaging inexpensive and manageable.
NASA Technical Reports Server (NTRS)
Pierce, E. T.
1969-01-01
The properties of sferics (the electric and magnetic fields generated by electrified clouds and lightning flashes) are briefly surveyed; the source disturbance and the influence of propagation being examined. Methods of observing sferics and their meteorological implications are discussed. It is concluded that close observations of electrostatic and radiation fields are very informative, respectively, upon the charge distribution and spark processes in a cloud; that ground-level sferics stations can accurately locate the positions of individual lightning flashes and furnish valuable knowledge on the properties of the discharges; but that satellite measurements only provide general information on the level of thundery activity over large geographical regions.
NASA Astrophysics Data System (ADS)
Togashi, Henrique; Prentice, Colin; Evans, Bradley; Forrester, David; Drake, Paul; Feikema, Paul; Brooksbank, Kim; Eamus, Derek; Taylor, Daniel
2014-05-01
The leaf area to sapwood area ratio (LA:SA) is a key plant trait that links photosynthesis to transpiration. Pipe model theory states that the sapwood cross-sectional area of a stem or branch at any point should scale isometrically with the area of leaves distal to that point. Optimization theory further suggests that LA:SA should decrease towards drier climates. Although acclimation of LA:SA to climate has been reported within species, much less is known about the scaling of this trait with climate among species. We compiled LA:SA measurements from 184 species of Australian evergreen angiosperm trees. The pipe model was broadly confirmed, based on measurements on branches and trunks of trees from one to 27 years old. We found considerable scatter in LA:SA among species. However quantile regression showed strong (0.2
Togashi, Henrique Furstenau; Prentice, Iain Colin; Evans, Bradley John; Forrester, David Ian; Drake, Paul; Feikema, Paul; Brooksbank, Kim; Eamus, Derek; Taylor, Daniel
2015-03-01
The leaf area-to-sapwood area ratio (LA:SA) is a key plant trait that links photosynthesis to transpiration. The pipe model theory states that the sapwood cross-sectional area of a stem or branch at any point should scale isometrically with the area of leaves distal to that point. Optimization theory further suggests that LA:SA should decrease toward drier climates. Although acclimation of LA:SA to climate has been reported within species, much less is known about the scaling of this trait with climate among species. We compiled LA:SA measurements from 184 species of Australian evergreen angiosperm trees. The pipe model was broadly confirmed, based on measurements on branches and trunks of trees from one to 27 years old. Despite considerable scatter in LA:SA among species, quantile regression showed strong (0.2 < R1 < 0.65) positive relationships between two climatic moisture indices and the lowermost (5%) and uppermost (5-15%) quantiles of log LA:SA, suggesting that moisture availability constrains the envelope of minimum and maximum values of LA:SA typical for any given climate. Interspecific differences in plant hydraulic conductivity are probably responsible for the large scatter of values in the mid-quantile range and may be an important determinant of tree morphology.
Togashi, Henrique Furstenau; Prentice, Iain Colin; Evans, Bradley John; Forrester, David Ian; Drake, Paul; Feikema, Paul; Brooksbank, Kim; Eamus, Derek; Taylor, Daniel
2015-01-01
The leaf area-to-sapwood area ratio (LA:SA) is a key plant trait that links photosynthesis to transpiration. The pipe model theory states that the sapwood cross-sectional area of a stem or branch at any point should scale isometrically with the area of leaves distal to that point. Optimization theory further suggests that LA:SA should decrease toward drier climates. Although acclimation of LA:SA to climate has been reported within species, much less is known about the scaling of this trait with climate among species. We compiled LA:SA measurements from 184 species of Australian evergreen angiosperm trees. The pipe model was broadly confirmed, based on measurements on branches and trunks of trees from one to 27 years old. Despite considerable scatter in LA:SA among species, quantile regression showed strong (0.2 < R1 < 0.65) positive relationships between two climatic moisture indices and the lowermost (5%) and uppermost (5–15%) quantiles of log LA:SA, suggesting that moisture availability constrains the envelope of minimum and maximum values of LA:SA typical for any given climate. Interspecific differences in plant hydraulic conductivity are probably responsible for the large scatter of values in the mid-quantile range and may be an important determinant of tree morphology. PMID:25859331
Microprocessors as a tool in determining correlation between sferics and tornado genesis: an update
DOE Office of Scientific and Technical Information (OSTI.GOV)
Witte, D.R.
1980-09-01
Sferics - atmospheric electromagnetic radiation - can be directly correlated, it is believed, to the genesis of tornadoes and other severe weather. Sferics are generated by lightning and other atmospheric disturbances that are not yet entirely understood. The recording and analysis of the patterns in which sferics events occur, it is hoped, will lead to accurate real-time prediction of tornadoes and other severe weather. Collection of the tremendous amount of sferics data generated by one storm system becomes cumbersome when correlation between at least two stations is necessary for triangulation. Microprocessor-based computing systems have made the task of data collectionmore » and manipulation inexpensive and manageable. The original paper on this subject delivered at MAECON '78 dealt with hardware interfacing. Presented were hardware and software tradeoffs, as well as design and construction techniques to yield a cost effective system. This updated paper presents an overview of where the data comes from, how it is collected, and some current manipulation and interpretation techniques used.« less
2006-09-01
between the groups (p = .0003) and within the groups (p =. 01). The decrease in depression in the exercise group (89%) neared significance (p = .052...exercise program was effective in improving aerobic capacity, lower-body flexibility, fatigue, depression , anxiety, confusion, anger, and energy in the...Appendix F: 10-week LASA Fatigue Graph Appendix G: 10-week LASA Depression Graph Appendix H: 10-week LASA Anxiety Graph Appendix I: 10-week
NASA Technical Reports Server (NTRS)
1987-01-01
The Earth Observing System (Eos) will provide an ideal forum in which the stronly synergistic characteristics of the lidar systems can be used in concert with the characteristics of a number of other sensors to better understand the Earth as a system. Progress in the development of more efficient and long-lasting laser systems will insure their availability in the Eos time frame. The necessary remote-sensing techniques are being developed to convert the Lidar Atmospheric Sounder and Altimeter (LASA) observations into the proper scientific parameters. Each of these activities reinforces the promise that LASA and GLRS will be a reality in the Eos era.
Spectral Characteristics of VLF Sferics Associated With RHESSI TGFs
NASA Astrophysics Data System (ADS)
Mezentsev, Andrew; Lehtinen, Nikolai; Østgaard, Nikolai; Pérez-Invernón, F. J.; Cummer, Steven A.
2018-01-01
We compared the modeled energy spectral density of very low frequency (VLF) radio emissions from terrestrial gamma ray flashes (TGFs) with the energy spectral density of VLF radio sferics recorded by Duke VLF receiver simultaneously with those TGFs. In total, six events with world wide lightning location network (WWLLN) defined locations were analyzed to exhibit a good fit between the modeled and observed energy spectral densities. In VLF range the energy spectral density of the TGF source current moment is found to be dominated by the contribution of secondary low-energy electrons and independent of the relativistic electrons which play their role in low-frequency (LF) range. Additional spectral modulation by the multiplicity of TGF peaks was found and demonstrated a good fit for two TGFs whose VLF sferics consist of two overlapping pulses each. The number of seeding pulses in TGF defines the spectral shape in VLF range, which allows to retrieve this number from VLF sferics, assuming they were radiated by TGFs. For two events it was found that the number of seeding pulses is small, of the order of 10. For the rest of the events the lower boundary of the number of seeding pulses was found to be between 10 to 103.
Spectral characteristics of VLF sferics associated with TGFs
NASA Astrophysics Data System (ADS)
Mezentsev, Andrew; Lehtinen, Nikolai; Ostgaard, Nikolai; Perez-Invernon, Javier; Cummer, Steven
2017-04-01
A detailed analysis of RHESSI TGFs is performed in association with WWLLN sources and VLF sferics recorded at Duke University. The analysis of the TGF-WWLLN matches allowed to evaluate RHESSI clock systematic offsets [1], which allows to perform a more precise timing analysis involving TGF data comparisons with the VLF sferics recorded at Duke University. In this work we analyzed the energy spectra of 35 VLF sferics, which were identified as candidates to be emitted by the TGF source, based on the simultaneity and location coincidence between the TGF and radio sources. 20 events have WWLLN detections, which provides a reliable source location of the event. For the other 15 events several selection criteria were used: source location should be consistent with the simultaneity of the TGF and VLF sferic within ±200 μs uncertainty; source location should lay within the azimuthal ±4° cone defined by the ratio of the radial and azimuthal magnetic field components of the VLF sferic; source location should lay within 800 km circle around the RHESSI foot-point; source location should lay within a cluster of a current lightning activity validated by WWLLN (or any other lightning detection network). The energy spectra of 35 VLF sferics related to TGFs were analyzed in the context of the TGF radio emission model developed in [2]. Proposed model represents a TGF at source as a sequence of Np seeding pulses of energetic particles which develop into runaway avalanches in the strong ambient field. These relativistic electrons ionize air along their propagation path which results in secondary currents of low energy electrons and light ions in the ambient electric field. These secondary currents produce radio emissions that can be detected by the ground based sensors. Proposed model allows to express the TGF source current moment energy spectrum using the T50 TGF duration measured by RHESSI. This gives the opportunity to establish and validate empirically the functional link between the satellite measurements and radio recordings of TGFs. Distances from the analyzed TGF sources to the Duke VLF receiver range from 2000 to 4000 km. This involves the consideration of the propagation effects in the Earth-ionosphere wave guide (EIWG). The EIWG transfer function was calculated for each event using the full wave propagation method. Thus, the modeled energy spectrum of the TGF source current moment can be transformed into how it would look like for the Duke VLF receiver. Comparative analysis of the energy spectra of modeled TGF radio emission and associated VLF sferics for 20 events with WWLLN confirmed location and 15 events without WWLLN detection shows that 31 of these 35 events exhibit a good fit between the modeled and observed spectra, with only 4 exceptions, that look inconsistent with the proposed model. The second cutoff frequency fB with the number of avalanches Np define the shape of the observed energy spectrum of the sferic emitted by a TGF. Multiplicity of the TGF serves as another important discriminative factor that shows the consistency between the modeled and observed spectra. The results show that the number of avalanches Np should be relatively small, of the order of 30-300, to make the modeled TGF radio emission consistent with the observed VLF sferics. These small values of Np give an argument in favor of the leader model of the TGF production, and also might refer to streamers in the streamer zone of the leader tip, as candidates, producing initial seeding pulses that develop into RREAs, generating a TGF. [1]. Mezentsev, A., Østgaard, N., Gjesteland, T., Albrechtsen, K., Lehtinen, N., Marisaldi, M., Smith, D., and Cummer, S. (2016), Radio emissions from double RHESSI TGFs, J. Geophys. Res., 121, doi:10.1002/2016JD025111 [2]. Dwyer, J. R., and S. A. Cummer (2013), Radio emissions from terrestrial gamma ray flashes, J. Geophys. Res., 118, doi:10.1002/jgra.50188.
Spectral Characteristics of VLF Sferics Associated With RHESSI TGFs.
Mezentsev, Andrew; Lehtinen, Nikolai; Østgaard, Nikolai; Pérez-Invernón, F J; Cummer, Steven A
2018-01-16
We compared the modeled energy spectral density of very low frequency (VLF) radio emissions from terrestrial gamma ray flashes (TGFs) with the energy spectral density of VLF radio sferics recorded by Duke VLF receiver simultaneously with those TGFs. In total, six events with world wide lightning location network (WWLLN) defined locations were analyzed to exhibit a good fit between the modeled and observed energy spectral densities. In VLF range the energy spectral density of the TGF source current moment is found to be dominated by the contribution of secondary low-energy electrons and independent of the relativistic electrons which play their role in low-frequency (LF) range. Additional spectral modulation by the multiplicity of TGF peaks was found and demonstrated a good fit for two TGFs whose VLF sferics consist of two overlapping pulses each. The number of seeding pulses in TGF defines the spectral shape in VLF range, which allows to retrieve this number from VLF sferics, assuming they were radiated by TGFs. For two events it was found that the number of seeding pulses is small, of the order of 10. For the rest of the events the lower boundary of the number of seeding pulses was found to be between 10 to 10 3 .
The state of technology in electromagnetic (RF) sensors (for lightning detection)
NASA Technical Reports Server (NTRS)
Shumpert, T. H.; Honnell, M. A.
1979-01-01
A brief overview of the radio-frequency sensors which were applied to the detection, isolation, and/or identification of the transient electromagnetic energy (sferics) radiated from one or more lightning discharges in the atmosphere is presented. Radio frequency (RF) characteristics of lightning discharges, general RF sensor (antenna) characteristics, sensors and systems previously used for sferic detection, electromagnetic pulse sensors are discussed. References containing extensive bibliographies concerning lightning are presented.
Nonlinear FDTD Analysis of Lightning-Generated Sferics
NASA Astrophysics Data System (ADS)
Erdman, A.; Moore, R. C.
2017-12-01
Lightning strikes are extremely powerful natural events producing wideband electromagnetic waves. The EMP radiation and quasi-electrostatic field changes from powerful lightning discharges are capable of directly heating and ionizing the lower ionosphere. These changes to the electrical parameters of the lower ionosphere in turn modify the way different components of the wideband sferic propagate through and reflect from the lower ionosphere. Here we present the results of a new FDTD model that utilizes a 2D cylindrically symmetric grid with second-order accurate centered-difference differentials to evaluate a large number of chemical reactions pertinent to the D-region in order to update the electron density and conductivity every iteration. Using this model, we are able to evaluate the impact of lightning strikes of varying magnitude and analyze the role of ionospheric self-action in changing in the sferic waveform observed on the ground.
Cockpit weather radar display demonstrator and ground-to-air sferics telemetry system
NASA Technical Reports Server (NTRS)
Nickum, J. D.; Mccall, D. L.
1982-01-01
The results of two methods of obtaining timely and accurate severe weather presentations in the cockpit are detailed. The first method described is a course up display of uplinked weather radar data. This involves the construction of a demonstrator that will show the feasibility of producing a course up display in the cockpit of the NASA simulator at Langley. A set of software algorithms was designed that could easily be implemented, along with data tapes generated to provide the cockpit simulation. The second method described involves the uplinking of sferic data from a ground based 3M-Ryan Stormscope. The technique involves transfer of the data on the CRT of the Stormscope to a remote CRT. This sferic uplink and display could also be included in an implementation on the NASA cockpit simulator, allowing evaluation of pilot responses based on real Stormscope data.
What Can Geolocated Sferics Tell Us About Terrestrial Gamma-Ray Flashes?
NASA Technical Reports Server (NTRS)
Connaughton, V.; Briggs, M. S.; Holzworth, R. H.; Hutchins, M. L.; Fishman, G. J.; Smith, D. M.
2010-01-01
The Fermi Gamma-ray Burst Monitor (GBM) has been detecting TGFs with increasing sensitivity over the past two years, owing to changes in flight software that have lowered its threshold for triggering and, recently, allowed a search for TGFs weaker than those which would cause an onboard trigger. Associations between TGFs detected in the first 18 months of operation and sferics detected using the World Wide Lightning Location Network (WWLLN) show that TGF peaks and lightning discharges are simultaneous to within tens of microseconds, and that GBM triggered on TGFs that occurred up to a distance of 300 km from the sub-spacecraft position. In the work presented here, we look for associations between TGFs detected by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and WWLLN sferics over the same 18 months, and we compare the match rate and detection horizon of the two instruments. We also look for associations between WWLLN sferics and more recent GBM TGFs, both triggered events and weaker TGFs uncovered in our untriggered search. We discuss whether in this new mode, GBM is detecting TGFs that are more distant from the sub-spacecraft point than 300 km, or whether the weaker TGFs are instead indicative of a luminosity distribution, either because the weaker ones originate deeper in the atmosphere or because they are intrinsically dimmer.
Bennett, Antonia V; Keenoy, Kathleen; Shouery, Marwan; Basch, Ethan; Temple, Larissa K
2016-05-01
To assess the equivalence of patient-reported outcome (PRO) survey responses across Web, interactive voice response system (IVRS), and paper modes of administration. Postoperative colorectal cancer patients with home Web/e-mail and phone were randomly assigned to one of the eight study groups: Groups 1-6 completed the survey via Web, IVRS, and paper, in one of the six possible orders; Groups 7-8 completed the survey twice, either by Web or by IVRS. The 20-item survey, including the MSKCC Bowel Function Instrument (BFI), the LASA Quality of Life (QOL) scale, and the Subjective Significance Questionnaire (SSQ) adapted to bowel function, was completed from home on consecutive days. Mode equivalence was assessed by comparison of mean scores across modes and intraclass correlation coefficients (ICCs) and was compared to the test-retest reliability of Web and IVRS. Of 170 patients, 157 completed at least one survey and were included in analysis. Patients had mean age 56 (SD = 11), 53% were male, 81% white, 53% colon, and 47% rectal cancer; 78% completed all assigned surveys. Mean scores for BFI total score, BFI subscale scores, LASA QOL, and adapted SSQ varied by mode by less than one-third of a score point. ICCs across mode were: BFI total score (Web-paper = 0.96, Web-IVRS = 0.97, paper-IVRS = 0.97); BFI subscales (range = 0.88-0.98); LASA QOL (Web-paper = 0.98, Web-IVRS = 0.78, paper-IVRS = 0.80); and SSQ (Web-paper = 0.92, Web-IVRS = 0.86, paper-IVRS = 0.79). Mode equivalence was demonstrated for the BFI total score, BFI subscales, LASA QOL, and adapted SSQ, supporting the use of multiple modes of PRO data capture in clinical trials.
NASA Astrophysics Data System (ADS)
Qin, Zilong; Chen, Mingli; Zhu, Baoyou; Du, Ya-ping
2017-01-01
An improved ray theory and transfer matrix method-based model for a lightning electromagnetic pulse (LEMP) propagating in Earth-ionosphere waveguide (EIWG) is proposed and tested. The model involves the presentation of a lightning source, parameterization of the lower ionosphere, derivation of a transfer function representing all effects of EIWG on LEMP sky wave, and determination of attenuation mode of the LEMP ground wave. The lightning source is simplified as an electric point dipole standing on Earth surface with finite conductance. The transfer function for the sky wave is derived based on ray theory and transfer matrix method. The attenuation mode for the ground wave is solved from Fock's diffraction equations. The model is then applied to several lightning sferics observed in central China during day and night times within 1000 km. The results show that the model can precisely predict the time domain sky wave for all these observed lightning sferics. Both simulations and observations show that the lightning sferics in nighttime has a more complicated waveform than in daytime. Particularly, when a LEMP propagates from east to west (Φ = 270°) and in nighttime, its sky wave tends to be a double-peak waveform (dispersed sky wave) rather than a single peak one. Such a dispersed sky wave in nighttime may be attributed to the magneto-ionic splitting phenomenon in the lower ionosphere. The model provides us an efficient way for retrieving the electron density profile of the lower ionosphere and hence to monitor its spatial and temporal variations via lightning sferics.
ISUAL-Observed Blue Luminous Events: The Associated Sferics
NASA Astrophysics Data System (ADS)
Chou, Jung-Kuang; Hsu, Rue-Ron; Su, Han-Tzong; Chen, Alfred Bing-Chih; Kuo, Cheng-Ling; Huang, Sung-Ming; Chang, Shu-Chun; Peng, Kang-Ming; Wu, Yen-Jung
2018-04-01
The blue luminous events (BLEs) recorded by ISUAL (Imager of Sprites and Upper Atmospheric Lightning) radiate unambiguous middle ultraviolet to blue emissions (230-450 nm) but contain dim red emissions (623-754 nm). The BLE appears to be dot-like on one ISUAL image with an integration time of 29 ms. A few BLEs develop upward into blue jets/starters or type II gigantic jets (GJs). The associated sferics of the BLEs in the extremely low frequency to very low frequency band and in the low-frequency band exhibit similar patterns to the narrow bipolar events (NBEs) identified in the very low frequency and low-frequency band. The ISUAL BLEs are conjectured to be the accompanied light emissions of the NBEs. Both upward and downward propagating current obtained from the associated sferics of the BLEs have been found. The source heights of the six BLEs related to negative NBEs are estimated in the range of 16.2-17.8 km. These six events are suggested to occur between the upper positive charge layer and the negative screen charge layer on the top of the normally electrified thunderstorm. The six blue starters, one blue jet, and one type II GJ are inferred to be positive upward discharges from their associated sferics in the extremely low frequency to very low frequency band. Based on the simultaneous radio and optical observations, a NBE is conjectured to be the initiation discharge with rapidly flowing current within the thunderstorm, while a blue jet/starter or a type II GJ is suggested to be the ensuing discharge with slowly varying current propagating upward from the thunderstorm.
NASA Astrophysics Data System (ADS)
Anderson, T.; Holzworth, R. H., II; Brundell, J. B.
2017-12-01
Energetic particle precipitation associated with solar events have been known to cause changes in the Earth-ionosphere waveguide. Previous studies of solar proton events (SPEs) have shown that high-energy protons can ionize lower-altitude layers of the ionosphere, leading to changes in Schumann resonance parameters (Schlegel and Fullekrug, 1999) and absorption of radio waves over the polar cap (Kundu and Haddock, 1960). We use the World-Wide Lightning Location Network (WWLLN) to study propagation of VLF waves during SPEs. WWLLN detects lightning-generated sferics in the VLF band using 80 stations distributed around the world. By comparing received power at individual stations from specific lightning source regions during SPEs, we can infer changes in the lower ionosphere conductivity profile caused by high-energy proton precipitation. In particular, we find that some WWLLN stations see different distributions of sferic power and range during SPEs. We also use the power/propagation analysis to improve WWLLN's lightning detection accuracy, by developing a better model for ionosphere parameters and speed of light in the waveguide than we have previously used.
NASA Technical Reports Server (NTRS)
Greneker, E. F.; Wilson, C. S.; Metcalf, J. I.
1976-01-01
Joint observations by radar and high-frequency sferics detectors at Georgia Institute of Technology provided unique data on the Atlanta tornado of Mar. 24, 1975. The classic hook echo was detected by radar at a range of about 26 km, 15 min before the tornado touched down. While the tornado was on the ground the sferics burst rate was very low, despite very high values recorded immediately before and after this interval. This observation, together with visual reports of a strong cloud-to-ground discharge at the time of tornado touchdown, suggests an interaction of the tornado with the electric field of the storm.
van Boheemen, Laurette; Tett, Susan E; Sohl, Evelien; Hugtenburg, Jacqueline G; van Schoor, Natasja M; Peeters, G M E E
2016-06-01
Statin therapy may cause myopathy, but long-term effects on physical function are unclear. We investigated whether statin use is associated with poorer physical function in two population-based cohorts of older adults. Data were from 691 men and women (aged 69-102 years in 2005/2006) in the LASA (Longitudinal Aging Study Amsterdam) and 5912 women (aged 79-84 years in 2005) in the ALSWH (Australian Longitudinal Study on Women's Health). Statin use and dose were sourced from containers (LASA) and administrative databases (ALSWH). Physical function was assessed using performance tests, questionnaires on functional limitations and the SF-12 (LASA) and SF-36 (ALSWH) questionnaires. Cross-sectional (both studies) and 3-year prospective associations (ALSWH) were analysed for different statin dosage using linear and logistic regression. In total, 25 % of participants in LASA and 61 % in ALSWH used statins. In the cross-sectional models in LASA, statin users were less likely to have functional limitations (percentage of subjects with at least 1 limitation 63.9 vs. 64.2; odds ratio [OR] 0.6; 95 % confidence interval [CI] 0.3-0.9) and had better SF-12 physical component scores (mean [adjusted] 47.3 vs. 44.5; beta [B] = 2.8; 95 % CI 1.1-4.5); in ALSWH, statin users had better SF-36 physical component scores (mean [adjusted] 37.4 vs. 36.5; B = 0.9; 95 % CI 0.3-1.5) and physical functioning subscale scores (mean [adjusted] 55.1 vs. 52.6; B = 2.4; 95 % CI 1.1-3.8) than non-users. Similar associations were found for low- and high-dose users and in the prospective models. In contrast, no significant associations were found with performance tests. Two databases from longitudinal population studies in older adults gave comparable results, even though different outcome measures were used. In these two large cohorts, statin use was associated with better self-perceived physical function.
Puttamuk, Thamrongjet; Zhou, Lijuan; Thaveechai, Niphone; Zhang, Shouan; Armstrong, Cheryl M.; Duan, Yongping
2014-01-01
Huanglongbing (HLB), also known as citrus greening, is one of the most destructive diseases of citrus worldwide. HLB is associated with three species of ‘Candidatus Liberibacter’ with ‘Ca. L. asiaticus’ (Las) being the most widely distributed around the world, and the only species detected in Thailand. To understand the genetic diversity of Las bacteria in Thailand, we evaluated two closely-related effector genes, lasA I and lasA II, found within the Las prophages from 239 infected citrus and 55 infected psyllid samples collected from different provinces in Thailand. The results indicated that most of the Las-infected samples collected from Thailand contained at least one prophage sequence with 48.29% containing prophage 1 (FP1), 63.26% containing prophage 2 (FP2), and 19.38% containing both prophages. Interestingly, FP2 was found to be the predominant population in Las-infected citrus samples while Las-infected psyllids contained primarily FP1. The multiple banding patterns that resulted from amplification of lasA I imply extensive variation exists within the full and partial repeat sequence while the single band from lasA II indicates a low amount of variation within the repeat sequence. Phylogenetic analysis of Las-infected samples from 22 provinces in Thailand suggested that the bacterial pathogen may have been introduced to Thailand from China and the Philippines. This is the first report evaluating the genetic variation of a large population of Ca. L. asiaticus infected samples in Thailand using the two effector genes from Las prophage regions. PMID:25437428
High field superconducting solenoid for the LASA in Milan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acerbi, E.; Aleessandria, F.; Baccaglioni, G.
1988-03-01
This paper presents the preliminary design of a 19 T superconducting facility for the LASA Laboratory in Milan. The main features of the facility, realized with NbTi, Nb/sub 3/Sn and V/sub 3/Ga coils, are represented by an high field homogeneity in the center region and by the presence of two cryostats which allow to operate separately the NbTi coil (useful bore 0.55 m) and the Nb/sub 3/Sn - V/sub 3/Ga coils (useful bore 0.05 - 0.07 m). The main parameters of the facility and the design criteria are discussed in details.
ELF Sferics Observed at Large Distances
NASA Astrophysics Data System (ADS)
Dupree, N. A.; Moore, R. C.
2012-12-01
Model predictions of the ELF radio atmospheric generated by rocket-triggered lightning are compared with observations performed at at large (>1 Mm) distances. The ability to infer source characteristics using observations at great distances may prove to greatly enhance the understanding of lightning processes that are associated with the production of transient luminous events (TLEs) as well as other ionospheric effects associated with lightning. The modeling of the sferic waveform is carried out using a modified version of the Long Wavelength Propagation Capability (LWPC) code developed by the Naval Ocean Systems Center over a period of many years. LWPC is an inherently narrowband propagation code that has been modified to predict the broadband response of the Earth-ionosphere waveguide to an impulsive lightning flash while preserving the ability of LWPC to account for an inhomogeneous waveguide. ELF observations performed in Alaska and Antarctica during rocket-triggered lightning experiments at the International Center for Lightning Research and Testing (ICLRT) located at Camp Blanding, Florida are presented. The lightning current waveforms directly measured at the base of the lightning channel (at the ICLRT) are used together with LWPC to predict the sferic waveform observed at the receiver locations under various ionospheric conditions. This paper critically compares observations with model predictions.
Quality of life at diagnosis predicts overall survival in patients with aggressive lymphoma.
Thompson, Carrie A; Yost, Kathleen J; Maurer, Matthew J; Allmer, Cristine; Farooq, Umar; Habermann, Thomas M; Inwards, David J; Macon, William R; Link, Brian K; Rosenthal, Allison C; Cerhan, James R
2018-06-03
Our aim was to evaluate whether quality of life (QOL) scores at diagnosis predict survival among patients with aggressive lymphoma. Newly diagnosed lymphoma patients were prospectively enrolled within 9 months of diagnosis in the University of Iowa/Mayo Clinic SPORE and systematically followed for event-free and overall survival (OS). QOL was measured with the Functional Assessment of Cancer Treatment-General (FACT-G), which measures 4 domains: physical, social/family, emotional, and functional well-being (WB); a single item Linear Analogue Self-Assessment (LASA) measuring overall QOL; and a spiritual WB LASA. From 9/2002 to 12/2009, 701 patients with aggressive lymphoma who completed baseline QOL questionnaires were enrolled. At a median follow-up of 71 months (range 6-128), 316 patients (45%) had an event and 228 patients (33%) died. All baseline QOL measures but emotional WB were significantly associated with OS (all P < 0.04); of which all but LASA spiritual remained significant after adjusting for IPI and NHL subtype. The strongest associations were with total FACT-G (adjusted HR = 0.86, 95% CI: 0.79-0.94, P = 0.00062) and functional WB (adjusted HR = 0.88, 95% CI: 0.83-0.93, P < .0001). QOL LASA was associated with OS (adjusted HR = 0.92, 95% CI: 0.87-0.97, P = 0.0041). Patients with clinically deficient QOL (overall QOL ≤50) had a median OS of 92 months compared with 121 months for patients with QOL >50 (P = 0.0004). In this large sample of patients with aggressive lymphoma, we found that baseline QOL is independently predictive of OS. QOL should be assessed as a prognostic factor in patients with aggressive lymphoma. Copyright © 2018 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snell, N.S.
1976-09-24
NETWORTH is a computer program which calculates the detection and location capability of seismic networks. A modified version of NETWORTH has been developed. This program has been used to evaluate the effect of station 'downtime', the signal amplitude variance, and the station detection threshold upon network detection capability. In this version all parameters may be changed separately for individual stations. The capability of using signal amplitude corrections has been added. The function of amplitude corrections is to remove possible bias in the magnitude estimate due to inhomogeneous signal attenuation. These corrections may be applied to individual stations, individual epicenters, ormore » individual station/epicenter combinations. An option has been added to calculate the effect of station 'downtime' upon network capability. This study indicates that, if capability loss due to detection errors can be minimized, then station detection threshold and station reliability will be the fundamental limits to network performance. A baseline network of thirteen stations has been performed. These stations are as follows: Alaskan Long Period Array, (ALPA); Ankara, (ANK); Chiang Mai, (CHG); Korean Seismic Research Station, (KSRS); Large Aperture Seismic Array, (LASA); Mashhad, (MSH); Mundaring, (MUN); Norwegian Seismic Array, (NORSAR); New Delhi, (NWDEL); Red Knife, Ontario, (RK-ON); Shillong, (SHL); Taipei, (TAP); and White Horse, Yukon, (WH-YK).« less
Clustering ENTLN sferics to improve TGF temporal analysis
NASA Astrophysics Data System (ADS)
Pradhan, E.; Briggs, M. S.; Stanbro, M.; Cramer, E.; Heckman, S.; Roberts, O.
2017-12-01
Using TGFs detected with Fermi Gamma-ray Burst Monitor (GBM) and simultaneous radio sferics detected by Earth Network Total Lightning Network (ENTLN), we establish a temporal co-relation between them. The first step is to find ENTLN strokes that that are closely associated to GBM TGFs. We then identify all the related strokes in the lightning flash that the TGF-associated-stroke belongs to. After trying several algorithms, we found out that the DBSCAN clustering algorithm was best for clustering related ENTLN strokes into flashes. The operation of DBSCAN was optimized using a single seperation measure that combined time and distance seperation. Previous analysis found that these strokes show three timescales with respect to the gamma-ray time. We will use the improved identification of flashes to research this.
Jovian lightning whistles a new tune
NASA Astrophysics Data System (ADS)
Bortnik, Jacob
2018-06-01
The Juno spacecraft has detected unprecedented numbers of `whistlers' and `sferics' in its orbits around Jupiter, both indications of high lightning flash rates in the atmosphere of the gas giant planet.
Longitudinal mediation of processing speed on age-related change in memory and fluid intelligence.
Robitaille, Annie; Piccinin, Andrea M; Muniz-Terrera, Graciela; Hoffman, Lesa; Johansson, Boo; Deeg, Dorly J H; Aartsen, Marja J; Comijs, Hannie C; Hofer, Scott M
2013-12-01
Age-related decline in processing speed has long been considered a key driver of cognitive aging. While the majority of empirical evidence for the processing speed hypothesis has been obtained from analyses of between-person age differences, longitudinal studies provide a direct test of within-person change. Using recent developments in longitudinal mediation analysis, we examine the speed-mediation hypothesis at both the within-and between-person levels in two longitudinal studies, Longitudinal Aging Study Amsterdam (LASA) and Origins of Variance in the Oldest-Old (OCTO-Twin). We found significant within-person indirect effects of change in age, such that increasing age was related to lower speed, which in turn relates to lower performance across repeated measures on other cognitive outcomes. Although between-person indirect effects were also significant in LASA, they were not in OCTO-Twin which is not unexpected given the age homogeneous nature of the OCTO-Twin data. A more in-depth examination through measures of effect size suggests that, for the LASA study, the within-person indirect effects were small and between-person indirect effects were consistently larger. These differing magnitudes of direct and indirect effects across levels demonstrate the importance of separating between- and within-person effects in evaluating theoretical models of age-related change. PsycINFO Database Record (c) 2013 APA, all rights reserved.
Analysis of ELF Radio Atmospherics Radiated by Rocket-Triggered Lightning
NASA Astrophysics Data System (ADS)
Dupree, N. A.; Moore, R. C.; Pilkey, J. T.; Uman, M. A.; Jordan, D. M.; Caicedo, J. A.; Hare, B.; Ngin, T. K.
2014-12-01
Experimental observations of ELF radio atmospherics produced by rocket-triggered lightning flashes are used to analyze Earth-ionosphere waveguide excitation and propagation characteristics. Rocket-triggered lightning experiments are performed at the International Center for Lightning Research and Testing (ICLRT) located at Camp Blanding, Florida. Long-distance ELF observations are performed in California, Greenland, and Antarctica. The lightning current waveforms directly measured at the base of the lightning channel (at the ICLRT) along with pertinent Lightning Mapping Array (LMA) data are used together with the Long Wavelength Propagation Capability (LWPC) code to predict the radio atmospheric (sferic) waveform observed at the receiver locations under various ionospheric conditions. We identify fitted exponential electron density profiles that accurately describe the observed propagation delays, phase delays, and signal amplitudes. The ability to infer ionospheric characteristics using distant ELF observations greatly enhances ionospheric remote sensing capabilities, especially in regard to interpreting observations of transient luminous events (TLEs) and other ionospheric effects associated with lightning.
An Undergraduate Designed VLF Receiver: Findings from an Auroral Flight in Fairbanks, Alaska
NASA Astrophysics Data System (ADS)
Hernandez, E.; Behrend, C. C.; Fenton, A.; Mathur, S.; Greer, M.; Bering, E., III
2017-12-01
The fluctuating state of the D-region ionosphere creates electromagnetic oscillations in the very low frequency (VLF) range. These naturally occurring VLF waves, or sferics, can have distinct features and intensities which can be measured to describe state of the plasma in the D-region. These features are more prominent during geomagnetic events—such as the aurora. To investigate these waves, this team redesigned and fabricated a VLF receiver with an air-core loop antenna. The receiver was attached to a 1500-gram latex balloon and flown during a moderate auroral event on the 15th of March, 217 in Fairbanks, Alaska. Using MATLAB to make different graphs of the data, such as spectrograms, the sferics received on that night can be visualized and interpreted. Through the VLF spectrum, this poster will provide an interpretation of the D-region and describe the events of the flight (natural and manmade).
Spatial and Temporal Ionospheric Monitoring Using Broadband Sferic Measurements
NASA Astrophysics Data System (ADS)
McCormick, J. C.; Cohen, M. B.; Gross, N. C.; Said, R. K.
2018-04-01
The D region of the ionosphere (60-90 km altitude) is highly variable on timescales from fractions of a second to many hours, and on spatial scales up to many hundreds of kilometers. Very low frequency (VLF) and low-frequency (LF) (3-30 kHz and 30-300 kHz) radio waves are guided to global distances by reflections from the ground and the D region. Therefore, information about its current state is encoded in received VLF/LF signals. VLF transmitters have been used in the past for D region studies, with ionospheric disturbances manifesting as perturbations in amplitude and/or phase. The return stroke of lightning is an impulsive VLF radiator, but unlike VLF transmitters, lightning events are distributed broadly in space allowing for much greater spatial coverage of the D region compared to VLF transmitter-based remote sensing in addition to the broadband spectral advantage over the narrowband transmitters. The challenge is that individual lightning-generated waveforms, or "sferics," vary due to the lightning current parameters and uncertainty in the time/location information, in addition to D region ionospheric variability. These factors make it difficult to utilize the VLF/LF emissions from lightning in a straightforward manner. We describe a technique to recover the time domain and amplitude/phase spectra for both Bϕ and Br with high fidelity and consider the utility of our technique with ambient and varied ionospheric conditions. We demonstrate a technique to simulate sferics and infer a parameterized ionosphere with the Wait and Spies parameters (h
NASA Astrophysics Data System (ADS)
Zheng, H.; Holzworth, R. H., II; Brundell, J. B.; Hospodarsky, G. B.; Jacobson, A. R.; Fennell, J. F.; Li, J.
2017-12-01
Lightning produces strong broadband radio waves, called "sferics", which propagate in the Earth-ionosphere waveguide and are detected thousands of kilometers away from their source. Global real-time detection of lightning strokes including their time, location and energy, is conducted with the World Wide Lightning Location Network (WWLLN). In the ionosphere, these sferics couple into very low frequency (VLF) whistler waves which propagate obliquely to the Earth's magnetic field. A good match has previously been shown between WWLLN sferics and Van Allen Probes lightning whistler waves. It is well known that lightning whistler waves can modify the distribution of energetic electrons in the Van Allen belts by pitch angle scattering into the loss cone, especially at low L-Shells (referred to as LEP - Lightning-induced Electron Precipitation). It is an open question whether lightning whistler waves play an important role at high L-shells. The possible interactions between energetic electrons and lightning whistler waves at high L-shells are considered to be weak in the past. However, lightning is copious, and weak pitch angle scattering into the drift or bounce loss cone would have a significant influence on the radiation belt populations. In this work, we will analyze the continuous burst mode EMFISIS data from September 2012 to 2016, to find out lightning whistler waves above L = 3. Based on that, MAGEIS data are used to study the related possible wave-particle interactions. In this talk, both case study and statistical analysis results will be presented.
NASA Astrophysics Data System (ADS)
Birattari, C.; Bonardi, M.; Groppi, F.; Gini, L.
2001-12-01
At the "Radiochemistry Laboratory" of Accelerators and Applied Superconductivity Laboratory, LASA, a wide range of high specific activity radionuclides, RNs, have been produced in No Carrier Added form, for both basic research and application purposes. Use was made of the AVF proton cyclotron (K=45) of Milan University (up to 1987). More recently, the irradiations were carried out at the Scanditronix MC40 cyclotron (K=38; p, d, He-4 and He-3) of JRC-Ispra, Italy, of the European Community. In order to optimize the irradiation conditions for radioisotope production, a series of thin- and thick-target excitation functions have been experimentally determined. For each RN, a specific radiochemical separation has been developed in order to obtain GBq (mCi) amounts of the radiotracers in "high specific activity" No Carrier Added form (NCA).
Prevalent lightning sferics at 600 megahertz near Jupiter's poles
NASA Astrophysics Data System (ADS)
Brown, Shannon; Janssen, Michael; Adumitroaie, Virgil; Atreya, Sushil; Bolton, Scott; Gulkis, Samuel; Ingersoll, Andrew; Levin, Steven; Li, Cheng; Li, Liming; Lunine, Jonathan; Misra, Sidharth; Orton, Glenn; Steffes, Paul; Tabataba-Vakili, Fachreddin; Kolmašová, Ivana; Imai, Masafumi; Santolík, Ondřej; Kurth, William; Hospodarsky, George; Gurnett, Donald; Connerney, John
2018-06-01
Lightning has been detected on Jupiter by all visiting spacecraft through night-side optical imaging and whistler (lightning-generated radio waves) signatures1-6. Jovian lightning is thought to be generated in the mixed-phase (liquid-ice) region of convective water clouds through a charge-separation process between condensed liquid water and water-ice particles, similar to that of terrestrial (cloud-to-cloud) lightning7-9. Unlike terrestrial lightning, which emits broadly over the radio spectrum up to gigahertz frequencies10,11, lightning on Jupiter has been detected only at kilohertz frequencies, despite a search for signals in the megahertz range12. Strong ionospheric attenuation or a lightning discharge much slower than that on Earth have been suggested as possible explanations for this discrepancy13,14. Here we report observations of Jovian lightning sferics (broadband electromagnetic impulses) at 600 megahertz from the Microwave Radiometer15 onboard the Juno spacecraft. These detections imply that Jovian lightning discharges are not distinct from terrestrial lightning, as previously thought. In the first eight orbits of Juno, we detected 377 lightning sferics from pole to pole. We found lightning to be prevalent in the polar regions, absent near the equator, and most frequent in the northern hemisphere, at latitudes higher than 40 degrees north. Because the distribution of lightning is a proxy for moist convective activity, which is thought to be an important source of outward energy transport from the interior of the planet16,17, increased convection towards the poles could indicate an outward internal heat flux that is preferentially weighted towards the poles9,16,18. The distribution of moist convection is important for understanding the composition, general circulation and energy transport on Jupiter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, K.J.; Dawkins, M.S.; Baumstark, R.R.
1976-02-24
Short-period signals associated with the NTS Event 'LEYDEN' on 26 November 1975 were recorded at a RK-ON and LASA. Station descriptions, arrival times, magitude of seismic waves, and seismic signatures are included.
Scattered P'P' waves observed at short distances
Earle, Paul S.; Rost, Sebastian; Shearer, Peter M.; Thomas, Christine
2011-01-01
We detect previously unreported 1 Hz scattered waves at epicentral distances between 30° and 50° and at times between 2300 and 2450 s after the earthquake origin. These waves likely result from off-azimuth scattering of PKPbc to PKPbc in the upper mantle and crust and provide a new tool for mapping variations in fine-scale (10 km) mantle heterogeneity. Array beams from the Large Aperture Seismic Array (LASA) clearly image the scattered energy gradually emerging from the noise and reaching its peak amplitude about 80 s later, and returning to the noise level after 150 s. Stacks of transverse versus radial slowness (ρt, ρr) show two peaks at about (2, -2) and (-2,-2) s/°, indicating the waves arrive along the major arc path (180° to 360°) and significantly off azimuth. We propose a mantle and surface PKPbc to PKPbc scattering mechanism for these observations because (1) it agrees with the initiation time and distinctive slowness signature of the scattered waves and (2) it follows a scattering path analogous to previously observed deep-mantle PK•KP scattering (Chang and Cleary, 1981). The observed upper-mantle scattered waves and PK•KP waves fit into a broader set of scattered waves that we call P′•d•P′, which can scatter from any depth, d, in the mantle.
Geometrical Effects on the Electromagnetic Radiation from Lightning Return Strokes
NASA Technical Reports Server (NTRS)
Willett, John C.; Smith, David A.; LeVine, David M.; Zukor, Dorothy J. (Technical Monitor)
2000-01-01
The Los Alamos National Laboratory (LANL) Sferic Array has recorded electric-field-change waveforms simultaneously at several stations surrounding the ground-strike points of numerous return strokes in cloud-to-ground lightning flashes. Such data are available from the five-station sub-networks in both Florida and New Mexico. With these data it has been possible for the first time to compare the waveforms radiated in different directions by a given stroke. Such comparisons are of interest to assess both the effects of channel geometry on the fine structure of subsequent-stroke radiation fields and the role of branches in the more jagged appearance of first-stroke waveforms. This paper presents multiple-station, time-domain waveforms with a 200 Hz to 500 kHz pass-band from both first and subsequent return strokes at ranges generally between 100 and 200 km. The differences among waveforms of the same stroke received at stations in different directions from the lightning channel are often obvious. These differences are illustrated and interpreted in the context of channel tortuosity and branches.
FORTE Compact Intra-cloud Discharge Detection parameterized by Peak Current
NASA Astrophysics Data System (ADS)
Heavner, M. J.; Suszcynsky, D. M.; Jacobson, A. R.; Heavner, B. D.; Smith, D. A.
2002-12-01
The Los Alamos Sferic Array (EDOT) has recorded over 3.7 million lightning-related fast electric field change data records during April 1 - August 31, 2001 and 2002. The events were detected by three or more stations, allowing for differential-time-of-arrival location determination. The waveforms are characterized with estimated peak currents as well as by event type. Narrow Bipolar Events (NBEs), the VLF/LF signature of Compact Intra-cloud Discharges (CIDs), are generally isolated pulses with identifiable ionospheric reflections, permitting determination of event source altitudes. We briefly review the EDOT characterization of events. The FORTE satellite observes Trans-Ionospheric Pulse Pairs (TIPPs, the VHF satellite signature of CIDs). The subset of coincident EDOT and FORTE CID observations are compared with the total EDOT CID database to characterize the VHF detection efficiency of CIDs. The NBE polarity and altitude are also examined in the context of FORTE TIPP detection. The parameter-dependent detection efficiencies are extrapolated from FORTE orbit to GPS orbit in support of the V-GLASS effort (GPS based global detection of lightning).
Lapid, Maria I; Atherton, Pamela J; Kung, Simon; Cheville, Andrea L; McNiven, Molly; Sloan, Jeff A; Clark, Matthew M; Rummans, Teresa A
2013-09-01
Cancer treatment can profoundly impact the patient's quality of life (QOL). It has been well documented that there are gender differences in the symptoms associated with cancer treatment. This study explores the impact of gender on QOL for patients with newly diagnosed advanced cancer. A randomized, controlled clinical trial in patients receiving radiotherapy for advanced cancer demonstrated maintenance of QOL with a six session multidisciplinary structured intervention compared to controls. This current study reports the gender differences in that trial. Outcome measures included the functional assessment of cancer therapy-general (FACT-G), linear analog self-assessment (LASA), and profile of mood states (POMS) at baseline and weeks 4, 27, and 52. Kruskal-Wallis was used to compare QOL scores. One hundred thirty-one patients (45 women and 86 men, mean age 58.7) participated in the clinical trial. At week 4 postintervention, women in the intervention group had statistically significant improvement in their FACT-G score, FACT-G physical well-being subscale, LASA fatigue, POMS total score, POMS fatigue-inertia subscale, and POMS confusion-bewilderment subscale (p < 0.05). Men receiving the intervention had a smaller decrease in FACT-G score compared to controls (p = 0.048) and also worsened on the LASA financial (p = 0.02). At week 27, the only gender difference was that intervention group men had more POMS anger-hostility (p = 0.009). By week 52, there were no statistically significant gender differences in any of the QOL measures. Gender-based differences appear to play a role in the early, but not late, response to a multidisciplinary intervention to improve QOL for patients with advanced cancer, suggesting that early interventions can be tailored for each gender.
Meskini, Maryam; Esmaeili, Davoud
2018-06-15
The outbreak of MDR and XDR strains of Pseudomonas aeruginosa and increased resistance to infection in burn patients recommend the issue of infection control. In this research, we study ZOUSH herbal ointment for gene silencing of Pseudomonas aeruginosa. The herbal ZOUSH ointment was formulated by alcoholic extracts of plants Satureja khuzestaniea, Zataria multiflora, Mentha Mozaffariani Jamzad, honey, and polyurethane. The MIC and disk diffusion tests were examined by single, binary, tertiary and five compounds. Three-week-old mice were considered to be second-degree infections by Pseudomonas aeruginosa. During the interval of 5 days, cultures were done from the liver, blood, and wound by four consecutive quarters and counting of Pseudomonas aeruginosa was reported in the liver. In this study, silver sulfadiazine ointments and Akbar were used as a positive control. The gene gyrA reference was used as the control. Real-time RT-PCR results were evaluated based on Livak as the comparative Ct method. The In vitro results indicated that wound infection was improved by healing wound size in the treatment groups compared to control treatment group. In this research, the changes in gene expression were evaluated by molecular technique Real-time RT-PCR. The results showed downregulation exoS, lasA, and lasB after treatment with ZOUSH ointment. SPSS Analyses showed that reduction of expressions in genes exoS, lasA and lasB after treatment with ZOUSH ointment were significantly meaningful (p < 0.05). Our study showed that ZOUSH ointment has the positive effect for gene silencing Pseudomonas aeruginosa in the mouse model with the second-degree burn. The positive effects decreased in the number of bacteria by reducing the expression of virulence bacteria genes as exoS, lasA and lasB and improvement of wound healing.
Large-scale, Exhaustive Lattice-based Structural Auditing of SNOMED CT.
Zhang, Guo-Qiang; Bodenreider, Olivier
2010-11-13
One criterion for the well-formedness of ontologies is that their hierarchical structure forms a lattice. Formal Concept Analysis (FCA) has been used as a technique for assessing the quality of ontologies, but is not scalable to large ontologies such as SNOMED CT (> 300k concepts). We developed a methodology called Lattice-based Structural Auditing (LaSA), for auditing biomedical ontologies, implemented through automated SPARQL queries, in order to exhaustively identify all non-lattice pairs in SNOMED CT. The percentage of non-lattice pairs ranges from 0 to 1.66 among the 19 SNOMED CT hierarchies. Preliminary manual inspection of a limited portion of the over 544k non-lattice pairs, among over 356 million candidate pairs, revealed inconsistent use of precoordination in SNOMED CT, but also a number of false positives. Our results are consistent with those based on FCA, with the advantage that the LaSA pipeline is scalable and applicable to ontological systems consisting mostly of taxonomic links.
Large-scale, Exhaustive Lattice-based Structural Auditing of SNOMED CT
Zhang, Guo-Qiang; Bodenreider, Olivier
2010-01-01
One criterion for the well-formedness of ontologies is that their hierarchical structure forms a lattice. Formal Concept Analysis (FCA) has been used as a technique for assessing the quality of ontologies, but is not scalable to large ontologies such as SNOMED CT (> 300k concepts). We developed a methodology called Lattice-based Structural Auditing (LaSA), for auditing biomedical ontologies, implemented through automated SPARQL queries, in order to exhaustively identify all non-lattice pairs in SNOMED CT. The percentage of non-lattice pairs ranges from 0 to 1.66 among the 19 SNOMED CT hierarchies. Preliminary manual inspection of a limited portion of the over 544k non-lattice pairs, among over 356 million candidate pairs, revealed inconsistent use of precoordination in SNOMED CT, but also a number of false positives. Our results are consistent with those based on FCA, with the advantage that the LaSA pipeline is scalable and applicable to ontological systems consisting mostly of taxonomic links. PMID:21347113
[Open double-row rotator cuff repair using the LASA-DR screw].
Schoch, C; Geyer, S; Geyer, M
2016-02-01
Safe and cost-effective rotator-cuff repair. All types of rotator cuff lesions. Frozen shoulder, rotator cuff mass defect, defect arthropathy. Extensive four-point fixation on the bony footprint is performed using the double-row lateral augmentation screw anchor (LASA-DR) with high biomechanical stability. Following mobilization of the tendons, these are refixed in the desired configuration first medially and then laterally. To this end, two drilling channels (footprint and lateral tubercle) are created for each screw. Using the shuttle technique, a suture anchor screw is reinforced with up to four pairs of threads. The medial row is then pierced and tied, and the sutures that have been left long are tied laterally around the screw heads (double row). 4 Weeks abduction pillow, resulting in passive physiotherapy, followed by initiation of active assisted physiotherapy. Full weight-bearing after 4-6 months. Prospective analysis of 35 consecutive Bateman-III lesions with excellent results and low rerupture rate (6%).
Longitudinal Mediation of Processing Speed on Age-Related Change in Memory and Fluid Intelligence
Robitaille, Annie; Piccinin, Andrea M.; Muniz, Graciela; Hoffman, Lesa; Johansson, Boo; Deeg, Dorly J.H.; Aartsen, Marja J.; Comijs, Hannie C.; Hofer, Scott M.
2014-01-01
Age-related decline in processing speed has long been considered a key driver of cognitive aging. While the majority of empirical evidence for the processing speed hypothesis has been obtained from analyses of between-person age differences, longitudinal studies provide a direct test of within-person change. Using recent developments in longitudinal mediation analysis, we examine the speed–mediation hypothesis at both the within- and between-person levels in two longitudinal studies, LASA and OCTO-Twin. We found significant within-person indirect effects of change in age, such that increasing age was related to lower speed which, in turn, relates to lower performance across repeated measures on other cognitive outcomes. Although between-person indirect effects were also significant in LASA, they were not in OCTO-Twin. These differing magnitudes of direct and indirect effects across levels demonstrate the importance of separating between- and within-person effects in evaluating theoretical models of age-related change. PMID:23957224
Large-Scale, Exhaustive Lattice-Based Structural Auditing of SNOMED CT
NASA Astrophysics Data System (ADS)
Zhang, Guo-Qiang
One criterion for the well-formedness of ontologies is that their hierarchical structure form a lattice. Formal Concept Analysis (FCA) has been used as a technique for assessing the quality of ontologies, but is not scalable to large ontologies such as SNOMED CT. We developed a methodology called Lattice-based Structural Auditing (LaSA), for auditing biomedical ontologies, implemented through automated SPARQL queries, in order to exhaustively identify all non-lattice pairs in SNOMED CT. The percentage of non-lattice pairs ranges from 0 to 1.66 among the 19 SNOMED CT hierarchies. Preliminary manual inspection of a limited portion of the 518K non-lattice pairs, among over 34 million candidate pairs, revealed inconsistent use of precoordination in SNOMED CT, but also a number of false positives. Our results are consistent with those based on FCA, with the advantage that the LaSA computational pipeline is scalable and applicable to ontological systems consisting mostly of taxonomic links. This work is based on collaboration with Olivier Bodenreider from the National Library of Medicine, Bethesda, USA.
Zhu, Hua; Zhang, Peng; Meng, Zhaonan; Li, Ming
2015-04-01
The eutectic mixture of lauric acid (LA) and stearic acid (SA) is a desirable phase change material (PCM) due to the constant melting temperature and large latent heat. However, its poor thermal conductivity has hampered its broad utilization. In the present study, pure LA, SA and the mixtures with various mass fractions of LA-SA were used as the basic PCMs, and 10 wt% expanded graphite (EG) was added to enhance the thermal conductivities. The phase change behaviors, microstructural analysis, thermal conductivities and thermal stabilities of the mixtures of PCMs were investigated by differential scanning calorimetry (DSC), scanning electronic microscope (SEM), transient plane source (TPS) and thermogravimetric analysis (TGA), respectively. The results show that the LA-SA binary mixture of mixture ratio of 76.3 wt%: 23.7 wt% forms an eutectic mixture, which melts at 38.99 °C and has a latent heat of 159.94 J/g. The melted fatty acids are well absorbed by the porous network of EG and they have a good thermal stability. Furthermore, poor thermal conductivities can be well enhanced by the addition of EG.
Livestock-associated Staphylococcus aureus on Polish pig farms
Mroczkowska, Aneta; Żmudzki, Jacek; Marszałek, Natalia; Orczykowska-Kotyna, Monika; Komorowska, Iga; Nowak, Agnieszka; Grzesiak, Anna; Czyżewska-Dors, Ewelina; Dors, Arkadiusz; Pejsak, Zygmunt; Hryniewicz, Waleria; Wyszomirski, Tomasz; Empel, Joanna
2017-01-01
Background Livestock-associated Staphylococcus aureus (LA-SA) draws increasing attention due to its particular ability to colonize farm animals and be transmitted to people, which in turn leads to its spread in the environment. The aim of the study was to determine the dissemination of LA-SA on pig farms selected throughout Poland, characterize the population structure of identified S. aureus, and assess the prevalence of LA-SA carriage amongst farmers and veterinarians being in contact with pigs. Methods and findings The study was conducted on 123 pig farms (89 farrow-to-finish and 34 nucleus herds), located in 15 out of 16 provinces of Poland. Human and pig nasal swabs, as well as dust samples were analyzed. S. aureus was detected on 79 (64.2%) farms from 14 provinces. Amongst these farms LA-SA-positive farms dominated (71/79, 89.9%, 95% CI [81.0%, 95.5%]). The prevalence of LA-MRSA-positive farms was lower than LA-MSSA-positive (36.6% of LA-SA-positive farms, 95% CI [25.5%, 48.9%] vs. 74.6%, 95% CI [62.9%, 84.2%]). In total, 190 S. aureus isolates were identified: 72 (38%) MRSA and 118 (62%) methicillin-susceptible S. aureus (MSSA), of which 174 (92%) isolates were classified to three livestock-associated lineages: CC398 (73%), CC9 (13%), and CC30/ST433 (6%). All CC398 isolates belonged to the animal clade. Four LA-MRSA clones were detected: ST433-IVa(2B) clone (n = 8, 11%), described to the best of our knowledge for the first time, and three ST398 clones (n = 64, 89%) with the most prevalent being ST398-V(5C2&5)c, followed by ST398-V(5C2), and ST398-IVa(2B). Nasal carriage of LA-SA by pig farmers was estimated at 13.2% (38/283), CC398 carriage at 12.7% (36/283) and ST398-MRSA carriage at 3.2% (9/283), whereas by veterinarians at 21.1% (8/38), 18.4% (7/38) and 10.5% (4/38), respectively. Conclusions The prevalence of LA-MRSA-positive pig farms in Poland has increased considerably since 2008, when the first MRSA EU baseline survey was conducted in Europe. On Polish pig farms CC398 of the animal clade predominates, this being also reflected in the prevalence of CC398 nasal carriage in farmers and veterinarians. However, finding a new ST433-IVa(2B) clone provides evidence for the continuing evolution of LA-MRSA and argues for further monitoring of S. aureus in farm animals. PMID:28151984
Fast low-level light pulses from the night sky observed with the SKYFLASH program
NASA Astrophysics Data System (ADS)
Winckler, J. R.; Franz, R. C.; Nemzek, R. J.
1993-05-01
This paper presents further discussion of and new data on fast subvisual increases in the luminosity of the night sky described in our previous papers. A detailed technical description of the simple telescopic photometers used in the project SKYFLASH and their mode of operation including the detection of polarized Rayleigh-scattered flashes is provided. Distant lightning storms account for many of the events, and the complex relations between short and long luminous pulses with and without sferics are shown by examples from a new computerized data system, supplemented by two low-light-level TV cameras. Of particular interest are the previously observed 'long' events having a slow rise and fall, 20-ms duration, and showing small polarization and no coincident sferic. A group of such events on September 22-23 during the invasion of U.S. coasts by Hurricane Hugo, is discussed in detail. The recently observed 'plume' cloud-top-to-stratosphere lightning event is suggested as a possible source type for these flashes. An alternative source may be exploding meteors, recently identified during SKYFLASH observations by low-light-level television techniques as the origin of some sky-wide flash events described herein.
Fast low-level light pulses from the night sky observed with the SKYFLASH program
NASA Technical Reports Server (NTRS)
Winckler, J. R.; Franz, R. C.; Nemzek, R. J.
1993-01-01
This paper presents further discussion of and new data on fast subvisual increases in the luminosity of the night sky described in our previous papers. A detailed technical description of the simple telescopic photometers used in the project SKYFLASH and their mode of operation including the detection of polarized Rayleigh-scattered flashes is provided. Distant lightning storms account for many of the events, and the complex relations between short and long luminous pulses with and without sferics are shown by examples from a new computerized data system, supplemented by two low-light-level TV cameras. Of particular interest are the previously observed 'long' events having a slow rise and fall, 20-ms duration, and showing small polarization and no coincident sferic. A group of such events on September 22-23 during the invasion of U.S. coasts by Hurricane Hugo, is discussed in detail. The recently observed 'plume' cloud-top-to-stratosphere lightning event is suggested as a possible source type for these flashes. An alternative source may be exploding meteors, recently identified during SKYFLASH observations by low-light-level television techniques as the origin of some sky-wide flash events described herein.
Midlatitude D region variations measured from broadband radio atmospherics
NASA Astrophysics Data System (ADS)
Han, Feng
The high power, broadband very low frequency (VLF, 3--30 kHz) and extremely low frequency (ELF, 3--3000 Hz) electromagnetic waves generated by lightning discharges and propagating in the Earth-ionosphere waveguide can be used to measure the average electron density profile of the lower ionosphere (D region) across the wave propagation path due to several reflections by the upper boundary (lower ionosphere) of the waveguide. This capability makes it possible to frequently and even continuously monitor the D region electron density profile variations over geographically large regions, which are measurements that are essentially impossible by other means. These guided waves, usually called atmospherics (or sferics for short), are recorded by our sensors located near Duke University. The purpose of this work is to develop and implement algorithms to derive the variations of D region electron density profile which is modeled by two parameters (one is height and another is sharpness), by comparing the recorded sferic spectra to a series of model simulated sferic spectra from using a finite difference time domain (FDTD) code. In order to understand the time scales, magnitudes and sources for the midlatitude nighttime D region variations, we analyzed the sferic data of July and August 2005, and extracted both the height and sharpness of the D region electron density profile. The heights show large temporal variations of several kilometers on some nights and the relatively stable behavior on others. Statistical calculations indicate that the hourly average heights during the two months range between 82.0 km and 87.2 km with a mean value of 84.9 km and a standard deviation of 1.1 km. We also observed spatial variations of height as large as 2.0 km over 5 degrees latitudes on some nights, and no spatial variation on others. In addition, the measured height variations exhibited close correlations with local lightning occurrence rate on some nights but no correlation with local lightning or displaced lightning on others. The nighttime profile sharpness during 2.5 hours in two different nights was calculated, and the results were compared to the equivalent sharpness derived from International Reference Ionosphere (IRI) models. Both the absolute values and variation trends in IRI models are different from those in broadband measurements. Based on sferic data similar to those for nighttime, we also measured the day-time D region electron density profile variations in July and August 2005 near Duke University. As expected, the solar radiation is the dominant but not the only determinant source for the daytime D region profile height temporal variations. The observed quiet time heights showed close correlations with solar zenith angle changes but unexpected spatial variations not linked to the solar zenith angle were also observed on some days, with 15% of days exhibiting regional differences larger than 0.5 km. During the solar flare, the induced height change was approximately proportional to the logarithm of the X-ray fluxes. During the rising and decaying phases of the solar flare, the height changes correlated more consistently with the short (wavelength 0.5--4 A), rather than the long (wavelength 1--8 A) X-ray flux changes. The daytime profile sharpness during morning, noontime and afternoon periods in three different days and for the solar zenith angle range 20 to 75 degrees was calculated. These broadband measured results were compared to narrowband VLF measurements, IRI models and Faraday rotation base IRI models (called FIRI). The estimated sharpness from all these sources was more consistent when the solar zenith angle was small than when it was large. By applying the nighttime and daytime measurement techniques, we also derived the D region variations during sunrise and sunset periods. The measurements showed that both the electron density profile height and sharpness decrease during the sunrise period while increase during the sunset period.
Triangulations of sprites relative to parent lighting near the Oklahoma Lightning Mapping Array
NASA Astrophysics Data System (ADS)
Lu, G.; Cummer, S. A.; Li, J.; Lyons, W. A.; Stanley, M. A.; Krehbiel, P. R.; Rison, W.; Thomas, R. J.; Weiss, S. A.; Beasley, W. H.; Bruning, E. C.; MacGorman, D. R.; Palivec, K.; Samaras, T. M.
2012-12-01
Temporal and spatial development of sprite-producing lightning flashes is examined with coordinated observations over an asymmetric mesoscale convective system on June 29, 2011 near the Oklahoma Lightning Mapping Array (OK-LMA). About 30 sprites were mutually observed from Bennett, Colorado and Hawley, Texas, allowing us to triangulate sprite formation in comparison with spatial/temporal development of the parent lightning. Complementary measurements of broadband (<1 Hz to ~300 kHz) radio frequency lightning signals are available from several magnetic sensors across the United States. Our analyses indicate that although sprite locations can be significantly offset horizontally (up to 70 km) from the parent ground stroke, they are usually laterally within 30 km of the in-cloud lightning activity during the 100 ms time interval prior to the sprite production. This is true for short-delayed sprites produced within 20 ms after a causative stroke, and long-delayed sprites appearing up to more than 200 ms after the stroke. Multiple sprites appearing as dancing/jumping events can be produced during one single flash either in a single lightning channel, through series of current surges superposed on a long and intense continuing current, or in multiple lightning channels through distinct ground strokes of the flash. The burst of continuous very-low-frequency/low-frequency lightning sferics commonly observed in association with sprites is linked to the horizontal progression of multiple negative leaders through positive charged regions of the cloud, which are typically centered at altitudes ~1-2 km (or more) above the freezing level.
D-region Ionospheric Imaging Using VLF/LF Broadband Sferics, Forward Modeling, and Tomography
NASA Astrophysics Data System (ADS)
McCormick, J.; Cohen, M.
2017-12-01
The D-region of the ionosphere (60-90 km altitude) is highly variable on timescales from fractions of a second to many hours, and on spatial scales from 10 km to many hundreds of km. VLF and LF (3-30kHz, 30-300kHz) radio waves are guided to global distances by reflecting off of the ground and the D-region, making the Earth-ionosphere waveguide (EIWG). Therefore, information about the current state of the ionosphere is encoded in received VLF/LF radio waves since they act like probes of the D-region. The return stroke of lightning is an impulsive event that radiates powerful broadband radio emissions in VLF/LF bands known as `radio atmospherics' or `sferics'. Lightning flashes occur about 40-50 times per second throughout the Earth. An average of 2000 lightning storms occur each day with a mean duration of 30 minutes creating a broad spatial and temporal distribution of lightning VLF/LF sources. With careful processing, we can recover high fidelity measurements of amplitude and phase of both the radial and azimuthal magnetic field sferic components. By comparison to a theoretical EIWG propagation model such as the Long Wave Propagation Capability (LWPC) developed by the US Navy, with a standard forward modeling approach, we can infer information about the current state of the D-region. Typically, the ionosphere is parametrized to reduce the dimensionality of the problem which usually results in an electron density vs altitude profile. For large distances (Greater than 1000 km), these results can be interpreted as path-averaged information. In contrast to studies using navy transmitters to study the D-region, the full spectral information allows for more complete information and less ambiguous inferred ionospheric parameters. With the spatial breadth of lightning sources taken together with a broadly distributed VLF/LF receiver network, a dense set of measurements are acquired in a tomographic sense. Using the wealth of linear algebra and imaging techniques it is possible to produce a 2D image of the D-region electron density profile.
Chasing Lightning: Sferics, Tweeks and Whistlers
NASA Astrophysics Data System (ADS)
Webb, P. A.; Franzen, K.; Garcia, L.; Schou, P.; Rous, P.
2008-12-01
We all know what lightning looks like during a thunderstorm, but the visible flash we see is only part of the story. This is because lightning also generates light with other frequencies that we cannot perceive with our eyes, but which are just as real as visible light. Unlike the visible light from lightning, these other frequencies can carry the lightning's energy hundreds or thousands of miles across the surface of the Earth in the form of special signals called "tweeks" and "sferics". Some of these emissions can even travel tens of thousands of miles out into space before returning to the Earth as "whistlers". The INSPIRE Project, Inc is a non-profit scientific and educational corporation whose beginning mission was to bring the excitement of observing these very low frequency (VLF) natural radio waves emissions from lightning to high school students. Since 1989, INSPIRE has provided specially designed radio receiver kits to over 2,600 participants around the world to make observations of signals in the VLF frequency range. Many of these participants are using the VLF data they collect in very creative projects that include fiction, music and art exhibitions. During the Fall 2008 semester, the first INSPIRE based university-level course was taught at University of Maryland Baltimore County (UMBC) as part of its First-Year Seminar (FYS) series. The FYS classes are limited to 20 first-year students per class and are designed to create an active-learning environment that encourages student participation and discussion that might not otherwise occur in larger first-year classes. This presentation will cover the experiences gained from using the INSPIRE kits as the basis of a university course. This will include the lecture material that covers the basic physics of lightning, thunderstorms and the Earth's atmosphere, as well as the electronics required to understand the basic workings of the VLF kit. It will also cover the students assembly of the kit in an electronics lab (some soldering required!) and the subsequent field trips to local sites to listen for the sferics, tweeks and whistlers using the assembled kit, followed by data analysis and the writing of reports on the observations.
Houtjes, Wim; van Meijel, Berno; van de Ven, Peter M; Deeg, Dorly; van Tilburg, Theo; Beekman, Aartjan
2014-10-01
This work aims to gain insight into the long-term impact of depression course on social network size and perceived loneliness in older people living in the community. Within a large representative sample of older people in the community (Longitudinal Aging Study Amsterdam (LASA)), participants with clinically relevant levels of depressive symptoms (scores >16 on the Center for Epidemiological Studies Depression Scale) were followed up over a period of 13 years of the LASA study (five waves). General estimating equations were used to estimate the impact of depression course on network size and loneliness and the interaction with gender and age. An unfavorable course of depression was found to be associated with smaller network sizes and higher levels of loneliness over time, especially in men and older participants. The findings of this study stress the importance of clinical attention to the negative consequences of chronicity in depressed older people. Clinicians should assess possible erosion of the social network over time and be aware of increased feelings of loneliness in this patient group. Copyright © 2014 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Dupree, N. A.; Moore, R. C.
2011-12-01
Model predictions of the ELF radio atmospheric generated by rocket-triggered lightning are compared with observations performed at Arrival Heights, Antarctica. The ability to infer source characteristics using observations at great distances may prove to greatly enhance the understanding of lightning processes that are associated with the production of transient luminous events (TLEs) as well as other ionospheric effects associated with lightning. The modeling of the sferic waveform is carried out using a modified version of the Long Wavelength Propagation Capability (LWPC) code developed by the Naval Ocean Systems Center over a period of many years. LWPC is an inherently narrowband propagation code that has been modified to predict the broadband response of the Earth-ionosphere waveguide to an impulsive lightning flash while preserving the ability of LWPC to account for an inhomogeneous waveguide. ELF observations performed at Arrival Heights, Antarctica during rocket-triggered lightning experiments at the International Center for Lightning Research and Testing (ICLRT) located at Camp Blanding, Florida are presented. The lightning current waveforms directly measured at the base of the lightning channel (at the ICLRT) are used together with LWPC to predict the sferic waveform observed at Arrival Heights under various ionospheric conditions. This paper critically compares observations with model predictions.
Liu, Yan-Yan; Wang, Ai-Ying; An, Yu-Ning; Lian, Pei-Yong; Wu, De-Dong; Zhu, Jiao-Jun; Meinzer, Frederick C; Hao, Guang-You
2018-07-01
The frequently observed forest decline in water-limited regions may be associated with impaired tree hydraulics, but the precise physiological mechanisms remain poorly understood. We compared hydraulic architecture of Mongolian pine (Pinus sylvestris var. mongolica) trees of different size classes from a plantation and a natural forest site to test whether greater hydraulic limitation with increasing size plays an important role in tree decline observed in the more water-limited plantation site. We found that trees from plantations overall showed significantly lower stem hydraulic efficiency. More importantly, plantation-grown trees showed significant declines in stem hydraulic conductivity and hydraulic safety margins as well as syndromes of stronger drought stress with increasing size, whereas no such trends were observed at the natural forest site. Most notably, the leaf to sapwood area ratio (LA/SA) showed a strong linear decline with increasing tree size at the plantation site. Although compensatory adjustments in LA/SA may mitigate the effect of increased water stress in larger trees, they may result in greater risk of carbon imbalance, eventually limiting tree growth at the plantation site. Our results provide a potential mechanistic explanation for the widespread decline of Mongolian pine trees in plantations of Northern China. © 2018 John Wiley & Sons Ltd.
Monitoring D-Region Variability from Lightning Measurements
NASA Technical Reports Server (NTRS)
Simoes, Fernando; Berthelier, Jean-Jacques; Pfaff, Robert; Bilitza, Dieter; Klenzing, Jeffery
2011-01-01
In situ measurements of ionospheric D-region characteristics are somewhat scarce and rely mostly on sounding rockets. Remote sensing techniques employing Very Low Frequency (VLF) transmitters can provide electron density estimates from subionospheric wave propagation modeling. Here we discuss how lightning waveform measurements, namely sferics and tweeks, can be used for monitoring the D-region variability and day-night transition, and for local electron density estimates. A brief comparison among D-region aeronomy models is also presented.
ELF Sferics Produced by Rocket-Triggered Lightning and Observed at Great Distances
NASA Astrophysics Data System (ADS)
Dupree, N. A.; Moore, R. C.; Fraser-Smith, A. C.
2013-12-01
Experimental observations of ELF radio atmospherics produced by rocket-triggered lightning flashes are used to analyze Earth-ionosphere waveguide excitation and propagation characteristics as a function of return stroke. Rocket-triggered lightning experiments are performed at the International Center for Lightning Research and Testing (ICLRT) located at Camp Blanding, Florida. Long-distance ELF observations are performed in California, Greenland, and Antarctica, although this work focuses on observations performed in Greenland. The lightning current waveforms directly measured at the base of the lightning channel (at the ICLRT) are used together with the Long Wavelength Propagation Capability (LWPC) code to predict the sferic waveform observed at the receiver locations under various ionospheric conditions. LWPC was developed by the Naval Ocean Systems Center over a period of many years. It is an inherently narrowband propagation code that has been modified to predict the broadband response of the Earth-ionosphere waveguide to an impulsive lightning flash while preserving the ability of LWPC to account for an inhomogeneous waveguide. This paper critically compares observations with model predictions, and in particular analyzes Earth-ionosphere waveguide excitation as a function of return stroke. The ability to infer source characteristics using observations at great distances may prove to greatly enhance the understanding of lightning processes that are associated with the production of transient luminous events (TLEs) as well as other ionospheric effects associated with lightning.
Unusually high frequency natural VLF radio emissions observed during daytime in Northern Finland
NASA Astrophysics Data System (ADS)
Manninen, Jyrki; Turunen, Tauno; Kleimenova, Natalia; Rycroft, Michael; Gromova, Liudmila; Sirviö, Iina
2016-12-01
Geomagnetic field variations and electromagnetic waves of different frequencies are ever present in the Earth’s environment in which the Earth’s fauna and flora have evolved and live. These waves are a very useful tool for studying and exploring the physics of plasma processes occurring in the magnetosphere and ionosphere. Here we present ground-based observations of natural electromagnetic emissions of magnetospheric origin at very low frequency (VLF, 3-30 kHz), which are neither heard nor seen in their spectrograms because they are hidden by strong impulsive signals (sferics) originating in lightning discharges. After filtering out the sferics, peculiar emissions are revealed in these digital recordings, made in Northern Finland, at unusually high frequencies in the VLF band. These recently revealed emissions, which are observed for several hours almost every day in winter, contain short (˜1-3 min) burst-like structures at frequencies above 4-6 kHz, even up to 15 kHz; fine structure on the 1 s time scale is also prevalent. It seems that these whistler mode emissions are generated deep inside the magnetosphere, but the detailed nature, generation region and propagation behaviour of these newly discovered high latitude VLF emissions remain unknown; however, further research on them may shed new light on wave-particle interactions occurring in the Earth’s radiation belts.
1982-09-30
Frequency-wave-number analyses of data from Nevada Test Site (NTS) shots recorded at LASA were computed in the frequency range from 0.01 to 0.05 Hz (Ref...from events in the Soviet Union at a known test site . In order to put further factual basis behind the SP spectral discriminants we used, comparisons...explosion. A catalogue of presumed explosion# in the Soviet Union away from the regular test sites was assembled. A time-domain analysis of seismograms
DARPA Technical Accomplishments. Volume 2. An Historical Review of Selected DARPA Projects
1991-04-01
Deputy Director, respectively, of the ARPA Tactical Technology Office, arranged a workshop on tactical systems and technology at the Naval Undersea ...experiment.7 The signal processing for ARTEMIS, and later for LASA, was done by IBM. In the late 1960s the National Academy’s Committee on Undersea Warfare...conducted a Summer Study to review potential advances in undersea surveillance, at the request of the Navy. Among other things this group recommended
NASA Astrophysics Data System (ADS)
Das, Manash C.; Sandhu, Padmani; Gupta, Priya; Rudrapaul, Prasenjit; de, Utpal C.; Tribedi, Prosun; Akhter, Yusuf; Bhattacharjee, Surajit
2016-03-01
Microbial biofilm are communities of surface-adhered cells enclosed in a matrix of extracellular polymeric substances. Extensive use of antibiotics to treat biofilm associated infections has led to the emergence of multiple drug resistant strains. Pseudomonas aeruginosa is recognised as a model biofilm forming pathogenic bacterium. Vitexin, a polyphenolic group of phytochemical with antimicrobial property, has been studied for its antibiofilm potential against Pseudomonas aeruginosa in combination with azithromycin and gentamicin. Vitexin shows minimum inhibitory concentration (MIC) at 260 μg/ml. It’s antibiofilm activity was evaluated by safranin staining, protein extraction, microscopy methods, quantification of EPS and in vivo models using several sub-MIC doses. Various quorum sensing (QS) mediated phenomenon such as swarming motility, azocasein degrading protease activity, pyoverdin and pyocyanin production, LasA and LasB activity of the bacteria were also evaluated. Results showed marked attenuation in biofilm formation and QS mediated phenotype of Pseudomonas aeruginosa in presence of 110 μg/ml vitexin in combination with azithromycin and gentamicin separately. Molecular docking of vitexin with QS associated LuxR, LasA, LasI and motility related proteins showed high and reasonable binding affinity respectively. The study explores the antibiofilm potential of vitexin against P. aeruginosa which can be used as a new antibiofilm agent against microbial biofilm associated pathogenesis.
NASA Astrophysics Data System (ADS)
Jacobson, Abram R.; Shao, Xuan-Min; Holzworth, Robert
2010-05-01
We are developing and testing a steep-incidence D region sounding method for inferring profile information, principally regarding electron density. The method uses lightning emissions (in the band 5-500 kHz) as the probe signal. The data are interpreted by comparison against a newly developed single-reflection model of the radio wave's encounter with the lower ionosphere. The ultimate application of the method will be to study transient, localized disturbances of the nocturnal D region, including those instigated by lightning itself. Prior to applying the method to study lightning-induced perturbations of the nighttime D region, we have performed a validation test against more stable and predictable daytime observations, where the profile of electron density is largely determined by direct solar X-ray illumination. This article reports on the validation test. Predictions from our recently developed full-wave ionospheric-reflection model are compared to statistical summaries of daytime lightning radiated waveforms, recorded by the Los Alamos Sferic Array. The comparison is used to retrieve best fit parameters for an exponential profile of electron density in the ionospheric D region. The optimum parameter values are compared to those found elsewhere using a narrowband beacon technique, which used totally different measurements, ranges, and modeling approaches from those of the work reported here.
Selected results from the ISUAL/FORMOSAT2 mission in a 12-year journey
NASA Astrophysics Data System (ADS)
Chen, A. B. C.; Hsu, R. R.; Su, H. T.; Huang, S. M.; Lee, L. J.; Chou, J. K.; Chang, S. C.; Wu, Y. J.; Peng, K. M.; Liu, T. Y.; Mende, S. B.; Frey, H. U.; Takahashi, Y.; Lee, L. C.
2016-12-01
The ISUAL (Imager of Sprites and Upper Atmospheric Lightning) is a scientific payload onboard the FORMOSAT2 satellite (FS2). It is also the first satellite project with the global survey of transient luminous events (TLEs) as one of the mission objectives. Since the launch of ISUAL/FS2 in 2004, ISUAL has continuously monitored the occurrence of TLEs over the pre-midnight tropical and subtropical regions in the past 12 years until 20 June 2016, due to the failure of two of the four reaction wheels. In her 12-year journey, more than forty-two thousand of TLEs, including the sub-species like elves, sprites, sprite-halos, blue jets and gigantic jets, have been recorded from this space platform. In the meantime, as the supporting facilities to the space-borne ISUAL experiment, ground optical imagery systems have been deployed to observe TLEs occurring near Taiwan and several radio waves detecting ground stations have also been installed to register the lightning- or the TLE-related sferics. From analyzing the observed events and the associated sferics, some important insights on these intriguing thundercloud-top phenomena have been revealed. In this talk, the occurrence, the global distributions, the occurrence rates, and the physical characteristics of TLEs as well as some salient properties of the TLE-producing lightning and the impacts of TLEs on the upper atmosphere revealed by the ISUAL mission will be concisely discussed and summarized.
Classification and machine recognition of severe weather patterns
NASA Technical Reports Server (NTRS)
Wang, P. P.; Burns, R. C.
1976-01-01
Forecasting and warning of severe weather conditions are treated from the vantage point of pattern recognition by machine. Pictorial patterns and waveform patterns are distinguished. Time series data on sferics are dealt with by considering waveform patterns. A severe storm patterns recognition machine is described, along with schemes for detection via cross-correlation of time series (same channel or different channels). Syntactic and decision-theoretic approaches to feature extraction are discussed. Active and decayed tornados and thunderstorms, lightning discharges, and funnels and their related time series data are studied.
Fermi GBM Observations of Terrestrial Gamma Flashes
NASA Technical Reports Server (NTRS)
Wilson-Hodge, Colleen A.; Briggs, M. S.; Connaughton, V.; Fishman, G. J.; Bhat, P. N.; Paciesas, W. S.; Preece, R. D.; Kippen, R. M.; vonKienlin, A.; Dwyer, J. R.;
2010-01-01
In its first two years of operation, the Fermi Gamma Ray Burst Monitor (GBM) has observed 79 Terrestrial Gamma Flashes (TGFs). The thick Bismuth Germanate (BGO) detectors are excellent for TGF spectroscopy, having a high probability of recording the full energy of an incident photon, spanning a broad energy range from 150 keV to 40 MeV, and recording a large number of photons per TGF. Correlations between GBM TGF triggers and lightning sferics detected with the World-Wide Lightning Location Network indicate that TGFs and lightning are simultaneous to within tens of microseconds.
Seismicity parameters preceding moderate to major earthquakes
NASA Astrophysics Data System (ADS)
von Seggern, David; Alexander, Shelton S.; Baag, Chang-Eob
1981-10-01
Seismic events reported in the bulletins of the two large arrays, LASA and NORSAR, were merged with those from the NEIS bulletin for the period 1970-1977. Using a lower cutoff of mb = 5.8, 510 `main shocks' within the P range of LASA or NORSAR were selected for this period; and various seismicity trends prior to them were investigated. A search for definite foreshocks, based on a significantly short time delay to the main shock, revealed that the true rate of foreshock occurrence was less than 20%. Foreshocks are almost exclusively associated with shallow (h < 100 km) main shocks. To establish common features, a method of averaging seismicity from many regions was used to suppress the randomness of the seismic behavior of each region. This averaging shows that the seismicity level around the main shock increases somewhat for 10 days before main shocks; this feature peaks in the last 3-4 hours prior to the main shocks. The averaging also reveals that the mean magnitude of events near the main shock increases prior to main shocks but only by a few hundredths of a magnitude unit. Again by averaging, the seismicity about main shocks is shown to tend with time toward the main shock as its origin time is approached, but the average effect is small (˜10% change). By expanding or contracting each region's time scale before averaging to relate to the magnitude of the main shock, these features are enhanced. Using a new variable to track the departures from both spatial and temporal randomness, the Poisson-like behavior of deeper seismicity (>100 km) was demonstrated. For shallow events (<100 km) this variable reveals numerous instances of clustering and spatial-temporal seismic gaps, with little tendency toward a uniformity of behavior prior to main shocks. A statistical test of the validity of seismic precursors was performed for approximately 90 main shock regions which had sufficient seismicity. Using a five-variable vector (interevent time, interevent distance, magnitude, epicentral distance to main shock, and depth difference relative to main shock) for each event in a `precursory' time window of 500 days before the main shock and for each event in a `normal' time window of 500 days before that, the null hypothesis of equal vector means between the two groups was tested. At 90% confidence level, less than 30% of the main shock regions were thus found to exhibit precursory seismicity changes. Appendices are available with entire article on microfiche. Order from American Geophysical Union, 2000 Florida Avenue, N.W., Washington, D.C. 20009. Document J81-007; $1.00. Payment must accompany order.
Terrestrial Gamma Ray Flashes due to Particle Acceleration in Tropical Storm Systems
NASA Technical Reports Server (NTRS)
Roberts, O. S.; Fitzpatrick, G.; Priftis, G.; Bedka, K.; Chronis, T.; Mcbreen, S.; Briggs, M.; Cramer, E.; Mailyan, B.; Stanbro, M.
2017-01-01
Terrestrial gamma ray flashes (TGFs) are submillisecond flashes of energetic radiation that are believed to emanate from intracloud lightning inside thunderstorms. This emission can be detected hundreds of kilometers from the source by space-based observatories such as the Fermi Gamma-ray Space Telescope (Fermi). The location of the TGF-producing storms can be determined using very low frequency (VLF) radio measurements made simultaneously with the Fermi detection, allowing additional insight into the mechanisms which produce these phenomena. In this paper, we report 37 TGFs originating from tropical storm systems for the first time. Previous studies to gain insight into how tropical cyclones formed and how destructive they can be include the investigation of lightning flash rates and their dependence on storm evolution. We find TGFs to emanate from a broad range of distances from the storm centers. In hurricanes and severe tropical cyclones, the TGFs are observed to occur predominately from the outer rainbands. A majority of our sample also show TGFs occurring during the strengthening phase of the encompassing storm system. These results verify that TGF production closely follows when and where lightning predominately occurs in cyclones. The intrinsic characteristics of these TGFs were not found to differ from other TGFs reported in larger samples. We also find that some TGF-producing storm cells in tropical storm systems far removed from land have a low number of WWLLN sferics. Although not unique to tropical cyclones, this TGF/sferic ratio may imply a high efficiency for the lightning in these storms to generate TGFs.
WWLLN and Earth Networks new combined Global Lightning Network: First Look
NASA Astrophysics Data System (ADS)
Holzworth, R. H., II; Brundell, J. B.; Sloop, C.; Heckman, S.; Rodger, C. J.
2016-12-01
Lightning VLF sferic waveforms detected around the world by WWLLN (World Wide Lightning Location Network) and by Earth Networks WTLN receivers are being analyzed in real time to calculate the time of group arrival (TOGA) of the sferic wave packet at each station. These times (TOGAs) are then used for time-of-arrival analysis to determine the source lightning location. Beginning in 2016 we have successfully implemented the operational software to allow the incorporation of waveforms from hundreds of Earth Networks sensors into the normal WWLLN TOGA processing, resulting in a new global lightning distribution which has over twice as many stroke locations as the WWLLN-only data set. The combined global lightning network shows marked improvement over the WWLLN-only data set in regions such as central and southern Africa, and over the Indian subcontinent. As of July 2016 the new data set is typically running at about 230% of WWLLN-only in terms of total strokes, and some days over 250%, using data from 65 to 70 WWLLN stations, combined with the VLF channel from about 160 Earth Networks stations. The Earth Networks lightning network includes nearly 1000 receiving stations, so it is anticipated we will be able to further increase the total stations being used for the new combined network while still maintaining a relatively smooth global distribution of the sensors. Detailed comparisons of the new data set with WWLLN-only data, as well as with independent lightning location networks including WTLN in the CONUS and NZLDN in New Zealand will be presented.
Russo, Isabella; Viretto, Michela; Barale, Cristina; Mattiello, Luigi; Doronzo, Gabriella; Pagliarino, Andrea; Cavalot, Franco; Trovati, Mariella; Anfossi, Giovanni
2012-11-01
Since hyperglycemia is involved in the "aspirin resistance" occurring in diabetes, we aimed at evaluating whether high glucose interferes with the aspirin-induced inhibition of thromboxane synthesis and/or activation of the nitric oxide (NO)/cGMP/cGMP-dependent protein kinase (PKG) pathway in platelets. For this purpose, in platelets from 60 healthy volunteers incubated for 60 min with 5-25 mmol/L d-glucose or iso-osmolar mannitol, we evaluated the influence of a 30-min incubation with lysine acetylsalicylate (L-ASA; 1-300 μmol/L) on 1) platelet function under shear stress; 2) aggregation induced by sodium arachidonate or ADP; 3) agonist-induced thromboxane production; and 4) NO production, cGMP synthesis, and PKG-induced vasodilator-stimulated phosphoprotein phosphorylation. Experiments were repeated in the presence of the antioxidant agent amifostine. We observed that platelet exposure to 25 mmol/L d-glucose, but not to iso-osmolar mannitol, 1) reduced the ability of L-ASA to inhibit platelet responses to agonists; 2) did not modify the L-ASA-induced inhibition of thromboxane synthesis; and 3) prevented the L-ASA-induced activation of the NO/cGMP/PKG pathway. Preincubation with amifostine reversed the high-glucose effects. Thus, high glucose acutely reduces the antiaggregating effect of aspirin, does not modify the aspirin-induced inhibition of thromboxane synthesis, and inhibits the aspirin-induced activation of the NO/cGMP/PKG pathway. These results identify a mechanism by which high glucose interferes with the aspirin action.
NASA Astrophysics Data System (ADS)
Stanbro, M.; Briggs, M. S.; Cramer, E.; Dwyer, J. R.; Roberts, O.
2017-12-01
Terrestrial Gamma-ray Flashes (TGFs) are sub-ms, intense flashes of gamma-rays. They are due to the acceleration of electrons with relativistic energies in thunderstorms that emit gamma-rays via bremsstrahlung. When these photons reach the upper atmosphere, they can produce secondary electrons and positrons that escape the atmosphere and propagate along the Earth's magnetic field line. Space instruments can detect these charged particles, known as Terrestrial Electron Beams (TEBs), after traveling thousands of kilometers from the thunderstorm. We present an event that was observed by the Fermi Gamma-ray Burst Monitor (GBM) as both a TGF and a TEB. To our knowledge this is the first such event that has ever been observed. We interpret the first pulse as a TGF with a duration of 0.2 ms. After 0.5 ms a second pulse is seen with a duration of 2 ms that we interpret as a TEB. Confirming this interpretation, a third pulse is seen 90 ms later, which is understood as a TEB magnetic mirror pulse. The World Wide Lightning Location Network (WWLLN) and the Earth Networks Total Lightning Network (ENTLN) detected a sferic, under the spacecraft footprint and within the southern magnetic footprint that is simultaneous with the first pulse. Along with the sferic, this unique observation allows us for the first time to test TGF and TEB models for the same event. We present Monte Carlo simulations of the first two pulses, including pitch angles for electrons and positrons, to see if the models can consistently describe the TGF/TEB spectra and time profiles originating from the same source.
Science synergism study for EOS on evolution of desert surfaces
NASA Technical Reports Server (NTRS)
Farr, Tom G.
1987-01-01
The effectiveness of EOS data as a basis for the study of desert surfaces' evolution is presently evaluated for both long and short term geomorphic evolution. Attention is given to the usefulness of such sensor systems planned for EOS as MODIS for regional vegetation distribution/variability monitoring, HIRIS for visible-near IR observations, TIMS for lithological identification, HMMR and SSMI for soil characteristics, LASA for atmospheric profiles, SAR for surface roughness, ALT for two-dimensional topography, ACR for the calibration of imaging sensors, and ERBE for climate modeling and regional surface albedo variation determinations.
Building and Testing a Portable VLF Receiver
NASA Technical Reports Server (NTRS)
McLaughlin, Robert; Krause, L.
2014-01-01
Unwanted emissions or signal noise is a major problem for VLF radio receivers. These can occur from man made sources such as power line hum, which can be prevalent for many harmonics after the fundamental 50 or 60 Hz AC source or from VLF radio transmissions such as LORAN, used for navigation and communications. Natural emissions can also be detrimental to the quality of recordings as some of the more interesting natural emissions such as whistlers or auroral chorus may be drowned out by the more common sferic emissions. VLF receivers must selectively filter out unwanted emissions and amplify the filtered signal to a record-able level without degrading the quality.
NASA Technical Reports Server (NTRS)
Rodriguez, J. V.; Inan, U. S.; Li, Y. Q.; Holzworth, R. H.; Smith, A. J.; Orville, R. E.; Rosenberg, T. J.
1992-01-01
The relationships among cloud-to-ground (CG) lightning, sferics, whistlers, VLF amplitude perturbations, and other ionospheric phenomena occurring during substorm events were investigated using data from simultaneous ground-based observations of narrow-band and broad-band VLF radio waves and of CG lightning made during the 1987 Wave-Induced Particle Precipitation campaign conducted from Wallops Island (Virginia). Results suggest that the data collected on ionospheric phenomena during this event may represent new evidence of direct coupling of lightning energy to the lower ionosphere, either in conjunction with or in the absence of gyroresonant interactions between whistler mode waves and electrons in the magnetosphere.
Fischer, Dylan G; Kolb, Thomas E; DeWald, Laura E
2002-07-01
We measured sap flux in Pinus ponderosa Laws. and Pinus flexilis James trees in a high-elevation meadow in northern Arizona that has been invaded by conifers over the last 150 years. Sap flux and environmental data were collected from July 1 to September 1, 2000, and used to estimate leaf specific transpiration rate (El), canopy conductance (Gc) and whole-plant hydraulic conductance (Kh). Leaf area to sapwood area ratio (LA/SA) increased with increasing tree size in P. flexilis, but decreased with increasing tree size in P. ponderosa. Both Gc and Kh decreased with increasing tree size in P. flexilis, and showed no clear trends with tree size in P. ponderosa. For both species, Gc was lower in the summer dry season than in the summer rainy season, but El did not change between wet and dry summer seasons. Midday water potential (Psi(mid)) did not change across seasons for either species, whereas predawn water potential (Psi(pre)) tracked variation in soil water content across seasons. Pinus flexilis showed greater stomatal response to vapor pressure deficit (VPD) and maintained higher Psi(mid) than P. ponderosa. Both species showed greater sensitivity to VPD at high photosynthetically active radiation (PAR; > 2500 micromol m-2 s-1) than at low PAR (< 2500 micromol m-2 s-1). We conclude that the direction of change in Gc and Kh with increasing tree size differed between co-occurring Pinus species, and was influenced by changes in LA/SA. Whole-tree water use and El were similar between wet and dry summer seasons, possibly because of tight stomatal control over water loss. 2002 Heron Publishing--Victoria, Canada
Jethwa, Krishan R; Kahila, Mohamed M; Mara, Kristin C; Harmsen, William S; Routman, David M; Pumper, Geralyn M; Corbin, Kimberly S; Sloan, Jeff A; Ruddy, Kathryn J; Hieken, Tina J; Park, Sean S; Mutter, Robert W
2018-05-01
Accelerated partial breast irradiation (APBI) and whole breast irradiation (WBI) are treatment options for early-stage breast cancer. The purpose of this study was to compare patient-reported-outcomes (PRO) between patients receiving multi-channel intra-cavitary brachytherapy APBI or WBI. Between 2012 and 2015, 131 patients with ductal carcinoma in situ (DCIS) or early stage invasive breast cancer were treated with adjuvant APBI (64) or WBI (67) and participated in a PRO questionnaire. The linear analog scale assessment (LASA), harvard breast cosmesis scale (HBCS), PRO-common terminology criteria for adverse events- PRO (PRO-CTCAE), and breast cancer treatment outcome scale (BCTOS) were used to assess quality of life (QoL), pain, fatigue, aesthetic and functional status, and breast cosmesis. Comparisons of PROs were performed using t-tests, Wilcoxon rank-sum, Chi square, Fisher exact test, and regression methods. Median follow-up from completion of radiotherapy and questionnaire completion was 13.3 months. There was no significant difference in QoL, pain, or fatigue severity, as assessed by the LASA, between treatment groups (p > 0.05). No factors were found to be predictive of overall QoL on regression analysis. BCTOS health-related QoL scores were similar between treatment groups (p = 0.52).The majority of APBI and WBI patients reported excellent/good breast cosmesis, 88.5% versus 93.7% (p = 0.37). Skin color change (p = 0.011) and breast elevation (p = 0.01) relative to baseline were more common in the group receiving WBI. APBI and WBI were both associated with favorable patient-reported outcomes in early follow-up. APBI resulted in a lesser degree of patient-reported skin color change and breast elevation relative to baseline.
Combined VLF and VHF lightning observations of Hurricane Rita landfall
NASA Astrophysics Data System (ADS)
Henderson, B. G.; Suszcynsky, D. M.; Wiens, K. C.; Hamlin, T.; Jeffery, C. A.; Orville, R. E.
2009-12-01
Hurricane Rita displayed abundant lightning in its northern eyewall as it made landfall at 0740 UTC 24 Sep 2005 near the Texas/Louisiana border. For this work, we combined VHF and VLF lightning data from Hurricane Rita, along with radar observations from Gulf Coast WSR-88D stations, for the purpose of demonstrating the combined utility of these two spectral regions for hurricane lightning monitoring. Lightning is a direct consequence of the electrification and breakdown processes that take place during the convective stages of thunderstorm development. As Rita approached the Gulf coast, the VHF lightning emissions were distinctly periodic with a period of 1.5 to 2 hours, which is consistent with the rotational period of hurricanes. VLF lightning emissions, measured by LASA and NLDN, were present in some of these VHF bursts but not all of them. At landfall, there was a significant increase in lightning emissions, accompanied by a significant convective surge observed in radar. Furthermore, VLF and VHF lightning source heights clearly increase as a function of time. The evolution of the IC/CG ratio is consistent with that seen in thunderstorms, showing a dominance of IC activity during storm development, followed by an increase in CG activity at the storm’s peak. The periodic VHF lightning events are correlated with increases in convective growth (quantified by the volume of radar echo >40 dB) above 7 km altitude. VLF can discriminate between lightning types, and in the LASA data, Rita landfall lightning activity was dominated by Narrow Bi-polar Events (NBEs)—high-energy, high-altitude, compact intra-cloud discharges. The opportunity to locate NBE lightning sources in altitude may be particularly useful in quantifying the vertical extent (strength) of the convective development and in possibly deducing vertical charge distributions.
Anderson, James D; Johnston, Dennis A; Haugh, Gil S; Kiat-Amnuay, Sudarat; Gettleman, Lawrence
2013-01-01
The purpose of this study was to refine the Toronto Outcome Measure for Craniofacial Prosthetics (TOMCP), present evidence for its reliability and validity, and use the instrument to explore differences in quality of life between prostheses made with chlorinated polyethylene (CPE) (experimental) and silicone (control). As part of a multicenter prospective controlled randomized double-blind single-crossover clinical trial of the two materials, the TOMCP was administered at the start and end of two 4-month study arms, during which 42 patients wore prostheses made from one material then the other. Reliability was assessed at the crossover. To determine validity of the TOMCP, the Linear Analogue Self-Assessment (LASA-12) and the Short-Form 8 (SF-8) were also administered with the TOMCP. The TOMCP was reduced by removing items that were unreliable, had poorly distributed answers, showed increased internal consistency after their removal, or were too highly correlated with more than one other item. The tests of reliability and validity were then repeated. Finally, the reduced instrument was used to test for differences in quality of life between prostheses made of the two materials. The item reduction tactics pared the 52-item instrument down to 27 items. The correlations of both TOMCP versions with the LASA-12 and the SF-8 were found to be statistically significant, providing evidence of the validity of the TOMCP. The instrument revealed significantly better quality of life with silicone rather than CPE prostheses. Both versions of the TOMCP were found to be reliable and valid. The instrument was able to show differences in quality of life between two materials.
NASA Astrophysics Data System (ADS)
Kondo, S.; Yoshida, A.; Takahashi, Y.; Chikada, S.; Adachi, T.; Sakanoi, T.
2007-12-01
Transient optical phenomena in the mesosphere and lower ionosphere called transient luminous events (TLEs) have been investigated extensively since the first discovery in 1989. In the lower ionosphere, elves are generated by the electromagnetic pulses (EMPs) radiated from the intense lightning current. On the ground-based observation, cameras can not always identify the occurrence of elves because elves emission is sometimes reduced significantly by the atmosphere and blocked by clouds. Therefore, it has been difficult to determine the threshold of intensity of EMPs necessary for initiation of elves. We simultaneously carried out optical and sferics measurements for TLEs and lightning discharges using a high altitude balloon launched at Sanriku Balloon Center on the night of August 25 / 26 in 2006. We fixed four CCD cameras on the gondola, each of which had horizontal FOV of ~100 degree. They cover 360 degree in horizontal direction and imaged the TLEs without atmospheric extinction nor blocking by clouds. The frame rate is 30 fps. We installed three dipole antennas at the gondola, which received the vertical and horizontal electric fields radiated from lightning discharges. The frequency range of the VLF receiver is 1-25 kHz. We also make use of VLF sferics data obtained by ground-based antennas located at Tohoku University in Sendai. We picked up six elves from the image data set obtained by the CCD cameras, and examined the maximum amplitudes of the vertical electric field for 22 lightning discharge events including the six elves events observed both at the balloon and at Sendai. It is found that the maximum amplitudes of the vertical electric field in the five elves events are much larger than those in the other lightning events. We estimate the intensity of the radiated electric field necessary for elves. About one elves event, we don't see intense vertical electric field in the balloon data.
Fermi GBM Observations of Terrestrial Gamma Flashes
NASA Technical Reports Server (NTRS)
Wilson-Hodge, Colleen A.; Briggs, M. S.; Fishman, G. J.; Bhat, P. N.; Paciesas, W. S.; Preece, R.; Kippen, R. M.; von Kienlin, A.; Dwyer, J. R.; Smith, D. M.;
2010-01-01
In its first two years of operation, the Fermi Gamma Ray Burst Monitor (GBM) has observed more than 77 Terrestrial Gamma Flashes (TGFs). The thick Bismuth Germanate (BGO) detectors are excellent for TGF spectroscopy, having a high probability of recording the full energy of an incident photon, spanning a broad energy range from 150 keV to 40 MeV, and recording a large number of photons per TGF. Correlations between GBM TGF triggers and lightning sferics detected with the World-Wide Lightning Location Network indicate that TGFs and lightning are simultaneous to within tens of microseconds. The energy spectra of some TGFs have strong 511 keV positron annihilation lines, indicating that these TGFs contain a large fraction of positrons
Bryan, Rachel; Aronson, Jeffrey K.; ten Hacken, Pius; Williams, Alison; Jordan, Sue
2015-01-01
Background Confusion between look-alike and sound-alike (LASA) medication names (such as mercaptamine and mercaptopurine) accounts for up to one in four medication errors, threatening patient safety. Error reduction strategies include computerized physician order entry interventions, and ‘Tall Man’ lettering. The purpose of this study is to explore the medication name designation process, to elucidate properties that may prime the risk of confusion. Methods and Findings We analysed the formal and semantic properties of 7,987 International Non-proprietary Names (INNs), in relation to naming guidelines of the World Health Organization (WHO) INN programme, and have identified potential for errors. We explored: their linguistic properties, the underlying taxonomy of stems to indicate pharmacological interrelationships, and similarities between INNs. We used Microsoft Excel for analysis, including calculation of Levenshtein edit distance (LED). Compliance with WHO naming guidelines was inconsistent. Since the 1970s there has been a trend towards compliance in formal properties, such as word length, but longer names published in the 1950s and 1960s are still in use. The stems used to show pharmacological interrelationships are not spelled consistently and the guidelines do not impose an unequivocal order on them, making the meanings of INNs difficult to understand. Pairs of INNs sharing a stem (appropriately or not) often have high levels of similarity (<5 LED), and thus have greater potential for confusion. Conclusions We have revealed a tension between WHO guidelines stipulating use of stems to denote meaning, and the aim of reducing similarities in nomenclature. To mitigate this tension and reduce the risk of confusion, the stem system should be made clear and well ordered, so as to avoid compounding the risk of confusion at the clinical level. The interplay between the different WHO INN naming principles should be further examined, to better understand their implications for the problem of LASA errors. PMID:26701761
Bryan, Rachel; Aronson, Jeffrey K; ten Hacken, Pius; Williams, Alison; Jordan, Sue
2015-01-01
Confusion between look-alike and sound-alike (LASA) medication names (such as mercaptamine and mercaptopurine) accounts for up to one in four medication errors, threatening patient safety. Error reduction strategies include computerized physician order entry interventions, and 'Tall Man' lettering. The purpose of this study is to explore the medication name designation process, to elucidate properties that may prime the risk of confusion. We analysed the formal and semantic properties of 7,987 International Non-proprietary Names (INNs), in relation to naming guidelines of the World Health Organization (WHO) INN programme, and have identified potential for errors. We explored: their linguistic properties, the underlying taxonomy of stems to indicate pharmacological interrelationships, and similarities between INNs. We used Microsoft Excel for analysis, including calculation of Levenshtein edit distance (LED). Compliance with WHO naming guidelines was inconsistent. Since the 1970s there has been a trend towards compliance in formal properties, such as word length, but longer names published in the 1950s and 1960s are still in use. The stems used to show pharmacological interrelationships are not spelled consistently and the guidelines do not impose an unequivocal order on them, making the meanings of INNs difficult to understand. Pairs of INNs sharing a stem (appropriately or not) often have high levels of similarity (<5 LED), and thus have greater potential for confusion. We have revealed a tension between WHO guidelines stipulating use of stems to denote meaning, and the aim of reducing similarities in nomenclature. To mitigate this tension and reduce the risk of confusion, the stem system should be made clear and well ordered, so as to avoid compounding the risk of confusion at the clinical level. The interplay between the different WHO INN naming principles should be further examined, to better understand their implications for the problem of LASA errors.
Hossain, Md Akil; Lee, Seung-Jin; Park, Ji-Yong; Reza, Md Ahsanur; Kim, Tae-Hwan; Lee, Ki-Ja; Suh, Joo-Won; Park, Seung-Chun
2015-11-04
Nymphaea tetragona is a widely distributed ornamental species with ethnomedicinal uses in the treatment of diarrhea, dysentery, eruptive fevers, and infections. The anti-infectious activities of this herb have already been assessed to clarify its traditional use as a medicine. In this study, we aimed to verify the inhibitory effects of N. tetragona 50% methanol extract (NTME) on quorum sensing (QS)-controlled virulence factors of bacteria since QS and its virulence factors are novel targets for antimicrobial therapy. The antibacterial activity of this extract was evaluated against Chromobacterium violaceum and Pseudomonas aeruginosa. The inhibition of the violacein pigment of C. violaceum by NTME was determined qualitative and quantitative using standard methods. The effects of NTME on swarming motility, biofilm viability, pyocyanin production, and LasA protease activity were evaluated using P. aeruginosa. Finally, the in vitro and in vivo cytotoxicity of NTME were verified by MTT assay and oral administration to rats, respectively. The extract had concentration-dependent antibacterial activity against gram-negative bacteria. NTME at 1/2× minimum inhibitory concentration (MIC), 1× MIC and 2× MIC significantly lowered the levels of violacein of C. violaceum compared to that of the control. The swarming motility of P. aeruginosa was inhibited by ≥70% by treatment with 1/2× MIC of NTME. There were remarkable reductions in pyocyanin production and LasA protease activity in the overnight culture supernatant of P. aeruginosa supplemented with NTME when compared with that of the untreated control. The confocal micrographs of 24h biofilms of P. aeruginosa exposed to NTME exhibited a lower number of live cells than the control. No toxic effect was observed in in vitro and in vivo cytotoxicity assays of NTME. NTME was demonstrated to have significant concentration-dependent inhibitory effects on quorum sensing-mediated virulence factors of bacteria with non-toxic properties, and could thus be a prospective quorum sensing inhibitor. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Cancer caregiver quality of life: need for targeted intervention.
Lapid, Maria I; Atherton, Pamela J; Kung, Simon; Sloan, Jeff A; Shahi, Varun; Clark, Matthew M; Rummans, Teresa A
2016-12-01
Caregiving can negatively impact well-being. Cancer caregivers face unique challenges given the intense nature of cancer and treatment, which increases their risk for burden, poor quality of life (QOL), and burnout. Studies to reduce caregiver burden demonstrate QOL improvement and distress reduction in the short term. However, few studies exist to address long-term benefits. We assessed changes in various QOL domains after participation in a QOL intervention for caregivers of patients having newly diagnosed advanced cancer. Our institutional review board-approved study randomized patient-caregiver dyads to either usual care or an in-person group intervention composed of six 90-min sessions of structured multidisciplinary QOL components delivered over 4 weeks, with 10 follow-up phone calls within 20 weeks. Caregivers attended four of the six sessions attended by patients. Sessions included physical therapy, coping and communication strategies, mental health education, spirituality, and social needs. Caregiver QOL (Caregiver Quality of Life Index-Cancer Scale [CQOLC] and Linear Analogue Self-Assessment [LASA]) and mood (Profile of Mood States-Brief [POMS-B]) were measured at baseline and 4, 27, and 52 weeks. Wilcoxon tests and effect sizes were used to compare the caregiver groups. Of the 131 caregivers (65 intervention and 66 usual care), 116 completed the study. Caregivers post-intervention (at 4 weeks) had improved scores on LASA Spiritual Well-being; POMS-B total score, Vigor/Activity, and Fatigue/Inertia; and CQOLC Adaptation. At long term (at 27 weeks), caregivers retained improvement in POMS-B Fatigue/Inertia and gained improvements in CQOLC Disruptiveness and Financial Concerns. Caregivers who received the intervention had higher QOL ratings for specific QOL domains but not for overall QOL. Although a comprehensive intervention was helpful, more specific, targeted interventions tailored for individual needs are recommended. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Television image of a large upward electrical discharge above a thunderstorm system
NASA Technical Reports Server (NTRS)
Franz, R. C.; Nemzek, R. J.; Winckler, J. R.
1990-01-01
A low light-level TV camera is used to obtain an unusual image of luminous electrical discharge over a thunderstorm 250 km from the observation site. The image is presented and the discharge in the image is described. It is suggested that the image is probably due to two localized electric charge concentrations at the cloud tops. The hazard of these discharges for aircraft and rocket launches is examined. Consideration is given to the possibility that these discharges may account for unexplained photometric observations of distant lightning events that show a low rise rate of the luminous pulse and no electromagnetic sferic pulse like that in cloud-to-earth lightning strokes. The photometric events of this type that occurred on September 22-23, 1989 during hurricane Hugo are noted.
NASA Astrophysics Data System (ADS)
Holzworth, R. H.; McCarthy, M. P.; Pfaff, R. F.; Jacobson, A. R.; Willcockson, W. L.; Rowland, D. E.
2011-06-01
Direct evidence is presented for a causal relationship between lightning and strong electric field transients inside equatorial ionospheric density depletions. In fact, these whistler mode plasma waves may be the dominant electric field signal within such depletions. Optical lightning data from the Communication/Navigation Outage Forecast System (C/NOFS) satellite and global lightning location information from the World Wide Lightning Location Network are presented as independent verification that these electric field transients are caused by lightning. The electric field instrument on C/NOFS routinely measures lightning-related electric field wave packets or sferics, associated with simultaneous measurements of optical flashes at all altitudes encountered by the satellite (401-867 km). Lightning-generated whistler waves have abundant access to the topside ionosphere, even close to the magnetic equator.
NASA Technical Reports Server (NTRS)
Holzworth, R. H.; McCarthy, M. P.; Pfaff, R. F.; Jacobson, A. R.; Willcockson, W. L.; Rowland, D. E.
2011-01-01
Direct evidence is presented for a causal relationship between lightning and strong electric field transients inside equatorial ionospheric density depletions. In fact, these whistler mode plasma waves may be the dominant electric field signal within such depletions. Optical lightning data from the Communication/Navigation Outage Forecast System (C/NOFS) satellite and global lightning location information from the World Wide Lightning Location Network are presented as independent verification that these electric field transients are caused by lightning. The electric field instrument on C/NOFS routinely measures lightning ]related electric field wave packets or sferics, associated with simultaneous measurements of optical flashes at all altitudes encountered by the satellite (401.867 km). Lightning ]generated whistler waves have abundant access to the topside ionosphere, even close to the magnetic equator.
Estimating Parameters for the Earth-Ionosphere Waveguide Using VLF Narrowband Transmitters
NASA Astrophysics Data System (ADS)
Gross, N. C.; Cohen, M.
2017-12-01
Estimating the D-region (60 to 90 km altitude) ionospheric electron density profile has always been a challenge. The D-region's altitude is too high for aircraft and balloons to reach but is too low for satellites to orbit at. Sounding rocket measurements have been a useful tool for directly measuring the ionosphere, however, these types of measurements are infrequent and costly. A more sustainable type of measurement, for characterizing the D-region, is remote sensing with very low frequency (VLF) waves. Both the lower ionosphere and Earth's ground strongly reflect VLF waves. These two spherical reflectors form what is known as the Earth-ionosphere waveguide. As VLF waves propagate within the waveguide, they interact with the D-region ionosphere, causing amplitude and phase changes that are polarization dependent. These changes can be monitored with a spatially distributed array of receivers and D-region properties can be inferred from these measurements. Researchers have previously used VLF remote sensing techniques, from either narrowband transmitters or sferics, to estimate the density profile, but these estimations are typically during a short time frame and over a narrow propagation region. We report on an effort to improve the understanding of VLF wave propagation by estimating the commonly known h' and beta two parameter exponential electron density profile. Measurements from multiple narrowband transmitters at multiple receivers are taken, concurrently, and input into an algorithm. The cornerstone of the algorithm is an artificial neural network (ANN), where input values are the received narrowband amplitude and phase and the outputs are the estimated h' and beta parameters. Training data for the ANN is generated using the Navy's Long-Wavelength Propagation Capability (LWPC) model. Emphasis is placed on profiling the daytime ionosphere, which has a more stable and predictable profile than the nighttime. Daytime ionospheric disturbances, from high solar activity, are also analyzed.
Research instrumentation for tornado electromagnetics emissions detection
NASA Technical Reports Server (NTRS)
Jenkins, H. H.; Wilson, C. S.
1977-01-01
Instrumentation for receiving, processing, and recording HF/VHF electromagnetic emissions from severe weather activity is described. Both airborne and ground-based instrumentation units are described on system and subsystem levels. Design considerations, design decisions, and the rationale behind the decisions are given. Performance characteristics are summarized and recommendations for improvements are given. The objectives, procedures, and test results of the following are presented: (1) airborne flight test in the Midwest U.S.A. (Spring 1975) and at the Kennedy Space Center, Florida (Summer 1975); (2) ground-based data collected in North Georgia (Summer/Fall 1975); and (3) airborne flight test in the Midwest (late Spring 1976) and at the Kennedy Space Center, Florida (Summer 1976). The Midwest tests concentrated on severe weather with tornadic activity; the Florida and Georgia tests monitored air mass convective thunderstorm characteristics. Supporting ground truth data from weather radars and sferics DF nets are described.
Enhanced detection of terrestrial gamma-ray flashes by AGILE.
Marisaldi, M; Argan, A; Ursi, A; Gjesteland, T; Fuschino, F; Labanti, C; Galli, M; Tavani, M; Pittori, C; Verrecchia, F; D'Amico, F; Østgaard, N; Mereghetti, S; Campana, R; Cattaneo, P W; Bulgarelli, A; Colafrancesco, S; Dietrich, S; Longo, F; Gianotti, F; Giommi, P; Rappoldi, A; Trifoglio, M; Trois, A
2015-11-16
At the end of March 2015 the onboard software configuration of the Astrorivelatore Gamma a Immagini Leggero (AGILE) satellite was modified in order to disable the veto signal of the anticoincidence shield for the minicalorimeter instrument. The motivation for such a change was the understanding that the dead time induced by the anticoincidence prevented the detection of a large fraction of Terrestrial Gamma-Ray Flashes (TGFs). The configuration change was highly successful resulting in an increase of one order of magnitude in TGF detection rate. As expected, the largest fraction of the new events has short duration (<100 μs), and part of them has simultaneous association with lightning sferics detected by the World Wide Lightning Location Network. The new configuration provides the largest TGF detection rate surface density (TGFs/km 2 /yr) to date, opening prospects for improved correlation studies with lightning and atmospheric parameters on short spatial and temporal scales along the equatorial region.
1974-12-12
H VO H r-^ in o sr «* vo ■ • • sr «* «* V co .-( m CTl o t-t m 00 O H H CN CO rs CM + + + r~-- m rH rg CO 00 • • • H H V CN...i "^ 0 V )V csj O «y" n m en v v v •a § 4J c tn 4J i a) n 3 tn I o o -* o o ^o ^> (N CM fH tS rg •-, ^ m o z • « tS 00 V r^ Z...The particle motion of the S wave. Bull, Seism. Soc. Am., v. 49, p. 49-56, Nuttli. 0. and J. D, Whitmore , 1962, On the determination of the
Statistical text classifier to detect specific type of medical incidents.
Wong, Zoie Shui-Yee; Akiyama, Masanori
2013-01-01
WHO Patient Safety has put focus to increase the coherence and expressiveness of patient safety classification with the foundation of International Classification for Patient Safety (ICPS). Text classification and statistical approaches has showed to be successful to identifysafety problems in the Aviation industryusing incident text information. It has been challenging to comprehend the taxonomy of medical incidents in a structured manner. Independent reporting mechanisms for patient safety incidents have been established in the UK, Canada, Australia, Japan, Hong Kong etc. This research demonstrates the potential to construct statistical text classifiers to detect specific type of medical incidents using incident text data. An illustrative example for classifying look-alike sound-alike (LASA) medication incidents using structured text from 227 advisories related to medication errors from Global Patient Safety Alerts (GPSA) is shown in this poster presentation. The classifier was built using logistic regression model. ROC curve and the AUC value indicated that this is a satisfactory good model.
Nijholt, W; Jager-Wittenaar, H; Visser, M; van der Schans, C P; Hobbelen, J S M
2016-01-01
Previous research has demonstrated that being both physically active and adhering a healthy diet is associated with improved cognitive functioning; however, it remains unclear whether these factors act synergistically. We investigated the synergistic association of a healthy diet and being physically active with cognitive functioning. Cross-sectional study. Data from the Longitudinal Aging Study Amsterdam (LASA) were used. We analyzed data from 2,165 community dwelling adults who were aged 55-85 years, 56% of whom were female. Cognitive functioning was assessed by the Mini-Mental State Examination (MMSE), an MMSE score of >26 indicates good cognitive functioning. Physical activity was assessed by the LASA Physical Activity Questionnaire and was considered sufficient if the person engaged in moderately intense physical activity ≥ 20 min/day. A healthy diet score was based on the intake of fruit, vegetables and fish. Each of the food groups was assigned a score that ranged from 1 (well below the Dutch guideline for a healthy diet) to 4 (well above the Dutch guideline for a healthy diet), and the scores were aggregated to determine a healthy diet (healthy ≥ 9 points). Multiple logistic and linear regression analyses were used to examine the (synergistic) association among physical activity, a healthy diet and cognitive functioning. All analyses were adjusted for potential chronic diseases and lifestyle confounders. Of all of the participants, 25% were diagnosed with a cognitive impairment (MMSE ≤26), 80% were physically active and 41% had a healthy diet. Sixty three percent of the participants both adhered to a healthy diet and were physically active. Sufficient daily physical activity (OR=2.545 p<.001) and adherence to a healthy diet (OR=1.766 p=.002) were associated with good cognitive functioning. After adjusting for confounding factors, sufficient physical activity was not significantly related to cognitive functioning (p=.163); however adherence to a healthy diet remained significantly associated with good cognitive functioning (p=.017). No interaction among sufficient physical activity, healthy diet adherence and good cognitive functioning was observed (crude: p=.401, adjusted: p=.216). The results of this cross-sectional study indicate that adherence to a healthy diet is inde-pendently related to cognitive functioning. Being physically active does not modify this association. Furthermore, these two lifestyle factors do not synergistically relate to cognitive functioning.
Television Image of a Large Upward Electrical Discharge Above a Thunderstorm System
NASA Astrophysics Data System (ADS)
Franz, R. C.; Nemzek, R. J.; Winckler, J. R.
1990-07-01
An image of an unusual luminous electrical discharge over a thunderstorm 250 kilometers from the observing site has been obtained with a low-light-level television camera. The discharge began at the cloud tops at 14 kilometers and extended into the clear air 20 kilometers higher. The image, which had a duration of less than 30 milliseconds, resembled two jets or fountains and was probably caused by two localized electric charge concentrations at the cloud tops. Large upward discharges may create a hazard for aircraft and rocket launches and, by penetrating into the ionosphere, may initiate whistler waves and other effects on a magnetospheric scale. Such upward electrical discharges may account for unexplained photometric observations of distant lightning events that showed a low rise rate of the luminous pulse and no electromagnetic sferic pulse of the type that accompanies cloud-to-earth lightning strokes. An unusually high rate of such photometric events was recorded during the night of 22 to 23 September 1989 during a storm associated with hurricane Hugo.
Television image of a large upward electrical discharge above a thunderstorm system.
Franz, R C; Nemzek, R J; Winckler, J R
1990-07-06
An image of an unusual luminous electrical discharge over a thunderstorm 250 kilometers from the observing site has been obtained with a low-light-level television camera. The discharge began at the cloud tops at 14 kilometers and extended into the clear air 20 kilometers higher. The image, which had a duration of less than 30 milliseconds,resembled two jets or fountains and was probably caused by two localizd electric charge concentrations at the cloud tops. Large upward discharges may create a hazard for aircraft and rocket launches and, by penetrating into the ionosphere, may initiate whistler waves and other effects on a magnetospheric scale. Such upward electrical discharges may account for unexplained photometric observations of distant lightning events that showed a low rise rate of the luminous pulse and no electromagnetic sferic pulse of the type that accompanies cloud-to-earth lightning strokes. An unusually high rate of such photometric events was recorded during the night of 22 to 23 September 1989 during a storm associated with hurricane Hugo.
NASA Astrophysics Data System (ADS)
Pasko, V. P.; Stanley, M.; Mathews, J. D.; Inan, U. S.; Wood, T. G.; Cummer, S. A.; Williams, E. R.; Heavner, M. J.
2002-12-01
In August-September 2001 an experimental campaign has been conducted in Puerto Rico to perform correlative studies of lightning and lightning-induced ionospheric effects. The campaign, which was sponsored by a Small Grant for Exploratory Research from the National Science Foundation to Penn State University, had a broad range of scientific goals including studies ionospheric effects of thunderstorms, studies of VHF-quiet positive leaders and studies of large scale optical phenomena above ocean thunderstorms in tropics. As part of this program we conducted night time video recordings of lightning and large scale luminous phenomena above thunderstorms using a SONY DCR TRV 730 CCD video camera equipped with a blue extended ITT Night Vision GEN III NQ 6010 intensifier with 40 deg field of view. The intensifier provided a monochrome (predominantly green) image output. The video system was deployed at the Lidar Laboratory on the grounds of Arecibo Observatory, Puerto Rico (18.247 deg N, 66.754 deg W, elevation 305 m above the sea level). In this talk we report results of observations conducted between 01 and 03 UT on September 3, 2001. A total of 7 sprite events have been detected above a large thunderstorm system (cloud area exceeding 104 km2) located approximately 500 km from the observational site above Haiti/Dominican Republic. The observed events exhibited typical sprite features documented in other parts of the globe, including single columns, groups of columns, relatively small horizontal glows confined to higher altitudes, as well as two large and impulsive events with the transverse extent ~eq50 km. In this talk we will also report results of preliminary analysis of available ELF electromagnetic signatures associated with the observed events recorded by Stanford University at Palmer Station, Antarctica, Duke University, MIT and Los Alamos Sferic Array in Florida. Acknowledgments: The GEN III intensifier has been provided by ITT Night Vision Industries. We are grateful to M. Robinson of ITT Industries for support of our program. We thank W. Lyons for useful discussions. We are indebted to S. Gonzalez, Q. Zhou, M. Sulzer, C. Tepley, J. Friedman, E. Robles, A. Venkataraman and E. Castro for support of our observations at Arecibo Observatory.
CARE activities on superconducting RF cavities at INFN Milano
NASA Astrophysics Data System (ADS)
Bosotti, A.; Pierini, P.; Michelato, P.; Pagani, C.; Paparella, R.; Panzeri, N.; Monaco, L.; Paulon, R.; Novati, M.
2005-09-01
The SC RF group at INFN Milano-LASA is involved both in the TESLA/TTF collaboration and in the research and design activity on superconducting cavities for proton accelerators. Among these activities, some are supported by the European community within the CARE project. In the framework of the JRASRF collaboration we are developing a coaxial blade tuner for ILC (International Linear Collider) cavities, integrated with piezoelectric actuators for the compensation of the Lorenz force detuning and microphonics perturbation. Another activity, regarding the improved component design on SC technology, based on the information retrieving about the status of art on ancillaries and experience of various laboratories involved in SCRF, has started in our laboratory. Finally, in the framework of the HIPPI collaboration, we are testing two low beta superconducting cavities, built for the Italian TRASCO project, to verify the possibility to use them for pulsed operation. All these activities will be described here, together with the main results and the future perspectives.
No lower cognitive functioning in older adults with attention-deficit/hyperactivity disorder.
Semeijn, E J; Korten, N C M; Comijs, H C; Michielsen, M; Deeg, D J H; Beekman, A T F; Kooij, J J S
2015-09-01
Research illustrates cognitive deficits in children and younger adults with attention-deficit/hyperactivity disorder (ADHD). Few studies have focused on the cognitive functioning in older adults. This study investigates the association between ADHD and cognitive functioning in older adults. Data were collected in a cross-sectional side study of the Longitudinal Aging Study Amsterdam (LASA). A diagnostic interview to diagnose ADHD was administered among a subsample (N = 231, age 60-94). ADHD symptoms and diagnosis were assessed with the Diagnostic Interview for ADHD in Adults (DIVA) 2.0. Cognitive functioning was assessed with tests in the domains of executive functioning, information processing speed, memory, and attention/working memory. Regression analyses indicate that ADHD diagnosis and ADHD severity were only negatively associated with cognitive functioning in the attention/working memory domain. When adjusting for depression, these associations were no longer significant. The study shows that ADHD in older adults is associated with lower cognitive functioning in the attention/working memory domain. However, this was partly explained by depressive symptoms.
Measurement of fast neutron detection efficiency with 6Li and 7Li enriched CLYC scintillators
NASA Astrophysics Data System (ADS)
Mentana, A.; Camera, F.; Giaz, A.; Blasi, N.; Brambilla, S.; Ceruti, S.; Gini, L.; Groppi, F.; Manenti, S.; Million, B.; Riboldi, S.
2016-10-01
The CLYC (Cs2LiYC6:Ce) crystal belongs to the elpasolite scintillator family, discovered about 15 years ago. It is a very interesting material because of its good energy resolution and its capability to identify and measure gamma rays and fast/thermal neutrons. In the present work, the fast neutron detection efficiency for two different CLYC cylindrical samples has been measured. These two crystals, both with dimension (thickness x diameter) 1”×1”, were respectively enriched with more than 99% of 7Li (CLYC-7) and with ∼ 95% of 6Li (CLYC-6). The presence of the 6Li isotope makes the CLYC-6 ideal to detect thermal neutrons. In order to compare the two scintillators, only the detection efficiency for fast neutrons was considered, neglecting the energy region associated to thermal neutrons in both the crystals. The measurement was performed at the L.A.S.A. Laboratory of INFN and University of Milano (Italy), using a 241Am-Be source.
NASA Astrophysics Data System (ADS)
Maxworth, A. S.; Golkowski, M.; McCormick, J.; Cohen, M.; Hosseini, P.; Bittle, J.
2017-12-01
The recently completed ionospheric heater at Arecibo Observatory is used for modulated HF (5 or 8 MHz) heating of the ionosphere, to generate ELF/VLF (3 Hz - 30 kHz) waves. Observation of ramp and tone signals at frequencies from hundreds of Hz to several kHz at multiple receivers confirms the ability of the heater to modulate D region currents and create an ELF/VLF antenna in the ionosphere. Observed ELF/VLF signal amplitudes are lower than for similar experiments performed at high latitudes at the HAARP and Tromso facilities, for a variety of reasons including the reduced natural currents at mid latitudes, and the lower HF power of the Arecibo heater. The heating of the overhead ionosphere is also observed to change the Earth-ionosphere waveguide propagation characteristics as is evident from simultaneous observations of lightning induced sferics and VLF transmitter signals that propagate under the heated region. The active heating of the ionosphere modifies the reflection of incident VLF (3-30 kHz) waves. We present initial observations of HF heating of the D-region and resulting ELF/VLF wave generation.
VLF and HF Plasma Waves Associated with Spread-F Plasma Depletions Observed on the C/NOFS Satellite
NASA Technical Reports Server (NTRS)
Pfaff, Robert; Freudenreich, H.; Schuck, P.; Klenzing, J.
2011-01-01
The C/NOFS spacecraft frequently encounters structured plasma depletions associated with equatorial spread-F along its trajectory that varies between 401 km perigee and 867 km apogee in the low latitude ionosphere. We report two classes of plasma waves detected with the Vector Electric Field Investigation (VEFI) that appear when the plasma frequency is less than the electron gyro frequency, as is common in spread-F depletions where the plasma number density typically decreases below 10(exp 4)/cu cm. In these conditions, both broadband VLF waves with a clear cutoff at the lower hybrid frequency and broadband HF waves with a clear cutoff at the plasma frequency are observed. We interpret these waves as "hiss-type" emissions possibly associated with the flow of suprathermal electrons within the inter-hemispherical magnetic flux tubes. We also report evidence of enhanced wave "transients" sometimes embedded in the broader band emissions that are associated with lightning sferics detected within the depleted plasma regions that appear in both the VLF and HF data. Theoretical implications of these observations are discussed.
The first AGILE low-energy (< 30 MeV) Terrestrial Gamma-ray Flashes catalog
NASA Astrophysics Data System (ADS)
Marisaldi, Martino; Fuschino, Fabio; Pittori, Carlotta; Verrecchia, Francesco; Giommi, Paolo; Tavani, Marco; Dietrich, Stefano; Price, Colin; Argan, Andrea; Labanti, Claudio; Galli, Marcello; Longo, Francesco; Del Monte, Ettore; Barbiellini, Guido; Giuliani, Andrea; Bulgarelli, Andrea; Gianotti, Fulvio; Trifoglio, Massimo; Trois, Alessio
2014-05-01
We present the first catalog of Terrestrial Gamma-ray Flashes (TGFs) detected by the Minicalorimeter (MCAL) instrument on-board the AGILE satellite. The catalog includes 308 TGFs detected during the period March 2009 - July 2012 in the +/- 2.5° latitude band and selected to have the maximum photon energy up to 30 MeV. The characteristics of the AGILE events are analysed and compared to the observational framework established by the two other currently active missions capable of detecting TGFs from space, RHESSI and Fermi. A detailed model of the MCAL dead time is presented, which is fundamental to properly interpret our observations, particularly concerning duration, intensity and correlation with lightning sferics detected by the World Wide Lightning Location Network. The TGFs cumulative spectrum supports a low production altitude, in agreement with previous measurements. The AGILE TGF catalog below 30 MeV is publicly accessible online at the website of the ASI Science Data Center (ASDC) http://www.asdc.asi.it/mcaltgfcat/ In addition to the TGF sample properties we also present the catalog website functionalities available to users.
Yagi, Toshihiro; Baroja-Fernández, Edurne; Yamamoto, Ryuji; Muñoz, Francisco José; Akazawa, Takashi; Hong, Kyoung Su; Pozueta-Romero, Javier
2003-01-01
A distinct UDP-glucose (UDPG) pyrophosphatase (UGPPase, EC 3.6.1.45) has been characterized using pig kidney ( Sus scrofa ). This enzyme hydrolyses UDPG, the precursor molecule of numerous glycosylation reactions in animals, to produce glucose 1-phosphate (G1P) and UMP. Sequence analyses of the purified enzyme revealed that, similar to the case of a nucleotide-sugar hydrolase controlling the intracellular levels of ADP-glucose linked to glycogen biosynthesis in Escherichia coli [Moreno-Bruna, Baroja-Fernández, Muñoz, Bastarrica-Berasategui, Zandueta-Criado, Rodri;guez-López, Lasa, Akazawa and Pozueta-Romero (2001) Proc. Natl. Acad. Sci. U.S.A. 98, 8128-8132], UGPPase appears to be a member of the ubiquitously distributed group of nucleotide pyrophosphatases designated Nudix hydrolases. A complete cDNA of the UGPPase-encoding gene, designated UGPP, was isolated from a human thyroid cDNA library and expressed in E. coli. The resulting cells accumulated a protein that showed kinetic properties identical to those of pig UGPPase. PMID:12429023
Yagi, Toshihiro; Baroja-Fernández, Edurne; Yamamoto, Ryuji; Muñoz, Francisco José; Akazawa, Takashi; Hong, Kyoung Su; Pozueta-Romero, Javier
2003-03-01
A distinct UDP-glucose (UDPG) pyrophosphatase (UGPPase, EC 3.6.1.45) has been characterized using pig kidney ( Sus scrofa ). This enzyme hydrolyses UDPG, the precursor molecule of numerous glycosylation reactions in animals, to produce glucose 1-phosphate (G1P) and UMP. Sequence analyses of the purified enzyme revealed that, similar to the case of a nucleotide-sugar hydrolase controlling the intracellular levels of ADP-glucose linked to glycogen biosynthesis in Escherichia coli [Moreno-Bruna, Baroja-Fernández, Muñoz, Bastarrica-Berasategui, Zandueta-Criado, Rodri;guez-López, Lasa, Akazawa and Pozueta-Romero (2001) Proc. Natl. Acad. Sci. U.S.A. 98, 8128-8132], UGPPase appears to be a member of the ubiquitously distributed group of nucleotide pyrophosphatases designated Nudix hydrolases. A complete cDNA of the UGPPase-encoding gene, designated UGPP, was isolated from a human thyroid cDNA library and expressed in E. coli. The resulting cells accumulated a protein that showed kinetic properties identical to those of pig UGPPase.
VLF long-range lightning location using the arrival time difference technique (ATD)
NASA Technical Reports Server (NTRS)
Ierkic, H. Mario
1996-01-01
A new network of VLF receiving systems is currently being developed in the USA to support NASA's Tropical Rain Measuring Mission (TRMM). The new network will be deployed in the east coast of the US, including Puerto Rico, and will be operational in late 1995. The system should give affordable, near real-time, accurate lightning locating capabilities at long ranges and with extended coverage. It is based on the Arrival Time Difference (ATD) method of Lee (1986; 1990). The ATD technique is based on the estimation of the time of arrival of sferics detected over an 18 kHz bandwith. The ground system results will be compared and complemented with satellite optical measurements gathered with the already operational Optical Transient Detector (OTD) instrument and in due course with its successor the Lightning Imaging Sensor (LIS). Lightning observations are important to understand atmospheric electrification phenomena, discharge processes, associated phenomena on earth (e.g. whistlers, explosive Spread-F) and other planets. In addition, lightning is a conspicuous indicator of atmospheric activity whose potential is just beginning to be recognized and utilized. On more prosaic grounds, lightning observations are important for protection of life, property and services.
Analysis and Modeling of Intense Oceanic Lightning
NASA Astrophysics Data System (ADS)
Zoghzoghy, F. G.; Cohen, M.; Said, R.; Lehtinen, N. G.; Inan, U.
2014-12-01
Recent studies using lightning data from geo-location networks such as GLD360 suggest that lightning strokes are more intense over the ocean than over land, even though they are less common [Said et al. 2013]. We present an investigation of the physical differences between oceanic and land lightning. We have deployed a sensitive Low Frequency (1 MHz sampling rate) radio receiver system aboard the NOAA Ronald W. Brown research vessel and have collected thousands of lightning waveforms close to deep oceanic lightning. We analyze the captured waveforms, describe our modeling efforts, and summarize our findings. We model the ground wave (gw) portion of the lightning sferics using a numerical method built on top of the Stanford Full Wave Method (FWM) [Lehtinen and Inan 2008]. The gwFWM technique accounts for propagation over a curved Earth with finite conductivity, and is used to simulate an arbitrary current profile along the lightning channel. We conduct a sensitivity analysis and study the current profiles for land and for oceanic lightning. We find that the effect of ground conductivity is minimal, and that stronger oceanic radio intensity does not result from shorter current rise-time or from faster return stroke propagation speed.
Source Region Identification for Low Latitude Whistlers (L=1.08)
NASA Astrophysics Data System (ADS)
Gokani, S. A.; Singh, R.; Maurya, A. K.; Bhaskara, V.; Cohen, M.; Kumar, S.; Lichtenberger, J.
2014-12-01
Though whistlers are known and studied from past one century, the scientific community still strives to understand the generation and propagation mechanism of whistlers in very low latitude region. One of the solutions comes from locating the causative lightning discharges and source region of low latitude whistlers. In the present study, ~ 2000 whistlers recorded during period of one year (Dec, 2010 to Jan, 2011) at Allahabad (Geomag. lat. 16.79o N; L=1.08), India are correlated with lightning activity detected by World Wide Lightning Location Network (WWLLN) at and around conjugate region. About 63% of whistlers are correlated with the lightning strikes around conjugate region. Further to confirm this correlation, arrival azimuths of causative sferics are determined and the obtained azimuths points towards conjugate region of Allahabad. The characteristics of thunder cloud generating these whistlers are examined and found that the clouds with South-East alignment are more prone to trigger whistler waves. The seasonal and diurnal variation of whistler parameters such as occurrence rate, power spectral density and dispersion are also studied and explained on the basis of ionospheric conditions in low latitudes. The results obtained open a new window to look for the propagation mechanism of low latitude whistlers.
Lidar instruments proposed for Eos
NASA Technical Reports Server (NTRS)
Grant, William B.; Browell, Edward V.
1990-01-01
Lidar, an acronym for light detection and ranging, represents a class of instruments that utilize lasers to send probe beams into the atmosphere or onto the surface of the Earth and detect the backscattered return in order to measure properties of the atmosphere or surface. The associated technology has matured to the point where two lidar facilities, Geodynamics Laser Ranging System (GLRS), and Laser Atmospheric Wind Sensor (LAWS) were accepted for Phase 2 studies for Eos. A third lidar facility Laser Atmospheric Sounder and Altimeter (LASA), with the lidar experiment EAGLE (Eos Atmospheric Global Lidar Experiment) was proposed for Eos. The generic lidar system has a number of components. They include controlling electronics, laser transmitters, collimating optics, a receiving telescope, spectral filters, detectors, signal chain electronics, and a data system. Lidar systems that measure atmospheric constituents or meteorological parameters record the signal versus time as the beam propagates through the atmosphere. The backscatter arises from molecular (Rayleigh) and aerosol (Mie) scattering, while attenuation arises from molecular and aerosol scattering and absorption. Lidar systems that measure distance to the Earth's surface or retroreflectors in a ranging mode record signals with high temporal resolution over a short time period. The overall characteristics and measurements objectives of the three lidar systems proposed for Eos are given.
Potential Use of Dimethyl Sulfoxide in Treatment of Infections Caused by Pseudomonas aeruginosa
Guo, Qiao; Wu, Qiaolian; Bai, Dangdang; Liu, Yang; Chen, Lin; Jin, Sheng; Wu, Yuting
2016-01-01
Dimethyl sulfoxide (DMSO) is commonly used as a solvent to dissolve water-insoluble drugs or other test samples in both in vivo and in vitro experiments. It was observed during our experiment that DMSO at noninhibitory concentrations could significantly inhibit pyocyanin production in the human pathogen Pseudomonas aeruginosa. Pyocyanin is an important pathogenic factor whose production is controlled by a cell density-dependent quorum-sensing (QS) system. Investigation of the effect of DMSO on QS showed that DMSO has significant QS antagonistic activities and concentrations of DMSO in the micromolar range attenuated a battery of QS-controlled virulence factors, including rhamnolipid, elastase, and LasA protease production and biofilm formation. Further study indicated that DMSO inhibition of biofilm formation and pyocyanin production was attained by reducing the level of production of an autoinducer molecule of the rhl QS system, N-butanoyl-l-homoserine lactone (C4-HSL). In a mouse model of a burn wound infection with P. aeruginosa, treatment with DMSO significantly decreased mouse mortality compared with that for mice in the control group. The capacity of DMSO to attenuate the pathogenicity of P. aeruginosa points to the potential use of DMSO as an antipathogenic agent for the treatment of P. aeruginosa infection. As a commonly used solvent, however, DMSO's impact on bacterial virulence calls for cautionary attention in its usage in biological, medicinal, and clinical studies. PMID:27645245
Timmermans, Erik J; van der Pas, Suzan; Dennison, Elaine M; Maggi, Stefania; Peter, Richard; Castell, Maria Victoria; Pedersen, Nancy L; Denkinger, Michael D; Edwards, Mark H; Limongi, Federica; Herbolsheimer, Florian; Sánchez-Martínez, Mercedes; Siviero, Paola; Queipo, Rocio; Schaap, Laura A; Deeg, Dorly J H
2016-12-01
Older adults with osteoarthritis (OA) often report that their disease symptoms are exacerbated by weather conditions. This study examines the association between outdoor physical activity (PA) and weather conditions in older adults from 6 European countries and assesses whether outdoor PA and weather conditions are more strongly associated in older persons with OA than in those without the condition. The American College of Rheumatology classification criteria were used to diagnose OA. Outdoor PA was assessed using the LASA Physical Activity Questionnaire. Data on weather parameters were obtained from weather stations. Of the 2439 participants (65-85 years), 29.6% had OA in knee, hand and/or hip. Participants with OA spent fewer minutes in PA than participants without OA (Median = 42.9, IQR = 20.0 to 83.1 versus Median = 51.4, IQR = 23.6 to 98.6; P < .01). In the full sample, temperature (B = 1.52; P < .001) and relative humidity (B = -0.77; P < .001) were associated with PA. Temperature was more strongly associated with PA in participants without OA (B = 1.98; P < .001) than in those with the condition (B = 0.48; P = .47). Weather conditions are associated with outdoor PA in older adults in the general population. Outdoor PA and weather conditions were more strongly associated in older adults without OA than in their counterparts with OA.
NASA Astrophysics Data System (ADS)
Reschke, D.; Gubarev, V.; Schaffran, J.; Steder, L.; Walker, N.; Wenskat, M.; Monaco, L.
2017-04-01
The successful production and associated vertical testing of over 800 superconducting 1.3 GHz accelerating cavities for the European X-ray Free Electron Laser (XFEL) represents the culmination of over 20 years of superconducting radio-frequency R&D. The cavity production took place at two industrial vendors under the shared responsibility of INFN Milano-LASA and DESY. Average vertical testing rates at DESY exceeded 10 cavities per week, peaking at up to 15 cavities per week. The cavities sent for cryomodule assembly at Commissariat à l'énergie atomique (CEA) Saclay achieved an average maximum gradient of approximately 33 MV /m , reducing to ˜30 MV /m when the operational specifications on quality factor (Q) and field emission were included (the so-called usable gradient). Only 16% of the cavities required an additional surface retreatment to recover their low performance (usable gradient less than 20 MV /m ). These cavities were predominantly limited by excessive field emission for which a simple high pressure water rinse (HPR) was sufficient. Approximately 16% of the cavities also received an additional HPR, e.g. due to vacuum problems before or during the tests or other reasons, but these were not directly related to gradient performance. The in-depth statistical analyses presented in this report have revealed several features of the series produced cavities.
Beckham, Jenna; Greene, Tammy B.; Meltzer-Brody, Samantha
2012-01-01
Purpose Heart rate variability biofeedback (HRVB) therapy may be useful in treating the prominent anxiety features of perinatal depression. We investigated the use of this non-pharmacologic therapy among women hospitalized with severe perinatal depression. Methods Three questionnaires, the State Trait Anxiety Inventory (STAI), Warwick Edinburgh Mental Well-Being Scale (WEMWBS), and Linear Analog Self Assessment (LASA), were administered to fifteen women in a specialized inpatient perinatal psychiatry unit. Participants were also contacted by telephone after discharge to assess continued use of HRVB techniques. Results The use of HRVB was associated with an improvement in all three scales. The greatest improvement (−13.867, p<0.001 and −11.533, p<0.001) was among STAI scores. A majority (81.9%, n=9) of women surveyed by telephone also reported continued frequent use at least once per week, and over half (54.6%, n=6) described the use of HRVB techniques as very or extremely beneficial. Conclusions The use of HRVB was associated with statistically significant improvement on all instrument scores, the greatest of which was STAI scores, and most women reported frequent continued use of HRVB techniques after discharge. These results suggest that HRVB may be particularly beneficial in the treatment of the prominent anxiety features of perinatal depression, both in inpatient and outpatient settings. PMID:23179141
DU, Dan; Li, Su-Mei; Li, Xiu-Wei; Wang, Hai-Yan; Li, Shu-Hua; Nima, Cangjue; Danzeng, Sangbu; Zhuang, Guang-Xiu
2010-08-01
To explore the status of iodine nutrition and iodine deficiency disorders in the pasturing areas and agricultural regions in Tibet. 30 families were selected respectively in pastoral Dangxiong county and agricultural Qushui county of Lasa. Drinking water and edible salt were collected for testing the iodine contents. In each type of the following populations including children aged 8 - 10, women of child-bearing age and male adults, 50 subjects were randomly sampled to examine their urinary iodine contents. Among them, 50 children and 50 women were randomly selected for goiter examination by palpation. Water iodine content was less than 2 µg/L, both in pasturing area and in agricultural areas. There was no iodized salt used in the families of pasturing areas, while 90% people consumed iodized salt in agricultural areas. The median of urinary iodine in pasturing area was 50.2 µg/L, significantly lower than that of agricultural area (193.2 µg/L). However, the goiter rate of children and women in pasturing area was significantly lower than that in agricultural area. Although iodine intake of populations in pasturing area of Tibet was severely deficient, there was no epidemic of Iodine Deficiency Disorders. This phenomenon noticed by the researchers deserved further investigation.
Limousin, Jean-Marc; Rambal, Serge; Ourcival, Jean-Marc; Rodríguez-Calcerrada, Jesus; Pérez-Ramos, Ignacio M; Rodríguez-Cortina, Raquel; Misson, Laurent; Joffre, Richard
2012-06-01
Mediterranean trees must adjust their canopy leaf area to the unpredictable timing and severity of summer drought. The impact of increased drought on the canopy dynamics of the evergreen Quercus ilex was studied by measuring shoot growth, leaf production, litterfall, leafing phenology and leaf demography in a mature forest stand submitted to partial throughfall exclusion for 7 years. The leaf area index rapidly declined in the throughfall-exclusion plot and was 19% lower than in the control plot after 7 years of treatment. Consequently, leaf litterfall was significantly lower in the dry treatment. Such a decline in leaf area occurred through a change in branch allometry with a decreased number of ramifications produced and a reduction of the leaf area supported per unit sapwood area of the shoot (LA/SA). The leafing phenology was slightly delayed and the median leaf life span was slightly longer in the dry treatment. The canopy dynamics in both treatments were driven by water availability with a 1-year lag: leaf shedding and production were reduced following dry years; in contrast, leaf turnover was increased following wet years. The drought-induced decrease in leaf area, resulting from both plasticity in shoot development and slower leaf turnover, appeared to be a hydraulic adjustment to limit canopy transpiration and maintain leaf-specific hydraulic conductivity under drier conditions.
Desiring foods: Cultivating non-attachment to nourishment in Buddhist Sri Lanka.
Van Daele, Wim
2016-10-01
Food and desire are intimately entangled whereby food becomes a core tool to manage desire in fashioning oneself as a morally virtuous person. This paper looks at the ways in which Buddhist texts conceptualize human interactions with food and formulate prescriptions on how to handle food as a means of developing an attitude of non-attachment that aids in achieving nirvana-the extinguishing of desire to get released from the cycle of death and rebirth. The particular texts-the Agañña Sutta, the Āhāra Patikūlasaññā, and the Vinaya Pitaka- discussed here exhibit an attitude of deep ambiguity towards food in its capacity to incite desire. On the one hand nutrition is required to maintain life, but on the other, food can potentially be the cause of a degenerate state of mankind and a source of moral degradation. Hence, the Buddhist development of a dispassionate attitude towards food seeks to enable both nourishment and the pursuit of the extinction of the flame of desire in nirvana. Even though the texts formulate practical prescriptions for monks on how to relate to food to aid them in their pursuit, they also serve as moral standards for lay Sinhalese Buddhists who seek to model their everyday behaviour accordingly. Copyright © 2016 Elsevier Ltd. All rights reserved.
Total Lightning and Radar Storm Characteristics Associated with Severe Storms in Central Florida
NASA Technical Reports Server (NTRS)
Goodman, Steven J.; Raghavan, Ravi; Ramachandran, Rahul; Buechler, Dennis; Hodanish, Stephen; Sharp, David; Williams, Earle; Boldi, Bob; Matlin, Anne; Weber, Mark
1998-01-01
A number of prior studies have examined the association of lightning activity with the occurrence of severe weather and tornadoes, in particular. High flash rates are often observed in tornadic storms (Taylor, 1973; Johnson, 1980; Goodman and Knupp, 1993) but not always. Taylor found that 23% of nontornadic storms and 1% of non-severe storms had sferics rates comparable to the tornadic storms. MacGorman (1993) found that storms with mesocyclones produced more frequent intracloud (IC) lightning than cloud-to-ground (CG) lightning. MacGorman (1993) and others suggest that the lightning activity accompanying tomadic storms will be dominated by intracloud lightning-with an increase in intracloud and total flash rates as the updraft increases in depth, size, and velocity. In a recent study, Perez et al. (1998) found that CG flash rates alone are too variable to be a useful predictor of (F4, F5) tornado formation. Studies of non-tomadic storms have also shown that total lightning flash rates track the updraft, with rates increasing as the updraft intensities and decreasing rapidly with cessation of vertical growth or downburst onset (Goodman et al., 1988; Williams et al., 1989). Such relationships result from the development of mixed phase precipitation and increased hydrometer collisions that lead to the efficient separation of charge. Correlations between updraft strength and other variables such as cloud-top height, cloud water mass, and hail size have also been observed.
Estimating the D-Region Ionospheric Electron Density Profile Using VLF Narrowband Transmitters
NASA Astrophysics Data System (ADS)
Gross, N. C.; Cohen, M.
2016-12-01
The D-region ionospheric electron density profile plays an important role in many applications, including long-range and transionospheric communications, and coupling between the lower atmosphere and the upper ionosphere occurs, and estimation of very low frequency (VLF) wave propagation within the earth-ionosphere waveguide. However, measuring the D-region ionospheric density profile has been a challenge. The D-region is about 60 to 90 [km] in altitude, which is higher than planes and balloons can fly but lower than satellites can orbit. Researchers have previously used VLF remote sensing techniques, from either narrowband transmitters or sferics, to estimate the density profile, but these estimations are typically during a short time frame and over a single propagation path.We report on an effort to construct estimates of the D-region ionospheric electron density profile over multiple narrowband transmission paths for long periods of time. Measurements from multiple transmitters at multiple receivers are analyzed concurrently to minimize false solutions and improve accuracy. Likewise, time averaging is used to remove short transient noise at the receivers. The cornerstone of the algorithm is an artificial neural network (ANN), where input values are the received amplitude and phase for the narrowband transmitters and the outputs are the commonly known h' and beta two parameter exponential electron density profile. Training data for the ANN is generated using the Navy's Long-Wavelength Propagation Capability (LWPC) model. Results show the algorithm performs well under smooth ionospheric conditions and when proper geometries for the transmitters and receivers are used.
The First Fermi-GBM Terrestrial Gamma Ray Flash Catalog
NASA Astrophysics Data System (ADS)
Roberts, O. J.; Fitzpatrick, G.; Stanbro, M.; McBreen, S.; Briggs, M. S.; Holzworth, R. H.; Grove, J. E.; Chekhtman, A.; Cramer, E. S.; Mailyan, B. G.
2018-05-01
We present the first Fermi Space Telescope Gamma Ray Burst Monitor (GBM) catalog of 4,144 terrestrial gamma ray flashes (TGFs), detected since launch in 11 July 2008 through 31 July 2016. We discuss the updates and improvements to the triggered data and off-line search algorithms, comparing this improved detection rate of ˜800 TGFs per year with event rates from previously published TGF catalogs from other missions. A Bayesian block algorithm calculated the temporal and spectral properties of the TGFs, revealing a delay between the hard (>300 keV) and soft (≤300 keV) photons of around 27 μs. Detector count rates of "low-fluence" events were found to have average rates exceeding 150 kHz. Searching the World-Wide Lightning Location Network data for radio sferics within ±5 min of each TGF revealed a clean sample of 1,314 World-Wide Lightning Location Network locations, which were used to to accurately locate TGF-producing storms. It also revealed lightning and storm activity for specific regions, as well as seasonal and daily variations of global lightning patterns. Correcting for the orbit of Fermi, we quantitatively find a marginal excess of TGFs being produced from storms over land near oceans (i.e., narrow isthmuses and small islands). No difference was observed between the duration of TGFs over the ocean and land. The distribution of TGFs at a given local solar time for predefined American, Asian, and African regions were confirmed to correlate well with known regional lightning rates.
Attenuation of Pseudomonas aeruginosa virulence by marine invertebrate-derived Streptomyces sp.
Naik, D N; Wahidullah, S; Meena, R M
2013-03-01
The study aimed to discover quorum sensing (QS) inhibitors from marine sponge-derived actinomycetes and analyse its inhibitory activities against QS-mediated virulence factors in Pseudomonas aeruginosa. Seventy-two actinomycetes isolated from marine invertebrates collected from the western coast of India were screened against the QS indicator strain Chromobacterium violaceum CV12472. Methanol extracts of 12 actinomycetes showing inhibition of violacein production were accessed for downregulation of QS-mediated virulence factors like swarming, biofilm formation, pyocyanin, rhamnolipid and LasA production in Ps. aeruginosa ATCC 27853. The isolates NIO 10068, NIO 10058 and NIO 10090 exhibited very good anti-QS activity, with NIO 10068 being the most promising one. Mass spectrometric analysis of NIO 10068 methanol extract revealed the presence of cinnamic acid and linear dipeptides proline-glycine and N-amido-α-proline in the active extract. Detailed investigation suggested that although linear dipeptide Pro-Gly is to some extent responsible for the observed biological activity, cinnamic acid seems to be the main compound responsible for it. Marine-derived actinomycetes are a potential storehouse for QS inhibitors. This is the first report not only on marine sponge-associated Streptomyces for anti-QS in Ps. aeruginosa but also on cinnamic acid and proline-derived linear dipeptides proline-glycine as QS inhibitors. The results reveal that marine-derived actinomycetes may not only play a role in the defensive mechanism of their host but also lead to new molecules useful in the development of novel antivirulence drugs. © 2012 The Society for Applied Microbiology.
Persistent Deterioration of Functioning (PDF) and change in well-being in older persons.
Jonker, Angèle A; Comijs, Hannie C; Knipscheer, Kees C; Deeg, Dorly J
2008-10-01
It is often assumed that aging is accompanied by diverse and constant functional and cognitive decline, and it is therefore surprising that the well-being of older persons does not appear to decline in the same way. This study investigates longitudinally whether well-being in older persons changes due to Persistent Deterioration of Functioning (PDF). Data were collected in the context of the Longitudinal Aging Study Amsterdam (LASA). Conditions of PDF are persistent decline in cognitive functioning, physical functioning and increase in chronic diseases. Measurements of well-being included life satisfaction, positive affect, and valuation of life. T-tests were used to analyse mean difference scores for well-being, and univariate and multivariate regression analyses were performed to examine changes in three well-being outcomes in relation to PDF. Cross-sectional analyses showed significant differences and associations between the two PDF subgroups and non- PDF for well-being at T3. In longitudinal analyses, we found significant decreases in and associations with wellbeing over time in respondents fulfilling one PDF condition (mild PDF). For respondents fulfilling two or more PDF conditions (severe PDF), longitudinally no significant associations were found. Cognitive aspects of well-being (life satisfaction and valuation of life) and the affective element (positive affect) of well-being appear to be influenced negatively by mild PDF, whereas well-being does not seem to be diminished in persons with more severe PDF. This may be due to the ability to accept finally the inevitable situation of severe PDF.
NASA Astrophysics Data System (ADS)
Menapace, E.; Birattari, C.; Bonardi, M. L.; Groppi, F.; Morzenti, S.; Zona, C.
2005-05-01
The radionuclide production for biomedical applications has been brought up in the years, as a special nuclear application, at INFN LASA Laboratory, particularly in co-operation with the JRC-Ispra of EC. Mainly scientific aspects concerning radiation detection and the relevant instruments, the measurements of excitation functions of the involved nuclear reactions, the requested radiochemistry studies and further applications have been investigated. On the side of the nuclear data evaluations, based on nuclear model calculations and critically selected experimental data, the appropriate competence has been developed at ENEA Division for Advanced Physics Technologies. A series of high specific activity accelerator-produced radionuclides in no-carrier-added (NCA) form, for uses in metabolic radiotherapy and for PET radiodiagnostics, are investigated. In this work, last revised measurements and model calculations are reviewed for excitation functions of natZn(d,X)64Cu, 66Ga reactions, referring to irradiation experiments at K=38 variable energy Cyclotron of JRC-Ispra. Concerning the reaction data for producing 186gRe and 211At/211gPo (including significant emission spectra) and 210At, most recent and critically selected experimental results are considered and discussed in comparison with model calculations paying special care to pre-equilibrium effects estimate and to the appropriate overall parameterization. Model calculations are presented for 226Ra(p,2n)225Ac reaction, according to the working program of the ongoing IAEA CRP on the matter.
Potential Use of Dimethyl Sulfoxide in Treatment of Infections Caused by Pseudomonas aeruginosa.
Guo, Qiao; Wu, Qiaolian; Bai, Dangdang; Liu, Yang; Chen, Lin; Jin, Sheng; Wu, Yuting; Duan, Kangmin
2016-12-01
Dimethyl sulfoxide (DMSO) is commonly used as a solvent to dissolve water-insoluble drugs or other test samples in both in vivo and in vitro experiments. It was observed during our experiment that DMSO at noninhibitory concentrations could significantly inhibit pyocyanin production in the human pathogen Pseudomonas aeruginosa Pyocyanin is an important pathogenic factor whose production is controlled by a cell density-dependent quorum-sensing (QS) system. Investigation of the effect of DMSO on QS showed that DMSO has significant QS antagonistic activities and concentrations of DMSO in the micromolar range attenuated a battery of QS-controlled virulence factors, including rhamnolipid, elastase, and LasA protease production and biofilm formation. Further study indicated that DMSO inhibition of biofilm formation and pyocyanin production was attained by reducing the level of production of an autoinducer molecule of the rhl QS system, N-butanoyl-l-homoserine lactone (C 4 -HSL). In a mouse model of a burn wound infection with P. aeruginosa, treatment with DMSO significantly decreased mouse mortality compared with that for mice in the control group. The capacity of DMSO to attenuate the pathogenicity of P. aeruginosa points to the potential use of DMSO as an antipathogenic agent for the treatment of P. aeruginosa infection. As a commonly used solvent, however, DMSO's impact on bacterial virulence calls for cautionary attention in its usage in biological, medicinal, and clinical studies. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Timmermans, Erik J; van der Pas, Suzan; Dennison, Elaine M; Maggi, Stefania; Peter, Richard; Castell, Maria Victoria; Pedersen, Nancy L; Denkinger, Michael D; Edwards, Mark H; Limongi, Federica; Herbolsheimer, Florian; Sánchez-Martínez, Mercedes; Siviero, Paola; Queipo, Rocio; Schaap, Laura A; Deeg, Dorly JH
2017-01-01
Objectives Older adults with osteoarthritis (OA) often report that their disease symptoms are exacerbated by weather conditions. This study examines the association between outdoor physical activity (PA) and weather conditions in older adults from six European countries and assesses whether outdoor PA and weather conditions are more strongly associated in older persons with OA than in those without the condition. Methods The American College of Rheumatology classification criteria were used to diagnose OA. Outdoor PA was assessed using the LASA Physical Activity Questionnaire. Data on weather parameters were obtained from weather stations. Results Of the 2,439 participants (65-85 years), 29.6% had OA in knee, hand and/or hip. Participants with OA spent fewer minutes in PA than participants without OA (Median=42.9, IQR=20.0-83.1 versus Median=51.4, IQR=23.6-98.6; p<0.01). In the full sample, temperature (B=1.52; p<0.001) and relative humidity (B=-0.77; p<0.001) were associated with PA. Temperature was more strongly associated with PA in participants without OA (B=1.98; p<0.001) than in those with the condition (B=0.48; p=0.47). Conclusions Weather conditions are associated with outdoor PA in older adults in the general population. Outdoor PA and weather conditions were more strongly associated in older adults without OA than in their counterparts with OA. PMID:27633622
Quality of life and physicians' perception in myelodysplastic syndromes
Oliva, Esther Natalie; Finelli, Carlo; Santini, Valeria; Poloni, Antonella; Liso, Vincenzo; Cilloni, Daniela; Impera, Stefana; Terenzi, Adelmo; Levis, Alessandro; Cortelezzi, Agostino; Ghio, Riccardo; Musto, Pellegrino; Semenzato, Gianpietro; Clissa, Cristina; Lunghi, Teresa; Trappolini, Silvia; Gaidano, Valentina; Salvi, Flavia; Reda, Gianluigi; Villani, Oreste; Binotto, Gianni; Cufari, Patrizia; Cavalieri, Elena; Spiriti, Maria Antonietta Aloe
2012-01-01
To detect factors associated with quality of life (QOL) of patients with myelodysplastic syndrome (MDS) and to compare the MDS patients’ self-assessed QOL with that perceived by their physicians. In an observational, non-interventional, prospective, multicentre study, QOL was evaluated in 148 patients with newly diagnosed low- and intermediate-risk IPSS MDS. QOL measures (QOL-E v.2, LASA and EQ-5D) and patient-related candidate determinants of QOL were assessed for up to 18 months. Patients' QOL scores were compared with those obtained by appointed hematologists’ assessment and with ECOG performance status (PS). Fatigue was not prevalent at diagnosis, though physical QOL and energy levels were low. Transfusion-dependent patients had worse QOL scores. In multivariate analysis, Hb levels and comorbidities were a major determinant of QOL. Physicians’ perception of patients’ well-being correlated with patients’ QOL. Physicians underestimated the impact of disturbances on patients’ QOL, mainly in the MDS-specific components. ECOG PS did not discriminate patients according to QOL status. In conclusion, the association of anemia with QOL is confirmed, while co-morbidities emerge as an independent predictor of QOL in MDS. Fatigue is not a major concern. ECOG PS is not a valuable surrogate of patient’s QOL, thus highlighting that physician’s judgment of patient’s well-being must not substitute patient-reported outcomes. Appropriate questionnaires should be used to assess MDS patients’ QOL in order to improve communication and therapeutic choice. PMID:22762033
The need for a comprehensive medication safety module in medical education.
Chandy, Sujith John
2016-10-01
A rising number of medicines and minimal emphasis on rational prescribing in the medical curriculum may compromise medication safety. There is no focused module in the curriculum dealing with factors affecting safety such as quality, medicines management, rational use, and approach to adverse effects. Creating awareness of these issues would hopefully plant a seed of safe prescribing and encourage pharmacovigilance. A study was therefore done to determine the need for such a module. A quasi-experimental pre-post module study. Medical students ( n = 88) completing pharmacology term were recruited after informed consent. A questionnaire containing 20 questions on various themes was administered and scored. Subsequently a module was developed and relevant safety themes taught to the students. After one month, the questionnaire was re-administered. The pre module score was 9.52/20. Knowledge about the various themes, adverse effects, medication management, quality issues and rational use were similar though poor knowledge was evident in specific areas such as clinical trials, look alike-sound alike medicines (LASA) and medicine storage. The post module score was 12.24/20. The improvement of score was statistically significant suggesting the effectiveness of the module. The relatively poor knowledge and improvement with a specific educational module emphasizes the need of such a module within the medical curriculum to encourage safe use of medicines by Indian Medical Graduates (IMG). It is hoped that the policy makers in medical education will introduce such a module within the medical curriculum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menapace, E.; Birattari, C.; Bonardi, M.L.
The radionuclide production for biomedical applications has been brought up in the years, as a special nuclear application, at INFN LASA Laboratory, particularly in co-operation with the JRC-Ispra of EC. Mainly scientific aspects concerning radiation detection and the relevant instruments, the measurements of excitation functions of the involved nuclear reactions, the requested radiochemistry studies and further applications have been investigated. On the side of the nuclear data evaluations, based on nuclear model calculations and critically selected experimental data, the appropriate competence has been developed at ENEA Division for Advanced Physics Technologies. A series of high specific activity accelerator-produced radionuclides inmore » no-carrier-added (NCA) form, for uses in metabolic radiotherapy and for PET radiodiagnostics, are investigated. In this work, last revised measurements and model calculations are reviewed for excitation functions of natZn(d,X)64Cu, 66Ga reactions, referring to irradiation experiments at K=38 variable energy Cyclotron of JRC-Ispra. Concerning the reaction data for producing 186gRe and 211At/211gPo (including significant emission spectra) and 210At, most recent and critically selected experimental results are considered and discussed in comparison with model calculations paying special care to pre-equilibrium effects estimate and to the appropriate overall parameterization. Model calculations are presented for 226Ra(p,2n)225Ac reaction, according to the working program of the ongoing IAEA CRP on the matter.« less
NASA Astrophysics Data System (ADS)
Ji, Yanju; Li, Dongsheng; Yu, Mingmei; Wang, Yuan; Wu, Qiong; Lin, Jun
2016-05-01
The ground electrical source airborne transient electromagnetic system (GREATEM) on an unmanned aircraft enjoys considerable prospecting depth, lateral resolution and detection efficiency, etc. In recent years it has become an important technical means of rapid resources exploration. However, GREATEM data are extremely vulnerable to stationary white noise and non-stationary electromagnetic noise (sferics noise, aircraft engine noise and other human electromagnetic noises). These noises will cause degradation of the imaging quality for data interpretation. Based on the characteristics of the GREATEM data and major noises, we propose a de-noising algorithm utilizing wavelet threshold method and exponential adaptive window width-fitting. Firstly, the white noise is filtered in the measured data using the wavelet threshold method. Then, the data are segmented using data window whose step length is even logarithmic intervals. The data polluted by electromagnetic noise are identified within each window based on the discriminating principle of energy detection, and the attenuation characteristics of the data slope are extracted. Eventually, an exponential fitting algorithm is adopted to fit the attenuation curve of each window, and the data polluted by non-stationary electromagnetic noise are replaced with their fitting results. Thus the non-stationary electromagnetic noise can be effectively removed. The proposed algorithm is verified by the synthetic and real GREATEM signals. The results show that in GREATEM signal, stationary white noise and non-stationary electromagnetic noise can be effectively filtered using the wavelet threshold-exponential adaptive window width-fitting algorithm, which enhances the imaging quality.
Very low frequency (VLF) waves as diagnostic tool in remote sensing of D-region Ionosphere
NASA Astrophysics Data System (ADS)
Singh, Ashok; Verma, Uday Prakash
Large currents along the magnetic field transmit stresses between ionosphere and magnetosphere. If the electrons carrying such currents have high enough drift velocity, waves are generated. A wave is a disturbance that propagates through space and time, usually with transference of energy. Waves play major part in the Earth’s ionospheric dynamics. Since both the Earth and the ionosphere are good reflectors at very low frequencies (3 kHz 30 kHz), the lightning radiated impulses commonly known as radio atmospheric or sferics or tweeks travel thousands of kilometers in the Earth Ionosphere Wave Guide (EIWG) with low attenuation of ~ 2-3 dB/1000km. Since vlf waves are reflected by ionosphere, they can be used as potential tool to study the D-region ionosphere which plays a key role in the radio wave propagation. Since the year 2010, vlf waves are continuously being recorded at low latitude ground based Indian station Lucknow (Geomag. Lat. 17.60 N; Geomag. Long. 154.50 E) using Automatic Whistler Detector (AWD). More than 100 tweeks of multimode harmonics (n ≥ 3) observed during the year 2010-2011 are analyzed. Using these multimode tweeks as remote sensing tool to explore D-region ionosphere we have estimated various medium parameters such as electron density, ionospheric reflection height and the propagation distance etc. Electron density in the D-region ionosphere varies from 40-160 cm-3 for various modes, ionospheric reflection height varies in the range 70 - 85 km, and the propagation distance was found to vary from 2 km - 6 km in the waveguide to the receiving site.
Lunar biological effects and the magnetosphere.
Bevington, Michael
2015-12-01
The debate about how far the Moon causes biological effects has continued for two millennia. Pliny the Elder argued for lunar power "penetrating all things", including plants, fish, animals and humans. He also linked the Moon with tides, confirmed mathematically by Newton. A review of modern studies of biological effects, especially from plants and animals, confirms the pervasive nature of this lunar force. However calculations from physics and other arguments refute the supposed mechanisms of gravity and light. Recent space exploration allows a new approach with evidence of electromagnetic fields associated with the Earth's magnetotail at full moon during the night, and similar, but more limited, effects from the Moon's wake on the magnetosphere at new moon during the day. The disturbance of the magnetotail is perhaps shown by measurements of electric fields of up to 16V/m compared with the usual <1V/m, suggesting the possibility of weak biological effects on some sensitive organisms. Similar intensities found in sferics, geomagnetic storms, aurora disturbance, sensations of a 'presence' and pre-seismic electromagnetic radiation are known to affect animals and 10-20% of the human population. There is now evidence for mechanisms such as calcium flux, melatonin disruption, magnetite and cryptochromes. Both environmental and receptor variations explain confounding factors and inconsistencies in the evidence. Electromagnetic effects might also account for some evolutionary changes. Further research on lunar biological effects, such as acute myocardial infarction, could help the development of strategies to reduce adverse effects for people sensitive to geomagnetic disturbance. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Herbolsheimer, Florian; Riepe, Matthias W; Peter, Richard
2018-02-21
Numerous studies have reported weak or moderate correlations between self-reported and accelerometer-assessed physical activity. One explanation is that self-reported physical activity might be biased by demographic, cognitive or other factors. Cognitive function is one factor that could be associated with either overreporting or underreporting of daily physical activity. Difficulties in remembering past physical activities might result in recall bias. Thus, the current study examines whether the cognitive function is associated with differences between self-reported and accelerometer-assessed physical activity. Cross-sectional data from the population-based Activity and Function in the Elderly in Ulm study (ActiFE) were used. A total of 1172 community-dwelling older adults (aged 65-90 years) wore a uniaxial accelerometer (activPAL unit) for a week. Additionally, self-reported physical activity was assessed using the LASA Physical Activity Questionnaire (LAPAQ). Cognitive function was measured with four items (immediate memory, delayed memory, recognition memory, and semantic fluency) from the Consortium to Establish a Registry for Alzheimer's Disease Total Score (CERAD-TS). Mean differences of self-reported and accelerometer-assessed physical activity (MPA) were associated with cognitive function in men (r s = -.12, p = .002) but not in women. Sex-stratified multiple linear regression analyses showed that MPA declined with high cognitive function in men (β = -.13; p = .015). Results suggest that self-reported physical activity should be interpreted with caution in older populations, as cognitive function was one factor that explained the differences between objective and subjective physical activity measurements.
Fast Positive Breakdown, NBEs, and Lightning Initiation
NASA Astrophysics Data System (ADS)
Krehbiel, P. R.; Rison, W.; Stock, M.; Edens, H. E.; Shao, X. M.; Thomas, R. J.; Stanley, M. A.; Zhang, Y.
2016-12-01
High power narrrow bipolar events (NBEs) have been found to be produced by arelatively unknown type of discharge, called fast positive breakdown (Rison etal., 2016). The breakdown occurs with a wide range of strengths, both in terms of its broadband sferic and its VHF radiation, and is found to be theinitiating event of many and likely all lightning discharges inside storms. Itdoes not produce a conducting channel but instead appears to be produced by avolumetric system of repeated, cascading positive streamers in virgin air.That positive corona and streamers would be responsible for initiatinglightning was proposed in the 1960s by Loeb, Dawson and Winn. In the 1970sPhelps and Griffiths showed that the streamers would be self-intensifying,leading to negative breakdown being initiated back at their starting points.Petersen et al. (2008) described experimental results showing that thestreamers could be initiated by ice crystals at cold temperatures, and thephysical processes leading to the breakdown being fast has been reported inrecent modeling studies by Shi et al. (2016). In this paper we summarize the observational data in support of the abovefindings, and report on additional observations of NBEs and lightninginitiation currently being obtained at Kennedy Space Center, Florida. References: Rison W., P.R. Krehbiel M.G.Stock, H.E. Edens, X-M. Shao, R.J. Thomas,M.A. Stanley, Y. Zhang, Observations of narrow bipolar events revealhow lightning is initiated in thunderstorms, Nature Comms. 7, 2016.doi:10.1038/ncomms10721. Petersen, D., Bailey, M., Beasley, W. & Hallett, J. A brief review ofthe problem of lightning initiation and a hypothesis of initiallightning leader formation. J. Geophys. Res. 113, D17205 (2008). Shi, F., N. Liu, and H. K. Rassoul (2016), Properties of relativelylong streamers initiated from an isolated hydrometeor, J. Geophys.Res. Atmos., 121, 7284-7295, doi:10.1002/2015JD024580.
Janssen, Sacha; Tange, Huibert; Arends, Rachele
2013-04-01
This study investigated the effect of playing Nintendo(®) "Wii Fit™ Plus" (Nintendo of America, Inc., Redmond, WA) on body balance and physical activity of nursing home residents. In a nonrandomized controlled trial within a nursing home, two intervention groups (both n=8) were exposed to the same treatment and compared with a control group (n=13). Intervention Group 1 consisted of elderly individuals with regular Nintendo "Wii Fit" experience for at least 1 year. Elderly persons who were novices to the Nintendo "Wii Fit (Plus)" participated in intervention Group 2. Control participants had no experience with the Nintendo "Wii Fit (Plus)" and did not participate in the Nintendo "Wii Fit Plus" sessions. Outcome measurements were taken at baseline and after the intervention, using the Berg Balance Scale and the LASA Physical Activity Questionnaire. Participants of both intervention groups played the Nintendo "Wii Fit Plus" for 10 minutes twice a week during 12 weeks. Although balance improved for all three groups, there was no effect of playing "Wii Fit Plus" (P=0.89). On physical activity, the intervention did have a positive effect (P=0.005); physical activity levels increased with a median of 54.3 (interquartile range, 63.1) minutes/day for intervention Group 1 and a median of 60.7 (interquartile range, 56.8) minutes/day for intervention Group 2. This study showed an effect of Nintendo "Wii Fit Plus" gaming on physical activity of nursing home residents, but not on their balance. The effect of physical activity should be consolidated in a randomized controlled trial in a broader population.
Lomholt, Jeanet A.; Poulsen, Knud; Kilian, Mogens
2001-01-01
The genetic structure of a population of Pseudomonas aeruginosa, isolated from patients with keratitis, endophthalmitis, and contact lens-associated red eye, contact lens storage cases, urine, ear, blood, lungs, wounds, feces, and the environment was determined by multilocus enzyme electrophoresis. The presence and characteristics of virulence factors were determined by restriction fragment length polymorphism analysis with DNA probes for lasA, lasB, aprA, exoS, exoT, exoU, and ctx and by zymography of staphylolysin, elastase, and alkaline protease. These analyses revealed an epidemic population structure of P. aeruginosa, characterized by frequent recombination in which a particular successful clone may increase, predominate for a time, and then disasappear as a result of recombination. Epidemic clones were found among isolates from patients with keratitis. They were characterized by high activity of a hitherto-unrecognized size variant of elastase, high alkaline protease activity, and possession of the exoU gene encoding the cytotoxic exoenzyme U. These virulence determinants are not exclusive traits in strains causing keratitis, as strains with other properties may cause keratitis in the presence of predisposing conditions. There were no uniform patterns of characteristics of isolates from other types of infection; however, all strains from urinary tract infections possessed the exoS gene, all strains from environment and feces and the major part of keratitis and wound isolates exhibited high elastase and alkaline protease activity, and all strains from feces showed high staphylolysin activity, indicating that these virulence factors may be important in the pathogenesis of these infectious diseases. PMID:11553572
Hu, De-yao; Liu, Liang-ming; Li, Ping; Liu, Jian-cang; Liu, Hou-dong; He, Yan-mei; Huo, Xiao-ping; Tian, Kun-lun; Shi, Quan-gui; Xiao, Nan; Zhou, Xue-wu
2003-05-01
To study the effects of thyrotropin-releasing hormone (TRH) in combination with hypertonic saline/dextran (7.5% NaCl + 6% Dextran 40, HSD ) on hemorrhagic shock with pulmonary edema in the rats which were recently brought to high altitude. Forty-nine SD rats, transported to Lasa, Tibet, which was 3,760 meters above the sea level, were anesthetized one week later with sodium pentobarbital (30 mg/kg, intraperitoneal). Hemorrhagic shock with pulmonary edema was induced by hemorrhage (50 mm Hg maintained for 1 hour,1 mm Hg=0.133 kPa) plus intravenous injection of oleic acid (50 microl/kg). They were equally divided into seven groups (n=7): normal control, hemorrhagic shock, hemorrhagic shock with pulmonary edema (HSPE), HSPE plus TRH (5 mg/kg), HSPE plus HSD (4 ml/kg), and HEPE plus TRH and HSD in combination. Hemodynamic parameters including mean arterial blood pressure(MAP), left intraventricular systolic pressure (LVSP) and the maximal change rate of intraventricular pressure rise or decline (+/- dp/dt max) were observed at 15, 30, 60 and 120 minutes, blood gases were analyzed at 30 and 120 minutes, and the water content of lung and brain was determined at 120 minutes after drug administration. TRH or HSD used alone or in combination significantly increased MAP, LVSP and +/- dp/dt max (P<0.05 or P<0.01 ), ameliorated acid-base imbalance, and decreased the water content of lung and brain. The effect of the two in combination was superior to either drug used alone. TRH in combination with HSD can be used in the treatment of hemorrhagic shock with pulmonary edema at high altitude.
Smulders, Ellen; Weerdesteyn, Vivian; Groen, Brenda E; Duysens, Jacques; Eijsbouts, Agnes; Laan, Roland; van Lankveld, Wim
2010-11-01
To evaluate the efficacy of the Nijmegen Falls Prevention Program (NFPP) for persons with osteoporosis and a fall history in a randomized controlled trial. Persons with osteoporosis are at risk for fall-related fractures because of decreased bone strength. A decrease in the number of falls therefore is expected to be particularly beneficial for these persons. Randomized controlled trial. Hospital. Persons with osteoporosis and a fall history (N=96; mean ± SD age, 71.0±4.7y; 90 women). After baseline assessment, participants were randomly assigned to the exercise (n=50; participated in the NFPP for persons with osteoporosis [5.5wk]) or control group (n=46; usual care). Primary outcome measure was fall rate, measured by using monthly fall calendars for 1 year. Secondary outcomes were balance confidence (Activity-specific Balance Confidence Scale), quality of life (QOL; Quality of Life Questionnaire of the European Foundation for Osteoporosis), and activity level (LASA Physical Activity Questionnaire, pedometer), assessed posttreatment subsequent to the program and after 1 year of follow-up. The fall rate in the exercise group was 39% lower than for the control group (.72 vs 1.18 falls/person-year; risk ratio, .61; 95% confidence interval, .40-.94). Balance confidence in the exercise group increased by 13.9% (P=.001). No group differences were observed in QOL and activity levels. The NFPP for persons with osteoporosis was effective in decreasing the number of falls and improving balance confidence. Therefore, it is a valuable new tool to improve mobility and independence of persons with osteoporosis. Copyright © 2010 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Self- Perception of Body Weight Status in Older Dutch Adults.
Monteagudo, C; Dijkstra, S C; Visser, M
2015-06-01
The prevalence of obesity is highest in older persons and a correct self-perception of body weight status is necessary for optimal weight control. The aim of this study was to determine self-perception of, and satisfaction with, body weight status, and to compare current versus ideal body image in a large, nationally representative sample of older people. Furthermore, determinants of misperception were explored. A cross-sectional study. The Longitudinal Aging Study Amsterdam (LASA), conducted in a population-based sample in the Netherlands. 1295 men and women aged 60-96 years. Body weight status was assessed using measured weight and height. Self-perceived body weight status, satisfaction with body weight and current and ideal body image were also assessed. Multiple logistic regression analysis was used to investigate the association of age, educational level and objectively measured BMI with underestimation of body weight status. The prevalence of obesity was 19.9% in men and 29.3% in women. The agreement between objective and self-perceived body weight status was low (Kappa < 0.2). Among overweight and obese persons, 42.1% of men and 44.1% of women were (very) dissatisfied with their body weight status and >99% of obese participants desired to be thinner (ideal body image < current image). Only 4.4% of obese men and 12.3% of obese women perceived their body weight status correctly. Higher age (women), lower educational level (men) and higher BMI (all) were associated with greater underestimation of body weight status. Many older persons misperceive their body weight status. Future actions to improve body weight perception in older persons are necessary to increase the impact of public health campaigns focussing on a healthy body weight in old age.
Dijkstra, S Coosje; Neter, Judith E; van Stralen, Maartje M; Knol, Dirk L; Brouwer, Ingeborg A; Huisman, Martijn; Visser, Marjolein
2015-04-01
We aimed to identify barriers for meeting the fruit, vegetable and fish guidelines in older Dutch adults and to investigate socio-economic status (SES) differences in these barriers. Furthermore, we examined the mediating role of these barriers in the association between SES and adherence to these guidelines. Cross-sectional. Longitudinal Aging Study Amsterdam (LASA), the Netherlands. We used data from 1057 community-dwelling adults, aged 55-85 years. SES was measured by level of education and household income. An FFQ was used to assess dietary intake and barriers were measured with a self-reported lifestyle questionnaire. Overall, 48.9 % of the respondents perceived a barrier to adhere to the fruit guideline, 40.0 % for the vegetable and 51.1 % for the fish guideline. The most frequently perceived barriers to meet the guidelines were the high price of fruit and fish and a poor appetite for vegetables. Lower-SES groups met the guidelines less often and perceived more barriers. The association between income and adherence to the fruit guideline was mediated by 'perceiving any barrier to meet the fruit guideline' and the barrier 'dislike fruit'. The association between income and adherence to the fish guideline was mediated by 'perceiving any barrier to meet the fish guideline' and the barrier 'fish is expensive'. Perceived barriers for meeting the dietary guidelines are common in older adults, especially in lower-SES groups. These barriers and in particular disliking and cost concerns explained the lower adherence to the guidelines for fruit and fish in lower-income groups in older adults.
Dijkstra, S C; Neter, J E; Brouwer, I A; Huisman, M; Visser, M
2014-01-01
Little is known about socio-economic differences in dietary intake among older adults. In this study we describe self-reported dietary adherence to the fruit, vegetables and fish guidelines among older Dutch adults and investigate the independent associations of three socio-economic status (SES) indicators with adherence to these guidelines. Cross sectional data-analyses. The Longitudinal Aging Study Amsterdam (LASA), the Netherlands. 1057 community dwelling older adults, aged 55-85 years. Fruit, vegetable and fish intake was assessed using a short food frequency questionnaire. We measured SES using self-reported levels of education, household income and occupational prestige. 82.5% of the respondents reported to adhere to the fruit guideline, 65.1% to the vegetables guideline, and 31.7% to the fish guideline. After adjustment for confounders and the other two SES indicators, respondents in the lowest education group adhered less often to the vegetables guideline (OR 0.39 (95% CI 0.22-0.70)) compared to those in the highest education group. Respondents in the lowest income group adhered less often to the fruit (0.44 (95 % CI 0.22-0.91) and fish guideline (OR 0.55 (95% CI 0.33-0.91) compared to those in the highest groups. Occupational prestige was not independently associated with adherence any the guidelines. Self-reported adherence to the fruit, vegetables and fish guidelines among older adults can be improved and particularly in those with a low SES. Education and income have independent and unique contributions to dietary adherence. Future research should investigate potential pathways through which these specific SES indicators influence dietary adherence.
Tracers Show Ecohydrologic Influences on Runoff Generation Components at the Qinghai-Tibet Plateau
NASA Astrophysics Data System (ADS)
Liu, H.; Liu, J.; Peng, A.; Gu, W.; Wang, W.; Gao, F.
2017-12-01
In order to learn more about the critical zone ecohydrological dynamics at the Qinghai-Tibet Plateau, a research on the identification of runoff components using tracers was carried out in the Niyang River upstream, a tributary of the Yalung Zangbo River. In this study, four basins with the areas of 182, 216, 243, 213 km2 which are embed in a larger basin were sampled at altitudes between 3667 to 6140 m. The types of land use in the basins mainly include forest land, grassland and glacier. River water and precipitation were sampled monthly, while spring water, glacial ice, soil, and plants were sampled seasonally. Soil and plant samples were taken along the valleys with spatial interval of about 5 km. Soil and plant waters were extracted via cryogenic vacuum distillation method, and then analyzed for isotopes and ions. Preliminary results show that the δD and δ18O of the precipitation water spread approximately along the LMWL of the Namucuo Lake near Lasa city, which varied according to altitude. Stem water δD and δ18O from different elevations and tree species also varied regularly, albeit with no apparent relationship to recent precipitation. It appears that trees utilized fissure water and soil water formed by precipitation. Future efforts will involve (1) an expanded sampling strategy across basins, and (2) a series of experiments on the Hydrohill catchment in the Chuzhou Experimental Facility, whereby an improved understanding of K+, Na+, Ca2+ and Mg2+ export dynamics could aid in much better description and modeling of Niyang River runoff composition and generation. This research is funded by the NSFC project 91647111 and 91647203, which are included in the Runoff Change and its Adaptive Management in the Major Rivers in Southwestern China Major Research Plan.
Michielsen, Marieke; Comijs, Hannie C; Semeijn, Evert J; Beekman, Aartjan T F; Deeg, Dorly J H; Sandra Kooij, J J
2013-06-01
Comorbidity between Attention-Deficit/Hyperactivity Disorder (ADHD) and depression and anxiety disorders in children and young to middle-aged adults has been well documented in the literature. Yet, it is still unknown whether this comorbidity persists into later life. The aim of this study is therefore to examine the comorbidity of anxiety and depressive symptoms among older adults with ADHD. This is examined both using cross-sectional and longitudinal data. Data were used from the Longitudinal Aging Study Amsterdam (LASA). Participants were examined in three measurement cycles, covering six years. They were asked about depressive and anxiety symptoms. To diagnose ADHD, the DIVA 2.0, a diagnostic interview was administered among a subsample (N=231, age 60-94). In addition to the ADHD diagnosis, the association between the sum score of ADHD symptoms and anxiety and depressive symptoms was examined. Data were analyzed by means of linear regression analyses and linear mixed models. Both ADHD diagnosis and more ADHD symptoms were associated with more anxiety and depressive symptoms cross-sectionally as well as longitudinally. The longitudinal analyses showed that respondents with higher scores of ADHD symptoms reported an increase of depressive symptoms over six years whereas respondents with fewer ADHD symptoms remained stable. The ADHD diagnosis is based on the DSM-IVcriteria, which were developed for children, and have not yet been validated in (older) adults. It appears that the association between ADHD and anxiety/depression remains in place with aging. This suggests that, in clinical practice, directing attention to both in concert may be fruitful. Copyright © 2012 Elsevier B.V. All rights reserved.
Methods for validating the presence of and characterizing proteins deposited onto an array
Schabacker, Daniel S.
2010-09-21
A method of determining if proteins have been transferred from liquid-phase protein fractions to an array comprising staining the array with a total protein stain and imaging the array, optionally comparing the staining with a standard curve generated by staining known amounts of a known protein on the same or a similar array; a method of characterizing proteins transferred from liquid-phase protein fractions to an array including staining the array with a post-translational modification-specific (PTM-specific) stain and imaging the array and, optionally, after staining the array with a PTM-specific stain and imaging the array, washing the array, re-staining the array with a total protein stain, imaging the array, and comparing the imaging with the PTM-specific stain with the imaging with the total protein stain; stained arrays; and images of stained arrays.
Replica amplification of nucleic acid arrays
Church, George M.; Mitra, Robi D.
2010-08-31
Disclosed are improved methods of making and using immobilized arrays of nucleic acids, particularly methods for producing replicas of such arrays. Included are methods for producing high density arrays of nucleic acids and replicas of such arrays, as well as methods for preserving the resolution of arrays through rounds of replication. Also included are methods which take advantage of the availability of replicas of arrays for increased sensitivity in detection of sequences on arrays. Improved methods of sequencing nucleic acids immobilized on arrays utilizing single copies of arrays and methods taking further advantage of the availability of replicas of arrays are disclosed. The improvements lead to higher fidelity and longer read lengths of sequences immobilized on arrays. Methods are also disclosed which improve the efficiency of multiplex PCR using arrays of immobilized nucleic acids.
Passive microfluidic array card and reader
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dugan, Lawrence Christopher; Coleman, Matthew A
A microfluidic array card and reader system for analyzing a sample. The microfluidic array card includes a sample loading section for loading the sample onto the microfluidic array card, a multiplicity of array windows, and a transport section or sections for transporting the sample from the sample loading section to the array windows. The microfluidic array card reader includes a housing, a receiving section for receiving the microfluidic array card, a viewing section, and a light source that directs light to the array window of the microfluidic array card and to the viewing section.
NASA Astrophysics Data System (ADS)
Wayth, Randall; Sokolowski, Marcin; Booler, Tom; Crosse, Brian; Emrich, David; Grootjans, Robert; Hall, Peter J.; Horsley, Luke; Juswardy, Budi; Kenney, David; Steele, Kim; Sutinjo, Adrian; Tingay, Steven J.; Ung, Daniel; Walker, Mia; Williams, Andrew; Beardsley, A.; Franzen, T. M. O.; Johnston-Hollitt, M.; Kaplan, D. L.; Morales, M. F.; Pallot, D.; Trott, C. M.; Wu, C.
2017-08-01
We describe the design and performance of the Engineering Development Array, which is a low-frequency radio telescope comprising 256 dual-polarisation dipole antennas working as a phased array. The Engineering Development Array was conceived of, developed, and deployed in just 18 months via re-use of Square Kilometre Array precursor technology and expertise, specifically from the Murchison Widefield Array radio telescope. Using drift scans and a model for the sky brightness temperature at low frequencies, we have derived the Engineering Development Array's receiver temperature as a function of frequency. The Engineering Development Array is shown to be sky-noise limited over most of the frequency range measured between 60 and 240 MHz. By using the Engineering Development Array in interferometric mode with the Murchison Widefield Array, we used calibrated visibilities to measure the absolute sensitivity of the array. The measured array sensitivity matches very well with a model based on the array layout and measured receiver temperature. The results demonstrate the practicality and feasibility of using Murchison Widefield Array-style precursor technology for Square Kilometre Array-scale stations. The modular architecture of the Engineering Development Array allows upgrades to the array to be rolled out in a staged approach. Future improvements to the Engineering Development Array include replacing the second stage beamformer with a fully digital system, and to transition to using RF-over-fibre for the signal output from first stage beamformers.
Joint 3D Inversion of ZTEM Airborne and Ground MT Data with Application to Geothermal Exploration
NASA Astrophysics Data System (ADS)
Wannamaker, P. E.; Maris, V.; Kordy, M. A.
2017-12-01
ZTEM is an airborne electromagnetic (EM) geophysical technique developed by Geotech Inc® where naturally propagated EM fields originating with regional and global lightning discharges (sferics) are measured as a means of inferring subsurface electrical resistivity structure. A helicopter-borne coil platform (bird) measuring the vertical component of magnetic (H) field variations along a flown profile is referenced to a pair of horizontal coils at a fixed location on the ground in order to estimate a tensor H-field transfer function. The ZTEM method is distinct from the traditional magnetotelluric (MT) method in that the electric (E) fields are not considered because of the technological challenge of measuring E-fields in the dielectric air medium. This can lend some non-uniqueness to ZTEM interpretation because a range of conductivity structures in the earth depending upon an assumed background earth resistivity model can fit ZTEM data to within tolerance. MT data do not suffer this particular problem, but they are cumbersome to acquire in their common need for land-based transport often in near-roadless areas and for laying out and digging the electrodes and H coils. The complementary nature of ZTEM and MT logistics and resolution has motivated development of schemes to acquire appropriate amounts of each data type in a single survey and to produce an earth image through joint inversion. In particular, consideration is given to surveys where only sparse MT soundings are needed to drastically reduce the non-uniqueness associated with background uncertainty while straining logistics minimally. Synthetic and field data are analysed using 2D and 3D finite element platforms developed for this purpose. Results to date suggest that indeed dense ZTEM surveys can provide detailed heterogeneous model images with large-scale averages constrained by a modest number of MT soundings. Further research is needed in determining the allowable degree of MT sparseness and the relative weighting of the two data sets in joint inversion.
Positron Annihilation in Thunderstorms Observed by ILDAS.
NASA Astrophysics Data System (ADS)
Kochkin, P.; Sarria, D., Sr.; Van Deursen, A.; de Boer, A.; Bardet, M.; Allasia, C.; Flourens, F.; Østgaard, N.
2017-12-01
Positron clouds within thunderstorms were for the first time reported in 2015 [Dwyer et al. 2015]. The observation was made by the Airborne Detector for Energetic Lightning Emissions (ADELE) in 2009 at 14.1 km altitude. Strong 511 keV line enhancement was recorded synchronously with nearby electrical activity. It lasted at least 0.2 s and was modeled as annihilation from disperse positron cloud more than a kilometer across. Different positron generation mechanisms were proposed in the paper. In January 2016 an Airbus A340 factory test aircraft was intentionally flying through thunderstorms over Northern Australia. The aircraft was equipped with a dedicated in-flight lightning detection system ILDAS (http://ildas.nlr.nl). The system contains two gamma-ray scintillation detectors each with 38x38 mm cylinder LaBr3 crystals. Total 9 video cameras were installed on-board to monitor the outer surfaces. When the aircraft flew at 12 km inside an active thundercloud, the ambient electric field was strong enough to trigger electrical discharges from the sharp edges. One sequence of such discharges was accompanied with enhancements of 511 keV line, each lasted for 0.5 - 1.0 s and total duration over 15 s. The video cameras recorded electrical discharges attached to the aircraft during this process. ILDAS reported brief 100 A current pulses in association with these discharges. Ground-based lightning location networks, i.e. WWLLN and local Australian LIAS, have not detected any sferics from this region. A detailed Geant4 model of the aircraft was created. The model was used to test different production mechanisms for the observed emission. In this presentation we will show a detailed reconstruction ofthe events with precise mapping on infrared cloud snapshot. Videos from the cameras at the positron detection moment will be shown. The results of the Geant4 simulation will be presented and discussed. References: 1. Dwyer, Joseph R., et al. "Positron clouds within thunderstorms." Journal of Plasma Physics 81.4 (2015).
NASA Astrophysics Data System (ADS)
Yamashita, Kozo; Takahashi, Yukihiro; Ohya, Hiroyo; Tsuchiya, Fuminori; Sato, Mitsuteru; Matsumoto, Jun
2013-04-01
Data of lightning discharge has been focused on as an effective way for monitoring and nowcasting of thunderstorm activity which causes extreme weather. Spatial distribution of lightning discharge has been used as a proxy of the presence or absence of deep convection. Latest observation shows that there is extremely huge lightning whose scale is more than hundreds times bigger than that of averaged event. This result indicates that lightning observation should be carried out to estimate not only existence but also scale for quantitative evaluation of atmospheric convection. In this study, lightning observation network in the Maritime Continent is introduced. This network is consisted of the sensors which make possible to measure electromagnetic wave radiated from lightning discharges. Observation frequency is 0.1 - 40 kHz for the measurement of magnetic field and 1 - 40 kHz for that of electric field. Sampling frequency is 100 kHz. Waveform of electromagnetic wave is recorded by personal computer. We have already constructed observation stations at Tainan in Taiwan (23.1N, 121.1E), Saraburi in Thailand (14.5N, 101.0E), and Pontianak in Indonesia (0.0N, 109.4E). Furthermore, we plan to install the monitoring system at Los Banos in Philippines (14.18, 121.25E) and Hanoi in Viet Nam. Data obtained by multipoint observation is synchronized by GPS receiver installed at each station. By using data obtained by this network, location and scale of lightning discharge can be estimated. Location of lightning is determined based on time of arrival method. Accuracy of geolocation could be less than 10km. Furthermore, charge moment is evaluated as a scale of each lightning discharge. It is calculated from electromagnetic waveform in ELF range (3-30 kHz). At the presentation, we will show the initial result about geolocation for source of electromagnetic wave and derivation of charge moment value based on the measurement of ELF and VLF sferics.
Study of Plasma Flow Modes in Imploding Nested Arrays
NASA Astrophysics Data System (ADS)
Mitrofanov, K. N.; Aleksandrov, V. V.; Gritsuk, A. N.; Branitsky, A. V.; Frolov, I. N.; Grabovski, E. V.; Sasorov, P. V.; Ol'khovskaya, O. G.; Zaitsev, V. I.
2018-02-01
Results from experimental studies of implosion of nested wire and fiber arrays at currents of up to 4 MA at the Angara-5-1 facility are presented. Depending on the ratio between the radii of the inner and outer arrays, different modes of the plasma flow in the space between the inner and outer arrays were implemented: the sub-Alfvénic ( V r < V A ) and super-Alfvénic ( V r > V A ) modes and a mode with the formation of the transition shock wave (SW) region between the cascades. By varying the material of the outer array (tungsten wires or kapron fibers), it is shown that the plasma flow mode between the inner and outer arrays depends on the ratio between the plasma production rates ṁ in / ṁ out in the inner and outer arrays. The obtained experimental results are compared with the results of one-dimensional MHD simulation of the plasma flow between the arrays. Stable implosion of the inner array plasma was observed in experiments with combined nested arrays consisting of a fiber outer array and a tungsten inner array. The growth rates of magnetic Rayleigh-Taylor (MRT) instability in the inner array plasma at different numbers of fibers in the outer array and different ratios between the radii of the inner and outer arrays are compared. Suppression of MRT instability during the implosion of the inner array plasma results in the formation of a stable compact Z-pinch and generation of a soft X-ray pulse. A possible scenario of interaction between the plasmas of the inner and outer arrays is offered. The stability of the inner array plasma in the stage of final compression depends on the character of interaction of plasma jets from the outer array with the magnetic field of the inner array.
JPRS Report, Science & Technology, China, High-Performance Computer Systems
1992-10-28
microprocessor array The microprocessor array in the AP85 system is com- posed of 16 completely identical array element micro - processors . Each array element...microprocessors and capable of host machine reading and writing. The memory capacity of the array element micro - processors as a whole can be expanded...transmission functions to carry out data transmission from array element micro - processor to array element microprocessor, from array element
Wind loads on flat plate photovoltaic array fields
NASA Technical Reports Server (NTRS)
Miller, R. D.; Zimmerman, D. K.
1981-01-01
The results of an experimental analysis (boundary layer wind tunnel test) of the aerodynamic forces resulting from winds acting on flat plate photovoltaic arrays are presented. Local pressure coefficient distributions and normal force coefficients on the arrays are shown and compared to theoretical results. Parameters that were varied when determining the aerodynamic forces included tilt angle, array separation, ground clearance, protective wind barriers, and the effect of the wind velocity profile. Recommended design wind forces and pressures are presented, which envelop the test results for winds perpendicular to the array's longitudinal axis. This wind direction produces the maximum wind loads on the arrays except at the array edge where oblique winds produce larger edge pressure loads. The arrays located at the outer boundary of an array field have a protective influence on the interior arrays of the field. A significant decrease of the array wind loads were recorded in the wind tunnel test on array panels located behind a fence and/or interior to the array field compared to the arrays on the boundary and unprotected from the wind. The magnitude of this decrease was the same whether caused by a fence or upwind arrays.
Conformal array design on arbitrary polygon surface with transformation optics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Li, E-mail: dengl@bupt.edu.cn; Hong, Weijun, E-mail: hongwj@bupt.edu.cn; Zhu, Jianfeng
2016-06-15
A transformation-optics based method to design a conformal antenna array on an arbitrary polygon surface is proposed and demonstrated in this paper. This conformal antenna array can be adjusted to behave equivalently as a uniformly spaced linear array by applying an appropriate transformation medium. An typical example of general arbitrary polygon conformal arrays, not limited to circular array, is presented, verifying the proposed approach. In summary, the novel arbitrary polygon surface conformal array can be utilized in array synthesis and beam-forming, maintaining all benefits of linear array.
A Study of Phased Array Antennas for NASA's Deep Space Network
NASA Technical Reports Server (NTRS)
Jamnejad, Vahraz; Huang, John; Cesarone, Robert J.
2001-01-01
In this paper we briefly discuss various options but focus on the feasibility of the phased arrays as a viable option for this application. Of particular concern and consideration will be the cost, reliability, and performance compared to the present 70-meter antenna system, particularly the gain/noise temperature levels in the receive mode. Many alternative phased arrays including planar horizontal arrays, hybrid mechanically/electronically steered arrays, phased array of mechanically steered reflectors, multi-faceted planar arrays, phased array-fed lens antennas, and planar reflect-arrays are compared and their viability is assessed. Although they have many advantages including higher reliability, near-instantaneous beam switching or steering capability, the cost of such arrays is presently prohibitive and it is concluded that the only viable array options at the present are the arrays of a few or many small reflectors. The active planar phased arrays, however, may become feasible options in the next decade and can be considered for deployment in smaller configurations as supplementary options.
Orthogonally referenced integrated ensemble for navigation and timing
Smith, Stephen Fulton; Moore, James Anthony
2013-02-26
An orthogonally referenced integrated ensemble for navigation and timing includes a dual-polyhedral oscillator array, including an outer sensing array of oscillators and an inner clock array of oscillators situated inside the outer sensing array. The outer sensing array includes a first pair of sensing oscillators situated along a first axis of the outer sensing array, a second pair of sensing oscillators situated along a second axis of the outer sensing array, and a third pair of sensing oscillators situated along a third axis of the outer sensing array. The inner clock array of oscillators includes a first pair of clock oscillators situated along a first axis of the inner clock array, a second pair of clock oscillators situated along a second axis of the inner clock array, and a third pair of clock oscillators situated along a third axis of the inner clock array.
Orthogonally referenced integrated ensemble for navigation and timing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Stephen Fulton; Moore, James Anthony
2014-04-01
An orthogonally referenced integrated ensemble for navigation and timing includes a dual-polyhedral oscillator array, including an outer sensing array of oscillators and an inner clock array of oscillators situated inside the outer sensing array. The outer sensing array includes a first pair of sensing oscillators situated along a first axis of the outer sensing array, a second pair of sensing oscillators situated along a second axis of the outer sensing array, and a third pair of sensing oscillators situated along a third axis of the outer sensing array. The inner clock array of oscillators includes a first pair of clockmore » oscillators situated along a first axis of the inner clock array, a second pair of clock oscillators situated along a second axis of the inner clock array, and a third pair of clock oscillators situated along a third axis of the inner clock array.« less
Uniform and nonuniform V-shaped planar arrays for 2-D direction-of-arrival estimation
NASA Astrophysics Data System (ADS)
Filik, T.; Tuncer, T. E.
2009-10-01
In this paper, isotropic and directional uniform and nonuniform V-shaped arrays are considered for azimuth and elevation direction-of-arrival (DOA) angle estimation simultaneously. It is shown that the uniform isotropic V-shaped arrays (UI V arrays) have no angle coupling between the azimuth and elevation DOA. The design of the UI V arrays is investigated, and closed form expressions are presented for the parameters of the UI V arrays and nonuniform V arrays. These expressions allow one to find the isotropic V angle for different array types. The DOA performance of the UI V array is compared with the uniform circular array (UCA) for correlated signals and in case of mutual coupling between array elements. The modeling error for the sensor positions is also investigated. It is shown that V array and circular array have similar robustness for the position errors while the performance of UI V array is better than the UCA for correlated source signals and when there is mutual coupling. Nonuniform V-shaped isotropic arrays are investigated which allow good DOA performance with limited number of sensors. Furthermore, a new design method for the directional V-shaped arrays is proposed. This method is based on the Cramer-Rao Bound for joint estimation where the angle coupling effect between the azimuth and elevation DOA angles is taken into account. The design method finds an optimum angle between the linear subarrays of the V array. The proposed method can be used to obtain directional arrays with significantly better DOA performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bierhuizen, Serge J.; Wang, Nanze Patrick; Eng, Gregory W.
An array of housings with housing bodies and lenses is molded, or an array of housing bodies is molded and bonded with lenses to form an array of housings with housing bodies and lenses. Light-emitting diodes (LEDs) are attached to the housings in the array. An array of metal pads may be bonded to the back of the array or insert molded with the housing array to form bond pads on the back of the housings. The array is singulated to form individual LED modules.
From Vision to Reality: 50 Years of Phased Array Development
2016-09-30
This paper cites the most prominent U.S.-deployed phased array radars as viewed by one phased-array radar advocate. Key words: radar, antenna array...phased array, phased array radar, radar antennas , array I. INTRODUCTION I welcome the opportunity to talk with today’s phased array engineers and...their test site in Fullerton, CA in the mid-1960s and was impressed by the size of the antennas . Eight apertures were deployed on each ship to
Multistatic Array Sampling Scheme for Fast Near-Field Image Reconstruction
2016-01-01
reconstruction. The array topology samples the scene on a regular grid of phase centers, using a tiling of Boundary Arrays (BAs). Following a simple correction...hardware. Fig. 1 depicts the multistatic array topology. As seen, the topology is a tiled arrangement of Boundary Arrays (BAs). The BA is a well-known...sparse array layout comprised of two linear transmit arrays, and two linear receive arrays [6]. A slightly different tiled arrangement of BAs was used
ArrayBridge: Interweaving declarative array processing with high-performance computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xing, Haoyuan; Floratos, Sofoklis; Blanas, Spyros
Scientists are increasingly turning to datacenter-scale computers to produce and analyze massive arrays. Despite decades of database research that extols the virtues of declarative query processing, scientists still write, debug and parallelize imperative HPC kernels even for the most mundane queries. This impedance mismatch has been partly attributed to the cumbersome data loading process; in response, the database community has proposed in situ mechanisms to access data in scientific file formats. Scientists, however, desire more than a passive access method that reads arrays from files. This paper describes ArrayBridge, a bi-directional array view mechanism for scientific file formats, that aimsmore » to make declarative array manipulations interoperable with imperative file-centric analyses. Our prototype implementation of ArrayBridge uses HDF5 as the underlying array storage library and seamlessly integrates into the SciDB open-source array database system. In addition to fast querying over external array objects, ArrayBridge produces arrays in the HDF5 file format just as easily as it can read from it. ArrayBridge also supports time travel queries from imperative kernels through the unmodified HDF5 API, and automatically deduplicates between array versions for space efficiency. Our extensive performance evaluation in NERSC, a large-scale scientific computing facility, shows that ArrayBridge exhibits statistically indistinguishable performance and I/O scalability to the native SciDB storage engine.« less
LED module with high index lens
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bierhuizen, Serge J.; Wang, Nanze Patrick; Eng, Gregory W.
2016-07-05
An array of housings with housing bodies and lenses is molded, or an array of housing bodies is molded and bonded with lenses to form an array of housings with housing bodies and lenses. Light-emitting diodes (LEDs) are attached to the housings in the array. An array of metal pads may be bonded to the back of the array or insert molded with the housing array to form bond pads on the back of the housings. The array is singulated to form individual LED modules.
On analytic design of loudspeaker arrays with uniform radiation characteristics
Aarts; Janssen
2000-01-01
Some notes on analytical derived loudspeaker arrays with uniform radiation characteristics are presented. The array coefficients are derived via analytical means and compared with so-called maximal flat sequences known from telecommunications and information theory. It appears that the newly derived array, i.e., the quadratic phase array, has a higher efficiency than the Bessel array and a flatter response than the Barker array. The method discussed admits generalization to the design of arrays with desired nonuniform radiating characteristics.
Beam wander of coherent and partially coherent Airy beam arrays in a turbulent atmosphere
NASA Astrophysics Data System (ADS)
Wen, Wei; Jin, Ying; Hu, Mingjun; Liu, Xianlong; Cai, Yangjian; Zou, Chenjuan; Luo, Mi; Zhou, Liwang; Chu, Xiuxiang
2018-05-01
The beam wander properties of coherent and partially coherent Airy beam arrays in a turbulent atmosphere are investigated. Based on the analytical results, we find that the beam wander of partially coherent Airy beam arrays is significantly reduced compared with the wander of a partially coherent Airy beam by numerical simulation. Moreover, the beam wander of a 2 × 2 partially coherent Airy beam arrays is significantly reduced compared with the wander of a 2 × 2 partially coherent Gaussian beam arrays. By using the definition of beam wander arrays factor which is used to characterize the capability of beam arrays for reducing the beam wander effect compared with a single beam, we find that the arrays factor of partially coherent Airy beam arrays is significantly less than that of partially coherent Gaussian beam arrays with the same arrays order. We also find that an artificial reduction of the initial coherence of laser arrays can be used to decrease the beam wander effect. These results indicate that the partially coherent Airy beam arrays have potential applications in long-distance free-space optical communications.
Solar cell array design handbook - The principles and technology of photovoltaic energy conversion
NASA Technical Reports Server (NTRS)
Rauschenbach, H. S.
1980-01-01
Photovoltaic solar cell array design and technology for ground-based and space applications are discussed from the user's point of view. Solar array systems are described, with attention given to array concepts, historical development, applications and performance, and the analysis of array characteristics, circuits, components, performance and reliability is examined. Aspects of solar cell array design considered include the design process, photovoltaic system and detailed array design, and the design of array thermal, radiation shielding and electromagnetic components. Attention is then given to the characteristics and design of the separate components of solar arrays, including the solar cells, optical elements and mechanical elements, and the fabrication, testing, environmental conditions and effects and material properties of arrays and their components are discussed.
Measuring the order in ordered porous arrays: can bees outperform humans?
NASA Astrophysics Data System (ADS)
Kaatz, F. H.
2006-08-01
A method that explains how to quantify the amount of order in “ordered” and “highly ordered” porous arrays is derived. Ordered arrays from bee honeycomb and several from the general field of nanoscience are compared. Accurate measures of the order in porous arrays are made using the discrete radial distribution function (RDF). Nanoporous anodized aluminum oxide (AAO), hexagonal arrays from functional materials, hexagonal arrays from nanosphere lithography, and square arrays defined by interference lithography (all taken from the literature) are compared to two-dimensional model systems. These arrays have a range of pore diameters from ˜60 to 180 nm. An order parameter, OP 3 , is defined to evaluate the total order in a given array such that an ideal network has the value of 1. When we compare RDFs of man-made arrays with that of our honeycomb (pore diameter ˜5.89 mm), a locally grown version made by Apis mellifera without the use of foundation comb, we find OP 3 =0.399 for the honeycomb and OP 3 =0.572 for man’s best hexagonal array. The nearest neighbor peaks range from 4.65 for the honeycomb to 5.77 for man’s best hexagonal array, while the ideal hexagonal array has an average of 5.93 nearest neighbors. Ordered arrays are now becoming quite common in nanostructured science, while bee honeycombs were studied for millennia. This paper describes the first method to quantify the order found in these arrays with a simple yet elegant procedure that provides a precise measurement of the order in one array compared to other arrays.
Degree-of-Freedom Strengthened Cascade Array for DOD-DOA Estimation in MIMO Array Systems.
Yao, Bobin; Dong, Zhi; Zhang, Weile; Wang, Wei; Wu, Qisheng
2018-05-14
In spatial spectrum estimation, difference co-array can provide extra degrees-of-freedom (DOFs) for promoting parameter identifiability and parameter estimation accuracy. For the sake of acquiring as more DOFs as possible with a given number of physical sensors, we herein design a novel sensor array geometry named cascade array. This structure is generated by systematically connecting a uniform linear array (ULA) and a non-uniform linear array, and can provide more DOFs than some exist array structures but less than the upper-bound indicated by minimum redundant array (MRA). We further apply this cascade array into multiple input multiple output (MIMO) array systems, and propose a novel joint direction of departure (DOD) and direction of arrival (DOA) estimation algorithm, which is based on a reduced-dimensional weighted subspace fitting technique. The algorithm is angle auto-paired and computationally efficient. Theoretical analysis and numerical simulations prove the advantages and effectiveness of the proposed array structure and the related algorithm.
NASA Astrophysics Data System (ADS)
Pilling, S.; Bergantini, A.
2015-10-01
We investigate the effects produced mainly by broadband soft X-rays up to 2 keV (plus fast (˜keV) photoelectrons and low-energy (˜eV) induced secondary electrons) in the ice mixtures containing H2O:CO2:NH3:SO2 (10:1:1:1) at two different temperatures (50 and 90 K). The experiments are an attempt to simulate the photochemical processes induced by energetic photons in SO2-containing ices present in cold environments in the ices surrounding young stellar objects (YSO) and in molecular clouds in the vicinity of star-forming regions, which are largely illuminated by soft X-rays. The measurements were performed using a high-vacuum portable chamber from the Laboratório de Astroquímica e Astrobiologia (LASA/UNIVAP) coupled to the spherical grating monochromator beamline at the Brazilian Synchrotron Light Source (LNLS) in Campinas, Brazil. In situ analyses were performed by a Fourier transform infrared spectrometer. Sample processing revealed the formation of several organic molecules, including nitriles, acids, and other compounds such as H2O2, H3O+, SO3, CO, and OCN-. The dissociation cross section of parental species was on the order of (2-7) × 10-18 cm2. The ice temperature does not seem to affect the stability of SO2 in the presence of X-rays. Formation cross sections of new species produced were also determined. Molecular half-lives at ices toward YSOs due to the presence of incoming soft X-rays were estimated. The low values obtained employing two different models of the radiation field of YSOs (TW Hydra and typical T-Tauri star) reinforce that soft X-rays are indeed a very efficient source of molecular dissociation in such environments.
Heterogeneous production of proteases from Brazilian clinical isolates of Pseudomonas aeruginosa.
Galdino, Anna Clara M; Viganor, Lívia; Ziccardi, Mariangela; Nunes, Ana Paula F; Dos Santos, Kátia R N; Branquinha, Marta H; Santos, André L S
2017-12-01
Pseudomonas aeruginosa is an important human pathogen that causes severe infections in a wide range of immunosuppressed patients. Herein, we evaluated the proteolytic profiles of 96 Brazilian clinical isolates of P. aeruginosa recovered from diverse anatomical sites. Cell-associated and extracellular proteases were evidenced by gelatin-SDS-PAGE and by the cleavage of soluble gelatin. Elastase was measured by using the peptide substrate N-succinyl-Ala-Ala-Ala-p-nitroanilide. The prevalence of elastase genes (lasA and lasB) was evaluated by PCR. Bacterial extracts were initially applied on gelatin-SDS-PAGE and the results revealed four distinct zymographic profiles as follows: profile I (composed by bands of 145, 118 and 50kDa), profile II (118 and 50kDa), profile III (145kDa) and profile IV (118kDa). All the proteolytic enzymes were inhibited by EDTA, identifying them as metalloproteases. The profile I was the most detected in both cellular (79.2%) and extracellular (84.4%) extracts. Overall, gelatinase and elastase activities measured in the spent culture media were significantly higher (around 2-fold) compared to the cellular extracts and the production level varied according to the site of bacterial isolation. For instance, tracheal secretion isolates produced elevated amount of gelatinase and elastase measured in both cellular and extracellular extracts. The prevalence of elastase genes revealed that 100% isolates were lasB-positive and 85.42% lasA-positive. Some positive/negative correlations were showed concerning the production of gelatinase, elastase, isolation site and antimicrobial susceptibility. The protease production was highly heterogeneous in Brazilian clinical isolates of P. aeruginosa, which corroborates the genomic/metabolic versatility of this pathogen. Copyright © 2016 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.
Martin-Stpaul, Nicolas K; Limousin, Jean-Marc; Vogt-Schilb, Hélène; Rodríguez-Calcerrada, Jesus; Rambal, Serge; Longepierre, Damien; Misson, Laurent
2013-08-01
Like many midlatitude ecosystems, Mediterranean forests will suffer longer and more intense droughts with the ongoing climate change. The responses to drought in long-lived trees differ depending on the time scale considered, and short-term responses are currently better understood than longer term acclimation. We assessed the temporal changes in trees facing a chronic reduction in water availability by comparing leaf-scale physiological traits, branch-scale hydraulic traits, and stand-scale biomass partitioning in the evergreen Quercus ilex across a regional precipitation gradient (long-term changes) and in a partial throughfall exclusion experiment (TEE, medium term changes). At the leaf scale, gas exchange, mass per unit area and nitrogen concentration showed homeostatic responses to drought as they did not change among the sites of the precipitation gradient or in the experimental treatments of the TEE. A similar homeostatic response was observed for the xylem vulnerability to cavitation at the branch scale. In contrast, the ratio of leaf area over sapwood area (LA/SA) in young branches exhibited a transient response to drought because it decreased in response to the TEE the first 4 years of treatment, but did not change among the sites of the gradient. At the stand scale, leaf area index (LAI) decreased, and the ratios of stem SA to LAI and of fine root area to LAI both increased in trees subjected to throughfall exclusion and from the wettest to the driest site of the gradient. Taken together, these results suggest that acclimation to chronic drought in long-lived Q. ilex is mediated by changes in hydraulic allometry that shift progressively from low (branch) to high (stand) organizational levels, and act to maintain the leaf water potential within the range of xylem hydraulic function and leaf photosynthetic assimilation. © 2013 John Wiley & Sons Ltd.
Zhao, Suping; Yu, Ye; Yin, Daiying; He, Jianjun; Liu, Na; Qu, Jianjun; Xiao, Jianhua
2016-01-01
Long-term air quality data with high temporal and spatial resolutions are needed to understand some important processes affecting the air quality and corresponding environmental and health effects. The annual and diurnal variations of each criteria pollutant including PM2.5 and PM10 (particulate matter with aerodynamic diameter less than 2.5 μm and 10 μm, respectively), CO (carbon monoxide), NO2 (nitrogen dioxide), SO2 (sulfur dioxide) and O3 (ozone) in 31 provincial capital cities between April 2014 and March 2015 were investigated by cluster analysis to evaluate current air pollution situations in China, and the cities were classified as severely, moderately, and slightly polluted cities according to the variations. The concentrations of air pollutants in winter months were significantly higher than those in other months with the exception of O3, and the cities with the highest CO and SO2 concentrations were located in northern China. The annual variation of PM2.5 concentrations in northern cities was bimodal with comparable peaks in October 2014 and January 2015, while that in southern China was unobvious with slightly high PM2.5 concentrations in winter months. The concentrations of particulate matter and trace gases from primary emissions (SO2 and CO) and NO2 were low in the afternoon (~16:00), while diurnal variation of O3 concentrations was opposite to that of other pollutants with the highest values in the afternoon. The most polluted cities were mainly located in North China Plain, while slightly polluted cities mostly focus on southern China and the cities with high altitude such as Lasa. This study provides a basis for the formulation of future urban air pollution control measures in China. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
De Araujo Vasconcelos, Fredson; Pilling, Sergio; Boduch, Philippe; Alexandre Souza Bergantini, M.; Ding, M. Jingjie J.; Rothard, Hermann; Robson Rocha, Will
Titan, the largest satellite of Saturn, has an atmosphere mainly made of N_{2} and CH_{4} and includes traces of several simple organic compounds. This atmosphere also partly consists of haze and erosol particles which during the last 4.5 gigayears have been processed by electric discharges, ions, and ionizing photons, being slowly deposited over Titańs surface. In this work, we investigate the possible effects produced by ionizing photons (vacuum ultraviolet and soft X-rays) and cosmic ray analogs (15.7 MeV (16) O (+5) ) on Titan aerosol analogs in an attempt to simulate some prebiotic photochemistry. For photons, the experiments have been performed using a high vacuum portable chamber from the Laboratorio de Astroquimica e Astrobiologia (LASA/UNIVAP) coupled to the the Brazilian Synchrotron Light Source (LNLS) in Campinas, Brazil. For ions, the investigation was performed at the Grand Accelerateur National d’Ions Lourds (GANIL) Caen, France. In-situ sample analyses were performed by a Fourier transform infrared spectrometer at different fluences. During the sample processing, the infrared spectra have presented several new organic molecules, including nitriles, HCN and aromatic CN compounds. The processing of the sample by fast ions has enhanced the formation of daughter species in the Titan aerosol sample when compared with the products from the employing VUV and soft X-rays photons. The destruction cross section of the parent species was determined, as well as, the formation cross section for some selected daughter species. Molecular Half-lives were extrapolated to the Titańs environment. This investigation confirms previous results which showed that the organic chemistry on frozen moons inside Solar system can be very complex and extremely rich in prebiotic compounds. Authors would like to tanks the agencies FAPESP (JP-2009/18304-0), CAPES-Cofecub (569/2007), INCT-A and CNPq for the financial support.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kay, Randolph R; Campbell, David V; Shinde, Subhash L
A modular, scalable focal plane array is provided as an array of integrated circuit dice, wherein each die includes a given amount of modular pixel array circuitry. The array of dice effectively multiplies the amount of modular pixel array circuitry to produce a larger pixel array without increasing die size. Desired pixel pitch across the enlarged pixel array is preserved by forming die stacks with each pixel array circuitry die stacked on a separate die that contains the corresponding signal processing circuitry. Techniques for die stack interconnections and die stack placement are implemented to ensure that the desired pixel pitchmore » is preserved across the enlarged pixel array.« less
Feasibility Study of Solar Dome Encapsulation of Photovoltaic Arrays
NASA Technical Reports Server (NTRS)
1978-01-01
The technical and economic advantages of using air-supported plastic enclosures to protect flat plate photovoltaic arrays are described. Conceptual designs for a fixed, latitude-tilt array and a fully tracking array were defined. Detailed wind loads and strength analyses were performed for the fixed array. Detailed thermal and power output analyses provided array performance for typical seasonal and extreme temperature conditions. Costs of each design as used in a 200 MWe central power station were defined from manufacturing and material cost estimates. The capital cost and cost of energy for the enclosed fixed-tilt array were lower than for the enclosed tracking array. The enclosed fixed-tilt array capital investment was 38% less, and the levelized bus bar energy cost was 26% less than costs for a conventional, glass-encapsulated array design. The predicted energy cost for the enclosed fixed array was 79 mills/kW-h for direct current delivered to the power conditioning units.
Kilopixel Pop-Up Bolometer Arrays for the Atacama Cosmology Telescope
NASA Technical Reports Server (NTRS)
Chervenak, J. A.; Wollack, E.; Henry, R.; Moseley, S. H.; Niemack, M.; Staggs, S.; Page, L.; Doriese, R.; Hilton, G. c.; Irwin, K. D.
2007-01-01
The recently deployed Atacama Cosmology Telescope (ACT) anticipates first light on its kilopixel array of close-packed transition-edge-sensor bolometers in November of 2007. The instrument will represent a full implementation of the next-generation, large format arrays for millimeter wave astronomy that use superconducting electronics and detectors. Achieving the practical construction of such an array is a significant step toward producing advanced detector arrays for future SOFIA instruments. We review the design considerations for the detector array produced for the ACT instrument. The first light imager consists of 32 separately instrumented 32-channel pop-up bolometer arrays (to create a 32x32 filled array of mm-wave sensors). Each array is instrumented with a 32-channel bias resistor array, Nyquist filter array, and time-division SQUID multiplexer. Each component needed to be produced in relatively large quantities with suitable uniformity to meet tolerances for array operation. An optical design was chosen to maximize absorption at the focal plane while mitigating reflections and stray light. The pop-up geometry (previously implemented with semiconducting detectors and readout on the SHARC II and HAWC instruments) enabled straightforward interface of the superconducting bias and readout circuit with the 2D array of superconducting bolometers. The array construction program balanced fabrication challenges with assembly challenges to deliver the instrument in a timely fashion. We present some of the results of the array build and characterization of its performance.
Simm, Andrew O; Banks, Craig E; Ward-Jones, Sarah; Davies, Trevor J; Lawrence, Nathan S; Jones, Timothy G J; Jiang, Li; Compton, Richard G
2005-09-01
A novel boron-doped diamond (BDD) microelectrode array is characterised with electrochemical and atomic force microscopic techniques. The array consists of 40 micron-diameter sized BDD discs which are separated by 250 microns from their nearest neighbour in a hexagonal arrangement. The conducting discs can be electroplated to produce arrays of copper, silver or gold for analytical purposes in addition to operating as an array of BDD-microelectrodes. Proof-of-concept is shown for four separate examples; a gold plated array for arsenic detection, a copper plated array for nitrate analysis, a silver plated array for hydrogen peroxide monitoring and last, cathodic stripping voltammetry for lead at the bare BDD-array.
Deployment Methods for an Origami-Inspired Rigid-Foldable Array
NASA Technical Reports Server (NTRS)
Zirbel, Shannon A.; Trease, Brian P.; Magleby, Spencer P.; Howell, Larry L.
2014-01-01
The purpose of this work is to evaluate several deployment methods for an origami-inspired solar array at two size scales: 25-meter array and CubeSat array. The array enables rigid panel deployment and introduces new concepts for actuating CubeSat deployables. The design for the array was inspired by the origami flasher model (Lang, 1997; Shafer, 2001). Figure 1 shows the array prototyped from Garolite and Kapton film at the CubeSat scale. Prior work demonstrated that rigid panels like solar cells could successfully be folded into the final stowed configuration without requiring the panels to flex (Zirbel, Lang, Thomson, & al., 2013). The design of the array is novel and enables efficient use of space. The array can be wrapped around the central bus of the spacecraft in the case of the large array, or can accommodate storage of a small instrument payload in the case of the CubeSat array. The radial symmetry of this array around the spacecraft is ideally suited for spacecraft that need to spin. This work focuses on several actuation methods for a one-time deployment of the array. The array is launched in its stowed configuration and it will be deployed when it is in space. Concepts for both passive and active actuation were considered.
NASA Astrophysics Data System (ADS)
Bolarinwa, O. J.; Langston, C. A.; Sweet, J. R.; Anderson, K. R.; Woodward, R.
2017-12-01
A 6 km aperture regional array in the Golay 3x6 configuration was fielded as part of the IRIS Community Wavefields Experiment near Enid, Oklahoma from June 26 through November 12, 2016. The array consisted of 18 broadband CMG-3T seismometers deployed using a PASSCAL insulated vault design and RT130 data recorders. The Golay geometry is unusual in that it features 6 tripartite arrays in an open arrangement. Spacing and orientation of each tripartite array is such that the array uniformly samples the wavefield in space as determined from the co-array diagram even though the interior of the array configuration contains no seismic stations. The short wavelength performance of this array requires a high degree of phase correlation across its entire aperture, a characteristic that has been difficult to achieve for other regional array designs because of velocity heterogeneity in the earth. Located within an area of high regional seismicity, the IRIS experiment offered an opportunity to examine the slowness-frequency performance of a real-world Golay 3x6 array that was subject to constraints on land usage during deployment. Individual tripartite arrays fit well within a land survey quarter section but it proved difficult to match the ideal spacing between each subarray because of permitting problems. Nevertheless, these unavoidable geometry perturbations caused only minor changes to the theoretical array response. More surprisingly, observations of high frequency regional P and S phases show very high correlation over the array aperture that gives rise to precise array responses that are close to theoretical. Both the array geometry and relatively homogeneous structure under the array produces an exceptional facility that can be used for high-resolution studies of regional seismic waves.
Scaria, Joy; Sreedharan, Aswathy; Chang, Yung-Fu
2008-01-01
Background Microarrays are becoming a very popular tool for microbial detection and diagnostics. Although these diagnostic arrays are much simpler when compared to the traditional transcriptome arrays, due to the high throughput nature of the arrays, the data analysis requirements still form a bottle neck for the widespread use of these diagnostic arrays. Hence we developed a new online data sharing and analysis environment customised for diagnostic arrays. Methods Microbial Diagnostic Array Workstation (MDAW) is a database driven application designed in MS Access and front end designed in ASP.NET. Conclusion MDAW is a new resource that is customised for the data analysis requirements for microbial diagnostic arrays. PMID:18811969
Scaria, Joy; Sreedharan, Aswathy; Chang, Yung-Fu
2008-09-23
Microarrays are becoming a very popular tool for microbial detection and diagnostics. Although these diagnostic arrays are much simpler when compared to the traditional transcriptome arrays, due to the high throughput nature of the arrays, the data analysis requirements still form a bottle neck for the widespread use of these diagnostic arrays. Hence we developed a new online data sharing and analysis environment customised for diagnostic arrays. Microbial Diagnostic Array Workstation (MDAW) is a database driven application designed in MS Access and front end designed in ASP.NET. MDAW is a new resource that is customised for the data analysis requirements for microbial diagnostic arrays.
Heidelberger, Philip; Steinmacher-Burow, Burkhard
2015-01-06
According to one embodiment, a method for implementing an array-based queue in memory of a memory system that includes a controller includes configuring, in the memory, metadata of the array-based queue. The configuring comprises defining, in metadata, an array start location in the memory for the array-based queue, defining, in the metadata, an array size for the array-based queue, defining, in the metadata, a queue top for the array-based queue and defining, in the metadata, a queue bottom for the array-based queue. The method also includes the controller serving a request for an operation on the queue, the request providing the location in the memory of the metadata of the queue.
Study of array plasma antenna parameters
NASA Astrophysics Data System (ADS)
Kumar, Rajneesh; Kumar, Prince
2018-04-01
This paper is aimed to investigate the array plasma antenna parameters to help the optimization of an array plasma antenna. Single plasma antenna is transformed into array plasma antenna by changing the operating parameters. The re-configurability arises in the form of striations, due to transverse bifurcation of plasma column by changing the operating parameters. Each striation can be treated as an antenna element and system performs like an array plasma antenna. In order to achieve the goal of this paper, three different configurations of array plasma antenna (namely Array 1, Array 2 and Array 3) are simulated. The observations are made on variation in antenna parameters like resonance frequency, radiation pattern, directivity and gain with variation in length and number of antenna elements for each array plasma antenna. Moreover experiments are also performed and results are compared with simulation. Further array plasma antenna parameters are also compared with monopole plasma antenna parameters. The study of present paper invoke the array plasma antenna can be applied for steering and controlling the strength of Wi-Fi signals as per requirement.
Planar waveguide integrated spatial filter array
NASA Astrophysics Data System (ADS)
Ai, Jun; Dimov, Fedor; Lyon, Richard; Rakuljic, Neven; Griffo, Chris; Xia, Xiaowei; Arik, Engin
2013-09-01
An innovative integrated spatial filter array (iSFA) was developed for the nulling interferometer for the detection of earth-like planets and life beyond our solar system. The coherent iSFA comprised a 2D planar lightwave circuit (PLC) array coupled with a pair of 2D lenslet arrays in a hexagonal grid to achieve the optimum fill factor and throughput. The silica-on-silicon waveguide mode field diameter and numerical aperture (NA) were designed to match with the Airy disc and NA of the microlens for optimum coupling. The lenslet array was coated with a chromium pinhole array at the focal plane to pass the single-mode waveguide but attenuate the higher modes. We assembled a 32 by 30 array by stacking 32 chips that were produced by photolithography from a 6-in. silicon wafer. Each chip has 30 planar waveguides. The PLC array is inherently polarization-maintaining (PM) and requires much less alignment in contrast to a fiber array, where each PM fiber must be placed individually and oriented correctly. The PLC array offers better scalability than the fiber bundle array for large arrays of over 1,000 waveguides.
Intermite, Giuseppe; McCarthy, Aongus; Warburton, Ryan E; Ren, Ximing; Villa, Federica; Lussana, Rudi; Waddie, Andrew J; Taghizadeh, Mohammad R; Tosi, Alberto; Zappa, Franco; Buller, Gerald S
2015-12-28
Single-photon avalanche diode (SPAD) detector arrays generally suffer from having a low fill-factor, in which the photo-sensitive area of each pixel is small compared to the overall area of the pixel. This paper describes the integration of different configurations of high efficiency diffractive optical microlens arrays onto a 32 × 32 SPAD array, fabricated using a 0.35 µm CMOS technology process. The characterization of SPAD arrays with integrated microlens arrays is reported over the spectral range of 500-900 nm, and a range of f-numbers from f/2 to f/22. We report an average concentration factor of 15 measured for the entire SPAD array with integrated microlens array. The integrated SPAD and microlens array demonstrated a very high uniformity in overall efficiency.
Liu, Changgeng; Djuth, Frank T.; Zhou, Qifa; Shung, K. Kirk
2014-01-01
Several micromachining techniques for the fabrication of high-frequency piezoelectric composite ultrasonic array transducers are described in this paper. A variety of different techniques are used in patterning the active piezoelectric material, attaching backing material to the transducer, and assembling an electronic interconnection board for transmission and reception from the array. To establish the feasibility of the process flow, a hybrid test ultrasound array transducer consisting of a 2-D array having an 8 × 8 element pattern and a 5-element annular array was designed, fabricated, and assessed. The arrays are designed for a center frequency of ~60 MHz. The 2-D array elements are 105 × 105 μm in size with 5-μm kerfs between elements. The annular array surrounds the square 2-D array and provides the option of transmitting from the annular array and receiving with the 2-D array. Each annular array element has an area of 0.71 mm2 with a 16-μm kerf between elements. The active piezoelectric material is (1 − x) Pb(Mg1/3Nb2/3)O3−xPbTiO3 (PMN-PT)/epoxy 1–3 composite with a PMN-PT pillar lateral dimension of 8 μm and an average gap width of ~4 μm, which was produced by deep reactive ion etching (DRIE) dry etching techniques. A novel electric interconnection strategy for high-density, small-size array elements was proposed. After assembly, the array transducer was tested and characterized. The capacitance, pulse–echo responses, and crosstalk were measured for each array element. The desired center frequency of ~60 MHz was achieved and the −6-dB bandwidth of the received signal was ~50%. At the center frequency, the crosstalk between adjacent 2-D array elements was about −33 dB. The techniques described herein can be used to build larger arrays containing smaller elements. PMID:24297027
Effects of laser source parameters on the generation of narrow band and directed laser ultrasound
NASA Technical Reports Server (NTRS)
Spicer, James B.; Deaton, John B., Jr.; Wagner, James W.
1992-01-01
Predictive and prescriptive modeling of laser arrays is performed to demonstrate the effects of the extension of array elements on laser array performance. For a repetitively pulsed laser source (the temporal laser array), efficient frequency compression is best achieved by detecting longitudinal waves off-epicenter in plates where the source size and shape directly influence the longitudinal wave shape and duration; the longitudinal array may be tailored for a given repetition frequency to yield efficient overtone energy compression into the fundamental frequency band. For phased arrays, apparent array directivity is heavily influenced by array element size.
NASA Technical Reports Server (NTRS)
Costogue, E. N.; Young, L. E.; Brandhorst, H. W., Jr.
1978-01-01
Development efforts are reported in detail for: (1) a lightweight solar array system for solar electric propulsion; (2) a high efficiency thin silicon solar cell; (3) conceptual design of 200 W/kg solar arrays; (4) fluorocarbon encapsulation for silicon solar cell array; and (5) technology assessment of concentrator solar arrays.
Highly Directive Array Aperture
2013-02-13
generally to sonar arrays with acoustic discontinuities, and, more particularly, to increasing the directivity gain of a sonar array aperture by...sought by sonar designers. [0005] The following patents and publication show various types of acoustic arrays with coatings and discontinuities that...discloses a sonar array uses multiple acoustically transparent layers. One layer is a linear array of acoustic sensors that is substantially
Could the IMS Infrasound Stations Support a Global Network of Small Aperture Seismic Arrays?
NASA Astrophysics Data System (ADS)
J, Gibbons, Steven; Kværna, Tormod; Mykkeltveit, Svein
2015-04-01
The infrasound stations of the International Monitoring System are arrays consisting of up to 15 sites and with apertures of up to 3 km. The arrays are distributed remarkably uniformly over the globe and provide excellent coverage of South America, Africa, and Antarctica. This is to say that there are many infrasound arrays in regions many thousands of kilometers from the closest seismic array. Several infrasound arrays are in the immediate vicinity of existing 3-component seismic stations and these provide us with examples of how typical seismic signals look at these locations. We can make idealized estimates of the predicted performance of seismic arrays, consisting of seismometers at each site of the infrasound arrays, by duplicating the signals from the 3-C stations at all sites of the array. However, the true performance of seismic arrays at these sites will depend both upon Signal-to-Noise Ratios of seismic signals and the coherence of both signal and noise between sensors. These properties can only be determined experimentally. Recording seismic data of sufficient quality at many of these arrays may require borehole deployments since the microbarometers in the infrasound arrays are often situated in vaults placed in soft sediments. The geometries of all the current IMS infrasound arrays are examined and compared and we demonstrate that, from a purely geometrical perspective, essentially all the array configurations would provide seismic arrays with acceptable slowness resolution for both regional and teleseismic phase arrivals. Seismic arrays co-located with the infrasound arrays in many regions would likely enhance significantly the seismic monitoring capability in parts of the world where only 3-component stations are currently available. Co-locating seismic and infrasound sensors would facilitate the development of seismic arrays that share the infrastructure of the infrasound arrays, reducing the development and operational costs. Hosting countries might find such added capabilities valuable from a national perspective. In addition, the seismic recordings may also help to identify the sources of infrasound signals with consequences for improved event screening and evaluating models of infrasound propagation and atmospheric properties.
Nguyen, Yann; Bernardeschi, Daniele; Kazmitcheff, Guillaume; Miroir, Mathieu; Vauchel, Thomas; Ferrary, Evelyne; Sterkers, Olivier
2015-02-01
Loading otoprotective drug into cochlear implant might change its mechanical properties, thus compromising atraumatic insertion. This study evaluated the effect of incorporation of dexamethasone (DXM) in the silicone of cochlear implant arrays on insertion forces. Local administration of DXM with embedded array can potentially reduce inflammation and fibrosis after cochlear implantation procedure to improve hearing preservation and reduce long-term impedances. Four models of arrays have been tested: 0.5-mm distal diameter array (n = 5) used as a control, drug-free 0.4-mm distal diameter array (n = 5), 0.4-mm distal diameter array with 1% eluded DXM silicone (n = 5), and 0.4-mm distal diameter array with 10% eluded DXM silicone (n = 5). Via a motorized insertion bench, each array has been inserted into an artificial scala tympani model. The forces were recorded by a 6-axis force sensor. Each array was tested seven times for a total number of 140 insertions. During the first 10-mm insertion, no difference between the four models was observed. From 10- to 24-mm insertion, the 0.5-mm distal diameter array presented higher insertion forces than the drug-free 0.4-mm distal diameter arrays, with or without DXM. Friction forces for drug-free 0.4-mm distal diameter array and 0.4-mm distal diameter DXM eluded arrays were similar on all insertion lengths. Incorporation of DXM in silicone for cochlear implant design does not change electrode array insertion forces. It does not raise the risk of trauma during array insertion, making it suitable for long-term in situ administration to the cochlea.
Standard, Random, and Optimum Array conversions from Two-Pole resistance data
Rucker, D. F.; Glaser, Danney R.
2014-09-01
We present an array evaluation of standard and nonstandard arrays over a hydrogeological target. We develop the arrays by linearly combining data from the pole-pole (or 2-pole) array. The first test shows that reconstructed resistances for the standard Schlumberger and dipoledipole arrays are equivalent or superior to the measured arrays in terms of noise, especially at large geometric factors. The inverse models for the standard arrays also confirm what others have presented in terms of target resolvability, namely the dipole-dipole array has the highest resolution. In the second test, we reconstruct random electrode combinations from the 2-pole data segregated intomore » inner, outer, and overlapping dipoles. The resistance data and inverse models from these randomized arrays show those with inner dipoles to be superior in terms of noise and resolution and that overlapping dipoles can cause model instability and low resolution. Finally, we use the 2-pole data to create an optimized array that maximizes the model resolution matrix for a given electrode geometry. The optimized array produces the highest resolution and target detail. Thus, the tests demonstrate that high quality data and high model resolution can be achieved by acquiring field data from the pole-pole array.« less
The SCARLET{trademark} array for high power GEO satellites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spence, B.R.; Jones, P.A.; Eskenazi, M.I.
1997-12-31
The GEO satellite market is demanding increasingly capable spacecraft which, in turn, drives commercial spacecraft manufacturers to require significantly higher power solar arrays. As satellite capability increases the demand for high power array systems which are both cost and performance competitive becomes more crucial. Conventional rigid panel planar arrays, although suitable in the past, negatively impact spacecraft competitiveness for these new applications. The Solar Concentrator Array with Refractive Linear Element Technology (SCARLET{trademark}) represents an economically attractive solution for meeting these new high power requirements. When compared to conventional planar arrays, SCARLET provides substantially lower cost and higher deployed stiffness, competitivemore » mass, better producibility, and affordable use of high efficiency multijunction cells. This paper compares cost/performance characteristics of the SCARLET array to conventional planar arrays for high power GEO spacecraft applications. High power SCARLET array configurations are described, and inherent spacecraft and array level cost/performance benefits are presented.« less
Resolution of Port/Starboard Ambiguity Using a Linear Array of Triplets and a Twin-Line Planar Array
2016-06-01
STARBOARD AMBIGUITY USING A LINEAR ARRAY OF TRIPLETS AND A TWIN- LINE PLANAR ARRAY by Stilson Veras Cardoso June 2016 Thesis Advisor...OF TRIPLETS AND A TWIN-LINE PLANAR ARRAY 5. FUNDING NUMBERS 6. AUTHOR(S) Stilson Veras Cardoso 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES...A LINEAR ARRAY OF TRIPLETS AND A TWIN-LINE PLANAR ARRAY Stilson Veras Cardoso Civilian, Brazilian Navy B.S., University of Brasília, 1993
Spacecraft level impacts of integrating concentrator solar arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, D.M.; Piszczor, M.F. Jr.
1994-12-31
The paper describes the results of a study to determine the impacts of integrating concentrator solar arrays on spacecraft design and performance. First, concentrator array performance is summarized for the AEC-Able/Entech SCARLET array, the Ioffe refractive and reflective concepts being developed in Russia, the Martin Marietta SLATS system, and other concentrator concepts that have been designed or developed. Concentrator array performance is compared to rigid and flex blanket planar array technologies at the array level. Then other impacts on the spacecraft are quantified. Conclusions highlight the most important results as they relate to recommended approaches in developing concentrator arrays formore » satellites.« less
Complementary periodic diffracting metallic nanohole and nanodipole arrays in the mid-infrared range
NASA Astrophysics Data System (ADS)
Ye, Yong-Hong; Zhang, Jia-Yu; Feng Ma, Hui; Yao, Jie; Wang, Xudong
2012-10-01
Metallic nanohole arrays and metallic nanodipole arrays are fabricated and experimentally characterized. A complementary response is observed in both transmission and reflection. For the metallic nanohole arrays, a peak (dip) in transmission (reflection) is observed at resonance whereas the metallic nanodipole arrays display a dip (peak) in transmission (reflection). The resonant frequency of both the metallic nanohole arrays and the nanodipole arrays depends on the dipole arm length, the incident angle, and the period. The resonant position of the nanohole arrays matches that of its complement, which means that Babinet's principle nearly holds for these structures in the mid-infrared region.
ArrayInitiative - a tool that simplifies creating custom Affymetrix CDFs
2011-01-01
Background Probes on a microarray represent a frozen view of a genome and are quickly outdated when new sequencing studies extend our knowledge, resulting in significant measurement error when analyzing any microarray experiment. There are several bioinformatics approaches to improve probe assignments, but without in-house programming expertise, standardizing these custom array specifications as a usable file (e.g. as Affymetrix CDFs) is difficult, owing mostly to the complexity of the specification file format. However, without correctly standardized files there is a significant barrier for testing competing analysis approaches since this file is one of the required inputs for many commonly used algorithms. The need to test combinations of probe assignments and analysis algorithms led us to develop ArrayInitiative, a tool for creating and managing custom array specifications. Results ArrayInitiative is a standalone, cross-platform, rich client desktop application for creating correctly formatted, custom versions of manufacturer-provided (default) array specifications, requiring only minimal knowledge of the array specification rules and file formats. Users can import default array specifications, import probe sequences for a default array specification, design and import a custom array specification, export any array specification to multiple output formats, export the probe sequences for any array specification and browse high-level information about the microarray, such as version and number of probes. The initial release of ArrayInitiative supports the Affymetrix 3' IVT expression arrays we currently analyze, but as an open source application, we hope that others will contribute modules for other platforms. Conclusions ArrayInitiative allows researchers to create new array specifications, in a standard format, based upon their own requirements. This makes it easier to test competing design and analysis strategies that depend on probe definitions. Since the custom array specifications are easily exported to the manufacturer's standard format, researchers can analyze these customized microarray experiments using established software tools, such as those available in Bioconductor. PMID:21548938
Improved Modeling of Open Waveguide Aperture Radiators for use in Conformal Antenna Arrays
NASA Astrophysics Data System (ADS)
Nelson, Gregory James
Open waveguide apertures have been used as radiating elements in conformal arrays. Individual radiating element model patterns are used in constructing overall array models. The existing models for these aperture radiating elements may not accurately predict the array pattern for TEM waves which are not on boresight for each radiating element. In particular, surrounding structures can affect the far field patterns of these apertures, which ultimately affects the overall array pattern. New models of open waveguide apertures are developed here with the goal of accounting for the surrounding structure effects on the aperture far field patterns such that the new models make accurate pattern predictions. These aperture patterns (both E plane and H plane) are measured in an anechoic chamber and the manner in which they deviate from existing model patterns are studied. Using these measurements as a basis, existing models for both E and H planes are updated with new factors and terms which allow the prediction of far field open waveguide aperture patterns with improved accuracy. These new and improved individual radiator models are then used to predict overall conformal array patterns. Arrays of open waveguide apertures are constructed and measured in a similar fashion to the individual aperture measurements. These measured array patterns are compared with the newly modeled array patterns to verify the improved accuracy of the new models as compared with the performance of existing models in making array far field pattern predictions. The array pattern lobe characteristics are then studied for predicting fully circularly conformal arrays of varying radii. The lobe metrics that are tracked are angular location and magnitude as the radii of the conformal arrays are varied. A constructed, measured array that is close to conforming to a circular surface is compared with a fully circularly conformal modeled array pattern prediction, with the predicted lobe angular locations and magnitudes tracked, plotted and tabulated. The close match between the patterns of the measured array and the modeled circularly conformal array verifies the validity of the modeled circularly conformal array pattern predictions.
(abstract) Scaling Nominal Solar Cell Impedances for Array Design
NASA Technical Reports Server (NTRS)
Mueller, Robert L; Wallace, Matthew T.; Iles, Peter
1994-01-01
This paper discusses a task the objective of which is to characterize solar cell array AC impedance and develop scaling rules for impedance characterization of large arrays by testing single solar cells and small arrays. This effort is aimed at formulating a methodology for estimating the AC impedance of the Mars Pathfinder (MPF) cruise and lander solar arrays based upon testing single cells and small solar cell arrays and to create a basis for design of a single shunt limiter for MPF power control of flight solar arrays having very different inpedances.
NASA Astrophysics Data System (ADS)
Il’ina, M. V.; Konshin, A. A.; Il’in, O. I.; Rudyk, N. N.; Fedotov, A. A.; Ageev, O. A.
2018-03-01
The results of experimental studies of adhesion of carbon nanotube (CNT) arrays with different geometric parameters and orientations using atomic-force microscopy are presented. The adhesion values of CNT arrays were determined, which were from 82 to 1315 nN depending on the parameters of the array. As a result, it was established that the adhesion of a CNT array increases with an increase in branching and disorientation of the array, as well as with the growth of the aspect ratio of CNTs in the array.
Analysis of an integrated 8-channel Tx/Rx body array for use as a body coil in 7-Tesla MRI
NASA Astrophysics Data System (ADS)
Orzada, Stephan; Bitz, Andreas K.; Johst, Sören; Gratz, Marcel; Völker, Maximilian N.; Kraff, Oliver; Abuelhaija, Ashraf; Fiedler, Thomas M.; Solbach, Klaus; Quick, Harald H.; Ladd, Mark E.
2017-06-01
Object In this work an 8-channel array integrated into the gap between the gradient coil and bore liner of a 7-Tesla whole-body magnet is presented that would allow a workflow closer to that of systems at lower magnetic fields that have a built-in body coil; this integrated coil is compared to a local 8-channel array built from identical elements placed directly on the patient. Materials and Methods SAR efficiency and the homogeneity of the right-rotating B1 field component (B_1^+) are investigated numerically and compared to the local array. Power efficiency measurements are performed in the MRI System. First in vivo gradient echo images are acquired with the integrated array. Results While the remote array shows a slightly better performance in terms of B_1^+ homogeneity, the power efficiency and the SAR efficiency are inferior to those of the local array: the transmit voltage has to be increased by a factor of 3.15 to achieve equal flip angles in a central axial slice. The g-factor calculations show a better parallel imaging g-factor for the local array. The field of view of the integrated array is larger than that of the local array. First in vivo images with the integrated array look subjectively promising. Conclusion Although some RF performance parameters of the integrated array are inferior to a tight-fitting local array, these disadvantages might be compensated by the use of amplifiers with higher power and the use of local receive arrays. In addition, the distant placement provides the potential to include more elements in the array design.
Boutte, Ronald W; Blair, Steve
2016-12-01
Borrowing from the wafer-level fabrication techniques of the Utah Electrode Array, an optical array capable of delivering light for neural optogenetic studies is presented in this paper: the Utah Optrode Array. Utah Optrode Arrays are micromachined out of sheet soda-lime-silica glass using standard backend processes of the semiconductor and microelectronics packaging industries such as precision diamond grinding and wet etching. 9 × 9 arrays with 1100μ m × 100μ m optrodes and a 500μ m back-plane are repeatably reproduced on 2i n wafers 169 arrays at a time. This paper describes the steps and some of the common errors of optrode fabrication.
A Phased Array Coil for Human Cardiac Imaging
Constantinides, Chris D.; Westgate, Charles R.; O'Dell, Walter G.; Zerhouni, Elias A.; McVeigh, Elliot R.
2007-01-01
A prototype cardiac phased array receiver coil was constructed that comprised a cylindrical array and a separate planar array. Both arrays had two coil loops with the same coil dimensions. Data acquisition with the cylindrical array placed on the human chest, and the planar array placed under the back, yielded an overall enhancement of the signal-to-noise ratio (SNR) over the entire heart by a factor of 1.1–2.85 over a commercially available flexible coil and a commercially available four-loop planar phased array coil. This improvement in SNR can be exploited in cardiac imaging to increase the spatial resolution and reduce the image acquisition time. PMID:7674903
Deng, Wenjuan; Peng, Xincun; Zou, Jijun; Wang, Weilu; Liu, Yun; Zhang, Tao; Zhang, Yijun; Zhang, Daoli
2017-11-10
Two types of negative electron affinity gallium arsenide (GaAs) wire array photocathodes were fabricated by reactive ion etching and inductively coupled plasma etching of bulk GaAs material. High density GaAs wire arrays with high periodicity and good morphology were verified using scanning electron microscopy, and photoluminescence spectra confirmed the wire arrays had good crystalline quality. Reflection spectra showed that circular GaAs wire arrays had superior light trapping compared with square ones. However, after Cs/O activation, the square GaAs wire array photocathodes showed enhanced spectral response. The integral sensitivity of the square wire array photocathodes was approximately 2.8 times that of the circular arrays.
Two-dimensional radiant energy array computers and computing devices
NASA Technical Reports Server (NTRS)
Schaefer, D. H.; Strong, J. P., III (Inventor)
1976-01-01
Two dimensional digital computers and computer devices operate in parallel on rectangular arrays of digital radiant energy optical signal elements which are arranged in ordered rows and columns. Logic gate devices receive two input arrays and provide an output array having digital states dependent only on the digital states of the signal elements of the two input arrays at corresponding row and column positions. The logic devices include an array of photoconductors responsive to at least one of the input arrays for either selectively accelerating electrons to a phosphor output surface, applying potentials to an electroluminescent output layer, exciting an array of discrete radiant energy sources, or exciting a liquid crystal to influence crystal transparency or reflectivity.
Pulsars Probe the Low-Frequency Gravitational Sky: Pulsar Timing Arrays Basics and Recent Results
NASA Astrophysics Data System (ADS)
Tiburzi, Caterina
2018-03-01
Pulsar Timing Array experiments exploit the clock-like behaviour of an array of millisecond pulsars, with the goal of detecting low-frequency gravitational waves. Pulsar Timing Array experiments have been in operation over the last decade, led by groups in Europe, Australia, and North America. These experiments use the most sensitive radio telescopes in the world, extremely precise pulsar timing models and sophisticated detection algorithms to increase the sensitivity of Pulsar Timing Arrays. No detection of gravitational waves has been made to date with this technique, but Pulsar Timing Array upper limits already contributed to rule out some models of galaxy formation. Moreover, a new generation of radio telescopes, such as the Five hundred metre Aperture Spherical Telescope and, in particular, the Square Kilometre Array, will offer a significant improvement to the Pulsar Timing Array sensitivity. In this article, we review the basic concepts of Pulsar Timing Array experiments, and discuss the latest results from the established Pulsar Timing Array collaborations.
Array signal recovery algorithm for a single-RF-channel DBF array
NASA Astrophysics Data System (ADS)
Zhang, Duo; Wu, Wen; Fang, Da Gang
2016-12-01
An array signal recovery algorithm based on sparse signal reconstruction theory is proposed for a single-RF-channel digital beamforming (DBF) array. A single-RF-channel antenna array is a low-cost antenna array in which signals are obtained from all antenna elements by only one microwave digital receiver. The spatially parallel array signals are converted into time-sequence signals, which are then sampled by the system. The proposed algorithm uses these time-sequence samples to recover the original parallel array signals by exploiting the second-order sparse structure of the array signals. Additionally, an optimization method based on the artificial bee colony (ABC) algorithm is proposed to improve the reconstruction performance. Using the proposed algorithm, the motion compensation problem for the single-RF-channel DBF array can be solved effectively, and the angle and Doppler information for the target can be simultaneously estimated. The effectiveness of the proposed algorithms is demonstrated by the results of numerical simulations.
Evaluation of solar cells and arrays for potential solar power satellite applications
NASA Technical Reports Server (NTRS)
Almgren, D. W.; Csigi, K.; Gaudet, A. D.
1978-01-01
Proposed solar array designs and manufacturing methods are evaluated to identify options which show the greatest promise of leading up to the develpment of a cost-effective SPS solar cell array design. The key program elements which have to be accomplished as part of an SPS solar cell array development program are defined. The issues focussed on are: (1) definition of one or more designs of a candidate SPS solar array module, using results from current system studies; (2) development of the necessary manufacturing requirements for the candidate SPS solar cell arrays and an assessment of the market size, timing, and industry infrastructure needed to produce the arrays for the SPS program; (3) evaluation of current DOE, NASA and DOD photovoltaic programs to determine the impacts of recent advances in solar cell materials, array designs and manufacturing technology on the candidate SPS solar cell arrays; and (4) definition of key program elements for the development of the most promising solar cell arrays for the SPS program.
Assessment study of infrared detector arrays for low-background astronomical research
NASA Technical Reports Server (NTRS)
Ando, K. J.
1978-01-01
The current state-of-the-art of infrared detector arrays employing charge coupled devices (CCD) or charge injection devices (CID) readout are assessed. The applicability, limitations and potentials of such arrays under the low-background astronomical observing conditions of interest for SIRFT (Shuttle Infrared Telescope Facility) are determined. The following are reviewed: (1) monolithic extrinsic arrays; (2) monolithic intrinsic arrays; (3) charge injection devices; and (4) hybrid arrays.
Divett, T; Vennell, R; Stevens, C
2013-02-28
At tidal energy sites, large arrays of hundreds of turbines will be required to generate economically significant amounts of energy. Owing to wake effects within the array, the placement of turbines within will be vital to capturing the maximum energy from the resource. This study presents preliminary results using Gerris, an adaptive mesh flow solver, to investigate the flow through four different arrays of 15 turbines each. The goal is to optimize the position of turbines within an array in an idealized channel. The turbines are represented as areas of increased bottom friction in an adaptive mesh model so that the flow and power capture in tidally reversing flow through large arrays can be studied. The effect of oscillating tides is studied, with interesting dynamics generated as the tidal current reverses direction, forcing turbulent flow through the array. The energy removed from the flow by each of the four arrays is compared over a tidal cycle. A staggered array is found to extract 54 per cent more energy than a non-staggered array. Furthermore, an array positioned to one side of the channel is found to remove a similar amount of energy compared with an array in the centre of the channel.
Novel fabrication technique of hybrid structure lens array for 3D images
NASA Astrophysics Data System (ADS)
Lee, Junsik; Kim, Junoh; Kim, Cheoljoong; Shin, Dooseub; Koo, Gyohyun; Won, Yong Hyub
2016-03-01
Tunable liquid lens arrays can produce three dimensional images by using electrowetting principle that alters surface tensions by applying voltage. This method has advantages of fast response time and low power consumption. However, it is challenging to fabricate a high fill factor liquid lens array and operate three dimensional images which demand high diopter. This study describes a hybrid structure lens array which has not only a liquid lens array but a solid lens array. A concave-shape lens array is unavoidable when using only the liquid lens array and some voltages are needed to make the lens flat. By placing the solid lens array on the liquid lens array, initial diopter can be positive. To fabricate the hybrid structure lens array, a conventional lithographic process in semiconductor manufacturing is needed. A negative photoresist SU-8 was used as chamber master molds. PDMS and UV adhesive replica molding are done sequentially. Two immiscible liquids, DI water and dodecane, are injected in the fabricated chamber, followed by sealing. The fabricated structure has a 20 by 20 pattern of cylindrical shaped circle array and the aperture size of each lens is 1mm. The thickness of the overall hybrid structure is about 2.8mm. Hybrid structure lens array has many advantages. Solid lens array has almost 100% fill factor and allow high efficiency. Diopter can be increased by more than 200 and negative diopter can be shifted to the positive region. This experiment showed several properties of the hybrid structure and demonstrated its superiority.
Trumper, David L.; Kim, Won-jong; Williams, Mark E.
1997-05-20
Electromagnet arrays which can provide selected field patterns in either two or three dimensions, and in particular, which can provide single-sided field patterns in two or three dimensions. These features are achieved by providing arrays which have current densities that vary in the windings both parallel to the array and in the direction of array thickness.
Waterproof stretchable optoelectronics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, John A.; Kim, Rak-Hwan; Kim, Dae-Hyeong
Described herein are flexible and stretchable LED arrays and methods utilizing flexible and stretchable LED arrays. Assembly of flexible LED arrays alongside flexible plasmonic crystals is useful for construction of fluid monitors, permitting sensitive detection of fluid refractive index and composition. Co-integration of flexible LED arrays with flexible photodetector arrays is useful for construction of flexible proximity sensors. Application of stretchable LED arrays onto flexible threads as light emitting sutures provides novel means for performing radiation therapy on wounds.
Development of High-Fill-Factor Large-Aperture Micromirrors for Agile Optical Phased Arrays
2010-02-28
Final Project Report Contract/Grant Title: Development of High-Fill-Factor Large-Aperture Micromirrors for Agile Optical Phased Arrays...factor (HFF) micromirror array (MMA) has been proposed, fabricated and tested. Optical-phased-array (OPA) beam steering based on the HFF MMA has also...electrically tuned to multiple 2. 1. Background High-fill-factor (HFF) micromirror arrays (MMAs) can form optical phased arrays (OPAs) for laser beam
Integrated infrared detector arrays for low-background applications
NASA Technical Reports Server (NTRS)
Mccreight, C. R.; Goebel, J. H.
1982-01-01
Advanced infrared detector and detector array technology is being developed and characterized for future NASA space astronomy applications. Si:Bi charge-injection-device arrays have been obtained, and low-background sensitivities comparable to that of good discrete detectors have been measured. Intrinsic arrays are being assessed, and laboratory and telescope data have been collected on a monolithic InSb CCD array. For wavelengths longer than 30 microns, improved Ge:Ga detectors have been produced, and steps have been taken to prove the feasibility of an integrated extrinsic germanium array. Other integrated arrays and cryogenic components are also under investigation.
1990-09-01
array. LTHPER Length of the MPPERS array. LTHQPA Length of the QPA array. LTHXRT Length of the XROOT array. MAXACN Maximum number of aircraft that can...3 Time remaining until the ready-to-fly time at time of report Number of XROOT Array Entries (GENERATED) NROOT (MAXT) The total number of entries in...the XROOT array for each aircraft type. AIS Station Status NSTAT (NOSTAT, I, MAXB) I = 1 Total number of stations of each type on base = 2 Number in
On-Orbit Reconfigurable Solar Array
NASA Technical Reports Server (NTRS)
Levy, Robert K. (Inventor)
2017-01-01
In one or more embodiments, the present disclosure teaches a method for reconfiguring a solar array. The method involves providing, for the solar array, at least one string of solar cells. The method further involves deactivating at least a portion of at least one of the strings of solar cells of the solar array when power produced by the solar array reaches a maximum power allowance threshold. In addition, the method involves activating at least a portion of at least one of the strings of the solar cells in the solar array when the power produced by the solar array reaches a minimum power allowance threshold.
NASA Astrophysics Data System (ADS)
Ahn, Chang-Geun; Ah, Chil Seong; Kim, Tae-Youb; Park, Chan Woo; Yang, Jong-Heon; Kim, Ansoon; Sung, Gun Yong
2010-09-01
This paper introduces a photosensitive biosensor array system with a simple photodiode array that detects photocurrent changes caused by reactions between probe and target molecules. Using optical addressing, the addressing circuit on the array chip is removed for low-cost application, and real cell addressing is achieved using an externally located computer-controllable light-emitting diode array module. The fabricated biosensor array chip shows a good dynamic range of 1-100 ng/mL under prostate-specific antigen detection, with an on-chip resolution of roughly 1 ng/mL.
Design and fabrication of microstrip antenna arrays
NASA Technical Reports Server (NTRS)
1978-01-01
A microstrip array project was conducted to demonstrate the feasibility of designing and fabricating simple, low cost, low sidelobe phased arrays with circular disk microstrip radiating elements. Design data were presented for microstrip elements and arrays including the effects of the protective covers, the mutual interaction between elements, and stripline feed network design. Low cost multilayer laminate fabrication techniques were also investigated. Utilizing this design data two C-band low sidelobe arrays were fabricated and tested: an eight-element linear and a sixty-four element planar array. These arrays incorporated stripline Butler matrix feed networks to produce a low sidelobe broadside beam.
Solar array technology evaluation program for SEPS (Solar Electrical Propulsion Stage)
NASA Technical Reports Server (NTRS)
1974-01-01
An evaluation of the technology and the development of a preliminary design for a 25 kilowatt solar array system for solar electric propulsion are discussed. The solar array has a power to weight ratio of 65 watts per kilogram. The solar array system is composed of two wings. Each wing consists of a solar array blanket, a blanket launch storage container, an extension/retraction mast assembly, a blanket tensioning system, an array electrical harness, and hardware for supporting the system for launch and in the operating position. The technology evaluation was performed to assess the applicable solar array state-of-the-art and to define supporting research necessary to achieve technology readiness for meeting the solar electric propulsion system solar array design requirements.
International ultraviolet explorer solar array power degradation
NASA Technical Reports Server (NTRS)
Day, J. H., Jr.
1983-01-01
The characteristic electrical performance of each International Ultraviolet Explorer (IUE) solar array panel is evaluated as a function of several prevailing variables (namely, solar illumination, array temperature and solar cell radiation damage). Based on degradation in the current-voltage characteristics of the array due to solar cell damage accumulated over time by space charged particle radiations, the available IUE solar array power is determined for life goals up to 10 years. Best and worst case calculations are normalized to actual IUE flight data (available solar array power versus observatory position) to accurately predict the future IUE solar array output. It is shown that the IUE solar array can continue to produce more power than is required at most observatory positions for at least 5 more years.
Passive magnetic bearing for a horizontal shaft
Post, Richard F.
2003-12-02
A passive magnetic bearing is composed of a levitation element and a restorative element. The levitation element is composed of a pair of stationary arcuate ferromagnetic segments located within an annular radial-field magnet array. The magnet array is attached to the inner circumference of a hollow shaft end. An attractive force between the arcuate segments and the magnet array acts vertically to levitate the shaft, and also in a horizontal transverse direction to center the shaft. The restorative element is comprised of an annular Halbach array of magnets and a stationary annular circuit array located within the Halbach array. The Halbach array is attached to the inner circumference of the hollow shaft end. A repulsive force between the Halbach array and the circuit array increases inversely to the radial space between them, and thus acts to restore the shaft to its equilibrium axis of rotation when it is displaced therefrom.
Chen, Hanchi; Abhayapala, Thushara D; Zhang, Wen
2015-11-01
Soundfield analysis based on spherical harmonic decomposition has been widely used in various applications; however, a drawback is the three-dimensional geometry of the microphone arrays. In this paper, a method to design two-dimensional planar microphone arrays that are capable of capturing three-dimensional (3D) spatial soundfields is proposed. Through the utilization of both omni-directional and first order microphones, the proposed microphone array is capable of measuring soundfield components that are undetectable to conventional planar omni-directional microphone arrays, thus providing the same functionality as 3D arrays designed for the same purpose. Simulations show that the accuracy of the planar microphone array is comparable to traditional spherical microphone arrays. Due to its compact shape, the proposed microphone array greatly increases the feasibility of 3D soundfield analysis techniques in real-world applications.
Photovoltaic array: Power conditioner interface characteristics
NASA Technical Reports Server (NTRS)
Gonzalez, C. C.; Hill, G. M.; Ross, R. G., Jr.
1982-01-01
The electrical output (power, current, and voltage) of flat plate solar arrays changes constantly, due primarily to changes in cell temperature and irradiance level. As a result, array loads such as dc-to-ac power conditioners must be capable of accommodating widely varying input levels while maintaining operation at or near the maximum power point of the array. The array operating characteristics and extreme output limits necessary for the systematic design of array load interfaces under a wide variety of climatic conditions are studied. A number of interface parameters are examined, including optimum operating voltage, voltage energy, maximum power and current limits, and maximum open circuit voltage. The effect of array degradation and I-V curve fill factor or the array power conditioner interface is also discussed. Results are presented as normalized ratios of power conditioner parameters to array parameters, making the results universally applicable to a wide variety of system sizes, sites, and operating modes.
Zhao, Xiaoyu; Wen, Jiahong; Zhang, Mengning; Wang, Dunhui; Wang, Yaxin; Chen, Lei; Zhang, Yongjun; Yang, Jinghai; Du, Youwei
2017-03-01
An easy-handling and low-cost method is utilized to controllably fabricate nanopattern arrays as the surface-enhanced Raman scattering (SERS) active substrates with high density of SERS-active areas (hot spots). A hybrid silver array of nanocaps and nanotriangles are prepared by combining magnetron sputtering and plasma etching. By adjusting the etching time of polystyrene (PS) colloid spheres array in silver nanobowls, the morphology of the arrays can be easily manipulated to control the formation and distribution of hot spots. The experimental results show that the hybrid nanostructural arrays have large enhancement factor, which is estimated to be seven times larger than that in the array of nanocaps and three times larger than that in the array of nanorings and nanoparticles. According to the results of finite-difference time-domain simulation, the excellent SERS performance of this array is ascribed to the high density of hot spots and enhanced electromagnetic field.
Optimal Configuration of PV System with Different Solar Cell Arrays
NASA Astrophysics Data System (ADS)
Machida, Sadayuki; Tani, Tatsuo
Photovoltaic (PV) power generation is spreading steadily, and the dispersed PV array system is increasing from the architectural restrictions. In the case of dispersed array system, if the arrays are installed in a different azimuth or if the module that constitutes array is different, mismatching loss will be generated when a single inverter is used to convert the output of arrays, because of the difference of optimal operating voltage. The loss is related to the array configuration. However the relation between array configuration and power generation output is not clear. In order to avoid generation of mismatching loss, introducing a distributed inverter system such as string inverter system or AC modules system is considered. However it is not clear which is more advantageous between a distributed system and a concentrated system. In this paper, we verified the output characteristics of two different solar cell arrays with various strings, azimuths and tilt angles, and clarified the relation between array configuration and power generation output by the computer simulations. We also compared the distributed inverter system with the concentrated inverter system, and clarified the optimal configuration of PV system with different solar cell arrays.
Implementation of a Virtual Microphone Array to Obtain High Resolution Acoustic Images
Izquierdo, Alberto; Suárez, Luis; Suárez, David
2017-01-01
Using arrays with digital MEMS (Micro-Electro-Mechanical System) microphones and FPGA-based (Field Programmable Gate Array) acquisition/processing systems allows building systems with hundreds of sensors at a reduced cost. The problem arises when systems with thousands of sensors are needed. This work analyzes the implementation and performance of a virtual array with 6400 (80 × 80) MEMS microphones. This virtual array is implemented by changing the position of a physical array of 64 (8 × 8) microphones in a grid with 10 × 10 positions, using a 2D positioning system. This virtual array obtains an array spatial aperture of 1 × 1 m2. Based on the SODAR (SOund Detection And Ranging) principle, the measured beampattern and the focusing capacity of the virtual array have been analyzed, since beamforming algorithms assume to be working with spherical waves, due to the large dimensions of the array in comparison with the distance between the target (a mannequin) and the array. Finally, the acoustic images of the mannequin, obtained for different frequency and range values, have been obtained, showing high angular resolutions and the possibility to identify different parts of the body of the mannequin. PMID:29295485
NASA Astrophysics Data System (ADS)
Kang, Joo H.; Driscoll, Harry; Super, Michael; Ingber, Donald E.
2016-05-01
Here, we describe a versatile application of a planar Halbach permanent magnet array for an efficient long-range magnetic separation of living cells and microparticles over distances up to 30 mm. A Halbach array was constructed from rectangular bar magnets using 3D-printed holders and compared to a conventional alternating array of identical magnets. We theoretically predicted the superiority of the Halbach array for a long-range magnetic separation and then experimentally validated that the Halbach configuration outperforms the alternating array for isolating magnetic microparticles or microparticle-bound bacterial cells at longer distances. Magnetophoretic velocities (ymag) of magnetic particles (7.9 μm diameter) induced by the Halbach array in a microfluidic device were significantly higher and extended over a larger area than those induced by the alternating magnet array (ymag = 178 versus 0 μm/s at 10 mm, respectively). When applied to 50 ml tubes (˜30 mm diameter), the Halbach array removed >95% of Staphylococcus aureus bacterial cells bound with 1 μm magnetic particles compared to ˜70% removed using the alternating array. In addition, the Halbach array enabled manipulation of 1 μm magnetic beads in a deep 96-well plate for ELISA applications, which was not possible with the conventional magnet arrays. Our analysis demonstrates the utility of the Halbach array for the future design of devices for high-throughput magnetic separations of cells, molecules, and toxins.
A comparison of two mobile electrode arrays for increasing mortality of Lake Trout embryos
Brown, Peter J.; Guy, Christopher S.; Meeuwig, Michael H.
2017-01-01
Conservation of sport fisheries and populations of several native fishes in the western United States is dependent on sustained success of removal programs targeting invasive Lake Trout Salvelinus namaycush. Gill-netting of spawning adults is one strategy used to decrease spawning success; however, additional complementary methods are needed to disrupt Lake Trout reproduction where bycatch in gill nets is unacceptable. We developed and tested two portable electrode arrays designed to increase Lake Trout embryo mortality in known spawning areas. Both arrays were powered by existing commercial electrofishing equipment. However, one array was moved across the substrate to simulate being towed behind a boat (i.e., towed array), while the other array was lowered from a boat and energized when sedentary (i.e., sedentary array). The arrays were tested on embryos placed within substrates of known spawning areas. Both arrays increased mortality of embryos (>90%) at the surface of substrates, but only the sedentary array was able to increase mortality to >90% at deeper burial depths. In contrast, embryos at increasingly deeper depths exhibited progressively lower mortality when exposed to the towed array. Mortality of embryos placed under 20 cm of substrate and exposed to the towed array was not significantly different from that of unexposed embryos in a control group. We suggest that the sedentary array could be used as a viable approach for increasing mortality of Lake Trout embryos buried to 20 cm and that it could be modified to be effective at deeper depths.
Consortium Developed Arrays Infinium Human Drug Core Array The Illumina nfinium DrugDev Consortium array drug target discovery, validation and treatment response. Detailed Information on Array Infinium Human
High-voltage space-plasma interactions measured on the PASP Plus test arrays
NASA Astrophysics Data System (ADS)
Guidice, Donald A.
1995-10-01
The Photovoltaic Array Space Power Plus Diagnostics (PASP Plus) experiment was developed by the Air Force's Phillips Laboratory with support from NASA's Lewis Research Center. It was launched on the Advanced Photovoltaic and Electronics EXperiments (APEX) satellite on August 3, 1994 into a 70 degree inclination, 363 km by 2550 km elliptical orbit. This orbit allows the investigation of space plasma effects on high-voltage operation (leakage current at positive voltages and arcing at negative voltages) in the perigee region. PASP Plus is testing twelve solar arrays. There are four planar Si arrays: an old standard type (used as a reference), the large-cell Space Station Freedom (SSF) array, a thin 'APSA' array, and an amorphous Si array. Next are three GaAs on Ge planar arrays and three new material planar arrays, including InP and two multijunction types. Finally, there are two concentrator arrays: a reflective-focusing Mini-Cassegrainian and a Fresnel-lens focusing Mini-Dome. PASP Plus's diagnostic sensors include: Langmuir probe to measure plasma density, an electrostatic analyzer (ESA) to measure the 30 eV to 30 KeV electron/ion spectra and determine vehicle negative potential during positive biasing, and a transient pulse monitor (TPM) to characterize the arcs that occur during the negative biasing. Through positive biasing of its test arrays, PASP Plus investigated the snapover phenomenon, which took place over the range of +100 to +300 V. It was found that array configurations where the interconnects are shielded from the space plasma (i.e., the concentrators or arrays with 'wrap-through' connectors) have lower leakage current. The concentrators exhibited negligible leakage current over the whole range up to +500 V. In the case of two similar GaAs on Ge arrays, the one with 'wrap-through' connectors had lower leakage current than the one with conventional interconnects. Through negative biasing, PASP Plus investigated the arcing rates of its test arrays. The standard Si array, with its old construction (exposed rough-surface interconnects), arced significantly over a wide voltage and plasma-density range. The other arrays arced at very low rates, mostly at voltages greater than -350 V and plasma densities near or greater than 10(exp 5)/cm(exp -3). AS expected according to theory, arcing was more prevalent when array temperatures were cold (based on biasing in eclipse).
High-voltage space-plasma interactions measured on the PASP Plus test arrays
NASA Technical Reports Server (NTRS)
Guidice, Donald A.
1995-01-01
The Photovoltaic Array Space Power Plus Diagnostics (PASP Plus) experiment was developed by the Air Force's Phillips Laboratory with support from NASA's Lewis Research Center. It was launched on the Advanced Photovoltaic and Electronics EXperiments (APEX) satellite on August 3, 1994 into a 70 degree inclination, 363 km by 2550 km elliptical orbit. This orbit allows the investigation of space plasma effects on high-voltage operation (leakage current at positive voltages and arcing at negative voltages) in the perigee region. PASP Plus is testing twelve solar arrays. There are four planar Si arrays: an old standard type (used as a reference), the large-cell Space Station Freedom (SSF) array, a thin 'APSA' array, and an amorphous Si array. Next are three GaAs on Ge planar arrays and three new material planar arrays, including InP and two multijunction types. Finally, there are two concentrator arrays: a reflective-focusing Mini-Cassegrainian and a Fresnel-lens focusing Mini-Dome. PASP Plus's diagnostic sensors include: Langmuir probe to measure plasma density, an electrostatic analyzer (ESA) to measure the 30 eV to 30 KeV electron/ion spectra and determine vehicle negative potential during positive biasing, and a transient pulse monitor (TPM) to characterize the arcs that occur during the negative biasing. Through positive biasing of its test arrays, PASP Plus investigated the snapover phenomenon, which took place over the range of +100 to +300 V. It was found that array configurations where the interconnects are shielded from the space plasma (i.e., the concentrators or arrays with 'wrap-through' connectors) have lower leakage current. The concentrators exhibited negligible leakage current over the whole range up to +500 V. In the case of two similar GaAs on Ge arrays, the one with 'wrap-through' connectors had lower leakage current than the one with conventional interconnects. Through negative biasing, PASP Plus investigated the arcing rates of its test arrays. The standard Si array, with its old construction (exposed rough-surface interconnects), arced significantly over a wide voltage and plasma-density range. The other arrays arced at very low rates, mostly at voltages greater than -350 V and plasma densities near or greater than 10(exp 5)/cm(exp -3). AS expected according to theory, arcing was more prevalent when array temperatures were cold (based on biasing in eclipse).
Space Plasma Shown to Make Satellite Solar Arrays Fail
NASA Technical Reports Server (NTRS)
Ferguson, Dale C.
1999-01-01
In 1997, scientists and engineers of the Photovoltaic and Space Environments Branch of the NASA Lewis Research Center, Maxwell Technologies, and Space Systems/Loral discovered a new failure mechanism for solar arrays on communications satellites in orbit. Sustained electrical arcs, initiated by the space plasma and powered by the solar arrays themselves, were found to have destroyed solar array substrates on some Space Systems/Loral satellites, leading to array failure. The mechanism was tested at Lewis, and mitigation strategies were developed to prevent such disastrous occurrences on-orbit in the future. Deep Space 1 is a solar-electric-powered space mission to a comet, launched on October 24, 1998. Early in 1998, scientists at Lewis and Ballistic Missile Defense Organization (BMDO) realized that some aspects of the Deep Space 1 solar arrays were nearly identical to those that had led to the failure of solar arrays on Space Systems/Loral satellites. They decided to modify the Deep Space 1 arrays to prevent catastrophic failure in space. The arrays were suitably modified and are now performing optimally in outer space. Finally, the Earth Observing System (EOS) AM1, scheduled for launch in mid-1999, is a NASA mission managed by the Goddard Space Flight Center. Realizing the importance of Lewis testing on the Loral arrays, EOS-AM1 management asked Lewis scientists to test their solar arrays to show that they would not fail in the same way. The first phase of plasma testing showed that sustained arcing would occur on the unmodified EOS-AM1 arrays, so the arrays were removed from the spacecraft and fixed. Now, Lewis scientists have finished plasma testing of the modified array configuration to ensure that EOS-AM1 will have no sustained arcing problems on-orbit.
Shielding in ungated field emitter arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, J. R.; Jensen, K. L.; Shiffler, D. A.
Cathodes consisting of arrays of high aspect ratio field emitters are of great interest as sources of electron beams for vacuum electronic devices. The desire for high currents and current densities drives the cathode designer towards a denser array, but for ungated emitters, denser arrays also lead to increased shielding, in which the field enhancement factor β of each emitter is reduced due to the presence of the other emitters in the array. To facilitate the study of these arrays, we have developed a method for modeling high aspect ratio emitters using tapered dipole line charges. This method can bemore » used to investigate proximity effects from similar emitters an arbitrary distance away and is much less computationally demanding than competing simulation approaches. Here, we introduce this method and use it to study shielding as a function of array geometry. Emitters with aspect ratios of 10{sup 2}–10{sup 4} are modeled, and the shielding-induced reduction in β is considered as a function of tip-to-tip spacing for emitter pairs and for large arrays with triangular and square unit cells. Shielding is found to be negligible when the emitter spacing is greater than the emitter height for the two-emitter array, or about 2.5 times the emitter height in the large arrays, in agreement with previously published results. Because the onset of shielding occurs at virtually the same emitter spacing in the square and triangular arrays, the triangular array is preferred for its higher emitter density at a given emitter spacing. The primary contribution to shielding in large arrays is found to come from emitters within a distance of three times the unit cell spacing for both square and triangular arrays.« less
Zhu, Yuerong; Zhu, Yuelin; Xu, Wei
2008-01-01
Background Though microarray experiments are very popular in life science research, managing and analyzing microarray data are still challenging tasks for many biologists. Most microarray programs require users to have sophisticated knowledge of mathematics, statistics and computer skills for usage. With accumulating microarray data deposited in public databases, easy-to-use programs to re-analyze previously published microarray data are in high demand. Results EzArray is a web-based Affymetrix expression array data management and analysis system for researchers who need to organize microarray data efficiently and get data analyzed instantly. EzArray organizes microarray data into projects that can be analyzed online with predefined or custom procedures. EzArray performs data preprocessing and detection of differentially expressed genes with statistical methods. All analysis procedures are optimized and highly automated so that even novice users with limited pre-knowledge of microarray data analysis can complete initial analysis quickly. Since all input files, analysis parameters, and executed scripts can be downloaded, EzArray provides maximum reproducibility for each analysis. In addition, EzArray integrates with Gene Expression Omnibus (GEO) and allows instantaneous re-analysis of published array data. Conclusion EzArray is a novel Affymetrix expression array data analysis and sharing system. EzArray provides easy-to-use tools for re-analyzing published microarray data and will help both novice and experienced users perform initial analysis of their microarray data from the location of data storage. We believe EzArray will be a useful system for facilities with microarray services and laboratories with multiple members involved in microarray data analysis. EzArray is freely available from . PMID:18218103
Optimal shortening of uniform covering arrays
Rangel-Valdez, Nelson; Avila-George, Himer; Carrizalez-Turrubiates, Oscar
2017-01-01
Software test suites based on the concept of interaction testing are very useful for testing software components in an economical way. Test suites of this kind may be created using mathematical objects called covering arrays. A covering array, denoted by CA(N; t, k, v), is an N × k array over Zv={0,…,v-1} with the property that every N × t sub-array covers all t-tuples of Zvt at least once. Covering arrays can be used to test systems in which failures occur as a result of interactions among components or subsystems. They are often used in areas such as hardware Trojan detection, software testing, and network design. Because system testing is expensive, it is critical to reduce the amount of testing required. This paper addresses the Optimal Shortening of Covering ARrays (OSCAR) problem, an optimization problem whose objective is to construct, from an existing covering array matrix of uniform level, an array with dimensions of (N − δ) × (k − Δ) such that the number of missing t-tuples is minimized. Two applications of the OSCAR problem are (a) to produce smaller covering arrays from larger ones and (b) to obtain quasi-covering arrays (covering arrays in which the number of missing t-tuples is small) to be used as input to a meta-heuristic algorithm that produces covering arrays. In addition, it is proven that the OSCAR problem is NP-complete, and twelve different algorithms are proposed to solve it. An experiment was performed on 62 problem instances, and the results demonstrate the effectiveness of solving the OSCAR problem to facilitate the construction of new covering arrays. PMID:29267343
Effect of central obscuration on the LDR point spread function
NASA Technical Reports Server (NTRS)
Vanzyl, Jakob J.
1988-01-01
It is well known that Gaussian apodization of an aperture reduces the sidelobe levels of its point spread function (PSF). In the limit where the standard deviation of the Gaussian function is much smaller than the diameter of the aperture, the sidelobes completely disappear. However, when Gaussian apodization is applied to the Large Deployable Reflector (LDR) array consisting of 84 hexagonal panels, it is found that the sidelobe level only decreases by about 2.5 dB. The reason for this is explained. The PSF is shown for an array consisting of 91 uniformly illuminated hexagonal apertures; this array is identical to the LDR array, except that the central hole in the LDR array is filled with seven additional panels. For comparison, the PSF of the uniformly illuminated LDR array is shown. Notice that it is already evident that the sidelobe structure of the LDR array is different from that of the full array of 91 panels. The PSF's of the same two arrays are shown, but with the illumination apodized with a Gaussian function to have 20 dB tapering at the edges of the arrays. While the sidelobes of the full array have decreased dramatically, those of the LDR array changed in structure, but stayed at almost the same level. This result is not completely surprising, since the Gaussian apodization tends to emphasize the contributions from the central portion of the array; exactly where the hole in the LDR array is located. The two most important conclusions are: the size of the central hole should be minimized, and a simple Gaussian apodization scheme to suppress the sidelobes in the PSF should not be used. A more suitable apodization scheme would be a Gaussian annular ring.
NASA Astrophysics Data System (ADS)
Bader, Rolf
This chapter deals with microphone arrays. It is arranged according to the different methods available to proceed through the different problems and through the different mathematical methods. After discussing general properties of different array types, such as plane arrays, spherical arrays, or scanning arrays, it proceeds to the signal processing tools that are most used in speech processing. In the third section, backpropagating methods based on the Helmholtz-Kirchhoff integral are discussed, which result in spatial radiation patterns of vibrating bodies or air.
Ballistic Impact Resistance of Multi-Layer Textile Fabrics
1981-10-01
REBOT (NNOLA, NVAR). the first array contains the vector of forces externally applied to the ’ top surface of the layer under consideration, while the...array REBOT (NNOLA, NVAR) contains the forces externally applied to the lower surface of the array. Initially all the elements of each of the two arrays...Qodes in a layer, the contents of array REBOT are now replaced with those of array RETOP in preparation for the repetition of the same calculations for
The hyperion particle-γ detector array
Hughes, R. O.; Burke, J. T.; Casperson, R. J.; ...
2017-03-08
Hyperion is a new high-efficiency charged-particle γ-ray detector array which consists of a segmented silicon telescope for charged-particle detection and up to fourteen high-purity germanium clover detectors for the detection of coincident γ rays. The array will be used in nuclear physics measurements and Stockpile Stewardship studies and replaces the STARLiTeR array. In conclusion, this article discusses the features of the array and presents data collected with the array in the commissioning experiment.
Fu, Chi-Yung; Petrich, Loren I.
1997-01-01
An image is compressed by identifying edge pixels of the image; creating a filled edge array of pixels each of the pixels in the filled edge array which corresponds to an edge pixel having a value equal to the value of a pixel of the image array selected in response to the edge pixel, and each of the pixels in the filled edge array which does not correspond to an edge pixel having a value which is a weighted average of the values of surrounding pixels in the filled edge array which do correspond to edge pixels; and subtracting the filled edge array from the image array to create a difference array. The edge file and the difference array are then separately compressed and transmitted or stored. The original image is later reconstructed by creating a preliminary array in response to the received edge file, and adding the preliminary array to the received difference array. Filling is accomplished by solving Laplace's equation using a multi-grid technique. Contour and difference file coding techniques also are described. The techniques can be used in a method for processing a plurality of images by selecting a respective compression approach for each image, compressing each of the images according to the compression approach selected, and transmitting each of the images as compressed, in correspondence with an indication of the approach selected for the image.
Holden, Matthew T; Carter, Matthew C D; Wu, Cheng-Hsien; Wolfer, Jamison; Codner, Eric; Sussman, Michael R; Lynn, David M; Smith, Lloyd M
2015-11-17
The photolithographic fabrication of high-density DNA and RNA arrays on flexible and transparent plastic substrates is reported. The substrates are thin sheets of poly(ethylene terephthalate) (PET) coated with cross-linked polymer multilayers that present hydroxyl groups suitable for conventional phosphoramidite-based nucleic acid synthesis. We demonstrate that by modifying array synthesis procedures to accommodate the physical and chemical properties of these materials, it is possible to synthesize plastic-backed oligonucleotide arrays with feature sizes as small as 14 μm × 14 μm and feature densities in excess of 125 000/cm(2), similar to specifications attainable using rigid substrates such as glass or glassy carbon. These plastic-backed arrays are tolerant to a wide range of hybridization temperatures, and improved synthetic procedures are described that enable the fabrication of arrays with sequences up to 50 nucleotides in length. These arrays hybridize with S/N ratios comparable to those fabricated on otherwise identical arrays prepared on glass or glassy carbon. This platform supports the enzymatic synthesis of RNA arrays and proof-of-concept experiments are presented showing that the arrays can be readily subdivided into smaller arrays (or "millichips") using common laboratory-scale laser cutting tools. These results expand the utility of oligonucleotide arrays fabricated on plastic substrates and open the door to new applications for these important bioanalytical tools.
Fu, C.Y.; Petrich, L.I.
1997-03-25
An image is compressed by identifying edge pixels of the image; creating a filled edge array of pixels each of the pixels in the filled edge array which corresponds to an edge pixel having a value equal to the value of a pixel of the image array selected in response to the edge pixel, and each of the pixels in the filled edge array which does not correspond to an edge pixel having a value which is a weighted average of the values of surrounding pixels in the filled edge array which do correspond to edge pixels; and subtracting the filled edge array from the image array to create a difference array. The edge file and the difference array are then separately compressed and transmitted or stored. The original image is later reconstructed by creating a preliminary array in response to the received edge file, and adding the preliminary array to the received difference array. Filling is accomplished by solving Laplace`s equation using a multi-grid technique. Contour and difference file coding techniques also are described. The techniques can be used in a method for processing a plurality of images by selecting a respective compression approach for each image, compressing each of the images according to the compression approach selected, and transmitting each of the images as compressed, in correspondence with an indication of the approach selected for the image. 16 figs.
A Fourier Method for Sidelobe Reduction in Equally Spaced Linear Arrays
NASA Astrophysics Data System (ADS)
Safaai-Jazi, Ahmad; Stutzman, Warren L.
2018-04-01
Uniformly excited, equally spaced linear arrays have a sidelobe level larger than -13.3 dB, which is too high for many applications. This limitation can be remedied by nonuniform excitation of array elements. We present an efficient method for sidelobe reduction in equally spaced linear arrays with low penalty on the directivity. The method involves the following steps: construction of a periodic function containing only the sidelobes of the uniformly excited array, calculation of the Fourier series of this periodic function, subtracting the series from the array factor of the original uniformly excited array after it is truncated, and finally mitigating the truncation effects which yields significant increase in sidelobe level reduction. A sidelobe reduction factor is incorporated into element currents that makes much larger sidelobe reductions possible and also allows varying the sidelobe level incrementally. It is shown that such newly formed arrays can provide sidelobe levels that are at least 22.7 dB below those of the uniformly excited arrays with the same size and number of elements. Analytical expressions for element currents are presented. Radiation characteristics of the sidelobe-reduced arrays introduced here are examined, and numerical results for directivity, sidelobe level, and half-power beam width are presented for example cases. Performance improvements over popular conventional array synthesis methods, such as Chebyshev and linear current tapered arrays, are obtained with the new method.
A Flexible Base Electrode Array for Intraspinal Microstimulation
Khaled, I.; Elmallah, S.; Cheng, C.; Moussa, W.A.; Mushahwar, V.K.; Elias, A.L.
2013-01-01
In this paper, we report the development of a flexible base array of penetrating electrodes which can be used to interface with the spinal cord. A customizable and feasible fabrication protocol is described. The flexible base arrays were fabricated and implanted into surrogate cords which were elongated by 12%. The resulting strains were optically measured across the cord and compared to those associated with two types of electrodes arrays (one without a base and one with a rigid base connecting the electrodes). The deformation behavior of cords implanted with the flexible base arrays resembled the behavior of cords implanted with individual microwires that were not connected through a base. The results of the strain test were used to validate a 2D finite element model. The validated model was used to assess the stresses induced by the electrodes of the 3 types of arrays on the cord, and to examine how various design parameters (thickness, base modulus, etc.) impact the mechanical behavior of the electrode array. Rigid base arrays induced higher stresses on the cord than the flexible base arrays which in turn imposed higher stresses than the individual microwire implants. The developed flexible base array showed improvement over the rigid base array; however, its stiffness needs to be further reduced to emulate the mechanical behavior of individual microwire arrays without a base. PMID:23744656
Single-element optical injection locking of diode-laser arrays
Hadley, G. Ronald; Hohimer, John P.; Owyoung, Adelbert
1988-01-01
By optically injecting a single end-element of a semiconductor laser array, both the spatial and spectral emission characteristics of the entire laser array is controlled. With the output of the array locked, the far-field emission angle of the array is continuously scanned over several degrees by varying the injection frequency.
Trumper, D.L.; Kim, W.; Williams, M.E.
1997-05-20
Electromagnet arrays are disclosed which can provide selected field patterns in either two or three dimensions, and in particular, which can provide single-sided field patterns in two or three dimensions. These features are achieved by providing arrays which have current densities that vary in the windings both parallel to the array and in the direction of array thickness. 12 figs.
Comparative study of absorption in tilted silicon nanowire arrays for photovoltaics
2014-01-01
Silicon nanowire arrays have been shown to demonstrate light trapping properties and promising potential for next-generation photovoltaics. In this paper, we show that the absorption enhancement in vertical nanowire arrays on a perfectly electric conductor can be further improved through tilting. Vertical nanowire arrays have a 66.2% improvement in ultimate efficiency over an ideal double-pass thin film of the equivalent amount of material. Tilted nanowire arrays, with the same amount of material, exhibit improved performance over vertical nanowire arrays across a broad range of tilt angles (from 38° to 72°). The optimum tilt of 53° has an improvement of 8.6% over that of vertical nanowire arrays and 80.4% over that of the ideal double-pass thin film. Tilted nanowire arrays exhibit improved absorption over the solar spectrum compared with vertical nanowires since the tilt allows for the excitation of additional modes besides the HE 1m modes that are excited at normal incidence. We also observed that tilted nanowire arrays have improved performance over vertical nanowire arrays for a large range of incidence angles (under about 60°). PMID:25435833
Comparative study of absorption in tilted silicon nanowire arrays for photovoltaics.
Kayes, Md Imrul; Leu, Paul W
2014-01-01
Silicon nanowire arrays have been shown to demonstrate light trapping properties and promising potential for next-generation photovoltaics. In this paper, we show that the absorption enhancement in vertical nanowire arrays on a perfectly electric conductor can be further improved through tilting. Vertical nanowire arrays have a 66.2% improvement in ultimate efficiency over an ideal double-pass thin film of the equivalent amount of material. Tilted nanowire arrays, with the same amount of material, exhibit improved performance over vertical nanowire arrays across a broad range of tilt angles (from 38° to 72°). The optimum tilt of 53° has an improvement of 8.6% over that of vertical nanowire arrays and 80.4% over that of the ideal double-pass thin film. Tilted nanowire arrays exhibit improved absorption over the solar spectrum compared with vertical nanowires since the tilt allows for the excitation of additional modes besides the HE 1m modes that are excited at normal incidence. We also observed that tilted nanowire arrays have improved performance over vertical nanowire arrays for a large range of incidence angles (under about 60°).
Performance of an underwater acoustic volume array using time-reversal focusing.
Root, Joseph A; Rogers, Peter H
2002-11-01
Time reversal permits acoustic focusing and beam forming in inhomogeneous and/or high-scattering environments. A volumetric array geometry can suppress back lobes and can fit a large, powerful array of elements into small spaces, like the free-water spaces on submarines. This research investigates applying the time-reversal method to an underwater acoustic volume array. The experiments evaluate the focusing performance of a 27-element volume array when different scattering structures are present within the volume of the array. The array is arranged in a 3x3x3 cubic matrix configuration with 18.75-cm vertical and horizontal element spacing. The system utilizes second-derivative Gaussian pulses to focus on a point 30 cm from the array. Results include a comparison between time-reversal focusing and standard focusing, an evaluation of the volume array's ability to suppress back lobes, and an analysis of how different scattering environments affect focal region size. Potential underwater applications for a volume array using time reversal include acoustic imaging, naval mine hunting, sonar, and underwater communications.
Performance of an underwater acoustic volume array using time-reversal focusing
NASA Astrophysics Data System (ADS)
Root, Joseph A.; Rogers, Peter H.
2002-11-01
Time reversal permits acoustic focusing and beam forming in inhomogeneous and/or high-scattering environments. A volumetric array geometry can suppress back lobes and can fit a large, powerful array of elements into small spaces, like the free-water spaces on submarines. This research investigates applying the time-reversal method to an underwater acoustic volume array. The experiments evaluate the focusing performance of a 27-element volume array when different scattering structures are present within the volume of the array. The array is arranged in a 3 x3 x3 cubic matrix configuration with 18.75-cm vertical and horizontal element spacing. The system utilizes second-derivative Gaussian pulses to focus on a point 30 cm from the array. Results include a comparison between time-reversal focusing and standard focusing, an evaluation of the volume array's ability to suppress back lobes, and an analysis of how different scattering environments affect focal region size. Potential underwater applications for a volume array using time reversal include acoustic imaging, naval mine hunting, sonar, and underwater communications. copyright 2002 Acoustical Society of America.
IXO/XMS Detector Trade-Off Study
NASA Technical Reports Server (NTRS)
Kilbourne, Caroline Anne; deKorte, P.; Smith, S.; Hoevers, H.; vdKuur, J.; Ezoe, Y.; Ullom, J.
2010-01-01
This document presents the outcome of the detector trade-off for the XMS instrument on IXO. This trade-off is part of the Cryogenic instrument Phase-A study as proposed to ESA in the Declaration of Interest SRONXMS-PL-2009-003 dated June 6, 2009. The detector consists of two components: a core array for the highest spectral resolution and an outer array to increase the field of view substantially with modest increase in the number of read-out channels. Degraded resolution of the outer array in comparison with the core array is accepted in order to make this scheme possible. The two detector components may be a single unit or separate units. These arrays comprise pixels and the components that allow them to be arrayed. Each pixel comprises a thermometer, an absorber, and the thermal links between them and to the rest of the array. These links may be interfaces or distinct components. The array infrastructure comprises the mechanical structure of the array, the arrangement of the leads, and features added to improve the integrated thermal properties of the array in the focal-plane assembly.
Ultralow-Background Large-Format Bolometer Arrays
NASA Technical Reports Server (NTRS)
Benford, Dominic; Chervenak, Jay; Irwin, Kent; Moseley, S. Harvey; Oegerle, William (Technical Monitor)
2002-01-01
In the coming decade, work will commence in earnest on large cryogenic far-infrared telescopes and interferometers. All such observatories - for example, SAFIR, SPIRIT, and SPECS - require large format, two dimensional arrays of close-packed detectors capable of reaching the fundamental limits imposed by the very low photon backgrounds present in deep space. In the near term, bolometer array architectures which permit 1000 pixels - perhaps sufficient for the next generation of space-based instruments - can be arrayed efficiently. Demonstrating the necessary performance, with Noise Equivalent Powers (NEPs) of order 10-20 W/square root of Hz, will be a hurdle in the coming years. Superconducting bolometer arrays are a promising technology for providing both the performance and the array size necessary. We discuss the requirements for future detector arrays in the far-infrared and submillimeter, describe the parameters of superconducting bolometer arrays able to meet these requirements, and detail the present and near future technology of superconducting bolometer arrays. Of particular note is the coming development of large format planar arrays with absorber-coupled and antenna-coupled bolometers.
NASA Technical Reports Server (NTRS)
Kolecki, J. C.; Riley, T. J.
1980-01-01
The suitability of commercial (terrestrial) solar arrays for use in low Earth orbit is examined. It is shown that commercial solar arrays degrade under thermal cycling because of material flexure, and that certain types of silicones used in the construction of these arrays outgas severely. Based on the results, modifications were made. The modified array retains the essential features of typical commercial arrays and can be easily built by commercial fabrication techniques at low cost. The modified array uses a metal tray for containment, but eliminates the high outgassing potting materials and glass cover sheets. Cells are individually mounted with an adhesive and individually covered with glass cover slips, or clear plastic tape. The modified array is found to withstand severe thermal cycling for long intervals of time.
An ANSERLIN array for mobile satellite applications
NASA Technical Reports Server (NTRS)
Colomb, F. Y.; Kunkee, D. B.; Mayes, P. E.; Smith, D. W.; Jamnejad, V.
1990-01-01
Design, analysis, construction, and test of linear arrays of ANSERLIN (annular sector, radiating line) elements are reported and discussed. Due to feeding simplicity and easy construction as well as good CP performance, a planar array composed of a number of such linear arrays each producing a shaped beam tilted in elevation, is a good candidate as a vehicle-mounted mechanically steered antenna for mobile satellite applications. A single level construction technique was developed that makes this type of array very cost competitive with other low-profile arrays. An asymmetric 19.5 inch long four-element array was fabricated and tested with reasonable performance. A smaller five-element symmetric array (16 inch long) was also designed and tested capable of operating in either sense of circular polarization. Efforts were made to successfully reduce this effect.
Methods for utilizing maximum power from a solar array
NASA Technical Reports Server (NTRS)
Decker, D. K.
1972-01-01
A preliminary study of maximum power utilization methods was performed for an outer planet spacecraft using an ion thruster propulsion system and a solar array as the primary energy source. The problems which arise from operating the array at or near the maximum power point of its 1-V characteristic are discussed. Two closed loop system configurations which use extremum regulators to track the array's maximum power point are presented. Three open loop systems are presented that either: (1) measure the maximum power of each array section and compute the total array power, (2) utilize a reference array to predict the characteristics of the solar array, or (3) utilize impedance measurements to predict the maximum power utilization. The advantages and disadvantages of each system are discussed and recommendations for further development are made.
In-phased second harmonic wave array generation with intra-Talbot-cavity frequency-doubling.
Hirosawa, Kenichi; Shohda, Fumio; Yanagisawa, Takayuki; Kannari, Fumihiko
2015-03-23
The Talbot cavity is one promising method to synchronize the phase of a laser array. However, it does not achieve the lowest array mode with the same phase but the highest array mode with the anti-phase between every two adjacent lasers, which is called out-phase locking. Consequently, their far-field images exhibit 2-peak profiles. We propose intra-Talbot-cavity frequency-doubling. By placing a nonlinear crystal in a Talbot cavity, the Talbot cavity generates an out-phased fundamental wave array, which is converted into an in-phase-locked second harmonic wave array at the nonlinear crystal. We demonstrate numerical calculations and experiments on intra-Talbot-cavity frequency-doubling and obtain an in-phase-locked second harmonic wave array for a Nd:YVO₄ array laser.
Microstrip technology and its application to phased array compensation
NASA Technical Reports Server (NTRS)
Dudgeon, J. E.; Daniels, W. D.
1972-01-01
A systematic analysis of mutual coupling compensation using microstrip techniques is presented. A method for behind-the-array coupling of a phased antenna array is investigated as to its feasibility. The matching scheme is tried on a rectangular array of one half lambda 2 dipoles, but it is not limited to this array element or geometry. In the example cited the values of discrete components necessary were so small an L-C network is needed for realization. Such L-C tanks might limit an otherwise broadband array match, however, this is not significant for this dipole array. Other areas investigated were balun feeding and power limits of spiral antenna elements.
Multi-kW solar arrays for Earth orbit applications
NASA Technical Reports Server (NTRS)
1985-01-01
The multi-kW solar array program is concerned with developing the technology required to enable the design of solar arrays required to power the missions of the 1990's. The present effort required the design of a modular solar array panel consisting of superstrate modules interconnected to provide the structural support for the solar cells. The effort was divided into two tasks: (1) superstrate solar array panel design, and (2) superstrate solar array panel-to-panel design. The primary objective was to systematically investigate critical areas of the transparent superstrate solar array and evaluate the flight capabilities of this low cost approach.
1980-07-01
WORKI, WORK2, ALOC, and FLAMB . The WORK1 array comprises a number of small arrays which have been read from input and will be utilized throughout the...of the WORK2 array at least as large as the maximum of the two. The size is the same for both the ALOC and FLAMB arrays. The ALOC array stores the...allocation matrix and the FLAMB array is used for the Lagrangian multiplier matrix. Their dimension should be set to 3 x NWPNS x NTGTS, where NTGTS is
Solid state neutron detector array
Seidel, John G.; Ruddy, Frank H.; Brandt, Charles D.; Dulloo, Abdul R.; Lott, Randy G.; Sirianni, Ernest; Wilson, Randall O.
1999-01-01
A neutron detector array is capable of measuring a wide range of neutron fluxes. The array includes multiple semiconductor neutron detectors. Each detector has a semiconductor active region that is resistant to radiation damage. In one embodiment, the array preferably has a relatively small size, making it possible to place the array in confined locations. The ability of the array to detect a wide range of neutron fluxes is highly advantageous for many applications such as detecting neutron flux during start up, ramp up and full power of nuclear reactors.
Means for phase locking the outputs of a surface emitting laser diode array
NASA Technical Reports Server (NTRS)
Lesh, James R. (Inventor)
1987-01-01
An array of diode lasers, either a two-dimensional array of surface emitting lasers, or a linear array of stripe lasers, is phase locked by a diode laser through a hologram which focuses the output of the diode laser into a set of distinct, spatially separated beams, each one focused onto the back facet of a separate diode laser of the array. The outputs of the diode lasers thus form an emitted coherent beam out of the front of the array.
Array Simulation at the Bearing Stake Sites
1981-04-01
C) The array was generally towed at 300 m depth. Four depth sensors on the array gave depth and tilt. With the exception of Site 1B the array was...Site 2, weights were added to the array to overcome its apparent buoyancy. The depth sensors failed on this run and the actual *ilt is not known. Data...horizontal axis title, " Sensor Group Separation," refers to posicion along che array. It .s equivalent to our simulated receiver depth with shallower
Polarization measurements made on LFRA and OASIS emitter arrays
NASA Astrophysics Data System (ADS)
Geske, Jon; Sparkman, Kevin; Oleson, Jim; Laveigne, Joe; Sieglinger, Breck; Marlow, Steve; Lowry, Heard; Burns, James
2008-04-01
Polarization is increasingly being considered as a method of discrimination in passive sensing applications. In this paper the degree of polarization of the thermal emission from the emitter arrays of two new Santa Barbara Infrared (SBIR) micro-bolometer resistor array scene projectors was characterized at ambient temperature and at 77 K. The emitter arrays characterized were from the Large Format Resistive Array (LFRA) and the Optimized Arrays for Space-Background Infrared Simulation (OASIS) scene projectors. This paper reports the results of this testing.
Method and apparatus for control of a magnetic structure
Challenger, Michael P.; Valla, Arthur S.
1996-06-18
A method and apparatus for independently adjusting the spacing between opposing magnet arrays in charged particle based light sources. Adjustment mechanisms between each of the magnet arrays and the supporting structure allow the gap between the two magnet arrays to be independently adjusted. In addition, spherical bearings in the linkages to the magnet arrays permit the transverse angular orientation of the magnet arrays to also be adjusted. The opposing magnet arrays can be supported above the ground by the structural support.
Design and Use of Microphone Directional Arrays for Aeroacoustic Measurements
NASA Technical Reports Server (NTRS)
Humphreys, William M., Jr.; Brooks, Thomas F.; Hunter, William W., Jr.; Meadows, Kristine R.
1998-01-01
An overview of the development of two microphone directional arrays for aeroacoustic testing is presented. These arrays were specifically developed to measure airframe noise in the NASA Langley Quiet Flow Facility. A large aperture directional array using 35 flush-mounted microphones was constructed to obtain high resolution noise localization maps around airframe models. This array possesses a maximum diagonal aperture size of 34 inches. A unique logarithmic spiral layout design was chosen for the targeted frequency range of 2-30 kHz. Complementing the large array is a small aperture directional array, constructed to obtain spectra and directivity information from regions on the model. This array, possessing 33 microphones with a maximum diagonal aperture size of 7.76 inches, is easily moved about the model in elevation and azimuth. Custom microphone shading algorithms have been developed to provide a frequency- and position-invariant sensing area from 10-40 kHz with an overall targeted frequency range for the array of 5-60 kHz. Both arrays are employed in acoustic measurements of a 6 percent of full scale airframe model consisting of a main element NACA 632-215 wing section with a 30 percent chord half-span flap. Representative data obtained from these measurements is presented, along with details of the array calibration and data post-processing procedures.
High-performance, flexible, deployable array development for space applications
NASA Technical Reports Server (NTRS)
Gehling, Russell N.; Armstrong, Joseph H.; Misra, Mohan S.
1994-01-01
Flexible, deployable arrays are an attractive alternative to conventional solar arrays for near-term and future space power applications, particularly due to their potential for high specific power and low storage volume. Combined with low-cost flexible thin-film photovoltaics, these arrays have the potential to become an enabling or an enhancing technology for many missions. In order to expedite the acceptance of thin-film photovoltaics for space applications, however, parallel development of flexible photovoltaics and the corresponding deployable structure is essential. Many innovative technologies must be incorporated in these arrays to ensure a significant performance increase over conventional technologies. For example, innovative mechanisms which employ shape memory alloys for storage latches, deployment mechanisms, and array positioning gimbals can be incorporated into flexible array design with significant improvement in the areas of cost, weight, and reliability. This paper discusses recent activities at Martin Marietta regarding the development of flexible, deployable solar array technology. Particular emphasis is placed on the novel use of shape memory alloys for lightweight deployment elements to improve the overall specific power of the array. Array performance projections with flexible thin-film copper-indium-diselenide (CIS) are presented, and government-sponsored solar array programs recently initiated at Martin Marietta through NASA and Air Force Phillips Laboratory are discussed.
Servo scanning 3D micro EDM for array micro cavities using on-machine fabricated tool electrodes
NASA Astrophysics Data System (ADS)
Tong, Hao; Li, Yong; Zhang, Long
2018-02-01
Array micro cavities are useful in many fields including in micro molds, optical devices, biochips and so on. Array servo scanning micro electro discharge machining (EDM), using array micro electrodes with simple cross-sectional shape, has the advantage of machining complex 3D micro cavities in batches. In this paper, the machining errors caused by offline-fabricated array micro electrodes are analyzed in particular, and then a machining process of array servo scanning micro EDM is proposed by using on-machine fabricated array micro electrodes. The array micro electrodes are fabricated on-machine by combined procedures including wire electro discharge grinding, array reverse copying and electrode end trimming. Nine-array tool electrodes with Φ80 µm diameter and 600 µm length are obtained. Furthermore, the proposed process is verified by several machining experiments for achieving nine-array hexagonal micro cavities with top side length of 300 µm, bottom side length of 150 µm, and depth of 112 µm or 120 µm. In the experiments, a chip hump accumulates on the electrode tips like the built-up edge in mechanical machining under the conditions of brass workpieces, copper electrodes and the dielectric of deionized water. The accumulated hump can be avoided by replacing the water dielectric by an oil dielectric.
ASIC Readout Circuit Architecture for Large Geiger Photodiode Arrays
NASA Technical Reports Server (NTRS)
Vasile, Stefan; Lipson, Jerold
2012-01-01
The objective of this work was to develop a new class of readout integrated circuit (ROIC) arrays to be operated with Geiger avalanche photodiode (GPD) arrays, by integrating multiple functions at the pixel level (smart-pixel or active pixel technology) in 250-nm CMOS (complementary metal oxide semiconductor) processes. In order to pack a maximum of functions within a minimum pixel size, the ROIC array is a full, custom application-specific integrated circuit (ASIC) design using a mixed-signal CMOS process with compact primitive layout cells. The ROIC array was processed to allow assembly in bump-bonding technology with photon-counting infrared detector arrays into 3-D imaging cameras (LADAR). The ROIC architecture was designed to work with either common- anode Si GPD arrays or common-cathode InGaAs GPD arrays. The current ROIC pixel design is hardwired prior to processing one of the two GPD array configurations, and it has the provision to allow soft reconfiguration to either array (to be implemented into the next ROIC array generation). The ROIC pixel architecture implements the Geiger avalanche quenching, bias, reset, and time to digital conversion (TDC) functions in full-digital design, and uses time domain over-sampling (vernier) to allow high temporal resolution at low clock rates, increased data yield, and improved utilization of the laser beam.
Superconducting Bolometer Array Architectures
NASA Technical Reports Server (NTRS)
Benford, Dominic; Chervenak, Jay; Irwin, Kent; Moseley, S. Harvey; Shafer, Rick; Staguhn, Johannes; Wollack, Ed; Oegerle, William (Technical Monitor)
2002-01-01
The next generation of far-infrared and submillimeter instruments require large arrays of detectors containing thousands of elements. These arrays will necessarily be multiplexed, and superconducting bolometer arrays are the most promising present prospect for these detectors. We discuss our current research into superconducting bolometer array technologies, which has recently resulted in the first multiplexed detections of submillimeter light and the first multiplexed astronomical observations. Prototype arrays containing 512 pixels are in production using the Pop-Up Detector (PUD) architecture, which can be extended easily to 1000 pixel arrays. Planar arrays of close-packed bolometers are being developed for the GBT (Green Bank Telescope) and for future space missions. For certain applications, such as a slewed far-infrared sky survey, feedhorncoupling of a large sparsely-filled array of bolometers is desirable, and is being developed using photolithographic feedhorn arrays. Individual detectors have achieved a Noise Equivalent Power (NEP) of -10(exp 17) W/square root of Hz at 300mK, but several orders of magnitude improvement are required and can be reached with existing technology. The testing of such ultralow-background detectors will prove difficult, as this requires optical loading of below IfW. Antenna-coupled bolometer designs have advantages for large format array designs at low powers due to their mode selectivity.
NASA Technical Reports Server (NTRS)
Delzeit, Lance; Nguyen, Cattien; Li, Jun; Han, Jie; Meyyappan, M.
2002-01-01
The development of nano-arrays for sensors and devices requires the growth of arrays with the proper characteristics. One such application is the growth of vertically aligned carbon nanotubes (CNTs) and graphitic carbon fibers (GCFs) for the chemical attachment of probe molecules. The effectiveness of such an array is dependent not only upon the effectiveness of the probe and the interface between that probe and the array, but also the array and the underlaying substrate. If that array is a growth of vertically aligned CNTs or GCFs then the attachment of that array to the surface is of the utmost importance. This attachment provides the mechanical stability and durability of the array, as well as, the electrical properties of that array. If the detection is to be acquired through an electrical measurement, then the appropriate resistance between the array and the surface need to be fabricated into the device. I will present data on CNTs and GCFs grown from both thermal and plasma enhanced chemical vapor deposition. The focus will be on the characteristics of the metal film from which the CNTs and GCFs are grown and the changes that occur due to changes within the growth process.
Developing an Inflatable Solar Array
NASA Technical Reports Server (NTRS)
Malone, Patrick K.; Jankowski, Francis J.; Williams, Geoffery T.; Vendura, George J., Jr.
1992-01-01
Viewgraphs describing the development of an inflatable solar array as part of the Inflatable Torus Solar Array Technology (ITSAT) program are presented. Program phases, overall and subsystem designs, and array deployment are addressed.
Coded aperture imaging with uniformly redundant arrays
Fenimore, Edward E.; Cannon, Thomas M.
1980-01-01
A system utilizing uniformly redundant arrays to image non-focusable radiation. The uniformly redundant array is used in conjunction with a balanced correlation technique to provide a system with no artifacts such that virtually limitless signal-to-noise ratio is obtained with high transmission characteristics. Additionally, the array is mosaicked to reduce required detector size over conventional array detectors.
Coded aperture imaging with uniformly redundant arrays
Fenimore, Edward E.; Cannon, Thomas M.
1982-01-01
A system utilizing uniformly redundant arrays to image non-focusable radiation. The uniformly redundant array is used in conjunction with a balanced correlation technique to provide a system with no artifacts such that virtually limitless signal-to-noise ratio is obtained with high transmission characteristics. Additionally, the array is mosaicked to reduce required detector size over conventional array detectors.
Structural Coloration of a Colloidal Amorphous Array is Intensified by Carbon Nanolayers.
Takeoka, Yukikazu; Iwata, Masanori; Seki, Takahiro; Nueangnoraj, Khanin; Nishihara, Hirotomo; Yoshioka, Shinya
2018-04-10
In this study, we introduce the possibility of applying a colloidal amorphous array composed of fine silica particles as a structural-color material to invisible information technology. The appearance of a thick filmlike colloidal amorphous array formed from fine silica particles is considerably influenced by incoherent light scattering across the entire visible region. Therefore, regardless of the diameter of the fine silica particles, the thick colloidal amorphous array exhibits a white color to the naked eye. When carbon is uniformly deposited in the colloidal amorphous array by a pressure-pulsed chemical vapor deposition method, incoherent light scattering in the colloidal amorphous array is suppressed. As a result, coherent light scattering due to the short-range order in the colloidal amorphous array becomes conspicuous and the array exhibits a vivid structural color. As structures, such as letters and pictures, can be drawn using this technology, the colloidal amorphous array as a structural-colored material may also be applicable for invisible information technology.
Optimization of the Hartmann-Shack microlens array
NASA Astrophysics Data System (ADS)
de Oliveira, Otávio Gomes; de Lima Monteiro, Davies William
2011-04-01
In this work we propose to optimize the microlens-array geometry for a Hartmann-Shack wavefront sensor. The optimization makes possible that regular microlens arrays with a larger number of microlenses are replaced by arrays with fewer microlenses located at optimal sampling positions, with no increase in the reconstruction error. The goal is to propose a straightforward and widely accessible numerical method to calculate an optimized microlens array for a known aberration statistics. The optimization comprises the minimization of the wavefront reconstruction error and/or the number of necessary microlenses in the array. We numerically generate, sample and reconstruct the wavefront, and use a genetic algorithm to discover the optimal array geometry. Within an ophthalmological context, as a case study, we demonstrate that an array with only 10 suitably located microlenses can be used to produce reconstruction errors as small as those of a 36-microlens regular array. The same optimization procedure can be employed for any application where the wavefront statistics is known.
Collective photonic-plasmonic resonances in noble metal - dielectric nanoparticle hybrid arrays
Hong, Yan; Reinhard, Björn M.
2014-10-27
Coherent scattering of gold and silver nanoparticles (NPs) in regular arrays can generate Surface Lattice Resonances (SLRs) with characteristically sharp spectral features. Herein, we investigate collective resonances in compositionally more complex arrays comprising NP clusters and NPs with different chemical compositions at pre-defined lattice sites. We first characterize the impact of NP clustering by exchanging individual gold NPs in the array through dimers of electromagnetically strongly coupled gold NPs. Then, we analyze hybrid arrays that contain both gold metal NP dimers and high refractive index dielectric NPs as building blocks. We demonstrate that the integration of gold NP clusters andmore » dielectric NPs into one array enhances E-field intensities not only in the vicinity of the NPs but also in the ambient medium of the entire array. In addition, this work shows that the ability to integrate multiple building blocks with different resonance conditions in one array provides new degrees of freedom for engineering optical fields in the array plane with variable amplitude and phase.« less
Nanoindentation study of the mechanical behavior of TiO2 nanotube arrays
NASA Astrophysics Data System (ADS)
Xu, Y. N.; Liu, M. N.; Wang, M. C.; Oloyede, A.; Bell, J. M.; Yan, C.
2015-10-01
Titanium dioxide (TiO2) nanotube arrays are attracting increasing attention for use in solar cells, lithium-ion batteries, and biomedical implants. To take full advantage of their unique physical properties, such arrays need to maintain adequate mechanical integrity in applications. However, the mechanical performance of TiO2 nanotube arrays is not well understood. In this work, we investigate the deformation and failure of TiO2 nanotube arrays using the nanoindentation technique. We found that the load-displacement response of the arrays strongly depends on the indentation depth and indenter shape. Substrate-independent elastic modulus and hardness can be obtained when the indentation depth is less than 2.5% of the array height. The deformation mechanisms of TiO2 nanotube arrays by Berkovich and conical indenters are closely associated with the densification of TiO2 nanotubes under compression. A theoretical model for deformation of the arrays under a large-radius conical indenter is also proposed.
Similar Tensor Arrays - A Framework for Storage of Tensor Array Data
NASA Astrophysics Data System (ADS)
Brun, Anders; Martin-Fernandez, Marcos; Acar, Burak; Munoz-Moreno, Emma; Cammoun, Leila; Sigfridsson, Andreas; Sosa-Cabrera, Dario; Svensson, Björn; Herberthson, Magnus; Knutsson, Hans
This chapter describes a framework for storage of tensor array data, useful to describe regularly sampled tensor fields. The main component of the framework, called Similar Tensor Array Core (STAC), is the result of a collaboration between research groups within the SIMILAR network of excellence. It aims to capture the essence of regularly sampled tensor fields using a minimal set of attributes and can therefore be used as a “greatest common divisor” and interface between tensor array processing algorithms. This is potentially useful in applied fields like medical image analysis, in particular in Diffusion Tensor MRI, where misinterpretation of tensor array data is a common source of errors. By promoting a strictly geometric perspective on tensor arrays, with a close resemblance to the terminology used in differential geometry, (STAC) removes ambiguities and guides the user to define all necessary information. In contrast to existing tensor array file formats, it is minimalistic and based on an intrinsic and geometric interpretation of the array itself, without references to other coordinate systems.
New Voltage and Current Thresholds Determined for Sustained Space Plasma Arcing
NASA Technical Reports Server (NTRS)
Ferguson, Dale C.; Galofaro, Joel T.; Vayner, Boris V.
2003-01-01
It has been known for many years, based partly on NASA Glenn Research Center testing, that high-voltage solar arrays arc into the space plasma environment. Solar arrays are composed of solar cells in series with each other (a string), and the strings may be connected in parallel to produce the entire solar array power. Arcs on solar arrays can damage or destroy solar cells, and in the extreme case of sustained arcing, entire solar array strings, in a flash. In the case of sustained arcing (discovered at Glenn and applied to the design and construction of solar arrays on Space Systems/Loral (SS/Loral, Palo Alto, CA) satellites, Deep-Space 1, and Terra), an arc on one solar array string can couple to an adjacent string and continue to be powered by the solar array output until a permanent electrical short is produced. In other words, sustained arcs produced by arcs into the plasma (so-called trigger arcs) may turn into disastrous sustained arcs by involving other array strings.
Damage imaging using Lamb waves for SHM applications
NASA Astrophysics Data System (ADS)
Stepinski, Tadeusz; Ambroziński, Łukasz; Uhl, Tadeusz
2015-03-01
2-D ultrasonic arrays, due to their beam-steering capability and all azimuth angle coverage are a very promising tool for the inspection of plate-like structures using Lamb waves (LW). Contrary to the classical linear phased arrays (PAs) the 2D arrays enable unequivocal defect localization and they are even capable of mode selectivity of the received LWs . Recently, it has been shown that multistatic synthetic focusing (SF) algorithms applied for 2D arrays are much more effective than the classical phase array mode commonly used in NDT. The multistatic SF assumes multiple transmissions of elements in a transmitting aperture and off-line processing of the data acquired by a receiving aperture. In the simplest implementation of the technique, only a single multiplexed input and a number of output channels are required, which results in significant hardware simplification compared with the PA systems. On the one hand implementation of the multistatic SF to 2D arrays creates additional degrees of freedom during the design of the array topology, which complicates the array design process. On the other hand, it enables designing sparse arrays with performance similar to that of the fully populated dense arrays. In this paper we present a general systematic approach to the design and optimization of imaging systems based on the 2D array operating in the multistatic mode. We start from presenting principles of the SF schemes applied to LW imaging. Then, we outline the coarray concept and demonstrate how it can be used for reducing number of elements of the 2D arrays. Finally, efficient tools for the investigation and experimental verification of the designed 2D array prototypes are presented. The first step in the investigation is theoretical evaluation performed using frequency-dependent structure transfer function (STF), which enables approximate simulation of an array excited with a tone-burst in a dispersive medium. Finally, we show how scanning laser vibrometer, sensing waves in multiple points corresponding to the locations of the 2D receiving array elements, can be used as a tool for rapid experimental verification of the developed topologies. The presented methods are discussed in terms of the beampatterns and sparse versions of the fully populated array topologies are be presented. The effect of apodization applied to the array elements is also investigated. Both simulated and experimental results are included.
Anderson, Gene R.; Armendariz, Marcelino G.; Carson, Richard F.; Bryan, Robert P.; Duckett, III, Edwin B.; Kemme, Shanalyn Adair; McCormick, Frederick B.; Peterson, David W.
2006-04-04
An apparatus and method of attenuating and/or conditioning optical energy for an optical transmitter, receiver or transceiver module is disclosed. An apparatus for attenuating the optical output of an optoelectronic connector including: a mounting surface; an array of optoelectronic devices having at least a first end; an array of optical elements having at least a first end; the first end of the array of optical elements optically aligned with the first end of the array of optoelectronic devices; an optical path extending from the first end of the array of optoelectronic devices and ending at a second end of the array of optical elements; and an attenuator in the optical path for attenuating the optical energy emitted from the array of optoelectronic devices. Alternatively, a conditioner may be adapted in the optical path for conditioning the optical energy emitted from the array of optoelectronic devices.
Photonic Waveguide Choke Joint with Non-Absorptive Loading
NASA Technical Reports Server (NTRS)
Wollack, Edward J. (Inventor); U-Yen, Kongpop (Inventor); Chuss, David T. (Inventor)
2016-01-01
A waveguide choke joint includes a first array of pillars positioned on a substrate, each pillar in the first array of pillars having a first size and configured to receive an input plane wave at a first end of the choke joint. The choke joint has a second end configured to transmit the input plane wave away from the choke joint. The choke joint further includes a second array of pillars positioned on the substrate between the first array of pillars and the second end of the choke joint. Each pillar in the second array of pillars has a second size. The choke joint also has a third array of pillars positioned on the substrate between the second array and the second end of the choke joint. Each pillar in the third array of pillars has a third size.
Force sensitive carbon nanotube arrays for biologically inspired airflow sensing
NASA Astrophysics Data System (ADS)
Maschmann, Matthew R.; Dickinson, Ben; Ehlert, Gregory J.; Baur, Jeffery W.
2012-09-01
The compressive electromechanical response of aligned carbon nanotube (CNT) arrays is evaluated for use as an artificial hair sensor (AHS) transduction element. CNT arrays with heights of 12, 75, and 225 µm are examined. The quasi-static and dynamic sensitivity to force, response time, and signal drift are examined within the range of applied stresses predicted by a mechanical model applicable to the conceptual CNT array-based AHS (0-1 kPa). Each array is highly sensitive to compressive loading, with a maximum observed gauge factor of 114. The arrays demonstrate a repeatable response to dynamic cycling after a break-in period of approximately 50 cycles. Utilizing a four-wire measurement electrode configuration, the change in contact resistance between the array and the electrodes is observed to dominate the electromechanical response of the arrays. The response time of the CNT arrays is of the order of 10 ms. When the arrays are subjected to constant stress, mechanical creep is observed that results in a signal drift that generally diminishes the responsiveness of the arrays, particularly at stress approaching 1 kPa. The results of this study serve as a preliminary proof of concept for utilizing CNT arrays as a transduction mechanism for a proposed artificial hair sensor. Such a low profile and light-weight flow sensor is expected to have application in a number of applications including navigation and state awareness of small air vehicles, similar in function to natural hair cell receptors utilized by insects and bats.
Fly's eye condenser based on chirped microlens arrays
NASA Astrophysics Data System (ADS)
Wippermann, Frank C.; Zeitner, Uwe-D.; Dannberg, Peter; Bräuer, Andreas; Sinzinger, Stefan
2007-09-01
Lens array arrangements are commonly used for the beam shaping of almost arbitrary input intensity distributions into a top-hat. The setup usually consists of a Fourier lens and two identical regular microlens arrays - often referred to as tandem lens array - where the second one is placed in the focal plane of the first microlenses. Due to the periodic structure of regular arrays the output intensity distribution is modulated by equidistant sharp intensity peaks which are disturbing the homogeneity. The equidistantly located intensity peaks can be suppressed when using a chirped and therefore non-periodic microlens array. A far field speckle pattern with more densely and irregularly located intensity peaks results leading to an improved homogeneity of the intensity distribution. In contrast to stochastic arrays, chirped arrays consist of individually shaped lenses defined by a parametric description of the cells optical function which can be derived completely from analytical functions. This gives the opportunity to build up tandem array setups enabling to achieve far field intensity distribution with an envelope of a top-hat. We propose a new concept for fly's eye condensers incorporating a chirped tandem microlens array for the generation of a top-hat far field intensity distribution with improved homogenization under coherent illumination. The setup is compliant to reflow of photoresist as fabrication technique since plane substrates accommodating the arrays are used. Considerations for the design of the chirped microlens arrays, design rules, wave optical simulations and measurements of the far field intensity distributions are presented.
Array Simulations Platform (ASP) predicts NASA Data Link Module (NDLM) performance
NASA Technical Reports Server (NTRS)
Snook, Allen David
1993-01-01
Through a variety of imbedded theoretical and actual antenna patterns, the array simulation platform (ASP) enhanced analysis of the array antenna pattern effects for the KTx (Ku-Band Transmit) service of the NDLM (NASA Data Link Module). The ASP utilizes internally stored models of the NDLM antennas and can develop the overall pattern of antenna arrays through common array calculation techniques. ASP expertly assisted in the diagnosing of element phase shifter errors during KTx testing and was able to accurately predict the overall array pattern from combinations of the four internally held element patterns. This paper provides an overview of the use of the ASP software in the solving of array mis-phasing problems.
Li, Jisheng; Xin, Xiaohu; Luo, Yongfen; Ji, Haiying; Li, Yanming; Deng, Junbo
2013-11-01
A conformal combined sensor is designed and it is used in Partial Discharge (PD) location experiments in transformer oil. The sensor includes a cross-shaped ultrasonic phased array of 13 elements and an ultra-high-frequency (UHF) electromagnetic rectangle array of 2 × 2 elements. Virtual expansion with high order cumulants, the ultrasonic array can achieve the effect of array with 61 elements. This greatly improves the aperture and direction sharpness of original array and reduces the cost of follow-up hardware. With the cross-shaped ultrasonic array, the results of PD location experiments are precise and the maximum error of the direction of arrival (DOA) is less than 5°.
Solar array study for solar electric propulsion spacecraft for the Encke rendezvous mission
NASA Technical Reports Server (NTRS)
Sequeira, E. A.; Patterson, R. E.
1974-01-01
The work is described which was performed on the design, analysis and performance of a 20 kW rollup solar array capable of meeting the design requirements of a solar electric spacecraft for the 1980 Encke rendezvous mission. To meet the high power requirements of the proposed electric propulsion mission, solar arrays on the order of 186.6 sq m were defined. Because of the large weights involved with arrays of this size, consideration of array configurations is limited to lightweight, large area concepts with maximum power-to-weight ratios. Items covered include solar array requirements and constraints, array concept selection and rationale, structural and electrical design considerations, and reliability considerations.
Determining the Location of an Observer with Respect to Aerial Photographs
1988-12-01
at gradient-array (+ 1 j) (+ k I)) threshold) (mett (arot temp-array 1 k) O)M (cond (4- tarot temp-array I k) 1) Isetq sum (* sum tempt 2 (+ I (* 3 k)f...aetq num-edges (+ num-edges 1)))))) (setf taret unique-index-num-array j 1) sum) tsett tarot num-edges-array j 1) num-edges))))) 1 This function
Reproducible, high performance patch antenna array apparatus and method of fabrication
Strassner, II, Bernd H.
2007-01-23
A reproducible, high-performance patch antenna array apparatus includes a patch antenna array provided on a unitary dielectric substrate, and a feed network provided on the same unitary substrate and proximity coupled to the patch antenna array. The reproducibility is enhanced by using photolithographic patterning and etching to produce both the patch antenna array and the feed network.
Optimizing Satellite Communications With Adaptive and Phased Array Antennas
NASA Technical Reports Server (NTRS)
Ingram, Mary Ann; Romanofsky, Robert; Lee, Richard Q.; Miranda, Felix; Popovic, Zoya; Langley, John; Barott, William C.; Ahmed, M. Usman; Mandl, Dan
2004-01-01
A new adaptive antenna array architecture for low-earth-orbiting satellite ground stations is being investigated. These ground stations are intended to have no moving parts and could potentially be operated in populated areas, where terrestrial interference is likely. The architecture includes multiple, moderately directive phased arrays. The phased arrays, each steered in the approximate direction of the satellite, are adaptively combined to enhance the Signal-to-Noise and Interference-Ratio (SNIR) of the desired satellite. The size of each phased array is to be traded-off with the number of phased arrays, to optimize cost, while meeting a bit-error-rate threshold. Also, two phased array architectures are being prototyped: a spacefed lens array and a reflect-array. If two co-channel satellites are in the field of view of the phased arrays, then multi-user detection techniques may enable simultaneous demodulation of the satellite signals, also known as Space Division Multiple Access (SDMA). We report on Phase I of the project, in which fixed directional elements are adaptively combined in a prototype to demodulate the S-band downlink of the EO-1 satellite, which is part of the New Millennium Program at NASA.
Signal detectability in diffusive media using phased arrays in conjunction with detector arrays.
Kang, Dongyel; Kupinski, Matthew A
2011-06-20
We investigate Hotelling observer performance (i.e., signal detectability) of a phased array system for tasks of detecting small inhomogeneities and distinguishing adjacent abnormalities in uniform diffusive media. Unlike conventional phased array systems where a single detector is located on the interface between two sources, we consider a detector array, such as a CCD, on a phantom exit surface for calculating the Hotelling observer detectability. The signal detectability for adjacent small abnormalities (2 mm displacement) for the CCD-based phased array is related to the resolution of reconstructed images. Simulations show that acquiring high-dimensional data from a detector array in a phased array system dramatically improves the detectability for both tasks when compared to conventional single detector measurements, especially at low modulation frequencies. It is also observed in all studied cases that there exists the modulation frequency optimizing CCD-based phased array systems, where detectability for both tasks is consistently high. These results imply that the CCD-based phased array has the potential to achieve high resolution and signal detectability in tomographic diffusive imaging while operating at a very low modulation frequency. The effect of other configuration parameters, such as a detector pixel size, on the observer performance is also discussed.
Far infrared through millimeter backshort-under-grid arrays
NASA Astrophysics Data System (ADS)
Allen, Christine A.; Abrahams, John; Benford, Dominic J.; Chervenak, James A.; Chuss, David T.; Staguhn, Johannes G.; Miller, Timothy M.; Moseley, S. Harvey; Wollack, Edward J.
2006-06-01
We are developing a large-format, versatile, bolometer array for a wide range of infrared through millimeter astronomical applications. The array design consists of three key components - superconducting transition edge sensor bolometer arrays, quarter-wave reflective backshort grids, and Superconducting Quantum Interference Device (SQUID) multiplexer readouts. The detector array is a filled, square grid of bolometers with superconducting sensors. The backshort arrays are fabricated separately and are positioned in the etch cavities behind the detector grid. The grids have unique three-dimensional interlocking features micromachined into the walls for positioning and mechanical stability. The ultimate goal of the program is to produce large-format arrays with background-limited sensitivity, suitable for a wide range of wavelengths and applications. Large-format (kilopixel) arrays will be directly indium bump bonded to a SQUID multiplexer circuit. We have produced and tested 8×8 arrays of 1 mm detectors to demonstrate proof of concept. 8×16 arrays of 2 mm detectors are being produced for a new Goddard Space Flight Center instrument. We have also produced models of a kilopixel detector grid and dummy multiplexer chip for bump bonding development. We present detector design overview, several unique fabrication highlights, and assembly technologies.
Novel fabrication method of microlens arrays with High OLED outcoupling efficiency
NASA Astrophysics Data System (ADS)
Kim, Hyun Soo; Moon, Seong Il; Hwang, Dong Eui; Jeong, Ki Won; Kim, Chang Kyo; Moon, Dae-Gyu; Hong, Chinsoo
2016-03-01
We presented a novel fabrication method of pyramidal and hemispherical polymethylmethacrylate (PMMA) microlens arrays to improve the outcoupling efficiency. Pyramidal microlens arrays were fabricated by replica molding processes using concave-pyramidal silicon molds prepared by the wet etching method. Concave-hemispherical PMMA thin film was used as a template for fabrication of the hemispherical microlens array. The concave-hemispherical PMMA template was prepared by blowing a N2 gas stream onto the thin PMMA film suspended on a silicon pedestal. A PMMA microlens arrays with hemispherical structure were fabricated by a replica molding process. The outcoupling efficiency of the hemispherical microlens array was greater than that of the pyramidal microlens array. The outcoupling efficiency of hemispherical microlens arrays with a higher contact angle was larger than that of those with lower contact angle. This indicates that, for the hemispherical microlens with larger contact angle, more light can be extracted from the OLEDs due to the decrease in the incident angle of the light at the interface between an air and a hemispherical microlens arrays. After attaching a hemispherical microlens array with contact angle of 50.4° onto the OLEDs, the luminance was enhanced by approximately 117%.
Compression dynamics of quasi-spherical wire arrays with different linear mass profiles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitrofanov, K. N., E-mail: mitrofan@triniti.ru; Aleksandrov, V. V.; Gritsuk, A. N.
Results of experimental studies of the implosion of quasi-spherical wire (or metalized fiber) arrays are presented. The goal of the experiments was to achieve synchronous three-dimensional compression of the plasma produced in different regions of a quasi-spherical array into its geometrical center. To search for optimal synchronization conditions, quasi-spherical arrays with different initial profiles of the linear mass were used. The following dependences of the linear mass on the poloidal angle were used: m{sub l}(θ) ∝ sin{sup –1}θ and m{sub l}(θ) ∝ sin{sup –2}θ. The compression dynamics of such arrays was compared with that of quasi-spherical arrays without linear massmore » profiling, m{sub l}(θ) = const. To verify the experimental data, the spatiotemporal dynamics of plasma compression in quasi-spherical arrays was studied using various diagnostics. The experiments on three-dimensional implosion of quasi-spherical arrays made it possible to study how the frozen-in magnetic field of the discharge current penetrates into the array. By measuring the magnetic field in the plasma of a quasi-spherical array, information is obtained on the processes of plasma production and formation of plasma flows from the wire/fiber regions with and without an additionally deposited mass. It is found that penetration of the magnetic flux depends on the initial linear mass profile m{sub l}(θ) of the quasi-spherical array. From space-resolved spectral measurements and frame imaging of plasma X-ray emission, information is obtained on the dimensions and shape of the X-ray source formed during the implosion of a quasi-spherical array. The intensity of this source is estimated and compared with that of the Z-pinch formed during the implosion of a cylindrical array.« less
NASA Astrophysics Data System (ADS)
Martel, Ralph R.; Rounseville, Matthew P.; Botros, Ihab W.; Seligmann, Bruce E.
2002-06-01
Multiplexed Molecular Profiling (MMP) assays for drug discovery are performed in ArrayPlates. ArrayPlates are 96- well microtiter plates that contain a 16-element array at the bottom of each well. Each element within an array measures one analyte in a sample. A CCD imager records the quantitative chemiluminescent readout of all 1,536 elements in a 96-well plate simultaneously. Since array elements are reagent modifiable by the end-user, ArrayPlates can be adapted to a broad range of nucleic acid- and protein-based assays. Such multiplexed assays are rapidly established, flexible, robust, automation-friendly and cost-effective. Nucleic acid assays in ArrayPlates can detect DNA and RNA, including SNPs and ESTs. A multiplexed mRNA assay to measure the expression of 16 genes is described. The assay combines a homogeneous nuclease protection assay with subsequent probe immobilization to the array by means of a sandwich hybridization followed with chemiluminescent detection. This assay was used to examine cells grown and treated in microplates and avoided cloning, transfection, RNA insolation, reverse transcription, amplification and fluorochrome labeling. Standard deviations for the measurement of 16 genes ranged from 3 percent to 13 percent in samples of 30,000 cells. Such ArrayPlates transcription assays are useful in drug discovery and development for target validation, screening, lead optimization, metabolism and toxicity profiling. Chemiluminescent detection provides ArrayPlates assays with high signal-to-noise readout and simplifies imager requirements. Imaging a 2D surface that contains arrays simplifies lens requirements relative to imaging columns of liquid in microtiter plate wells. The Omix imager for ArrayPlates is described.
Sweetwater, Texas Large N Experiment
NASA Astrophysics Data System (ADS)
Sumy, D. F.; Woodward, R.; Barklage, M.; Hollis, D.; Spriggs, N.; Gridley, J. M.; Parker, T.
2015-12-01
From 7 March to 30 April 2014, NodalSeismic, Nanometrics, and IRIS PASSCAL conducted a collaborative, spatially-dense seismic survey with several thousand nodal short-period geophones complemented by a backbone array of broadband sensors near Sweetwater, Texas. This pilot project demonstrates the efficacy of industry and academic partnerships, and leveraged a larger, commercial 3D survey to collect passive source seismic recordings to image the subsurface. This innovative deployment of a large-N mixed-mode array allows industry to explore array geometries and investigate the value of broadband recordings, while affording academics a dense wavefield imaging capability and an operational model for high volume instrument deployment. The broadband array consists of 25 continuously-recording stations from IRIS PASSCAL and Nanometrics, with an array design that maximized recording of horizontal-traveling seismic energy for surface wave analysis over the primary target area with sufficient offset for imaging objectives at depth. In addition, 2639 FairfieldNodal Zland nodes from NodalSeismic were deployed in three sub-arrays: the outlier, backbone, and active source arrays. The backbone array consisted of 292 nodes that covered the entire survey area, while the outlier array consisted of 25 continuously-recording nodes distributed at a ~3 km distance away from the survey perimeter. Both the backbone and outlier array provide valuable constraints for the passive source portion of the analysis. This project serves as a learning platform to develop best practices in the support of large-N arrays with joint industry and academic expertise. Here we investigate lessons learned from a facility perspective, and present examples of data from the various sensors and array geometries. We will explore first-order results from local and teleseismic earthquakes, and show visualizations of the data across the array. Data are archived at the IRIS DMC under stations codes XB and 1B.
Yan, Xinqiang; Zhang, Xiaoliang; Wei, Long; Xue, Rong
2015-01-01
Radio-frequency coil arrays using dipole antenna technique have been recently applied for ultrahigh field magnetic resonance (MR) imaging to obtain the better signal-noise-ratio (SNR) gain at the deep area of human tissues. However, the unique structure of dipole antennas makes it challenging to achieve sufficient electromagnetic decoupling among the dipole antenna elements. Currently, there is no decoupling methods proposed for dipole antenna arrays in MR imaging. The recently developed magnetic wall (MW) or induced current elimination decoupling technique has demonstrated its feasibility and robustness in designing microstrip transmission line arrays, L/C loop arrays and monopole arrays. In this study, we aim to investigate the possibility and performance of MW decoupling technique in dipole arrays for MR imaging at the ultrahigh field of 7T. To achieve this goal, a two-channel MW decoupled dipole array was designed, constructed and analyzed experimentally through bench test and MR imaging. Electromagnetic isolation between the two dipole elements was improved from about -3.6 dB (without any decoupling treatments) to -16.5 dB by using the MW decoupling method. MR images acquired from a water phantom using the MW decoupled dipole array and the geometry factor maps were measured, calculated and compared with those acquired using the dipole array without decoupling treatments. The MW decoupled dipole array demonstrated well-defined image profiles from each element and had better geometry factor over the array without decoupling treatments. The experimental results indicate that the MW decoupling technique might be a promising solution to reducing the electromagnetic coupling of dipole arrays in ultrahigh field MRI, consequently improving their performance in SNR and parallel imaging.
Atomic Oxygen Durability Testing of an International Space Station Solar Array Validation Coupon
NASA Technical Reports Server (NTRS)
Forkapa, Mark J.; Stidham, Curtis; Banks, Bruce A.; Rutledge, Sharon K.; Ma, David H.; Sechkar, Edward A.
1996-01-01
An International Space Station solar array validation coupon was exposed in a directed atomic oxygen beam for space environment durability testing at the NASA Lewis Research Center. Exposure to atomic oxygen and intermittent tensioning of the solar array were conducted to verify the solar array#s durability to low Earth orbital atomic oxygen and to the docking threat of plume loading both of which are anticipated over its expected mission life of fifteen years. The validation coupon was mounted on a specially designed rotisserie. The rotisserie mounting enabled the solar and anti-solar facing side of the array to be exposed to directed atomic oxygen in a sweeping arrival process replicating space exposure. The rotisserie mounting also enabled tensioning, in order to examine the durability of the array and its hinge to simulated plume loads. Flash testing to verify electrical performance of the solar array was performed with a solar simulator before and after the exposure to atomic oxygen and tensile loading. Results of the flash testing indicated little or no degradation in the solar array#s performance. Photographs were also taken of the array before and after the durability testing and are included along with comparisons and discussions in this report. The amount of atomic oxygen damage appeared minor with the exception of a very few isolated defects. There were also no indications that the simulated plume loadings had weakened or damaged the array, even though there was some erosion of Kapton due to atomic oxygen attack. Based on the results of this testing, it is apparent that the International Space Station#s solar arrays should survive the low Earth orbital atomic oxygen environment and docking threats which are anticipated over its expected mission life.
IkeNet: Social Network Analysis of E-mail Traffic in the Eisenhower Leadership Development Program
2007-11-01
8217Create the recipients TO TempArray = Sphit(strTo,") For Each varArrayltem In TemnpArray hextGuy = Chr(34) & CStr (Trim(varArrayltem)) & Chr(34) MsgBox...34next guy = " & nextGuy ’Set oRecipient = Recipients.Add(nextGuy) Set oRecipient = Recipients.Add( CStr (Trim(varArrayItem))) oRecipient.Type = olTo...TempArray = Split(strAttachments, "" For Each varArrayltern In TempArray .Attachments.Add CStr (Trim(varArrayItem)) Next varArrayltern .Send No return value
Fabrication of high thermal conductivity arrays of carbon nanotubes and their composites
Geohegan, David B [Knoxville, TN; Ivanov, Ilya N [Knoxville, TN; Puretzky, Alexander A [Knoxville, TN
2010-07-27
Methods and apparatus are described for fabrication of high thermal conductivity arrays of carbon nanotubes and their composites. A composition includes a vertically aligned nanotube array including a plurality of nanotubes characterized by a property across substantially all of the vertically aligned nanotube array. A method includes depositing a vertically aligned nanotube array that includes a plurality of nanotubes; and controlling a deposition rate of the vertically aligned nanotubes array as a function of an in situ monitored property of the plurality of nanotubes.
Solid state neutron detector array
Seidel, J.G.; Ruddy, F.H.; Brandt, C.D.; Dulloo, A.R.; Lott, R.G.; Sirianni, E.; Wilson, R.O.
1999-08-17
A neutron detector array is capable of measuring a wide range of neutron fluxes. The array includes multiple semiconductor neutron detectors. Each detector has a semiconductor active region that is resistant to radiation damage. In one embodiment, the array preferably has a relatively small size, making it possible to place the array in confined locations. The ability of the array to detect a wide range of neutron fluxes is highly advantageous for many applications such as detecting neutron flux during start up, ramp up and full power of nuclear reactors. 7 figs.
MILSTAR's flexible substrate solar array: Lessons learned, addendum
NASA Technical Reports Server (NTRS)
Gibb, John
1990-01-01
MILSTAR's Flexible Substrate Solar Array (FSSA) is an evolutionary development of the lightweight, flexible substrate design pioneered at Lockheed during the seventies. Many of the features of the design are related to the Solar Array Flight Experiment (SAFE), flown on STS-41D in 1984. FSSA development has created a substantial technology base for future flexible substrate solar arrays such as the array for the Space Station Freedom. Lessons learned during the development of the FSSA can and should be applied to the Freedom array and other future flexible substrate designs.
Effects of additional interfering signals on adaptive array performance
NASA Technical Reports Server (NTRS)
Moses, Randolph L.
1989-01-01
The effects of additional interference signals on the performance of a fully adaptive array are considered. The case where the number of interference signals exceeds the number of array degrees of freedom is addressed. It is shown how performance is affected as a function of the number of array elements, the number of interference signals, and the directivity of the array antennas. By using directive auxiliary elements, the performance of the array can be as good as the performance when the additional interference signals are not present.
Stressed detector arrays for airborne astronomy
NASA Technical Reports Server (NTRS)
Stacey, G. J.; Beeman, J. W.; Haller, E. E.; Geis, N.; Poglitsch, A.; Rumitz, M.
1989-01-01
The development of stressed Ge:Ga detector arrays for far-infrared astronomy from the Kuiper Airborne Observatory (KAO) is discussed. Researchers successfully constructed and used a three channel detector array on five flights from the KAO, and have conducted laboratory tests of a two-dimensional, 25 elements (5x5) detector array. Each element of the three element array performs as well as the researchers' best single channel detector, as do the tested elements of the 25 channel system. Some of the exciting new science possible with far-infrared detector arrays is also discussed.
Khuri-Yakub, B T; Oralkan, Omer; Nikoozadeh, Amin; Wygant, Ira O; Zhuang, Steve; Gencel, Mustafa; Choe, Jung Woo; Stephens, Douglas N; de la Rama, Alan; Chen, Peter; Lin, Feng; Dentinger, Aaron; Wildes, Douglas; Thomenius, Kai; Shivkumar, Kalyanam; Mahajan, Aman; Seo, Chi Hyung; O'Donnell, Matthew; Truong, Uyen; Sahn, David J
2010-01-01
Capacitive micromachined ultrasonic transducer (CMUT) arrays are conveniently integrated with frontend integrated circuits either monolithically or in a hybrid multichip form. This integration helps with reducing the number of active data processing channels for 2D arrays. This approach also preserves the signal integrity for arrays with small elements. Therefore CMUT arrays integrated with electronic circuits are most suitable to implement miniaturized probes required for many intravascular, intracardiac, and endoscopic applications. This paper presents examples of miniaturized CMUT probes utilizing 1D, 2D, and ring arrays with integrated electronics.
Ultrasound therapy transducers with space-filling non-periodic arrays.
Raju, Balasundar I; Hall, Christopher S; Seip, Ralf
2011-05-01
Ultrasound transducers designed for therapeutic purposes such as tissue ablation, histotripsy, or drug delivery require large apertures for adequate spatial localization while providing sufficient power and steerability without the presence of secondary grating lobes. In addition, it is highly preferred to minimize the total number of channels and to maintain simplicity in electrical matching network design. To this end, we propose array designs that are both space-filling and non-periodic in the placement of the elements. Such array designs can be generated using the mathematical concept of non-periodic or aperiodic tiling (tessellation) and can lead to reduced grating lobes while maintaining full surface area coverage to deliver maximum power. For illustration, we designed two 2-D space-filling therapeutic arrays with 128 elements arranged on a spherical shell. One was based on the two-shape Penrose rhombus tiling, and the other was based on a single rectangular shape arranged non-periodically. The steerability performance of these arrays was studied using acoustic field simulations. For comparison, we also studied two other arrays, one with circular elements distributed randomly, and the other a periodic array with square elements. Results showed that the two space-filling non-periodic arrays were able to steer to treat a volume of 16 x 16 x 20 mm while ensuring that the grating lobes were under -10 dB compared with the main lobe. The rectangular non-periodic array was able to generate two and half times higher power than the random circles array. The rectangular array was then fabricated by patterning the array using laser scribing methods and its steerability performance was validated using hydrophone measurements. This work demonstrates that the concept of space-filling aperiodic/non-periodic tiling can be used to generate therapy arrays that are able to provide higher power for the same total transducer area compared with random arrays while maintaining acceptable grating lobe levels.
Torsional Buckling Tests of a Simulated Solar Array
NASA Technical Reports Server (NTRS)
Thornton, E. A.
1996-01-01
Spacecraft solar arrays are typically large structures supported by long, thin deployable booms. As such, they may be particularly susceptible to abnormal structural behavior induced by mechanical and thermal loading. One example is the Hubble Space Telescope solar arrays which consist of two split tubes fit one inside the other called BiSTEMs. The original solar arrays on the Hubble Space Telescope were found to be severely twisted following deployment and later telemetry data showed the arrays were vibrating during daylight to night and night to daylight transition. The solar array twist however can force the BiSTEM booms to change in cross-section and cause tile solar arrays to react unpredictably to future loading. The solar arrays were redesigned to correct for tile vibration, however, upon redeployment they again twisted. To assess the influence of boom cross-sectional configuration, experiments were conducted on two types of booms, (1)booms with closed cross-sections, and (2) booms with open cross-sections. Both models were subjected to compressive loading and imposed tip deflections. An existing analytical model by Chung and Thornton was used to define the individual load ranges for each model solar array configuration. The load range for the model solar array using closed cross-section booms was 0-120 Newtons and 0-160 Newtons for the model solar array using open cross-section booms. The results indicate the model solar array with closed cross-section booms buckled only in flexure. However, the results of the experiment with open cross-section booms indicate the model solar array buckled only in torsion and with imposed tip deflections the cross section can degrade by rotation of the inner relative to the outer STEM. For tile Hubble Space Telescope solar arrays the results of these experiments indicate the twisting resulted from the initial mechanical loading of the open cross-section booms.
Fabrication of plasmonic cavity arrays for SERS analysis
NASA Astrophysics Data System (ADS)
Li, Ning; Feng, Lei; Teng, Fei; Lu, Nan
2017-05-01
The plasmonic cavity arrays are ideal substrates for surface enhanced Raman scattering analysis because they can provide hot spots with large volume for analyte molecules. The large area increases the probability to make more analyte molecules on hot spots and leads to a high reproducibility. Therefore, to develop a simple method for creating cavity arrays is important. Herein, we demonstrate how to fabricate a V and W shape cavity arrays by a simple method based on self-assembly. Briefly, the V and W shape cavity arrays are respectively fabricated by taking KOH etching on a nanohole and a nanoring array patterned silicon (Si) slides. The nanohole array is generated by taking a reactive ion etching on a Si slide assembled with monolayer of polystyrene (PS) spheres. The nanoring array is generated by taking a reactive ion etching on a Si slide covered with a monolayer of octadecyltrichlorosilane before self-assembling PS spheres. Both plasmonic V and W cavity arrays can provide large hot area, which increases the probability for analyte molecules to deposit on the hot spots. Taking 4-Mercaptopyridine as analyte probe, the enhancement factor can reach 2.99 × 105 and 9.97 × 105 for plasmonic V cavity and W cavity array, respectively. The relative standard deviations of the plasmonic V and W cavity arrays are 6.5% and 10.2% respectively according to the spectra collected on 20 random spots.
Fabrication of plasmonic cavity arrays for SERS analysis.
Li, Ning; Feng, Lei; Teng, Fei; Lu, Nan
2017-05-05
The plasmonic cavity arrays are ideal substrates for surface enhanced Raman scattering analysis because they can provide hot spots with large volume for analyte molecules. The large area increases the probability to make more analyte molecules on hot spots and leads to a high reproducibility. Therefore, to develop a simple method for creating cavity arrays is important. Herein, we demonstrate how to fabricate a V and W shape cavity arrays by a simple method based on self-assembly. Briefly, the V and W shape cavity arrays are respectively fabricated by taking KOH etching on a nanohole and a nanoring array patterned silicon (Si) slides. The nanohole array is generated by taking a reactive ion etching on a Si slide assembled with monolayer of polystyrene (PS) spheres. The nanoring array is generated by taking a reactive ion etching on a Si slide covered with a monolayer of octadecyltrichlorosilane before self-assembling PS spheres. Both plasmonic V and W cavity arrays can provide large hot area, which increases the probability for analyte molecules to deposit on the hot spots. Taking 4-Mercaptopyridine as analyte probe, the enhancement factor can reach 2.99 × 10 5 and 9.97 × 10 5 for plasmonic V cavity and W cavity array, respectively. The relative standard deviations of the plasmonic V and W cavity arrays are 6.5% and 10.2% respectively according to the spectra collected on 20 random spots.
A Parametric Assessment of the Mission Applicability of Thin-film Solar Arrays
NASA Technical Reports Server (NTRS)
Hoffman, David J.
2002-01-01
Results are presented from a parametric assessment of the applicability and spacecraft-level impacts of very lightweight thin-film solar arrays with relatively large deployed areas for representative space missions. The most and least attractive features of thin-film solar arrays are briefly discussed. A calculation is then presented illustrating that from a solar array alone mass perspective, larger arrays with less efficient but lighter thin-film solar cells can weigh less than smaller arrays with more efficient but heavier crystalline cells. However, a spacecraft-level systems assessment must take into account the additional mass associated with solar array deployed area: the propellant needed to desaturate the momentum accumulated from area-related disturbance torques and to perform aerodynamic drag makeup reboost. The results for such an assessment are presented for a representative low Earth orbit (LEO) mission, as a function of altitude and mission life, and a geostationary Earth orbit (GEO) mission. Discussion of the results includes a list of specific mission types most likely to benefit from using thin-film arrays. The presentation concludes with a list of issues to be addressed prior to use of thin-film solar arrays in space and the observation that with their unique characteristics, very lightweight arrays using efficient, thin film cells on flexible substrates may become the best array option for a subset of Earth orbiting and deep space missions.
Wind Loads on Flat Plate Photovoltaic Array Fields
NASA Technical Reports Server (NTRS)
Miller, R.; Zimmerman, D.
1979-01-01
The aerodynamic forces resulting from winds acting on flat plate photovoltaic arrays were investigated. Local pressure distributions and total aerodynamic forces on the arrays are shown. Design loads are presented to cover the conditions of array angles relative to the ground from 20 deg to 60 deg, variable array spacings, a ground clearance gap up to 1.2 m (4 ft) and array slant heights of 2.4 m (8 ft) and 4.8 m (16 ft). Several means of alleviating the wind loads on the arrays are detailed. The expected reduction of the steady state wind velocity with the use of fences as a load alleviation device are indicated to be in excess of a factor of three for some conditions. This yields steady state wind load reductions as much as a factor of ten compared to the load incurred if no fence is used to protect the arrays. This steady state wind load reduction is offset by the increase in turbulence due to the fence but still an overall load reduction of 2.5 can be realized. Other load alleviation devices suggested are the installation of air gaps in the arrays, blocking the flow under the arrays and rounding the edges of the array. A wind tunnel test plan to supplement the theoretical study and to evaluate the load alleviation devices is outlined.
Read margin analysis of crossbar arrays using the cell-variability-aware simulation method
NASA Astrophysics Data System (ADS)
Sun, Wookyung; Choi, Sujin; Shin, Hyungsoon
2018-02-01
This paper proposes a new concept of read margin analysis of crossbar arrays using cell-variability-aware simulation. The size of the crossbar array should be considered to predict the read margin characteristic of the crossbar array because the read margin depends on the number of word lines and bit lines. However, an excessively high-CPU time is required to simulate large arrays using a commercial circuit simulator. A variability-aware MATLAB simulator that considers independent variability sources is developed to analyze the characteristics of the read margin according to the array size. The developed MATLAB simulator provides an effective method for reducing the simulation time while maintaining the accuracy of the read margin estimation in the crossbar array. The simulation is also highly efficient in analyzing the characteristic of the crossbar memory array considering the statistical variations in the cell characteristics.
Phased Array Beamforming and Imaging in Composite Laminates Using Guided Waves
NASA Technical Reports Server (NTRS)
Tian, Zhenhua; Leckey, Cara A. C.; Yu, Lingyu
2016-01-01
This paper presents the phased array beamforming and imaging using guided waves in anisotropic composite laminates. A generic phased array beamforming formula is presented, based on the classic delay-and-sum principle. The generic formula considers direction-dependent guided wave properties induced by the anisotropic material properties of composites. Moreover, the array beamforming and imaging are performed in frequency domain where the guided wave dispersion effect has been considered. The presented phased array method is implemented with a non-contact scanning laser Doppler vibrometer (SLDV) to detect multiple defects at different locations in an anisotropic composite plate. The array is constructed of scan points in a small area rapidly scanned by the SLDV. Using the phased array method, multiple defects at different locations are successfully detected. Our study shows that the guided wave phased array method is a potential effective method for rapid inspection of large composite structures.
2000-08-30
Workers rise to the occasion on accordion lifts as they oversee the movement of solar array in front of them. The solar array will be installed onto the Integrated Equipment Assembly (IEA). A component of the International Space Station, the solar array is the second one being installed on the IEA. The arrays are scheduled to be launched on mission STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station
2000-08-30
An overhead crane in the Space Station Processing Facility lifts a solar array as workers stand by to help guide it. The solar array will be installed onto the Integrated Equipment Assembly (IEA). A component of the International Space Station, the solar array is the second one being installed on the IEA. The arrays are scheduled to be launched on mission STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station
2000-08-30
The overhead crane carrying a solar array turns on its axis to move the array to the Integrated Equipment Assembly (IEA) for installation. A component of the International Space Station, the solar array is the second one being installed on the IEA. The arrays are scheduled to be launched on mission STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station
Breadboard linear array scan imager using LSI solid-state technology
NASA Technical Reports Server (NTRS)
Tracy, R. A.; Brennan, J. A.; Frankel, D. G.; Noll, R. E.
1976-01-01
The performance of large scale integration photodiode arrays in a linear array scan (pushbroom) breadboard was evaluated for application to multispectral remote sensing of the earth's resources. The technical approach, implementation, and test results of the program are described. Several self scanned linear array visible photodetector focal plane arrays were fabricated and evaluated in an optical bench configuration. A 1728-detector array operating in four bands (0.5 - 1.1 micrometer) was evaluated for noise, spectral response, dynamic range, crosstalk, MTF, noise equivalent irradiance, linearity, and image quality. Other results include image artifact data, temporal characteristics, radiometric accuracy, calibration experience, chip alignment, and array fabrication experience. Special studies and experimentation were included in long array fabrication and real-time image processing for low-cost ground stations, including the use of computer image processing. High quality images were produced and all objectives of the program were attained.
Design of 4x1 microstrip patch antenna array for 5.8 GHz ISM band applications
NASA Astrophysics Data System (ADS)
Valjibhai, Gohil Jayesh; Bhatia, Deepak
2013-01-01
This paper describes the new design of four element antenna array using corporate feed technique. The proposed antenna array is developed on the Rogers 5880 dielectric material. The antenna array works on 5.8 GHz ISM band. The industrial, scientific and medical (ISM) radio bands are radio bands (portions of the radio spectrum) reserved internationally for the use of radio frequency (RF) energy for industrial, scientific and medical purposes other than communications. The array antennas have VSWR < 1.6 from 5.725 - 5.875 GHz. The simulated return loss characteristic of the antenna array is - 39.3 dB at 5.8 GHz. The gain of the antenna array is 12.3 dB achieved. The directivity of the broadside radiation pattern is 12.7 dBi at the 5.8 GHz operating frequency. The antenna array is simulated using High frequency structure simulation software.
CMOS imager for pointing and tracking applications
NASA Technical Reports Server (NTRS)
Sun, Chao (Inventor); Pain, Bedabrata (Inventor); Yang, Guang (Inventor); Heynssens, Julie B. (Inventor)
2006-01-01
Systems and techniques to realize pointing and tracking applications with CMOS imaging devices. In general, in one implementation, the technique includes: sampling multiple rows and multiple columns of an active pixel sensor array into a memory array (e.g., an on-chip memory array), and reading out the multiple rows and multiple columns sampled in the memory array to provide image data with reduced motion artifact. Various operation modes may be provided, including TDS, CDS, CQS, a tracking mode to read out multiple windows, and/or a mode employing a sample-first-read-later readout scheme. The tracking mode can take advantage of a diagonal switch array. The diagonal switch array, the active pixel sensor array and the memory array can be integrated onto a single imager chip with a controller. This imager device can be part of a larger imaging system for both space-based applications and terrestrial applications.
High-density percutaneous chronic connector for neural prosthetics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shah, Kedar G.; Bennett, William J.; Pannu, Satinderpall S.
2015-09-22
A high density percutaneous chronic connector, having first and second connector structures each having an array of magnets surrounding a mounting cavity. A first electrical feedthrough array is seated in the mounting cavity of the first connector structure and a second electrical feedthrough array is seated in the mounting cavity of the second connector structure, with a feedthrough interconnect matrix positioned between a top side of the first electrical feedthrough array and a bottom side of the second electrical feedthrough array to electrically connect the first electrical feedthrough array to the second electrical feedthrough array. The two arrays of magnetsmore » are arranged to attract in a first angular position which connects the first and second connector structures together and electrically connects the percutaneously connected device to the external electronics, and to repel in a second angular position to facilitate removal of the second connector structure from the first connector structure.« less
Three-dimensional cross point readout detector design for including depth information
NASA Astrophysics Data System (ADS)
Lee, Seung-Jae; Baek, Cheol-Ha
2018-04-01
We designed a depth-encoding positron emission tomography (PET) detector using a cross point readout method with wavelength-shifting (WLS) fibers. To evaluate the characteristics of the novel detector module and the PET system, we used the DETECT2000 to perform optical photon transport in the crystal array. The GATE was also used. The detector module is made up of four layers of scintillator arrays, the five layers of WLS fiber arrays, and two sensor arrays. The WLS fiber arrays in each layer cross each other to transport light to each sensor array. The two sensor arrays are coupled to the forward and left sides of the WLS fiber array, respectively. The identification of three-dimensional pixels was determined using a digital positioning algorithm. All pixels were well decoded, with the system resolution ranging from 2.11 mm to 2.29 mm at full width at half maximum (FWHM).
Integrating Scientific Array Processing into Standard SQL
NASA Astrophysics Data System (ADS)
Misev, Dimitar; Bachhuber, Johannes; Baumann, Peter
2014-05-01
We live in a time that is dominated by data. Data storage is cheap and more applications than ever accrue vast amounts of data. Storing the emerging multidimensional data sets efficiently, however, and allowing them to be queried by their inherent structure, is a challenge many databases have to face today. Despite the fact that multidimensional array data is almost always linked to additional, non-array information, array databases have mostly developed separately from relational systems, resulting in a disparity between the two database categories. The current SQL standard and SQL DBMS supports arrays - and in an extension also multidimensional arrays - but does so in a very rudimentary and inefficient way. This poster demonstrates the practicality of an SQL extension for array processing, implemented in a proof-of-concept multi-faceted system that manages a federation of array and relational database systems, providing transparent, efficient and scalable access to the heterogeneous data in them.
System and method for 100% moisture and basis weight measurement of moving paper
Hernandez, Jose E.; Koo, Jackson C.
2002-01-01
A system for characterizing a set of properties for a moving substance are disclosed. The system includes: a first near-infrared linear array; a second near-infrared linear array; a first filter transparent to a first absorption wavelength emitted by the moving substance and juxtaposed between the substance and the first array; a second filter blocking the first absorption wavelength emitted by the moving substance and juxtaposed between the substance and the second array; and a computational device for characterizing data from the arrays into information on a property of the substance. The method includes the steps of: filtering out a first absorption wavelength emitted by a substance; monitoring the first absorption wavelength with a first near-infrared linear array; blocking the first wavelength from reaching a second near-infrared linear array; and characterizing data from the arrays into information on a property of the substance.
Britton, Charles L; D& #x27; Urso, Brian R; Chaum, Edward; Simpson, John T; Baba, Justin S; Ericson, M. Nance; Warmack, Robert J
2013-04-23
In one embodiment, the present invention provides a method of removing scar tissue from an eye that includes inserting a device including an array of micro-rods into an eye, wherein at least one glass micro-rod of the array of glass micro-rods includes a sharp feature; contacting a scar tissue with the array of micro-rods; and removing the array of micro-rods and the scar tissue from the eye. In another embodiment, the present invention provides a medical device for engaging a tissue including and an array of glass micro-rods, wherein at least one glass micro-rod of the array of glass micro-rods includes a sharp feature opposite a base of the array of glass micro-rods that is connected to the cannula, wherein the sharp feature of the at least one micro-rod is angled from a plane that is normal to a face of the base of the array of glass micro-rods.
Delamination Detection Using Guided Wave Phased Arrays
NASA Technical Reports Server (NTRS)
Tian, Zhenhua; Yu, Lingyu; Leckey, Cara
2016-01-01
This paper presents a method for detecting multiple delaminations in composite laminates using non-contact phased arrays. The phased arrays are implemented with a non-contact scanning laser Doppler vibrometer (SLDV). The array imaging algorithm is performed in the frequency domain where both the guided wave dispersion effect and direction dependent wave properties are considered. By using the non-contact SLDV array with a frequency domain imaging algorithm, an intensity image of the composite plate can be generated for delamination detection. For the proof of concept, a laboratory test is performed using a non-contact phased array to detect two delaminations (created through quasi-static impact test) at different locations in a composite plate. Using the non-contact phased array and frequency domain imaging, the two impact-induced delaminations are successfully detected. This study shows that the non-contact phased array method is a potentially effective method for rapid delamination inspection in large composite structures.
Tuominen, Mark; Schotter, Joerg; Thurn-Albrecht, Thomas; Russell, Thomas P.
2007-03-13
Pathways to rapid and reliable fabrication of nanocylinder arrays are provided. Simple methods are described for the production of well-ordered arrays of nanopores, nanowires, and other materials. This is accomplished by orienting copolymer films and removing a component from the film to produce nanopores, that in turn, can be filled with materials to produce the arrays. The resulting arrays can be used to produce nanoscale media, devices, and systems.
Phased Antenna Array for Global Navigation Satellite System Signals
NASA Technical Reports Server (NTRS)
Turbiner, Dmitry (Inventor)
2015-01-01
Systems and methods for phased array antennas are described. Supports for phased array antennas can be constructed by 3D printing. The array elements and combiner network can be constructed by conducting wire. Different parameters of the antenna, like the gain and directivity, can be controlled by selection of the appropriate design, and by electrical steering. Phased array antennas may be used for radio occultation measurements.
Tuominen, Mark [Shutesbury, MA; Schotter, Joerg [Bielefeld, DE; Thurn-Albrecht, Thomas [Freiburg, DE; Russell, Thomas P [Amherst, MA
2009-08-11
Pathways to rapid and reliable fabrication of nanocylinder arrays are provided. Simple methods are described for the production of well-ordered arrays of nanopores, nanowires, and other materials. This is accomplished by orienting copolymer films and removing a component from the film to produce nanopores, that in turn, can be filled with materials to produce the arrays. The resulting arrays can be used to produce nanoscale media, devices, and systems.
Phased Array Theory and Technology
1981-07-01
Generalized Array Coordinates 2. Linear, Planar and Circular Art -ays 3. Periodic fwo Dimensional ^rras 4. Grating Lobe Lattices 5. 1’llenienl...formal and low profile antennas, antennas for limited sector coverage, and wide- band array feeds. To aid designers, there is an attempt to give ...ol Vol. 2, Elliott gives convenient formulas lor the directivity of Imear dipole arrays, and derives an especially simple form tor arrays
Operational considerations to reduce solar array loads
NASA Technical Reports Server (NTRS)
Gerstenmaier, W.
1992-01-01
The key parameters associated with solar array plume loads are examined, and operational considerations aimed at minimizing the effect of the Shuttle plumes on the Space Station solar arrays are discussed. These include solar array pointing to reduce loads and restrictions on Shuttle piloting. Particular attention is given to the method used to obtain the forcing functions (thruster time firing histories) for solar array plume calculation.
Li, Ye; Pang, Yong; Vigneron, Daniel; Glenn, Orit; Xu, Duan; Zhang, Xiaoliang
2011-01-01
Fetal MRI on 1.5T clinical scanner has been increasingly becoming a powerful imaging tool for studying fetal brain abnormalities in vivo. Due to limited availability of dedicated fetal phased arrays, commercial torso or cardiac phased arrays are routinely used for fetal scans, which are unable to provide optimized SNR and parallel imaging performance with a small number coil elements, and insufficient coverage and filling factor. This poses a demand for the investigation and development of dedicated and efficient radiofrequency (RF) hardware to improve fetal imaging. In this work, an investigational approach to simulate the performance of multichannel flexible phased arrays is proposed to find a better solution to fetal MR imaging. A 32 channel fetal array is presented to increase coil sensitivity, coverage and parallel imaging performance. The electromagnetic field distribution of each element of the fetal array is numerically simulated by using finite-difference time-domain (FDTD) method. The array performance, including B1 coverage, parallel reconstructed images and artifact power, is then theoretically calculated and compared with the torso array. Study results show that the proposed array is capable of increasing B1 field strength as well as sensitivity homogeneity in the entire area of uterus. This would ensure high quality imaging regardless of the location of the fetus in the uterus. In addition, the paralleling imaging performance of the proposed fetal array is validated by using artifact power comparison with torso array. These results demonstrate the feasibility of the 32 channel flexible array for fetal MR imaging at 1.5T. PMID:22408747
Ramos, Laia; del Rey, Javier; Daina, Gemma; García-Aragonés, Manel; Armengol, Lluís; Fernandez-Encinas, Alba; Parriego, Mònica; Boada, Montserrat; Martinez-Passarell, Olga; Martorell, Maria Rosa; Casagran, Oriol; Benet, Jordi; Navarro, Joaquima
2014-01-01
Comprehensive chromosome analysis techniques such as metaphase-Comparative Genomic Hybridisation (CGH) and array-CGH are available for single-cell analysis. However, while metaphase-CGH and BAC array-CGH have been widely used for Preimplantation Genetic Diagnosis, oligonucleotide array-CGH has not been used in an extensive way. A comparison between oligonucleotide array-CGH and metaphase-CGH has been performed analysing 15 single fibroblasts from aneuploid cell-lines and 18 single blastomeres from human cleavage-stage embryos. Afterwards, oligonucleotide array-CGH and BAC array-CGH were also compared analysing 16 single blastomeres from human cleavage-stage embryos. All three comprehensive analysis techniques provided broadly similar cytogenetic profiles; however, non-identical profiles appeared when extensive aneuploidies were present in a cell. Both array techniques provided an optimised analysis procedure and a higher resolution than metaphase-CGH. Moreover, oligonucleotide array-CGH was able to define extra segmental imbalances in 14.7% of the blastomeres and it better determined the specific unbalanced chromosome regions due to a higher resolution of the technique (≈ 20 kb). Applicability of oligonucleotide array-CGH for Preimplantation Genetic Diagnosis has been demonstrated in two cases of Robertsonian translocation carriers 45,XY,der(13;14)(q10;q10). Transfer of euploid embryos was performed in both cases and pregnancy was achieved by one of the couples. This is the first time that an oligonucleotide array-CGH approach has been successfully applied to Preimplantation Genetic Diagnosis for balanced chromosome rearrangement carriers.
Ramos, Laia; del Rey, Javier; Daina, Gemma; García-Aragonés, Manel; Armengol, Lluís; Fernandez-Encinas, Alba; Parriego, Mònica; Boada, Montserrat; Martinez-Passarell, Olga; Martorell, Maria Rosa; Casagran, Oriol; Benet, Jordi; Navarro, Joaquima
2014-01-01
Comprehensive chromosome analysis techniques such as metaphase-Comparative Genomic Hybridisation (CGH) and array-CGH are available for single-cell analysis. However, while metaphase-CGH and BAC array-CGH have been widely used for Preimplantation Genetic Diagnosis, oligonucleotide array-CGH has not been used in an extensive way. A comparison between oligonucleotide array-CGH and metaphase-CGH has been performed analysing 15 single fibroblasts from aneuploid cell-lines and 18 single blastomeres from human cleavage-stage embryos. Afterwards, oligonucleotide array-CGH and BAC array-CGH were also compared analysing 16 single blastomeres from human cleavage-stage embryos. All three comprehensive analysis techniques provided broadly similar cytogenetic profiles; however, non-identical profiles appeared when extensive aneuploidies were present in a cell. Both array techniques provided an optimised analysis procedure and a higher resolution than metaphase-CGH. Moreover, oligonucleotide array-CGH was able to define extra segmental imbalances in 14.7% of the blastomeres and it better determined the specific unbalanced chromosome regions due to a higher resolution of the technique (≈20 kb). Applicability of oligonucleotide array-CGH for Preimplantation Genetic Diagnosis has been demonstrated in two cases of Robertsonian translocation carriers 45,XY,der(13;14)(q10;q10). Transfer of euploid embryos was performed in both cases and pregnancy was achieved by one of the couples. This is the first time that an oligonucleotide array-CGH approach has been successfully applied to Preimplantation Genetic Diagnosis for balanced chromosome rearrangement carriers. PMID:25415307
Verberne, Juul; Risi, Frank; Campbell, Luke; Chambers, Scott; O'Leary, Stephen
2017-01-01
Scala tympani morphology influences the insertion dynamics and intra-scalar position of straight electrode arrays. Hearing preservation is the goal of cochlear implantation with current thin straight electrode arrays. These hug the lateral wall, facilitating full, atraumatic insertions. However, most studies still report some postoperative hearing loss. This study explores the influence of scala tympani morphology on array position relative to the basilar membrane and its possible contribution to postoperative hearing loss. Twenty-six fresh-frozen human temporal bones implanted with a straight electrode array were three-dimensionally reconstructed from micro-photographic histological sections. Insertion depth and the proximity between the array and basilar membrane were recorded. Lateral wall shape was quantified as a curvature ratio. Insertion depths ranged from 233 to 470 degrees. The mean first point of contact between the array and basilar membrane was 185 degrees; arrays tended to remain in contact with the membrane after first contacting it. Eighty-nine and 93% of arrays that reached the upper basal (>240-360 degrees) and second (>360-720 degrees) turns respectively contacted the basilar membrane in these regions. Scalar wall curvature ratio decreased significantly (the wall became steeper) from the basal to second turns. This shift correlated with a reduced distance between the array and basilar membrane. Scala tympani morphology influences the insertion dynamics and intra-scalar position of a straight electrode array. In addition to gross trauma of cochlear structures, contact between the array and basilar membrane and how this impacts membrane function should be considered in hearing preservation cases.
Characteristics of arc currents on a negatively biased solar cell array in a plasma
NASA Technical Reports Server (NTRS)
Snyder, D. B.
1984-01-01
The time dependence of the emitted currents during arcing on solar cell arrays is being studied. The arcs are characterized using three parameters: the voltage change of the array during the arc (i.e., the charge lost), the peak current during the arc, and the time constant describing the arc current. This paper reports the dependence of these characteristics on two array parameters, the interconnect bias voltage and the array capacitance to ground. It was found that the voltage change of the array during an arc is nearly equal to the bias voltage. The array capacitance, on the other hand, influences both the peak current and the decay time constant of the arc. Both of these characteristics increase with increasing capacitance.
Apparatus and method for maximizing power delivered by a photovoltaic array
Muljadi, Eduard; Taylor, Roger W.
1998-01-01
A method and apparatus for maximizing the electric power output of a photovoltaic array connected to a battery where the voltage across the photovoltaic array is adjusted through a range of voltages to find the voltage across the photovoltaic array that maximizes the electric power generated by the photovoltaic array and then is held constant for a period of time. After the period of time has elapsed, the electric voltage across the photovoltaic array is again adjusted through a range of voltages and the process is repeated. The electric energy and the electric power generated by the photovoltaic array is delivered to the battery which stores the electric energy and the electric power for later delivery to a load.
In situ synthesis of protein arrays.
He, Mingyue; Stoevesandt, Oda; Taussig, Michael J
2008-02-01
In situ or on-chip protein array methods use cell free expression systems to produce proteins directly onto an immobilising surface from co-distributed or pre-arrayed DNA or RNA, enabling protein arrays to be created on demand. These methods address three issues in protein array technology: (i) efficient protein expression and availability, (ii) functional protein immobilisation and purification in a single step and (iii) protein on-chip stability over time. By simultaneously expressing and immobilising many proteins in parallel on the chip surface, the laborious and often costly processes of DNA cloning, expression and separate protein purification are avoided. Recently employed methods reviewed are PISA (protein in situ array) and NAPPA (nucleic acid programmable protein array) from DNA and puromycin-mediated immobilisation from mRNA.
Apparatus and method for maximizing power delivered by a photovoltaic array
Muljadi, E.; Taylor, R.W.
1998-05-05
A method and apparatus for maximizing the electric power output of a photovoltaic array connected to a battery where the voltage across the photovoltaic array is adjusted through a range of voltages to find the voltage across the photovoltaic array that maximizes the electric power generated by the photovoltaic array and then is held constant for a period of time. After the period of time has elapsed, the electric voltage across the photovoltaic array is again adjusted through a range of voltages and the process is repeated. The electric energy and the electric power generated by the photovoltaic array is delivered to the battery which stores the electric energy and the electric power for later delivery to a load. 20 figs.
Replica amplification of nucleic acid arrays
Church, George M.
2002-01-01
A method of producing a plurality of a nucleic acid array, comprising, in order, the steps of amplifying in situ nucleic acid molecules of a first randomly-patterned, immobilized nucleic acid array comprising a heterogeneous pool of nucleic acid molecules affixed to a support, transferring at least a subset of the nucleic acid molecules produced by such amplifying to a second support, and affixing the subset so transferred to the second support to form a second randomly-patterned, immobilized nucleic acid array, wherein the nucleic acid molecules of the second array occupy positions that correspond to those of the nucleic acid molecules from which they were amplified on the first array, so that the first array serves as a template to produce a plurality, is disclosed.
Wei, Xile; Li, Yao; Lu, Meili; Wang, Jiang; Yi, Guosheng
2017-11-14
Multi-coil arrays applied in transcranial magnetic stimulation (TMS) are proposed to accurately stimulate brain tissues and modulate neural activities by an induced electric field (EF). Composed of numerous independently driven coils, a multi-coil array has alternative energizing strategies to evoke EFs targeting at different cerebral regions. To improve the locating resolution and the stimulating focality, we need to fully understand the variation properties of induced EFs and the quantitative control method of the spatial arrangement of activating coils, both of which unfortunately are still unclear. In this paper, a comprehensive analysis of EF properties was performed based on multi-coil arrays. Four types of planar multi-coil arrays were used to study the relationship between the spatial distribution of EFs and the structure of stimuli coils. By changing coil-driven strategies in a basic 16-coil array, we find that an EF induced by compactly distributed coils decays faster than that induced by dispersedly distributed coils, but the former has an advantage over the latter in terms of the activated brain volume. Simulation results also indicate that the attenuation rate of an EF induced by the 36-coil dense array is 3 times and 1.5 times greater than those induced by the 9-coil array and the 16-coil array, respectively. The EF evoked by the 36-coil dispense array has the slowest decay rate. This result demonstrates that larger multi-coil arrays, compared to smaller ones, activate deeper brain tissues at the expense of decreased focality. A further study on activating a specific field of a prescribed shape and size was conducted based on EF variation. Accurate target location was achieved with a 64-coil array 18 mm in diameter. A comparison between the figure-8 coil, the planar array, and the cap-formed array was made and demonstrates an improvement of multi-coil configurations in the penetration depth and the focality. These findings suggest that there is a tradeoff between attenuation rate and focality in the application of multi-coil arrays. Coil-energizing strategies and array dimensions should be based on an adequate evaluation of these two important demands and the topological structure of target tissues.
Closed-form analysis of fiber-matrix interface stresses under thermo-mechanical loadings
NASA Technical Reports Server (NTRS)
Naik, Rajiv A.; Crews, John H., Jr.
1992-01-01
Closed form techniques for calculating fiber matrix (FM) interface stresses, using repeating square and diamond regular arrays, were presented for a unidirectional composite under thermo-mechanical loadings. An Airy's stress function micromechanics approach from the literature, developed for calculating overall composite moduli, was extended in the present study to compute FM interface stresses for a unidirectional graphite/epoxy (AS4/3501-6) composite under thermal, longitudinal, transverse, transverse shear, and longitudinal shear loadings. Comparison with finite element results indicate excellent agreement of the FM interface stresses for the square array. Under thermal and longitudinal loading, the square array has the same FM peak stresses as the diamond array. The square array predicted higher stress concentrations under transverse normal and longitudinal shear loadings than the diamond array. Under transverse shear loading, the square array had a higher stress concentration while the diamond array had a higher radial stress concentration. Stress concentration factors under transverse shear and longitudinal shear loadings were very sensitive to fiber volume fraction. The present analysis provides a simple way to calculate accurate FM interface stresses for both the square and diamond array configurations.
NASA Astrophysics Data System (ADS)
Huang, Xiaoping; Zhang, Peifeng; Lin, En; Wang, Peng; Mei, Mingwei; Huang, Qiuying; Jiao, Jiao; Zhao, Qing
2017-09-01
We present the design and fabrication of a novel regularly arrayed plasmonic nanolasers. This main microstructure of the device is composed of a hexagonal array of n-ZnO/p-GaN nanoheterojunctions fabricated using the micro-fabrication method. Furthermore, the optically pumped lasing in the device is demonstrated. The spectroscopy characterization results of the device show that the surface plasmon excited around the NWs surface can be used to stimulate and strongly compress the optical modes in the NW cavity. This electromagnetic confinement effect is employed to optimize the beam quality and increase the light intensity compared to the laser fabricated with the bare NWs array. The impact of the array arrangement on the coherent combining efficiency of the arrayed nanolasers has been numerically studied. The results show that the arrayed hexagonal nanolasers could improve the combining efficiency compared to the nanolaser with the randomly positioned array. Qualitatively, these calculated results agree well with the experimental results of the laser beam spot mapping. This demonstrates the scope for using such architectures to improve the combination efficiency of the arrayed nanolasers.
Synchronization of Large Josephson-Junction Arrays by Traveling Electromagnetic Waves
NASA Astrophysics Data System (ADS)
Galin, M. A.; Borodianskyi, E. A.; Kurin, V. V.; Shereshevskiy, I. A.; Vdovicheva, N. K.; Krasnov, V. M.; Klushin, A. M.
2018-05-01
Mutual synchronization of many Josephson junctions is required for superradiant enhancement of the emission power. However, the larger the junction array is, the more difficult is the synchronization, especially when the array size becomes much larger than the emitted wavelength. Here, we study experimentally Josephson emission from such larger-than-the-wavelength Nb /NbSi /Nb junction arrays. For one of the arrays we observe a clear superradiant enhancement of emission above a threshold number of active junctions. The arrays exhibit strong geometrical resonances, seen as steps in current-voltage characteristics. However, radiation patterns of the arrays have forward-backward asymmetry, which is inconsistent with the solely geometrical resonance (standing-wave) mechanism of synchronization. We argue that the asymmetry provides evidence for an alternative mechanism of synchronization mediated by unidirectional traveling-wave propagation along the array (such as a surface plasmon). In this case, emission occurs predominantly in the direction of propagation of the traveling wave. Our conclusions are supported by numerical modeling of Josephson traveling-wave antenna. We argue that such a nonresonant mechanism of synchronization opens a possibility for phase locking of very large arrays of oscillators.
The impact of solar cell technology on planar solar array performance
NASA Technical Reports Server (NTRS)
Mills, Michael W.; Kurland, Richard M.
1989-01-01
The results of a study into the potential impact of advanced solar cell technologies on the characteristics (weight, cost, area) of typical planar solar arrays designed for low, medium and geosynchronous altitude earth orbits are discussed. The study considered planar solar array substrate designs of lightweight, rigid-panel graphite epoxy and ultra-lightweight Kapton. The study proposed to answer the following questions: Do improved cell characteristics translate into array-level weight, size and cost improvements; What is the relative importance of cell efficiency, weight and cost with respect to array-level performance; How does mission orbital environment affect array-level performance. Comparisons were made at the array level including all mechanisms, hinges, booms, and harnesses. Array designs were sized to provide 5kW of array power (not spacecraft bus power, which is system dependent but can be scaled from given values). The study used important grass roots issues such as use of the GaAs radiation damage coefficients as determined by Anspaugh. Detailed costing was prepared, including cell and cover costs, and manufacturing attrition rates for the various cell types.
Tilted hexagonal post arrays: DNA electrophoresis in anisotropic media
Chen, Zhen; Dorfman, Kevin D.
2013-01-01
Using Brownian dynamics simulations, we show that DNA electrophoresis in a hexagonal array of micron-sized posts changes qualitatively when the applied electric field vector is not coincident with the lattice vectors of the array. DNA electrophoresis in such “tilted” post arrays is superior to the standard “un-tilted” approach; while the time required to achieve a resolution of unity in a tilted post array is similar to an un-tilted array at a low electric field strengths, this time (i) decreases exponentially with electric field strength in a tilted array and (ii) increases exponentially with electric field strength in an un-tilted array. Although the DNA dynamics in a post array are complicated, the electrophoretic mobility results indicate that the “free path”, i.e., the average distance of ballistic trajectories of point sized particles launched from random positions in the unit cell until they intersect the next post, is a useful proxy for the detailed DNA trajectories. The analysis of the free path reveals a fundamental connection between anisotropy of the medium and DNA transport therein that goes beyond simply improving the separation device. PMID:23868490
Low-Cost Phased Array Antenna for Sounding Rockets, Missiles, and Expendable Launch Vehicles
NASA Technical Reports Server (NTRS)
Mullinix, Daniel; Hall, Kenneth; Smith, Bruce; Corbin, Brian
2012-01-01
A low-cost beamformer phased array antenna has been developed for expendable launch vehicles, rockets, and missiles. It utilizes a conformal array antenna of ring or individual radiators (design varies depending on application) that is designed to be fed by the recently developed hybrid electrical/mechanical (vendor-supplied) phased array beamformer. The combination of these new array antennas and the hybrid beamformer results in a conformal phased array antenna that has significantly higher gain than traditional omni antennas, and costs an order of magnitude or more less than traditional phased array designs. Existing omnidirectional antennas for sounding rockets, missiles, and expendable launch vehicles (ELVs) do not have sufficient gain to support the required communication data rates via the space network. Missiles and smaller ELVs are often stabilized in flight by a fast (i.e. 4 Hz) roll rate. This fast roll rate, combined with vehicle attitude changes, greatly increases the complexity of the high-gain antenna beam-tracking problem. Phased arrays for larger ELVs with roll control are prohibitively expensive. Prior techniques involved a traditional fully electronic phased array solution, combined with highly complex and very fast inertial measurement unit phased array beamformers. The functional operation of this phased array is substantially different from traditional phased arrays in that it uses a hybrid electrical/mechanical beamformer that creates the relative time delays for steering the antenna beam via a small physical movement of variable delay lines. This movement is controlled via an innovative antenna control unit that accesses an internal measurement unit for vehicle attitude information, computes a beam-pointing angle to the target, then points the beam via a stepper motor controller. The stepper motor on the beamformer controls the beamformer variable delay lines that apply the appropriate time delays to the individual array elements to properly steer the beam. The array of phased ring radiators is unique in that it provides improved gain for a small rocket or missile that uses spin stabilization for stability. The antenna pattern created is symmetric about the roll axis (like an omnidirectional wraparound), and is thus capable of providing continuous coverage that is compatible with very fast spinning rockets. For larger ELVs with roll control, a linear array of elements can be used for the 1D scanned beamformer and phased array, or a 2D scanned beamformer can be used with an NxN element array.
NASA Astrophysics Data System (ADS)
Kiflu, H. G.; Kruse, S. E.; Harro, D.; Loke, M. H.; Wilkinson, P. B.
2013-12-01
Electrical resistivity tomography is commonly used to identify geologic features associated with sinkhole formation. In covered karst terrain, however, it can be difficult to resolve the depth to top of limestone with this method. This is due to the fact that array lengths, and hence depth of resolution, are often limited by residential or commercial lot dimensions in urban environments. Furthermore, the sediments mantling the limestone are often clay-rich and highly conductive. The resistivity method has limited sensitivity to resistive zones beneath conductive zones. This sensitivity can be improved significantly with electrodes implanted at depth in the cover sediments near the top of limestone. An array of deep electrodes is installed with direct push technology in the karst cover. When combined with a surface array in which each surface electrode is underlain by a deep electrode, the array geometry is similar to a borehole array turned on its side. This method, called the Multi-Electrode Resistivity Implant Technique (MERIT), offers the promise of significantly improved resolution of epikarst and cover collapse development zones in the overlying sediment, the limestone or at the sediment-bedrock interface in heterogeneous karst environments. With a non-traditional array design, the question of optimal array geometries arises. Optimizing array geometries is complicated by the fact that many plausible 4-electrode readings will produce negative apparent resistivity values, even in homogeneous terrain. Negative apparent resistivities cannot be used in inversions based on the logarithm of the apparent resistivity. New algorithms for seeking optimal array geometries have been developed by modifying the 'Compare R' method of Wilkinson and Loke. The optimized arrays show significantly improved resolution over basic arrays adapted from traditional 2D surface geometries. Several MERIT case study surveys have been conducted in covered karst in west-central Florida, with 28-electrode arrays with electrodes 2-5 meters apart, and the deep arrays buried at 4-8 meters depth. Ground penetrating radar surveys, SPT borings and coring data provide selected 'ground truthing'. The case studies show that inclusion of the deep electrode array permits karst features such as undulations at the top of limestone and raveling zones within surficial sediments to be imaged. These features are not accessible from surface arrays with equivalent surface footprints. The method also has better resolution at depth at the ends of the lines, where surface arrays are typically plotted with a trapezoidal truncation due to poor resolution at the lower corners of the profile.
NASA Technical Reports Server (NTRS)
Kuhlman, Kimberly (Inventor); Buehler, Martin G. (Inventor)
2004-01-01
An ion selective electrode (ISE) array is described, as well as methods for producing the same. The array can contain multiple ISE which are individually electronically addressed. The addressing allows simplified preparation of the array. The array can be used for water quality monitoring, for example.
Parametric study of two planar high power flexible solar array concepts
NASA Technical Reports Server (NTRS)
Garba, J. A.; Kudija, D. A.; Zeldin, B.; Costogue, E. N.
1978-01-01
The design parameters examined were: frequency, aspect ratio, packaging constraints, and array blanket flatness. Specific power-to-mass ratios for both solar arrays as a function of array frequency and array width were developed and plotted. Summaries of the baseline design data, developed equations, the computer program operation, plots of the parameters, and the process for using the information as a design manual are presented.
Method to fabricate hollow microneedle arrays
Kravitz, Stanley H [Placitas, NM; Ingersoll, David [Albuquerque, NM; Schmidt, Carrie [Los Lunas, NM; Flemming, Jeb [Albuquerque, NM
2006-11-07
An inexpensive and rapid method for fabricating arrays of hollow microneedles uses a photoetchable glass. Furthermore, the glass hollow microneedle array can be used to form a negative mold for replicating microneedles in biocompatible polymers or metals. These microneedle arrays can be used to extract fluids from plants or animals. Glucose transport through these hollow microneedles arrays has been found to be orders of magnitude more rapid than natural diffusion.
Multi-channel infrared thermometer
Ulrickson, Michael A.
1986-01-01
A device for measuring the two-dimensional temperature profile of a surface comprises imaging optics for generating an image of the light radiating from the surface; an infrared detector array having a plurality of detectors; and a light pipe array positioned between the imaging optics and the detector array for sampling, transmitting, and distributing the image over the detector surfaces. The light pipe array includes one light pipe for each detector in the detector array.
S-band antenna phased array communications system
NASA Technical Reports Server (NTRS)
Delzer, D. R.; Chapman, J. E.; Griffin, R. A.
1975-01-01
The development of an S-band antenna phased array for spacecraft to spacecraft communication is discussed. The system requirements, antenna array subsystem design, and hardware implementation are examined. It is stated that the phased array approach offers the greatest simplicity and lowest cost. The objectives of the development contract are defined as: (1) design of a medium gain active phased array S-band communications antenna, (2) development and test of a model of a seven element planar array of radiating elements mounted in the appropriate cavity matrix, and (3) development and test of a breadboard transmit/receive microelectronics module.
Non-Hermitian engineering of single mode two dimensional laser arrays
Teimourpour, Mohammad H.; Ge, Li; Christodoulides, Demetrios N.; El-Ganainy, Ramy
2016-01-01
A new scheme for building two dimensional laser arrays that operate in the single supermode regime is proposed. This is done by introducing an optical coupling between the laser array and lossy pseudo-isospectral chains of photonic resonators. The spectrum of this discrete reservoir is tailored to suppress all the supermodes of the main array except the fundamental one. This spectral engineering is facilitated by employing the Householder transformation in conjunction with discrete supersymmetry. The proposed scheme is general and can in principle be used in different platforms such as VCSEL arrays and photonic crystal laser arrays. PMID:27698355
Microstrip antenna developments at JPL
NASA Technical Reports Server (NTRS)
Huang, John
1991-01-01
The in-house development of microstrip antennas, initiated in 1981, when a spaceborne lightweight and low-profile planar array was needed for a satellite communication system, is described. The work described covers the prediction of finite-ground-plane effects by the geometric theory of diffraction, higher-order-mode circularly polarized circular patch antennas, circularly polarized microstrip arrays with linearly polarized elements, an impedance-matching teardrop-shaped probe feed, a dual-polarized microstrip array with high isolation and low cross-polarization, a planar microstrip Yagi array, a microstrip reflectarray, a Ka-band MMIC array, and a series-fed linear arrays.
Khuri-Yakub, B. (Pierre) T.; Oralkan, Ömer; Nikoozadeh, Amin; Wygant, Ira O.; Zhuang, Steve; Gencel, Mustafa; Choe, Jung Woo; Stephens, Douglas N.; de la Rama, Alan; Chen, Peter; Lin, Feng; Dentinger, Aaron; Wildes, Douglas; Thomenius, Kai; Shivkumar, Kalyanam; Mahajan, Aman; Seo, Chi Hyung; O’Donnell, Matthew; Truong, Uyen; Sahn, David J.
2010-01-01
Capacitive micromachined ultrasonic transducer (CMUT) arrays are conveniently integrated with frontend integrated circuits either monolithically or in a hybrid multichip form. This integration helps with reducing the number of active data processing channels for 2D arrays. This approach also preserves the signal integrity for arrays with small elements. Therefore CMUT arrays integrated with electronic circuits are most suitable to implement miniaturized probes required for many intravascular, intracardiac, and endoscopic applications. This paper presents examples of miniaturized CMUT probes utilizing 1D, 2D, and ring arrays with integrated electronics. PMID:21097106
a Study of Ultrasonic Wave Propagation Through Parallel Arrays of Immersed Tubes
NASA Astrophysics Data System (ADS)
Cocker, R. P.; Challis, R. E.
1996-06-01
Tubular array structures are a very common component in industrial heat exchanging plant and the non-destructive testing of these arrays is essential. Acoustic methods using microphones or ultrasound are attractive but require a thorough understanding of the acoustic properties of tube arrays. This paper details the development and testing of a small-scale physical model of a tube array to verify the predictions of a theoretical model for acoustic propagation through tube arrays developed by Heckl, Mulholland, and Huang [1-5] as a basis for the consideration of small-scale physical models in the development of non-destructive testing procedures for tube arrays. Their model predicts transmission spectra for plane waves incident on an array of tubes arranged in straight rows. Relative transmission is frequency dependent with bands of high and low attenuation caused by resonances within individual tubes and between tubes in the array. As the number of rows in the array increases the relative transmission spectrum becomes more complex, with increasingly well-defined bands of high and low attenuation. Diffraction of acoustic waves with wavelengths less than the tube spacing is predicted and appears as step reductions in the transmission spectrum at frequencies corresponding to integer multiples of the tube spacing. Experiments with the physical model confirm the principle features of the theoretical treatment.
NASA Technical Reports Server (NTRS)
Ward, Jonathan T.; Austermann, Jason; Beall, James A.; Choi, Steve K.; Crowley, Kevin T.; Devlin, Mark J.; Duff, Shannon M.; Gallardo, Patricio M.; Henderson, Shawn W.; Ho, Shuay-Pwu Patty;
2016-01-01
The next generation Advanced ACTPol (AdvACT) experiment is currently underway and will consist of four Transition Edge Sensor (TES) bolometer arrays, with three operating together, totaling 5800 detectors on the sky. Building on experience gained with the ACTPol detector arrays, AdvACT will utilize various new technologies, including 150 mm detector wafers equipped with multichroic pixels, allowing for a more densely packed focal plane. Each set of detectors includes a feedhorn array of stacked silicon wafers which form a spline pro le leading to each pixel. This is then followed by a waveguide interface plate, detector wafer, back short cavity plate, and backshort cap. Each array is housed in a custom designed structure manufactured from high purity copper and then gold plated. In addition to the detector array assembly, the array package also encloses cryogenic readout electronics. We present the full mechanical design of the AdvACT high frequency (HF) detector array package along with a detailed look at the detector array stack assemblies. This experiment will also make use of extensive hardware and software previously developed for ACT, which will be modi ed to incorporate the new AdvACT instruments. Therefore, we discuss the integration of all AdvACT arrays with pre-existing ACTPol infrastructure.
A 3T Sodium and Proton Composite Array Breast Coil
Kaggie, Joshua D.; Hadley, J. Rock; Badal, James; Campbell, John R.; Park, Daniel J.; Parker, Dennis L.; Morrell, Glen; Newbould, Rexford D.; Wood, Ali F.; Bangerter, Neal K.
2013-01-01
Purpose The objective of this study was to determine whether a sodium phased array would improve sodium breast MRI at 3T. The secondary objective was to create acceptable proton images with the sodium phased array in place. Methods A novel composite array for combined proton/sodium 3T breast MRI is compared to a coil with a single proton and sodium channel. The composite array consists of a 7-channel sodium receive array, a larger sodium transmit coil, and a 4-channel proton transceive array. The new composite array design utilizes smaller sodium receive loops than typically used in sodium imaging, uses novel decoupling methods between the receive loops and transmit loops, and uses a novel multi-channel proton transceive coil. The proton transceive coil reduces coupling between proton and sodium elements by intersecting the constituent loops to reduce their mutual inductance. The coil used for comparison consists of a concentric sodium and proton loop with passive decoupling traps. Results The composite array coil demonstrates a 2–5x improvement in SNR for sodium imaging and similar SNR for proton imaging when compared to a simple single-loop dual resonant design. Conclusion The improved SNR of the composite array gives breast sodium images of unprecedented quality in reasonable scan times. PMID:24105740
NASA Astrophysics Data System (ADS)
Ward, Jonathan T.; Austermann, Jason; Beall, James A.; Choi, Steve K.; Crowley, Kevin T.; Devlin, Mark J.; Duff, Shannon M.; Gallardo, Patricio A.; Henderson, Shawn W.; Ho, Shuay-Pwu Patty; Hilton, Gene; Hubmayr, Johannes; Khavari, Niloufar; Klein, Jeffrey; Koopman, Brian J.; Li, Dale; McMahon, Jeffrey; Mumby, Grace; Nati, Federico; Niemack, Michael D.; Page, Lyman A.; Salatino, Maria; Schillaci, Alessandro; Schmitt, Benjamin L.; Simon, Sara M.; Staggs, Suzanne T.; Thornton, Robert; Ullom, Joel N.; Vavagiakis, Eve M.; Wollack, Edward J.
2016-07-01
The next generation Advanced ACTPol (AdvACT) experiment is currently underway and will consist of four Transition Edge Sensor (TES) bolometer arrays, with three operating together, totaling 5800 detectors on the sky. Building on experience gained with the ACTPol detector arrays, AdvACT will utilize various new technologies, including 150 mm detector wafers equipped with multichroic pixels, allowing for a more densely packed focal plane. Each set of detectors includes a feedhorn array of stacked silicon wafers which form a spline profile leading to each pixel. This is then followed by a waveguide interface plate, detector wafer, back short cavity plate, and backshort cap. Each array is housed in a custom designed structure manufactured from high purity copper and then gold plated. In addition to the detector array assembly, the array package also encloses cryogenic readout electronics. We present the full mechanical design of the AdvACT high frequency (HF) detector array package along with a detailed look at the detector array stack assemblies. This experiment will also make use of extensive hardware and software previously developed for ACT, which will be modified to incorporate the new AdvACT instruments. Therefore, we discuss the integration of all AdvACT arrays with pre-existing ACTPol infrastructure.
arrayCGHbase: an analysis platform for comparative genomic hybridization microarrays
Menten, Björn; Pattyn, Filip; De Preter, Katleen; Robbrecht, Piet; Michels, Evi; Buysse, Karen; Mortier, Geert; De Paepe, Anne; van Vooren, Steven; Vermeesch, Joris; Moreau, Yves; De Moor, Bart; Vermeulen, Stefan; Speleman, Frank; Vandesompele, Jo
2005-01-01
Background The availability of the human genome sequence as well as the large number of physically accessible oligonucleotides, cDNA, and BAC clones across the entire genome has triggered and accelerated the use of several platforms for analysis of DNA copy number changes, amongst others microarray comparative genomic hybridization (arrayCGH). One of the challenges inherent to this new technology is the management and analysis of large numbers of data points generated in each individual experiment. Results We have developed arrayCGHbase, a comprehensive analysis platform for arrayCGH experiments consisting of a MIAME (Minimal Information About a Microarray Experiment) supportive database using MySQL underlying a data mining web tool, to store, analyze, interpret, compare, and visualize arrayCGH results in a uniform and user-friendly format. Following its flexible design, arrayCGHbase is compatible with all existing and forthcoming arrayCGH platforms. Data can be exported in a multitude of formats, including BED files to map copy number information on the genome using the Ensembl or UCSC genome browser. Conclusion ArrayCGHbase is a web based and platform independent arrayCGH data analysis tool, that allows users to access the analysis suite through the internet or a local intranet after installation on a private server. ArrayCGHbase is available at . PMID:15910681
Poletti, Mark A; Betlehem, Terence; Abhayapala, Thushara D
2014-07-01
Higher order sound sources of Nth order can radiate sound with 2N + 1 orthogonal radiation patterns, which can be represented as phase modes or, equivalently, amplitude modes. This paper shows that each phase mode response produces a spiral wave front with a different spiral rate, and therefore a different direction of arrival of sound. Hence, for a given receiver position a higher order source is equivalent to a linear array of 2N + 1 monopole sources. This interpretation suggests performance similar to a circular array of higher order sources can be produced by an array of sources, each of which consists of a line array having monopoles at the apparent source locations of the corresponding phase modes. Simulations of higher order arrays and arrays of equivalent line sources are presented. It is shown that the interior fields produced by the two arrays are essentially the same, but that the exterior fields differ because the higher order sources produces different equivalent source locations for field positions outside the array. This work provides an explanation of the fact that an array of L Nth order sources can reproduce sound fields whose accuracy approaches the performance of (2N + 1)L monopoles.
Modeling Array Stations in SIG-VISA
NASA Astrophysics Data System (ADS)
Ding, N.; Moore, D.; Russell, S.
2013-12-01
We add support for array stations to SIG-VISA, a system for nuclear monitoring using probabilistic inference on seismic signals. Array stations comprise a large portion of the IMS network; they can provide increased sensitivity and more accurate directional information compared to single-component stations. Our existing model assumed that signals were independent at each station, which is false when lots of stations are close together, as in an array. The new model removes that assumption by jointly modeling signals across array elements. This is done by extending our existing Gaussian process (GP) regression models, also known as kriging, from a 3-dimensional single-component space of events to a 6-dimensional space of station-event pairs. For each array and each event attribute (including coda decay, coda height, amplitude transfer and travel time), we model the joint distribution across array elements using a Gaussian process that learns the correlation lengthscale across the array, thereby incorporating information of array stations into the probabilistic inference framework. To evaluate the effectiveness of our model, we perform ';probabilistic beamforming' on new events using our GP model, i.e., we compute the event azimuth having highest posterior probability under the model, conditioned on the signals at array elements. We compare the results from our probabilistic inference model to the beamforming currently performed by IMS station processing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grant, Robert
Under this grant, three significant software packages were developed or improved, all with the goal of improving the ease-of-use of HPC libraries. The first component is a Python package, named DistArray (originally named Odin), that provides a high-level interface to distributed array computing. This interface is based on the popular and widely used NumPy package and is integrated with the IPython project for enhanced interactive parallel distributed computing. The second Python package is the Distributed Array Protocol (DAP) that enables separate distributed array libraries to share arrays efficiently without copying or sending messages. If a distributed array library supports themore » DAP, it is then automatically able to communicate with any other library that also supports the protocol. This protocol allows DistArray to communicate with the Trilinos library via PyTrilinos, which was also enhanced during this project. A third package, PyTrilinos, was extended to support distributed structured arrays (in addition to the unstructured arrays of its original design), allow more flexible distributed arrays (i.e., the restriction to double precision data was lifted), and implement the DAP. DAP support includes both exporting the protocol so that external packages can use distributed Trilinos data structures, and importing the protocol so that PyTrilinos can work with distributed data from external packages.« less
Novel Photon-Counting Detectors for Free-Space Communication
NASA Technical Reports Server (NTRS)
Krainak, Michael A.; Yang, Guan; Sun, Xiaoli; Lu, Wei; Merritt, Scott; Beck, Jeff
2016-01-01
We present performance data for novel photon counting detectors for free space optical communication. NASA GSFC is testing the performance of three novel photon counting detectors 1) a 2x8 mercury cadmium telluride avalanche array made by DRS Inc. 2) a commercial 2880 silicon avalanche photodiode array and 3) a prototype resonant cavity silicon avalanche photodiode array. We will present and compare dark count, photon detection efficiency, wavelength response and communication performance data for these detectors. We discuss system wavelength trades and architectures for optimizing overall communication link sensitivity, data rate and cost performance. The HgCdTe APD array has photon detection efficiencies of greater than 50 were routinely demonstrated across 5 arrays, with one array reaching a maximum PDE of 70. High resolution pixel-surface spot scans were performed and the junction diameters of the diodes were measured. The junction diameter was decreased from 31 m to 25 m resulting in a 2x increase in e-APD gain from 470 on the 2010 array to 1100 on the array delivered to NASA GSFC. Mean single photon SNRs of over 12 were demonstrated at excess noise factors of 1.2-1.3.The commercial silicon APD array has a fast output with rise times of 300ps and pulse widths of 600ps. Received and filtered signals from the entire array are multiplexed onto this single fast output. The prototype resonant cavity silicon APD array is being developed for use at 1 micron wavelength.
Field ion source development for neutron generators
NASA Astrophysics Data System (ADS)
Bargsten Johnson, B.; Schwoebel, P. R.; Holland, C. E.; Resnick, P. J.; Hertz, K. L.; Chichester, D. L.
2012-01-01
An ion source based on the principles of electrostatic field desorption is being developed to improve the performance of existing compact neutron generators. The ion source is an array of gated metal tips derived from field electron emitter array microfabrication technology. A comprehensive summary of development and experimental activities is presented. Many structural modifications to the arrays have been incorporated to achieve higher tip operating fields, while lowering fields at the gate electrode to prevent gate field electron emission which initiates electrical breakdown in the array. The latest focus of fabrication activities has been on rounding the gate electrode edge and surrounding the gate electrode with dielectric material. Array testing results have indicated a steady progression of increased array tip operating fields with each new design tested. The latest arrays have consistently achieved fields beyond those required for the onset of deuterium desorption (˜20 V/nm), and have demonstrated the desorption of deuterium at fields up to 36 V/nm. The number of ions desorbed from an array has been quantified, and field desorption of metal tip substrate material from array tips has been observed for the first time. Gas-phase field ionization studies with ˜10,000 tip arrays have achieved deuterium ion currents of ˜50 nA. Neutron production by field ionization has yielded ˜10 2 n/s from ˜1 mm 2 of array area using the deuterium-deuterium fusion reaction at 90 kV.
The Effects of Linear Microphone Array Changes on Computed Sound Exposure Level Footprints
NASA Technical Reports Server (NTRS)
Mueller, Arnold W.; Wilson, Mark R.
1997-01-01
Airport land planning commissions often are faced with determining how much area around an airport is affected by the sound exposure levels (SELS) associated with helicopter operations. This paper presents a study of the effects changing the size and composition of a microphone array has on the computed SEL contour (ground footprint) areas used by such commissions. Descent flight acoustic data measured by a fifteen microphone array were reprocessed for five different combinations of microphones within this array. This resulted in data for six different arrays for which SEL contours were computed. The fifteen microphone array was defined as the 'baseline' array since it contained the greatest amount of data. The computations used a newly developed technique, the Acoustic Re-propagation Technique (ART), which uses parts of the NASA noise prediction program ROTONET. After the areas of the SEL contours were calculated the differences between the areas were determined. The area differences for the six arrays are presented that show a five and a three microphone array (with spacing typical of that required by the FAA FAR Part 36 noise certification procedure) compare well with the fifteen microphone array. All data were obtained from a database resulting from a joint project conducted by NASA and U.S. Army researchers at Langley and Ames Research Centers. A brief description of the joint project test design, microphone array set-up, and data reduction methodology associated with the database are discussed.
NASA Technical Reports Server (NTRS)
Nessel, James A.; Acosta, Robert J.
2010-01-01
Widely distributed (sparse) ground-based arrays have been utilized for decades in the radio science community for imaging celestial objects, but have only recently become an option for deep space communications applications with the advent of the proposed Next Generation Deep Space Network (DSN) array. But whereas in astronomical imaging, observations (receive-mode only) are made on the order of minutes to hours and atmospheric-induced aberrations can be mostly corrected for in post-processing, communications applications require transmit capabilities and real-time corrections over time scales as short as fractions of a second. This presents an unavoidable problem with the use of sparse arrays for deep space communications at Ka-band which has yet to be successfully resolved, particularly for uplink arraying. In this paper, an analysis of the performance of a sparse antenna array, in terms of its directivity, is performed to derive a closed form solution to the expected array loss in the presence of atmospheric-induced phase fluctuations. The theoretical derivation for array directivity degradation is validated with interferometric measurements for a two-element array taken at Goldstone, California. With the validity of the model established, an arbitrary 27-element array geometry is defined at Goldstone, California, to ascertain its performance in the presence of phase fluctuations. It is concluded that a combination of compact array geometry and atmospheric compensation is necessary to ensure high levels of availability.
NASA Astrophysics Data System (ADS)
Pupillo, G.; Naldi, G.; Bianchi, G.; Mattana, A.; Monari, J.; Perini, F.; Poloni, M.; Schiaffino, M.; Bolli, P.; Lingua, A.; Aicardi, I.; Bendea, H.; Maschio, P.; Piras, M.; Virone, G.; Paonessa, F.; Farooqui, Z.; Tibaldi, A.; Addamo, G.; Peverini, O. A.; Tascone, R.; Wijnholds, S. J.
2015-06-01
One of the most challenging aspects of the new-generation Low-Frequency Aperture Array (LFAA) radio telescopes is instrument calibration. The operational LOw-Frequency ARray (LOFAR) instrument and the future LFAA element of the Square Kilometre Array (SKA) require advanced calibration techniques to reach the expected outstanding performance. In this framework, a small array, called Medicina Array Demonstrator (MAD), has been designed and installed in Italy to provide a test bench for antenna characterization and calibration techniques based on a flying artificial test source. A radio-frequency tone is transmitted through a dipole antenna mounted on a micro Unmanned Aerial Vehicle (UAV) (hexacopter) and received by each element of the array. A modern digital FPGA-based back-end is responsible for both data-acquisition and data-reduction. A simple amplitude and phase equalization algorithm is exploited for array calibration owing to the high stability and accuracy of the developed artificial test source. Both the measured embedded element patterns and calibrated array patterns are found to be in good agreement with the simulated data. The successful measurement campaign has demonstrated that a UAV-mounted test source provides a means to accurately validate and calibrate the full-polarized response of an antenna/array in operating conditions, including consequently effects like mutual coupling between the array elements and contribution of the environment to the antenna patterns. A similar system can therefore find a future application in the SKA-LFAA context.
SERS based immuno-microwell arrays for multiplexed detection of foodborne pathogenic bacteria
NASA Astrophysics Data System (ADS)
Sun, Jian; Hankus, Mikella E.; Cullum, Brian M.
2009-05-01
A novel surface enhanced Raman scattering (SERS)-based immuno-microwell array has been developed for multiplexed detection of foodborne pathogenic bacteria. The immuno-microwell array was prepared by immobilizing the optical addressable immunomagnetic beads (IMB) into the microwell array on one end of a fiber optic bundle. The IMBs, magnetic beads coated with specific antibody to specific bacteria, were used for immunomagnetic separation (IMS) of corresponding bacteria. The magnetic separation by the homemade magnetic separation system was evaluated in terms of the influences of several important parameters including the beads concentration, the sample volume and the separation time. IMS separation efficiency of the model bacteria E.coli O157:H7 was 63% in 3 minutes. The microwell array was fabricated on hydrofluoric acid etched end of a fiber optic bundle containing 30,000 fiber elements. After being coated with silver, the microwell array was used as a uniform SERS substrate with the relative standard deviation of the SERS enhancement across the microwell array < 2% and the enhancement factor as high as 2.18 x 107. The antibody modified microwell array was prepared for bacteria immobilization into the microwell array, which was characterized by a sandwich immunoassay. To demonstrate the potential of multiplexed SERS detection with the immuno-microwell array, the SERS spectra of different Raman dye labeled magnetic beads as well as mixtures were measured on the mircrowell array. In bead mixture, different beads were identified by the characteristic SERS bands of the corresponding Raman label.
USDA-ARS?s Scientific Manuscript database
The Axiom®Turkey Genotyping Array interrogates 643,845 probesets on the array, covering 643,845 SNPs. The array development was led by Dr. Julie Long of the USDA-ARS Beltsville Agricultural Research Center under a public-private partnership with Hendrix Genetics, Aviagen, and Affymetrix. The Turk...
Layout and cabling considerations for a large communications antenna array
NASA Technical Reports Server (NTRS)
Logan, R. T., Jr.
1993-01-01
Layout considerations for a large deep space communications antenna array are discussed. A fractal geometry for the antenna layout is described that provides optimal packing of antenna elements, efficient cable routing, and logical division of the array into identical sub-arrays.
NASA Technical Reports Server (NTRS)
Dudgeon, J. E.
1972-01-01
A computerized simulation of a planar phased array of circular waveguide elements is reported using mutual coupling and wide angle impedance matching in phased arrays. Special emphasis is given to circular polarization. The aforementioned computer program has as variable inputs: frequency, polarization, grid geometry, element size, dielectric waveguide fill, dielectric plugs in the waveguide for impedance matching, and dielectric sheets covering the array surface for the purpose of wide angle impedance matching. Parameter combinations are found which produce reflection peaks interior to grating lobes, while dielectric cover sheets are successfully employed to extend the usable scan range of a phased array. The most exciting results came from the application of computer aided optimization techniques to the design of this type of array.
An All Silicon Feedhorn-Coupled Focal Plane for Cosmic Microwave Background Polarimetry
NASA Technical Reports Server (NTRS)
Hubmayr, J.; Appel, J. W.; Austermann, J. E.; Beall, J. A.; Becker, D.; Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Cho, H. M.;
2011-01-01
Upcoming experiments aim to produce high fidelity polarization maps of the cosmic microwave background. To achieve the required sensitivity, we are developing monolithic, feedhorn-coupled transition edge sensor polarimeter arrays operating at 150 GHz. We describe this focal plane architecture and the current status of this technology, focusing on single-pixel polarimeters being deployed on the Atacama B-mode Search (ABS) and an 84-pixel demonstration feedhorn array backed by four 10-pixel polarimeter arrays. The feedhorn array exhibits symmetric beams, cross-polar response less than -23 dB and excellent uniformity across the array. Monolithic polarimeter arrays, including arrays of silicon feedhorns, will be used in the Atacama Cosmology Telescope Polarimeter (ACTPol) and the South Pole Telescope Polarimeter (SPTpol) and have been proposed for upcoming balloon-borne instruments.
Electrode array for neural stimulation
Wessendorf, Kurt O [Albuquerque, NM; Okandan, Murat [Edgewood, NM; Stein, David J [Albuquerque, NM; Yang, Pin [Albuquerque, NM; Cesarano, III, Joseph; Dellinger, Jennifer [Albuquerque, NM
2011-08-16
An electrode array for neural stimulation is disclosed which has particular applications for use in a retinal prosthesis. The electrode array can be formed as a hermetically-sealed two-part ceramic package which includes an electronic circuit such as a demultiplexer circuit encapsulated therein. A relatively large number (up to 1000 or more) of individually-addressable electrodes are provided on a curved surface of a ceramic base portion the electrode array, while a much smaller number of electrical connections are provided on a ceramic lid of the electrode array. The base and lid can be attached using a metal-to-metal seal formed by laser brazing. Electrical connections to the electrode array can be provided by a flexible ribbon cable which can also be used to secure the electrode array in place.
2000-08-30
A solar array is nearly in place on the Integrated Equipment Assembly, next to Solar Array Wing-3, which is already installed. Components of the International Space Station, the arrays are scheduled to be launched on mission STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station
Energy transfer, orbital angular momentum, and discrete current in a double-ring fiber array
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexeyev, C. N.; Volyar, A. V.; Yavorsky, M. A.
We study energy transfer and orbital angular momentum of supermodes in a double-ring array of evanescently coupled monomode optical fibers. The structure of supermodes and the spectra of their propagation constants are obtained. The geometrical parameters of the array, at which the energy is mostly confined within the layers, are determined. The developed method for finding the supermodes of concentric arrays is generalized for the case of multiring arrays. The orbital angular momentum carried by a supermode of a double-ring array is calculated. The discrete lattice current is introduced. It is shown that the sum of discrete currents over themore » array is a conserved quantity. The connection of the total discrete current with orbital angular momentum of discrete optical vortices is made.« less
Boron Nitride Coated Carbon Nanotube Arrays with Enhanced Compressive Mechanical Property
NASA Astrophysics Data System (ADS)
Jing, Lin; Tay, Roland Yingjie; Li, Hongling; Tsang, Siu Hon; Tan, Dunlin; Zhang, Bowei; Tok, Alfred Iing Yoong; Teo, Edwin Hang Tong
Vertically aligned carbon nanotube (CNT) array is one of the most promising energy dissipating materials due to its excellent temperature invariant mechanical property. However, the CNT arrays with desirable recoverability after compression is still a challenge. Here, we report on the mechanical enhancement of the CNT arrays reinforced by coating with boron nitride (BN) layers. These BN coated CNT (BN/CNT) arrays exhibit excellent compressive strength and recoverability as compared to those of the as-prepared CNT arrays which totally collapsed after compression. In addition, the BN coating also provides better resistance to oxidation due to its intrinsic thermal stability. This work presented here opens a new pathway towards tuning mechanical behavior of any arbitrary CNT arrays for promising potential such as damper, vibration isolator and shock absorber applications.
Manipulation of Liquids Using Phased Array Generation of Acoustic Radiation Pressure
NASA Technical Reports Server (NTRS)
Oeftering, Richard C. (Inventor)
2000-01-01
A phased array of piezoelectric transducers is used to control and manipulate contained as well as uncontained fluids in space and earth applications. The transducers in the phased array are individually activated while being commonly controlled to produce acoustic radiation pressure and acoustic streaming. The phased array is activated to produce a single pulse, a pulse burst or a continuous pulse to agitate, segregate or manipulate liquids and gases. The phased array generated acoustic radiation pressure is also useful in manipulating a drop, a bubble or other object immersed in a liquid. The transducers can be arranged in any number of layouts including linear single or multi- dimensional, space curved and annular arrays. The individual transducers in the array are activated by a controller, preferably driven by a computer.
Effects of wind waves on horizontal array performance in shallow-water conditions
NASA Astrophysics Data System (ADS)
Zavol'skii, N. A.; Malekhanov, A. I.; Raevskii, M. A.; Smirnov, A. V.
2017-09-01
We analyze the influence of statistical effects of the propagation of an acoustic signal excited by a tone source in a shallow-water channel with a rough sea surface on the efficiency of a horizontal phased array. As the array characteristics, we consider the angular function of the array response for a given direction to the source and the coefficient of amplification of the signal-to-noise ratio (array gain). Numerical simulation was conducted in to the winter hydrological conditions of the Barents Sea in a wide range of parameters determining the spatial signal coherence. The results show the main physical effects of the influence of wind waves on the array characteristics and make it possible to quantitatively predict the efficiency of a large horizontal array in realistic shallow-water channels.
Thin-Film Photovoltaic Solar Array Parametric Assessment
NASA Technical Reports Server (NTRS)
Hoffman, David J.; Kerslake, Thomas W.; Hepp, Aloysius F.; Jacobs, Mark K.; Ponnusamy, Deva
2000-01-01
This paper summarizes a study that had the objective to develop a model and parametrically determine the circumstances for which lightweight thin-film photovoltaic solar arrays would be more beneficial, in terms of mass and cost, than arrays using high-efficiency crystalline solar cells. Previous studies considering arrays with near-term thin-film technology for Earth orbiting applications are briefly reviewed. The present study uses a parametric approach that evaluated the performance of lightweight thin-film arrays with cell efficiencies ranging from 5 to 20 percent. The model developed for this study is described in some detail. Similar mass and cost trends for each array option were found across eight missions of various power levels in locations ranging from Venus to Jupiter. The results for one specific mission, a main belt asteroid tour, indicate that only moderate thin-film cell efficiency (approx. 12 percent) is necessary to match the mass of arrays using crystalline cells with much greater efficiency (35 percent multi-junction GaAs based and 20 percent thin-silicon). Regarding cost, a 12 percent efficient thin-film array is projected to cost about half is much as a 4-junction GaAs array. While efficiency improvements beyond 12 percent did not significantly further improve the mass and cost benefits for thin-film arrays, higher efficiency will be needed to mitigate the spacecraft-level impacts associated with large deployed array areas. A low-temperature approach to depositing thin-film cells on lightweight, flexible plastic substrates is briefly described. The paper concludes with the observation that with the characteristics assumed for this study, ultra-lightweight arrays using efficient, thin-film cells on flexible substrates may become a leading alternative for a wide variety of space missions.
Comparison of X-ray Radiation Process in Single and Nested Wire Array Implosions
NASA Astrophysics Data System (ADS)
Li, Z. H.; Xu, Z. P.; Yang, J. L.; Xu, R. K.; Guo, C.; Grabovsky, E. V.; Oleynic, G. M.; Smirnov, V. P.
2006-01-01
In order to understanding the difference between tungsten single-wire-array and tungsten nested-wire-array Z-pinches, we have measured the x-ray power, the temporal-spatial distributions of x-ray radiation from each of the two loads. The measurements were performed with 0.1mm spatial and 1 ns temporal resolutions at 2.5- and 3.5-MA currents. The experimental conditions, including wire material, number of wires, wire-array length, electrode design, and implosion time, remained unchanged from shot to shot. Analysis of the radiation power profiles suggests that the nested-wire-array radiate slightly less x-ray energy in relatively shorter time interval than the single wire-array, leading to a much greater x-ray power in nested-wire-array implosion. The temporal-spatial distributions of x-ray power show that in both cases, plasmas formed by wire-array ablation radiate not simultaneously along load axis. For nested-wire-array Z-pinch, plasmas near the anode begin to radiate in 2ns later than that near the cathode. As a contrast, the temporal divergence of radiation among different plasma zones of single-wire-array Z-pinch along Z-axis is more than 6ns. Measurements of the x-ray emissions from small segments of pinch (2mm length along axis) indicate that local radiation power profiles almost do not vary for the two loads. Photographs taken by X-ray framing camera give a same description about the radiation process of pinch. One may expect that, as a result of this study, if the single-wire-array can be redesigned so ingeniously that the x-rays are emitted at the same time all over the pinch zone, the radiation power of single wire array Z-pinch may be much greater than what have been achieved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pajek, Daniel, E-mail: dpajek@sri.utoronto.ca; Hynynen, Kullervo
2013-12-15
Purpose: Transcranial focused ultrasound is an emerging therapeutic modality that can be used to perform noninvasive neurosurgical procedures. The current clinical transcranial phased array operates at 650 kHz, however the development of a higher frequency array would enable more precision, while reducing the risk of standing waves. However, the smaller wavelength and the skull's increased distortion at this frequency are problematic. It would require an order of magnitude more elements to create such an array. Random sparse arrays enable steering of a therapeutic array with fewer elements. However, the tradeoffs inherent in the use of sparsity in a transcranial phasedmore » array have not been systematically investigated and so the objective of this simulation study is to investigate the effect of sparsity on transcranial arrays at a frequency of 1.5 MHz that provides small focal spots for precise exposure control. Methods: Transcranial sonication simulations were conducted using a multilayer Rayleigh-Sommerfeld propagation model. Element size and element population were varied and the phased array's ability to steer was assessed. Results: The focal pressures decreased proportionally as elements were removed. However, off-focus hotspots were generated if a high degree of steering was attempted with very sparse arrays. A phased array consisting of 1588 elements 3 mm in size, a 10% population, was appropriate for steering up to 4 cm in all directions. However, a higher element population would be required if near-skull sonication is desired. Conclusions: This study demonstrated that the development of a sparse, hemispherical array at 1.5 MHz could enable more precision in therapies that utilize lower intensity sonications.« less
LC-lens array with light field algorithm for 3D biomedical applications
NASA Astrophysics Data System (ADS)
Huang, Yi-Pai; Hsieh, Po-Yuan; Hassanfiroozi, Amir; Martinez, Manuel; Javidi, Bahram; Chu, Chao-Yu; Hsuan, Yun; Chu, Wen-Chun
2016-03-01
In this paper, liquid crystal lens (LC-lens) array was utilized in 3D bio-medical applications including 3D endoscope and light field microscope. Comparing with conventional plastic lens array, which was usually placed in 3D endoscope or light field microscope system to record image disparity, our LC-lens array has higher flexibility of electrically changing its focal length. By using LC-lens array, the working distance and image quality of 3D endoscope and microscope could be enhanced. Furthermore, the 2D/3D switching ability could be achieved if we turn off/on the electrical power on LClens array. In 3D endoscope case, a hexagonal micro LC-lens array with 350um diameter was placed at the front end of a 1mm diameter endoscope. With applying electric field on LC-lens array, the 3D specimen would be recorded as from seven micro-cameras with different disparity. We could calculate 3D construction of specimen with those micro images. In the other hand, if we turn off the electric field on LC-lens array, the conventional high resolution 2D endoscope image would be recorded. In light field microscope case, the LC-lens array was placed in front of the CMOS sensor. The main purpose of LC-lens array is to extend the refocusing distance of light field microscope, which is usually very narrow in focused light field microscope system, by montaging many light field images sequentially focusing on different depth. With adjusting focal length of LC-lens array from 2.4mm to 2.9mm, the refocusing distance was extended from 1mm to 11.3mm. Moreover, we could use a LC wedge to electrically shift the optics axis and increase the resolution of light field.
Shepherd, Robert K; Xu, Jin
2002-10-01
We have developed a novel scala tympani electrode array suitable for use in experimental animals. A unique feature of this array is its ability to chronically deliver pharmacological agents to the scala tympani. The design of the electrode array is described in detail. Experimental studies performed in guinea pigs confirm that this array can successfully deliver various drugs to the cochlea while chronically stimulating the auditory nerve.
Carbon nanotube array based sensor
Lee, Christopher L.; Noy, Aleksandr; Swierkowski, Stephan P.; Fisher, Karl A.; Woods, Bruce W.
2005-09-20
A sensor system comprising a first electrode with an array of carbon nanotubes and a second electrode. The first electrode with an array of carbon nanotubes and the second electrode are positioned to produce an air gap between the first electrode with an array of carbon nanotubes and the second electrode. A measuring device is provided for sensing changes in electrical capacitance between the first electrode with an array of carbon nanotubes and the second electrode.
Switched Antenna Array Tile for Real-Time Microwave Imaging Aperture
2016-06-26
Switched Antenna Array Tile for Real -Time Microwave Imaging Aperture William F. Moulder, Janusz J. Majewski, Charles M. Coldwell, James D. Krieger...Fast Imaging Algorithm 10mm 250mm Switched Array Tile Fig. 1. Diagram of real -time imaging array, with fabricated antenna tile. except for antenna...formed. IV. CONCLUSIONS A switched array tile to be used in a real time imaging aperture has been presented. Design and realization of the tile were
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, R. O.; Burke, J. T.; Casperson, R. J.
Hyperion is a new high-efficiency charged-particle γ-ray detector array which consists of a segmented silicon telescope for charged-particle detection and up to fourteen high-purity germanium clover detectors for the detection of coincident γ rays. The array will be used in nuclear physics measurements and Stockpile Stewardship studies and replaces the STARLiTeR array. In conclusion, this article discusses the features of the array and presents data collected with the array in the commissioning experiment.
NASA Technical Reports Server (NTRS)
Cheung, K. M.; Vilnrotter, V.
1996-01-01
A closed-form expression for the capacity of an array of correlated Gaussian channels is derived. It is shown that when signal and noise are independent, the array of observables can be replaced with a single observable without diminishing the capacity of the array channel. Examples are provided to illustrate the dependence of channel capacity on noise correlation for two- and three-channel arrays.
NASA Technical Reports Server (NTRS)
Cheung, K.-M.; Vilnrotter, V.
1996-01-01
A closed-form expression for the capacity of an array of correlated Gaussian channels is derived. It is shown that when signal and noise are independent, the array of observables can be replaced with a single observable without diminishing the capacity of the array channel. Examples are provided to illustrate the dependence of channel capacity on noise correlation for two- and three-channel arrays.
IRIS Arrays: Observing Wavefields at Multiple Scales and Frequencies
NASA Astrophysics Data System (ADS)
Sumy, D. F.; Woodward, R.; Frassetto, A.
2014-12-01
The Incorporated Research Institutions for Seismology (IRIS) provides instruments for creating and operating seismic arrays at a wide range of scales. As an example, for over thirty years the IRIS PASSCAL program has provided instruments to individual Principal Investigators to deploy arrays of all shapes and sizes on every continent. These arrays have ranged from just a few sensors to hundreds or even thousands of sensors, covering areas with dimensions of meters to thousands of kilometers. IRIS also operates arrays directly, such as the USArray Transportable Array (TA) as part of the EarthScope program. Since 2004, the TA has rolled across North America, at any given time spanning a swath of approximately 800 km by 2,500 km, and thus far sampling 2% of the Earth's surface. This achievement includes all of the lower-48 U.S., southernmost Canada, and now parts of Alaska. IRIS has also facilitated specialized arrays in polar environments and on the seafloor. In all cases, the data from these arrays are freely available to the scientific community. As the community of scientists who use IRIS facilities and data look to the future they have identified a clear need for new array capabilities. In particular, as part of its Wavefields Initiative, IRIS is exploring new technologies that can enable large, dense array deployments to record unaliased wavefields at a wide range of frequencies. Large-scale arrays might utilize multiple sensor technologies to best achieve observing objectives and optimize equipment and logistical costs. Improvements in packaging and power systems can provide equipment with reduced size, weight, and power that will reduce logistical constraints for large experiments, and can make a critical difference for deployments in harsh environments or other situations where rapid deployment is required. We will review the range of existing IRIS array capabilities with an overview of previous and current deployments and examples of data and results. We will review existing IRIS projects that explore new array capabilities and highlight future directions for IRIS instrumentation facilities.
Tutorial: Performance and reliability in redundant disk arrays
NASA Technical Reports Server (NTRS)
Gibson, Garth A.
1993-01-01
A disk array is a collection of physically small magnetic disks that is packaged as a single unit but operates in parallel. Disk arrays capitalize on the availability of small-diameter disks from a price-competitive market to provide the cost, volume, and capacity of current disk systems but many times their performance. Unfortunately, relative to current disk systems, the larger number of components in disk arrays leads to higher rates of failure. To tolerate failures, redundant disk arrays devote a fraction of their capacity to an encoding of their information. This redundant information enables the contents of a failed disk to be recovered from the contents of non-failed disks. The simplest and least expensive encoding for this redundancy, known as N+1 parity is highlighted. In addition to compensating for the higher failure rates of disk arrays, redundancy allows highly reliable secondary storage systems to be built much more cost-effectively than is now achieved in conventional duplicated disks. Disk arrays that combine redundancy with the parallelism of many small-diameter disks are often called Redundant Arrays of Inexpensive Disks (RAID). This combination promises improvements to both the performance and the reliability of secondary storage. For example, IBM's premier disk product, the IBM 3390, is compared to a redundant disk array constructed of 84 IBM 0661 3 1/2-inch disks. The redundant disk array has comparable or superior values for each of the metrics given and appears likely to cost less. In the first section of this tutorial, I explain how disk arrays exploit the emergence of high performance, small magnetic disks to provide cost-effective disk parallelism that combats the access and transfer gap problems. The flexibility of disk-array configurations benefits manufacturer and consumer alike. In contrast, I describe in this tutorial's second half how parallelism, achieved through increasing numbers of components, causes overall failure rates to rise. Redundant disk arrays overcome this threat to data reliability by ensuring that data remains available during and after component failures.
Challenging aspects of contemporary cochlear implant electrode array design.
Mistrík, Pavel; Jolly, Claude; Sieber, Daniel; Hochmair, Ingeborg
2017-12-01
A design comparison of current perimodiolar and lateral wall electrode arrays of the cochlear implant (CI) is provided. The focus is on functional features such as acoustic frequency coverage and tonotopic mapping, battery consumption and dynamic range. A traumacity of their insertion is also evaluated. Review of up-to-date literature. Perimodiolar electrode arrays are positioned in the basal turn of the cochlea near the modiolus. They are designed to initiate the action potential in the proximity to the neural soma located in spiral ganglion. On the other hand, lateral wall electrode arrays can be inserted deeper inside the cochlea, as they are located along the lateral wall and such insertion trajectory is less traumatic. This class of arrays targets primarily surviving neural peripheral processes. Due to their larger insertion depth, lateral wall arrays can deliver lower acoustic frequencies in manner better corresponding to cochlear tonotopicity. In fact, spiral ganglion sections containing auditory nerve fibres tuned to low acoustic frequencies are located deeper than 1 and half turn inside the cochlea. For this reason, a significant frequency mismatch might be occurring for apical electrodes in perimodiolar arrays, detrimental to speech perception. Tonal languages such as Mandarin might be therefore better treated with lateral wall arrays. On the other hand, closer proximity to target tissue results in lower psychophysical threshold levels for perimodiolar arrays. However, the maximal comfort level is also lower, paradoxically resulting in narrower dynamic range than that of lateral wall arrays. Battery consumption is comparable for both types of arrays. Lateral wall arrays are less likely to cause trauma to cochlear structures. As the current trend in cochlear implantation is the maximal protection of residual acoustic hearing, the lateral wall arrays seem more suitable for hearing preservation CI surgeries. Future development could focus on combining the advantages of both types: perimodiolar location in the basal turn extended to lateral wall location for higher turn locations.
Development of an Infrared Lamp Array for the Smap Spacecraft Thermal Balance Test
NASA Technical Reports Server (NTRS)
Miller, Jennifer R.; Emis, Nickolas; Forgette, Daniel
2015-01-01
NASA launched the SMAP observatory in January 2015 aboard a Delta II into a sun-synchronous orbit around Earth. The science payload of a radar and a radiometer utilizes a shared rotating six-meter antenna to provide a global map of the Earth's soil moisture content and its freeze/thaw state on a global, high-resolution scale in this three-year mission. An observatory-level thermal balance test conducted in May/June 2014 validated the thermal design and demonstrated launch readiness as part of the planned environmental test campaign. An infrared lamp array was designed and used in the thermal balance test to replicate solar heating on the solar array and sunlit side of the spacecraft that would normally be seen in orbit. The design, implementation, and operation of an infrared lamp array used for this nineteen-day system thermal test are described in this paper. Instrumental to the smooth operation of this lamp array was a characterization test performed in the same chamber two months prior to the observatory test to provide insight into its array operation and flux uniformity. This knowledge was used to identify the lamp array power settings that would provide the worst case predicted on-orbit fluxes during eclipse, cold, and hot cases. It also showed the lamp array variation when adjustments in flux were needed. Calorimeters calibrated prior to testing determined a relationship between calorimeter temperature and lamp array flux. This allowed the team to adjust the lamp output for the desired absorbed flux on the solar array. Flux levels were within 10% of the desired value at the center of the solar array with an ability to maintain these levels within 5% during steady state cases. All tests demonstrated the infrared lamp array functionality and furthered lamp array understanding for modeling purposes. This method contributed to a high-fidelity environmental simulation, which was required to replicate the extreme on-orbit thermal environments.
NASA Technical Reports Server (NTRS)
Pfaff, R.; Freudenreich, H.; Bromund, K.; Klenzing, J.; Rowland, D.; Maynard, N.
2010-01-01
Initial results are presented from the Vector Electric Field Investigation (VEFI) on the Air Force Communication/Navigation Outage Forecasting System (C/NOFS) satellite, a mission designed to understand, model, and forecast the presence of equatorial ionospheric irregularities. The VEFI instrument includes a vector DC electric field detector, a fixed-bias Langmuir probe operating in the ion saturation regime, a flux gate magnetometer, an optical lightning detector, and associated electronics including a burst memory. Compared to data obtained during more active solar conditions, the ambient DC electric fields and their associated E x B drifts are variable and somewhat weak, typically < 1 mV/m. Although average drift directions show similarities to those previously reported, eastward/outward during day and westward/downward at night, this pattern varies significantly with longitude and is not always present. Daytime vertical drifts near the magnetic equator are largest after sunrise, with smaller average velocities after noon. Little or no pre-reversal enhancement in the vertical drift near sunset is observed, attributable to the solar minimum conditions creating a much reduced neutral dynamo at the satellite altitude. The nighttime ionosphere is characterized by larger amplitude, structured electric fields, even where the plasma density appears nearly quiescent. Data from successive orbits reveal that the vertical drifts and plasma density are both clearly organized with longitude. The spread-F density depletions and corresponding electric fields that have been detected thus far have displayed a preponderance to appear between midnight and dawn. Associated with the narrow plasma depletions that are detected are broad spectra of electric field and plasma density irregularities for which a full vector set of measurements is available for detailed study. Finally, the data set includes a wide range of ELF/VLF/HF oscillations corresponding to a variety of plasma waves, in particular banded ELF hiss, whistlers, and lower hybrid wave turbulence triggered by lightning-induced sferics. The VEFI data represents a new set of measurements that are germane to numerous fundamental aspects of the electrodynamics and irregularities inherent to the Earth's low latitude ionosphere.
Initial Results from the Vector Electric Field Investigation on the C/NOFS Satellite
NASA Technical Reports Server (NTRS)
Pfaff, R.; Rowland, D.; Acuna, M.; Le, G.; Farrell, W.; Holzworth, R.; Wilson, G.; Burke, W.; Freudenreich, H.; Bromund, K.;
2009-01-01
Initial results are presented from the Vector Electric Field Investigation (VEFI) on the Air Force Communication/Navigation Outage Forecasting System (C/NOFS) satellite, a mission designed to understand, model, and forecast the presence of equatorial ionospheric irregularities. The VEFI instrument includes a vector DC electric field detector, a fixed-bias Langmuir probe operating in the ion saturation regime, a flux gate magnetometer, an optical lightning detector, and associated electronics including a burst memory. The DC electric field detector has revealed zonal and meridional electric fields that undergo a diurnal variation, typically displaying eastward and outward-directed fields during the day and westward and downward-directed fields at night. In general, the measured DC electric field amplitudes are in the 0.5-2 mV/m range, corresponding to I3 x B drifts of the order of 30-150 m/s. What is surprising is the high degree of large-scale (10's to 100's of km) structure in the DC electric field, particularly at night, regardless of whether well-defined spread-F plasma density depletions are present. The spread-F density depletions and corresponding electric fields that have been detected thus far have displayed a preponderance to appear between midnight and dawn. Associated with the narrow plasma depletions that are detected are broad spectra of electric field and plasma density irregularities for which a full vector set of measurements is available for detailed study. On some occasions, localized regions of low frequency (< 8 Hz) magnetic field broadband irregularities have been detected, suggestive of filamentary currents, although there is no one-to-one correspondence of these waves with the observed plasma density depletions, at least within the data examined thus far. Finally, the data set includes a wide range of ELF/VLF/HF waves corresponding to a variety of plasma waves, in particular banded ELF hiss, whistlers, and lower hybrid wave turbulence triggered by lightning-induced sferics. The VEFI data set represents a treasure trove of measurements that are germane to numerous fundamental aspects of the electrodynamics and irregularities inherent to the Earth's low latitude ionosphere.
TLE Balloon experiment campaign carried out on 25 August 2006 in Japan
NASA Astrophysics Data System (ADS)
Takahashi, Y.; Chikada, S.; Yoshida, A.; Adachi, T.; Sakanoi, T.
2006-12-01
The balloon observation campaign for TLE and lightning study was carried out 25 August 2006 in Japan by Tohoku University, supported by JAXA. The balloon was successfully launched at 18:33 LT at Sanriku Balloon Center of JAXA located in the east coast of northern part of Japan (Iwate prefecture). Three types of scientific payloads were installed at the 1 m-cubic gondola, that is, 3-axis VLF electric filed antenna and receiver (VLFR), 4 video frame CCD cameras (CCDI) and 2-color photometer (PM). The video images were stored in 4 HD video recorders, which have 20GB memories respectively, at 30 frames/sec and VLFR and PM data were put into digital data recorder with 30 GB memory at sampling rate of 100 kHz. The balloon floated at the altitude of 13 km until about 20:30 LT, going eastward and went up to 26 km at a distance of 130 km from the coast. And it went back westward at the altitude of 26 km until midnight. The total observation period is about 5 hours. Most of the equipments worked properly except for one video recorder. Some thunderstorms existed within the direct FOV from the balloon in the range of 400-600 km and more than about 400 lightning flashes were recorded as video images. We confirmed that, at least, one sprite halo was captured by CCDI which occurred in the oceanic thunderstorm at a distance of about 500 km from balloon. This is the first TLE image obtained by a balloon-borne camera. Simultaneous measurements of VLF sferics and lightning/TLE images will clarify the role of intracloud (IC) currents in producing and/or modulating TLEs as well as cloud-to-ground discharges (CG). Especially the effect of horizontal components will be investigated in detail, which cannot be detected on the ground, to explain the unsolved properties of TLEs, such as long time delay of TLE from the timing of stroke and large horizontal displacement between CG and TLEs.
Lightning-driven electric and magnetic fields measured in the stratosphere: Implications for sprites
NASA Astrophysics Data System (ADS)
Thomas, Jeremy Norman
A well accepted model for sprite production involves quasi-electrostatic fields (QSF) driven by large positive cloud-to-ground (+CG) strokes that can cause electrical breakdown in the middle atmosphere. A new high voltage, high impedance, double Langmuir probe instrument is designed specifically for measuring these large lightning-driven electric field changes at altitudes above 30 km. This High Voltage (HV) Electric Field Detector measured 200 nearby (<75 km) lightning-driven electric field changes, up to 140 V/m in magnitude, during the Brazil Sprite Balloon Campaign 2002--03. A numerical QSF model is developed and compared to the in situ measurements. It is found that the amplitudes and relaxation times of the electric fields driven by these nearby lightning events generally agree with the numerical QSF model, which suggests that the QSF approach is valid for modeling lightning-driven fields. Using the best fit parameters of this comparison, it is predicted that the electric fields at sprite altitudes (60--90 km) never surpass conventional breakdown in the mesosphere for each of these 200 nearby lightning events. Lightning-driven ELF to VLF (25 Hz--8 kHz) electric field changes were measured for each of the 2467 cloud-to-ground lightning (CGs) detected by the Brazilian Integrated Lightning Network (BIN) at distances of 75--600 km, and magnetic field changes (300 Hz--8 kHz) above the background noise were measured for about 35% (858) of these CGs. ELF pulses that occur 4--12 ms after the retarded time of the lightning sferic, which have been previously attributed to sprites, were found for 1.4% of 934 CGs examined with a strong bias towards +CGs (4.9% or 9/184) compared to -CGs (0.5% or 4/750). These results disagree with results from the Sprites99 Balloon Campaign [Bering et al., 2004b], in which the lightning-driven electric and magnetic field changes were rare, while the CG delayed ELF pulses were frequent. The Brazil Campaign results thus suggest that mesospheric currents are likely the result of the QSF driven by large charge moment strokes, which are usually +CG strokes, initiating breakdown in the middle atmosphere.
Thunderstorm monitoring with VLF network and super dense meteorological observation system
NASA Astrophysics Data System (ADS)
Takahashi, Yukihiro; Sato, Mitsuteru
2015-04-01
It's not easy to understand the inside structure and developing process of thunderstorm only with existing meteorological instruments since its horizontal extent of the storm cell is sometimes smaller than an order of 10 km while one of the densest ground network in Japan, AMEDAS, consists of sites located every 17 km in average and the resolution of meteorological radar is 1-2 km in general. Even the X-band radar realizes the resolution of 250 m or larger. Here we suggest a thunderstorm monitoring system consisting of the network of VLF radio wave receivers and the super dense meteorological observation system with simple and low cost plate-type sensors that can be used for measurement both of raindrop and vertical electric field change caused by cloud-to-ground lightning discharge, adding to basic equipments for meteorological measurements. The plate-type sensor consists of two aluminum plates with a diameter of 10-20 cm. We carried out an observation campaign in summer of 2013 in the foothills of Mt. Yastugatake, Yamanashi and Nagano prefectures in Japan, installing 6 plate-type sensors at a distance of about 4 km. Horizontal location, height and charge amount of each lightning discharge are estimated successfully based on the information of electric field changes at several observing sites. Moreover, it was found that the thunderstorm has a very narrow structure smaller than 300 m that cannot be measured by any other ways, counting the positive and negative pulses caused by attachment of raindrop to the sensor plate, respectively. We plan to construct a new super dense observation network in the north Kanto region, Japan, where the lightning activity is most prominent in summer Japan and surrounded by our VLF systems developed for detecting sferics from lightning discharge, distributing more than several tens of sensors at every 4 km or shorter, such as an order of 100 m at minimum. This kind of new type network will reveal the unknown fine structures of thunderstorms and open the door for constructing real time alert system of torrential rainfall and lightning stroke especially in the city area.
Bond, Tiziana C.; Miles, Robin; Davidson, James C.; Liu, Gang Logan
2014-07-22
Methods for fabricating nanoscale array structures suitable for surface enhanced Raman scattering, structures thus obtained, and methods to characterize the nanoscale array structures suitable for surface enhanced Raman scattering. Nanoscale array structures may comprise nanotrees, nanorecesses and tapered nanopillars.
Bond, Tiziana C.; Miles, Robin; Davidson, James C.; Liu, Gang Logan
2015-07-14
Methods for fabricating nanoscale array structures suitable for surface enhanced Raman scattering, structures thus obtained, and methods to characterize the nanoscale array structures suitable for surface enhanced Raman scattering. Nanoscale array structures may comprise nanotrees, nanorecesses and tapered nanopillars.
Bond, Tiziana C; Miles, Robin; Davidson, James; Liu, Gang Logan
2015-11-03
Methods for fabricating nanoscale array structures suitable for surface enhanced Raman scattering, structures thus obtained, and methods to characterize the nanoscale array structures suitable for surface enhanced Raman scattering. Nanoscale array structures may comprise nanotrees, nanorecesses and tapered nanopillars.
On the (Frequency) Modulation of Coupled Oscillator Arrays in Phased Array Beam Control
NASA Technical Reports Server (NTRS)
Pogorzelski, R.; Acorn, J.; Zawadzki, M.
2000-01-01
It has been shown that arrays of voltage controlled oscillators coupled to nearest neighbors can be used to produce useful aperture phase distributions for phased array antennas. However, placing information of the transmitted signal requires that the oscillations be modulated.
Efficient processing of two-dimensional arrays with C or C++
Donato, David I.
2017-07-20
Because fast and efficient serial processing of raster-graphic images and other two-dimensional arrays is a requirement in land-change modeling and other applications, the effects of 10 factors on the runtimes for processing two-dimensional arrays with C and C++ are evaluated in a comparative factorial study. This study’s factors include the choice among three C or C++ source-code techniques for array processing; the choice of Microsoft Windows 7 or a Linux operating system; the choice of 4-byte or 8-byte array elements and indexes; and the choice of 32-bit or 64-bit memory addressing. This study demonstrates how programmer choices can reduce runtimes by 75 percent or more, even after compiler optimizations. Ten points of practical advice for faster processing of two-dimensional arrays are offered to C and C++ programmers. Further study and the development of a C and C++ software test suite are recommended.Key words: array processing, C, C++, compiler, computational speed, land-change modeling, raster-graphic image, two-dimensional array, software efficiency
A 7T Spine Array Based on Electric Dipole Transmitters
Duan, Qi; Nair, Govind; Gudino, Natalia; de Zwart, Jacco A.; van Gelderen, Peter; Murphy-Boesch, Joe; Reich, Daniel S.; Duyn, Jeff H.; Merkle, Hellmut
2015-01-01
Purpose In this work the feasibility of using an array of electric dipole antennas for RF transmission in spine MRI at high field is explored. Method A 2-channel transmit array based on an electric dipole design was quantitatively optimized for 7T spine imaging and integrated with a receive array combining 8 loop coils. Using B1+ mapping, the transmit efficiency of the dipole array was compared to a design using quadrature loop pairs. The radio-frequency (RF) energy deposition for each array was measured using a home-built dielectric phantom and MR thermometry. The performance of the proposed array was qualitatively demonstrated in human studies. Results The results indicate dramatically improved transmit efficiency for the dipole design as compared to the loop excitation. Up to 76% gain was achieved within the spinal region. Conclusion For imaging of the spine, electric-dipole based transmitters provided an attractive alternative to the traditional loop-based design. Easy integration with existing receive array technology facilitates practical use at high field. PMID:26190585
NASA Astrophysics Data System (ADS)
Li, Wen Tao; Hei, Yong Qiang; Shi, Xiao Wei
2018-04-01
By virtue of the excellent aerodynamic performances, conformal phased arrays have been attracting considerable attention. However, for the synthesis of patterns with low/ultra-low sidelobes of the conventional conformal arrays, the obtained dynamic range ratios of amplitude excitations could be quite high, which results in stringent requirements on various error tolerances for practical implementation. Time-modulated array (TMA) has the advantages of low sidelobe and reduced dynamic range ratio requirement of amplitude excitations. This paper takes full advantages of conformal antenna arrays and time-modulated arrays. The active-element-pattern, including element mutual coupling and platform effects, is employed in the whole design process. To optimize the pulse durations and the switch-on instants of the time-modulated elements, multiobjective invasive weed optimization (MOIWO) algorithm based on the nondominated sorting of the solutions is proposed. A S-band 8-element cylindrical conformal array is designed and a S-band 16-element cylindrical-parabolic conformal array is constructed and tested at two different steering angles.
NASA Technical Reports Server (NTRS)
Fisher, Edward M., Jr.
1991-01-01
Additional power is required to support Space Station Freedom (SSF) evolution. Boeing Defense and Space Group, LeRC, and Entech Corporation have participated in the development of efficiency gallium arsenide and gallium antimonide solar cells make up the solar array tandem cell stacks. Entech's Mini-Dome Fresnel Lens Concentrators focus solar energy onto the active area of the solar cells at 50 times one solar energy flux. Development testing for a flight array, to be launched in Nov. 1992 is under way with support from LeRC. The tandem cells, interconnect wiring, concentrator lenses, and structure were integrated into arrays subjected to environmental testing. A tandem concentrator array can provide high mass and area specific power and can provide equal power with significantly less array area and weight than the baseline array design. Alternatively, for SSF growth, an array of twice the baseline power can be designed which still has a smaller drag area than the baseline.
Advanced photovoltaic solar array - Design and performance
NASA Technical Reports Server (NTRS)
Kurland, Richard; Stella, Paul
1992-01-01
This paper reports on the development of an ultralightweight flexible blanket, flatpack, foldout solar array design that can provide 3- to 4-fold improvement on specific power performance of current rigid panel arrays and a factor of two improvement over a first-generation flexible blanket array developed as a forerunner to the Space Station Freedom array. To date a prototype wing has been built with a projected specific power performance of about 138 W/kg at beginning-of-life (BOL) and 93 W/kg end-of-life (EOL) at 12 kW (BOL) for a 10-year geosynchronous (GEO) mission. The prototype wing hardware has been subjected to a series of system-level tests to demonstrate design feasibility. The design of the array is summarized. The major trade studies that led to the selection of the baseline design are discussed. Key system-level and component-level testing are described. Array-level performance projections are presented as a function of existing and advanced solar array component technology for various mission applications.
Size dependence in tunneling spectra of PbSe quantum-dot arrays.
Ou, Y C; Cheng, S F; Jian, W B
2009-07-15
Interdot Coulomb interactions and collective Coulomb blockade were theoretically argued to be a newly important topic, and experimentally identified in semiconductor quantum dots, formed in the gate confined two-dimensional electron gas system. Developments of cluster science and colloidal synthesis accelerated the studies of electron transport in colloidal nanocrystal or quantum-dot solids. To study the interdot coupling, various sizes of two-dimensional arrays of colloidal PbSe quantum dots are self-assembled on flat gold surfaces for scanning tunneling microscopy and scanning tunneling spectroscopy measurements at both room and liquid-nitrogen temperatures. The tip-to-array, array-to-substrate, and interdot capacitances are evaluated and the tunneling spectra of quantum-dot arrays are analyzed by the theory of collective Coulomb blockade. The current-voltage of PbSe quantum-dot arrays conforms properly to a scaling power law function. In this study, the dependence of tunneling spectra on the sizes (numbers of quantum dots) of arrays is reported and the capacitive coupling between quantum dots in the arrays is explored.
A mixed-signal implementation of a polychronous spiking neural network with delay adaptation
Wang, Runchun M.; Hamilton, Tara J.; Tapson, Jonathan C.; van Schaik, André
2014-01-01
We present a mixed-signal implementation of a re-configurable polychronous spiking neural network capable of storing and recalling spatio-temporal patterns. The proposed neural network contains one neuron array and one axon array. Spike Timing Dependent Delay Plasticity is used to fine-tune delays and add dynamics to the network. In our mixed-signal implementation, the neurons and axons have been implemented as both analog and digital circuits. The system thus consists of one FPGA, containing the digital neuron array and the digital axon array, and one analog IC containing the analog neuron array and the analog axon array. The system can be easily configured to use different combinations of each. We present and discuss the experimental results of all combinations of the analog and digital axon arrays and the analog and digital neuron arrays. The test results show that the proposed neural network is capable of successfully recalling more than 85% of stored patterns using both analog and digital circuits. PMID:24672422
A mixed-signal implementation of a polychronous spiking neural network with delay adaptation.
Wang, Runchun M; Hamilton, Tara J; Tapson, Jonathan C; van Schaik, André
2014-01-01
We present a mixed-signal implementation of a re-configurable polychronous spiking neural network capable of storing and recalling spatio-temporal patterns. The proposed neural network contains one neuron array and one axon array. Spike Timing Dependent Delay Plasticity is used to fine-tune delays and add dynamics to the network. In our mixed-signal implementation, the neurons and axons have been implemented as both analog and digital circuits. The system thus consists of one FPGA, containing the digital neuron array and the digital axon array, and one analog IC containing the analog neuron array and the analog axon array. The system can be easily configured to use different combinations of each. We present and discuss the experimental results of all combinations of the analog and digital axon arrays and the analog and digital neuron arrays. The test results show that the proposed neural network is capable of successfully recalling more than 85% of stored patterns using both analog and digital circuits.
Excitation of high density surface plasmon polariton vortex array
NASA Astrophysics Data System (ADS)
Kuo, Chun-Fu; Chu, Shu-Chun
2018-06-01
This study proposes a method to excite surface plasmon polariton (SPP) vortex array of high spatial density on metal/air interface. A doughnut vector beam was incident at four rectangularly arranged slits to excite SPP vortex array. The doughnut vector beam used in this study has the same field intensity distribution as the regular doughnut laser mode, TEM01* mode, but a different polarization distribution. The SPP vortex array is achieved through the matching of both polarization state and phase state of the incident doughnut vector beam with the four slits. The SPP field distribution excited in this study contains stable array-distributed time-varying optical vortices. Theoretical derivation, analytical calculation and numerical simulation were used to discuss the characteristics of the induced SPP vortex array. The period of the SPP vortex array induced by the proposed method had only half SPPs wavelength. In addition, the vortex number in an excited SPP vortex array can be increased by enlarging the structure.
Arcing in LEO: Does the Whole Array Discharge?
NASA Technical Reports Server (NTRS)
Ferguson, Dale C.; Vayner, Boris V.; Galofaro, Joel T.; Hillard, G. Barry
2005-01-01
The conventional wisdom about solar array arcing in LEO is that only the parts of the solar array that are swept over by the arc-generated plasma front are discharged in the initial arc. This limits the amount of energy that can be discharged. Recent work done at the NASA Glenn Research Center has shown that this idea is mistaken. In fact, the capacitance of the entire solar array may be discharged, which for large arrays leads to very large and possibly debilitating arcs, even if no sustained arc occurs. We present the laboratory work that conclusively demonstrates this fact by using a grounded plate that prevents the arc-plasma front from reaching certain array strings. Finally, we discuss the dependence of arc strength and arc pulse width on the capacitance that is discharged, and provide a physical mechanism for discharge of the entire array, even when parts of the array are not accessible to the arc-plasma front. Mitigation techniques are also presented.
The Advanced Gamma-ray Imaging System (AGIS): Real Time Stereoscopic Array Trigger
NASA Astrophysics Data System (ADS)
Byrum, K.; Anderson, J.; Buckley, J.; Cundiff, T.; Dawson, J.; Drake, G.; Duke, C.; Haberichter, B.; Krawzcynski, H.; Krennrich, F.; Madhavan, A.; Schroedter, M.; Smith, A.
2009-05-01
Future large arrays of Imaging Atmospheric Cherenkov telescopes (IACTs) such as AGIS and CTA are conceived to comprise of 50 - 100 individual telescopes each having a camera with 10**3 to 10**4 pixels. To maximize the capabilities of such IACT arrays with a low energy threshold, a wide field of view and a low background rate, a sophisticated array trigger is required. We describe the design of a stereoscopic array trigger that calculates image parameters and then correlates them across a subset of telescopes. Fast Field Programmable Gate Array technology allows to use lookup tables at the array trigger level to form a real-time pattern recognition trigger tht capitalizes on the multiple view points of the shower at different shower core distances. A proof of principle system is currently under construction. It is based on 400 MHz FPGAs and the goal is for camera trigger rates of up to 10 MHz and a tunable cosmic-ray background suppression at the array level.
Equivalent circuit-based analysis of CMUT cell dynamics in arrays.
Oguz, H K; Atalar, Abdullah; Köymen, Hayrettin
2013-05-01
Capacitive micromachined ultrasonic transducers (CMUTs) are usually composed of large arrays of closely packed cells. In this work, we use an equivalent circuit model to analyze CMUT arrays with multiple cells. We study the effects of mutual acoustic interactions through the immersion medium caused by the pressure field generated by each cell acting upon the others. To do this, all the cells in the array are coupled through a radiation impedance matrix at their acoustic terminals. An accurate approximation for the mutual radiation impedance is defined between two circular cells, which can be used in large arrays to reduce computational complexity. Hence, a performance analysis of CMUT arrays can be accurately done with a circuit simulator. By using the proposed model, one can very rapidly obtain the linear frequency and nonlinear transient responses of arrays with an arbitrary number of CMUT cells. We performed several finite element method (FEM) simulations for arrays with small numbers of cells and showed that the results are very similar to those obtained by the equivalent circuit model.
Large Ka-Band Slot Array for Digital Beam-Forming Applications
NASA Technical Reports Server (NTRS)
Rengarajan, Sembiam; Zawadzki, Mark S.; Hodges, Richard E.
2011-01-01
This work describes the development of a large Ka Band Slot Array for the Glacier and Land Ice Surface Topography Interferometer (GLISTIN), a proposed spaceborne interferometric synthetic aperture radar for topographic mapping of ice sheets and glaciers. GLISTIN will collect ice topography measurement data over a wide swath with sub-seasonal repeat intervals using a Ka-band digitally beamformed antenna. For technology demonstration purpose a receive array of size 1x1 m, consisting of 160x160 radiating elements, was developed. The array is divided into 16 sticks, each stick consisting of 160x10 radiating elements, whose outputs are combined to produce 16 digital beams. A transmit array stick was also developed. The antenna arrays were designed using Elliott's design equations with the use of an infinite-array mutual-coupling model. A Floquet wave model was used to account for external coupling between radiating slots. Because of the use of uniform amplitude and phase distribution, the infinite array model yielded identical values for all radiating elements but for alternating offsets, and identical coupling elements but for alternating positive and negative tilts. Waveguide-fed slot arrays are finding many applications in radar, remote sensing, and communications applications because of their desirable properties such as low mass, low volume, and ease of design, manufacture, and deployability. Although waveguide-fed slot arrays have been designed, built, and tested in the past, this work represents several advances to the state of the art. The use of the infinite array model for the radiating slots yielded a simple design process for radiating and coupling slots. Method of moments solution to the integral equations for alternating offset radiating slots in an infinite array environment was developed and validated using the commercial finite element code HFSS. For the analysis purpose, a method of moments code was developed for an infinite array of subarrays. Overall the 1x1 m array was found to be successful in meeting the objectives of the GLISTIN demonstration antenna, especially with respect to the 0.042deg, 1/10th of the beamwidth of each stick, relative beam alignment between sticks.
Haraksingh, Rajini R; Abyzov, Alexej; Urban, Alexander Eckehart
2017-04-24
High-resolution microarray technology is routinely used in basic research and clinical practice to efficiently detect copy number variants (CNVs) across the entire human genome. A new generation of arrays combining high probe densities with optimized designs will comprise essential tools for genome analysis in the coming years. We systematically compared the genome-wide CNV detection power of all 17 available array designs from the Affymetrix, Agilent, and Illumina platforms by hybridizing the well-characterized genome of 1000 Genomes Project subject NA12878 to all arrays, and performing data analysis using both manufacturer-recommended and platform-independent software. We benchmarked the resulting CNV call sets from each array using a gold standard set of CNVs for this genome derived from 1000 Genomes Project whole genome sequencing data. The arrays tested comprise both SNP and aCGH platforms with varying designs and contain between ~0.5 to ~4.6 million probes. Across the arrays CNV detection varied widely in number of CNV calls (4-489), CNV size range (~40 bp to ~8 Mbp), and percentage of non-validated CNVs (0-86%). We discovered strikingly strong effects of specific array design principles on performance. For example, some SNP array designs with the largest numbers of probes and extensive exonic coverage produced a considerable number of CNV calls that could not be validated, compared to designs with probe numbers that are sometimes an order of magnitude smaller. This effect was only partially ameliorated using different analysis software and optimizing data analysis parameters. High-resolution microarrays will continue to be used as reliable, cost- and time-efficient tools for CNV analysis. However, different applications tolerate different limitations in CNV detection. Our study quantified how these arrays differ in total number and size range of detected CNVs as well as sensitivity, and determined how each array balances these attributes. This analysis will inform appropriate array selection for future CNV studies, and allow better assessment of the CNV-analytical power of both published and ongoing array-based genomics studies. Furthermore, our findings emphasize the importance of concurrent use of multiple analysis algorithms and independent experimental validation in array-based CNV detection studies.
Efficient generation and transportation of energetic electrons in a carbon nanotube array target
NASA Astrophysics Data System (ADS)
Ji, Yanling; Jiang, Gang; Wu, Weidong; Wang, Chaoyang; Gu, Yuqiu; Tang, Yongjian
2010-01-01
Laser-driven energetic electron propagation in a carbon nanotube-array target is investigated using two-dimensional particle-in-cell simulations. Energetic electrons are efficiently generated when the array is irradiated by a short intense laser pulse. Confined and guided transportation of energetic electrons in the array is achieved by exploiting strong transient electromagnetic fields created at the wall surfaces of nanotubes. The underlying mechanisms are discussed in detail. Our investigation shows that the laser energy can be transferred more effectively to the target electrons in the array than that of in the flat foil due to the hole structures in the array.
Dinwoodie, Thomas L.
2002-12-17
A stabilized PV system comprises an array of photovoltaic (PV) assemblies mounted to a support surface. Each PV assembly comprises a PV module and a support assembly securing the PV module to a position overlying the support surface. The array of modules is circumscribed by a continuous, belt-like perimeter assembly. Cross strapping, extending above, below or through the array, or some combination of above, below and through the array, secures a first position along the perimeter assembly to at least a second position along the perimeter assembly thereby stabilizing the array against wind uplift forces. The first and second positions may be on opposite sides on the array.
NASA Technical Reports Server (NTRS)
ONeill, Mark; Piszczor, Michael F.; Eskenazi, Michael I.; McDanal, A. J.; George, Patrick J.; Botke, Matthew M.; Brandhorst, Henry W.; Edwards, David L.; Jaster, Paul A.; Lyons, Valerie J. (Technical Monitor)
2002-01-01
At IECEC 2001, our team presented a paper on the new stretched lens array (SLA), including its evolution from the successful SCARLET array on the NASA/JPL Deep Space 1 spacecraft. Since that conference, the SLA team has made significant advances in the SLA technology, including component-level improvements, array-level optimization, space environment exposure testing, and prototype hardware fabrication and evaluation. This paper describes the evolved version of the SLA, highlighting recent improvements in the lens, solar cell, photovoltaic receiver, rigid panel structure, and complete solar array wing.
Security enhancement of optical encryption based on biometric array keys
NASA Astrophysics Data System (ADS)
Yan, Aimin; Wei, Yang; Zhang, Jingtao
2018-07-01
A novel optical image encryption method is proposed by using Dammann grating and biometric array keys. Dammann grating is utilized to create a 2D finite uniform-intensity spot array. In encryption, a fingerprint array is used as private encryption keys. An original image can be encrypted by a scanning Fresnel zone plate array. Encrypted signals are processed by an optical coherent heterodyne detection system. Biometric array keys and optical scanning cryptography are integrated with each other to enhance information security greatly. Numerical simulations are performed to demonstrate the feasibility and validity of this method. Analyses on key sensitivity and the resistance against to possible attacks are provided.
Numerical simulation of crosstalk in reduced pitch HgCdTe photon-trapping structure pixel arrays.
Schuster, Jonathan; Bellotti, Enrico
2013-06-17
We have investigated crosstalk in HgCdTe photovoltaic pixel arrays employing a photon trapping (PT) structure realized with a periodic array of pillars intended to provide broadband operation. We have found that, compared to non-PT pixel arrays with similar geometry, the array employing the PT structure has a slightly higher optical crosstalk. However, when the total crosstalk is evaluated, the presence of the PT region drastically reduces the total crosstalk; making the use of the PT structure not only useful to obtain broadband operation, but also desirable for reducing crosstalk in small pitch detector arrays.
NASA Technical Reports Server (NTRS)
Liu, Hua-Kuang (Inventor)
1992-01-01
A relatively small and low-cost system is provided for projecting a large and bright television image onto a screen. A miniature liquid crystal array is driven by video circuitry to produce a pattern of transparencies in the array corresponding to a television image. Light is directed against the rear surface of the array to illuminate it, while a projection lens lies in front of the array to project the image of the array onto a large screen. Grid lines in the liquid crystal array are eliminated by a spacial filter which comprises a negative of the Fourier transform of the grid.
MnO 2 nanotube and nanowire arrays by electrochemical deposition for supercapacitors
NASA Astrophysics Data System (ADS)
Xia, Hui; Feng, Jinkui; Wang, Hailong; Lai, Man On; Lu, Li
Highly ordered MnO 2 nanotube and nanowire arrays are successfully synthesized via a electrochemical deposition technique using porous alumina templates. The morphologies and microstructures of the MnO 2 nanotube and nanowire arrays are investigated by field emission scanning electron microscopy and transmission electron microscopy. Electrochemical characterization demonstrates that the MnO 2 nanotube array electrode has superior capacitive behaviour to that of the MnO 2 nanowire array electrode. In addition to high specific capacitance, the MnO 2 nanotube array electrode also exhibits good rate capability and good cycling stability, which makes it promising candidate for supercapacitors.
Multiple-viewing-zone integral imaging using a dynamic barrier array for three-dimensional displays.
Choi, Heejin; Min, Sung-Wook; Jung, Sungyong; Park, Jae-Hyeung; Lee, Byoungho
2003-04-21
In spite of many advantages of integral imaging, the viewing zone in which an observer can see three-dimensional images is limited within a narrow range. Here, we propose a novel method to increase the number of viewing zones by using a dynamic barrier array. We prove our idea by fabricating and locating the dynamic barrier array between a lens array and a display panel. By tilting the barrier array, it is possible to distribute images for each viewing zone. Thus, the number of viewing zones can be increased with an increment of the states of the barrier array tilt.
Spiral biasing adaptor for use in Si drift detectors and Si drift detector arrays
Li, Zheng; Chen, Wei
2016-07-05
A drift detector array, preferably a silicon drift detector (SDD) array, that uses a low current biasing adaptor is disclosed. The biasing adaptor is customizable for any desired geometry of the drift detector single cell with minimum drift time of carriers. The biasing adaptor has spiral shaped ion-implants that generate the desired voltage profile. The biasing adaptor can be processed on the same wafer as the drift detector array and only one biasing adaptor chip/side is needed for one drift detector array to generate the voltage profiles on the front side and back side of the detector array.
Performance of Large Format Transition Edge Sensor Microcalorimeter Arrays
NASA Technical Reports Server (NTRS)
Chervenak, J. A.; Adams, J. A.; Bandler, S. B.; Busch, S. E.; Eckart, M. E.; Ewin, A. E.; Finkbeiner, F. M.; Kilbourne, C. A.; Kelley, R. L.; Porst, J. P.;
2012-01-01
We have produced a variety of superconducting transition edge sensor array designs for microcalorimetric detection of x-rays. Arrays are characterized with a time division SQUID multiplexer such that greater than 10 devices from an array can be measured in the same cooldown. Designs include kilo pixel scale arrays of relatively small sensors (-75 micron pitch) atop a thick metal heatsinking layer as well as arrays of membrane-isolated devices on 250 micron and up to 600 micron pitch. We discuss fabrication and performance of microstripline wiring at the small scales achieved to date. We also address fabrication issues with reduction of absorber contact area in small devices.
Low dark current InGaAs detector arrays for night vision and astronomy
NASA Astrophysics Data System (ADS)
MacDougal, Michael; Geske, Jon; Wang, Chad; Liao, Shirong; Getty, Jonathan; Holmes, Alan
2009-05-01
Aerius Photonics has developed large InGaAs arrays (1K x 1K and greater) with low dark currents for use in night vision applications in the SWIR regime. Aerius will present results of experiments to reduce the dark current density of their InGaAs detector arrays. By varying device designs and passivations, Aerius has achieved a dark current density below 1.0 nA/cm2 at 280K on small-pixel, detector arrays. Data is shown for both test structures and focal plane arrays. In addition, data from cryogenically cooled InGaAs arrays will be shown for astronomy applications.
Test plane uniformity analysis for the MSFC solar simulator lamp array
NASA Technical Reports Server (NTRS)
Griner, D. B.
1976-01-01
A preliminary analysis was made on the solar simulator lamp array. It is an array of 405 tungsten halogen lamps with Fresnel lenses to achieve the required spectral distribution and collimation. A computer program was developed to analyze lamp array performance at the test plane. Measurements were made on individual lamp lens combinations to obtain data for the computer analysis. The analysis indicated that the performance of the lamp array was about as expected, except for a need to position the test plane within 2.7 m of the lamp array to achieve the desired 7 percent uniformity of illumination tolerance.
Application of Adaptive Beamforming to Signal Observations at the Mt. Meron Array, Israel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, D. B.
2010-06-07
The Mt. Meron array consists of 16 stations spanning an aperture of 3-4 kilometers in northern Israel. The array is situated in a region of substantial topographic relief, and is surrounded by settlements at close range (Figure 1). Consequently the level of noise at the array is high, which requires efforts at mitigation if distant regional events of moderate magnitude are to be observed. This note describes an initial application of two classic adaptive beamforming algorithms to data from the array to observe P waves from 5 events east of the array ranging in distance from 1100- 2150 kilometers.
Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays
Wang, Z. Y.; Zhang, R. J.; Wang, S. Y.; ...
2015-01-15
Nanostructure arrays such as nanowire, nanopillar, and nanocone arrays have been proposed to be promising antireflection structures for photovoltaic applications due to their great light trapping ability. In this paper, the optical properties of Si nanopillar and nanocone arrays in visible and infrared region were studied by both theoretical calculations and experiments. The results show that the Mie resonance can be continuously tuned across a wide range of wavelength by varying the diameter of the nanopillars. However, Si nanopillar array with uniform diameter exhibits only discrete resonance mode, thus can't achieve a high broadband absorption. On the other hand, themore » Mie resonance wavelength in a Si nanocone array can vary continuously as the diameters of the cross sections increase from the apex to the base. Therefore Si nanocone arrays can strongly interact with the incident light in the broadband spectrum and the absorbance by Si nanocone arrays is higher than 95% over the wavelength from 300 to 2000 nm. In addition to the Mie resonance, the broadband optical absorption of Si nanocone arrays is also affected by Wood-Rayleigh anomaly effect and metal impurities introduced in the fabrication process.« less
Coherent acoustic communication in a tidal estuary with busy shipping traffic.
van Walree, Paul A; Neasham, Jeffrey A; Schrijver, Marco C
2007-12-01
High-rate acoustic communication experiments were conducted in a dynamic estuarine environment. Two current profilers deployed in a shipping lane were interfaced with acoustic modems, which modulated and transmitted the sensor readings every 200 s over a period of four days. QPSK modulation was employed at a raw data rate of 8 kbits on a 12-kHz carrier. Two 16-element hydrophone arrays, one horizontal and one vertical, were deployed near the shore. A multichannel decision-feedback equalizer was used to demodulate the modem signals received on both arrays. Long-term statistical analysis reveals the effects of the tidal cycle, subsea unit location, attenuation by the wake of passing vessels, and high levels of ship-generated noise on the fidelity of the communication links. The use of receiver arrays enables vast improvement in the overall reliability of data delivery compared with a single-receiver system, with performance depending strongly on array orientation. The vertical array offers the best performance overall, although the horizontal array proves more robust against shipping noise. Spatial coherence estimates, variation of array aperture, and inspection of array angular responses point to adaptive beamforming and coherent combining as the chief mechanisms of array gain.
Novel applications of array comparative genomic hybridization in molecular diagnostics.
Cheung, Sau W; Bi, Weimin
2018-05-31
In 2004, the implementation of array comparative genomic hybridization (array comparative genome hybridization [CGH]) into clinical practice marked a new milestone for genetic diagnosis. Array CGH and single-nucleotide polymorphism (SNP) arrays enable genome-wide detection of copy number changes in a high resolution, and therefore microarray has been recognized as the first-tier test for patients with intellectual disability or multiple congenital anomalies, and has also been applied prenatally for detection of clinically relevant copy number variations in the fetus. Area covered: In this review, the authors summarize the evolution of array CGH technology from their diagnostic laboratory, highlighting exonic SNP arrays developed in the past decade which detect small intragenic copy number changes as well as large DNA segments for the region of heterozygosity. The applications of array CGH to human diseases with different modes of inheritance with the emphasis on autosomal recessive disorders are discussed. Expert commentary: An exonic array is a powerful and most efficient clinical tool in detecting genome wide small copy number variants in both dominant and recessive disorders. However, whole-genome sequencing may become the single integrated platform for detection of copy number changes, single-nucleotide changes as well as balanced chromosomal rearrangements in the near future.
Fabrication of graphene/titanium carbide nanorod arrays for chemical sensor application.
Fu, Chong; Li, Mingji; Li, Hongji; Li, Cuiping; Qu, Changqing; Yang, Baohe
2017-03-01
Vertically stacked graphene nanosheet/titanium carbide nanorod array/titanium (graphene/TiC nanorod array) wires were fabricated using a direct current arc plasma jet chemical vapor deposition (DC arc plasma jet CVD) method. The graphene/TiC nanorod arrays were characterized by scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction spectroscopy. The TiO 2 nanotube array was reduced to the TiC nanorod array, and using those TiC nanorods as nucleation sites, the vertical graphene layer was formed on the TiC nanorod surface. The multi-target response mechanisms of the graphene/TiC nanorod array were investigated for ascorbic acid (AA), dopamine (DA), uric acid (UA), and hydrochlorothiazide (HCTZ). The vertically stacked graphene sheets facilitated the electron transfer and reactant transport with a unique porous surface, high surface area, and high electron transport network of CVD graphene sheets. The TiC nanorod array facilitated the electron transfer and firmly held the graphene layer. Thus, the graphene/TiC nanorod arrays could simultaneously respond to trace biomarkers and antihypertensive drugs. Copyright © 2016 Elsevier B.V. All rights reserved.
Color filter array design based on a human visual model
NASA Astrophysics Data System (ADS)
Parmar, Manu; Reeves, Stanley J.
2004-05-01
To reduce cost and complexity associated with registering multiple color sensors, most consumer digital color cameras employ a single sensor. A mosaic of color filters is overlaid on a sensor array such that only one color channel is sampled per pixel location. The missing color values must be reconstructed from available data before the image is displayed. The quality of the reconstructed image depends fundamentally on the array pattern and the reconstruction technique. We present a design method for color filter array patterns that use red, green, and blue color channels in an RGB array. A model of the human visual response for luminance and opponent chrominance channels is used to characterize the perceptual error between a fully sampled and a reconstructed sparsely-sampled image. Demosaicking is accomplished using Wiener reconstruction. To ensure that the error criterion reflects perceptual effects, reconstruction is done in a perceptually uniform color space. A sequential backward selection algorithm is used to optimize the error criterion to obtain the sampling arrangement. Two different types of array patterns are designed: non-periodic and periodic arrays. The resulting array patterns outperform commonly used color filter arrays in terms of the error criterion.
Comparative Performance and Model Agreement of Three Common Photovoltaic Array Configurations.
Boyd, Matthew T
2018-02-01
Three grid-connected monocrystalline silicon arrays on the National Institute of Standards and Technology (NIST) campus in Gaithersburg, MD have been instrumented and monitored for 1 yr, with only minimal gaps in the data sets. These arrays range from 73 kW to 271 kW, and all use the same module, but have different tilts, orientations, and configurations. One array is installed facing east and west over a parking lot, one in an open field, and one on a flat roof. Various measured relationships and calculated standard metrics have been used to compare the relative performance of these arrays in their different configurations. Comprehensive performance models have also been created in the modeling software pvsyst for each array, and its predictions using measured on-site weather data are compared to the arrays' measured outputs. The comparisons show that all three arrays typically have monthly performance ratios (PRs) above 0.75, but differ significantly in their relative output, strongly correlating to their operating temperature and to a lesser extent their orientation. The model predictions are within 5% of the monthly delivered energy values except during the winter months, when there was intermittent snow on the arrays, and during maintenance and other outages.
NASA Technical Reports Server (NTRS)
Williams, James P.; Martin, Keith D.; Thomas, Justin R.; Caro, Samuel
2010-01-01
The International Space Station (ISS) Solar Array Management (SAM) software toolset provides the capabilities necessary to operate a spacecraft with complex solar array constraints. It monitors spacecraft telemetry and provides interpretations of solar array constraint data in an intuitive manner. The toolset provides extensive situational awareness to ensure mission success by analyzing power generation needs, array motion constraints, and structural loading situations. The software suite consists of several components including samCS (constraint set selector), samShadyTimers (array shadowing timers), samWin (visualization GUI), samLock (array motion constraint computation), and samJet (attitude control system configuration selector). It provides high availability and uptime for extended and continuous mission support. It is able to support two-degrees-of-freedom (DOF) array positioning and supports up to ten simultaneous constraints with intuitive 1D and 2D decision support visualizations of constraint data. Display synchronization is enabled across a networked control center and multiple methods for constraint data interpolation are supported. Use of this software toolset increases flight safety, reduces mission support effort, optimizes solar array operation for achieving mission goals, and has run for weeks at a time without issues. The SAM toolset is currently used in ISS real-time mission operations.
Daytime Solar Heating of Photovoltaic Arrays in Low Density Plasmas
NASA Technical Reports Server (NTRS)
Galofaro, J.; Vayner, B.; Ferguson, D.
2003-01-01
The purpose of the current work is to determine the out-gassing rate of H2O molecules for a solar array placed under daytime solar heating (full sunlight) conditions typically encountered in a Low Earth Orbital (LEO) environment. Arc rates are established for individual arrays held at 14 C and are used as a baseline for future comparisons. Radiated thermal solar flux incident to the array is simulated by mounting a stainless steel panel equipped with resistive heating elements several centimeters behind the array. A thermal plot of the heater plate temperature and the array temperature as a function of heating time is then obtained. A mass spectrometer is used to record the levels of partial pressure of water vapor in the test chamber after each of the 5 heating/cooling cycles. Each of the heating cycles was set to time duration of 40 minutes to simulate the daytime solar heat flux to the array over a single orbit. Finally the array is cooled back to ambient temperature after 5 complete cycles and the arc rates of the solar arrays is retested. A comparison of the various data is presented with rather some unexpected results.
Vineyard, Laura; Elliott, Andrew; Dhingra, Sonia; Lucas, Jessica R.; Shaw, Sidney L.
2013-01-01
The acentriolar cortical microtubule arrays in dark-grown hypocotyl cells organize into a transverse coaligned pattern that is critical for axial plant growth. In light-grown Arabidopsis thaliana seedlings, the cortical array on the outer (periclinal) cell face creates a variety of array patterns with a significant bias (>3:1) for microtubules polymerizing edge-ward and into the side (anticlinal) faces of the cell. To study the mechanisms required for creating the transverse coalignment, we developed a dual-hormone protocol that synchronously induces ∼80% of the light-grown hypocotyl cells to form transverse arrays over a 2-h period. Repatterning occurred in two phases, beginning with an initial 30 to 40% decrease in polymerizing plus ends prior to visible changes in the array pattern. Transverse organization initiated at the cell’s midzone by 45 min after induction and progressed bidirectionally toward the apical and basal ends of the cell. Reorganization corrected the edge-ward bias in polymerization and proceeded without transiting through an obligate intermediate pattern. Quantitative comparisons of uninduced and induced microtubule arrays showed a limited deconstruction of the initial periclinal array followed by a progressive array reorganization to transverse coordinated between the anticlinal and periclinal cell faces. PMID:23444330
A new strategy for array optimization applied to Brazilian Decimetric Array
NASA Astrophysics Data System (ADS)
Faria, C.; Stephany, S.; Sawant, H. S.
Radio interferometric arrays measure the Fourier transform of the sky brightness distribution in a finite set of points that are determined by the cross-correlation of different pairs of antennas of the array The sky brightness distribution is reconstructed by the inverse Fourier transform of the sampled visibilities The quality of the reconstructed images strongly depends on the array configuration since it determines the sampling function and therefore the points in the Fourier Plane This work proposes a new optimization strategy for the array configuration that is based on the entropy of the distribution of the samples points in the Fourier plane A stochastic optimizer the Ant Colony Optimization employs entropy of the point distribution in the Fourier plane to iteratively refine the candidate solutions The proposed strategy was developed for the Brazilian Decimetric Array BDA a radio interferometric array that is currently being developed for solar observations at the Brazilian Institute for Space Research Configurations results corresponding to the Fourier plane coverage synthesized beam and side lobes levels are shown for an optimized BDA configuration obtained with the proposed strategy and compared to the results for a standard T array configuration that was originally proposed
Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays
Wang, Z. Y.; Zhang, R. J.; Wang, S. Y.; Lu, M.; Chen, X.; Zheng, Y. X.; Chen, L. Y.; Ye, Z.; Wang, C. Z.; Ho, K. M.
2015-01-01
Nanostructure arrays such as nanowire, nanopillar, and nanocone arrays have been proposed to be promising antireflection structures for photovoltaic applications due to their great light trapping ability. In this paper, the optical properties of Si nanopillar and nanocone arrays in visible and infrared region were studied by both theoretical calculations and experiments. The results show that the Mie resonance can be continuously tuned across a wide range of wavelength by varying the diameter of the nanopillars. However, Si nanopillar array with uniform diameter exhibits only discrete resonance mode, thus can't achieve a high broadband absorption. On the other hand, the Mie resonance wavelength in a Si nanocone array can vary continuously as the diameters of the cross sections increase from the apex to the base. Therefore Si nanocone arrays can strongly interact with the incident light in the broadband spectrum and the absorbance by Si nanocone arrays is higher than 95% over the wavelength from 300 to 2000 nm. In addition to the Mie resonance, the broadband optical absorption of Si nanocone arrays is also affected by Wood-Rayleigh anomaly effect and metal impurities introduced in the fabrication process. PMID:25589290
Nickel/silicon core/shell nanosheet arrays as electrode materials for lithium ion batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, X.H., E-mail: drhuangxh@hotmail.com; Zhang, P.; Wu, J.B.
Highlights: • Ni nanosheet arrays is the core and Si layer is the shell. • Ni nanosheet arrays act as a three-dimensional current collector to support Si. • Ni nanosheet arrays can improve the conductivity and stability of the electrode. • Ni/Si nanosheet arrays exhibit excellent cyclic and rate performance. - Abstract: Ni/Si core/shell nanosheet arrays are proposed to enhance the electrochemical lithium-storage properties of silicon. The arrays are characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The arrays are micro-sized in height, which are constructed by interconnected Ni nanosheet as themore » core and Si coating layer as the shell. The electrochemical properties as anode materials of lithium ion batteries are investigated by cyclic voltammetry (CV) and galvanostatic charge-discharge tests. The arrays can achieve high reversible capacity, good cycle stability and high rate capability. It is believed that the enhanced electrochemical performance is attributed to the electrode structure, because the interconnected Ni nanosheet can act as a three-dimensional current collector, and it has the ability of improving the electrode conductivity, enlarging the electrochemical reaction interface, and suppressing the electrode pulverization.« less
NASA Technical Reports Server (NTRS)
Sapp, C. A.; Dragg, J. L.; Snyder, M. W.; Gaunce, M. T.; Decker, J. E.
1998-01-01
This report documents the photogrammetric assessment of the Hubble Space Telescope (HST) solar arrays conducted by the NASA c Center Image Science and Analysis Group during Second Servicing Mission 2 (SM-2) on STS-82 in February 1997. Two type solar array analyses were conducted during the mission using Space Shuttle payload bay video: (1) measurement of solar array motion due to induced loads, and (2) measurement of the solar array static or geometric twist caused by the cumulative array loading. The report describes pre-mission planning and analysis technique development activities conducted to acquire and analyze solar array imagery data during SM-2. This includes analysis of array motion obtained during SM-1 as a proof-of-concept of the SM-2 measurement techniques. The report documents the results of real-time analysis conducted during the mission and subsequent analysis conducted post-flight. This report also provides a summary of lessons learned on solar array imagery analysis from SM-2 and recommendations for future on-orbit measurements applicable to HST SM-3 and to the International Space Station. This work was performed under the direction of the Goddard Space Flight Center HST Flight Systems and Servicing Project.
Fabrication and Performance of Large Format Transition Edge Sensor Microcalorimeter Arrays
NASA Technical Reports Server (NTRS)
Chervenak, James A.; Adams, James S.; Bandler, Simon R.; Busch, Sara E.; Eckart, M. E.; Ewin, A. E.; Finkbeiner, F. M.; Kilbourne, C. A.; Kelley, R. L.; Porst, Jan-Patrick;
2012-01-01
We have produced a variety of superconducting transition edge sensor array designs for microcalorimetric detection of x-rays. Designs include kilopixel scale arrays of relatively small sensors (75 micron pitch) atop a thick metal heatsinking layer as well as arrays of membrane-isolated devices on 250 micron pitch and smaller arrays of devices up to 600 micron pitch. We discuss the fabrication techniques used for each type of array focusing on unique aspects where processes vary to achieve the particular designs and required device parameters. For example, we evaluate various material combinations in the production of the thick metal heatsinking, including superconducting and normal metal adhesion layers. We also evaluate the impact of added heatsinking on the membrane isolated devices as it relates to basic device parameters. Arrays can be characterized with a time division SQUID multiplexer such that greater than 10 devices from an array can be measured in the same cooldown. Device parameters can be measured simultaneously so that environmental events such as thermal drifts or changes in magnetic fields can be controlled. For some designs, we will evaluate the uniformity of parameters impacting the intrinsic performance of the microcalorimeters under bias in these arrays and assess the level of thermal crosstalk.
Tilted hexagonal post arrays: DNA electrophoresis in anisotropic media.
Chen, Zhen; Dorfman, Kevin D
2014-02-01
Using Brownian dynamics simulations, we show that DNA electrophoresis in a hexagonal array of micron-sized posts changes qualitatively when the applied electric field vector is not coincident with the lattice vectors of the array. DNA electrophoresis in such "tilted" post arrays is superior to the standard "un-tilted" approach; while the time required to achieve a resolution of unity in a tilted post array is similar to an un-tilted array at a low-electric field strengths, this time (i) decreases exponentially with electric field strength in a tilted array and (ii) increases exponentially with electric field strength in an un-tilted array. Although the DNA dynamics in a post array are complicated, the electrophoretic mobility results indicate that the "free path," i.e. the average distance of ballistic trajectories of point-sized particles launched from random positions in the unit cell until they intersect the next post, is a useful proxy for the detailed DNA trajectories. The analysis of the free path reveals a fundamental connection between anisotropy of the medium and DNA transport therein that goes beyond simply improving the separation device. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Infrared-Bolometer Arrays with Reflective Backshorts
NASA Technical Reports Server (NTRS)
Miller, Timothy M.; Abrahams, John; Allen, Christine A.
2011-01-01
Integrated circuits that incorporate square arrays of superconducting-transition- edge bolometers with optically reflective backshorts are being developed for use in image sensors in the spectral range from far infrared to millimeter wavelengths. To maximize the optical efficiency (and, thus, sensitivity) of such a sensor at a specific wavelength, resonant optical structures are created by placing the backshorts at a quarter wavelength behind the bolometer plane. The bolometer and backshort arrays are fabricated separately, then integrated to form a single unit denoted a backshort-under-grid (BUG) bolometer array. In a subsequent fabrication step, the BUG bolometer array is connected, by use of single-sided indium bump bonding, to a readout device that comprises mostly a superconducting quantum interference device (SQUID) multiplexer circuit. The resulting sensor unit comprising the BUG bolometer array and the readout device is operated at a temperature below 1 K. The concept of increasing optical efficiency by use of backshorts at a quarter wavelength behind the bolometers is not new. Instead, the novelty of the present development lies mainly in several features of the design of the BUG bolometer array and the fabrication sequence used to implement the design. Prior to joining with the backshort array, the bolometer array comprises, more specifically, a square grid of free-standing molybdenum/gold superconducting-transition-edge bolometer elements on a 1.4- m-thick top layer of silicon that is part of a silicon support frame made from a silicon-on-insulator wafer. The backshort array is fabricated separately as a frame structure that includes support beams and contains a correspond - ing grid of optically reflective patches on a single-crystal silicon substrate. The process used to fabricate the bolometer array includes standard patterning and etching steps that result in the formation of deep notches in the silicon support frame. These notches are designed to interlock with the support beams on the backshort-array structure to provide structural support and precise relative positioning. The backshort-array structure is inserted in the silicon support frame behind the bolometer array, and the notches in the frame serve to receive the support beams of the backshort-array structure and thus determine the distance between the backshort and bolometer planes. The depth of the notches and, thus, the distance between the backshort and bolometer planes, can be tailored to a value between 25 to 300 m adjusting only a few process steps. The backshort array is designed so as not to interfere with the placement of indium bumps for subsequent indium bump-bonding to the multiplexing readout circuitry
Imaging spectroscopy using embedded diffractive optical arrays
NASA Astrophysics Data System (ADS)
Hinnrichs, Michele; Hinnrichs, Bradford
2017-09-01
Pacific Advanced Technology (PAT) has developed an infrared hyperspectral camera based on diffractive optic arrays. This approach to hyperspectral imaging has been demonstrated in all three infrared bands SWIR, MWIR and LWIR. The hyperspectral optical system has been integrated into the cold-shield of the sensor enabling the small size and weight of this infrared hyperspectral sensor. This new and innovative approach to an infrared hyperspectral imaging spectrometer uses micro-optics that are made up of an area array of diffractive optical elements where each element is tuned to image a different spectral region on a common focal plane array. The lenslet array is embedded in the cold-shield of the sensor and actuated with a miniature piezo-electric motor. This approach enables rapid infrared spectral imaging with multiple spectral images collected and processed simultaneously each frame of the camera. This paper will present our optical mechanical design approach which results in an infrared hyper-spectral imaging system that is small enough for a payload on a small satellite, mini-UAV, commercial quadcopter or man portable. Also, an application of how this spectral imaging technology can easily be used to quantify the mass and volume flow rates of hydrocarbon gases. The diffractive optical elements used in the lenslet array are blazed gratings where each lenslet is tuned for a different spectral bandpass. The lenslets are configured in an area array placed a few millimeters above the focal plane and embedded in the cold-shield to reduce the background signal normally associated with the optics. The detector array is divided into sub-images covered by each lenslet. We have developed various systems using a different number of lenslets in the area array. Depending on the size of the focal plane and the diameter of the lenslet array will determine the number of simultaneous different spectral images collected each frame of the camera. A 2 x 2 lenslet array will image four different spectral images of the scene each frame and when coupled with a 512 x 512 focal plane array will give spatial resolution of 256 x 256 pixel each spectral image. Another system that we developed uses a 4 x 4 lenslet array on a 1024 x 1024 pixel element focal plane array which gives 16 spectral images of 256 x 256 pixel resolution each frame. This system spans the SWIR and MWIR bands with a single optical array and focal plane array.
Sensor Modelling for the ’Cyclops’ Focal Plane Detector Array Based Technology Demonstrator
1992-12-01
Detector Array IFOV Instantaneous field of view IRFPDA Infrared Focal Plane Detector Array LWIR Long-Wave Infrared 0 MCT Mercury Cadmium Telluride MTF...scale focal plane detector array (FPDA). The sensor system operates in the long-wave infrared ( LWIR ) spectral region. The detector array consists of...charge transfer inefficiencies in the readout circuitry. The performance of the HgCdTe FPDA based sensor is limited by the nonuniformity of the
Combinatorial fabrication and screening of organic light-emitting device arrays
NASA Astrophysics Data System (ADS)
Shinar, Joseph; Shinar, Ruth; Zhou, Zhaoqun
2007-11-01
The combinatorial fabrication and screening of 2-dimensional (2-d) small molecular UV-violet organic light-emitting device (OLED) arrays, 1-d blue-to-red arrays, 1-d intense white OLED libraries, 1-d arrays to study Förster energy transfer in guest-host OLEDs, and 2-d arrays to study exciplex emission from OLEDs is described. The results demonstrate the power of combinatorial approaches for screening OLED materials and configurations, and for studying their basic properties.
Seed-mediated growth of patterned graphene nanoribbon arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arnold, Michael Scott; Way, Austin James; Jacobberger, Robert Michael
Graphene nanoribbon arrays, methods of growing graphene nanoribbon arrays, and electronic and photonic devices incorporating the graphene nanoribbon arrays are provided. The graphene nanoribbons in the arrays are formed using a seed-mediated, bottom-up, chemical vapor deposition (CVD) technique in which the (001) facet of a semiconductor substrate and the orientation of the seed particles on the substrate are used to orient the graphene nanoribbon crystals preferentially along a single [110] direction of the substrate.
Engineering study of the module/array interface for large terrestrial photovoltaic arrays
NASA Technical Reports Server (NTRS)
1977-01-01
Three major areas--structural, electrical, and maintenance--were evaluated. Efforts in the structural area included establishing acceptance criteria for materials and members, determining loading criteria, and analyzing glass modules in various framing system configurations. Array support structure design was addressed briefly. Electrical considerations included evaluation of module characteristics, intermodule connectors, array wiring, converters and lightning protection. Plant maintenance features such as array cleaning, failure detection, and module installation and replacement were addressed.
Operational considerations of the Advanced Photovoltaic Solar Array
NASA Technical Reports Server (NTRS)
Stella, Paul M.; Kurland, Richard M.
1992-01-01
Issues affecting the long-term operational performance of the Advanced Photovoltaic Solar Array (APSA) are discussed, with particular attention given to circuit electrical integrity from shadowed and cracked cell modules. The successful integration of individual advanced array components provides a doubling of array specific performance from the previous NASA-developed advanced array (SAFE). Flight test modules both recently fabricated and under fabrication are described. The development of advanced high-performance blanket technology for future APSA enhancement is presented.
Plasma chamber testing of advanced photovoltaic solar array coupons
NASA Technical Reports Server (NTRS)
Hillard, G. Barry
1994-01-01
The solar array module plasma interactions experiment is a space shuttle experiment designed to investigate and quantify the high voltage plasma interactions. One of the objectives of the experiment is to test the performance of the Advanced Photovoltaic Solar Array (APSA). The material properties of array blanket are also studied as electric insulators for APSA arrays in high voltage conditions. Three twelve cell prototype coupons of silicon cells were constructed and tested in a space simulation chamber.
Operational considerations of the Advanced Photovoltaic Solar Array
NASA Astrophysics Data System (ADS)
Stella, Paul M.; Kurland, Richard M.
Issues affecting the long-term operational performance of the Advanced Photovoltaic Solar Array (APSA) are discussed, with particular attention given to circuit electrical integrity from shadowed and cracked cell modules. The successful integration of individual advanced array components provides a doubling of array specific performance from the previous NASA-developed advanced array (SAFE). Flight test modules both recently fabricated and under fabrication are described. The development of advanced high-performance blanket technology for future APSA enhancement is presented.
An Airborne Radar Model For Non-Uniformly Spaced Antenna Arrays
2006-03-01
Department of Defense, or the United States Government . AFIT-GE-ENG-06-58 An Airborne Radar Model For Non-Uniformly Spaced Antenna Arrays THESIS Presented...different circular arrays, one containing 24 elements and one containing 15 elements. The circular array per- formance is compared to that of a 6 × 6...model and compared to the radar model of [5, 6, 13]. The two models are mathematically equivalent when the uniformly spaced array is linear. The two
Analysis of MMIC arrays for use in the ACTS Aero Experiment
NASA Technical Reports Server (NTRS)
Zimmerman, M.; Lee, R.; Rho, E.; Zaman, Z.
1993-01-01
The Aero Experiment is designed to demonstrate communication from an aircraft to an Earth terminal via the ACTS. This paper describes the link budget and antenna requirements for a 4.8 kbps full-duplex voice link at Ka-Band frequencies. Three arrays, one transmit array developed by TI and two receive arrays developed by GE and Boeing, were analyzed. The predicted performance characteristics of these arrays are presented and discussed in the paper.
Airborne electronically steerable phased array. [steerable antennas - systems analysis
NASA Technical Reports Server (NTRS)
Coats, R.
1975-01-01
Results of a study directed to the design of a lightweight high-gain, spaceborne communications array are presented. The array includes simultaneous transmission and receiving, automatic acquisition and tracking of a signal within a 60-degree cone from the array normal, and provides for independent forming of the transmit and receive beams. Application for this array is the space shuttle, space station, or any of the advanced manned (or unmanned) orbital vehicles. Performance specifications are also given.
Brown, Ryan; Lakshmanan, Karthik; Madelin, Guillaume; Alon, Leeor; Chang, Gregory; Sodickson, Daniel K.; Regatte, Ravinder R.; Wiggins, Graham C.
2015-01-01
Purpose We describe a 6×2 channel sodium/proton array for knee MRI at 3 Tesla. Multi-element coil arrays are desirable because of well-known signal-to-noise ratio advantages over volume and single-element coils. However, low coil-tissue coupling that is characteristic of coils operating at low frequency can make the potential gains from a phased array difficult to realize. Methods The issue of low coil-tissue coupling in the developed six channel sodium receive array was addressed by implementing 1) a mechanically flexible former to minimize coil-to-tissue distance and reduce the overall diameter of the array and 2) a wideband matching scheme that counteracts preamplifier noise degradation caused by coil coupling and a high quality factor. The sodium array was complemented with a nested proton array to enable standard MRI. Results The wideband matching scheme and tight-fitting mechanical design contributed to greater than 30% central SNR gain on the sodium module over a mono-nuclear sodium birdcage coil, while the performance of the proton module was sufficient for clinical imaging. Conclusion We expect the strategies presented in this work to be generally relevant in high density receive arrays, particularly in x-nuclei or small animal applications, or in those where the array is distant from the targeted tissue. PMID:26502310
Configuration Considerations for Low Frequency Arrays
NASA Astrophysics Data System (ADS)
Lonsdale, C. J.
2005-12-01
The advance of digital signal processing capabilities has spurred a new effort to exploit the lowest radio frequencies observable from the ground, from ˜10 MHz to a few hundred MHz. Multiple scientifically and technically complementary instruments are planned, including the Mileura Widefield Array (MWA) in the 80-300 MHz range, and the Long Wavelength Array (LWA) in the 20-80 MHz range. The latter instrument will target relatively high angular resolution, and baselines up to a few hundred km. An important practical question for the design of such an array is how to distribute the collecting area on the ground. The answer to this question profoundly affects both cost and performance. In this contribution, the factors which determine the anticipated performance of any such array are examined, paying particular attention to the viability and accuracy of array calibration. It is argued that due to the severity of ionospheric effects in particular, it will be difficult or impossible to achieve routine, high dynamic range imaging with a geographically large low frequency array, unless a large number of physically separate array stations is built. This conclusion is general, is based on the need for adequate sampling of ionospheric irregularities, and is independent of the calibration algorithms and techniques that might be employed. It is further argued that array configuration figures of merit that are traditionally used for higher frequency arrays are inappropriate, and a different set of criteria are proposed.
Pinning, flux diodes and ratchets for vortices interacting with conformal pinning arrays
Olson Reichhardt, C. J.; Wang, Y. L.; Xiao, Z. L.; ...
2016-05-31
A conformal pinning array can be created by conformally transforming a uniform triangular pinning lattice to produce a new structure in which the six-fold ordering of the original lattice is conserved but where there is a spatial gradient in the density of pinning sites. Here we examine several aspects of vortices interacting with conformal pinning arrays and how they can be used to create a flux flow diode effect for driving vortices in different directions across the arrays. Under the application of an ac drive, a pronounced vortex ratchet effect occurs where the vortices flow in the easy direction ofmore » the array asymmetry. When the ac drive is applied perpendicular to the asymmetry direction of the array, it is possible to realize a transverse vortex ratchet effect where there is a generation of a dc flow of vortices perpendicular to the ac drive due to the creation of a noise correlation ratchet by the plastic motion of the vortices. We also examine vortex transport in experiments and compare the pinning effectiveness of conformal arrays to uniform triangular pinning arrays. In conclusion, we find that a triangular array generally pins the vortices more effectively at the first matching field and below, while the conformal array is more effective at higher fields where interstitial vortex flow occurs.« less
Development of a 1K x 1K GaAs QWIP Far IR Imaging Array
NASA Technical Reports Server (NTRS)
Jhabvala, M.; Choi, K.; Goldberg, A.; La, A.; Gunapala, S.
2003-01-01
In the on-going evolution of GaAs Quantum Well Infrared Photodetectors (QWIPs) we have developed a 1,024 x 1,024 (1K x1K), 8.4-9 microns infrared focal plane array (FPA). This 1 megapixel detector array is a hybrid using the Rockwell TCM 8050 silicon readout integrated circuit (ROIC) bump bonded to a GaAs QWIP array fabricated jointly by engineers at the Goddard Space Flight Center (GSFC) and the Army Research Laboratory (ARL). The finished hybrid is thinned at the Jet Propulsion Lab. Prior to this development the largest format array was a 512 x 640 FPA. We have integrated the 1K x 1K array into an imaging camera system and performed tests over the 40K-90K temperature range achieving BLIP performance at an operating temperature of 76K (f/2 camera system). The GaAs array is relatively easy to fabricate once the superlattice structure of the quantum wells has been defined and grown. The overall arrays costs are currently dominated by the costs associated with the silicon readout since the GaAs array fabrication is based on high yield, well-established GaAs processing capabilities. In this paper we will present the first results of our 1K x 1K QWIP array development including fabrication methodology, test data and our imaging results.
Hu, Cheng; Wang, Jingyang; Tian, Weiming; Zeng, Tao; Wang, Rui
2017-03-15
Multiple-Input Multiple-Output (MIMO) radar provides much more flexibility than the traditional radar thanks to its ability to realize far more observation channels than the actual number of transmit and receive (T/R) elements. In designing the MIMO imaging radar arrays, the commonly used virtual array theory generally assumes that all elements are on the same line. However, due to the physical size of the antennas and coupling effect between T/R elements, a certain height difference between T/R arrays is essential, which will result in the defocusing of edge points of the scene. On the other hand, the virtual array theory implies far-field approximation. Therefore, with a MIMO array designed by this theory, there will exist inevitable high grating lobes in the imaging results of near-field edge points of the scene. To tackle these problems, this paper derives the relationship between target's point spread function (PSF) and pattern of T/R arrays, by which the design criterion is presented for near-field imaging MIMO arrays. Firstly, the proper height between T/R arrays is designed to focus the near-field edge points well. Secondly, the far-field array is modified to suppress the grating lobes in the near-field area. Finally, the validity of the proposed methods is verified by two simulations and an experiment.
Hu, Cheng; Wang, Jingyang; Tian, Weiming; Zeng, Tao; Wang, Rui
2017-01-01
Multiple-Input Multiple-Output (MIMO) radar provides much more flexibility than the traditional radar thanks to its ability to realize far more observation channels than the actual number of transmit and receive (T/R) elements. In designing the MIMO imaging radar arrays, the commonly used virtual array theory generally assumes that all elements are on the same line. However, due to the physical size of the antennas and coupling effect between T/R elements, a certain height difference between T/R arrays is essential, which will result in the defocusing of edge points of the scene. On the other hand, the virtual array theory implies far-field approximation. Therefore, with a MIMO array designed by this theory, there will exist inevitable high grating lobes in the imaging results of near-field edge points of the scene. To tackle these problems, this paper derives the relationship between target’s point spread function (PSF) and pattern of T/R arrays, by which the design criterion is presented for near-field imaging MIMO arrays. Firstly, the proper height between T/R arrays is designed to focus the near-field edge points well. Secondly, the far-field array is modified to suppress the grating lobes in the near-field area. Finally, the validity of the proposed methods is verified by two simulations and an experiment. PMID:28294996
Schmidt, Ronny; Cook, Elizabeth A; Kastelic, Damjana; Taussig, Michael J; Stoevesandt, Oda
2013-08-02
We have previously described a protein arraying process based on cell free expression from DNA template arrays (DNA Array to Protein Array, DAPA). Here, we have investigated the influence of different array support coatings (Ni-NTA, Epoxy, 3D-Epoxy and Polyethylene glycol methacrylate (PEGMA)). Their optimal combination yields an increased amount of detected protein and an optimised spot morphology on the resulting protein array compared to the previously published protocol. The specificity of protein capture was improved using a tag-specific capture antibody on a protein repellent surface coating. The conditions for protein expression were optimised to yield the maximum amount of protein or the best detection results using specific monoclonal antibodies or a scaffold binder against the expressed targets. The optimised DAPA system was able to increase by threefold the expression of a representative model protein while conserving recognition by a specific antibody. The amount of expressed protein in DAPA was comparable to those of classically spotted protein arrays. Reaction conditions can be tailored to suit the application of interest. DAPA represents a cost effective, easy and convenient way of producing protein arrays on demand. The reported work is expected to facilitate the application of DAPA for personalized medicine and screening purposes. Copyright © 2013 Elsevier B.V. All rights reserved.
Modeling and simulation for the field emission of carbon nanotubes array
NASA Astrophysics Data System (ADS)
Wang, X. Q.; Wang, M.; Ge, H. L.; Chen, Q.; Xu, Y. B.
2005-12-01
To optimize the field emission of the infinite carbon nanotubes (CNTs) array on a planar cathode surface, the numerical simulation for the behavior of field emission with finite difference method was proposed. By solving the Laplace equation with computer, the influence of the intertube distance, the anode-cathode distance and the opened/capped CNT on the field emission of CNTs array were taken into account, and the results could accord well with the experiments. The simulated results proved that the field enhancement factor of individual CNT is largest, but the emission current density is little. Due to the enhanced screening of the electric field, the enhancement factor of CNTs array decreases with decreasing the intertube distance. From the simulation the field emission can be optimized when the intertube distance is close to the tube height. The anode-cathode distance hardly influences the field enhancement factor of CNTs array, but can low the threshold voltage by decreasing the anode-cathode distance. Finally, the distribution of potential of the capped CNTs array and the opened CNTs array was simulated, which the results showed that the distribution of potential can be influenced to some extent by the anode-cathode distance, especially at the apex of the capped CNTs array and the brim of the opened CNTs array. The opened CNTs array has larger field enhancement factor and can emit more current than the capped one.
Downsampling Photodetector Array with Windowing
NASA Technical Reports Server (NTRS)
Patawaran, Ferze D.; Farr, William H.; Nguyen, Danh H.; Quirk, Kevin J.; Sahasrabudhe, Adit
2012-01-01
In a photon counting detector array, each pixel in the array produces an electrical pulse when an incident photon on that pixel is detected. Detection and demodulation of an optical communication signal that modulated the intensity of the optical signal requires counting the number of photon arrivals over a given interval. As the size of photon counting photodetector arrays increases, parallel processing of all the pixels exceeds the resources available in current application-specific integrated circuit (ASIC) and gate array (GA) technology; the desire for a high fill factor in avalanche photodiode (APD) detector arrays also precludes this. Through the use of downsampling and windowing portions of the detector array, the processing is distributed between the ASIC and GA. This allows demodulation of the optical communication signal incident on a large photon counting detector array, as well as providing architecture amenable to algorithmic changes. The detector array readout ASIC functions as a parallel-to-serial converter, serializing the photodetector array output for subsequent processing. Additional downsampling functionality for each pixel is added to this ASIC. Due to the large number of pixels in the array, the readout time of the entire photodetector is greater than the time between photon arrivals; therefore, a downsampling pre-processing step is done in order to increase the time allowed for the readout to occur. Each pixel drives a small counter that is incremented at every detected photon arrival or, equivalently, the charge in a storage capacitor is incremented. At the end of a user-configurable counting period (calculated independently from the ASIC), the counters are sampled and cleared. This downsampled photon count information is then sent one counter word at a time to the GA. For a large array, processing even the downsampled pixel counts exceeds the capabilities of the GA. Windowing of the array, whereby several subsets of pixels are designated for processing, is used to further reduce the computational requirements. The grouping of the designated pixel frame as the photon count information is sent one word at a time to the GA, the aggregation of the pixels in a window can be achieved by selecting only the designated pixel counts from the serial stream of photon counts, thereby obviating the need to store the entire frame of pixel count in the gate array. The pixel count se quence from each window can then be processed, forming lower-rate pixel statistics for each window. By having this processing occur in the GA rather than in the ASIC, future changes to the processing algorithm can be readily implemented. The high-bandwidth requirements of a photon counting array combined with the properties of the optical modulation being detected by the array present a unique problem that has not been addressed by current CCD or CMOS sensor array solutions.
Goddard Space Flight Center solar array missions, requirements and directions
NASA Technical Reports Server (NTRS)
Gaddy, Edward; Day, John
1994-01-01
The Goddard Space Flight Center (GSFC) develops and operates a wide variety of spacecraft for conducting NASA's communications, space science, and earth science missions. Some are 'in house' spacecraft for which the GSFC builds the spacecraft and performs all solar array design, analysis, integration, and test. Others are 'out of house' spacecraft for which an aerospace contractor builds the spacecraft and develops the solar array under direction from GSFC. The experience of developing flight solar arrays for numerous GSFC 'in house' and 'out of house' spacecraft has resulted in an understanding of solar array requirements for many different applications. This presentation will review those solar array requirements that are common to most GSFC spacecraft. Solar array technologies will be discussed that are currently under development and that could be useful to future GSFC spacecraft.
NASA Technical Reports Server (NTRS)
1983-01-01
The Flat Plate Solar Array Project, focuses on advancing technologies relevant to the design and construction of megawatt level central station systems. Photovoltaic modules and arrays for flat plate central station or other large scale electric power production facilities require the establishment of a technical base that resolves design issues and results in practical and cost effective configurations. Design, qualification and maintenance issues related to central station arrays derived from the engineering and operating experiences of early applications and parallel laboratory reserch activities are investigated. Technical issues are examined from the viewpoint of the utility engineer, architect/engineer and laboratory researcher. Topics on optimum source circuit designs, module insulation design for high system voltages, array safety, structural interface design, measurements, and array operation and maintenance are discussed.
Propagation of a radial phased-locked Lorentz beam array in turbulent atmosphere.
Zhou, Guoquan
2011-11-21
A radial phased-locked (PL) Lorentz beam array provides an appropriate theoretical model to describe a coherent diode laser array, which is an efficient radiation source for high-power beaming use. The propagation of a radial PL Lorentz beam array in turbulent atmosphere is investigated. Based on the extended Huygens-Fresnel integral and some mathematical techniques, analytical formulae for the average intensity and the effective beam size of a radial PL Lorentz beam array are derived in turbulent atmosphere. The average intensity distribution and the spreading properties of a radial PL Lorentz beam array in turbulent atmosphere are numerically calculated. The influences of the beam parameters and the structure constant of the atmospheric turbulence on the propagation of a radial PL Lorentz beam array in turbulent atmosphere are discussed in detail. © 2011 Optical Society of America
2000-08-30
In the Space Station Processing Facility, workers help guide a solar array into position for installation on the Integrated Equipment Assembly. Solar Array Wing-3 is already in place. Components of the International Space Station, the arrays are scheduled to be launched on mission STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station
2000-08-30
In the Space Station Processing Facility, the overhead crane carrying a solar array arrives at the Integrated Equipment Assembly (IEA) on which it will be installed. Solar Array Wing-3 is already in place. Components of the International Space Station, the arrays are scheduled to be launched on mission STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station
2000-08-30
Workers in the Space Station Processing Facility give close attention to the placement of a solar array on the Integrated Equipment Assembly. Solar Array Wing-3 is already in place. Components of the International Space Station, the arrays are scheduled to be launched on mission STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station
Advanced photovoltaic solar array design assessment
NASA Technical Reports Server (NTRS)
Stella, Paul; Scott-Monck, John
1987-01-01
The Advanced Photovoltaic Solar Array (APSA) program seeks to bring to flight readiness a solar array that effectively doubles the specific power of the Solar Array Flight Experiment/Solar Electric Propulsion (SAFE/SEP) design that was successfully demonstrated during the Shuttle 41-D mission. APSA is a critical intermediate milestone in the effort to demonstrate solar array technologies capable of 300 W/kg and 300 W/square m at beginning of life (BOL). It is not unreasonable to anticipate the development of solar array designs capable of 300 W/kg at BOL for operational power levels approx. greater than 25 kW sub e. It is also quite reasonable to expect that high performance solar arrays capable of providing at least 200 W/kg at end of life for most orbits now being considered by mission planners will be realized in the next decade.
Measuring the electromagnetic chirality of 2D arrays under normal illumination.
Garcia-Santiago, X; Burger, S; Rockstuhl, C; Fernandez-Corbaton, I
2017-10-15
We present an electromagnetic chirality measure for 2D arrays of subwavelength periodicities under normal illumination. The calculation of the measure uses only the complex reflection and transmission coefficients from the array. The measure allows the ordering of arrays according to their electromagnetic chirality, which further allows a quantitative comparison of different design strategies. The measure is upper bounded, and the extreme properties of objects with high values of electromagnetic chirality make them useful in both near- and far-field applications. We analyze the consequences that different possible symmetries of the array have on its electromagnetic chirality. We use the measure to study four different arrays. The results indicate the suitability of helices for building arrays of high electromagnetic chirality, and the low effectiveness of a substrate for breaking the transverse mirror symmetry.
The revised solar array synthesis computer program
NASA Technical Reports Server (NTRS)
1970-01-01
The Revised Solar Array Synthesis Computer Program is described. It is a general-purpose program which computes solar array output characteristics while accounting for the effects of temperature, incidence angle, charged-particle irradiation, and other degradation effects on various solar array configurations in either circular or elliptical orbits. Array configurations may consist of up to 75 solar cell panels arranged in any series-parallel combination not exceeding three series-connected panels in a parallel string and no more than 25 parallel strings in an array. Up to 100 separate solar array current-voltage characteristics, corresponding to 100 equal-time increments during the sunlight illuminated portion of an orbit or any 100 user-specified combinations of incidence angle and temperature, can be computed and printed out during one complete computer execution. Individual panel incidence angles may be computed and printed out at the user's option.
Synthesis of a large communications aperture using small antennas
NASA Technical Reports Server (NTRS)
Resch, George M.; Cwik, T. W.; Jamnejad, V.; Logan, R. T.; Miller, R. B.; Rogstad, Dave H.
1994-01-01
In this report we compare the cost of an array of small antennas to that of a single large antenna assuming both the array and single large antenna have equal performance and availability. The single large antenna is taken to be one of the 70-m antennas of the Deep Space Network. The cost of the array is estimated as a function of the array element diameter for three different values of system noise temperature corresponding to three different packaging schemes for the first amplifier. Array elements are taken to be fully steerable paraboloids and their cost estimates were obtained from commercial vendors. Array loss mechanisms and calibration problems are discussed. For array elements in the range 3 - 35 m there is no minimum in the cost versus diameter curve for the three system temperatures that were studied.
Thin-Film Solar Array Earth Orbit Mission Applicability Assessment
NASA Technical Reports Server (NTRS)
Hoffman, David J.; Kerslake, Thomas W.; Hepp, Aloysius F.; Raffaelle, Ryne P.
2002-01-01
This is a preliminary assessment of the applicability and spacecraft-level impact of using very lightweight thin-film solar arrays with relatively large deployed areas for representative Earth orbiting missions. The most and least attractive features of thin-film solar arrays are briefly discussed. A simple calculation is then presented illustrating that from a solar array alone mass perspective, larger arrays with less efficient but lighter thin-film solar cells can weigh less than smaller arrays with more efficient but heavier crystalline cells. However, a proper spacecraft-level systems assessment must take into account the additional mass associated with solar array deployed area: the propellant needed to desaturate the momentum accumulated from area-related disturbance torques and to perform aerodynamic drag makeup reboost. The results for such an assessment are presented for a representative low Earth orbit (LEO) mission, as a function of altitude and mission life, and a geostationary Earth orbit (GEO) mission. Discussion of the results includes a list of specific mission types most likely to benefit from using thin-film arrays. NASA Glenn's low-temperature approach to depositing thin-film cells on lightweight, flexible plastic substrates is also briefly discussed to provide a perspective on one approach to achieving this enabling technology. The paper concludes with a list of issues to be addressed prior to use of thin-film solar arrays in space and the observation that with their unique characteristics, very lightweight arrays using efficient, thin-film cells on flexible substrates may become the best array option for a subset of Earth orbiting missions.
Plasma Interactions with High Voltage Solar Arrays for a Direct Drive Hall Effect Thruster System
NASA Technical Reports Server (NTRS)
Schneider, T.; Horvater, M. A.; Vaughn, J.; Carruth, M. R.; Jongeward, G. A.; Mikellides, I. G.
2003-01-01
The Environmental Effects Group of NASA s Marshall Space Flight Center (MSFC) is conducting research into the effects of plasma interaction with high voltage solar arrays. These high voltage solar arrays are being developed for a direct drive Hall Effect Thruster propulsion system. A direct drive system configuration will reduce power system mass by eliminating a conventional power-processing unit. The Environmental Effects Group has configured two large vacuum chambers to test different high-voltage array concepts in a plasma environment. Three types of solar arrays have so far been tested, an International Space Station (ISS) planar array, a Tecstar planar array, and a Tecstar solar concentrator array. The plasma environment was generated using a hollow cathode plasma source, which yielded densities between 10(exp 6) - 10(exp 7) per cubic centimeter and electron temperatures of 0.5-1 eV. Each array was positioned in this plasma and biased in the -500 to + 500 volt range. The current collection was monitored continuously. In addition, the characteristics of arcing, snap over, and other features, were recorded. Analysis of the array performance indicates a time dependence associated with the current collection as well as a tendency for "conditioning" over a large number of runs. Mitigation strategies, to reduce parasitic current collection, as well as arcing, include changing cover-glass geometry and layout as well as shielding the solar cell edges. High voltage performance data for each of the solar array types tested will be presented. In addition, data will be provided to indicate the effectiveness of the mitigation techniques.
The New NASA-STD-4005 and NASA-HDBK-4006, Essentials for Direct-Drive Solar Electric Propulsion
NASA Technical Reports Server (NTRS)
Ferguson, Dale C.
2007-01-01
High voltage solar arrays are necessary for direct-drive solar electric propulsion, which has many advantages, including simplicity and high efficiency. Even when direct-drive is not used, the use of high voltage solar arrays leads to power transmission and conversion efficiencies in electric propulsion Power Management and Distribution. Nevertheless, high voltage solar arrays may lead to temporary power disruptions, through the so-called primary electrostatic discharges, and may permanently damage arrays, through the so-called permanent sustained discharges between array strings. Design guidance is needed to prevent these solar array discharges, and to prevent high power drains through coupling between the electric propulsion devices and the high voltage solar arrays. While most electric propulsion systems may operate outside of Low Earth Orbit, the plasmas produced by their thrusters may interact with the high voltage solar arrays in many ways similarly to Low Earth Orbit plasmas. A brief description of previous experiences with high voltage electric propulsion systems will be given in this paper. There are two new official NASA documents available free through the NASA Standards website to help in designing and testing high voltage solar arrays for electric propulsion. They are NASA-STD-4005, the Low Earth Orbit Spacecraft Charging Design Standard, and NASA-HDBK-4006, the Low Earth Orbit Spacecraft Charging Design Handbook. Taken together, they can both educate the high voltage array designer in the engineering and science of spacecraft charging in the presence of dense plasmas and provide techniques for designing and testing high voltage solar arrays to prevent electrical discharges and power drains.
Combined array CGH plus SNP genome analyses in a single assay for optimized clinical testing
Wiszniewska, Joanna; Bi, Weimin; Shaw, Chad; Stankiewicz, Pawel; Kang, Sung-Hae L; Pursley, Amber N; Lalani, Seema; Hixson, Patricia; Gambin, Tomasz; Tsai, Chun-hui; Bock, Hans-Georg; Descartes, Maria; Probst, Frank J; Scaglia, Fernando; Beaudet, Arthur L; Lupski, James R; Eng, Christine; Wai Cheung, Sau; Bacino, Carlos; Patel, Ankita
2014-01-01
In clinical diagnostics, both array comparative genomic hybridization (array CGH) and single nucleotide polymorphism (SNP) genotyping have proven to be powerful genomic technologies utilized for the evaluation of developmental delay, multiple congenital anomalies, and neuropsychiatric disorders. Differences in the ability to resolve genomic changes between these arrays may constitute an implementation challenge for clinicians: which platform (SNP vs array CGH) might best detect the underlying genetic cause for the disease in the patient? While only SNP arrays enable the detection of copy number neutral regions of absence of heterozygosity (AOH), they have limited ability to detect single-exon copy number variants (CNVs) due to the distribution of SNPs across the genome. To provide comprehensive clinical testing for both CNVs and copy-neutral AOH, we enhanced our custom-designed high-resolution oligonucleotide array that has exon-targeted coverage of 1860 genes with 60 000 SNP probes, referred to as Chromosomal Microarray Analysis – Comprehensive (CMA-COMP). Of the 3240 cases evaluated by this array, clinically significant CNVs were detected in 445 cases including 21 cases with exonic events. In addition, 162 cases (5.0%) showed at least one AOH region >10 Mb. We demonstrate that even though this array has a lower density of SNP probes than other commercially available SNP arrays, it reliably detected AOH events >10 Mb as well as exonic CNVs beyond the detection limitations of SNP genotyping. Thus, combining SNP probes and exon-targeted array CGH into one platform provides clinically useful genetic screening in an efficient manner. PMID:23695279
Characterization of Kerfless Linear Arrays Based on PZT Thick Film.
Zawada, Tomasz; Bierregaard, Louise Moller; Ringgaard, Erling; Xu, Ruichao; Guizzetti, Michele; Levassort, Franck; Certon, Dominique
2017-09-01
Multielement transducers enabling novel cost-effective fabrication of imaging arrays for medical applications have been presented earlier. Due to the favorable low lateral coupling of the screen-printed PZT, the elements can be defined by the top electrode pattern only, leading to a kerfless design with low crosstalk between the elements. The thick-film-based linear arrays have proved to be compatible with a commercial ultrasonic scanner and to support linear array beamforming as well as phased array beamforming. The main objective of the presented work is to investigate the performance of the devices at the transducer level by extensive measurements of the test structures. The arrays have been characterized by several different measurement techniques. First, electrical impedance measurements on several elements in air and liquid have been conducted in order to support material parameter identification using the Krimholtz-Leedom-Matthaei model. It has been found that electromechanical coupling is at the level of 35%. The arrays have also been characterized by a pulse-echo system. The measured sensitivity is around -60 dB, and the fractional bandwidth is close to 60%, while the center frequency is about 12 MHz over the whole array. Finally, laser interferometry measurements have been conducted indicating very good displacement level as well as pressure. The in-depth characterization of the array structure has given insight into the performance parameters for the array based on PZT thick film, and the obtained information will be used to optimize the key parameters for the next generation of cost-effective arrays based on piezoelectric thick film.
Adamson, David N; Mustafi, Debarshi; Zhang, John X J; Zheng, Bo; Ismagilov, Rustem F
2006-09-01
This paper reports a method for the production of arrays of nanolitre plugs with distinct chemical compositions. One of the primary constraints on the use of plug-based microfluidics for large scale biological screening is the difficulty of fabricating arrays of chemically distinct plugs on the nanolitre scale. Here, using microfluidic devices with several T-junctions linked in series, a single input array of large (approximately 320 nL) plugs was split to produce 16 output arrays of smaller (approximately 20 nL) plugs; the composition and configuration of these arrays were identical to that of the input. This paper shows how the passive break-up of plugs in T-junction microchannel geometries can be used to produce a set of smaller-volume output arrays useful for chemical screening from a single large-volume array. A simple theoretical description is presented to describe splitting as a function of the Capillary number, the capillary pressure, the total pressure difference across the channel, and the geometric fluidic resistance. By accounting for these considerations, plug coalescence and plug-plug contamination can be eliminated from the splitting process and the symmetry of splitting can be preserved. Furthermore, single-outlet splitting devices were implemented with both valve- and volume-based methods for coordinating the release of output arrays. Arrays of plugs containing commercial sparse matrix screens were obtained from the presented splitting method and these arrays were used in protein crystallization trials. The techniques presented in this paper may facilitate the implementation of high-throughput chemical and biological screening.
Bi-sensory, striped representations: comparative insights from owl and platypus.
Pettigrew, John D
2004-01-01
Bi-sensory striped arrays are described in owl and platypus that share some similarities with the other variant of bi-sensory striped array found in primate and carnivore striate cortex: ocular dominance columns. Like ocular dominance columns, the owl and platypus striped systems each involve two different topographic arrays that are cut into parallel stripes, and interdigitated, so that higher-order neurons can integrate across both arrays. Unlike ocular dominance stripes, which have a separate array for each eye, the striped array in the middle third of the owl tectum has a separate array for each cerebral hemisphere. Binocular neurons send outputs from both hemispheres to the striped array where they are segregated into parallel stripes according to hemisphere of origin. In platypus primary somatosensory cortex (S1), the two arrays of interdigitated stripes are derived from separate sensory systems in the bill, 40,000 electroreceptors and 60,000 mechanoreceptors. The stripes in platypus S1 cortex produce bimodal electrosensory-mechanosensory neurons with specificity for the time-of-arrival difference between the two systems. This "thunder-and-lightning" system would allow the platypus to estimate the distance of the prey using time disparities generated at the bill between the earlier electrical wave and the later mechanical wave caused by the motion of benthic prey. The functional significance of parallel, striped arrays is not clear, even for the highly-studied ocular dominance system, but a general strategy is proposed here that is based on the detection of temporal disparities between the two arrays that can be used to estimate distance.
2008-09-30
new source section and by mounting nose arrays. Unicorn will have a single nose array while Caribou with the dual array. The new configurations are...Nose array Figure 1: New Configurations of the MIT BF21 AUVs Unicorn and Caribou. Both are being equipped
Method for replicating an array of nucleic acid probes
Cantor, Charles R.; Przetakiewicz, Marek; Smith, Cassandra L.; Sano, Takeshi
1998-01-01
The invention relates to the replication of probe arrays and methods for replicating arrays of probes which are useful for the large scale manufacture of diagnostic aids used to screen biological samples for specific target sequences. Arrays created using PCR technology may comprise probes with 5'- and/or 3'-overhangs.
Transport in arrays of submicron Josephson junctions over a ground plane
NASA Astrophysics Data System (ADS)
Ho, Teressa Rae
One-dimensional (1D) and two-dimensional (2D) arrays of Al islands linked by submicron Al/Alsb{x}Osb{y}/Al tunnel junctions were fabricated on an insulating layer grown on a ground plane. The arrays were cooled to temperatures as low as 20 mK where the Josephson coupling energy Esb{J} of each junction and the charging energy Esb{C} of each island were much greater than the thermal energy ksb{B}T. The capacitance Csb{g} between each island and the ground plane was much greater than the junction capacitance C. Two classes of arrays were studied. In the first class, the normal state tunneling resistance of the junctions was much larger than the resistance quantum for single electrons, Rsb{N}≫ Rsb{Qe}equiv h/esp2≈ 25.8 kOmega, and the islands were driven normal by an applied magnetic field such that Esb{J}=0 and the array was in the Coulomb blockade regime. The arrays were made on degenerately-doped Si, thermally oxidized to a thickness of approximately 100 nm. The current-voltage (I-V) characteristics of a 1D and a 2D array were measured and found to display a threshold voltage Vsb{T} below which little current flows. Above threshold the array current I scaled as (V/Vsb{T}-1)sp{zeta}; this scaling behavior was interpreted as a dynamic critical phenomenon. A 2D array with intentionally-added island area disorder was also measured and found to have a similar threshold voltage Vsb{T} but a larger scaling exponent zeta than the array with only intrinsic disorder. In the second class of arrays, the normal state tunneling resistance of the junctions was close to the resistance quantum for Cooper pairs, Rsb{N}≈ Rsb{Q}equiv h/4esp2≈ 6.45kOmega, such that Esb{J}/Esb{C}≈1. The arrays were made on GaAs/Alsb{0.3}Gasb{0.7}As heterostructures with a two-dimensional electron gas (2DEG) approximately 100 nm below the surface. The resistance per square of the 2DEG, Rsb{g}, could be varied by applying a large voltage between the 2DEG and a metallic back gate; varying Rsb{g} varied the dissipation associated with the local electrodynamic environment. For a 2D array, the I-V characteristics made a transition from superconductor-like to insulator-like as the resistance of the ground plane Rsb{g} was increased. The zero-bias resistance Rsb0 of the array increased exponentially with Rsb{g}. A small magnetic field was applied perpendicularly to the array, and the I-V characteristics of the array changed from superconductor-like to insulator-like as the magnetic field (measured in units of frustration f, the number of flux quanta per unit cell) was increased. Increasing Rsb{g} drove the magnetic field-driven superconductor-like to insulator-like transition of the I-V characteristics to lower values of f, and increasing f drove the dissipation-driven transition to lower values of Rsb{g}. Three 1D arrays were also measured. One array displayed superconducting behavior at low temperature, and the size of the supercurrent increased, reached a maximum, and then decreased, as Rsb{g} was increased. Two arrays displayed insulating behavior at low temperature, and the size of the Coulomb gap increased with increasing Rsb{g}. The zero-bias resistance of the array Rsb0 increased faster than exponentially with Rsb{g}.
2010-09-01
adds an extra dimension to both IPS and other observations. The polarization of the CME synchrotron emission observed by [3] will be of great...base funding. 8. REFERENCES 1. Kassim et al., The 74 MHz System on the Very Large Array, The Astrophysical Journal Supplement Series, Vol. 172...The Long Wavelength Array (LWA): A Large HF/VHF Array for Solar Physics, Ionospheric Science, and Solar Radar Namir E. Kassim Naval Research
Double biprism arrays design using for stereo-photography of mobile phone camera
NASA Astrophysics Data System (ADS)
Sun, Wen-Shing; Chu, Pu-Yi; Chao, Yu-Hao; Pan, Jui-Wen; Tien, Chuen-Lin
2016-11-01
Generally, mobile phone use one camera to catch the image, and it is hard to get stereo image pair. Adding a biprism array can help that get the image pair easily. So users can use their mobile phone to catch the stereo image anywhere by adding a biprism array, and if they want to get a normal image just remove it. Using biprism arrays will induce chromatic aberration. Therefore, we design a double biprism arrays to reduce chromatic aberration.
EVA 2 - old solar array installed in payload bay
2002-03-05
STS109-326-008 (5 March 2002) --- Astronaut Michael J. Massimino, mission specialist, works at the stowage area for the Hubble Space Telescope's port side solar array. Astronauts Massimino and James H. Newman removed the old port solar array and stowed it in Columbias payload bay for a return to Earth. They then went on to install a third-generation solar array and its associated electrical components. Two crew mates had accomplished the same feat with the starboard array on the previous day.
1989-09-01
enables a study of the internal wave field simultaneously using tiltmeters , strainmeters, and oceanographic sensors . It offers the chance to determine...Williams, personal communication]. Their sensors include a bubble level tiltmeter installed near the instrument hut, as well as a triangular array of...Plan Three sensor arrays are deployed near each other, as shown in Figure 2.3: our tiltmeter array, the SPRI strainmeter array, and the array of moored
Port side of the P6 Solar Array during the first attempt to retract
2006-12-13
S116-E-05789 (13 Dec. 2006) --- This digital still image was taken by a crew member aboard the Space Shuttle Discovery of a kink that occurred in the port-side P6 solar array during the first attempt to retract that array on Dec. 13. The crew later extended the array and cleared this kink. The slow retraction of the array was then begun again with similar retraction and extension cycles repeated as the day progressed.
Demonstration of Lasercom and Spatial Tracking with a Silicon Geiger-Mode APD Array
2016-02-26
standardized pixel mask as described in the previous paragraph disabling 167 of the 1024 detectors in the array , this gives an absolute maximum rate...number of elements in an array based detector .5 In this paper, we present the results of photon-counting communication tests based on an arrayed ...semiconductor photon-counting detector .6 The array also has the ability to sense the spatial distribution of the received light giving it the potential to act
NASA Technical Reports Server (NTRS)
Marshall, Paul; Reed, Robert; Fodness, Bryan; Jordan, Tom; Pickel, Jim; Xapsos, Michael; Burke, Ed
2004-01-01
This slide presentation examines motivation for Monte Carlo methods, charge deposition in sensor arrays, displacement damage calculations, and future work. The discussion of charge deposition sensor arrays includes Si active pixel sensor APS arrays and LWIR HgCdTe FPAs. The discussion of displacement damage calculations includes nonionizing energy loss (NIEL), HgCdTe NIEL calculation results including variance, and implications for damage in HgCdTe detector arrays.
24-71 GHz PCB Array for 5G ISM
NASA Technical Reports Server (NTRS)
Novak, Markus H.; Volakis, John L.; Miranda, Felix A.
2017-01-01
Millimeter-wave 5G mobile architectures need to consolidate disparate frequency bands into a single, multifunctional array. Existing arrays are either narrow-band, prohibitively expensive or cannot be scaled to these frequencies. In this paper, we present the first ultra-wideband millimeter wave array to operate across six 5G and ISM bands spanning 24-71 GHz. Importantly, the array is realized using low-cost PCB. The paper presents the design and optimized layout, and discusses fabrication and measurements.
Array architectures for iterative algorithms
NASA Technical Reports Server (NTRS)
Jagadish, Hosagrahar V.; Rao, Sailesh K.; Kailath, Thomas
1987-01-01
Regular mesh-connected arrays are shown to be isomorphic to a class of so-called regular iterative algorithms. For a wide variety of problems it is shown how to obtain appropriate iterative algorithms and then how to translate these algorithms into arrays in a systematic fashion. Several 'systolic' arrays presented in the literature are shown to be specific cases of the variety of architectures that can be derived by the techniques presented here. These include arrays for Fourier Transform, Matrix Multiplication, and Sorting.
Platform for immobilization and observation of subcellular processes
McKnight, Timothy E.; Kalluri, Udaya C.; Melechko, Anatoli V.
2014-08-26
A method of immobilizing matter for imaging that includes providing an array of nanofibers and directing matter to the array of the nanofibers. The matter is immobilized when contacting at least three nanofibers of the array of nanofibers simultaneously. Adjacent nanofibers in the array of nanofibers may be separated by a pitch as great as 100 microns. The immobilized matter on the array of nanofibers may then be imaged. In some examples, the matter may be cell matter, such as protoplasts.
NASA Technical Reports Server (NTRS)
Jones, B.
1985-01-01
This program was directed towards a better understanding of some of the important factors in the performance of infrared detector arrays at low background conditions appropriate for space astronomy. The arrays were manufactured by Aerojet Electrosystems Corporation, Azusa. Two arrays, both bismuth doped silicon, were investigated: an AMCID 32x32 Engineering mosiac Si:Bi accumulation mode charge injection device detector array and a metal oxide semiconductor/field effect transistor (MOS-FET) switched array of 16x32 pixels.